

 i

 i

 Game Development
with

Unreal Engine 5
Learn the Basics of Game Development in

Unreal Engine 5

 Mitchell Lynn
 Cliff Sharif

www.bpbonline.com

ii

FIRST EDITION 2023
Copyright © BPB Publications, India
ISBN: 978-93-55513-441

All Rights Reserved. No part of this publication may be reproduced, distributed or
transmitted in any form or by any means or stored in a database or retrieval system,
without the prior written permission of the publisher with the exception to the program
listings which may be entered, stored and executed in a computer system, but they
can not be reproduced by the means of publication, photocopy, recording, or by any
electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and
publisher’s knowledge. The author has made every effort to ensure the accuracy of these
publications, but publisher cannot be held responsible for any loss or damage arising
from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners but BPB Publications cannot guarantee the accuracy of this
information.

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Manipal Technologies, Manipal

www.bpbonline.com

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

 iii

Dedicated to

Game Programmers, Application Developers and Game Designers,
who like to make the “Unreal” with “Unreal Engine 5”

iv

About the Authors

l Cliff Sharif (aka Emperor Katax) is programmer and digital artist. His first
touch to digital content was with Commodore 64 and Amiga 500. He practiced
early steps of programming multimedia and real-time application with these
platforms and also touched first edges of digital art belongs to that era. Then he
began his carrier with programming and digital art in 1998, by using Windows
98.

 Cliff was an Unreal Tournament pro gamer and was involved with WCG
international tournaments as team organizer back in 2004. Then after
publishing his first book “Unreal Engine Physics Essentials”, he switched his
main carrier on develop application with Unreal Engine. He was involved in
develop, manage and design industry standard applications of Virtual Reality,
Architectural Visualizations, Real-time midi-controlled visuals, and recently
Virtual Production by using Unreal Engine with Blueprint and C++. He
certified as “Unreal Authorized Instructor – UAI” by Epic Games in 2020 and
after that his main focus went for teaching game programming and design
with Unreal Engine to students around the world.

l Mitchell Lynn is a programmer who has been playing videogames since
before he could walk, he started out playing classics like DOOM and Quake
on his Grandfather’s old hardware, and has continued playing through every
gaming generation since. This experience has been extremely helpful to his
progression and capability as a programmer.

 After completing secondary education, Mitch decided to enter into the
industry of creating the games that had occupied so much of his life. After a
couple of years studying under Cliff to become a competent programmer, he
entered the industry working on Virtual Reality simulation software, and then
started developing games, both of which using Unreal Engine. He specializes
in data management-based programming, and is always happy to assist those
interested in becoming a programmer themselves.

 v

Preface

The Unreal Engine 5 is the latest game development engine released by Epic
Games, and this book will cover the basic setup and usage of the engine, as well
as provide and explain examples of how to create fundamental objects of a game.

After a quick review of mathematics used in game design, we go through Unreal
Editor which is the main environment for debug and develop the application
by using Unreal Engine 5. Then users will learn how to use programming skills
in develop application by using unreal engine 5 templates and Blueprint visual
programming language. This part will establish a base to discover and learn other
parts of the engine in future chapters.

Users will learn create Actors which are fundamental game objects in the engine.
Then we learn how to use data structures, im0plement event and event dispatchers,
using interface, and handling users input data. We learn about shaders, Niagara
particle system, Metasound and packaging the project by making practical
examples with step-by-step instructions.

By the end of this book, user has an intermediate to advanced knowledge of how
to use engine templates, and make standalone executable prototypes of games or
interactive application using Unreal Engine 5.

Chapter 1 This chapter is for absolute beginners in game development. We learn
about “Game Engine” and will focus on the Unreal Engine as an example of a
popular and high-quality game engine which is the focus of this book. Then we go
through the installation process and describe how to customize the engine based
on the user requirements. Also, we will learn how to use the Epic Games Launcher
which is basically an interface to access Epic Games applications, of which Unreal
Engine 5 is the latest one.

Chapter 2 Game developers need proper math skills for solving complex problems.
An example could be calculation movement of 3D object in space, or calculating a
target angle between 2 objects when they are pointing towards the player. Solving
each of these problems requires knowledge of math which we learn in this chapter.
Covering each aspect of the mathematical approach used in the digital world is
not our goal in this chapter, but the user will go through the basics of math and
follow the learning path to permit understanding more complex topics.

vi

Chapter 3 This chapter will cover using the Epic Games launcher to open, update,
or repair the engine, as well as how to use the marketplace. It will also cover the
basic standard layout of the editor, how to modify the layout of the editor, where
the important menus are located, their purpose, and how to use them, as well as
explain useful hotkeys (and Reroute nodes), and skim through the project settings
and plugins menus.

Chapter 4 Unreal Engine 5 uses a visual scripting language for making games and
applications known as “Blueprint”. In this chapter users will learn the basics of
blueprints, how to make and populate them in the scene and learn how to import
mesh components into the game application and assign them in the blueprint.
Also, users will learn how to use game engine resources by adding blueprint
components to their blueprint object and basics of using physics. At the end, users
learned basic knowledge of blueprint design before they learn coding in blueprints
in the next chapters.

Chapter 5 By using previous knowledges from chapter 4, users will learn how to
develop code in blueprints and make game objects. Also, users will learn about
Unreal Engine 5 templates, and how to program user input to the game character
which meet learning more about Project Setting in the editor. Also, user learn how
to change graphic setting of game in cases of rendering and light.

Chapter 6 Levels within UE5 consist of objects, (of which there are many types), and
knowing these objects and how they function within the application, is essential
for efficient & effective “Object Oriented” programming. We learn about game
objects and materials in this chapter. Numbers of actor components that create
game object in the game, can use materials. Material changes the appearance of the
game object and can be simple or very complex.

Chapter 7 This chapter will cover the basic types of data (Ones that see regular
use) used within Unreal Engine 5 (And programming in general), what each type
is exactly, additional information about them, as well as their uses and benefits,
with use-case examples. It will also cover how they can interact with each other
(Pin splitting and conversions)

Chapter 8 Previously in chapter 5, users learned to use collision events to handle
the collision. Now they will learn an advanced level of programming blueprints
which is “Event Handling” and “Interface”. We learn the “core knowledge” of
communication between game objects in the engine which is essential for any
scenario of applications development with Unreal Engine 5.

 vii

Chapter 9, There are a number of more complicated types of variables that aren’t
used as much as the simpler ones, but are arguably more important, as they are
generally used for creating larger, core systems that the simpler variables are used
within. We also cover how to use data for changing pos, in an animation Instance
game object.

Chapter 10, This chapter will cover the more advanced aspects of game objects,
including some other components with their functionalities/events (Projectile
components, actor components, projectile components, movement components,
etc.). It will also cover saving data to the system that game is running on, for future
usage (Serialization), which is important for keeping track of player progress and
their settings.

Chapter 11, In this chapter, users learn how to use the Unreal Engine 5 audio
engine and develop audio code for the game. This feature is new in Unreal Engine
5 compare to previous versions of the engine. Also, users learn the basics of
using Niagara which is a particle system simulator inside the engine to generate
VFX effects. We explain a simple pipeline by a practical example, for using these
features.

Chapter 12, Packaging a project is the last milestone of making any application
by using Unreal Engine. There are numbers of options, with layers of details
which are designed for packaging the application for different target machines.
It basically takes time and research, to learn the best options for packaging your
application, but we cover the main concept behind packaging and how the editor
provides tools and resources on this. Also, users will learn how to avoid possible
issues on packaging data.

Appendix, The “Enhanced Input” is a new feature to implement complex input
handling which will be a replacement of default input system in future versions
including 5.1. This appendix explains the logic and features of “Enhanced Input”
system, and will go through a practical example of how to implement it with a
third person player character.

viii

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/0m8xq5c

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

 ix

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

x

Table of Contents

 1. What is Unreal Engine? ... 1
 Structure .. 1
 Objectives .. 2
 History of Unreal Engine .. 2
 Installing Epic Games Launcher .. 4
 Conclusion .. 11
 Points to remember ... 12
 Multiple choice questions ... 12
 Answers ... 12
 Questions .. 12
 Key term .. 12

 2. Math for Game Design ... 13
 Structure .. 14
 Objectives .. 14
 Basic mathematics.. 14
 Boolean operator AND .. 16
 Boolean operator OR .. 17
 Boolean operator XOR ... 18
 Boolean operator NOT ... 18
 Using mathematics in programming game ... 19
 Vector ... 19
 Vector operator add .. 22

 Vector operator subtract .. 22

 Vector operators multiply and divide by scalar ... 23

 Vector operator Dot Product ... 23

 Mathematical functions .. 25
 Math function: power .. 25
 Math function: Pi .. 25
 Math function: ABS .. 25

 xi

	 Math	function:	floor ... 25
 Math function: cell... 26
 Math function: clamp .. 26
 Math functions: sine and cosine .. 26
 Math function: distance ... 28
 Math function: normalized vectors.. 29
 Conclusion .. 29
 Points to remember ... 29
 Multiple choice questions ... 30
 Answers ... 31
 Questions .. 31
 Key term .. 31

 3. Editor Basics and Epic Launcher .. 33
 Structure .. 33
 Objectives .. 34
 Epic Launcher layout .. 34
 Home .. 34
 Store ... 35
 Library ... 36
 Unreal Engine .. 36
 Marketplace ... 37

 Library ... 38

 Project Browser .. 38
 Editor layout ... 39
 Standard layout ... 40
 Editing the layout .. 41
 Layout menu .. 41
 Common hotkeys ... 42
 Important menu/window locations ... 43
 File tab ... 43
 Edit tab ... 43
 Window tab .. 44

xii

 Level editor .. 45

 Logs ... 46

 Experimental ... 46

 Layout .. 47

 Tools tab ... 47
 Build tab ... 47
 Help tab .. 47
 Project settings ... 48
 Plugins ... 48
 Conclusion .. 49
 Points to remember ... 50
 Multiple choice questions ... 50
 Answers ... 50
 Questions .. 51
 Key terms .. 51

 4. Using Blueprints .. 53
 Structure .. 53
 Objectives .. 54
 What is a blueprint? .. 54
 Design with blueprint ... 59
 Blueprint components ... 67
 Adding mesh to blueprint .. 74
 Adding physics .. 78
 Conclusion .. 82
 Points to remember ... 83
 Multiple choice questions ... 83
 Answers ... 84
 Questions .. 84
 Key terms .. 84

 5. Project Templates and User Interaction .. 85
 Structure .. 85
 Objectives .. 86

 xiii

 Using Templates in Unreal Engine 5 ... 86
 Adding user interaction to blueprint ... 89
 Developing code in Blueprint .. 93
 Simple collision detection .. 101
 Making simple game assets .. 105
 Conclusion .. 109
 Points to remember ... 110
 Multiple choice questions ..111
 Answers ..111
 Questions ...111
 Key terms .. 112

 6. Game Objects and Materials ... 113
 Structure .. 113
 Objectives .. 114
 Game objects ... 114
 Classes .. 114
 Inheritance ... 115
 Variables ... 116
 Components ... 117
 Transforms ... 118
 Events .. 119
 Construction script ... 119

 Beginplay ... 120

 Tick .. 121

 Endplay ... 121

 Custom Events .. 121

 Material Editor ... 122
 Material nodes .. 123

 Material instances ... 125
 Material data .. 125
 Material Parameter Collections ... 126
 Dynamic Materials .. 128

xiv

 Conclusion .. 129
 Points to remember ... 129
 Multiple choice questions ... 130
 Answers ... 130
 Questions .. 131
 Key terms .. 131

 7. Simple Data .. 133
 Structure .. 133
 Objectives .. 134
 Variables in blueprint .. 134
 Integers (Ints) .. 135
 Integer 64 .. 135

 Floats ... 135

 Doubles .. 136

 Booleans (Bools) ... 136
 Strings ... 138
 Name ... 138

 Text .. 138

 Vector ... 139
 Rotator ... 139
 Pin splitting ... 141
 Conversions ... 141
 Conclusion .. 142
 Points to remember ... 142
 Multiple choice questions ... 142
 Answers ... 143
 Questions .. 143
 Key terms .. 143

 8. Interface and Event Handling ... 145
 Structure .. 145
 Objectives .. 146
 What is the event in Unreal Engine 5? .. 146

 xv

 Using event dispatchers .. 155
 Using interface ... 159
 Line Trace in blueprint... 159
 Casting in blueprint .. 163

 Interface implementation in blueprint ... 168
 Using physics (advanced)... 173
 Using physical gravity .. 173
 Add physical force with impulse .. 176
 Make physical behavior as material ... 180
 Conclusion .. 184
 Points to remember ... 184
 Multiple choice questions ... 185
 Answer ... 185
 Questions .. 185
 Key terms .. 185

 9. Data Processing (Enum, Struct, Map, Data Tables) and
 Animation Instances ... 187
 Structure .. 187
 Objectives .. 188
 Object-based variables .. 188
 Enumerators (Enums) ... 189
 Bytes ... 190
 Enumerator editor .. 191
 Structures (structs) ... 192
 Structure editor .. 194
 Nested structs .. 194
 Arrays .. 195
 Get .. 196
 Remove ... 196
 Add ... 197
 Set Array Element ... 197
 Clear ... 198

xvi

 Length .. 198
 Maps .. 198
 Get keys and values .. 199
 Find .. 200
 Length .. 200
 Clear ... 200
 Contains ... 200
 Is Empty and Is Not Empty ... 201
 Data tables .. 201
 Data table editor .. 202
 CSV/JSON export ... 203
 Data Table usage in blueprint .. 204
 Does the data table row exist? ... 204

 Get data table column as string... 205

 Get data table row names .. 205

 Get data table row ... 205

 Animation instances .. 206
 Animation instance nodes ... 206
 Get Anim Instance .. 206

 Has valid animation instance .. 207

 Play .. 207

 Stop .. 208

 Set animation .. 208

 Set position .. 208

 Get position ... 209

 Is Playing ... 209

 Play animation .. 209

 Set Play Rate ... 210

 Get Play Rate ... 210

 Set animation mode ... 211

 Get animation mode .. 211

 Override animation data ... 212

 Animation modes ... 212

 xvii

 Multi-variable type operators .. 213
 Conclusion .. 214
 Points to remember ... 214
 Multiple choice questions ... 215
 Answers ... 215
 Questions .. 215
 Key terms .. 216

 10. Game Objects (Advanced) and Serialization ... 217
 Structure .. 217
 Objectives .. 218
 Class defaults ... 218
 Class settings .. 219
 Changing inheritance .. 220
 Interfaces .. 220
 Setup .. 221

 Returns .. 221

 Usage ... 222

 Tick settings .. 224
 Replication settings ... 226
 Serialization .. 228
 Save game objects ... 228
 User settings .. 230
 Scalability .. 230

 Input .. 231

 Conclusion .. 233
 Points to remember ... 233
 Multiple choice questions ... 233
 Answers ... 234
 Questions .. 234
 Key terms .. 234

 11. Audio and Particles ... 235
 Structure .. 235

xviii

 Objectives .. 236
 Using Niagara .. 236
 Making Niagara emitter .. 237
 Making Niagara system ... 247
 Using audio .. 259
 Making MetaSound ... 259
 Conclusion .. 275
 Points to remember ... 276
 Multiple choice questions ... 277
 Answers ... 277
 Questions .. 277
 Key terms .. 277

 12. Packaging .. 279
 Structure .. 279
 Objectives .. 279
 Platforms and licensing .. 280
 Plugins ... 288
 Conclusion .. 291
 Points to remember ... 292
 Multiple choice question .. 292
 Answer ... 292
 Questions .. 292
 Key terms .. 292

 Appendix .. 295
 Structure .. 296
 Overview of using Enhanced Input .. 296
 Using correct Value Type .. 300
 Implement custom user interaction in Blueprint .. 306
 Conclusion .. 310
 Key terms .. 311

 Index ...313-318

What is Unreal Engine? 1

Chapter 1
What is

Unreal Engine?

A long time ago, in order to make a video game, creative developers had to work
hard and solve complex problems. They had to develop their own Game Engine,

making assets, debug the application and release it with limited hardware variations
in the market at that time. The Game Engine is an application for creating, debugging,
and publishing a video game for target machines like PC, VR, mobile, and so on.
After the release of Windows 95 by Microsoft, developers got standard framework
and network tools for developing high-quality and multiplayer games, which led
them to create more powerful game engines. At the same time, the game industry
got massive support from hardware and software manufacturers, which not only
increased audio and visual quality but also supported new gaming platforms and
AR/VR gaming.

Today, a team of developers and designers with a creative mind have a number of
game engines and massive resources from industry to begin their project. We will
learn how to use Unreal Engine 5, which is one of the most successful game engines
in the industry and has massive support from the community of game developers.

Structure
In this chapter, we will discuss the following topics:

•	 History of Unreal Engine
•	 Installing Epic Games Launcher

2 Game Development with Unreal Engine 5

Objectives
After studying this chapter, you should be able to install Epic Game Launcher and
Unreal Engine 5, and you should know how to customize your installation. In this
chapter, we will also go through a brief history of Epic Games and Unreal Engine
and review some important titles there.

History of Unreal Engine
Everything began back in the late ’80s with Tim Sweeney from Maryland, when he
returned home from work for holiday and turned on his IBM computer to play a
video game, like he did when he was younger. He soon noticed that he is passionate
about making computer games as a career, but it was an unusual decision and risky
at the time. The game industry was so poor in terms of hardware and software
and more importantly, lack of technical resources for making games was a serious
problem for developing video games; however, none of these problems changed his
mind.

Tim is one of the pioneers of the game industry like John Carmack from Id software (as
you can see in Figure 1.1), who developed their own game engine from the beginning
of their career. At the very beginning, he learned how to develop applications by
using object-oriented programming methods, and then he developed his first game,
known as ZZT, released for MS-DOS by 1991. It was a puzzle game with the modding
ability. After that, he entered the game industry by opening his own company, Epic
Game.

Figure 1.1: John Carmack and Tim Sweeney in GDCA 2017

What is Unreal Engine? 3

In 1998, Epic Games released their first video game in the first-person shooter (FPS)
genre called Unreal, and it got a lot of attention due to the quality of visuals in game,
skeleton mesh animations, rendering techniques, audio effects, and rich game story.
For making Unreal, they developed their own game engine with an editor to debug
code and design game objects. By 1999, Epic Games released Unreal Tournament,
which was a multiplayer first person shooter (FPS) game, and it was developed with
same engine as Unreal (refer to Figure 1.2):

Figure 1.2: First series of FPS shooter games which released by
Epic Games and developed by Unreal Engine

After the millennium, Epic Games put a massive push on the quality and flexibility
of their engine and, they worked on supporting multiple platforms by the engine.
That led studios and game developers to making several big titles in the industry,
like Bioshock and Borderland, which brought massive marketing and support by the
community of gamers and game designers.

The latest version of Epic Games game engine is known as Unreal Engine 5, and
developers and designers have free access to the game engine for creating, designing,
debugging, and publishing stand-alone game and non-game applications on
multiple platforms and target machines like PC, Xbox, mobile, augmented reality,
and virtual reality.

Now, let’s install and use Unreal Engine 5.

4 Game Development with Unreal Engine 5

Installing Epic Games Launcher
Before using Unreal Engine, you must download and install an application, known
as Epic Game Launcher. This application is designed to organize your game
development environment, access to standard game assets, latest updates, and
community news when you use Unreal Engine 5.

Let’s look at the steps for installing EPIC Games Launcher:

1. First, you need to make an account and profile in https://www.epicgames.
com/, and then download and install the launcher. Then, open it and sign in
to your Epic Games account from the launcher. You will have full access to
Epic Games products, as shown in Figure 1.3, with Epic Games Launcher:

Figure 1.3: Epic Games Launcher

2. To install Unreal Engine 5, click on the Unreal Engine tab in the launcher
and then click on the Library tab on top; then, locate the ENGINE VERSIONS
title and click on the plus-shaped drop box, as shown in the following
figure:

What is Unreal Engine? 5

Figure 1.4: Navigate to Unreal Engine tab, click on library and
add new engine version by clicking on the dropdown menu

3. The launcher will automatically add an icon that represents your engine
version. You can add and install multiple versions of Unreal Engine on your
system by customizing the engine’s version, as shown in Figure 1.5:

Figure 1.5: Select engine version from engine panel and install Unreal Engine 5

6 Game Development with Unreal Engine 5

Here’s the main reason behind this: imagine that you find a game asset or plugin
from a marketplace or other source, which is not compatible with newer versions of
the engine. In these cases, you can download the older version of the engine, which
is compatible with your asset/plugin, and then migrate it to the new version and fix
the possible issues. We will go through this in detail in the following chapters.

Keep in mind that Unreal Engine 5 needs quality hardware features on your target
machine to perform rendering and functionalities; so, double-check your system
features before installing the engine. It is highly recommended to have more than
200-400 gigabit free space on local hard drives to avoid performance issues when
you debug and run your game, when using assets, and when working with git
technologies.

Here is list of recommendations and minimum hardware requirement for running
Unreal Engine 5 and its standard sample projects on PC target machine:

•	 Recommended hardware

o Operating system: Windows 10 64-bit

o Processor: 12-core Intel or AMD, 3.4 GHz or faster

o Memory: 64 GB RAM

o Video card/DirectX version: NVIDIA RTX 2080 or AMD Radeon 5700
XT

•	 Minimum software requirements for running the engine or editor

o Operating system: Windows 10 64-bit

o Memory: 32 GB RAM

o Video card/DirectX version: 8 GB of VRAM like NVIDIA GTX 1080 or
AMD RX Vega 64

After you press Install for any version of engine, you will be prompted to customize
the folder and path of your installation, as shown in Figure 1.6:

What is Unreal Engine? 7

Figure 1.6: After pressing “Install”, you will be navigated to the install page

Keep in mind that the Folder field represents a common folder that belongs to Epic
Games applications. The Path field represents the folder of your selected engine
version.

For example, Figure 1.7, as you see, has four different versions of engine plus Houdini
and Unreal Tournament requirements, all located in the Epic Games folder, which is
present in the Folder field on the installation page:

Figure 1.7: Example of having different version of engine inside “Epic Games” folder

8 Game Development with Unreal Engine 5

Each engine folder represents the Source of a specific version of Unreal Engine, and
when you make a new project, the engine makes an exact copy of necessary files
from this folder and makes a new folder and project for work in your selected path.
We will go through this process in the following chapters, but keep in mind that any
custom change in this folder and its contents may bring risk and instabilities to your
project, so don’t touch the contents of engine folders. Figure 1.8 illustrates the default
folder structure of Unreal Engine 5:

Figure 1.8: Unreal Engine 5 default folder structure

After you set the installation path, click on the Option button to navigate to the
option page. In the page shown in Figure 1.9, you can customize your engine
installation based on your project features. For example, if we have an Android
device like a mobile phone, and our project is mobile game development, then the
engine has to use a number of extra resources to compile and debug your game
during development. So, you have to tick Android in the Target Platform section
to get essential support for the engine. On the other hand, imagine that you have a
simple PC project, and it doesn’t need Android support. Here, you can deactivate
android support and save local drive space.

What is Unreal Engine? 9

Figure 1.9: Unreal Engine 5 option page

There is a list of options on this page, which is as follows:

•	 Core components: Engine native libraries, editor tools and essential
components

•	 Starter content: Premade multiple assets to help development and design
prototypes

•	 Template and feature packs: Provide numbers of premade templates based
on your project like first person shooter or VR; we will grab and use the
ThirdPerson template during this book to learn and debug our C++ code

•	 Engine source: Complete source code of engine written in C++ programming
language and accessible via Visual Studio or any C++ compatible IDE

•	 Editor symbols for debugging: Add extra libraries and symbols for
debugging

•	 Target platforms: List of drivers of target machines

10 Game Development with Unreal Engine 5

When you finish installing a version of the engine, you can always customize it at
any time. As you see in Figure 1.10, you can click on the small arrow located on each
engine panel and then click on Options from the dropdown menu:

Figure 1.10: Customize game options after install engine

For example, imagine that you have to make a new project that supports HoloLens,
and when you install the engine, you untick the HoloLens option there. In this case,
you can tick the HoloLens in Target Platforms, and the launcher will automatically
install the related resources.

The drop-down menu also has following options:

•	 Set Current: Select this version of engine as the default version to launch,
which will be represented at the top-right side of your launcher screen, as
shown in Figure 1.11:

What is Unreal Engine? 11

Figure 1.11: Set engine version as default for launch

•	 Create Shortcut: Make a shortcut of this version and add it to your desktop
for a quick launch.

•	 Remove: Uninstall the engine with all its components.

•	 Verify: After installation, you can verify your installed file in case of custom
changes to the local source or missing files.

Conclusion
During the past decades, Epic Games had a massive impact on the industry in the
case of designing and developing video games on multiplatform. They created their
own game engine, known as Unreal Engine, and released it as a free application
to download and use by the public. The qualities and multi-platform approaches
of their game engine resulted in brilliant video games and huge support by game
designers and programmers after the millennium. The Unreal Engine 5 is the latest
version of Unreal Engine, which has a major improvement on mesh processing,
dynamic lights, and audio programming. For using it, check your system preferences,
make an account in Epic Games online portal https://store.epicgames.com/en-US/,
and then install Epic Game Launcher. This application is designed to organize and
support your game design projects with Unreal Engine. From the launcher, you can
install a number of versions of the engine and also customize their options.

We will go through making projects and using game templates in the next chapter.

12 Game Development with Unreal Engine 5

Points to remember
•	 By default, you can use Epic Game Launcher to install multiple versions of

Unreal Engine.

•	 You can customize and remove each version of Unreal Engine by using
launcher menus.

Multiple choice questions
1. How can you add or remove versions of Unreal Engine on my computer?

a. Using Epic Game Launcher and navigating to the Library tab

b. Using Epic Game Launcher and navigating to the Marketplace tab

c. Using Visual Studio Installer and navigating to the Workflow tab

d. Using Epic Game Launcher and navigating to the Unreal Engine tab

Answer
 1. a

Questions
1. Is that possible to install multiple versions of Unreal Engine and use them on

the same machine?

2. As a default installation, how much space do you need on your hard drive to
install Visual Studio and Unreal Engine together?

Key term
•	 Epic Game Launcher is the application that installs and customizes engine

versions and gives access to other Epic Game online services like Marketplace.
You have to make an account and profile through Epic Game home page, i.e.,
https://www.epicgames.com/, before using this application.

Math for Game Design 13

Chapter 2
Math for

Game Design

Making computer games meet using programming skills invents a harmony of
visuals and sound effects, which interact with players based on their inputs.

Players can interact with games via keyboard and mouse or any other controllers
like VR set or console. Everyone knows that player interactions with game is a
human factor, so as a beginner, they may have numbers of mistakes, like randomly/
accidently clicking on buttons or pushing the wrong button. After a player becomes
an expert in a game, their interaction with the game gets more mature and accurate
on time. So, how we can make a bridge between human input as a player and the
video game we designed in order to make a good gaming experience for player
either as a beginner or an expert? What is the secret of making a harmony of visuals
and assets that supports the Fun of gaming?

The answer is hidden in two main factors of the game: the quality of design and the
efficiency level of the code. In this chapter, we will go through essential knowledge
of mathematics, which any game developer needs to develop code for game.
Mathematical approaches are an important part of any game development. They can
support game mechanics, tune shaders, and increase performance. Mathematical
functions and procedures are involved in creating material, playing animation,
running special effects, supporting logics in inventory system, simplifying user
interactions, calculating delays, and much more. Having advanced knowledge of
mathematics and numeric in programming will always give accurate results and
efficient qualities in any video game project.

14 Game Development with Unreal Engine 5

Structure
In this chapter, we will discuss the following topics:

•	 Basic mathematics

•	 Using mathematics in programming game
o Vector

•	 Mathematical functions

Objectives
After studying this unit, you will learn the basics of mathematics in game
development by going through numeric and Boolean data types and learn how and
where to use mathematical operations on these basic data types. After this, you will
learn how to use Vector and its operations and formulas, which is great knowledge
on each game development scenario. At this stage, you are ready to learn more
complex mathematical topics and as planned, you will learn essential knowledge of
Trigonometry and functions related to it. Unfortunately, there is not enough space
in this chapter to cover all aspects and details of Trigonometry, but we will cover a
good base for your future research and studies on this important topic in math and
game development.

We will also cover distance and normalize at the end of this chapter.

Basic mathematics
Each data in computer needs space in the memory to store its value, and it must
be connected to a variable in your code in order to accessed it`s values by your
application. On each game application, you will find numbers of variables that are
responsible to store various kind of data or better say, Data Type in memory. There
is a long list of data types in Unreal Engine 5, and we will cover most of them and
their relation to variables over the following chapters, but for now, we like to get an
overview on mathematical procedures, so let’s focus on numeric and Boolean data
types that are commonly used for making variables in order to perform mathematical
operations and functions in game.

The Numbers are represented by numeric data types, and the Booleans are represented
by Boolean data types. A variable made from a numeric data type is simply a signed
number, and you can use it for making health bar of player, damage of player weapon,
enemy distance from others or the color values of friendly unit’s armor. All these
examples use a signed number to present data to player.

Math for Game Design 15

A variable made from Boolean data type represents True and False and that’s all!
These two values (true and false) are commonly used to present binary logic of
game, like decision-making, or switch between different tasks, for example, turn on
night vision view from the main menu in a shooter game or defuse bomb in counter
strike (as shown in Figure 2.1) and win the round. All these are examples of using a
Boolean variable to switch or activate relative functions in the game:

Figure 2.1: Defuse bomb in Counter Strike is basically a Boolean procedure that affects the state of the game

As we mentioned, numeric data types are simply numbers. They are implemented
by three main data types in Unreal Engine 5: Integer, Float, and Byte. Integer
variables are whole numbers and can be positive, negative or 0; examples are 12, -7,
and 4000. Float numbers are like integers but also have an attached decimal value;
examples are 0.025, 7.44, and -5.4. Numbers like 2.0 and -4.0 represent float numbers
because they have an attached decimal value, which is .0. Byte variables can hold
a positive whole number between 0 to 255; examples are 0, 64, 110, so numbers like
400 or -2 can NOT be implemented and hold by Byte data type.

All integer, float and byte data types have basic operators for add, subtract, multiply,
divide, and modulo, which are described in Table 2.1:

Name Sign Output result
Add + Add two values with each other
Subtract - Subtract one value from another
Multiply * Multiply two values
Divide / Divide one value by another
Modulo % Return the remainder or signed remainder of a division

Table 2.1: Basic Numeric operators

16 Game Development with Unreal Engine 5

Boolean data types are simply accepting True and False as value, and they are
implemented by just one type known as Boolean. Sometimes these values are referred
to 0 (stands for False) and 1 (stands for True), which are numeric representations
of a Boolean data type. Boolean data types have a number of operators, which are
shown in Table 2.2. These operators are easy to learn, but as a beginner, you have to
understand when and how they can be used to simulate the logic of your game. We
will go through simple examples of basic Boolean operators used in Unreal Engine 5:

Name Output result
NOT Returns the logical complement of the Boolean value
AND Returns the logical AND of two values
OR Returns the logical OR of two values
XOR Returns the logical eXclusive OR of two values

Table 2.2: Basic Boolean operators

Boolean operator AND
This operator returns True if both comparisons are True, as shown in Table 2.3:

Variable A Variable B Output Result
True True True
True False False
False True False
False False False

Table 2.3: Boolean AND operator

Imagine that you are designing logic for a space simulation game. As you know,
each human logically needs Air to breath and Water to drink to stay alive. So, how
can we develop such a logic in our game by using Boolean? First, imagine that Air
and Water are two Boolean variables like A and B, which can hold True or False as
value. Now, if A is True, it means we have Air, and if it is False, it means we don’t
have Air, and it is the same for Water with variable B. Now, let’s make some logical
rules:

•	 No Air and no Water = Player cannot survive

•	 No Air and enough Water = Player cannot survive

•	 Enough Air and no Water = Player cannot survive

•	 Enough Air and enough Water = Player can survive

Math for Game Design 17

Now, let us replace Air and Water with variables A and B, and simplify our logic:

•	 A is False and B is False = Cannot survive

•	 A is False and B is True = Cannot survive

•	 A is True and B is False = Cannot survive

•	 A is True and B is True = Can survive

As you see, the AND operator is the best match to simulate this logic in the game.

Boolean operator OR
This operator returns True if at least one comparison is True, as shown in Table 2.4:

Variable A Variable B Output Result
True True True
True False True
False True True
False False False

Table 2.4: Boolean OR operator

Imagine that you are designing the logic for a city-building strategy game. Each city
has a unique building that supplies electricity. This building needs either water or
gas as the main resource to generate electricity. In case of having no water and gas
together, the building cannot supply electricity. So, again, how can we develop such
a logic in our game by using Boolean? First, imagine that Gas and Water are two
Boolean variables like A and B that can hold True or False as value. Now, if A is
True, it means we have enough Gas, and if it is False, it means we don’t have Gas,
and it is the same for Water, which is represented by variable B. Now, let us write
some logical rules:

•	 No Gas and no Water = Building cannot produce electricity

•	 No Gas and enough Water = Building can supply electricity

•	 Enough Gas and no Water = Building can supply electricity

•	 Enough Gas and enough Water = Building can supply electricity

Now, let us replace Air and Water with variables A and B, and simplify our logic:

•	 A is False and B is False = No electricity

•	 A is False and B is True = Having electricity

•	 A is True and B is False = Having electricity

•	 A is True and B is True = Having electricity

18 Game Development with Unreal Engine 5

As you see, the OR operator can simulate this logic for the building in the game.

Boolean operator XOR
This operator returns True if at least one comparison is True, as shown in Table 2.5:

Variable A Variable B Output Result
True True False
True False True
False True True
False False False

Table 2.5: Boolean OR operator

A very simple example of using XOR to simulate logic is to check the possibility of
pregnancy between two individuals based on gender type. Assume that variable A
and B are two individuals; here is the logic:

•	 A is male and B is male = pregnancy is NOT possible

•	 A is female and B is male = pregnancy is possible

•	 A is male and B is female = pregnancy is possible

•	 A is female and B is female = pregnancy is NOT possible

So, simply like the previous example, you can assign True and False to represent
gender and then use XOR to simulate pregnancy logic based on gender in any
application.

Boolean operator NOT
This operator returns the inversed value or opposite response of a Boolean variable.
This means if a Boolean variable is True, the NOT operator will change it to False
and if it is False, this operator will switch it to True, as shown in Table 2.6:

Variable A Operator Output Result
True NOT False
False NOT True

Table 2.6: Boolean NOT operator

Math for Game Design 19

Using mathematics in programming game
As you know, each video game has a number of 2D or 3D assets in the scene. These
assets follow logical or physical rules to move, rotate, and affect other objects in the
scene when the player runs the application and plays the game. Mathematics is a
vital part of this experience because by using it, developers can address physical
properties of each asset and control logical procedures during game play. So far,
we learned about numeric and Boolean variables, and the operators belong to each
group. These variables are the fundamental elements of special kinds of objects and
functions that we like to describe and review in this section. By using these functions
and objects, you can simulate geometric calculations, physics, and mechanics in your
game. These objects and functions are common in all game development technology,
so using Unreal Engine, Unity or CryEngine, you can use similar objects and math
functions to develop your game.

An example of mathematical object is matrices, which is a rectangular arrangement
of numeric or Boolean data types into rows and columns. Matrices are useful to solve
linear equations and geometric conversions. Another example is a very common
mathematical object known as Vector, which is made by numeric data types and
wildly used in game development. Figure 2.2 represents 3 x 3 matrices called A on
the left, which has 9 members, and there is a vector on right side, called B, that looks
like an arrow:

Figure 2.2: Left- representation of Matrices (Right -representation of Vector)

Vector
Vector is one of the most important mathematical objects used in each game
application to commonly represent location, direction, or velocity of an object in the
game scene. Each vector always has two informative factors: direction and magnitude
or size. You can imagine a vector as a directed line with one start point, and an end
point with an arrow, as shown in Figure 2.3:

Figure 2.3: Vector B magnitude and direction

20 Game Development with Unreal Engine 5

In nutshell, vector is like an array made of two or more numeric data types, which
are known as Vector’s Elements. Each vector element can be defined as a variable of
Int, Float, or Byte numeric data type. Unreal Engine 5, supports vector variables
in three variations, which are shown in Table 2.7:

Vector type No. elements Representation Magnitude
Vector 3 3 (x,y,z) √(x2 + y2 + z2)
Vector 2 2 (x,y) √(x2 + y2)
Vector 4 4 (x,y,z,w) or (r,g,b,alpha) √(x2 + y2 + z2 + w2)

Table 2.7: Vector variables support in Unreal Engine 5

Vector 2 has two elements and is used in 2D calculations to present numeric values
of X and Y coordination’s of an object in the scene. Figure 2.4 shows an example of
using vector 2 to present location of 2D game objects:

Figure 2.4: Green cup is located at X = 1 and Y=1 and Brown cup is located at X=-1.6 and
Y=-0.6 in a 2D map. Vector A uses these values as its elements to presents 2D location of the object.
Follow the same rules, Vector B (-1.6, -0.6) shows the location of Brown cup at X=-1.6 and Y=-0.6.

Vector 3 has three elements and is used to present 3D coordination of geometrics
objects in the scene. Figure 2.5 shows a 3D representation of a point in the space:

Math for Game Design 21

Figure 2.5: Blue dot is located at X = 1 and Y=1 and Z=1. Vector A uses these
values as its elements to presents 3D location of the object. So, Vector A (1, 1,1)

shows the location of the Blue dot at X=1 and Y=1 and Z=1.

Vector 4 is heavily used in Shader programming. Each element of this vector
represents a color: R for Red, G for Green, and B for Blue. The last element of Vector
4 represents alpha or transparency. Figure 2.6 is an example of using vector 4 to create
a color in material in Unreal Engine 5; we will cover this in detail in the following
chapters:

Figure 2.6: Using a Vector 4 variable (myColor) with (0.375, 0.0, 0.75, 1.0) as element,
which are addressing Red, Green, Blue, and Alpha channels to create material color in Unreal Engine 5.

22 Game Development with Unreal Engine 5

You can use math operators on vectors like numeric data type. All types of vectors
support operators add and subtract like numeric data types, and you can use operator
multiply and divide on a vector to multiply or divide it by scalar value. In addition,
vectors have one unique operator known as Dot Product, which is commonly used
in shader code and creating VFX functions. Now, let’s go through each operator and
explain how they work.

Vector operator add
For adding two vectors, you need to add similar vector elements with each other.
Assume that vector A (2, -4) and vector B (8, 6) represent x and y of two locations in
the scene. Now, if you like add these two vectors, you need to add X elements with
each other and the same for Y elements, so A + B = (2 + 8, -4 + 6) = (10, 2).

Vector operator subtract
For subtracting two vectors, you need to subtract similar vector elements from each
other. Let’s use the previous example: consider vector A (2, -4) and vector B (8, 6)
of two locations in the scene. Now, if you subtract these two vectors, you need to
subtract X elements from each other, and the same for Y elements, so A - B = (2 - 8,
-4 - 6) = (-6, -10).

Figure 2.7 shows a visual representation of add and subtract two vectors in a
2-dimensional map:

Figure 2.7: Visual representation of add and subtract operation on two Vector 2

Math for Game Design 23

Vector operators multiply and divide by scalar
For multiplying a scalar value to vector, you need to multiply it to each element
of vector. Imagine that Vectors A (2, -4, .5) represent x, y and z of a 3D object in the
scene. This object has a distance from origin of map (remember that vectors have
magnitude and direction), now we like to move it in the same direction. So, you
can multiply or divide each element of vector by a scalar number and change the
magnitude of vector. For example, if we multiply Vector A by 10, it means we move
the object to a new location far from first one, and the new location will be as follows:

10 × Vector A = (10 × 2, 10 × -4, 10 × .5) = (20, -40, 5) new coordination.

Now, to move the object closer to the origin, you can divide it by a scalar, and it
works like multiplying. For example, if we like to bring the object 100 times closer to
the origin, we can divide each element of vector by this number:

Vector A / 100 = (2/100, -4/100, .5/100) = (.2, -0.040, .005) new coordination

Vector operator Dot Product
The Dot Product is a scalar value that is simply a number. Assume that Vector A and
Vector B are locations of two items in a 2D map, as shown in Figure 2.8. Now, we can
calculate Dot Product by multiplying similar elements of each vector and adding
them to each other with the following formula:

A · B = Ax × Bx + Ay × By = 2 × 6 + 6 × 4 = 36

Figure 2.8: Visual representation of elements of Vector A and B

24 Game Development with Unreal Engine 5

You may be surprised at why such a number needs special operator to extract. This
Dot Product shows features of vectors A and B and the angle between them:

•	 When vectors A and B have a 90-degree angle between them, the Dot Product
is always zero.

•	 When vectors A and B have a 0-degree angle between them, the Dot Product
is equal to multiply magnitude of each vector to other.

•	 To calculate the Cosine of angle between vectors A and B, you need to calculate
their Dot Product first, and then divide that by the value of multiplying the
magnitude of each vector with the following formula:

A . B = magnitude of A × magnitude of B × cos (angle between A and B)

Figure 2.9 shows an example of finding angles between vectors by using Dot product:

Figure 2.9: Vector A and B and the angle “t” between them

By using formula for vector, A (2, 6) and vector B (6, 4):

A · B = magnitude of A × magnitude of B × cos (angle between A and B)

Then we have:

36 = 6.32456 × 7.2111 × cos(t) which means cos(t) = 0.789

The angle t will be 37.8 degree.

Math for Game Design 25

Mathematical functions
Alongside mathematical objects like Vector, you need to use mathematical functions
to simulate complex scenarios. For example, if you want to calculate power of a
number or normalize a Vector, mathematical functions like Power and Normalize
will be used. Unreal Engine 5 has in-depth collections of functions to express and
use math for geometric, physical, and shader simulations. Here, we go through
essential math functions that you must know in any game development scenario. In
the following chapters, you will learn how to implement these functions into your
code, but before that, you must know what they do and where to use them.

Math function: power
This function multiplies your base number by itself based on your multiplier value.
For example, let’s use 4 as base number and 2 as multiplier, so 4² = 4 × 4 = 16 and 34
= 3 × 3 × 3 × 3 = 81.

Math function: Pi
This function returns constant value for Pi number as 3.141592.

For example, the area of a circle can be found with the formula Area = π × radius²,
surface area of sphere can be calculated by Area = 4 × π × radius², and the formula
for converting degree to radian uses Pi as well, which is degree°= π × 180 × radians.
There are several other formulas in geometry and physics that meet using Pi as a
constant parameter.

Math function: ABS
This function returns the Absolute value of input by removing its negative sign.
In case of having positive numbers as input, it returns them with no change. For
example, imagine that you are a UI programmer of a city building strategy game
and need to show the level of air pollution on players’ monitors. You already have
a variable, and if it goes below -40, an alarm message should come up and give the
player information. So, by using ABS, you can simply change -40 to 40 and print a
message like The pollution is 40% below Standard level!

Math function: floor
Using this function will remove the fraction from float numbers, so it returns 0 for 0.2
and 4 for 4.2. So, easy to remember, Floor only remove fraction from float numbers.

26 Game Development with Unreal Engine 5

Math function: cell
Using this function, like floor, will remove fraction from float numbers, but it rounds
up the number in output, so it returns 1 for 0.2 and 5 for 4.2. In short, cell remove and
rounds up fraction from float numbers.

Math function: clamp
This function is used to clamp the input value to the specified minimum and
maximum range as output. Suppose you need to develop code to show the positions
of all players in a mini map of each player’s UI. Inside the game, distance between
players can be hundreds of meters, but on the monitor, you only have an area of
240 x 240 pixels. So, a good solution will be using Clamp to Range function which
converts values of player position, between minimum and maximum values of mini
map`s size. That is how magic became easy: by using math functions!

Math functions: sine and cosine
Mathematics is not just Numeric and Booleans, as we discussed for game
programming; it has a number of branches. One of the most important and ancient
branches of mathematics that has been used for thousands of years is known as
trigonometry. Trigonometry talks about triangles and their relations. This branch
is extremely useful for game design and unfortunately, it isn’t in the scope of this
book to go through all the details of trigonometry, but as basics, let’s learn the right
triangle rules.

Any triangle with a 90-degree angle is called a right triangle. Each side of a right
triangle has a title, as shown in Figure 2.10:

Figure 2.10: Right triangle and its side names related to angle “t”

Here:
•	 Hypotenuse: The side opposite of the right angle, which is 90o

•	 Adjacent: The side next to the angle t
•	 Opposite: The side on opposite of the angle t

Math for Game Design 27

As the rules of trigonometry proved, we can calculate the size of each side of right-
angled triangle, by using the ratios and the angle between pair of sides. Assume
that we have a right triangle and the size of its hypotenuse is equal to one unit of
measurement (for example 1 meter.). We can draw this triangle in a circle, as shown
in Figure 2.11:

Figure 2.11: Calculate Sin and Cos of angle “t” based on the
right triangle with a hypotenuse of length is 1 unit of measurement.

The mathematical relation between angle t and other sides of a right triangle is
presented by sine and cosine functions which also known as ratios:

sin (t) = Opposite / Hypotenuse

cos (t) = Adjacent / Hypotenuse

Sine and cosine are functions of angle and represent a ratio between the sides of a
right triangle. Each angle returns a numeric float value for sine and cosine, and as
the preceding image shows, the value is between the range of 1 and -1. Sine and
cosine values are commonly used in engineering, physics and electronics, and you
can find the sine and cosine buttons on each calculator. Now, use values between
0 – 360 for angle and draw the output graph of sine and cosine, probably by using a
calculator or a drawing program (or even a table of sine and cosine from 100 years
old book). You will end up with the same image as Figure 2.12:

Figure 2.12: Visual representation of Sin(t) and Cos(t) where “t” is between 0 to 360

28 Game Development with Unreal Engine 5

As the image shows, the values on the X axis represent the angle t, and they are
between 0 and 360, and values on the Y axis represent the output of the sine and
cosine functions, and the rate of change is between 1 and -1. This behavior in output
makes sine and cosine ideal functions to simulate movement and vibration. When
we go through shader code in the following chapters, we will use these values to
make a blinking light visual effect in game by using “Material Editor” of the engine.

Math function: distance
Suppose you need to calculate the distance between Black cup and Green cup objects
in the scene shown in Figure 2.13. For this, we need to use Vector as the position of
each object and use the following formula:

Distance 2D between Vector A and B = √((Bx - Ax)2 + (By - Ay)2)

Now, let’s use numbers and calculate the distance:

Figure 2.13: The graph shows that distance between objects is 6

Distance between Vector A and B = √((4 - 4)2 + (-2 - 4)2) = √(0 + 36) = 6

As you see, the result from formula is an exact match to the preceding image. We can
use this formula to calculate distance in 3D scenes:

Distance 3D between Vector A and B = √((Bx - Ax)2 + (By - Ay)2 + (Bz – Az)2)

Math for Game Design 29

Also, by increasing the elements, you can use it for checking the distance between
4-dimensional vectors, but such a geometric coordination is unusual; perhaps you
can assign the fourth element in these vectors to represent time:

Distance 4D between Vector A and B = √((Bx - Ax)2 + (By - Ay)2 + (Bz – Az)2+ (Bt – At)2)

Math function: normalized vectors
When a vector gets normalized, it’s magnitude will be changed to 1, and it saves its
direction. You can calculate the normalization of a vector by dividing each element
to the magnitude of vector. For example, for getting normalize of a 2D and 3D vector,
we can use these formulas:

Normalize 2D Vector A = (Ax /√(Ax
 2 + Ay

 2) , Ay /√(Ax
 2 + Ay

 2))

Normalize 3D Vector B = (Bx /√(Bx
 2 + By

 2 + Bz
 2) , By /√(Bx

 2 + By
 2 + Bz

 2) , Bz /√(Bx
 2

 + By
 2 + Bz

 2))

Conclusion
Programming computer games is heavily dependent on mathematical operations
and logics. Depending on the complexity of a game scenario, programmers use
different types of mathematics. For example, for calculating the location and rotation
of object in the scene, either 2D or 3D, you have to know and use vector operations
and functions. Also, in the case of dynamics and physical behaviors, you may need
to use functions and expressions related to trigonometry. Other examples are using
logical variables to switch between game states like switching level or change
animations type.

The Unreal Engine 5 provides a series of mathematical functions and procedures to
use with game mechanics and also shaders. In the next chapter, we will use math to
acauline built the game, and this chapter will be a reference for our scenarios and
solutions while developing a game.

Points to remember
•	 Numeric data types are numbers like Int, Float, and Byte.

•	 Boolean data type is a bool type variable with only 2 values: True and False.

•	 You can customize and remove each version of Unreal Engine by using
launcher menus.

30 Game Development with Unreal Engine 5

Multiple choice questions
1. What is Dot Product?

a. Dot Product is a Vector operation that results in a number.

b. Cosine of angle between Vector A and Vector B is equal to Dot Product
of A and B, divided by the result of magnitude of A multiplied to the
magnitude of B.

c. When Dot Product results in zero, it means that vectors have a
90-degree angle between them.

d. Answers a, b and c are correct.

2. Which sentence is correct about a right triangle?

a. Right triangle is a triangle that has a 90-degree angle.

b. Cosine of angle in right triangle is equal to the size of adjacent divided
by hypotenuse, and sine of angle is equal to the size of opposite divided
by hypotenuse.

c. Sine and cosine return value between -1 and 1 for angles between 0
and 360 degrees.

d. Answers a, b and c are correct.

3. How do you calculate the distance between two objects in the scene?

a. By using the formula √((Bx - Ax)2 + (By - Ay)2), where A and B represent
locations of object as vector, we can calculate the distance between
objects in 2D map.

b. By using the formula √((Bx - Ax)2 + (By - Ay)2), where A and B represent
locations of object as vector, we can calculate the distance between
objects in 3D map.

c. By using the formula √((Bx - Ax)2 + (By - Ay)2 + (Bz – Az)2) , where A and
B represent locations of object as vector, we can calculate the distance
between objects in 3D map.

d. Answers a and c are correct.

Math for Game Design 31

Answers
 1. d

 2. d

 3. d

Questions
1. Refer to www.mathsisfun.com/algebra/vectors-cross-product.html; what is

the main difference between “Dot Product” and “Cross Product” when we
deal with vectors?

2. How can you calculate the tangent of an angle in a right triangle?

3. What is logarithm in mathematics?

4. What is a rotation matrix?

Key term
•	 Epic Game Launcher is the application that installs and customizes the

engine version and gives access to other Epic Game online services like
Marketplace. You have to make an account and profile through the Epic
Game home page, that is, https://www.epicgames.com/, before using this
application.

32 Game Development with Unreal Engine 5

Editor Basics and Epic Launcher 33

Chapter 3
Editor Basics and

Epic Launcher

This chapter will cover using the Epic Games launcher to open, update, or repair
the engine, and it will walk you through how to use the asset Marketplace it

provides. It will also cover the basic standard layout of the editor, how to modify
the layout of the editor, where the important menus are located, their purpose, and
how to use them. It will also explain useful hotkeys (and reroute nodes) and skim
through the project settings and plugins menus.

Structure
In this chapter, we will discuss the following topics:

•	 Epic Launcher layout

•	 Editor layout

•	 Common hotkeys

•	 Important menu/window

•	 Project settings

•	 Plugins

34 Game Development with Unreal Engine 5

Objectives
After studying this chapter, you should be able to check different sections of Epic
Game Launcher related to create project or grab assets, learn the common menus
and their functionalities in “Unreal Editor.” You will also be able to check and
understand usage of default panels inside the editor. This chapter will equip you
with Using “Project Setting” panel, and you will be able to check, add or remove
plugins to the engine.

Epic Launcher layout
To start using UE5, you need to install it using the Epic Games Launcher (EGL),
which was covered in Chapter 1: What Is Unreal Engine?

Inside the EGL there is a list of tabs in the top left of the Interface. These tabs are
discussed in the following sections.

Home
The Home page contains news and deals from Epic Games that they want their users
to see, as shown in Figure 3.1:

Figure 3.1: Epic Games Launcher Home Page

Editor Basics and Epic Launcher 35

This page doesn’t contain news regarding Unreal Engine; that is displayed elsewhere
in the launcher.

Store
The Store page (shown in Figure 3.2) is where you can purchase games to play and
manage through the Epic Games Launcher:

Figure 3.2: Epic Games Launcher Store Page

Epic Games frequently allows users to obtain games (to keep) for free and sell titles
that are exclusive to the Epic Games Launcher and are unobtainable through other
online game vendors (usually only temporarily before they’re available elsewhere).

36 Game Development with Unreal Engine 5

Library
The Library page (shown in Figure 3.3) is where you can manage games purchased
through the Epic Games Launcher. On this page, you can install, uninstall, repair,
and launch the games you have access to:

Figure 3.3: Epic Games Launcher Library Page

Unreal Engine
This is a page that contains sub-pages related to the Unreal Engine; it is shown in
Figure 3.4:

Figure 3.4: Epic Games Launcher Unreal Engine Page, with the UE5 page selected

Editor Basics and Epic Launcher 37

It has its own Home (One for UE4 and one for UE5), Learn, Marketplace, Library,
and Twinmotion pages. The Home pages display featured content (related to unreal
engine) that Epic Games want their users to see. The Learn page only contains content
pertaining to Unreal Engine 4 currently, and the Twinmotion page is unimportant to
the purpose of this book, so they will not be covered.

Marketplace
The Unreal Engine Marketplace (shown in Figure 3.5) contains a vast amount of
content that is available to be purchased, downloaded, and used:

Figure 3.5: Unreal Engine Marketplace

There is free content available as well; Epic Games very generously makes certain
content free to keep each month. When using the marketplace, remember to make
sure the content you are obtaining is compatible with the engine version(s) you are
using.

38 Game Development with Unreal Engine 5

Library
The Unreal Engine Library contains access to all projects associated with the launcher,
all content purchased from the marketplace, and access to modify (update, install,
verify, or uninstall) versions of the engine.

Figure 3.6: Unreal Engine Library

Project Browser
Once you open Unreal Engine from the Epic Games Launcher, you will be prompted
to create a new project or open an existing one through the project browser, which is
shown in Figure 3.7:

Editor Basics and Epic Launcher 39

Figure 3.7: Unreal Engine 5 Project Browser

Once a project has been made or opened, the editor will load and then open. In the
project browser, templates used to create new projects are situated on the left side of
the interface, while existing projects are shown on the right.

Editor layout
The Editor’s interface is made up of a series of Panels, each of which provide specific
functionalities. New windows can be opened to edit objects, most of which are also
made up of panels.

40 Game Development with Unreal Engine 5

Standard layout
This is what you will see after opening Unreal Engine 5 for the first time. This is the
standard/default layout of the editor, as shown in Figure 3.8:

Figure 3.8: Unreal Engine 5 Editor (Default Layout)

It has the most commonly used editor panels, a single viewport allowing you to view
the world that is currently loaded, and a toolbar providing the ability to simulate
using/playing the project, and some means of modifying the current level and the
objects within it.

Editor Basics and Epic Launcher 41

Editing the layout
The layout of the editor can be changed at will by dragging and dropping panels as
you please, for example (see Figure 3.9):

Figure 3.9: Dragging and dropping panels

Layout menu
You have a great deal of control over the layout of the editor, so set it up as you
see fit. If you would like to return to the standard layout, you can do so at any
time by going to the layout menu, as shown in Figure 3.10. You can also save and

42 Game Development with Unreal Engine 5

apply custom layouts. So, if you like to change the layout depending on what exactly
you’re using the editor for, that can very easily be done/managed:

Figure 3.10: Layout menu

Common hotkeys
Hotkeys are combinations of keys on the keyboard that when pressed together, will
act as a shortcut to performing a specific function. Table 3.1 lists the most commonly
used hotkeys in UE5:

Function Hotkey

Undo Ctrl + Z

Redo Ctrl + Y

Cut Ctrl + X

Copy Ctrl + C

Paste Ctrl + V

Duplicate Ctrl + W

Rename Selected F2

Toggle Full-screen mode Shift + F11

Table 3.1: Common UE5 Hotkeys

Editor Basics and Epic Launcher 43

Important menu/window locations
Inside the editor, there are a great deal of tabs, menus, and panels, all with their
own unique purpose. Knowing which one is where and what each one’s purpose
will save a developer a great amount of time and effort. This chapter will cover
the default/standard layout of the UE5 editor, though some elements may differ if
you’ve modified the editor’s layout. These tabs and menus can be found on the left
side of the editor’s title bar, as shown in Figure 3.11:

Figure 3.11: Title Bar tabs

File tab
The File tab contains a series of options regarding file and editor management.
From here, you can save your work, open, or start a new project, change or create
levels, open an asset to modify, compress the current project for easy transferal, or
close the editor.

Edit tab
The Edit tab (shown in Figure 3.12) in the top left of the editor’s interface contains
a number of options, most of which will be used via the hotkeys provided next to
them (undo, cut, copy, paste, and so on):

Figure 3.12: Configuration menus

44 Game Development with Unreal Engine 5

It also contains four very important configuration menus at the bottom of the list. In
order, these are as follows:

•	 Editor Preferences: This menu is used for making changes to the editor’s
appearance and modifying some of its functions; changes made in this menu
apply to the editor, so their effects will be kept regardless of the project you
are working on (while using the same system, of course).

•	 Project Settings: This menu is for changing settings purely for the current
project; it includes the ability to modify metadata for the project (version
numbers, project name, etc.), AI/navigation settings, physics settings,
platform settings (UE5 can be used to create apps for Windows, Android,
Mac, iOS, and Linux, although some platforms require additional set up.).
This menu also includes settings pages for active plugins.

•	 Plugins: The plugins menu is a list that allows the user to activate and
deactivate plugins, which provide added functionality to the engine/editor
(depending on the plugin). The list contains many plugins that are provided
with the engine, with many of them disabled by default.

•	 Connect to source control: UE5 has integration with the common
forms of source control (Subversion, Plastic SCM, Perforce, and Git). This is
mostly useful when working on a project collaboratively, and it allows you
to manage your source control from within the editor.

Window tab
The Window tab (shown in Figure 3.13) contains a long list of editor panels that aren’t
opened by default and the option to open multiples of certain panels. Most of these
panels are used for more advanced actions within the editor, so a brief explanation
will be provided:

Editor Basics and Epic Launcher 45

Figure 3.13: Window tab

Level editor
Panels in this section of the list are used for editing the composition of the level and
its settings:

•	 Cinematics: Contains access to four panels used for making cinematics with
the editor (cutscenes, movies, and so on)

•	 Content browser: Allows creating multiples of the content browser panel (at
the bottom of the interface by default)

•	 Details: Allows creating multiples of the Details panel (at the right of the
interface by default)

•	 Editor modes: Opens toolbars for using the editor to edit level geometry and
terrain (these toolbars are already open by default)

•	 Viewports: Allows creating multiples of the Viewport (the Camera
previewing the level, meaning you can get different angles or view different
parts of the level at once)

46 Game Development with Unreal Engine 5

•	 Data layers: Opens a panel used to manage Layers within the level (a
means of grouping map elements and a replacement for the Layers option
further down the list)

•	 Env. light mixer: Opens a panel providing access to lighting details for light
sources within the map, which greatly simplifies setting up a level’s lighting

•	 Hierarchical LOD outliner: Allows tweaking of hierarchical LODs if they
are enabled (they aren’t by default), which is a means of grouping together
certain map element’s LODs, primarily for optimization of a project

•	 Layers: Opens a panel used to manage Layers within the level (a means of
grouping map elements, and precursor to the Data Layers option covered
previously)

•	 Levels: Creates a panel for managing and modifying sub-levels used within
the current one; it is very useful for setting up level streaming (enabling/
disabling parts of the map depending on the player’s location)

•	 Place actors: Creates a panel used to spawn actors into the level, which can
also be done using the content browser panel

•	 World outliner: Opens the World Outliner panel, which provides a list of
all actors placed within the currently opened level (the world), this panel is
open by default (Right side of the editor)

•	 World partition: Provides access to a panel used to manage sub-levels made
using world partitioning (an automated process of dividing a large level into
smaller sub-levels)

•	 World settings: Creates a panel providing access to settings for the current
level (a Details panel for the level)

Logs
Logs are a text output of the results of the engine’s various processes:

•	 Device output log: Opens an output log for an attached device

•	 Message log: Opens the message log, which reports compiler errors and
warnings, among other things

•	 Output log: Opens the output log, which reports almost everything the
engine does

Experimental
The Experimental tab is for features of the engine that are still being tested, and as
such may not be entirely stable or functional.

Editor Basics and Epic Launcher 47

Localization dashboard is an interface to assist translating a project into multiple
languages (referred to as Localization).

Layout
The Layout tab contains panels used to modify the appearance of the editor:

•	 Load layout: Allows loading the default UE5 or UE4 layouts, as well as any
custom layouts

•	 Save layout: Used to save the current layout for future usage

•	 Remove layout: Used to delete custom layouts that are no longer needed

Tools tab
The Tools tab allows access to a group of tools used for validating data within
the project, finding references, viewing information about the project/editor and
modifying/creating objects.

Build tab
The Build tab contains a list of functions used to compile/build aspects of the project
(lighting, AI navigation), allowing the user to get a better idea of how the project will
look/function once it is packaged out as its own application.

Help tab
The Help tab contains access to documentation regarding the engine and its uses,
and a series of basic tutorials. It also contains information regarding the editor and
its development, and a bug reporter.

48 Game Development with Unreal Engine 5

Project settings
The Project Settings menu (shown in Figure 3.14) has a list of categories on the
left side of its interface, which allows you to view all settings associated with them:

Figure 3.14: Project Settings Menu

Modifying the settings in this menu will affect things in/about the project. This
menu can be used to modify the project’s meta-data (project version, name, and so
on.), AI Navigation, physics settings, collision profiles, and much more.

Plugins
The Plugins menu (shown in Figure 3.15), just like the project settings menu has a
list of categories on the left side of its’ interface. Selecting one will filter the plugin
list on the right side of the interface to only contain plugins associated with the
selected category:

Editor Basics and Epic Launcher 49

Figure 3.15: Plugins menu

Unreal Engine 5 comes with many plugins, some of which are enabled by default,
while some are not.

Plugins are packages that provide additional functionality and/or content to the
project. If there is something you wish to do with the editor that you can’t, there’s a
good chance there’s a plugin in this menu that can assist you if not outright provide
that functionality. Failing that, you may be able to find a custom plugin on the
internet or potentially, make one yourself.

Conclusion
Unreal Engine 5 is extremely expansive. It has capabilities for just about anything
you could imagine; knowing your way around the editor and what it is capable of is
very important when trying to use it effectively and efficiently. You can change the
way the editor is set up to match your preferences, and you can save and use different
layouts depending on what exactly you are using the editor for. The locations of
some elements of the editor cannot be changed (the title bar tabs). UE5 contains its
own tutorial and links to documentation regarding itself and its usage. If you cannot
figure something out or are curious as to what its exact purpose or usage is, chances
are you can find out with a little research.

In the next chapter, we will go over the usage of Unreal Engine’s visual scripting
language blueprint and actor components.

50 Game Development with Unreal Engine 5

Points to remember
•	 Make sure whatever you get from the marketplace is compatible with the

engine version you want to use it for.

•	 Remember the hotkeys, as they will save you a great deal of time; learn the
hotkeys for more advanced actions that were not included in this chapter.

•	 Remember the purpose of the tabs in the title bar and the options within
them, some of them will likely see common usage.

•	 Research things you do not know about.

•	 It is worth doing the tutorial included with UE5 (located in the Help tab).

•	 The Epic Games Launcher is the home of Unreal Engine, but it is not its sole
purpose.

•	 There are many plugins provided with UE5; knowing what’s available may
save you a great deal of time when developing a project.

•	 The Log options within the Window tab is extremely useful for debugging
(finding the cause of errors).

Multiple choice questions
1. Which tab contains the layout menu?

a. File
b. Edit
c. Window
d. Help

2. What is the purpose of the world outliner?
a. A list of all the objects in the world
b. Closing the editor
c. Modifying sub levels and level streaming
d. Building geometry

Answers
 1. c

 2. a

Editor Basics and Epic Launcher 51

Questions
1. Where do you get assistance with using the editor?

2. Explain what a plugin is.

3. What can the project settings menu be used to change?

Key terms
•	 Editor: The Unreal Engine 5 program with a project loaded

•	 Panel: An element within the editor with a specific purpose that can be
moved around the editor

•	 Log: A text output containing information regarding the current/previous
running instance(s) of the project

•	 Level: An environment to be used within the project

•	 World: The space that contains all the currently open levels

52 Game Development with Unreal Engine 5

Using Blueprints 53

Chapter 4
Using

Blueprints

Each game engine has its own method and patterns to facilitate design and develop
game assets. For example, having a 3D editor like Unity to edit and design level

by user, or having in-depth physic simulation functions and procedure to simulate
physics like Source engine are basically some tools provided by game engine to
help users make game materials. The Unreal Engine has its own method known
as blueprint to create game assets, organize them on the scene, control them with
game mechanics rules, and optimize them during runtime for player depending on
machine features.

In this chapter, we will learn how to create and design blueprint game objects,
which is a fundamental learning step for both designer and programmers to use
Unreal Engine. And then by going through step-by-step practical examples, we will
learn how to use blueprint components. Then we learn how to add static mesh and
physical behaviour to blueprint game object.

Structure
In this chapter, we will discuss the following topics:

•	 What is a blueprint?

•	 Design with blueprint

•	 Blueprint components

54 Game Development with Unreal Engine 5

•	 Adding Mesh to blueprint

•	 Adding physics (basic)

Objectives
After studying this unit, you should be able to create blueprint objects inside Unreal
Engine. The blueprint object supports different functionalities and purpose within
your game application, so we will go through making an actor blueprint and
components attached to it, and we will learn hierarchical relation between these
components in order to support game scenario and procedures of game.

What is a blueprint?
To answer this question, let us assume you are the following:

•	 A designer with an experience of using 3D design applications for business,
game design or art, and also having 2D design experience with applications
like Photoshop and Illustrator.

•	 A programmer with experience of coding simple functions and class.

•	 New to game design and programming and would like to discover your
talent in Unreal Engine 5.

Now, let us explain blueprint for each of these groups.

As a 3D designer, you know that users can Create objects and also Edit these objects
in each 3D application. Also, the user has details of size, rotations, and coordination
of the objects somewhere on their user interface. A good example of these tools is

Using Blueprints 55

Blender. As Figure 4.1 shows, by opening Blender, the user has a basic 3D object with
its coordination on right and some tools to edit on the left:

Figure 4.1: Visual

As a 2D designer, you already know about color pallet, image size in pixel, and
transparency between image layers when they overlap. This is basic knowledge of

56 Game Development with Unreal Engine 5

2D design that, for example Photoshop, provides a massive toolset as Figure 4.02
shows,which are designed for working with a 2 dimensional images. :

Figure 4.2: Visual

Figure 4.3 is a screenshot of Unreal Tournament. This game is first-person shooter
(FPS), which is completely designed with Unreal Engine:

Figure 4.3: Screenshot of Unreal Tournament with marked game elements

Using Blueprints 57

As you can see in Figure 4.3, there are a number of game elements; some have 3D
locations in the scene, and some are render data for the user, like material and UI.
As examples of blueprint, we marked some game elements like 3D details and
materials of level (green box A), lighting effects in environment (green box B), the
weapon object (green box C), the actual rocket round that the player shoots (green
box D), the player`s user interface UI (green box F), and finally, the enemy unit
(green box E). Each of these elements uses a blueprint object to present its own
contents, render materials, and change their own state based on player interaction
in game. For example, on impact of rocket to the walls, the material blueprint on that
location automatically renders a decal effect, which is marked by green box G, or the
fire behind the rocket in green box D is switched on by rocket blueprint, and it is a
particle system, which again, is a blueprint by itself.

Similar to what you experienced in 2D, and 3D design, a blueprint in Unreal Engine
is like an Object. This Object, or let’s say Blueprint, has many types, and each one
is designed to perform specific Action in the game, like providing a visual effect,
presenting user interface, grabbing player inputs, generating time-based cinematics,
playing audio, and so on.

Designers can use blueprints to implement physics, create special effects like particles
(like fog and fire), simulate day and night lighting in map, provide game assets (like
weapons), and for animation and cinematography. Blueprints have different types,
and each type has its own properties and features. For now, we will focus on the
basics of design and automation in blueprint. Good design of blueprint always saves
time and increased performance in massive scale projects.

As a programmer, assume that you are already aware of logic and methods in a
programming language to develop the main code, make function and declare class,
and also know about the order of execution in code, which means the sequence of
running each line of your code after each other. In Unreal Engine, blueprint works
like code, but instead of executing lines of code, the engine will execute blocks of
procedures and functions in a sequence similar to the order of execution.

Refer to Figure 4.3; there are a number of blueprint objects, like the weapon marked
in green box C. Each time a player presses fire, a code inside the weapon`s Blueprint
is executed and visual effect of shooting is activated; then, it plays animation on
weapon and spawns a projectile in the scene, which is basically a Blueprint of a
rocket round (marked by green box D). The user interface marked in green box F is
also a series of Blueprint objects which grab data from player`s states and show them
to the user on screen.

Another way to imagine Blueprint as a developer is to assume that each Blueprint
is like a Class with properties, methods, and functions. As you know, there can be
different types of class in any application to perform different tasks. In Unreal Engine
as well, there are different types of Blueprints to perform specific functionalities

58 Game Development with Unreal Engine 5

in game. For example, Character Blueprint can accept AI navigations, HUD
Blueprint is designed for user interface interactions, Animation Blueprint
supports a number of methods and functions for running animations, and so on. We
will cover blueprint programming in the following chapters, and we will cover these
Blueprint objects in depth.

Now, assume that you are not a programmer, and designing is not your concern. This
means you never seriously touched any 3D application, you don’t have Photoshop
experience, and your knowledge about coding is zero. Well, the good news is, there
is no problem in this situation; using blueprint in Unreal Engine is a mix of design
and code, which is an opportunity for beginners to discover their own talent, either
in coding or design (or maybe both!), for making game assets. So, let’s take a deep
breath and start.

The word Blueprint by its own meaning: it is a photographic presentation and
guide of an early plan for a visual structure or interactive system.

Imagine that you have an empty magic Paper Box, as shown in Figure 4.4. Now,
because it’s a magical item, we can attach anything to it easily, like flashlight, wheels,
maybe weapon, smoke, or camera. Now, assume that we like to make a simple
vehicle, so add four wheels to it and an electrical engine to move the wheels. Also,
add a camera to see where it goes:

Figure 4.4: Example of making a very basic Blueprint of a
vehicle with 4 wheels and an electric engine and camera

At this stage, having an engine, wheels and a camera is NOT enough, we need
something to Control it and get it to move and stop. So, by using magic, we simply
add a remote receiver and some mechanics that can get events from receiver and
apply them to the engine. Sounds simple, doesn’t it? So, what we made by magic is
a Blueprint of a remote car. This approach is extremely useful at the beginning of any
Blueprint development.

Using Blueprints 59

The blueprint explains features of design and address events and explains the result
of each event as visual presentation or informative data. For example, refer to Figure
4.3: the weapon’s blueprint already has weapon mesh with a number of materials,
and it also has code to grab the click event from mouse and then execute an event
for play weapon-shoot animation (same as the remote vehicle explained in Figure
4.4: when you press run in remote control, the engine moves the wheels and the box
starts moving). When the player shoots the rocket in game, the weapon’s blueprint
will spawn smoke and flash on screen by an event, and a projectile will spawn in
the scene and move to the target. Each of these events, (mouse input, animation, and
visual effect) occurs in a sequence and uses a component to show the result. For
example, weapon-shoot animation is played on weapon 3D mesh object component,
and smoke and fire are made by particle system component, and mouse detection is
using Player Controller component to work with. This is the same as the example in
Figure 4.4: each component is responsible for a unique task (wheels for movement,
engine for power, and so on).

Each Blueprint in Unreal Engine has an editor known as Blueprint Editor. Blueprint
Editor prepares tools to create and customize visual elements of a game object that
we will go through in this chapter. At the same time, it has an object-oriented node-
base visual scripting language for programming game object functionalities. This
language is designed to be easy to learn and has massive support by C++ libraries
developed for the engine. We will cover blueprint programming in detail in a later
chapter.

It sounds complicated, but be patient, Blueprint is magically designed to be simple;
by the end of this book, you will be able to make your own weapon blueprint and
use it in your own game.

Design with blueprint
The Unreal Engine has a series of tools developed for use with blueprints known
as engine’s Blueprint Components. These components provide support to design
game elements (like the weapon in the earlier example), develop functionality like
AI, spawn particle effect, play audio, and animation. They cover 90% of making a
basic-advanced asset for putting in a game scene. In this chapter, we will learn the
basics of design game assets with Blueprint components.

60 Game Development with Unreal Engine 5

Revisit the previous chapter, open Unreal Engine 5, and quickly make a new project
by using the Third Person template from the Game template category, as shown
in Figure 4.5:

Figure 4.5: Select the GAMES category (1), then choose Third Persson template
(2), then select BLUEPRINT in the project defaults (3), and then set project location

(4) and project name (5) and click on the “CREATE” button.

Open the project, select the ThirdPersonBP folder in content browser and then
select the Blueprints folder. At the same time, on top of content browser, you can
find the folder path that you just navigate (this area is useful when you navigate

Using Blueprints 61

between folders). Now, right-click in the content browser and click on Blueprint
Class from the list, as shown in Figure 4.6:

Figure 4.6: Make new blueprint by choose a folder in content browser
(1) and then right click in there and select “Blueprint Class”(2)

The engine will automatically open the Pick Parent Class window with a list
of Blueprint objects to select, as shown in Figure 4.7. As this image shows, this
window contains a number of blueprint classes, and by clicking on the ALL CLASSES

62 Game Development with Unreal Engine 5

drop-down list, you will find a complete list of available blueprint classes. We will
cover the essential blueprint classes shown here by the end of this book:

Figure 4.7: Select blueprint class type from the ”Pick Parent Class”
window. Click on “ALL CLASSES” to expand the list

For now, click on Actor, and the engine will automatically make a new object in
your content browser, which is your new Blueprint. Now, rename this blueprint
in content browser to BP_Item_01 by right-clicking on the object and selecting
rename or by pressing F2, as shown in Figure 4.8. Using BP_ as the prefix for naming
a blueprint is an industry standard that we will follow in this book:

Using Blueprints 63

Figure 4.8: Right-click on blueprint and select Rename from the list

The new object is an Actor Blueprint object. It is a basic game asset that can be
placed on stage, spawned in game, and can receive user interactions. Double-clicks
on BP_Item_01 blueprint in your content browser, and you will open a blueprint
editor, as shown in Figure 4.9. First, click on the Viewport panel to activate it. Then,
on the left, locate the Component panel, click on +ADD button, and select Cube from
drop-down list:

Figure 4.9: Click on Viewport panel (1) and then click on the
+ADD button in the Components panel (2) and select Cube from the drop-down list (3)

64 Game Development with Unreal Engine 5

Now, navigate to the main editor; as you can see, the BP_Item_01 blueprint has
changed and now it shows a cube. Now, drag and drop three instances of BP_
Item_01 to stage by using mouse, as shown in Figure 4.10:

Figure 4.10: Drag and drop three instances of BP_Item_01 to the scene

Now, click on each BP_Item_01 blueprint instance and use transform tools (located
on top of viewport) to change location, rotate, and rescale each object on the stage,
as shown in Figure 4.11. When you use transition tools, the values of each property
(location, rotation, and scale) are shown in the Details panel in the Transform
section. At the same time, you have a list of your objects and blueprints in the scene
in the World Outliner panel:

Using Blueprints 65

Figure 4.11: You can customize transform values (Location, rotation, scale) in the Details panel

You can directly click on each item in the World Outliner panel and check
properties that belong to them in the Details panel. To delete items from the scene,
press Delete on keyboard or right-click on the object/blueprint anywhere and then
select Delete from the Edit section. Here, you have options for Cut, Copy, Paste,
Duplicate, Delete, and Rename, as shown in Figure 4.12:

Figure 4.12: Edit options for blueprint instances on the scene

66 Game Development with Unreal Engine 5

Now, follow the same procedure and create BP_Item_02. Then, from the Component
panel, use the +ADD button to add sphere static mesh component. Then, drag and
drop two instances of them into the stage and change their transform values, as
shown in Figure 4.13:

Figure 4.13: Left: Add Sphere static mesh component in Blueprint editor to
BP_Item_02 and drop two instances of it into the scene

Now, press the Play button and test the blueprints you made in the scene, which
will be similar to the ones in Figure 4.14. This is the magic behind blueprint in Unreal
Engine, which enhanced making game assets and simplified populating them on the
scene:

Using Blueprints 67

Figure 4.14: Testing new actor blueprints in the scene

With this done, it’s time to take a closer look at the blueprint editor and components.

Blueprint components
In Unreal Engine, blueprints are designed to accelerate design and coding process
to make game assets. At any level of skill in game design, when you use Unreal
Engine, you must make a number of blueprint components to make a game asset.
These components are either used in designs like cubes and spheres, which we used
before or are used for expressing a functionality like character movement or play
audio file. To work with components, you must know the basics of blueprint Editor,
which is similar to main editor in case of viewport tools and navigations, except that
the blueprint editor is customized to develop and design blueprint objects.

68 Game Development with Unreal Engine 5

Double-click on the BP_Item_01 blueprint to open blueprint editor. As Figure 4.15
shows, there are various panels and buttons in blueprint editor that look complicated,
but the majority of your work (at the beginning) are with these panels:

Figure 4.15: Most in use Blueprint Editor panels: Components
(1), My Blueprint (2), Details (3), Viewport (4) and EventGraph (5)

•	 Components: This panel is for adding, selecting, and editing blueprint
components; also, the hierarchy of components are editable from this panel.
You can attach components to each other by simply dragging and dropping
them over each other with the mouse.

•	 My Blueprint: This panel is designed to show properties, procedures, and
inherited variables of the actual blueprint you work with. We will go through
more details on this panel when we begin coding in a later chapter.

•	 Details: When you select an item from previous panels, it will automatically
refresh the Details panel and give the properties of that specific item. For
example, as shown in Figure 4.16, if you choose Cube static mesh in the
Components panel, the Detail panel will show the series of properties

Using Blueprints 69

related to Cube, like transforms and material, which can directly change and
customize the Cube component.

Figure 4.16: After clicking on Cube in Components panel (1), Detail panel will show
properties related to Cube (2) or any component chosen from Components panel

•	 Viewport: The Viewport panel is the main area of designing a blueprint,
and it works like main editor viewport but with less options. As Figure 4.17
shows, on top of this panel, user has options to change perspective and
rendering mode, select/rotate/scale tool and handy snapping option for
each and camera speed:

Figure 4.17: Tool set on top of Viewport panel: Viewport mode (1), rendering options
(2), editing tools (3), grid and snap setup (4) and camera speed setting (5)

70 Game Development with Unreal Engine 5

•	 Event Graph: This is the editor for coding game functions and procedures
by using the Blueprint Visual Scripting system in Unreal Engine. This is a
gameplay scripting system supported by C++ and is based on the concept
of using a node-based interface. Users can drag and drop items to this panel
from the Components panel and the My Blueprint panel and use them as
reference in code. Also, by right-clicking inside this panel, as Figure 4.18
shows, user has access to a series of blueprint node, which we will cover in
the later chapters when we dig into coding with blueprint:

Figure 4.18: EventGraph with a reference to Cube static mesh and right-click to get blueprint node list

In case a user accidently closes any of these panels, the Components, My Blueprint,
Details and Viewport panels have shortcuts in the Windows menu, as shown in
Figure 4.19; however, to open EventGraph, the user will have to double-click on the
EventGraph title in the My Blueprint panel in the Graphs section:

Using Blueprints 71

Figure 4.19: Windows menu in Blueprint editor

Now, let’s focus on the Component and Viewport panels. There is a hierarchical
relation between components in the Component panel. Each object inherits the
properties of its parents. You can simply grab a component in the Component panel
with a left-click and then drag it onto other components there and create a parent
and child hierarchy. For example, as Figure 4.20 shows, the Hierarchical relationship
between components in the component’s panel in which the Sphere static mesh
component is the child of Cube3 static mesh component, which means any change
on Cube3 will be applied on Sphere as well at the same time, so if we move Cube3,

72 Game Development with Unreal Engine 5

then Sphere will move as well. Also, any change in its rotation and size will affect
the child’s objects:

Figure 4.20: Sphere static mesh component is a “child” of Cube3 static mesh component and at the same
time, Cube3 static mesh component, is the parent of Sphere static mesh component

Hierarchical relationship between components is critical in the process of designing
a game asset when using many components, like static meshes, light sources,
and audio components. A wise design of parent and children’s components can
beautifully perform game scenarios when the blueprint object is in the scene.
Suppose you need to make a character like assassin creed’s enemy units that shoot
arrows of fire on the player. The blueprint object has a static mesh component for
the character, another static mesh component for arrow, a Point Light component
for light of fire, a Niagara Particle System component for the fire itself, and finally,
the arrow static mesh component. So, in case of shooting the arrow, the arrow static
mesh component must be parent of light and particle system component because
when the arrow moves, all children will move at the same time.

Also, the hierarchy rule is valid for the blueprints that are in the scene; you can
simply click on each blueprint in the World Outliner panel and drag them onto
other ones to make parent and child hierarchy. This is very useful when relocating

Using Blueprints 73

or rotating groups of objects together and making complex assets. Figure 4.21 shows
an example of making an asset by using only one blueprint:

Figure 4.21: The BP_Item_01 is used as parent for 3 other BP_Item_01 blueprints with different sizes

Similar to the blueprint editor, a user can add blueprint components to blueprint on
the stage in the main editor and customize them. Let’s try one of them; as shown
in Figure 4.22, choose the blueprint object, click on the +ADD button in the Details
panel, and then select the Rotating Movement component. This component is
designed to rotate the assigned blueprint object in runtime:

Figure 4.22: Add Rotating Movement component to blueprint object in scene

74 Game Development with Unreal Engine 5

When you press Play at the top, you will find that the object rotates around Z axis in
the scene. Now, press Esc to return to the editor and click on the Rotating Movement
component in your blueprint details panel, as shown in Figure 4.23:

Figure 4.23: Rotating Movement component properties in Detail panel

As you see, there are a number of properties there to change rotation rat, pivot,
and so on. There is a similar component called InterpToMovement, which results
in the movement of blueprint with the same properties. As a practice, remove the
Rotating Movement component and add InterpToMovement; then, add two points
in the Control Points property and test the result.

Adding mesh to blueprint
Making assets with Cube, Sphere, and Cone static mesh component is interesting,
but how about importing your own mesh into the engine with materials and
animations? Suppose we want to import and replace Cube static mesh component in
BP_Item_01 with a FBX mesh that we already designed in a 3D application. We use

Using Blueprints 75

the Abandoned Cottage House 3D model from https://free3d.com/, which is free
to download and use.

Now, switch to main editor and navigate to the ThirdPersonBP folder in content
browser. When you select a folder in content browser, it automatically shows the
path of that folder on top of the panel. Now, right-click in the content browser panel
and select New Folder, as shown in Figure 4.24, to create a new folder and then
rename it to Mesh:

Figure 4.24: Folder path is always shown on top of content browser panel when you select each folder in there

76 Game Development with Unreal Engine 5

Then, select the Mesh folder, and then select import, as shown in Figure 4.25. Next,
navigate to the location of the FBX model, select it, and click on Import. You can
drag and drop the FBX model from windows into the Unreal Engine as well:

Figure 4.25: To add extra assets to your project, choose the
desired folder in content browser as the destination of files and then click on import

The engine will open the FBX Importer Options windows, as shown in Figure
4.26, with options to import 3D models known as Static Mesh and Skeletan mesh
objects and animation objects:

Figure 4.26: FBX Import Option windows

Using Blueprints 77

Here are the options for importing Static Mesh object into Unreal Engine 5:

•	 MESH>Skeletal Mesh: The engine will attempt to import the FBX file as a
Skeletal Mesh, and the import options will switch to handle importing the
FBX file as a Skeletal Mesh.

•	 MESH>Build Nanite: Nanite is a virtualized geometry system that uses an
engine’s internal mesh format and rendering technology to render pixel scale
detail and high object counts. Nanite’s data format is highly compressed and
supports fine-grained streaming with automatic level of detail. Engine. By
clicking on this option, you can activate Nanite procedures to render you
mesh in the scene.

•	 MESH>Generate Missing: The engine will automatically generate collision
on your mesh.

•	 TRANSFORM: By default, your static mesh will inherit transform data from the
original 3D design application. Sometimes, you may need to alter the setting
and for example, rotate your import object 180 on Y axis to match the game
scene. These options can change values of original location, rotation, and
uniform scale of the imported static mesh.

•	 MATERIAL>Search Location: It defines the location to search material.

•	 MATERIAL>Import method: It defines the actual material file that will be
applied to static mesh after importing it. This option will affect Import
texture, which allows you to import texture files into engine.

•	 MATERIAL>Invert Normal Maps: This option with invert the Normal map
applied to the object in 3D modeler application.

•	 MATERIAL>Reorder Material to FBX Order: The 3D model sometimes
has more than one material involve. This option reorder materials to support
flexibility.

•	 FBX FILE INFORMATION: It shows built data of 3D model before import.

Keep in mind that after you import any FBX object into the engine, like cottage_
fbx.fbx in our example, it will be translated to a different file format known as
.uasset, so if you check content folder form a windows browser, you will find
cottage_fbx.uasset, and this file can’t be import to any other 3D application. The
.uasset is just valid with the engine.

Now, double-click on BP_Item_01, and in blueprint editor in component panel,
right-click on Cube and select delete. This way, the component will be deleted from
the Blueprint and will disappear from Viewport panel. Now, add the Static

78 Game Development with Unreal Engine 5

Mesh component and then select cottage_fbx in the StaticMesh section from the
Detail panel, as shown in Figure 4.27:

Figure 4.27: Add Rotating Movement component to blueprint object in scene

When you switch back to editor, you will find that all instances of BP_Item_01 are
replaced with imported static mesh.

Adding physics
When players play games like Counter Strike, the realism features of actions and
reactions from or with environment is a critical feature of game. These features
are calculated and provided by a Physic simulator program, which has processing
support from graphic card and CPU by using special libraries in the operating
system, which mostly are part of graphic card drivers and update. Some physical
simulations meet heavy processing with both CPU and GPU, which serve scientific,
artistic, and business scenarios. The good news is Unreal Engine has one of the most
complete set of tools for simulating physics on collisions, materials, character’s
mesh, physical force, wind, clothing, ray casting, damping and frictions, destruction

Using Blueprints 79

geometries and physical constraint. We don’t have enough space in this book to
cover all of these, but as an introduction, let’s check physics constraints and use them
in an example.

Referring to what we covered earlier in the chapter, make a new actor blueprint
called BP_Item_02 and add a Sphere static mesh component to it; finally, place two
instances of this blueprint in the scene with different scales, as shown in Figure 4.28:

Figure 4.28: Making new actor blueprint “BP_Item_02”and placing two instances on the stage

80 Game Development with Unreal Engine 5

Now, if you press the Play button, the BP_Item_02 blueprints will stay at their
locations without any change, as shown in Figure 4.29:

Figure 4.29: Scene with two instances of VP_Item_02

Return to the main editor by pressing escape and open the BP_Item_02 blueprint
editor. Select the Sphere static mesh component in the Components panel and check
Simulate Physics in the PHYSICS properties of the Details panel, as shown in
Figure 4.30. This will activate an accurate physical-based simulation of gravity by
using the engine`s tools designed for this feature. User can tick Mass and change the
object weight by kilograms:

Figure 4.30: PHYSICS properties in Details panel with customized Mass as 0.1 Kg

Using Blueprints 81

When you press Play, the Spheres fall dawn to the scene, which means they accept
engine’s simulated gravity force and respond by falling towards the surface of the
scene, as shown in Figure 4.31:

Figure 4.31: Simulate gravity, by activate Simulate Physics check box in Details panel for each Sphere

Now, switch back to BP_item_02 blueprint editor, add a Cube static mesh component
to this blueprint, and move it above the Sphere. Then, add one PhysicsConstraint
component to your blueprint, select it, and place it between Cube and Sphere static
mesh components. Then, in the Details panel, put Sphere in one of the Component
Name text boxes, as shown in Figure 4.32:

Figure 4.32: Add PhysicsConstraint component and place
it between Sphere and Cube in BP_Item_02 blueprint actor

82 Game Development with Unreal Engine 5

Play the game and push Sphere static mesh in the scene with third person character
of the game. As you see, it looks like PhysicsConstraint is grabbing the Sphere
and forcing it to remain there and rotate around the PhysicsConstraint, as shown
in Figure 4.32. This component works like a joint for any physics enabled (Figure 4.30)
component in a blueprint object:

Figure 4.33: Location of PhysicsConstraint component and the effect on Sphere in the scene

There are a lot of other details about physical simulations in Unreal Engine. A
good source for beginning is Epic Games online documentations on Physics and its
example projects.

Conclusion
The Blueprints are basic elements of each Unreal Engine application. Any designer
or developer must learn how to create blueprint object, add component to it, and
populate it on the scene. Blueprint components support a wide range of game
elements and procedures like static mesh and physics. There is a hierarchical

Using Blueprints 83

relationship between components of blueprint and blueprint itself in the actual scene.
Some of these components can be customized with external materials, like static
mesh components that a user can import and assign custom made mesh by using
them. Also, blueprints can handle scripting language and perform functionalities in
runtime, and we will go through the basics of blueprint scripting language in the
later chapters.

Points to remember
•	 A good design of blueprint will always save time and increased performance

in massive projects.

•	 Using BP_ as the prefix for naming blueprint is an industry standard.

•	 The Actor Blueprint object is a game asset that can be placed on stage,
spawned in game and can receive user interactions.

•	 Each change to parents in a hierarchical relationship will immediately affect
all children.

Multiple choice questions
1. What is the hierarchical relationship of components in Unreal Engine?

a. Each child is immediately affected if the parent is affected.

b. Parent is immediately affected if any child is affected.

c. Parents are immediately affected if all children are affected.

d. Changes in any will immediately change others.

2. The PhysicsConstraint is which of the following?

a. An independent object that works unlike blueprints.

b. Designed to disable physics in game.

c. Working like a joint for any physics enabled component in a blueprint
object.

d. Change the physical behavior of containing object.

3. How many blueprint objects can we create in Unreal Engine?

a. There are limitations on making blueprints by default.

b. Some blueprints are just working with special components, so we
can’t make them until we make those components.

84 Game Development with Unreal Engine 5

c. It depends on your system features, but there are no limitations on
making them.

d. Only a minimum number of blueprints are allowed in Unreal Engine.

Answers
 1. a
 2. c
 3. c

Questions
1. Refer to https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/

Physics; what is PhAT?

2. How can you calculate the tangent of an angle in a right triangle?

3. How can you use linear limits in the PhysicsConstraint component to
filter motion based on axis?

4. What are angular limits in PhysicsConstraint component?

Key terms
•	 Blueprint editor – Each blueprint type has a compatible editor inside the

engine to develop, design and customize blueprint game objects of that type.
Example are animation blueprint editor used for animation game objects,
Niagara blueprint editor used for particle system game objects, Material
blueprint editor used for shader programming, and so on.

•	 Blueprint component – Standalone game objects that are attached to a
blueprint object as child and perform extra functionalities for the application.

•	 Component hierarchy – The parent and child relationship within blueprint
components which can be customized by user or dynamically changed in
runtime.

•	 Blueprint node list – The list of blueprint functions which user can access by
a right click inside the Event Graph panel.

Project Templates and User Interaction 85

Chapter 5
Project

Templates and
User Interaction

Making basic functionalities in a game application is directly related to the
scenario and type of that game. For example, basic functionalities in shooter

games are like moving around, shooting, and changing camera view. On the other
hand, in a VR game, basic functionalities are directly dependent on VR controllers
and the way the VR headset is working. Unreal Engine provides a number of
templates with premade functionalities that match the template scenario. This can
save a lot of time on prototyping and making sample projects from scratch.

In this chapter, we will go through default templates of the engine and review their
details. Then we develop user input functionalities by learning basics of blueprint
programming which is based on blueprint implementations which we learned from
previous chapter. Then we will create a simple game asset with collision detection
by learning more about blueprint code.

Structure
In this chapter, we will discuss the following topics:

•	 Using templates in Unreal Engine 5

•	 Adding user interaction to blueprint

•	 Developing code in blueprint

86 Game Development with Unreal Engine 5

•	 Simple collision detection
•	 Making simple game assets

Objectives
In this chapter, we will learn about the templates that exist in Unreal Engine 5 and
explain their usage on making game and applications. Then, we will learn how to
develop our first code in blueprint and handle user interactions with application. A
user can press keys on the keyboard, controller, or mouse to make changes inside
their application, based on how they program those key events.

By the end of this chapter, you will be able to create and program a blueprint asset
inside the engine and use it based on your preferences and code.

Using Templates in Unreal Engine 5
As we mentioned in Chapter 4, Using Blueprints, by making a new project in Unreal
Engine, the user must choose one Project Template at the beginning. The engine
provides four categories of project templates for users, and each one contains several
project templates. Each Project template is a game/application prototype with
basic functionalities and default setting for making a standalone game or application.
They have predefined assets, customized rendering options, default map, and tools
based on the category which been selected from. Press the Launch button in the
Library tab of Unreal Engine 5, and you will navigate to Unreal Project Browser
windows, as shown in Figure 5.1:

Figure 5.1: Unreal Project Browser windows in Unreal Engine 5

Project Templates and User Interaction 87

After the user clicks on each category, the engine shows a number of project templates
available for that category. Here is a list of categories:

•	 GAMES: These project templates shown in Figure 5.2 are designed to support
specific game types, including some customizable options and basic games
assets. A very common template in this section is the Third Person template,
which we will use in this chapter:

Figure 5.2: List of “Games” templates in Unreal Engine 5

•	 FILM, TELEVISION/VIDEO, AND LIVE EVENTS: Project templates arranged
and designed for Virtual Production and cinematography template are
located in this category; it is shown in Figure 5.3:

Figure 5.3: List of “Film, Television/Video, and Live Events” templates in Unreal Engine 5

•	 ARCHITECTURE, ENGINEERING AND CONSTRUCTION: Project templates
related to architecture, engineering, and Microsoft HoloLens are available
in this category; it is shown in Figure 5.4. These templates have some

88 Game Development with Unreal Engine 5

special plugins like Datasmith, which are designed to work with AutoDesk
applications for collaborative industrial or architectural projects:

Figure 5.4: List of “Architecture, Engineering and Construction” templates in Unreal Engine 5

•	 AUTOMOTIVE, PRODUCT DESIGN, AND MANUFACTURING: These project
templates support high-quality, realistic, real-time rendering, which is a
brilliant feature in Unreal Engine 5. These project templates are designed for
advertisement and product presentations scenarios, as shown in Figure 5.5:

Figure 5.5: List of “Automotive, Product Design, and Manufacturing” templates in Unreal Engine 5

Each category has a Blank project template, which is an empty project using default
rendering configurations related to chosen category and an empty map/level.
The remaining project templates of each category have special features to support
different scenarios, which is out of the scope of this chapter.

For this book, we will use the Third Person template from the GAMES category.
This template is designed for developing a third person game like Tomb Raider and
Assassin Creed; it has predefined features that we will use to learn basics of user
interactions in Unreal Engine 5.

Project Templates and User Interaction 89

Click on the GAMES category and then select the Third Person template from the
options; then, change the name and project path, uncheck Starter Contents, and
then click on the CREATE button. The engine will build a standalone project with
selected template totally in C++ programming language. Then, the engine will run
Unreal Editor to open the project. The Unreal Editor is an application that provides
basic and advanced tools to edit and create an application with Unreal Engine.

When your project comes up with unreal editor, press the Play button on top of the
editor. The Unreal Engine will run a third person game prototype, in which user can
run and jump by using keyboard and change camera view by moving the mouse.
You can press the Esc key on your keyboard or click on the Stop button to stop the
game. As a practice on what you learned from the previous chapter, make some
actor blueprints, add them to the scene, and make a simple third person game.

Adding user interaction to blueprint
In the previous chapter, we learned how to design a blueprint by adding blueprint
components like static mesh. Now, we would like to do some basic coding in
blueprint, which is essential for everyone who likes to use unreal engines. A very
good point to start with is to define and change the user interface. Click on Project
Setting… from the Edit menu, as shown in Figure 5.6:

Figure 5.6: Project Setting in Edit menu

90 Game Development with Unreal Engine 5

The engine will open the Project Settings window, which is designed to
customize features and functionalities of a project. For this chapter, we would like to
add new input keys to project, so click on Input, which is located at All Settings
list on the left, and then click on and expand Action Mappings and Axis Mappings
drop-down list, as shown in Figure 5.7:

Figure 5.7: Access to Input setting in Unreal Engine 5

The Action Mappings dropdown is responsible for your direct actions in game, and
in this template (Third Person), actions Jump and Reset VR are already assigned
by default. Click on Jump and expand its dropdown; as you see in Figure 5.8, the
space bar of keyboard, gamepad face button, and a number of other machines are
listed here. You can add new ones by clicking on plus with a circle button and delete
them by clicking on the bin icon:

Project Templates and User Interaction 91

Figure 5.8: Add new input for “Jump” action

To edit a key, click on None, and as you see in Figure 5.9, the engine automatically
shows a list of available target machines. Select Keyboard and then from the list of
keys, select Backspace just for testing. You can always return here and change the
key or remove it:

Figure 5.9: Add new input for “Jump” action

92 Game Development with Unreal Engine 5

Close these windows, and the engine will automatically save your changes. Go back
to the editor and press play and then press Backspace. As you see, the third person
player character will Jump with this key as well as with the Spacebar. Users can assign
other target machines like gamepad and test them with same result.

Now, let’s go back to Edit | Project Settings… | Input and check Axis Mappings.
As you can see in Figure 5.10, we have W and A to move forward and S and D keys
to move right. The difference between Axis Mappings and Action Mappings is
important to know. Action Mappings are basically support on and off interactions
like Jump. When you press space bar, the character moves up, and after a delay, it
moves down; you can press Jump again. The Axis Mappings, however, are best to
support on and off interaction, but it is designed to send values. For example, if
you press W to walk forward, as Figure 5.10 shows, the engine will use a scale value,
which is 1, for walking forward. Now if you like to move backward, you have to
press S, and as you see in Figure 5.10, the engine uses a scale value of -1 to move the
character in opposite direction of moving forward, i.e., backward. The same logic is
working for the A and D buttons, which move characters left and right:

Figure 5.10: Axis Mappings” need Scale value to send user interaction to engine

Project Templates and User Interaction 93

Developing code in Blueprint
Now, let us assign a keyboard key and learn how to print a message on screen. First,
add a new input to Action Mapping, and then assign My Action as its name; then,
select Keyboard from the drop-down list of target machines and then select 0, as
shown in Figure 5.11 and then close the project setting windows. The engine will
automatically save your changes:

Figure 5.11: Make new input key for keyboard

At this stage, the engine knows that we like to use key 0 as an input. Now, we need
to add code to our game to implement this action. Locate th ethird person blueprint
in Content/ThirdPersonBP/Blueprints/and double-click on it to open. After the

94 Game Development with Unreal Engine 5

blueprint editor opens, click on the Event Graph tab, and in an empty area there,
right-click and type My Action, as shown in Figure 5.12:

Figure 5.12: Navigate to Event Graph in Third Person blueprint, and
then right-click and type “My Action” and click on “MyAction” in the list

The engine will show a drop-down list with the name of input event that you already
made. Now, click on it in drop-down list, and the engine automatically will add a
red titled block to the Event Graph with the title Input Action My Action,
as shown in Figure 5.13. This is a Blueprint block of code that is responsible for
detecting press and release of key 0 from keyboard by user:

Project Templates and User Interaction 95

Figure 5.13: “My Action” key event after implementation in blueprint

Right-click again in front of your event block and type Print and again, the engine
will automatically show a proper match for what you typed in; then, click on Print
String. Now you have a new block with the title Print String, as shown in Figure

96 Game Development with Unreal Engine 5

5.14. This is a blueprint block of code and is responsible for printing the message on
the screen:

Figure 5.14: Right-click in an empty space and then type “print” and select “Print String”

Now we need to make an execution line between these two blocks. Select Input
Action My Action and then click on and drag (don’t release mouse button) the
small triangle in front of Pressed; immediately, the engine will draw a white curvy
line from that triangle to the location of the mouse pointer. Now, move the mouse
over the right triangle in Print String (without releasing the mouse button). When
a small green tick shape appears, release the mouse button, and the white line will
automatically connect these two blocks. After this, click on and change Hello in the
In String text area to The key is Pressed, as shown Figure 5.15. You already
made your first blueprint code! Run the game and press key 0. You will see The key
is Pressed message on the screen:

Project Templates and User Interaction 97

Figure 5.15: Click on the small triangle that has the “Pressed” title and drag a white curvy line from it; then,
without releasing mouse, move it over the “left” triangle of Print String block. Then release the mouse, and

block will get automatically connected by one white line. Then in the text box of Print String, type a message.
When you run the game and press key 0, the message will be printed on the screen by engine.

The white curvy line is known as execution line; it executes each blueprint block
from left to right when you run the game. To understand this order, add two more
print string blocks and connect them to the previous block, as shown in Figure 5.16,
and run the game. User can select any one or a group of blueprint blocks and copy/

98 Game Development with Unreal Engine 5

paste them by using the keyboard, or they can right-click and type Print and select
Print String, as we did earlier:

Figure 5.16: Add two more Print String blueprint blocks with different message

As per the order of the three messages shown in Figure 5.17, the execution line run
prints blocks from Left to Right, so Message A, then Message B, and finally, message
C get printed on the screen:

Project Templates and User Interaction 99

Figure 5.17: Messages print in order after running the game

Now, let’s use another blueprint block known as Delay and check the execution
order again. Right-click on Event Graph, type Delay, and then select the Delay
command from blueprint list, as shown in Figure 5.18:

Figure 5.18: Right-click in an empty space, type “delay”, then select Delay command from the list

100 Game Development with Unreal Engine 5

On the Delay block, locate Duration and change it to 2; add it between Message A
and Message B by attaching execution line from the Print String blocks to the
Delay block (simply click and drag execution line from each of print string blocks
and attach them to delay). Now add another delay between Message B and message
C with Duration equal to 3, as shown in Figure 5.19:

Figure 5.19: After selecting Delay from list, engine will add A Delay block to event graph.
Drag and Drop execution lines between previous and next blocks of print string

When you run this code, the engine follows execution line from left to right; first, it
runs the first print message, then the delay after it, which leads to a 2-second pause,
and then it runs the next print message, followed by the Delay after it, which is 3
seconds. Finally, it runs the last print string block.

This is how you develop code in blueprint. Developers can add different blueprint
blocks from the blueprint list and receive different results after running the code;
we will cover this in further detail in the later chapters. If you are familiar with
coding in a programming language like C++, Python, or JavaScript, you just need to
understand two simple rules in blueprint programming: each blueprint block (like
Delay and Print String, which we used) is like A Function, and as you already
experienced, the compiler Run each line of code in traditional programming, After
each other. In blueprint programming, the execution line (white curvy line) is Running

Project Templates and User Interaction 101

each block of blueprint After each other from Left to Right. So, by using these two simple
rules on your logic, you can easily adapt and use blueprint programming in Unreal
Engine 5 for developing game and applications.

Simple collision detection
Collision detection is one the most important topics in game development. When
(at least) two game objects collide with each other, then there is a game event, called
Collision. There are methods and functions inside the engine to help developers
to detect it. We touch and learn the simplest way to detect collision in this part to
expand basic knowledge on blueprint programming.

Follow the given steps to do so:

1. Refer to Chapter 4: Using Blueprints, make an Actor blueprint, and call it BP_
Item_01.

2. From the blueprint component list, add Box Collision to actor and untick
the Hidden in Game properties from the Details panel located in the
REBDERING section for it.

3. Add a Cone static mesh and change its scale to (.5,.5,.5). The result
should look like Figure 5.20:

Figure 5.20: Actor with Box Collision and Cone static mesh.
The Box Collision is visible when player play the game

102 Game Development with Unreal Engine 5

4. Switch to Event Graph, click on the Box Collision component, and then
locate EVENTS drop-down list. In this list, the engine already provides some
blueprint events for developers to use, so click on the plus (+) button for
event known as On Component Begin Overlap, as shown in Figure 5.21:

Figure 5.21: Select Box Collision and locate “On Component Being Overlap” event from event list

5. After you click on the plus button, the engine automatically navigates to
Event Graph and adds a new event for you, as shown in Figure 5.22; this is
just like what we made before for detect key 0 in keyboard. This event will
get fired when the Box Collision component collides with another game
object. Let’s practice this by printing some messages, as we did for keyboard
before:

Project Templates and User Interaction 103

Figure 5.22: Default collision detection blueprint event for Box Collision component

6. Add the Sphere Collision component and the Capsule Collision
component to your actor and untick the Hidden in Game option for all in
RENDERING, as shown in Figure 5.23:

Figure 5.23: Box, Capsule and Sphere collision components which are visible in game

104 Game Development with Unreal Engine 5

7. Now make collision events for new components, as we did for Box
Collision component, and add the Print String command to each of
them for showing a message when they collide, as shown in Figure 5.24:

Figure 5.24: Add Print String to each collision event

8. As you can see in Figure 5.25, after the game is running, each time the Third
Person character gets into box, sphere, and capsule collision component, the
engine will print out the message you developed:

Project Templates and User Interaction 105

Figure 5.25: Each collision component gets active after colliding with third person character

Making simple game assets
Now, let’s make a simple game asset from the blueprint actor we already have,
which works with collision events. Refer to the previous chapter, replace Cone with
a Cube static mesh component, and resize it to (2.75, 0.25, 0.25); then, add the
Rotating Movement component to your actor, as shown in Figure 5.26:

Figure 5.26: Add Cube static mesh and Rotating Movement component

106 Game Development with Unreal Engine 5

If you run the game now, all components begin to rotate together, which is not what
we would like to happen. Navigate to event graph and locate Event Begin Play;
then, drag and drop one instance form Cube and Rotation Movement components
close to it. Then, click on the Rotation Movement blue pin on the right side of its
block and drag the mouse and release. Engine straightaway shows a list of compatible
blueprint blocks for this component. Type Set Updated Component and select the
Blueprint block that matches the title, as shown in Figure 5.27:

Figure 5.27: Add Set Update Component blueprint block to the code to assign Cube as target of rotation

The engine will show a new blueprint block that accepts execution lines (like print
string and delay), and the Rotating Movement Component is connected to its
Target pin. The Target pin represents the reference of the blueprint block that the
code needs to be activated for; here, it is Rotating Movement Component. Now,
connect the cube to the New Updated Component pin; this way, you assign the
static mesh component that you like to rotate only. Now, connect this block with
the execution line to Begin Play event, as shown in Figure 5.27. We will talk more
about the Begin Play event in the next chapter, but in short, this event gets run
(called) exactly after the beginning of the game. So, when you run the game, you ask
Rotating Movement Component to assign only the Cube static mesh component for

Project Templates and User Interaction 107

rotation at the beginning of game and then game is running, which happens after
you run the code.

Now, locate collision events that you already made for the Capsule and Sphere
collision components, and drag another instance of Rotation Movement in front
of Capsule collision, where the Print String ends. Then, click and drag a blue
curvy line form Rotation Movement and release the mouse button; the engine will
automatically open a drop-down list with the blueprint command, and then type
Deactivate and locate the Deactivate blueprint command in the list shown in
Figure 5.28:

Figure 5.28: Locate “Deactivate” blueprint command for Rotation Movement component

108 Game Development with Unreal Engine 5

After you click on Deactivate, engine automatically adds Deactivate blueprint
block to event graph. Now, connect the execution line from print string to this
block, as shown in Figure 5.29:

Figure 5.29: Connect “Deactivate” blueprint command for
Rotation Movement component to the end of Capsule collision blueprint code

When you run the game, on each collision with the Capsule collision component,
the rotation movement gets deactivated by this code. Press Esc and add Activate
blueprint code to the Rotation Movement component by following the same
method (drag line from blueprint pin, release, type the blueprint command in the
list, and select it). Then, connect it to the Sphere collision code, as shown in Figure
5.30:

Project Templates and User Interaction 109

Figure 5.30: Connect “Activate” blueprint command for Rotation
Movement component to the end of Sphere collision blueprint code

When the game is running, each time a player collides with Capsule, the rotation
will stop, and each time a player collides with Sphere, the rotation begins.

Congratulations! You’ve designed and developed your first Unreal Engine 5`s blueprint
game assets by using two collision components: one static mesh component and one
Rotation Movement component in an actor blueprint.

Conclusion
You have made your first Unreal Engine interactive game assets that works based
on collision detection. We started from project templates, where a user can choose
different types of environments to begin with, and we chose the Third Person
template to use over this chapter. Then, we learned where to find target machines
and user inputs in engine setting.

We developed our first blueprint code by printing messages on the screen by
pressing keyboard buttons during game play, and then we made a blueprint actor

110 Game Development with Unreal Engine 5

with collision events and used these events to print messages. At the end, by using
another blueprint component, we developed code for an interactive simple game
asset.

This is how you design and develop blueprint actors for game. Each blueprint
component has a number of blueprint commands that can mix with others and run
by execution line to present game activities. We will dig into more details on how to
make more complex objects and learn blueprint programming method, but for now,
try to use the First Person project template, and make same game assets that are
sensitive to weapon projectile, which already exists in there. All assets are ready to
use in this project template, and this practice increased your skills on design and
develop blueprint in Unreal Engine 5.

It’s time to practice!

Figure 5.31: List of “Games” templates in Unreal Engine 5

In the next chapter, we will learn more about game objects and how to add materials
to our assets and make more proper assets for our applications.

Points to remember
•	 To change input keys, open Edit | Project Settings and select Input.

•	 The Action Mappings is like Boolean; engine will generate true or false
on user interactions. On the other hand, Axis Mappings are making float
values, depending on user interactions.

•	 The white blueprint execution line executes blueprints blocks from left to
right.

Project Templates and User Interaction 111

Multiple choice questions
1. When user moves to a different location by one click, this kind of

movement is known as Teleport. What is the best mapping method to
simulate teleport action by user?

a. Action mappings
b. Both action mappings and axis mappings are required
c. Axis mappings
d. Teleport is not available in Unreal Engine

2. When a collision collider gets triggered, which events are called inside
blueprint?

a. Nothing is set automatically, and users need to create new custom
events to support this functionality

b. Event begin play
c. Event on component begin & end overlap
d. Event tick

3. What is execution line?
a. The graphical white line that connects execution pin between

blueprint node in event graph
b. A special type of template
c. An engine internal procedure to detect collision
d. Located in project setting, it defines the input values by user interface

Answers
 1. a

 2. c

 3. a

Questions
1. How can you swap mouse axis from project setting?

2. How can you swap mouse axis by blueprint code?

112 Game Development with Unreal Engine 5

3. Which blueprint component can play sound, and can you switch it on and
off with blueprint code?

4. Third person character blueprint has an inherited blueprint component
known as Character Movement, which has a number of functions and
properties involved with the player character on the scene. How can the
user change player speed from walk to run by pressing and holding the Shift
button on the keyboard?

Key terms
•	 Blueprint Block – Visual presentation of each blueprint function inside

blueprint editor at Event Graph panel.

•	 Input Setting – The engine input setting located in Project Setting.

•	 Project Setting – An editor windows which shows most of the settings
related to application and game engine.

•	 Blueprint Command – A blueprint block which performs a procedure in the
application.

•	 Action Mapping – Design and address keys, on an input device like keyboard
or controller, and so on, in order to interact with application with “press”
and “release” methods.

•	 Axis Mapping - Design and address keys, on an input device like keyboard
or controller, and so on, in order to interact with application based on a
continuous range of input.

•	 Event Graph (editor) – Each blueprint editor has a panel to edit and develop
blueprint code. This panel is known as “Event Graph”.

•	 Execution Line –The execution line connects blueprint blocks together and
execute each from “left to right” in order to perform procedures and functions
of those blueprint blocks. It is a white color line which can be connected or
disconnected from the execution pin of each blueprint block.

Game Objects and Materials 113

Chapter 6
Game

Objects and
Materials

Levels within UE5 consist of objects, (of which there are many types), and being
aware of these objects and how they function is essential to programming or

designing in an efficient and effective (object-oriented) manner. Many of the potential
components that make up an object can be assigned materials, which change the
appearance of the object. Materials can be simple, but they can become very complex.

Structure
In this chapter, we will discuss the following topics:

•	 Game objects
o Classes
o Inheritance
o Components
o Variables
o Transforms
o Components

•	 Events
o Construction

114 Game Development with Unreal Engine 5

o Beginplay
o Tick
o Endplay
o Custom events
o Event overrides

•	 Material editor
o Material nodes
o Material instances

•	 Material data
o Material Parameter Collections
o Dynamic materials

Objectives
After studying this chapter, you should understand the composition of objects
within Unreal Engine, object inheritance and classes, common events, and the basic
usage of Materials, Material Parameters, and the Material Editor.

Game objects
Every entity in UE5 is, at its core, an object. The UObjectBase class is at the top of
every class inheritance hierarchy; everything is based on it. Although the object base
class is usually used sparingly as an input for functions/events/macros that can
accept any item (such as the GetClass function shown in Figure 6.2), it is important
to be aware of its existence because of its importance to the structure of the Unreal
Engine.

Classes
Every object has a class, which is used to identify it among the many transmutations
of the base object class. Parent classes (among other information) can be quickly seen
by hovering over a class in the content browser, as shown in Figure 6.1:

Game Objects and Materials 115

Figure 6.1: Blueprint Class in the content browser

In blueprint, classes are useful for spawning objects, quickly tracking immediate
inheritance, and checking to see if a provided object is of a specific type, as shown
in Figure 6.2:

Figure 6.2: Checking the class of a provided object

Inheritance
The Object is the basis of every class and following the chain of inheritance of any
object will always lead back to the base Object class. For example, one of the most
used classes in Unreal engine is the Actor class, and like most classes, it follows an
inheritance hierarchy leading back to Object (UObjectBase), as illustrated in Figure
6.3. The class immediately above a given class in its inheritance hierarchy is its parent

116 Game Development with Unreal Engine 5

class, while the class below it is a child of the class. A class can have many children,
but only one parent.

Figure 6.3: “Actor” Class inheritance Hierarchy

When an object of a certain class inherits from another class (like the Actor class
inherits from the UObject class, it inherits the variables, components, functions, and
events of the parent class (the class directly above it in the inheritance hierarchy).

The parent class can be determined by hovering over it in the content browser and
viewing its details, as is done in Figure 6.1, or within the blueprint editor, where the
parent class is listed in the top-right corner, as shown in Figure 6.4 (selecting the
underlined parent class will open it):

Figure 6.4: Parent Class in the blueprint editor

Variables
Variables are data stored in an object that contains either a reference or a value. There
are many types of variables, as covered in Chapter 2, Math for Game Design. Child
classes inherit all the variables of the parent class, although they are hidden in the
blueprint editor by default; to make them visible, click on the gear icon in the My
Blueprint panel and enable Show Inherited Variables, as shown in Figure 6.5:

Game Objects and Materials 117

Figure 6.5: Showing Inherited Variables

Components
Components are the parts that make up a game object by adding visual presentation,
and/or functionalities to it. The types of components are as follows:

•	 Primitive components: Provide a visual form for the object, have a transform,
and can have a collision (For interacting physically with other objects).

•	 Scene components: Provide a transform and a means of attaching other
components neatly.

•	 Actor components: Give an object additional behavior or provide data
management. Actor components can contain events and functions, which
can be used within the object they are attached to.

The component panel of the blueprint editor shows all the components in a class;
this is shown in Figure 6.6:

Figure 6.6: Component Panel

118 Game Development with Unreal Engine 5

Transforms
Transforms are the combination of Location, Rotation, and Scale. The transform
of an object or component can be relative to either the root/origin of the world
(coordinates 0,0,0), which is a World transform, or relative to the transform of it’s
parent (component or object), which is a Relative transform. The transform of an
object can be edited from the TRANSFORM section of its details panel, as depicted in
Figure 6.7:

Figure 6.7: World Transform of an Object

All component transforms are relative to the parent component or object within the
editor, but there are functions to get the world or relative transform of components
or objects if needed (Get World Transform and Get Relative Transform).
Component transforms can be edited in the “details” panel of the component
within the blueprint editor, as shown in Figure 6.8:

Game Objects and Materials 119

Figure 6.8: Relative Transform of a component

Events
Events are nodes that are executed at specific times (when the game begins, when it
closes, on every tick, or when the editor is compiled, among others), by player input,
or from other events or functions. They are the starting point of execution lines,
which is how functionality for the game is made to occur.

For further information regarding events, visit this link: https://docs.unrealengine.
com/4.27/en-US/ProgrammingAndScripting/Blueprints/UserGuide/Events/

Construction script
This is a special event/function that is separate from all the others, because it only
runs when compiling the editor. Construction script is used for performing advanced

120 Game Development with Unreal Engine 5

behavior within an object that cannot be achieved without an execution line before
running the game:

Figure 6.9: Construction Script

This can be extremely useful for generating or randomizing map elements or utilizing
public variables to modify the object. There are restrictions to the construction script
however, such as nodes that occur over time being unusable.

Beginplay
Beginplay is an event that runs as soon as an object is loaded, if it exists when the
game or level is first loaded (if the object is placed in the world/level manually
before pressing Play). In this situation, the Beginplay event will be executed as
soon as the game is ready to play.

If the object is created afterward (the object is spawned into the world after Play is
pressed), then the Beginplay event will run as soon as the object is spawned. The
Beginplay event can be seen in Figure 6.10:

Figure 6.10: BeginPlay Event (In graph and search)

Game Objects and Materials 121

Tick
The Tick event is (by default) executed once per tick of the game. A Tick in this
context is when the object updates its state, which normally happens many times
every second, depending on the frame rate and settings:

Figure 6.11: Tick Event (In Graph and Search)

Tick has a number of settings, which allow its rate to be slowed, stopped altogether,
or set to only occur in certain situations. The Delta Seconds output on the event
is the last recorded amount of time between frames, which is very useful for nodes
with time inputs that you want to run continuously, such as Print String nodes.

Endplay
The Endplay event runs when an object is destroyed. This event will be executed for
every object that exists when the game ends; the game will end once these events are
complete. It is very useful for serialization (saving player data/progress) on objects
that can only be deleted when the game ends (such as the Game Instance) and for the
final functionality for an object before it is removed from play:

Figure 6.12: EndPlay Event (In graph and search)

Custom Events
Custom Events are developer created events that need to be manually called. They
can be called from external objects, components, and other events within the same

122 Game Development with Unreal Engine 5

object, although a reference to the object to run the event is required if it is to be
called externally (from another object):

Figure 6.13: Custom Event (In graph and search)

Like functions, custom events can have custom inputs, which can then be utilized
within the event.

Material Editor
Materials are responsible for the surface appearance of a primitive component or UI
Element. Unreal Engine has an editor specifically for materials, the Material editor,
which has several similarities to the Blueprint Editor and many key differences. The
material editor can be seen in Figure 6.14:

Figure 6.14: Material Editor

Game Objects and Materials 123

There are many uses for materials, such as decals (think posters or blood stains on
walls within a level), as a skin for primitive components, and as light sources for
example. However, in order for materials to be used properly for these purposes,
they need to be set up correctly in the editor. You can change the type of the material
you are editing from the Material Domain selection in the Details panel, as shown
in Figure 6.15. This defines where the material will be used and alters the final output
node to match the type of material selected:

Figure 6.15: Material Domain Selection

Material nodes
Like the Blueprint editor, the material editor uses nodes, but the focus is placed a lot
more on the inputs/outputs of each node. This is because depending on the type of

124 Game Development with Unreal Engine 5

material you are editing, it can only have so many features (as shown in Figure 6.16),
and there are no execution lines, only the order that nodes are applied to an input:

Figure 6.16: Material outputs differ for each material Domain
(Surface Material on the left, Volume material on the right)

Most material editor nodes take a texture or vector input (consisting of three-
color channels (red, green, and blue) and an Alpha Channel, which is the opacity/
transparency of the material), modify it in a specific way, and output it with those
changes applied, which can then be further modified or applied to the final output
node. Some nodes take different inputs, like coordinates or vectors. Some basic
material nodes are shown in Figure 6.17:

Figure 6.17: Material Nodes

Game Objects and Materials 125

Material instances
Material instances are children of a master material that can have values used by
the material changed specific to each instance, allowing for several variations of the
same base material that the instances are based upon. These values can be Vectors
(colors) or Scalars (floats). The creation of a material instance (left) and the Material
instance editor (right) is illustrated in Figure 6.18:

Figure 6.18: Creating a Material Instance & the Material Instance Editor

In order to have these parameters you can change for each instance; they need to
be set up in the master material. You can see a Vector (yellow) and Scalar (green)
parameter in use in the master material in Figure 6.19:

Figure 6.19: Vector and Scalar Material Parameters

These parameters will appear in the Parameters panel of the Material Editor (shown
in Figure 6.18), where you can preview the effects of modifying these values and
confirm that they will be accessible when modifying instances of this material.

Material data
Materials can have dynamic elements, meaning that they can be altered by modifying
a value that they are tied to while the game is running. This can be done by modifying

126 Game Development with Unreal Engine 5

a value in a Material Parameter collection, which is global and can be accessed by
many materials or by modifying a value in a specific Dynamic Material.

Material Parameter Collections
Material Parameter Collections (MPCs) are a set of global variables that can be
altered while the project is running, and these variables can be utilized by materials
via special nodes within the Material Editor. MPCs are under the Materials &
Textures section when creating a new asset via the content browser.

MPCs can contain Vector Parameters and Scalar Parameters. Changing the
value of a parameter in an MPC will alter every material that uses that parameter
accordingly. The MPC Editor can be seen in Figure 6.20:

Figure 6.20: Material Parameter Collection One Scalar and One Vector Parameter

To use a MPC parameter within a material, you need to use a Collection Parameter
node (as illustrated in Figure 6.21):

Game Objects and Materials 127

Figure 6.21: Collection Parameter Node creation

Then, select the MPC and specific parameter you would like the node to represent in
the Details panel while the node is selected, as shown in Figure 6.22:

Figure 6.22: Collection Parameter Node setup

Once the Node is set up and used within the material, the Parameter within the
collection can be modified through blueprint via the Set Scalar Parameter Value

128 Game Development with Unreal Engine 5

and Set Vector Parameter Value nodes. These nodes and their inputs are shown
in Figure 6.23:

Figure 6.23: Set Scalar and Vector Parameter value blueprint nodes

Dynamic Materials
A Dynamic Material is one that has been initialized and is stored as a reference within
a blueprint; the reference to it permits altering parameters used by the material. A
Dynamic Material is set up using the Create Dynamic Material Instance node,
which outputs a reference to the Dynamic Material to be stored, as shown in Figure
6.24:

Figure 6.24: Creating a Dynamic Material

Game Objects and Materials 129

Once a Dynamic Material is set up, the reference to it can be used to alter parameters
within the material using targeted versions of the Set Scalar Parameter Value
and Set Vector Parameter Value nodes, as shown in Figure 6.25:

Figure 6.25: Changing a Dynamic Material Parameter

Dynamic Materials work in a manner similar to Material Parameter Collections, with
the main difference being that Dynamic Materials’ parameters are specific to each
Dynamic Material Instance; the parameters are not shared globally like Material
Parameter Collection parameters.

Conclusion
The structure and inheritance of Game Objects is very important to understanding
how to use UE5 effectively and creating functionality for your games in the
appropriate places. Inheritance is very useful for creating variations of an object that
each branch out into different behaviors while maintaining (at least) elements of the
original. The components that make up objects each have their uses. Specific events
are used to perform functionality at the appropriate times. Materials are an incredibly
useful way of getting the visuals of a game to look exactly as desired, and they are
not static; they can be changed throughout the game as desired, although Materials
need to be set up correctly to use this behavior. Variables are a very complex topic
and were briefly covered regarding inheritance in this chapter.

The next chapter will go further into detail about variables, including the types of
variables and their uses.

Points to remember
•	 Everything in UE5 is an object in addition to its derivation of the base object

class.

•	 Every class in UE5 inherits the functions, events, components and variables
of its parent.

•	 Functionality in UE5 is performed mostly through events.

130 Game Development with Unreal Engine 5

•	 The Material Editor has many similarities to the Blueprint editor, and it also
has many differences.

•	 Material Parameter Collection parameters are global and affect every
material that uses them; Dynamic Material Parameters do not.

•	 The Beginplay event runs when an object is initialized.

•	 Tick occurs once every frame (by default).

•	 Custom events can have custom input variables.

•	 Actor components do not have valid transforms.

Multiple choice questions
1. What types of parameters do Material Parameter Collections use?

a. Vector and Transform
b. Float and Rotator
c. Enumerator and Scalar
d. Scalar and Vector

2. When does the Endplay event run?
a. When an object initializes
b. When an object is deleted
c. Once every frame
d. Every 10 seconds

3. What do you call the class immediately above another in the inheritance
hierarchy?

a. The Parent Class
b. The Uncle Class
c. The Child Class
d. The Base Class

Answers
 1. d
 2. b
 3. a

Game Objects and Materials 131

Questions
1. What can you not do within the construction script?

2. How do you set up a Dynamic Material?

3. What are the Material Domains?

Key terms
•	 Blueprint Editor: The window used to edit a blueprint class

•	 Material Editor: The window used to edit a material

•	 Parameter: A variable used within a material

132 Game Development with Unreal Engine 5

Simple Data 133

Chapter 7
Simple

Data

This chapter will cover the basic types of data (ones that see regular use) used in
UE5 (and programming in general), explain what each type is exactly, provide

additional information about each type, and also discuss their uses and benefits,
along with use cases. It will also cover how they can interact with each other (pin
splitting and conversions).

Structure
In this chapter, we will discuss the following topics:

•	 Variables in blueprint

o Integers

 ▪ Integer 64

o Floats

 ▪ Doubles

o Booleans

o Strings

 ▪ Name
 ▪ Text

134 Game Development with Unreal Engine 5

o Vectors
 ▪ Axes

o Rotators
o Pin splitting
o Conversions

Objectives
After studying this chapter, you should know all the variables commonly used in
UE5, how to set up variables within blueprints, and how these variables can be
converted and broken down.

Variables in blueprint
Blueprint objects can contain variables within themselves. They are displayed/
accessible in the Variables section of the My Blueprint panel in the blueprint
editor (in the bottom left by default), as shown in Figure 7.1:

Figure 7.1: Blueprint Editor with a variable selected

Once a variable is selected, it can be modified in the “Details” Panel. Things that
you can change include the name of the variable, the type of variable it is, whether
it is public or private, whether or not it can be changed through blueprints, and its
default value.

Simple Data 135

Integers (Ints)
An integer is a variable with a positive or negative whole numerical value. Integers
are useful for situations where amounts (of whole numbers) are to be denoted. There
are several mathematical operators for altering a provided integer, some of which
are shown in Figure 7.2:

Figure 7.2: Integer Variable and some operators

Integer 64
When utilizing integers, you may notice another type of variable called Integer
64, which is rarely needed but is good to be aware of. Integer 64 is the same as a
standard integer, with two key differences: integer 64 takes up more memory space
than a standard integer but has a much larger maximum value (both positive and
negative).

You likely won’t use Integer 64 variables often, but you may need to when you
are dealing with incredibly high values. The additional memory cost mentioned is
negligible with modern hardware, but the majority of UE5’s nodes still use Integers
instead of Integer 64s (where applicable), so using an integer means that a conversion
is not needed to use these nodes, which keeps things neater.

Floats
A float is another numerical variable, which, like integers, can be positive or
negative. However, unlike integers, floats can contain decimal values. They are very
commonly used as inputs in many nodes within UE5, particularly where time is

136 Game Development with Unreal Engine 5

involved. Figure 7.3 shows a float variable and two of the most common nodes that
utilize the float variable type for inputs:

Figure 7.3: Float Variable and some nodes that use it

Doubles
Like integers, floats have a variable that is almost identical with a few exceptions:
the Double. Floats can contain up to 7 digits, whereas a double can contain up to 15,
meaning that Doubles are more accurate than Floats are, but at a slightly increased
performance/memory cost.

As with Integers and Integer 64s, Floats are used much more commonly than
Doubles, but Doubles may be required when dealing with incredibly small/accurate
numbers. As with Integer 64s, the additional memory cost mentioned is negligible
with modern hardware, but the majority of UE5’s nodes still use floats instead of
Doubles (where applicable), so using a float means that a conversion is not needed
to use these nodes.

Booleans (Bools)
A Boolean variable can only contain one of two values: True and False. Booleans are
very useful for having functionality branch into different potential outcomes based
on the state of the game, and an example of this logic is shown in Figure 7.4:

Simple Data 137

Figure 7.4: Bool Variable used with a branch node

Using Boolean operators covered in Chapter 2, Math For Game Design, Boolean
conditions can become rather complex to accommodate multiple conditions within
a game, as is done in Figure 7.5:

Figure 7.5: Bool Variables and some operators in use

138 Game Development with Unreal Engine 5

Strings
A string is a variable that can contain any combination of characters. Strings are most
commonly used for printing information out to an output log and/or viewports
via the Print String node, getting certain data regarding provided objects, and
dealing with serialization, all of which can be seen in Figure 7.6:

Figure 7.6: String variable and its common uses

While strings are the standard for text-based variables, there are two other similar
variables, i.e., Name and Text, which have more specialized uses; they are mentioned
below.

Name
Name variables are mostly used as descriptors within assets, such as bone or socket
names in a skeleton asset, but they are also used in nodes directly involved with
those assets, such as the Get all Socket names node.

Text
Text is similar to string, but Text variables are set up for localization, meaning it is
very easy to have Text variables differ based on the user’s selected language.

Simple Data 139

Vector
A Vector is a variable consisting of three float values, each with an assigned axis
(X, Y, or Z), which represents a location in a 3D space, but is sometimes used to
represent directions, such as with the Get Forward Vector node:

Figure 7.7: Vector variable and some nodes that use it

In addition to standard Vectors that have three dimensions, there are also two-
and four-dimensional Vector variable types available for use, which may be more
appropriate to use depending on the situation.

Rotator
A Rotator is a variable consisting of three float values, each with an assigned axis
(X, Y, or Z), which represents a three-dimensional Rotation. The X-Axis is Roll, the
Y-Axis is Pitch, and the Z-Axis is Yaw. Each axis has a value between -180 and 180

140 Game Development with Unreal Engine 5

degrees. This can be seen in the blueprint editor in addition to some nodes utilizing
rotators in Figure 7.8:

Figure 7.8: Rotator variable and some nodes that use it

A visual representation of a rotator can be seen in Figure 7.9; Blue represents the
Z-axis (Yaw), Red represents the X-axis (Roll), and Green represents the Y-axis
(Pitch):

Figure 7.9: Rotator Axes (Blue= Z/Yaw, Red = X/Roll, Green = Y/Pitch)

Simple Data 141

Pin splitting
Variables that consist of multiple values can be split into the values that comprise it,
allowing each one to be dealt with separately. This is done by right-clicking on the
output of such a variable and selecting Split Struct Pin, as shown in Figure 7.10:

Figure 7.10: Split Struct Pin on a Vector

Once a Struct pin has been split, they can be recombined by right-clicking on an
element of the split Struct and selecting Recombine Struct Pin.

Conversions
Variable types that contain similar data, such as floats and ints, can be converted
into each other by using a conversion node or by applying whatever mathematical
processes are necessary to do so, such as rounding a float (Removing its decimals) to
convert it to an int where necessary; both of these can be seen in Figure 7.11:

Figure 7.11: Converting Variables

142 Game Development with Unreal Engine 5

Conclusion
There are many types of variables available to use in Unreal Engine, and they can
be made to interact with each other through math, conversions, and splitting. These
variables have traits specific to them that need to be known to utilize them properly,
and many have similar variable types that may be better suited to a specific situation.
Programming relies on mathematical knowledge and aptitude because of the large
number of different variable types and the functions required in order to use them
to suit your needs.

Variables can be rather large, being composed of multiple sub-variables as in the
case of vectors and rotators, or they can be simple single numeric values, as with
integers. Knowing which specific variable type to use in a given situation is incredibly
important for keeping a project neat and not overcomplicating any mathematics
you do while programming. Mathematical errors and inefficiencies often lead to
instability and poor performance, and thus, must be avoided.

The next chapter will cover interfaces and event handling, which is a method of
communication between objects.

Points to remember
•	 Programming relies heavily on mathematics.

•	 There are several functions for each specific variable type.

•	 Integer 64s take up more memory than standard Integer but can have larger
values.

•	 Doubles take up more memory space than floats but are more accurate.

•	 Many variable types have similar variable types for more specific uses.

•	 Some variables are composed of other variable types.

•	 Poor mathematical work when programming will cause issues.

Multiple choice questions
1. How many digits can a double contain?

a. 7
b. 17
c. 14
d. 15

Simple Data 143

2. What variable type are the axes in a vector?
a. Integer
b. Double
c. Float
d. Boolean

3. What axis represents the Yaw of a rotator?
a. The X axis
b. The Y axis
c. The Z axis

Answers
 1. d
 2. c
 3. c

Questions
1. What is a struct?

2. What is localization?

3. What might you use a four-dimensional vector for?

Key terms
•	 Struct: A collection of variables

•	 Pin: The input/output instance of a variable on a node

•	 Degrees: The unit used to measure rotations

144 Game Development with Unreal Engine 5

Interface and Event Handling 145

Chapter 8
Interface and

Event
Handling

This chapter is all about understanding and using events in Unreal Engine 5. The
event handlining knowledge and programming is a skill in game programming and

directly works on the Timing and Actions that players observe when running game on
their machine. A simple example of event is pressing space bar to jump in Tomb Raider.
The Jump event is a code, which will run after a player presses the space bar and the
character animation responds to it. You, (as an event programmer) need to define this
code in Unreal Engine and run proper procedure after player fire it.

To learn this, we will go through the basics of event programming in engine and
then learn ab advanced topic in event programming: interface.

At the end, we will go over the basics of physical-based events in the engine, which is
one of the most magnificent features of Unreal Engine 5.

Structure
In this chapter, we will discuss the following topics:

•	 What is the event in Unreal Engine 5?

•	 Using event dispatchers

•	 Using interface

•	 Using physics (advanced)

146 Game Development with Unreal Engine 5

Objectives
After studying this chapter, you should be able to make custom event in blueprint
and directly call them with an instance of belonged actor class. You should also
know how to use casting and call events on target objects by using Line Trace tool
in the engine. Additionally, you should be familiar with the basics of interface
implementations in blueprint by making examples. We will also go through using
and apply physical impulse to spawned objects in this chapter, and we will learn
how to make ice cubes out of cube objects in the scene. The last one is supported by
physical material simulation in Unreal Engine 5.

To learn the topics covered in this chapter, make a new third-person template project
as mentioned in the previous chapters. Then, we will expand this project step by
step with coding and features involved in blueprint programming.

What is the event in Unreal Engine 5?
Let’s say, everything is working with events in Unreal Engine. The event is like a caller
or beginner that you can assign and address to a series of Actions in you game. Very
simple example, you press mouse and it causes the gun shoot in Fortnight, or you
press Spacebar and the player jumps in Tomb Raider. Both the click of a mouse and
pressing the space bar are firing an event each inside the engine, and then the engine
Activates the proper procedure, like shoot or jump.

Well, you may be surprised of how simple events like Collision or Begin Play and
Tick can handle everything in engine, and you are right: the true power of a blueprint
programmer is how to create new events inside the engine and address them to
control the sequence of Actions in game during runtime. The Collision event
and Tick and Begin Play are Default events on each blueprint, which are fired by
default. The developer needs to add new events to blueprint object and design the
sequence of running the scenario of game. We will practice this during the most part
of this chapter by making simple interaction between blueprint objects.

To make a new event, right-click in event graph and type custom event; then, select
the Custom Event block from the list, as shown in Figure 8.1:

Interface and Event Handling 147

Figure 8.1: Make new custom event in Unreal Engine 5

After you click on Custom Event in the list, the engine automatically makes a new
event block and places it on event graph, as shown in Figure 8.2. Press the Compile
button at the top:

Figure 8.2: Default new custom event block which placed in event graph

148 Game Development with Unreal Engine 5

You can rename this event from the Details panel in the Name field, as shown in
Figure 8.3:

Figure 8.3: Rename custom event from “CustomEvent_0” to
“MyEvent” by using “Name” field in Details panel

Now, let’s try using events by creating two different game assets, a light source,
and a switch to control it. Refer to Chapter 5, Project Templates and User Interaction;
let’s make a simple game asset as an actor blueprint that contains a light source, as
illustrated in Figure 8.4. BP_Light_01 is an actor blueprint and has a PointLight
blueprint component with intensity 2400, which makes a source of red light in the
scene, and it has two Plane static mesh components:

Figure 8.4: Point Light component properties in BP_Light_01 blueprint components

Interface and Event Handling 149

To support switching light source, as shown in Figure 8.5, we make two custom
events LightSwitch_ON and LightSwitch_OFF in the event graph; these events
change the intensity of PointLight from 2400 to 0 by using the Set Intensity
blueprint command:

Figure 8.5: Using two custom events to switch point light component

150 Game Development with Unreal Engine 5

The next blueprint BP_Switch_01 is a switch to control light source; as shown in
Figure 8.6, it has a Text Render component to show its name and a Box Collision
that covers a Plane static mesh component in which a user can walk in and out:

Figure 8.6: Actor “BP_Switch_01” components

The event graph for this blueprint, as Figure 8.7 shows, has two events from Box
Collision for begin overlap and end overlap. When the user collides with box
collision component in the game, each of these events will get fired. On each, we
grab the BP_Light_01 blueprint object from scene by using the Get All Actor
from Class blueprint node, and then fire the proper event each to turn the light
source on and off:

Interface and Event Handling 151

Figure 8.7: Actor BP_Switch_01 event graph has two collision events from box collision. Each collision grabs
an instance of “BP_Light_01” and activates custom events to switch the lights.

This is the most direct way of calling events on other blueprints, but there is a much
easier way to make it. Now add one instance of each actor in the scene and run the
game. When you collide with switch actor, the light source actor will activate and
deactivate light, as shown in Figure 8.8:

Figure 8.8: Making a simple scene in third person template and
add light source and switch actors to the scene

152 Game Development with Unreal Engine 5

Make another blueprint actor, BP_Light_02, like BP_Light_01 and change the light
color to green, as shown in Figure 8.9:

Figure 8.9: Actor “BP_Light_02” viewport tab

Now let’s make a different switch to control this light source. This technique is
useful for simplifying blueprint code and design tools for designers. Right-click and
duplicate BP_Switch_01 in the content browser and rename it as BP_Switch_02.
Now, open its event graph and make a new public variable from BP_Light_02 in it;
name it LightSource. We like to save an instance of BP_Light_02 in this variable.
Keep in mind that you can make variables of all blueprint actors you made and use
them in the blueprint code. Press the Compile button at the top, and then drag and
drop an instance of this variable to event graph; as shown in Figure 8.10, you can
directly call events from each one to control the light:

Interface and Event Handling 153

Figure 8.10: Make a public variable in “BP_Switch_02” to hold an instance
of BP_Light_02 actor blueprint. Then use it to call events which control light.

After this, drag and drop BP_Switch_02 to the scene; as shown in Figure 8.11 and
Figure 8.12, it has a public variable LightSource. Then, click on the Picker icon and
then on BP_Light_02; now LightSource is assigned to BP_Light_02 on the scene,
so the code will switch the light source on Box Collision. Play the game and check
the results:

Figure 8.11: Assign value to a public variable in the scene

154 Game Development with Unreal Engine 5

After clicking on object, double-check the name of picked object in your public
variable LightSource:

Figure 8.12: The public variable would show the object name if it assigned correctly

If you forget to assign variable to LightSource, the engine will mostly throw an
error message for None reference values, as shown in Figure 8.13, so keep in mind
that you must “Always” address and assign your public blueprint variables in the
scene or at begin play event inside that blueprint:

Figure 8.13: Error message when there is “None” assigned to public variable

Interface and Event Handling 155

Using event dispatchers
So far, we have learned how to create and use events very similar to functions.
Now, let’s learn another method of using events in Unreal Engine known as event
dispatchers. In this method, the engine will Dispatch (or run) an event in the
background from the object who broadcast it. This event is handled by the engine
as a C++ delegate event, which means the engine assigned processing and memory
resources for running it by compiler in the background. At the receiver of this event,
a user has to assign a custom event to detect broadcasting of the event and handle
the actions required for it.

To practice this, duplicate BP_Switch_02 in the content browser and rename it as
BP_Switch_03. Then, open the event graph of this actor, locate EVENT DISPATCHERS
in the My Blueprint tab, and as Figure 8.14 shows, add two new event dispatchers
ActivateLight and DeActivateLight. Press the Compile button at the top. Then,
drag and drop each of event dispatchers to the event graph and select Call from
list. As you can see in Figure 8.14, the event dispatcher has a special icon attached
to blueprint box. This makes it easier for developers to find event dispatchers in
the code. Connect these two event dispatchers to begin overlap and end overlap
events of the Box Collision component. Now, on each collision event with the Box
Collision component, the BP_Switch_03 will dispatch a proper event:

Figure 8.14: Making new event dispatchers and “call” them on Box collision component events

156 Game Development with Unreal Engine 5

Now, event dispatchers from BP_Switch_03 need a little bit more work to activate
light sources. Duplicate BP_Light_02 in content browser and change its name to
BP_Light_03. Open it and change the light source color to blue. Then, switch to
event graph and grab an instance of BP_Switch_03 by using the Get All Actors
Of Class blueprint node in begin play and assign it to a variable named Switch, as
shown in Figure 8.15:

Figure 8.15: Make a new variable from BP_Switch_03 type and grab a reference to it at event begin play

Then, drag an instance of the Switch variable to event graph, click on the blue pin,
drag the blue line and release the mouse, and then type bind event to activate
light. The engine automatically shows the Bind Event to Activate Light
command, as shown in Figure 8.16. Please do “Not” press the Compile button at the
top at this stage. (The engine may show error title on blueprint block, and the game
will not run):

Interface and Event Handling 157

Figure 8.16: Drag and drop “Switch” variable to the event graph and bind an event to its event dispatchers

Select the Bind Event to ActivateLight, and the engine will automatically add
the Bind Event to ActivateLight blueprint command to event graph. Then, click
on and drag a red line from event pin, as shown in Figure 8.17, and then connect the
red line to red pin of the LightSwitch_ON event. Now, press the Compile button at
the top:

Figure 8.17: Drag and drop “Switch” variable to the event graph and bind an event to its event dispatchers

158 Game Development with Unreal Engine 5

Follow the same procedure for Bind Event to DeActivateLight and Bind it
(or connect events by using the red line) to the LightSwitch_OFF event. Your code
should look like Figure 8.18 at the end of this procedure. When you run the code,
BP_Switch_03 is dispatching an event on collision and the BP_Light_03, which
already bind events to handle those event dispatchers from BP_Switch_03, will
change the light source intensity:

Figure 8.18: Actor “BP_Light_03” event graph

Event dispatchers gave developers a nice way to broadcast events and data with all
game objects in the scene at runtime. To communicate with the event dispatchers,
you just need to bind your own events to the source of event dispatcher, as we did
in the previous example. In the previous methods, used in BP_Switch_01 and BP_
Switch_02, the sender directly grabs light source object in the scene and runs an
event inside it, which means the sender must have a reference of target. However,
when event despatcher runs an event, it doesn’t matter who the target is, each target
can grab a copy of sender, bind an event to event dispatcher of it, and respond properly.
This is the most important difference between direct call of an event and bind to event
in Unreal Engine.

Interface and Event Handling 159

Using interface
Before looking at this topic in depth, we need to talk about how to use line trace and
what casting is in blueprint programming.

Line Trace in blueprint
Using Line Tracing in game development is a powerful tool and has many usages,
depending on the scenario of the game and the nature of the problem the developer
wants to solve. Imagine that you have a laser pointer in your hand, as shown in
Figure 8.19. Each time a user turns it on, a laser light goes from your hand to the
object that the laser pointer is pointed at:

Figure 8.19: “Laser Pointers” devices with a power supply which generate laser beam of visible light.

In most game engines, there are tools for developers to simulate and show such
an effect inside the level. Unreal Engine 5 uses the Line Trace By Channel
blueprint command, which performs a collision trace along a given line and returns
the first object that the trace hits. Let’s try this in the current project by using the
third-person character’s camera as shooting object for laser light. Refer to Chapter
5, Project Templates and User Interaction, and make a keyboard input action event for
E key called Trace_ON in Third Person Character blueprint, as shown in Figure

160 Game Development with Unreal Engine 5

8.20. We will use this key to directly call events on game objects in the stage during
runtime:

Figure 8.20: Add new input mapping for “E” key on keyboard

Now, right-click on the third-person character blueprint event graph and type line
trace by channel; then, click on the LineTraceByChannel blueprint command
and connect it by execution line to the Trace_ON event. As Figure 8.21 shows, each
LineTraceByChannel blueprint command needs some input values and has some
options. Additionally, a user can click on the little arrow in the blueprint block to
expand its properties:

Interface and Event Handling 161

Figure 8.21: “Line trace By Channel” blueprint block

The Start and End pins represent the beginning and end points of the laser pointer;
to make them, add a billboard blueprint component to the Capsule Component of
the third-person character blueprint and relocate it to 0,0,50, as shown in Figure 8.22:

Figure 8.22: Use a billboard component to set start point of line trace

162 Game Development with Unreal Engine 5

Then, drag and drop the Billboard and Follow Camera components into the event
graph. For the Start pin, which is a vector, we use Billboard world location by using
the Get World Location blueprint command. For the End pin, we need to find
Forward Vector of the camera; it is the direction we like to shoot the laser pointer
in. After that, the Forward Vector must be multiplied by any number to increase
the range. For doing this, use Get Forward Vector to get forward vector of follow
camera component, and then use the Multiply blueprint operator to multiply a
vector by a float value. After this, the value is ready to add to start point, which is the
billboard location. Use the Add blueprint operator for vectors and connect it to the
End pin. Finally, click on Draw Debug Type and change the option to For Duration.
This shows the Line Trace on the screen for 5 seconds. To change the duration and
color of the line trace, click on the little arrow in the LineTraceByChannel blueprint
block and change the values. Your final code should look like Figure 8.23:

Figure 8.23: Final blueprint code and result on using E key, to
activate line trace from third person player toward camera angle

Now play the game and press E to activate line trace. You can change the location of
Billboard to customize line trace start, and change multiplier value to change the
laser bin range.

Interface and Event Handling 163

Now, how about we get rid of all switch actors and just use our laser light to control
the light sources? This way, we don’t need to use collision from switch actors at all,
so we can remove them from stage.

For this, we need to learn Casting in blueprint first.

Casting in blueprint
So far, we have learned that line trace is a tool that draws a straight line between
two points during runtime in a game based on begin and end point. Open the
third-person blueprint and find the LineTraceByChannel blueprint command you
already made. Then use mouse to drag an execution line form Out Hit pin and type
break, and then select Break Hit Results to add this blueprint block to event
graph and expand it by clicking on the small arrow on it, as shown in Figure 8.24:

Figure 8.24: Make “Break Hit result/” blueprint node from line trace “Out Hit” pin

As you can see, when we break the Out Hit pin, it returns several pieces of data. One
of them is a reference to Hit Actor, which is the actor the laser light has impact with.
This actor can be stage items, other blueprint actors or nothing, which means laser
light did not impact with any object at the End of its tracing line. So, the first thing
we have to do is check if the Hit Actor exists, which can be done by checking the

164 Game Development with Unreal Engine 5

Return Value Boolean pin of the LineTraceByChannel block with an if statement,
as shown in Figure 8.25:

Figure 8.25: Sometimes line trace returns “null” reference,
and you have to check it before using hit result values

The next step is to know what the Hit Actor is; if the Hit Actor is BP_Light_01,
then we can run events on this actor and control light source. So, to discover the
actor type, we need to use a method in programming, known as casting. Casting is
a common communication method where you take a reference to an actor and try to
convert it to a different class. If the conversion is successful, we can directly use this
actor as a reference to access its properties and events (like we did in BP_Switch_01
and BP_Switch_02).

Interface and Event Handling 165

Click and drag blueline from Hit Actor, then release and type BP_Light, and then
choose the Cast to BP_Light_01 blueprint block, as shown in Figure 8.26:

Figure 8.26: Casting in blueprint

166 Game Development with Unreal Engine 5

Then, click on its As BP Light 01 blue pin, drag blueline, release and type light
switch, and then choose the Light Switch OFF blueprint event from the list, as
shown in Figure 8.27. Press the Compile button at the top and run the game:

Figure 8.27: The “As BP Light 01” returns a reference to BP Light 01
actor on the stage. So, we can call “Light Switch OFF “event from this object to control light.

When the user presses E on the keyboard, a line trace in drawn by the engine inside
the game; then, the code checks the Return Value of line trace. If the laser impacts
with an object, then Return Value will be true, and then the code tries to cast the
Hit Actor to the BP_Light_01 blueprint actor. When we say try to cast, it means
the engine grabs Hit Actor and compares it to the BP_Light_01 source class in the
content browser. If these two are the same, then the engine executes the top execution
pin in the blueprint, which will run the Light Switch OFF event from light source
actor. If the objects are not the same, the Cast Failed execution pin will be activated.

Now, follow the same procedure and add two more cast blueprint blocks to support
the Light Switch OFF function on both BP_Light_02 and BP_Light_03. As shown
in Figure 8.28, we can use the Cast Failed execution pin to execute multiple casts.
This way, the engine will run first cast, and if that fails, it will check for the next

Interface and Event Handling 167

one; if both of those cast fails, it will check the last cast, and on each one, the Light
Switch OFF function will be executed if the cast is successful:

Figure 8.28: Using cast on three actors to activate an event

When the game is running, the third-person player can switch off all light sources.
But there’s one problem: assume that we have 16 different light source actors on the
scene in game. To switch off any of them, we have to do 16 cast(s) in third-person
character and run similar event to light_switch_off on each. Imagine that the
light source objects are huge blueprints with a number of elements and details, and
when you are casting to each in runtime, the engine should load them into memory,
compare them to what Line Trace returns as Hit Actor, and if the cast fails,
free the memory used for loading and load the next object in memory; this will
go on until it finds the right object to cast and then run the event on it. This is not
only unprofessional but also abuses engine processing and system resources during
running game.

To solve this issue, we need to use a technology in programming known as interface
implementation.

168 Game Development with Unreal Engine 5

Interface implementation in blueprint
Using interface is an advanced knowledge in developing applications. It works like
magic and simplifies the code and solutions. The interface itself is a programming
syntax/structure that allows the computer to use certain properties and functions
on an object/class. Imagine that you have a robot that can speak fluently in five
different languages. This means your robot’s brain (like a computer application) has
five different input and output structures to receive and send data in each of those
languages. Consider this example: it can detect the message Good Morning in five
languages and respond properly in a specific language, as it’s brain (like a computer
application) has the interface of that language to receive it and respond to it. So, if
you upgrade this robot with a new interface of a different language and plug it into
its brain (add that to its computer application), your robot can communicate in that
language as well.

Having interface is a very expensive technology not many programming languages
can support to compile and implement. The Unreal Engine blueprint programming
language provides in-depth support for development and use Interface in the code.
We will describe the basics of Interface development in this section.

Right-click in the content browser and select Blueprint Interface from the
Blueprint menu, as shown in Figure 8.29. Rename the blueprint interface as BPI_01.
The BPI prefix stands for Blueprint Interface, and following this naming
convention is an industry standard:

Figure 8.29: 1- Right click and select “Blueprint” from content browser. 2- Locate
“Blueprint Interface” and left click on it. 3- Rename new interface to “BPI_01”.

Interface and Event Handling 169

Double-click on BPI_01 in the content browser to open its editor. The blueprint
interface editor, as shown in Figure 8.30, is very simple compared to previous
blueprints we made. Click on the +ADD button, and the engine will add a new
function in the FUNCTIONS section. Rename this function to Impact and save it:

Figure 8.30: Click on +ADD to add new functions in blueprint interface editor

Now we need to upgrade our game objects with this interface to control light. Open
each light source blueprint, click on Class Setting and locate INTERFACES in the
Details panel. Then, click on the Add drop-down button, as shown in Figure 8.31,
and locate the BPI_01 interface you made and click on it. Press the Compile button

170 Game Development with Unreal Engine 5

at the top, and the actor will be upgraded with interface and can use the BPI_01
interface for communication:

Figure 8.31: 1- Locate and click on Class Setting tab on each light
source actor, 2- Click +ADD in details panel. 3- Find BPI_01 interface and click on it.

After assigning interface to all light sources, save the project, close it and open it again.
Then, open the third-person character blueprint and locate the LineTraceByChannel
blueprint command. Disconnect the casts and then click and drag blueline from Hit
Actor; then, type Impact, which is the name of the function you already made in
the BPI_01 blueprint interface, as shown in Figure 8.32. Then, click on the execution
line to this function. As you see, the interface’s function has a different icon in its
blueprint block, which makes it easier to detect during development code in event
graph. Press the Compile button at the top:

Interface and Event Handling 171

Figure 8.32: 1- Open the third-person character blueprint and disconnect cast commands. Then, drag the
“Impact” function from Hit Actor and connect it to execution line. The blueprint interface functions have
special icon on their blueprint block, like event dispatchers in switch actors. IF you don’t have “Impact”

name on the list, save project, close it and open it again and then try one more time.

Now, open each light source, and right-click in event graph and type Impact; select
Event Impact in the Add Event section in the list, as shown in Figure 8.33. (If you

172 Game Development with Unreal Engine 5

don’t have Impact name on the list, press Compile, save project, close it, open it
again and then try):

Figure 8.33: Right-click in event graph and type “Impact”. The interface function which
we made will come in the list multiple times. Choose “Event Impact” from the list.

The event belonging to interface has a special icon, which makes it easier to detect in
event graph. Now, disconnect other events in blueprints, add a FlipFlop to interface
event (Impact) and connect it to source light events, as shown in Figure 8.34. We
also use a Flip Flop to switch light between on and off. Flip Flop node is switched
execution line between A and B that leads to different events in the light source. Run
the game and check the magic of using interface by pressing E on each light source:

Figure 8.34: Disconnect previous events and calling light source events by “Impact”
interface event. The interface event has a special icon on its blueprint block.

Interface and Event Handling 173

Each time a user presses the E key, the line trace hits an actor in the scene and then
checks if the actor has the BPI_01 interface; if it has the interface, the engine will run
it immediately. In other languages, we don’t need to cast anymore; we just check if
an interface exists at the destination and then activate it. On each light source, the
blueprint interface runs its event, which is implemented as Impact in the interface.

Using physics (advanced)
Unreal Engine uses PhysX by default to drive a physical simulation calculation to
perform all collision calculations and physical rules. So far, we have learned about
physical constrains and used collision events to track the third-person character;
now, it’s time to learn more about some physical tools in engine.

Using physical gravity
Make a new actor blueprint called BP_Ball_01, which has a Sphere collision
component with Sphere static mesh component resized inside it and a text render
component to show its title, as shown in Figure 8.35:

Figure 8.35: Ball_01 actor with Sphere collision component,
Sphere static mesh component and Text render component

174 Game Development with Unreal Engine 5

Now, switch to event graph and refer to the beginning of this chapter, make a new
custom event and name it ActivateGravity, drag and drop a reference from the
sphere collision component, and get the Set Simulate Physics blueprint block
from it, check the Simulate pin to true and connect this block to the custom event,
as shown in Figure 8.36. Press the Compile button at the top:

Figure 8.36: Ball_01 actor event graph

Now, open the third-person character blueprint and execute the ActivateGravity
event from this object with a simple cast in line trace, as shown in Figure 8.37 (we can
assign and use interface to ball_01 for this, but for now, let’s make it simple with
cast):

Interface and Event Handling 175

Figure 8.37: Remove previous code, and then Cast to ball_01 actor and run
activate gravity event from it with line trace in third person character blueprint

Now we need to make the scene to test the physics. Drag and drop two instances
of BP_Ball_01 to the scene from content browser and locate them in the middle of
air. When you run the game as presented in Figure 8.38, by shooting laser light (line

176 Game Development with Unreal Engine 5

trace) to each BP_Ball_01, it will fall to the ground, and you can move them by
pushing these objects with the third-person character:

Figure 8.38: Top: Drag and drop to the scene some instances of Ball_01 and put them in the air.

Bottom: Run the game and shoot line trace to each.

Add physical force with impulse
Now, let’s make shooting object functionality for this actor by pressing E on the
keyboard (sounds exciting, isn’t it!). For this action, we first need to spawn the ball
actor in the world and then add physical force to move it in the direction we like.
Duplicate BP_Ball_01 in the content browser, rename it as BP_Ball_02 blueprint
and navigate to event graph. Make a new vector variable called Direction and then
make a float variable called Speed. For each variable, make sure to tick Expose on
Spawn in their details panel and make them public, as shown in Figure 8.39. Press the
Compile button at the top. Now, drag and drop an instance from sphere collision
component to the event graph, and grab the Add Impulse blueprint block out of it.
As you see, this block accepts an input vector known as Impulse that represents a
three-dimensional force value each on the X, Y and Z axes. We can increase force on

Interface and Event Handling 177

each axis by using high values on that axis, so as a simple practice, we use Speed
to represent force and Direction as input variables, and by multiply speed to
direction, we can simply make an Impulse input.

Then, use Set Simulate Physics to activate physic simulation, and connect the
Add Impulse node to Event Begin Play and press the Compile button at the top.
Now, everything is ready; we just need to spawn this actor by shooting it from third-
person character:

Figure 8.39: Ball_02 actor blueprint event graph

178 Game Development with Unreal Engine 5

Open third-person character blueprint and locate your keyboard event. Then, right-
click on the event graph, type spawn Actor from class, and then select the blueprint
block, as shown in Figure 8.40:

Figure 8.40: “Spawn Actor From Class” blueprint command

The engine will automatically add the Spawn Actor blueprint block to the event
graph; then, select BP_Ball_02 from the Class drop-down menu and the blueprint
block will automatically change and show your public variables Direction and
Speed, as shown in Figure 8.41. Now, we need couple of input values in this block,
like Direction and Speed variables, which are references to the public variables we
made in the Ball_02 blueprint object:

Figure 8.41: “Spawn Actor From Class” which the “Class” pin is set to “BP_Ball_01”

Interface and Event Handling 179

To make a value for Spawn Transform, we use same data we used for line trace,
by using Make Transform blueprint block. This block can also change the scale of
the spawn object. For Direction, we can use follow camera component’s forward
vector, and it will give the exact directions, like a camera, to the spawned object;
finally, for the speed, let’s experience with 750. The final code should look like Figure
8.42:

Figure 8.42: This code represents shooting functionality by using key event, camera and billboard
components. The code will spawn actors from the blueprint class BP_Ball_02

Now, run the code and press E in a different camera direction. Voila! The ball object
is shooting in the camera direction on each key press, as shown in Figure 8.43. Now,

180 Game Development with Unreal Engine 5

press Esc, change Speed to 200 and check the results. As you see, the impulse force
has decreased slightly on the shooting object:

Figure 8.43: Shooting BP_Ball_02 from third person character with speed set to 750

Make physical behavior as material
Unreal Engine also has an advanced system to simulate physics through materials.
Right-click on content browser, click on Physics in the menu, and then select
Physical Material from the list. The engine will show the Pick Physical
Material Class windows; choose the Physical Material class in there, and
then click on the Select button, as shown in Figure 8.44. Rename the new physical
material as PM_01:

Interface and Event Handling 181

Figure 8.44: Right-click in the content browser (1) and from Physics in the list (2) select
Physical Material. Then (3) click on “PhysicalMaterial” from

“Pick Physical Material Class” windows and (4) rename the new physical material to “PM_01”

Now, we need a material to handle our physical material. Make a simple material
called MT_01 and assign the PM_01 physical material that we made to it at the
PHYSICAL MATERIAL section in its event graph, as shown in Figure 8.45:

Figure 8.45: Add physical material from materials editor in Unreal Engine 5

182 Game Development with Unreal Engine 5

Now, we need an actor to test this material. Make a new actor called BP_Box_01 with
a box collision component that has Simulate Physics ticked in its details panel, a
Cube static mesh component and a Text render component, as shown in Figure 8.46.
Assign the MT_01 material to cube static mesh component:

Figure 8.46: BP_Box_01 blueprint actor

Now, place an instance of this actor on stage. Then, press play and try to push the
cube with the third person character, as shown in Figure 8.47. It moves, but not easy,
is it?

Figure 8.47: Add BP_Box_01 blueprint actor to stage and try to push it with the third person character

Interface and Event Handling 183

Now, press Esc to exit the game, and then open PM_01 by double-clicking on it in
the content browser. Physical material, as shown in Figure 8.48, has a number of
parameters that directly change the behavior of the static mesh object using this
material. For now, change the Friction value from 0.3 to 0 and click on Save:

Figure 8.48: Physical material parameters

Now, run the game again and try to push the cube again. Voila! It sounds like the
cube behaves like a big ice cube and moves with a simple push by the player character:

Figure 8.49: Looks like the BP_Box_01 behaves like
a big block of ice after get pushed by third person character

184 Game Development with Unreal Engine 5

What you have on screen now is a physical material simulation, which runs by engine
in real time. There are a number of situations you can simulate through physical
materials in the engine; while that is out of scope of this section, keep in mind that
this is one of the most powerful tools in the engine to simulate real physics over each
static mesh object when the game is running.

Conclusion
In this chapter, we learned how to use event handling by making a number of game
assets and connecting them to each other as a simple switch button for a source light.
Event handling is an art of developing applications with Unreal Engine, so as much
as you can experience and learn in this area, the quality of your final work will show
bright features. At the same time, the engine has implemented interface support for
blueprint programming. The interface, as we learn, works like a common gateway to
send and receive events between objects in an extremely simple way.

At the end, we learned how to shoot physical objects based on physical impulse
simulation and change the physical features of each material to make them behave
like real-world objects.

For making much in depth custom functionalities for actors on the scene, developers
need to use and process different data types at the same time. To do that, developers
mostly use groups of variables which are organized in data containers. These data
containers simplify the process and organized the code which is very useful in order
to develop complex functionalities.

 The Unreal Engine 5 has a complete support for a majority of data types that can
be used to control game flow, animation, and game mechanics. Learning that is
essential knowledge for each game programmer.

Points to remember
•	 When you make a new interface and assign it to your objects, it is better to save

the project and open it again. The reason for this is technically complicated,
but in simple words, the engine needs to grab the new interface code and
compile it a little bit different from compiling normal blueprints. Sometimes,
this process is not fully running after users make new interface blueprint in
editor and then assign it to objects. So, after saving and restarting, the engine
will fully compile all new game objects again, which, in turn, will mean that
the interface will be applied and ready to use.

•	 Event and interface in Unreal Engine can accept variables to send and receive
data.

Interface and Event Handling 185

•	 When Simulate Physics is ticked on an object, remember that you can tick
mass and assign values as kilograms to your object and simulate physics
based on it. This property is compatible with physical material features
belonging to object.

Multiple choice questions
1. For what do we use events in Unreal Engine 5?

a. To develop communication between blueprint game objects in the
scene

b. To handle collision and address user input

c. To implement interface function support on blueprint objects

d. Options a, b and c are correct

Answer
 1. d

Questions
1. How can you send and receive a variable with an event?

2. How can you receive values from blueprint interface?

3. What is the difference between LineTraceByChannel and
LineTracebyObject in blueprint programming?

4. Can you force engine’s line trace to bypass an object in the scene? How?

Key terms
•	 Blueprint interface - Blueprint Interface is a collection of one or more

functions, without implementations (name only) that can be added to other
Blueprints for send and receive data.

•	 Blueprint event - Executive nodes in blueprint that are called during
runtime for execution of an individual network of procedures, are known
as blueprint event.

•	 Line trace – Traces functions, “shoot” out an invisible ray/line which can
detect geometry between two points. In case that geometry is hit by this ray/
line, the trace function (line trace) will return data related to hit point.

186 Game Development with Unreal Engine 5

•	 Cast - Casting is a common programming method where you take a reference
to an object and try to compare with or convert into a different class.

•	 Blueprint collision – Every object that can collide can use procedures(events/
functions) to detect and manage its behavior based on collide type.

•	 Physical material – They are special type of materials used to define the
behavior, respond and possible actions of a physical object when interacting
dynamically with the world based on physical parameters.

•	 Impulse - An impulse is an “instantaneous physical force” which usually
applied once to the object.

•	 Simulate physics – To activate physical behaviors on an object, find and
check “Simulate Physics” property which is mostly located on detail panel
of each actor blueprint.

•	 Light source - Unreal Engine has four default light types: Point, Directional,
Spot and Sky. Directional lights are used as primary outdoor light or any light
that needs to appear as extreme or located very far distances. Point lights are
like classic “light bulb”, emitting light in all directions from a single point.
Spot lights emit light from a single point, but have their light limited by a set
of cones. Sky lights capture the background of the game scene and apply it
as lighting to meshes located in the scene.

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 187

Chapter 9
Data Processing

(Enum, Struct, Map,
Data Tables) and

Animation Instances
There are several complicated types of variables that aren’t used as much as

the simpler ones but are arguably more important, as they are generally used
for creating larger, core systems that the simpler variables are used within. This
chapter will also cover animation instances (changing animations using data within
blueprint).

Structure
In this chapter, we will discuss the following topics:

•	 Object based variables
•	 Enumerators (Enums)

o Byte
o Enumerator editor

•	 Structures (structs)
o Nested structs
o Structure editor

•	 Arrays
•	 Maps

188 Game Development with Unreal Engine 5

•	 Data tables
o Data table editor
o CSV/JSON export
o Data table usage in blueprint

•	 Animation instances

•	 Multi-variable type operators

Objectives
After studying this chapter, you should know of some of the more advanced variable
types, their uses, how to set them up for use, some of the blueprint nodes that utilize
them, the basic concept of animation instances, how to use them to animate skeletal
meshes via blueprint, and how to use multi-variable math operators.

Object-based variables
Enumerators, structures, and data tables are predefined; although they are used
within blueprints, their traits are defined outside of the blueprint editor within an
object that stores this information:

Figure 9.1: Object Based Variables in Content Browser

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 189

Each of these variables have an editor specific to them, which is accessed by opening
them through the content browser. Within these editors, the associated variable can
be modified. Creating these assets is done by right-clicking in the content browser;
structure and enumeration are found under the Blueprints category, and Data
Tables are found under Miscellaneous.

Enumerators (Enums)
Enumerator variables contain a list of named values from a predefined list of possible
values, which are defined within an enumerator object in the project files. :

Figure 9.2: Enumerator Variable

190 Game Development with Unreal Engine 5

Enumerators are used to hold a value from a set list of potential values, so they are
useful for defining states, usually within (or accessed by) an animation blueprint as
shown in image below.

Figure 9.3: Enumerator in Animation Graph

Bytes
Enumerators can also be converted to and from Byte variables, which allows
reference to enumerator values via the index value (place in the list of possible
enumerator values):

Figure 9.4: Byte variable

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 191

Bytes are similar to integers, but they can only contain whole numbers up to 255,
making them perfect for usage alongside lists like enumerators because you can’t
have negative or partial entries.

Enumerator editor
Enumerators are modified via an Enumerator specific editor, where entries can be
added, modified and defined:

Figure 9.5: Enumerator Variable Editor

Each entry has a couple of text boxes; the one labeled Display Name allows you to
set the name displayed for that particular entry when using the enumerator, and the
Description box text will be displayed when hovering over that entry in a drop-
down menu (Setting Default value or comparing values, as shown in Figure

192 Game Development with Unreal Engine 5

9.6). Entries can also be rearranged, but be aware that changing the order of entries
may cause issues in logic utilizing the enumerator:

Figure 9.6: Enumerator Descriptions

Structures (structs)
Structures are collections of variables, which can include other structs. This means
they can be used to neatly contain a large amount of varied information.

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 193

Figure 9.7: Structure variable

Structures are used for grouping together related data neatly into a single variable;
for example, you could contain information about an item that can be placed within
some type of inventory system by the player, likely containing a static mesh variable
to be used when the item is placed in the world, an icon to display the item within
the player’s inventory, some type of item ID (Integer) for fast reference on what
specific item it is, a name, and possibly also a description:

Figure 9.8: Structure Example

When using structs in blueprints, using pin splitting (as covered in Chapter 7, Simple
Data) or break nodes (as shown in Figure 9.7) is a necessity to access the variables
within the struct.

194 Game Development with Unreal Engine 5

Structure editor
Structures are modified via a structure specific editor, where variables can be added,
modified, and defined in the top half of the editor, and the default values for the
variables used within the struct can be set in the bottom half of the editor:

Figure 9.9: Structure Editor

Each entry in the top section of the editor contains a text box for naming the variable,
a drop-down menu for selecting the variable type, a few buttons for reordering the
entries, and a cross for removing the entry.

Each entry can also be expanded by clicking on the arrow to the left of its name (as
seen in Figure 9.9), which allows access to the tooltip for that entry. A Boolean to set
whether that entry’s variable can be modified on an instance of a blueprint using
the struct, and a Boolean to set whether the variable will be serialized if the struct is
used in a save file.

Nested structs
Structures can contain structures within themselves, although not a struct of the
same type, so no infinite loops:

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 195

Figure 9.10: Nested Struct

This allows for structs to contain subcategories within themselves, which is extremely
useful for defining complex objects that require many variables.

Arrays
A list of values of a specific variable type is called an array. Arrays can be made
by selecting an existing variable and changing it from a single value to an array, as
shown in Figure 9.11:

Figure 9.11: Change container type

196 Game Development with Unreal Engine 5

Arrays have nodes specifically for them, including ones that allow getting values
from a specific entry in an array, removing or altering entries, and more.

Get
In order to get a value for a specific entry in an array, one of two variations of the Get
node will need to be used:

Figure 9.12: Get Array Value

When creating a Get node, you will have a choice between a node that gets a copy of
the value and a node that gets a reference to the value. The key difference between
the two is that the reference allows you to change the output value in the array
by altering the output value, whereas the copy only gives you the value with no
capacity for altering it.

Remove
In order to remove one or more values from an array, one of two remove nodes will
need to be used. The Remove node will take a value and remove all entries matching
that value from the array, while the Remove Index node will remove a specific entry:

Figure 9.13: Remove from Array nodes

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 197

Add
In order to add a value to an array, one of two Add nodes (or the Set Array Element
node) will need to be used. The Add node will add any value to an existing array as
the last entry, whereas AddUnique will only add values that are not already present
in the array:

Figure 9.14: Add to Array nodes

Set Array Element
This node allows you to either change an existing entry in an array or add one if the
input index is not a currently existing entry in the array, and Size to Fit is set to
true:

Figure 9.15: Set Array Element nodes

198 Game Development with Unreal Engine 5

Clear
This node allows you to completely empty an array by removing all entries:

Figure 9.16: Clear Array node

Length
This node allows you to get the number of entries in the provided array:

Figure 9.17: Length node

Maps
Maps are similar to arrays in that they are a list, but instead of it being a number of
entries with an index value corresponding to their place in the list, a map consists of a
number of variable values and a corresponding value of an entirely different variable
type. The left variable type in a Map entry is called a Key, and the corresponding
value on the right is referred to as a Value, both of which can be seen in Figure 9.14.
Maps are also created through the same method as arrays, but by choosing the Map
option instead of the Array option, as seen in Figure 9.11:

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 199

Figure 9.18: Map Variable

Get keys and values
These nodes will allow you to get all the keys and values used in the map, respectively:

Figure 9.19: Get Keys and Values Nodes

200 Game Development with Unreal Engine 5

Find
This node will search the provided map for the provided key, and if it finds it, it will
return the corresponding value:

Figure 9.20: Find Node

Length
This node will search the provided map for the provided key, and if it finds it, it will
return the corresponding value:

Figure 9.21: Length Node

Clear
This node will completely clear the map:

Figure 9.22: Clear Node

Contains
This node will return a Boolean stating whether the provided key can be found in
the provided map:

Figure 9.23: Contains Node

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 201

Is Empty and Is Not Empty
These nodes will return a Boolean stating whether the map contains any entries:

Figure 9.24: Is Empty and Is Not Empty Node

Data tables
Data tables are a predefined list of entries using a structure to define entries. They
are used in cases where a project contains a large number of similar objects that are
defined by structs. A reference to a data table may be used as a variable within a
blueprint:

Figure 9.25: Data Table

202 Game Development with Unreal Engine 5

Data tables are essentially spreadsheets. When creating a Data Table, you will be
asked to choose which structure the Data Table will use for its rows, as seen in
Figure 9.26:

Figure 9.26: Data Table Creation

Data table editor
Like enumerators and structures, data tables have their own editor. Rows can be
added, modified, removed, and rearranged as needed. To add a new row, select the
Add button at the top of the editor, or right-click on an entry and add a new row
above or below the selected entry from the context menu. To modify a row, select
it from the list of rows in the Data Table panel, and then alter its data in the Row
editor panel, as follows:

Figure 9.27: Data Table Editor

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 203

The data table editor is very simple to use and is a great way to keep projects neat
and organized.

CSV/JSON export
As data tables are spreadsheets, they can be exported/imported to/from CSV or
JSON files for alteration or viewing in external spreadsheet editing software. To
export a data table to a .CSV or a .JSON file, right-click on it within the content
browser, and then select either Export as CSV or Export as JSON, as shown in
Figure 9.28:

Figure 9.28: Data Table export options

204 Game Development with Unreal Engine 5

Data Table usage in blueprint
Data tables can be referenced using variables in blueprints, but specific nodes need
to be used to read data from a blueprint. These nodes can be seen in Figure 9.29:

Figure 9.29: Data Table nodes

These nodes each have specific uses that can be used well in conjunction with one
another.

Does the data table row exist?
This node is used to check if there is a row in the input Data Table matching the
input Row Name. This node serves as a IsValid node equivalent for data tables:

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 205

Figure 9.30: Does Data Table row exist

Get data table column as string
This node gets all the entries for a provided column/variable (the Property Name
input) in a Data Table and returns them in an array of strings:

Figure 9.31: Get Data Table Column as String

Get data table row names
This node gets the row names for all the entries in a Data Table, which, when used
in conjunction with Get Data Table Row, can allow searching or evaluating an
entire Data Table.

Get data table row
This node gets the row under the provided Row Name (provided it exists) and returns
the row as the struct the Data Table uses, with all the variable values that row
contains in the data table:

Figure 9.32: Get Data Table Row Names & Get Data Table Row

206 Game Development with Unreal Engine 5

Animation instances
An animation instance is the current instance of whatever object is driving the
animation of a skeletal mesh, which is usually an Animation Blueprint, but it can
also be a singular animation asset or a custom method created by an advanced user.

Animation instance nodes
There are a handful of Blueprint nodes related to animation instances, used for
altering, referencing, or obtaining information about the animation playing on a
skeletal mesh.

Figure 9.33: Some Animation Instance Nodes

Get Anim Instance
This node provides a reference to the animation instance for the provided mesh,
which, in conjunction with a cast node, can be used to get a reference to a currently
running animation blueprint (if the mesh is using one):

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 207

Figure 9.34: Get Animation Instance Node

Has valid animation instance
This node checks to see that the provided mesh has an animation instance, which
can be used to avoid errors when trying to alter an Animation instance:

Figure 9.35: Has Valid Animation Instance Node

Play
This node plays the animation currently set on the provided skeletal mesh:

Figure 9.36: Play Node

208 Game Development with Unreal Engine 5

Stop
This node stops the animation currently playing on the provided skeletal mesh:

Figure 9.37: Stop Node

Set animation
This node changes the current animation for the provided mesh but doesn’t
automatically play the specified animation:

Figure 9.38: Set Animation Node

Set position
This node sets the current animation playing on the mesh to the provided time. The
input In Pos defines (in seconds) the point in time to set the current animation to,
and Fire Notifies sets whether any Animation Notifies between the position the
animation is at before and after the node is executed are activated by this node:

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 209

Figure 9.39: Set Position Node

Get position
This node gets the current playback position of the animation of the provided mesh:

Figure 9.40: Get Position Node

Is Playing
This node returns a Boolean stating whether the provided Skeletal Mesh is
animating:

Figure 9.41: Is Playing Node

Play animation
This node changes the current animation for the provided mesh and plays it.
The input Looping sets whether the provided animation will replay after it

210 Game Development with Unreal Engine 5

completes. This node is essentially a combination of the Set Animation and the
Play Nodes:

Figure 9.42: Play Animation Node

Set Play Rate
This node changes the speed that the current animation plays at. A value of one is
standard speed, values lower than one are slower, and values higher than one are
faster:

Figure 9.43: Set Play Rate Node

Get Play Rate
This node returns the speed that the current animation is playing at:

Figure 9.44: Get Play Rate Node

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 211

Set animation mode
This node changes the current animation mode for the provided mesh, which is used
for switching between using singular animation, animation blueprints, and other
user defined animation modes:

Figure 9.45: Set Animation Mode Node

Get animation mode
This node returns the current animation mode for the provided mesh:

Figure 9.46: Set Animation Mode Node

212 Game Development with Unreal Engine 5

Override animation data
This node is a combination of most of the Animation Instance nodes previously
covered. It is used for changing everything except the animation mode of a Mesh
with a single node:

Figure 9.47: Override Animation Data Node

It is better to use the other, more specialized nodes for setting specific parameters
regarding the animation of a mesh, but when it all needs to change at once for
whatever reason, this node is better in terms of performance and readability of your
blueprint.

Animation modes
Skeletal meshes can only be animated by a single source at a time. The different
methods of doing so are referred to as Animation Modes, and they include
Animation Blueprints, Animation Assets and Custom Modes:

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 213

Figure 9.48: Animation Mode

Animation blueprints are specialized blueprints, specifically for providing skeletal
meshes with the capacity for complex logic regarding animation, such as having two
different animations play on different parts for a skeletal mesh, or having specific
animations play under certain conditions. The custom animation mode is for
advanced users who have created their own method for animating skeletal meshes.

Multi-variable type operators
A new feature in UE5 is that basic math operators can now natively handle variables
of different types without the need for extra conversion or specific multi-variable

214 Game Development with Unreal Engine 5

math nodes. In order to make use of this, simply use a math operator and connect
the different variables into the inputs:

Figure 9.49: Multi-Variable Type Operators

Note that only compatible variables can do this, and that the output value will be of
the same type as the variable in the first pin slot.

Conclusion
There are more complicated variables in UE5, which have specialized aspects to
them, making them harder to understand and use, but they can be used to great
effect due to their complex nature. Variables are also capable of becoming more
complex through the use of arrays and maps.

The animation of skeletal meshes can be managed through blueprint through the
use of specialized nodes but can also be managed through Animation Blueprints
when more complicated animation logic is required.

UE5 has made some improvements over its predecessor around basic math, allowing
for easier management of mathematics involving different variable types.

By Next chapter, we learn more about game objects by going through class properties,
settings of tick function, replications setting, and serialization data related to game
objects.

Points to remember
•	 Properly used structures and data tables can make a project much easier to

work on.

Data Processing (Enum, Struct, Map, Data Tables) and Animation Instances 215

•	 Enumerators convert natively to bytes.

•	 Arrays and maps are similar and use some very similar nodes.

•	 Data tables can be exported in and out of UE5.

•	 Structures can contain structures, which are very useful for organization.

•	 Skeletal meshes can only be animated by a single source at a time.

•	 For loops and arrays are frequently used together.

•	 Structures cannot contain a variable of the same struct, preventing infinite
loops.

Multiple choice questions
1. What files can Data Tables be exported as?

a. JSON & CSV
b. .JSON & PNG
c. CSV & FBX
d. JPG & PSD

2. Can you add an entry to an array using the Set Array Element node?
a. Yes
b. No

3. What variable type does the output of a math operator use?
a. Integer
b. The variable type of the first pin
c. Vector

Answers
 1. a

 2. a

 3. b

Questions
1. What is a break node?

216 Game Development with Unreal Engine 5

2. What is an Animation Blueprint?

3. What is an operator?

Key terms
•	 Array: A collection of values in a list

•	 Struct: A collection of variables

•	 Animation: Movement over time

•	 Export: Outputting data from one program to use in another

•	 Pin: The input/output instance of a variable on a node

Game Objects (Advanced) and Serialization 217

Chapter 10
Game Objects

(Advanced) and
Serialization

This chapter will cover the more advanced aspects of game objects, including
more specialized settings for objects and an easy method of interaction between

objects. It will also cover saving data to the system the game is running on for future
usage (serialization), which is important for keeping track of player progress and
their graphical and input settings.

Structure
In this chapter, we will discuss the following topics:

•	 Class defaults

•	 Class settings
o Changing inheritance
o Interfaces (setup, returns, and usage)

•	 Tick settings

•	 Replication settings

•	 Serialization
o Save game objects
o User settings (scalability and input)

218 Game Development with Unreal Engine 5

Objectives
After studying this chapter, you should understand the core settings of game objects
and how to alter them, in addition to being able to save data and alter the engine’s
settings from within the project.

Class defaults
At the top of the blueprint editor, there is a button to open up the default settings of
the currently open blueprint; within this menu are options for changing the default
values for variables within the blueprint, and for changing the values used by its
components:

Figure 10.1: Class Defaults Settings

Game Objects (Advanced) and Serialization 219

Class settings
Next to the class defaults button, there is a button to open the class settings of the
currently open blueprint; within this menu are options for changing the parent class,
managing interfaces, modifying the thumbnail used for the blueprint in the content
browser, changing the blueprint’s metadata, and a couple of construction script
settings:

Figure 10.2: Class settings

220 Game Development with Unreal Engine 5

Changing inheritance
Inheritance can be changed from within the class settings of a blueprint; this allows
you to change the parent of a blueprint, changing its inherited components, variables,
functions, and so on to that of the new parent class:

Figure 10.3: Changing inheritance

Interfaces
An interface is a way to get two objects to interact without requiring a reference to
a specified class (casting), they are incredibly useful for having a single interaction
from one object with numerous reactions from many different objects.

Game Objects (Advanced) and Serialization 221

Setup
In order to use interfaces, they first need to be created; this can be done by right-
clicking in the content browser and selecting the Blueprint Interface option
under the Blueprints category:

Figure 10.4: Creating interface

Once created, interfaces need to be set to be used by each blueprint that needs to use
it. This is done within the interface section of the Class Settings menu.

Returns
Like data tables and enumerators, interfaces have their own editor. Within this
editor, you can add functions to be called through this interface and manage inputs

222 Game Development with Unreal Engine 5

and outputs to be used by it. You can’t add code to interface’s function inside the
interface editor, but this can be done in each blueprint that uses that interface.

Figure 10.5: Interface Editor

Interfaces can contain multiple functions, which can be seen and managed in the
Functions section of the My Blueprint panel within the interface editor, while
the INPUTS and OUTPUTS of the currently selected function are located within the
Details panel, which also contains metadata settings for the function (description,
category, and so on).

Figure 10.6: Interface function inputs and outputs

Usage
In order for interfaces to be utilized by a blueprint, they need to be added to the
list of interfaces used by the blueprint from within the interface section of its Class

Game Objects (Advanced) and Serialization 223

Settings (as seen in Figure 10.7), and then the function(s) desired to be used need to
be defined within the blueprint:

Figure 10.7: Adding an interface to an Actor

After an interface is used by an actor, the functions inside the interface can be
defined within the blueprint. This is done by first implementing the function under
the INTERFACES section of the My Blueprint panel within the blueprint editor, as
shown in Figure 10.8:

Figure 10.8: Implementing interface function

224 Game Development with Unreal Engine 5

Once the function has been implemented, it can be defined, as shown in Figure
10.9. If an interface function has outputs, it will be handled as a function within the
blueprint; if it does not, it will be treated as an event:

Figure 10.9: Defined interface function

After implementing an Interface function, it can be called. This is done by getting
a reference to the object to execute the function and then executing it using a message
node. It is also suggested to make use of a Does Implement Interface node to
avoid errors, which can be seen in Figure 10.10 alongside the message node:

Figure 10.10: Calling interface function

Tick settings
Tick settings can be found under the ACTOR TICK section of a blueprint’s CLASS
DEFAULT settings. These settings directly influence the Tick event covered in Chapter
6, Game Objects and Materials, and when the Actor’s physics are calculated:

Game Objects (Advanced) and Serialization 225

Figure 10.11: Tick Settings

The tick settings are as follows:

•	 Start with Tick Enabled: Sets whether the Actor will be ticking by
default when it is initialized. An Actor’s Tick can be enabled or disabled
during runtime if necessary.

•	 Tick Interval (secs): Sets how long in seconds the actor is to wait
between Ticks. This setting is very useful for optimization, as the Tick Event
can be very performance intensive depending on what the event is used
for, so delaying a tick will ease the load placed on the system, although the
functionality dependent on the tick will not always be completely updated.

•	 Allow Tick Before Begin Play: Allows the actor to tick before it is
initialized and the BeginPlay event is executed.

•	 Tick Even when Paused: Sets whether the Actor will be allowed to continue
ticking when the project is paused, although the tick likely won’t function
properly if it does so, depending on what logic the event is executing.

•	 Allow Tick on Dedicated Server: Sets whether the Actor is allowed to
tick on a server that is not also functioning as a client. This is a multiplayer
setting that should be disabled for actors that are intended to be handled
locally.

226 Game Development with Unreal Engine 5

•	 Tick Group: This setting determines the point during the engine updating
that this object’s tick should execute. This is useful for making sure that the
functionality of the Tick Event on multiple objects interacts properly. For
example, if you have an actor that has Tick functionality depending on
values set in another actor’s Tick, you will want the Tick of the dependent
object to execute after that of the actor setting the value, so the value is always
up to date and valid.

Replication settings
Replication is a multiplayer term that refers to the transmission of data between a
server and clients. A blueprint class’s replication setting (as seen in Figure 10.12) can
be found within its CLASS DEFAULTS:

Figure 10.12: Replication settings

Game Objects (Advanced) and Serialization 227

The replication settings are as follows:

•	 Only Relevant to Owner: Relevancy is whether an object is deemed
capable of influencing or being visible to a client. This setting specifically
sets the object to only be relevant to the owning object, which for a pawn,
would be its controller.

•	 Always Relevant: This sets the object to always be relevant.

•	 Replicate Movement: This sets the object’s positioning and rotation to be
replicated between the server and clients.

•	 Net Load on client: This forced actor to be loaded by clients loading the
level.

•	 Net Use Owner Relevancy: This sets the actor to share relevancy with its
owner.

•	 Replay Rewindable: This sets whether the object will be handled when
using UE5’s replay system.

•	 Replicates: This sets the object to be replicated to clients.

•	 Net Dormancy: A dormant object is one that is capable of being replicated
but is temporarily set not to. This setting allows the user to disable dormancy
entirely, to allow it but disable it by default, make the object always dormant,
and make it partially or initially dormant.

•	 Net Cull Distance Squared: This is the squared value of the distance
away from a client’s viewpoint at which the object will stop being relevant
and replicated.

•	 Net Update Frequency: This sets how many times per second the object’s
replicated data will be updated.

•	 Min Net Update Frequency: This sets how many times per second the
object’s replicated data will be updated if the object’s replicated data is
changed infrequently.

•	 Net Priority: This is the importance of replicating the actor; a higher value
means the object is more likely to be replicated under a stressed network
connection.

•	 Replicated Movement: This is used for fine-tuning the accuracy of the
object’s replicated positioning, rotation, and velocity.

228 Game Development with Unreal Engine 5

Serialization
Serialization is storing data on the user’s device for later usage. In the case of save
game objects, this can be used for storing gameplay data, such as where the player
character is located, what’s in their inventory, their name, and so on. User settings,
such as graphical and input settings, are handled separately by the engine.

Save game objects
In order to make use of save game objects, a Save Game class first needs to be created
and defined. This can be done by selecting Blueprint Class within the context
menu of Content Browser, and then, under All Classes in the menu that is
created, selecting SaveGame as the parent class, as shown in Figure 10.13. The save
game class is used as the template for the save game objects that will be created to
store player data:

Figure 10.13: Creating Save Game Class

Save game classes have their own editor very similar to the structure editor (as
shown in Figure 10.14), in which the data that the save game object will store can be
defined in the form of VARIABLES:

Game Objects (Advanced) and Serialization 229

Figure 10.14: Save Game Class Editor

Once a Save Game class has been created and defined, it is ready to be used. This
is done through blueprint, by creating A Save Game Object, setting the variables
within it, and then saving it to the user device with a specific name and user index.
This can be seen in Figure 10.15:

Figure 10.15: Saving

230 Game Development with Unreal Engine 5

In order to load a previously created Saved Game Object, a variant of the Load
Game from Slot node needs to be used, with an input slot name that matches that
of a previously created Save Game Object. Once this is done, the data from the
Save Game Object can be obtained using a cast node, and then the variables can be
used as needed. This entire process can be seen in Figure 10.16:

Figure 10.16: Loading

User settings
User settings are the user’s graphical and input settings that are stored and used by
the engine. They are handled separately to Save Game Objects. These settings are
accessed using the Get Game User Settings and Get Input Settings nodes
shown in Figure 10.17:

Figure 10.17: User Settings nodes

Scalability
Scalability refers to the visual quality the engine is rendering the project at. This can
be modified in the editor and at runtime through blueprint, with the functionality
usually accessed by the player through UI elements, such as a settings menu. An
example of the texture quality being changed can be seen in Figure 10.18:

Game Objects (Advanced) and Serialization 231

Figure 10.18: Changing Scalability

The value of Scalability settings can also be obtained using the Get Game User
Settings node, as shown in Figure 10.19. This is very useful for altering level
elements based on the current settings the project is operating under, which is, in
turn, incredibly useful for optimizing the project:

Figure 10.19: Getting Scalability

In addition to specific graphics settings, the overall graphical settings of the engine
can be altered via the Set Overall Scalability Level Node, as shown in Figure
10.20:

Figure 10.20: Setting Overall Scalability

Input
Input is how the user interacts with the project; they use an input on their device, be
it a keyboard, mouse or some form of controller, and the engine takes that input and
executes necessary events tied to those inputs, as covered in Chapter 5, Templates and

232 Game Development with Unreal Engine 5

User Interaction. Inputs can have mappings added using the “Add Action Mapping”
Node, as shown in Figure 10.21:

Figure 10.21: Adding Input Mapping

Inputs can also have mappings removed using the Remove Action Mapping node,
as shown in Figure 10.22:

Figure 10.22: Removing Input Mapping

Game Objects (Advanced) and Serialization 233

Conclusion
Developers have a great deal of control over game objects, how they interact, and
how the user interacts with and views the project. You can greatly modify how
objects act by default and over the internet via multiplayer by changing their default
and class settings and can even change the inheritance of an object easily. Most of
these settings are rather advanced and will generally see minimal usage, but in the
niche situations they apply to, it is incredibly useful to be aware of them and their
purpose.

Interfaces are a great way to standardize interaction between objects neatly; they can
be applied to almost any situation. Serialization is important not just for keeping
track of player progress throughout a game but also for input and the visuals of the
project.

By next chapter we learn how to add sound to game, by using a new feature known
as Metasound in Unreal Engine 5. Indeed, we will learn using Niagara to add particle
system to the scene and control it by blueprint code.

Points to remember
•	 Inputs can have multiple mappings.

•	 You can change the overall scalability as well as specific settings.

•	 Interfaces with outputs are treated as functions, and those without are
treated as events.

•	 Objects inherit the functions, variables, events, and components of their
parents.

•	 Ticks can be delayed to improve performance.

•	 Only relevant objects will be replicated.

Multiple choice questions
1. Where are the Tick Settings located?

a. Class Defaults
b. Content Browser
c. Class Settings
d. Interface Editor

234 Game Development with Unreal Engine 5

2. What node is used to get/set scalability settings?
a. Get User Game Settings
b. Get Game User Settings
c. Get Input Settings

3. Is Tick limited when the game is paused?
a. Yes
b. No

Answers
 1. a

 2. B

 3. A

Questions
1. How many mappings can an input have?

2. What is the replay system?

3. What is the User Index of a saved game object?

4. What is culling?

Key terms
•	 UI: User interface

•	 Mapping: A hardware input matched to an input in the project settings

•	 Replication: The transferal of data over multiplayer

Audio and Particles 235

Chapter 11
Audio and

Particles

Unreal Engine 5 uses a flexible VFX system to generate visual effects at runtime
known, as Niagara, which we will go through in this chapter. Niagara has some

default templates that provide a range of basic to complicated visual effects and
are ideal for using as base-effect to make more complicated ones, and prototyping.
A technical artist or VFX developer can use Niagara’s functions and procedure to
generate a flexible particle system and then programmers can use it and render /
trigger it by using game parameters. Like shaders, Niagara system is running on
each frame and can use both CPU and GPU for running the visual effect on screen.

At the same time, the engine has an audio system that provides complete control
over a Digital Signal Processing (DSP) graph for the generation of sound sources.
Audio programmers can customize the audio, reuse sound graph as feedback, import
external audio files, and use a separate editor for sound design and programming.
This sound system is known as MetaSound, and we will cover how to use and
program this system in this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Using Niagara

236 Game Development with Unreal Engine 5

•	 Using audio

o Using MetaSound in blueprint

Objectives
By the end of this chapter, you will have an understanding of how to use Niagara
to create particle systems. We will go through simulating a rain effect and then
connect it to an actor blueprint in the scene. We will also learn how to assign and use
parameters to control a particle system from other objects. Additionally, we will mix
two Niagara particle systems at the end to show how you can simplify them as one.

The next part of the chapter is dedicated to learning MetaSound, which is an Unreal
Engine 5 feature to program and create audio effects in game. MetaSound provides
advanced support compared to older versions of Unreal Engine, to use Wave audio
files and dynamically change them based on user parameters. MetaSound has its
own editor and uses blueprint to generate code like other actors, but the way audio
code works is a bit different. We will go through a simple play and loop sound
functionality and explain different approaches to make it. At the end, you will learn
essential basic skills on how to invoke triggers in MetaSound and make internal
feedback to control the audio.

Keep in mind that both VFX and Audio are huge and expensive topics in game
design and programming with Unreal Engine; you may require more research and
practice in this area. Making sample project of each learning curve is recommended
when you deal with Niagara and MetaSound.

Using Niagara
The Niagara is a particle system generator used by Unreal Engine to create/render
and run VFX effects in game. Each particle system is a program that runs an infinite
loop. Inside this loop, there are a number of tasks/modules that hire CPU and GPU
(graphic card) to calculate and render the particle system’s effect in the game world.
This process is expensive for the engine in cases of memory usage and processing
tasks. Imagine that you have 10 particle systems in the scene; this means you have
10 infinite loops that are running each frame to make all the particle systems up
and running on each frame. This may work fine on a gaming PC machine, but your
application will experience lag and even freeze in mobile phones with weaker graphic
processing units and limited memory for system. There are a number of solutions to
avoid this. User can deactivate particle systems that are not in player’s view which
leads to having less process and memory usage in the background. The engine also
has a mechanism known as Culling which works similar, and it deactivates any
process (like particle system) that are not in player field of view.

Audio and Particles 237

Another method is to combine a couple of effect as one particle system and changing
it by passing its parameters. Also, dynamically deleting or disabling particle system
components that are not in use will help increase performance.

Making Niagara emitter
The first step to establishing a particle system by using Niagara in Unreal Engine 5
is to simply make a Niagara emitter. Follow these steps to do so:

1. Navigate to the blueprint folder in content browser, right-click and click on
Niagara Emitter from the VFX list, as shown in Figure 11.1:

Figure 11.1: Make new Niagara Emitter particle system object in content browser

2. The engine will ask the starting point of the emitter, as shown in Figure 11.2,
select New emitter, and click on the Next button. The starting point of each

238 Game Development with Unreal Engine 5

emitter is designed to use other emitters when the user likes to combine
them or customize previous ones as a new emitter:

Figure 11.2: Pick starting point windows

3. Now, we need to choose a template for the emitter. From the Templates
tab, select the Empty template, as shown in Figure 11.3. The Empty template
contains basic preferences for making a Niagara particle system. The other
tabs are advanced topics, and we will not dig into them in this chapter. Click
on the Finish button and then rename it to NE_01:

Audio and Particles 239

Figure 11.3: List of default templates of Niagara emitter

4. The next step is to customize the Niagara emitter. Double-click on NE_01
Niagara emitter, and the engine will navigate to Niagara editor, as shown
in Figure 11.4. Locate the System Overview tab on top, and you will find
an orange block named NE_01. This block, which is known as Niagara
Overview Node, is responsible to run and render your particle system code
(which is an infinite loop). We will go through a simple setup to simulate
Rain effect by using it. The editor has a Preview tab that renders Niagara

240 Game Development with Unreal Engine 5

Overview Node in real time and is the output of the block. The Selection
tab shows the properties of selected items in Niagara Overview Node:

Figure 11.4: The Niagara editor 1- System Overview tab shows the “Niagara Overview Node” and its
modules and renderers. 2- Selection tab is designed to show properties of each selected item in “Niagara

Overview Node”. 3- The actual “Niagara Overview Node” of “Empty” emitter template in Unreal Engine
5. 4- Preview tan renders the output of “Niagara Overview Node” in real-time.

5. The NE_01 node has a number of main procedures that are executed from
top to down on each frame. Each procedure can run a number of functions
known as Module, Renderer, and Event, which are codes and functions,
designed to provide services, effects, and communications with other game
objects. Let’s begin with Emitter Update procedure, as shown in Figure
11.5. Click on the small circular icon, type spawn, and select the Spawn Rate
module from the list:

Audio and Particles 241

Figure 11.5: First click on “Emitter Update” then: 1- Click on little circular icon. 2- Then immediately
type “spawn”, the engine automatically open and search for the keyword in a drop-down list

of Niagara modules in the engine. 3- Select “Spawn Rate” module

6. The module will be added as the last module on this Emitter Update. Click
on it and then change Spawn Rate to 64, as shown in Figure 11.6. The Preview

242 Game Development with Unreal Engine 5

tab immediately updates with the latest change in Niagara Overview Node.
We customize the total number of a sprite image to 64 by using Spawn Rate:

Figure 11.6: The “Spawn Rate” module will customize number of spawned instances in a
Niagara emitter. In this image, 64 instances of a sprite object are spawned at the same

location, so the preview tab shows a shiny spot.

7. Now, select Particle Spawn and then click on the small circular icon on it;
then, type location and select Shape Location, as shown in Figure 11.7:

Audio and Particles 243

Figure 11.7: Remember the “Niagara Overview Node” executes each module form “Top” to “Down”.
The “Particle Spawn” has numbers of modules to set the location of spawned particle which
are spawned by “Spawn Rate” module on top of them. Click on the little circular icon and

immediately type “location” and select “Sphere location” from the list.

8. Then, the engine will immediately render 64 instances of a sprite image in
a spherical 3D space in Preview tab, as shown in Figure 11.8. The Niagara
particle system first runs Spawn Rate from Emitter Update, which spawn
64 instances of sprite to the scene; then, in the next step, relocate them by
running Shape Location module from Particle Spawn, which results in

244 Game Development with Unreal Engine 5

rendering all sprite images in a spherical 3D coordination that you can see in
the preview tab. Keep in mind that the execution order of modules is from
top to down:

Figure 11.8: A simple Niagara emitter with spherical location in preview tab

9. Now, let’s make it move like rain. There are a number of methods here to
move these sprites. Let’s try gravity force, by following these steps:

a. Click on Particle Update, which has a small circular icon.

b. Type gravity and select the Gravity Force module from the list.

c. Niagara may pop-up an error message, as shown in Figure 11.9.

d. Press Fix issue and the engine will fix the conflict. (This option
works for a majority of the issues on making simple emitters in
Niagara.):

Audio and Particles 245

Figure 11.9: Sometimes when you add a module in Niagara, an error message
comes up. In this example, we like to add Gravity Force module to the NS_01 emitter.

10. After fixing the issue, select the Gravity Force module and check the
Selection tab. The engine automatically assigns -980 on Z-axis as gravity
value, which matches with earth gravity in the real world, and the result is
falling sprites (like snow) in the Preview tab, as shown in Figure 11.10:

Figure 11.10: Falling effect on sprites by using Gravity Force module

246 Game Development with Unreal Engine 5

11. The final step is making this particle system visually similar to actual rain in
nature. Click on and select Initialize Particle from Particle Spawn
and change the Sprite Size property to Non-Uniform and change the value
of X and Y to 4 and 54, as shown in Figure 11.11:

Figure 11.11: Change particle shape to rain’s drop. 1- Select Initialize Particle. 2-Locate Sprite Size
Mode property in Selection tab and change it from “Unset” to “Non-Uniform”. In general, “Non-Uniform
“option allows users to customize values in the selected property. 3- Change dimensions of sprite by using

Sprite Size property. 4- The engine automatically updates the result with your change in Preview tab.

12. Now, select Sphere Location from Particle Spawn and change Sphere
Radius to 512. This way, you can increase the size of the sphere that the
particles are spawned in. The result will look like light rain. Now, change it
to 64 and the result looks different, which we like to use further in a blueprint
actor. Figure 11.12 shows the visual differences of using these values:

Audio and Particles 247

Figure 11.12: Different values on Sphere Radios property which is part of Sphere Location in Particle Spawn

Don’t forget to compile and save your emitter after any change (otherwise, you may
experience unusual behavior in particle, especially when there are large number of
modules involved in making particle).

Making Niagara system
At this level, we just made a simple Niagara emitter to simulate rain effect. To use
this emitter inside game, we will make a Niagara System and add our Niagara
Emitter to it, as shown in Figure 11.13:

248 Game Development with Unreal Engine 5

1. Right-click in the Content browser and select Niagara System from FX:

Figure 11.13: Create Niagara System from FX menu

2. The engine automatically opens a dialog box, as shown in Figure 11.14; select
New system from selected emitter(s) and press Next:

Figure 11.14: Select starting point windows for Niagara System. Like Niagara Emitter,
users are allowed to use previous systems to make custom systems or create new one.

Audio and Particles 249

3. On the next page, first locate and select NE_01 from the Parent Emitters
panel, and then click on the + button, as shown in Figure 11.15. This way, the
engine will add the NE_01 emitter to our Niagara System and will update
it on each frame. Next, click on the Finish button and rename the new
Niagara System as NS_01.

Figure 11.15: To add Niagara Emitter template to Niagara System. 1- Select a Niagara Emitter
template from the list in Parent Emitters panel. 2-Press + button. 3- The name of
template should appear under “Emitters to Add:” title, then press Finish button

4. Double-click on the NS_01 Niagara system and the engine will automatically
open its editor, as shown in Figure 11.16. In the editor, there is the NE_01
Niagara Overview node, which can get activated or deactivated by using
the top-left tick box. Indeed, here we have a new box, which is responsible
for managing dynamic features of this particle system. This box is always

250 Game Development with Unreal Engine 5

active, and you can’t switch it off like the Niagara Overview node. We will
discuss this box, but let’s add this particle system to the stage first:

Figure 11.16: The Niagara System editor; each emitter has a tick box for activation

5. Referring to the previous chapters, make an actor blueprint called BP_01 that
has two collision boxes. Each collision box is parent of a Plane static mesh

Audio and Particles 251

component and a billboard component and is assigned to an overlapped
event, as shown in Figure 11.17:

Figure 11.17: An actor blueprint with 2 collision boxes; each event has assigned for overlapping

252 Game Development with Unreal Engine 5

6. Now, add a Niagara Particle System blueprint component to the root
of your actor, as shown in Figure 11.18, and then assign NS_01 to it. The
component begins to play the particle system in the editor’s Viewport tab:

Figure 11.18: Click on the ADD button and select Niagara Particle
System blueprint component from the drop-down list

Select the component you add, then locate Niagara System Asset property in
Details panel, click on drop down menu and select “NS_01”

7. Now, imagine that we want to switch the location of this particle to collision
boxes (in the BP_01 actor) when we collide with them. For doing this, we
must make a Parameter inside the Niagara System and use it as a location
of our particle system. It sounds complicated, but Unreal Engine makes this
very simple. First, open the NS_01 editor by double-clicking on it and select
Sphere Location in the NE_01 box. As you see in selection tab, this module
has a property known as Sphere Origin, as shown in Figure 11.19. This is
a vector type property and will determine the location in which the Sphere
Location module spawned the emitters:

Audio and Particles 253

Figure 11.19: Click on Sphere Location module in Particle Spawn,
and locate Sphere Origin in the Selection tab

8. We want to access this property from the blueprint BP_01 in game and change
it to control the location of emitter. For making this functionality, we must
make and assign a parameter to this Niagara system and then control it from
the BP_01 actor blueprint. Click on the + button from the User Exposed
dropdown box. Here, we need to make our parameter, so choose a Vector
parameter from the Common category and name it SPLocation. Then, select
Shape Location particle spawn procedure, click on the arrow icon in Shape
Origin, and type convert. Now, select Convert Vector to Position from
the Dynamic Inputs category. This function will add two parameters to your
Shape Origin property. The Input Position property defines the received
vector value to this function, so we need to connect it to our SPLocation
parameterm which is also a vector. To do this, click on the little arrow and
type user; as you see in Figure 11.20, your parameter name will appear in the

254 Game Development with Unreal Engine 5

list, and by selecting it, this user defined parameter will be directly connected
to the Niagara emitter:

Figure 11.20: First step is assigning a parameter to the Niagara emitter.
1- Click on little + icon in User Exposed dropdown list and add a Vector parameter rwith

name SPLocation. 2-Select Shape Location in NS_01 Emitte. 3-Then Locate Shape
Origin property and assign Convert Vector to Position function to it. 4-Finaly, assign

SPLocationas USER pinput to Input Position property.

9. Now, open NS_01, which is a Niagara System component, and click on
User Parameters in the NS_01 node. As Figure 11.21 shows, you will have
your custom parameter, SPLocation, listed here. If you do not have your
parameter listed, you must compile and save your emitter (NE_01), then
compile and save your Niagara System component (NS_01) and then open
them again. If you have a very complex system and emitters, you may need
to restart the editor to find your custom parameters listed in this property:

Audio and Particles 255

Figure 11.21: List of user-defined parameter in NS_01 node

10. The last step is to use the SPLocation parameter inside BP_01 actor blueprint.
Open BP_01 to drag and drop an instance of Niagara particle system
component into event graph. Then, assign the Set Vector Parameter
blueprint function to the Niagara component, and in the Parameter Name
field, add SPLocation, which is the name of the new parameter we just
made. Keep in mind that the parameter name is case sensitive data and must
be the same as what you edit in System Setting in the Niagara system.
Now, assign world location of each collision box to Param field, as shown in
Figure 11.22:

Figure 11.22: Using overlap event for collision box to relocate Niagara particle system.
The particle system uses “SPLocation” parameter to communicate with this actor blueprint.

Keep in mind the parameter’s name is critical data and MUST be the same.

256 Game Development with Unreal Engine 5

Place some BP_01 actors on the scene, run the game, and walk into the collision
boxes. As you see, on each collision, the particle system will relocate to that location.
Now, make another Niagara Emitter called NE_02 from an Empty template, as we
did for NE_01, and follow these steps to customize it:

1. Open NE_02 it and click on Renderer; add Mesh Renderer to it by using the
little circular icon, as shown in Figure 11.23. You can activate and deactivate
each module inside the Niagara Emitter by clicking on its check box, so
deactivate Sprite Renderer:

Figure 11.23: Select Renderer, click on the small circular icon and then select Mesh renderer from the list.

2. The Mesh Renderer renders mesh objects instead of sprite objects for the
emitter, which is more expensive in case of processing, but has its own
visual features. First, we need to assign a mesh to this renderer. Click on
Mesh Renderer, then locate Meshes in the selection tab, press on the little
circular icon there and then add 1M_Cube static mesh to this module. Then,
in the Scale field, change X and Y to .2 and Z to 4, as shown in Figure 11.24.
You can also customize mesh materials in this module. Indeed, turn off the
Sprite Renderer module because we don’t like to render any sprite as we
did for the NS_01 emitter:

Audio and Particles 257

Figure 11.24: First, switch off the Sprite renderer (1) by unticking its module. Then, select the Mesh
Renderer module (2) and from the list of its properties, locate Meshes. From here, choose “1M_Cube” (3) or

any other static mesh there. Now, locate Scale property and change the scale values of x, y and z. (4).

3. Now, like the previous particle, add the Spawn Rate module to Emitter
Update, and set spawn rate property to 64. Then, add the Shape Location
module and set Shape to use Torus, as shown in Figure 11.25, and set its
properties Large Radius to 720 and Handle Radius to 64. This module
spawns the emitter in different shapes:

Figure 11.25: Using Torus on Shape Location module in Particle Spawn will shape a ring of spawned particle

258 Game Development with Unreal Engine 5

4. Now, select the NS_01 Niagara system and open its editor by double-clicking
on it. Right-click inside the System Overview tab, click on Add Emitter and
choose NE_02 from the list, as shown in Figure 11.26:

Figure 11.26: Add new Niagara emitter to Niagara system

5. The engine automatically adds the new emitter to the Niagara system and
will show it on actor, as shown in Figure 11.27. This is how you combine a
number of Niagara emitters with each other as one Niagara System particle
system. Keep in mind to press the Compile and Save buttons after each
update in your particle system objects when you edit them:

Figure 11.27: Each Niagara System can combine and mix Niagara emitter as one particle
system and presents the effect in the scene. In the example actor blueprint,

NS_01 Niagara system, used NE_01 and NE_02 Niagara emitters to perform this VFX effect.

Audio and Particles 259

Using audio
Having audio in any interactive application increases the quality of service that
the application is developed for and satisfies the users when interacting with the
application. Computer games are interactive applications and for some games, having
a detailed and accurate audio in the game is essential. Games like VALORANT or
Counter Strike are totally dependent on audio quality and accuracy when players
experience game play.

The Unreal Engine 5 introduces an advanced method for audio programming,
creates real time audio and processes audio data to develop applications like games.
This audio system is known as MetaSound, and as compared to the previous
versions of the engine, it revolutionized coding style for audio programming. The
audio programmer has a complete list of audio functions and procedures to render
and play audio in game. MetaSound provides audio designers with complete control
over DSP graph generation for sound sources. They can use imported audio files
or create sound in real-time by using internal signal generators of MetaSound to
generate patterns and sequences of sound/music during game play.

There are a huge number of blueprints nodes to design and control DSP graph in real-
time, which came with MetaSound. Audio designers and programmers can make
a range of variable data types like integer, float, bool, and triggers as parameters
inside the audio code. They can also make single or array of variables to save values
or objects (like sounds) and monitor data inside MetaSound object during runtime.
Here is a Print Log node that is extremely new and provides many useful features.

To import audio files into the engine, render your audio files in wave format .wav
and then simply drag and drop them from your windows browser to content browser
in engine. The engine automatically addresses the new audio asset, and you can use
it anywhere in the code.

Making MetaSound
The MetaSound is a plugin that sometimes is not activated by default, so you need
to activate MetaSound in Plugins and after restarting the engine, the MetaSound
will be available for development. Then, similar to Niagara, create an audio system
and assign variables and events to control it. Here are the steps to learn the details
of this process:

260 Game Development with Unreal Engine 5

1. Click on Settings, located on top-right of main editor, and then click on
Plugins in the drop-down menu, as shown in Figure 11.28. The engine will
automatically open the Plugins window.

Figure 11.28: In the main editor, click on “Settings” and then select on Plugins

2. Locate Audio in the left bar of the plugin window and click on it; then, on
the right, find the MetaSound plugin and click on Enable on its checkbox.
The engine will open a message to confirm your selection, as shown in Figure
11.29. Click on Yes, and then restart your project:

Audio and Particles 261

Figure 11.29: To activate the MetaSound plugin, click on Audio category from left panel
(1) and then find MetaSound and click on Enable (2). The engine will

ask your confirmation from a Message window, click” Yes” button (3) and then click on
“Restart Now” button (4). You must restart your project to acticate MetaSound.

3. Now, inside content browser, right-click, and click on the Sounds category
and select MetaSound Source from the blueprint list, as shown in Figure

262 Game Development with Unreal Engine 5

11.30. The engine will make an instance of MetaSound and place it in content
browser. Rename it to MS_01 and then double-click on it to open its editor:

Figure 11.30: “MetaSound Source” blueprint object is located in Sounds category

4. The MetaSound editor is designed for audio programming in Unreal
Engine 5. As you can see in Figure 11.31, there are three default nodes in the
MetaSound editor known as Triggers. These nodes are listed in the left panels
and are responsible to activate input and send output through MetaSound
object to the game scene during runtime. To understand how these triggers
operate, let’s add a sound and play it. Right-click and type wave and then
select Wave Player (Mono) from the list, as shown in Figure 11.31:

Audio and Particles 263

Figure 11.31: The “MS_01” MetaSound object blueprint editor. For playing a wave sound,
right click and type “wave” (1) and then slelect “WavePlayer(Mono)” from list (2).

5. The engine will add the Wave Player(Mono) blueprint block to the editor,
which is responsible to play an audio file as mono. As you see there is a
list of wave players, which provide different audio outputs, but for now we
use mono output. Click on the Wave Asset option and choose an audio
file (in this example, we use Click_On_Button sound wave asset, which is
an engine default sound asset), as shown in Figure 11.32. Then, click on the
OnPlay output pin in Input trigger and connect its execution line to Play pin
in WavePlayer. Also, do the same for OutMono audio output in WavePlayer
and connect it to the Out Mono pin in the Output trigger. The Output trigger

264 Game Development with Unreal Engine 5

will send the audio to the scene. Finally, press Play on top and the sound
will play:

Figure 11.32: First select an audio asset to play in Wave Player by setting “Wave Asset”
property (1) (2), then click and drag execution line from OnPlay pin in Input node and

connect it to Play pin in WavePlayer node. (4) Do the same for OutMonot and OnFinished pins.

6. Now, let’s attach this MetaSound object to a blueprint actor and play the
sound on box collisions. Make a new actor blueprint with a collision box
and call it BP_item_01. First bind events for box collision components in
blueprint editor and then add an Audio blueprint component to this actor.
Now select it, and locate Sound property in the Details panel and assign the
MS_01 MetaSound object to it, as shown in Figure 11.33:

Figure 11.33: Select Audio component and assign “MS_01” MetaSound object
for its Sound property (1), also bind collision events for box component(2).

Audio and Particles 265

7. Next, drag and drop the Audio component to the event graph and assign
Play blueprint node to it, as shown in Figure 11.34:

Figure 11.34: Drag and drop Audio component to the event graph and
assign Play node to it from blueprint function list

8. Assign Play from Audio to both collision event of collision box, as shown in
Figure 11.35. Press Compile and test the game. You must hear the “Click_
On_Button” sound on each collision with the box during runtime:

Figure 11.35: Add play node to Audio component for box collision event.

266 Game Development with Unreal Engine 5

So far, we learn how to play a sound asset by using audio component and
events in an actor. What if we need to loop the sound or in other word,
“repeat” the sound?

For this functionality, open MS_01 and check the Loop property in WavePlayer,
as shown in Figure 11.36. When you run the game, the audio is repeated:

Figure 11.36: Check “Loop” check box in WavePlayer box to for looping the sound

9. Now, imagine that we like to play the audio on loop when a player
collides with box collision and stop the audio when a player leaves
the box collision. There are a couple of ways to do this, and one of them
is to assign custom triggers in the MetaSound object and switch the
sound by using them from actor blueprint. “custom triggers” behave like
events in actor blueprint but they are designed for MetaSound control.
Open MS_01, click on the circular icon (with a plus sign inside) in the
Inputs section located in the MetaSound panel. The engine will make a new
input variable and show its properties in Details panel. Change its name
to PlayMySound and its Type to Trigger, as shown in Figure 11.37. Make
another input trigger and rename it to StopMySound. Now we made 2 input
triggers to play and stop our sound.:

Audio and Particles 267

Figure 11.37: 1- Click on the circular icon (1) and add new input variable.
Then change its name (2) and select “Trigger” for its “Type” property (3).

10. These input triggers will help us control the audio from blueprint. Drag and
drop new triggers to the editor and connect them to Play and Stop pins of

268 Game Development with Unreal Engine 5

WavePlayer as you can see in Figure 11.38. Also disconnect On Finished pin
from WavePlayer:

Figure 11.38: Add Input triggers to the audio code

11. Now, we need to use these input triggers in BP_item_01 blueprint actor.
Open it remove the play function for the Audio component. Now, assign the
Execute Trigger Parameters blueprint node to each Audio component.
This blueprint node works like as an interface between the MetaSound object
and your actor objects. You can access to parameters inside the MetaSound
object by using In Name property. Be very careful, the In Name property is case
sensitive, so you must put “exact” parameter names there. In this example,
we have PlayMySound and StopMySound as input names of our triggers. Put
these names inside the In Name property, as shown in Figure 11.39. After you
run game, the sound will be switched based on collision box events:

Figure 11.39: Sending parameter to MetaSound objects. Keep in mind the
parameter name must be the same as MetaSound parameters

Audio and Particles 269

12. Now, let’s increase our knowledge by making this functionality with a
different approach. Open MetaSound, make new trigger called SetMyLoop
and set its Type as Bool. Then, add this trigger to the editor and connect
it to the Loop pin in Wave Player, as shown in Figure 11.40. This way, we
can directly change the loop functionality for wave player, so we don’t need
StopMySound anymore and can unpin it from Stop pin on WavePlayer:

Figure 11.40: Make new input trigger as “LoopCheck” and set its Type to bool. Drag and drop it
to the editor and connect it to Loop pin on WavePlayer. Finaly, unpin the StopMySound trigger.

13. Open BP_item_01 again and assign Set Boolean Parameter blueprint
node to the Audio component. This blueprint node will give you access to
SetMyLoop bool parameter inside the MT_01 metasound object. Again, the
In Name property is case sensitive, so you must put “exact” parameter names

270 Game Development with Unreal Engine 5

there. Also, call PlayMySound trigger after switch on the loop as shown in
Figure 11.41.

Figure 11.41: To access SetMyLoop bool parameter, click and add “Set Boolean
Parameter” node and use exact name of bool parameter in the “InName” field.

14. Now, let’s add a delay to this looping sound. Open MS_01 and unpin Loop and
set it to false in WavePlayer, then and add the Trigger Delay node to the On
Play pin in WavePlayer, as shown in Figure 11.42. This trigger gets activated
(triggered) when the WavePlayer playing sound and generate delay in second
based on an integer value in Delay Time field. But there is one problem here;
how play the sound “again” to make this delayed loop working?

Figure 11.42: Add the Trigger Delay node to the On Play trigger pin and set Loop pin to false.

Audio and Particles 271

15. MetaSound has patterns for coding audio loops. One of these patterns is
implement “feedback” inside the audio code. You can create a variable and
use it like a trigger anywhere in the code (similar to events in actor blueprint).
For solving our problem here, we need to activate the Play pin in WavePlayer
again. Click and drag a line from Out pin of Trigger Delay node and select
Promote To Graph Variable option from the list, as shown in Figure 11.43:

Figure 11.43: Click and drag from “Out” pin in “Trigger Delay”
node (1) and select “Promote to Graph Variable” from the list (2).

16. The metasound will automatically create a variable and add it to VARIABLES
panel. Click on it and rename it to Out_01 as shown in Figure 11.44:

Figure 11.44: Click on new variable and rename it to “Out_01”.

272 Game Development with Unreal Engine 5

17. Now, we need to use Out_01 as a trigger on Play pin in WavePlayer, in order
to repeat the sound. By using Trigger Any node, you can grab multiple
triggers as input and activate an output trigger if any of them get triggered.
As image Fig 11:45 shows, we add Trigger Any (2) node and connect our
PlayMySound trigger to it as first input. Now anytime PlayMySound get
triggered, the sound will be played.

Figure 11.45: Click on new variable and rename it to “Out_01”.

18. At this stage we already address PlayMySound trigger, and we need to add
another trigger to Trigger Any (2) node in order to make the feedback
working, and play the loop. We can use Out_01 variable as a trigger.
As you see in Fig 11:46, drag and drop Out_01 variable in to the editor has
numbers of extra options. Normal drag and drop makes a default reference
to variable. Using Alt on keyboard will create a reference to delayed version
of variable (which we will use). By holding Shift on keyboard and drag,
we can “set” the trigger and is available only once per variable. By holding
Ctrl on keyboard and drag, the editor will highlight all instances of that
variable in the editor which is handy to find them in complex graph of code.
We need to use delayed version of variable because this version will
automatically be triggered by engine “after” very small delay. As you see,
there is a clock like icon over delayed variable to make them separate from
default ones.

Audio and Particles 273

Figure 11.46: Drag and drop the variable in the editor(1) by default creates a referenced to variable (2), but, if
hold Alt key on keyboard and drag and drop to editor (3), then we have a reference to delayed variable.

19. Now run the game and the sound should be heard as loop with 1 second delay.
To stop the sound after player, leave collision box, we can use SetMyLoop
bool value with a compare node.

Right click in the editor and type “trigger compare”. The editor will give you
3 types of compare node for bool, float and int32 variables. We can use bool
node for checking SetMyLoop trigger, so select Trigger Compare (Bool)
node. This node has two input pin as A and B, and this node compare these
two and trigger True and False output triggers as result. So as Fig 11.47
shows, we set pin A to true, and compare it with trigger SetMyLoop which is
connected to pin B.

Figure 11.47: Right click in the editor and type “trigger compare
”(1). Then add “Trigger Compare(Bool)” and connect “SetMyLoop”

bool trigger to pin “B” on it (2) and set “A” pin to true (3).

274 Game Development with Unreal Engine 5

20. After running the game, when SetMyLoop is equal to true, the True output
pin will be triggered and we have a looped sound. But in case if it is false, the
compare node will activate the False trigger output and as previous image
shows, it is not connected to any other node, so in result the looping sound
will stop playing.

Like actor blueprint, we have a node in metasound editor to print debug
message in output log panel in main editor. Actor blueprints use Print
String node, and metasound use Print Log node to print debug messages.
This node has an input trigger to activate it, an input string text field
known as Label to add extra note, and another input pin known as Value
To Log which depends on type can be bool, float, int32 or string. Fig 11.48
demonstrates using Print Log(Bool) to print value of SetMyLoop on each
loop.

Figure 11.48: Right click in editor and type print and then choose
“PringLog(Bool)”and connect it to “Out_01” trigger and “SetMyLoop” bool trigger.

Audio and Particles 275

21. You can check the output of Print Log(Bool) in the editor in output log
panel as shown in Fig 11.49 by running the game and interact with BP_
item_01 collision box.

Figure 11.49: Printing log notes in “Output Log” panel in
main editor with values from metasound object at runtime.

There are more details about setting and coding patterns in MetaSound, which meet
much dedicated book to this topic. At this stage, we have learned how to create
MetaSound object, play an audio asset by using it, make triggers and parameters
inside it, and use them to communicate with blueprint actors. Also, we have learned
how to invoke triggers inside the MetaSound object by using delayed variable and
derive logical procedures based on bool triggers. These are basic skills that will
help you to research and practice more about MetaSound coding patterns in Unreal
Engine 5.

Conclusion
The harmony between visual effects and sound is always a memorable feature of
any game. It doesn’t matter if the game is simple or belongs to a franchise. We went
through the basics of Niagara, which provides powerful tools to generate and address
a complex particle system inside game scene. We learned how to make parameters
to control Niagara System and mix emitters to make complex visual effects. At the
end, we went through MetaSound, which a unique feature of Unreal Engine 5. We
learned how to generate and control sound effects inside the game scene at runtime
by learning the basics of audio programming and practice different approaches.

Both Niagara and MetaSounds looks complex environment, but since we know the
basics, the rest is research and development by making sample projects.

In the next chapter, we will learn about packaging and learn how to make the final
product for target platforms like PC and Android. There, you can test and compare
the quality of your sample projects on PC and phone device and make it more
professional.

276 Game Development with Unreal Engine 5

Points to remember
•	 Use the .wav format for audio files before import to engine as audio asset.

•	 Having complex static mesh or expensive material for static mesh when
using Niagara Render is risky. You may need to research on how to optimize
your mesh render cost or in case of material, simplify your shader code as
much as you can.

•	 MetaSound sometimes works unusually. The best way to fix this issue is by
closing its editor, pressing Save All in content browser and then open it
again.

•	 MetaSound comes with numbers of audio-rate generators: Saw, Sine,
Square, and Triangle, as shown in Figure 11.50 are classic examples. Each
of these nodes supports controlling their frequency and modulating that
frequency at audio rate (for FM synthesis). You can check other generators in
“Function>Generators” from drop down blueprint node list in editor.

Figure 11.50: Classic audio-rate generators in MetaSound: Saw, Sine, Square, and Triangle.
You can find more generators in “Function>Generators” after right click in editor.

Audio and Particles 277

Multiple choice questions
1. Why do we use Niagara System in Unreal Engine?

a. To add Niagara Emitters and control them by parameters
b. To make a particle system
c. Implement real-time visual effects in game scene
d. Options a, b and c are correct

2. Which of the following sentences about Trigger in MetaSound is correct?
a. It works like event in actor blueprints.
b. It handles receiving parameters of various data type from other

objects.
c. It has series of special nodes to select, combine, compare, etc. in case

of using numbers of triggers together.
d. Options a, b, c are correct.

Answers
 1. d

 2. d

Questions
1. What are your own system limitations (home or office) when you work with

Niagara?

2. Why does Niagara Emitter’s Render sometime not show any visual output in
the Preview panel?

3. Some external audio cards provide a wider range of audio tools for creating
and processing real-time sound. How can this help MetaSound to provide
complex real-time audio experience with Unreal Engine 5 when you make
sound by using pure audio-rate generators?

4. What is the difference between Send and Receiver when we use Triggers in
MetaSound object?

Key terms
•	 Niagara - Niagara is Unreal Engine’s VFX system to design and develop

particle systems in application.

278 Game Development with Unreal Engine 5

•	 Renderer – Rendering any visual effect from Niagara is the function of
Renderer.

•	 Emitter - Niagara emitters are basically like a containers for other Niagara
modules.

•	 Modules - Niagara modules are the base level of Niagara VFX which present
unique behavior and visualizations.

•	 User parameter - An abstraction of data in a Niagara simulation which is
defined by user.

•	 MetaSound – Unique feature in Unreal Engine 5 to design and develop high-
performance audio system that provides audio designers with complete
control over a Digital Signal Processing (DSP) graph for the generation of
sound sources.

•	 Trigger – Trigger is a pin or series of pins on MetaSound`s blueprint blocks
to receive and send data or execution lines.

•	 Set Boolean Parameter: Set a Boolean value in MetaSound by using its name.

•	 Execute Trigger Parameter: Activate a trigger in MetaSound by using its
name.

•	 Delayed Variable: In MetaSound, developers can use a variable as a trigger.
When they get triggered, the engine automatically trigger them as default
and as a delayed version. The delayed version will triggered after a small
value of time.

Packaging 279

Chapter 12
Packaging

Each game engine has its own procedures and options to release a Built version of
the project. The Built version of a project is an executable standalone application

that users can run on their platform and observe its functionalities and interact with
it during runtime. In Unreal Engine, the process of making and releasing the built
version is known as Packaging. The engine will go through several processes that are
customizable by the user to compile the source code, involve game assets, and make
the executable version of the project at the end.

Structure
In this chapter, we will discuss the following topics:

•	 Platforms and licensing

•	 Plugins (Engine and Project Level)

Objectives
In this chapter, we will learn how to build and release a playable standalone game.
We will learn the packaging method, review options and windows related to this
process, and point out Android built and plugins options in project setting related
to this topic.

280 Game Development with Unreal Engine 5

Platforms and licensing
Platform in computer science is a digital environment that provides resources to
run a software/app compatible with that platform. Each platform has its own
features: some can provide cloud processing tools for the applications, some use
virtual machine technologies to execute applications independently from local
machines and some totally depend on it. For example, Microsoft Windows operating
system family provide a platform for PC computers in which developers can create
application and software and execute them by using Windows tools and resources on
PC machines. Example of these applications are games, word processing, network
management applications, graphic software, and so on.

Unreal Engine 5 supports a number of platforms to develop and run applications.
As Figure 12.1 shows, by clicking on the vertical three-dots icon to the right of the
Play button in the main editor, you will have access to a drop-down list of available
platforms that you can run a preview of your game on.

By default, the engine has these options to preview game, which is listed in MODES
of drop-down list:

•	 Selected Viewport: The engine runs game inside the editor. By default,
the mouse cursor will disappear, and the keyboard/controller is active in
the game. You can hold shift and press F1 to release control of mouse and
keyboard while the game is running.

•	 Mobile preview (version & type): Mobile devices have less processing power
and graphic qualities than a normal PC. When you have heavy shaders or
complex assets and want to check the quality for example in a mobile phone,
the engine allows to run a mobile rendered playable preview of game in
separate windows when you click on this option.

•	 New Editor Windows: Instead of running the game inside the main editor,
you can run it in a separate window by choosing this option.

•	 VR Preview: In case of having a VR headset connected to your machine, the
engine will preview the game inside the VR headset. Keep in mind this is
just a preview, and in order to have a real VR game, you have to make your
project from a VR template (refer to chapter # engines template) or develop
a new one from scratch.

•	 Standalone Game: The engine run one standard preview of game, based on
your local machine features in separate window.

•	 Simulate: When the engine previews the game in Simulate mode, the game
is running and all game objects receive tick event at runtime, but the user
interaction with game mouse and keyboard will not be taken into account.

Packaging 281

So, the user can click on each object and check its blueprint and monitor the
execution line, variables, events, and so on inside the selected blueprint. At
the same time, user is not allowed to edit any blueprint code because all event
graphs are disabled. This is extremely important for debugging projects at
runtime, and it’s highly recommended to be skillful on using Simulate mode
when you develop a serious project with Unreal Engine.

Now, let’s see these Play options in the editor, as shown in Figure 12.1:

Figure 12.1: Click on the vertical three-dots icon to the right of the Play button to expand play options

Let’s get back to the Platform topic at the beginning. As you see, by using different
Play options, the engine can preview and run the game/application in different
platforms, but how can a PC machine run other platform previews? The answer is
hidden in a toolkit known as Software Development Kit (SDK). The SDK is a set of
digital tools mostly designed and published by platform manufacturers. For example,
this SDK can provide services and support for making applications with Android,
which is a public platform, for a number of mobile phones, VR headsets, and tablets.
In order to develop/create a new application that can run with an Android platform,
developers need to use Android SDK on their machine. The Android SDK adds a
series of codes and libraries to support development and debug on local machine.
This sounds pretty complex, but we don’t need to be worried, since the engine has
methods to grab SDKs and use them for target platform. Follow these steps to do
that:

282 Game Development with Unreal Engine 5

1. Click on Platform Icon in main editor, as shown in Figure 12.2. The drop-
down list shows a number of platforms and by default, your machine is
listed and is available to launch and run the game:

Figure 12.2: Platforms drop-down menu

2. By clicking on the Project Launcher in the Platforms drop-down menu,
the engine will automatically open project launcher windows. Here, users
can assign projects to different platforms for testing, cook, debugging, and
releasing shipping version.

Packaging 283

3. As Figure 12.3 shows, the project launcher has two main panels. The top one
shows the available platforms, and by pressing Advanced, you can see the
details of the device where you want to deploy project builds. The bottom
panel with title Custom Launch Profiles is designed to customize project
built. Users can select default engine profiles by clicking on the small arrow
or add new profile and customize it by clicking on the + icon:

Figure 12.3: Click on Advanced button (1), then to assign engine’s default launch profile click on the little
arrow (2). Also, by pressing “+” icon (3), you can make a custom launch profile.

284 Game Development with Unreal Engine 5

4. When the user clicks on the + icon, the engine opens a new profile page,
and we can customize the Build, Package, Archive, Deploy and Launch
properties of the project, as shown in Figure 12.4:

Figure 12.4: Custom launch profile screen

5. Click on Device Manager in the Platform drop-down menu, and the engine
will open device manager window. By default, users have at least one device
listed there (the machine who runs the engine). Click on the default device in
Device Manager, as shown in Figure 12.5, and the engine automatically show
details of that device plus a list of running processes that can be terminated
by the user:

Packaging 285

Figure 12.5: Device Manager windows with list of devices (1), properties related selected platform (2),
running processes related to it (3), and “Terminate Process” button (4) for terminating a process

6. Click on Supported Platform, and the engine will open Project Setting
(which is also available from Edit menu in main editor) and shows a list of
available platforms for the project, as shown in Figure 12.6.

For example, if your game/application is made for only PC users, it is
recommended to untick other platforms here and leave Windows ticked
to simplify the packaging process. Now, refer to the topic Platform at the
beginning of this section; you can see that there are a number of platforms
that Unreal Engine 5 is able to support to make an interactive application.
Android is one of most important platforms in this list, which, as we
mentioned before, is used in a number of digital smart devices. Locate the

286 Game Development with Unreal Engine 5

Platforms title on the left side of the Project Setting window, as shown
in Figure 12.6:

Figure 12.6: 1- Supported Platform list in Project Settings windows
2- Android SDK properties in Platforms

7. Now, click on Android and, as shown in Figure 12.7, there is a list of properties
to customize the Android release of application. The first buttons you must
click on are the Configure Now buttons, after which the engine will set the
project for releasing in Android at background. The next one is Accept SDK
License, which is grayed out by default:

Packaging 287

Figure 12.7: Click on the “Configure Now” button to apply Android configuration to your project

8. To activate this button, we need to do licensing first. Licensing is an
agreement between SDK provider and users who like to use the SDK and
develop applications with it. or like to download and use the application
developed with that SDK.

For example, when an application checks the licensing status with Google,
their servers use a key that is uniquely associated with the application to
support user and developers.

9. To use Android SDK, you must click on Android SDK, as shown in Figure
12.8, and then address the necessary resources from local drive. Then, switch

288 Game Development with Unreal Engine 5

back to the Android section, as shown in Figure 12.8, and click on Accept
SDK License:

Figure 12.8: Android SDK configuration

Plugins
Plugins are collections of data and code that users can easily enable or disable
within the Editor on a per-project basis. They can modify built-in engine features
(like MetaSound explained in Chapter 11, Audio and Particles), simplify and address
complex instructions, create new file types, and add new menus or tool bar to editor
to serve special order and more. You can get plugins from Marketplace or develop
one by yourself. As Figure 12.9 shows, clicking on Settings and then on Plugins
will make the engine open the Plugins window. Indeed, you can open this window
from the Edit menu in editor:

Packaging 289

Figure 12.9: Open Plugins from Setting icon

The Plugins window shows a list of Installed and Built-In plugins, as shown
in Figure 12.10; a user can switch them by clicking on the Enabled tick box. After each
switch, you must save and restart your project to activate or deactivate the plugin:

Figure 12.10: Plugins window

290 Game Development with Unreal Engine 5

In Unreal Engine, there are two types of plugins:

•	 The first one runs inside the engine and adds new functionality to it or
improves existing ones, like the Steam VR plugin, which is designed to
support Steam API communication with VR application.

•	 The second type are used with game and are mostly designed to add new
contents or simplify existing processes, depending on the scenario. For
example, imagine you have to monitor the health bar for huge number of
units inside a strategy game to use by tester team.

An example for first type is making a plugin to support new hardware like new VR
headsets, new streaming data protocol, import and export data at runtime, using
live cameras, etc. These plugins are designed to support communications between
the engine and other data source which can be vital for the game or application
developed by the Unreal Engine.

Example of second type can be creating a plugin to simplify the translucent materials
using with static meshes in the scene. This plugin can increase the performance on
devices like mobile phones which can’t handle transparent material by their graphic
card. So, it`s obvious that this plugin will be active in game and also in final version
because it adds new functionality and increased performance of game. Another
example of second type is developed a plugin that is designed to automatically get
the date from game objects and show them with a UI inside the game. This plugin
will be useful for tester, and it will also accelerate the testing process. This plugin is
not necessary for game play and will be disabled in final version.

To make a new plugin, press New Plugin from the Plugins window; then, from
the New Plugin window, as shown in Figure 12.11, you can customize your plugin.
Plugin configuration files should be placed using the same convention as other
configuration files:

•	 Engine plugins: [PluginName]/Config/Base[PluginName].ini

•	 Game plugins: [PluginName]/Config/Default[PluginName].ini

Each plugin needs an icon to display in the Editor’s Plugin Browser. The image
should be a 128x128 .png file called Icon128.png and should be kept in the Plugin’s
/Resources/ directory. You can share or sell your plugins inside Marketplace as
well:

Packaging 291

Figure 12.11: Making new plugin by clicking on the New Plugin button

Conclusion
In this chapter, we learned that Unreal Engine can support multiple platforms for
developing game and applications. The engine will use platform SDKs as source and
then adapt the packaging process based on the SDKs properties. The Device Manager
and Project Launcher are useful tools to monitor and customize each platform’s
features. Also, users can customize SDK properties from Project Setting.

Now, it’s time to sit and plan for a sample project or prototype for your portfolio.
We know how to use the engine templates, customize them by creating new game
objects, materials, and particle system, and then make them interactive and then
establish a harmony of connected objects based on a Events, Interface and Enums.
We also learned animation code and complex data processing with Unreal Engine.

It’s time to make a plan and a schedule, and use Unreal Engine 5 to develop and
build your own experience in the gaming industry.

292 Game Development with Unreal Engine 5

Points to remember
•	 Disable unnecessary platform from final built sometimes slightly decreases

built file size.

•	 Some plugins are not free or need special hardware on target machines.
Sometimes, you may need to ask developers to program some code to
support it. For example, automatically disable high-quality rendering by
code because the platform graphic card is very low. At the end, you must
make sure the final built can run for each target platform independently.

•	 Double-check local addresses of save and load of your data and projects
files. Sometimes, missing path is a source of catastrophic crash in the release
version.

Multiple choice question
1. VR Preview in Play options is responsible for __________.

a. Converting an existing application to a virtual reality application
b. Changing Project Setting automatically
c. Previewing the game inside the headset by using current SDKs when

the VR headset is connected to user`s local machine
d. Simulating a standalone mobile phone application

Answer
 1. c

Questions
1. What is the right setting for Android SDK?

2. How can you use Android Studio to install the latest version of Android
SDK?

3. Which types of plugins are expensive to get enabled, in case of using graphic
and processing resources from system?

Key terms
•	 Device manager - The Device Manager is an editor tool that allows monitoring

connected devices to engine and running processes, with abilities to switch
them on/off.

Packaging 293

•	 SDK – The SDK is stands for “software development kit” (also known as,
devkit), and it is a set of software-building tools and libraries for a specific
platform, including the built, framework, debuggers and libraries specific to
an operating system.

•	 Android - Android is an operating system (OS) which mostly used for handle
inputs and running applications on mobile devices, tablets, and headsets.

•	 Play modes - Unreal Editor allows users to instantly play preview and debug
game from within the editor without waiting for files to save. Users can play
preview in the actual editor as default output for play mode, or different
outputs by switching play mode.

•	 Project launcher - The Project Launcher is an editor tool, used to make and
release builds of projects to specified platforms.

•	 Plugins - Plugins are switchable collections of code and data, that can add
runtime gameplay functionality, modify built-in Engine features (or add
new ones), create new file types, and extend the capabilities of the Editor
with new menus, tool bar commands, and sub-modes.

294 Game Development with Unreal Engine 5

Appendix 295

Appendix

The user input system in Unreal Engine works like an interface that receives user
input from the input device like keyboard, mouse, VR controller, so on, and

dispatch events by sending values to the code developed by users. This system is
updated by Epic Game to a totally new approach with much more complexity and
enhancements. The new input system, known as Enhanced Input is introduced
with Unreal Engine 5.1. You can access its properties from Project Setting panel
as shown in Figure Appendix.1:

Figure Appendix.1: Properties of “Enhanced Input” in project setting panel

296 Game Development with Unreal Engine 5

At the same time, the old input system is currently functional with Unreal Engine 5,
5.1, and 4. You can check Chapter 5, Project Templates and User Interaction for details
about its implementation. The old input system is functional in all mentioned
versions, and developers can implement input procedures by using it.

Structure
In this appendix, we will discuss the following topics:

▪ Overview of using Enhanced Input
▪ Use correct Value Type
▪ Implement user interaction in Blueprint

Overview of using Enhanced Input
Users have variety of controllers for playing game or communicating with an Unreal
Engine application. Each controller’s input is basically a key or volume, which sends
data to the target machine (like PC, VR or Xbox). For example, W, A, S, and D keys
on keyboard are mostly used for movement action of player character. The mouse
click simulates the shooting action in many games.

To implement an action, the engine provides an object known as Input Action which
is located in the Input section of blueprint menu as shown in Figure Appendix.2:

Figure Appendix.2: Locate Input Action object from Input in blueprint menu

Appendix 297

The Input Action object represents the title and the value of an interactive input to
the engine. The engine will convert this object to an event, with some values involved
with it. Then, the user can grab and use these objects to activate procedures inside
game like shooting or movement, and so on. It looks straight forward but, having
an input action object is not enough. We need another object to map or assign these
actions to the actual key and volumes on the user`s controller.

For doing this, we need to use another object called Input Mapping Context which
is located at the same location of Input Action as Figure Appendix.3 shows:

Figure Appendix.3: Input Mapping Context in blueprint menu.

298 Game Development with Unreal Engine 5

This object is responsible to use Input Action objects and assign the actual keys/
volumes of controller to it from a list of default controllers provides by engine as
default.

To get better understanding of relation between these objects, let us check the
current input system in a third person template project. Make a project from third
person template and from content browser, locate Input folder, and double click on
IMC_Default object which is an Input Mapping Context object as shown in Figure
Appendix.4:

Figure Appendix.4: IMC_Default in Input folder.

Then, the engine will automatically open the Details panel of this object as shown
in Figure Appendix.5. As you see in the following figure, we have three input actions
here by name IA_Jump, IA_Move, and IA_Look in Mappings dropdown panel.
Each input action is assigned to a series of keys and volumes on keyboard, mouse,
controller, and touch device which are basically the input devices for the third person
template project by default. (Other template may have different mappings.) You can

Appendix 299

customize these input keys/volumes for each input action, remove them and even
assign additional input keys/volume to mapping lists.

Figure Appendix.5: 1- The Input Action object dropdown list.
2. Keys and volumes from listed devices. 3. Add or remove keys and volumes.

Now, let us see where these input actions (IA_Jump, IA_Move and IA_Look) came
from. As the preceding figure shows, the IMC_Default object has three input actions
which are made by Input Action object, located in Actions folder, inside Input
folder in Content Browser as shown in Figure Appendix.6. You can create a new Input
Action object here and then assign a key or volume of the listed controllers to it inside

300 Game Development with Unreal Engine 5

IMC_Default | Input Mapping Context object to expand the user interactions
with this project.

Figure Appendix.6: Three input action object inside “Actions” folder.

Using correct Value Type
The Value Type is a data which passes from input action object to input mapping
context object, on each user interaction with controller. To understand the
functionality of Value Type we will check the blueprint implementation of IA_Jump
and IA_Move input action objects.

Double click on IA_Jump and IA_Move and the engine will open the Details panels
of each. As you see the IA_Jump input action use a value type of “Digital(bool)” but
the IA_Move uses Axis2D(Vector2D) as value type as shown in Figure Appendix.7:

Figure Appendix.7: “IA_Jump” and “IA_Move”details panel

Appendix 301

By selecting Digital(bool) as value type, the engine will generate a Boolean value
of true or false on each interaction with input action object. For example, if you map a
mouse button to it, on each click, it will send true to the engine and when you release
the click, it will send false.

Now open BP_ThirdPersonCharacter blueprint and locate IA_Jump event as
shown in Figure Appendix.8. As you can see, the IA_Jump event activates two
functions which perform jump and stop jumping procedures. The IA_Jump object
uses a Value Type as Digital(bool) as shown in Figure Appendix.7. In the blueprint
code, IA_Jump object (which is implemented as an event), will provide a Boolean
output named Action Value on each interaction by user. We add another IA_Jump
event by right click in event graph and type IA_Jump, and then print out the Action
Value on the screen from this event as shown in the following figure:

Figure Appendix.8: 1. Each “Input Action” object implement an event in blueprint.
2. Returned “Value Type” after the event get activated. 3. You can implement more

than just one event from any “Input Action”.

302 Game Development with Unreal Engine 5

As you see, each Input Action object can be implemented as event(s) inside blueprint
code, and we can use the Action Value of each, to perform different scenarios by
code. The Input Action objects can accept some procedures to enhanced using
them without extra work on coding. Let us check one of them for IA_Jump action:

1. Open IA_Jump object and locate Triggers.

2. Then, add Hold trigger from the dropdown list to the array of triggers as
shown in Figure Appendix.9.

3. Set Hold Time Threshold to 2 seconds as well.

4. Now, run game and press spacebar and hold your finger for more than 2
seconds. As you see, there is a delay before jump procedure get activated,
and the reason behind that came from adding Hold trigger in input action
object.

Figure Appendix.9: 1. Locate “Triggers” dropdown panel.
2. Using these icons to add or remove elements. 3. Find and add “Hold” from dropdown menu.

Appendix 303

Keep in mind that some triggers, will activate different execution pins in the event
node of belonged input action in blueprint code. This means depending on your
controller type, (mouse, touch screen, VR, and so on) you can wisely select/combine
triggers to add more complexity and accuracy to your input actions when they get
triggered by user`s controller.

There are another type of procedures which are used to modify the Value Type
that send an input action object. These procedures can be assigned in Modifiers
dropdown menu with the same method as we did for Triggers. To check this, let us
multiply the value type of Axis2D(Vector2D) in IA_Move input action, by a scalar
value and show them on the screen.

As you see in Figure Appendix.10, IA_Move event in third person character blueprint
receives 2 values of x and y for action values, why? Since the IA_Move input action
objects have Value Type as Axis2D(Vector2D), it provides values as x and y on
each interaction by user through its belonged event. Here, we modified the code by
printing the values of X and Y on the screen. At this stage you will see 0, 1 and -1 on
screen (we will explain these values shortly) as shown in the following figure:

Figure Appendix.10: Showing action values of X and Y, from
"IA_Move” event on the screen by adding Print String and Append node.

304 Game Development with Unreal Engine 5

Now open IA_Move input action objects, locate Modifiers and add a Scalar modifier
to this action. Then set x and y values of this modifier to 200 and 54. (these values
are just examples and can be anything else) Figure Appendix.11 shows these settings:

Figure Appendix.11: 1. Locate Modifiers dropdown panel 2. Add one modifier to the
array, and select “Scalar” from dropdown list, then set value x and y to 200 and 54

Now, to monitor the result of this modifier we need to print the values of the IA_
Move action. As you see in Figure Appendix.10, it is already implemented.

The output will be 54.0 and -54.0 when you press W and S key which causes
movement on Y axis. It will be -200.0 and 200.0 when you press A and D key which
causes movement on X axis.

You may get surprised why we have an output of -200 and 200 when we press A or
D keys. This caused by another modifier which you can assign to the value of your
input action Value Type, but this one is handled by IMC_Default object itself.

In addition to assigning modifiers to an Input action object, you can assign modifier
to each key/volume inside an Input Mapping Context object. This enhanced and
supported more customizations over your input mapping when you deal with each
key or volume on user’s controller. Perhaps, you need to modify a Value Type for VR
controller differently from using keyboard. Here, you can involve this difference on
your input Value Type from an input mapping context object like IMC_Default in
this project.

Appendix 305

Open IMC_Default object and check the Modifiers drop down for A and D keys
as shown in Figure Appendix.12. As you see in the figure, there is a modifier called
Negate, assigned to A key which works on X and Y, and Z index of the “Value Type”
passed by “IA_Move” input action object. The “Negate” modifier will multiply the
input by -1 and that’s why we have -200 when we press A key.

Figure Appendix.12: 1. Check key A dropdown panel. 2. The “Negate” modifier is
assigned in Modifiers panel. 3. The values for X, Y and Z are ticked,

means they will multiply by -1. 4. This modifier is NOT applied to key D.

There are numbers of modifiers which you can apply with an Input Action object
or Input Mapping Context object, and each affect the value type differently. You
can also add more than one trigger or modifier to these objects. The engine will save
them in an array and will execute all, by index order upon user interaction with

306 Game Development with Unreal Engine 5

controller. Try adding another modifier to A key as shown in Figure Appendix.13 and
see how the values are changing:

Figure Appendix.13: By adding a “Scalar” modifier to key A, the value from
input action object (IA_Move), will get multiplied by 1000 and the result

will send through the event`s “Action Value” by X index, when key A is pressed.

As mentioned earlier, some modifiers work fine only with Axis2D(Vector2D) value
type (or Digital(bool) or Axis3D(VectorD)). So, you must set the right modifier for
value type, compatible with your input action and trigger that belong to it. This
is the art of user input programming. It gets more serious when you try to program
complex input scenarios like what we have in fighting games like Mortal Combat and
Tekken. In those type of games, input from users through controller can have delay,
use combinations of multiple keys, or send different values. You can wisely program
such a complex scenario via enhanced input system in the engine, by using right
value types, triggers, and modifiers.

Implement custom user interaction in Blueprint
Now, let us make a new input action, map it to keyboard with a new input mapping
context and implement it in third person character blueprint code. As an example,
we will boost the player speed to 1200 by pressing E or Q key on keyboard and
reset it to default speed which is 500 when releasing these keys. To review previous
contents, we implement this action with two different methods.

1. First create a new Input Mapping Context object at the same location as
IMC_Default and rename it to IMC_01.

2. Then, open a third person character blueprint, locate Begin Play event and
use Add Mapping Context blueprint node to add your new input mapping
context object to the code as shown in Figure Appendix.14.

3. Do not forget to connect Target pin to Enhanced Input Local Player
Subsystem blueprint node.

Appendix 307

4. This is essential to activate your IMC_01 mapping context object after running
game.

Figure Appendix.14: 1. Make new “Input Mapping Context” object in
“Input” folder. 2. Add this object to the end of “Begin Play"

procedures in blueprint by using “Add Mapping Context” node.
3. Connect Target pin to “Enhanced Input Local Player Subsystem” blueprint node.

5. Now, make two input action objects in Actions folder, and name them IA_
Boost_01 and IA_Boost_02.

308 Game Development with Unreal Engine 5

6. Then, open each and set the Value Type to Digital(bool) for IA_Boost_01
and Axis2D(Vector2D) for IA_Boost_02. Then, add a Scalar modifier to
IA_Boost_02 with value of 1200 for x. The input action objects should look
like Figure Appendix.15 at the end:

Figure Appendix.15: Making tow input action objects
with different Value Types and Modifiers in “Actions” folder

7. Now, we need to assign E and Q key to these two input actions. Open
IMC_01 input mapping context object, add IA_Boost_01 and IA_Boost_02

Appendix 309

to Mappings dropdown panel, and set E and Q as key for each one as shown
in Figure Appendix.16. Now, the actions are mapped to the keys in keyboard:

Figure Appendix.16: Mapping previous input action objects to E and Q key in
“IMC_01” input mapping context object

8. Finally, open third person character blueprint again, right click in event
graph, type input action names IA_Boost_01 and IA_Boost_02 and then
add an event for each in the event graph.

9. As you see in Figure Appendix.17, we use Boolean Action Value from IA_
Boost_01 event for switch between two different speeds. Also, we use the
x value of vector 2D Action Value from IA_Boost_02 event to affect the
movement speed.

310 Game Development with Unreal Engine 5

10. Keep in mind, both IA_Boost_01 and IA_Boost_02 input actions, result
in the same behavior in-game, but the value types, and implementations of
each input actions, are different.

Figure Appendix.17: Using two different input actions to produce
same result on boost speed of the character movement

Conclusion
The Enhanced Input in the engine expands the flexibilities and complexities of
implementations and mapping user controllers into the engine code. Each controlling
device meet different combination of modifiers and triggers. There are multiple
method to implement same behavior with user input by using triggers, modifiers,
and a combination of these. The details for each type of triggers, and modifiers is
mostly related to user interface programming advanced topics which is out of focus
of this book.

Appendix 311

Key terms
•	 Enhanced Input

•	 Input Action

•	 Input Mapping Context

•	 Value Type

•	 Digital(bool)

•	 Axis2D(Vector2D)

•	 Axis3D(Vector)

•	 Action Value

•	 Triggers

•	 Modifiers

•	 Negate

•	 Scalar

312 Game Development with Unreal Engine 5

Index 313

Index

A
Action 57
AND operator 16, 17
animation instance nodes 206

get animation mode 211
Get Anim Instance 206
get play rate 210
get position 209
Has valid animation instance 207
is playing 209
override animation data 212
play 207
play animation 209, 210
set animation 208
set animation mode 211
set play rate 210
set position 208
stop 208

animation instances 206
animation modes 212, 213
arrays 195

add 197
clear 198
get 196
length 198
remove 196
set array element 197

audio
using 259

B
Beginplay event 120
blueprint 53-59, 67

casting 163-167
code developing 93-100
collision detection 101-104
components panel 68-74

314 Game Development with Unreal Engine 5

designing, with 59-67
Details 68
Event Graph 70
examples 55-57
game assets, creating from 105-109
interface implementation 168-172
Line Tracing 159-163
mesh, adding 74-78
My Blueprint 68
physics, adding 78-82
user interaction, adding 89-92
variables 134
Viewport 69-74

Blueprint Components 59
Blueprint Editor 59
Booleans (Bools) 136, 137

C
casting

in blueprint 163-167
class

default settings 218
class settings 219

inheritance, changing 220
interfaces 220

code
developing, in blueprint 93-100

collision 101
collision detection 101
Culling 236

D
data tables 201, 202

CSV/JSON export 203
editor 202
usage, in blueprint 204, 205

Dot Product 22

Doubles 136
Dynamic Material 128, 129

E
Editor layout, EGL

editing 41
menu 41, 42
standard layout 40

Edit tab 43
connect to soucre control 44
editor preferences 44
plugins 44
project settings 44

EGL layout
Editor layout 39
home page 34
library page 36
Project Browser 38, 39
store page 35
Unreal Engine Library 38
Unreal Engine Marketplace 37
Unreal Engine page 36, 37

enumerators (enums) 189, 190
bytes 190, 191
enumerator editor 191, 192

Epic Game Launcher (EGL) 34
installing 4-8
options 9-11

event dispatchers 155
using 155-158

events 119, 146-154
Beginplay 120
construction script 119, 120
custom events 121, 122
Endplay event 121
Tick event 121

execution line 97

Index 315

F
File tab 43
first-person shooter (FPS) 3
float variable 135, 136

G
game assets

creating, from blueprint 105-109
game objects 114

classes 114, 115
components 117
inheritance 115, 116
transform 118
variables 116

H
hotkeys 42

I
Integers (Ints) 135

Doubles 136
float 135, 136
Integer 64 135

interface 220
implementation, in blueprint 168-172
returns 221, 222
setup 221
usage 222-224
using 159

L
licensing 280
Line Tracing

in blueprint 159-163
localization dashboard 47

M
maps 198

clear node 200

contains node 200
find node 200
get keys and values node 199
Is Empty and Is Not Empty node 201
length node 200

material editor 122, 123
Dynamic Material 128, 129
material data 125, 126
material instances 125
Material Parameter Collections

(MPCs) 126-128
nodes 123, 124

mathematical functions 25
ABS 25
cell 26
clamp 26
cosine 26
distance 28
floor 25
normalized vectors 29
Pi 25
power 25
sine 26

mathematics 14-16
Boolean operator AND 16, 17
Boolean operator NOT 18
Boolean operator OR 17
Boolean operator XOR 18
using, in programming game 19

menu/window locations, UE5 editor 43
Build tab 47
Edit tab 43, 44
File tab 43
Help tab 47
Tools tab 47
Window tab 44

316 Game Development with Unreal Engine 5

mesh component
adding, to blueprint 74-78

MetaSound 259
creating 260-275

multi-variable type operators 213, 214

N
Niagara 235

using 236
Niagara emitter

creating 237-247
Niagara system

creating 247-258
NOT operator 18

O
Object 57
object-based variables 188, 189

arrays 195
data tables 201
enumerators 189, 190
maps 198
structures (structs) 192, 193

order of execution 57
OR operator 17

P
physics

adding, to blueprint 78-82
physical behavior, making as

material 180-184
physical force, adding with

impulse 176-180
physical gravity, using 173-176
using 173

platforms 280
Play options 281-288
plugins 288-290

creating 290
Plugins menu 48, 49
Project Settings menu 48
project templates

ARCHITECTURE, ENGINEERING
AND CONSTRUCTION 87, 88

FILM, TELEVISION/VIDEO, AND
LIVE EVENTS 87

GAMES 87

R
replication settings 226, 227
right triangle rules 26-28
Rotator 139

S
serialization 228

save game objects, using 228-230
Software Development Kit (SDK) 281
Split Struct Pin 141
Static Mesh object

importing 77
string 138

name 138
text 138

structures (structs) 192, 193
nested structs 194, 195
structure editor 194

T
templates

using, in Unreal Engine 5 86-89
tick settings 224-226
trigonometry 26

U
Unreal Engine

history 2, 3

Index 317

Unreal Engine 5 3, 6
event 146-154
events 119
game objects 114
material editor 122, 123
play options 280, 281
Plugins menu 48, 49
Project Settings menu 48
recommendations and minimum

hardware requirement 6
templates, using 86, 87

user interaction
adding, to blueprint 89-92

user settings 230
input 231, 232
scalability 230, 231

V
variables, in blueprint 134

Booleans (Bools) 136, 137
conversions 141

Integers (Ints) 135
Rotator 139, 140
Split Struct Pin 141
string 138
Vector 139

Vector 19-22, 139
add operator 22
dividing, by scalar 23
Dot Product 23, 24
multiplying, by scalar 23
subtract operator 22

W
Window tab 44

Experimental tab 46
Layout tab 47
level editor 45, 46
logs 46

X
XOR operator 18

318 Game Development with Unreal Engine 5

	1
	2
	Untitled
	Untitled

