


Unity 2022 Mobile Game 
Development

Third Edition

Build and publish engaging games for Android and iOS

John P. Doran

BIRMINGHAM—MUMBAI



Unity 2022 Mobile Game Development
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Nitin Nainani
Senior Editor: Mark D’Souza
Senior Content Development Editor: Feza Shaikh
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Project Coordinator: Sonam Pandey
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Vijay Kamble
Marketing Coordinator: Anamika Singh, Namita Velgekar, and Nivedita Pandey

First published: November 2017
Second edition: August 2020
Third edition: July 2023

Production reference:160623

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-372-6

www.packtpub.com

http://www.packtpub.com


To my wife, Hien, who, has always believed in me and has supported me every step of the way as we’ve 
traveled all around the world. And to my precious daughter, Johanna, who’s inspired me with her 

boundless imagination and sense of wonder. This book is dedicated to you both with all my love and 
gratitude.

– John P. Doran



Contributors

About the author
John P. Doran is a passionate and seasoned technical game designer, software engineer, and author 
who is based in Songdo, South Korea. His passion for game development began at an early age. He 
later graduated from DigiPen Institute of Technology with a bachelor of science in game design and 
a master of science in computer science from Bradley University.

For over a decade, John has gained extensive hands-on expertise in game development, working in 
various roles ranging from game designer to lead user interface (UI) programmer, working in teams 
consisting of just himself to over 70 people in student, mod, and professional game projects, including 
working at LucasArts on Star Wars: 1313. Additionally, John has worked in game development education, 
teaching in Singapore, South Korea, and the US. To date, he has authored 17 books pertaining to game 
development and is a 2023 Unity Education Ambassador.

John is currently an instructor at George Mason University Korea. Prior to his present ventures, he 
was an award-winning videographer.

Learn more about John at http://johnpdoran.com.

I extend my deepest gratitude to the Packt Publishing team, including Mark D’Souza, Feza Shaikh, 
Sonam Pandey, and Nitin Nainani, for their invaluable support, expertise, and guidance in bringing 
this new edition of the book to life.

http://johnpdoran.com


About the reviewers
Shubham Thakur is a full stack developer at Ceryx Digital in Pune. Proficient in JavaScript, PHP, and 
Flutter, he has worked on cutting-edge projects involving the Internet of Things (IoT), metaverse, 
augmented reality (AR), virtual reality (VR), and cloud computing using AWS. Shubham volunteers 
with Google Developer Groups Pune, has won various hackathons, and is learning Solidity for Web3. 
He’s a team player, collaborator, and effective communicator who is committed to delivering high-
quality solutions on time and within budget.

I am deeply grateful to Priya for the unwavering support, boundless love, and endless inspiration 
she brings daily. Yash, thank you for always being there. Amit Jain, thank you for your exceptional 
mentorship. Thanks to Packt Publishing for the reviewer opportunity. Special thanks to Urvi Sambhav 
Shah for onboarding me and to Sonam Pandey for her invaluable assistance and guidance during the 
reviewing process.

David Cantón Nadales is a software engineer from Seville, Spain, with more than 20 years of 
experience. He is currently a technical leader at Grupo Viajes El Corte Inglés, a leading travel company 
in Europe. He has done a multitude of projects and games with Unity, VR with Oculus/Meta Quest 2, 
Hololens, HTC Vive, DayDream, and LeapMotion. He was an ambassador of the Samsung community 
“Samsung Dev Spain,” and organizer of “Google Developers Group Sevilla.” He has led more than 100 
projects throughout his career. As a social entrepreneur he created the app “Grita”, a social network 
that emerged during the confinement of COVID-19 that allowed people to talk to other people and 
help each other psychologically. In 2022, he won the Top Developer Award organized by Samsung.





Preface� xiii

Part 1: Gameplay/Development Setup

1
Building Your Game� 3

Technical requirements� 4
Setting up the project� 4
Creating the player� 6
Moving the player through a C# script� 8
Improving our scripts with attributes 
and XML comments� 12
Using attributes� 12
XML comments� 15

Update function versus FixedUpdate 
function� 17
Putting it all together� 18

Having the camera following our 
player� 19
Creating a basic tile� 21
Making it endless� 26
Creating obstacles� 32
Summary� 43

2
Project Setup for Android and iOS Development� 45

Technical requirements� 46
Introducing the Build Settings menu� 47
Building a project for a PC� 49
Exporting a project for Android� 51
Installing Android Build Support for Unity� 52

Updating build and player settings for 
Android projects� 54

Running the Android APK with an 
emulator� 59
Putting the project on your Android 
device� 62

Table of Contents



Table of Contentsviii

Unity for iOS setup and  
Xcode installation� 73
Building a project for iOS� 78

Running the project via the  
iOS simulator� 85
Summary� 87

Part 2: Mobile-Specific Features

3
Mobile Input/Touch Controls� 91

Technical requirements� 92
Using mouse input� 92
Screen space versus world space� 94

Moving using touch controls� 96
Using Unity Remote� 101
Android setup For Unity Remote� 101
Enabling developer mode and debugging� 107

Unity Remote setup for iOS� 114

Implementing a gesture� 118
Scaling the player using pinches� 123
Using the accelerometer� 127
Detecting touch on game objects� 130
Summary� 140

4
Resolution-Independent UI� 141

Technical requirements� 142
Creating a title screen� 142
The Rect Transform component� 146
Adjusting and resizing the title text� 150
Selecting different aspect ratios� 156

Working with buttons� 159
Adding a pause menu� 167
Pausing the game� 177
Summary� 179

5
Advanced Mobile UI� 181

Technical requirements� 181
Adding a pause screen button� 182
Implementing an on-screen joystick� 187

Adapting GUIs for notch devices� 193
Summary� 200



Table of Contents ix

6
Implementing In-App Purchases� 201

Technical requirements� 202
Setting up Unity IAP� 202
Creating our first purchase� 204

Adding a button to restore purchases� 213

Configuring purchases for the stores of your 
choice� 216

Summary� 217

7
Advertising Using Unity Ads� 219

Technical requirements� 220
Setting up Unity Ads� 220
Displaying a simple ad� 224
Utilizing ad callback methods� 227

Opt-in advertisements with rewards� 231
Adding in a cooldown timer� 241
Summary� 246

8
Integrating Social Media into Our Project� 249

Technical requirements� 250
Adding a scoring system� 250
Sharing high scores via Twitter� 256
Downloading and installing 
Facebook’s SDK� 260

Logging in to our game via Facebook� 269
Displaying a Facebook name and 
profile picture� 277
Summary� 284

Part 3: Game Feel/Polish

9
Keeping Players Involved with Notifications� 287

Technical requirements� 287
Setting up notifications� 288

Scheduling notifications ahead  
of time� 293



Table of Contentsx

Customizing notifications� 298
Canceling notifications� 303

Summary� 305

10
Using Unity Analytics� 307

Technical requirements� 308
Setting up Analytics� 308
Tracking custom events� 313
Sending basic CustomEvents� 313

Sending custom events with properties� 319

Working with funnels� 329
Summary� 331

11
Remote Config� 333

Technical requirements� 333
Remote Config setup� 334
Creating key-value pairs� 336

Integrating Game Overrides into 
gameplay� 339
Summary� 343

12
Improving Game Feel� 345

Technical requirements� 346
Animation using LeanTween� 346
LeanTween setup� 346
Creating a simple tween� 349

Adding tweens to the pause menu� 354

Working with materials� 357
Using postprocessing effects� 360
Adding particle effects� 366
Summary� 369

13
Building a Release Copy of Our Game� 371

Technical requirements� 371
Generating release builds for  
app stores� 372

Summary� 382



Table of Contents xi

14
Submitting Games to App Stores� 383

Technical requirements� 383
Putting your game on the Google 
Play Store� 384
Setting up the Google Play Console� 384

Publishing an app on Google Play� 386

Putting your game on the Apple iOS 
App Store� 397
Apple Developer setup and creating a 
provisioning profile� 397
Adding an app to App Store Connect� 408

Summary� 427

15
Augmented Reality� 429

Technical requirements� 429
Setting up a project for AR� 430
Basic setup� 434

Interacting with the AR environment� 439
Spawning objects in AR� 444
Summary� 447

Index� 449

Other Books You May Enjoy� 456





Preface

As a game developer, your goal is to reach your customers where they are, and with more and more 
people purchasing mobile devices every year, mobile is a crucial platform to consider. Luckily, Unity 
offers cross-platform capabilities, allowing you to write your game once and then port it to other consoles 
with minimal changes. However, developing for mobile devices also requires specific considerations 
and features, which is where Unity 2022 Mobile Game Development comes in.

In this book, we’ll guide you through the process of using Unity to create and deploy a mobile game to 
both iOS and Android. We’ll cover essential topics such as adding input for mobile devices, designing 
interfaces that adapt to various screen sizes, and exploring ways to monetize your game with Unity’s 
In-App Purchase (IAP) and advertisement systems. We’ll also discuss the importance of using 
notifications to retain users and share your game with the world using Twitter and Facebook’s SDKs.

Additionally, we’ll delve into Unity’s analytics system to optimize your game’s performance and 
provide insights into user behavior. You’ll also learn how to polish your game in various ways before 
publishing it on the Google Play and iOS app stores.

Lastly, we’ll cover the use of Unity’s AR Foundation framework, which enables you to create Augmented 
Reality (AR) apps that are future-proof and compatible with multiple devices.

By the end of this book, you’ll have a solid understanding of how to use Unity for mobile game 
development, including crucial features unique to mobile devices.

Who this book is for
If you’re a Unity game developer interested in building mobile games for iOS and Android, then 
this book is an ideal resource for you. Although prior knowledge of C# is helpful, it is not required. 
Whether you’re a seasoned developer or just starting out, the step-by-step guidance provided in this 
book will help you understand the unique features and considerations necessary for mobile game 
development using Unity.

What this book covers
Chapter 1, Building Your Game, introduces the basics of Unity game development by creating a simple 
project that will be modified throughout the book to incorporate mobile-specific features.

Chapter 2, Project Setup for Android and iOS Development, explains the process of configuring your 
development environment for deploying your game to both Android and iOS mobile devices.



Prefacexiv

Chapter 3, Mobile Input/Touch Controls, teaches you the fundamentals of mobile input, covering 
touch and gesture recognition, using the accelerometer, and accessing device information through 
the Touch class.

Chapter 4, Resolution-Independent UI, focuses on how to build resolution-independent UI elements, 
which are useful for all game projects that utilize different aspect ratios and resolutions.

Chapter 5, Advanced Mobile UI, builds upon the knowledge from the previous chapter, expanding to 
include mobile-specific aspects of working on a UI, such as requiring on-screen controls and adapting 
the UI to fit devices with notches.

Chapter 6, Implementing In-App Purchases, explains how to integrate Unity’s IAP system into our 
project, including the creation of both consumable and non-consumable IAPs.

Chapter 7, Advertising Using Unity Ads, covers the integration of Unity’s ad framework into our project 
and explores the creation of both simple and complex advertisements.

Chapter 8, Integrating Social Media into Our Project, shows how to integrate social media into your 
game by incorporating features such as sharing high scores on Twitter and using the Facebook SDK 
to log in and display a player’s name and profile picture.

Chapter 9, Keeping Players Involved with Notifications, demonstrates the integration of notifications into 
your game, including their setup, creating basic notifications, and customizing how they are presented.

Chapter 10, Using Unity Analytics, covers integrating Unity’s analytics tools into your game, including 
tracking custom events and using remote settings to modify gameplay without requiring players to 
redownload the game.

Chapter 11, Remote Config, will show just how easy it is to set up Unity’s Remote Config system, and 
how we can utilize it for a simple example by changing the difficulty of our game by changing the 
speed at which the player moves.

Chapter 12, Improving Game Feel, introduces the concept of “game feel” in game design and explores 
how to integrate tweening animations, materials, postprocessing effects, and particle effects to enhance 
the player experience.

Chapter 13, Building a Release Copy of Our Game, walks you through the steps required to build a 
release copy of your game for both iOS and Android devices.

Chapter 14, Submitting Games to App Stores, provides tips and tricks for submitting your game to the 
Google Play and iOS app stores.

Chapter 15, Augmented Reality, covers the process of adding AR to your game, including the setup, 
installation, and configuration of ARCore, ARKit, and AR Foundation, detecting surfaces in the real 
world, and interacting with the environment through spawning objects.



Preface xv

To get the most out of this book
Throughout this book, we will work within the Unity 3D game engine, which you can download from 
https://unity.com/download. The projects were created using Unity 2022.1.0b16, but minimal 
changes should be required if you’re using future versions of the engine. If there is a new version out 
and you would like to download the exact version used in this book, you can visit Unity’s download 
archive at https://unity3d.com/get-unity/download/archive. You can also find the 
system requirements for Unity at https://docs.unity3d.com/2022.1/Documentation/
Manual/system-requirements.html in the Unity Editor system requirements section. To 
deploy your project, you will need an Android or iOS device.

For the sake of simplicity, we will assume that you are working on a Windows-powered computer 
when developing for Android and a Macintosh computer when developing for iOS.

Software/hardware covered in the book Operating system requirements
Unity 2022.1.0b16 Windows, macOS, or Linux
Unity Hub 3.3.1 Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition. If 
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/6M4wR.

https://unity.com/download
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/6M4wR


Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “This 
gives us the code needed – in particular, the GameNotificationManager class – to be added 
to our script.”

A block of code is set as follows:

public void ShowNotification(string title, string body,
                                DateTime deliveryTime)
{
    IGameNotification notification =
    notificationsManager.CreateNotification();

    if (notification != null)
    {
        notification.Title = title;
        notification.Body = body;
        notification.DeliveryTime = deliveryTime;
        notification.SmallIcon = "icon_0";
        notification.LargeIcon = "icon_1";

        notificationsManager.ScheduleNotification(notification);
    }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

ShowNotification("Endless Runner", notifText, notifTime);

        // Example of cancelling a notification
        var id = ShowNotification("Test", "Should Not Happen", 
            notifTime);

        if(id.HasValue)
        {
            notificationsManager.CancelNotification(id.Value);
        }



Preface xvii

        /* Cannot be added again until the user quits game */
        addedReminder = true;
    }

}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Open the Project Settings menu by 
going to Edit | Project Settings.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:?subject=
mailto:?subject=
http://www.packtpub.com/support/errata
http://authors.packtpub.com


Prefacexviii

Share Your Thoughts
Once you’ve read Unity 2022 Mobile Game Development, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/180461372X


Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804613726

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804613726




Part 1:  
Gameplay/Development Setup

In this part of the book, we will be exploring the foundational elements of Unity game development, 
specifically with a focus on preparation for creating mobile games. The chapters in this part will 
provide you with the necessary knowledge and skills to set up your development environment, as 
well as guide you through the process of building a game project and deploying it to a mobile device.

By the end of this part, you will have a solid foundation of knowledge about Unity game development 
and will be ready to move on to the more advanced topics covered in subsequent parts of the book.

This part has the following chapters:

•	 Chapter 1, Building Your Game

•	 Chapter 2, Project Setup for Android and iOS Development





1
Building Your Game

As we start on our journey of building mobile games using the Unity game engine, it’s important that 
you are familiar with the engine itself before we dive into the specifics of building things for mobile 
platforms. Although there is a chance that you’ve already built a game and want to transition it to 
mobile, there will also be those of you who haven’t touched Unity before or may not have used it in 
a long time. This chapter will act as an introduction to newcomers and a refresher for those coming 
back, and it will provide some best practices for those who are already familiar with Unity. While you 
may skip this chapter if you’re already familiar with Unity, I think it’s also a good idea to go through 
the project so that you know the thought processes behind why the project is made in the way that it 
is, so that you can keep it in mind for your own future titles.

In this chapter, we will build a 3D endless runner game in the same vein as Imangi Studios LLC’s 
Temple Run series. In our case, we will have a player who will run continuously in a certain direction 
and dodge the obstacles that are in their way. We can also add additional features to the game easily, 
as the game will endlessly have new things added to it.

This chapter will be split into several topics. It will contain simple, step-by-step processes for you to 
follow. Here is an outline of our tasks:

•	 Setting up the project

•	 Creating the player

•	 Moving the player through a C# script

•	 Improving scripts using attributes and XML comments

•	 Update function versus FixedUpdate function

•	 Having the camera follow our player

•	 Creating a basic tile

•	 Making the game endless

•	 Creating obstacles



Building Your Game4

Technical requirements
This book utilizes Unity 2022.1.0b14 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in this 
book, and there is a new version out, you can visit Unity’s download archive at https://unity3d.
com/get-unity/download/archive.

You can also find the system requirements for Unity at https://docs.unity3d.com/2022.1/
Documentation/Manual/system-requirements.html in the Unity Editor system 
requirements section.

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter01.

Setting up the project
Now that we have our goals in mind, let’s start building our project:

1.	 To get started, open Unity Hub on your computer.

2.	 From startup, we’ll opt to create a new project by clicking on the New button.

3.	 Next, under Project Name, put in a name (I have chosen MobileDev), and under Templates, 
make sure that 3D is selected. Afterward, click on CREATE and wait for Unity to load up:

Figure 1.1 – Creating a 3D project

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter01


Setting up the project 5

4.	 After it’s finished, you’ll see the Unity Editor pop up for the first time:

Figure 1.2 – The Unity Editor

5.	 If your layout doesn’t look the same as in the preceding screenshot, go to the top-right section 
of the toolbar and select the drop-down menu there that reads Layout. From there, select 
Default from the options presented:

Figure 1.3 – The Layout button

We now have opened Unity for the first time and have the default layout displayed!



Building Your Game6

Tip
If this is your first time working with Unity, then I highly recommend that you read the Unity’s 
interface section of the Unity Manual, which you can access at https://docs.unity3d.
com/Manual/UsingTheEditor.html.

Now that we have Unity open, we can actually start building our project.

Creating the player
To get started, we’ll build a player that will always move forward. Let’s start with that now:

1.	 To get started, we will create some ground for our player to walk on. To do that, go to the top 
menu and select GameObject | 3D Object | Cube.

2.	 From there, we’ll move over to the Inspector window and change the name of the object to 
Floor. Then, for the Transform component, set Position to (0, 0, 0). This can be done by 
either typing the values in or right-clicking on the Transform component and then selecting 
the Reset Position option.

3.	 Then, we will set the Scale values of the object to (7, 0.1, 10):

Figure 1.4 – Creating the ground

In Unity, by default, 1 unit of space is representative of 1 meter in real life. So, our Scale values 
will make the floor longer than it is wide (X and Z), and we have some size on the ground (Y), 
so the player will collide and land on it because we have a Box Collider component attached 
to it by default.

https://docs.unity3d.com/Manual/UsingTheEditor.html
https://docs.unity3d.com/Manual/UsingTheEditor.html


Creating the player 7

Note
The Box Collider component is added automatically when creating a Cube object and is 
required to have objects collide with it. For more information on the Box Collider component, 
check out https://docs.unity3d.com/Manual/class-BoxCollider.html.

4.	 Next, we will create our player, which will be a sphere. To do this, we will go to GameObject 
| 3D Object | Sphere.

5.	 Rename the sphere to Player and set the Transform component’s Position values to (0, 1, -4):

Figure 1.5 – Positioning the player

This places the ball slightly above the ground and shifts it back to near the starting point. Note 
that the camera object (see the camera icon) is pointing toward the ball by default because it 
is positioned at (0, 1, -10).

6.	 We want the ball to move, so we will need to tell the physics engine that we want to have this 
object react to forces, so we will need to add a Rigidbody component. To do so, with the Player 
object selected, go to the menu and select Component | Physics | Rigidbody. To see what 
happens now, let’s click on the Play button, which can be seen in the middle of the first toolbar:

https://docs.unity3d.com/Manual/class-BoxCollider.html


Building Your Game8

Figure 1.6 – Current state of the game

As in the preceding screenshot, you should see the ball fall down onto the ground when we 
play the game.

Tip
You can disable/enable having the Game tab take up the entire screen when being played by 
clicking on the Maximize On Play button at the top, or by right-clicking on the Game tab and 
then selecting Maximize.

7.	 Click on the Play button again to turn the game off and go back to the Scene tab, if it doesn’t 
happen automatically.

We now have the objects for both the floor and the player in the game and have told the player to react 
to physics! Next, we will add interactivity to the player through the use of code.

Moving the player through a C# script
We want the player to move, so in order to do that, we will create our own piece of functionality in a 
script, effectively creating our own custom component in the process:

1.	 To create a script, we will go to the Project window and select the Create button in the top-left 
corner of the menu by clicking on the + icon, and then we will select Folder:



Moving the player through a C# script 9

Figure 1.7 – Location of the + icon

Tip
You can also access the Create menu by right-clicking on the right-hand side of the Project 
window. With this method, you can right-click and then select Create | Folder.

2.	 From there, we’ll name this folder Scripts. It’s always a good idea to organize our projects, 
so this will help with that.

Tip
If you happen to misspell the name of an item in the Project window, you can rename it by 
either right-clicking and selecting the Rename option or selecting the object and then single-
clicking on the name.

3.	 Double-click on the folder to enter it, create a script by going to Create | C# Script, and rename 
the newly created item to PlayerBehaviour (no spaces).

Note
The reason I’m using the behaviour spelling instead of behavior is that all components in 
Unity are children of another class called MonoBehaviour, and I’m following Unity’s lead 
in that regard.

4.	 Double-click on the script to open up the script editor (IDE) of your choice and add the 
following code to it:

using UnityEngine;

public class PlayerBehaviour : MonoBehaviour
{



Building Your Game10

    // A reference to the Rigidbody component
    private Rigidbody rb;

    // How fast the ball moves left/right
    public float dodgeSpeed = 5;

    // How fast the ball moves forward  automatically
    public float rollSpeed = 5;

    // Start is called before the first frame update
    void Start()
    {
        // Get access to our Rigidbody component
        rb = GetComponent<Rigidbody>();
    }

    // Update is called once per frame
    void Update()
    {
        // Check if we're moving to the side
        var horizontalSpeed =
            Input.GetAxis("Horizontal") * dodgeSpeed;

        rb.AddForce(horizontalSpeed, 0, rollSpeed);

    }
}

In the preceding code, we have a couple of variables that we will be working with. The rb 
variable is a reference to the GameObject’s Rigidbody component that we added previously. 
It gives us the ability to make the object move, which we will use in the Update function. We 
also have two variables, dodgeSpeed and rollSpeed, which dictate how quickly the player 
will move when moving left/right or when moving forward, respectively.

Since our object has only one Rigidbody component, we assign rb once in the Start 
function, which is called when the GameObject is loaded into the scene at the beginning of 
the game.

Then, we use the Update function to check whether our player is pressing keys to move left 
or right based on Unity’s Input Manager system. By default, the Input.GetAxis function 
will return to us a negative value, moving to -1 if we press A or the left arrow. If we press the 
right arrow or D, we will get a positive value up to 1 returned to us, and the input will move 
toward 0 if nothing is pressed. We then multiply this by dodgeSpeed in order to increase 
the speed so that the movement of the object is easier to see.



Moving the player through a C# script 11

Note
For more information on the Input Manager, check out https://docs.unity3d.com/
Manual/class-InputManager.html.

Finally, once we have that value, we will apply a force to our ball’s horizontalSpeed units 
on the X axis and rollSpeed on the Z axis.

5.	 Save your script and return to the Unity Editor.

6.	 We will now need to assign this script to our player by selecting the Player object in the Hierarchy 
window, and then in the Inspector window, we will drag and drop the PlayerBehaviour 
script from the Project window to be on top of the Player object.

Note
Note that when writing scripts, if we declare a variable as public, it will show up in the 
Inspector window for us to be able to set it. We typically set a variable as public when we 
want designers to tweak the values for gameplay purposes, but it also allows other scripts to 
access the property in code. By default, variables and methods are private, which means 
they can only be used within the class. For more information on access modifiers, check 
out https://docs.microsoft.com/en-us/dotnet/csharp/language-
reference/keywords/access-modifiers.

If all goes well, we should see the script appear on our object, as follows:

Figure 1.8 – The PlayerBehaviour component added

https://docs.unity3d.com/Manual/class-InputManager.html
https://docs.unity3d.com/Manual/class-InputManager.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers


Building Your Game12

7.	 Save your scene by going to File | Save. Afterward, play the game and use the left and right arrows 
to see the player moving according to your input, but no matter what, moving forward by default:

Figure 1.9 – The current state of the game

Now you can see that the ball moves automatically, and our input is received correctly!

Improving our scripts with attributes and XML comments
We could stop working with the PlayerBehaviour class script here, but I want to touch on a 
couple of things that we can use in order to improve the quality and style of our code. This becomes 
especially useful when you start building projects in teams. As you’ll be working with other people, 
some of them will be working on code with you. Then, there will be designers and artists who will not 
be working on code with you but will still need to use the things that you’ve programmed.

When writing scripts, we want them to be as error-proof as possible. Making the rb variable private 
starts that process, as now the user will not be able to modify that anywhere outside of this class. We 
want our teammates to modify dodgeSpeed and rollSpeed, but we may want to give them some 
advice as to what it is and/or how it will be used. To do this in the Inspector window, we can make 
use of something called an attribute.

Using attributes

Attributes are things we can add to the beginning of a variable, class, or function declaration, which allow 
us to attach additional functionality to them. There are many of them that exist inside Unity, and you 
can write your very own attributes as well, but right now, we’ll talk about the ones that I use most often.



Improving our scripts with attributes and XML comments 13

The Tooltip attribute

If you’ve used Unity for a period of time, you may have noted that some components in the Inspector 
window, such as Rigidbody, have a nice feature—if you move your mouse over a variable name, 
you’ll see a description of what the variables are and/or how to use them. The first thing you’ll learn 
is how we can get the same effect in our own components by making use of the Tooltip attribute. 
If we do this for the dodgeSpeed and rollSpeed variables, it will look something like this:

[Tooltip("How fast the ball moves left/right")]
public float dodgeSpeed = 5;

[Tooltip("How fast the ball moves forward  automatically")]
public float rollSpeed = 5;

Save the preceding script and return to the editor:

Figure 1.10 – Tooltip attribute example

Now, when we highlight the variable using the mouse and leave it there, the text we placed will be 
displayed. This is a great habit to get into, as your teammates can always tell what it is that your variables 
are being used for without having to actually look at the script itself.

Note
For more information on the Tooltip attribute, check out https://docs.unity3d.
com/ScriptReference/TooltipAttribute.html.

The Range attribute

Another thing that we can use to protect our code is the Range attribute. This will allow us to specify 
a minimum and maximum value for a variable. Since we want the player to always be moving forward, 
we may want to restrict the player from moving backward. To do that, we can add the following 
highlighted line of code:

[Tooltip("How fast the ball moves forward  automatically")]
[Range(0, 10)]
public float rollSpeed = 5;

https://docs.unity3d.com/ScriptReference/TooltipAttribute.html
https://docs.unity3d.com/ScriptReference/TooltipAttribute.html


Building Your Game14

Save your script, and return to the editor:

Figure 1.11 – Range attribute example

We have now added a slider beside our value, and we can drag it to adjust between our minimum and 
maximum values. Not only does this protect our variable from being changed to an invalid state but 
also makes it so that our designers can tweak things easily by just dragging them around.

The RequireComponent attribute

Currently, we are using the Rigidbody component in order to create our script. When working as a 
team member, others may not be reading your scripts but are still expected to use them when creating 
gameplay. Unfortunately, this means that they may do things that have unintended results, such as 
removing the Rigidbody component, which will cause errors when our script is run. Thankfully, 
we also have the RequireComponent attribute, which we can use to fix this.

It looks something like this:

using UnityEngine;

[RequireComponent(typeof(Rigidbody))]
public class PlayerBehaviour : MonoBehaviour

By adding this attribute, we state that when we include this component in a GameObject and it 
doesn’t have a Rigidbody component attached to its GameObject, the component will be added 
automatically. It also makes it so that if we were to try to remove the Rigidbody component from this 
object, the editor will warn us that we can’t, unless we remove the PlayerBehaviour component 
first. Note that this works for any class extended from MonoBehaviour; just replace Rigidbody 
with whatever it is that you wish to keep.

Now, if we go into the Unity Editor and try to remove the Rigidbody component by right-clicking 
on it in Inspector and selecting Remove Component, the following message will be seen:



Improving our scripts with attributes and XML comments 15

Figure 1.12 – Can’t remove component window

This is exactly what we want, and this ensures that the component will be there, allowing us not to 
have to include if checks every time we want to use a component.

Note that, previously, we did not use a Tooltip attribute on the private rb variable. Since it’s not 
being displayed in the editor, it’s not really needed. However, there is a way that we can enhance that 
as well: using XML comments.

XML comments

We can achieve a couple of nice things with XML comments that we otherwise couldn’t with traditional 
comments, which we were using previously. When using variables/functions instead of code in Visual 
Studio, we will now see a comment about it. This will help other coders on your team with additional 
information and details to ensure that they are using your code correctly.

XML comments look something like this:

/// <summary>
/// A reference to the Rigidbody component
/// </summary> 
private Rigidbody rb;

It may appear that a lot more writing is needed to use this format, but I did not actually type the entire 
thing out. XML comments are a fairly standard C# feature, so if you are using MonoDevelop or Visual 
Studio and type ///, the action will automatically generate the summary blocks for you (and the 
param tags needed, if there are parameters needed for something such as a function).

Now, why would we want to do this? Well, if you select the variable in IntelliSense, it will display the 
following information to us:



Building Your Game16

Figure 1.13 – An example of tooltips from XML comments

This is a great help when other people are trying to use your code and it is how Unity’s staff write their 
code. We can also extend this to functions and classes to ensure that our code is more self-documented.

Unfortunately, XML comments do not show up in the Inspector, and the Tooltip attribute can’t 
be used for some aspects of projects such as functions. With that in mind, I use Tooltip for public 
instructions and/or things that will show up in the Inspector window and XML comments for 
everything else.

Note
If you’re interested in looking into XML comments more, feel free to check out https://
msdn.microsoft.com/en-us/library/b2s063f7.aspx.

Now that we have looked at ways of improving the formatting of our code; let’s look at how we can 
improve the performance by looking at some of the different Update functions Unity provides.

https://msdn.microsoft.com/en-us/library/b2s063f7.aspx
https://msdn.microsoft.com/en-us/library/b2s063f7.aspx


Update function versus FixedUpdate function 17

Update function versus FixedUpdate function
The next thing to look at is our movement code. You may have noticed that we are currently using the 
Update function in order to move our player. As the comment above it states, the Update function 
is called once per frame that the game is running. One thing to consider is that the frequency of 
Update being called is variable, meaning that it can change over time. This is dependent on a number 
of factors, including the hardware that is being used. This means that the more times the Update 
function is called, the better the computer is. We want a consistent experience for all of our players, 
and one of the ways that we can do that is by using the FixedUpdate function.

FixedUpdate is similar to Update with some key differences. The first is that it is called at fixed 
timesteps, meaning the same time between calls. It’s also important to note that physics calculations 
are done after FixedUpdate is called. This means code-modifying physics-based objects should be 
executed within the FixedUpdate function generally, apart from one-off events such as jumping:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>

void FixedUpdate()
{
    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal") *
                           dodgeSpeed;

    rb.AddForce(horizontalSpeed, 0, rollSpeed);

}

By adjusting the code to use FixedUpdate, the ball should be much more consistent in its 
movement speed.

Note
For more information on FixedUpdate, check out https://docs.unity3d.com/
ScriptReference/MonoBehaviour.FixedUpdate.html.

https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html


Building Your Game18

Putting it all together

With all of the stuff we’ve been talking about, we can now have the final version of the script, which 
looks like the following:

using UnityEngine;

/// <summary>
/// Responsible for moving the player automatically and
/// receiving input.
/// </summary>
[RequireComponent(typeof(Rigidbody))]
public class PlayerBehaviour : MonoBehaviour
{
    /// <summary>
    /// A reference to the Rigidbody component
    /// </summary>
    private Rigidbody rb;

    [Tooltip("How fast the ball moves left/right")]
    public float dodgeSpeed = 5;

    [Tooltip("How fast the ball moves
        forward  automatically")]
    [Range(0, 10)]
    public float rollSpeed = 5;

    // Start is called before the first frame update
    public void Start()
    {
        // Get access to our Rigidbody component
        rb = GetComponent<Rigidbody>();
    }

    /// <summary>
    /// FixedUpdate is a prime place to put physics
    /// calculations happening over a period of time.
    /// </summary>

    void FixedUpdate()
    {
        // Check if we're moving to the side
        var horizontalSpeed = Input.GetAxis("Horizontal") *
                              dodgeSpeed;



Having the camera following our player 19

        rb.AddForce(horizontalSpeed, 0, rollSpeed);

    }
}

I hope that you also agree that this makes the code easier to understand and better to work with. Now, 
we can move on to additional features in the game!

Having the camera following our player
Currently, our camera stays in the same spot while the game is going on. This does not work very well 
for this game, as the player will be moving while the game is going on. There are two main ways that 
we can move our camera. We can just move the camera and make it a child of the player, but that will 
not work due to the fact that the camera would have the same rotation as the ball, which would cause 
the camera to spin around constantly and likely cause dizziness and disorientation for the players. 
Due to that, we will likely want to use a script to move it instead. Thankfully, we can modify how our 
camera looks at things fairly easily, so let’s go ahead and fix that next:

1.	 Go to the Project window and create a new C# script called CameraBehaviour. From there, 
use the following code:

using UnityEngine;

/// <summary>
/// Will adjust the camera to follow and face a target
/// </summary>
public class CameraBehaviour : MonoBehaviour
{
    [Tooltip("What object should the camera be looking
        at")]
    public Transform target;

    [Tooltip("How offset will the camera be to the
        target")]
    public Vector3 offset = new Vector3(0, 3, -6);

    /// <summary>
    /// Update is called once per frame
    /// </summary>
    private void Update()
    {
        // Check if target is a valid object
        if (target != null)



Building Your Game20

        {
            // Set our position to an offset of our
            // target
            transform.position = target.position +
                offset;

            // Change the rotation to face target
            transform.LookAt(target);
        }
    }
}

This script will set the position of the object it is attached to to the position of a target with 
an offset. Afterward, it will change the rotation of the object to face the target. Both of the 
parameters are marked as public, so they can be tweaked in the Inspector window.

2.	 Save the script and dive back into the Unity Editor. Select the Main Camera object in the 
Hierarchy window. Then, go to the Inspector window and add the CameraBehaviour 
component to it. You may do this by dragging and dropping the script from the Project window 
onto the GameObject or by clicking on the Add Component button at the bottom of the 
Inspector window, typing in the name of our component, and then hitting Enter to confirm 
once it is highlighted.

3.	 Afterward, drag and drop the Player object from the Hierarchy window into the Target 
property of the script in the Inspector window:

Figure 1.14 – CameraBehaviour component setup



Creating a basic tile 21

4.	 Save the scene and play the game:

Figure 1.15 – The current state of the game

The camera now follows the player as it moves. Feel free to tweak the variables and see how it affects 
the look of the camera to get the feeling you’d like best for the project. After this, we can have a place 
for the ball to move toward, which we will be covering in the next section.

Creating a basic tile
We want our game to be endless, but in order to achieve that, we will need to have pieces that we can 
spawn to build our environment; let’s do that now:

1.	 To get started, we will first need to create a single repeatable piece for our runner game. To do 
that, we’ll add some walls to the floor we already have. From the Hierarchy window, select the 
Floor object and duplicate it by pressing Ctrl + D in Windows or Command + D on macOS. 
Rename this new object Left Wall.

2.	 Change the Left Wall object’s Transform component by adjusting the Scale values to (1, 2, 
10). From there, select the Move tool by clicking on the button with arrows on the tools overlay 
or by pressing the W key.



Building Your Game22

Note
A recent addition to Unity is the concept of Overlays, which have replaced the original toolbar. 
For more information about them and how to use them, check out https://docs.unity3d.
com/2022.1/Documentation/Manual/overlays.html.

For more information on Unity’s built-in shortcuts, check out https://docs.unity3d.
com/Manual/UnityHotkeys.html.

3.	 We want this wall to match up with the floor, so hold down the V key to enter Vertex Snap 
mode. In Vertex Snap mode, we can select any of the vertices on a mesh and move them to the 
same position as another vertex on a different object. This is really useful for making sure that 
objects don’t have holes between them.

4.	 With Vertex Snap mode on, select the inner edge and drag it until it hits the edge of the floor. 
Alternatively, you can set the Position values to (3, 0.95, 0):

Figure 1.16 – Left Wall setup

Note
For more information on moving objects through the scene, including more details on Vertex Snap 
mode, check out https://docs.unity3d.com/Manual/PositioningGameObjects.
html.

5.	 Then, duplicate this wall and put the other object on the other side (-3, 0.95, 0), naming it 
Right Wall:

https://docs.unity3d.com/2022.1/Documentation/Manual/overlays.html
https://docs.unity3d.com/2022.1/Documentation/Manual/overlays.html
https://docs.unity3d.com/Manual/UnityHotkeys.html
https://docs.unity3d.com/Manual/UnityHotkeys.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html


Creating a basic tile 23

Figure 1.17 – Right Wall setup

As you can see in the preceding screenshot, we now protect the player from falling off the left 
and right edges of the play area. Due to how the walls are set up, if we move the Floor object, 
the walls will move as well.

Note
For information on moving Unity’s camera or navigating to the Scene view, check out https://
docs.unity3d.com/Manual/SceneViewNavigation.html.

The way this game is designed, after the ball rolls past a single tile, we will no longer need it to 
be there anymore. If we just leave it there, the game will get slower over time due to us having 
so many things in the game environment using memory, so it’s a good idea to remove assets 
we are no longer using. We also need to have some way to figure out when we should spawn 
new tiles to continue the path the player can take.

6.	 Now, we also want to know where this piece ends, so we’ll add an object with a trigger collider 
in it. Select GameObject | Create Empty and name this object Tile End.

7.	 Then, we will add a Box Collider component to our Tile End object. Under Box Collider in 
the Inspector window, set the Scale values to (7, 2, 1) to fit the size of the space the player can 
walk in. Note that there is a green box around that space showing where collisions can take place. 
Set the Position property to (0, 1, 10) to reach past the end of our tile. Finally, check the Is 
Trigger property so that the collision engine will turn the collider into a trigger, which will be 
able to run code events when it is hit, but will not prevent the player from moving through it:

https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html


Building Your Game24

Figure 1.18 – Caption

As I mentioned briefly before, this trigger will be used to tell the game that our player has 
finished walking over this tile. This is positioned past the tile due to the fact that we want to 
still see tiles until they pass what the camera can see. We’ll tell the engine to remove this tile 
from the game, but we will dive more into that later on in the chapter.

8.	 Now that we have all of the objects created, we want to group our objects together as one piece 
that we can create duplicates of. To do this, let’s create an empty GameObject instance by going 
to GameObject | Create Empty and naming the newly created object Basic Tile. Set the 
Position values of this new object to (0, 0, 0).

9.	 Then, go to the Hierarchy window and drag and drop the Floor, Tile End, Left Wall, and 
Right Wall objects on top of it to make them children of the Basic Tile object.

10.	 Currently, the camera can see the start of the tiles, so to fix that, let’s set the Basic Tile Position 
values to (0, 0, -5). As you can see in the following screenshot, now the entire tile will shift back:

Figure 1.19 – Shifting the tile back



Creating a basic tile 25

11.	 Finally, we will need to know at what position we should spawn the next piece, so create another 
empty GameObject by going to GameObject | Create Empty or by pressing Ctrl + Shift + N. 
Make the new object a child of Basic Tile as well, give it the name Next Spawn Point, 
and set its Position values to (0, 0, 5).

Note
Note that when we modify an object that has a parent, the position is relative to the parent, 
not its world position.

As you can see, the spawn point position will now be on the edge of our current title:

Figure 1.20 – Next Spawn Point position

12.	 Now we have a single tile that is fully completed. Instead of duplicating this a number of times 
by hand, we will make use of Unity’s concept of Prefabs. Prefabs, or prefabricated objects, 
are blueprints of GameObjects and components that we can turn into files, which can be 
duplicated. There are other interesting features that Prefabs have, but we will discuss them as 
we make use of them.

From the Project window, go to the Assets folder and then create a new folder called Prefabs. 
Then, drag and drop the Basic Tile object from the Hierarchy window to the Project window 
inside the Prefabs folder. If the text for the Basic Tile name in the Hierarchy window becomes 
blue, we will know that it was made correctly:



Building Your Game26

Figure 1.21 – Basic Tile Prefab created

We now have a tile prefab that we can create duplicates of through code to extend our environment.

Making it endless
Now that we have a foundation, let’s make it so that we can continue running instead of stopping after 
a short time by spawning copies of this basic tile in front of each other:

1.	 To start off with, we have our prefab, so we can delete the original Basic Tile in the Hierarchy 
window by selecting it and then pressing the Delete key.

2.	 We need to have a place to create all of these tiles and potentially manage information for the 
game, such as the player’s score. In Unity, this is typically referred to as a GameManager. From 
the Project window, go to the Scripts folder and create a new C# script called GameManager.

3.	 Open the script in your IDE and use the following code:

using UnityEngine;

/// <summary>
/// Manages the main gameplay of the game
/// </summary>
public class GameManager : MonoBehaviour
{



Making it endless 27

    [Tooltip("A reference to the tile we want to
        spawn")]
    public Transform tile;

    [Tooltip("Where the first tile should be placed
        at")]
    public Vector3 startPoint = new Vector3(0, 0, -5);

    [Tooltip("How many tiles should we create in
        advance")]
    [Range(1, 15)]
    public int initSpawnNum = 10;

    /// <summary>
    /// Where the next tile should be spawned at.
    /// </summary>
    private Vector3 nextTileLocation;

    /// <summary>
    /// How should the next tile be rotated?
    /// </summary>
    private Quaternion nextTileRotation;

    /// <summary>
    /// Start is called before the first frame update
    /// </summary>
    private void Start()
    {
        // Set our starting point
        nextTileLocation = startPoint;
        nextTileRotation = Quaternion.identity;

        for (int i = 0; i < initSpawnNum; ++i)
        {
            SpawnNextTile();
        }
    }

    /// <summary>
    /// Will spawn a tile at a certain location and
    /// setup the next position
    /// </summary>



Building Your Game28

    public void SpawnNextTile()
    {
        var newTile = Instantiate(tile,
            nextTileLocation, nextTileRotation);

        // Figure out where and at what rotation we
        /// should spawn the next item
        var nextTile = newTile.Find("Next Spawn
            Point");
        nextTileLocation = nextTile.position;
        nextTileRotation = nextTile.rotation;
    }
}

This script will spawn a number of tiles, one after another, based on the tile  and 
initSpawnNum properties.

4.	 Save your script and dive back into Unity. From there, create a new empty GameObject and 
name it Game Controller, optionally resetting the position if wanted for organizational 
purposes. Drag and drop it at the top of the Hierarchy window. For clarity’s sake, go ahead 
and reset the position if you want to. Then, attach the Game Manager script to the object and 
then set the Tile property by dragging and dropping the Basic Tile prefab from the Project 
window into the Tile slot:

Figure 1.22 – Assigning the Tile property



Making it endless 29

5.	 Save your scene and run the project:

Figure 1.23 – The current state of the game

Great, but now we will need to create new objects after these, and we don’t want to spawn a 
crazy number of these at once. It’s better that once we reach the end of a tile, we create a new 
tile and remove it. We’ll work on optimizing this more later, but that way, we always have about 
the same number of tiles in the game at any given time.

6.	 Go into the Project window and from the Scripts folder, create a new script called 
TileEndBehaviour, using the following code:

using UnityEngine;

/// <summary>
/// Handles spawning a new tile and destroying this
/// one upon the player reaching the end
/// </summary>
public class TileEndBehaviour : MonoBehaviour
{
    [Tooltip("How much time to wait before destroying
        " + "the tile after reaching the end")]
    public float destroyTime = 1.5f;

    private void OnTriggerEnter(Collider other)



Building Your Game30

    {
        // First check if we collided with the player
        if(other.gameObject.GetComponent
        <PlayerBehaviour>())
        {
            // If we did, spawn a new tile
            var gm = GameObject.FindObjectOfType
                <GameManager>();
            gm.SpawnNextTile();

            // And destroy this entire tile after a
            // short delay
            Destroy(transform.parent.gameObject,
                destroyTime);
        }
    }
}

7.	 Now, to assign it to the prefab, we can go to the Project window and then go into the Prefabs 
folder. From there, double-click on the Basic Tile object to open up its editor. From the 
Hierarchy tab, select the Tile End object and then add a Tile End Behaviour component to it:

Figure 1.24 – Adding the Tile End Behaviour



Making it endless 31

8.	 Click on the left arrow next to the prefab name to return to the basic scene:

Figure 1.25 – Left Arrow location

Tip
You can also open the prefab editor by selecting a prefab object from the Project window, going 
to the Inspector tab, and clicking the Open Prefab button.

9.	 Save your scene and play. You’ll now note that as the player continues to move, new tiles will 
spawn as you go; if you switch to the Scene tab while playing, you’ll see that as the ball passes 
the tiles, they will destroy themselves:

Figure 1.26 – Tiles automatically being destroyed

This will ensure that there will be tiles in front of the player to visit! But of course, this is just an 
endless straight line. In the next section, we will see how to make the game much more interesting.



Building Your Game32

Creating obstacles
It’s great that we have some basic tiles, but it’s a good idea to give the player something to do, or in 
our case, something to avoid. This will provide the player with some kind of challenge and a basic 
gameplay goal, which is avoiding obstacles here. In this section, you’ll learn how to customize your 
tiles to add obstacles for your player to avoid. So, let’s look at the steps:

1.	 Just like we created a prefab for our basic tile, we will create a single obstacle through code. I 
want to make it easy to see what the obstacle will look like in the world and make sure that it’s 
not too large, so I’ll drag and drop a Basic Tile prefab back into the world.

2.	 Next, we will create a cube by going to GameObject | 3D Object | Cube. We will name this object 
Obstacle. Change the Scale value of Y to 2 and position it above the platform at (0, 1, 0.25):

Figure 1.27 – Adding obstacles

3.	 We can then play the game to see how that’ll work:

 

Figure 1.28 – Obstacles stop the player



Creating obstacles 33

4.	 As you can see in the preceding screenshot, the player gets stopped, but nothing really happens. 
In this instance, we want the player to lose when they hit this obstacle and then restart the game; 
to do that, we’ll need to write a script. From the Project window, go to the Scripts folder and 
create a new script called ObstacleBehaviour. We’ll use the following code:

using UnityEngine;
using UnityEngine.SceneManagement; // LoadScene

public class ObstacleBehaviour : MonoBehaviour
{
    [Tooltip("How long to wait before restarting the
        game")]
    public float waitTime = 2.0f;

    private void OnCollisionEnter(Collision collision)
    {
        // First check if we collided with the player
        if (collision.gameObject.GetComponent
        <PlayerBehaviour>())
        {
            // Destroy the player
            Destroy(collision.gameObject);

            // Call the function ResetGame after
            // waitTime has passed
            Invoke("ResetGame", waitTime);
        }
    }

    /// <summary>
    /// Will restart the currently loaded level
    /// </summary>
    private void ResetGame()
    {
        // Get the current level's name
        string sceneName =
            SceneManager.GetActiveScene().name;

        // Restarts the current level
        SceneManager.LoadScene(sceneName);
    }
}



Building Your Game34

5.	 Save the script and return to the editor, attaching the script to the Obstacle GameObject 
we just created.

6.	 Save your scene and try the game:

Figure 1.29 – Obstacles destroy the player

As you can see in the preceding screenshot, once we hit the obstacle, the player gets destroyed, 
and then after a few seconds, the game starts up again. You’ll learn how to use particle systems 
and other things to polish this up, but at this point, it’s functional, which is what we want.

7.	 Now that we know it works correctly, we can make it a prefab. Just as we did with the original 
tile, go ahead and drag and drop the Obstacle object from Hierarchy into the Project tab and 
into the Prefabs folder:



Creating obstacles 35

Figure 1.30 – Creating the Obstacle prefab

8.	 Next, we will remove the Obstacle object, as we’ll spawn it upon creating the tile. To do so, 
select the Obstacle object in the Hierarchy window and then press the Delete key.

9.	 We will make markers to indicate where we would possibly like to spawn our obstacles. Expand 
the Basic Tile object to show its children and then duplicate the Next Spawn Point object 
and move the new one’s Position to (0, 1, 4). We will then rename the object Center.

10.	 Afterward, to help see the objects within the Scene window, go to the Inspector window and 
click on the gray cube icon, and then on the Select Icon menu, select whichever of the color 
options you’d like (I went with blue). Upon doing this, you’ll see that we can see the text inside 
the editor if we are close to the object (but it won’t show up in the Game tab by default):

Figure 1.31 – Creating a Center marker



Building Your Game36

11.	 We want a way to get all of the potential spawn points we will want in case we decide to extend 
the project in the future, so we will assign a tag as a reference to make those objects easier to 
find. To do that, at the top of the Inspector window, click on the Tags dropdown and select Add 
Tag.... From the menu that pops up, press the + button and then name it ObstacleSpawn:

Figure 1.32 – Creating the ObstacleSpawn tag

12.	 Go back and select the Center object and assign the Tag property to ObstacleSpawn:

Figure 1.33 – Assigning the tag to the Center object

Note
For more information on tags and why we’d want to use them, check out https://docs.
unity3d.com/Manual/Tags.html.

13.	 Go ahead and duplicate this twice and name the others Left and Right, moving them two 
units to the left and right of the center to become other possible obstacle points:

https://docs.unity3d.com/Manual/Tags.html
https://docs.unity3d.com/Manual/Tags.html


Creating obstacles 37

Figure 1.34 – Creating the Left and Right markers

14.	 Note that these changes don’t affect the original prefab, by default; that’s why the objects are 
currently black text. To make this happen, select Basic Tile, and then in the Inspector window 
under the Prefab section, click on Overrides and select Apply All:

Figure 1.35 – Applying changes to the prefab

15.	 Now that the prefab is set up correctly, we can go ahead and remove it by selecting it in the 
Hierarchy window and pressing Delete.

16.	 We then need to go into the GameManager script and make some modifications. To start 
with, we will need to introduce some new variables:

/// <summary>
/// Manages the main gameplay of the game
/// </summary>



Building Your Game38

public class GameManager : MonoBehaviour
{
    [Tooltip("A reference to the tile we want to
        spawn")]
    public Transform tile;

    [Tooltip("A reference to the obstacle we want to
        spawn")]
    public Transform obstacle;

    [Tooltip("Where the first tile should be placed
        at")]
    public Vector3 startPoint = new Vector3(0, 0, -5);

    [Tooltip("How many tiles should we create in
        advance")]
    [Range(1, 15)]
    public int initSpawnNum = 10;

    [Tooltip("How many tiles to spawn with no
        obstacles")]
    public int initNoObstacles = 4;

The first of these variables is a reference to the obstacle that we will be creating copies of. The 
second is a parameter of how many tiles should be spawned before spawning obstacles. This is 
to ensure that the player can see the obstacles before they need to avoid them.

17.	 Then, we need to modify the SpawnNextTile function in order to spawn obstacles as well:

/// <summary>
/// Will spawn a tile at a certain location and setup
/// the next position
/// </summary>
/// <param name="spawnObstacles">If we should spawn an
/// obstacle</param>
public void SpawnNextTile(bool spawnObstacles = true)
{
    var newTile = Instantiate(tile, nextTileLocation,
                              nextTileRotation);

    // Figure out where and at what rotation we should
    // spawn the next item
    var nextTile = newTile.Find("Next Spawn Point");
    nextTileLocation = nextTile.position;
    nextTileRotation = nextTile.rotation;



Creating obstacles 39

    if (spawnObstacles)
    {
        SpawnObstacle(newTile);
    }

}

Note that we modified the SpawnNextTile function to now have a default parameter set to 
true, which will tell us whether we want to spawn obstacles or not. At the beginning of the 
game, we may not want the player to have to start dodging immediately, but we can tweak the 
value to increase or decrease the number we are using. Because it has a default value of true, 
the original version of calling this in the Start function will still work without an error, but 
we will be modifying it later on.

18.	 Here, we ask whether the value is true to call a function called SpawnObstacle, but that 
isn’t written yet. We will add that next, but first, we will be making use of the List class and 
we want to make sure that the compiler knows which List class we are referring to, so we 
need to add a using statement at the top of the file:

using UnityEngine;
using System.Collections.Generic; // List

19.	 Now we can write the SpawnObstacle function. Add the following function to the script:

private void SpawnObstacle(Transform newTile)
{
    // Now we need to get all of the possible places
    // to spawn the obstacle
    var obstacleSpawnPoints = new List<GameObject>();

    // Go through each of the child game objects in
    // our tile
    foreach (Transform child in newTile)
    {
        // If it has the ObstacleSpawn tag
        if (child.CompareTag("ObstacleSpawn"))
        {
            // We add it as a possibility
            obstacleSpawnPoints.Add(child.gameObject);

        }

    }



Building Your Game40

    // Make sure there is at least one
    if (obstacleSpawnPoints.Count > 0)
    {
        // Get a random spawn point from the ones we
        // have
        int index = Random.Range(0,
            obstacleSpawnPoints.Count);
        var spawnPoint = obstacleSpawnPoints[index];

        // Store its position for us to use
        var spawnPos = spawnPoint.transform.position;

        // Create our obstacle
        var newObstacle = Instantiate(obstacle,
            spawnPos, Quaternion.identity);

        // Have it parented to the tile
        newObstacle.SetParent(spawnPoint.transform);
    }
}

20.	 Lastly, let’s update the Start function:

/// <summary>
/// Start is called before the first frame update
/// </summary>
private void Start()
{
    // Set our starting point
    nextTileLocation = startPoint;
    nextTileRotation = Quaternion.identity;

    for (int i = 0; i < initSpawnNum; ++i)
    {
        SpawnNextTile(i >= initNoObstacles);
    }
}

Now, as long as i is less than the value of initNoObstacles , it will not spawn 
a variable, effectively giving us a buffer of four tiles that can be adjusted by changing the 
initNoObstacles variable.



Creating obstacles 41

21.	 Save the script and go back to the Unity Editor. Then, assign the Obstacle variable of the 
Game Manager (Script) component in the Inspector window with the Obstacle prefab we 
created previously:

Figure 1.36 – Assigning the Obstacle property

22.	 It’s a bit hard to see things currently due to the default light settings, so let’s go to the Hierarchy 
window and select the Directional Light object. A directional light acts similar to how the Sun 
works on Earth, shining everywhere from a certain position.

23.	 With the default settings, the light is a bit too bright and the shadows are too dark by default, 
so in the Inspector window, I changed Intensity to 0.5 and then the Realtime Shadows | 
Strength property to 0.5:



Building Your Game42

Figure 1.37 – Adjusting the Directional Light

24.	 Save your scene and play the game:

Figure 1.38 – The current state of the game

As you can see in the preceding screenshot, we now have a number of obstacles for our player to avoid!



Summary 43

Note
For more information on directional lights and the other lighting types that Unity has, check 
out https://unity3d.com/learn/tutorials/topics/graphics/light-
types?playlist=17102.

Summary
There you have it! A solid foundation – but just that, a foundation. However, that being said, we covered 
a lot of content in this chapter. We discussed how to create a new project in Unity, and we built a player 
that will move continuously, as well as take inputs to move horizontally. We then discussed how we 
can use Unity’s attributes and XML comments to improve our code quality and help us when working 
in teams. We also covered how to have a moving camera. We created a tile-based level design system 
where we created new tiles as the game continued, randomly spawning obstacles for the player to avoid.

Throughout this book, we will explore more that we can do to improve this project and polish it while 
changing it to make for the best experience possible on mobile platforms. However, before we get to 
that, we’ll actually need to figure out how to deploy our projects, which is what we will be working 
on in the next chapter.

https://unity3d.com/learn/tutorials/topics/graphics/light-types?playlist=17102
https://unity3d.com/learn/tutorials/topics/graphics/light-types?playlist=17102




2
Project Setup for Android and 

iOS Development

We now have a project to start with, but currently, it’s built with playing on a PC in mind. However, 
since this book is about mobile development, it’s very important to have the game working on the 
device itself before we get much further.

In this chapter, we will go through all of the setups we need to perform to deploy the project in its 
current state to our mobile devices. At the time of writing this book, mobile development is typically 
done either for Android or iOS, so we will cover those two platforms.

This chapter will be split into a number of topics. The chapter itself will be a simple step-by-step process 
from beginning to end. The following is a list of the tasks we will perform:

•	 Introducing the Build Settings menu

•	 Building a project for a PC

•	 Exporting your project to Android

•	 Running the Android APK with an emulator

•	 Putting the project on your Android device

•	 Unity iOS installation and Xcode setup

•	 Building a project for iOS

•	 Running the project via the iOS simulator



Project Setup for Android and iOS Development46

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section.

If you wish to deploy to an Android device, you can use macOS, Linux, or Windows, and depending 
on the features you wish to use, it is possible to export your game in such a way as to run apps on 
Android 5.1 Lollipop and above.

Note
For more information on the different types of Android versions that are supported, check 
out https://docs.unity3d.com/ScriptReference/AndroidSdkVersions.
html.

To develop for an iOS device, in addition to the device itself running iOS 12 or later, you’ll need to 
do some work on a Macintosh computer that runs OS X 10.13 High Sierra or a later version for an 
Intel-based Macintosh and Big Sur 11.0 for a Macintosh using Apple silicon. I’ll be using 12.3.1 macOS 
Monterey. If you do not have one, it is possible to develop your game using Windows and, when you 
want to publish the game, bring your project to a Macintosh to do the final export.

Note
There are some other potential ways to build iOS apps using Windows, but they are not within 
the scope of this book. One possible option is to use Unity’s CI/CD Cloud Build Automation 
& Deployment Tools service, which automatically creates versions of your game. For more 
information, check out https://unity.com/solutions/ci-cd.

Another potential option would be to rent a Macintosh via the cloud to do the building yourself. 
For more information on that and other potential options, check out https://mindster.
com/how-develop-ios-apps-windows/.

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter02.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/ScriptReference/AndroidSdkVersions.html
https://docs.unity3d.com/ScriptReference/AndroidSdkVersions.html
https://unity.com/solutions/ci-cd
https://mindster.com/how-develop-ios-apps-windows/
https://mindster.com/how-develop-ios-apps-windows/
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter02


Introducing the Build Settings menu 47

Introducing the Build Settings menu
There are times during development when you may want to see what your game looks like outside of 
the editor. It can give you a sense of accomplishment. I know I felt that way the first time I pushed a 
build to a console devkit. Whether it’s for PC, Macintosh, Linux, web player, mobile, or console, we 
have to go through the same menu – the Build Settings menu:

1.	 Start off by opening up the project we created in Chapter 1, Building Your Game. In addition, 
open the scene we created (SampleScene.unity, which is inside the Scenes folder):

Figure 2.1 –The SampleScene file

2.	 Since the scene is our gameplay, let’s rename the file by first opening the Scenes folder in the 
Project window, right-clicking on the SampleScene object, and selecting Rename. Rename 
the file to Gameplay and then press the Enter key to submit the change. Unity will ask whether 
you want to reload the scene. Do so by clicking Reload.

3.	 From here, we will open the Build Settings menu by selecting File | Build Settings:

Tip
You may alternatively press Ctrl + Shift + B or Command + Shift + B to bring the menu up as well.



Project Setup for Android and iOS Development48

Figure 2.2 – The Build Settings menu

In the preceding screenshot, you will notice that the Build Settings menu came up. This menu 
contains three sections:

	� Scenes In Build (top): This window contains the scenes in our project that we want to 
include when we build our project. This ensures that things such as test levels won’t be 
included unless specified.

	� Platform (bottom left): This is a list of all of the platforms to which you can export your 
game. The Unity logo shows up on the current platform you’re compiling for. To change 
your platform, you’ll need to select it from this list and then click on the Switch Platform 
button, which appears below the list.

	� Options (bottom right): To the right of the Platform section, you’ll see some settings that 
can be tweaked based on how you want the build to work, with certain options that change 
based on the platform you will work with.

4.	 By default, we have no scenes in our build, so let’s go ahead and change that. Click on the Add 
Open Scenes button; you should see the Scenes/Gameplay level appear in the list at index 
0, which means that when your game is played, this level will be the first one to load:



Building a project for a PC 49

Figure 2.3 – Adding the Gameplay Scene to Scenes In Build

Now that we know how the build settings work, let’s see how to build the project for a PC to understand 
the general case before continuing to build our mobile game.

Note
You may also add scenes to the Scenes In Build section by dragging and dropping them from 
the Project window. You may also drag the scenes to reorder them however you wish.

Building a project for a PC
By default, our platform is set to Windows, Mac, Linux. Just to verify that everything is working 
correctly, let’s go ahead and get the game working on our own platform before moving to mobile:

1.	 To get started, we will select the Build option. In my case, I’ll be exporting the project to 
Windows, but the process is similar for macOS and Linux.



Project Setup for Android and iOS Development50

2.	 Once this is done, a window will pop up asking for a name and a location to put the game in. 
I’m going to create a new Export folder located in the same folder that contains Assets and 
Library, so it won’t show up in the Project window, but it will be in the same folder as my project:

Figure 2.4 – The Export folder

3.	 Click on Select Folder and wait for it to finish. Once it’s done, a window should appear as follows:

Figure 2.5 – Folder created



Exporting a project for Android 51

We have the executable, but we also have a data folder containing all the assets for our application 
(right now, it’s called MobileDev_Data). You must include the data folder and the other 
files created with your game, or it will not run.

If you build for Mac, it will bundle the app and data altogether, so once you export the game, 
all you need to provide is the application.

4.	 If you double-click on the .exe file to run the game, you’ll be taken to the proper game screen, 
as shown in the following screenshot:

Figure 2.6 – Running the game

With that, we should be able to control and play the game as we would usually do. This is great!

Tip
You’ll have to use Alt + F4 (Command + Q on Macintosh) to quit the game, and you can switch 
to windowed mode by pressing Alt + Enter.

Now that we have discussed the universal ways of building a project, let’s dive into the specifics of 
different platforms. In the next section, we will discuss getting our project onto an Android device.

Exporting a project for Android
Now that we have all of the setup done, we can open Unity with our project and export it for Android 
devices. In this section, we will first check whether we have Android Build Support installed, and then 
we will update the build and player settings to export our project. So, let’s get started.



Project Setup for Android and iOS Development52

Installing Android Build Support for Unity

First of all, if you haven’t done so already, you’ll need to select to add Android Build Support as an 
option when you install Unity. If you have installed it, you can skip this section. If you did not install 
it when doing the initial installation, we will cover the installation in the following steps:

1.	 Close the Unity Editor and open the Unity Hub and select the Installs section.

2.	 From there, click on the gear icon to the right of your current version of Unity and select the 
Add modules option:

Figure 2.7 – Selecting the Add Modules option

3.	 Check the Android Build Support option, which should also check the Android SDK and 
NDK Tools and OpenJDK options. Afterward, click on the Continue button:



Exporting a project for Android 53

Figure 2.8 –  Checking the Android Build Support option

4.	 You’ll be brought to a license terms page. Read it over and if you agree to it, check the agreement 
box and click on the Install button:

Figure 2.9 –Android SDK and NDK License Terms from Google



Project Setup for Android and iOS Development54

Wait for it to finish installing. Once finished, you should see the Android logo at the bottom 
of your installation:

Figure 2.10 – The newly added platform

This means that Android Build Support has now been added to our version of Unity, and we can 
build projects there. Next, we will see how to build the project for Android and the required settings.

Updating build and player settings for Android projects

Now that we have Android support, let’s open up our project again and change the platform we are 
developing for:

1.	 At this point, we will dive into Unity and move into our Build Settings menu once again by 
going to File | Build Settings.

2.	 Click on the Android option from the Platform list and then click on the Switch Platform 
button to make the change:



Exporting a project for Android 55

Figure 2.11 – Location of the Switch Platform button

Note that this will make Unity reimport all of the assets in our game, so this may be time-
consuming when you start to build larger projects. Once this is complete, you should notice that 
the Unity logo is now next to the Android option, signifying that’s the platform to be built for:



Project Setup for Android and iOS Development56

Figure 2.12 – Switched to the Android platform

3.	 Now, in order to be able to build our project, we must set the bundle identifier for our game, 
which is a string that identifies the app. It’s written like a URL in reverse, for example, com.
yourCompanyName.yourGameName. To modify this, we’ll need to open up the Player 
Settings menu, which we can access by clicking on the Player Settings… button in the bottom-
left part of the Build Settings menu or by going into Edit | Project Settings | Player. You’ll 
note that the menu appears as a new window:



Exporting a project for Android 57

Figure 2. 13 – The Player Settings menu

Now that we’re in the Android mode (note the text on the title bar of the Unity Editor), we 
can change these properties:

Figure 2.14 – The Android mode

4.	 We’ll discuss more of these in a later chapter, but for now, change your Company Name property 
to either your company name or some type of identifier; I used JohnPDoran.



Project Setup for Android and iOS Development58

5.	 Then scroll down until you get to the Other Settings option. From there, you’ll see the Package 
Name property is using whatever we set for our Company Name and Product Name properties, 
but we can customize it if we’d like by checking the Override Default Package Name property; 
we just have to ensure that it is different than the default value.

There’s also a Minimum API Level option; make sure that your option is set to the same version 
as your phone or earlier, depending on what you want to support. Note that the earlier you go, 
the fewer things you’ll have access to, but your project will be able to support more phones:

Figure 2.15 – Player settings adjustments

6.	 Close the Project Settings window and open the Build Settings menu again if it is not open, 
by going to File | Build Settings. Now, we can try to build the project by clicking on the Build 
button and saving it in the same Export folder we created earlier. It will ask for the name 
you’d like the file to have. I will use MobileDev as we did previously because instead of a 
.exe file, it will create a .apk file:



Running the Android APK with an emulator 59

Figure 2.16 – Android APK created

Wait a bit, and once it’s finished, you should have a new .apk file located in the folder. Of course, 
just having the APK file doesn’t do much if we can’t put it on our actual phone, so in the next section, 
we will enable our phone to test the game on our device.

Running the Android APK with an emulator
While the best way to test an Android game is on an actual Android device, it is also possible to test the 
game out on an emulator, which is a medium through which we can have our computer run software 
that was created for Android devices. There are several Android emulators available for Windows at 
the time of writing, but the one that I’ve had the most success with is one called LDPlayer, a lightweight 
and fast Android emulator; however, it does contain ads due to it being free. For those on an Intel-
powered Macintosh, you can use BlueStacks (https://www.bluestacks.com/download.
html), but at the time of writing, there are no Android emulators available on Apple silicon-powered 
Macintoshes. This section is completely optional; if you’d rather test on an actual device, skip ahead to 
the Putting the project on your Android device or the Unity for iOS setup and Xcode installation section.

https://www.bluestacks.com/download.html
https://www.bluestacks.com/download.html


Project Setup for Android and iOS Development60

To test the game on an emulator, follow these steps:

1.	 From your web browser, go to https://www.ldplayer.net/. From there, click on the 
Download LDPlayer 9 button:

Figure 2.17 – The LDPlayer website

2.	 Once the program is downloaded, open the installer, go through the standard installation 
process, and click the Try Now button once you’ve finished installation:

https://www.ldplayer.net/


Running the Android APK with an emulator 61

Figure 2.18 – The Welcome to LDPlayer menu

3.	 From the welcome screen, click on the X in the top right of the Welcome to LDPlayer menu.

4.	 Drag and drop the MobileDev.apk file from your Export folder onto the LDPlayer menu. 
If all goes well, you should see the MobileDev icon show up on the screen:

Figure 2.19 – Game added to the home screen



Project Setup for Android and iOS Development62

5.	 From there, you can click the icon to start the game!

Figure 2.20 – The game is running on the emulated device

As you can see, the game is running perfectly on the emulated device! We can click on the X from 
the MobileDev tab whenever we are finished playing. Now that we’ve seen how easy it is to run the 
game on an emulator, let’s see how to do it on an actual device!

Putting the project on your Android device
The following steps may be different for you depending on your Android version and your specific 
phone, but here is a general set of steps to be able to sideload our Android app to our device:

1.	 On your Android device, you’ll need to go to your Settings app. From there select the Apps section:



Putting the project on your Android device 63

Figure 2.21 – The Settings | Apps location

2.	 From there, scroll down till you get to the Special app access section or similar, and then tap 
on it to go into the menu:



Project Setup for Android and iOS Development64

Figure 2.22 – The Special app access option

3.	 Inside there, you’ll see a section called Install unknown apps. Enter this option:



Putting the project on your Android device 65

Figure 2.23 – The Install unknown apps option

4.	 We will be uploading our app to the device’s files, so we will want to enable Install unknown 
apps from the Files app. Select it and then enable it from the menu:



Project Setup for Android and iOS Development66

Figure 2.24 – Enabling the Install unknown apps option

With this enabled, your device can now install the .apk file, but now you will need to move 
your game over to the device to install it. The easiest way is to transfer it to your device via 
USB; we’ll do that now.

Tip
For those of you who’d rather not use USB, I would suggest using a cloud storage app, such as 
Dropbox, to upload the .apk file and then download it from the app and install it that way. 
There’s also another tool called ADB that can send files to your phone via USB or Wi-Fi. For 
more information on that and the rest of the Android build process, check out https://
docs.unity3d.com/Manual/android-BuildProcess.html.

https://docs.unity3d.com/Manual/android-BuildProcess.html
https://docs.unity3d.com/Manual/android-BuildProcess.html


Putting the project on your Android device 67

5.	 Connect your phone to your computer via USB. Upon being connected, your phone will show 
a notification that it’s connected via USB for charging. Click on that notification and change 
the option to File Transfer:

Figure 2. 25 – USB Preferences

6.	 After that, go back to your computer and go into Windows Explorer/Finder, and then go to 
the Devices and drives section; you should see your device appear there:



Project Setup for Android and iOS Development68

Figure 2.26 – Selecting our Android device

7.	 Double-click on your device and access the internal shared storage section. Then, drag the 
.apk file we made before into this folder:

Figure 2.27 – Placing the APK file on the Android device



Putting the project on your Android device 69

8.	 Now, back in your phone, open the Files/File Explorer app. From there, scroll down to the 
bottom of the menu and select the Internal storage option:

Figure 2.28 – The Internal storage location



Project Setup for Android and iOS Development70

9.	 From there, select your .apk file from the listed files:

Figure 2.29 – Selecting the application



Putting the project on your Android device 71

10.	 You’ll be asked to confirm the installation. Hit the Install button:

Figure 2.30 – Installing the app



Project Setup for Android and iOS Development72

11.	 You may see a window pop up that mentions that Play Protect doesn’t recognize the developer. 
We will see how to solve this issue later on, in Chapter14 Submitting Games to App Stores, but 
for now, click INSTALL ANYWAY and wait for the installation to finish:

Figure 2.31 – INSTALL ANYWAY

Your phone may also ask if you want to send the app for scanning by Play Protect. Since we 
will be creating several versions of the project while working through this book, it’s likely not 
needed, so I would select Don’t Send.

Tip
Of course, I can’t note the steps for all devices as some have different drivers that are required 
or additional steps that need to be performed in order to open files on the device. If these steps 
do not work and you do not know how to get files onto your device and access them and add 
new ones to them, go ahead and search on your internet search engine of choice for phone 
name file transfer, replacing the phone name with your phone’s name.



Unity for iOS setup and Xcode installation 73

12.	 Once it’s finished, go ahead and click on the Open button to open our game:

Figure 2.32 – The game running on an Android device

As you can see, the game is on there, and it’s working. Granted, you can’t control it yet, and there are 
many new things that you can’t do, but this lets you know that you’ve set up your Android device 
properly. Of course, now that you have your game on an Android device, you now need to get it 
working on iOS, which we will cover in the next section.

Unity for iOS setup and Xcode installation
With Android, there’s a lot of setup effort required, but building and getting a game onto your device 
is less work, whereas, with iOS, there’s less work to do on the setup and more involvement with getting 
the game actually onto the device.



Project Setup for Android and iOS Development74

Previously, you had to have a paid Apple Developer license to get your game onto an iOS device. 
Although that’s still required to get the game on the App Store, you are no longer required to get it 
for testing. Note that the free option doesn’t have everything available to you, most notably in-app 
purchases (IAPs) and the Game Center; however, the game should work just fine on your device. We 
will go over how to adjust your project to reflect being in the Apple Developer portal in Chapter 13,  
Building a Release Copy of Our Game, when we cover putting our project on the App Store.

To develop for an iOS device, in addition to the device itself running iOS 12 or later, you’ll also need 
to do some work on a Macintosh computer that runs OS X 10.13 High Sierra or a later version for 
an Intel-based Macintosh and Big Sur 11.0 for a Macintosh using Apple silicon. I’ll be using 12.3.1 
macOS Monterey. Just like working with Android, we’ll also need to do some setup before we can 
actually do the exporting. Let’s get started on that now:

1.	 First of all, if you haven’t done so already, you’ll need to add iOS Build Support (*) as an option 
when you are installing Unity. If you did not install it when doing the initial installation, you 
can open up the Unity Hub and select the Installs section.

2.	 From there, click on the three dots to the right of your current version of Unity and select the 
Add modules option:

Figure 2.33 – The Unity Hub Installs screen

3.	 From the menu that pops up, check the iOS Build Support option:



Unity for iOS setup and Xcode installation 75

Figure 2.34 – Adding iOS Build Support

4.	 Click on the Install button and wait for the installation to finish. Once it's complete, you should 
see some text in the platforms list for iOS support appear:

Figure 2.35 – iOS support added

This module allows you to be able to export your projects for iOS. Since I’ll mainly use my 
Windows machine, I’m only adding iOS support, but you can export both iOS and Android 
apps from your Macintosh computer.

5.	 You’ll also need to have Xcode, which is the program used to build iOS apps. To download it, 
you’ll need to open up the App Store application on your computer. In the search bar in the 
top-left corner, type Xcode and press Enter.



Project Setup for Android and iOS Development76

Figure 2.36 – Searching for “xcode”

6.	 From there, you’ll see the Xcode program at the top right of the page. Click on it and then on 
the Install/Update button (in my case, a cloud icon) and go through the installation process:

7.	 You may need to enter your Apple ID information; go ahead and do so and then wait for it 
to finish.

Note
If you do not have an Apple ID, you can get one from https://appleid.apple.com/.

8.	 Once Xcode is installed, open it up. There will be a license agreement for Xcode and the iOS 
SDK; go ahead and click on Agree. It’ll then begin installing components that are needed for 
it to work.

9.	 When you open Xcode, you’ll be brought to a welcome screen, but we want to do some setup 
first. From the top menu bar, go ahead and select Xcode | Preferences (or press Command 
+ ,). From there, click on the Accounts button. This will display all of the Apple IDs that you 
want to be able to use in Xcode:

https://appleid.apple.com/


Unity for iOS setup and Xcode installation 77

Figure 2.37 – The Accounts window

10.	 Click on the + icon at the bottom left of the screen and then select Apple ID when it asks what 
kind of account to create:

 

Figure 2.38 – Adding an Apple ID account



Project Setup for Android and iOS Development78

11.	 From the menu that pops up, add your Apple ID information, and you should see it appear 
on the screen.

If you select the name, you’ll see additional information on the right side, such as what teams 
you are on. If you are not enrolled in the Apple Developer Program, it’ll just be a personal team, 
but if you are paying for it, you should see additional teams there as well.

Now that we have completed the setup and installation of iOS and Xcode, let’s continue to build 
our project.

Building a project for iOS
While there are some similarities to working with Android, some differences are very important to 
note, so keep that in mind while reading this section. Let’s build our project for the iOS device using 
the following steps:

1.	 At this point, we will dive into Unity (switching Target to MacStandalone if needed) and then 
move into our Build Settings menu once again by going to File | Build Settings.

2.	 Click on the iOS option from the Platform list and then click on the Switch Platform button 
to make the change:

Figure 2.39 – Selecting the iOS option from the Platform list



Building a project for iOS 79

Note that this will make Unity reimport all of the assets in our game, which may be time-
consuming as you build larger and larger projects. This now also means that when we build 
our project, it will create an Xcode project instead of just an app, which we will need to open 
and work with once it’s built.

3.	 If we didn’t do so earlier when building for Android, we must modify the properties needed 
to modify the bundle identifier for our game. To modify this, we’ll need to open up the Player 
Settings menu, which we can get to by clicking on the Player Settings... button in the Build 
Settings menu or by going to Edit | Project Settings | Player.

4.	 From the top of the menu, change the Company Name property to either your company name 
or some type of identifier; I used JohnPDoran. Then scroll down until you get to the Other 
Settings option, and from there, you’ll see the Package Name property is using whatever we 
set for our Company Name and Product Name properties, but we can customize it if we’d like 
by checking the Override Default Package name property.

Note
If you have already changed this property when building for Android, it will already be done; 
there’s no need to do this again.

5.	 Now, we can try to build the project by clicking on the Build button and saving it in the same 
Export folder we created earlier—in this case, I created a new folder inside of it and named 
it MobileDev_iOS:

Figure 2.40 – Selecting a build location



Project Setup for Android and iOS Development80

Tip
You can press the down arrow button to search for folders in the Finder window that pops up.

6.	 Once the project has been built, we will be taken to a Finder window at the location where 
we created the project. From there, we can double-click on the .xcodeproj file to open the 
project inside Xcode:

Figure 2.41 – Location of the build’s Xcode project

7.	 In Xcode, after waiting for everything to load in, you’ll notice a yellow triangle with a ! in the 
center of it in the top-center console. If you click on it, you’ll see some information appear on 
the left-hand side.

8.	 Double-click on the Update to recommended settings option on the left-hand side of the 
screen and then click on the Perform Changes button in the window that pops up:



Building a project for iOS 81

Figure 2.42 – Perform Changes

9.	 Then, go to the middle of the window, and under TARGETS, select the Unity-iPhone option:

Figure 2.43 – Selecting the Unity-iPhone option

10.	 Afterward, in the Signing & Capabilities section, check the Automatically manage signing 
option and click on Enable Automatic when the popup appears. Then, assign your team to 
your profile in the window that pops up.



Project Setup for Android and iOS Development82

11.	 Once all the preceding steps are done, plug in your phone via USB, and when you unlock it, it 
may ask if you wish to trust this device; hit the Trust button. After loading all of the symbols it 
needs (wait until the top-middle section says Ready), at the top right, instead of Generic iOS 
Device, change it to the device you’ve connected. You may need to unplug and replug your 
phone after installing the symbols to have it pick up the device.

12.	 When you click the Play button, a window will appear, noting the device it will be building to. 
Once you’ve confirmed all the details are correct, click the Run button:

Figure 2.44 – The Play settings window

13.	 Your phone may be busy, so you may need to wait a bit before you can build to the device. You 
may get a window asking you to access the key access in your keychain. Go ahead and click 
Allow, entering your device password if required. You’ll also need to unlock your phone at 
some point so it can make the installation.

If all goes well, you should see your app automatically start playing on your device:



Building a project for iOS 83

Figure 2.45 – Playing our game on an iOS device

With that, we also have the game running on the iOS side.



Project Setup for Android and iOS Development84

14.	 If you go to your home screen, you should notice that the app will now be on your iOS device, 
as you can see in the following screenshot:

Figure 2.46 – The location of the iOS app



Running the project via the iOS simulator 85

Note
When building in the following manner, apps will only work for a limited time, possibly up 
to a week without the paid license. If your game crashes immediately and it worked correctly 
beforehand, this is most likely the culprit. Redeploy the device again to check whether that is 
the issue before modifying your actual project.

Running the project via the iOS simulator
Much like how we were able to use an Android emulator on the PC to play a simulated version of 
our game project, it is also possible to do the same exact thing on iOS by using the iOS simulator:

1.	 Back in the Unity Editor, go to the Player settings. From there, go to the Other Settings section 
and change the Target SDK property from Device SDK to Simulator SDK:

Figure 2.47 – Setting Target SDK to Simulator SDK

2.	 Rebuild the project. This time I created a new folder to specify that this build was meant for 
the iOS simulator:



Project Setup for Android and iOS Development86

Figure 2.48 – Select a build folder

3.	 Open the new project, and from there, in the top section, you’ll now see a simulator device 
selected instead of the Any iOS device option given in the previous build. You can also click on 
the option to open a drop-down list where you can select a particular device you’d like to build to:

Figure 2.49 – Selecting a simulator device



Summary 87

4.	 Once you have your device selected, press the Play button and wait until it completes building 
the project. If all goes well, you should be able to see the simulator open up, and you can then 
play your game:

Figure 2.50 – Playing the game on the simulator

And with that, we’ve seen just how easy it is to build our project in a simulator if needed; just make 
sure to switch the Target SDK property back to Device SDK when making a build for actual devices.

Summary
We now have our game running on Android and iOS devices, and we have learned the steps we’ll 
need to take each time we want to deploy our games on these devices.

While I will not be writing about exporting to both kinds of devices again until we get to Chapter 13, 
Building a Release Copy of Our Game, it’s a good idea for you to see how the changes that we will make 
will work with both platforms and keep testing on each platform to make sure that your project works 
correctly and at a frame rate that you are okay with.



Project Setup for Android and iOS Development88

This is especially important to note, as running the project on your PC via the editor or an emulator 
will not always accurately represent how the game will run on a different device. As a result, you may 
find that certain aspects of your game that run fine on your mobile device will cause your computer to 
be choppy instead. The thing is, you won’t know unless you are always checking the games on devices, 
so I highly advise that you do so.

Our game is working on mobile devices now, but it will not react to anything we do on the devices 
due to how we wrote our input code. In the next chapter, we will explore how we can add input to 
our project as well as the design considerations we need to make regarding how the different forms 
of input will change our game.



Part 2:  
Mobile-Specific Features

This part of the book will focus on developing mobile-specific features in your Unity project. By the 
end of this part, you will have all the knowledge necessary to create a feature-rich mobile game with 
a polished UI and integrated monetization and social media features.

This part has the following chapters:

•	 Chapter 3, Mobile Input/Touch Controls

•	 Chapter 4, Resolution-Independent UI

•	 Chapter 5, Advanced Mobile UI

•	 Chapter 6, Implementing In-App Purchases

•	 Chapter 7, Advertising Using Unity Ads

•	 Chapter 8, Integrating Social Media into Our Project





3
Mobile Input/Touch Controls

How players interact with your project is probably one of the most important things in it to get right. 
While player input is added for all projects, no matter what platform you are using, this is one area 
that can make or break your mobile game.

If the controls that are implemented don’t fit the game that you’re making, or if the controls feel clunky, 
players will not play your game for long stretches of time. While many people consider Rockstar’s 
Grand Theft Auto series of games to work well on consoles and PC, playing the games on a mobile 
device provides a larger barrier of entry, due to all of the buttons on the screen and the replacement of 
joysticks with virtual versions that don’t provide haptic feedback in the same manner as other platforms.

Mobile and tablet games that tend to do well typically have controls that are simple, finding as many 
ways to streamline the gameplay as possible. Many popular games require a single input, such as Dong 
Nguyen’s Flappy Bird and Ketchapp’s Ballz.

There are various ways for games to interact with a mobile device that are different when compared to 
traditional games such as gestures and pinches, and we will explore a number of those in this chapter.

In this chapter, we will cover the different ways that inputs will work on mobile devices. We will start 
with the input that is already built into our project, using the mouse, and then move on to touch events, 
gestures, the use of the accelerometer, and accessing information via the Touch class.

This chapter will be split into a number of topics. It will contain a simple, step-by-step process from 
beginning to end. Here is the outline of our tasks:

•	 Using mouse input

•	 Moving via touch

•	 Using Unity Remote

•	 Implementing a gesture

•	 Scaling a player using pinches



Mobile Input/Touch Controls92

•	 Using an accelerometer

•	 Detecting touch on game objects

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in this 
book (and there is a new version out), you can visit Unity’s download archive at https://unity3d.
com/get-unity/download/archive.

You can also find the system requirements for Unity at https://docs.unity3d.com/2022.1/
Documentation/Manual/system-requirements.html under the Unity Editor system 
requirements section.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter03.

Using mouse input
Before we dive into mobile-only solutions, I do want to point out that it is possible to write input that 
works on both mobile and PC by using mouse controls. Mobile devices support using mouse clicks 
as taps on the screen, with the position of the tap/click being the location where the finger has been 
pressed. This form of input provides just the position where the touch happened and indicates that 
a press has happened; it doesn’t give you all of the features that the mobile-only options do. We will 
discuss all of the features you have using mobile-specific input later on in this chapter, but I think it’s 
important to note how to have click events on the desktop as well. I personally use the desktop often 
for ease of testing on both a PC and my device, so I don’t have to deploy to a mobile device to test 
every single change made in a project.

To use desktop-based mouse click events for the movement of a player, first, inside Unity, open up 
your PlayerBehaviour script and update the FixedUpdate function to the following:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>

void FixedUpdate()
{
    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal") *
        dodgeSpeed;

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter03


Using mouse input 93

    /* If the mouse is held down (or the screen is pressed
     * on Mobile) */
    if (Input.GetMouseButton(0))
    {
        /* Get a reference to the camera for converting
         * between spaces */
        var cam = Camera.main;

        /* Converts mouse position to a 0 to 1 range */
        var screenPos = Input.mousePosition;
        var viewPos = cam.ScreenToViewportPoint(screenPos);

        float xMove = 0;

        /* If we press the right side of the screen */
        if (viewPos.x < 0.5f)
        {
            xMove = -1;
        }
        else
        {
            /* Otherwise we're on the left */
            xMove = 1;
        }

        /* Replace horizontalSpeed with our own value */
        horizontalSpeed = xMove * dodgeSpeed;
    }

    rb.AddForce(horizontalSpeed, 0, rollSpeed);

}

We have added a number of things to the preceding script. First, we check whether the mouse button 
had been held down or not through the use of the Input.GetMouseButton function. The function 
will return true if the mouse is held down, and false if it is not. The function takes in a parameter, 
which is for what mouse button we’d like to check, providing 0 for the left button, 1 for the right, and 
2 for the middle button. For mobile, however, only 0 will be picked up as a click.

Note
For more information on the Input.GetMouseButton function, check out https://
docs.unity3d.com/ScriptReference/Input.GetMouseButton.html.

https://docs.unity3d.com/ScriptReference/Input.GetMouseButton.html
https://docs.unity3d.com/ScriptReference/Input.GetMouseButton.html


Mobile Input/Touch Controls94

We can get the position that the mouse is at by using the Input.mousePosition property. 
However, this value is given to us in screen space. What is screen space? Well, let’s first talk about how 
we traditionally deal with positions in Unity by making use of world space.

Screen space versus world space

When dealing with positions in Unity through the Inspector window, we have the (0,0,0) point in 
the middle of our game’s world, which we call the origin, and then we refer to everything else based 
on an offset from there. We typically refer to this method of positioning as world space. Assuming 
that we have our camera pointing toward the origin, world space looks like this:

Figure 3.1 – An example of world space

The lines are the x, y, and z axes of our world. If I were to move an object to the right or left, it would 
move along the x axis positively or negatively respectively. When in school, you may have learned 
about using graphs and points, and world space works very much like that.

Note
Children of parented objects use a different system in the Inspector window, in that they are 
given positions relative to their parents instead. This system is called local space.

When using mouse input, Unity gives us this information in another space, screen space. In this space, 
the position is based on where the camera is and isn’t involved with the actual game world. This space 
is also just in 2D, so there’s only an x and y position, with z always being stuck at 0:



Using mouse input 95

Figure 3.2 – An example of screen space

In the preceding case, the bottom left of the screen would be (0,0) and the top right would be (Screen.
width, Screen.height). Screen.width and Screen.height are values in Unity that will give us the screen 
size of the screen window in pixels.

We could use these values as provided and then compare what side of the screen the player pressed, 
but in our case, I think it’d be better to convert the position into an easier space to work with. One 
such space is the viewport space, which goes from (0,0) to (1,1):

Figure 3.3 – An example of viewport space

Instead of searching whether our x position is less than half of the screen width, I can instead just 
check whether the value of viewPos.x is less than 0.5, which is what we are doing in the preceding 
code. If the value is less than 0.5, it’s on the left side of the screen, so we return -1; otherwise, it’s 
on the right side, so we give 1.



Mobile Input/Touch Controls96

Note
Note that some of Unity’s functions will use Vector3 instead of Vector2 in order to work with 
3D spaces as well.

Once we know that, we can then set the horizontal speed variable to move to the left or right based 
on our movement.

Save the script and dive back into Unity, and you will see the following:

Figure 3.4 – The current status of the game

As you can see in the preceding screenshot, we can now use either the mouse (via the Input.
GetMouseButton function and the Input.mousePosition variable) or our keyboard (via 
the GetAxis function), as described previously, to move our player.

This form of input works well enough for what we’re doing right now, but I’m assuming that you’ll 
want to know how to use the mobile device’s own way of moving, so we will go ahead and learn how 
to replicate the same functionality using touch instead.

Moving using touch controls
Unity’s Input engine has a property called Input.touches, which is an array of the Touch 
objects. The Touch struct contains information on the touch that occurred, with information such 
as the amount of pressure on the touch and how many times you tapped the screen. It also contains 
the position property, such as Input.mousePosition, that will tell you what position the tap 
occurred at, in pixels.



Moving using touch controls 97

Note
For more information on the Touch struct, check out https://docs.unity3d.com/
ScriptReference/Touch.html.

Let’s look at the steps to use touch instead of mouse inputs:

1.	 Adjust our preceding code to look something like the following:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>

void FixedUpdate()
{
    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal")
        * dodgeSpeed;

    /* Check if Input has registered more than 0
       touches */
    if (Input.touchCount > 0)
    {
        /* Get a reference to the camera for
           converting between spaces */
        var cam = Camera.main;

        /* Store the first touch detected */
        var firstTouch = Input.touches[0];

        /* Converts mouse position to a 0 to 1 range
        */
        var screenPos = firstTouch.position;
        var viewPos =
            cam.ScreenToViewportPoint(screenPos);

        float xMove = 0;

        /* If we press the right side of the screen */
        if (viewPos.x < 0.5f)
        {
            xMove = -1;
        }

https://docs.unity3d.com/ScriptReference/Touch.html
https://docs.unity3d.com/ScriptReference/Touch.html


Mobile Input/Touch Controls98

        else
        {
            /* Otherwise we're on the left */
            xMove = 1;
        }

        /* Replace horizontalSpeed with our own value
        */
        horizontalSpeed = xMove * dodgeSpeed;
    }

    rb.AddForce(horizontalSpeed, 0, rollSpeed);

}

Now, note that this code looks very similar to what we’ve written in the preceding section. With 
that in mind, instead of copying and pasting the appropriate code twice and making changes, 
as a number of starting programmers would do, we can instead take the similarities and make 
a function. For the differences, we can use parameters to change the value instead.

2.	 Keeping that in mind, let’s add the following function to the PlayerBehaviour class:

/// <summary>
/// Will figure out where to move the player
/// horizontally
/// </summary>
/// <param name="screenPos">The position the player
/// has touched/clicked on in screen space</param>
/// <returns>The direction to move in the x
    axis</returns>
private float CalculateMovement(Vector3 screenPos)
{
    /* Get a reference to the camera for converting
     * between spaces */
    var cam = Camera.main;

    /* Converts mouse position to a 0 to 1 range */
    var viewPos =
        cam.ScreenToViewportPoint(screenPos);

    float xMove = 0;

    /* If we press the right side of the screen */
    if (viewPos.x < 0.5f)
    {



Moving using touch controls 99

        xMove = -1;
    }
    else
    {
        /* Otherwise we're on the left */
        xMove = 1;
    }

    /* Replace horizontalSpeed with our own value */
    return xMove * dodgeSpeed;
}

In the preceding code, instead of using Input.mousePosition or the touch position, we 
use a parameter for the function. Also, unlike previous functions we’ve written, this one will 
actually use a return value; in this case, it will give us a floating-point value. We will use this 
value in the Update function to set horiztonalSpeed to a new value when this function 
is called. Now that the function exists, we can call it when appropriate.

3.	 Now, update the Update function, as follows:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>

void FixedUpdate()
{
    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal")
        * dodgeSpeed;

    /* Check if we are running either in the Unity
       editor or in a * standalone build.*/
    #if UNITY_STANDALONE || UNITY_WEBPLAYER ||
        UNITY_EDITOR
        /* If the mouse is held down (or the screen is
           tapped * on Mobile */
        if (Input.GetMouseButton(0))
        {
            var screenPos = Input.mousePosition;
            horizontalSpeed =
                CalculateMovement(screenPos);
        }
    /* Check if we are running on a mobile device */
    #elif UNITY_IOS || UNITY_ANDROID



Mobile Input/Touch Controls100

        // Check if Input has registered more than
        // zero touches
        if (Input.touchCount > 0)
        {
            /* Store the first touch detected */
            var firstTouch = Input.touches[0];
            var screenPos = firstTouch.position;
            horizontalSpeed =
                CalculateMovement(screenPos);
        }
    #endif

    rb.AddForce(horizontalSpeed, 0, rollSpeed);

}

In the preceding example, I am using a #if directive based on the platform selected. Unity 
will automatically create #define, depending on what has been selected as the platform we 
are deploying for. What this #if does, along with #elif and #endif, is allow us to include 
or exclude code from our project based on these directives.

In Visual Studio, note that if you’re building for iOS or Android, the code within the UNITY_
IOS || UNITY_ANDROID section is grayed out, meaning that it won’t be called currently 
because we are running the game in the Unity Editor. However, when we export the code to 
our platform, the appropriate code will be used.

Note
To take a look at all of the other platform-dependent #define directives, check out https://
docs.unity3d.com/Manual/PlatformDependentCompilation.html.

Making use of the aforementioned directives, we can specify the code for different versions of 
our project, which is vital when dealing with multi-platform development.

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html


Using Unity Remote 101

Note
In addition to Unity’s built-in #define directives, you can create your own by going to Edit 
| Project Settings | Player, scrolling down to Other Settings in the Inspector window, and 
changing Scripting Define Symbols.

This can be great for targeting specific devices or for showing certain pieces of debug information, 
in addition to a number of other things.

4.	 Save the script and dive back into Unity.

Upon exporting our game to your Android device, note that the controls now work correctly using 
our newly created touch code. This allows us to have something that works on mobile as well as PC.

We already know that we can export our game to an Android device, but there is another way that we 
can test our game on a device without having to do a full export. This can be done by downloading 
a special app, which will allow us to stream our games from our computer to our mobile device and 
is what we will be discussing next.

Using Unity Remote
Another way to check how our game works using mobile devices is through an application that Unity 
has created called the Unity Remote. Created with Unity 5, it has been a while since the application 
has been updated, but it still works with the current version of Unity; however, it does require us to 
do some additional work and setup.

Android setup For Unity Remote

In order to set up a phone to use Unity Remote, we will need to download the app and learn how to 
enable debugging mode, so in this section, we’re going to see just how to do that:

1.	 To start, open up the Google Play app, and from there in the search bar, type in unity remote:



Mobile Input/Touch Controls102

Figure 3.5 – Searching for the Unity Remote application

2.	 Select the Unity Remote 5 app. Afterward, you’ll be brought to the screen in order to install 
it, so click on the Install button and wait for it to finish downloading.



Using Unity Remote 103

Figure 3.6 – The Unity Remote 5 app page on Google Play

3.	 Once it’s completed, you should see it show up on your phone, ready to be opened.



Mobile Input/Touch Controls104

Figure 3.7 – Application on your device

4.	 Click on the application, and you’ll be brought to a screen that asks you whether the application 
is allowed to take pictures and record video. This is due to the features that your games may 
use, so feel free to choose whether your game can use those features.



Using Unity Remote 105

Figure 3.8 – The permissions screen

5.	 Afterward, you should see a screen that looks like this:



Mobile Input/Touch Controls106

Figure 3.9 – Running the Unity Remote 5 app

This is the setup screen that you should see before playing your games, but if you try to play your project 
right now, nothing would happen; therefore, there’s still a few things that we need to do in preparation.



Using Unity Remote 107

Enabling developer mode and debugging

To start off with, we’re going to need to change our phone to be in developer mode so that we can 
enable debugging:

1.	 First, in the Unity Editor, go to the Project Settings menu and open up the Editor section. From 
there, under the Unity Remote options, change Device from None to Any Android Device.

Figure 3.10 – Setting the Unity Remote device

2.	 If you have not done so already, connect your phone to your PC via USB. From the Settings 
menu, you’ll want to select the USB accessory connected notification from your notifications.



Mobile Input/Touch Controls108

Figure 3.11 – The notifications window upon plugging in the phone to the computer

3.	 From the menu that pops up, select the USB tethering option.



Using Unity Remote 109

Figure 3.12 – Changing the mode to USB tethering

If you don’t see this on your device, you may look for the Mobile Hotspot and Tethering 
section of your phone or using your internet search engine of choice to see how to enable USB 
tethering for your device.

4.	 Then, on the device, go to Settings | About phone.



Mobile Input/Touch Controls110

5.	 Tap the Build number property seven times to enable developer mode.

Figure 3.13 – The About phone menu on my phone



Using Unity Remote 111

6.	 From there, go to the Developer options section. I used the Settings window’s search function 
to find the exact location.

Figure 3.14 – The Developer options menu



Mobile Input/Touch Controls112

7.	 From there, scroll down and select the USB debugging option. You may see a window explaining 
what USB debugging is for. Click on the OK button.

Figure 3.15 – Enabling USB debugging

8.	 Next, you’ll have a window popup that says Allow USB debugging?. Click on the Allow button.

9.	 Now, you should be able to return to the Unity Remote 5 application. Back on your PC, click 
on the Play button, and you may see the computer appear to freeze for a bit, but after a short 
period of time, you should see your phone change to reflect the gameplay on the PC:



Using Unity Remote 113

Figure 3.16 – Unity Remote gameplay

You may see some blurriness or graphical issues when playing the game on your device using Unity 
Remote. This is because Unity is sending an image of what the game looks like to the device to interact 
with; the game is not actually on the device. The quality isn’t anywhere near what the game on the actual 
device would be, but it does allow us to check the current state of our game on the actual device itself!

The enabling of developer mode and debugging also has the benefit of allowing us to deploy our game 
to our device straight through the build menu, without having to install it manually. To do so, go to 
the Build Settings menu, and under the Run Device option, select your phone.

Figure 3.17 – Setting a run device

Now, if you select Build and Run when the game finishes, the build you should see is the game directly 
running upon opening your phone:



Mobile Input/Touch Controls114

Figure 3.18 – The game installed directly on the device

Now that we’ve learned how to use Unity Remote on an Android device, we can now see how we can 
set up Unity Remote on an iOS device.

Unity Remote setup for iOS

Getting Unity Remote set up on iOS is possible on a Mac computer or a Windows computer that has 
iTunes installed. However, the steps will be similar to working with Android, aside from not needing 
to enable debugging. For the purpose of this section, I will be using a Mac:

1.	 First, in the Unity Editor, go to the Project Settings menu and open up the Editor section. 
From there, under the Unity Remote options, change Device from None to Any iOS Device.

Figure 3.19 – Selecting the Any iOS Device option



Using Unity Remote 115

2.	 Then, from your iOS device, open up the App Store and search for unity remote.

Figure 3.20 – Searching for the Unity Remote app



Mobile Input/Touch Controls116

3.	 Select the Unity Remote 5 app and install it on your device. Once it has finished installing, it 
should be located on your phone:

Figure 3.21 – Unity Remote installed



Using Unity Remote 117

4.	 Open up the app, and you should see something similar to the following, asking you whether 
you’d like to trust this computer. Go ahead and hit the Trust button:

 

Figure 3.22 – The Trust This Computer option

5.	 From your computer, go ahead and play the game. It may take a moment, but you should see 
the game streaming to your device, and you can play as usual:



Mobile Input/Touch Controls118

Figure 3.23 – Footage of Unity Remote streaming our game

As noted when we built the Android version, you may see some blurriness or graphical issues when 
playing the game on your device using Unity Remote. This is because Unity is sending an image of 
what the game looks like to the device to interact with; the game is not actually on the device. The 
quality isn’t anywhere near what the game on the actual device would be, but it does allow us to check 
the current state of our game on the actual device itself!

And with that, we can now play our games on our respective devices without having to do a build! 
This can be a great way to quickly check whether things are working correctly on your device without 
having to do a build every time. Now, let’s take a look at some of the mobile-specific ways that we 
can interpret input.

Implementing a gesture
Another type of input that you’ll find in mobile games is that of a swipe, such as in Kiloo’s Subway 
Surfers. This allows us to use the general movement of the touch to dictate a direction for us to move 
in. This is usually used to have our players jump from one position to another or move quickly in 
a certain direction. So, we’ll go ahead and implement that using the following steps, instead of our 
previous movement system:

1.	 In the PlayerBehaviour script, go ahead and add some new variables for us to work with:

[Header("Swipe Properties")]
[Tooltip("How far will the player move upon swiping")]
public float swipeMove = 2f;

[Tooltip("How far must the player swipe before we will



Implementing a gesture 119

    execute the action (in inches)")]
public float minSwipeDistance = 0.25f;

/// <summary>
/// Used to hold the value that converts
/// minSwipeDistance to pixels
/// </summary>
private float minSwipeDistancePixels;

/// <summary>
/// Stores the starting position of mobile touch
/// events
/// </summary>
private Vector2 touchStart;

In order to determine whether we are swiping, we will need to first check the start and the 
end of our movement. We will store the starting position in the touchStart property. We 
will also have the swipeMove property to set how far we will jump when the swipe happens. 
Lastly, we have the minSwipeDistance variable, which will make sure that the player has 
moved on the x axis a little before actually making the jump – in this case, we want the user to 
move at least a quarter of an inch in order for the input to be counted as a swipe.

Also note that the Header attribute has been added to the top of the first variable. This will 
add a header to the Inspector tab, making it easier to break apart different sections of your 
script. If you were to save the script and dive into Unity, you should see that this new attribute 
has been added when you select the player:

Figure 3.24 – The newly added mobile input/touch controls under Swipe Properties

Our next step is to convert the MinSwipeDistance value from inches into the pixel equivalent, 
which can be used to see how far the user’s swiping motion moves the player’s character.



Mobile Input/Touch Controls120

2.	 Go back to the PlayerBehaviour script and update the Start function to add the 
following highlighted code:

// Start is called before the first frame update
public void Start()
{
    // Get access to our Rigidbody component
    rb = GetComponent<Rigidbody>();

    minSwipeDistancePixels = minSwipeDistance *
        Screen.dpi;

}

The Screen.dpi value stands for dots per inch and generally can be thought of as how many 
pixels are there per inch on the screen. By multiplying the value of minSwipeDistance 
by Screen.dpi, we know how long the movement in pixels needs to be for it to be counted 
as a swipe.

Note
For more information on the Screen.dpi variable, check out https://docs.unity3d.
com/ScriptReference/Screen-dpi.html.

Now that we know the length of a swipe, we need to add the ability to trigger one. As we 
mentioned before, we have been using the FixedUpdate function for our player’s movement. 
This is because Unity’s physics engine is only updated once between each FixedUpdate, 
which is generally called less often than the Update function.

We use the Input.GetAxis and Input.GetMouseButton functions, which return true 
every single frame that the button is held down and will continue to respond during FixedUpdate 
loops as well. This works great for events that happen over time, but FixedUpdate can miss 
the start and ending frames where input events happen, which is required for swipe events and 
certain actions, such as jumping, in games. If you want something to happen the moment an 
input starts or finishes, you will likely want to utilize the Update function instead, and that 
is what we will be doing with our gesture.

3.	 Now, back in the PlayerBehaviour script, add the following function to the project:

/// <summary>
/// Update is called once per frame
/// </summary>
private void Update()
{
    /* Check if we are running on a mobile device */

https://docs.unity3d.com/ScriptReference/Screen-dpi.html
https://docs.unity3d.com/ScriptReference/Screen-dpi.html


Implementing a gesture 121

    #if UNITY_IOS || UNITY_ANDROID

        /* Check if Input has registered more than
           zero touches */
        if (Input.touchCount > 0)
        {
            /* Store the first touch detected */
            Touch touch = Input.touches[0];

            SwipeTeleport(touch);
        }

    #endif
}

In the preceding code, we added a new behavior called SwipeTeleport that will only be 
called if the game is running on a mobile device. It hasn’t been created yet, but this will take in 
the Touch event and use its properties to move the player if a swipe happens.

We will then create a function to handle this new swiping behavior, as follows:
/// <summary>
/// Will teleport the player if swiped to the left or
/// right
/// </summary>
/// <param name="touch">Current touch event</param>
private void SwipeTeleport(Touch touch)
{
    /* Check if the touch just started */
    if (touch.phase == TouchPhase.Began)
    {
        /* If so, set touchStart */
        touchStart = touch.position;
    }

    /* If the touch has ended */
    else if (touch.phase == TouchPhase.Ended)
    {
        /* Get the position the touch ended at */
        Vector2 touchEnd = touch.position;

        /* Calculate the difference between the
           beginning and end of the touch on the x
           axis. */
        float x = touchEnd.x - touchStart.x;



Mobile Input/Touch Controls122

        /* If not moving far enough, don't do the
           teleport */
        if (Mathf.Abs(x) < minSwipeDistancePixels)
        {
            return;
        }

        Vector3 moveDirection;

        /* If moved negatively in the x axis, move
           left */
        if (x < 0)
        {
            moveDirection = Vector3.left;
        }
        else
        {
            /* Otherwise player is on the right */
            moveDirection = Vector3.right;
        }

        RaycastHit hit;

        /* Only move if player wouldn't hit something
        */
        if (!rb.SweepTest(moveDirection, out hit,
        swipeMove))
        {
            /* Move the player */
            var movement = moveDirection * swipeMove;
            var newPos = rb.position + movement;

            rb.MovePosition(newPos);
        }
    }
}

In this function, instead of just using the current touch position, we instead store the starting 
position when the touch begins. When the player lifts their finger, we get the position as well. 
We then get the direction of that movement and then apply it to the ball, checking whether 
we’ll collide with something before actually causing the movement.



Scaling the player using pinches 123

4.	 Save your script and dive back into Unity, exporting your project to your mobile device or 
an emulator.

Figure 3.25 – A visual of the game after performing a swipe

Now, whenever we swipe to the left or right, the player will move accordingly. Let’s learn about another 
action that we can use while playing the game in the next section.

Scaling the player using pinches
The concept of using touch events to modify things in the game can also be applied to other methods 
of touch interaction, such as using finger pinches to zoom in and out. To see how to do this, let’s adjust 
the PlayerBehaviour script so that we can change the player’s scale, using two fingers to pinch 
or stretch out the view:

1.	 Open up the PlayerBehaviour script and add the following properties:

[Header("Scaling Properties")]

[Tooltip("The minimum size (in Unity units) that the
    player should be")]
public float minScale = 0.5f;

[Tooltip("The maximum size (in Unity units) that the
    player should be")]



Mobile Input/Touch Controls124

public float maxScale = 3.0f;

/// <summary>
/// The current scale of the player
/// </summary>
private float currentScale = 1;

2.	 Next, add the following function:

/// <summary>
/// Will change the player's scale via pinching and
/// stretching two touch events
/// </summary>
private void ScalePlayer()
{
    /* We must have two touches to check if we are
     * scaling the object */
    if (Input.touchCount != 2)
    {
        return;
    }
    else
    {
        /* Store the touches detected. */
        Touch touch0 = Input.touches[0];
        Touch touch1 = Input.touches[1];

        Vector2 t0Pos = touch0.position;
        Vector2 t0Delta = touch0.deltaPosition;

        Vector2 t1Pos = touch1.position;
        Vector2 t1Delta = touch1.deltaPosition;

        /* Find the previous frame position of each
           touch. */
        Vector2 t0Prev = t0Pos - t0Delta;
        Vector2 t1Prev = t1Pos - t1Delta;

        /* Find the the distance (or magnitude)
           between the * touches in each frame. */
        float prevTDeltaMag =
            (t0Prev - t1Prev).magnitude;



Scaling the player using pinches 125

        float tDeltaMag = (t0Pos - t1Pos).magnitude;

        /* Find the difference in the distances
         * between each frame. */
        float deltaMagDiff =
            prevTDeltaMag - tDeltaMag;

        /* Keep the change consistent no matter what
         * the framerate is */
        float newScale = currentScale;
        newScale -= (deltaMagDiff * Time.deltaTime);

        // Ensure that the new value is valid
        newScale = Mathf.Clamp(newScale, minScale,
            maxScale);

        /* Update the player's scale */
        transform.localScale = Vector3.one * newScale;

        /* Set our current scale for the next frame */
        currentScale = newScale;

    }
}

Instead of using a single touch event, in this example, we are using two. Using both touch events, 
we can see how the touches have changed over the course of the previous frame (the delta). We 
then use that difference to modify the scale of the player. To ensure the ball will always have 
a valid value, we use the Mathf.Clamp function to keep the values between what is set in 
minScale and maxScale.

3.	 Next, we need to call the function by updating the Update function:

/// <summary>
/// Update is called once per frame
/// </summary>
private void Update()
{
    /* Check if we are running on a mobile device */
    #if UNITY_IOS || UNITY_ANDROID

        /* Check if Input has registered more than
           zero touches */
        if (Input.touchCount > 0)
        {



Mobile Input/Touch Controls126

            /* Store the first touch detected */
            Touch touch = Input.touches[0];

            SwipeTeleport(touch);
            ScalePlayer();
        }

    #endif
}

4.	 Save your script and return to the Unity editor. Export your game, and you should be able to 
see the player scaling in action – by moving two fingers apart, you’ll see the ball expand, and 
vice versa:

Figure 3.26 – The result of our pinch gesture in the current state of the game

Note
For those using LDPlayer, it is possible to replicate a pinch/zoom effect by pressing Ctrl and 
then scrolling the mouse wheel.

Hopefully, this demonstrates the power given by being able to use multi-touch and some of the 
advantages of utilizing touch events, instead of just a single mouse click. Next, we will explore another 
type of input method that PCs don’t have.



Using the accelerometer 127

Using the accelerometer
Another type of input that mobile has, but PC doesn’t, is the accelerometer. This allows you to move in 
the game by tilting the physical position of the phone. The most popular example of this is likely the 
movement of the player in games such as Lima Sky’s Doodle Jump and Gameloft’s Asphalt series. To do 
something similar, we can retrieve the acceleration of our device with the Input.acceleration 
property and use it to move the player. Let’s look at the steps to do just that:

1.	 We may want to allow our designers to set whether they want to use the Accelerometer 
mode or ScreenTouch, which we used previously. With that in mind, let’s create a new 
enum with the possible values to place in the PlayerBehaviour script above the Swipe 
Properties header:

[Tooltip("How fast the ball moves forwards
    automatically")]
[Range(0, 10)]
public float rollSpeed = 5;

public enum MobileHorizMovement
{
    Accelerometer,
    ScreenTouch
}

[Tooltip("What horizontal movement type should be
    used")]
public MobileHorizMovement horizMovement =
    MobileHorizMovement.Accelerometer;

[Header("Swipe Properties")]
[Tooltip("How far will the player move upon swiping")]
public float swipeMove = 2f;

The preceding script utilizes enum to define a custom type called MobileHorizMovement, 
which can be one of two values, Accelerometer or ScreenTouch. We then create a 
variable of this new type called horizMovement.

Now, if you save the PlayerBehaviour script and dive back into the Inspector tab, you 
will see we can select one of these two options (Accelerometer or Screen Touch). By using this 
drop-down menu, the game designer of the project can easily select which of the two options 
we’d like to use, and then we can expand to even more if want to in the future (which we will 
in the next chapter):



Mobile Input/Touch Controls128

Figure 3.27 – Adjusting the Horiz Movement property from the Inspector

2.	 Next, let’s update the Update function to use the following highlighted code within the #elif 
UNITY_IOS || UNITY_ANDROID block of code:

/* Check if we are running on a mobile device */
#elif UNITY_IOS || UNITY_ANDROID

    switch (horizMovement)
    {
        case MobileHorizMovement.Accelerometer:
            /* Move player based on accelerometer
               direction */
            horizontalSpeed = Input.acceleration.x *
                dodgeSpeed;
            break;

        case MobileHorizMovement.ScreenTouch:
            /* Check if Input registered more than
               zero touches */
            if (Input.touchCount > 0)
            {
                /* Store the first touch detected */
                var firstTouch = Input.touches[0];
                var screenPos = firstTouch.position;
                horizontalSpeed =
                    CalculateMovement(screenPos);
            }
            break;
    }

#endif

// Check if we are running on a mobile device



Using the accelerometer 129

#elif UNITY_IOS || UNITY_ANDROID

if(horizMovement == MobileHorizMovement.Accelerometer)
{
// Move player based on direction of the accelerometer
horizontalSpeed = Input.acceleration.x * dodgeSpeed;
}

//Check if Input has registered more than zero touches if 
(Input.touchCount > 0)
{
    if (horizMovement ==
    MobileHorizMovement.ScreenTouch)
    {
        //Store the first touch detected.
        Touch touch = Input.touches[0];
        horizontalSpeed =
            CalculateMovement(touch.position);
    }
}
#endif

If the horizMovement variable is set to Accelerometer, this new snippet of code will use 
the acceleration of our device instead of touches detected on the screen.

3.	 Save your script and export the project.

Figure 3.28 – Moving the player via the accelerometer

With that, you’ll note that we can now tilt our screen to the right or left, and the player will 
move in the appropriate direction.



Mobile Input/Touch Controls130

In Unity, acceleration is measured in g-force values, with 1 being 1 g of force. If you hold the device 
upright (with the home button at the bottom) in front of you, the x axis is positive along the right, the 
y axis is positive upward, and the z axis is positive when pointing toward you.

Note
For more information on the accelerometer, check out https://docs.unity3d.com/
Manual/MobileInput.html.

It’s great to know that our regular input is working, but you may want to check whether a game object 
in our scene has been touched so that the game can react to it. Let’s do that next.

Detecting touch on game objects
To add something else for our player to do, as well as to demonstrate some additional input functionality, 
we’ll ensure that if the player taps an obstacle, it will be destroyed. We will use the following steps to 
modify our existing code to add this new functionality, utilizing the concept of raycasts:

1.	 In the PlayerBehaviour script, add the following new function:

/// <summary>
/// Will determine if we are touching a game object
/// and if so call events for it
/// </summary>
/// <param name="screenPos">The position of the touch
/// in screen space</param>
private static void TouchObjects(Vector2 screenPos)
{
    /* Convert the position into a ray */
    Ray touchRay =
        Camera.main.ScreenPointToRay(screenPos);
    RaycastHit hit;

    /* Create a LayerMask that will collide with all
     * possible channels */
    int layerMask = ~0;

    /* Are we touching an object with a collider? */
    if (Physics.Raycast(touchRay, out hit,
    Mathf.Infinity, layerMask,
    QueryTriggerInteraction.Ignore))
    {
        /* Call the PlayerTouch function if it exists
         * on a component attached to this object */

https://docs.unity3d.com/Manual/MobileInput.html
https://docs.unity3d.com/Manual/MobileInput.html


Detecting touch on game objects 131

        hit.transform.SendMessage("PlayerTouch",
        SendMessageOptions.DontRequireReceiver);
    }
}
/// <summary>
/// Will determine if we are touching a game object
/// and if so call events for it
/// </summary>
/// <param name="touch">Our touch event</param> private static 
void TouchObjects(Touch touch)
{
// Convert the position into a ray
Ray touchRay =
    Camera.main.ScreenPointToRay(touch.position);
RaycastHit hit;
// Create a LayerMask that will collide with all
// possible channels
int layerMask = ~0;

// Are we touching an object with a collider?
if (Physics.Raycast(touchRay, out hit, Mathf.Infinity, 
layerMask, QueryTriggerInteraction.Ignore))
{
    // Call the PlayerTouch function if it exists on a
    // component attached to this object
    hit.transform.SendMessage("PlayerTouch",
        SendMessageOptions.DontRequireReceiver);
}
}

Here, we use a different version to determine collisions – a raycast. This is basically an invisible 
vector leading in a given direction, and we will use it to check whether it collides with any object 
inside of our scenes. This is often used in games, such as first-person shooters, to determine 
whether a player has hit an enemy or not without spawning a projectile and moving it there.

The version of Physics.Raycast that we use here takes in five parameters:

	� The first specifies what ray to use.

	� The second is hit, which holds information about the collision if it occurred.

	� The third parameter specifies how far to check for a collision.



Mobile Input/Touch Controls132

	� The fourth is a layer mask, which dictates with which objects you can collide. In our case, we 
want to collide with all colliders, so we use the bit-wise complement operator (~) to change 
0 into the number possible by flipping all the bits used to create the number.

	� Lastly, we have an enumeration called QueryTriggerInteraction, which we set 
to Ignore. This means that the Tile End objects with the triggers that we created in 
Chapter 1, Building Your Game, will not block our touch events, which would happen by 
default even if we couldn’t see them.

Note
For more information on the bitwise complement operator (~), check out https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/operators/
bitwise-and-shift-operators#bitwise-complement-operator-.

For more information on raycasting, check out https://docs.unity3d.com/
ScriptReference/Physics.Raycast.html.

If we do hit something, we call a function named SendMessage on the object that we collided 
with. This function will attempt to call a function with the same name as the first parameter 
if it exists on any component of the game object. The second parameter lets us know whether 
we should display an error if it doesn’t exist.

Note
For more info on the SendMessage function, check out https://docs.unity3d.
com/ScriptReference/GameObject.SendMessage.html.

2.	 Now, in the Update function, let’s actually call the aforementioned TouchObjects function 
and adjust the code so that we can test the functionality within the Unity Editor as well:

/// <summary>
/// Update is called once per frame
/// </summary>
private void Update()
{
    /* Check if we are running either in the Unity
       editor or in a
     * standalone build.*/
    #if UNITY_STANDALONE || UNITY_WEBPLAYER ||
        UNITY_EDITOR

    /* If the mouse is tapped */
    if (Input.GetMouseButtonDown(0))
    {

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/bitwise-and-shift-operators#bitwise-complement-operator-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/bitwise-and-shift-operators#bitwise-complement-operator-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/bitwise-and-shift-operators#bitwise-complement-operator-
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html
https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html


Detecting touch on game objects 133

        Vector2 screenPos = new Vector2(
            Input.mousePosition.x,
                Input.mousePosition.y);
        TouchObjects(screenPos);
    }

    /* Check if we are running on a mobile device */
    #elif UNITY_IOS || UNITY_ANDROID

        /* Check if Input has registered more than
           zero touches */
        if (Input.touchCount > 0)
        {
            /* Store the first touch detected */
            Touch touch = Input.touches[0];

            TouchObjects(touch.position);
            SwipeTeleport(touch);
            ScalePlayer();
        }

    #endif
}

3.	 Save the PlayerBehaviour script at this point.

4.	 Finally, we call a PlayerTouch function if it exists. So, let’s open up the ObstacleBehaviour 
script and add the following code:

[Tooltip("Explosion effect to play when tapped")]
public GameObject explosion;

/// <summary>
/// If the object is tapped, we spawn an explosion and
/// destroy this object
/// </summary>
private void PlayerTouch()
{
    if (explosion != null)
    {
        var particles = Instantiate(explosion,
            transform.position,
                Quaternion.identity);
        Destroy(particles, 1.0f);
    }



Mobile Input/Touch Controls134

    Destroy(this.gameObject);
}

public GameObject explosion;

/// <summary>
/// If the object is tapped, we spawn an explosion and
/// destroy this object
/// </summary>
private void PlayerTouch()
{
    if (explosion != null)
    {
        var particles = Instantiate(explosion,
            transform.position, Quaternion.identity);
        Destroy(particles, 1.0f);
    }

    Destroy(this.gameObject);
}

This function will basically destroy the game object it is attached to, and create an explosion 
that will also destroy itself after 1 second.

Note
It is possible to get similar results to what we are writing by making use of Unity’s OnMouseDown 
function. As we have already discussed, it is possible to use mouse events when developing for 
mobile. Keep in mind, though, that the use of that function is computationally more expensive 
than the method I’m suggesting here.

This is because when you tap the screen, every object that has an OnMouseDown method will 
do a raycast to check whether it was touched. When you have many objects on the screen, you’ll 
note massive performance differences between 1 raycast and 100, and it’s important to keep 
performance in mind when dealing with mobile development. For more information on this, 
check out http://answers.unity3d.com/questions/1064394/onmousedown-
and-mobile.html.

5.	 Save the scripts and return to Unity.

We haven’t created an explosion particle effect yet. To create this effect, we will make use of a particle 
system. We’ll be diving into particle systems at a much deeper level in Chapter 12, Improving Game Feel, 
but, for now, we can consider a particle system as a game object that is made as simple as possible so that 
we can spawn many of them on the screen at once, without causing the game to slow down too much. 
This is mostly used for things such as smoke or fire, but, in this case, we will have our obstacle explode.

http://answers.unity3d.com/questions/1064394/onmousedown-and-mobile.html
http://answers.unity3d.com/questions/1064394/onmousedown-and-mobile.html


Detecting touch on game objects 135

Use the following steps to create an explosion particle effect:

1.	 Create a particle system by going to GameObject | Effects | Particle System. While selected, 
give the object the name of Explosion and hit the Enter key.

2.	 Select the game object in the Hierarchy window and then open the Particle System component in 
the Inspector tab. In there, click on the Renderer section to expand it, and change RenderMode 
to Mesh and Material to Default-Material by clicking on the circle next to the name and 
selecting Default-Material from the menu that pops up:

Figure 3.29 – Selecting the Default-Material material

This will make the particles look like the obstacles that we’ve already created, as a box with 
the default material.

Figure 3.30 – The visual of the boxes



Mobile Input/Touch Controls136

3.	 Next, under the top Particle System section, change the Gravity Modifier property to 1. This 
ensures that objects will fall gradually, much like normal objects with rigid bodies do, but with 
less computation.

4.	 Then, under Start Speed, move to the right side and click on the downward-facing arrow, and 
from that menu, select Random Between Two Constants:

Figure 3.31 – Using a random value between two constants

5.	 This will change the single window to two, signifying the minimum and maximum values that 
can be used for this property. From there, set the two values to 0 and 8. This makes the objects 
spawned start at speeds between 0 and 8.

6.	 Then, change Start Size to something between 0 and 0.25. This will ensure that we are creating 
a bunch of cubes that are smaller than the one we are planning to replace.

7.	 Change Duration to 1 and uncheck the Looping option. This ensures that the particle system 
will last only for 1 second, and unchecking looping means that the particle system will activate 
only once by default.

Note
You can still see the effect of each of the changes made, by clicking on the Play button on the 
bottom-right menu of the Scene window with the Particle System object selected.

8.	 Finally, change the Start Lifetime property to 1 to ensure that all of the particles will be dead 
before the game object is destroyed.



Detecting touch on game objects 137

9.	 Under the Emission section, change Rate over Time to 0. Then, under Bursts, click on the + 
button and then set Count to 50:

Figure 3.32 – Creating a single burst upon creation

This means that 50 particles will be spawned right at the beginning of the particle system being 
created, much like an explosion.



Mobile Input/Touch Controls138

10.	 Then, check Size over Lifetime and click on the text next to the checkmark to show more details. 
From there, change the Size property by selecting a curve that decreases gradually so that at 
the end, they’ll all be 0.0. This can be done by first selecting the curve itself and then going to 
the Particle System Curves section at the bottom of the Inspector window. If you do not see 
the contents shown in the following screenshot, you can click and drag the name upward to 
make it pop out. From there, you can click on the option that has the downward-facing curve:

Figure 3.33 – Setting the Size over Lifetime curve

This will make the particles smaller gradually, and they will destroy themselves only after they 
become invisible (a scale of 0.0).

11.	 Finally, check the Collision property and open it, setting the Type property to World. This 
will cause the particles to hit the ground.



Detecting touch on game objects 139

12.	 Then, make your object a prefab by dragging and dropping it from the Hierarchy tab into the 
Project tab in the Assets | Prefabs folder. Once the prefab is created (you should see the text 
on the object in the Hierarchy turn blue), remove the original from the scene by selecting it 
and pressing the Delete key.

13.	 Next, assign the Explosion property of Obstacle Behaviour (Script) in the Obstacle prefab:

Figure 3.34 – Assigning the Explosion property in the Obstacle prefab

14.	 Save your project and run the game:

Figure 3.35 – Exploding obstacles on touch

Now, when we tap on one of the obstacles, we can see the object gets destroyed and an explosion 
effect is played!



Mobile Input/Touch Controls140

If you export the game to your mobile device, you should see the same functionality as well:

Figure 3.36 – The current state of the game

From now on, whenever we tap on the obstacles on our mobile device, they will be destroyed.

Summary
In this chapter, we have learned the main ways in which games are controlled when working on mobile 
devices. We also learned how we can use mouse inputs, touch events, gestures, and the accelerometer 
to allow players to interact with our game.

In the next chapter, we will explore the other main way that players interact with a game by diving 
into the world of user interfaces and creating menus that can be enjoyed, no matter what device a 
user is playing the game on.



4
Resolution-Independent UI

When working on mobile devices, one of the things that you’ll need to spend a fair bit of time on 
is the user interface (UI). Unlike when developing projects for a PC, where you only need to care 
about a single resolution or aspect ratio, there are many different devices out there with different 
resolutions and aspect ratios when building for mobile. For instance, we have phones that can fit 
in one of our pockets, and also tablets, which are huge. Not only that but mobile games can also be 
played horizontally or vertically. Some new phones even allow you to fold them to either increase or 
decrease the screen size dynamically.

A graphical user interface (GUI) is the way that players interact with games. You’ve actually used a 
GUI in all of the previous chapters (the Unity Editor) and also when interacting with your operating 
system. Without a GUI of some sort, the only way you’d be able to interact with a computer is with 
a command-line interface (CLI) – that is, Command Prompt in Windows and Terminal for Linux 
and macOS.

When working on GUIs, we want them to contain only information that is important to the player at 
any given time while also being simple and intuitive. There are people whose main job is programming 
and/or designing UIs, and there are college degrees in the subject as well. So, while we won’t talk about 
everything to do with using GUIs, I do want to touch on the aspects that should be quite helpful when 
working on your own projects in the future.

When building for mobile, it’s very important that you design your UI to be resolution-independent 
– that is, to ensure that the UI will scale and adjust itself to fit any screen size that is given to it. As 
a game developer, you will be able to target a large number of devices if your game is resolution-
independent or responsive.

This chapter will be split into a number of topics. The chapter is a simple step-by-step process from 
beginning to end. The following is the outline of our tasks:

•	 Creating a title screen

•	 Adding UI elements to the screen

•	 Adding on-screen controls



Resolution-Independent UI142

•	 Implementing a pause menu

•	 Pausing the game

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter04.

Creating a title screen
Now, before we start adding UI elements to our game, let’s first set up some groundwork and foundational 
knowledge by creating something that we will need anyway – a title screen:

1.	 To start, we’ll go ahead and create a new scene for us to work with by going to File | New Scene. 
There will be a window that pops up asking which template should be used. In this case, we 
will select Basic (Built-in) and then click on the Create button.

Figure 4.1 – Creating a Basic scene

When dealing with a UI, we will often want to see a visual representation of what will be drawn 
on the screen, so we will want to make use of 2D mode to have a better representation of what 
our UI will look like in the final version of the game.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter04


Creating a title screen 143

2.	 To do that, go to the Scene view tab – you’ll see the control bar menu with a 2D button on it 
underneath that. Click on it, and you should see the camera automatically move into something 
that looks similar to the following screenshot:

Figure 4.2 – Selecting 2D mode

The 2D button switches the camera between 2D and 3D views. In 2D mode, you’ll note that the 
Scene Gizmos are gone due to the fact that the only option is to look perpendicularly at the 
XY plane (the x axis pointing to the right and the y axis pointing upward) and that our camera 
has changed to an orthographic view.

3.	 We have to create a Text object with the name of our game. Go to the menu and select 
GameObject | UI | Text – Text Mesh Pro.

4.	 If this is your first time using TextMeshPro, there may be a TMP Importer window that pops 
up. If so, click on the Import TMP Essentials button.

Figure 4.3 – TMP Importer window



Resolution-Independent UI144

Tip
Note that while this book uses TextMesh Pro for drawing text, the following steps from the 
scripting portion also work with the legacy Unity UI system and Text objects, and all the 
concepts in this chapter work the same with both systems.

5.	 You will see three new objects, in the Hierarchy view, Canvas, Text (TMP), and EventSystem:

	� Canvas: This is the area where all of the UI elements will reside, and if you try to create a 
UI element without one already existing, Unity will create one for you like it just did here. 
From the Scene view tab, it will draw a white rectangle around itself to show you how large 
it is and will resize itself depending on how large the Game view is:

Figure 4.4 – Zooming out to display the Canvas

Note
If you double-click on an object in the Hierarchy window, the camera will automatically move 
and zoom so you can see the object within the Scene window. The GameObject contains a 
Canvas component, which allows you to dictate how the image will be rendered (and a Canvas 
Scaler component to make your art scale, depending on the resolution of the device the game is 
running on and the Graphic Raycaster component, which determines whether any objects on 
the Canvas have been hit. We will dive into the Canvas Scaler component later on in this section.



Creating a title screen 145

Important note
For more information on the Canvas object, check out http://docs.unity3d.com/
Manual/UICanvas.html. In particular, the discussion on the render modes is quite useful 
in understanding the ways that UI elements can be rendered onto the screen.

	� Text (TMP): This object is our actual text object, which has all of the properties that allow 
us to position the object anywhere on the Canvas object and change the text, color, size, 
and so on that will be displayed.

Note
For more info on TextMesh Pro, check out https://docs.unity3d.com/Packages/
com.unity.textmeshpro@3.0/manual/index.html.

	� EventSystem: This object allows users to send events to objects in our game based on various 
input types, whether keyboard presses, touch events, or gamepads. There are properties in 
this object that allow you to specify how you’d like your users to interact with your UI, and 
if you try to create a UI element without one existing, Unity will create one for you as it 
did here. If you want to have any kind of interactive material in your level using Unity’s UI 
system, such as buttons, sliders, and so on, you must have an object with the EventSystem 
component attached within the level or the events will not trigger.

Note
For more information on the EventSystem object, check out http://docs.unity3d.
com/Manual/EventSystem.html.

6.	 By default, you may or may not see where our textbox was created. If you aren’t able to see it, 
you can go to the Hierarchy window and then double-click on the Text (TMP) object. If all 
went well, we should have something like this:

http://docs.unity3d.com/Manual/UICanvas.html
http://docs.unity3d.com/Manual/UICanvas.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.0/manual/index.html
http://docs.unity3d.com/Manual/EventSystem.html
http://docs.unity3d.com/Manual/EventSystem.html


Resolution-Independent UI146

Figure 4.5 – Zooming in to the Text (TMP) object

7.	 The next thing we will do is make it easier to tell what this object is. So, with that in mind, 
scroll all the way up on the Inspector tab with the Text object selected and change its name 
to Title Text. To make it a bit easier to see, with the object selected, go to the Inspector 
tab and scroll down to the TextMeshPro – Text (UI) component, and then change the Vertex 
Color property to black.

We can tell whether the object is going to be visible in the game by seeing whether it is within the 
white box created for Canvas. One thing to note is that instead of the default Transform component 
that all of the game objects we’ve seen so far used, our Text object has a Rect Transform component 
in the same place.

The Rect Transform component

The Rect Transform component is probably the most different thing about working in the UI system, 
so it’s a good idea to learn as much as we can about it. Rect Transform is different from the regular 
Transform in that while the Transform component represents a single point or the center of an 
object, Rect Transform represents a rectangle, in which the UI element will reside. If an object with 
a Rect Transform has a parent, which also has a Rect Transform, then the child will specify how the 
object should be positioned relative to its parent.

Note
For more information on positioning objects and information on Rect Transform, check 
out http://docs.unity3d.com/Manual/UIBasicLayout.html.

http://docs.unity3d.com/Manual/UIBasicLayout.html


Creating a title screen 147

To get a better idea of what the properties of the Rect Transform component mean, change the Pos X 
and Pos Y values to 0, which will center our object around the object’s anchors; you can then double-
click on the object in the Hierarchy tab to center the camera at its new position and can zoom in/
out using the mouse wheel:

Figure 4.6 – Title Text centered on the Canvas

Our object’s anchors are visible from the Scene tab via four small rectangles, creating an X shape in 
the center of our Scene tab, if you have the Title Text object selected (double-click on it to center the 
object on the screen).

Important note
As I mentioned previously, note that the white box that is displayed here for the Canvas may 
look different on your screen based on the aspect ratio you’ve set from the Game tab view 
(mine is set to Free Aspect, so it scales based on that to fill the space). If you go to the Game 
tab, you can select them from the drop-down menu on the left-hand side.

Next, we’ll take a look at the two main elements present that work differently in the Rect Transform 
component: anchors and pivots.

Anchors

Found inside the Rect Transform component, anchors give you the ability to hold on to a corner or 
part of the Canvas so that if the Canvas were to move and/or change, the pieces of the UI would stay 
in the appropriate place. These specify the edges of your element using a percentage of the parent’s 
size. For example, if we opened the Anchors property from the Rect Transform component and set 
the Min X property to 0, the UI element would stick to the left edge of its parent.



Resolution-Independent UI148

The properties above the anchors are your position relative to the anchor that has been set. This can 
be quite useful when it comes to things such as supporting multiple resolutions without scaling the 
art assets created. In our case, we will want to have our title position itself relative to the top of the 
camera. Let’s look at the steps to take when working with anchors:

1.	 Click on the Anchor Presets menu in the upper-left corner of the Rect Transform component 
(the box to the left of the Pos X and Width values). From there, it shows some of the most 
common anchor positions used in games for easy selection. In our case, we will want to pick 
the top-center option:

Figure 4.7 – Selecting the top-center option on the Anchor Presets menu

2.	 Note that after selecting it, the Pos Y value changes to another number (in my case, -290). This 
is saying that our object is positioned 290 units below the anchor’s y position (in screen space, 
1 unit is 1 pixel). If we changed the Pos Y value to 0, the object would be centered along the y 
axis’s anchor, which would place the object with half of it off the screen, which is not good, as 
you can see in the following example:



Creating a title screen 149

Figure 4.8 – Changing Pos Y to 0

I placed the Game tab next to the Scene tab to make it easier to see the issue; you can do this 
by dragging and dropping the Game tab to the edge of the screen.

Tip
To reset any layout changes, you may go to the Layout menu in the top-right part of the screen 
and select Default.

If we changed our Title Text object’s Pos Y value to -25 (subtracting half its Height value), 
it would be positioned correctly. However, hardcoding this value will be an issue if we decide 
we want to change the Height value later on, as we will have to remember to adjust this again. 
It would be a lot nicer if we had something to make Pos Y at 0 the edge of the map relative 
to our height, and, thankfully, we have the Pivot property to fix that.

3.	 Next, change the Pivot Y value to 1 and then change Pos Y to 0 if you changed it previously 
and it doesn’t change automatically:



Resolution-Independent UI150

Figure 4.9 – Adjusting Pivot and Pos Y values

As you can see, the text is now hugging the top due to the pivot setting being changed.

Pivots

Pivots are markers that note where we want things to be in relation to our object. This means that 
objects will be moved, rotated, and/or scaled via this position. To see how this changes the way 
things react, try changing the Rotation Z property with Pivot Y values of 0, 0.5, and 1, and note 
the differences in how things are rotated.

Important note
Note that it is possible to set the Pivot, Position, and Anchors settings of an object via the 
Anchors Preset menu I mentioned previously if you hold down the Alt + Shift keys while clicking 
on the object. This way, all of the steps we discussed will happen all at once, but it’s a good idea 
to get a foundation of what everything means before jumping straight into using shortcuts.

Now that we have a basic understanding of how to work within the m space, let’s start finalizing our 
Title Text object.

Adjusting and resizing the title text

Now that we have our object positioned correctly, let’s give some visual flair to our title text using the 
following steps:

1.	 Select the Title Text object from the Hierarchy tab, and then move over to the Inspector tab and 
scroll down to the TextMeshPro -Text (UI) component. From there, change the text in the Text 
property to Endless Roller and set the Alignment property of the object to be centered 
vertically and horizontally. Afterward, change Font Size to 40. Note that now the text shows up in 
two lines and is not within the confines of the size that we defined in the Rect Transform component.



Creating a title screen 151

Figure 4.10 – Settings used for the TextMeshPro - Text (UI) component

2.	 With that in mind, scroll up to Rect Transform and change the Width value to 300 and keep 
Height at 50. We will also want it to be offset from the top of the world, so let’s change Pos Y 
to -30 to give it a little offset:

Figure 4.11 – Offsetting the title text



Resolution-Independent UI152

Now, this looks great for this resolution; however, if we were to play the game at a larger 
resolution, it may look like this:

Figure 4.12 – Current state of the title screen

Having a UI that doesn’t scale can be good if you’re trying to have a Heads-Up Display (HUD) 
in your game, but for the title screen, it’s usually a good idea to have the title of the screen be 
larger; so with that in mind, we will use the Canvas Scaler component to adjust how the screen 
will change based on the resolution we give it.

3.	 Select the Canvas object from the Hierarchy component, and then from the Inspector window, go 
to the Canvas Scaler component. From there, change UI Scale Mode to Scale with Screen Size.

The key property here is Reference Resolution. This is the resolution that we want to base 
our menu on—if the resolution is made bigger, it will scale up; if it’s made smaller, it will scale 
down. You will likely have a resolution in mind based on your mockups or an image file you’ve 
made; however, for reference, the following are some of the most common screen resolutions 
at the time of writing this book.

Here are some sample Apple device resolutions:

Device Name Resolution
iPhone 12 Pro Max/13 Pro Max 2778 x 1284
iPhone 12/12 Pro/13 Pro 2532 x 1170
iPhone 12/13 2532 x 1170
iPhone 12 mini/13 mini 2340 x 1080
iPhone 11 Pro Max 2688 x 1242
iPhone 11 Pro 2436 x 1125
iPhone 11 1792 x 828
iPhone 14 Pro Max 2796 x 1290



Creating a title screen 153

iPhone 14 Pro 2556 x 1179
iPhone 14 2532 x 1170 (Same as 12/13)
iPhone 14 Plus 2778 x 1284 (Same as Phone 12 Pro Max/13 Pro Max)
iPhone SE (2020) 1334 x 750
iPhone XS Max 1242 x 2688
iPhone XS 1125 x 2436
iPhone XR 828 x 1792
iPhone X 2436 x 1125
iPhone 7 Plus/8 Plus 1080 x 1920
iPhone 7/8 750 x 1334
iPhone 6S Plus 1080 x 1920
iPhone 6S 750 x 1334
iPad Pro (1st-5th gen 12.9”) 2048 x 2732
iPad 9th gen 2160 x 1620
iPad Air 4th gen 2388 x 1668
iPad Mini (6th gen) 2266 x 1488

Here are some sample Android device resolutions:

Device Name Resolution
Samsung Galaxy S22 Ultra 3080 x 1440
Samsung Galaxy S22 2340 x 1080
Samsung Galaxy Z Fold3 2208 x 1768
Samsung Galaxy S20 Ultra/S21 Ultra 3200 x 1440
Samsung Galaxy S20/S21 2400 x 1080
Samsung Note 10+ 2280 x1080
Google Pixel 5 XL 2960 x 1440
Google Pixel 5 2340 x 1080
Google Pixel 4 XL 1440 x 2960
Google Pixel 4 2280 x 1080
Samsung Galaxy S10/S10+ 3040 x 1440
Google Pixel 3 XL 2960 x 1440
Google Pixel 3/3a XL 2160 x 1080
Google Pixel 3a 2220 x 1080
Samsung Galaxy S8/S8+ 2960 x 1440
Google Pixel 2 XL 2560 x 1312



Resolution-Independent UI154

Nexus 6P 1440 x 2560
Nexus 5X 1080 x 1920
Google Pixel/Pixel 2 1080 x 1920
Google Pixel XL/Pixel 2 XL 1440 x 2560
Samsung Galaxy Note 5 1440 x 2560
LG G5 1440 x 2560
One Plus 3 1080 x 1920
Samsung Galaxy S7 1440 x 2560
Samsung Galaxy S7 Edge 1440 x 2560
Nexus 7 (2013) 1200 x 1920
Nexus 9 1536 x 2048
Samsung Galaxy Tab 10 800 x 1280
Chromebook Pixel 2560 x 1700

Note
To see a list of popular cell phone screen resolutions, check out http://screensiz.es/
phone or https://www.ios-resolution.com/.

I am using a Google Pixel 3a XL, which has a resolution of 2160 x 1080, and an iPhone 13 
Pro Max, which has a 2778 x 1284 resolution, so I think that would be a good place to start. 
However, if you are creating art assets, it’s a good idea to create the UI at the largest resolution 
you plan on supporting and then build for other resolutions from there.

Unity has some of the most common resolutions built in, which can be seen/changed from the 
dropdown in the Game window view mentioned previously.

4.	 In the Inspector view, go to the Canvas Scaler component and change the Reference Resolution 
value to 1920 x 1080 if it isn’t there already.

5.	 Next, under Match, move it all the way over to Height. This will ensure that when the height 
of our screen changes, that’s when we will modify the scale of our UI.

6.	 Next, let’s make the text a bit larger. Select the Title Text object and from Rect Transform, 
change the Width value to 1000 and Height to 200, and then change the Text component’s 
Font Size value to 130:

http://screensiz.es/phone
http://screensiz.es/phone
https://www.ios-resolution.com/


Creating a title screen 155

Figure 4.13 – Adjusting the title text to be large

7.	 Now, if we play the game with a higher resolution, it will display our title nicely, scaling up to 
fit the larger size that we have:

Figure 4.14 – Scaling the title screen



Resolution-Independent UI156

8.	 Go to the Game view control bar and pick a smaller resolution, such as 800x480 Landscape 
(800x480), and you’ll note that the text will scale down to fit nicely as well:

Figure 4.15 – Title screen at a smaller resolution

As you can see, the Canvas Scaler component will adjust the size of the text depending on the resolution 
of the device. Next, we will see how we can quickly test different resolutions as well.

Note
For more information on the Canvas Scaler component, check out https://docs.
unity3d.com/Manual/script-CanvasScaler.html.

Selecting different aspect ratios

As I mentioned previously, in the Game view, if we go to the control bar and select the first option, 
there is a drop-down menu where we can pick different resolutions to test our game, so we can find 
potential issues before exporting it to our devices:

https://docs.unity3d.com/Manual/script-CanvasScaler.html
https://docs.unity3d.com/Manual/script-CanvasScaler.html


Creating a title screen 157

Figure 4.16 – Different resolution options

There are a number of resolutions built in for us by default, but we can also make our own using the + 
button at the bottom. I suggest that you make two new selections for your phone for landscape mode 
and for portrait mode at the resolutions you are trying to reach if they’re not included by default (in 
my case, 1920 x 1080, 1080 x 1920, 2778 x 1284, and 1284 x 2778):

So, at this point, we can see that in a landscape ratio, it works fairly well, but let’s try a portrait one:

Figure 4.17 – Current Portrait view



Resolution-Independent UI158

Oops! Currently, the text is overflowing past the bounds of the screen. Looks like will have to fix that:

1.	 Select the Title Text object and check the Auto Size property in the Inspector tab under the 
TextMeshPro – Text (UI) component. This automatically scales the text to fit the space we 
have if the width and height were to change, which they currently don’t, but we will change 
that next. From the Auto Size options, change the Max value to a larger value such as 200.

2.	 Now, go to the Rect Transform component, and under Anchors, change the Min X value to 
0.25 and Max X to 0.75:

Figure 4.18 – Setting the Anchors values

Note that the Pos X and Width values. They have now been replaced with the Left and Right 
properties, which are currently set to -338 and -338. This means that the area being taken 
up by this is -338 units away from our anchor at 25%, and -338 units away from our max 
anchor at 75%. We want the screen to resize to be at those anchors, so we will change both the 
Left and Right values to 0.

3.	 Save our Scene as a new file inside the Scenes folder called MainMenu, and then play the game:



Working with buttons 159

Figure 4.19 – The title text automatically adjusts to fit the screen

As you can see in the preceding screenshot, the text now fits a lot nicer. You’ll also note that no matter 
what resolution we are using, this text takes up an amount of room that’s fitting for the game’s title. 
Now that we have the text displaying correctly, let’s add the ability to move from the main menu into 
the game properly.

Working with buttons
Unlike our title, for things that we want our players to touch, it’s a good idea to make the buttons the 
same size in each device, as our fingers are the same size, no matter what device we are using. To show 
a possible solution for this, we will create a new Canvas using a different scaling technique:

1.	 Stop the game if it is currently running. We will first rename our current Canvas object Canvas 
- Scale w/Screen. This way, we can easily tell whether we are using the correct Canvas 
for this or not.

2.	 Now that we have that one ready, we can create our new one. Go to the top menu bar and then 
select GameObject | UI | Canvas. Rename this new Canvas Canvas - Scale Physical. 
Then, under the Canvas Scaler component, change UI Scale Mode to Constant Physical Size:



Resolution-Independent UI160

Figure 4.20 – Creating a Physical Canvas

Using this method, Unity will attempt to scale the size of this Canvas so that each element has 
the same physical size, regardless of the resolution. Since we’re going for buttons that we intend 
to press with our fingers, this makes a lot of sense.

3.	 Now, with this Canvas (Canvas - Scale Physical) selected in the Hierarchy view, go to the menu 
and select GameObject | UI | Button - TextMeshPro to create a new button inside this Canvas.

Note
You can also do this by right-clicking on the Canvas - Scale Physical object from 
the Hierarchy window and selecting UI | Button - TextMeshPro.

At this point, you will see a new child object to Canvas called Button, and if you were to 
extend that object, you’d see that it has a Text (TMP) child also:

Figure 4.21 – Showing off the Text (TMP) object



Working with buttons 161

The next question is, what size should our buttons be? Google suggests in their Material guidelines 
for Android that at least 48 x 48 density-independent pixels should be used (dp for short), 
whereas, at their Worldwide Developers Conference (WWDC), Apple recommended at least 
44 x 44 dp. Either way, that comes somewhere around 8mm x 8mm, or 0.3 inches x 0.3 inches.

Note
To read the material guidelines, check out https://material.io/design/layout/
spacing-methods.html#touch-click-targets. Or for Material 3’s guidelines, 
check out https://m3.material.io/components/buttons/specs#85e63496-
f905-4978-ae35-69ab83b70536

If you were to look at the game right now and check out some of the different resolution options, 
you may be a bit scared due to the size of the button, depending on the resolution:

Figure 4.22 – Small button

That’s because our button size is assuming that the dots per Inch (DPI) value is 96, when on 
devices such as the Google Pixel 3a XL and the iPhone 6/7/8 Plus, it is around 400. For now, 
I’ll change the Aspect Ratio value to 16:9 Landscape to see something closer to what we’ll 
use on our device when we play there:

https://material.io/design/layout/spacing-methods.html#touch-click-targets
https://material.io/design/layout/spacing-methods.html#touch-click-targets
https://m3.material.io/components/buttons/specs#85e63496-f905-4978-ae35-69ab83b70536
https://m3.material.io/components/buttons/specs#85e63496-f905-4978-ae35-69ab83b70536


Resolution-Independent UI162

Figure 4.23 – Game at a 16:9 aspect ratio

4.	 Stop the game if it is currently running. Afterward, from the Hierarchy window, expand 
the Button object, and from there, select the Text (TMP) child object. From there, go to the 
Inspector window and change the TextMeshPro - Text (UI) component’s text value to Play.

Note
If you’re interested in finding out what the DPI for your device is, check out http://dpi.lv/.

5.	 Next, let’s make some adjustments to the Button object itself.

From the Hierarchy window, select the Button object. Rename it Play Button at the top 
of the Inspector window to make it clear what the object is.

6.	 Next, go to the Rect Transform component and change the Pos X and Pos Y values to 0 to 
center the button in the middle of the screen. Afterward, the size of the button is quite large, 
so let’s change the Width property to 75 and the Height property to 35:

Figure 4.24 – Adjusting the button’s size

http://dpi.lv/
http://dpi.lv/


Working with buttons 163

We now have a button, but it doesn’t actually do anything yet. Let’s fix that now.

7.	 Let’s create a script to contain the functionality that we want. From the Project view, open the 
Scripts folder, and let’s create a new C# script called MainMenuBehaviour.

8.	 Once your IDE has opened, use the following code:

using UnityEngine;
using UnityEngine.SceneManagement; // LoadScene

public class MainMenuBehaviour : MonoBehaviour
{
    /// <summary>
    /// Will load a new scene upon being called
    /// </summary>
    /// <param name="levelName">The name of the level
    /// we want to go to</param>
    public void LoadLevel(string levelName)
    {
        SceneManager.LoadScene(levelName);
    }
}

The LoadLevel function will load a level based on the name that we provide to it making 
use of Unity’s Scene Manager, which we added using a statement at the top of our code so that 
we would have access to that namespace.

9.	 Save the script and go back to the Unity editor. To call Unity’s UI events from the editor, we 
will need to have a game object with the MainMenuBehaviour component attached to it 
to call this function. We could use one of the currently existing objects, but we’ll just create a 
new object, making it easier to be found in the future.

10.	 With that in mind, create an empty game object (Game Object | Create Empty...) in your scene 
called Main Menu and then add the MainMenuBehaviour script to it. Then, drag and 
drop it to the top of the Hierarchy tab to make it easier to access in the future and reset its 
position for the sake of neatness:



Resolution-Independent UI164

Figure 4.25 – Creating the Main Menu object

11.	 Select your Play Button object from Hierarchy, go to the Inspector tab, and scroll down to 
the Button component from there. Then, in the On Click () section, click on the + icon to add 
something for our button to do.

12.	 Then, drag and drop the Main Menu object from the Hierarchy tab into the area that currently 
says None (Object), which is added to the list.

13.	 Click on the dropdown that currently says No Function and then select MainMenuBehaviour.
LoadLevel. Then, in the textbox that appears below that, type in the name of our game’s 
level, Gameplay:

Figure 4.26 – Adding functionality to the button



Working with buttons 165

14.	 Save your scene by going to File | Save. Lastly, open Build Settings as we did before by going 
to File | Build Settings and add our MainMenu scene to the list at index 0 by selecting Add 
Open Scenes and then dragging the MainMenu level to the top, so that the main menu level 
will be the scene that starts off when we start the game:

Figure 4.27 – Starting the game with the main menu

15.	 Save your project and Scene, then click on the Play button:



Resolution-Independent UI166

Figure 4.28 – Current state of the main menu

At this point, our main menu is working well, and we can get into the game without any issues by 
clicking on the Play button:

Figure 4.29 – Current state of the gameplay scene

Now that we have a foundational knowledge of the UI system and we have our title screen, we will 
move on to building something else that most games will need: a pause menu.



Adding a pause menu 167

Adding a pause menu
When playing games, especially mobile games, there may come a time when you need to stop playing 
them at any moment. Having a pause menu will allow our players the convenience of deciding when 
they want to stop the game in its current state and resume it at a time that is convenient for them. 
This will also allow us to dive into some additional concepts in using Unity’s UI system, so with that 
in mind, let’s start building one:

1.	 Open up the Gameplay scene by going to the Project window, opening the Assets/Scenes 
folder, and double-clicking on Gameplay, saving the MainMenu level if you didn’t do so already:

Figure 4.30 – Opening the Gameplay scene

Before we worry about how we are going to open our pause menu, let’s go ahead and create 
the pause menu that we’ll be opening first.

2.	 The first thing we’ll do is dim our screen when we enter the pause menu. An easy way to do 
that is to have an image scale to cover our entire screen, which is what the Panel object does 
by default. We can create it by selecting Game Object | UI | Panel. Note that this creates a 
Canvas object and an EventSystem object in addition to the Panel object, as one doesn’t exist 
in this scene already.

3.	 Rename the Panel object Pause Menu. Then, with the object selected from the Inspector 
window, go to the Image component and we will then change the Color property to black with 
higher transparency by increasing the alpha channel (A) to 178:



Resolution-Independent UI168

Figure 4.31 – Setting the Panel’s color

The Image component works in a similar manner to Sprite Renderer for 2D games, with 
information on an image to draw and the color to use for it.

4.	 Switch to the Game window to get a better look at what the Panel object is doing to the screen. 
The current image has a thin border, which I’m not a fan of, in this case. You may keep it if 
you’d like, but I’m going to remove it and change the Source Image value to None (Sprite) by 
selecting the current one and pressing the Delete key:



Adding a pause menu 169

Figure 4.32 – Creating the backdrop

Now that we have this, we will need to populate the menu with content. In this case, we will 
have a Text - TextMeshPro object saying that the game is paused, and some buttons allowing 
the player to resume, restart, or return to the main menu.

5.	 Let’s create another panel to hold our pause menu contents. We want this panel to be a child 
of our Pause Menu object, so we can do this easily by going to the Hierarchy window, right-
clicking on Pause Menu, and selecting UI | Panel:

Figure 4.33 – Creating a child via the Hierarchy window



Resolution-Independent UI170

Now, for this panel, I don’t want it to take up the entire screen, so I will use another component 
to modify its size based on the resolution we receive. In this case, I will use an Aspect Ratio 
Fitter component.

6.	 In the Inspector window, scroll all the way down and then select Add Component and start 
typing in Aspect. From there, select Aspect Ratio Fitter and then press the Enter key.

7.	 Afterward, go to our newly added component and change the Aspect Mode value to Fit 
In Parent to ensure that the panel will always fit within our screen and set Aspect Ratio 
to 0.5. This means that the panel will be twice as high as it is wide (width over height, which 
means ½ or 0.5).

If you go to the Game window and switch aspect ratios, you’ll note that the menu will stay in 
a similar shape.

Note
For more information on the Aspect Ratio Fitter component, check out https://docs.
unity3d.com/Manual/script-AspectRatioFitter.html.

8.	 This is good, but I don’t want to have the panel stuck directly to the edge of our screen, so we 
will make this object invisible by clicking on the checkmark by the Image component. This 
will disable the component and stop the component’s functionality.

9.	 Then, right-click on the Panel object and create another panel by going to UI | Panel. Rename 
this new object Pause Menu Contents and then change the Rect Transform component’s 
left, right, top, and bottom values to 10 to give us a border around the screen.

10.	 We will use physical buttons like last time, so let’s move to the Canvas object, and under the 
Canvas Scaler component, change UI Scale Mode to Constant Physical Size:

Figure 4.34 – Pause Menu Contents setup

https://docs.unity3d.com/Manual/script-AspectRatioFitter.html
https://docs.unity3d.com/Manual/script-AspectRatioFitter.html


Adding a pause menu 171

We could place everything manually as we did previously, but in this case, we may want to use 
another feature that Unity’s UI system has: layout groups.

Layout groups will resize the children of an object so that a component will automatically fit 
the area of the parent. There are several different layout groups, including grid-based, horizontal, 
and vertical layout groups. In our case, the menu will probably be vertical.

Important note
For more information on Unity’s way of automatically creating layouts, check out https://
docs.unity3d.com/Manual/UIAutoLayout.html.

11.	 Select the Pause Menu Contents object in the Hierarchy window and then switch to the Inspector 
window. From there, scroll all the way down to the Add Component option and select it. Type 
in Vertical Layout Group and select Vertical Layout Group by pressing the Enter key.

12.	 Let’s create some children to fit into our menu. From the Hierarchy window, right-click on the 
Pause Menu Contents object and select UI | Button - TextMeshPro.

13.	 This creates a button, but you’ll note that it looks pretty much like a normal button. Let’s open up 
its child Text object and change the text to Resume. Then, we’ll check the Auto Size property and 
change the Min value to 0. To keep all of the button text on one line, we can also change the Wrapping 
property to Disabled. We don’t want the text to hug the button, so scroll up on the Inspector window, 
and under the Rect Transform component, change the Left, Top, Right, and Bottom values to 5.

14.	 Afterward, select the Pause Menu Contents object, and under the Inspector window, go to the 
Vertical Layout Group (Script) component and change the Child Alignment value to Middle 
Center. Then, change the Child Control Size value to have Width toggled.

15.	 Then, in the Vertical Layout Group component, click on the arrow to the left of the Padding 
property to open it up and then set all of the sides to 5:

This will add five pixels of padding in each direction within all of the children of the layout group.

Figure 4.35 – Adding padding

https://docs.unity3d.com/Manual/UIAutoLayout.html
https://docs.unity3d.com/Manual/UIAutoLayout.html


Resolution-Independent UI172

16.	 Now, duplicate this button twice and change the text to Restart and Main Menu. Then, 
to make it easy to tell the difference between them, let’s change the objects’ names to Resume 
Button, Restart Button, and Main Menu Button.

17.	 Next, right-click on the Pause Menu Contents object and select UI | Text - TextMeshPro. 
Change the object’s text to Paused and change its alignment to be centered, and just like 
the buttons, we will check the Auto Size value, set the Min value to 0, and set Wrapping to 
Disabled. I also went to the Rect Transform component and set Height to 30. Note how the 
order in which the children are placed in the hierarchy changes the order in which they are 
displayed. With that in mind, drag the Text object to the top:

Figure 4.36 – Pause Menu setup

This looks nice, but there’s also a lot of spacing here. So, if we’d like, we can instead condense 
the contents of our menu to just fit what we have there.

18.	 To do this, we can go to Hierarchy and select the Pause Menu Contents object and then add a 
Content Size Fitter component. Once it is added, we will change Vertical Fit to Preferred Size.

Figure 4.37 – Effect of the preferred size option



Adding a pause menu 173

19.	 This will scrunch all the buttons together, so we can change the Spacing property of Vertical 
Layout Group to 5 and add some space between the buttons:

Figure 4.38 – Current view of the pause menu

20.	 Now that we have the buttons themselves, let’s actually make them do something. In 
the Project window, open up the Scripts folder and create a new C# script called 
PauseScreenBehaviour, and double-click on it to open up the IDE of your choice.

21.	 Once it’s opened, use the following code:

using UnityEngine;
using UnityEngine.SceneManagement; // SceneManager

public class PauseScreenBehaviour : MainMenuBehaviour
{
    /// <summary>
    /// If our game is currently paused
    /// </summary>
    public static bool paused;

    [Tooltip("Reference to the pause menu object to
        turn on/off")]
    public GameObject pauseMenu;

    /// <summary>
    /// Reloads our current level, effectively
    /// "restarting" the game
    /// </summary>
    public void Restart()
    {
        SceneManager.LoadScene(SceneManager
            .GetActiveScene().name);



Resolution-Independent UI174

    }

    /// <summary>
    /// Will turn our pause menu on or off
    /// </summary>
    /// <param name="isPaused"></param>
    public void SetPauseMenu(bool isPaused)
    {
        paused = isPaused;

        /* If the game is paused, timeScale is 0,
           otherwise 1 */
        Time.timeScale = (paused) ? 0 : 1;

        pauseMenu.SetActive(paused);
    }

    void Start()
    {
        /* Must be reset in Start or else game will be
           paused upon restart */
        paused = false;
    }
}

In this script, we will first use a static variable, which is called paused. When we declare 
a static variable, we ensure that there will only ever be one of those variables inside this 
class, which all instances will share. One of the advantages of this is that we can access the 
property in other scripts using the class name followed by a period and then the attribute’s 
name (in this case, PauseScreenBehaviour.paused). We will use this concept later 
on when we want to open the menu through code.

We then have two public functions, which we will call via the UI elements. First, we have a 
Restart function, which will use Unity’s Scene Manager to return us to the currently loaded 
level, effectively restarting the game. It is important to note that static variables do not reset 
when restarting in Unity, so that’s why I set paused to false in the Start function to 
ensure that when we come to the level, it is unpaused.

Finally, we have a SetPauseMenu function, which will turn the pause menu on or off based 
on the value of isPaused. It also sets the Time.timeScale property, where 0 means 
that nothing will happen and 1 means normal time. This property will modify the Time.
deltaTime variable, effectively canceling out movement that we have as long as we use it.

22.	 Save your script and dive back into Unity.



Adding a pause menu 175

23.	 Then, we’ll create a new empty game object by going to GameObject | Create Empty. We’ll 
name it Pause Screen Handler and then attach the Pause Screen Behaviour (Script) 
component to it.

24.	 Next, assign the Pause Menu variable to the Pause Menu game object in the Hierarchy tab:

Figure 4.39 – Assigning the Pause Menu property

25.	 Now that we have the script, we can now change the buttons to actually do something. Go to 
the Inspector window with the Resume Button object selected, go to the Button component’s 
On Click () section, and click on the + button to add an action to occur.

26.	 Drag and drop the Pause Menu Handler object from the Hierarchy window into the box on the 
bottom-left side of the On Click () action in the Inspector window. Next, go to the dropdown 
and select Pause Screen Behaviour | SetPauseMenu. By default, it’s on false due to not 
being checked, so this should work for us:

Figure 4.40 – Calling the SetPauseMenu function from the Resume button



Resolution-Independent UI176

27.	 Likewise, do the same for the Restart button object – this time, calling the Restart function.

28.	 Next, do the same for the Main Menu Button object, except call LoadLevel and put the 
name of our main menu level in the string place (MainMenu, in my case).

Note
The PauseScreenHandler script already contains LoadLevel due to the fact that we 
are inheriting from the MainMenuBehaviour class.

29.	 Save our game and go ahead and run it:

Figure 4.41 – The current state of the game

As you can see in the preceding screenshot, if we start the game, the menu appears correctly—we can 
click the Main Menu button to get to the main menu, and Resume continues the game.

At this point, we have some issues: once the menu is gone, there is no way to get it back; the game 
should start unpaused, and the game should actually pause. Let’s tackle these issues next.



Pausing the game 177

Pausing the game
To get the game to pause correctly, we will tweak some scripts we’ve written previously using the 
following steps:

1.	 Open the PlayerBehaviour script and add the code highlighted in bold to the FixedUpdate 
function:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>

void FixedUpdate()
{
    /* If the game is paused, don't do anything */
    if (PauseScreenBehaviour.paused)
    {
        return;
    }

    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal")
        * dodgeSpeed;

    // Rest of the FixedUpdate function...

The added code makes it so that if the game is paused, we will not do anything within the function.

2.	 We then also need to add the same script to the top of the Update function as well:

/// <summary>
/// Update is called once per frame
/// </summary>
private void Update()
{
    /* Using Keyboard/Controller to toggle pause menu
    */
    if (Input.GetButtonDown("Cancel"))
    {
        // Get the pause menu
        var pauseBehaviour =
            GameObject.FindObjectOfType
                <PauseScreenBehaviour>();



Resolution-Independent UI178

        // Toggle the value
        pauseBehaviour.SetPauseMenu
            (!PauseScreenBehaviour.paused);
    }

    /* If the game is paused, don't do anything */
    if (PauseScreenBehaviour.paused)
    {
        return;
    }

    /* Check if we are running either in the Unity
       editor or in a standalone build.*/
    #if UNITY_STANDALONE || UNITY_WEBPLAYER ||
        UNITY_EDITOR

    // Rest of the Update function…

3.	 Save your script and return to the Unity editor. Now, the game, by default, should be unpaused, 
so let’s go ahead and select the Pause Menu object in the Hierarchy view and then click on the 
active button in the Inspector view to disable it:

Figure 4.42 – Disabling the pause menu

4.	 Save your scene and then go ahead and play the game. While playing, hit the Esc key and you 
should see the pause menu appear and the game is paused! We can also use Resume or hit Esc 
again to resume the game.



Summary 179

Figure 4.43 – The current state of the game

This is great, but it will only work if our player has a keyboard or controller attached to it. In the next 
chapter, we will see how we can have a button that players can click to turn on the menu. In addition, 
we may want to be able to move the player using some visual on-screen UI menu. That’s what we will 
tackle next.

Summary
With that, we’ve got a good foundation to build on when creating UI elements for a mobile game. We 
first covered how to create a title screen, making use of buttons and Text objects. We then covered 
how to use panels, buttons, text, and layout groups to make your menus adapt to the size of your 
elements. We also touched on how layout groups can arrange our objects to fit in a pleasing manner.

In the next chapter, we will continue our exploration of UIs for games by seeing how we can add a 
pause screen button and an on-screen joystick, and adapting our GUIs for notch devices.





5
Advanced Mobile UI

In the last chapter, we were introduced to the Unity UI system and how to build resolution-independent 
UI elements, which are useful for all game projects that utilize different aspect ratios and resolutions. 
In this chapter, we will be exploring some mobile-specific aspects of working on a UI, such as requiring 
on-screen controls and adapting our UI to fit devices with notches.

This chapter will be split into a number of topics. The chapter is a simple step-by-step process from 
beginning to end. The following is the outline of our tasks:

•	 Adding a pause screen button

•	 Implementing an on-screen joystick

•	 Adapting GUIs for notch devices

Over the course of this chapter, we will take the pause screen that we implemented in the previous 
chapter and adapt it to work on a mobile device. We will then implement an on-screen joystick as an 
additional movement option, and lastly, have our UI automatically adapt to fit mobile devices that 
have notches.

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter05.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter05


Advanced Mobile UI182

Adding a pause screen button
While many mobile games do support controllers through Bluetooth, most, if not all, of them allow the 
users to control the game via just the device. Increasingly, many mobile games will include on-screen 
buttons or analog sticks that players can use to control their avatars. In this section, we will see just 
how we can implement that if we wish.

To start off, let’s build a pause menu button:

1.	 Since we are going to be creating multiple types of on-screen controls, let’s create a panel to 
hold them all. From the Hierarchy view, right-click on the Canvas object and select UI | Panel. 
Rename the object to On Screen Controls. From the Inspector view, remove or disable 
the Image component, as we don’t need to see the image.

For this version of our controls, we will be using some 2D sprites to make it easier to tell what 
the various UI elements are. The sprites are included in the example code for this book if you’d 
like to use the exact ones I’m using.

2.	 From the Project window, create a new folder called Sprites and drag and drop the image 
files into the newly added folder. Since our project is a 3D one, Unity assumes we want them 
to be textures, but we want to use them with Unity’s UI system. With that in mind, select all 
three sprites. From the Inspector, change Texture Type to Sprite (2D and UI), then scroll all 
the way down, and then hit the Apply button.

Note
The sprites used here are from Kenney’s Onscreen Controls pack. There are seven other possible 
styles that you could use, which are available from https://kenney.nl/assets/
onscreen-controls.

3.	 Now that we have the sprites, let’s build our first UI element, a pause button. From the Hierarchy 
view, right-click on the On Screen Controls object and select UI | Button - TextMeshPro.

4.	 Rename the new object Show Pause Button and use the Anchor Presets menu to place 
the object at the bottom right of the screen (use Alt + Shift to set Pivot and Position as well).

https://kenney.nl/assets/onscreen-controls
https://kenney.nl/assets/onscreen-controls


Adding a pause screen button 183

Figure 5.1 – Bottom-right option

5.	 Then, from the Image component, drag and drop our pauseButton sprite into the Source 
Image property. You’ll notice it’s stretched out, so click on the Set Native Size button to have 
the sprite automatically resize itself for us.

6.	 We don’t actually need the text object included, so select the Text (TMP) object and hit the 
Delete key.



Advanced Mobile UI184

Figure 5.2 – Creating the pause button

7.	 Go back and select the Show Pause Button object and create an On Click () event using the 
SetPauseMenu function on the Pause Screen Behaviour component on the Pause Screen 
Handler object. Then, click on the checkbox to set it to pause.

8.	 Go back to Resume Button and add another event to its button to turn the Show Pause Menu 
button back on when we leave.

Figure 5.3 – Creating the Resume Button click action

Now, we want to remove our on-screen controls whenever we pause the game. This can be 
done through Inspector, but we can also do this through code.



Adding a pause screen button 185

9.	 Open the PauseScreenBehaviour script and add the following property to the script:

[Tooltip("Reference to the on screen controls menu")]
public GameObject onScreenControls;

10.	 Afterward, update the SetPauseMenu function to have the following new line:

/// <summary>
/// Will turn our pause menu on or off
/// </summary>
/// <param name="isPaused">is the game currently
    paused</param>
public void SetPauseMenu(bool isPaused)
{
    paused = isPaused;

    /* If the game is paused, timeScale is 0,
       otherwise 1 */
    Time.timeScale = (paused) ? 0 : 1;

    pauseMenu.SetActive(paused);
    onScreenControls.SetActive(!paused);
}

Note that we are using !paused and not paused like in the previous line. The ! operator 
will take something that is true and make it false, and vice versa. This will cause the 
onScreenControls window to turn on when the game is not paused and off when it is.

Since we are already in the code editor, we can also use this time to fix something that will 
come up later: as mentioned previously, one problem that won’t be apparent now unless you 
restart the level is the fact that static variables will keep their values each time we reload 
the game. In our case, we set paused, which turns Time.timeScale to 0. Thankfully, we 
can fix this fairly easily.

11.	 Open the PauseScreenBehaviour script and update the Start function to have the 
following, replacing the original line:

void Start()
{
    /* Must be reset in Start or else game will be
        paused upon
     * restart */
    SetPauseMenu(false);
}



Advanced Mobile UI186

12.	 Return to Unity and go to the Pause Screen Handler object. From the Pause Screen Behaviour 
script, set the On Screen Controls property to our On Screen Controls object.

Figure 5.4 – Updating Pause Screen Behaviour

13.	 Save your script and the scene, and then play the game:

Figure 5.5 – The current state of the game

The pause menu now works correctly. This is a simple way to add on-screen controls to the screen. A 
more advanced version would be an analog stick that we can use to control the player’s movement. 
Let’s tackle that next.



Implementing an on-screen joystick 187

Implementing an on-screen joystick
To implement this on-screen joystick, we will utilize two images: a background image and then a 
joystick image placed on top of it. We will then write code to allow the player to simulate that they 
are physically moving the joystick. Later, we learn how we can have the simulated joystick actually 
affect the game properly:

1.	 Right-click on the On-Screen Controls object and create an image by selecting UI | Image. 
We will then rename the object to Joystick Background.

2.	 From the Image component, set Source Image to the analogStickBackground sprite 
and click on the Set Native Size button.

3.	 From the Rect Transform component, hold down Alt + Shift and use the Anchor Presets menu 
to move Joystick Background to the bottom-left option.

4.	 Next, right-click on the Joystick Background object and create another image by selecting UI 
| Image. We will then rename the object to Joystick.

5.	  From the Image component, set Source Image to the analogStick sprite and click on the 
Set Native Size button.

Figure 5.6 – Creating the Joystick UI

6.	 We want this joystick to move, so to do that, we will create a new script. From the Project 
window, go to the Scripts folder and create a new C# script called MobileJoystick. 
Then, attach the MobileJoystick script to the Joystick object.



Advanced Mobile UI188

7.	 Open your code editor to the MobileJoystick script and add the following properties and 
initialization of those properties in the Start function:

/// <summary>
/// A reference to this object's RectTransform
/// component
/// </summary>
RectTransform rt;
/// <summary>
/// The original position of the stick used to
/// calculate the offset of movement
/// </summary>
Vector2 originalAnchored;
// Start is called before the first frame update
void Start()
{
    rt = GetComponent<RectTransform>();
    originalAnchored = rt.anchoredPosition;
}

8.	 To have the joystick do something when we are dragging it, we can add an interface to our script 
for when we are dragging and when we stop. To do so, we need to add the following using 
statement to the top of our script:

using UnityEngine.EventSystems; /* IDragHandler, IEndDragHandler 
*/

9.	 After that, we add the following bold code to the class definition:

public class MobileJoystick : MonoBehaviour, IDragHandler, 
IEndDragHandler

10.	 Now, we will get some errors because we haven’t actually defined the functions given in the 
interfaces, let’s do that now:

   /// <summary>
   /// Will allow the user to move the joystick
   /// </summary>
   /// <param name="eventData">Information about the
   /// movement, we are only
   /// using the position</param>
   public void OnDrag(PointerEventData eventData)
   {
       /* We use our parent's info since the joystick
          moves */
       var parent =



Implementing an on-screen joystick 189

           rt.parent.GetComponent<RectTransform>();
       var parentSize = parent.rect.size;
       var parentPoint =
           eventData.position - parentSize;

       /* Calculate the point relative to the
          parent's local space */
       Vector2 localPoint =
           parent.InverseTransformPoint(parentPoint);

       /* Calculates what the new anchor point should
          be */
       Vector2 newAnchorPos =
           localPoint - originalAnchored;

       /* Prevent the analog stick from moving too
          far */
       newAnchorPos = Vector2.ClampMagnitude(
           newAnchorPos, parentSize.x/2);

       rt.anchoredPosition = newAnchorPos;

   }

   /// <summary>
   /// Will be called when the player lets go of the
   /// stick
   /// </summary>
   /// <param name="eventData">Information about the
   /// movement, unused</param>
   public void OnEndDrag(PointerEventData eventData)
   {
       /* Reset the stick to it's original position
       */
       rt.anchoredPosition = Vector3.zero;
   }

11.	 Save your script and return to the Unity editor. Play the game and try to click and drag the 
analog sticks:



Advanced Mobile UI190

Figure 5.7 – Joysticks can now be moved

12.	 Now that they functionally work, let’s have them actually affect the game. We need to have 
some way to communicate the information that MobileJoystick has. To do this, let’s add 
a new property:

    /// <summary>
    /// Gets the value of the joystick in a -1 to 1
    /// manner in the same way that Input.GetAxis does
    /// </summary>
    public Vector2 axisValue;

13.	 Next, add the following line to the OnDrag function:

// Update the axis value to the new position
axisValue = newAnchorPos / (parentSize.x / 2);

14.	 Then, add the following line to the OnEndDrag function:

axisValue = Vector2.zero;

15.	 Now we need to go to the PlayerBehaviour script. From there, we will add a new variable 
to tell us whether we have a MobileJoystick or not:

    private MobileJoystick joystick;

    // Start is called before the first frame update
    public void Start()
    {
        // Get access to our Rigidbody component



Implementing an on-screen joystick 191

        rb = GetComponent<Rigidbody>();

        minSwipeDistancePixels = minSwipeDistance *
            Screen.dpi;

        joystick = GameObject.FindObjectOfType
            <MobileJoystick>();

    }

16.	 This way, if the player has turned off MobileJoystick, we still want the game to work.

17.	 Next, we will need to update the FixedUpdate function to have the following changes:

/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations
/// happening over a period of time.
/// </summary>

void FixedUpdate()
{
    /* If the game is paused, don't do anything */
    if (PauseScreenBehaviour.paused)
    {
        return;
    }

    // Check if we're moving to the side
    var horizontalSpeed = Input.GetAxis("Horizontal")
        * dodgeSpeed;

    /* If the joystick is active and the player is
       moving the joystick, override the value */
    if (joystick && joystick.axisValue.x != 0)
    {
        horizontalSpeed = joystick.axisValue.x *
            dodgeSpeed;
    }

    /* Check if we are running either in the Unity
       editor or in a standalone build.*/
    #if UNITY_STANDALONE || UNITY_WEBPLAYER ||
        UNITY_EDITOR
        /* If the mouse is held down (or the screen is



Advanced Mobile UI192

           tapped on Mobile */
        if (Input.GetMouseButton(0))
        {
            if(!joystick)
            {
                var screenPos = Input.mousePosition;
                horizontalSpeed =
                    CalculateMovement(screenPos);
            }
        }
    /* Check if we are running on a mobile device */
    #elif UNITY_IOS || UNITY_ANDROID

        switch (horizMovement)
        {
            case MobileHorizMovement.Accelerometer:
                /* Move player based on accelerometer
                   direction */
                horizontalSpeed = Input.acceleration.x
                    * dodgeSpeed;
                break;

            case MobileHorizMovement.ScreenTouch:
                /* Check if Input registered more than
                   zero touches */
                if (!joystick && Input.touchCount > 0)
                {
                    /* Store the first touch detected
                    */
                    var firstTouch = Input.touches[0];
                    var screenPos =
                        firstTouch.position;
                    horizontalSpeed =
                        CalculateMovement(screenPos);
                }
                break;
        }

    #endif



Adapting GUIs for notch devices 193

    rb.AddForce(horizontalSpeed, 0, rollSpeed);

}

18.	 Save your scripts and return to the Unity editor. Save your scene and then play the game:

Figure 5.8 – Joystick moving the player

In this way, if we have the joystick enabled when the game starts, the game will use it to move the 
player. Alternatively, you can disable the joystick and your game will work in the same way as before.

At this point, our UI should work for the vast majority of cell phones. However, there are certain 
phones that contain “notches.” We will see how to adjust our UI for that in the next section.

Adapting GUIs for notch devices
Since the first edition of this book, there have been many phones that have come out with sensor 
housings, more commonly known as “notches.” Made popular with the iPhone X, this has grown to 
be a part of many phones that are out right now. While some people online state that entire-screen 
displays are the future, iOS devices, Android devices running 9.0 and above, and Unity have added 
support for notches built into devices, and we can use the Screen.safeArea property in Unity 
to ensure that all of our content is visible.



Advanced Mobile UI194

To get started, we will first go to the main menu to tweak the menu text:

1.	 Go to the Project view and open up the MainMenu Scene in the Scenes folder. In the Adding 
a pause menu section, we saw how we can use the Panel object in order to hold the contents 
we want to display. We will use this concept to account for the safe area.

2.	 With the level opened, go to the Hierarchy view and create a child panel for our title screen 
to be inside by right-clicking on the Canvas - Scale w/Screen object and selecting UI | Panel.

3.	 Afterward, make Title Text a child of the newly created panel by dragging and dropping the 
object on top of the newly created Panel object:

Figure 5.9 – SafeArea setup

4.	 From the Project view, go to the Scripts folder and create a new C# script called 
UISafeAreaHandler. Double-click on it to open your code editor and use the following code:

using UnityEngine;

public class UISafeAreaHandler : MonoBehaviour
{
    RectTransform panel;

    // Start is called before the first frame update
    void Start()
    {
        panel = GetComponent<RectTransform>();



Adapting GUIs for notch devices 195

    }

    // Update is called once per frame
    void Update()
    {
        Rect area = Screen.safeArea;

        /* Pixel size in screen space of the whole
           screen */
        Vector2 screenSize = new Vector2(Screen.width,
            Screen.height);

        /* Set anchors to percentages of the screen
           used. */
        panel.anchorMin = area.position / screenSize;
        panel.anchorMax = (area.position + area.size)
            / screenSize;

    }
}

The Screen.safeArea property returns a variable of the Rect type, which contains an 
X and Y position and a width and height, just like the Rect Transform component we worked 
with previously in this chapter. This Rect Transform component gives a box containing the 
safe area that doesn’t have notches inside it. Note that this property is in screen space and so 
will be given in pixels. For those Android phones running 8.1 or lower, Screen.safeArea 
will just return Rect(0, 0, Screen.width, Screen.height), which will work 
due to the lack of a notch.

Screen.safeArea will change depending on the orientation that the device is currently in. 
Since we want to support all orientations (landscape and portrait mode), we’ll have to check for 
the safe area changing at runtime, which is why we use the Update function to do modifications.

We previously saw that anchors can be used to specify the size of a panel. Anchors work in 
viewport space, which is to say that the values go from (0, 0) to (1, 1). Since the Rect 
value given by Screen.safeArea is in screen (pixel) space, we divide by the screen size in 
pixels to convert to the points to viewport space.

Save the script and return to the Unity Editor. Then, attach the UI Safe Area Handler component 
to the Panel object that we just created.



Advanced Mobile UI196

5.	 Return to the Unity editor and transition to the Game window. At the top left, you’ll see a 
dropdown that currently says Game; select it and change the value to Simulator. From there, 
you’ll see a list of sample devices that you can select from a dropdown. Or click on the Install 
Additional Devices option to download a list of all of the possible options they have available. 
Due to us using the Screen.safeArea property, you should notice the panel tweak its size 
appropriately to fit everything within our screen:

Figure 5.10 – Adjusting the notch value

The Device Simulator is a tool that aims to allow developers to see what their game will look 
like on many devices. For more information on it, check out https://docs.unity3d.
com/Manual/device-simulator-view.html.

In portrait mode, the top portion of the screen is cut off for the notch and the bottom is cut off 
for the home button. We can also click on the buttons next to the Rotate text to see how our 
game will look on the device facing the other direction:

https://docs.unity3d.com/Manual/device-simulator-view.html
https://docs.unity3d.com/Manual/device-simulator-view.html


Adapting GUIs for notch devices 197

Figure 5.11 – Landscape mode

Switching to landscape mode, we lose the left/right side for the notch, and on iOS, it cuts off 
the other side as well. Just as in portrait mode, the top is cut off for the home button.

With this, we see that the menu adjusts itself correctly! However, there is a chance that the 
Play button no longer works. This is because both of our Canvas objects are drawn in the 
same sorting order, which means either can be on top of the other, similar to the concept of 
Z-fighting that you may know of if you’ve worked on 2D games in the past. Thankfully, we 
can fix that pretty easily.

6.	 Select the Canvas - Scale w/Screen object. From the Inspector window, go to the Canvas 
component and set Sort Order to -1. The button with a Sort Order value of 0 will always be 
on top of the contents of this Canvas.

While the semi-transparent white panel is useful in illustrating the concept, we don’t actually 
want our users to see it when the game is being played. With that in mind, let’s turn off the image.

7.	 Select the Panel object. From the Image component, uncheck the checkbox to the left of the 
component’s name to disable it.

Tip
If you wanted to still have the image visible and have the button still work, you can instead 
uncheck the Raycast Target property.



Advanced Mobile UI198

Now that the first Canvas is completed, we can now do the same actions for the other one:

1.	 Go to the Canvas - Scale Physical component and create another Panel object with the UI 
Safe Area Handler component attached to it, making sure to disable the Image component. 
Next, make the Play button a child of it:

Figure 5.12 – Adjusting the Safe Area Handler

2.	 Save your Scene. Now that we have the main menu completed, we can tweak the Gameplay 
Scene as well.

3.	 Open the Gameplay Scene, select the On Screen Controls object, and then just add the UI 
Safe Area Handler component to it:



Adapting GUIs for notch devices 199

Figure 5.13 – Making the On Screen Controls use the UI Safe Area

4.	 To adjust the Pause Menu, we don’t want to change the Pause Menu object as we want the 
black screen even in the notch areas. We have previously created a panel to hold the contents 
of the pause menu, but that object is using the Aspect Ratio Fitter, which will overwrite any 
anchor changes we would make in the code. To keep this functionality as well as Content Size 
Fitters in the child objects, we can just create a parent panel to act as a holder.

5.	 Make the Pause Menu object active again by selecting it in the Hierarchy window and then 
clicking on the checkbox by its name in the Inspector window. Right-click on the Panel object 
and create a Panel object by right-clicking and selecting UI | Panel. In the new panel, add the 
UI Safe Area Handler component and disable the Image component:

Figure 5.14 – Adjusting the Pause Menu to work with notches



Advanced Mobile UI200

6.	 Finally, since we are not working with the Pause Menu object anymore, select the Pause Menu 
object from the Hierarchy window, and in the Inspector window, uncheck the checkbox by 
the name to disable the object.

7.	 Save your Scene and play the game:

Figure 5.15 – UI now responds correctly to notches

As you can see, if we hold down the spacebar, we can see both menus working correctly!

Summary
In this chapter, we integrated the pause menu into our game itself and made it work with everything 
in our project. We then saw how we could create on-screen controls to give players another way to 
interact with the game using mobile devices. Finally, we saw how to have our game automatically 
adapt to fit within the allotted safe areas to handle the notches on phones. We will be exploring the 
previous concepts more deeply in later chapters, so keep these explanations in mind.

In the next chapter, we will dive into monetization and take a look at just how we can add Unity ads 
to our project.



6
Implementing In-App 

Purchases

As mentioned in Chapter 7, Advertising Using Unity Ads, there are many options out there when 
it comes to selling your game on a mobile platform. If you decide to go free-to-play, in addition to 
showing ads, there is also the ability to sell people additional content and/or advantages through the 
use of In-App Purchases (IAPs). This can be a way to engage users of your game and convert them 
from free players into paying customers.

Typically, these can be options such as removing ads or offering themes to players, but you can also 
do things such as unlock new levels and add additional content so that people addicted to your game 
will be clamoring to give you more of their time. Alternatively, you can also think of your IAPs as 
items that players will want to buy in order to enhance their gameplay experiences, such as power-
ups and upgrades.

In this chapter, we will integrate Unity’s IAP system into our project and take a look at how to create 
an IAP that is for consumable content as well as permanently unlocking features. By the end of the 
chapter, we will see how to set up Unity’s IAP system and create our first possible purchasable item, 
and then we will see how to restore purchases on certain devices before seeing additional resources 
for the various app stores that exist.

This chapter is split into a number of topics. It contains a simple step-by-step process from beginning 
to end. The following is the outline of our tasks:

•	 Setting up Unity IAP

•	 Creating our first purchase

•	 Adding a button to restore purchases

•	 Configuring purchases for the stores of your choice



Implementing In-App Purchases202

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section.

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20
and%2007.

Setting up Unity IAP
Unity IAP is a service that allows us to sell a variety of different items to players within our game 
projects and is currently supported by the iOS App Store, Mac App Store, Google Play, Windows Store, 
Amazon Appstore, and more, by default. So, using this, we can easily sell our items in many different 
places. We have already set up Unity Services in Chapter 7, Advertising Using Unity Ads, so this will 
be a lot easier to get going. Perform the following steps to add Unity IAP:

1.	 Open the Services window by going to Window | Package Manager, and then click on the 
Services button on the top toolbar.

2.	 From there, scroll down to the In App Purchasing item and then click on the Install button.

Figure 6.1: The In App Purchasing option from Package Manager

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007


Setting up Unity IAP 203

3.	  A window will pop up asking for you to confirm that you would like to activate the Purchasing 
service package. Click on the Ok button.

Figure 6.2: Activating the Purchasing service

4.	 Once completed, you can close out of Package Manager and then go into the Project Settings 
menu by going to Edit | Project Settings and then going to the Services section. If all went 
well, you should see an In-App Purchases menu section. Select it and you should notice that 
it has been toggled on.

Important note
The IAP package is created externally from the main engine itself because the code is meant to 
be extremely flexible and can be updated to fit any policies that are needed. We can then just 
update the package instead of having to update it to the latest version of Unity, which can be 
very important when working on a large project.

Figure 6.3: In-App Purchases are enabled



Implementing In-App Purchases204

Now that we have the IAP system brought into our project, we can now utilize it to create our first 
purchasable object for our players.

Creating our first purchase

To make our first in-app purchase, we will make use of a feature of Unity that was just added to our 
project, Codeless IAP. It is called Codeless IAP because you do not need to write any code for the 
actual IAP transaction, just the script that defines what users get if they make a purchase. It’s by far the 
easiest way to integrate IAPs into Unity games and a great way to start trying out IAPs in our project.

One of the most common IAPs is the ability to disable advertisements in mobile games. Using the following 
steps, let’s add that functionality by creating a button that, when clicked, will disable advertisements:

1.	 Open up our Main Menu level by going to the Project window, opening the Assets/Scenes 
folder, and then double-clicking on the MainMenu file.

2.	 From there, return to the Scene window if not there already, and then click on the 2D button 
to go into 2D mode since we’ll be working with the UI.

3.	 We will first need to have something to sell and to do that, we will use the IAP Catalog, which 
we can access by going to Services | In-App Purchasing | IAP Catalog…:

Figure 6.4: Opening the IAP Catalog

Once we get to the menu, it should look something like this:



Setting up Unity IAP 205

Figure 6.5: The IAP Catalog

Now, the first thing we’ll need to do is create an ID for our product, which is how we will identify our 
product in different app stores. In our case, let’s go with removeAds. Then, under Type, change it 
to Non Consumable:



Implementing In-App Purchases206

Figure 6.6: Creating an IAP

By non-consumable, we mean that the players only need to buy this once, and the game will 
keep that in mind for later. The others are consumable, meaning that they are used for things 
that can be bought over and over again, such as special power-ups and subscriptions. These give 
access to some kind of content for a period of time, possibly recurring until a user cancels them.

4.	 Next, we can close out of IAP Catalog by clicking on X in the top-right corner of the window.

5.	 Select the Canvas - Scale Physical object in the Hierarchy window. From there, select Services | 
In-App Purchasing | Create IAP Button, and we should see a new button created in our scene:



Setting up Unity IAP 207

Figure 6.7: Creating an IAP button

This button will be used to perform an IAP to remove the ads in the game. The button currently 
uses Unity’s legacy text system, but it can easily be adjusted to use TextMeshPro if you’d like.

To ensure that both the Start and Remove Ads buttons show up correctly on the screen, we 
will create a menu that can hold both of them. This means creating another panel as a child 
of our Safe Area panel.

From the Hierarchy window, select our Panel object and, in the Inspector window, rename 
it SafeAreaHolder.

6.	 Afterward, create a child Panel object of SafeAreaHolder and have it fill the entire screen 
as done before. Add a Vertical Layout Group component to it. From there, change Child 
Alignment to Middle Center and set all Padding and Spacing to 10.

7.	 Then, add a Content Size Fitter component and set the Vertical Fit and Horizontal Fit fields 
to Preferred Size.

8.	 Rename the newly added button Remove Ads Button and then add a Horizontal Layout 
Group component to it with all Padding options set to 10 and at the Child Controls Size 
property check both the Width and Height options. Also, add a Content Size Fitter component 
to it with both Fit options set to Preferred Size. Then, in the child Text (Legacy) object’s Text 
component, change the Text property to show Remove Ads instead.

Tip
For a reminder on what these instructions mean and what each step does, check out Chapter 4, 
Resolution-Independent UI.



Implementing In-App Purchases208

1.	 Finally, drag and drop the two buttons onto the Panel object, with the Play button in the top 
half and the Remove Ads button below it, as follows:

Figure 6.8: The Remove Ads button added to the scene

2.	 Next, with the Remove Ads object selected, move to the Inspector tab, and scroll down to 
the IAP Button component. Under Product ID:, click the dropdown, and select removeAds. 
You’ll note that the IAP Button class has an On Purchase Complete (Product) function, 
which works similarly to On Click as we’ve used with Button components in the past. With 
that in mind, we will need to create a function that we would like to call when the player 
presses the button.

In Chapter 7, Advertising Using Unity Ads, we created a static variable inside the 
UnityAdController class called showAds. We will use this variable to check whether 
we should show ads.

We will need to open up the MainMenuBehaviour script and add the following functions 
to the class:

public void DisableAds()
{
    UnityAdController.showAds = false;

    /* Used to store that we shouldn't show ads */
    PlayerPrefs.SetInt("Show Ads", 0);
}

protected virtual void Start()



Setting up Unity IAP 209

{
    /* Initialize the showAds variable */
    bool showAds = (PlayerPrefs.GetInt("Show Ads", 1)
        == 1);
    UnityAdController.showAds = showAds;
}

Here, we are using Unity’s PlayerPrefs system in order to save whether a player should be 
shown ads or not. PlayerPrefs is cool because it saves information between playthroughs 
of the game and is used often for things such as high scores and player preferences (hence 
the name). To reset the properties for testing, you can go to Edit | Clear All PlayerPrefs. 
PlayerPrefs may be removed if the app is uninstalled or if the app’s data is cleared, so we 
will later add a Restore Purchases button that will allow the players to restore their purchases 
on platforms that allow it. For platforms that don’t, you’ll want to make an API call to the server 
to check whether the current user has already purchased the non-consumable IAP item. More 
details on this will be covered in the Adding a button to restore purchases section of this chapter.

Note
For more information on PlayerPrefs, check out https://docs.unity3d.com/
ScriptReference/PlayerPrefs.html.

Note that I made the Start function virtual, which means that inherited classes can also 
use this as a foundation for their own scripts. We also marked the function as protected, 
which works the same as a private function but it also is accessible in child classes.

3.	 With that in mind, we will also need to update the Start function of PauseScreenBehaviour 
to the following:

protected override void Start()
{
    /* Initialize Ads if needed */
    base.Start();

    if (!UnityAdController.showAds)
    {
        /* If not showing ads, just start the game */
        SetPauseMenu(false);
    }

}

The override keyword will replace the default behavior of Start. However, when we call 
base.Start(), we are ensuring that the preceding content from MainMenuBehaviour 
will be called—in this case, we ensure that UnityAdController has the correct value set.

https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html


Implementing In-App Purchases210

4.	 Finally, we will need to adjust the ObstacleBehaviour script to handle not playing ads 
as well. Update the ShowContinue function to use the following:

    // Other code above...

    /* Come back after 1 second and check again */
    yield return new WaitForSeconds(1f);
}
else if (!UnityAdController.showAds)
{
    /* It's valid to click the button now */
    contButton.interactable = true;

    /* If player clicks on button we want to just
       continue */
    contButton.onClick.AddListener(Continue);

    UnityAdController.obstacle = this;

    /* Change text to allow continue */
    btnText.text = "Free Continue";

    /* We can now leave the coroutine */
    break;
}

else
{
    /* It's valid to click the button now */
    contButton.interactable = true;

    // More code below...

5.	 We will also need to make a slight adjustment to the ResetGame method by removing or 
commenting out the following lines:

/*If we find the button, we can use it */
if (continueButton)
{
    //if (UnityAdController.showAds)
    //{
        // If a player clicks on a button, we want to
           play an ad
        // and then continue



Setting up Unity IAP 211

        StartCoroutine(ShowContinue(continueButton));
    //}
    //else
    //{
        /* If we can't play an ad, no need for the
           continue button */
    //    continueButton.gameObject.SetActive(false);
    //}

}

6.	 Save your script and dive into Unity.

7.	 From the Hierarchy window, select the Remove Ads button. Go into the Inspector tab and then 
scroll down to the IAP Button component. Go ahead and click on the plus button underneath 
the On Purchase Complete (Product) option, and then add the Main Menu object to the little 
box below the Runtime Only dropdown. Then, select Main Menu Behaviour | DisableAds 
from the dropdown to the right:

Figure 6.9: Adding the DisableAds function call to Purchase

8.	 Now, save our scene and start the game:



Implementing In-App Purchases212

Figure 6.10: The purchase menu appears to work correctly

Now, if we click on the Remove Ads button, it will ask whether we want to make the purchase. If we 
do, it will then make it so that when we go into the game, there are no ads. Likewise, now when we 
die, it will display a Free Continue button:

Figure 6.11: Making sure the purchase works correctly

With that, we now have created a simple purchase in Unity.



Adding a button to restore purchases 213

Note
If you’re interested in learning more about Codeless IAP, checkout https://docs.unity3d.
com/Manual/UnityIAPCodelessIAP.html.

With this, you can now build as many products as you’d like to have in your game. However, certain 
platforms also have requirements with regard to the functionality to restore previous purchases. In 
the next section, we will see how to do that.

Adding a button to restore purchases
On platforms that support it (Google Play and Universal Windows Applications, most notably), if you 
purchase something, uninstall, and then reinstall a game using Unity IAP, it automatically restores 
any products the user owned during the first initialization following reinstallation.

For those on iOS, users must have the ability to restore their purchases via a button due to Apple 
requiring them to reauthenticate their password beforehand. Not doing so will prevent our game 
from being accepted on the iOS App Store, so it’s a good idea to include this functionality if we wish 
to deploy it there. Let’s look at the steps to do just that:

1.	 Go to the Hierarchy window and select the Remove Ads Button object. Once selected, duplicate 
it by pressing Ctrl + D.

2.	 Change the duplicate’s name by selecting it and changing its name to Restore Button in 
the Inspector window.

3.	 From the Hierarchy window, open up the Text object and change the text to Restore 
Purchases as well.

4.	 Now, select the Restore object, and then, in the IAP Button component, go to Button Type 
and select Restore:

Figure 6.12: Adding the Restore button

https://docs.unity3d.com/Manual/UnityIAPCodelessIAP.html
https://docs.unity3d.com/Manual/UnityIAPCodelessIAP.html


Implementing In-App Purchases214

You should note that the properties of the IAP Button component have changed and now only 
allow you to set Button Type, as there is nothing left to customize.

5.	 Save your scene and jump into Unity.

6.	 When you start the game and try to click on Restore, you’ll get a warning in the Console 
window stating that this isn’t a supported platform:

Figure 6.13: Warning upon trying to restore on Windows

So, with that in mind, we can adjust our game so that the button will only show up if we are 
currently running on a supported platform.

7.	 Go to the Scripts folder and create a C# script called RestoreAdsChecker. Once it 
opens, use the following script for it:

using UnityEngine;

/// <summary>
/// Will show or remove a button depending on whether
/// we can restore ads or not
/// </summary>
public class RestoreAdsChecker : MonoBehaviour
{

    // Use this for initialization
    void Start()
    {
        bool canRestore = false;

        switch (Application.platform)
        {
            // Windows Store
            case RuntimePlatform.WSAPlayerX86:
            case RuntimePlatform.WSAPlayerX64:
            case RuntimePlatform.WSAPlayerARM:

            // iOS, OSX, tvOS



Adding a button to restore purchases 215

            case RuntimePlatform.IPhonePlayer:
            case RuntimePlatform.OSXPlayer:
            case RuntimePlatform.tvOS:
                canRestore = true;
                break;
        }

        gameObject.SetActive(canRestore);
    }

}

This script goes through all of the stores listed in Unity’s IAPButton class, and if they are 
something that can be restored, we set canRestore to true; otherwise, it will stay false. 
Finally, we will remove the object if we cannot restore it, without having to create specific things 
for different builds.

8.	 Save the script and dive back into Unity.

9.	 Attach our newly created RestoreAdsChecker component to our Restore Button object:

Figure 6.14: Adding the Restore Ads Checker component

10.	 Save your project and start up the game:



Implementing In-App Purchases216

Figure 6.15: The result of the RestoreAdsChecker component

Now, due to the RestoreAdsChecker component that we added on our PC build of the game, the 
Restore button doesn’t show up, but if we export for iOS, it will show up on our device!

Note
For more information on restoring transactions and how this functionally works, check 
out https://docs.unity3d.com/Manual/UnityIAPRestoringTransactions.
html.

This ensures that our game has this particular feature on each of the different platforms that support 
it. With that in mind, we will next look at some of the specific stores and places you may wish to add 
support for IAPs in your game.

Configuring purchases for the stores of your choice

Unfortunately, we do not have enough room in the book to go step by step through the process 
for every store, but I do have pages that you can reference to go through the entire process for the 
following stores:

•	 The Apple App Store and Mac App Store: https://docs.unity3d.com/Manual/
UnityIAPAppleConfiguration.html

https://docs.unity3d.com/Manual/UnityIAPRestoringTransactions.html
https://docs.unity3d.com/Manual/UnityIAPRestoringTransactions.html
https://docs.unity3d.com/Manual/UnityIAPAppleConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPAppleConfiguration.html


Summary 217

•	 Google Play Store: https://docs.unity3d.com/Manual/UnityIAPGoogleCon-
figuration.html

•	 The Windows Store: https://docs.unity3d.com/Manual/UnityIAPWindows-
Configuration.html

•	 Amazon Appstore: https://docs.unity3d.com/Manual/UnityIAPAmazon-
Configuration.html

There are some potential issues when trying to publish to multiple Android IAP stores (such as Samsung 
and Google) with the same build. You can find information on resolving those issues at https://
docs.unity3d.com/Manual/UnityIAPCrossStoreInstallationIssues.html.

Summary
In this chapter, we covered how to create IAPs by making use of Unity in your project. We first covered 
how to set up Unity’s IAP system and then dived into using Codeless IAP to easily add a purchasable 
item to your game. We then created the functionality to restore our purchase if we uninstall and reinstall 
our game and went over where we can go to set up our purchases depending on the store we want to 
target. These new skills give you the ability to make additional revenue from your game while also 
allowing you to target multiple stores and platforms, making it possible for even more people to see it.

Now, of course, having all these ways to make money isn’t going to help us if no one plays our game. 
In the next chapter, we will get social, learning how we can make use of social media to share our 
score and get other players interested in our title.

Further reading
For more tips and tricks on improving your freemium strategy, I suggest that you check out the following 
article by Pepe Agell at https://www.chartboost.com/blog/inapp-purchases-for-
indie-mobile-games-freemium-strategy.

https://docs.unity3d.com/Manual/UnityIAPGoogleConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPGoogleConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPWindowsConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPWindowsConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPAmazonConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPAmazonConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPCrossStoreInstallationIssues.html
https://docs.unity3d.com/Manual/UnityIAPCrossStoreInstallationIssues.html
https://www.chartboost.com/blog/inapp-purchases-for-indie-mobile-games-freemium-strategy
https://www.chartboost.com/blog/inapp-purchases-for-indie-mobile-games-freemium-strategy




7
Advertising Using Unity Ads

When working on mobile titles, you need to think about how you are going to sell your game. Deciding 
on how to best sell a game can be difficult. Of course, you can sell your game for a price, and there is 
a possibility that it will be successful, but you’ll be limiting your audience numbers to a much lower 
amount. This could work well for a niche game, but if you’re trying to make a game with a broad 
appeal where you want to get as many players as possible to play your title, you may have some issues.

Having a price on the game can be a major hurdle in getting initial customers who will share the game 
via word of mouth and contribute to having more people play your game. To solve this potential issue, 
you do have the option of making your game free.

Afterward, you can give players the opportunity to purchase things or show advertisements when 
playing the game.

That’s not to say that having a bunch of advertisements in a free game is the best option either. Having 
too many ads, or even the wrong kind of ads, can drive users away, which can be even worse. Many 
developers have their own opinions on whether it’s a good idea to use ads or not, but that’s not the 
purpose of this chapter. In this chapter, we will look into the different options available to us in terms of 
advertising over the course of our game and show how to implement them, should you choose to add 
this content to your game.

This chapter is split into a number of topics. It contains a simple step-by-step process, from beginning 
to end. The following is the outline of our tasks:

•	 Setting up Unity Ads

•	 Creating a simple ad

•	 Adding in-ad callback methods

•	 Opt-in advertisements with rewards

•	 Integrating a cooldown timer



Advertising Using Unity Ads220

In this chapter, we will integrate the Unity Ads framework into our project and learn how to create 
both simple and complex versions of advertisements. This is done by first setting up Unity’s Ads 
system, then creating a simple ad before adding additional callback options. We will then see how we 
can give additional incentives to view ads by utilizing opt-in rewards and adding a cooldown timer 
to prevent players from watching too many ads.

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter06%20and%2007.

Setting up Unity Ads
Unity Ads is a video ad network for iOS and Android that can monetize your existing player base by 
showing ads. Unity Ads offers video ads that can be shown as either rewarded or non-rewarded placements. 
As the name suggests, rewarded ads will give the users a reward or incentive that will help them while 
playing the game. Before we can enable Unity Ads, we must first enable Unity’s Services suite. To activate 
Unity Services, you have to link your project to a Unity Services Project ID, which is how Unity can tell 
the difference between the different projects you are creating. So let’s see how to do that:

1.	 Open the Services window by going to Window | General | Services or by pressing Ctrl + 0. This 
will open up the Unity Package Manager and will automatically select the Advertisement option:

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter06%20and%2007


Setting up Unity Ads 221

Figure 7.1 – The Advertisement option in the Unity Package Manager

2.	  Click on the Install button and wait for it to finish installing. Upon finishing the installation, 
you should see a window that looks like the following:

Figure 7.2 – Service Activation window

You can also access this menu by going to Services | Ads | Configure after the package has 
been installed.

Assuming that you haven’t worked with Unity Services before, you will need to create Organization 
and Project Name details.

3.	 Click on the dropdown and select your username and then click on the Create project ID 
button. The project name is automatically created according to the name of your project when 
you first created it, but you can change this in the Settings section of the Services window.



Advertising Using Unity Ads222

Important note
Unity automatically creates an organization using your account username; however, if you need 
to create another one, you can do so at https://id.unity.com/organizations.

4.	 You’ll then be asked questions about your game. If your game is not directed toward children, go 
ahead and select No from the drop-down menu and then click on the Save button. Otherwise, 
select Yes and then click on Save.

Important note
When you indicate that your game is designed for children under the age of 13 years, ads will 
not be behaviorally targeted to users in your game. Behavioral targeting can yield a higher 
effective cost per thousand impressions (eCPM) by showing ads that are more relevant to 
your users, but its use is prohibited with users under the age of 13 due to Children’s Online 
Privacy Protection Rule Act (COPPA) regulations. For more info on this, check out https://
forum.unity.com/threads/age-designation.326930/.

Figure 7.3 – Answering the COPPA compliance question

5.	 Then, when brought to the Ads menu, click on the toggle at the top right to turn it on. Ads 
should be toggled on at this point.

6.	 If you scroll down, you’ll see a property called Game Id; note down those values as we will 
need them in order to initialize Unity Ads at the start of the game.

https://id.unity.com/organizations
https://forum.unity.com/threads/age-designation.326930/
https://forum.unity.com/threads/age-designation.326930/


Setting up Unity Ads 223

7.	 To get started, it would be a good idea for us to have all of the ad-related behavior to share a 
script, so we will create a new class called UnityAd Controller by going to the Project 
window, opening the Assets/Scripts folder, and selecting Create | C# Script.

8.	 Open up the file in the IDE of your choice, and use the following code:

using UnityEngine;
using UnityEngine.Advertisements; /* Advertisement class */
public class UnityAdController : MonoBehaviour
{
    /// <summary>
    /// If we should show ads or not
    /// </summary>
    public static bool showAds = true;

    /// <summary>
    /// Replace with your actual gameId
    /// </summary>
    private string gameId = "1234567";

    /// <summary>
    /// If the game is in test mode or not
    /// </summary>
    private bool testMode = true;

    /// <summary>
    /// Unity Ads must be initialized or else ads will
    /// not work properly
    /// </summary>
    private void Start()
    {
        /* No need to initialize if it already is done
        */
        if (!Advertisement.isInitialized)
        {
            Advertisement.Initialize(gameId,
                testMode);
        }
    }

}



Advertising Using Unity Ads224

The preceding code does a number of things. We first state that we are using the UnityEngine.
Advertisments namespace to get access to the Advertisement class. If you only intend to 
implement video, interstitial, and banner ads for your monetization strategy, this is the API that Unity 
suggests to use. In addition to this, in order to use Unity Ads, you must call the Advertisement.
Initialize function, which I do inside of the Start function of this object.

9.	 From the Project window, open up the MainMenu scene and, once inside, create an empty 
GameObject (GameObject | Create Empty) and name it Unity Ad Controller. Once 
created, attach the Unity Ad Controller script to it:

Figure 7.4 – Creating the Unity Ad Controller object

10.	 Because this object is spawned at the MainMenu level, it is loaded at the beginning of the game, 
which is perfect for what we will use it for.

At this point, we have finished the setup process required to utilize Unity Ads by enabling Unity 
Analytics and then turning the Ads menu on. With the setup process complete, we can now proceed 
to actually adding a simple ad to our project.

Displaying a simple ad
Advertisements are a possible way to generate revenue from players playing your game. As mentioned 
previously, Unity Ads has two different types of ads that we can display: simple and rewarded. Simple 
ads are easy to use, hence the name, and allow users to have simple full-screen interstitial ads. This can 
be really useful when moving between levels or perhaps when the player wants to restart the game. 
Let’s see how we can implement that feature now. Implement the following steps:

1.	 To get started, we will need to add a new function to the UnityAdController class:

/// <summary>
/// Will get the appropriate Ad ID for the platform we
/// are on



Displaying a simple ad 225

/// </summary>
/// <returns>A usable Ad ID</returns>
private static string GetAdID()
{
    string adID = "Interstitial_";

    if (Application.platform ==
        RuntimePlatform.IPhonePlayer)
    {
        adID += "iOS";
    }
    else
    {
        adID += "Android";
    }

    return adID;
}

/// <summary>
/// Will load and display an ad on the screen
/// </summary>
public static void ShowAd()
{
    // Load an Ad to play
    Advertisement.Load(GetAdID());

    // Display it after it is loaded
    Advertisement.Show(GetAdID());
}

Here, we created a static method called ShowAd. We made this static so that we can access 
the function without actually having to create an instance of this class in order to call it. The 
function will load an advertisement into memory and then, when it is ready, we will call the 
Show() function to display it on the screen. We also created a helper function called GetAdID 
in order to give us the correct ad type to use depending on the platform we are deploying to.

2.	 Save your script and then open up the MainMenuBehaviour file and add the following 
highlighted code:

/// <summary>
/// Will load a new scene upon being called
/// </summary>
/// <param name="levelName">The name of the level we
/// want to go to</param>



Advertising Using Unity Ads226

public void LoadLevel(string levelName)
{
    if (UnityAdController.showAds)
    {
        /* Show an ad */
        UnityAdController.ShowAd();
    }

    SceneManager.LoadScene(levelName);
}

This will have an advertisement play each time we call the LoadLevel function if it is 
supported. We also added a new parameter with a default value. The nice thing about this is 
that we can optionally decide when we want to show an ad.

For instance, we may want to make it so that when we restart the game, we don’t play an ad. 

3.	 Now let’s see this in action. Play the game and then click on the Play button:

Figure 7.5 – An example ad being shown

As you can see in the preceding screenshot, the ad works correctly. This screen is what is shown when 
playing the game in the editor. It has buttons to allow us to test whether a player skips or watches a 
video in full. When we disable test mode, we will then see live video ads.

You’ll also see this happen if, once in the game, you open the pause menu and click on the Main 
Menu button.



Utilizing ad callback methods 227

Important note
If this does not work and/or show up, check the Player Settings menu you learned about 
previously and ensure that your current platform is set to Android or iOS.

This provides us with the easiest way of getting an ad to show up in our game, but there are still a 
number of things we need to do to ensure our ads work properly, which we will look at next.

Important note
Another type of ad that can be used is banner ads. These work similarly to default ads but you’d 
use Banner instead of Interstitial when calling GetAdID.

For more information on this, check out https://docs.unity.com/monetization-
dashboard/AdUnits.html.

Utilizing ad callback methods
The code we wrote for the LoadLevel function works perfectly fine when we go to the main menu 
of the game; however, if we dive into the game itself from the main menu, the game will still be going 
on in the background with the ad blocking the player from playing the game.

When running your app on an actual mobile device, the Unity project will pause while Unity Ads are 
shown. However, if you are testing in the Unity Editor, the game is not paused while the placeholder 
ads are shown. However, we can simulate that behavior ourselves using the Advertisement.
ShowOptions class.

We will pause the game when an ad is shown and then resume the game once the ad is finished. To 
do so, perform the following steps:

1.	 Let’s first open up the UnityAdController class and add the following variable and update 
the Start function to the following:

/// <summary>
/// A static reference to this object
/// </summary>
public static UnityAdController instance;

/// <summary>
/// Unity Ads must be initialized or else ads will not
/// work properly
/// </summary>
private void Start()
{
    /* No need to initialize if it already is done */

https://docs.unity.com/monetization-dashboard/AdUnits.html
https://docs.unity.com/monetization-dashboard/AdUnits.html


Advertising Using Unity Ads228

    if (!Advertisement.isInitialized)
    {
        instance = this;
        // Use the functions provided by this to allow
        // custom
        Advertisement.Initialize(gameId, testMode);
    }
}

The instance variable is going to be used to give the Advertisement.Show function a 
second parameter to reference the object to run code on.

2.	 Update the ShowAd function to have the second parameter added to our function:

    /// <summary>
    /// Will load and display an ad on the screen
    /// </summary>
    public static void ShowAd()
    {
        // Load an Ad to play
        Advertisement.Load(GetAdID());

        // Display it after it is loaded
        Advertisement.Show(GetAdID(), instance);
    }

For the second parameter, the Advertisement.Show  function takes in an 
IUnityAdsShowListener object. I at the start of the name here indicates that this type 
is an interface. This is a keyword in C#, designating something like a contract, promising that 
whatever you provide to this function contains the functionalities required by the interface.

3.	 Now update the class definition to the following:

public class UnityAdController : MonoBehaviour, 
IUnityAdsShowListener

By adding the comma and then IUnityAdsShowListener, we are stating that we will 
implement the methods provided by the IUnityAdsShowListener interface.

In C#, whenever we add an interface to our class definition, we are making a promise that we 
will include an implementation for all of the methods that were declared inside of that interface, 
and if we don’t, our code won’t compile. This is needed because later on we are going to pass in 
an object of type IUnityAdsShowListener to Unity’s code and it will use those methods 
at the appropriate times.



Utilizing ad callback methods 229

To see what those methods are, from your IDE, you may be able to right-click on the 
IUnityAdsShowListener option and select Go to Definition. From there, you may see 
something like the following:

namespace UnityEngine.Advertisements
{
    public interface IUnityAdsShowListener
    {
        void OnUnityAdsShowClick(string placementId);
        void OnUnityAdsShowComplete(
            string placementId,
                UnityAdsShowCompletionState
                    showCompletionState);
        void OnUnityAdsShowFailure(string placementId,
            UnityAdsShowError error, string message);
        void OnUnityAdsShowStart(string placementId);
    }
}

We will need to create four methods inside our own class with the exact same names, parameters, 
and return types.

Important note
For more information on interfaces and how they work in C#, check out https://www.
tutorialsteacher.com/csharp/csharp-interface.

4.	 After doing this, we need to implement the functions used by the interface:

#region IUnityAdsShowListener Methods
/// <summary>
/// This callback method handles logic for the ad
/// starting to play.
/// </summary>
/// <param name="placementId">The identifier for the
    Ad Unit showing the content.</param>
public void OnUnityAdsShowStart(string placementId)
{
    /* Pause game while ad is shown */
    PauseScreenBehaviour.paused = true;
    Time.timeScale = 0f;
}

/// <summary>

https://www.tutorialsteacher.com/csharp/csharp-interface
https://www.tutorialsteacher.com/csharp/csharp-interface


Advertising Using Unity Ads230

/// This callback method handles logic for the ad
/// finishing.
/// </summary>
/// <param name="placementId">The identifier for the
/// Ad Unit showing the content</param>
/// <param name="showCompletionState">Indicates the
/// final state of the ad (whether the ad was skipped
/// or completed).</param>
public void OnUnityAdsShowComplete(string placementId,
UnityAdsShowCompletionState showCompletionState)
{
    /* Unpause game when ad is over */
    PauseScreenBehaviour.paused = false;
    Time.timeScale = 1f;
}

/* This callback method handles logic for the user clicking on 
the ad. */
public void OnUnityAdsShowClick(string placementId) { }

/* This callback method handles logic for the Ad Unit failing to 
show. */
public void OnUnityAdsShowFailure(string placementId, 
UnityAdsShowError error, string message) { }
#endregion

Each of these four functions does something when we are creating ads. Of note is 
the OnUnityAdsShowStart  method, where we pause the game, and then the 
OnUnityAdsShowComplete method where we unpause. We utilize a region here in order 
to make it easier to compartmentalize our code.

Important note
For more information on the #region block, check out https://docs.microsoft.com/
en-us/dotnet/csharp/language-reference/preprocessor-directives/
preprocessor-region.

5.	 Next, we will make it so that PauseScreenBehaviour doesn’t override this new change. 
So, we will replace the Start() function with the following:

void Start()
{
    if (!UnityAdController.showAds)
    {
        /* If not showing ads, just start the game */

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region


Opt-in advertisements with rewards 231

        SetPauseMenu(false);
    }

}

The preceding snippet is important because otherwise the game will immediately be turned 
off when the level loads in the Start function, after we tell the game to pause, which is called 
after the level loads. This is needed for the PC version of the game, as there is nothing else to 
unpause the static value.

6.	 Save our scripts and start the game up again:

Figure 7.6 – The game is paused until the player ends the ad

With that, when we transition from the main menu to the game, we will pause the game until we are 
ready to jump in. Now that we can see how to work with basic advertisements that aren’t optional, 
let’s give players the opportunity to see an ad for some kind of benefit.

Opt-in advertisements with rewards
According to AdColony, the most recommended form of mobile game ad according to 58% of mobile 
developers is the rewarded video ad. By that, we’re referring to making ads an opt-in experience where 
players choose to see an ad and receive some kind of bonus in return. That way, users feel it’s a choice 
for them whether or not to watch the ad, and they feel more compelled to watch it because they will 
get something out of it.

Rewarded ad placements typically yield higher effective Cost Per 1000 Impressions (eCPMs) since 
they offer more engagement from users by allowing them to opt in before watching an ad in exchange 
for some in-game reward.



Advertising Using Unity Ads232

Note
If you’re interested in learning more about why reward ads are recommended, check out https://
www-staging.adcolony.com/blog/2016/04/26/the-top-ads-recommended-
by-mobile-game-developers/.

In our game, we could add the choice of restarting the game or seeing an ad to continue the game. 
This means that we will need to create some kind of menu in order for the player to select whether or 
not to see the ad, so let’s add that next:

1.	 Stop the game if you haven’t done so already, and then open up the Gameplay

2.	 scene. Afterward, let’s create a Game Over menu by first going to the Hierarchy window and 
expanding the Canvas game object if you have not done so already. Then, select the Pause 
Menu object and duplicate it by pressing Ctrl + D. Rename this new object Game Over 
and then turn off the Pause Menu so that we can see the Game Over object clearly. To make 
it easier to see, feel free to toggle to the 2D mode we used previously when creating the UI 
elements of our game.

3.	 Next, expand the Game Over object and both of the Panel children, then change the Pause 
Menu Contents object’s name to Game Over Contents and change the child Text (TMP) 
object’s TextMeshPro - Text component to say Game Over instead.

4.	 Now, change the Resume button to say Continue (Play Ad) and change the button 
object’s name to Continue Button:

Figure 7.7 – Game Over menu setup

https://www-staging.adcolony.com/blog/2016/04/26/the-top-ads-recommended-by-mobile-game-developers/
https://www-staging.adcolony.com/blog/2016/04/26/the-top-ads-recommended-by-mobile-game-developers/
https://www-staging.adcolony.com/blog/2016/04/26/the-top-ads-recommended-by-mobile-game-developers/


Opt-in advertisements with rewards 233

5.	 We’ll first need to update the ObstacleBehaviour script to handle it; add the following 
highlighted code:

using UnityEngine;
using UnityEngine.UI; // Button

public class ObstacleBehaviour : MonoBehaviour
{

[Tooltip("How long to wait before restarting the game")] 
public float waitTime = 2.0f;

public GameObject explosion;

private GameObject player;

private void OnCollisionEnter(Collision collision)
{
    // First check if we collided with the player
    if (collision.gameObject.GetComponent
        <PlayerBehaviour>())
    {
        // Destroy (Hide) the player
        collision.gameObject.SetActive(false);
        player = collision.gameObject;

        // Call the function ResetGame after waitTime
       // has passed 
       Invoke("ResetGame", waitTime);
    }
}

/// <summary>
/// Will restart the currently loaded level
/// </summary>
private void ResetGame()
{
    //Bring up restart menu
    var go = GetGameOverMenu();
    go.SetActive(true);

    // Get our continue button
    var buttons =
    go.transform.GetComponentsInChildren<Button> ();



Advertising Using Unity Ads234

    Button continueButton = null;

    foreach (var button in buttons)
    {
        if (button.gameObject.name == "Continue
            Button")
        {
            continueButton = button;
            break;
        }
    }

    // If we found the button we can use it
    if (continueButton)
    {
        if (UnityAdController.showAds)
        {
            // If player clicks on button we want to
            // play ad and then continue
            continueButton.onClick.AddListener
            (UnityAdController.ShowAd);
            UnityAdController.obstacle = this;
        }
        else
        {
            // If can't play an ad, no need for
            // continue button
           continueButton.gameObject.SetActive(false);
        }

    }
}

/// <summary>
/// If the object is tapped, we spawn an explosion and
/// destroy this object
/// </summary>
private void PlayerTouch()
{
    if (explosion != null)
    {
        var particles = Instantiate(explosion,
            transform.position, Quaternion.identity);



Opt-in advertisements with rewards 235

        Destroy(particles, 1.0f);
    }

        Destroy(this.gameObject);
}

/// <summary>
/// Retrieves the Game Over menu game object
/// </summary>
/// <returns>The Game Over menu object</returns>
GameObject GetGameOverMenu()
{
    var canvas = GameObject.Find("Canvas").transform;
    return canvas.Find("Game Over").gameObject;
}

/// <summary>
/// Handles resetting the game if needed
/// </summary>
public void Continue()
{
    var go = GetGameOverMenu();
    go.SetActive(false);
    player.SetActive(true);

    // Explode this as well (So if we respawn player
    // can continue) 
    PlayerTouch();
}

}

6.	 First, add the following variable and update the OnCollisionEnter function to the following:

    /// <summary>
    /// A reference to the player object
    /// </summary>
    private GameObject player;

    private void OnCollisionEnter(Collision collision)
    {
        // First check if we collided with the player
        if (collision.gameObject.GetComponent
            <PlayerBehaviour>())



Advertising Using Unity Ads236

        {
            // Destroy the player
            //Destroy(collision.gameObject);

            // Destroy (Hide) the player
            player = collision.gameObject;
            player.SetActive(false);

            // Call the function ResetGame after
            // waitTime has passed
            Invoke("ResetGame", waitTime);
        }
    }

In this instance, we remove the code that was destroying the player object and hide it instead. 
The reason we do this is so that, if the player decides to play the ad, we can then unhide it and 
resume the game as normal.

7.	 We will use the Button class next, so we want to add the following to the top of the 
ObstacleBehaviour script:

using UnityEngine.UI;

8.	 With that done, we will then update the ResetGame function to the following:

/// <summary>
/// Will restart the currently loaded level
/// </summary>
private void ResetGame()
{
    //Bring up restart menu
    var go = GetGameOverMenu();
    go.SetActive(true);

    // Get our continue button
    var buttons =
       go.transform.GetComponentsInChildren<Button>();
    Button continueButton = null;

    foreach (var button in buttons)
    {
        if (button.gameObject.name == "Continue
            Button")
        {
            continueButton = button;



Opt-in advertisements with rewards 237

            break;
        }
    }

    /*If we found the button we can use it */
    if (continueButton)
    {
        if (UnityAdController.showAds)
        {
            // If player clicks on button we want to
            // play ad and then continue
            continueButton.onClick.AddListener(
                UnityAdController.ShowAd);
            UnityAdController.obstacle = this;
        }
        else
        {
            /* If can't play an ad, no need for
               continue button */
           continueButton.gameObject.SetActive(false);
        }

    }
}

We also destroy what the player hit. So, if we do restart the game, then the player will be able 
to start from right where they initially began.

9.	 Next, add the following two helper functions:

/// <summary>
/// Retrieves the Game Over menu game object
/// </summary>
/// <returns>The Game Over menu object</returns>
GameObject GetGameOverMenu()
{
    var canvas = GameObject.Find("Canvas").transform;
    return canvas.Find("Game Over").gameObject;
}

/// <summary>
/// Handles resetting the game if needed
/// </summary>
public void Continue()
{



Advertising Using Unity Ads238

    var go = GetGameOverMenu();
    go.SetActive(false);
    player.SetActive(true);

    /* Explode this as well (So if we respawn player
       can continue) */
    PlayerTouch();
}

With that in mind, we also created a Continue function, which will set up the game to be 
continued if we need to do so.

10.	 Open up the UnityAdController script and add the following variable declaration at 
the top of the file:

/// <summary>
/// For holding the obstacle for continuing the game
/// </summary>
public static ObstacleBehaviour obstacle;

11.	 Afterward, staying in the UnityAdController script, update the OnUnityAdsShow-
Complete function to the following:

/// <summary>
/// This callback method handles logic for the ad
/// finishing.
/// </summary>
/// <param name="placementId">The identifier for the Ad Unit 
showing the content</param>
/// <param name="showCompletionState">Indicates the final state 
of the ad (whether the ad was skipped or completed).</param>
public void OnUnityAdsShowComplete(string placementId, 
UnityAdsShowCompletionState showCompletionState)
{
    /* If there is an obstacle, we can remove it to
       continue the game */
    if (obstacle != null && showCompletionState ==
        UnityAdsShowCompletionState.COMPLETED)
    {
        obstacle.Continue();
    }

    /* Unpause game when ad is over */
    PauseScreenBehaviour.paused = false;
    Time.timeScale = 1f;
}



Opt-in advertisements with rewards 239

Our additions first check whether there is an obstacle that our player has hit. If there is, we then 
check the value of the showCompletionState variable that is provided by the function. 
We utilize the UnityAdsShowCompletionState enum to verify that the player actually 
completed the ad and did not click on the Skip button.

12.	 We want to make sure that Unity’s Advertisement system works in both scenes, so we can copy-
paste the Unity Ad Controller object from the Main Menu and we can also add it through 
code. To do so, open up the GameManager script and add the following highlighted code to 
the Start function:

/// <summary>
/// Start is called before the first frame update
/// </summary>
private void Start()
{
    /* If there is no UnityAdController, we can add it
       through code */
    if (!GameObject.FindObjectOfType
        <UnityAdController>())
    {
       var adController = new GameObject("Unity Ad
           Controller");
       adController.AddComponent<UnityAdController>();
    }

    // Set our starting point
    nextTileLocation = startPoint;
    nextTileRotation = Quaternion.identity;

    for (int i = 0; i < initSpawnNum; ++i)
    {
        SpawnNextTile(i >= initNoObstacles);
    }
}

13.	 Save your scripts and return to the Unity Editor.

14.	 Click on the Game Over object and disable it, save our scene, and then open the Main Menu 
scene and dive into the game.

Tip
If you do not see the ads there, it may be due to the fact that Unity Ads was not initialized. 
This is done in the Main Menu scene, so you’ll need to go there first before you see the ads.



Advertising Using Unity Ads240

At this point, when we die in the game, we’ll be shown a Game Over screen:

Figure 7.8 – Game Over screen

If we click on Continue (Play Ad), we will have an ad play. If the player skips it, nothing will happen, 
but if they watch all the way through, it should take them back into the game as if nothing happened:

Figure 7.9 – Continuing the game

With that, our ad system is working correctly. We have now seen how we can integrate the use of ads 
into our gameplay and provide a reason for players to actually want to see this content.



Adding in a cooldown timer 241

Adding in a cooldown timer
Ads are great for developers; however, according to Unity’s Monetization FAQs, each user is only 
able to view 25 ads per day. With that in mind, we will likely want to make it so that players can only 
trigger ads every once in a while. This also has the benefit of making players want to come back to 
our game after a period of time.

Important note
For more information on Unity’s Monetization FAQs, check out https://docs.unity.
com/ads/FAQ.html.

We will now implement a feature where our Continue option will only work once in a while with a 
short delay that we can easily customize if we like:

1.	 To get started, go back to the UnityAdController script and add the following new variable 
to it, shown in the highlighted code:

using System; // DateTime
using UnityEngine;
using UnityEngine.Advertisements; /* Advertisement class */

public class UnityAdController : MonoBehaviour, 
IUnityAdsShowListener
{
    /// <summary>
    /// A static reference to this object
    /// </summary>
    public static UnityAdController instance;

    /// <summary>
    /// If we should show ads or not
    /// </summary>
    public static bool showAds = true;

    // Nullable type
    public static DateTime? nextRewardTime = null;

    /// <summary>
    /// For holding the obstacle for continuing the
    /// game
    /// </summary>

https://docs.unity.com/ads/FAQ.html
https://docs.unity.com/ads/FAQ.html


Advertising Using Unity Ads242

    public static ObstacleBehaviour obstacle;
// Rest of UnityAdController...

The nextRewardTime variable is of the DateTime type, which we haven’t talked about 
previously. Basically, it’s a structure that represents a point in time that we can compare to other 
points in time and is built into .NET Framework. We’ll use this to store the time that needs 
to pass before the player is able to play another ad if needed. Note that DateTime is part of 
the System namespace. That is why we added the using System; line in the preceding 
code as well.

Important note
For more information on the DateTime class, check out https://msdn.microsoft.
com/en-us/library/system.datetime(v=vs.110).aspx.

You may notice the ? symbol next to the type of this variable. When we do this, we create 
what’s called a nullable type. The advantage of using them is that they can be null in addition 
to having normal values. We do this so that we don’t have to fill in a default value just for the 
sake of having one.

Important note
For more information on nullable types, check out https://www.tutorialspoint.
com/csharp/csharp_nullables.htm.

2.	 To add a time delay between ads showing, we will create a new function for this purpose:

public static void ShowRewardAd()
{
    nextRewardTime = DateTime.Now.AddSeconds(15);

    ShowAd();
}

Now when we show a reward ad, we set nextRewardTime to 15 seconds from when 
the function is called. Of course, we can just as easily set this to minutes or hours using the 
AddMinutes and AddHours function.

3.	 Save your script and then open up the ObstacleBehaviour script. At the top of the script, 
add the following new using statements:

using System; // DateTime
using System.Collections; // IEnumerator

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx
https://www.tutorialspoint.com/csharp/csharp_nullables.htm
https://www.tutorialspoint.com/csharp/csharp_nullables.htm


Adding in a cooldown timer 243

4.	 Afterward, we will need to modify the bottom part of the ResetGame() function to have 
the following code:

// Rest of ResetGame above...

        /*If we found the button we can use it */
        if (continueButton)
        {
            if (UnityAdController.showAds)
            {
                // If player clicks on button we want
                // to play ad and then continue
                StartCoroutine(ShowContinue(
                    continueButton));
            }
            else
            {
                /* If can't play an ad, no need for
                   continue button */
                continueButton.gameObject.SetActive(
                    false);
            }

        }
    }

Now, instead of just adding a listener to this button, we have replaced it with a call to the 
StartCoroutine function, which takes in a function that we haven’t written yet. I think 
it’s probably a good idea to talk a little bit about coroutines before we actually write one.

A coroutine is like a function that has the ability to pause execution and continue where it left 
off after a period of time. By default, a coroutine is resumed on the frame after we start to use 
yield, but it is also possible to introduce a time delay using the WaitForSeconds function 
to specify how long you want to wait before it’s called again.

5.	 Next, use the following script for the ShowContinue function:

    public IEnumerator ShowContinue(Button contButton)
    {
        while (true)
        {
            var btnText =
                contButton.GetComponentInChildren
                    < TMPPro.TMP_Text>();

            /* Check if we haven't reached the next



Advertising Using Unity Ads244

               reward time yet (if one exists) */
            var rewardTime =
                UnityAdController.nextRewardTime;

            bool validTime = rewardTime.HasValue;
            bool timePassed = true;

            if (validTime)
            {
                timePassed =
                    DateTime.Now > rewardTime.Value;
            }

            if (!timePassed)
            {
                /* Unable to click on the button */
                contButton.interactable = false;

                /* Get the time remaining until we get
                   to the next reward time */
                TimeSpan remaining =
                    rewardTime.Value - DateTime.Now;

                /* Get the time left in the following
                   format 99:99 */
                var countdownText =
                    string.Format("{0:D2}:{1:D2}",
                        remaining.Minutes,
                            remaining.Seconds);

                /* Set our button's text to reflect
                   the new time */
                btnText.text = countdownText;

                /* Come back after 1 second and check
                   again */
                yield return new WaitForSeconds(1f);
            }
            else
            {



Adding in a cooldown timer 245

                /* It's valid to click the button now
                */
                contButton.interactable = true;

                /* If player clicks on button we want
                   to play ad and then continue */
                contButton.onClick.AddListener(
                    UnityAdController.ShowRewardAd);
                UnityAdController.obstacle = this;

                /* Change text to its original version
                */
                btnText.text = "Continue (Play Ad)";

                /* We can now leave the coroutine */
                break;
            }
        }
    }

This coroutine will do a number of things, starting off by entering a while (true) loop. 
Now, usually, this is a very bad thing, as it would cause an infinite loop, but we break out of the 
loop if we have no reward time set or if we’ve passed the time set in the nextRewardTime 
variable. If not, we will figure out how much time is left before that time has passed and will 
change the button’s text to display it. We then use the WaitForSeconds function to pause 
execution and come back after 1 second has passed.

Important note
If you’re interested in learning more about the behind-the-scenes aspects of how coroutines 
work, Oliver Booth wrote a neat article on it at https://blog.oliverbooth.
dev/2021/04/27/how-do-unitys-coroutines-actually-work/.

6.	 Save all of our scripts and dive back into Unity and play the game:

https://blog.oliverbooth.dev/2021/04/27/how-do-unitys-coroutines-actually-work/
https://blog.oliverbooth.dev/2021/04/27/how-do-unitys-coroutines-actually-work/


Advertising Using Unity Ads246

Figure 7.10 – Delay screen working correctly

Upon restarting the game once, you’ll see that if we try to do so again, we are brought to a 
delay screen. After the time gets down to 0, the player will then be able to continue once again.

Important note
For additional information on the best practices for rewarded ads such as this, check out https://
docs.unity.com/ads/MonetizationStrategy.html.

Summary
With that, we’ve got a good foundation of how to add ads to our game. Hopefully, you can see how 
easy it is to implement and can think of new ways to engage players to have the best experience 
possible. Over the course of this chapter, we discovered how to set up Unity Ads. We then saw how 
we could create simple ads and learned how to react to the player’s actions by implementing the 
IUnityAdsShowListener interface. Afterward, we saw how we can add rewards for players 
using opt-in advertisements in the game, and we added a cooldown to the system to make the game 
less annoying for players. With these newly acquired skills, you should be able to add advertisements 
and gain additional revenue from your own games that you create in the future.

https://docs.unity.com/ads/MonetizationStrategy.html
https://docs.unity.com/ads/MonetizationStrategy.html


Summary 247

Important note
By default, ads should be in test mode. It is against Unity Ads’ terms of service to distribute live 
ads to beta testers. If they were to click on or install any of the advertised games, their activity 
would be monetized and the automated fraud system would flag the game for fraud and disable it.

To disable test mode, you can go to the Analytics Monetization Dashboard by going to Services 
| Ads | Configure and then clicking on Go to Dashboard. (If you need to, select Set Meditation 
Partner and I only plan to use Unity ads.)

From your project, select Settings. Scroll down to the Test mode section and modify the Apple 
App Store or Google Play Store properties as you wish.

While this is a valid way to monetize our games, we will dive into another more popular form of 
in-game monetization in the next chapter: in-app purchases.





8
Integrating Social Media into 

Our Project

We now have all of the foundational things needed to get our game out into the world; it’s mechanically 
working and we’ve set up all of the monetization. Having all of the features that we have added to our 
project is great, but if no one is playing your game, there’s no reason to have them.

Word-of-mouth marketing is the most reliable way to get others to try your game. Providing people 
with opportunities to share the game helps others discover the project, and it’s something that we 
should really try to do because marketing and getting your game out there is one of the hardest things 
to do as an indie developer.

In this chapter, you will learn some of the different ways to integrate social media into your projects. 
We will start off by adding something to share – a score. Afterward, we will see how we can share the 
score on Twitter. Then, we will see how we can connect our game to Facebook and use content from 
Facebook within our game itself.

This chapter will be split into a number of topics. It will contain a simple step-by-step process from 
beginning to end. The following is the outline of our tasks:

•	 Adding a scoring system

•	 Sharing high scores via Twitter

•	 Downloading and installing Facebook’s SDK

•	 Logging in to our game via Facebook

•	 Displaying a Facebook name and profile picture



Integrating Social Media into Our Project250

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, 
you will need an Android or iOS device.

Unlike previous chapters, the use of the Facebook SDK requires both iOS and Android build support 
for your Unity version installed, so make sure that both are added before importing the package or 
you will have errors.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/

main/Chapter08.

Adding a scoring system
In order to provide an incentive for players to share our game with others, we need to provide a 
compelling reason to do so. Some people are very competitive and wish to be the best at playing a 
game, challenging others to do better than them. To help with that, we can allow our players to share a 
score value via social media. However, to do that, we’ll first need to have a scoring system. Thankfully, 
it’s not too difficult to do that, so let’s add that real quick using the following steps:

1.	 Start off by opening the Gameplay.scene file located in the Assets/Scenes folder of 
the project. To show our players what their score is, we’ll need to have some way to display it 
on the screen. In our case, the easiest way would be with a text object.

2.	 From the Hierarchy window, select the On Screen Controls object that is the child of the 
Canvas object. Afterward, right-click on the On Screen Controls object and select UI | Text 
– Text Mesh Pro, as shown in the following screenshot:

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter08


Adding a scoring system 251

Figure 8.1– Adding a text object to the screen

T﻿his will make the Text object a child of the Panel object, which in turn will automatically 
resize itself to fit within a notch if there is one in the devices.

3.	 Rename this object Score Text and use the Anchors Preset menu at the top, holding down 
Shift + Alt to set the pivot and position as well.

4.	 Afterward, let’s set the RectTransform component’s Height property on the object to 60 to 
ensure that we have space to hold the score when we increase the size.

5.	 Next, in TextMeshPro - Text component, change the Text property to 0 and set Alignment to 
centered both horizontally and vertically. Afterward, set Font Size to 45 so that it’s easy to see.

6.	 To improve its readability, change Material Preset to LiberationSans SDF – Outline and let’s 
change Vertex Color to black.

Afterward, scroll down to the text material section (LiberationSans SDF Material) and click 
on the check next to the Outline section. Change the Color to white and then increase the 
Thickness to 1. Notice that it seems to fill both the inside and outside of the text. To fix this, 
in the Face section, change the Dilate value to 1.



Integrating Social Media into Our Project252

Figure 8.2: Adjusting the properties of the text outline

7.	 Next, open up the PlayerBehaviour script and add the following line at the top of the file:

using TMPro; //TextMeshProUGUI

8.	 Next, add the following code inside the class:

[Header("Object References")]
public TextMeshProUGUI scoreText;

private float score = 0;
public float Score
{
    get
    {
        return score;
    }
    set
    {
        score = value;

        /* Check if scoreText has been assigned */
        if (scoreText == null)
        {

            Debug.LogError("Score Text is not set. " +
                "Please go to the Inspector and assign
                    it");



Adding a scoring system 253

            /* If not assigned, don't try to update
               it. */
            return;
        }

        /* Update the text to display the whole number
           portion of the score */
        scoreText.text = string.Format("{0:0}",
            score);
    }
}

We first have a reference to the scoreText object, which we will need to set in the Inspector. 
This is of the TextMeshProUGUI class, which contains properties relating to the text displayed 
on the object.

This makes use of C#’s get/set functions, which are implicit getters and setters. Basically, 
any time we get or set the Score variable, we will execute whatever is located between {}. In 
our case, any time we set the Score variable, it will update our text for us.

Tip
For more info on TextMeshPro, check out https://docs.unity3d.com/Packages/
com.unity.textmeshpro@3.0/manual/index.html#support--api-
documentation.

This has an advantage over what a number of my students do, which is to update the value of 
the text every frame, which doesn’t need to happen. We only need to update the text when the 
value changes, which makes it perfect for us to use in this situation.

Note
For more information on the get/set accessors, check out https://docs.microsoft.
com/en-us/dotnet/csharp/programming-guide/classes-and-structs/
using-properties.

9.	 T﻿hen, update the PlayerBehaviour class to have the following highlighted changes:

// Start is called before the first frame update
public void Start()
{
    // Get access to our Rigidbody component
    rb = GetComponent<Rigidbody>();

https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.0/manual/index.html#support--api-documentation
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.0/manual/index.html#support--api-documentation
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.0/manual/index.html#support--api-documentation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-properties


Integrating Social Media into Our Project254

    minSwipeDistancePixels = minSwipeDistance *
        Screen.dpi;

    joystick =
        GameObject.FindObjectOfType<MobileJoystick>();

    Score = 0;

}

/// <summary>
/// FixedUpdate is a prime place to put physics calculations
/// happening over a period of time.
/// </summary>

void FixedUpdate()
{
    /* If the game is paused, don't do anything */
    if (PauseScreenBehaviour.paused)
    {
        return;
    }

    Score += Time.deltaTime;
// Rest of Update here...

What we are doing here is resetting our score whenever the player is created and increasing 
the value while the game isn’t paused.

10.	 Save the script and dive back into Unity.

11.	 Select the Player object and drag and drop our Score Text object into the Score Text variable 
on the Player Behaviour component:



Adding a scoring system 255

Figure 8.3: Assigning the Score Text property

12.	 Once the variable has been assigned, go ahead and play the game. The game’s interface is shown 
in the following screenshot:

Figure 8.4: The score added to the game



Integrating Social Media into Our Project256

Now, as you can see, we have a score for our game, which updates as we play. This will allow players 
to easily know what their competency with the game is and give them some information that they 
can share with others. Now that we have a scoring system, let’s take a look at how we can share a high 
score using Twitter.

Sharing high scores via Twitter
Twitter is an online news and social networking service where users post and interact with each 
other through messages that they call tweets, which are limited to 280 characters. Many indie game 
developers use Twitter as a way to attract others to play their games.

Twitter is a great option to start off with because we can add it very easily to our project by simply 
opening a specific URL. Let’s look at the steps to do just that:

1.	 Open the PauseScreenBehaviour script. Once inside, we will add the following code 
inside the PlayerScreenBehaviour class:

#region Share Score via Twitter

/// <summary>
/// Web address in order to create a tweet
/// </summary>
private const string tweetTextAddress = "http://twitter.com/
intent/tweet?text=";

/// <summary>
/// Where we want players to visit
/// </summary>
private string appStoreLink = "http://johnpdoran.com/";

[Tooltip("Reference to the player for the score")]
public PlayerBehaviour player;

/// <summary>
/// Will open Twitter with a prebuilt tweet. When called on iOS
/// or Android will open up Twitter app if installed
/// </summary>
public void TweetScore()
{
    /* Create contents of the tweet */
    string tweet = "I got " + string.Format("{0:0}",
        player.Score) + " points in Endless Roller!
            Can you do better?";



Sharing high scores via Twitter 257

    /* Create the entire message */
    string message = tweet + "\n" + appStoreLink;

    /* Ensures string is URL friendly */
    string url =
        UnityEngine.Networking.UnityWebRequest
            .EscapeURL(message);

    /* Open the URL to create the tweet */
    Application.OpenURL(tweetTextAddress + url);

}

#endregion

First of all, we will use a number of new things. You’ll note that the preceding block of code 
starts and ends with #region and #endregion, respectively. What this does is allow us to 
expand and collapse this portion of code inside Visual Studio. When we introduce longer code 
files, it can be convenient to be able to collapse or hide certain parts of your script so that you 
can focus only on the part of the file you’re working on. Since this portion of code has nothing 
to do with the rest of the script, this is a good place for us to use it.

To open URLs inside Unity, we will need to make use of the Application.OpenURL 
function and the UnityWebRequest class.

Note
For more information on Twitter’s Web Intents and the ways you can use them, check 
out https://dev.twitter.com/web/intents.

The UnityWebRequest class is typically used to load content at runtime, but it also has the 
EscapeURL function, which will convert a string into a format that web browsers are comfortable 
with. For instance, the newline character will not be displayed by itself.

Note
For more information on the EscapeURL function, check out https://docs.unity3d.
com/ScriptReference/Networking.UnityWebRequest.EscapeURL.html.

https://dev.twitter.com/web/intents
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.EscapeURL.html
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.EscapeURL.html


Integrating Social Media into Our Project258

Save the script and dive back into Unity. From the Hierarchy window, select the Pause Screen Handler 
object and then set the Player property in the Inspector tab to our Player object by dragging and dropping 
the Player game object from the Hierarchy window onto the Player property in the Inspector window:

Figure 8.5: Assigning the Player property

1.	 Now, we need to have a button for our Game Over screen to allow us to share our score.

2.	 Open up the Canvas object and toggle the Game Over object to ON by clicking on the checkmark 
beside its name in the Inspector window.

3.	 From there, expand the two Panel child objects and the Game Over Contents object. Select the 
Main Menu Button object and duplicate it by pressing Ctrl + D. Next, change the name to Tweet 
Score Button and also update the text in the child object to display Tweet Score as well.

4.	 Afterward, select the Tweet Score button object and scroll down to the Button component. From 
there, change the function we are calling to the PauseScreenBehaviour | TweetScore function:

Figure 8.6: Calling the TweetScore function

5.	 Select the Game Over object in the Hierarchy and disable it again. Next, save your scene and 
start the game.



Sharing high scores via Twitter 259

6.	 Now when we fail the game, we can click on the Tweet Score button and our browser will 
open on our PC:

Figure 8.7: Result on PC

However, on our mobile devices, it will open up the Twitter app if it is installed:

Figure 8.8: Tweeting our score via the Twitter mobile app



Integrating Social Media into Our Project260

With that, you learned just how easy it is to share something using Twitter.

Note
For those who are interested in doing more than this with Twitter, it does have its own API 
for Unity, which will allow you to let users log in to your game using Twitter if you’d like to 
do that instead of Facebook, which we will do later on. If you’re interested in looking into 
this, you can find more information at https://dev.twitter.com/twitterkit/
unity/overview.

Of course, other social networks exist as well, some of which have their very own software development 
kit (SDK), which allows you to access the information that they have. In the next section, we will 
explore how to utilize this.

Downloading and installing Facebook’s SDK
We couldn’t have a chapter on social networking without mentioning Facebook. Facebook has its 
own SDK that can be used with Unity. This can allow us to use the information that Facebook already 
has, including the user’s name and profile image, within our game experience. Let’s look at the steps 
to incorporate them:

1.	 Open up your web browser and visit https://developers.facebook.com/docs/
unity/:

Figure 8.9: Facebook SDK for Unity page

https://dev.twitter.com/twitterkit/unity/overview
https://dev.twitter.com/twitterkit/unity/overview
https://developers.facebook.com/docs/unity/
https://developers.facebook.com/docs/unity/


Downloading and installing Facebook’s SDK 261

2.	 Click on the Download the SDK button and wait for it to finish downloading. Once it is 
downloaded, unzip it and then open up the facebook-unity-sdk-15.1.0 folder. Then, 
open up the FacebookSDK folder and you’ll see a single file, facebook-unity-sdk-
15.1.0.unitypackage.

Unlike previous chapters, the use of the Facebook SDK requires both iOS and Android build support 
for your Unity version installed, so make sure that both are added before importing the package or 
you will have errors. To do so, in Unity Hub, go to the Installs section and, from the gear icon, select 
Add Modules and add the relevant items that weren’t included before (if there are any).

3.	 Double-click on the unitypackage file, and you should have a window pop up, as shown here:

Figure 8.10: Unity package import dialog

If this does not work, you can also go to Assets | Import Package | Custom Package and then 
find the folder that you unzipped the file to and open it that way.

4.	 Click on the Import button and wait for it to finish loading. From here, you’ll get a popup 
noting the project may contain obsolete APIs. Go ahead and click on the I Made a Backup. 
Go Ahead! button and wait for it to finish.



Integrating Social Media into Our Project262

5.	 Now, in order to use the Facebook API, we will first need to have a Facebook App ID, so let’s 
do that next.

6.	 Go back to your web browser and go to https://developers.facebook.com/ and click 
on the Log In button in the top-right corner of the screen. Once you log in to your Facebook 
account, you should see something similar to the following screenshot:

Figure 8.11: Meta for Developers menu

7.	 From the preceding page, click on the Get Started button in the top-right corner of the screen. 
From there, you’ll be brought to a screen where you need to click Next, and then you’ll be asked 
your role. Click on Developer and, on the next screen, click on the Create First App button.

8.	 Afterward, add a Display Name for your game (I used Endless Roller) and your Contact 
E-mail, and then select Create App ID.

9.	 Once you’re brought to your app’s page, click on the Dashboard option to the left of the default 
info for your game. Note the App ID and copy it by clicking on it or by highlighting it and 
then pressing Ctrl + C.

10.	 If you instead see a My Apps option, click on that and then click on the green Create App button 
on the right-hand side of the page. From the Select an app type menu, select Gaming and then 
select Next. In the Add an app name section, add a name (I used Endless Roller) and 
your contact e-mail, and then select Create app.

https://developers.facebook.com/


Downloading and installing Facebook’s SDK 263

Figure 8.12: Getting the App ID

11.	 Return to Unity, and you may be asked to share some info with Google. Answer as you wish. 
Then, you’ll have the option to enable Android auto-resolution. I set Enable and had to wait 
for it to resolve Android dependencies.

12.	 Afterward, you will note a new Facebook option in the top bar. Select it and then select Edit 
Settings. Once you’re there, click on Inspector if you need to and you’ll see several options. 
Set Facebook App Id to our created app’s ID and then set the name to our game’s name:

Figure 8.13: Adding the App Id to Facebook Settings



Integrating Social Media into Our Project264

Tip
There is a possibility that you may get an error the next time that you try to export your game 
to Android due to changing the SDK location. If this is the case, close your Unity project and 
then go to the project folder and delete the Temp folder. Upon restarting the project, the error 
should go away.

13.	 Return to the Facebook Settings menu by going to Facebook | Edit Settings....

Now, you’ll notice that under Android Build Facebook Settings, there is a new error stating 
that OpenSSL is not found.

14.	 To fix this, we will first need to download OpenSSL by going to http://slproweb.com/
products/Win32OpenSSL.html. From there, select the EXE link below the Win64 
OpenSSL v1.1.1u option, as shown here:

Important note
For those on a Mac, you can follow the instructions given here in order to install OpenSSL 
and add it to your path: https://developers.facebook.com/docs/facebook-
login/android/advanced.

Figure 8.14: OpenSSL download link

http://slproweb.com/products/Win32OpenSSL.html
http://slproweb.com/products/Win32OpenSSL.html
https://developers.facebook.com/docs/facebook-login/android/advanced
https://developers.facebook.com/docs/facebook-login/android/advanced


Downloading and installing Facebook’s SDK 265

Once it’s downloaded, install the program with the default options, as shown in the following screenshot:

Figure 8.15: Installing OpenSSL

1.	 Once the installation is complete, you may uncheck the donation option and click on the 
Finish button.

2.	 We then need to add the location of OpenSSL to the path. To do this, press the Windows key 
on your

3.	 keyboard and start typing in env, and then select the Edit the system environment variables

4.	 option, as shown in the following screenshot:



Integrating Social Media into Our Project266

Figure 8.16: Selecting the Edit the system environment variables option

5.	 In the window that pops up, click the Environment Variables... option at the bottom right. 
Double-click on the Path option in the System variables section and then, from that menu, 
click on New. From there, put in the location of OpenSSL. For me, it was C:\Program 
Files\OpenSSL-Win64\bin:



Downloading and installing Facebook’s SDK 267

Figure 8.17: Editing the environmental variable for the path

6.	 Then, click on New one more time and add the path to the JDK tools. In my case, it was  
C:\Program Files\Unity\Hub\Editor\2022.1.0b16\Editor\Data\
PlaybackEngines\AndroidPlayer\OpenJDK\bin.

7.	 Click on the OK button and then the OK button in the Environmental Variables window.

8.	 Once both options have been added, close your Unity project and restart your computer. 
Once Unity reopens, you may have to wait for the Resolving Android Dependencies menu to 
complete, but once it finishes, you should be able to see the Facebook Settings (Facebook | Edit 
Settings) menu working correctly and giving us a value under Debug Android Key Hash [?]:



Integrating Social Media into Our Project268

Figure 8.18: Debug Android Key Hash

9.	 It is also required for calls to certain APIs to utilize a client token, so we will also get one of 
them. To do so, go back to your project’s dashboard by going to Facebook | Developers Page.

10.	 Once the dashboard has loaded, go to Settings | Advanced | Security | Client Token. Copy 
the Client token value and then go back to the Unity Editor and paste it back into Facebook 
Settings in Inspector.

This means that our setup of the Facebook SDK is complete!

11.	 Depending on the platform you wish to deploy to, go to the following websites and complete 
the tasks listed:

	� For Android, check out https://developers.facebook.com/docs/unity/
getting-started/android

	� For iOS, check out https://developers.facebook.com/docs/unity/
getting-started/ios

Now that we have set that up, we can start adding to it by first allowing our game to be logged in to 
using Facebook.

https://developers.facebook.com/docs/unity/getting-started/android
https://developers.facebook.com/docs/unity/getting-started/android
https://developers.facebook.com/docs/unity/getting-started/ios
https://developers.facebook.com/docs/unity/getting-started/ios


Logging in to our game via Facebook 269

Logging in to our game via Facebook
One of the things we can do when using the Facebook API is to allow our users to log in to the game 
using their Facebook account. Then, we can use their name and image automatically within our project. 
The following steps show us how to achieve this:

1.	 Let’s first open up our Main Menu level by going to the Project window, opening the Assets/
Scenes folder, and then double-clicking on the MainMenu file.

2.	 From there, let’s click on the 2D button to go into 2D mode if you haven’t done so previously. 
What we will do is replace the original menu and instead have a button for players to log in 
via Facebook, or play as a guest when the game starts.

3.	 Go to the Hierarchy window, select the Canvas - Scale Physical object, and expand it and the 
Safe Area Holder child. Select the Panel child and rename it Menu Options.

4.	 Then, select the Menu Options object in the Hierarchy window and duplicate it by pressing 
Ctrl + D. Then, rename the newly created Facebook Login object. Select the Menu 
Options game object again and then disable it by going to the Inspector tab and clicking on 
the checkmark beside its name:

Figure 8.19: Creating the Facebook Login menu

We will have the Facebook Login object turn the menu on when needed.



Integrating Social Media into Our Project270

5.	 Next, open the Facebook Login options and remove the Restore Button and Remove Ads 
Button objects. Click on the Play Button, under Rect Transform, change the Width to 225, 
then right-click on the Button component, and then select the Reset option to remove its 
original On Click () functionality.

6.	 Duplicate the Play Button object by pressing the Ctrl + D keys. Then, name those two buttons 
Facebook Login Button and Continue as Guest Button. Also, change the 
Text property of both of these buttons to Facebook Login and Continue as Guest:

Figure 8.20: Facebook Login Button setup

7.	 Now that we have the buttons working correctly, we need to write the script that will allow us 
to log in. Go to the Scripts folder and open our MainMenuBehaviour script. We will use 
the List class to hold the permissions we want in order to access Facebook and the content 
of the FB class in the Facebook SDK.

8.	 So, to do that, we’ll first add the following to the top of the MainMenuBehaviour script:

using UnityEngine;
using UnityEngine.SceneManagement; // LoadScene
using System.Collections.Generic; // List using Facebook.Unity; 
// FB

9.	 Then, add the following variables to the MainMenuBehaviour class:

[Header("Object References")] 
public GameObject mainMenu; 
public GameObject facebookLogin;



Logging in to our game via Facebook 271

10.	 Now, add the following code within the MainMenuBehaviour class:

#region Facebook
#endregion

Inside this region, we are going to add several different methods, starting with some methods 
dealing with initializing the Facebook APIs:

    public void Awake()
    {
        /* We only call FB Init once, so check if it
        /* has been called already */
        if (!FB.IsInitialized)
        {
            FB.Init(OnInitComplete, OnHideUnity);
        }
    }

In this case, the Awake method calls the FB.Init function, which takes in two parameters, 
both of which are delegates, or functions to call whenever the initialization is complete and 
whenever the app is hidden or no longer the currently focused one. The definition of both 
those functions is as follows:

/// <summary>
/// Once initialized, will inform if logged in on Facebook
/// </summary>
private void OnInitComplete()
{
    if(FB.IsInitialized)
    {
        if (FB.IsLoggedIn)
        {
            print("Logged into Facebook");

            /* Close Login and open Main Menu */
            ShowMainMenu();
        }
    }
    else
    {
        print("Failed to init Facebook SDK; open as
            guest");
        ShowMainMenu();
    }

}



Integrating Social Media into Our Project272

    /// <summary>
    /// Called whenever Unity loses focus
    /// </summary>
    /// <param name="active">If the game is currently
        active</param>
    private void OnHideUnity(bool active)
    {
        /* Set TimeScale based on if the game is
           paused */
        Time.timeScale = (active) ? 1 : 0;
    }

In this case, we are going to print a message to the screen if we are logged in to Facebook and we 
will display the main menu. Likewise, if we ever lose focus of Unity, we are going to pause the game.

We have some other final functions that we need to add for our final implementation, which 
we will add next:

/// <summary>
/// Attempts to log in on Facebook
/// </summary>
public void FacebookLogin()
{
    List<string> permissions = new List<string>();

    /* Add permissions we want to have here */
    permissions.Add("public_profile");

    FB.LogInWithReadPermissions(permissions,
        FacebookCallback);
}

/// <summary>
/// Called once facebook has logged in, or not
/// </summary>
/// <param name="result">The result of our login request</param>
private void FacebookCallback(IResult result)
{
    if (result.Error == null)
    {
        OnInitComplete();
    }
    else
    {
        print(result.Error);



Logging in to our game via Facebook 273

    }
}

public void ShowMainMenu()
{
    if (facebookLogin != null && mainMenu != null)
    {
        facebookLogin.SetActive(false);
        mainMenu.SetActive(true);
    }
}

In this case, we are accessing the player’s public profile, which contains information such as 
their name and their profile picture.

Note
For all of the properties that we can get access to, check out https://developers.
facebook.com/docs/facebook-login/permissions#reference-public_
profile.

11.	 Save your script and go to the Facebook Login button and change the button’s OnClick() 
action to now call your function by clicking on the + button and then dragging and dropping 
the Main Menu object in and then selecting Main Menu Behaviour | Facebook Login instead:

Figure 8.21: Calling the FacebookLogin function

12.	 Then, on the Continue as Guest Button under the Button component, go to the On Click () 
section and then click on the + button. Drag and drop the Main Menu object into the slot below 
the Runtime Only dropdown. Afterward, have the button call the MainMenuBehaviour.
ShowMainMenu function.

https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile


Integrating Social Media into Our Project274

Figure 8.22: Setup for Continue as Guest Button

13.	 Finally, we will need to set the variables we have created. Select the Main Menu object in the 
Hierarchy window and then set the Main Menu and Facebook Login properties:

Figure 8.23: Setting the Main Menu Behaviour properties

Ensure that the Facebook Login is set to the panel object holding both buttons.

14.	 Save your scene, start the game, and then click on the Facebook Login button:

Figure 8.24: User Access Token Request Screen



Logging in to our game via Facebook 275

Important note
To see everything properly within the editor, it’s a good idea to maximize the Game tab, which 
you can do by right-clicking on the Game tab and selecting Maximize or by checking the 
Maximize On Play option on the toolbar.

Now, you should see a menu asking for a user access token, a value that every profile has and we can 
associate it with. We’ll need to go to Facebook to get that, so that’s what we’ll do next.

1.	 Click on the Find Access Token page, and a web browser will open with a new page:

Figure 8.25: Access Token Tool page

2.	 You’ll then need to click on the need to grant permissions link and then, on Generate Access 
Token, click Continue and you’ll see a string of characters under User Token. Copy the string, 
paste it into the User Access Token property in Unity, and then click on the Send Success button.



Integrating Social Media into Our Project276

Note
If you get an error when granting permissions stating Future off- Facebook activity for this 
app is off, that means that your Facebook settings do not allow your Facebook profile to be 
used outside of Facebook. In order to use Facebook to log in, your account must have Off-
Facebook tracking enabled. To do so, you can go to https://www.facebook.com/
off_facebook_activity and ensure the Future off- Facebook Activity value is set to ON 
to be able to log in. We will be allowing users to log in as a guest if you’d prefer not to be tracked.

Now, you’ll note that the Console has printed that we’ve logged in to Facebook and that the menu 
closes when we’ve sent the key:

Figure 8.26: Logged in to Facebook

Note
For more information on user access tokens, check out https://developers.facebook.
com/docs/facebook-login/access-tokens/#usertokens.

Now that we have the ability to log in to Facebook, we can now use the information that we get from 
Facebook in order to customize our game, which is what we will do next.

https://www.facebook.com/off_facebook_activity
https://www.facebook.com/off_facebook_activity
https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens


Displaying a Facebook name and profile picture 277

Displaying a Facebook name and profile picture
A good thing to do is to personalize our game to fit our players. So, with that, once the player logs in, 
we will welcome them and display their image on the screen by following these steps:

1.	 Go to the MainMenuBehaviour script once again. From there, we’ll need to add a new 
using statement to display an image and change the text we need in order to use Unity’s UI 
system and TextMeshPro:

using UnityEngine.UI; // Image
using TMPro; //TextMeshProUGUI

2.	 We will then need to add two new variables:

[Tooltip("Will display the user's Facebook profile pic")] 
public Image profilePic;

[Tooltip("The text object used to display the greeting")] 
public TextMeshProUGUI greeting;

These variables will hold the information that we wish to display once we get it from Facebook.

3.	 Afterward, we will update the ShowMainMenu function and add some new functions to use:

public void ShowMainMenu()
{
    if (facebookLogin != null && mainMenu != null)
    {
        facebookLogin.SetActive(false);
        mainMenu.SetActive(true);

        if (FB.IsLoggedIn)
        {
            /* Get information from Facebook profile
            */
            FB.API("/me?fields=name",
                    HttpMethod.GET,
                    SetName);
            FB.API("/me/picture?width=256&height=256",
                    HttpMethod.GET,
                    SetProfilePic);
        }
    }
}



Integrating Social Media into Our Project278

The FB.API function makes a call to Facebook’s Graph API to get data or take an action on 
the user’s behalf and allows us to get the information that we have permission to as defined 
earlier. In our case, we are looking for the name and the profile picture of the user and calling 
the SetName and SetProfilePic functions, respectively, once we have obtained that data.

However, we currently do not have SetName and SetProfilePic functions, so we will 
go ahead and add them now.

4.	 Add the following additional code within the Facebook region of the script:

private void SetName(IResult result)
{
    if (result.Error != null)
    {
        print(result.Error); return;
    }

    string playerName =
        result.ResultDictionary["name"].ToString();

    if (greeting != null)
    {
        greeting.text = "Hello, " + playerName + "!";
        greeting.gameObject.SetActive(true);
    }

}

private void SetProfilePic(IGraphResult result)
{
    if (result.Error != null)
    {
        print(result.Error); return;
    }

    // Variable setup
    int texWidth = result.Texture.width;
    int texHeight = result.Texture.height;
    Rect rect = new Rect(0, 0, texWidth, texHeight);
    Vector2 pivot = Vector2.zero;
    Texture2D texture = result.Texture;

    // Create the profile pic
    Sprite fbImage = Sprite.Create(texture, rect,
        pivot);



Displaying a Facebook name and profile picture 279

    if (profilePic != null)
    {
        profilePic.sprite = fbImage;
        profilePic.gameObject.SetActive(true);
    }
}

After getting the data, we will modify the image or string to display the new data that we retrieved.

Important note
For more information on the FB.API function, check out https://developers.
facebook.com/docs/unity/reference/current/FB.API.

5.	 Now, we will need to actually create the text and image we want to display. Open up the Canvas 
- Scale w/Screen object in the Hierarchy tab and then rename the Panel child object Safe 
Area Holder. Then, right-click on the Safe Area Holder child object and select UI | Panel. 
Rename this object Welcome Profile:

Figure 8.27: Creating Welcome Profile

This will act as a container for all of our information for the player.

6.	 With the Welcome Profile object still selected, add a Horizontal Layout Group with Padding 
and Spacing both set to 10. From there, change Child Alignment to Lower Center and then 
check Width and Height under the Control Child Size property. Then, add a Content Size 
Fitter component and change the Horizontal Fit and Vertical Fit size to Preferred Size. Finally, 
in the Anchor Presets menu, hold down Alt + Shift and select Bottom-center.

7.	 Now, select the Welcome Profile object in the Hierarchy tab, right-click on it, and select UI 
| Text - TextMeshPro.

https://developers.facebook.com/docs/unity/reference/current/FB.API
https://developers.facebook.com/docs/unity/reference/current/FB.API


Integrating Social Media into Our Project280

8.	 Rename the next Text object Greeting.

9.	 Then, adjust Text to Welcome and the size to something larger, such as 50, change the Vertex 
Color to black, and then adjust Alignment to be centered vertically and horizontally:

Figure 8.28: Greeting Text setup

10.	 Likewise, let’s next right-click on Welcome Profile again, and this time select UI | Image. You 
may notice that, by default, we are unable to set the image size due to the parent object having 
a Horizontal Layout Group. To override this default, select the image object and add a Layout 
Element component to it. From there, set Min Width and Min Height to 256. Afterward, 
check the Preferred Width and Preferred Height properties as well and set them to 256 
as well, because Facebook may give us images larger than this, and this will keep the images 
smaller. The Layout Element (Script) component is great for allowing you to override things 
that LayoutGroups will do by default and can be useful if you’re not getting exactly what you 
want from the default behavior.

Note
For more information on the Layout Element (Script) component, check out https://
docs.unity3d.com/Manual/script-LayoutElement.html.

11.	 Next, change the name of the Image object to Profile Pic and then reorder it so it is above 
the Greeting object in the Hierarchy:

https://developers.facebook.com/docs/unity/
https://docs.unity3d.com/Manual/script-LayoutElement.html
https://docs.unity3d.com/Manual/script-LayoutElement.html


Displaying a Facebook name and profile picture 281

Figure 8.29: Profile Pic setup

Reordering objects with a Horizontal Layout Group modifies their placement order.

If you change the resolution to a much smaller size, the image is drawn on top of our menu. 
This is possible due to both canvases being told that they have the same priority in being drawn, 
similar to how Z-fighting works for 2D games. To fix potential problems in the future, we will 
instead put the scaling canvas as the background element.

12.	 To do this, we will select Canvas - Scale Physical, and under the Canvas component, change 
Sort Order to 1.

13.	 Now, dive back into the Main Menu object and set the Greeting and Profile Pic properties in 
the MainMenuBehaviour component.

14.	 Finally, since we don’t want them visible when the game starts, let’s turn off Greeting and our 
Profile Pic object as well.

15.	 Save our game, and then start it up again by going through the appropriate login information:



Integrating Social Media into Our Project282

Figure 8.30: Logged into Facebook

As you can see, we are logged in and you can see my name, but I have a profile pic that isn’t quite my 
actual profile pic. This is because it is using my gaming profile. If we want to use my actual Facebook 
profile pic, we have to add another permission to our app:

1.	 Back in Graph API Explorer, go back to the Permissions section and, under Add a Permission, 
click on the dropdown and select gaming_user_picture.

Figure 8.31: Adding the user picture option



Displaying a Facebook name and profile picture 283

2.	 From there, click on Generate Access Token again and get a new access token that share your 
actual profile information. Note that the user will have to choose to share this info with you.

Figure 8.32: Choose how you log in to Facebook

Now use your new access token and try to run the game.



Integrating Social Media into Our Project284

Figure 8.33: Logged in to actual Facebook account

As you can see in the preceding screenshot, I retrieved my actual Facebook info once I logged in.

Facebook is still an incredibly useful platform for game developers and can help personalize a user’s 
gameplay experience. This can be easily expanded to utilize several other pieces of data that Facebook 
has and share content with all of your user’s friends.

For those that are just looking for the ability to have the ability to sign in to your game to 
authenticate players for specific platforms, there are several other options available that you can 
use. For details on that, check out https://docs.unity.com/authentication/
SettingupExternalIdentityProviders.html.

Summary
In this chapter, we were introduced to some of the potential ways that we can share our game with others, 
as well as personalizing our game experiences and utilizing the functionality that social media provides 
us with. We started off by adding a simple score system and then allowed users to share their scores 
via Twitter. We then set up the Facebook SDK, making it so that we can log in to it to play our game 
and retrieve information about our users, which we can use to customize their gameplay experience.

Now that we have people playing our game, we want them to keep coming back and playing over 
time. One of the easiest ways to do this is through the use of notifications, which we will look at in 
the next chapter.

https://docs.unity.com/authentication/SettingupExternalIdentityProviders.html
https://docs.unity.com/authentication/SettingupExternalIdentityProviders.html


Part 3:  
Game Feel/Polish

In this part of the book, we will focus on adding polish to your game to enhance the overall player 
experience. By the end of this part, you will have all the tools and knowledge necessary to take your 
game to the next level by polishing it and the player experience.

This part has the following chapters:

•	 Chapter 9, Keeping Players Involved with Notifications

•	 Chapter 10, Using Unity Analytics

•	 Chapter 11, Remote Config

•	 Chapter 12, Improving Game Feel

•	 Chapter 13, Building a Release Copy of Our Game

•	 Chapter 14, Submitting Games to App Stores

•	 Chapter 15, Augmented Reality





9
Keeping Players Involved  

with Notifications

One of the best ways to keep users coming back to your game is through the use of push notifications. 
This allows you to stay in contact with your users even when they’re not using your game. Used wisely, 
this can keep users playing your game for a long period of time. Using notifications too often or poorly 
will cause users to mute your app’s notifications, which is not an ideal situation.

In this chapter, we will explore how to create notifications for both Android and iOS devices. We will 
then learn how to schedule notifications to keep players returning to the game later on, as well as 
ways that we can customize them.

The chapter is split into a number of topics. It contains a simple, step-by-step process from beginning 
to end. Here is the outline of our tasks:

•	 Setting up notifications

•	 Scheduling notifications ahead of time

•	 Customizing notification presentation

•	 Canceling notifications

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, you 
will need an Android or iOS device.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html


Keeping Players Involved with Notifications288

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter09.

Setting up notifications
Before we can start adding notifications to our project, we will need to add a special preview package 
that Unity makes available. Follow the steps given here:

1.	 From the Unity Editor, go to Window | Package Manager.

2.	 From there, if the top-left section does not say Packages: Unity Registry, click on the In Project 
drop-down menu from the toolbar of the Packages menu and select Unity Registry.

3.	 Scroll down the available options until you reach Mobile Notifications and select it. Once 
there, click on the arrow to the side of it and select See All Versions and then select the latest 
version (in my case, it was Version 2.0.2). From there, click the Install button and you’ll see 
the following screenshot:

Figure 9.1: Installing the Mobile Notifications package

Note
It’s important to note that this package requires your game to use Android 5.1 (API level 22) 
and iOS 10 or above in order to function properly.

https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter09


Setting up notifications 289

We will also be using a cross-platform wrapper, also written by Unity, in order to get notifications 
working quickly and remove the requirement of writing platform-specific code.

4.	 After this, open up the Samples section and then click on the Import button next to the 
Notification Samples button.

Figure 9.2: Importing the notification samples

This project, created by Unity, is used to show how you can use Unity’s Mobile Notifications 
API in some real-world examples. We are using it for the cross-platform wrapper, which will 
allow us to create a notification once, and it will work on both Android and iOS without us 
doing any additional work.

5.	 After installing this, you may close the Package Manager window. To ensure that we can export 
our project, we need to ensure that our project has the correct Minimum API level.

6.	 Next, go to the Project Settings menu by going to Edit | Project Settings. From there, go to 
the Player options and under Other Settings scroll down to Minimum API Level and verify 
that it is set to the version specified in the Mobile Notifications package (in this case, Android 
5.1 ‘Lollipop’ (API level 22)) or higher. Afterward, you can close the Project Settings window:



Keeping Players Involved with Notifications290

Figure 9.3: Ensuring the Minimum API Level is set correctly

You should see that there are a number of folders that are part of the project. The files that we 
care about are located in the Assets\Samples\Mobile Notifications\2.0.2\
Notification Samples\Scripts folder. See the following screenshot:

Figure 9.4: The Notification Samples Scripts folder

This gives us the code needed – in particular, the GameNotificationManager class – 
to be added to our script. At this point, we could move these scripts into a subfolder of our 
Scripts folder and delete the other files or keep the files where they are.

To begin displaying notifications on our screen, we first need to add a new object to our level that will 
contain the Game Notifications Manager:

1.	 Open the MainMenu scene if it isn’t already open. From there, create a new game object by 
going to GameObject | Create Empty.



Setting up notifications 291

2.	 From the Inspector window, change the name of the object to Notifications Manager 
and, for the sake of neatness, reset the Transform component’s Position property by right-
clicking on the Transform component and selecting the Reset Position option.

3.	 Afterward, attach the Game Notifications Manager component to the Notifications Manager 
object by clicking on the Add Component button and then typing in gamen, and then selecting 
Game Notifications Manager from the list. It should look something like the following screenshot:

Figure 9.5: Adding the Game Notifications Manager

After the component has been placed, we can do the setup needed to create our first notification. 
Due to the implementation of the GameNotificationsManager class, we will need to have 
another script to send the notifications, which we will call NotificationsController.

4.	 From the Project window, open the Assets/Scripts folder and create a new C# script 
called NotificationsController. Double-click on the newly created file to open up 
your code editor of choice.

5.	 Next, add the following code for the class:

using UnityEngine;
using NotificationSamples; /* GameNotificationManager */

public class NotificationsController : MonoBehaviour
{
    private GameNotificationsManager notificationsManager;

    // Start is called before the first frame update
    private void Start()
    {
        /* Get access to the notifications manager */
        notificationsManager =



Keeping Players Involved with Notifications292

            GetComponent<GameNotificationsManager>();

        /* Create a channel to use (required for Android)
        */
        var channel = new
            GameNotificationChannel("channel0",
                "Default Channel",
                    "Generic Notifications");

        /* Initialize the manager so it can be used. */
        notificationsManager.Initialize(channel);
    }

}

In the preceding code, we are first getting access to the GameNotificationsManager 
class through the component. Since we are attaching this script to the same game object that 
contains this script, we can use the GetComponent function. Afterward, we create a channel 
to post our notifications on. Lastly, we initialize the GameNotificationsManager 
component using the channel.

6.	 Save your script and go back to the Unity Editor. From the Inspector window, attach the 
Notifications Controller script to the Notifications Manager object, as shown in the 
following screenshot:

Figure 9.6: Adding the Notifications Manager

Now that we have the setup taken care of, let’s see how we can actually schedule a notification to happen.



Scheduling notifications ahead of time 293

Scheduling notifications ahead of time
One of the most common forms of creating a notification is asking players to come back and play the 
game at a later time. This encourages users to continue playing our game and to come back multiple 
times. We can do this by setting a delivery time in the future using the following steps:

1.	 Open up the NotificationsController script and add the following function to it:

public void ShowNotification(string title, string body,
DateTime deliveryTime)
{
    IGameNotification notification =
        notificationsManager.CreateNotification();

    if (notification != null)
    {
        notification.Title = title;
        notification.Body = body;
        notification.DeliveryTime = deliveryTime;
    notificationsManager.ScheduleNotification(
        notification);
    }
}

This function takes in three parameters – the title, the body, and the time at which to send 
the notification.

2.	 This function requires the use of the System namespace for the DateTime class, so at the 
top of the NotificationsController file, add the following line:

using System; /* DateTime */

3.	 Creating the function doesn’t do anything, so for the sake of testing that everything has been 
set up correctly, let’s call the function within our Start function by adding the following 
highlighted code:

// Start is called before the first frame update
private void Start()
{
    /* Get access to the notifications manager */
    notificationsManager =
        GetComponent<GameNotificationsManager>();



Keeping Players Involved with Notifications294

    /* Create a channel to use for it (required for
       Android) */
    var channel = new
        GameNotificationChannel("channel0",
            "Default Channel",
                "Generic Notifications");

    /* Initialize the manager so it can be used. */
    notificationsManager.Initialize(channel);

    /* Create sample notification to happen in 5
       seconds */
    var notifText = "Come back and try to beat your
        score!!";
    var notifTime = DateTime.Now.AddSeconds(5);

    ShowNotification("Endless Runner", notifText,
        notifTime);

}

In this example, we are passing in "Endless Runner" as the title, "Come back!" as the 
body, and for the third parameter, we are getting the current time by using DateTime.Now 
and then asking to add 5 seconds by using the AddSeconds method, passing in 5.

4.	 Save the script and return to the Unity Editor.

5.	 Unfortunately, you won’t be able to test whether notifications work on your PC. We’ll have to 
export the game to see whether it works correctly.

6.	 Export your game to your device and start the game. As you can see, our notifications are 
working correctly!



Scheduling notifications ahead of time 295

Figure 9.7: Our default notification working properly



Keeping Players Involved with Notifications296

Important note
By default, the Game Notifications Manager component has Mode set to Queue Clear and 
Reschedule, which will make it so that you will be unable to see notifications if the game is 
open. If you would like to see the notifications always, change the mode to NoQueue.

7.	 Generally, these kinds of notifications should be sent a day after the player has last played. We 
can do that by modifying the function to the following:

    // Start is called before the first frame update
    private void Start()
    {
        /* Get access to the notifications manager */
        notificationsManager =
        GetComponent<GameNotificationsManager>();

        /* Create a channel to use (required for
           Android) */
        var channel = new
            GameNotificationChannel("channel0",
                "Default Channel",
                    "Generic Notifications");

        /* Initialize the manager so it can be used.
        */
        notificationsManager.Initialize(channel);

        /* Create sample notification to happen in 5
           seconds */
        var notifText = "Come back and try to beat
            your score!!";
        var notifTime = DateTime.Now.AddDays(1);

        ShowNotification("Endless Runner", notifText,
            notifTime);

    }



Scheduling notifications ahead of time 297

This will make it so that when we reach a level, we will display the notification after a day, but this will 
also happen every time we go to the main menu. To prevent this, we can add a static bool variable 
that will turn on when adding the notification. In Unity, when a variable is marked as static, it will 
be consistent throughout the running of the program. To add this variable, follow the steps given here:

1.	 Update the script to add the following code highlighted in bold:

    private static bool addedReminder = false;

    // Start is called before the first frame update
    private void Start()
    {
        /* Get access to the notifications manager */
        notificationsManager =
        GetComponent<GameNotificationsManager>();

        /* Create a channel to use (required for
           Android) */
        var channel = new
            GameNotificationChannel("channel0",
                "Default Channel",
                    "Generic Notifications");

        /* Initialize the manager so it can be used.
        */
        notificationsManager.Initialize(channel);

        /* Check if the notification hasn't been added
           yet */
        if (!addedReminder)
        {
            /* Create sample notification to happen
               later */
            var notifText = "Come back and try to beat
                your score!!";
            var notifTime = DateTime.Now.AddDays(1);

            ShowNotification("Endless Runner",
                notifText, notifTime);



Keeping Players Involved with Notifications298

            /* Cannot be added again until the user
               quits game */
            addedReminder = true;
        }

    }

2.	 Save your script. Now, when we play the game, we will only see the notification once every 
time we play the game!

This shows us how we can create notifications within our script, but right now, the notifications are kind 
of plain. Thankfully, it’s possible to customize notifications, which is what we’ll be working on next.

Note
If you’d like to look into how to send notifications from outside of Unity to your app through 
tools such as Google Firebase, check out https://firebase.google.com/products/
cloud-messaging.

Customizing notifications
Unity includes some default visuals to be used with notifications, but generally, replacing the content 
with our own will help our game stand out and be more visually appealing to players. In order to 
have custom icons for Android notifications, you are required to have a small icon with at least 48 x 
48 pixels, and have only white pixels with a transparent backdrop. The large icon must be at least 192 
x 192 and can have whatever colors we’d like. You can create images of your own, or use the images 
named Hi-ResIcon.png and Small-ResIcon.png provided in the example code for this 
book in the Chapter 08\Assets\Sprites folder of the GitHub repository. Follow the steps 
given here for customization:

1.	 From the Project window, select the images you are planning to use for the small and large icons.

2.	 With the images selected, go to the Inspector window and check the Alpha Is 
Transparency property.

3.	 Finally, open up the Advanced options and check the Read/Write properties. Click on the 
Apply button so the changes happen.

You can see the options in the Inspector window in the following screenshot:

https://firebase.google.com/products/cloud-messaging
https://firebase.google.com/products/cloud-messaging


Customizing notifications 299

Figure 9.8: Setting the properties needed for the notification icons

At this point, our images are ready and we can start to put them into our notifications. To do this, we 
will need to go to the Project Settings menu:

1.	 Open the Project Settings menu by going to Edit | Project Settings.

2.	 From there, go to the Mobile Notifications settings option.

3.	 From the menu, you’ll see two options – iOS and Android. We will want to use the default 
properties for the iOS options so we will first select Android if it isn’t selected already.

4.	 Check the Reschedule Notifications on Device Restart option. This will make it so that if 
someone plays the game again, they will no longer get the notification we created earlier. This 
will help the user not get annoyed at us spamming them too often.

5.	 Next, under Notification Icons, click on the plus (+) icon. Drag and drop the small icon image 
into the first Texture 2D option. Next, click on the plus (+) icon again and then change Type 
to Large. Afterward, assign your large icon to the Texture 2D spot:



Keeping Players Involved with Notifications300

Figure 9.9: Setting up Mobile Notification Icons

6.	 Then, go back to the NotificationsController script and update the ShowNoti-
fication function to use our new icons:

public void ShowNotification(string title, string body, DateTime 
deliveryTime)
{
    IGameNotification notification =
    notificationsManager.CreateNotification();

    if (notification != null)
    {
        notification.Title = title;
        notification.Body = body;
        notification.DeliveryTime = deliveryTime;
        notification.SmallIcon = "icon_0";
        notification.LargeIcon = "icon_1";

        notificationsManager.ScheduleNotification(
            notification);
    }
}



Customizing notifications 301

7.	 Save your script and return to the Unity Editor. Export your game to Android and you should 
see the icons update. Now, the notification will show the small icon from the toolbar, as shown 
in the following screenshot:

Figure 9.10: Small notification icon being shown



Keeping Players Involved with Notifications302

And it will use both icons when accessing the notification itself! This can be seen in the following screenshot:

Figure 9.11: Seeing the notification from the notifications bar with both icons

It is also possible to modify other properties, such as the badge number used in iOS, by using a line 
such as the following:

notification.BadgeNumber = 5;



Canceling notifications 303

Important note
For more information on how you can customize your notifications, check out https://
docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/
manual/index.html.

This allows us to have our notifications look just the way we want them to with as much polish as we would 
like them to have. Now that we have our notifications customized the way that we want them, it might 
be pertinent for us to discuss how we can cancel notifications that we no longer wish to have happen.

Canceling notifications
There are several reasons why we may want to cancel notifications. This could be due to the fact that, 
during play, the player has made a decision that has caused something to no longer be relevant.

For this example, let’s create a sample notification that we will cancel before it has a chance to happen. 
But for us to cancel a notification, we must have a way of knowing which notification is which. 
Thankfully, the Notifications Manager has a property called an Id that each notification has. We 
can set the notification ourselves by hand or Unity will generate it for us. In our case, we will use the 
automatically generated one:

1.	 Open up the NotificationsController script and go to the ShowNotification 
function. Update it to the following:

public int? ShowNotification(string title, string body, DateTime 
deliveryTime)
{
    IGameNotification notification =
    notificationsManager.CreateNotification();

    if (notification != null)
    {
        notification.Title = title;
        notification.Body = body;
        notification.DeliveryTime = deliveryTime;
        notification.SmallIcon = "icon_0";
        notification.LargeIcon = "icon_1";

        var pendingNotif =
            notificationsManager.ScheduleNotification(
                notification);

        return pendingNotif.Notification.Id;

https://docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/manual/index.html


Keeping Players Involved with Notifications304

    }

    return null;
}

Note that our return type for this function has changed from void to int? and the question 
mark is not a typo. This is something called a nullable type. Nullable types are instances of the 
System.Nullable struct, which is basically a special type that allows us to have a variable 
that can consist of having any value of the type associated with it, but also can be assigned to 
null as well. That means that this value can either be set or not. Some platforms, such as PCs, 
don’t have support for notifications with the system so, in those cases, they’ve chosen to use 
null instead of something like negative one.

2.	 Now that we’ve updated our script, let’s now show an example of how we can cancel a notification. 
Go to the Start function and update it to the following:

// Start is called before the first frame update
private void Start()
{
    /* Get access to the notifications manager */
    notificationsManager =
    GetComponent<GameNotificationsManager>();

    /* Create a channel to use (required for Android)
    */
    var channel = new
        GameNotificationChannel("channel0",
            "Default Channel",
                "Generic Notifications");

    /* Initialize the manager so it can be used. */
    notificationsManager.Initialize(channel);

    /* Check if the notification hasn't been added yet
    */
    if (!addedReminder)
    {

        /* Create sample notification to happen in 5
           seconds */
        var notifText = "Come back and try to beat
            your score!!";



Summary 305

        // After 5 seconds
        var notifTime = DateTime.Now.AddSeconds(5);

        // After 1 day
        //notifTime = DateTime.Now.AddDays(1);
        ShowNotification("Endless Runner", notifText,
            notifTime);

        // Example of canceling a notification
        var id = ShowNotification("Test", "Should Not
            Happen", notifTime);

        if(id.HasValue)
        {
            notificationsManager.CancelNotification(
                id.Value);
        }

        /* Cannot be added again until the user quits
           game */
        addedReminder = true;
    }

}

3.	 Save your script and build your game. If you open up the project on your Android or IOS 
device, you should be able to see that the verification that we have set to not be canceled plays 
as normal. But the one that we canceled does not happen.

Tip
You can also cancel all notifications at once by simply calling the CancelAllNotifications 
function from the GameNotificationManager class. For more information on canceling 
notifications, check out https://docs.unity3d.com/Packages/com.unity.
mobile.notifications@1.0/manual/index.html.

Summary
At this point, we have seen how we can make use of Unity’s Mobile Notifications package to create 
notifications for our players. We’ve learned how to schedule them to take place in the future as well 
as how to customize these notifications to have our own distinct visual style!

https://docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mobile.notifications@1.0/manual/index.html


Keeping Players Involved with Notifications306

We now have everything in place for players to play and come back to our game, but we are only 
relying on what we created. In addition to that, we may want to see what our players are doing while 
playing our games. Then, we can use that information to improve and/or tweak our game.

In the next chapter, we will take a look at how we can do this using tools from Unity Analytics.



10
Using Unity Analytics

Making a game is a wonderful experience and a lot of hard work, but when designing projects, you 
have to rely on your experience and gut feelings in order to make it as awesome as possible. Often, 
in the game industry, we will use playtesting – a process where select people play a game and give 
feedback, and then we use the feedback we receive to improve the project.

This playtesting is most often done in person; however, by creating games for mobile, a lot of people 
will be playing your game after release, and most of them will have an internet connection. With this 
combination of people playing the game and also being online, we can send data about how the game 
is being played to ourselves. This will still allow us to do playtesting with a large variety of people. 
Being able to look at our data will allow us to check whether the choices that are made to change the 
game are the right ones, and we will be able to make adjustments to our games on the fly.

This data could be about something as simple as where players tend to die in the game or things such 
as how often they come back to play, the daily average time they spend playing, the number of users 
we have at a time, how long people play the game before stopping, and what choices they made. Over 
the course of this chapter, we will learn how to become able to learn what our users are doing through 
the use of Unity’s Gaming Services platform and built-in Analytics system.

This chapter will cover a number of topics. The chapter itself is a simple step-by-step process from 
beginning to end. Here is an outline of our tasks:

•	 Setting up Unity Analytics

•	 Tracking custom events

•	 Working with the Funnel Analyzer

•	 Tweaking properties with Remote Config



Using Unity Analytics308

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal changes 
in future versions of the editor. If you would like to download the exact version used in this book, and there 
is a new version out, you can visit Unity’s download archive at https://unity3d.com/get-unity/
download/archive. You can also find the system requirements for Unity at https://docs.
unity3d.com/2022.1/Documentation/Manual/system-requirements.html in the 
Unity Editor system requirements section. To deploy your project, you will need an Android or iOS device.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter10.

Setting up Analytics
Although we activated the Analytics option from Unity Gaming Services in order to use Unity’s Ads 
system in Chapter 7 Advertising Using Unity Ads, we didn’t really dig deep into the system itself. Let’s 
finish the setup for that now using the following steps:

1.	 To start, we need to install the Unity Analytics package in our project. We can do so by returning 
to the Unity Editor and opening the package manager, by going to Window | Package Manager.

2.	 There is a bug with the version of Unity this book was written for, with the Analytics package not 
showing up by default; instead, Unity shows the legacy Analytics Library package. However, it is 
possible to add the new package by clicking on the + button at the top left and then selecting the 
Add Package by Name option. From there, type in com.unity.services.analytics. 
If all goes well, you should be able to see that the Analytics package has been installed correctly 
by checking the Package Manager window:

Figure 10.1: Analytics attached

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter10


Setting up Analytics 309

The next step is to initialize the SDK and ensure that consent is given by our users to log events 
that they cause to happen. To do this, we will need to write some code.

3.	 From the Project window, go to the Assets/Scripts folder and create a new C# script, 
naming it AnalyticsManager.

4.	 Double-click on the newly added script to open it with the code editor of your choice, and use 
the following code:

using System.Collections.Generic; /* List */
using Unity.Services.Analytics; /* AnalyticsService, 
ConsentCheckException */
using Unity.Services.Core; /* UnityServices */
using UnityEngine;

public class AnalyticsManager : MonoBehaviour
{
    // Start is called before the first frame update
    async void Start()
    {
        try
        {
            await UnityServices.InitializeAsync();
            List<string> consentIdentifiers = await
                AnalyticsService.Instance
                    .CheckForRequiredConsents();
        }
        catch (ConsentCheckException)
        {
            /* Something went wrong */
        }
    }

}

5.	 Save the script and return to the Unity Editor.

This is the minimum amount of code that is required for us to be able to initialize the SDK, as 
well as for us to be able to send events to Unity Gaming Services.



Using Unity Analytics310

Note that several keywords here haven’t been utilized previously. For instance, our Start 
function has async before the return type. Likewise, there’s also await before two function 
calls. Here, we’re utilizing something called asynchronous programming. The await keyword 
allows us to wait for the async method until it returns a value. So, the main application thread 
stops there until it receives a return value. If we did not use the await keyword, the next 
function would be called immediately afterward, and since we need the result to be figured out 
before we can continue, that’s why we’re utilizing it. The async keyword enables the await 
keyword. So, any method using await must be marked async.

Note
For more info on async and await, check out the official MSDN docs at https://learn.
microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/
async/.

In addition, note that we have a try and catch block. When we use try and then a block of 
code, we are noting that there is a possibility that the code that we are putting inside of there 
has a chance of failure. For example, it’s possible that there could be an exception that is thrown. 
If an exception of type ConsentCheckException is caught during the execution of the 
try block, it means something went wrong with the consent check.

If that were to happen normally, Unity would throw an error to the console. The code within 
the catch block handles this exceptional situation. The catch block is where, instead of 
throwing  an error to the console and causing issues in the game, this is a way for us to attempt 
to remedy the situation instead. In our case, we would want to handle how we would run our 
game without using Unity Services, which would likely mean that we just wouldn’t log events.

Note
For more info on try and catch, check out the official MSDN docs at https://learn.
microsoft.com/en-us/dotnet/csharp/language-reference/keywords/
try-catch.

Of course, just having this code doesn’t do anything. We have to actually run it. So to do that, 
we’re going to need to add the script to an object. And for ease of use, we’re going to create a 
new object to attach this to.

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch


Setting up Analytics 311

6.	 Back in the Unity Editor, create an empty game object by going to Game Object | Create Empty. 
Rename the object Analytics Manager, reset its position, and then add the Analytics 
Manager script to that object.

Figure 10.2: The Analytics Manager setup

As long as Analytics is enabled, the Editor sends an App Start event to the Analytics service 
when we press the Play button to start the game:

The nice thing about this is that we can ensure that this feature works correctly without having 
to export our game. However, this message is not shown to us by default. We can enable logging 
to the Editor console to allow us some extra visibility while we are experimenting by enabling 
a scripting define symbol.

7.	 Go to Edit | Project Settings, and from there, go to the Player option. From Other Settings, 
go to the Script Compilation section, and from there, go to Scripting Define Symbols. From 
there, we’re going to click on the + button to add an entry and then add the following keyword 
– UNITY_ANALYTICS_EVENT_LOGS. Once completed, hit the Apply button and wait for 
it to finish compiling scripts.

Tip
If, for some reason, your scripting define symbols disappear on the Android platform, switching 
to the PC settings and putting the value in first seems to correct the issue.

8.	 Save the project and run the game. If all goes well, you should see the events appear in the 
Console window:



Using Unity Analytics312

Figure 10.3: The console receiving our default events

Now that we have this working, we can go check to see if the events are happening via the 
game side.

9.	 From the top bar of Unity go to Services | General Settings. From there go to Analytics – 
Gaming Services and then click on Go to Dashboard. Once there click on the Event Browser 
button, you should see the most recent 100 events that Unity has received:



Tracking custom events 313

Figure 10.4: The Event Browser page

Now that we have Unity Analytics set up, let’s start creating our own custom events to track!

Tracking custom events
Unity Analytics does a number of different things automatically to make it easy to work with. However, 
as a game designer, you may often want to check whether certain aspects of a game are being used 
or whether players are reaching certain pieces of content. To keep track of this, we can make use of 
the custom events system.

Custom events are pieces of data that users send to the cloud as they play a game. Each custom event 
can have its own parameters, which will allow us to filter the data that we send when it is generated. 
We will discuss how you can send information over the cloud through the use of code.

Sending basic CustomEvents

The first kind of event we are going to send is just an event name. This can be used for something such 
as tracking the number of times people access a certain place or checking whether something invalid 
appears to be happening. To make it easy to trigger and track for testing purposes, we will cause an 
event to happen each time a game is paused. Let’s look at the steps:

1.	 Open the PauseScreenBehaviour script and add the following using statement to the 
top of the script:

using Unity.Services.Analytics; /* AnalyticsService */

This namespace contains all of the functions used by Unity’s Analytics system.



Using Unity Analytics314

2.	 Update the SetPauseMenu function to include the following highlighted code:

/// <summary>
/// Will turn our pause menu on or off
/// </summary>
/// <param name="isPaused">is the game currently paused</param>
public void SetPauseMenu(bool isPaused)
{
    paused = isPaused;

    /* If the game is paused, timeScale is 0,
       otherwise 1 */
    Time.timeScale = (paused) ? 0 : 1;

    pauseMenu.SetActive(paused);
    onScreenControls.SetActive(!paused);

    /* Send custom gamePaused event */
    if (paused && (AnalyticsService.Instance != null))
    {
        AnalyticsService.Instance.CustomData(
            "gamePaused");
        AnalyticsService.Instance.Flush();
    }
}

This code will call the AnalyticsService.Instance.CustomData function when 
pauseMenu has been turned on. The first parameter of AnalyticsService.Instance.
CustomData is a string, which is the name that you wish the event to have. This name will 
be used within Unity Analytics. Events are automatically sent every 60 seconds if there’s an 
internet connection available. However, if you want to immediately upload all recorded events 
to the server, there’s also the AnalyticsService.Instance.Flush function, which 
will immediately upload the events when called.

3.	 Save the script and then return to the Unity Editor. Once there, play the game and then pause 
it. As you can see, the event was sent over the cloud successfully!



Tracking custom events 315

Figure 10.5: Paused events uploaded successfully

Previously, Unity Analytics used to accept any event that you were to send it. However, with 
this new system, you have to actually define the event in the dashboard ahead of time, or it will 
ignore the information. So, we are going to need to go to the dashboard and define this event 
as well before we start seeing it trigger in the Event Manager.

As mentioned before, it can take quite some time before information shows up on the Unity 
dashboard, but it’s a good idea at this point to see where this information can be received later on.

4.	 From the Dashboard, go to Analytics, and then select Event Manager.

This is the place where you can see the custom events and parameters that have been received 
from the game.

5.	 From there, select Add New, and then select Custom Event.



Using Unity Analytics316

Figure 10.6: Adding a new custom event

6.	 Name the custom event gamePaused, spelled exactly the same as we’ve done here, for the 
string that we’ve been passing into the CustomData function in the SetPauseMenu function. 
We’ll also add an event description of the event for our future reference. Afterward, click on 
the Create button, and the event should be ready for us to work with.

Figure 10.7: Setting Custom Event Details



Tracking custom events 317

7.	 Lastly, scroll down to the event and double check that the Enabled option is turned on; otherwise, 
the events will only show up in the Invalid Events area of the event browser.

Figure 10.8: Enabling the event

8.	 Go back to the Unity Editor and play your game again, triggering the gamePaused event so 
that it will show up correctly.

9.	 Wait 15 minutes or so, go back to the event browser, and hit the Refresh button. If all goes well, 
you should see the gamePaused event there! To make it easier to see, you can also click on 
the Event Name dropdown, select gamePaused, and then hit the Apply button to isolate the 
event browser to only show those events.

If not, it may take some time before the events are updated in the event browser, but they 
should show up eventually.



Using Unity Analytics318

Figure 10.9: Our simple custom events in the event browser

10.	 Next, click on the Data Explorer option.

In the Data Explorer tab, you’ll see two buttons for Metric and Event. We can also use this 
menu to observe whenever the gamePaused event is called.

Tip
If you have just created the event, it may take up to 12 hours for the information to be received. 
Go ahead and check back later if that’s the case. In the past, I’ve had to wait up to even 48 hours 
for the data, so do not be alarmed if it takes a while for it to show up, although I have not had 
this issue with the newest iteration of Unity Gaming Services.

11.	 Click on the + button to the left of Add Event to add a custom event to this graph. Then, select 
the Add Event dropdown and then gamePaused. Since we have just made the event, we won’t 
see it on previous dates in Analytics, but we can see it a little easier if we click on the Column 
Chart button to change how the data is displayed:



Tracking custom events 319

Figure 10.10: Add Event

Now, when we scroll down, we can see that Data Explorer now shows how often the gamePaused 
event has been called!

Sending custom events with properties

One additional thing that we may want to track is how far players get before they lose. Let’s take a 
look at how to do that now:

1.	 In the Dashboard, first, go to the Event Manager. Click on Add New and select Custom 
Event. For Event name, type in gameOver, and then fill in the Event description field with 
something like Records when the players causes a game over event to occur. Afterward, click 
on the Create button.

2.	 From there, you’ll be brought to a page for the event. Click on the Assign Parameter button, 
and from there, under the Parameter dropdown, select Add New Parameter.



Using Unity Analytics320

Figure 10.11: Add New Parameter

3.	 For the parameter name, type in score, and then fill in a description for the parameter. For 
the parameter type, select Float, and then click the Create button.

Figure 10.12: Adding a custom parameter

4.	 Create a new event called gameOver and a custom parameter, which we will call score and 
will be a float. Then, click on the Create button, select score, and then click Assign.



Tracking custom events 321

Figure 10.13: Assigning the score parameter

5.	 Finally, click on the Enabled toggle so that the gameOver event will be saved when it occurs. 
Unity will ask whether you’re sure you want to enable the event; click on the Enable button to 
ensure that it will happen.

Figure 10.14: Enabling the event

6.	 Now, return to the Unity Editor. First, we will need to open up the ObstacleBehaviour 
script to modify what happens when the game ends.



Using Unity Analytics322

7.	 To utilize Unity Analytics with parameters, at the top of the file, we will add the following 
using declarations:

using Unity.Services.Analytics; /* AnalyticsService */
using System.Collections.Generic; /* Dictionary */

The top option is obvious, but we are also adding System.Collections.Generic in 
order to get access to the Dictionary class, which we will use in the next piece of code.

8.	 Next, we will update the OnCollisionEnter function to the following:

private void OnCollisionEnter(Collision collision)
{
    var go = collision.gameObject;
    var playerBehaviour =
        go.GetComponent<PlayerBehaviour>();

    // First check if we collided with the player
    if (playerBehaviour)
    {
        // Destroy the player
        //Destroy(collision.gameObject);

        // Destroy (Hide) the player
        player = go;
        player.SetActive(false);

        /* If Unity Analytics doesn't exist will throw
           an exception */
        try
        {
            /* Define Custom Parameters */
            var eventData = new Dictionary<string,
                object>
            {
                { "score", playerBehaviour.Score }
            };

            AnalyticsService.Instance.CustomData("game
                Over", eventData);
            AnalyticsService.Instance.Flush();
        }



Tracking custom events 323

        catch(ServicesInitializationException e)
        {
            /* Displays the exception but doesn't
               break * the game */
            Debug.LogWarning(e.Message);
        }

        /* Call the function ResetGame after waitTime
           has passed */
        Invoke("ResetGame", waitTime);
    }
}

We’ve done a number of things within this script. To start off with, we have rewritten our check that 
the player uses the component as a variable now, so we don’t have to call GetComponent again 
for the same thing. Aside from that, the main addition is the calling of the AnalyticsService.
Instance.CustomData function with a second parameter. The second parameter (which 
is optional) is a dictionary, which we haven’t discussed yet.

A dictionary is a class that represents a pair of keys and values. The key is an identifier of some 
sort, which allows us to have a reference to obtain the value. This is most often used with the 
string class as the key type so that you can refer to some other data type.

Note
For more information on dictionaries, check out http://csharp.net-informations.
com/collection/dictionary.htm.

We’ve wrapped this code in a try and catch block because if AnalyticsService.
Instance is called and it is null, the code written by Unity will throw an exception. This 
will cause the game to break and no longer work. The game currently works fine if we start the 
game from the title screen, but if we start the game from the gameplay scene, it will no longer 
work correctly due to Analytics not being initialized. This time, instead of doing nothing like 
the previous example, I added a line to actually print out the message that the error gives us 
as a warning. It’s always a good idea to have our code be as robust as possible, so that’s why 
we added this check.

9.	 Save the script and return to the Unity Editor.

http://csharp.net-informations.com/collection/dictionary.htm
http://csharp.net-informations.com/collection/dictionary.htm


Using Unity Analytics324

10.	 Play the game and lose it. Note in the Console window that you are now sending a gameOver event:

Figure 10.15: A Game Over event being dispatched

You can also dive into the dashboard to see the information as well, but Unity says it may take 
up to 6 hours before it becomes visible, although I usually see it within 15 minutes or so. You 
will see the messages instantly in the Console window, but they don’t populate in Analytics until 
the backend calculations have been processed at Unity’s end, due to all of the events it receives.

11.	 After you’ve waited, go to the Analytics tab and click on the Dashboard button once again. 
Then, go to the event browser and access the gameOver events.

12.	 To be able to see the value of the score parameter we created on the far right, click on the 
button that looks like <> to access the JSON event content for the particular event. Note that 
we can see the value of our score here:



Tracking custom events 325

Figure 10.16: The score value in the event content

And with that, we now know how to access events!

This information is formatted in the manner of a JSON file. JSON stands for JavaScript Object 
Notation and is a format that is used to read/write text. The JSON file type is commonly used 
to transmit data and even save files. It’s nice for programmers because it works with a key-pair 
system, such as the Dictionary class that we used previously.

One of the limitations of the event browser is the fact that we are only able to see the most 
recent 100 events. As our project becomes more and more popular, it is likely that we’re going 
to have more and more events. With that in mind, we will likely want to have some way to be 
able to interpret that information. One of the ways that we can use do this is through the SQL 
Data Explorer. This allows us to access all the events that are created, but we have to utilize 
Structured Query Language (SQL), which is a domain-specific language that was created to 
manage data held within a database.

13.	 Click on the SQL Data Explorer button to open the menu. Note that the Query field contains 
some default text.



Using Unity Analytics326

Figure 10.17: SQL Data Explorer

14.	 Hit the Run button to see the default result and how it works. Once the query finishes, you’ll 
be able to create a chart using the data it interpreted from this query.

15.	 To get a feel for how this can work with chart data, under Chart Setup, set X-axis column to 
EVENT_DATE and Y-axis 1 column to COUNT(DISTINCT USER_ID), and then click the 
Apply button.

Figure 10.18: Chart Setup



Tracking custom events 327

This will allow you to create a chart in a similar manner to what we saw earlier with the Data 
Explorer, but this gives us more fine-tuned control if we want to use the power of SQL.

There are entire books out there about SQL for those that are interested in exploring it further, 
but in our case, we want to extract the score values from our custom events. Therefore, instead 
of a chart, we want to create a table so that, in addition to writing some custom queries, we can 
also see how to export the data as well.

16.	 In the Query field, replace the code with the following:

SELECT EVENT_JSON:score::FLOAT
FROM EVENTS
WHERE EVENT_NAME = 'gameOver'

This code is going to go through every single event and check whether the name of the event 
is gameOver. If so, it will isolate the score property from it. This will allow us to create a 
list of all of the score properties from the entire project.

17.	 Hit the Run button and wait for it to execute. Once done, you’ll see the Share button on the 
top has turned blue and you can press it. Once selected, click on the Export as CSV file option.

CSV stands for comma-separated values. This is a file type that uses commas to separate each 
of the different values that are designated within the file, but if you open the file with Google 
Sheets or Excel, the program will be able to parse the file to resemble a nice table.

Figure 10.19: The table of score values in Microsoft Excel



Using Unity Analytics328

This gives us a way to see all the various different score values that our players have achieved as they 
played the game. This can help us see whether people are doing well or really poorly, and allow us to 
cater the game however we’d like.

Use a snippet like the following:

SELECT EVENT_JSON
FROM EVENTS
WHERE EVENT_NAME = 'gameOver'

The preceding code would make it so that instead of the first event just showing 6.5199995, we would have 
each of the slots consist of the entirety of the JSON data that we discussed earlier – in this case, the following:

"{
  ""clientVersion"": ""0.1"",
  ""collectInsertedTimestamp"": ""2022-12-23
    05:36:22.379"",
  ""eventDate"": ""2022-12-23 00:00:00.000"",
  ""eventID"": 3072590187314819072,
  ""eventLevel"": 0,
  ""eventName"": ""gameOver"",
  ""eventTimestamp"": ""2022-12-23 14:36:19.072"",
  ""eventUUID"": ""0d924683-5667-4455-b899-722bfeae93cd"",
  ""gaUserAcquisitionChannel"": ""None"",
  ""gaUserAgeGroup"": ""UNKNOWN"",
  ""gaUserCountry"": ""KR"",
  ""gaUserGender"": ""UNKNOWN"",
  ""gaUserStartDate"": ""2022-07-28 00:00:00.000"",
  ""mainEventID"": 3072590187314819072,
  ""msSinceLastEvent"": 12124,
  ""platform"": ""PC_CLIENT"",
  ""score"": 6.51999473571777,
  ""sessionID"": ""0ce65df8-9696-40e8-ae44-924417e0d406"",
  ""timezoneOffset"": ""+0900"",
  ""userCountry"": ""KR"",
  ""userID"": ""21328f4689677b24baf59487ae951228""
}"

By adding :score::FLOAT, we get the score variable from the JSON data and tell the computer 
to interpret it as a floating-point value.

For those that are interested in exploring SQL more, I suggest checking out the Unity Gaming Service’s 
example cookbook at https://github.com/Unity-Technologies/UGS-SQL-Cookbook, 
which contains a collection of common SQL queries and best practices for use with Unity Analytics.

https://github.com/Unity-Technologies/UGS-SQL-Cookbook


Working with funnels 329

This, of course, is just a simple example, so I would suggest that you create custom events for whenever 
a user reaches an important milestone – for example, when they level up or when they make an In-App 
Purchase (IAP).

Now that we know how to create different types of events, let’s see how we can actually track events 
and learn more about what our players are doing, utilizing the Funnel Analyzer tool.

Working with funnels
One of the many things we’d like to know about our players is how they are actually playing a game 
– for instance, are users skipping our tutorial? To keep track of how players proceed through a series 
of events, we have funnels. Funnels help us to identify where player drop-off happens in our game.

If you happen to see a large number of people not getting to a certain step, you can assume that 
something that happened in the preceding step causes people to stop playing our game.

Note
For more information on how funnels work as well as why you’d want to use them, check 
out https://data36.com/funnel-analysis/.

Funnels are based on the concept of custom events, which we used in the Sending custom events 
with properties section of this chapter. We can use the Funnels tool (previously known as the Funnel 
Analyzer) to look at the data sent via these funnels, which we can then use to make educated decisions 
on what changes should be made to the game. Follow the steps given here to add the tool:

1.	 From the dashboard, go to Analytics and select Funnels:

Figure 10.20: The Funnels page

https://data36.com/funnel-analysis/


Using Unity Analytics330

Right now, there are no funnels set up, so we should create one.

2.	 Click on the + New Funnel button and fill in the details, as shown in the following screenshot. 
Then, scroll all the way down and click on the Apply button:

Figure 10.21: Funnels setup

If you’ve played the game already, you can see the results from the events that have already triggered:

Figure 10.22: The event trigger results

In our case, we have played the game and lost, so we currently have a 100% completion rate.



Summary 331

3.	 Scroll up to the top page and click on the Save Funnel button. Give the funnel a name, describe 
what it is you’re creating, and then hit the Save button.

Figure 10.23: The funnel setup

You should be able to select that funnel, and it will provide information on all the times it has been called.

The concepts used here can easily be expanded upon in other ways as well, such as keeping track of 
how often users watch ads or make purchases in the game and what causes them to do so.

Note
Funnels are great when a game is working correctly, but if the game crashes, it’s also possible to get 
analytics from that as well from Unity Cloud Diagnostics. For information on that as well as how 
to set it up, check out https://docs.unity.com/cloud-diagnostics/en/manual/
CrashandExceptionReporting/SettingupCrashandExceptionReporting.

Summary
In this chapter, we explored a number of ways that we can make use of Unity’s Analytics tool to make 
our games better, from how to understand what our players are doing to learning how to adjust our 
game based on that feedback, without users having to download an entirely new copy of our game.

Specifically, we learned how to set up the Unity Analytics section of the Unity Editor, and then we saw 
how we can make use of code to create events to be sent to the cloud for us to look at. With the given data, 
we learned how we could make use of funnels and the Funnel Analyzer to learn more about our players.

Now that we have seen how to create events, let’s see one of the other main benefits of utilizing Unity 
Gaming Services – being able to change projects using the Remote Config feature, which we will learn 
more about in the next chapter.

https://docs.unity.com/cloud-diagnostics/en/manual/CrashandExceptionReporting/SettingupCrashandExceptionReporting
https://docs.unity.com/cloud-diagnostics/en/manual/CrashandExceptionReporting/SettingupCrashandExceptionReporting




11
Remote Config

Getting a new build of your game exported can take quite a bit of time. It takes time to actually make 
the changes in the Unity Editor, and then you have to export the game and upload a new version on 
each of the app stores you are targeting. Then, you have to spend time waiting for them to approve 
the app and for everyone to actually download it.

One of the things I talk to my students about is creating projects that can be easily changed without 
having to open the Unity Editor. This can be done using data-driven development practices – such as 
building levels or encounters using text files, AssetBundles, or Unity’s Remote Config (previously Remote 
Settings) menu – allowing us to instantly modify variables in copies of the game that are already out.

In this chapter, we’re going to see just how easy it is to set up Unity’s Remote Config system, and how 
we can utilize it for a simple example, by changing the difficulty of our game by changing the speed 
at which the player moves.

The chapter itself is a simple step-by-step process from beginning to end. Here is an outline of our tasks:

•	 Remote Config setup

•	 Integrating Game Overrides into gameplay

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in this book, 
you can visit Unity’s download archive at https://unity3d.com/get-unity/download/
archive. You can also find the system requirements for Unity at https://docs.unity3d.
com/2022.1/Documentation/Manual/system-requirements.html in the Unity 
Editor system requirements section. To deploy your project, you will need an Android or iOS device.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter11.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter11


Remote Config334

Remote Config setup
In order for us to use Remote Config, the first thing we’re going to need to do is add the Remote 
Config package to our project. So, let’s take a look at how we can do that using the following steps:

1.	 From the Unity Editor, open the Services window of the Package Manager (shown in the 
top-right part of the next screenshot) by either clicking on the cloud button at the top left of 
the screen or going to Window | General | Services.

Figure 11.1: The location of the Services button

If all goes well, you should see something like the following screenshot:

Figure 11.2: Package Manager | Services

2.	 From there, scroll down and click on the Remote Config package, and then click on the Install 
button at the bottom right. If all went well, you should see something like the following screenshot:



Remote Config setup 335

Figure 11.3: The Remote Config packages installed

3.	 Close out of the Package Manager and open the Remote Config window by going to Window 
| Remote Config. This will open a separate window that I will then drag and drop next to the 
Console for ease of use. If all goes well, your editor should look similar to the following:

Figure 11.4: The Remote Config window added

And with that, the Remote Config package is installed correctly!



Remote Config336

Just like how in the previous chapter we needed to create a connection between Unity Gaming 
Services and our project in order to use Unity Analytics, we will also need to do the same thing to 
tweak Remote Config values.

Creating key-value pairs

The first thing we will need to do is create the variables that we would like to change:

1.	 From the Unity Editor, if the Remote Config window is open, click on the View in 
Dashboard option.

Figure 11.5: The Remote Config page

Alternatively, for those on the Unity dashboard website, you can click on LiveOps. Once there, 
on the left-hand side, open up the Remote Config section, and then click on the Config tab 
located under it.

This section is the location where we can set and modify the values. Just like working with 
dictionaries, the settings are key-value pairs, and while there is currently only one configuration 
now, production, it is possible to create many other environments. Generally, there are two 
configurations that can be used – Release or Development. The Release configuration is used 
by computers and devices running regular builds of your game. Development is the mode used 
by playing the game in the Unity Editor, as well as any builds created with the Development 
Build property set to True from the Build Settings window.

2.	 Click on the Add key button in the top-right corner of the table. Under the Enter a name 
property, type RollSpeed. Under the Choose a type dropdown, select Float. Lastly, put 5 
in the Float Value field. Finally, click on the Add button:



Remote Config setup 337

Figure 11.6: Adding a key

Then, let’s do the same thing for the DodgeSpeed variable with a value of 5:

Figure 11.7: The DodgeSpeed and RollSpeed keys added

3.	 It’s important to note that this doesn’t actually make a change. In fact, you’ll see a note above 
the values saying that there are unpublished changes. Note how there is a big blue button that 
says Publish. Click on that to deploy the changes. It’ll present a window asking whether you 
want to confirm the changes:



Remote Config338

Figure 11.8: Confirming our change.

4.	 Now that we have some values to grab, let’s take a look at how we can actually do that. Head 
back into the Unity Editor.

5.	 In the Remote Config window, click on the Pull button. If all went well, you should see the 
values added to our project:

Figure 11.9: The values added to our Remote Config after a pull

It’s a good habit to pull every time that you are about to make changes to your remote configs from 
your project, ensuring that you always have the latest version of your properties possible. And with 
that, we’ve now seen how we can create different key-value pairs to add to our project.



Integrating Game Overrides into gameplay 339

Integrating Game Overrides into gameplay
Now that we can see how to get those values and how the system works, let’s see how we can actually 
integrate it with our project and have it affect gameplay:

1.	 Open up the gameplay scene if it isn’t open already, and create a new GameObject by going 
to GameObject | Create Empty. Name the new object Remote Config Manager and 
reset its position.

2.	 Then, from the Project window, go to the Assets\Scripts folder and create a new C# 
script called RemoteConfigManager.

3.	 Attach the newly created RemoteConfigManager component to the RemoteConfigManager 
object we created in step 1. If all went well, your project should look similar to the 
following screenshot.

Figure 11.10: Adding RemoteConfigManager

4.	 Back in the Project window, double-click on the RemoteConfigManager script to open it 
with the script editor of your choice and replace its script with the following:

using UnityEngine;
using Unity.RemoteConfig; /* ConfigManager */

public class RemoteConfigManager : MonoBehaviour
{
    public PlayerBehaviour playerBehaviour;

    public struct userAttributes { }

    public struct appAttributes { }



Remote Config340

    private void Awake()
    {
        ConfigManager.FetchCompleted +=
            ApplyRemoteSettings;
        ConfigManager.FetchConfigs<userAttributes,
            appAttributes>(new userAttributes(),
                new appAttributes());
    }

    private void ApplyRemoteSettings(ConfigResponse
        configResponse)
    {
        /* Check if new settings have been loaded */
        if (configResponse.requestOrigin ==
            ConfigOrigin.Remote)
        {
            /* There are, so values should be updated
            */
           playerBehaviour.UpdateRemoteConfigValues();
        }
    }
}

In the Awake function, we utilize the ConfigManager.FetchConfigs method in order to 
get the app configuration settings from the remote server. Upon completing the fetch operation 
successfully, the ConfigManager.FetchCompleted event is triggered. In this case, we 
added an ApplyRemoteSettings function, which should also be called when that event 
triggers, which we then implement.

That method takes in a ConfigResponse struct that represents the response of a 
RemoteConfig fetch. Of note is the requestOrigin property, which is an enum representing 
the origin point of the last retrieved configuration settings. It can be one of three options:

	� Cached: The config settings loaded in our current session are cached from a previous 
session, so no new configuration settings are loaded

	� Default: There are no configuration settings that are loaded in the current session

	� Remote: There are new configuration settings that were loaded from the remote server in 
the current session

In our case, we only need to do something if the value is Remote. If this is the case, that means 
that there are new settings that have been loaded, which means that we need to update the 
values that are currently loaded.



Integrating Game Overrides into gameplay 341

5.	 Then, we need to go to the PlayerBehaviour script and add the following to the top section 
with the rest of the using statements:

  using Unity.RemoteConfig; /* ConfigManager */

6.	 Afterward, we need to add the UpdateRemoteConfigValues function to the 
PlayerBehaviour class because it currently doesn’t exist; otherwise, we will get a compiler error:

/// <summary>
/// Will update each value for this component we are using with 
/// Remote Config
/// </summary>
public void UpdateRemoteConfigValues()
{
    /* Get the value from the cloud and set the value
       to use */
    float newRollSpeed =
        ConfigManager.appConfig.GetFloat("RollSpeed");
    Debug.Log("Update RollSpeed to: " + newRollSpeed);
    rollSpeed = newRollSpeed;

    /* Get the value from the cloud and set the value
       to use */
    float newDodgeSpeed =
       ConfigManager.appConfig.GetFloat("DodgeSpeed");
    Debug.Log("Update DodgeSpeed to: " +
        newRollSpeed);
    dodgeSpeed = newDodgeSpeed;
}

In this case, we are using the appConfig property of ConfigManager, which is the 
RuntimeConfig object, allowing us to access the current values as they are currently set 
from the cloud for our environment(s). Then, we set the current values of our rollSpeed 
and dodgeSpeed variables to the values that we retrieved from the cloud.

For more information on the ConfigManager class, check out the following: https://
docs.unity3d.com/Packages/com.unity.remote-config@0.3/api/Unity.
RemoteConfig.ConfigManager.htm

7.	 Save both scripts and return to the Unity Editor. Then, go to the Hierarchy window, select 
Remote Config Manager, and from the Inspector window, assign the Player Behaviour value 
to the Player object.

https://docs.unity3d.com/Packages/com.unity.remote-config@0.3/api/Unity.RemoteConfig.ConfigManager.html
https://docs.unity3d.com/Packages/com.unity.remote-config@0.3/api/Unity.RemoteConfig.ConfigManager.html
https://docs.unity3d.com/Packages/com.unity.remote-config@0.3/api/Unity.RemoteConfig.ConfigManager.html


Remote Config342

Figure 11.11: Adding Player Behaviour

8.	 Upon playing the game, you should be able to see in the Console window our Debug.Log 
statement being called, telling us that the value is being updated to whatever we placed in 
Remote Config:

Figure 11.12: Values are updating correctly

9.	 Since the dodgeSpeed and rollSpeed variables are now being set via the UpdateRemo-
teConfigValues function, we can now hide them from the Inspector window. Replace their 
declarations in the PlayerBehaviour script so that the class looks as follows:

/// <summary>
/// How fast the ball moves left/right
/// </summary>
[HideInInspector]
public float dodgeSpeed = 5;

/// <summary>
/// How fast the ball moves forwards automatically
/// </summary>



Summary 343

[HideInInspector]
public float rollSpeed = 5;

Here, we’ve modified the two properties, adding the [HideInInspector] tag, which will 
hide the item in the Inspector window. We’ve also changed the variables to use XML comments 
instead of tooltips, since they are no longer being displayed in the Inspector window.

10.	 Save the script and select the Player object. From there, go to the Inspector window and note 
that the properties are no longer visible in the PlayerBehaviour component:

Figure 11.13: Values are hidden in the Inspector window

Now, the values will be set through the Remote Config component, and users won’t be confused 
about why their values are being replaced by what’s in Player Behaviour.

Being able to tweak these values while the game is live can be incredibly useful and allows you to share 
changes to the game without requiring your users to download a new version!

Summary
In this chapter, we learned how we can use Remote Config to make adjustments to our games on the fly.

Important note
There’s a lot more that you can do with Remote Settings. You can learn more about Remote 
Config and how to use it to work with non-default parameters at https://docs.unity3d.
com/Manual/UnityAnalyticsRemoteSettingsComponent.html.

With this, we have all of the implementation details of our game complete, but our game right now 
is pretty bare. In the next chapter, we will look into ways to make our game more polished, using 
features such as particle systems and screen shake.

https://docs.unity3d.com/Manual/UnityAnalyticsRemoteSettingsComponent.html
https://docs.unity3d.com/Manual/UnityAnalyticsRemoteSettingsComponent.html




12
Improving Game Feel

We now have a basic game, but it’s just that... basic. In this chapter, you will learn some of the secrets 
of game developers to take the basic prototype of their game and turn it into something with a lot of 
polish that feels satisfying to play, which is known as improving the game feel of the project.

Also known as juiciness, or making our games juicy, in some corners of the game industry, game feel 
is a kind of catch-all term for all the things that we do in a game to make it pleasing for its users to 
interact with. This is something that is done with most mobile games that are out there today, and 
lacking this kind of interactivity will make others believe our project is lacking in polish.

In this chapter, you will learn some of the different ways that you can integrate several of these features 
into your projects. We will start off by learning how to make use of animations. We will then see how 
we can use Unity’s material system in order to add visual appeal to our objects. We will then improve 
the overall visual quality of our game through the use of postprocessing effects. Lastly, we will use 
one of the most powerful tools in a game developer’s toybox, the particle system, to improve feedback 
when the player moves in the environment.

This chapter covers a number of topics. It goes through a simple step-by-step process from beginning 
to end. Here is an outline of the tasks we will cover:

•	 Animation using LeanTween

•	 Adding tweens to the pause menu

•	 Working with materials

•	 Using postprocessing effects

•	 Adding particle effects



Improving Game Feel346

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, 
you will need an Android or iOS device.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter12.

Animation using LeanTween
Currently, our game’s menus are completely static. This is functional but does not make players excited 
about playing our game. To make the game seem more alive, we should animate our menus. Being able 
to use Unity’s built-in animation system is great, and it can be quite useful if you want to modify many 
different properties at once. If you don’t need precise control, say, if you’re only modifying a single 
property or you want to animate something purely via code, you can also make use of a tweening library.

Tweening, short for “in-betweening,” is a common technique used in animation and game development 
to create smooth transitions between two states or values over a specified duration. It involves 
interpolating or transitioning a property or set of properties from one value to another gradually.

If it is given a start and an end, the library will take care of all the work in the middle to get that 
property to that endpoint within the time and speed you specify. By using tweens, developers can easily 
add fluid and visually appealing animations to their applications without having to manually handle 
the interpolation calculations and animation loops. Tweening libraries provide convenient APIs and 
functionalities to create and control tweens in a straightforward and efficient manner.

One of my favorite tweening libraries is Dented Pixel’s LeanTween, which is open source, usable for 
free in commercial and non-commercial projects, optimized for mobile devices, and used in many 
games, including Pokémon Go. In the following sections, we will first install and set up LeanTween 
and then see how we can use it to animate our title screen UI menus.

LeanTween setup

LeanTween allows us to spin, shake, punch, move, fade, and tweak objects in many different ways with 
only one line of code per task. It also gives us the ability to fire custom events during the start, middle, 
and end of the animations, allowing us to effectively do whatever we want to create an animation in 
a way that is incredibly powerful once you get familiar with it.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter12


Animation using LeanTween 347

Now that we know we want to add tweens to our project, let’s start off by actually adding the LeanTween 
engine to our project. Implement the following steps:

1.	 Open up the Asset Store tab by going to https://assetstore.unity.com/ in your web 
browser of choice. Once there, at the top of the search bar, type in LeanTween and then press Enter.

2.	 From there, you’ll be brought to a list of items, with the first one being LeanTween; select it 
and you will be brought to LeanTween’s product page:

Figure 12.1: Asset Store search

3.	 Once on the project page, click on button that either says Add to My Assets or Open In Unity depending 
on if you have the package or not. At this point you may need to log into your Unity account. Once 
added, from the Package Manager, go ahead and from the asset page click on the Import button.

Figure 12.2: Package Manager

https://assetstore.unity.com/


Improving Game Feel348

Important note
The packages in the Package Manager here will likely look different than yours as they are ones 
that I have personally purchased from the Asset Store.

4.	 You should see an Import Unity Package window pop up. From there, you can check or uncheck 
whatever files you want to keep. We will just use the contents of the Framework folder here; 
however, the others may be useful to you, so feel free to use them yourself.

5.	 Once you’ve finished selecting what you want, click on the Import button:

Figure 12.3: Import Unity Package dialog

6.	 We don’t need the Package Manager anymore, so go ahead and close it. You’ll notice that now 
we have the files we have selected inside our Project tab, in the Assets/LeanTween/
Framework folder:



Animation using LeanTween 349

Figure 12.4: LeanTween imported

With that, we have set up LeanTween.

Important note
There are other tweening libraries that you may want to consider, such as iTween and DOTween. 
For some more information and a comparison of them, check out http://dotween.
demigiant.com/#enginesComparison.

Now that we have a tweening system in place, let’s see how we can actually use it!

Creating a simple tween

Made popular in animation before transitioning to game development, the process of tweening (or 
inbetweening) is where, given a starting and ending value, the computer will generate the intermediate 
frames between the two states, giving the appearance of the beginning value evolving smoothly into the 
second value. A tween is the information that we have to provide in order to start the tweening process.

Now that we have LeanTween included in our project, we can use it inside our code. To do that, 
perform the following steps:

1.	 From the Unity Editor, open the MainMenu level by going to the Project window and double-
clicking on the MainMenu scene.

2.	 Now, move to the Scripts folder and open MainMenuBehaviour by double-clicking on it.

3.	 We will add the following new function, which we will use to have the object move from the 
left side of the screen to the center:

/// <summary>
/// Will move an object from the left side of the screen
/// to the center

http://dotween.demigiant.com/#enginesComparison
http://dotween.demigiant.com/#enginesComparison


Improving Game Feel350

/// </summary>
/// <param name="obj">The UI element we would like to
/// move</param>
public void SlideMenuIn(GameObject obj)
{
    obj.SetActive(true);

    var rt = obj.GetComponent<RectTransform>();

    if (rt)
    {
        /* Set the object's position offscreen */
        var pos = rt.position;
        pos.x = -Screen.width / 2;
        rt.position = pos;

        /* Move the object to the center of the screen
           (x of 0 is centered) */
        LeanTween.moveX(rt, 0, 1.5f);
    }
}

Before we move anything using LeanTween, we will first set the position of our object (the obj 
parameter) off screen by setting the x position. It’s important to note that when dealing with 
UI elements in Unity, by default, we are dealing with screen space, which, as you can recall 
from Chapter 3, Mobile Input/Touch Controls, means that we are moving in terms of pixels.

From here, we’ll see that we are calling the moveX function from LeanTween. The version we 
are using takes in three parameters, the first being the RectTransform object we wish to 
move and the second being the x position to move it to. Based on how we set up the anchors 
and pivots, a position of 0 on the x axis is actually centered, so we pass in 0. Lastly, we have the 
amount of time (in seconds) in which we want the transition to happen.

4.	 Now that we have this function, let’s actually call it. Change the Start function of the 
MainMenuBehaviour script so that it now looks as follows:

protected virtual void Start()
{
    /* Initialize the showAds variable */
    bool showAds =
        (PlayerPrefs.GetInt("Show Ads", 1) == 1);
    UnityAdController.showAds = showAds;

    /* Slide in the login menu if it exists */
    if (facebookLogin != null)



Animation using LeanTween 351

    {
        SlideMenuIn(facebookLogin);
    }

    /* Unpause the game if needed */
    Time.timeScale = 1;

}

The first thing we do is bring the Facebook login menu to the screen by calling the SlideMenuIn 
function, which in turn will tween the menu to the center of the screen. LeanTween, by default, 
makes use of the game’s Time.timeScale property to scale movement. When we leave the game 
from the pause menu and go back to the main menu, the game will still be paused. This ensures 
that the game will be unpaused by the time we want to slide this menu in. When we start building 
the pause menu, we’ll see how we can make our tweens work even when the game is paused.

If you play the game now, you’ll notice that the Facebook login screen will now move from off 
screen back into the center of the screen.

Right now, the object moves in a fairly static manner. One of the ways we can add life to this 
tween is by giving it some additional features, such as easeType.

5.	 Add the following highlighted code to the SlideMenuIn function:

/// <summary>
/// Will move an object from the left side of the screen
/// to the center
/// </summary>
/// <param name="obj">The UI element we would like to
/// move</param>
public void SlideMenuIn(GameObject obj)
{
    obj.SetActive(true);

    var rt = obj.GetComponent<RectTransform>();

    if (rt)
    {
        /* Set the object's position offscreen */
        var pos = rt.position;
        pos.x = -Screen.width / 2;
        rt.position = pos;

        /* Move the object to the center of the screen
           (x of 0 is centered) */



Improving Game Feel352

        LeanTween.moveX(rt, 0,
           1.5f).setEase(LeanTweenType.easeInOutExpo);
    }
}

What is happening here is that the LeanTween.moveX function returns an object of the 
LTDescr type, which is actually a reference to the tween that was created. To that tween, 
we can add additional parameters by calling additional functions onto the tween. In fact, an 
alternate way to write this is the following:

// Move the object to the center of the screen (x of 0 is 
// centered) 
var tween = LeanTween.moveX(rt, 0, 1.5f); 
tween.setEase(LeanTweenType.easeInOutExpo);

However, most of the examples in LeanTween’s documentation use the former method, chaining 
a number of different events to happen at once.

Important note
To see what some of the other commonly used methods are besides easeType in LeanTween, 
check out https://tedliou.com/archives/leantween-ui-animation/.

6.	 Finally, we will add the ability for the current menu to slide off screen when we select a button 
to go to another menu:

/// <summary>
/// Will move an object to the right offscreen
/// </summary>
/// <param name="obj">The UI element we would like to
/// move </param>
public void SlideMenuOut(GameObject obj)
{
    var rt = obj.GetComponent<RectTransform>();

    if (rt)
    {
        var tween = LeanTween.moveX(rt,
            Screen.width / 2, 0.5f);

        tween.setEase(LeanTweenType.easeOutQuad);

        tween.setOnComplete(() =>
        {
            obj.SetActive(false);

https://tedliou.com/archives/leantween-ui-animation/


Animation using LeanTween 353

        });
    }
}

Note that this is similar to the previously written function, except now we are also using another 
function called setOnComplete, which can take in either a function or an expression lambda, 
which works basically as a function without a name and is often used in Language-Integrated Query 
(LINQ). In this case, because I wanted to have access to obj, I used a lambda. What this will do is 
after the object is off screen, it will automatically turn off; but we have the potential to do anything. 
This can be incredibly powerful, as we can do anything that we’d normally be able to do via code.

Important note
For more information on lambda expressions, check out https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/statements-expressions-
operators/lambda-expressions.

7.	 Then, we will need to update the ShowMainMenu function to actually display the menus:

public void ShowMainMenu()
{
    if (facebookLogin != null && mainMenu != null)
    {
        SlideMenuIn(mainMenu);
        SlideMenuOut(facebookLogin);

        // No longer needed as menus will be animating
        //facebookLogin.SetActive(false);
        //mainMenu.SetActive(true);

        if (FB.IsLoggedIn)
        {
            /* Get information from Facebook profile
            */
            FB.API("/me?fields=name",
                    HttpMethod.GET,
                    SetName);
            FB.API("/me/picture?width=256&height=256",
                    HttpMethod.GET,
                    SetProfilePic);
        }
    }
}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions


Improving Game Feel354

8.	 Save the script and dive back into the game:

Figure 12.5: Menus sliding in and out

As you can see, the menus will now fly in and out when on the main menu.

With the preceding example, you should be able to see just how easy it is to add motion to our projects 
and how it can improve the overall quality of the game, making it more enjoyable to interact with.

Adding tweens to the pause menu
Now that we have finished the main menu, let’s continue adding tweens to the pause menu:

1.	 Go ahead and open up our Gameplay scene. Update the PauseScreenBehaviour script 
to have the following implementation of SetPauseMenu:

/// <summary>
    /// Will turn our pause menu on or off
    /// </summary>
    /// <param name="isPaused">is the game currently
    /// paused</param>
    public void SetPauseMenu(bool isPaused)
    {
        paused = isPaused;

        /* If the game is paused, timeScale is 0,
           otherwise 1 */
        Time.timeScale = (paused) ? 0 : 1;

        // No longer needed
        //pauseMenu.SetActive(paused);



Adding tweens to the pause menu 355

        if (paused)
        {
            SlideMenuIn(pauseMenu);
        }
        else
        {
            SlideMenuOut(pauseMenu);
        }

        onScreenControls.SetActive(!paused);

        /* Send custom gamePaused event */
        if (paused && (AnalyticsService.Instance != null))
        {
            AnalyticsService.Instance.CustomData(
                "game Paused");
            AnalyticsService.Instance.Flush();
        }
    }

Note that because PauseMenuBehaviour inherits from MainMenuBehaviour, it can 
also call the SlideMenuIn and SlideMenuOut functions, respectively, as long as they are 
marked as protected or public.

Now, if we run the game, nothing will appear to happen when we hit the pause menu. 
This is because—as I mentioned previously—tweens are scaled by Time.timeScale, 
which we just changed. To fix this, we can make use of another LeanTween function, called 
setIgnoreTimeScale, which we will set to true in both functions we wrote previously 
in the MainMenuBehaviour script. Go back to the MainMenuBehaviour script and 
add the following highlighted code to the SlideMenuIn method:

/// <summary>
/// Will move an object from the left side of the screen
/// to the center
/// </summary>
/// <param name="obj">The UI element we would like to
/// move</param>
public void SlideMenuIn(GameObject obj)
{
    obj.SetActive(true);

    var rt = obj.GetComponent<RectTransform>();



Improving Game Feel356

    if (rt)
    {
        /* Set the object's position offscreen */
        var pos = rt.position;
        pos.x = -Screen.width / 2;
        rt.position = pos;

        /* Move the object to the center of the screen
           (x of 0 is centered) */
        var tween = LeanTween.moveX(rt, 0, 1.5f);
        tween.setEase(LeanTweenType.easeInOutExpo);
        tween.setIgnoreTimeScale(true);
    }
}

2.	 Add the highlighted code to the SlideMenuOut method:

/// <summary>
/// Will move an object to the right offscreen
/// </summary>
/// <param name="obj">The UI element we would like to
/// move </param>
public void SlideMenuOut(GameObject obj)
{
    var rt = obj.GetComponent<RectTransform>();

    if (rt)
    {
        var tween = LeanTween.moveX(rt,
            Screen.width / 2, 0.5f);

        tween.setEase(LeanTweenType.easeOutQuad);
        tween.setIgnoreTimeScale(true);

        tween.setOnComplete(() =>
        {
            obj.SetActive(false);
        });
    }
}



Working with materials 357

3.	 Save both scripts and dive into the Editor to try it out:

Figure 12.6: Screen flying in

Perfect! We now have the screen flying in just like we wanted it to.

In the previous two sections, we learned how to create tweening events and how to apply them to 
different scenarios. In the next section, we will see another way that we can improve the visuals of 
our project through the use of materials.

Working with materials
Previously, we have always used the default material for everything in our project. This has worked out 
well for us, but it may be a good idea for us to talk a little bit about creating custom ones to improve 
the visuals of our player. Materials are instructions on how to draw 3D objects within Unity. They 
consist of a shader and properties that the shader uses. A shader is a script that instructs the material 
on how to draw things on the object.

Shaders are a huge subject that entire books have been written on, so we can’t dive too much into 
them here, but we can talk about working with one that is included in Unity, the Standard Shader. 
Implement the following steps:

1.	 First, open the Gameplay scene. Then, let’s create a new folder in the Project window 
called Materials:



Improving Game Feel358

Figure 12.7: Adding Materials

2.	 Open up the Materials folder we just created, and then once inside, create a new material 
by right-clicking within the folder and then selecting Create | Material:

Figure 12.8: Creating a material



Working with materials 359

3.	 Name this new material Ball. In the Inspector window, you’ll be brought to the Shader menu 
with the properties for the Standard shader. Change the Albedo to a gray color. Then, set the 
Metallic property to 0.9 and the Smoothness property to 0.8.

4.	 Now, go to the Scene view and drag and drop the Ball material onto our player object.

Figure 12.9: Setting material properties

The albedo property acts as a diffuse map setting the base color of an object, though you can 
also apply a texture to use an image file to change how it looks. The Metallic parameter of a 
material determines how metal-like the surface is. The more metallic a surface is, the more it 
reflects its environment. The Smoothness property determines how smooth the surface is; 
a higher smoothness will have light bounce off it uniformly, making the reflections clearer.

Important note
For more information on the standard shader and its parameters, check out https://docs.
unity3d.com/Manual/StandardShaderMaterialParameters.html.

Using materials is only one of the ways that we can improve the visual quality of our project. In fact, one 
of the most drastic ways that we can modify our project’s visuals is through the use of postprocessing 
effects, which we will be looking at next.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html


Improving Game Feel360

Using postprocessing effects
One of the ways that we can improve the visual quality of our game with little effort is by using 
postprocessing effects (previously called Image Effects). Postprocessing is the process of applying 
filters and other effects to what the camera will draw (the image buffer) before it is displayed on screen.

Unity includes a number of effects in its freely available postprocessing stack. Unity’s postprocessing 
stack is a set of visual effects that can be applied to the rendered images in a game or application to 
enhance the overall visual quality. These effects can include things like color grading, depth of field, 
motion blur, ambient occlusion, and more. By using the postprocessing stack, developers can easily 
add these effects to their games without having to create them from scratch.

The term “stack” is used to emphasize that these effects are designed to be used together, in a layered 
manner, to achieve a desired visual style or aesthetic. By providing a pre-built collection of effects as 
a stack, Unity simplifies the process of implementing advanced visual effects for developers, allowing 
them to focus more on the creative aspects of their projects. So, let’s go ahead and add it using the 
following steps:

1.	 Open up the Package Manager again by going to Window | Package Manager. From there, 
go to the Packages dropdown from the top left and set it to Unity Registry. Afterward, scroll 
down until you see the Post Processing option and select it:

Figure 12.10: Post Processing

2.	 Once selected, click on the Install button and wait for it to complete.

3.	 Switch to the Scene window and then, from the Hierarchy window, select our Main Camera 
object, select Add Component in the Inspector window, and type in Post Process. Then, 
move your mouse over the Post-process Layer selection and click to add the script to your project.



Using postprocessing effects 361

The Post-process Layer component handles the blending of postprocessing volumes and what 
the postprocessing should be based on.

4.	 Under the Post-process Layer component, change Layer to Everything. This will make it so 
everything in our scene will be used in terms of blending between volumes.

5.	 We will next need to add the Post-process Volume component to our Main Camera game object. Do 
this by clicking on the Add Component button and then selecting the Post-process Volume option.

Figure 12.11: Adding the volume



Improving Game Feel362

Note that this component requires a profile. We can go ahead and add that next.

6.	 We can create a new postprocessing profile by right-clicking on the Project window, 
opening the Assets folder, selecting Create | Post-processing Profile, and then naming 
it MobilePostProcessing:

Image 12.12: Adding a postprocessing profile

7.	 Go back to the Main Camera object and attach this object to the Profile property of the Post-
process Volume component. Afterward, go to the Post-process Volume component and then 
check the Is Global property box.

This will make it so the volume we have created will always be visible on our player’s screen no 
matter where their camera is positioned in the world.

8.	 Because Post-processing Profile is a separate file, we can make changes to it while 
playing the game without worrying about losing our changes. With that in mind, start the game 
and pause it once gameplay has started.

Now, there’s a large number of possible effects that can be added to modify how the game looks.

Important note
Note that for each element that we add to the profile you add, the frame rate of the devices we 
are trying to run our game on will be decreased. Keep testing your device with these options 
and note how it works.



Using postprocessing effects 363

9.	 Next, under the Post-process Volume component section, you’ll see a section called Overrides. 
Click on the Add effect... button and then select Unity | Vignette. Click on the arrow to the 
left of the name to open up the potential options. From there, check the Intensity property 
and increase it to 0.45:

Figure 12.13: Adding Vignette

Note how there now seems to be a blackened edge or border around the game.

Tip
If the UI menu disappears, switching from the Scene view back to the Game view seems to 
fix this issue.

10.	 Next, enable Smoothness and set it to 0.35 to make it even darker by clicking on the top 
right of the section to expand it:

Figure 12.14: Enabling Smoothness



Improving Game Feel364

Vignetting is the term used for the darkening and/or desaturating toward the edges of an image 
compared to the center. I like to use this when I want to have players focus on the center of 
the screen.

11.	 Click on the Add effect... button again and this time, select Unity | Grain.

Check and set Intensity to 0.15 and you’ll note that the screen has become fuzzier. While it’s 
not a great idea if it is set too large, note that decreasing Size to 0.3 and unchecking Colored 
will help with the appearance of things:

Figure 12.15: Grain

If you’ve been to a movie theater that still uses film, you may have noticed how there were little 
specks in the filmstock that were visible over the course of the film. The Grain effect in Unity 
simulates this film grain, causing the effect to become more pronounced the more the movie 
is played. This is often used in horror games to obscure the player’s vision.

12.	 Another property to add is Unity | Bloom, which makes bright things even brighter. Enable the 
property and then set Intensity to 10. From there, set Soft Knee to 0.6 to help brighten things up:



Using postprocessing effects 365

Figure 12.16: Bloom

The Bloom effect attempts to mimic the imaging artifacts of real-world cameras, where things 
in areas with light will glow along the edges, thus overwhelming the camera.

13.	 Lastly, stop the game, then go back to the Post-process Layer component and, under Anti-
aliasing, change Mode to Fast Approximate Anti-aliasing (FXAA) and then check Fast Mode:

Figure 12.17: Anti-aliasing



Improving Game Feel366

Aliasing is an effect where lines appear jagged on the screen. This happens if the screen on the device 
we are trying to play our game on doesn’t have a high enough resolution to display properly.

Anti-aliasing attempts to reduce that effect by combining colors near these lines to remove its 
prominence, at the cost of it appearing blurrier.

Important note
For more information on postprocessing in Unity, check out https://docs.unity3d.
com/Packages/com.unity.postprocessing@3.2/manual/index.html.

There are a number of other properties to look into and adapt to get your project looking just the way 
you want. Explore them and find what works well for the vision you are looking to achieve!

The game itself currently works, but it could use some more polish. One of the things we can do to 
increase the polish of the game is to make use of particle systems, which is what we can look at next.

Adding particle effects
Typically used for effects that are natural or organic, such as fire, smoke, and sparks, particle systems 
create objects that are designed to be as low cost as possible, called particles. Due to this, we can spawn 
many of the particles at once with a minimal performance cost. One of the easiest types of particle 
systems to create is a trail to follow our player, so let’s add one of those now using the following steps:

1.	 Select Player in the Hierarchy window, and then right-click and select Effects | Particle System.

This will make this system a child of the player, which will be good for what we are going to do.

2.	 In the Particle System component, change Start Speed to 0 and Simulation Space to World. 
Then, change Start Color to a color that stands out, such as purple.

3.	 Open up the Shape section by clicking on it. Change Shape to Sphere and set Radius to 0 (it 
will automatically change to 0.0001).

This is a step in the right direction. The purple particles are now following the player, as shown 
in the screenshot:

https://docs.unity3d.com/Packages/com.unity.postprocessing@3.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@3.2/manual/index.html


Adding particle effects 367

Figure 12.18: Particle trail

However, there are still a number of things we can do to improve this. Instead of just a single 
color, we can change it so that it randomly alternates between two colors.

4.	 To do that, go to the right side of Start Color, and you’ll see a little downward-facing arrow. 
Click on that and then select Random Between Two Colors. Then, change the color to one of 
two purple colors for some randomness.

5.	 Then, next to Start Size, click on the right arrow, select Random Between Two Constants, 
and then set the values between 0.5 and 1.2.

6.	 With that, set the Start Speed property to be a random value from 0 to 0.2.

7.	 Then, open up the Emission section and set the Rate over Time property to 100:



Improving Game Feel368

Figure 12.19: Particle settings



Summary 369

8.	 Save the game and play:

Figure 12.20: Final particle trail

Tip
If you’re interested in exploring more details on things that can be done to polish projects, 
you can check out another of my Unity books, Unity 5.x Game Development Blueprints, also 
available from Packt, which also dives into game polish.

As you can see, the particle system looks great on both our PC and mobile devices.

Of course, there are many other areas that can be improved through the use of particle systems. Perhaps 
whenever the player hits a wall, we can display some sparks; when we swipe, we could play another effect; 
when the player pauses the game, we could have something falling on the screen. The possibilities are endless!

Summary
We have now improved our game by a huge amount by only doing a few simple things. We first animated 
our menus with a few lines of code using tweens from LeanTween and saw how a few lines of code 
can improve the visual quality of our UI in a number of ways. We next saw how to create materials to 
improve the visual quality of our ball and then used some postprocessing effects to polish the contents 
of our screen. Finally, we discussed how to use particle effects to create a nice trail following our player.

With these concepts, you now have the skills to dramatically improve the feel of your game projects 
so that players actually enjoy interacting with your game.

By this point, our game is finally ready for the big leagues. In the next chapter, we will explore how to 
build our games in order to get our game onto the Apple App Store and Google Play.





13
Building a Release Copy  

of Our Game

Building a release copy of our game is a crucial step in the process of submitting our game to the app 
stores. This step involves creating a version of our game that is stable and ready for us to release to 
the public.

In this chapter, we will walk you through the steps required to build a release copy of your game for 
both iOS and Android devices. We will cover some extra steps that need to be taken in order in order 
for our project to work. We will also provide tips and best practices to ensure that your release copy is 
of the highest quality and free from bugs and other issues. So, let’s dive in and get started on creating 
a release copy of your game. This chapter will be split into a number of topics. It will contain a simple 
step-by-step process from beginning to end. Here is the outline of our tasks:

•	 Generating release builds for app stores

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 
for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, 
you will need an Android or iOS device.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter13%20and%2014.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014


Building a Release Copy of Our Game372

Generating release builds for app stores
We exported copies of our game previously in Chapter 2, Project Setup for Android and iOS Development, 
but there are some additional steps that we should do before actually releasing the game on an app store:

1.	 The first step will be to confirm you are currently ready to deploy your project to the mobile 
platform of choice. You can check this by going into the Build Settings menu by navigating 
to File | Build Settings.

2.	 From there, you should see the Unity logo to the right of the Android or iOS selection depending 
on the platform you wish to build for. If it is not at the correct platform, select that platform you 
wish to build to and then click the Switch Platform button and wait for it to finish reimporting 
the assets for the project:

Figure 13.1 – The Build Settings menu



Generating release builds for app stores 373

3.	 After confirming whether we are building for Android or iOS, open up the Player settings 
menu by clicking on the Player Settings... button from the menu or by going to Edit | Project 
Settings | Player.

4.	 If you haven’t done so already, set the Company Name and Product Name values to your own 
values. In my case, I used JohnPDoran and Endless Roller, respectively.

5.	 You’ll then see a Default Icon item. Drag and drop the Hi-ResIcon image from the Assets 
folder and then drag and drop it into the Default Icon slot. This will cause the Icon section of 
the Android settings to automatically scale the image to fit whatever device you are targeting:

Figure 13.2 – Setting the Default Icon image

Of course, you can also use your own image, and you can use transparency if you would like to.

6.	 Under the Resolution and Presentation section, you can enable or disable different rotations and 
aspect ratios as desired. We adjusted the game to fit these, but this may be useful to know about 
as you work on your own projects or if you wish to restrict users to one experience or another.

7.	 The Splash Image option can be used to display your own logo in addition to Unity’s if you 
have Unity Personal. If you have a Unity Pro license, you may disable it entirely if you wish 
here by unchecking the Show Splash Screen option.

8.	 Confirm under Other Settings that the Package Name property is not set to the default values. 
The general method of naming is com.CompanyName.GameName.



Building a Release Copy of Our Game374

9.	 Next, open up Publishing Settings. This is where we will enter information about who our 
game’s publisher is (in this case, I’m assuming it’s you). Whenever you build a game for Android, 
you need a Keystore, which allows you to sign off the game, approving it for the build process. 
Click on the Keystore Manager button. From there, you’ll be brought to a menu.

10.	 From the menu, click on the Keystore… drop-down menu and then select Create New | 
Anywhere..., and choose a location for this file.

11.	 Keep in mind where this is going to be located, as you will be using it in the future to create 
new versions of your game

12.	 Then, you’ll need to set a value in the Password field that you will need to know as you’ll be 
using it repeatedly. Afterward, in the Confirm password textbox, you should enter the same 
thing as you did before.

13.	 From there, under the New Key Values section, you’ll need to add the same information as 
before—the password with confirmation and then your name and other information. You can 
see what I put down in the following screenshot. Once finished, click on the Add Key button:

Figure 13.3 – Creating a keystore



Generating release builds for app stores 375

14.	 You’ll have a popup asking whether you’d like to set the new keystore as your Project Keystore 
and Project Key values. Click on Yes.

Figure 13.4 – Confirmation window

You should then see this screen:

Figure 13.5 – Keystore assigned

At this point, you should be finished for those working on iOS, but for those wishing to target 
Google Play, there are some additional tasks we will need to complete.

Google Play requires a newer version of their Billing Library to be used so we will need to 
update the Unity In App Purchase (IAP) package.



Building a Release Copy of Our Game376

15.	 From the Unity Editor, go to the Assets folder, right-click, and select Show in Explorer 
to go to the location of your project. From there, enter the Packages folder and open the 
manifest.json file in a text editor of your choice. Next, find the following line:

"com.unity.purchasing": "4.1.5",

16.	 Update it to "com.unity.purchasing": "4.4.1",.

17.	 Save the file and return to the Unity Editor, and it should update the package. However, this 
will also introduce a bug to our previous code that will cause the ads to not display correctly 
on our devices. So, with that in mind, open up the UnityAdController script and add 
the following code to the class:

 public bool rewardCalled = false;

// To account for a bug in Unity Advertisements 4.0.1
// with Google
// Play we have to add a way for UnityAdsShowComplete
// to be
// called by ourselves as well if it isn't called by
// Unity
IEnumerator RewardRoutine(string placementId)
{
    rewardCalled = false;

    yield return new WaitForSecondsRealtime(0.25f);

    while (Advertisement.isShowing)
    {
        yield return null;
    }

    Debug.Log("Done");

    // If reward wasn't called yet, call it
    if(!rewardCalled)
    {
        OnUnityAdsShowComplete(placementId,
            UnityAdsShowCompletionState.COMPLETED);
    }
}

18.	 Then, update the ShowAd function to the following:

/// <summary>
/// Will load and display an ad on the screen



Generating release builds for app stores 377

/// </summary>
public void ShowAd()
{
    // Add fix for Unity Ads bug
    StartCoroutine(RewardRoutine(GetAdID()));

    // Display it after it is loaded
    Advertisement.Show(GetAdID(), instance);
}

19.	 We are also required to load our ads now ahead of time, so update the Start function to 
the following:

/// <summary>
/// Unity Ads must be initialized, or else ads will
/// not work properly
/// </summary>
private void Start()
{
    /* No need to initialize if it already is done */
    if (!Advertisement.isInitialized || instance ==
        null)
    {
        instance = this;
        // Use the functions provided by this to allow
        // custom
        Advertisement.Initialize(gameId, testMode);

        // Load an Ad to play
        Advertisement.Load(GetAdID());
    }
}

20.	 On that same line of thinking, OnUnityAdsShowComplete now needs to be updated to 
only happen once, so we add a check to see whether the reward was given yet. Also, after the 
ad has been completed, we load a new ad:

/// <summary>
/// This callback method handles logic for the ad
/// finishing.
/// </summary>
/// <param name="placementId">The identifier for
/// the Ad Unit showing the content</param>
/// <param name="showCompletionState">Indicates
/// the final state of the ad (whether the ad was



Building a Release Copy of Our Game378

    /// skipped or completed).</param>
    public void OnUnityAdsShowComplete(string
        placementId, UnityAdsShowCompletionState
            showCompletionState)
    {
        if(!rewardCalled)
        {
            if (obstacle != null &&
                showCompletionState ==
                UnityAdsShowCompletionState.COMPLETED)
            {
                obstacle.Continue();
            }

            /* Unpause game when ad is over */
            PauseScreenBehaviour.paused = false;
            Time.timeScale = 1f;

            rewardCalled = true;

            // Load an Ad to play
            Advertisement.Load(GetAdID());
        }
    }

Google Play also stipulates that ads cannot be played at the beginning of a level, so we will need 
to adjust our scripts for that. Open up the PauseScreenBehaviour.cs file and adjust 
the Start function:

protected override void Start()
{
    /* Initialize Ads if needed */
    base.Start();

    //if (!UnityAdController.showAds)
    //{
    //    /* If not showing ads, just start the game
    //    */
    //    SetPauseMenu(false);
    //}

    // Can no longer show ads at the Start of the game
    SetPauseMenu(false);



Generating release builds for app stores 379

}

21.	 Then go to MainMenuBehaviour and update the LoadLevel script:

/// <summary>
/// Will load a new scene upon being called
/// </summary>
/// <param name="levelName">The name of the level we
/// want to go to</param>
public void LoadLevel(string levelName)
{
    /* Can no longer show an ad upon starting gameplay
    */

    try
    {
        if (UnityAdController.showAds && levelName !=
            "Gameplay")
        {
            /* Show an ad */
            UnityAdController.instance.ShowAd();
        }
        else
        {
            Time.timeScale = 1f;
        }
    }
    catch { }

    SceneManager.LoadScene(levelName);
}

22.	 Save all of the scripts we’ve worked on and return to the Unity Editor.

In the editor, return to the Gameplay level and select the Resume button. From there, go to 
the On Click event and ensure that the Show Pause button has a Set Active to true event. This 
way, when we click the Resume button, we will be able to pause the game again:



Building a Release Copy of Our Game380

Figure 13.6 – Turning on the pause menu

23.	 We will also want to make sure that Unity Gaming Services is always initialized. One way to do 
this is by going to Services | In-App Purchasing | IAP Catalog and checking the Automatically 
initialize Unity Gaming Services property. Otherwise, we may get a bug with the Codeless 
IAP that we added earlier:

Figure 13.7 – Automatically initializing Unity Gaming Services

The Google Play Store also now requires new apps to be an Android App Bundle (AAB) instead 
of an Android Application Package (APK), so we will need to configure the application to 
be an AAB instead.



Generating release builds for app stores 381

Note
For more information on why this change, check out https://android-developers.
googleblog.com/2021/06/the-future-of-android-app-bundles-is.html.

24.	 Under Publishing Settings, enable Split Application Binary.

25.	 I also set Target API Level to API level 31 as that is what Google Play is asking applications 
to currently target though it may be a larger number in the future. This may cause Unity to ask you 
to download an update to your Android software development kit (SDK) when you make a build.

26.	 In addition, Google Play requires us to support ARM64, so to do that, under Configuration, 
change Scripting Backend to IL2CPP to enable the option and afterward check the ARM64 option.

27.	 Next, go to File | Build Settings and enable Build App Bundle (Google Play). Also, make sure to 
uncheck Development Build if it is checked; Google Play currently does not support development builds:

Figure 13.8 – Build App Bundle

https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html

https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html



Building a Release Copy of Our Game382

28.	 Lastly, we also will need to disable debugging from the AndroidManifest file. From the 
Unity Editor, go to the Assets window, go to the Plugins\Android folder, and open the 
AndroidManifest.xml file. From there, search for the android:debuggable="true" 
line and change "true" to "false" and save the file.

The app manifest is something that every Android project must have, which tells Android all 
of the different components that the app has as well as all the permissions that the applications 
need to have in order for the project to have to work. For security reasons, you need to disable 
debugging before an application can be published in Google Play.

29.	 Go back to the Build Settings menu and then hit the Build button and give your project a name.

30.	 If all goes well, you should see the file get created as a .aab file, which can then be uploaded 
to the Google Play Store!

Summary

It is exciting to see all the hard work come together in a finished product that is ready to be shared 
with the world. The process of building a release copy of your game and updating the build settings 
is an important step toward making your game ready for distribution.

However, the ultimate goal of any game development project is to release the game to the public and 
have it played by as many people as possible. This is where the process of submitting your game to 
the app stores comes into play. In the next chapter, we will delve into the details of how to successfully 
submit your game to both the Google Play Store and the iOS App Store.



14
Submitting Games to  

App Stores

Over the course of this book, we have gone over many aspects of building games for mobile devices. 
The last step in our game development journey is actually releasing the game out into the wild and 
having people actually play it. All of those long hours of hard work have now come together into 
something that the masses will be able to enjoy.

When doing this, there are a number of things to keep in mind, and this is exactly what we will be 
discussing next.

In this chapter, we will go over the process of submitting your game to the Google Play Store or iOS 
App Store, with tips and tricks to help the process go smoother. By the end of this chapter, you will 
know exactly how to create developer accounts for both stores, as well as how to submit your game 
to the respective stores.

This chapter will be split into a number of topics. It will contain a simple step-by-step process from 
beginning to end. Here is the outline of our tasks:

•	 Putting your game on the Google Play Store

•	 Putting your game on the Apple iOS App Store

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you want to download the exact version used in this book, 
and there is a new version out, you can visit Unity’s download archive at https://unity3d.
com/get-unity/download/archive. You can also find the system requirements for Unity 
at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, 
you will need an Android or iOS device.

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html


Submitting Games to App Stores384

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter13%20and%2014.

Putting your game on the Google Play Store
Now that your game is built, you will need to actually put it up on Google’s Play Store. To put games 
up on the Google Play Store, you are required to pay a one-time $25 dollar fee. This may or may not 
seem like a large amount of money, but it is much cheaper than the iOS App Store and is a one-time 
fee, so for those who are a bit more budget-conscious, you may wish to dive into Google first and make 
some profit before moving on to Apple’s store. We will first look at the Google Play Console before 
filling out all of the details needed in order to submit our game to the store. We will also discuss how 
to mark our game as a beta version to get feedback from others before making the final submission.

Setting up the Google Play Console

The first step is to gain access to the Google Play Console. This allows you to publish an Android app 
on Google Play as well as Google Play Game Services if want. Implement the following steps:

1.	 Open up your web browser and go to https://play.google.com/console/about/. 
This is the Google Play Console page, which allows you to add apps to the Google Play store.

 

Figure 14.1 –– The Google Play Console Page

2.	 If you aren’t signed in to your Google account, you’ll need to sign in; otherwise, you will need 
to sign up as a developer:

https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter13%20and%2014
https://play.google.com/console/about/


Putting your game on the Google Play Store 385

14.2 – Creating a Play Console developer account

3.	 You’ll pick an account type, and then you’ll need to fill out information related to your developer 
account and information related to the apps that you will be publishing.

Figure 14.3 – Adding info about your apps



Submitting Games to App Stores386

4.	 Next will come a page where you’ll have to accept the terms and click on Create account and 
pay. Afterwards you’ll put in your credit or debit card info in order to complete the purchase.

Figure 14.4 – Completing payment for the developer registration fee

5.	 If all goes well, you’ll be brought to the Google Play Console.

Once you have an account, you can now start the process of actually publishing a game to the Google 
Play store. To start that process, we will need to add a project to our account, which is what we will 
be doing next.

Publishing an app on Google Play
The process of publishing an app to Google Play involves filling out a number of different fields 
with information about your game, as well as art assets for screenshots. To do this, implement the 
following steps:

1.	 From the All apps page, click on the Create app button.



Publishing an app on Google Play 387

Figure 14.5 – The All apps page

2.	 You’ll be brought to a page where you need to select the app name and default language of your 
game. You’ll then need to select whether it’s an app or a game. We’ll choose Game.

Figure 14.6 – The Create app menu

3.	 Scroll down, and you’ll see three declarations that you’ll need to read through and check whether 
they’re relevant, and then, click on the Create app button:



Submitting Games to App Stores388

Figure 14.7 – The app dashboard

The dashboard page shows details of all of the latest steps that are required in order to get your 
app up and running. The first section includes building a test version of your game so that 
others can give you feedback before the final release.

Scroll down to the Start testing now section. From there, select the Select testers option.

Figure 14.8 – Start testing now



Publishing an app on Google Play 389

4.	 This will open the Internal testing page, which can also be accessed by going to Testing | 
Internal testing via the Release section of the dashboard. From there, scroll down, and under 
Testers, you’ll see an option for you to create an e-mail list of testers for your game by clicking 
the Create email list button.

Figure 14.9 – The Internal testing menu

This will bring up a window, where you can fill out a list name and then add the email addresses 
of those you want to test your game, by typing in the values yourself, separated by commas, or 
by using a CSV file, as we discussed previously.

Figure 14.10 – Creating an email list



Submitting Games to App Stores390

5.	 Once finished, hit the Save changes button, and you will be asked to confirm the saved changes. 
Note that this email list will be available to use across all apps in your developer account. Hit 
Create, and you should move back to the previous section.

6.	 From there, for Feedback URL or email address, fill in your email address or website. Afterward, 
click on the Save changes button. Note that the How testers join your test section currently has 
the Copy link button grayed out. This is because we currently do not have the app published; 
however, that will be fixed once we create a release, which is what we will be doing next.

7.	 At the top right, hit the Create new release button. This will bring you to the Create internal 
testing release page. From there, scroll down until you get to the App bundles section, and 
then drag and drop your .aab file into the drop app bundles here to upload section.

8.	 Below that, you’ll be able to provide a release name and release notes about this particular 
version of the game. Once you’ve finished filling out those details, go ahead and hit the Save 
as Draft button, and then hit Next.

Figure 14.11 – Filling out Release details

You’ll see some information and any errors, warnings, and messages about your project. Read 
through them if needed, and assuming there are no errors, you should be able to click on the 
Save button to allow others to try out your project!



Publishing an app on Google Play 391

Figure 14.12 – Reviewing the release

9.	 Return to the dashboard by clicking on the Dashboard button. Upon returning to the main 
page, you’ll see that the next section is Set up your app:

Figure 14.13 – Set up your app

We will need to go through each of these sections and complete them in order to set up the 
store listing.



Submitting Games to App Stores392

10.	 First, click on the Set privacy policy option and provide a link to a privacy policy you want to 
use. In the past, people have used a link that Unity themselves recommended for those using 
Unity Analytics and Ads (https://unity3d.com/legal/privacy-policy), but 
Google has recently changed their policy, and now your organization or app’s name needs to 
be included in the policy.

The safest option is to hire a lawyer to draft a privacy policy for your app, but if you wish 
you create your own privacy policy, this site can help you create the materials: https://
letsmakeagame.net/game-privacy-policy-generator/. In my case, I checked 
the Facebook and Unity options in the included links to the privacy policy of the Third Party 
Services section, and then I filled in the needed data. Once completed, hit the Generate button, 
and you’ll have the boilerplate data needed for your own privacy policy to then host on your 
own web page.

11.	 Next, go to App access, then select All functionality is available without special access, and 
press Save.

12.	 Under Ads, select Yes, my app contains ads, and select Save.

13.	 Go to Content ratings, select Start new questionnaire, and answer the questions based on 
your game.

Figure 14.14 – Content ratings

14.	 Next, you’ll answer questions about your target audience and content. Note that if you say your 
audience contains children aged 13 and under, there are several other questions that you will 
need to answer. Previously, we said the game wasn’t, so I checked the other ages above

In the next sections, you’ll confirm that your game is not a news app or a COVID-19 contact 
tracing or status app.

https://unity3d.com/legal/privacy-policy
https://letsmakeagame.net/game-privacy-policy-generator/
https://letsmakeagame.net/game-privacy-policy-generator/


Publishing an app on Google Play 393

15.	 Next, in the Data Safety section, you’ll need to go through each of the pages and answer the 
given questions.

For the data safety requirements for the different areas of Unity Gaming Services, you can use the 
following link: https://docs.unity.com/ugs-overview/GoogleDataSafety.
html. In our project, we use In-App Purchasing, Ads Monetization, Remote Config, and 
Analytics. We will need to go through all three of these options and ensure that we pick the 
correct options for each. Note that just because something is shared one way by one product 
doesn’t mean it is shared another way by another.

16.	 In the Data Collection and security section, I answered Yes, Yes, My app does not allow users 
to create an account, and No.

17.	 Under Data Types, check the Approximate location option.

18.	 Under Personal Info, check User IDs. Analytics can track more, but we will not enable them.

19.	 Under Financial Info, check Purchase History.

20.	 Finally, under Device or other IDs, check Device or other IDs. Then, click the Next button.

21.	 For each of these values, we will need to click on the arrow to answer questions about them. For 
User IDs, mark that the property is Collected and Shared, that it is not processed ephemerally, 
Data collection is required, and its purpose for collection and sharing is for App functionality. 
Then, hit the Save button.

22.	 For Purchase history, check that is it Collected and Shared, that it is not processed ephemerally, 
Data collection is required, and its purpose for collection and sharing is for App functionality. 
Then, hit the Save button.

23.	 For Approximate location, check that is it Collected and Shared, that it is not processed 
ephemerally, Data collection is required, and its purpose for collection and sharing is for 
App functionality. Then hit the Save button.

24.	 For Device or other IDs, check that it is Collected, check the Yes, this collected data is processed 
ephemerally and Data collection is required (users can’t turn off this data collection) 
options, and then confirm that the data is collected for App functionality. Afterward, hit the 
Save button. Then, you should be able to hit the Next button.

https://docs.unity.com/ugs-overview/GoogleDataSafety.html
https://docs.unity.com/ugs-overview/GoogleDataSafety.html


Submitting Games to App Stores394

Figure 14.15 – Data safety

25.	 If everything looks good, go ahead and hit the Save button, and you can then return to 
the dashboard.

26.	 Next, select the Government apps section, answer No, and hit Save.

27.	 Then, in the Manage how your app is organized and presented section, click on the Select 
an app category and provide contact details option.

28.	 From here, you’d select whether the game is an app or a game; Game was preselected for me. 
Then, you can select a category (I picked Arcade). You can then use tags to help describe 
the content of your game. This is a way to help people define your app and one way that can 
help people to discover the project through certain keywords, so think about the things that 
make your game unique and ensure to include them here. Under each tag, there is a question 
mark that you can click on to get info about them, helping you if you’re unsure what they are. 
In the end, I settled for Arcade, Casual, Hyper-casual, Runner. When you’re 
done, hit Apply.



Publishing an app on Google Play 395

Figure 14.16 – Manage tags

29.	 Then, fill out your store listing contact details. Note that the information is shown to users on 
Google Play, so I wouldn’t add your personal phone number. Once finished, hit the Save button 
and return to the dashboard Dashboard.

30.	 Finally, click on the Set up your store listing option. Scrolling down, you’ll then be brought 
to a section where you’ll need to fill in information about your game, starting with a short 
description and then a more detailed full description:

Figure 14.17 – Creating a main store listing



Submitting Games to App Stores396

31.	 You’ll then need to provide graphical assets to be used to display your game. You are required 
to have at least two screenshots and then some additional icons and graphics:

Figure 14.18 – Adding phone screenshots

32.	 You’ll then need to include some more images for icons and other featured graphics. The ones 
with an asterisk (*) are required. You can find some pre-created ones in the example code with 
this book, but I suggest that you create your own once you’ve customized this game to your liking:

Figure 14.19 – Finishing the main store listing



Putting your game on the Apple iOS App Store 397

33.	 When you’re finished, hit the Save button and return to the dashboard.

34.	 At this point, you’ve been through most of the hurdles of the Google Play development process. 
You can now choose to go to the Release your app section and jump to the Publish your app 
on Google Play section, create a new build and roll out the release to the world, or go through 
an alpha and beta phase of your project first to get valuable feedback and iterate on your project 
to make a better first impression. Either way, the process will be the same as what you did in 
the previous steps, aside from selecting what countries and regions you want the project to be 
available in and what you want to charge for the game.

With these steps finished, we can now start the process of publishing on Apple’s iOS App Store, which 
we will be doing next.

Putting your game on the Apple iOS App Store
Just like the Google Play store, there is an additional fee to put your game on the App Store. Unlike the 
Google Play store, the fee is $99 plus tax every year. However, a lot of people believe that having their 
titles on iOS devices is worth the extra cost. In this section, we will go through the process of getting 
our game on the App Store. We will start by setting up your Apple Developer account and creating 
a provisioning profile. Afterward, we’ll utilize the iTunes Connect tool to actually add the app to the 
store and utilize Xcode to make an archive, with which we can upload the project to the App Store so 
that it can finally be reviewed for submission.

Apple Developer setup and creating a provisioning profile

In order to deploy an app onto an iOS device, you are required to use a Mac computer, but before we 
move on to the iTunes store, we first need to have all of the certificates and permissions figured out 
in advance.

Implement the following steps:

1.	 On a Mac computer, go to developer.apple.com:

http://developer.apple.com


Submitting Games to App Stores398

Figure 14.20 – The Apple Developer site

2.	 From there, click on the Account button at the top right of the screen, fill in your Apple ID 
and password, and then press Enter to sign in:

Figure 14.21 – Sign in to Apple Developer

If you have a two-factor identification method set up, you may need to verify that you are 
indeed yourself.

3.	 From there, click on Accounts. Now, at this point, you will need to make the payment for the 
$99 annual fee. This process should be fairly straightforward, and once you have finished doing 
that, you will arrive on a page similar to the following:



Putting your game on the Apple iOS App Store 399

Figure 14.22 – The Apple Developer Account Page

4.	 In the Certificates, Identifiers & Profiles section, select the Certificates section to start the 
process of creating apps. If you just paid the $99 fee, you may see an error stating that The 
selected team does not have a program membership that is eligible for this feature.

Don’t worry – that just means that the payment hasn’t been processed at Apple’s end yet. Try 
again in about 30 minutes to an hour, and the screen should work okay.

5.	 We will need to set up some certificates to allow us to export to the iOS App Store. From the 
Certificates page, click on the + button on the right side of Certificates:



Submitting Games to App Stores400

Figure 14.23 – The Certificates page

6.	 When the page asks what kind of certificate we need, select the Apple Distribution option 
under the Software section, and then click on Continue:

Figure 14.24 – Selecting the certificate type



Putting your game on the Apple iOS App Store 401

You may notice that there’s another type here that also says that there is an iOS distribution type 
as well. You might be wondering why we aren’t picking that one. As of Xcode 11, this is the new 
type of certificate that Apple wants developers to use for devices that aim to go on the App Store.

At the time of writing, if you are only planning on developing for iOS, you can choose iOS 
Distribution instead. However, due to the possibility that Apple may discontinue it in the 
future, I am choosing Apple Distribution instead.

7.	 Next, we need to create a Certificate Signing Request (CSR). You’ll be brought to a page that 
goes through the process of creating one, but, in our case, we will start off by opening the 
Applications\Utilities folder on our Mac and opening the Keychain Access program.

8.	 From there, go to Keychain Access | Certificate Assistant | Request a Certificate From a 
Certificate Authority...:

Figure 14.25 – Requesting a certificate

9.	 Once there, fill in the information with your email address in the User Email Address property. 
Then, for Common Name, put in a name, and leave the CA Email Address field blank. Then, 
for the Request is option, select Saved to disk:



Submitting Games to App Stores402

Figure 14.26 – Filling in our certificate information

4.	 Then, click on the Continue button and select a spot to save the certificate. I personally used my 
desktop, but you can use any location you please, so long as you remember where it is later on:

Figure 14.27 – Saving the certificate



Putting your game on the Apple iOS App Store 403

5.	 Afterward, the screen will state that the request has been created on the disk. Go ahead and 
click on Done, and then return to your web browser.

6.	 Scroll down and then click on the Continue button. From there, you’ll be brought to the 
Generate your certificate page. Click on the Choose File button and then select the file we 
just created. Then, click on the Continue button:

Figure 14.28 – Uploading the certificate

7.	 You’ll then be brought to a screen saying that your certificate is ready. Go ahead and click on 
the Download button, and save the certificate to your disk. If using Safari, you may be asked 
whether you want to allow downloads; click on Allow:

Figure 14.29 – Download Your Certificate

8.	 Afterward, double-click on the .cer file to give the data access to Keychain. Under Keychain, 
change the value to login. You’ll be asked whether you want to add the certificates; go ahead 
and click on Add:



Submitting Games to App Stores404

Figure 14.30 – Adding certificates to a keychain

9.	 The next step is to create an App ID. To do this, go to the left sidebar and click on the Identifiers 
section. I currently have some identifiers (previously referred to as App IDs) listed here already, 
due to Xcode opening our Endless Roller project, which we can customize by clicking 
on the Edit button. However, if you didn’t do so earlier and have a different bundle ID than 
the ones listed, let’s go through the details next:

Figure 14.31 – A list of identifiers

10.	 We can create a new ID by clicking on the + button in the top-right corner of the screen.

11.	 From there, select App, and then under App ID Description, put in the name of your game 
– in my case, I used Endless Roller. Then, under App ID Suffix, enter the bundle ID 
that's identical to the one that is used in Unity. In my case, it was com.JohnPDoran.
EndlessRoller. Under App Services, you can select the options that want to use, but in 
this case, we don’t need to worry about these, so we can just scroll all the way down and then 
click on the Continue button.



Putting your game on the Apple iOS App Store 405

In this case, the bundle I mentioned previously would not work, due to there already being an 
ID with this specific bundle, and you need to have unique ones. With that in mind, I just went 
and renamed the original App ID to Endless Roller and then completed this section.

The last aspect we will need to set up here is a provisioning profile. Apple defines a provisioning 
profile as “a collection of digital entities that uniquely ties developers and devices to an authorized 
iPhone Development Team and enables a device to be used for testing.” This means that it’s a 
link between a device and the developer account that makes the project.

Important note
For more information on provisioning profiles, check out https://medium.com/@alexi.
schreier/wtf-is-a-provisioning-profile-on-ios-a9b65d79221f.

12.	 To do this, click on the Profiles section on the left side of the menu. From there, click on the 
blue + icon to the right of Profiles. Under Distribution, select the App Store, and then click 
on Continue:

Figure 14.32 – Creating a profile for the App Store

13.	 From there, you’ll need to select your App ID. Endless Roller may be selected; otherwise, 
search for it in the drop-down list and select it, and then click on Continue.

https://medium.com/@alexi.schreier/wtf-is-a-provisioning-profile-on-ios-a9b65d79221f
https://medium.com/@alexi.schreier/wtf-is-a-provisioning-profile-on-ios-a9b65d79221f


Submitting Games to App Stores406

Figure 14.33 – Selecting the App ID

14.	 Then, select your certificate and click on Continue.

15.	 Then, select what certificate you want to use and hit Continue. Finally, we will need to add a 
profile name – I’ll use Endless Roller – and then click on Generate:



Putting your game on the Apple iOS App Store 407

Figure 14.34 – Generating a provisioning profile

16.	 The button will then change to say Download. Go ahead and download the profile, keeping it 
safe, as we’ll need to use it later:



Submitting Games to App Stores408

Figure 14.35 – The provisioning profile is ready

With that, our provisioning profile is ready.

Adding an app to App Store Connect

Now that we have the provisioning profile, we can actually put our app on the store. To do that, 
perform the following steps:

1.	 In your web browser, go to http://appstoreconnect.apple.com  and click on the 
My Apps button:

http://appstoreconnect.apple.com


Putting your game on the Apple iOS App Store 409

Figure 14.36 – App Store Connect

If you intend to sell your apps, you will also be required to go to the Agreements, Tax, and 
Banking section and enter your banking information.

2.	 From the Apps page, go to the top-left corner, and click on the + icon to add a new app to our 
profile by selecting New App:

Figure 14.37 – The Apps page



Submitting Games to App Stores410

3.	 On this menu, select iOS as your platform, and insert the name of your game under Name. Apple 
requires each name to be unique, so keep in mind that you will not be able to use Endless 
Roller again. Under Primary Language, select English (U.S.), and then select your bundle 
ID. Then, under SKU, enter an identifier (I used EndlessRoller). Under User Access, 
select Full Access. Then, click on the Create button:

Figure 14.38 – Creating a new app



Putting your game on the Apple iOS App Store 411

4.	 You’ll then be brought to the 1.0 Prepare for Submission screen. Start filling in the information 
for the title. Start off by filling in the Description textbox with the information that you used 
earlier for Google Play. Then, under Keywords, enter possible terms that people could search 
for in order to find your game, and under Copyright, go ahead and enter your name.

Figure 14.39 – Filling out Version Information



Submitting Games to App Stores412

5.	 Finally, you’ll need to provide some screenshots of your game to use. If you click on the iOS 
Screenshot Properties page, you’ll see details on how your screenshots should be created 
(specifically, the size of the images). The one used in this chapter is for the iPhone 6.5” display, 
but you can also choose for the optional 6.7” one to support the iPhone 14 Pro:

Figure 14.40 – Submitting app screenshots

6.	 Note that in the Build section, it states that you need to submit your build using one of several 
tools. We will do that after we finish up the remaining steps here.



Putting your game on the Apple iOS App Store 413

7.	 From the Build section, go to the App Information screen. From there, change the category 
to Games, and then, under Subcategory, select Casual. Then, click on Save:

Figure 14.41 – Setting up an app category

8.	 Go to the Pricing and Availability section and select a price. In my case, I’ll be using $0.00 
(Free), but as always, you can pick what you want. Once you’ve finished with the options here, 
click on the Save option:



Submitting Games to App Stores414

Figure 14.42 – Setting up the pricing and availability

9.	 Next, go to the Privacy Policy section. As discussed in the Google Play section, people in the 
past used a link that Unity themselves recommended for those using Unity Analytics and Ads 
(https://unity3d.com/legal/privacy-policy), but the safest option is to hire 
a lawyer to draft a privacy policy for your app. If you wish you create your own privacy policy, 
this site can help you create the materials: https://letsmakeagame.net/game-
privacy-policy-generator/. In my case, I checked the Facebook and Unity options 
in the include links to the privacy policy of the Third Party Services section, and then I filled 
in the necessary data. Once completed, hit the Generate button, and you’ll have the boilerplate 
data needed for your own privacy policy to then host.

10.	 Fill in the Privacy Policy URL section, and then click on the Get Started button.

https://unity3d.com/legal/privacy-policy
https://letsmakeagame.net/game-privacy-policy-generator/
https://letsmakeagame.net/game-privacy-policy-generator/


Putting your game on the Apple iOS App Store 415

Figure 14.43 – Setting up app privacy

11.	 Fill out the appropriate answers, based on the types of things your app uses. In our case, since 
we are using Unity Ads, Analytics, and IAPs (in-app purchases), we will need to go through 
each of their pages and ensure that we are using all of their info. The following includes the 
information that I used to fill in the details at my end: http://documentation.cloud.
unity3d.com/en/collections/2654776-apple-privacy-surveys#engage-
nutritional-labels.

12.	 After completing that information, your Product Page Preview screen should look something 
like this:

http://documentation.cloud.unity3d.com/en/collections/2654776-apple-privacy-surveys#engage-nutritional-labels
http://documentation.cloud.unity3d.com/en/collections/2654776-apple-privacy-surveys#engage-nutritional-labels
http://documentation.cloud.unity3d.com/en/collections/2654776-apple-privacy-surveys#engage-nutritional-labels


Submitting Games to App Stores416

Figure 14.44 – App Privacy completed

13.	 Once finished, click on the Publish button.

14.	 Once all of the information is filled in, go ahead and open up Xcode again and your exported 
project (follow the same steps from Chapter 2, Project Setup for Android and iOS Development).

15.	 The addition of the Facebook SDK has added a number of things that we’ll have to add to our 
project in order for it to compile on iOS. Upon switching back to the iOS platform, I got an 
error saying that CocoaPods failed to install correctly. With that in mind, I had to make the 
following changes to the project.



Putting your game on the Apple iOS App Store 417

16.	 Switch back to a PC, Mac, and Linux standalone build. From your Mac desktop, open a terminal 
window and enter the following code – sudo gem install cocoapods -v 1.10.2. 
This will install a stable version of CocoaPods that will work with this version of Unity. Afterward, 
back in Unity, switch the platform back to iOS and you should see the error go away.

17.	 In addition, I also updated the Unity JAR resolver by going to https://github.com/
googlesamples/unity-jar-resolver and downloading the latest release, which, in 
my case, was the external-dependency-manager-1.2.175.unitypackage file.

Figure 14.45 – The updated unity-jar-resolver

18.	 Upon opening the file and importing the files, Unity asked whether I wanted to replace the 
obsolete libraries, which I accepted by hitting the Apply button.

https://github.com/googlesamples/unity-jar-resolver
https://github.com/googlesamples/unity-jar-resolver


Submitting Games to App Stores418

Figure 14.46 – Updating the files

19.	 Once updated, go to Assets | External Dependency Manager | iOS Resolver |  Settings. Under 
Cocaopods Integration, change the value to Xcode Project.



Putting your game on the Apple iOS App Store 419

Figure 14.47 – Changing the Cocoapods integration

Using the Facebook SDK, we will no longer be able to open our project using the base project 
that Unity provides for us, so we will need to instead use the terminal to general a workspace 
file for us to use.

20.	 Then, after building the project, open a terminal window at the location of your project. Then, 
depending on your processor, you may need to enter a different command.



Submitting Games to App Stores420

21.	 If your Mac processor uses an ARM processor (such as the M1), enter the following command 
– sudo arch -x86_64 gem install ffi.

Figure 14.48 – Executing the gem installation

22.	 This command will only need to be used once. Once the task is completed, enter the following 
command – arch -x86_64 pod install. This command will only need to be executed 
every time you create a new build of the project.

Figure 14.49 – The completed gem installation



Putting your game on the Apple iOS App Store 421

23.	 If your Mac processor uses an x86 processor (such as an Intel), enter the following command 
instead – pod install.

24.	 Once the Pod Install is successful, double-click the newly created Unity-iPhone.
xcworkspace in your project directory to open the workspace in Xcode.

Figure 14.50 – A new workspace file

If you try to run the game now, it will give you an error about a cycle in dependencies between 
targets. Thankfully, we can fix that once we enter into Xcode ourselves.

25.	 Once in Xcode, on the far-left menu, select Unity-iPhone project, and then on the section 
to the right of that, under TARGETS, select the UnityFramework option. From the tabs that 
show up at the top of the screen, click on Build Phases. From there, you should see a series 
of options. Drag the Headers section above the Compile Sources section. If all goes well, it 
should look something like this.



Submitting Games to App Stores422

Figure 14.51 – Adjusting the Header order

26.	 Apple also disallows Framework files to be included, so we will need to stop them from being 
embedded as well. To do that, go to Build Phases, and under Build Options, change the Always 
Embed Swift Standard Libraries option to No.

Figure 14.52 – Build Options



Putting your game on the Apple iOS App Store 423

27.	 Once the project has opened in Xcode and exported successfully, go to Product | Archive and 
wait for it to finish:

Figure 14.53 – Creating an archive

28.	 This generally takes a while, so wait for it to complete. You may be asked to use an access key. 
Go ahead and click on the Allow button.

29.	 Upon finishing, you should be brought to the following menu. Go ahead and select the Distribute 
App button to upload the project to the App Store:



Submitting Games to App Stores424

Figure 14.54 – Distributing the app archive

30.	 You’ll be asked to select some options. In general, use the default options, and afterward, it will 
show you a .ipa  file uploaded to the store. Before uploading, it will give you one last look at 
the information about each aspect of the project. Go ahead and click on the Upload button, 
and wait for it to finish:

Figure 14.55 – Reviewing the .ipa content



Putting your game on the Apple iOS App Store 425

When your app has been uploaded, you’ll see a screen like the following:

Figure 14.56 – Archive upload complete

However, this will not show up immediately on App Store Connect; you may have to wait 
for a moment (or a couple of hours) before it’s updated. However, once it is ready, you’ll see it 
under the build section we mentioned earlier.

31.	 Once it’s uploaded, you should be able to click on the Select a build button before you submit 
your app.

32.	 From there, select the build we created, and then click on the Done button:



Submitting Games to App Stores426

Figure 14.57 – Add Build

33.	 Note that there is a section that says that it is missing compliance info. Click on the Manage 
button and then enter the appropriate information, depending on what is used in your game. For 
instance, the use of Unity Analytics and IAPs requires https calls. I used standard encryption 
algorithms and said I wasn’t going to make the app available in France.

For more information on Unity’s stance on this, you can look at https://forum.unity.
com/threads/unity-iap-and-export-compliance.742898/ and https://
forum.unity.com/threads/how-to-answer-apples-app-store-new-
export-compliance-information-dialogue.1363785/.

34.	 Then, click on the Save button. Once you’re finished with everything and have double-checked 
all of your information, you can go ahead and click on the Add for Review button to wait for 
feedback from Apple.

Generally, it takes up to 3–4 weeks for first-time developers to receive feedback, although it can be 
longer or shorter, depending on seasonal demand. As you release more and more titles, it takes less 
time each time around. If approved, you’ll receive an email that lets you know that the app is uploaded, 
or they may provide details of things that need to be modified before approval for placement on the 
store can be given.

https://forum.unity.com/threads/unity-iap-and-export-compliance.742898/
https://forum.unity.com/threads/unity-iap-and-export-compliance.742898/
https://forum.unity.com/threads/how-to-answer-apples-app-store-new-export-compliance-information-dialogue.1363785/
https://forum.unity.com/threads/how-to-answer-apples-app-store-new-export-compliance-information-dialogue.1363785/
https://forum.unity.com/threads/how-to-answer-apples-app-store-new-export-compliance-information-dialogue.1363785/


Summary 427

Summary
In this chapter, you learned how to publish your games on both Google Play and the Apple iOS App 
Store. You learned how to put the game on Google Play by setting up the Google Play Console and, 
finally, how to publish your app on the store. You then learned how to put a copy of the iOS version 
of your game on the App Store and all of the setup involved therein.

I hope that you’ve enjoyed this exploration of features and that you continue to explore the possibilities of 
this area. In the next chapter, we will discover one of the newest additions to mobile game development 
– augmented reality.





15
Augmented Reality

Made popular with Niantic’s Pokemon GO and on Snapchat filters, Augmented Reality (AR) is a way 
of blending digital elements with the real world. Specifically, it is a technology that superimposes 
a computer-generated image on a user’s view of the real world, hence providing a composite view, 
meaning that both the real world and then digital elements put on top of it are displayed to the player.

In this chapter, we will explore how to set up our project to utilize AR for both Android and iOS 
devices and how we can customize them. This project will be a simple AR project in which the player 
can look at various surfaces in the game environment and spawn objects on top of them. The goal 
of this chapter will be to explore the basic concepts of AR and see how they can be used in a project.

This chapter will be split into several topics. It will contain a simple, step-by-step process from beginning 
to end. Here is the outline of our tasks:

•	 Setting up a project for AR

•	 Detecting surfaces

•	 Interacting with the AR environment

•	 Spawning objects in AR

By the end of this chapter, you will have a good understanding of AR technology and how to create 
a basic AR project. Whether you’re a beginner or an experienced developer, this chapter will provide 
you with a solid foundation for further exploration and experimentation with AR which should come 
useful not only for mobile development but also for those looking to get experience with the same 
technology used in headsets from Meta as well as Apple's Vision Pro.

Technical requirements
This book utilizes Unity 2022.1.0b16 and Unity Hub 3.3.1, but the steps should work with minimal 
changes in future versions of the editor. If you would like to download the exact version used in 
this book, and there is a new version out, you can visit Unity’s download archive at https://
unity3d.com/get-unity/download/archive. You can also find the system requirements 

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive


Augmented Reality430

for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-
requirements.html in the Unity Editor system requirements section. To deploy your project, 
you will need an Android or iOS device.

You can find the code files present in this chapter on GitHub at https://github.com/
PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/
main/Chapter15.

Setting up a project for AR
Before we can start adding notifications to our project, we will need to add three packages that Unity 
makes available to enable AR for both iOS and Android devices. In our case, we are going to be 
utilizing both ARCore and ARKit to create our project, and the AR Foundation package to act as an 
intermediary so we can use both ARCore and ARKit while using a similar connection. Since this is a 
brand new way to create projects, we will actually create a new Unity project to demonstrate how to 
use it. Please follow the steps given here:

1.	 To get started, open Unity Hub on your computer.

2.	 From startup, we’ll opt to create a new project by clicking on the New button.

3.	 Next, under Project Name put in a name (I have chosen Mobile AR), and under Templates, 
make sure that 3D is selected:

Figure 15.1 – Creating a 3D project

4.	 Afterward, click on Create Project and wait for Unity to load up.

5.	 From the Unity Editor, go to Window | Package Manager.

https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter15


Setting up a project for AR 431

6.	 If it hasn’t been set already, click on the In Project drop-down menu from the toolbar of the 
Packages menu and select Unity Registry.

7.	 From here, go to the search bar in the top right and type in XR. From there, you will need to 
select either ARKit XR Plugin if you want to support iOS devices or ARCore XR Plugin for 
Android, and click Install. Afterward, scroll down the available options until you reach AR 
Foundation and select it. Once there, click the Install button:

Figure 15.2 – Installing packages

We now have all of the packages we need so we can exit Package Manager.

Note
While AR Foundation does most things that you’d want to do with AR, there are a few things 
that are for iOS or Android only. For more information on what AR Foundation can do and 
what ARCore and ARKit provide individually, check out https://docs.unity3d.com/
Packages/com.unity.xr.arfoundation@5.0/manual/index.html#platform-
support.

8.	 Next, open up the Build Settings menu by going to File | Build Settings. From there, change 
your platform to either iOS or Android and click on the Switch Platform button. Afterward, 
click on the Player Settings... option.

9.	 Next, complete step 10 if you are planning on using iOS or step 11 if you are planning on using 
Android, or complete both steps if you plan on using both iOS and Android.

10.	 If you are using iOS, make sure that, in the iOS Platform Settings section, the Requires ARKit 
support option is checked as well.

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html#platform-support
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html#platform-support
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html#platform-support


Augmented Reality432

11.	 For those using Android, go to the Android Player Settings... and under Other Settings, go 
to Rendering and uncheck the Auto Graphics API option. Then, under the Graphics APIs 
section, select the Vulkan option and press the – button to remove it from the list. Then, scroll 
down and uncheck the Multithreaded Rendering option.

Figure 15.3 – Android Player Settings setup

12.	 The reason we have to disable this functionality is that, as of the time of writing, it is not 
compatible with ARCore. You’ll also want to set Minimum API Level to Android 7.0 ‘Nougat’ 
(API level 24) or higher.

When working on ARCore projects in Unity, it’s recommended that you enable the ARM64 
target architecture. If your app only supports the 32-bit ARMv7 architecture, it may not work 
properly on 64-bit devices, and it may not be available for download from the Google Play 
Store. This is because some 64-bit devices don’t support 32-bit ARCore libraries. So, to avoid 
any issues, it’s best to enable the ARM64 target architecture in your Unity project.

Under Configuration, set Scripting Backend to IL2CPP. Next, under Target Architectures, 
enable the ARM64 option.



Setting up a project for AR 433

Figure 15.4 – Changing Target Architectures

13.	 Now, from the Player Settings... menu, select the XR Plugin Management option, and then, 
under Plug-in Providers, check the ARCore field, and for iOS, check the ARKit option.

Figure 15.5 – Enabling ARCore

With that, we’ve taken care of all of the settings needed to support our project and have it export correctly!

Now that we have included AR Foundation, we can now create a basic scene for a VR project.



Augmented Reality434

Basic setup
Since the player can be anywhere when the game starts, we can’t use a camera in the traditional sense, 
so we will start by removing the original one. Follow the steps given here:

1.	 From the Hierarchy panel, select the Main Camera object and delete it by right-clicking and 
selecting Delete or pressing the Delete key.

There are two key objects that we will need to create before we can start implementing our own 
features: AR Session and AR Session Origin.

2.	 Right-click in the Hierarchy panel and select XR | AR Session:

Figure 15.6 – Creating an AR session

AR Session is what controls the life cycle of any AR experience, which allows us to enable or 
disable AR features depending on the platform we are working on.



Basic setup 435

Note
AR Session is also responsible for telling you whether your device supports AR. For information 
on handling this, check out https://docs.unity3d.com/Packages/com.unity.
xr.arfoundation@4.2/manual/index.html#checking-for-device-support.

3.	 Create an AR Session Origin object by right-clicking and selecting XR | AR Session Origin.

AR Session Origin is used to scale and offset virtual content while the game itself is playing. 
You may notice that the object has a child, AR Camera, which is the camera that will follow 
the game as it is running.

Before we deploy to the device to ensure everything is working correctly, let’s add a cube to 
our scene so we can see that it is working correctly.

4.	 Switch to the Scene view if you haven’t done so already. Then, from the top menu, click on 
GameObject | 3D Object | Cube:

Figure 15.7 – Creating a cube

5.	 Now, build your project and put the game on the device in the same manner as discussed in 
Chapter 2, Project Setup for Android and iOS Development.

Tip
For iOS users, you may notice when you build the project, it will tell you that the project is 
lacking a .xml file. If this appears, click on the Yes, fix and build option when prompted.

For Android users, you may need to install the Google Play Services for AR if it is not installed.

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html#checking-for-device-support
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html#checking-for-device-support


Augmented Reality436

6.	 Upon running your project, give access to the camera if needed and open the game. Once the 
project shows your environment, step back as the game starts:

Figure 15.8 – Our first AR result

The reason why we have to step back to see the cube is that the position of all objects is based on the 
area the phone was physically at when the game started. The cube is also quite large because, at a 
default scale of 1,1,1, that means that it is 1 meter (or around 3.3 feet) wide on each side in relation 
to real-sized objects. We obviously don’t want to require the user to step back upon starting the game 
so we will need to keep track of where usable surfaces are in our environment, which is what we will 
be doing next.

To detect surfaces within our real-world environment, we will need to make use of a new component, 
AR Plane Manager. This component allows us to create, remove, or update GameObjects in our scene 
based on the surfaces within the real-world environment. The following steps will automatically create 
invisible planes with colliders that we could possibly use for gameplay reasons:

1.	 We no longer need the original cube we created, so we can delete it from the scene by right-
clicking it and selecting Delete or by selecting it and pressing the Delete key.

2.	 From the Hierarchy panel, select the AR Session Origin object. From there, add the AR Plane 
Manager component to it by clicking on the Add Component button at the bottom of the 
Inspector window and then typing in the name of the component and pressing Enter.



Basic setup 437

At this point, we will have surfaces being generated to our scene while being run, but for things such 
as debugging, it would be a good idea to visually see the planes that are being generated. So, that’s 
what we will do next using the following steps:

1.	 From the top menu, go to GameObject | XR | AR Default Plane.

This object has several different components that are used in creating a visual plane; of note, 
are the AR Plane and AR Plane Mesh Visualizer components. AR Plane represents a plane 
detected by the AR device, and AR Plane Mesh Visualizer is in charge of using the data from 
AR Plane to modify the MeshFilter and MeshCollider components to overlay the detected wall, 
and the Line Renderer component to display the boundaries. The Mesh Renderer component 
will draw the information displayed from these modifications.

2.	 From the Project window, create a new folder called Prefabs.

3.	 Drag and drop the AR Default Plane object into the Prefabs folder to turn it into a Prefab. 
If it is done correctly, you should notice the GameObject’s text in the Hierarchy window is 
now blue:

Figure 15.9 – Creating a Prefab

4.	 Once created, you can delete the AR Default Plane object in the Hierarchy window.

5.	 Select the AR Session Origin object. Click the Add Component button and add an AR Plane 
Manager component. Afterward, drag and drop the AR Default Plane Prefab into the Plane 
Prefab property of the AR Plane Manager component:



Augmented Reality438

Figure 15.10 – Assigning the Plane Prefab

This will tell Plane Manager that, any time it detects a new plane within the scene, it should 
spawn a Plane Prefab and have it draw the details for it.

6.	 Save your project and build your game again. Once it is running on your device, walk around 
your room, moving the camera as you do so:

Figure 15.11 – Plane creation in AR



Interacting with the AR environment 439

The longer you stay within an area with movement, the longer the phone will have to build a more 
realistic depiction of the surfaces in your environment.

Feel free to open the Prefab we created and modify how your planes will be visualized!

It’s great that we can now see things happening in the game environment, but we currently have no 
way to actually interact with the world—that is what we will be looking into in the next section.

Interacting with the AR environment
One of the ways that we can have the player interact with the world is by allowing them to spawn 
objects within the scene to help players see where items will spawn. We can create an indicator to 
show where they will actually spawn to. Let’s look at the steps to do just that:

1.	 Create a quad using GameObject | 3D Object | Quad.

Quads represent a plane, the simplest type of geometry. In our case, we will use the quad as an 
indicator to the player where they will be spawning an object if they tap on the screen.

2.	 With the quad selected, go to the Inspector window and go to the Transform component and 
set Position to (0,0,0), X Rotation to 90, and Scale to (0.2,0.2,1).

We made the quad smaller to be 20 centimeters long and rotated it so it could represent a 
floor better. We do not want these values to change but we will eventually want to move and 
rotate this object to follow our player when they move the camera. To protect this data, we can 
instead create a parent object for it. That way, whenever the parent moves or rotates, the child 
will move and rotate in the same manner.

3.	 Create an empty GameObject by selecting GameObject | Create Empty. Select the object 
and rename it Placement Indicator. Then, go to the Transform component and set 
Position to (0,0,0).

4.	 From the Hierarchy window, drag and drop the Quad GameObject on top of the Placement 
Indicator object to make it a child:

Figure 15.12 – Creating the Placement Indicator object



Augmented Reality440

Now that we have an object to work with, we need some way to figure out where the player’s 
camera is facing so we can move the object. We can do this through the use of a new component, 
AR Raycast Manager.

5.	 From the Hierarchy window, select the AR Session Origin object. From there, add the AR 
Raycast Manager component to it.

The AR Raycast Manager component exposes the ability to raycast to AR Foundation. This 
will allow us to perform a Raycast within the physical environment that we are in. A Raycast, 
also known as hit testing, allows us to create a ray, which is an invisible line that allows us to 
check whether there is something that collides from its point of origin and direction. This is 
used oftentimes in games for things such as checking whether a bullet would hit the player.

Now that we have this setup done, let’s see how we can work with these components in code and see 
how we can use the information to place AR objects within real-world spaces using the following steps:

1.	 Go to the Project window and go back to the Assets folder. From there, create a new folder 
called Scripts.

2.	 Go inside the Scripts folder and create a new C# script called PlaceARObject.

3.	 At the top of the file, add the following using statements:

using UnityEngine.XR.ARFoundation; /* ARRaycastManager */
using UnityEngine.XR.ARSubsystems; /* TrackableType */

4.	 Add the following properties to the class:

/// <summary>
/// A reference to the Raycast Manager for being able
/// to perform raycasts
/// </summary>
ARRaycastManager raycastManager;

/// <summary>
/// A reference to the AR camera to know where to draw
/// raycasts from
/// </summary> Camera arCamera;

5.	 Then, we need to initialize the properties in the Start function:

/// <summary>
/// Start is called before the first frame update.
/// Initialize our private variables
/// </summary>
void Start()
{
    raycastManager = GameObject.FindObjectOfType



Interacting with the AR environment 441

        <ARRaycastManager>();
    arCamera = GameObject.FindObjectOfType<Camera>();
}

6.	 Finally, we need to replace our Update function and use LateUpdate instead:

/// <summary>
/// LateUpdate is called once per frame after all
/// Update functions have been called
/// </summary>
private void LateUpdate()
{
    /* Figure out where the center of the screen is */
    var viewportCenter = new Vector2(0.5f, 0.5f);
    var screenCenter =
       arCamera.ViewportToScreenPoint(viewportCenter);

    /* Check if there is something in front of the
       center of the screen and update the placement
       indicator if needed */
    UpdateIndicator(screenCenter);
}

7.	 In the preceding snippet, we are using an UpdateIndicator function that currently doesn’t 
exist, so let’s add that next:

/// <summary>
/// Will update the placement indicator's position and
/// rotation to be on the floor of any plane surface
/// </summary>
/// <param name="screenPosition">A position in screen
/// space</param>
private void UpdateIndicator(Vector2 screenPosition)
{
    var hits = new List<ARRaycastHit>();

    raycastManager.Raycast(screenPosition,
        hits, TrackableType.Planes);

    /* If there is at least one hit position */
    if (hits.Count > 0)
    {
        // Get the pose data
        var placementPose = hits[0].pose;



Augmented Reality442

        var camForward = arCamera.transform.forward;

        /* We want the object to be flat */
        camForward.y = 0;

        /* Scale the vector be have a size of 1 */
        camForward = camForward.normalized;

        /* Rotate to face in front of the camera */
        placementPose.rotation =
            Quaternion.LookRotation(camForward);

        transform.SetPositionAndRotation
            (placementPose.position,
                placementPose.rotation);
    }
}

8.	 Save the script and return to the Unity Editor. Attach the PlaceARObject script to the 
Placement Indicator GameObject.

9.	 Export your game to your device of choice and verify that it is working:

Figure 15.13 – Placement Indicator in AR



Interacting with the AR environment 443

As you can see, the plane will now move and rotate so that it is always facing us! You may notice 
the plane has a flickery texture. This is due to the z-fighting concept we discussed previously 
in Chapter 4, Resolution-Independent UI. Basically, both objects have the same position so it’s 
up to Unity to decide what order to draw them in. We can fix this by placing the quad slightly 
above the plane’s position, which we will do now.

10.	 Update the UpdateIndicator function to use the following code at the end:

        /* Rotate to face in front of the camera */
        placementPose.rotation =
            Quaternion.LookRotation(camForward);

        /* Move the quad slightly above the floor to
           avoid z-fighting */
        var newPosition = placementPose.position;
        newPosition.y += 0.001f;

        transform.SetPositionAndRotation(newPosition,
            placementPose.rotation);

    }
}

11.	 Save the script and export the game again. As you can see, now the quad is placed cleanly 
above the given surface:

Figure 15.14 – Adjusted Placement Indicator

Now that we have an indicator of sorts, let’s make it so we can actually spawn an object in AR.



Augmented Reality444

Spawning objects in AR
The simplest way to spawn an object in AR would be to make it so that when the player taps on the 
screen, it will spawn an object where our Placement Indicator object is. But before we do that, we 
first need to make an object that we’d want to create within the scene.

Follow the steps given here:

1.	 Create a sphere by going to GameObject | 3D Object | Sphere.

2.	 From the Inspector window, set Position to (0,0,0) and set Scale to (0.2,0.2,0.2).

3.	 Add a Rigidbody component to the sphere by going to Component | Physics | Rigidbody.

By adding the Rigidbody component, we are letting Unity know that we want this object to 
be affected by things such as gravity and react to collision events and forces being applied to 
it. At this point, you could customize the object as much as you’d like, change the mesh and 
collider, and so on.

4.	 Go to the Project window, and open the Prefabs folder. Create a Prefab of our sphere by 
dragging and dropping it from the Hierarchy window to the Project window:

Figure 15.15 – Creating a 3D object to spawn

5.	 Now that the object is a Prefab, we can delete it from the Hierarchy window.

6.	 Open the PlaceARObject script and add the following property to it:

[Tooltip("The object to spawn when the screen is tapped")] 
public GameObject objectToSpawn;



Spawning objects in AR 445

7.	 Then, update the LateUpdate function to the following:

    /// <summary>
    /// LateUpdate is called once per frame after all
    /// Update functions have been called
    /// </summary>
    private void LateUpdate()
    {
        /* Figure out where the center of the screen
           is */
        var viewportCenter = new Vector2(0.5f, 0.5f);
        var screenCenter =
            arCamera.ViewportToScreenPoint(
                viewportCenter);

        /* Check if there is something in front of the
           center of the screen and update the
           placement indicator if needed */
        UpdateIndicator(screenCenter);

        /* If we tap on the screen, spawn an object */
        if (Input.GetMouseButtonDown(0))
        {
            /* Spawn the object above the floor to see
               it fall */
            Vector3 objPos = transform.position +
                Vector3.up;

            if (objectToSpawn)
            {
                Instantiate(objectToSpawn, objPos,
                    transform.rotation);
            }
        }

    }

8.	 Save the script and return to the Unity Editor.

9.	 From the Hierarchy window, select the Placement Indicator object. From the Inspector 
window, set the Object To Spawn property to our Sphere Prefab:



Augmented Reality446

Figure 15.16 – Setting the object to spawn

10.	 Save your project and build it to your device, and tap the screen to have spheres spawn onto 
the screen:

Figure 15.17 – Objects spawning in our AR environment

As you can see, we can now spawn objects into our scene, and we can see them interact with each 
other correctly! Taking this further, you can create whatever type of gameplay experience you’d like!



Summary 447

Summary
Throughout this chapter, you have learned how to utilize Unity’s AR toolsets to augment reality by 
adding artificial computer-generated objects into the real world. This new and growing technology 
is still being developed, and the skills gained from working in it will likely grow in importance in the 
future as things such as Virtual Reality (VR), Mixed Reality (MR), and other forms of Extended 
Reality (XR) become more and more commonplace.

In this chapter, you learned how to install ARKit for iOS, ARCore for Android, and AR Foundation 
for a multiplatform AR solution. Once installed, you learned how to set the platform settings for both 
iOS and Android AR development. Afterward, we did the basic setup to have Unity use its AR tools 
to allow users to add a simple mesh to the environment. We then built upon that to detect surfaces 
within the real world using the AR Plane Manager and learned how to visualize it by using the AR 
Default Plane object. We then learned how to interact with the AR environment using the AR Raycast 
Manager to detect when we hit the meshes within the real world and have objects in the computer- 
generated world react to it. Finally, we saw how to spawn objects in AR using this information.

Tip
In addition to AR Foundation, ARCore, and ARKit, there are several other frameworks and 
plugins available for adding AR to Unity apps.

If your project requires specific functionalities beyond what Unity provides, alternative frameworks 
can offer the necessary tools or better support and performance for your specific use case. 
For example, Vuforia (https://www.ptc.com/en/products/vuforia) is known 
for its robust marker-based tracking, while Wikitude (https://www.wikitude.com/
download-wikitude-sdk-for-unity/) specializes in location-based AR experiences.

Ultimately, the choice of AR framework depends on factors such as platform support, required 
features, developer expertise, and project-specific needs. It’s essential to evaluate the strengths and 
limitations of each framework to select the one that best aligns with your goals and requirements.

This should give you all of the information you need to start experimenting on your own and see 
whether you can create your own games for both mobile devices and games within an AR environment. 
So, go forth and use the knowledge from this book to make your games the best they can be and I 
look forward to playing them!

https://www.ptc.com/en/products/vuforia
https://www.wikitude.com/download-wikitude-sdk-for-unity/
https://www.wikitude.com/download-wikitude-sdk-for-unity/




Index

A
accelerometer

using  127-130
access modifiers

reference link  11
Analytics

setting up  308-313
anchors  147-149
Android APK

running, with emulator  59-62
Android App Bundle (AAB)  380
Android Application Package (APK)  380
Android Build Support

installing, for Unity  52-54
Android device

project, implementing  62-73
Android project

Android Build Support, installing 
for Unity  52-54

build and player settings, updating  54-59
exporting  51

Android setup
for Unity Remote  101-106

animation
with LeanTween  346

app
adding, to App Store Connect  408-426
publishing, on Google Play  386-397

Apple Developer
setting up  397-408

Apple iOS App Store
game, putting on  397

App Store Connect
app, adding to  408-426

app stores
release builds, generating  372-382

AR environment
interacting with  439-443

AR Foundation
reference link  431

AR Session  434, 435
Aspect Ratio Fitter component

reference link  170
attributes

Range attribute  13, 14
RequireComponent attribute  14, 15
Tooltip attribute  13
used, for improving scripts  12
using  12

Augmented Reality (AR)  429
objects, spawning  444-446
project, setting up for  430-433



Index450

B
Box Collider component  7

reference link  7
build and player settings

updating, for Android projects  54-59
Build Settings menu  47- 49

sections  48
button

adding, to restore purchases  213-216
working with  159-166

C
callback methods

utilizing  227-231
Canvas object

reference link  145
Canvas Scaler component

reference link  156
cell phone screen resolutions

reference link  154
Certificate Signing Request (CSR)  401
Codeless IAP  204

reference link  213
command-line interface (CLI)  141
comma-separated values (CSV)  327
cooldown timer

Unity Ads, adding in  241-246
Crash and Exception Reporting setup

reference link  331
C# script

used, for moving player  8-12
custom events  313

basic CustomEvents, sending  313-319
sending, with properties  319-329
tracking  313

D
density-independent pixels (dp)  161
dictionary  323
directional lights

reference link  43
dots per Inch (DPI)  120, 161

E
effective Cost Per 1000 Impressions 

(eCPMs)  231
emulator

used, for running Android APK  59-62
EventSystem object

reference link  145

F
Facebook

logging, into game via  269-276
name and profile picture, displaying  277-284

Facebook’s SDK
downloading and installing  260-268

FixedUpdate function
reference link  17
versus update function  17

funnels
working with  329-331

G
game

logging, into via Facebook  269-276
pausing  177-179
publishing, on Apple iOS App Store  397
publishing, on Google Play Store  384



Index 451

game objects
touch, detecting on  130-140

game, on Apple iOS App Store
Apple Developer, setting up  397-408
provisioning profile, creating  397-408

Game Overrides
integrating, into gameplay  339-343

gameplay
Game Overrides, integrating into  339-343

gesture
implementing  118-123

Google Play
app, publishing on  386-395

Google Play Console
setting up  384-386

Google Play Store
game, publishing on  384

graphical user interface (GUI)  141
adapting, for notch devices  193-200

H
Heads-Up Display (HUD)  152

I
Image Effects  360
In-App Purchase (IAP)  74, 201, 329, 375
Input Manager

reference link  11
iOS

Unity Remote, setup for   114-118
project, building  78-85

iOS simulator
project, running via  85-87

J
JavaScript Object Notation (JSON)  325

K
key-value pairs

creating  336-338

L
Language-Integrated Query (LINQ)  353
Layout Element (Script)  280
layout groups  171
LeanTween

setting up  346-349
simple tween, creating  349-354
using, for animation  346

M
materials

working with  357-359
mouse input

screen space, versus world space  94-96
using  92-94

N
notch devices

GUIs, adapting for  193-200
notches  193
notifications

canceling  303-305
customization  298-303
scheduling, ahead of time  293-298
setting up  288- 292

nullable type  304



Index452

O
objects

spawning, in AR  444-446
on-screen joystick

implementing  187-193
opt-in advertisements

with rewards  231-240
Overlays

reference link  22

P
particle effects

adding  366-369
particles  366
pause menu

adding  167-176
tweens, adding to  354-357

pause screen button
adding  182-186

pinches
used, for scaling player  123-126

pivots  150
player

scaling, with pinches  123-126
PlayerPrefs

reference link  209
postprocessing effects

using  360-366
Prefabs  25
project

setting up, for AR  430-433
provisioning profile

creating  397-408
purchases

button, adding to restore  213-216
configuring, for stores  216

R
Range attribute  13, 14
Raycast  440
raycasts  130, 134
Rect Transform component  146, 147

anchors  147-149
pivots  150
reference link  146

release builds
generating, for app stores  372-382

Remote Config
key-value pairs, creating  336-338
setup  334-336

RequireComponent attribute  14, 15

S
Scene view navigation

reference link  23
scoring system

adding  250-256
screen space

versus world space  94-96
shader  357
simple ad

displaying  224-226
software development kit (SDK)  260, 381
Standard Shader  357
Structured Query Language (SQL)  325

T
TextMesh Pro  145
Text (TMP) object  145
title screen

creating  142-146
different aspect ratios, selecting  156-159



Index 453

Rect Transform component  146, 147
title text, adjusting  150-156
title text, resizing  150-156

title text
adjusting  150-156
resizing  150-156

Tooltip attribute  13
reference link  13

touch
detecting, on game objects  130-140

touch controls
used, for moving  96-101

tweens
adding, to pause menu  354-357

Twitter
high scores, sharing via  256-260

U
Unity

used, for installing Android 
Build Support  52-54

Unity Ads
ad callback methods, utilizing  227-231
adding, in cooldown timer  241-246
opt-in advertisements, with rewards  231-240
setting up  220-224
simple ad, displaying  224-227

Unity, for iOS
setting up  73-78

Unity game engine
3D project, setting up  4, 5
additional features, setting up  19-21
basic tile, creating  21-31
obstacles, creating  32-42
player, creating  6-8
player, moving through C# script  8-12

Unity IAP
purchase, creating  204-213
setting up  202-204

Unity Remote
Android setup for  101-106
debugging  107-114
developer mode, enabling  107-114
setup, for iOS  114-118
using  101

Unity’s built-in shortcuts
reference link  22

update function
versus FixedUpdate function  17

user interface (UI)  141

V
Vertex Snap mode

reference link  22
viewport space  95
Virtual Reality (VR) project

scene, setup  434-439

W
Windows project

building  49-51
world space

versus screen space   94-96
Worldwide Developers Conference 

(WWDC)  161

X
Xcode

installing  73-78
XML comments  15, 16

reference link  16
used, for improving scripts  12





www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning C# by Developing Games with Unity - Seventh Edition

Harrison Ferrone

ISBN: 978-1-83763-687-7

•	 Understanding programming fundamentals by breaking them down into their basic parts

•	 Comprehensive explanations with sample codes of object-oriented programming and how it 
applies to C#

•	 Follow simple steps and examples to create and implement C# scripts in Unity

•	 Divide your code into pluggable building blocks using interfaces, abstract classes, and class extensions

•	 Grasp the basics of a game design document and then move on to blocking out your level geometry, 
adding lighting and a simple object animation

•	 Create basic game mechanics such as player controllers and shooting projectiles using C#

•	 Become familiar with stacks, queues, exceptions, error handling, and other core C# concepts

•	 Learn how to handle text, XML, and JSON data to save and load your game data

https://www.packtpub.com/product/learning-c-by-developing-games-with-unity-seventh-edition/9781837636877


457Other Books You May Enjoy

Hands-On Unity 2022 Game Development - Third Edition

Nicolas Alejandro Borromeo

ISBN: 978-1-80323-691-9

•	 Build a game prototype that includes gameplay, player and non-player characters, assets, animations, 
and more

•	 Set up and navigate the game engine to dive into the Unity Editor and discover unique and new 
features released in 2022

•	 Learn both C# and Visual Scripting to customize player movements, the user interface, and game 
physics

•	 Apply shaders to improve your game graphics using Shader Graph and Universal Render Pipeline 
(URP)

•	 Create win-lose conditions for the game by using design patterns such as Singleton and Event Listeners

•	 Implement Game AI to build a fully functional enemy capable of detecting and attacking the player

•	 Debug, test, optimize, and create an executable version of the game to share with your friends

https://www.packtpub.com/product/hands-on-unity-2022-game-development-third-edition/9781803236919


458

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Hi!

I am John P. Doran, the author of Unity 2022 Mobile Game Development. I sincerely hope that your 
experience of reading this book was enjoyable and that it proved valuable in enhancing your productivity 
and efficiency when developing games on mobile devices using Unity.

I kindly request you to consider leaving a review on Amazon, where you can share your thoughts on 
the book. Your feedback is not only crucial to me, but also to potential readers and will greatly assist.

Go to the link below to leave your review: https://packt.link/r/180461372X

Your review will help us to understand what’s worked well in this book, and what could be improved 
upon for future editions, so it really is appreciated.

Best wishes,

John P. Doran

http://authors.packtpub.com
https://packt.link/r/180461372X


459

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804613726

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804613726

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1: 
Gameplay/Development Setup
	Chapter 1: Building Your Game
	Technical requirements
	Setting up the project
	Creating the player
	Moving the player through a C# script
	Improving our scripts with attributes and XML comments
	Using attributes
	XML comments

	Update function versus FixedUpdate function
	Putting it all together

	Having the camera following our player
	Creating a basic tile
	Making it endless
	Creating obstacles
	Summary

	Chapter 2: Project Setup for Android and iOS Development
	Technical requirements
	Introducing the Build Settings menu
	Building a project for a PC
	Exporting a project for Android
	Installing Android Build Support for Unity
	Updating build and player settings for Android projects

	Running the Android APK with an emulator
	Putting the project on your Android device
	Unity for iOS setup and Xcode installation
	Building a project for iOS
	Running the project via the iOS simulator
	Summary

	Part 2: 
Mobile-Specific Features
	Chapter 3: Mobile Input/Touch Controls
	Technical requirements
	Using mouse input
	Screen space versus world space

	Moving using touch controls
	Using Unity Remote
	Android setup For Unity Remote
	Enabling developer mode and debugging
	Unity Remote setup for iOS

	Implementing a gesture
	Scaling the player using pinches
	Using the accelerometer
	Detecting touch on game objects
	Summary

	Chapter 4: Resolution-Independent UI
	Technical requirements
	Creating a title screen
	The Rect Transform component
	Adjusting and resizing the title text
	Selecting different aspect ratios

	Working with buttons
	Adding a pause menu
	Pausing the game
	Summary

	Chapter 5: Advanced Mobile UI
	Technical requirements
	Adding a pause screen button
	Implementing an on-screen joystick
	Adapting GUIs for notch devices
	Summary

	Chapter 6: Implementing In-App Purchases
	Technical requirements
	Setting up Unity IAP
	Creating our first purchase

	Adding a button to restore purchases
	Configuring purchases for the stores of your choice

	Summary

	Chapter 7: Advertising Using Unity Ads
	Technical requirements
	Setting up Unity Ads
	Displaying a simple ad
	Utilizing ad callback methods
	Opt-in advertisements with rewards
	Adding in a cooldown timer
	Summary

	Chapter 8: Integrating Social Media into Our Project
	Technical requirements
	Adding a scoring system
	Sharing high scores via Twitter
	Downloading and installing Facebook’s SDK
	Logging in to our game via Facebook
	Displaying a Facebook name and profile picture
	Summary

	Part 3: 
Game Feel/Polish
	Chapter 9: Keeping Players Involved 
with Notifications
	Technical requirements
	Setting up notifications
	Scheduling notifications ahead of time
	Customizing notifications
	Canceling notifications
	Summary

	Chapter 10: Using Unity Analytics
	Technical requirements
	Setting up Analytics
	Tracking custom events
	Sending basic CustomEvents
	Sending custom events with properties

	Working with funnels
	Summary

	Chapter 11: Remote Config
	Technical requirements
	Remote Config setup
	Creating key-value pairs

	Integrating Game Overrides into gameplay
	Summary

	Chapter 12: Improving Game Feel
	Technical requirements
	Animation using LeanTween
	LeanTween setup
	Creating a simple tween

	Adding tweens to the pause menu
	Working with materials
	Using postprocessing effects
	Adding particle effects
	Summary

	Chapter 13: Building a Release Copy 
of Our Game
	Technical requirements
	Generating release builds for app stores
	Summary


	Chapter 14: Submitting Games to 
App Stores
	Technical requirements
	Putting your game on the Google Play Store
	Setting up the Google Play Console

	Publishing an app on Google Play
	Putting your game on the Apple iOS App Store
	Apple Developer setup and creating a provisioning profile
	Adding an app to App Store Connect

	Summary

	Chapter 15: Augmented Reality
	Technical requirements
	Setting up a project for AR
	Basic setup
	Interacting with the AR environment
	Spawning objects in AR
	Summary

	Index
	About Packt
	Other Books You May Enjoy



