
Game
Programming
with Unity and C#

A Complete Beginner’s Guide
—
Casey Hardman

Game Programming
with Unity and C#

A Complete Beginner’s Guide

Casey Hardman

Casey Hardman
West Palm Beach, FL, USA

Game Programming with Unity and C#

ISBN-13 (pbk): 978-1-4842-5655-8 ISBN-13 (electronic): 978-1-4842-5656-5
https://doi.org/10.1007/978-1-4842-5656-5

Copyright © 2020 by Casey Hardman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5655-8. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5656-5

iii

Chapter 1: Installation and Setup ��� 1

Installing Unity �� 1

Installing Our Code Editor ��� 4

Creating a Project ��� 7

Summary��� 9

Chapter 2: Unity Basics �� 11

Windows ��� 11

Project Window ��� 12

Scene Window �� 13

Hierarchy Window ��� 14

Inspector Window ��� 14

Components �� 14

Adding GameObjects ��� 17

Summary��� 20

Chapter 3: Manipulating the Scene �� 21

Transform Tools ��� 21

Positions and Axes �� 23

Making a Floor �� 24

Scale and Unit Measurements �� 24

Summary��� 26

Table of Contents

About the Author ���xv

About the Technical Reviewer ���xvii

Introduction ��xix

iv

Chapter 4: Parents and Their Children �� 29

Child GameObjects �� 29

World vs� Local Coordinates �� 32

A Simple Building �� 33

Pivot Points ��� 36

Summary��� 39

Chapter 5: Prefabs �� 41

Making and Placing Prefabs ��� 41

Editing Prefabs �� 42

Overriding Values �� 44

Nested Prefabs �� 48

Prefab Variants �� 49

Summary��� 50

Chapter 6: Programming Primer �� 53

Programming Languages and Syntax ��� 53

What Code Does �� 54

Strong vs� Weak Typing ��� 55

File-Type Extensions ��� 57

Scripts ��� 57

Summary��� 59

Chapter 7: Code Blocks and Methods ��� 61

Statements and Semicolons ��� 61

Code Blocks �� 61

Comments ��� 63

Methods �� 64

Calling Methods �� 67

Basic Data Types ��� 69

Returning Values with Methods �� 69

Declaring Methods �� 70

Table of ConTenTs

v

Operators �� 73

Summary��� 75

Chapter 8: Conditions ��� 77

The “if” Block �� 77

Overloads �� 79

Enums ��� 80

The “else” Block ��� 81

The “else if” Block �� 82

Operators for Conditions ��� 83

Equality Operators ��� 83

Greater Than and Less Than �� 85

Or ��� 85

And �� 86

Summary��� 86

Chapter 9: Working with Objects �� 87

Classes �� 87

Variables �� 89

Accessing Class Members ��� 90

Instance Methods �� 93

Declaring Constructors �� 95

Using the Constructor �� 98

Static Members ��� 99

Summary��� 101

Chapter 10: Working with Scripts �� 103

Usings and Namespaces ��� 104

Script Class ��� 105

Rotating a Transform ��� 107

Frames and Seconds �� 109

Attributes �� 110

Summary��� 112

Table of ConTenTs

vi

Chapter 11: Inheritance �� 113

Inheritance in Action: RPG Items ��� 113

Declaring Our Classes ��� 115

Constructor Chaining �� 118

Subtypes and Casting ��� 122

Number Value Types �� 124

Type Checking ��� 126

Virtual Methods ��� 127

Summary��� 128

Chapter 12: Debugging ��� 129

Setting Up the Debugger ��� 129

Breakpoints ��� 131

Using Unity’s Documentation �� 135

Summary��� 137

Part I: Obstacle Course �� 139

Chapter 13: Obstacle Course Design and Outline ��� 141

Gameplay Overview �� 142

Technical Overview ��� 143

Player Controls �� 143

Death and Respawn �� 145

Levels �� 145

Level Selection �� 146

Obstacles ��� 146

Project Setup �� 146

Summary��� 148

Chapter 14: Player Movement �� 149

Player Setup �� 150

Materials and Colors ��� 152

Declaring Our Variables ��� 155

Table of ConTenTs

vii

Properties �� 158

Tracking the Velocity ��� 159

Applying the Movement �� 166

Summary��� 170

Chapter 15: Death and Respawning ��� 173

Enabling and Disabling ��� 174

Death Method �� 177

Respawn Method �� 178

Summary��� 180

Chapter 16: Basic Hazards ��� 181

Collision Detection �� 181

Hazard Script �� 188

Projectile Script ��� 190

Shooting Script ��� 194

Summary��� 197

Chapter 17: Walls and Goals ��� 199

Walls ��� 199

Goals ��� 201

Build Settings for Scenes �� 204

Summary��� 207

Chapter 18: Patrolling Hazards ��� 209

Resembling a Patrol Point ��� 209

Arrays �� 210

Setting Up Patrol Points �� 212

Detecting Patrol Points ��� 216

The “for” Loop ��� 218

Sorting Patrol Points ��� 221

Moving the Patroller �� 226

Summary��� 229

Table of ConTenTs

viii

Chapter 19: Wandering Hazards ��� 233

Wander Regions �� 233

A Basic Editor Extension ��� 236

Editor Scripts ��� 236

Custom Inspectors ��� 237

Accessing the Inspector Target ��� 237

Drawing to the Scene �� 238

Wanderer Setup �� 240

Wanderer Script �� 241

Handling the State ��� 243

Reacting to the State ��� 245

Summary��� 247

Chapter 20: Dashing ��� 249

Dashing Variables ��� 249

Dashing Method �� 251

Final Touches �� 254

Dash Cooldown ��� 255

Summary��� 257

Chapter 21: Designing Levels ��� 259

Prefabs and Variants ��� 259

Making Levels ��� 261

Adding Walls ��� 263

Level View Camera �� 264

Summary��� 264

Chapter 22: Menus and UI �� 267

Scene Flow ��� 267

Level Selection Script ��� 269

Summary��� 276

Table of ConTenTs

ix

Chapter 23: In-Game Pause Menu �� 279

Freezing Time �� 279

Summary��� 284

Chapter 24: Spike Traps �� 285

Designing the Trap �� 285

Raising and Lowering ��� 289

Writing the Script �� 290

Adding Collisions ��� 295

Summary��� 297

Chapter 25: Obstacle Course Conclusion �� 299

Building the Project ��� 299

Player Settings �� 301

Recap �� 303

Additional Features ��� 304

Summary��� 306

Part II: Tower Defense �� 307

Chapter 26: Tower Defense Design and Outline �� 309

Gameplay Overview �� 309

Technical Overview ��� 311

Project Setup �� 313

Summary��� 313

Chapter 27: Camera Movement �� 315

Setting Up ��� 315

Arrow Key Movement �� 318

Applying Movement �� 320

Mouse Dragging �� 322

Zooming �� 324

Summary��� 325

Table of ConTenTs

x

Chapter 28: Enemies, Towers, and Projectiles �� 327

Layers and Physics ��� 327

Basic Enemies ��� 329

Projectiles ��� 333

Targeters ��� 339

Towers ��� 348

Arrow Towers �� 351

Summary��� 359

Chapter 29: Build Mode �� 361

UI Basics ��� 362

The RectTransform �� 366

Building Our UI �� 368

Events ��� 373

Setting Up ��� 374

Build Mode Logic �� 379

The Dictionary ��� 385

OnClick Event Methods ��� 388

Summary��� 395

Chapter 30: Play Mode ��� 397

Spawn and Leak Points��� 397

Locking the Play Button �� 399

Pathfinding Setup ��� 401

Finding a Path ��� 404

Play Mode Setup ��� 409

Spawning Enemies ��� 414

Enemy Movement ��� 417

Summary��� 423

Table of ConTenTs

xi

Chapter 31: More Tower Types ��� 425

Arcing Projectiles �� 425

Cannon Tower ��� 431

Hot Plates �� 435

Barricades ��� 437

Summary��� 437

Chapter 32: Tower Defense Conclusion �� 439

Inheritance �� 439

UI ��� 441

Raycasting �� 441

Pathfinding �� 442

Additional Features ��� 442

Health Bars �� 442

Types for Armor and Damage �� 443

More Complex Pathing �� 443

Range Indicators�� 444

Upgrading Towers �� 445

Summary��� 445

Part III: Physics Playground �� 447

Chapter 33: Physics Playground Design and Outline �� 449

Feature Outline�� 449

Camera �� 449

Player Movement ��� 450

Pushing and Pulling ��� 450

Moving Platforms �� 451

Swings ��� 451

Force Fields and Jump Pads ��� 451

Project Setup �� 451

Summary��� 452

Table of ConTenTs

xii

Chapter 34: Mouse-Aimed Camera ��� 453

Player Setup �� 453

How It Works ��� 454

Script Setup �� 456

Hotkeys ��� 463

Mouse Input �� 464

First-Person Mode �� 469

Third-Person Mode ��� 470

Testing��� 474

Summary��� 475

Chapter 35: Advanced 3D Movement�� 477

How It Works ��� 477

Player Script �� 480

Movement Velocity �� 486

Applying Movement �� 490

Losing Velocity �� 493

Gravity and Jumping ��� 494

Summary��� 496

Chapter 36: Wall Jumping �� 497

Variables ��� 497

Detecting Walls ��� 499

Performing the Jump �� 502

Summary��� 505

Chapter 37: Pulling and Pushing �� 507

Script Setup �� 507

FixedUpdate �� 511

Target Detection �� 513

Pulling and Pushing �� 515

Table of ConTenTs

xiii

Cursor Drawing ��� 517

Summary��� 518

Chapter 38: Moving Platforms �� 519

Scene Setup �� 520

Platform Movement��� 522

Player Platforming �� 529

Summary��� 532

Chapter 39: Joints and Swings ��� 533

Swing Setup �� 533

Connecting the Joints ��� 540

Finishing Touches�� 542

Summary��� 543

Chapter 40: Force Fields and Jump Pads ��� 545

Script Setup �� 545

Force Field Setup �� 547

Adding Velocity to the Player �� 548

Applying Forces �� 549

Summary��� 552

Chapter 41: Conclusion ��� 553

Physics Playground Recap �� 553

Further Learning for Unity ��� 555

The Asset Store ��� 555

Terrains �� 555

Coroutines ��� 556

Script Execution Order ��� 556

Further Learning for C# ��� 557

Delegates ��� 557

Documentation Comments �� 558

Exceptions ��� 560

Table of ConTenTs

xiv

Advanced C# ��� 562

Operator Overloading��� 562

Conversions ��� 562

Generic Types �� 563

Structs ��� 563

Summary��� 563

 Index ��� 565

Table of ConTenTs

xv

About the Author

Casey Hardman is a hobbyist game developer, who found

inspiration in the capacity for immersion and interactivity

provided by games. His area of focus is the Unity game

engine. He has nurtured a passion for video games since

he was a child. In his early teens, this interest led him on a

journey into the world of game design and programming.

He is self-taught through a variety of personal projects, some

small and some lofty. He has been a regular contributor on

various online game development platforms and spends far

too much time in front of the computer.

xvii

About the Technical Reviewer

Robert Lair has been building software professionally

for more than 25 years and has served at just about every

position in the SDLC. He has served as President/CEO,

VP of Product Development, CTO, Software Architect,

Developer, and Scrum Master/Product Manager. He

believes that building good software is an art and is

passionate about correctly architected software, efficient

development processes, documentation, reducing technical

debt, organization, and productivity. He specializes in

building Unity, web, and mobile applications focused on

gamification. You can find out more about Robert at his

website, www.robertlair.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.robertlair.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=cRq6CUllHLlTrnlUJKPp7XFuy8WAxIKEeHyjNH4sQdM&s=PMTn8wMqVH97uaa6HQXztg5cWkbkWkpaV71ujP7VCTg&e=

xix

Introduction

Welcome to the start of your adventure into game programming with Unity. This book

is designed to teach you how to program video games from the ground up, while still

engaging you with plenty of hands-on experience. It’s not focused on completing

ambitious projects, and it’s not about fancy graphics. We’re learning how to program

and how to use the Unity engine. Once you have a solid understanding of these integral

topics, you can expand your knowledge and make more and more complicated and

impressive games.

All of the software we’ll be using is cross-platform. This book will mostly stick to

Windows-based terminology and examples, but you can still follow through with other

major operating systems, like Mac or Linux, with little or no extra trouble.

As for system requirements, any modern computer purchased within the last 6

years or so should have little difficulty running the software we’ll be working with. Since

we aren’t fiddling with high-end graphics or computing long-winded algorithms, the

example projects we develop should run fine on most systems. If you have concerns, the

official and most up-to-date system requirements for Unity can be found at the official

website here:

https://unity3d.com/unity/system-requirements

In Chapters 1–12, we’ll begin with a primer for the essential concepts of the Unity

game engine itself and get all our tools set up and ready for action. Then, we’ll get into

the nitty-gritty details of programming, and we’ll start to actually write code ourselves.

In the remainder of the book, we’ll tackle individual game projects one at a time,

making playable projects that you can add to later if you please. This is where you’ll get

much of your hands-on experience. We’ll implement actual game mechanics, which is

what you’re really after as a game programmer, right?

Game Project 1, “Obstacle Course” (Chapters 13–25), will be a top-down obstacle

course where the player moves their character with WASD or the arrow keys to avoid

touching hazards of various forms: patrolling and wandering hazards, traveling

projectiles, and spike traps in the floor. We’ll get practice with basic movement and

rotation, setting up levels, working with fundamental Unity concepts like prefabs and

scripting, and setting up UI.

https://unity3d.com/unity/system-requirements

xx

Game Project 2, “Tower Defense” (Chapters 26–32), will be the basis of a simple

"tower defense" game, where the player places defensive structures on the playing field.

Enemies will navigate from one side of the field to the other, and the player’s defenses

will attempt to fend them off. We’ll explore basic pathfinding (how the enemies navigate

around arbitrary obstacles) and further expand on fundamental programming concepts.

Game Project 3, “Physics Playground” (Chapters 33–41), will be a 3D physics

playground with first- and third-person camera support for a player character with more

intricate mouse-aimed movement, jumping, wall jumping, and gravity systems. We’ll

explore the possibilities of Unity physics, from detecting objects with raycasts to setting

up joints and Rigidbodies.

InTroduCTIon

1
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_1

CHAPTER 1

Installation and Setup
Installing software is somewhat simple – download an installer, run the installer, a menu

(sometimes called a “wizard”) pops up, you agree to some terms of use, it asks you where

you want to install the program on your computer, maybe it offers some additional

options, and then it starts installing. Easy, right? So I won’t go into painstaking detail

over the installation process. I’ll just show you what to install.

 Installing Unity
Unity is frequently releasing new versions with new features, bug fixes, and little

improvements. Because of this, they’ve recently come up with what they call Unity Hub.

It’s a lightweight little application that lets you install the actual Unity engine, including

older versions of the engine. It also lets you manage older versions of the engine already

installed on your computer and view all your Unity projects from one place.

Sometimes it’s useful to keep an old version of Unity around even after you upgrade

to the latest version. You may want to work on an older project with the same version

you started with, in case some new features or changes aren’t compatible with your old

project – things change, and sometimes the new stuff breaks the old stuff. Sometimes

the old stuff just gets reworked and isn’t valid in a newer engine. In those cases, you

might decide to stick to the old version until you finish a project, to avoid spending

unnecessary time changing the way you did something to the “new way.”

So we’re going to install the Unity Hub first, and then we can install the Unity engine

itself through the Hub. To download the Hub, navigate to this link in your web browser:

https://unity3d.com/get-unity/download

Click the button titled “Download Unity Hub,” as shown in Figure 1-1.

https://doi.org/10.1007/978-1-4842-5656-5_1#ESM
https://unity3d.com/get-unity/download

2

The Hub installer will begin to download. Run the installer and follow the prompts.

Once the Hub is installed, run it. You may be prevented from getting very far by Unity

asking you to accept a license, which may involve creating an account with Unity. This

is a little one-time setup that pretty much stays logged in and accounted for afterward. It

won’t bother you much once it’s done – but still, if you’re prompted to make an account,

don’t forget your password and username!

To understand what the “license” is, know that Unity used to have a free version

and a Pro version. They restricted some of the features from the free version, and you

would have to pay for the Pro version if you wanted to use these features – the fancy stuff,

particularly fancy 3D lighting and effects. Then, they simply opened up nearly all the

features to the free version, while the paid versions offered mostly miscellaneous things

like heightened support, extra resources, and team collaboration tools. Now, they offer

three different “licenses” to use with the engine: Personal, Plus, and Pro.

As long as you or the company you represent made less than $100,000 in gross

revenue in the previous year (that’s us), then you can use Unity’s Personal license, which

is free of charge. If your game development career takes off and you start pulling in some

money, you’ll eventually have to upgrade to Unity Plus ($25/month) or Unity Pro ($125/

month) to avoid violating the license. But let’s not get ahead of ourselves – we’re just

hobbyists for now, anyway.

You might also be asked to fill out a little survey. It’s just some questions pertaining

to how you plan on using the engine, where your interests lie, and other “get-to-know-

you” stuff like that.

Once you’ve got a license and an account, you should see an “Installs” tab on the left

side of the Hub (see Figure 1-2).

Figure 1-1. Download Unity Hub button

Chapter 1 InstallatIon and setup

3

This is where you can see all the versions of the Unity engine you have installed on

your computer. You can also install new versions – although installing many versions

can quickly use up space on your hard drive, so you may want to uninstall old versions to

avoid this. With the “Installs” tab selected, click the “Add” button in the top-right corner.

A popup will offer a list of versions you can choose from. The topmost version will be the

latest stable release. Click it to select it; then click Next in the bottom-right corner.

You’ll be asked to select what the Unity Hub calls “modules” to install with the

engine. These are extra little features to add to the installation, which take up some extra

space on your computer if you choose to install them. You can always add modules later,

after installation completes, if you find that you want them. Most notable are the Build

Support modules, which allow you to build a Unity game project to different operating

systems, environments, and hardware.

“Building” a game project is the process of turning it from a Unity project, playable

only through the Unity engine, to an actual application used to play the game.

The major platforms that Unity projects can be built to are

• PC, with support for Windows, Mac, and Linux

• Android

• Apple iOS

• WebGL (played in a web browser)

• Xbox One

• PS4

Figure 1-2. Top-left corner of the Unity Hub, with the Installs tab selected

Chapter 1 InstallatIon and setup

4

As I said, if you need to build to these platforms down the road (we won’t get into

them in this book), then you can always install them through the Hub.

You can also select to install the Unity documentation locally as a module. The

documentation can be immensely helpful. It’s available online as well, and I myself tend

to use the online resources, but if you plan on using Unity offline, you may want to install

the documentation so it’s available without an Internet connection.

For now, you can simply check the Build Support for the operating system you’re

using, and if you want for the documentation, and uncheck everything else. Then click

Done, and the installation will begin. The version you’re installing will appear as a box

in the main body of the window, and a little bar above it will depict how far along the

installation is.

Once it’s done installing, the bar will disappear, and you can now create a Unity

project with that version of the engine – in a little bit, we’ll do that and run the engine

for the first time. Another nice feature about the Hub is that it will automatically run the

correct editor version of Unity when you open a project (assuming the version is still

installed on your computer).

 Installing Our Code Editor
You don’t write code in the same sort of software that you might write a book or a resume

in. Code editors are text editors that are fine-tuned for writing code. They have special

highlighting for words and symbols, they know how to format code, and they often come

with a slew of features that make it easier and faster for us to write and work with code.

Our code editor of choice is Microsoft Visual Studio Code. It’s not to be mixed up

with Microsoft Visual Studio. Both are similar (and similarly named) products from the

same company, both are free to use, and you could use either one to do the job. They can

both edit C# code and integrate with Unity.

Visual Studio Code is designed to be cross-platform and lightweight out of the box,

but highly extensible. It has a minimalistic user interface, and most of its features are

enabled through installing extensions to add extra functionality, which you do through

the software itself.

Visual Studio has support for Windows and macOS, but not Linux. It comes with

more features out of the box. It’s a very powerful tool and certainly has plenty of uses,

including collaboration with teams and other such more advanced features. It is generally

“heavier” – more feature-rich but likely to consume more memory and run a little slower.

Chapter 1 InstallatIon and setup

5

Code is our choice because I feel it’s more suitable for beginners, as it doesn’t “get

in the way” as much, and most of the advanced features of Visual Studio don’t really suit

our workflow anyway.

To download Code, head on over to this link in your favorite web browser:

https://code.visualstudio.com/download

From there, you can select the correct button to download the software based

on your operating system (Windows, Linux, or Mac). The installer should begin to

download. Once it completes, run it and follow the instructions it provides.

Once you have Visual Studio Code running for the first time, you’ll see a welcome

page serving as a hub for various links and resources. Many programmers are picky

about the color scheme their code editor uses. I prefer dark schemes myself. Some prefer

light – whatever floats your boat. You can easily change it right from the welcome page.

Click the “Color theme” button to pop up a list of standard color themes, allowing you to

switch to whichever theme you prefer (see Figure 1-3).

Once you’re satisfied with your colors (you can always change them again later), let’s

close the welcome page. Any file or page you have open in Code will have a tab at the top

left (see Figure 1-4) whether it’s an editable code file you’re working on or a static page

like the welcome page. If you have multiple files open, you can easily switch to view a

different one by clicking the tab. Right now, we only have the welcome page open. Let’s

close it to get a blank slate. You can do this by left-clicking the X button on the tab or by

using the Ctrl+W hotkey.

Figure 1-3. Welcome page Color theme button (left) and resulting popup
(right)

Chapter 1 InstallatIon and setup

https://code.visualstudio.com/download

6

Once it’s closed, there won’t be much going on – just a big blank space, as shown in

Figure 1-5.

You can now install what Code calls “extensions” to add some extra functionality to

the editor. Extensions are managed and installed through a button on the left sidebar.

The left sidebar has a handful of different forms it can take, all based on which of those

buttons you pressed last. Mouse over the buttons to see what they mean and click the

Extensions button when you find it (it’s the bottom one). You can also press Ctrl+Shift+X

to bring it up. This will cause the sidebar to pop up on the left side of the screen. Pressing

the button again will fold the sidebar, tucking it away.

Figure 1-4. The top-left corner of Code, where all page tabs are shown. The
welcome page tab is the only one we have open here

Figure 1-5. View of Visual Studio Code with no files open

Chapter 1 InstallatIon and setup

7

Inside the Extensions sidebar, you can search for extensions with the search bar at

the top. Click within the search bar and type “C#”. You should see a result simply titled

“C#”, with a description “C# for Visual Studio Code.” You’ll also notice that the publisher

for the extension is listed beneath the description: “Microsoft,” which so happens to be

the company behind Visual Studio Code and C# itself.

Click this extension, and a new tab will pop up, providing details about the

extension. Under the main description at the top of the page, you’ll see a button to install

the extension. Click that, and the extension will begin installing. If you’re prompted to

install any further extensions by popup boxes during this, go ahead and permit them to

install.

Next, we’ll install the extension for debugging in Unity. This allows us to “attach”

our code editor to Unity, so that we can use the code editor to set up “breakpoints” in

the code. A breakpoint is a point in the code that, when reached during the execution

of the program, causes the whole program to freeze. While frozen, we can look at pretty

much any piece of data from our program that we want and resume whenever we please,

among other things. It’s a very handy feature that we’ll use later down the road.

The exact name of the extension is “Debugger for Unity,” published by Unity

Technologies. You can find it the same way – by typing the name in the search bar at the

top of the Extensions sidebar.

Once you have these extensions installed, we can close Visual Studio Code. We’ll be

using it more in Part 2. For now, we’re focused on the Unity editor itself.

 Creating a Project
We can now use the Unity Hub to create our first project, so we have an environment to

play around in as we learn. In the Unity Hub, click the Projects tab on the left side, and

then click the blue “New” button in the top-right corner.

A dialog box will appear (see Figure 1-6), allowing you to select a template to base

the project on.

Chapter 1 InstallatIon and setup

8

The template is just a simple starting point for your project. The most bare-bones

and simple templates are the first two, titled “2D” and “3D.” These are pretty much blank

slates, one set up for 2D and one for 3D.

We’ll start with a blank 3D project, so select the 3D template by clicking it. It will have

a blue border around it if it is selected.

To the right side of the template options, there’s a field for the project name (you can

change this later) and the directory (file path) on your computer to save the project files

to. We’ll name our project “ExampleProject” – note that we aren’t using a space between

the two words, because file paths aren’t always fond of them.

You can change the directory to save the project wherever you like. Whatever file

path you choose, a folder named after the project will be created inside that folder. That

folder is the “root directory” for your project, and all your project’s files and resources

will be stored in that folder.

Figure 1-6. Dialog box for creating a new Unity project

Chapter 1 InstallatIon and setup

9

Once you’ve selected the path you want, click the blue “Create” button in the

bottom- right corner, and wait for Unity to create the base project files. When Unity

finishes, the editor itself will pop up with your brand-new project opened and ready for

editing.

 Summary
The following is a recap on what we learned in this chapter:

• The Unity Hub program will be used to download new versions of the

Unity editor, uninstall old versions you no longer need, create new

projects, and open existing projects.

• Opening a project in the Unity Hub will start the Unity editor, which

is where we’ll actually use the engine to develop our game.

• A Unity game project is stored on your computer, with all the related

files – including stuff we make ourselves like art and code – stored in

a “root directory” named after the project name.

• Our code will be written with Visual Studio Code, a text editor

designed specifically for writing code. It will offer us useful features

that normal text editors don’t have, making it easier to format and

navigate our code.

Chapter 1 InstallatIon and setup

11
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_2

CHAPTER 2

Unity Basics
Now that we have Unity set up and a new project to work with, let’s get comfortable with

the engine. This is the user interface we will be interacting with quite a lot as we develop

our games, after all, so we ought to get to know it early.

 Windows
Unity is separated into different windows that serve different purposes. Each window has

a little tab at its top-left corner, where the name of the window is written – that is, what

type of window it is.

Much like in a lot of computer software nowadays, each of these windows is a separate

piece of the program that can be repositioned, resized, or even altogether removed. There

are a handful of other window types that aren’t being used now, so we don’t see them on

our screen – but if we ever wanted to use them, we could add them in a jiffy.

You’ll notice that if you left-click one of these window tabs, hold the mouse button

down, and drag it, the window can be picked up and moved to a different spot in the

program. Doing this, you can split one window’s space to cover some of it with a different

window. If you ever want to do something with a window, chances are you just need to

start dragging stuff around and see how Unity reacts.

You can also dock windows beside others to place their tabs side by side (see

Figure 2-1). Whichever tab you clicked last will gain focus and fill the space of the

window.

Figure 2-1. Two window tabs docked side by side in the same space. The Project
window has focus and will fill the space, but the Console window can be given
focus instead by clicking its tab

https://doi.org/10.1007/978-1-4842-5656-5_2#ESM

12

Unity also lets you save all your current windows and their sizes and positions in a

layout, which you can assign a name to. This is done with the little dropdown button

in the top-right corner of the Unity editor, with the text “Layout” written on it. Click this

button to see all of the built-in layouts you can choose from, as shown in Figure 2-2.

By default, it will be set to a layout very aptly named “Default.” Try clicking a different

layout, and you’ll see Unity automatically restructure all its windows for you. You can also

select the “Save Layout…” option in the dropdown list to save your current layout under a

new name to keep it around, once you’ve set things up the way you like. That way, if you

ever lose a window by accident or accidentally cause some catastrophe to your window

setup, you can just reset it to the way you had it by loading your layout with the dropdown.

Layouts can also be useful when dealing with different aspects of game development.

Certain activities might be easier to do with a different set of windows in different

positions. The ability to save layouts makes it easier for us to hop back and forth between

activities – we can do it with just a few clicks.

The default layout has all the most important windows. Let’s go over them to learn

about what they do.

 Project Window
The Project window shows us all our assets. An asset is the game development term for

some piece of work we can use in our game – art, sound effects, music, code files, game

levels, things like that.

Figure 2-2. The Layout button in the top-right corner of the Unity editor, after it
has been clicked to show its options

Chapter 2 Unity BasiCs

13

Once we get around to making assets, we’ll see them here in the Project window. It

pretty much functions like your computer’s file system. You store assets in folders, also

known as directories. You might have a folder for all your sound effects, another for all your

code files (called “scripts”), and so on. We organize it all however we like in this window,

and it’s from this window that we can find, select, and use our assets within the engine.

Our project has been set up with some folders for us by default: the Packages folder

which we don’t need to pay any attention to right now and the Assets folder which is the

root folder inside which all our assets will be stored. The arrow beside a folder can be

clicked to hide or show its contents (if it has anything inside it). If you unfold the Assets

folder, you’ll see it already has a Scenes folder inside it and an asset “SampleScene.”

 Scene Window
The Scene window lets you see the environment your game is taking place in. What we

might call a “level” in our game is a “scene” in Unity. Scenes are saved as assets, so we’ll

see them in our Project window when we save them – this scene is the “SampleScene”

asset we have in our project by default.

Each scene has its own collection of objects in it. The scene window lets you view a

scene and navigate through it, like a floating camera observing your game world. It’s your

main viewport into the game environment.

The sample scene we have open now doesn’t really have anything inside it yet – just

a light, which is an invisible object that casts light over everything in the scene, and a

camera, which is the object through which the player will see the scene when the game is

being played.

If we had other scenes, which we will later, we would store them all in our Scenes

folder, and double-clicking one of them there would load a different scene, letting us

view and edit that scene instead.

Within the Scene window, moving your mouse while holding right-click will turn the

camera, much like looking around in a first-person game. While holding right-click, you

can use the WASD keys to move the camera around – once again, much like in a game. W

to move forward, S to move backward, A to move left, and D to move right. You can also

use Q to move directly down and E to move directly up.

Chapter 2 Unity BasiCs

14

 Hierarchy Window
The Hierarchy window allows you to see the objects contained within the current scene.

As we just said, a scene is pretty much just a collection of objects. When we switch from

one scene to the other, we’re just tucking away all the objects in the current scene and

pulling out all the objects in the new scene instead.

You can see those two objects we mentioned in our scene are listed in the Hierarchy:

a “Directional Light” and a “Main Camera.” By default, we’ll have a light source and a

camera in our scene, so we’ll see them all listed here in the Hierarchy.

These are GameObjects. Simply put, a GameObject is some object in your scene.

It could be a prop, like a box or a plant or a tree. It could be the player character or an

enemy or a powerup on the ground. They can be a disembodied light or a GameObject

that does nothing; it just exists, invisible in the scene. At their simplest, they’re just a

point in space with a name.

 Inspector Window
The Inspector window is a very important window that we will use extensively in our

adventures with Unity.

As we just went over, the Hierarchy window shows a list of all GameObjects in the

scene. Click one of these GameObjects in the Hierarchy window to select it. You will

notice that this causes the Inspector to change. It’s now showing you information about

the selected GameObject. At the top of the Inspector, you can see a box containing the

GameObject name, which you can click to type a new name in if you please. There are

also a few dropdown buttons, one for the “tag” and one for the “layer” – we’ll learn what

those are for later.

But the main functionality of the Inspector is to show us all the components

attached to the selected GameObject(s).

 Components
A component is a Unity term for a feature, some single piece of game functionality, that

is attached to a GameObject. A component cannot exist without a GameObject to attach

it to.

Chapter 2 Unity BasiCs

15

There are many different kinds of components that serve different purposes, all

included in the Unity engine by default. There’s the Light component to cast light, whether

it’s a sun-like light that covers the whole scene or something like the beam of a flashlight.

Let’s look at a Light component. Since the Inspector is designed to show us the

components of the selected GameObject, try clicking the Directional Light in the

Hierarchy window to select it. You’ll see the Inspector update after you do this, to look

something like Figure 2-3.

Figure 2-3. A view of the Inspector with the default Directional Light GameObject
selected

Chapter 2 Unity BasiCs

16

Beneath the basic information at the top, like the GameObject’s name, you’ll see

a heading for each component attached to the GameObject. This GameObject has

two components attached: Transform and Light. You can click the headings of these

components (where the component name is) to hide them (also known as “folding”

them) or show them. Beneath the header, the various properties of the component are

listed as value fields that we can change to affect the component – make the light more

intense, change its color, change the way it casts shadows, and so on. The field name

is on the left side, and the field value is on the right side. Some of these field values

are numbers, and some are little “sliders” that let you click and drag a dial with your

mouse – you’ll come across many kinds of fields designed to edit different sorts of values.

This is the major functionality of the Inspector: viewing and editing the properties of

components on a GameObject.

Another example is the Camera component. It’s an essential. It’s what renders

(“render” means “draw to the screen”) the scene to the player’s screen when the game is

playing. If you select the Main Camera GameObject in the Hierarchy window, you’ll see

the Camera component listed in the Inspector.

When we start making things ourselves later in the book, we’ll be getting some

hands-on experience with using many kinds of components. Unity also has helpful

official documentation, and this can be easily accessed by clicking the little icon

that looks like a book with a ? symbol on the cover, located on the right side of each

component header in the Inspector. This will open the documentation for that specific

component type in your default web browser.

Our code will be attached to GameObjects in the form of components as well.

They’re called “scripts” in this case: that is to say, a script is a component which runs our

code when it’s attached to a GameObject. So when we write code, the way we get it into

the game is by attaching it as a script component to a GameObject.

This means we can reuse and mix different pieces of functionality, if we’re smart

about how we write and define our scripts.

For example, our first example project is a game where the player must avoid various

obstacles. Let’s say you’re making a project like this, and you want to make different

kinds of obstacles to keep the game interesting. You want obstacles that shoot fireballs,

blades that spin in a circle, and rolling spike balls that move back and forth between two

points.

Each of these pieces of functionality can be made into a separate script component:

Shooting, which periodically fires projectiles in front of the GameObject; Spinning,

Chapter 2 Unity BasiCs

17

which makes the object constantly twirl around; and Patrolling, which makes the object

pace back and forth between two or more points. Then, we can have a component called

Hazard that we attach to fireballs, the spinning blades, and the patrolling spike balls,

which makes them kill the player when they touch.

The cool thing about components is that we can then mix them with each other to

create new types of obstacles.

Because each different piece of functionality is contained within its own component,

we can make anything shoot, spin, patrol, or kill the player on touch. And since we

aren’t limited in how many components we add to a single GameObject, we can make

a fireball-shooter that spins in a circle by attaching both the Shooting and Spinning

components to a single GameObject. We can attach a blade to its opposite side which

acts as a hazard. We can make a patrolling spike ball that shoots fireballs in front of it.

You get the point. As long as each piece of functionality is part of its own script

component, we can simply throw any combination of script components onto one

GameObject to fuse all the different things we coded onto one object.

This is one of the major advantages of Unity’s component system. It provides a

building block sort of system where we can mix different features however we please.

 Adding GameObjects
Let’s start getting familiar with using Unity to create and manipulate some GameObjects.

We won’t be making character models, spaceships, guns, or anything fancy like that

from within the Unity engine. Unity is not a modeling package (to create 3D objects)

or an image editor (to create 2D objects). It’s a game engine; you make the models and

animate them in other software, and then you import it into Unity by simply putting it

into your project folder, and Unity makes sense of it and lets you drag and drop it into

your scenes.

For the sake of learning the engine and learning to program, we won’t be messing

around with fancy art.

However, Unity can create GameObjects of basic shapes for us on the fly with just a

few button presses.

Just beneath the top of the Unity editor (the title bar), you’ll see a bar with a selection

of different buttons: File, Edit, Assets, GameObject, Component, Window, and Help.

These can be clicked to drop down a menu of further options.

Chapter 2 Unity BasiCs

18

The GameObject dropdown menu can be used to create simple, frequently used

GameObjects: shapes, cameras, lights, and so on.

Using this menu, we can create a cube through GameObject ➤ 3D Object ➤ Cube.

Alternatively, you can also right-click anywhere in the Hierarchy, but not on the name

of an existing GameObject, and use the context menu to select 3D Object ➤ Cube, as

shown in Figure 2-4.

Figure 2-4. Creating a Cube by right-clicking in the Hierarchy and navigating the
resulting context menu

Chapter 2 Unity BasiCs

19

After doing either of these things, you’ll notice a Cube will be added to our Hierarchy

and will show up in the Scene if your camera is pointing at it.

If you can’t see it in the Scene, your view is probably out of whack. You can easily

navigate your view to a GameObject in the current Scene by clicking the object in the

Hierarchy window to select it, then putting your mouse over the Scene window so it has

focus, and then pressing the F key. This is a handy shortcut that moves your view over to

the selected objects so you can see them. If you ever move so far away from your objects

in the Scene view that you get lost, just use this.

To expand on our talk about components earlier, let’s check what components

are present in this cube we just made. Making sure the cube is selected, look at your

Inspector window.

The topmost component will always be a Transform. Every GameObject has a

Transform component. A Transform is a position, size, and rotation. It’s essential to a

GameObject. You can remove components on the fly with code, but you can’t remove

a Transform. You have to delete the whole GameObject if you want to destroy its

Transform component. Every object that exists in your scene must have a position, right?

It has to be somewhere.

Aside from the Transform, you’ll notice a few other components.

There’s a Mesh Renderer and a Mesh Filter.

The word mesh is pretty much synonymous with “3D model” as far as we’re

concerned. And render is just a fancier-sounding word for drawing or displaying

something on the screen.

So a Mesh Renderer is a component that allows a 3D model to be drawn, although

the drawing of it is done by a Camera component.

The Mesh Filter is a component that holds the mesh you want to pass to the Mesh

Renderer. Pretty much whenever you see a Mesh Renderer, you’ll see a Mesh Filter as

well, because the Filter tells the Renderer what to render.

You’ll notice a little checkmark beside the Mesh Renderer component in the

Inspector. Components like this can be enabled and disabled by clicking this checkmark.

Just in case you don’t believe that the Renderer component is actually drawing the cube

to the scene, try clicking that checkmark to uncheck it. You’ll notice that the cube stops

rendering to the screen in the Scene view. Check it again, and it’ll pop back up.

Chapter 2 Unity BasiCs

20

 Summary
In this chapter, we learned the following:

• The Unity editor is made up of various windows that serve unique

purposes. Any window can be rearranged and resized by clicking and

dragging the tab at its left-top corner.

• An asset is a file for use in our game, such as artwork, audio, or code.

These are viewed in the Project window, and often we’ll incorporate

them into our game by simply dragging and dropping from that

window.

• A scene is an asset that resembles a game environment, like an

individual level. We can load them to view and edit them in the

Scene window.

• A GameObject is an object that exists in the scene. Their

functionality is driven by components that we attach to them. Unity

provides many built-in components for fundamental things like

displaying a 3D model, casting light, having physics and collisions,

and so on.

• The components attached to an individual GameObject are viewed

in the Inspector window. Here, we can customize their functionality

by editing fields that relate to them – such as how bright a light is.

Each component is a unique instance with its own values associated

with it, and these values can be customized to provide different

functionality.

• Every GameObject has a Transform, a basic component that

resembles a location, a rotation, and a size. Other component

types can be added and removed on the fly through code, but the

Transform cannot – there can only be one per GameObject and it

cannot be deleted.

Chapter 2 Unity BasiCs

21
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_3

CHAPTER 3

Manipulating the Scene
We’ve learned the basics of the most important windows in the Unity engine, and we

know how to create simple objects and view their components through the Inspector.

Now let’s get familiar with moving, rotating, and sizing GameObjects in our scene.

 Transform Tools
The section of the Unity editor just beneath the title bar and the title bar buttons (like

File, Edit, Assets, etc.) is called the toolbar. It’s a bar stretching across the width of the

screen, with a handful of different buttons on it. This includes the Layout dropdown

menu we learned about earlier, which is the rightmost button in the toolbar.

We’re going to learn about that cluster of buttons all the way on the left of the toolbar,

shown in Figure 3-1.

These are the transform tools. You just learned that the Transform component

is position, rotation, and size, so you can probably guess that the transform tools are

primarily used to move, rotate, and size GameObjects in the scene.

There are six buttons for six different kinds of tools. You may also see a seventh

button on the right side that deals with custom editor tools, which we don’t need to

concern ourselves with right now anyway. If you don’t see it, don’t worry about that.

Each of these buttons can be clicked to switch to a different tool. Only one tool is ever

active at a time, and they all serve different purposes.

From left to right, you can use the hotkeys Q, W, E, R, T, and Y to toggle between

these tools, which is often faster than clicking.

Figure 3-1. Buttons corresponding to the transform tools. The second button is
currently selected, giving it a darker background than the rest

https://doi.org/10.1007/978-1-4842-5656-5_3#ESM

22

The first tool, with the hotkey Q, is the hand tool, which lets you left-click and drag

on the screen in the Scene view to drag your scene camera around. It doesn’t edit the

scene. It just helps you navigate it.

The other tools will allow you to edit the GameObjects you are selecting. In the Scene

window, the transform tool you have selected will provide little “gizmos” on or around

your selected GameObjects. These gizmos are simple tools that we click and drag to

use the transform tool to interact with the GameObject. You will notice, if you select a

GameObject and toggle between these tools, that the gizmo drawn around the object

changes as the selected tool changes.

W is the position tool. While active, it shows arrow gizmos on your selected

GameObject. You can drag the object in specific directions by clicking and dragging the

arrows. You can also drag it along two directions at once by clicking the square shapes

between arrows. Holding the Ctrl key while dragging will only move in increments of 1

unit at a time.

E is the rotation tool. It shows circle gizmos on the selected GameObject. Clicking

and dragging the circles will spin the object, and each circle turns it along different

directions. You can also click between the circles to turn the object in multiple directions

at once.

R is the scale tool. It shows gizmos like the arrows, but with cube-shaped ends. Click

and drag these boxy arrows to change an object’s width (red), length (blue), or height

(green). Click the cube in the center of the gizmo and drag to scale the entire object at

once – that is, raising or lowering the width, length, and height evenly at once.

T is the rect tool (“rect” being short for rectangle). It is most applicable to 2D

projects but can have its uses in 3D as well. The gizmo shows a rectangle around the

selected object, with circles at the corners. The edges or corners can be clicked and

dragged to expand or shrink the object as a rectangle, affecting both the position and

scale at once. This can be useful to make an object larger or smaller on one side only,

since the scale tool will affect the scale on both sides.

There’s also a circle at the center of the gizmo which can be clicked and dragged to

reposition the object along the two axes that the rect is aligned with. You’ll notice that

the rectangle gizmo operates on two axes at any time. Attempting to move your camera

over to the side of the rectangle will cause it to flip around and face the camera again.

The Y tool combines the W, E, and R tools, showing the arrows for moving, the

circles for rotating, and the cube at the center for scaling, all at once.

Chapter 3 Manipulating the SCene

23

 Positions and Axes
So how does positioning work in 3D space? It might take a little getting used to, but a

position in 3D space is defined by three number values, referred to as X, Y, and Z.

The X position is right and left.

The Y position is up and down.

The Z position is forward and back.

These positions are often written as (X, Y, Z). For example, (15, 20, 25) would be an X

value of 15, a Y value of 20, and a Z value of 25.

If you have a position of (0, 0, 0), you are at the “world origin,” so to speak – the center

of the universe, or at least the center of the scene.

Add 5 to your X position, and you’ve moved 5 units to the right.

Subtract 5 from your X position, and you’ve moved 5 units to the left.

It works similarly for the Y and Z values: adding moves in one direction, subtracting

moves in the opposite.

Adding to the Y will take you up, and decreasing it will take you down.

Adding to the Z will take you forward, and decreasing it will take you backward.

It is the combination of these three values which defines where something is in the

world. Each of these is called an axis (plural “axes”). So you might hear people say “the X

axis” or “the Y axis” or “the X and Z axes.”

The scale and rotation work much the same way: they have the same three axes, each

one determining a different direction.

The X scale is the width – left and right.

The Y scale is the height – up and down.

The Z scale is the length – forward and back.

I’m sure you can imagine how rotation works pretty much the same way. The object’s

orientation is defined by three angle values between 0 and 360, which determine how it

is turned on each axis.

You’ll notice that the tools we use to position, rotate, and scale objects (W, E, and R,

respectively) are all color-coded.

The X axis is always red, the Y axis is always green, and the Z axis is always blue.

This is pretty much universally accepted. Get into making 3D models, and you’ll see

the same thing – although some programs consider the Y axis to be forward and back

and the Z axis to be up and down, which is opposite to how Unity does it.

Chapter 3 Manipulating the SCene

24

 Making a Floor
Let’s use what we’ve learned to make some cubes, position them, and scale them. But

first, let’s make a floor.

Create a Plane, using the same method we made the cube with earlier: GameObject

➤ 3D Object ➤ Plane.

A plane is like one surface of a cube – a paper-thin, flat surface that has no thickness.

They’re one-sided: you can’t see them at all if you look at them from the backside. Try

navigating your camera beneath the plane and looking up at it. You won’t see anything,

as if it never existed. Still, it’ll serve fine for our floor, because we don’t expect to be

looking at it from below.

Because we know exactly where we want our floor to be, we can set it up using

the Inspector. With the new Plane selected, look to its Transform component in the

Inspector.

As stated before, the Transform has a position (where it is), rotation (how it’s turned

about), and scale (how big or small it is).

Remember, the Inspector’s primary purpose is to interact with components, not

just to view their data. So it exposes the actual values of the position, rotation, and scale

of the Transform to us. We can edit the individual axes to our liking, simply by clicking

these fields and typing in the numbers we want.

This is a useful way to set things up if you know exactly how you want to set them up,

because getting precise values for positions and rotations using the transform tools can

be very tedious. We want our plane to be at the world origin (the center of the scene), so

use the Inspector to change its position to 0 on all three axes, if it isn’t already. As for the

rotation, it should be (0, 0, 0) already, so leave it as is.

 Scale and Unit Measurements
Now for the scale. “What is a unit of space?” you might be asking. What does it actually

mean when we change a GameObject’s position from 0 to 1? How much space is that?

This is a slightly confusing concept for some. You probably expect a straight answer.

The Unity developers decided what it is, right? It’s a foot, or maybe a meter – perhaps a

yard.

But that’s not how it works. Don’t worry, though; it’s still quite as simple. It’s just that

we must decide what a unit is ourselves. Let’s say we decide that 1 unit is 1 foot. So be it.

Chapter 3 Manipulating the SCene

25

As long as we follow this in every measurement we make, then that’s what 1 unit means.

We make our people between 5 and 6 units tall, roughly. If we want something to be just

one inch, we make it a twelfth of a unit (roughly .083). If we want something to be a yard,

we make it 3 units.

But one more thing we need to note about the scale of a Transform is the scale is

not “how many units wide, long, and tall something is.” It’s actually a multiplier. It

multiplies the size of the mesh (the 3D model).

The mesh itself has its own size, and then the scale value of the Transform just

multiplies that size.

This is fine for a cube. The cube mesh is 1 unit wide, tall, and long. So if we set its

scale to 5, it’s going to be 5 times 1 on each axis, so it’s still just 5 units large.

But a plane is trickier. The mesh itself is 10 units wide and long (and it’s paper-thin,

so it really has no height). So when we have a scale of (1, 1, 1) with a plane mesh, it’s

actually 10 units wide and long already.

You can see this if you create a Plane and a Cube, leave the scale of each one at the

default value of (1, 1, 1), and position them both in the same place. Note how much

larger the Plane is than the Cube, as shown in Figure 3-2.

This is because the size of their actual meshes is not the same. Even if their scale is

the same, the cube mesh is 1 unit wide and long, while the plane is 10 units wide and

long. Since their scale is just a multiplier of the mesh size, not a depiction of the actual

Figure 3-2. A Plane and a Cube with scale (1, 1, 1) positioned in the exact same
spot

Chapter 3 Manipulating the SCene

26

size of the object, the scale of (1, 1, 1) is not affecting the mesh size at all. It’s multiplying

by 1, so of course, it’s leaving them as is.

Now, if we change that cube to have a scale value of (10, 1, 1), it will become 10 units

wide, which matches the plane exactly, as shown in Figure 3-3.

To sum it up, just remember this: the mesh has its own size, and the scale is merely a

multiplier for the mesh size. It is not a flat value depicting “how big the mesh is.”

All that aside, let’s press on. We want a large floor so we don’t have to worry about

making it bigger every time we want to put some more stuff on it. Let’s make it 10 and 10

on the X and Z scales – which, mind you, is 100 units wide and 100 units long. Of course,

it’ll be easier to just set the X and Z scale values to 10 in the Inspector rather than using

the scaling tool.

 Summary
In this chapter, we learned the following:

• How to manipulate the position, rotation, and scale of GameObjects

using the transform tools (hotkeys W, E, and R).

Figure 3-3. A Plane with scale (1, 1, 1) at the same position as a cube with scale
(10, 1, 1). The cube is exactly as wide as the plane

Chapter 3 Manipulating the SCene

27

• Positions are resembled as an X, Y, and Z value. Adding to a value

moves in one direction, while subtracting from it moves in the

opposite direction. X is right (positive) and left (negative), Y is up

(positive) and down (negative), and Z is forward (positive) and back

(negative). By combining all three values, we can define a 3D point in

space.

• Scale is a multiplier for the size of the actual mesh that the

GameObject is rendering. It’s not the number of units wide, tall, and

long a GameObject is. Rather, the X, Y, and Z scale of the Transform

multiplies the size of the mesh that’s being rendered.

• A single unit doesn’t correspond to a particular number of feet or

inches or meters by default in Unity. We have to decide what a unit

means ourselves, and as long as we stay consistent with that decision,

our objects will end up properly sized proportionate to each other.

Chapter 3 Manipulating the SCene

29
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_4

CHAPTER 4

Parents and Their
Children
Now that we have our floor set up, let’s dive into some very important concepts

employed by game engines. Unity allows us to attach individual GameObjects to each

other in a system known as “parenting,” where “children” are attached to a “parent”

GameObject and thus move, rotate, and scale with it. This creates a distinction between

two ways of looking at an object’s position – its world position, which resembles where

it is in the scene, and its local position, which resembles where it is in relation to its

parent. This also gives us an option to define parents and children in a way that lets us

set up pivot points to change the point around which objects rotate.

 Child GameObjects
There’s a reason why the Hierarchy window is called a hierarchy. We haven’t exhibited

that reason yet, but we’re about to.

A GameObject is capable of storing any number of other GameObjects “inside it.”

This system is called parenting: one GameObject may be the parent of many others, and

those GameObjects stored inside it would be called its children.

Technically, Unity looks at this as the Transform components being attached to

each other, because that’s where the actual relevance of the concept is seen. Making

one GameObject the child of another is like physically attaching it to its parent. Because

the Transform deals with the physical position, rotation, and size of an object, this

essentially means attaching the Transforms to each other.

When the parent Transform moves, its children move with it. When the parent

rotates, the children pivot as if they were attached to the parent, even if there are miles of

open air between them. When the parent becomes smaller or larger, the children follow

suit proportionately.

https://doi.org/10.1007/978-1-4842-5656-5_4#ESM

30

Let’s play with this concept so you can see it in action.

Create two cubes and position them anywhere apart from each other. It doesn’t

really matter where, as long as they aren’t directly on top of each other – they can touch

or overlap if you want. Use the position transform tool (hotkey W) to do this.

Now, scale one cube up a little. You can do so in the Inspector by setting its scale to

something like 1.5 on all axes or simply puff it up a little with the scale transform tool

(hotkey R). When you’re done, it should look something like Figure 4-1.

That larger cube will be our parent. Select it to see which cube it is in the Hierarchy

(it will be highlighted, since it is selected). Using the Inspector, change its name to

“Parent” so it’s easy to recognize.

Now, click the other cube in the Hierarchy to select it. Then, click and drag this cube

in the Hierarchy, and drop it over the “Parent” cube.

Once you’ve dropped it, the Hierarchy begins to look like a hierarchy for the first

time. The dragged cube is now a child of the “Parent” cube and is now “inside” its parent

in the Hierarchy. This is shown by its indention: the children will be offset to the right a

little further than their parent GameObject. In Figure 4-2, you can see our Parent cube,

a Cube child inside it, and another GameObject beneath which is not a child. Notice

that the “Cube” child is pushed to the right side a little bit, denoting that it is a child of

“Parent.”

Figure 4-1. A cube with (1.5, 1.5, 1.5) scale (left) and a second, unchanged cube
positioned off to its side (right)

Chapter 4 parents and their Children

31

You’ll also notice that the parent now has a little arrow icon on its left side, which can

be clicked to hide or show its child GameObjects in the Hierarchy. This can be useful to

tuck away a complicated hierarchy of GameObjects that’s cluttering your view.

Now that the cube is a child of the parent, any Transform changes we make to the

parent will affect the child cube. The opposite is not true – the child can be moved about

to position it differently in relation to the parent, but any movement, rotation, or scaling

you apply to the parent will always affect the child as well.

Try it yourself. Select the Parent cube, go to the Scene view, and use the transform

tools (W, E, and R) to move, rotate, and scale the cube. When moving and rotating

the parent, the child will move with it and pivot around it, as if some invisible bar is

attaching them to each other. When scaling the parent, the child will scale as well –

they will both grow larger or smaller, and the distance between them is kept the same

proportionately to their new size.

We aren’t limited to a simple parent-child relationship. We can have grandchildren,

great-grandchildren, and so on – as many layers as we want. We could add another cube

and make it a child of the child cube – which would make it a grandchild of the cube we

named “Parent.” Then, moving the Parent cube would move its child, and as a result, it

would also move the grandchild.

If you ever want to “unparent” a child (make it no longer have a parent), you can

do so in the Hierarchy window by clicking and dragging the child above or beneath the

parent object. Note that while you’re dragging a GameObject around in the Hierarchy,

any other GameObject that you pass your mouse cursor over will be highlighted in light

blue. This means you’ll be assigning the dragged object (the one you’re “picking up”) as

a child to that highlighted object. If there is no object directly under your cursor, you’ll

instead get a thin blue line with a circle at its left side. This means you’re just putting the

GameObject somewhere else. You can use this to move the object up or down among

its siblings if it has any (siblings are fellow children of the same parent). But you can

also use it to put a child at the same level of the parent, making it no longer a child.

Pay attention to the left side of the line: that circle will indent further to the right when

Figure 4-2. View of our two cubes in the Hierarchy window. The “Cube”
GameObject is a child of the “Parent” GameObject. The third GameObject is not a
child, as seen by its indention

Chapter 4 parents and their Children

32

placing a GameObject within the children of another. This behavior can be a lot easier

to observe when you have more complicated hierarchies of GameObjects, with multiple

levels of children. For our purposes, you can pretty much just drag an object into the

empty space below the others and release to make it have no parent.

 World vs. Local Coordinates
Let’s learn the distinction between world coordinates and local coordinates. The position of

an object that has a parent can be depicted in two ways: world position and local position.

The world position is its absolute position in the scene.

The local position is its position relative to its parent.

When an object has no parent, the Inspector will show us its world position. Once we

give it a parent, the Inspector will instead show us its local position.

A position of (5, 0, 0) in world coordinates is “5 units to the right of the center of the

world.”

But in local coordinates, that same position instead means “5 units to the right side

of the parent object.” And that corresponds to the parent’s rotation: notice that I wrote “to

the right side of the parent,” not “to the right.” Rotate the parent, and the local position of

the child doesn’t change. Adding 1 point to the X axis doesn’t move the object 1 unit “to

the right” in world space – it moves the object 1 unit to the right of the parent object.

This is why even a direction can use local coordinates instead of world coordinates.

If you’re shooting out a projectile from the player character in a game where the player is

rotating around, such as pointing their character with their mouse, then you would use

the player character’s local forward direction, not the world forward direction.

A good way to look at it is that the world directions are something like directions on a

compass. You could consider world forward to be north (positive along the Z axis), world

backward to be south (negative along the Z axis), world right to be east (positive along

the X axis), and world left to be west (negative along the X axis). A projectile coming out

of a gun or the flaming hands of a magician shouldn’t just “go north,” right? It should go

forward along the local direction that the gun or the hands are pointing.

Now let’s dig into another complication of local positions: they’re affected by the

scale of the parent. So if the parent doesn’t have (1, 1, 1) for its scale, then adding 1 unit

isn’t actually adding 1 unit, so to speak. The local position is multiplied by the scale of
the parent. For example, if your parent has an X scale of 2, then adding 1 unit to the X is

really adding 2 units in world space.

Chapter 4 parents and their Children

33

 A Simple Building
Let’s use cubes to assemble a shape similar to a building – picture a blocky skyscraper,

with no detail on the outside whatsoever, just flat surfaces. We’ll learn a little about how

to position objects when creating them, and we’ll practice the concepts of parenting

while we’re at it.

Our building is going to be made of three cubes. The bottom one will be the base –

thicker and shorter. The middle and top will each be thinner and taller than the last.

We’ll center the cubes so they all have the same X and Z positions (forward/back and

right/left) but raise and lower them so that they make a sort of tower, almost like a stack

of blocks. In the end, it will look something like Figure 4-3.

Figure 4-3. A look at our Skyscraper GameObject

Chapter 4 parents and their Children

34

First, before you embark upon this quest, make sure you’re not lost in some awkward

orientation within the Scene view. Within the Scene window, you can use the little gizmo

in the top-right corner to see how your camera is rotated, almost like a compass (shown

in Figure 4-4). The arrows are color-coded by axis, as we mentioned before. If you’ll recall

• The X axis is red, and it corresponds to right and left. Increase the X

to go right. Decrease the X to go left.

• The Y axis is green, and it corresponds to up and down. Increase the

Y to go up. Decrease the Y to go down.

• The Z axis is blue, and it corresponds to forward and back. Increase

the Z to go forward. Decrease the Z to go back.

The arrows all point along the positive direction of their axis. In other words,

they point to the actual world direction of right, up, and forward. So the green arrow,

corresponding to the Y axis, is always pointing up. This means if that arrow is pointing

down for you, then your camera is upside-down. The gizmo is telling you where “up”

really is. Realign your camera by holding right-click while moving the mouse until you

have the green arrow pointing up, as it is in Figure 4-4.

Now create a cube. Make sure it’s selected and change its name to Cube Base at the

top of the Inspector. We’ll make it thick, but short. Using the Inspector, set its Transform

scale to something like (10, 4, 10). That’s 10 on the X and Z axes, but only 4 on the Y axis

(height).

There are several ways to ensure that one object is aligned with another when you

create it. Every object you create is placed at some certain spot in front of the camera. If

you create another cube without ever moving your camera since you made the first one,

they’ll both be in the same spot.

If you ever use the shortcut that we described earlier to center your camera on an

object, which is done by pressing F, you’ve also positioned your camera such that any

new object created will have the same position as the object you’ve focused on. It puts

Figure 4-4. Gizmo in the top-right corner of the Scene window. The axis that the
arrow corresponds to is written beside it, and each arrow is color-coded by axis

Chapter 4 parents and their Children

35

the camera in a place where the objects you create will go exactly on top of that focused

object.

So if you’ve moved the camera since creating your Cube Base, you can simply make

sure it’s selected and then press F while your mouse is over the Scene window. This will

put focus on the Cube Base, moving the camera to look at it. Any new objects you create

will be placed in the same position of the Cube Base, so create another cube now, and

it should be in the same spot. You can also simply copy-paste the values from the Cube

Base position to that of the new cube using the Inspector.

But all of these objects are meant to be attached to each other, so we know we’re

going to use parenting anyway. It makes sense that the upper cubes would be attached

to the lower cubes, right? So when you create your new cube, name it Cube Middle

and make it a child of the Cube Base. This makes it even easier to see if they’re aligned

correctly, since the Inspector will now be showing us the local position of Cube Middle.

If they’re in the same spot, Cube Middle will have a position of (0, 0, 0).

We want to make sure it’s centered on the X and Z, so if the X and Z position values

of Cube Middle are not 0 already, set them to 0. Now you can simply use the position and

scale transform tools (W for position and R for scale) to move the Cube Middle up above

the Cube Base and scale it up until it’s a good size, if you want to go by eye.

Do the same thing for a third cube, named Cube Top. If you want, you can copy-

paste Cube Middle (Ctrl+C, Ctrl+V) and then rename it, so that it starts right at the

same position, or start fresh with a new cube and set its local position to (0, 0, 0) to

center it again. Make it a child of Cube Middle, not Cube Base, because the Cube Top

is technically attached to the middle cube – that is to say, if we wanted to just rotate or

move the middle cube, we would expect the top cube to rotate or move with it.

You can once again scale and position the Cube Top, just as you did for the others.

Leave its local X and Z positions at 0 so it’s centered, and raise it so its bottom rests on

the top of the cube beneath it.

Now you have the Cube Base, which is the parent of Cube Middle, which in turn

is the parent of Cube Top. You can make those upper cubes look however you like. It

isn’t really important. If you want them to look just like our version of the Skyscraper in

Figure 4-3, set their world scale to

• (10, 4, 10) for Cube Base

• (5, 6, 5) for Cube Middle

• (2, 5, 2) for Cube Top

Chapter 4 parents and their Children

36

Note that I say world scale. Like the position, the scale can also be portrayed either

as local or world. The local scale is relative to the scale of the parent. The X, Y, and Z

values of the child are multiplied by the corresponding X, Y, and Z values of the parent.

This can make it a bit harder to work with, since you have to do some extra math to figure

out exactly how many units the scale actually comes out to.

Instead of doing that math, you can just unparent the cubes so they go back to using

world scale, set the scale, and then parent them again. You’ll notice when you parent or

unparent a cube, its scale values will change, although its size doesn’t appear to be any

different. Like with the position, that’s just the scale going from world to local (or vice

versa). They still represent the same physical size; it’s just a matter of whether it’s relative

to the parent or not.

 Pivot Points
With our cubes all put together, let’s demonstrate another important concept when it

comes to hierarchies of objects. A pivot point is the point around which an object will

pivot when it is rotated. It is also the point on the object that will be at the exact position

of the object.

Select your Cube Base and switch to the position transform tool (hotkey W). This will

show the gizmo of three arrows in the Scene window. Keep pressing Z, and you’ll notice

that the gizmo position will change back and forth between two positions.

This is because we’re toggling the tool handle position control, which is located just

to the right of the transform tool buttons in the toolbar. It’s a little button that either says

“Center” or “Pivot,” which you can click to toggle, or you can just use the Z hotkey. This

depicts where the transform tool gizmos are drawn: either at the center point between

the object and all its children or at the pivot point of that specific object.

So if you want to know what the pivot point is for an individual GameObject, just

make sure that button says “Pivot” and then click the object and look where the gizmo

is drawn. For a cube, the pivot point is at the center. This means if we rotate it, it rotates

around its center.

The pivot point is also the point on the object that will be positioned at the exact

point that the Transform position is set to. So if the cube is positioned at (5, 5, 5), then

that means the center of the cube is at (5, 5, 5), not one of its sides, not its bottom or its

top. This can be a pretty important detail to know when positioning objects.

Chapter 4 parents and their Children

37

Every mesh (3D model) has a pivot point. For these simple shape meshes that Unity

provides us, like cubes, spheres, planes, or cylinders, it’s always the center. But at some

point, you might use meshes you find on the Internet or meshes designed by artists

you’re working with or even meshes you made yourself. If the pivot point is somewhere

weird, it’s usually pretty obvious once you get to using the mesh.

For example, let’s say your artist provides you with a mesh to use for a gun that your

player character is supposed to hold in their hand. You make a GameObject for the gun,

and your code positions the gun at the position of the player character’s hand. But the

gun isn’t showing up in the player character’s hand. It’s somewhere off to the side. This

is a pivot point problem. Remember, the object’s pivot point is the point of the mesh

that actually goes where the object is positioned. If you’re going to position the object

at the player’s hand, then the pivot point should be at the handle of the gun. That way,

wherever we position the object, that’s where the handle is – not the barrel or some

random sliver of air two feet away.

Lucky for us, we aren’t dealing with anything but the basic shape meshes, so

everything should be pretty predictable. Still, there will be times where we’ll want to

adjust a pivot point for an object ourselves – and it’s not hard to do this.

Let’s say, in our game, we had buildings like this skyscraper we just made and we

wanted to let the player purchase and place these buildings wherever they liked on the

playing field. This pivot point becomes a problem for us, because we can’t just use the

surface position of the floor to place our cube there – we’d only be placing its center on

the floor, and the rest of it would clip through the floor, sticking out beneath it and not

showing on the camera. We would have to always position them upward by half the size

of their base cube to get them neatly placed on top of the floor. But if each building has a

different height for its base cube, this becomes a hassle to code.

We want its pivot point to be at the center on the X and Z axes, but at the very bottom

on the Y axis, so that when we say “place the building at this point on the floor,” the

bottom of the building is at that point. This way, no part of the building ends up sticking

through the floor.

This is a simple fix. We can make an “empty GameObject.” This is a GameObject with

no components except for the Transform – nothing but a point in space. Of course, we

could add components to it afterward, but we don’t need any in this case.

Create an empty GameObject with GameObject ➤ Create Empty or

Ctrl+Shift+N. Name it something accurate: Skyscraper. It’s the root GameObject of the

building hierarchy – that means the master parent, the GameObject that holds all the

Chapter 4 parents and their Children

38

rest. When we move it, we move the whole building. So it makes sense to name it what its

children make up: a skyscraper (albeit a simple one). Accurate names are a good practice

to get used to!

Now we just position it where we want the pivot point to be and then simply make

this empty GameObject be the parent of the Cube Base. I’ll show you a trick to position it

correctly.

Remember how I said that local positions are based on the scale of their parent? If

the Skyscraper has a parent that has, say, 10 scale on the Y axis, then each point in the

Skyscraper’s Y position will count for 10 units. It’s multiplied by the scale of the parent.

We can use fractions too, so .5 would count for half the Y scale, .25 would count for a

quarter of it, and so on.

We can use this to our advantage. For now, make the Skyscraper empty GameObject

be a child of the Cube Base. Now the Skyscraper is using local positioning, meaning its

position is relative to the Cube Base.

Going by what we just discussed, this means that a single point in the Skyscraper’s

Y axis will count for the whole height of the Cube Base. We know that if we position the

Skyscraper at (0, 0, 0), it’s at the exact position of the cube. Since the cube’s pivot point is

its center, this means the Skyscraper is placed at the center of the cube. So all we need to

do is “go down” by half the height to reach the bottom of the cube. To do that, since we’re

using local positioning, we just give it a Y position of –.5. You’ll recall from the preceding

text that adding to the Y value goes up and subtracting from it goes down. That’s why it

must be negative, so make sure you put that “–” in there.

After we apply that position, the Skyscraper object should be at the exact bottom

of the Cube Base, with the other axes centered on it. You can now just make the Cube

Base a child of the Skyscraper object. Now the Skyscraper is the root GameObject, as we

intended, and it’s positioned at the bottom of the whole building. This makes it the pivot

point. When we rotate the Skyscraper object, everything is spinning around it, so it’s all

pivoting at the bottom, not the center of the bottommost cube as it would before. And

now if we position a Skyscraper at some point on the floor, the bottom of the building

will go there, just as we would like it. We’ll be demonstrating another reason for that to

come in handy in the next chapter too.

Of course, you could just position the pivot point by eye with the transform tools in

the Scene window and save yourself some finicking with the numbers and the parenting

and unparenting. You won’t get it right on the dot that way, but a little inaccuracy is

unlikely to affect you in this situation. Still, it’s nice to know you have things exactly as

they should be.

Chapter 4 parents and their Children

39

 Summary
In this chapter, we learned the following:

• GameObjects can be the parent of other child GameObjects. When

the parent position, rotation, or scale changes, the children move,

rotate, and scale with it as if attached to it.

• World position is the position of a GameObject in the scene, without

any relation to other objects. Local position is the position of a

GameObject relative to its parent. They both can be used to resemble

the same position in different forms.

• The pivot point is the point on an object that goes exactly where the

object position is set. For example, if you want to set the position of

a gun to put its handle in the player’s hand, you want the pivot point

of the gun to be at the handle. If it’s somewhere else, like the barrel of

the gun, positioning the gun at the player hand position will instead

place the barrel of the gun there – not the handle.

• When rotating an object, all of its children pivot around the pivot

point. This can change the way an object rotates in a significant way.

• To reposition an object’s pivot point, you can create a new empty

GameObject, place it where you want the pivot point to be, and then

make the object a child of that empty GameObject.

Chapter 4 parents and their Children

41
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_5

CHAPTER 5

Prefabs
A prefab is a type of asset you’ll store in your project. They act something like a

blueprint for objects. You set up a prefab for some kind of object in your game and then

add instances of the prefab to your game, in any of your scenes. This connection to the

prefab will remain across all the instances, and you can then change the prefab itself to

automatically change every instance you’ve placed.

For example, you might make a prefab out of a certain enemy type. You place

that kind of enemy throughout your game levels (scenes) possibly hundreds of times.

Somewhere down the line, you want to make some change to this enemy type – make it a

little bigger or give it a little more health or make it move a little slower. If you had simply

copy-pasted your enemy GameObject through all your scenes, you would have to change

each one individually and make sure you kept them all consistent. This can be very

tedious! But since you made a prefab for the object, you can just change the prefab itself.

As an asset in your project, you simply find the prefab in the Project window, edit it, and

make the changes you desire. Those changes automatically reflect across all the prefab

instances in all your scenes.

 Making and Placing Prefabs
To create a prefab out of an existing GameObject in your scene, you can just drag that

GameObject from the Hierarchy window into the Project window and drop it into a

folder where you want to save the prefab asset. This creates a prefab and automatically

associates that GameObject in the scene with that new prefab. In other words, the object

you dragged and dropped is no longer some random, one-off object in this scene. It’s

now an instance of the prefab.

We’ll create a prefab out of our Skyscraper GameObject we created in the last

chapter. Drag the Skyscraper GameObject from the Hierarchy and drop it in the Project.

Don’t just drag one of the children, though. It must be the root GameObject, named

Skyscraper.

https://doi.org/10.1007/978-1-4842-5656-5_5#ESM

42

The new prefab asset will be named the same thing: Skyscraper. To place further

instances of the prefab – exact copies of our Skyscraper – we can just left-click to drag

and drop the prefab asset from the Project window into the Scene window. As you’re

dragging the prefab over the Scene, you’ll notice that Unity lets you see where it’s

going to be placed, showing the new Skyscraper where your mouse is pointing. It will

automatically be placed on the surface of other objects you’re pointing at, whether they

be another instance of the Skyscraper or the floor we created earlier. Once you release

the left-click, the instance is officially placed in the scene.

Remember what we were learning about pivot points in the previous chapter? If we

had left our pivot point in the center of the Cube Base of the Skyscraper, it would not be

placed so neatly on the surface of the floor when we set down prefab instances of it. It

would stick through the floor. Since the pivot point is the point that will be at the position

given to the object, if we want the bottom to be on the surface that we point our mouse

at (and we do), we must make that the pivot point. Good thing we did that already! Now

when we place the object, it lines up correctly every time.

 Editing Prefabs
Place a few extra Skyscrapers onto the floor in the scene, and let’s learn to edit a prefab

so we can see all our instances change when we’re done.

To edit a prefab asset, you can double-click the asset in the Project window or click it

and then click the “Open Prefab” button just beneath the head of the Inspector.

This opens a sort of fake scene in Unity, where nothing exists but an instance

of the prefab. Look at the Hierarchy window, and you’ll see that none of your other

GameObjects are there anymore, and a bar stretches across the top of the window

showing the prefab name and the little blue box icon that represents a prefab

GameObject. This bar has an arrow on its left side that can be clicked to bring you out of

prefab editing and back to the scene you were in before.

There’s also a similar bar stretching across the top of the Scene window, which lists,

from left to right, the scene environments you’ve been in. The one you’re in now will be

on the rightmost side, and the path you’ve traveled to get there will be on its left side, as

shown in Figure 5-1.

Chapter 5 prefabs

43

As of right now, it looks simple: Scenes on the left, which is the normal view where

you’re looking at the loaded scene itself, and then the Skyscraper prefab, which is where

we are now, viewing just the objects that are part of the prefab. This bar becomes more

notably useful when you begin having prefabs within prefabs (it sounds scary, I know)

and you start opening a prefab while viewing another prefab. The bar pretty much shows

you the rabbit hole you’ve gone down, in proper order. At any point, you can click one of

the names to switch back to that environment.

Let’s change our Skyscraper here in the editing environment. The Scene window

will function as it normally does, so all our transform tools will work as they did before.

Do something crazy to the Skyscraper, like grab the Cube Middle and drag it high above

the Cube Base. Then, press Ctrl+S, or click the Save button all the way on the right side

of the bar at the top of the Scene view. This makes the changes take effect. If your prefab

has been changed and you try to navigate out of the editing environment without saving,

Unity will stop you and ask if you’re sure you want to discard the changes. If you’d rather

just automatically save all your changes, you can check the “Auto Save” box just to the

right side of the Save button we just clicked.

Once you’ve made your change and saved the prefab, navigate out of the prefab

editing environment using the top bar of the Hierarchy window (click the arrow on the

left side) or the Scene window (click “Scenes” on the left side).

Now that you can see your scene again, all the Skyscrapers will have changed to

reflect the prefab.

Another way to edit prefabs is to simply make some changes on an instance of the

prefab in your scene. Then, to apply those changes to the prefab, just drag and drop the

instance from the Hierarchy to the asset in the Project window. This makes the asset the

same as your modified instance in one simple motion. For example, we could have made

our change to one of the Skyscrapers in the scene we were working on and then dragged

and dropped that modified Skyscraper from the Hierarchy to the asset in the Project, and

all of the other instances in the scene would have updated to match it. Try it yourself, if

you want. There’s no limit to how often you can change your prefabs!

Figure 5-1. The top of the Scene view while editing our Skyscraper prefab

Chapter 5 prefabs

44

 Overriding Values
Sometimes, you want a prefab instance that behaves a little differently than the blueprint

dictates – such as an enemy with more speed or an enemy that holds an axe instead of a

hammer.

You can make little changes like this to an instance of a prefab, and Unity will keep

track of what is different across your instances. These are called overrides. To describe

it technically, when you override something on a prefab instance, any change to that

something on the prefab asset will not reflect on the overridden instance.

For example, let’s say we have a prefab “Soldier” representing some enemy soldier

that we’ve placed many instances of across all of our scenes. But we want to put down an

instance that has a bit more health than the rest, a particularly strong soldier. We go into

the Inspector and increase the health of this soldier instance, and we rename it to Burly

Soldier so we know it’s special.

But later, we decide that all of our soldiers have too much health, and we want to

decrease it a little. To do this, we change the prefab asset, decreasing its health a little.

This causes every instance of the prefab to reflect those changes, making them have a

little less health and saving us a lot of trouble finding them all and changing the health of

each one individually.

However, since we overrode the health for our Burly Soldier, his health won’t change.

Unity will recognize that we overrode that value and leave it alone when we change the

prefab asset.

This way, overrides are preserved when the prefab asset is changed, so that any one-

off differences you make are not undone the next time you edit and save your prefab.

This applies to values in the components of the GameObjects associated with the

prefab – including nested (child) GameObjects. This applies as well to the Transform

component, so that position, rotation, and scale can be overridden for children of the

prefab root (the master parent of the prefab). The root GameObject itself does not

concern itself with the position and rotation of the parent, however (it would cause some

pretty strange anomalies if it did). You can consider the position and rotation of the root

GameObject to always be overridden – even if it is the same as that of the prefab itself,

it will not be updated if you edit the prefab to rotate or position it differently. However,

since the children use local position and rotation based off the root, their position and

scale won’t be considered “overridden by default.” We’ll go over this with an example in

a bit.

Chapter 5 prefabs

45

But component values aren’t the only things that can count as overrides. Removing

components, adding components, and adding extra child GameObjects all count as

overrides as well. So if you delete a component from some GameObject in your prefab

instance and then later update the prefab asset, the deleted component will not be

added back to the instance. Unity recognizes that you made a conscious override and

preserves it. The same goes for adding an extra component: it won’t be removed when

you edit the prefab.

Component values that have been overridden will have bold (thicker) text for their

name and value. The Transform of your base GameObject will have a bold position and

rotation, because this is world position and isn’t associated with the prefab. But the local

position of children will only be bold if you have changed it from the prefab setting.

Let’s override one of the Skyscraper instances we have in our scene. Using the

position tool (hotkey W), just grab the Cube Middle of one of the Skyscrapers and pull it

up or down a good bit, so it’s noticeably off from the rest of the instances. You’ll notice

that its Y position in the Inspector will become bold, because it’s now an overridden

local position. It’s not in the same place as it should be according to the prefab, so it is

marked as an override.

Now that one of the instances is unique, let’s edit the prefab and drag the Cube

Middle back down to the position it was before (or near to it), touching the Cube Base as

it should be. It’s okay if it’s not exact. Save the prefab and then return to the scene.

All but one Skyscraper should reflect the changes now. Since we overrode the local Y

position of the Cube Middle for one of the instances, when that value is changed in the

prefab, it is ignored by this one instance. We have given it a special value, and Unity will

respect that and preserve it for us.

As I said before, this applies to local positions and rotations – the children of the

prefab root. The root is the GameObject holding all the others, which, for this prefab, is

the empty GameObject we named Skyscraper. The root GameObject is not concerned

with position and rotation of the prefab. You’ll notice that even if you give a prefab

instance the exact same position and rotation as the prefab asset (by comparing their

Transform components in the Inspector), the position and rotation of the instance is still

bold. It’s overridden by default. If you edit the prefab and rotate the root or move the root

a few units in one direction, that change isn’t going to take effect to any of the instances.

This is just as well – you wouldn’t really expect it to. As far as we’re concerned, changes

to the position and rotation of the root GameObject shouldn’t affect the instances.

Chapter 5 prefabs

46

However, the rotation of the root will be used when placing new instances in the Scene

by dragging and dropping, which can be a useful setting to specify at times.

There’s an easy way to view the overrides you have applied to a prefab instance.

Select the Skyscraper instance that you have overridden the Y value for. As long as you

have the root selected (the one named Skyscraper, not any of the children), you’ll see

some extra options in the header of the Inspector (just under the field containing the

name of the GameObject). The text “Prefab” will be on the left, and to its right side, you’ll

have buttons “Open” and “Select,” as shown in Figure 5-2.

“Open” will open the associated prefab asset for editing, and “Select” will select

the prefab asset in the Project window (in large projects, this can be easier than fishing

around for it yourself). To the right side of these buttons is a dropdown button titled

“Overrides.” Clicking this button will show a hierarchy of GameObjects included in the

prefab. Nested inside GameObjects, it will also show their components which have

had values overridden, as well as components which have been added or removed and

GameObjects which have been added.

The purpose of this list is essentially to show you all of the differences between a

prefab instance and the actual prefab asset and to allow you to revert those changes,

which means switch back to how it is on the asset, or apply them, which means make the

change on the asset as well, so that it’s no longer an override – it’s just the norm. There

are also the buttons “Revert All” and “Apply All” on the bottom of the list, which, as their

titles suggest, revert or apply all the overrides to the prefab asset at once.

For the overrides of our Skyscraper, we should see the hierarchy showing Skyscraper,

inside that (indented to the right) Cube Base, and then Cube Middle inside that; and

then, inside Cube Middle, we’ll see its Transform component. Clicking the individual

GameObject names will show a popup window on the left saying “No Overrides.”

But clicking the Transform will cause the popup window to display two views of the

Transform values side by side, as shown in Figure 5-3.

Figure 5-2. Prefab options are listed for the Skyscraper GameObject

Chapter 5 prefabs

47

The left side is titled “Prefab Source” and is all grayed out so we can’t edit the values.

It is just showing us what the values are set to on the prefab asset and does not let us

make changes. The right side is titled “Override” and shows the values of the Transform

component, allowing us to edit them right there if we desire. At the top-right corner of

this “Override” pane, we see the buttons to revert and apply the overridden values. This

is how you revert/apply for a specific component. Let’s revert the change to make this

Skyscraper go back to normal and stop defying the laws of physics. Just click the “Revert”

button.

One final note on overrides: You can’t remove a GameObject from a prefab as an

override. You can add them, but you can’t remove them. This is because you can’t just

restructure a prefab instance like this – you must unpack it first, which disassociates it

with the prefab altogether so that it’s just a bunch of normal GameObjects. This is done

by an option available when right-clicking the GameObject. Or you can edit the prefab

asset and delete the GameObjects, but of course, this applies to all instances. But neither

of these is a satisfactory solution. Instead, to effectively remove a GameObject for a

single instance, you can disable it with the checkbox on the left side of the name field

in the Inspector header, which is essentially keeping the object around, but not running

any of the functionality of its components: it won’t be rendered, and it won’t collide with

things. This also disables all its children.

This is how you might do something like having a single instance of an enemy wield

an axe instead of a hammer, as we mentioned at the start of this chapter. Disable the

hammer GameObject that comes with the prefab by default, and then you can add a new

axe GameObject as an override and position it where the hammer would normally be.

Figure 5-3. The Overrides dropdown list, with the Transform component of Cube
Middle selected. This results in the popup boxes stretching out on the left side

Chapter 5 prefabs

48

 Nested Prefabs
One neat feature that we didn’t use to have in Unity is the concept of nested prefabs.

We can have prefab instances which are part of the hierarchy of other prefabs. Changes

made to a nested prefab through its asset will automatically apply to instances of the

prefab even if they are nested inside other prefabs.

For example, you might have a bunch of prefabs for different types of enemies –

soldiers with male and female versions, ones with thick armor and ones with light

armor, or ones which use different kinds of skills or magic. You have a variety of different

weapons they’ll wield – some use swords and others use spears or axes. Many of them

will end up using the same weapon. So you make prefabs for the weapons and nest an

instance of the weapon prefab inside each of the enemy prefabs.

This way, each enemy prefab has an instance of the weapon prefab inside it. If you

ever want to change something about the weapon, you can change that weapon prefab,

and all the enemies who use that weapon type will reflect the changes. If you had not

used prefabs for the weapons, you’d just have separate instances of the weapon in each

of the enemy prefabs, probably copy-pasting them from one to the other. Then if you

wanted to make a change to a weapon, you’d have to go through each prefab that uses

that weapon and change it individually.

You’ve probably noticed that, in the Hierarchy window, the icon to the left of the

name of a GameObject is sometimes a blue cube and other times a gray cube. Perhaps

you’ve figured it out already, but a blue cube means that a GameObject is the root of a

prefab. A gray cube means it is not the root.

The color of the name also differs. Some have black text for their name and others

blue. Blue text is for the GameObjects which are part of the prefab. Black text is for those

which are not – they may be added as an override, but they’ll still have black text because

they aren’t included in the prefab asset itself.

When you nest prefabs, you’ll see blue cube icons as children of other blue cube

icons. This helps you distinguish which pieces of a GameObject hierarchy are part of

another prefab.

Aside from this, nested prefabs are pretty self-explanatory – prefabs within prefabs.

But one notable difference is the applying of overrides made to nested prefabs.

The Overrides dropdown button in the Inspector will only show for the root of

the prefab – not for nested prefabs. With an override applied to a nested prefab, you’ll

be offered two options when using the Overrides list to apply changes made to the

prefab: one to apply the change as an override to the root prefab and another to apply

Chapter 5 prefabs

49

the change to the nested prefab itself. The difference here is whether or not the nested

prefab asset has the change applied to it. Either way, the change is going to affect the root

prefab, since it contains an instance of the nested asset – the question is, do you want the

nested prefab, and all instances of it (nested or not) to have the change? Or do you just

want the change to exist in the root prefab’s instance of the nested prefab, as an override?

This just depends on the situation, but it’s an important distinction to make.

These two options will show whenever you click the Apply button when selecting an

override to a nested prefab in the Overrides dropdown. Where before the Apply button

would offer a dropdown list with only one option, it will now offer two: one to apply to

the nested prefab itself and the other to apply as an override to the root prefab.

 Prefab Variants
A prefab variant is a prefab asset that overrides another prefab called the base. It’s like a

copy which serves as a way to make a variation of an existing prefab. Values that haven’t

been overridden in the variant will be kept up to date with their settings in the prefab

base.

For example, you might have variations of enemy types: a larger version of the same

enemy that has more health but moves slower or a version that wields a different sort of

weapon. All the base functionality is kept in the base prefab – the model, the animations,

and the scripts that provide it with its AI and logic. But little customizations are made on the

component values, or a weapon is disabled and a different one is swapped into its place.

This is a useful way to keep prefabs working for you while still providing you some

flexibility. You can have these variations with their overrides while still benefitting from

the fact that any change to the base prefab will automatically take effect on the variants,

unless the variant has overridden the value. If you had instead copy-pasted the base

prefab to make the variants, any change that you wish to make to some common value

across the prefab and all of the variants would have to be done individually for each

variant, which is the main problem that prefabs seek to solve.

To create a prefab variant, right-click a prefab asset in the Project window, select

Create, and then select Prefab Variant, an option which can only be clicked if you have

right-clicked a prefab. This will create a new variant next to the base prefab in the Project

and will allow you to type out a name for it. Alternatively, you can create a new variant by

dragging a prefab instance from the Hierarchy to the Project, which will result in a prompt

asking if you’d like to create a new, original Prefab or a variant of the existing prefab.

Chapter 5 prefabs

50

You can even create variants whose base is another variant, if you wish.

The icon for prefab variants in the Project and Hierarchy is a blue cube, like prefabs,

but it is decorated with a couple arrows to indicate that it is a variant. When you select a

prefab variant, the Inspector will point at the base prefab in the header, just beneath the

name of the variant.

When using variants, it’s important to note that they pretty much work like a

prefab instance with overrides. Anything that is different on the variant is considered

an override to the base. As such, you often don’t want to apply any of their overrides,

because their overrides apply to the base prefab, not the variant asset. The variant asset

is simply a place to store your overridden version of the prefab. You’ll override what

you want – change values, add components, remove components, add GameObjects,

or deactivate GameObjects, whatever you need – and save the variant asset. That’s all.

Applying overrides is not necessary.

For example, if you were to create a “Bulky” variant of your enemy type, edit it,

increase its scale, and decrease its speed and then go to the Overrides dropdown and

apply all of the changes, you would end up switching the base prefab to be Bulky, and

the variant would be the same as the base – which eliminates the purpose of having

the variant at all. To make this distinction clear, the Apply All button in the Overrides

dropdown will instead read “Apply All to Base” when working with a variant, just to give

some extra warning.

 Summary
In this chapter, we learned the following:

• A prefab is a GameObject that is saved as an asset by dragging it from

the Hierarchy window and dropping it in the Project window.

• We place instances of the prefab asset by dragging the asset from the

Project window into the Hierarchy or into the Scene.

• The prefab asset can be edited by double-clicking it in the Project

window. Any changes made here will automatically occur on all
instances of that prefab across all of your scenes.

Chapter 5 prefabs

51

• If you’re creating a certain type of GameObject that you plan on

copying and placing many instances of throughout your scenes (like

an enemy or powerup), you should make a prefab for it and place

instances of the prefab. You’ll only have to edit the prefab once, and

all of the instances will update. This can save you a lot of trouble.

• Any changes made to the values of components in a prefab instance

are qualified as overrides. If the prefab asset makes a change to a

field that the instance has overridden, the change will not occur

on the instance. In other words, overridden values are preserved,

allowing us to make one-off changes to specific instances that won’t

be undone the next time we edit the asset.

• A prefab variant is a prefab asset that copies from another prefab

asset. A variant can be used to create a consistent different version

of an existing prefab asset, such as an enemy with a different kind of

weapon or with more health. Values which are not overridden are in

control of the base prefab asset. Those which are overridden are in

control of the variant asset.

Chapter 5 prefabs

53
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_6

CHAPTER 6

Programming Primer
Most people don’t really know what programming is all about. They just know that “you

have to be really smart to do it” and “it’s complicated.” This chapter will go over the

basic concepts of programming to lay the foundation for beginners. If you’re a more

intermediate reader and you’ve already dabbled in writing code yourself, you can safely

skip to the last topic in this chapter to learn how to prepare a script to write code in.

So what are we, as programmers, expected to do? What is programming, really? To

put it simply, programming is writing code. Code is text that a computer knows how to

read.

 Programming Languages and Syntax
There are many different kinds of programming to serve different purposes, and one sort

of code doesn’t fit every situation. So we have programming languages for different

purposes.

We’re using the programming language C# (pronounced C sharp), because we want

to code video games in Unity, and that is the programming language Unity expects and

supports. If we instead wanted to code a web page like one you visit on the Internet, we

would use HTML and CSS – HTML defines the layout and contents of a page, and CSS

defines the appearance of a page. They’re not at all like C#. Using them is a very different

sort of experience, but one would still constitute it as programming.

We’ve taught computers how to read code written in different programming

languages and to translate those languages into the effects we desire. But because the

code we write is read by a computer, and computers are very technical things that cannot

think for themselves, we must follow what we call a syntax.

Syntax is, simply put, what you write in the programming language and what the

effect is. It’s the set of rules that the language follows. What the computer expects to see

is a very rigidly defined thing – albeit more so in some languages than others.

https://doi.org/10.1007/978-1-4842-5656-5_6#ESM

54

The computer knows only the syntax. It doesn’t really know how to guess or assume

what we mean to do. If we screw up the syntax even slightly, the computer will read our

code, see something it doesn’t expect, scratch its head, and tell us we’re wrong. And we

can’t tell it “Come on, you know what I meant!” because it’s just a computer.

Every programming language has its own syntax, its own rules for what you type and

what it does. A lot of them are quite similar to each other. For example, learn C# and you

can pick up Java with ease, because the languages share a lot of commonalities.

A lot of beginning programmers think very hard about what language they’re going

to learn. Maybe you spent a long time looking at your options before you decided on this

book, because you weren’t sure if you should learn C++ because it’s “more respectable”

or Python because it’s “beginner-friendly.”

But in truth, it’s not such a big deal which language you start with. It’s not so much

about learning the right language, it’s about learning how to program. Once you know

how to program, learning a language pretty much boils down to learning a syntax. And

syntax is just rules and keywords you memorize. It’s the easy part.

So the hardest part is learning the core principles of programming. It’s made harder

for beginners by the fact that they’re also learning the syntax of a programming language

for the first time, adding these technical and at times frustrating little rules they must

follow. This is why a common piece of advice for budding programmers is to pick a

language and stick with it. Avoid wasting time with hopping from one syntax to another,

learning to use this keyword instead of that one, and you free yourself to learn the

fundamentals of programming.

Because the fundamental concepts are so important, we’re going to spend a good

chunk of time really exploring those concepts. But we’re going to get our hands dirty and

write code ourselves while we do it, and later in the book, we’re going to start making our

example projects to put the fundamentals of programming into practice.

 What Code Does
So, if programming is writing code, and code is a language that computers understand,

what are we telling the computer to do with our code?

What we’re learning is referred to as object-oriented programming, or OOP. We

call it that because it’s largely to do with data, and the computer looks at that data as

“objects.”

Objects are data, and data can store other data inside it.

Chapter 6 programming primer

55

That data has some kind of type. It can be a simple type, like a number, text (which

is referred to as a string), or true-or-false value (which is referred to as a Boolean or, in

C#, just bool). Or it can be a type that we, the programmer, created ourselves to resemble

some more complicated piece of data.

When we declare a type ourselves, we give it a name – a descriptive one, depicting

what that type is supposed to be. Let’s say we’re making a type called Person.

Inside it, we might store information that relates to a person – things that every

person should have associated with them, a first name, middle name, and last name or

a day, month, and year of birth. These are all data that go “inside” a Person, often called

fields or members.

In a video game, a Person might also have a field of data for each piece of their

equipment – their gloves, boots, girdle, breastplate, and helmet. And these fields are

their own type of data: an Item data type, which stores its own fields for name, worth,

how much defense it provides, and so on.

A large part of programming is organizing your data and working with it. As

programmers, we must depict how to portray, for example, a single projectile fired by

an enemy in our game. We must alter its position (which is just data stored inside it) to

make it move through the air. Our game engine will help us with things like collisions,

but we must determine what happens if it does collide with another object, to make it

deal damage if it hits the player or simply break apart if it hits a wall. And then, when a

player takes damage, we must code the logic that subtracts from their health and make

them die if they’ve lost all their health. All of these functionality-related things, the

mechanics of a game, rely on programming to get them done. In order to program them,

you must ask a lot of questions about how they work and what sort of data you will need

to make available within them. Does the projectile pierce through enemies (a bool, true

or false)? How many enemies can it pierce through at most (a number)? How fast does it

move? How far can it travel before dissipating on its own?

 Strong vs. Weak Typing
Our programming language of choice, C#, is what we call a strongly typed programming

language. This means that any object we refer to will always have a type, and we cannot

change that type on the fly. We declare types ourselves or use built-in types that exist

by default in our programming language. To create an object, we must specify the type

we want to create, like a Person. The declaration of a Person will depict what members

Chapter 6 programming primer

56

it stores: age, name, and so on. Each of these members has a type as well: “age” is a

number, and “name” is a string.

This means that the type of an object is always known. It is clear what members it

should have. If we attempt to refer to a member, like “name,” it is clear that the member

exists. If we attempt to refer to a member that doesn’t exist on that type, we’ll receive an

error telling us that we’re not doing something correctly. Similarly, if we try to assign the

wrong type of data to a member, like assigning a number or bool to the “name” field of a

Person, we’ll get an error.

In this way, strongly typed languages police you about your data. You can’t add

or remove members for an object on the fly, because then it doesn’t match the type

anymore. You can’t assign the wrong type of data to a member. Everything follows this

structure, and if we ever stray from that structure, our code can’t run anymore.

Some programming languages do not concern themselves with data types. They

have basic types for numbers, strings, Booleans, and so on. More complicated types are

just “objects.” They store what’s in them, and that’s all you need to know. Want to make a

Person? Just make an object and give it a first name, middle name, last name, and so on.

As you might expect, these languages are referred to as weakly typed. They are more

flexible about how they handle data. You can assign new fields of data to existing objects

on a whim. You can assign a different type of data to a field than what it normally stores

and get away with it.

This can be an advantage or a disadvantage. Strongly typed languages are scarier.

Many argue that they are harder for beginners to start with. They’re not as approachable.

Your computer is going to yell at you (figuratively) more often about things you will

probably initially think are stupid and inconsequential. But these languages always

call you out. They keep you consistent, and they catch errors before your code even

runs. Before the code gets a chance to be performed, the compiler can tell you that it’s

incorrect, because it can see that you’re trying to do something that breaks the code – for

example, assigning the wrong type to a field or referencing a member that shouldn’t exist

in the given type.

These errors may otherwise have happened for a user in some niche situation you

hadn’t thought about, causing your game to glitch or crash. Strongly typed languages

may seem unnecessarily strict, but they’re just ensuring that everything is working as it

should.

We’re not going to get into the debate of whether strongly typed programming

languages are better than weakly typed ones. They aren’t better or worse, just different.

Chapter 6 programming primer

57

Each one has advantages over the other. If you learn other programming languages in

the future, you may run into these fundamental differences. The important takeaway is

that every object has a type and the members of that type cannot be changed on the fly.

This makes it important for us to carefully consider how we lay out our data.

 File-Type Extensions
As I said before, code is text that a computer knows how to read. There’s nothing special

about it. A code file is just a text file, and the only way software like Unity can know that

it’s meant to be a code file is because we give it the correct file-type extension.

This is the text coming after the period at the end of the file name. It’s a way for

computers to identify what a file is meant to contain. If our scripts were meant to be

mere text files, we’d have the extension “.txt”. That’s short for text.

Programming languages all have different file-type extensions. Usually, it’s the name

of the language – or, if that’s too large, some crumpled-up rendition of the name of the

language. For C#, it’s “.cs”, because the “#” symbol isn’t valid in a file name.

That goes at the end of our code files so that Unity recognizes them as code files

and treats them as such. Write some code, save it, name it anything you want, and then

add “.cs” at the end, and you have written yourself a code file. Often, the software you’re

working with will add the file-type extensions for you, usually without even showing you

them.

 Scripts
Unity refers to our code files as scripts. We don’t use Unity to actually write the code, but

Unity will detect when the code changes.

Every time we change the code and hop back into Unity, we’ll see a spinning icon in

the bottom-right corner of the screen. This means Unity has detected our changes in the

code and it’s now reading the code again to compile it.

Compiling, as far as we’re concerned, is the computer making sense of our code and

converting it to a machine-readable format. Luckily, we don’t have to concern ourselves

with this process.

Chapter 6 programming primer

58

All we really need to know is

• We change the code.

• Unity automatically notices the change.

• The icon appears in the bottom-right corner.

• The computer tries to make sense of our code.

• If it fails because we’re not following the rules properly, it tells us in

the Unity window known as the Console.

The Console window lists compiler errors in our code.

Whenever something isn’t right, an error is thrown at us, telling us what went wrong.

Sometimes they’re super useful and explicitly worded. Sometimes they’re really vague. It

just depends on the context.

Let’s start writing code. That’s the fun part, after all.

Go to your Unity Project window. Right-click the Assets folder and click Create and

then Folder. Name your new folder “Scripts.” Right-click our new Scripts folder, then click

Create again, and this time choose Script. Name the Script “MyScript”. In this case, Unity

automatically recognizes that it’s meant to be a code file and will add the “.cs” at the end

of the file without us knowing or seeing. We can tell that Unity recognizes the file as a

script by the icon it displays to the left side of the file name in the Project window: the

icon has “C#” on it.

Before opening the file, ensure that Visual Studio Code is your default code editor

for Unity. At the top left, click the Edit dropdown menu; then click Preferences. This

will pop up a Unity window showing you some options for the engine. On the left side

are categories you can click, and the settings available for the selected category will

show on the right side. On the left, click External Tools. The first option in the section on

the right will be “External Script Editor.” It will have a dropdown button you can click.

Click that and look for Visual Studio Code within the options. If it is not available, you’ll

have to click the “Browse…” option, which will open a prompt for you to search for the

executable of Visual Studio Code on your computer. This will be wherever you installed

it on your computer, so navigate there and select the executable for Visual Studio Code.

While you’re at it, ensure that the “Editor Attaching” option is checked; then exit the

Preferences window with the X button at its top-right corner.

Now you should be able to double-click the new script to open it in Visual Studio

Code.

Chapter 6 programming primer

59

Once our code editor opens the file, we’ll see what’s written in every Unity script

by default. This is the basic code you need to sort of “inject” your code into the Unity

engine – that is to say, to write code that runs at some point during the playing of our

game.

We’ll go into more detail about that later. In the next chapters, we’ll learn about

programming with C# in general.

 Summary
In this chapter, we learned the general concepts behind programming. It largely

deals with organizing data and defining the functionality of the game. It’s up to the

programmer to implement the mechanics of a game, to make it all work.

• Code is just text that instructs a computer on what to do.

• Programming languages declare a syntax that determines what we

write and what the effect is. If we fail to follow the syntax – even just a

little typo or a missing symbol – we’ll get errors.

• Scripts are text files containing our code. They’re how we get our

code into the Unity engine. We create them in the Project window

and open them in our code editor.

• If our scripts have errors in them, Unity will show us these errors in

the Console window. We won’t be able to play the game until the

errors are resolved.

Chapter 6 programming primer

61
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_7

CHAPTER 7

Code Blocks and Methods
We’re about to go over some universal rules of code syntax to learn the structure of code

files and to understand some fundamental terms and concepts.

 Statements and Semicolons
The term statement refers to what is essentially a single instruction of code. Different

sorts of statements exist to do different things.

A statement will end in a semicolon “;”. This tells the computer where one statement

ends and the next is to begin. Some languages don’t use semicolons at all and instead

allow the end of a line to signify the end of a statement. The advantage of using

semicolons instead of line breaks is that we can make one statement span multiple lines,

because the computer isn’t reading until it hits a line break, it’s reading until it hits a

semicolon. So if a statement becomes large and unwieldy, we can format it however we

want – that is, we can break it into multiple lines.

Certain statements expect a code block to come after them. In this case, you do not

write a semicolon to end the statement.

 Code Blocks
In programming, code follows an almost hierarchical structure, where some code “goes

in” other code. Code can go inside that code too, like boxes within boxes within boxes.

We call them code blocks. In C#, they are resembled by a set of curly braces: “{”

to begin the block and “}” to close the block. Anything between those two symbols is

considered “in” that block of code.

In the default code of our new script, you’ll see several code blocks (i.e., sets of

curly braces) already declared. You’ll also see a bunch of words and symbols you don’t

understand. That’s fine. It’ll make sense soon enough.

https://doi.org/10.1007/978-1-4842-5656-5_7#ESM

62

As we said before, statements which have a code block coming after them don’t end

in a semicolon. The start and end of their code block is like their semicolon: they end

when their code block ends, so to speak. When a statement expects a code block after it,

we refer to it as “prompting a block.”
Code blocks are used to create a section of code that’s associated with the statement

that came before it. Often, this block of code only runs in certain situations. Note that

when we say that code runs, that means it happens, or gets performed, or “does its

thing.”

The easiest way to describe it, in my opinion, is by giving some examples of

statements that prompt a code block and what they do with the code inside that block.

We’re going to learn about these in greater detail later, but for now, they’ll help you

understand why code blocks are so widely used and important:

• The “if” statement will evaluate a condition, checking if it is true or

false. The “if” statement prompts a code block after it. That code is

the code which will only run if the condition evaluates to true.

• The “else” statement can be used after the code block of an “if”

statement ends. The “else” statement itself prompts a block of code.

That code will only run if the “if” condition evaluated to false. In

other words, if the “if” code block did not run, the “else” statement

provides a code block that should run instead.

• The “while” statement is a loop. It evaluates a condition, like an “if,”

and prompts a block. It will evaluate the condition, and if it is true, it

will run the code in the block; it then repeats, checking the condition

again and running the code again if it is true, on and on until the

condition is false.

• The “class” statement declares a data type (like the Person data type

we were talking about before). Unlike the “if,” “else,” and “while”

statements, the code inside a class isn’t necessarily “run” on the

spot. Rather, the code inside is just declaring fields (like “first

name” or “last name”) that the data type stores inside it. It’s all just

a declaration, the configuring of a template that we plan on using in

different parts of our code, and the code block is used to wrap up all

the code that belongs to that “class” statement.

Chapter 7 Code BloCks and Methods

63

As I said, we’ll learn more about these types of statements later, and we’ll write them

ourselves to see how it’s done. But for now, that should make it clear why we use code

blocks: to create sections of code that either run only in some certain condition or that

“belong to” a certain statement.

 Comments
You’ll notice some statements in the default script look like plain old English sentences.

Notably, they are these statements:

// Start is called before the first frame update

[...]

// Update is called once per frame

These are known as comments. A comment is a line of code that doesn’t run. It’s a

note that we write to document what some code does or why it does something. They’re

notes that the programmer writes to themselves or to other programmers who might

also read their code. They’re super useful, but easy to underestimate. You might think

you don’t need comments, but then four years later, you read the code you wrote and

have no idea why you made certain decisions. Or you find that the comments you wrote

are just fluffy nonsense that don’t help you understand what’s happening (which sucks

because you have no one to blame but yourself).

Comments start with two forward slashes “//”. It pretty much tells the computer

“Don’t read this, it’s not for you.” We can write whatever we want there, and the

computer just ignores it. If we wrote comments willy-nilly without using the forward

slashes, the computer would think it was meant to be code and would throw an error.

Two forward slashes are for single-line comments. They end as soon as the line

breaks.

We can also make multiline comments. They start with “/*” and end with “*/”.

Everything between will be a comment, even the line breaks, which lets you write a large

comment across multiple lines without typing a new “//” for each line:

/*

This is a comment

that spans

multiple lines.

*/

Chapter 7 Code BloCks and Methods

64

Comments can also be used to temporarily disable code. For example, you can wrap

a large chunk of code in a multiline comment to stop that code from running and then

later come back and take out the “/*” and “*/” symbols to make the code run again.

This is often referred to as “commenting out” the code. It’s useful in some situations for

testing things, but it’s bad practice to leave a bunch of commented-out code lingering

in your code because you think you may need it one day. If you don’t need it anymore,

cut it out. If you aren’t using it right now but may need it again one day, back it up

somewhere else.

 Methods
For now, we’re going to skip over the first line of code and focus on the ones within the

first set of curly braces:

// Update is called once per frame

void Update()

{

}

This is a method. Some languages would call it a function instead, and a lot of

people use the two terms interchangeably.

Methods are a very important part of programming in C# and in many other

languages too.

To put it simply, a method is a named block of code that can be referred to by name

to run the code within, anywhere else in your code, any number of times. Running the

code within is known as calling the method.

You can reuse a block of code by making it a method and then calling it all over the

place. This prevents the need of copying and pasting the same code to multiple places

in your project when you need to do the same chunk of code in many different places.

This also means if you ever need to change the code within the method, you only need to

change it in one place, rather than having to copy and paste the code in the many other

places you repeated it.

It’s important to note that declaring a method is just that: declaring one, not running

one. If you write a method, but never actually call it, then it might as well not exist in

your code at all, because it does nothing. It’s never used.

Chapter 7 Code BloCks and Methods

65

So how is a method declared? What is this “void Update” method that Unity declares

for us? Is it named “void,” or is it named “Update”?

We’ll go into much more detail on the “void” part down the road. For now, know that

it’s a special keyword that you’ll learn about later.

The “Update” that comes after the “void” is the name of the method. The name is,

of course, what we use to refer to the method when we want to call it. But this method

is declared by default in a Unity script because the Unity engine itself will be calling the

method.

As the comment says, “Update is called once per frame.” In other words, Unity will

constantly call Update for us, which means the code within the method is going to be

running quite often. We aren’t expected to call the method ourselves. We just let Unity

do that for us.

Note If you’re interested in game programming, you might know what a frame
is already. It’s a single calculation of the game logic run by the computer – a
small bit of game time is played out each frame. Games are constantly updating:
running their physics and other such game logic in a small increment and then
rendering again to show those updates on the screen. these increments are the
frames. You’ve likely heard the term frames per second (FPS) or framerate before.
that’s the number of frames, or updates, the game gets per second. each one will
inch the game forward in time by a small increment. If the frames per second is
too low, the game may look slow or choppy – this happens when the computer is
taking too long to run all the operations it needs to each frame. When the Fps is
sufficiently high, it looks comfortable and smooth, so we can’t tell that the whole
experience is being brought to us in many tiny updates.

So let’s finally write some code ourselves to make something happen when we play

our game in Unity. If you skipped the last chapter, its last few paragraphs went over how

to create a script and open it in our code editor, so refer back there and come back when

you’re done.

The easiest way to get a result is to call a method ourselves, one that logs a message

to the Console window. Just to prove that the Update method really is being called

constantly, I’m going to give you a line of code to write and explain what it means later.

Chapter 7 Code BloCks and Methods

66

In your “MyScript” file, write this statement within the code block of the Update method

(in other words, between the curly braces):

Debug.Log("Hurray!");

Then, save your script with Ctrl+S or by going to File ➤ Save in the top-left corner of

your code editor.

Navigating to Unity, we’ll see the spinning icon in the bottom-right corner, depicting

that Unity is chewing on the changes we made to our code and testing the code for errors

again. If you don’t see it, then it probably happened too fast for you to catch it.

There’s one more thing we need to do before we play our game to see the results. As

we mentioned previously, Unity uses what we call scripts to get our code into the game,

and scripts are components, so they can be attached to GameObjects. We wrote our code

inside a script, of course – which is just a code file in our project. Now we have to add the

script as a component to some GameObject in our scene.

This is essentially “creating an instance of our code.” We can add the same script to

hundreds of GameObjects in our scene, and each script will have its Update method

called once per frame. Each one is a separate instance with its own data associated with

it – although we haven’t really declared any data for it yet.

Adding the script as a component is easy. Just left-click the script file in the Project

window, and then drag and drop it onto a GameObject in the Hierarchy window or onto

a GameObject in the Scene view. If you don’t have any GameObjects available, create

anything, like a simple Cube or an empty GameObject, and add the script to it.

Once you select the GameObject, you’ll see in the Inspector that it now has an

instance of our script listed as one of its components, shown in Figure 7-1.

Figure 7-1. An empty GameObject with a MyScript component added

Chapter 7 Code BloCks and Methods

67

With that in place, press the Play button at the top of the screen. This will start our

game (although it isn’t much of a game right now). While the game is running, all the

scripts we have in the scene will get updated, so we’ll see the message “Hurray!” being

logged many, many times over in the Console window while the game is playing. Stop

playing by pressing the same button again.

Isn’t that exciting? You’ve written your first little line of code and gotten a result out

of it in your engine.

 Calling Methods
Now let’s examine what we’re actually doing with this Debug.Log call we’ve placed in

Update.

First off, I’ll disclaim that this is simply a method call. We spoke about it before: a

method is declared somewhere and assigned a name, and then other places in your code

can call it by name to run the code inside it.

But what is Debug.Log? Is that the method name? Why’s there a period in it?

The period is very important in programming. So to speak, a period “reaches into”

an object, allowing you to access fields inside that object. So the method isn’t named

Debug.Log. It’s named Log, but the method is a field inside an object called Debug. So

we’re referencing Debug and then “reaching into” it to reference the method Log.

Now you’re probably wondering what Debug is. Maybe you don’t know what

“debug” even means. It’s a term that programmers use a lot – it pretty much means “find

and fix errors in code.” To debug code is to figure out why something is going wrong and

fix it so it’s now going right.

But what is the Debug object? Where did it come from and what else can we grab

from it? We haven’t discussed this yet, but it’s called a class. It’s a concept we’re going

to get into more later. But for now, the easiest way to describe it is that the people who

coded Unity wrote up this Debug object and gave it some useful methods and fields so

that we, the consumers of the engine, can use them to help us debug our game. There are

other useful features in there too, like the Debug.DrawLine method, which lets us draw

a colored line in the world, from one point to the other. You might use that to visualize

something happening in your code to confirm whether it’s working how you expect.

But enough about that. We’ll learn more about it later. Let’s move on.

Chapter 7 Code BloCks and Methods

68

To call a method, you reference it (by typing its name, Log), and then you place a set

of parentheses (). If you don’t place parentheses, you’re not calling the method. You’re

just referencing it – pointing at it, so to speak.

After the parentheses, we supply data in the form of a string. We spoke briefly about

this in the last chapter. A string is a basic data type. It represents text. It’s called a string

because it’s considered “a string of characters,” where each character is a single symbol/

letter/number.

A string is an elementary form of data that you’ll use all the time in programming:

names, descriptions for things like items or spells, dialog between characters in your

game, and so on.

To write a string, we don’t just type whatever text we want. Then the compiler would

read it as code, and of course, it would throw an error when it fails to make any sense of

what we wrote. We use a set of quotation marks “” to tell the compiler that we’re writing a

string. Anything between those quotation marks is the text that the string represents.

You can probably guess why we write this string where we do. You saw it already – it

is the text that’s being logged in the Console by the Debug.Log method call.

This is the functionality of what we call parameters. Parameters are named fields

of data that we “pass” to the method when we call it. When a method is declared, it can

declare parameters. Each one has a name and the data type it stores. A method can have

any number of parameters, or it can simply have none. Within the method declaration –

that is, the code block that the method runs when called – the parameters can be

referenced to get their value and make some use of it.

In this case, the parameter is a string resembling what we want to log to the Console.

The purpose of parameters is to allow a method call to be configurable, so to speak.

Each call can accomplish something a little different, without requiring different method

declarations with different names.

For example, let’s say you had an Enemy script, and you gave it a method called

TakeDamage. This method makes the enemy take damage.

But how much damage?

That can be decided by a parameter. It would be a simple number value. Whenever

you call the method, you’re expected to give it the parameter. You can make them take

5 damage, 20 damage, or whatever you want, just by changing the value you give as the

parameter when you call the method.

This allows the same TakeDamage method to be called all over your code, for

different results, instead of you having to make different methods that deal different

amounts of damage, which would be terrible in all sorts of ways.

Chapter 7 Code BloCks and Methods

69

 Basic Data Types
We just learned about how the string data type was supplied as our parameter value.

Let’s go over the basic data types and what the purpose of each one is, since we’ll be

using them quite a lot.

The major basic data types you’ll be working with as a C# programmer are int, float,

bool, and string.

int and float are number values, but there’s one extremely important distinction

between them: float stores a number value that can have a fractional value (a decimal

point), while int does not.

That is to say, an int can be 4 or 5, but it cannot be anything between – like 4.2 or

4.68. A float can be 4 or 5 or 4.2 or 4.68 or whatever else.

string is text, as we just covered. It must be surrounded with quotes “”. You may use

single quotes ‘’ as well if you would rather, but it’s important to note that a single symbol

wrapped in single quotes, such as ‘c’ or ‘1’, is considered a different data type: char, which

is short for “character” – a single character. A string is “a string of chars,” which pretty

much means one or more characters arranged together – simply put, text.

bool is true or false. Those are the only two values a bool can hold. Type false or true

and you’ve created a bool value. You might use this value type as a field representing

whether or not a player is dead or an item can be sold at the shop or an unlockable

ability has been learned.

 Returning Values with Methods
Sometimes, you want to call a method to get some piece of data back from the call, to use

it in the code which called the method. Many methods are intended to be used this way.

Every method must specify a return type, which is the data type that the method will

return.

The keyword “void” is used to specify that a method returns nothing. Call it, and you

get nothing back. It’s used to do something, not to return something. The Debug.Log

method we’ve been using is an example of this. Its purpose is just to log a message, so it

need not return anything.

Methods can return basic data types (like int, float, string, bool, etc.) or data types

declared by programmers. The Unity engine has many data types declared, and many of

its built-in methods return instances of these data types. For example, a method which

Chapter 7 Code BloCks and Methods

70

checks for collisions might not only return “true” if a collision was found and “false”

if a collision was not found, but rather a specific data type with information about the

collision: where it occurred along the tested area and information about the object it

collided with. It’s data that we can then use to do whatever we’re doing – navigate around

the collision or prevent an entity from moving to avoid causing a collision.

 Declaring Methods
Now that we’ve learned how methods work, let’s learn how to declare our own. We’re

going to start with simple methods that are pretty much useless, just to demonstrate the

syntax used to declare methods – that is, what to type and why to type it.

A method declaration always starts with the return type, then followed by the

method name and then a set of parentheses. As you’ve just learned, the “void” keyword

specifies that a method returns nothing. Now you know the full syntax of the Start and

Update methods:

void Start()

{

}

void Update()

{

}

They are really quite simple now that we’ve learned how methods work: just a basic

method that doesn’t return anything.

Let’s declare a method that logs our message for us. We must write it in the same

code block that the Update and Start methods are written in. Whether above, below, or

between them, it doesn’t matter:

void LogMyMessage()

{

 Debug.Log("Hurray!");

}

Chapter 7 Code BloCks and Methods

71

Now, we can change our Debug.Log call in the Update method and, instead, simply

call the LogMyMessage method and supply no parameters. Remember, although we

won’t be giving any parameters, we still need an empty set of parentheses “()” to signify

that we are calling the method, not just referencing it (or “pointing at it”):

void Update()

{

 LogMyMessage();

}

Now if you save the script and run your game, you should notice the “Hurray!”

message is logged just as you would expect. Of course, we are pretty much needlessly

complicating the process by doing this, but once again, this is for demonstration

purposes. We’ll make proper, clever use of methods later, once we’ve fully grasped the

concept and worked with it.

Let’s learn how to use parameters. As you’ve learned, when we supply parameters

when calling the method, they go between the parentheses. You can probably guess

where we declare parameters for the method: in the parentheses after the method name,

in its declaring line:

void LogMyMessage(/* parameters go here...*/)

Each parameter is declared first by typing its return type and then its name. You can

declare any number of them, but each one must be separated from the next by a comma.

For example, let’s say we wanted to declare that “TakeDamage” method we spoke of

earlier. We want a parameter for the amount of damage dealt, and let’s say we also want

a parameter for the “penetration” stat of the damage. The damage is a float, because

we allow damage to have a fractional value. The penetration is an int, because it’s a

character stat and it would look a bit weird if we had some odd fractional amount for it.

We would declare it like so:

void TakeDamage(float damage, int penetration)

Armed with this knowledge, you can probably figure how to declare our message-

logging method with a parameter:

void LogMyMessage(string message)

We declare a parameter, using the type “string” and naming it “message.”

Chapter 7 Code BloCks and Methods

72

Note always try to find a fitting name for your parameters. It’s the message
we’ll be logging, so we name it “message.” It could be funny to name it something
like “porridge” or “heythere,” but a good name goes a long way in writing clean,
readable code. In fact, proper naming can play a big part in making code that is
clear enough to make writing comments for it redundant – code that, as they say,
“comments itself.”

So how do we use the parameter within the method code? You can probably guess –

by referencing it or pointing at it, which is as simple as typing its name. Wherever we

type the name of the parameter, we can imagine that the computer substitutes that name

for the value stored in the parameter – which will be the string supplied whenever the

method is called. We simply need to cut out that string we wrote and write the name

instead. That means cut out the string quotes too – remember, if we left them, we’d just

be logging the actual name of the parameter, “message,” because the compiler will see

the quotes and think “This is text, not a reference to a parameter.”

We end up with this:

void LogMyMessage(string message)

{

 Debug.Log(message);

}

Now of course, we have produced an error. We need to give the parameter when we

call the LogMyMessage method, since we cut the parameter out earlier. If you save the

code now and navigate to the Unity editor, you’ll see an error in the Console explaining

the terrible mistake we’ve made – such a heinous crime, in fact, that our program falls

apart and we can’t even play the game anymore until we fix the error. Such is the life of a

programmer.

But the fix is easy. Just change the Update method, again, and supply a string as the

“message” parameter in our call to LogMyMessage:

void Update()

{

 LogMyMessage("Hurray for parameters!");

}

Chapter 7 Code BloCks and Methods

73

 Operators
Wherever we are expected to supply data in our code – for example, as a parameter in

a method – we can use what we call operators to perform equations. Operators are

symbols, like a plus “+” or minus “–”, which combine two data pieces and return them

in some modified state. The most obvious example would be simple math equations:

adding, subtracting, multiplying, or dividing numbers.

A very important operator is “=”. Often called the assignment operator, it can be

used to assign a new value to some named piece of data. For example, we can reassign

the value of our parameter “message” to something else if we want to, by typing the

name “message” and then using the “=” operator and then typing a new string value to

assign:

void LogMyMessage(string message)

{

 message = "Something else.";

 Debug.Log(message);

}

This directly modifies the value of “message” so that when we log the message with

Debug.Log, it is “Something else.” instead of the value that was given in the parameter

call (essentially making the parameter useless, for demonstration purposes).

Different data types can be operated on in different ways. For example, a string can’t

be divided, subtracted, or multiplied – but it can be added to another string with the “+”

symbol, essentially gluing the left-side string to the right-side string, returning it as one.

For example, we could prefix the message we were logging by typing out a string and

then adding the value of “message” to it with a “+” operator:

void LogMyMessage(string message)

{

 Debug.Log("A message is being logged: " + message);

}

Chapter 7 Code BloCks and Methods

74

If we wanted, we could instead modify the “message” value to prefix it and then log

it afterward, using a mix of both the “=” operator and the “+” operator. Take note that we

are referencing the value of “message” while assigning a new value to “message” itself –

of course, the old value is what we’re getting from the reference:

void LogMyMessage(string message)

{

 message = "A message is being logged: " + message;

 Debug.Log(message);

}

The operators for common mathematics are

+ addition

- subtraction

* Multiplication

/ division

Many operators can be used in a single equation, and we can also use sets of

parentheses “()” to change the order of operators occurring. As you may already know,

if no parentheses are present in an equation, division and multiplication will always

happen first, from left to right; afterward, addition and subtraction will occur.

As an example, this equation

A + B * C

will naturally flow like this

A + (B * C)

because the “*” and “/” operators will always occur first, in a left-to-right order, and then

the “+” and “–” operators will occur after – once again, in a left-to-right order. However,

we could write a set of parentheses around “A + B” to change the order of operators:

(A + B) * C

Chapter 7 Code BloCks and Methods

75

By grouping the “A + B” portion of the equation into its own set of parentheses, we

have changed it so that the “*” operates second, on the result of “A + B,” instead of first,

on “B” alone.

 Summary
Now we’ve learned how methods work, how to declare them, how to declare and use

parameters, how to return values with methods, and how values can be provided in

more complicated ways using operators and sets of parentheses. Next, we’ll learn how to

incorporate some logic into our code.

Chapter 7 Code BloCks and Methods

77
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_8

CHAPTER 8

Conditions
We’re about to learn how to use the bool (true or false) data type to check conditions – in

other words, to run code only if some value evaluates to true.

 The “if” Block
The “if” block is a means of evaluating a condition and, if that condition is true, running

the code inside the “if” block. The code is somewhat self-explanatory: we type the

keyword “if,” then a set of parentheses () in which we type the condition to test, and then

a code block {} to run if the condition is true:

if (/* Conditions go here */)

{

 //This code only runs if the condition is true.

}

A condition is simply some value (often called an expression) which results in an

instance of the type bool – as we’ve established, the bool type can only store true or false

as its value.

Let’s exhibit conditions with an example a bit more interactive than our previous

ones. We’re going to check for the user pressing a button, using a built-in Unity method,

and log something when the user presses the button.

The method we’ll be using is Input.GetKeyDown. This is a method which checks if

the user has begun pressing down a key at just this moment. If so, it returns true. If not, it

returns false. An alternate version of this method, called Input.GetKey, checks not if the

key was just pressed down, but if the key is currently being held down. They both take a

single parameter, which specifies which key we want to check. We can check any key on

your average keyboard: letters, numbers, or function keys (like F1, F2, etc.), whatever we

want.

https://doi.org/10.1007/978-1-4842-5656-5_8#ESM

78

To effectively use a method like this, we need to call it from the Update method. As

we’ve said before, the Update method is constantly called. To put it more specifically, it’s

called once per frame – so once every time our game logic is being run by the computer

to keep the game moving forward in time.

Some games limit framerate to a certain cap, like 60 frames per second (roughly .016

seconds between each frame). It won’t go higher than that, even if it could. Other games

do not use this tactic and simply run the code as fast as the computer can run it, which

is becoming more popular. For a game like ours, with nothing rendering to the screen

and no real game logic being calculated each frame, even a low-end computer should be

able to run many frames per second. As soon as an update occurs after the user presses

the key, the Input.GetKeyDown function will return true – right there in that next Update

call. Until then, it’ll be returning false, likely hundreds of times per second.

Let’s give it a whirl. Write this code for your Update method:

void Update()

{

 if (Input.GetKeyDown("c"))

 {

 Debug.Log("C key was pressed.");

 }

}

Save the code and go play the changes. Press the C key on your keyboard, and you

should see the message logged in the Console window. It’ll be logged once each time

you press the C key.

Note that there’s a Collapse feature to the Console window that can be toggled with

the button visible in the top-left corner of the Console window. Clicking the Collapse

button will turn it on or off. While it is on, all identical messages are “collapsed” into a

single entry in the Console, with a number on the right side of the entry denoting how

many times that exact message has been logged. If this is on, you may think that the

message is only logging once, when you first press C, but if you take a closer look, you’ll

notice the number is going up by 1 per press. Toggle the Collapse feature off, and you’ll

see all the individual entries instead.

Collapse can be useful to turn on if you happen to get in a situation where lots and

lots of the same messages are being logged, flooding the Console window and making it

difficult to read individual messages.

Chapter 8 Conditions

79

The condition coming after an “if” block is just some expression (a value, so to

speak) which results in a bool type – true or false. We’re providing this in a very simple

way: by calling a method which returns a bool.

It’s worth mentioning that you can shorten the “if” we wrote to make the code a

little smaller if you want. Whenever you have an “if” with just one line of code inside

it (one statement, ending with a semicolon), you can simply remove the curly braces.

The “if” corresponds to the next statement coming after it; then it automatically ends

immediately after that statement. If you ever want to add more statements to an “if”

declared this way, you’ll have to go and add the curly braces:

if (Input.GetKeyDown("c"))

 Debug.Log("C key was pressed.");

If you’re doing it this way, you should always make sure to indent the statement

coming after the “if,” as we have in the preceding code. It’ll still work if you don’t, but the

indention makes it visually obvious that the statement is associated with the “if.” If you

use the same indention for the “if” and its contained statement, any other programmers

who must look at it will probably come after you with torches and pitchforks. I know I

would.

 Overloads
In C#, we can declare different “versions” of the same method, but with different

parameters. These methods are called overloads. Their purpose is to offer varying

means of calling the same method. The Input.GetKeyDown method has two overloads –

two ways of being called. They do the same thing and have the same name but take a

different type for their parameter. The first one takes a string, which should contain

the character of the key to check for. The second one takes a custom data type called

KeyCode, declared by Unity, which we’ll learn about in a second. We can supply either

data type when we give our parameter, and it will work and run quite the same way.

Overloads are often used to provide more specific versions of functions containing

extra parameters to further customize how the function works or versions which use a

different data type or even return a different data type. A common example would be

math-related methods, which often have an overload that works with the “int” data type

and one that works with “float” instead. One overload will return int and/or take int

parameters, while another returns float and/or takes float parameters.

Chapter 8 Conditions

80

 Enums
The KeyCode data type is what we call an enum. An enum is a simple sort of object for

the most part, although they have some advanced features that we won’t get into just

yet. They are essentially a set of names that correspond to number values. Rather than

looking at these number values as meaningless numbers, we look at them by their names

to make things much more readable. A common basic example of when you might

use an enum is to resemble a season. We could use an int and say that 0 is spring, 1 is

summer, 2 is fall, and 3 is winter. Or we can declare an enum called Season, which can be

one of four values: Season.Spring, Season.Summer, Season.Fall, or Season.Winter.

Declaring such an enum is pretty simple:

//We start with the 'enum' keyword, then provide the name 'Season':

enum Season

{

 Spring, //Inside, we place a comma-separated list of possible values.

 Summer,

 Fall,

 Winter

}

The KeyCode enum has many more options than our example, but serves the same

purpose: rather than assigning a number code to each key and having to refer to some

chart to see which number to use for which key, we use an enum and type out the actual

name of the key. Internally, the computer converts the name to a number and deals with

it like that. But we get to see what we actually mean, not some meaningless number.

Rather than, for example, the “A” key being 0 and “B” being 1, we simply type KeyCode.A

and KeyCode.B. KeyCode contains a value for each key you might find on a keyboard,

from letters to numbers to arrow keys and symbols.

This is a somewhat cleaner means of supplying a key to an input function. If the

KeyCode you type compiles with no errors, then you’re good. All the options you can

choose are clearly defined. With a string, however, there’s the danger of passing an

invalid string to it. For example, we could type “page up” instead of “page up” – the only

difference being that we accidentally put an extra space in the first one. If we typed the

name incorrectly with the KeyCode, our code would throw an error leading us right to

the problem. But if we mistype the string, either it will fail quietly and always return false

Chapter 8 Conditions

81

(the worst possible outcome) or it will throw an error only at runtime when the code is

reached, depending upon how the method is implemented.

Let’s switch our usage of the Input.GetKeyDown function to use KeyCode. Just

replace the “c” string parameter with KeyCode.C:

void Update()

{

 if (Input.GetKeyDown(KeyCode.C))

 {

 Debug.Log("C key was pressed.");

 }

}

Save and play, and the changes shouldn’t even be noticeable. Everything should

behave just as it did before.

Enums work well in many situations like this, where one might otherwise think to

use some number code or a handwritten string. Usually, it’s in situations where various

options or settings are available and a value is expected to be one of those things. Some

game-related examples would be the class or profession of a character (warrior, archer,

cleric) or the type of an item (armor, weapon, consumable, material).

 The “else” Block
Now that we’ve learned how to use an “if” block, let’s take a look at a related block,

the “else.” You might be able to guess what it does. It’s a way to provide a block of code

that will run in the case where the “if” condition returns false, not true. It’s code to run

instead of the “if” block code.

An “else” block is declared simply by typing the “else” keyword after the closing curly

brace “}” of an “if” block. Then, you write a block for the contents of the “else” block.

To demonstrate, let’s change our Input method call from GetKeyDown to GetKey.

Once again, the only difference is that GetKey will return true so long as the key is held,

while GetKeyDown will return true once on the frame the key was first pressed and will

not return true again until the key is released and then pressed again.

Chapter 8 Conditions

82

So let’s log a message when C is held and a different one when it is not held – notice

that we omit the curly braces for style points, as we established earlier:

void Update()

{

 if (Input.GetKey(KeyCode.C))

 Debug.Log("C is held");

 else

 Debug.Log("C is released");

}

Of course, with the rate at which Update is called (likely hundreds of times per

second), you’ll see lots and lots of messages appearing in your Console, all the time.

That’s expected. The important part is that the message changes when we hold C.

 The “else if” Block
If you want to check for a different condition to run some other code if the last “if”

returned false, you can use an “else if” block. It’s just an “else” block, except it has its own

condition attached to it as well.

We might use it to check if a different key is being pressed:

void Update()

{

 if (Input.GetKey(KeyCode.C))

 Debug.Log("C is held");

 else if (Input.GetKey(KeyCode.D))

 Debug.Log("D is held");

 else

 Debug.Log("C and D are both released");

}

In this case, we check first if C is held, and log a message if it is. If it’s not held, we

then check if D is held, and log a message if it is. Otherwise, if neither is held, we log a

different message.

Chapter 8 Conditions

83

Notice that we can still use the “else” afterward. We can put as many “else if” blocks

between the first “if” and the “else” as we want. And, of course, you don’t need to have

an “else” at the end – you can omit it if you don’t need it.

When you chain many “else if” blocks together, remember that as soon as one of the

conditions passes, any “else if” blocks below won’t have their condition checked at all.

The first “if” or “else if” that evaluates to true will run its code block, and after that, all the

rest in the same chain are ignored. That means if you hold down both C and D, you won’t

get both “C is held” and “D is held” messages being logged at once. You’ll only get “C is

held” messages, because it’s topmost in the chain of conditions – as soon as it evaluates

to true, the rest of the chain is jumped over and ignored.

 Operators for Conditions
As we said, the condition we’re providing after an “if” is just a value – an expression, as

we call them. They’re no more than an equation that results in a bool value, true or false.

It can simply be “true” or “false.” Or it can be a method that returns a bool, like Input.

GetKeyDown, among many others.

But this also means we can use operators to form more complicated conditions.

Remember, an operator is a symbol which takes some value on its left and some value

on its right and operates on both values, returning some new value as a result. There

are a handful of operators which return bool values – to ask if one value is greater than

another or equal to another and so on. Let’s review these operators.

 Equality Operators
The “==” operator (two equals symbols, not one) simply asks, “Is the value on the left

equal to the value on the right?” It’s not just one “=” because that’s the assignment

operator, which we used before to assign a new value to an existing object. To check

equality, we use “==”.

An easy example is to compare some numbers. If the numbers are equal, “true” is

returned. If the numbers are not equal, “false” is returned. A condition of “5 == 5” will

always return true. Of course, that’s somewhat useless – you’re much more likely to,

for example, check if your player is at maximum health: “currentHealth == maxHealth”

would return true if they are and false if they are not.

Chapter 8 Conditions

84

You can compare strings too. They must be exactly equal, or “false” will be returned,

even if a single letter is capitalized in one and not in the other or a single space is

missing.

You can even compare bools too, which can result in some unnecessary fluffing of

already-functional code. An example is that some coders will add an unnecessary “==

true” after a bool value in their “if” block. We could’ve done this ourselves:

if (Input.GetKeyDown(KeyCode.C) == true)

This is redundant because we’re already getting a bool from the method call. It’s

already going to make the condition pass if it returns true. The operator isn’t changing

that. However, we could check if the key was not pressed down, essentially “inverting the

condition,” by asking if it is “== false”:

if (Input.GetKeyDown(KeyCode.C) == false)

If the key is pressed, the method returns “true,” which means the condition evaluates

to “true == false.” Of course, this means the operator will return “false” – the value “true”

is not equal to “false.” We are left with the result of that operator, “false,” so the “if” does

not pass and the code inside does not happen.

If the key was not pressed, the method returns “false,” which means the condition

evaluates to “false == false.” Now, since the value “false” is indeed equal to “false,” the

operator will return “true.” Since it returns “true,” the “if” passes and the code runs.

There’s also an operator which does the opposite of “==”. The “!=” operator,

sometimes called the “inequality operator” (I just call it “false equals” in my head), will

return false if the two given values are not equal. You can do the same thing in different

ways by using one operator over the other – these two are the same:

if (Input.GetKeyDown(KeyCode.C) == false)

if (Input.GetKeyDown(KeyCode.C) != true)

In one case, we return true only if the left-hand value is equal to false. In another, we

return true only if the left-hand value is not equal to true – which is just a roundabout

way of doing the same thing. Both “if” blocks will only occur if the key was not pressed

on that frame.

There’s yet another way to flip things around. The exclamation mark can be used

before a bool value to flip it – if it’s true, it becomes false, and if it’s false, it becomes true.

We can place an exclamation mark “!” before the method call to flip the value it returns.

Chapter 8 Conditions

85

So if you want to check that a key is not held down, you can do it either of these ways:

if (Input.GetKey(KeyCode.C) == false)

if (!Input.GetKey(KeyCode.C))

In the first case, we simply use the equality operator “==” to check if the value is

false. In the second case, we insert a sneaky exclamation mark before the method call to

flip the value, such that if the key was not held, the method would return false; then that

value is flipped to true, and the condition passes.

 Greater Than and Less Than
The “>” and “<” operators check if one value is higher or lower than another,

respectively. The “>” (greater than) returns true if the value at its left is greater (higher)

than the value at its right and false if it is not. The “<” (less than) returns true if the value

at its left is less (lower) than the value at its right and false if it is not.

These two operators have counterparts: “>=”, greater than or equal to, and “<=”, less

than or equal to. They simply do the same thing but will also return “true” if both values

are equal.

 Or
The “||” operator is often just called the “or” operator. Some languages even use a

keyword “or” instead of the symbols. You probably never use this symbol. It’s called

a vertical bar. It almost looks like a lowercase L, but it’s not. On a standard QWERTY

keyboard, it’s made with the key above Enter (the backslash) while holding Shift.

You’ll use this operator quite a lot. Technically speaking, it takes a bool on its left and

right sides and returns true if one or the other is true. In other words, if either one of the

conditions is true, it will return true. If both are false, it will return false. To sum it up, it

just means “or.” You use it to chain several different conditions together. For example,

if you have a KeyCode enum stored in a parameter “key”, you might check if it’s one of

several different keys:

if (key == KeyCode.A || key == KeyCode.B || key == KeyCode.C)

Now we’re mixing operators. We’re using the “==” operator to see if the “key” value is

equal to a certain KeyCode value. This operator will give us a bool, so we can use it as a

left-hand and right-hand value to the “||” operator, just as it expects.

Chapter 8 Conditions

86

If it looks confusing, you can separate the functionality with extra parentheses

(although that would be somewhat redundant):

if ((key == KeyCode.A) || (key == KeyCode.B) || (key == KeyCode.C))

This makes it more noticeable how the “||” operators will be acting on the results of

the “==” operators.

 And
The “&&” operator (two ampersands) resembles “and”. It takes a bool on its left and right

sides and only returns true if both of those bools are true. If either one is false, it returns

false instead. This makes it useful for just throwing multiple conditions into a single “if”

instead of making separate, nested “if” blocks for each one.

A simple example of its use would be to check if a number is within a minimum and

maximum range:

if (value >= 3 && value <= 6)

This checks if the given value (which should be a float or int) is between 3 and 6. To

read it out: If “value” is greater than or equal to 3 and “value” is less than or equal to 6.

 Summary
In this chapter, we learned the following:

• How to use an “if” to run a block of code only if a condition evaluates

to true.

• How to chain “else if” and “else” blocks with an “if” block. Remember,

no more than one block in the chain will ever run at a time!

• An “enum” is a simple collection of names that can be used to

identify a set of options instead of using number codes which give no

useful context or strings which are prone to mistyping errors that the

compiler won’t catch for us.

• How to use the Input.GetKey and Input.GetKeyDown methods

with the built-in KeyCode enum to test if a key is being held down

(GetKey) or was just pressed on this frame (GetKeyDown).

• How to use various operators like +, -, || (or), && (and), ==, and !=.

Chapter 8 Conditions

87
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_9

CHAPTER 9

Working with Objects
Remember when we talked about how programming is largely concerned with

organizing and manipulating data? We interact with data as objects. A single piece of

data is called an object, and an object might have other objects stored inside it – as we

described in our previous examples, a data type resembling a “Person” might have a first

name, last name, birthdate, and so on. We’ve already dealt with some basic objects: bool,

int, float, and string are all objects as well. Now let’s learn about creating our own objects

and dealing with other, less basic types of data.

 Classes
A class is a type of object. Classes are how we might depict things like “Person” or “Item”

as we described before. They’re the syntax we use to say “we plan on using this data type,

and it stores these members” – where the members are other data inside it (sometimes

also called fields). The class depicts what sorts of objects are stored inside it, what

names we use to refer to them, and what type each one is. We declare classes to serve

as something of a template for the creation of objects: declare a class, and elsewhere

in your code, create instances of it. Each instance stores the same members but is its

own unique set of those members – a copy of the base template, so to speak. So when

we declare a class, we aren’t creating an object on the spot. We’re just defining a type of

object.

To declare a class, you use the “class” keyword followed by the class name and then

prompt a block:

class Person

{

}

https://doi.org/10.1007/978-1-4842-5656-5_9#ESM

88

Classes can only be declared within certain kinds of blocks. You can’t declare a class

within a method, for example.

Looking at our code again, you may notice that all the code we’ve been writing has

been inside a class block this whole time – including our Update and Start methods:

public class MyScript : MonoBehaviour

{

 //etc.

}

There’s some extra syntax there – the “public” keyword and the “ : MonoBehaviour”

bit at the end. We’ll learn more about that later.

For now, let’s write a simple class and play with it. We’ll write a class resembling a

simple item in a game. We’ll declare it (i.e., write the code) inside the “MyScript” class

code block we just mentioned, and we’ll cut out all the code we wrote inside our Update

and Start methods. You should end up with this:

public class MyScript : MonoBehaviour

{

 class Item

 {

 }

 // Start is called before the first frame update

 void Start()

 {

 }

 // Update is called once per frame

 void Update()

 {

 }

}

Now we have an Item class. We could create instances of it, but they won’t store

anything yet, because the code block coming after the “class Item” line is empty, so

they’ll just be empty objects.

Chapter 9 Working With objeCts

89

 Variables
When we declare members of a class, we are declaring variables. A variable is a named

member which stores an object. Variables always have a type, depicting what kind of

object they store. This type can be one of the basic types we’ve already used (int, bool, etc.)

or any other class. Remember, classes are like a template for a certain type of object. So, for

example, our Item class could store another Item inside it, as a variable.

Let’s add some variables to our Item declaration, and then we’ll dig into the syntax:

class Item

{

 string name = "Unnamed Item";

 int worth = 1;

 bool canBeSold = true;

}

Variables are declared as “[type] [name] = [value];”

In the preceding example, we’ve declared three variables:

• A string named “name” with the value “Unnamed Item”

• An int named “worth” with the value 1

• A bool named “canBeSold” with the value “true”

You can declare a variable without the “= [value]” portion – for example, we could

have just written “bool canBeSold;”. If you do this, the value will be initialized to a default

value. For int and float, this means 0; for strings, it’s the value null, which is what you get

when an object is expected but one was never assigned; for bool, it’s always false.

These variables are considered instance variables. They exist on each instance of

the class.

But we can also create variables in other code blocks. In this case, they’re called

local variables. They’re declared the same way, but they’re not attached to any sort of

object. We can just reference them by name when we want. However, they only exist

within the block of code they were declared inside and, of course, below the variable

declaration itself (not above it). For example, if we declare a local variable inside our

Update method, that variable only exists in the Update method code block and in any

blocks nested therein. This is why we call them local – they exist only in their local block,

the one they were declared in.

Chapter 9 Working With objeCts

90

Let’s exhibit the creation of an instance of our class. To play around with this, we’ll

write our code in the “void Start()” method declared in our script by default. It’s similar

to the Update method that we talked about before. It’s a method that the Unity engine

will automatically call for us. Update is called once every frame, but Start is called just

once when the script first initializes. For a script that is part of the scene, that means it

will be called right when the game begins playing. If we were creating a GameObject on

the fly, its scripts would have their Start called right as it’s created, before any Update

calls go through.

This gives us an easy way to run our code for testing. We’ll start by writing the

following code inside our Start method:

Item item = new Item();

This is a variable declaration: first, you’ll notice the type is “Item”, which is the type

we declared ourselves. We name it “item”. This is a common naming convention – the

names of types and methods will have a capitalized first letter (like Item), while the

names of variables will have a lowercase first letter, and if they’re more than one word,

then any words after the first will have a capital first letter to make them readable (as in

“canBeSold”), which is known as camel case.

We then assign a value to the variable with “=”, after which we see the “new”

keyword, followed by “Item()” which is much like calling a class like it’s a method. This

gets us an instance of the class and is known as a constructor call.

A constructor is pretty much exactly like a method, but it’s used to return an instance

of a class. In this case, we’re calling the default constructor – we didn’t declare it

ourselves. Later, we’ll declare a constructor that has parameters (just like a method) for

the variables in the class, which lets us assign the variables when the class is created. But

let’s get into that later – for now, let’s demonstrate some interaction with our instance.

 Accessing Class Members
After the local variable is declared and we’ve called the constructor with the “new

Item()” syntax, we can reference the variable by its name, “item”, and, as we exhibited

before, use a period to “reach into” the object and access its data. Of course, in this case,

the data inside it would be those variables we declared in the class block: name, worth,

and canBeSold.

Chapter 9 Working With objeCts

91

We can assign values to the members here by accessing them and using the “=”

operator. Let’s assign some values to our new variable:

void Start()

{

 Item item = new Item();

 item.name = "Goblin Tooth";

 item.worth = 4;

 item.canBeSold = true;

}

First, we declare the local variable and create the instance; then, we have three

separate statements, each one assigning a value to one of the variables inside the item.

We reference those variables by using the period “ . ” to “reach into” the Item instance

and access the data stored inside. Of course, these variables are declared in the Item

class, and if we tried to access a name that isn’t declared in the class, it would result in

an error preventing us from playing the game. And, as we went over earlier, since C# is a

strongly typed language, it won’t allow us to, for example, assign a string value to “worth”,

because it expects an int. It’ll throw an error in that case too.

And speaking of errors, it looks like we’ve got some waiting for us now. If you’ve

written the preceding code, saved, and navigated to Unity, you’ll notice the Console

window is showing three errors. This leads to the next concept of object-oriented

programming that we must address: access modifiers.

An access modifier is a keyword you write before a nonlocal variable declaration.

There are three options: public, protected, and private. They determine whether a

member, such as the three variables we declared in the Item class, can be accessed from

outside the class itself.

The public modifier means that the member can be freely accessed from outside the

class block.

The protected modifier means that the member can be accessed only from within

the class block or by classes which “inherit” the class – we’ll get into that concept a few

chapters down the road, though, so don’t worry about it too much for now.

The private modifier means the member can only be accessed inside the class block

itself.

Chapter 9 Working With objeCts

92

We didn’t provide an access modifier at all when we declared our three variables

(name, worth, and canBeSold). When you don’t provide an access modifier, it always

defaults to private.

This is the cause of our error: we can’t access the variables from outside the class

block itself because they’re private, but we’re trying to.

The fix is simple. Put the keyword “public” before each variable declaration in the

Item class, so it looks like this:

class Item

{

 public string name = "Unnamed Item";

 public int worth = 1;

 public bool canBeSold = true;

}

Save your code and the errors should go away.

Now let’s use those values in a Debug.Log call – just to see something happening and

make sure the values are what we expect them to be.

In our Start method, add the following line – it must be below the variable

declaration and the assigning of the values:

Debug.Log("This " + item.name + " is worth " + item.worth + " golden coins!");

Here, we’re chaining many “+” operators together to add referenced values together

into one string. In the end, we’ll expect to have a string saying “This Goblin Tooth

is worth 4 golden coins!” And if we changed what we give to the “name” or “worth”

variable, the message logged would change as a result.

You may have noticed we’re mixing types here. The “item.name” is a string, so that

makes sense – a string can be added to a string. But “item.worth” is an int, yet we’re

trying to add it to the string. This works just as you’d expect it to – the value of the int is

added as number characters to the string, and the resulting string is returned. Some base

types can quietly convert to other types like this.

So save and play – here’s a quick recap of what your code should look like now:

void Start()

{

 Item item = new Item();

 item.name = "Goblin Tooth";

Chapter 9 Working With objeCts

93

 item.worth = 4;

 item.canBeSold = true;

 Debug.Log("This " + item.name + " is worth " + item.worth + " golden

coins!");

}

You should get a message in the Console window just as you would expect.

 Instance Methods
Methods can go inside classes. When you do this, you’ve created an instance method.

They’re folded up inside the class itself, so that means you must reference an instance of

a class, reach into it with a “ . ”, and then call the method by name.

Because the method is attached to an instance of a class like this, it can seamlessly

access any of the variables that belong to the class. You can type “name” to reference the

“name” variable or “worth” or “canBeSold”.

Let’s move our Debug.Log call into an instance method. First, we’ll declare the

method in the Item class block. Methods have access modifiers too. We haven’t used

them yet, but now that we’re declaring a method inside a class, we need to make sure

we designate it as “public” so we can access it from outside the class later. It returns

“void” (nothing), it will be named LogInfo, and it has no parameters, so an empty set of

parentheses “()” after the name:

class Item

{

 public string name = "Unnamed Item";

 public int worth = 1;

 public bool canBeSold = true;

 public void LogInfo()

 {

 Debug.Log("This " + name + " is worth " + worth + " golden

coins!");

 }

}

Chapter 9 Working With objeCts

94

Now you’ll notice that we’ve typed the same Debug.Log message, except this

time, we’ve taken out the “item.” before the “name” and “worth” references. Since the

method is inside the class block, it must be called through an Item instance, and thus,

the method has access to all the members of the Item by default. And by “members” I

don’t just mean the variables – if we declared other methods inside the class, we could

reference them just by their name as well, and since we’re inside the class block, we

could reference them even if they were private.

Of course, this won’t change anything when we play until we actually call the

method instead of running the same old Debug.Log line we had before. Replace your old

Debug.Log line (in the Start method) with this:

item.LogInfo();

Save and run the game. You should see quite the same message as before. You might

think, “Well, what was the point of all this, then?” After all, haven’t we just written more

code than we had to and accomplished the same result? Instead of the Debug.Log line in

the Start method, we now have a different line, and we declared the method in the class

itself!

Well, there’s a little rule of programming called “Don’t Repeat Yourself” or “DRY.”

The main point of this is that we now have the method and can call it whenever we need

to do the same thing again. Say we wanted to log the same information for a different

item, somewhere else in our code, and we never made our instance method. We just

copy-paste the Debug.Log call over and we’re done, right? But what if we want to change

what the message logs? Now we have two instances of the same code to change. What if

we’d copy-pasted it 20 times already? We’ve created a bunch of extra work for ourselves.

There could be a great benefit to having a single place for the code. By creating a

method for it, we’ve made sure that it exists in one place only, even if it’s called from

many other places, and so if we ever want to change it, we need only change it once. This

is one of the reasons why we say Don’t Repeat Yourself. If you find yourself copy-pasting

code all the time, you could probably be doing something in a more efficient and clean

way, and you might be setting yourself up for heartache somewhere down the road.

As well as this, it splits the code up into relevant portions. The code which logs item-

related information is kept neatly folded inside the Item class itself, not inside our code

which implements the class. The implementing code simply reaches into “item” and

calls a method – no parameters necessary.

Chapter 9 Working With objeCts

95

Let’s expand on this method and get a little more functionality into it. After all, you’ve

learned enough by now to code a method that’s more than just one line, haven’t you?

We’re going to make the method log something different based on whether the item

“canBeSold”. We do this with a single “if” and “else” block. Remember, since “canBeSold”

is a bool, we can just type “if (canBeSold)” with no need for an “== true” operator:

public void LogInfo()

{

 if (canBeSold)

 Debug.Log("This " + name + " can be sold for " + worth + " golden

coins!");

 else

 Debug.Log("This " + name + " cannot be sold.");

}

Since the “if” and “else” are both followed by a single statement only, we don’t

need to write curly braces “{}” for their code blocks, as we established before. Now, the

message that’s logged will be different based on whether the item can be sold. If it can’t

be sold, there’s no need to tell the user what it’s worth, right?

Now, save the code and try it out. The message should be a little different now,

since we changed the text in the strings. To make sure our condition is working as we

expect, you can also change the “true” to “false” in the Start method when we set “item.

canBeSold” and then run the code again. The message should change as expected.

 Declaring Constructors
We discussed what constructors are earlier. They’re much like methods, but they’re

called to generate an instance of a class. When the instance is created, the code in the

declared constructor is run on that instance before the created instance gets returned.

When calling a constructor (making an instance of a class), you pretty much call the class

by its name, as if it were a method, and you must have the “new” keyword come before it.

It’s a good practice to use constructors to set up new instances of your class.

Typically, a constructor will have a parameter for each variable in the class you expect

to be set with each instance – whatever custom fields might require a different value

each time the class is created. In our case, the three variables we declared ought to be

parameters in a constructor – it’s silly to use three separate statements to provide the

Chapter 9 Working With objeCts

96

values of variables that we’re going to set every time anyway, right? Not only that, but

constructors make it obvious to you, and anyone else using your code, which values are

meant to be assigned when an instance of a class is created. They are orderly, and they

set a standard for the usage of a class.

Constructors are declared inside the class block itself. They are as simple as “[access

modifier] [class name]([parameters]) {…}”. The access modifier we desire is “public”.

Private constructors can only be used from within the class itself – there are some

cases where this is handy, but this is not one of them, so we need to make sure we type

“public” because if we don’t, “private” will be defaulted.

This is how our constructor will look – written within the code block of “class Item”:

public Item(string name, int worth, bool canBeSold)

{

 this.name = name;

 this.worth = worth;

 this.canBeSold = canBeSold;

}

Before we get into the statements within, let’s review the declaration itself. Start

with the access modifier “public” and then the name of the class, “Item”. Think of it like

declaring a method that doesn’t have a name, just the access modifier and then the

return type – after all, constructors always return the type of the class itself, since they’re

used to create an instance of it. Then we do the same set of parentheses “()” we’re used

to, with parameter declarations just as we declared for our methods.

Now, what are these three statements beginning with “this.”? It’s simple – they’re

assigning the values of the parameters to the values of the variables in the class instance.

When we made instance methods just a little bit ago, we exhibited that you can

simply type the name of a class variable to reference that variable. This is the same

within a constructor. The class instance already exists, and the code is running on it

immediately after. So within this constructor, if we type “name”, we get the value of

“name” for the class instance that’s being created by the constructor. All the variables for

this instance already exist.

But since the parameters are named the exact same thing as the variables

themselves, “name” also refers to the parameter. We can’t just type “name = name;” and

expect the computer to know what we’re talking about. That creates ambiguity that the

computer cannot solve on its own – the compiler doesn’t make guesses like this. It needs

Chapter 9 Working With objeCts

97

us to clear the situation up. So to avoid this confusion, we use “this”, which is a keyword

that always refers to the instance that the code is running for – the class instance being

created. By referencing “this” first, we take the ambiguity out of the situation – the

computer no longer sees it and says “Wait, what?” It sees that we mean to say “set the

value of the class instance variable ‘name’ to the value of the parameter ‘name’”.

The “this” keyword can be used in instance methods as well as constructors, if you

ever need a means of referencing the instance itself. A very common use case for it is to

avoid name conflicts as we’ve just demonstrated.

Another solution to these name conflicts would be to simply not name the

parameters the exact same thing as the class variables. For example, we could put an

underscore before each parameter name and take the “this.” out:

public Item(string _name, int _worth, bool _canBeSold)

{

 name = _name;

 worth = _worth;

 canBeSold = _canBeSold;

}

But this is frowned upon. The former way (using “this.”) is the norm, because it’s

clear, concise, and obvious. The parameters are being applied directly to the variables

themselves, so why name them anything else?

Now that you’ve added the constructor to the Item class, it should look like this:

class Item

{

 public string name = "Unnamed Item";

 public int worth = 1;

 public bool canBeSold = true;

 public Item(string name, int worth, bool canBeSold)

 {

 this.name = name;

 this.worth = worth;

 this.canBeSold = canBeSold;

 }

Chapter 9 Working With objeCts

98

 public void LogInfo()

 {

 Debug.Log("This " + name + " is worth " + worth + " golden

coins!");

 }

}

 Using the Constructor
Now that we’ve declared our constructor, saving the code and checking Unity will result

in an error in the Console window. A class with no constructors declared will have a

single, default constructor automatically provided, which takes no parameters and

returns an instance of the class with all its variables at their default settings. But once

you’ve declared your own constructor, this default constructor will no longer exist for the

class. There is now only one way to declare the class, and it takes three parameters, but

we’re still calling the constructor with no parameters at all in our Start method.

So navigate back to this code in your Start method:

Item item = new Item();

item.name = "Goblin Tooth";

item.worth = 4;

item.canBeSold = true;

This is where our error occurs. We’re trying to make an Item without giving any

parameters to the constructor. You can probably guess how we’ll go about changing this

to call the constructor instead. Replace the code with this:

Item item = new Item("Goblin Tooth", 4, true);

We’ve turned our repetitive four lines of code into one clean line. The parameters

are provided in the constructor call, just like with our methods, and of course, we must

follow the same order that the parameters were declared in the constructor: “name” first,

then “worth”, and then “canBeSold”.

All the constructor code will be executed before the next line of code after we declare

our “item” variable, so we know all the fields are assigned before the instance is returned

to us. Everything is set up and ready for the instance to be used in a neat and consistent

way.

Chapter 9 Working With objeCts

99

Now if we create Item instances in a hundred different places in our game code,

we can just change one block of code – the constructor declaration – if we ever need to

change how items are set up when they are created.

 Static Members
One last thing we’ll cover about classes is the idea of static members. They’re pretty

much the opposite of the instanced members we’ve been working with in this chapter.

Instanced variables, like the variables we declared for our Item class, exist as

separate pieces of data on each Item instance we create.

An instanced method, like the LogInfo method, operates through an instance of the

Item class. You must reach into an Item instance to call the LogInfo method. Since it’s

running through an instance of the Item, it can work with the instanced variables, as our

method does to log the name and worth of the item.

Static variables, however, exist as one instance for the entire class. From outside

the class, you must reach into the name of the class itself, like “Item”, to access its static

members.

Static methods work in the same way, and since they can be called simply by

reaching into the class name, this means the method cannot access instanced members

since there is no specific instance tied to the call. For example, if we made our Item.

LogInfo method into a static method instead, it would throw compiler errors when we

try to access those instanced variables “name” and “worth”.

Let’s demonstrate. An easy example would be to count how many instances of the

Item class are created. We’ll update the Item class to add the static members, marked in

bold:

class Item

{

 public static int NumberOfInstances = 0;

 public string name = "Unnamed Item";

 public int worth = 1;

 public bool canBeSold = true;

Chapter 9 Working With objeCts

100

 public Item(string name, int worth, bool canBeSold)

 {

 NumberOfInstances += 1;

 this.name = name;

 this.worth = worth;

 this.canBeSold = canBeSold;

 }

 public void LogInfo()

 {

 Debug.Log("This " + name + " is worth " + worth + " golden

coins!");

 }

 public static void LogInstanceCount()

 {

 Debug.Log("Number of Item instances is: " + NumberOfInstances);

 }

}

First, we declare a static variable, NumberOfInstances. It’s declared just like a normal

variable, but after the “public” keyword, we specify a “static” keyword as well. We start

it with a default value of 0. In the constructor, we use the “+=” operator to add 1 to the

NumberOfInstances every time the constructor is called – in other words, every time a

new instance of Item is created.

We then declare a static method that logs the number of Item instances that exist,

accessing the NumberOfInstances variable. It’s made static just like the variable, by

typing “public static” instead of just “public”.

Within that method, any attempt at accessing an instanced member will result in

compiler errors. We can’t call LogInfo or use our name, worth, or canBeSold variables

because the static method isn’t tied to any particular instance of Item, and those

variables exist on every instance. The NumberOfInstances variable, however, is tied to

the class itself, so we can access it.

Let’s update our Start method to demonstrate calling the method. To demonstrate

the count going up after we create our first Item, we’ll call it once before the item is

created and once again after:

Chapter 9 Working With objeCts

101

void Start()

{

 Item.LogInstanceCount();

 Item item = new Item("Goblin Tooth",4,true);

 Item.LogInstanceCount();

}

As you can see, we’re calling the method through a reference to the actual type name

itself, “Item”, with an uppercase “I”. We aren’t referencing the instance we’re storing in

our local variable, which is “item” with a lowercase “i”.

If you test this updated code, you should see two messages:

Number of Item instances is: 0
Number of Item instances is: 1

This demonstrates the NumberOfInstances going up when we create the new Item.

Now that you understand this distinction, you might realize we’ve already called

a static method before: Debug.Log. “Debug” is just a class, and “Log” is a public static

method declared inside it. Thus, we can access Debug.Log whenever we want.

This is how many of the built-in methods are exposed to us, including the Input.

GetKey and Input.GetKeyDown methods we called in the previous chapter.

 Summary
In this chapter, we learned that a class provides a template for a type of object. We

add members like variables and methods to the class definition. Every instance of the

class will have those members. Instances of classes are made by calling a constructor

using the “new” keyword. We can declare our own constructors for classes to provide a

consistent means of initializing new instances and giving values for their variables.

We also learned the distinction between instanced variables (those within a class)

and local variables, which are declared in the body of a method (among other things).

Local variables are created on the fly during the method call and cannot be accessed

from outside the method.

Chapter 9 Working With objeCts

102

Another important thing to remember is that methods declared within a class are

instanced, meaning you must call the method through a reference to an instance of the

class (like with “item.LogInfo()”). Within that method, you can access other members

of the class, like its variables, directly by name. If you instead mark the method with the

“static” keyword, it is accessed through the class name directly, not an instance.

Chapter 9 Working With objeCts

103
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_10

CHAPTER 10

Working with Scripts
Now that you’ve learned about the basics of objects, let’s learn about scripts. I should

warn you – we’re getting dangerously close to coding our first game.

Scripts are components for our code files. They get our code into the game. We’ve

worked with a script already (MyScript) just to get our code running, but we haven’t

explored them thoroughly yet.

When it comes down to it, they’re objects. A script is a code file that declares a class.

The class acts as a component, allowing us to attach it to GameObjects just as we might

attach cameras, lights, colliders, mesh renderers, and whatever else.

But rather than creating instances of scripts with constructors and the “new”

keyword as we did with our own class, we use the Unity editor to create instances by

adding script components to GameObjects. If we want to create instances of the script

through code, we use built-in Unity methods for that too. Since they’re components, they

must be attached to some GameObject in order to exist.

As we’ve already demonstrated, we can declare event methods like Update and Start

in our scripts, giving us a means of running code at certain queues in-game. There are

other events as well – some you might never use and some we’ll be using in our example

projects.

Scripts are meant to serve as a piece of functionality that can be added to a

GameObject. It can be as complex as all your player logic or as simple as a script that

constantly rotates an object.

Often, that little piece of functionality requires variables to work. Just like with a class,

we can declare instance variables for our scripts, so that every instance of the script has

this data “inside it.” But with scripts, since they act as components, their variables can

be exposed to us in the Inspector, allowing us to edit variable values on a per-instance

basis. A script that constantly rotates an object might have a vector variable (an X, Y, and Z

value) that depicts how much it rotates per second. With this exposed in the Inspector, we

can use the same script to achieve different things across different GameObjects. Some

could rotate faster than others, or some could rotate on one axis instead of the other.

https://doi.org/10.1007/978-1-4842-5656-5_10#ESM

104

Not only that, but we can even change the values of script variables through the

Inspector while playing our game. When we quit playing, the values are reverted to their

original setting. This makes it easy to test different settings for variables – for example,

physics-related settings like how high a player jumps or how fast they fall – without

losing your old settings.

Let’s make the simple script we mentioned that rotates a GameObject by some

constant amount. It doesn’t take many lines of code, and it’ll give us a taste for working

with scripts.

Create a script in your Project window with the Create button at the top left of the

window, shown in Figure 10-1.

Name it SimpleRotation. Open the script, and you’ll be met with the base script

code, as we’ve already seen once before. Let’s go over it top to bottom this time, now that

you’re getting savvy with code.

 Usings and Namespaces
This should be the first thing you see at the top of your script file:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

These are usings. They tell the compiler what other code we’re going to use in this

file. We start them with the “using” keyword, followed by a reference to what is known as

a namespace.

A namespace is a simple, named block of code that contains other definitions inside

it. In a sense, they’re like folders for your computer. A folder can store files inside it, as

well as other folders. A namespace can store definitions inside it, such as classes, as well

as other namespaces.

Figure 10-1. The “Create” button at the top-left corner of the Project window, just
underneath the window tab

Chapter 10 Working With SCriptS

105

The purpose of a namespace is to separate a relevant chunk of code from other files

that won’t be using it.

You can reach into a namespace to reference other namespaces inside it, as well as

other classes inside it. It’s much like grabbing members out of an object. You just use

the period. If we declare something inside a namespace, we must access it through the

namespace, typing out the namespace name, then a period, and then the definition (e.g.,

a class) that we want to reference. But this can be tedious. That’s why we have usings.

When we include a using statement in our file, we’re pointing to a namespace and

saying “Give me that one.” This lets us directly reference classes inside the namespace

without “reaching into” the namespace to get them.

So a using statement will always point at a namespace and lets us directly reference

all the definitions declared inside that namespace. They’re for convenience. They

shorten how much stuff we have to type.

The namespaces we’re pointing to are part of the base frameworks provided to us

by default. System.Collections and System.Collections.Generic are namespaces holding

classes that can be used to store “collections” of other objects. We aren’t going to actually

use them, but they’re included by default in a new script because they’re commonly

used. UnityEngine is a namespace containing most of the core definitions you’ll be

interacting with when coding your game in Unity, so of course, it only makes sense that it

would be included by default as well.

UnityEngine includes things like the classes that define major components. You’ve

already heard about some of these: Transform, Camera, Light, Mesh Renderer, and Mesh

Filter are some examples. Of course, there’s also a class for a GameObject.

So to sum it up, if we did not have the “using UnityEngine;” line at the start of our

script, we would have to type UnityEngine.GameObject or UnityEngine.Transform (and

so on) to refer to these classes. But since we have the using, we can just type GameObject

or Transform.

While we aren’t actually going to use anything in the other two namespaces, it’s not

going to hurt anything to leave the usings be.

 Script Class
Moving on down the file, we have the class definition:

public class SimpleRotation : MonoBehaviour

Chapter 10 Working With SCriptS

106

The class is automatically named the same thing as our script file. This is important.

You actually won’t be able to attach the script to a GameObject as a component if you

don’t name the file and the class the same thing!

This extra bit at the end is what we call class inheritance. We’ll learn how that works

in the next chapter, but just know that the “ : MonoBehaviour” part is what makes the

class a script that can be added as a component, not just a normal class.

The code block inside the class will be familiar from our experience with MyScript.

We have some comments. If you recall, those are the lines that start with “//”, which

are ignored by the compiler and serve as little notes for us to read. We also have a “void

Start()” method and a “void Update()” method, each with an empty code block after.

We learned about these before: Update is called once per frame, while Start is called just

once at the start of the game.

Let’s start with declaring variables for our script. We’re going to use a new type of

data that we haven’t worked with yet. It’s called Vector3. It’s a single object that stores

three floats: X, Y, and Z. We’ve seen this before. The position, rotation, and scale of our

objects are all represented as instances of Vector3 because they all have an X, Y, and Z

value. This is just the first time we’re dealing with the data type in our code.

We’re going to use a Vector3 to represent how much we want to rotate our Transform

per second, on each axis. As you may recall, each of the three axes (X, Y, and Z) will tilt

the object in different ways.

Declaring variables for a script is always done inside the script class

(SimpleRotation) code block. You can put them anywhere, but pretty much everyone

agrees that your variables should be kept at the top, above all your methods. When a

coder (including yourself) goes to look for a variable declaration, they’re going to look

for it up at the top, not mixed in arbitrarily with the methods.

You’re an expert now, so you should know how to declare a variable yourself. We’ll

make this one public, of type Vector3, named “rotationPerSecond”.

While we’re at it, let’s remove the Start method. We won’t be using it, so we don’t

need to declare it. But we will be using Update in a bit, so don’t remove it:

public Vector3 rotationPerSecond;

It’s important that the variable is public. Protected and private variables are not

visible in the Inspector, so we won’t be able to customize the value for each individual

script if we don’t make the variable public.

Chapter 10 Working With SCriptS

107

Now save your code. In your Unity editor, find some GameObject you want to rotate.

It can be one of the Skyscrapers we made earlier, or you can just add a cube to the scene.

Add the SimpleRotation script to the GameObject. In case you’ve forgotten, you can do

this by dragging and dropping the script file from the Project to the desired GameObject

in the Hierarchy. You can also select the GameObject, go to the Inspector, and click the

“Add Component” button displayed beneath all the GameObject’s components. This will

pull down a little menu you can use to navigate to your SimpleRotation script, or simply

type the script name into the search bar to find it and click it.

Once the script is added, you’ll see our variable listed inside it as an editable field.

As you can see in Figure 10-2, it shows the name, all prettied up with extra spaces and

proper capitalization so it reads “Rotation Per Second”. Beneath, it shows three number

fields, one for each axis.

If you don’t see the field, make sure you declared the variable as public, and make

sure it’s inside the script class code block (the code block after “class SimpleRotation”).

And, of course, make sure you saved the script file in your code editor since you added

the variable declaration!

 Rotating a Transform
Now, having the variable is great, but we still need to use it to rotate our object. Good

news – we only need one line of code to do this, placed in our Update method. With

the “rotationPerSecond” variable we declared earlier, we’ll add this line of code to our

Update method, making the script look like this now:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Figure 10-2. An instance of the SimpleRotation script component showing in the
Inspector

Chapter 10 Working With SCriptS

108

public class SimpleRotation : MonoBehaviour

{

 public Vector3 rotationPerSecond;

 // Update is called once per frame

 void Update()

 {

 transform.Rotate(rotationPerSecond * Time.deltaTime);

 }

}

Make sure you save your changes in the code editor, and then go back to Unity.

Remember, we don’t initialize the “rotationPerSecond” to any default value, so it’s

automatically going to be (0, 0, 0) on all new instances of the script. This means it won’t

rotate at all. Select the GameObject you added the script to earlier and make sure you

set its rotationPerSecond to something that’s not (0, 0, 0) in the Inspector. You can use

negative or positive values. Set it to whatever you want. A value of 360 will be one full

circle per second, to give you a frame of reference.

Now play the game, and you’ll see your rotation in effect. Congratulations. You did

that.

You can also play with the value while the game is running, as we mentioned earlier.

Go ahead and change the rotationPerSecond while the game is playing. Raise or lower it

on any of the axes, and it should respond immediately. Once you stop playing, the value

will go back to what it was when you started.

Now, let’s discuss exactly what this line of code in our Update method is doing:

transform.Rotate(rotationPerSecond * Time.deltaTime);

You’ll recall that the Transform component of a GameObject is what handles its

position, rotation, and scale, among other things. It should only make sense that we

must go through the Transform to rotate the object, right?

And since our class is a script, we automatically get access to certain members

that all scripts have. One of those is “transform” – note the first letter is lowercase.

“Transform” is the class type, and “transform” is our member. It’s a reference to the

Transform component of the GameObject that the script is attached to.

That little bit in the class declaration pointing to “MonoBehaviour” is what

technically gives us access to this member – it’s the part that makes it a script, not just

Chapter 10 Working With SCriptS

109

any old class. It’s known as inheritance. We’ll be learning more about it in the next

chapter. For now, just know that our script class has automatic access to these useful

little members that all scripts have. Another such member is “gameObject”, a reference to

the GameObject the script is attached to.

So we use “transform” to refer to the Transform component. Luckily, Unity provides

us with this convenient “Rotate” instance method in the Transform class to rotate it. We

reach in with a “ . ” and reference that method. The method has several overloads, but

the one we’re using takes just one parameter of type Vector3. It rotates the Transform by

the values of the given Vector3. Since rotation is an X, Y, and Z value, it only makes sense

that it expects a Vector3, not a single float.

 Frames and Seconds
You’ll notice we’re doing a little bit of math on the rotationPerSecond when we supply

it as a parameter to the Rotate call. We have a “*” operator, which is for multiplication,

followed by “Time.deltaTime”, which is a float. You can probably guess that multiplying a

Vector3 by a float is going to multiply each axis of the vector by the float. So what we get

is (x * Time.deltaTime, y * Time.deltaTime, z * Time.deltaTime). But what is this Time.

deltaTime float supposed to resemble?

Remember that Update happens once per frame. And your game is running at some

odd number of frames per second that could change on a dime. It’s probably happening

hundreds of times per second, since we barely have anything going on in our scene that

would slow down your computer. But during the course of playing a game, the framerate

might raise and lower based on the situation. It’s not reliable.

We named our variable “rotationPerSecond” for a reason. It’s not rotation per frame.

If we just pass rotationPerSecond for the parameter as is, we’ll rotate a whole lot more

than we want to. We’ll be rotating by the amount we want per second, but we’ll be doing

it hundreds of times per second (you should try it, it looks humorous). To transform it

from “per frame” to “per second” is actually somewhat simple.

“Time” is a UnityEngine built-in container for useful members like “deltaTime”,

which is a static float that’s constantly updated and simply stores the time, in seconds,

since the last frame occurred. This is often a tiny little fraction. If we’re running

at 100 frames per second, it’ll be a mere .01. We use this as a multiplier for our

rotationPerSecond to go from “per frame” to “per second.”

Chapter 10 Working With SCriptS

110

Think about it. Let’s simplify it and say we’re running at a measly two frames per

second. That means half a second per frame, right? So Time.deltaTime will be at .5 on

each Update call. Multiply something by .5 and you get half. This means we get half

the rotationPerSecond per call. If our rotation is 50 per second on all axes, we get 25

per frame. This is 50 in two frames. At two frames per second, that’s rotating at 50 per

second. This means we did just what we were looking to do.

This concept is used when we move objects as well, to move them by units per

second, not per frame. It’s as simple as multiplying by Time.deltaTime.

 Attributes
An attribute is something like an instance of a class that gets attached to code

definitions. It sounds odd, but it’s somewhat like a way for programmers to introduce

metadata into their code. A programmer might declare attributes to specify certain

things about a definition. We then attach attribute instances to definitions we declare,

like classes, variables, methods, and so on. Other code will then read these attributes and

do something with them.

A good example can be found in some of the attributes that the UnityEngine provides

us. For example, there is an attribute called HideInInspector, which we can attach to

a variable to – you guessed it – hide it from the Inspector. You can use this to hide a

variable while keeping it public so that other scripts can access the variable through a

reference.

To apply an attribute to a definition, you’ll type the attribute name in a set of square

braces “[]” before the definition.

For example purposes, let’s hide our rotationPerSecond member by adding the

attribute:

[HideInInspector] public Vector3 rotationPerSecond;

The definition is the same, but we have the square braces [] and the attribute

name declared before the variable. Save the code and head back to Unity. Select

your GameObject with the SimpleRotation script on it, and you’ll notice the

rotationPerSecond has disappeared in the Inspector.

You can write multiple attributes for a single definition. Each one must be

surrounded by its own set of square braces “[]”. You can also put a line break between

Chapter 10 Working With SCriptS

111

attributes and the definition, if you want to spread the definition out so it’s a little more

readable:

[HideInInspector]

public Vector3 rotationPerSecond;

If you had multiple attributes, you could even devote an entire line to each attribute,

if you wanted.

But we don’t want this attribute on our rotationPerSecond member, since we need to

edit it in the Inspector. That was just for demonstration.

Let’s demonstrate another attribute that can come in handy: Header. This is an

attribute that you attach to a variable to cause a bold header with the text of your choice to

show above it in the Inspector. This can be useful for visually separating different groups of

variables to tidy up your Inspector. For example, a script representing your player character

might have separate headers for variables relating to movement, jumping, and attacking.

This header takes a parameter, which is a string for the header text. Declaring

attributes with parameters looks much like a method call or a constructor call. Instead

of just typing the name of the attribute, we add a set of parentheses “()” with the string

value inside it:

[Header("My Variables")]

public Vector3 rotationPerSecond;

Save and check the Inspector again, and you should see your bold title “My

Variables” above the rotationPerSecond variable, as shown in Figure 10-3.

If you put the Header attribute on a variable that’s not showing in the Inspector, such

as a variable with the “[HideInInspector]” attribute or a private variable, you won’t see

the header at all.

These two simple attributes can be useful in keeping the Inspector for your scripts

tidy.

Figure 10-3. SimpleRotation script instance shown in the Inspector, with our "My
Variables" Header attribute displaying as a bold title above the variable field

Chapter 10 Working With SCriptS

112

 Summary
In this chapter, we learned how to attach our code files to GameObjects as script

components.

• Public variables declared in a script class can have their value viewed

and edited in the Inspector. You can edit the values while playing

the game to test out different settings, but those changes won’t stick

around after you stop playing the game.

• The class declared in the script file must be named the same thing as

the script file. If the names don’t match, you won’t be able to attach

the script as a component to a GameObject.

• Scripts naturally have access to a “transform” member pointing to the

Transform of the GameObject the script is attached to.

• Attributes are declared with a set of square braces “[]”. Unity declares

some built-in attributes that we can apply to variables for things like

hiding a variable from the Inspector or applying a bold text header

above a variable for organization purposes.

Chapter 10 Working With SCriptS

113
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_11

CHAPTER 11

Inheritance
A major staple of object-oriented programming is the concept of inheritance.

Inheritance is when types of data (such as classes) adopt fields – such as variables and

methods – from another data type.

Say you have two classes that both share nearly all the same fields, but one has an

extra field or an extra method that the other does not have. Coding each one separately is

tedious. They behave in the same way for the most part. If you want to change something

that both classes have, you need to make the change twice and make sure it’s consistent.

It becomes even more of a problem if you have many classes that share most of their

functionality.

Inheritance is the solution to this. You can create a base class holding the

functionality which both classes are meant to share, all in one place. Then, other classes

inherit from the base class to automatically share its variables and methods without

having to rewrite them. Everything stays declared in one place, keeping the functionality

consistent across all the inheriting classes.

 Inheritance in Action: RPG Items
A classic example of inheritance is the concept of items in a roleplaying game (RPG).

Every item has certain fields:

• An int for its worth, which is how many golden coins it is worth

in the shop

• A bool depicting whether it canBeSold at a shop

• A string for the item name

• A string for the item description

• An int for the item weight

https://doi.org/10.1007/978-1-4842-5656-5_11#ESM

114

But then we have more specific types of items. For now, let’s say we have armor that

goes in certain equipment slots and weapons that go in other equipment slots.

To implement this, we use inheritance. A base class stores the members that all

items have. It resembles any sort of item, so we just call it Item. Now we can create

classes that inherit from Item but have more particular uses.

Let’s say every piece of equipment, whether it’s a piece of armor or a weapon, has a

durability value that wears down as the equipment is used. Armor loses durability as you

take damage while wearing it, and weapons lose durability as you whack enemies with

them.

We create an inheriting class called Equipment. Since it inherits Item, it has all those

fields we give to the Item class, like weight and worth and so on, but we also give it an

int for current durability and another for maximum durability. The current durability

will go down by a point every so many hits a piece of armor takes or a weapon gives. The

equipment breaks when the current durability hits 0. Repairing it will raise the current

durability back to the maximum durability so we can start wearing it down again.

Now we make a class Weapon which inherits Equipment, adding fields like

minimum and maximum damage, how fast the weapon attacks, what kind of weapon it

is (an enum with options like axe, sword, hammer, knife, a particularly sharp stone, and

whatever else), and perhaps a bool for whether it deals sharp damage or blunt damage,

if we want to make some mechanical use of that in our game.

We have a separate class named Armor, which inherits from Equipment as well. We

add a field for how much defense the armor provides. We’ll also need an enum for the

type – boots, girdle, gloves, chest, or helmet – which we use to dictate which equipment

slot the armor is allowed in.

If we wanted to also have a Consumable class for items that can be consumed, like

drinking a potion or eating some food, we could have another class that inherits directly

from Item. Ultimately, we end up with a hierarchy of classes looking like this, where

classes that are indented further to the right are inheriting from the upper class:

Item

 Equipment

 Armor

 Weapon

 Consumable

Chapter 11 InherItanCe

115

Let’s get the terminology down. Lower types, or subclasses, are more specific than

their upper type, or superclass. Item is the superclass, and more specific versions of

it, like Consumable or Equipment, are lower types of it. Yet more specific versions of

Equipment are Weapon and Armor. This creates a hierarchy of classes, becoming more

and more particular as we go down through the subclasses.

 Declaring Our Classes
We can use the Item class we already declared as our base class. We’ll add a few

members to it (weight and description) and leave it where it is, nested inside our good

old MyScript class. We’ll also cut out any of the old code we had lying around, giving us a

fresh start with no constructor and no methods:

public class MyScript:MonoBehaviour

{

 class Item

 {

 public string name = "Unnamed Item";

 public string description = "Undescribed item.";

 public int worth = 1;

 public bool canBeSold = true;

 public int weight = 0;

 }

}

This is our base class – the least specific kind of item. We declare our variables that

all items have, and we give them default values. Later, we’ll be giving them constructors,

so the default values shouldn’t be necessary because they should always be set by a

constructor, but it won’t hurt to have them anyway.

Let’s declare the class for Equipment – which will serve as the upper type for Weapon

and Armor. We’ll put it in the same code block that Item is nested in, just under the Item

class. Of course, this means it’s not a child of Item, but it’s a sibling – they’re both nested

in the same block:

Chapter 11 InherItanCe

116

public class MyScript:MonoBehaviour

{

 class Item

 {

 public string name = "Unnamed Item";

 public string description = "Undescribed item.";

 public int worth = 1;

 public bool canBeSold = true;

 public int weight = 0;

 }

 class Equipment:Item

 {

 public int currentDurability = 100;

 public int maxDurability = 100;

 }

}

Notice the syntax is pretty much the same as any other class declaration, except

that after “class Equipment” we have the colon “:’ to designate that our class will inherit

another; then we provide the name of the class we want to inherit from, which is “Item”.

That little part of the declaration is all we need to make Equipment inherit the members

of Item.

Next, let’s declare Armor. While we’re at it, let’s exhibit some of what we learned

previously and declare an enum called ArmorType, which differentiates between the

different kinds of armor (gloves, helmet, etc.). Place both of these definitions within the
MyScript code block, just under the Equipment class:

enum ArmorType

{

 Helmet,

 Chest,

 Gloves,

 Girdle,

 Boots

}

Chapter 11 InherItanCe

117

class Armor:Equipment

{

 public ArmorType type = ArmorType.Helmet;

 public int defense = 1;

}

The enum declaration is pretty self-explanatory, and we’ve already gone over that

previously.

The Armor class inherits from Equipment, which in turn inherits from Item. This

creates a chain. Ultimately, Armor inherits all the variables declared in Item, as well as

those declared in Equipment. It adds its own members, one of which stores an instance

of the ArmorType enum, which we default to Helmet, and an int for the defense rating of

the armor, which we default to 1.

Now we can declare our Weapon class. Again, put the code within the MyScript
code block, beneath the Armor class:

enum WeaponType

{

 Sword,

 Axe,

 Hammer,

 Staff

}

class Weapon:Equipment

{

 public WeaponType type = WeaponType.Sword;

 public int minDamage = 1;

 public int maxDamage = 2;

 public float attackTime = .6f;

 public bool dealsBluntDamage = false;

}

This is the same deal as the Armor class. We declare a WeaponType enum with some

basic weapon types in it. We then declare the Weapon class, which inherits Equipment

and adds some of its own members.

Chapter 11 InherItanCe

118

 Constructor Chaining
Now we need to add constructors to all these classes so we can neatly create instances

that apply the proper values to all these members we’ve set up. You can probably

imagine how painful it can be to declare a unique constructor applying the members for

each class, considering each of our lower types will need to have the same code to apply

values held in the upper types. We’d have to declare parameters and apply their values

for each member declared in Item, like worth and name, in every single lower type as

well.

Luckily, we have a tool to make this easier, called constructor chaining. The

constructors of lower types can “chain” into the upper type constructor, which can in

turn chain into its next upper type, and so on. This chaining is pretty much just calling

the upper constructor and supplying the parameters on the spot, right in the declaration

of the constructor.

Think about it like this: every constructor must declare the parameters of all its

upper types, but that doesn’t mean we have to apply them all ourselves when we already

have these upper constructors that could do it for us. So every constructor will declare

all the necessary parameters, including the ones for members of its upper types. But

any parameters that are not specific to that lower type will simply be “passed up” the

constructor chain, letting the upper constructors handle their assignment.

Let’s see it in action. First, let’s write our Item constructor. Write this code within the
Item class code block:

public Item(string name,string description,int worth,bool canBeSold,int

weight)

{

 this.name = name;

 this.description = description;

 this.worth = worth;

 this.canBeSold = canBeSold;

 this.weight = weight;

}

This is pretty much your average constructor definition, as we learned about before.

Because the parameters are named exactly the same as the members we declared in

Item, we use “this.” before the member name when applying the value.

Chapter 11 InherItanCe

119

Now, let’s declare the Equipment constructor. Of course, it goes in the Equipment
class:

public Equipment(string name,string description,int worth,bool canBeSold,

int weight,int maxDurability):base(name,description,worth,canBeSold,weight)

{

 //Apply max durability:

 this.maxDurability = maxDurability;

 //Make current durability match max durability:

 currentDurability = maxDurability;

}

Now things are getting bulkier. The first thing you’ll probably notice is the “:base”

coming after our parameter list. This is constructor chaining. The keyword “base” refers

to the upper class, the one that we are inheriting from – in this case, it’s Item. We then

have a set of parentheses afterward, which is pretty much equivalent to calling the upper

constructor – the constructor of the base class Item.

When we call the upper constructor, we pass in all the first parameters that this

constructor declares, which are all the same as those declared in the upper constructor.

These are the parameters that are not specific to Equipment. They belong to Item, so we

give them to the Item constructor. We already declared that constructor to apply all those

values earlier, after all – and as programmers, we’d hate to repeat ourselves.

We also declare our own extra parameter in this constructor, “maxDurability”. This

parameter is for a member that’s specific to Equipment, so we don’t pass it into the Item

constructor. Item doesn’t concern itself with durability. We use this parameter in the

body of our constructor, to apply the value.

You’ll notice we only have maxDurability. We didn’t make a parameter for

currentDurability. We apply the maxDurability parameter value first (“this.

maxDurability = maxDurability”), and then we simply set our “currentDurability” to the

given maxDurability value so the weapon starts out with maximum durability by default.

Remember, currentDurability can be accessed simply by typing its name because it’s an

instanced member of the class that our code is nested inside. And since we don’t have a

parameter named “currentDurability”, we don’t need to type “this.” before it.

If you want, you can mix some line breaks in wherever you want in the constructor

declaration. It’ll still do the same thing. For example, you could put a line break before

Chapter 11 InherItanCe

120

the “:base” to visually separate the constructor declaration from the base constructor

call. It’s a style thing. If it makes reading it more comfortable for you, go ahead and do it.

Now let’s make a chaining constructor for Armor:

public Armor(string name,string description,int worth,bool

canBeSold,int weight,int maxDurability,ArmorType type,int

defense):base(name,description,worth,canBeSold,weight,maxDurability)

{

 this.type = type;

 this.defense = defense;

}

This is the same concept as before. We have all the same parameters in the same

order as the upper types provide them. We can just copy-paste those over. We then

chain the constructor to pass all those parameters up the hierarchy. This time, since

Equipment is involved, we also add maxDurability to the base constructor call. We have

extra parameters for the two members associated with Armor (type and defense), and we

apply them in the constructor body.

To give you an overview of the way the parameters of each constructor are passed up

the chain, here’s a look at each constructor with the new parameters in bold:

public Item(string name,string description,int worth,bool canBeSold,int

weight)

 public Equipment(string name,string description,int worth,bool

canBeSold,int weight,int maxDurability)

 public Armor(string name,string description,int worth,bool

canBeSold,int weight,int maxDurability,ArmorType type,int defense)

 public Weapon(string name,string description,int worth,bool

canBeSold,int weight,int maxDurability,WeaponType type,int

minDamage,int maxDamage,float attackTime)

Any parameters which are being “passed up the chain” to be handled by the upper

type’s constructor will be in normal text, while those which are handled by that specific

constructor are bold. The indention also shows how the classes inherit from each other.

Chapter 11 InherItanCe

121

Now the assigning of currentDurability is automatically handled for Armor and

will be for Weapon too. If we weren’t chaining our constructors, we’d have to copy-

paste all this code around, making a messy situation that’s dangerously easy to become

inconsistent if we ever need to make a change.

Moving on, let’s declare a Weapon constructor. You could practically do this one

yourself at this point, although we will be doing a little special something with the

“dealsBluntDamage” member:

public Weapon(string name,string description,int worth,bool canBeSold,int

weight,int maxDurability,WeaponType type,int minDamage,int maxDamage,float

attackTime):base(name,description,worth,canBeSold,weight,maxDurability)

{

 this.type = type;

 this.minDamage = minDamage;

 this.maxDamage = maxDamage;

 this.attackTime = attackTime;

 //Set dealsBluntDamage based on weapon type:

 if (type == WeaponType.Sword || type == WeaponType.Axe)

 dealsBluntDamage = false;

 else

 dealsBluntDamage = true;

}

This time, we declare a parameter for all the Weapon-specific members except for

dealsBluntDamage. And again, we chain the constructor, just as we did with Armor, to

pass up the parameters that aren’t specific to Weapon.

Rather than specifying whether the weapon deals blunt or sharp damage by a

parameter, we want to just automatically determine that based on the setting provided

for the WeaponType. We use a simple “if” block which effectively reads “if the weapon

type is Sword or the weapon type is Axe.” If so, we set dealsBluntDamage to false – the

weapon deals sharp damage, or whatever you want to call it. If not, we know the weapon

will be of type Hammer or Staff, so we set dealsBluntDamage to true.

Okay, that’s the last of it. Now we have all our constructors and data set up for Item,

Equipment, Armor, and Weapon.

Chapter 11 InherItanCe

122

 Subtypes and Casting
When dealing with classes that inherit from each other, we often need to refer to them

by an upper type when storing them and then figure out what lower type they are on the

spot and react accordingly.

For example, it’s fine for us to store our player’s equipped armor as Armor references

and their weapon as a Weapon reference, but if they have an inventory full of items, it

can store any sort of item, so it would look at them merely as instances of Item.

When you do this, you can store any subtype of Item in those references and simply

get it as an ambiguous pointer to an Item. You can access their Item-specific members

like name, description, worth, and so on, but if you want to access members of a lower

type like Weapon or Armor, you must first typecast the reference to the expected type.

A typecast is how we tell the compiler what we expected a type to be. It can then look

at a reference to some generic type, like Item, as a more specific type, like Weapon.

Take this following code, where we create a Weapon. We provide some generic and

unimportant values for its parameters, but the important part is that we store it in a local

variable of type Item, not Weapon:

void Start()

{

 Item item = new Weapon("Rusty Axe", "A beat-up rusty axe.", 4, true, 8,

40, WeaponType.Axe, 4, 9, .6f);

}

If you’re wondering why we’ve written an “f” at the end of that last parameter value

(“.6f”), we’ll get to that in a little bit.

The reason we can store a Weapon in an Item variable is because Weapon is a lower

type of Item. A Weapon is more specific but can still be summed up as an Item because it

has all the same members, even if it has some extra ones tacked on as well. This wouldn’t

be allowed the other way around – we can’t store an instance of Item or Equipment in a

variable of type Weapon or Armor, for example.

This is because when we reference a Weapon or Armor instance, we expect them to

have all the members associated with those types. If they’re instead storing a less specific

type, that’s just inviting unsavory errors. This is why our compiler won’t let us do it in the

first place. Part of the reason we use strongly typed languages is to enforce these rules

upon us, to keep our code good and clean and to stop us from doing things we probably

shouldn’t even be doing in the first place.

Chapter 11 InherItanCe

123

Now that we’ve stored our Weapon instance as an Item reference, let’s try getting it

back to a Weapon reference and see what happens. We’ll add a line of code declaring a

local variable of type Weapon, and we’ll assign the Item value to this variable:

void Start()

{

 Item item = new Weapon("Rusty Axe","A beat-up rusty axe.", 4, true, 8,

40, WeaponType.Axe, 4, 9, .6f);

 Weapon weapon = item;

}

Save and check Unity, and you’ll see an error saying this:

Cannot implicitly convert type ‘MyScript.Item’ to ‘MyScript.Weapon’. An
explicit conversion exists (are you missing a cast?)

What we’re trying to do here is mentioned in the error message: implicitly converting

a type.

Converting types can be done implicitly or explicitly.

The difference is simply in whether we, as the programmer, have manually ordered

the conversion. In this case, we haven’t used any special syntax to tell the compiler “I

want to convert this type to that other type.” So that makes this an implicit conversion,

because if it’s going to happen, it’s going to happen without us necessarily telling it to.

These errors sort of act as guards set up to prevent us from accidentally, unknowingly

doing type conversions that maybe shouldn’t be done in the first place. The compiler

doesn’t know if that Item stores a Weapon. We may know because we just declared it, but

compilers aren’t in the habit of making assumptions, even when the context is just one

line of code above the error.

We must make an explicit conversion by casting the type. This is an on-the-spot

conversion that happens at runtime (meaning while the game is playing).

There are two ways to make this conversion. They each do the same thing but

behave a little differently in the case where the types aren’t actually compatible as we’re

expecting them to be.

The first way is to write the name of the type you want to cast to, wrapped in a set of

parentheses, right before the “item” reference:

Weapon weapon = (Weapon)item;

Chapter 11 InherItanCe

124

This method will throw an exception at runtime if the types aren’t compatible.

Otherwise, it converts the given object to the type in the parentheses.

The second method is with the “as” operator:

Weapon weapon = item as Weapon;

This method will not throw an exception if the types aren’t compatible. Instead, it

simply returns null, which is the equivalent of a reference that points at nothing. If it

succeeds, it returns the type we expect, which is Weapon.

Of course, a failure in this case will usually result in an error afterward anyway,

because you’re likely going to go ahead and use the “weapon” variable as if it’s actually

storing a weapon. You’ll reach in and try to grab some data from it or run a method in it,

and since it’s null, an error will be generated – just a different kind of error.

 Number Value Types
I promised I’d explain what the “f” means when it’s placed at the end of a number value,

for example, “.6f”. It’s known as a suffix. A suffix can be tacked onto the end of number

values to denote what value type we want the number to be stored as. So far, we’ve

learned of “int” and “float”, but there are a variety of different types which have differing

limitations on how high or low a number they can store. Other number types exist which

either store a larger range of numbers but take up more memory or store a lower range

and take up less memory. For example, an “sbyte” is a much smaller “int”. Where “int”

can store a value over 2 billion at the highest (and negative 2 billion at the lowest), an

“sbyte” can store no lower than −128 and no higher than 127. As a result, an sbyte takes

up less space on the computer, but it’s not going to be able to store a high enough value

in many situations.

On top of that, there are “unsigned” versions of data types which can’t store a

negative value (their lowest value is 0), but as a result can store twice as high a positive

value. For example, the “s” in “sbyte” means “signed.” An unsigned version of the same

type is just “byte.” It stores a value between 0 and 255. There’s also an unsigned version

of int: “uint”. It can go over 4 billion, but still can’t go under 0.

Some of these types have a suffix you can use to easily write a number out as that

type, like “f” to make a float. Some don’t, and you have to use an explicit conversion to

make them a certain type, for example, “(byte)120” to make a byte instead of an int.

Chapter 11 InherItanCe

125

By default, a value with no fraction will be an “int”, unless it stores a value outside the

range of an int, in which case it goes up to the next largest type that can store the value. A

value with a fraction will store a “double,” which is twice as large as a float, but generally

more accurate with its fraction value. If a parameter expects a float value, but we pass in

a number like .6, we’re really giving it a double. That will give us an error, so we tack that

“f” suffix on the end to make it a float instead, fixing the error.

For most purposes, “int” and “float” will serve you perfectly well, and pretty much all

of the built-in methods in the Unity engine will expect one of those two. Should you ever

need to use another value, however, Table 11-1 gives a rundown of the values for integer

types (no decimal value) and their suffix, if any.

On top of that, there are three different value types we can use for number values

with a decimal – also known as “floating point” values, which is what “float” is short for:

• “float” uses the “f” or “F” suffix.

• “double” is the default when no suffix is used, although you can also

use “D” or “d”.

• “decimal” uses the “m” or “M” suffix.

Doubles are called double because they’re double the size of a float. A decimal

doubles the size yet again, making them four times the size of a float.

Table 11-1. Integer value data types and their associated suffixes

Data Type Value Range Suffix

sbyte –128 to 127 --

byte 0 to 255 --

short –32,768 to 32,767 --

ushort 0 to 65,535 --

int –2,147,483,648 to 2,147,483,647 --

uint 0 to 4,294,967,295 U

long –9,223,372,036,854,775,808 to

–9,223,372,036,854,775,807

L

ulong 0 to 18,446,744,073,709,551,615 UL

Chapter 11 InherItanCe

126

To make a somewhat complicated topic short and sweet, floating point values are not

totally accurate all the time, particularly when storing high values in them. You might set

their value to something and then get the value back, and it’s slightly different, off by a

little fraction. Data types which are larger than “float” can store larger values and remain

more accurate throughout. Again, “float” will likely serve you just fine in most situations

you’ll encounter.

 Type Checking
In the test cases we’ve dealt with so far, it’s obvious to us what types we’re dealing with,

so we don’t really have to worry about errors. But often, you’ll first need to verify whether

the type of a reference is actually what you think it is before you interact with it.

Say you’ve got a reference to an Item. For the sake of explanation without getting into

a whole other set of problems, let’s just assume we have an Item reference spat at us by

some code that manages our inventory, and we need to check what lower type it is to

determine what sort of functionality it should have.

There are several ways of doing this. Assuming we have a variable or parameter

“item” of type Item, how do we check if it’s a Weapon or Armor?

One method is with the “is” operator. This takes some value on its left-hand side

and a direct reference to a type on its right-hand side. If the value is either exactly

the same as the type or is a lower (more specific) type of it, the operator returns true.

Otherwise, it returns false:

if (item is Weapon)

 Debug.Log("Item is a weapon.");

else if (item is Armor)

 Debug.Log("Item is an armor piece.");

else if (item is Equipment)

 Debug.Log("Item is some kind of equipment, but not Armor or Weapon.");

In this example, we log one message depending on whether the “item” is a Weapon

or Armor, and if it’s neither, but is a piece of equipment, we have a generic message to

log instead.

Another method to check if the Item reference is a more specific type would be to

use the “as” operator we demonstrated earlier to assign the item to a new variable of that

Chapter 11 InherItanCe

127

more specific type and then simply do an “if” to test if the result is null. If it was null,

then we know the item is not that type. If it was not null, the item was that type:

Weapon weapon = item as Weapon;

if (weapon == null)

{

 //Cast failed, 'item' is not a Weapon instance

}

else

{

 //Cast succeeded, we can proceed to use 'weapon' reference

}

Sometimes, you might want to check if the instance is exactly the type you’re

comparing it with, not a more specific lower type. In this case, the code looks a little whacky

compared to our other examples. You call the instance method “GetType” on your object

to get a reference to its exact type. You can compare that type with the “==” operator to

another to see if they exactly match. But when referring directly to a type like this, you must

wrap the type name between the parentheses of “typeof(…)”, as shown in the following:

if (item.GetType() == typeof(Equipment))

 Debug.Log("Item type is exactly Equipment.");

When we declared “item”, we assigned a Weapon instance to it. Since we’re checking

to see if the item is exactly Equipment, this will return false and the message won’t be

logged, because while the Weapon is technically Equipment in that it’s a more specific,

lower type, it’s not exactly Equipment.

Using these three methods, you can cover pretty much any situation you might come

across where you need to check a type.

 Virtual Methods
One final aspect of inheritance is the concept of virtual methods. We’ll only get into the

theory here, not the syntax. We won’t use virtual methods until further into the book, so

we’ll wait until then to write them ourselves. For now, let’s learn what they are and what

their purpose is, while we’ve still got inheritance on the brain.

Chapter 11 InherItanCe

128

You can mark methods as virtual, which means that they can be overridden by

lower types so that the lower type can tack on its own functionality or even completely

overwrite the upper type’s functionality.

An example of the purpose of this might be if we had a few extra classes for item

types. Let’s say we had classes Consumable:Item and Food:Consumable.

The Consumable class is meant to represent things like potions or other such

items that can be “used” to consume them on the spot for some effect. It has a virtual

method declared inside it called Use. This method takes a “target” parameter pointing

at a specific entity in the game – a player or an NPC. When the player or an NPC uses

a potion, they call Use and provide a reference to themselves as the target. The virtual

method will determine what happens to the target.

We can then make some classes like HealthPotion:Consumable and

ManaPotion:Consumable. We override the virtual method Use, declaring a new

version of it in each of these classes. Using the supplied “target” parameter, each

implementation of the virtual method can do its own thing. The health potion will

restore the target entity’s health, and the mana potion will restore their mana. They each

provide their own definition of Use.

We could then make a Food:Consumable which overrides Use to simply decrease

the target’s hunger value by some member variable “float tastiness” specific to the Food

class.

Then, given a reference to a Consumable, we can simply call Use on any target,

without concerning ourselves with what exact lower type the consumable is. The correct

method override will be used automatically – the food will sate hunger, and the potions

will restore health or mana based on their type.

 Summary
You’ve now been primed on the fundamental concept of inheritance. It’s a somewhat

vast topic, and there are some pieces we haven’t covered yet, but you hardly need to

know all the intricacies of inheritance to be able to code some simple games. As we

continue, we’ll exercise these concepts bit by bit and grow more comfortable with them.

Chapter 11 InherItanCe

129
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_12

CHAPTER 12

Debugging
When we set up our code editor back at the very first chapter, we downloaded the

“Debugger for Unity” extension in Visual Studio Code. Debugging is a fancy feature of

code editors that allows us to mark any line of code as a breakpoint, causing the game to

pause when we reach that line of code. Once the game is paused, we can hop over to our

code editor and see the values of our variables, frozen in time, and even play out one line

of code at a time while keeping the game paused.

This can be immensely useful when our code isn’t doing what we intend it to do and

we want to figure out why. It’s especially useful when dealing with subtle errors that can’t

really be visually studied, such as in situations where you’re just modifying data that you

have no way of viewing. A common alternative approach, back before we had proper

debugging built into our code editor, would be to start calling Debug.Log to give yourself

a view of data that might not be what you expect it to be. This can be sufficient in some

situations, but is often quite tedious.

With debugging, we can just drop a breakpoint at the problem area, and when that

code is reached, the game pauses and we can view the values of all of our variables. For

example, if we break during an Update call for a script, we can view instance variables

for that script itself (ones declared in the script class) as well as local variables declared

within the Update method. We can then continue through the execution of the program

one line of code at a time, even going inside the calls of other methods to watch their

execution one line at a time.

 Setting Up the Debugger
There are a few simple steps to take to make our debugger work with our running

instance of the Unity editor. First, if you never installed the Debugger for Unity extension

in Visual Studio Code, head back to Chapter 1 to do that. After that, we only have a

few clicks to make before we’re ready to debug. Take note that things may look a little

https://doi.org/10.1007/978-1-4842-5656-5_12#ESM

130

different in your Visual Studio Code compared to the figures shown in this chapter, since

you may be using a different color theme.

In Visual Studio Code, click the Debug and Run button on the left side of the

window, shown in Figure 12-1, or use the hotkey Ctrl+Shift+D.

This will open up the left sidebar with controls for debugging. At first, it will likely

look like a bunch of nothing, shown in Figure 12-2.

This is because we don’t have the “launch.json” file that is mentioned. Click the blue

link “create a launch.json file,” and you’ll be prompted to select an environment, shown

in Figure 12-3. Select Unity Debugger.

Figure 12-1. The Debug and Run button

Figure 12-2. Initial appearance of the Debug and Run sidebar

Chapter 12 Debugging

131

This will create a file, predictably named “launch.json,” and open it automatically.

It’s a simple little text file that will be stored in your project folder, but not in the Assets

folder, so we won’t see it in the Project window. It just stores some information that the

program will use to set up and control the debugger. We don’t need to make any changes

to the file, so you can safely close it and forget it exists.

The Debug and Run sidebar will change now that we have made this file. At the top

of this window, we’ll have a dropdown field that should read “Unity Editor” and a green

play button, shown in Figure 12-4.

Hitting that play button will start the debugger and attach it to the Unity editor. You

can also use the hotkey F5 to start the debugger.

 Breakpoints
Now that you know how to start debugging, let’s learn how to place a breakpoint to stop

our program when a certain line of code is about to run. The simplest way is to click the

empty space at the left side of the line of code you want to break on, just to the left of the

line number. You can also press F9 to create a breakpoint at the line of code that your text

cursor is currently placed.

Once you’ve set a breakpoint, a red dot will appear at the left side of the line of code.

You can click the dot again or press F9 again to remove the breakpoint.

Figure 12-3. Environment prompt box

Figure 12-4. Top of the Debug and Run sidebar after we’ve created our
“launch.json” file

Chapter 12 Debugging

132

Let’s do a quick example to demonstrate debugging features. Create a new script

named DebuggingTest and add an instance of it to a GameObject in your scene. We

won’t be paying attention to the GameObject or anything in the scene, so it doesn’t really

matter what you put it on.

We’ll give the script a simple Start event that declares a local variable and then

changes its value three times:

public class DebuggingTest : MonoBehaviour

{

 // Start is called before the first frame update

 void Start()

 {

 int a = 5;

 a += 5;

 a *= 2;

 a = 0;

 }

}

Add a breakpoint to the “int a = 5;” line, which should make it look like Figure 12-5.

Now, with an instance of the script attached to any GameObject in your scene, start

the debugger with the F5 hotkey or the green button we mentioned before. Then go to

the Unity editor and start playing.

The Start call will immediately occur, and that breakpoint will cause the game to

be suspended in the Unity editor. Heading back to code, the line that we placed our

breakpoint on will be highlighted, signifying that the execution of the code has reached

that point and is now paused. The line of code will run next, but not until we tell it to.

In the Debug and Run sidebar, the Variables section will show us all variables

accessible from this point in the code, including the “a” variable we just declared. It also

shows “this”, which is the keyword we can use to reference the class that’s running the

method. Since “this” is a script and has many members inside it to view, it has a little

Figure 12-5. A breakpoint is added to the line of code, symbolized by the red circle
at its left side

Chapter 12 Debugging

133

arrow at its side, signifying that it can be “unfolded” to view its contents. Click that, and

we can see the members that come with our script, shown in Figure 12-6.

Some of those members include the GameObject the script is attached to and the

Transform component, each of which has its own members that can be viewed if we

were to unfold them as well.

Notice that our “a” variable claims to have a value of 0. This is because the breakpoint

will suspend the program before its line of code runs, not after, so our “int a = 5;” has not

assigned the value of 5 to the variable yet.

Now that the program is suspended by a breakpoint, we have several options

available on what to do next. These options are accessed with the little panel of buttons

at the top-right corner which appear as soon as you begin debugging, shown in

Figure 12-7.

Figure 12-6. The Variables box within the Debug and Run sidebar after our
breakpoint is hit. The “this” variable is unfolded to show its members

Chapter 12 Debugging

134

The cluster of six little gray squares at the leftmost side can be clicked and dragged to

move the panel around, if you want it somewhere else instead. Disregarding that, from

left to right, the buttons are as follows:

• Continue (hotkey F5) – The program is resumed until another

breakpoint occurs, and we can go back to Unity and continue playing

the game.

• Step Over (hotkey F10) – Runs the current line of code and then

pauses execution again.

• Step Into (hotkey F11) – If there are no method calls in this line of

code, this operates the same as Step Over. However, if the line of code

does call a method, the program will “step into” that method instead

and suspend again at the first line of code within that method.

• Step Out (hotkey Shift+F11) – Executes whatever is left of the current

method and then suspends again. If you accidentally step into a

method when you didn’t mean to, you can use this to hop back out.

• Restart (hotkey Ctrl+Shift+F5) – Restarts the debugger. This won’t

restart the game, though. You have to do that from the Unity editor.

You likely won’t need this button when debugging with Unity.

• Stop (Shift+F5) – Stops and detaches the debugger so that

breakpoints no longer suspend the game.

These controls can be very useful in certain circumstances. Sometimes you want to

see how a method ends up returning what it does, in which case you can step into it and

watch it execute one line at a time. After, you’ll be brought back to the original line of

code that called the method. If multiple methods are called throughout a line of code,

you can step into each one individually, one after the other, as they are executed. You

might do this, for example, if your breakpoint was on a line of code that called a method,

but also called many other methods to return values for the parameters of that method:

SomeMethod(A() + B(), C(), D());

Figure 12-7. Debugging control panel

Chapter 12 Debugging

135

In that case, you could step first into A, then B, then C, then D, and then finally the

SomeMethod call.

But enough chatter about the theory of it all. Press Step Over once. The highlighted

line of code will move forward to the next line. In the Variables section, you should see

the value of “a” update to become 5. Press Step Over again to run the “a += 5” line, and,

as expected, the value updates to become 10. Run “a ∗= 2” and the 10 becomes 20. You

get the point.

Once we run out of code to run, Step Over will stop having any effect, but the

program will remain suspended, so you’ll have to use Continue to unfreeze the game

when you’re ready.

As a final note, notice that none of the controls actually skip code. The code will

still be executed – the controls simply dictate how much of it to execute before stopping

again.

 Using Unity’s Documentation
Debugging is a means of finding out what the cause of a problem is on your own. A large

part of being a programmer is problem solving: using the tools, you have to figure out

what’s going wrong or how to go about doing something. While we’re on that topic, let’s

learn a little bit about how to find helpful resources as a programmer.

I can tell you how to do this and that throughout the course of this book, and you

can learn a lot, but eventually, you’ll have to strike out on your own and figure out how

to do something yourself. And that’s what can make or break a programmer. A large

part of your learning is probably going to come when you start programming your own

stuff, when you’re learning what to do as you go, putting the pieces together to achieve

something.

When faced with a challenge to overcome, you need information on what you’re

dealing with. Any decent search engine will often return Unity’s official documentation

as one of the first results. Just search for “unity” followed by the class name or

component type you want to learn more about, like Light or Rigidbody. Unity separates

its documentation into two forms – the Manual and the Scripting API:

• The Manual documentation is more of an instructional page

describing how a component works and how one might use it,

usually with images and examples. It is aimed at teaching a new

concept to the reader.

Chapter 12 Debugging

136

• The Scripting API is technical documentation specifically for

programmers. It describes classes and their members, such as

variables, properties, and methods. You can navigate to a page

devoted to any of these individual fields, which will give further

information – notably, a description of the field’s purpose, but also

important information like what type a variable stores, what type a

method returns, the types and names of parameters that a method

expects, all of the overloads of a method and how they differ from

each other, and so on. It is aimed at programmers looking for

information about Unity’s built-in types and methods and usually

provides code samples of how to use and interact with individual

members or types.

The latter form of documentation is commonly found in various programming

environments. If you ever stray away from Unity and into a different game engine, there

will likely be API documentation with a similar structure and layout, showing you types

and their members. For example, Microsoft – the company behind the C# programming

language – maintains similar documentation for the many built-in types offered with

the language. Want to learn how to save and read from files on the user’s computer?

That sort of stuff is in the System.IO namespace. Search for it, and you’ll probably get the

official Microsoft documentation as one of the first results. There you can find the classes

and methods you’ll use to get the job done, including descriptions and code samples.

If you don’t have someone to tell you where to find the relevant classes, just search for

a more general term, like “how to read from a text file in C#”. Follow the trail until you

know what to write!

Good API documentation like this can make a huge difference on your experience

with coding in an environment. You might hit a point where you don’t really want to read

a tutorial on how to use a component – you just want descriptions of the types you’ll be

working with and the fields they store. With proper documentation, you can get this with

a simple search and be on your way.

Chapter 12 Debugging

137

 Summary
In this chapter, we learned how to run our debugger and work with its controls. While it

may seem redundant right now, a debugger can be a lifesaver, allowing you to look at the

process your code is taking one line at a time as it executes. Being able to read the values

of variables at each step in the code can do much more to illuminate a problem than

Debug.Log calls. We also learned how Unity’s documentation is organized and how we

might go about finding information ourselves should we need it.

Chapter 12 Debugging

Obstacle Course

PART I

141
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_13

CHAPTER 13

Obstacle Course Design
and Outline
Now that you’ve been introduced to the basics of the Unity engine and the fundamentals

of programming, we’re going to develop our first example project. You might not feel

totally confident with all the things we’ve learned so far. Maybe some things have slipped

through the cracks. That’s okay. More and more of it will stick around as you put the

concepts to use.

Before you get too excited, note that the example projects we develop won’t have

flashy graphics and audio. We’re focusing on the code that runs them, not on making or

importing art and audio assets. This way, you can focus on your own domain until you’ve

got it down. Once you’ve finished this book, you can branch out depending on what your

goals are. A lot of independent game developers will learn to do a little of everything, but

you could also find assets on the Internet – some are even free – and use those to give

yourself more time to spend mastering programming. Or you could just pair up with

some like-minded individuals who want to make a game with you and have them work

on the art and audio for you.

Developing a game can be a daunting task. A lot of moving parts and pieces go into

the creation of a game. Things may change while you’re developing a project and putting

those parts together – something may have seemed like a good idea only for you to find

out it kind of sucks once you’ve seen it in action. It happens, but it’s no excuse to go in

blind.

There’s a fine line between planning too little and too much, and you might never

get it totally right. You might plan for all sorts of stuff that never comes about because it

turns out to not be feasible – you can’t implement it or you run out of time or any other

number of excuses. Some developers just don’t plan much at all and let the pieces fall in

place. You’ll find your middle ground with time.

https://doi.org/10.1007/978-1-4842-5656-5_13#ESM

142

But before we dive in, we’re going to do a little bit of planning. It’ll make it easier to

get things how we want it the first time, so we don’t find ourselves doubling back and

redoing things.

 Gameplay Overview
Let’s go over how the game will play. It will use an overhead camera, pointing down at

the player character. The player will move with the WASD keys and press Space while

holding a movement key to perform a quick dash in that direction. The dash has a short

cooldown before it can be used again, but otherwise has no cost to performing it.

The game levels will be blocked out with cubes for walls, colored differently than the

floor to distinguish them. The player will collide with these walls on touch, confining

them to the playing space we’ve set up.

The objective of the game is to avoid touching obstacles within that playing space.

Each level has a starting point where the player begins and a goal to reach at the end,

which is just a simple, circular podium. Dying at the hands of the obstacles will respawn

the player at the beginning of the level until they reach the end (or give up and quit out of

frustration).

Obstacles will include

• Patrolling hazards which move from one point to the next in a series

of points, return to the original point when finished, and then repeat.

We will set the points up ourselves, individually, for each patrolling

hazard we place in a Scene. As hazards, they kill the player on touch.

• Projectiles which are fired by obstacles, traveling in a straight line

until they hit a wall. They are also hazards that will kill the player on

touch.

• Wandering hazards which are confined to a single rectangular area,

occasionally choosing a new random point to go to. Upon choosing

a new point, they gradually rotate to face that point and then begin

moving toward it (so as not to unpleasantly surprise the player in

unpredictable ways).

• Spike traps which periodically raise a circle of hazardous spikes and

then lower them down again. The player must cross when the spikes

are down.

Chapter 13 ObstaCle COurse Design anD Outline

143

The main menu will allow the player to select which level they want to play on. They

can cycle through the levels to load them and view them from overhead. When ready,

they press a button to begin playing the level.

From within a level, the player can press Escape to bring up an in-game menu, which

allows them to return to the main menu if they do not wish to play the level anymore.

At first, we’ll implement the important stuff. Game developers often focus first on the

core mechanics, which will determine whether the game is fun or a dud. We hardly need

any proper menus and level selection if the game isn’t fun at the core, right?

We’ll keep it confined to one scene while we implement these core mechanics, like

the player movement, the obstacles, and the player dying and respawning.

We’ll worry about proper level selection and whatnot after we get our major features

functioning.

 Technical Overview
To prepare for our project, we should outline what we expect to have to implement and

consider how these things will be implemented in our engine. With experience, this

becomes easier, but even if you’re a beginner, it doesn’t hurt to at least try to figure out

the general idea behind implementing each feature before you start on any of them.

While going over everything, you might spot things you hadn’t thought about yet or flaws

in the way you thought you might do something. Having a high-level overview of the

whole project going through your head at once can be useful in that way.

 Player Controls
The player will be represented by a cube with another little cube on the top, colored

differently and pointing along their local forward direction (otherwise, you won’t be able

to tell which way they’re facing). This is shown in Figure 13-1.

Chapter 13 ObstaCle COurse Design anD Outline

144

The Player script will be on the root GameObject, which we’ll base off an empty

GameObject. This will hold separate GameObjects for the cubes that visually represent

the player. When we rotate the player to face toward their last movement direction, we

only rotate the cubes, not the root player GameObject.

This way, we can make the camera a child of the player so it moves with them, and

since the root itself isn’t rotating, the camera won’t rotate with it (which would be very

awkward, unintended, and jarring).

We’ll have a Player script that handles all the player-related functionality. Primarily,

this means movement and dodging.

Figure 13-1. The player, facing toward the camera. The blue arrow gizmo at the
bottom shows the local forward axis of the player

Chapter 13 ObstaCle COurse Design anD Outline

145

The movement will be done either with WASD keys or the arrow keys, since some

users prefer one over the other. We’ll put a little bit of momentum to it. The player will

take a bit to reach full speed and to lose full speed. We won’t go too crazy with this,

though, as we risk making the player too slippery. We want to keep things pretty accurate

to avoid frustrating accidents because our character was skidding around when we

wanted them to stop, but we still want a little bit of springiness so the movement doesn’t

look or feel too jerky.

Dodging will be done by pressing space, providing a fast lunge in the direction the

player is facing. It’ll be over quick, but during that time, the normal movement won’t be

calculated so that only the dodge velocity goes through.

 Death and Respawn
When the player dies, we’ll wait a short duration and then return (or “respawn”) them at

the start of the level. While they’re dead, we don’t want to let them move around, so we’ll

disable the Player script until the respawn has finished.

 Levels
All we really need to shape a level is just a plane underneath the player acting as the floor

with its own unique color, and then we’ll place raised blocks and size them however we

need to block out the “walls” of the level. When the player moves, they’ll collide with the

walls, stopping them from leaving the play area. The game will be viewed from above

with an orthographic camera, which is a camera that doesn’t use perspective – sort of

like viewing the world in a 2D way. This way, you don’t really see the walls as raised, but

rather, they just look like a different color among the rest. We won’t see the sides of walls

(since there’s no perspective), and we won’t have shadows or lighting.

This is a somewhat hacky way of designing levels, but first and foremost, it’ll be

functional and quick to produce. If we were making a game we planned on publishing,

we’d be dealing with art assets and designing our levels in some other way, but we aren’t

focused on such things.

To allow the player to win the level, we’ll have a Goal script that detects when the

player walks (or slides, I should say) over it, returning them to the level selection screen

when they do.

Chapter 13 ObstaCle COurse Design anD Outline

146

 Level Selection
Each level will have its own scene dedicated to it. The main scene will be loaded by

default when the user starts the game. Our menu will allow the player to cycle through

levels, which will load in the scene for the desired level so we can preview it. When we

load in a new scene, the last one will be cleaned up and removed for us automatically.

Each level scene will have a preview camera in it, which we’ll position over the level

to give the player a preview of its entirety.

Once we begin playing a level, we’ll switch to the player camera and disable the

preview camera.

 Obstacles
We went over a similar concept for our obstacles in an early chapter, when we were first

learning about components. We’ll make these scripts:

• Hazard, which makes a GameObject “kill” the player on touch

• Wanderer, which gives a GameObject the erratic “wandering”

movement we described

• Patroller, which lets us set up a path for a GameObject to repeatedly

move along

• Shooting, which makes a GameObject periodically fire projectiles

• SpikeTrap, which makes a hazardous GameObject rapidly spring

outward and then lower harmlessly back into its spot, waiting to raise

again after a specified wait duration

By mixing these scripts on GameObjects, we can implement all the obstacles we

desire.

 Project Setup
Let’s get a new Unity project ready for this game. Open Unity Hub and create a new

project with the New button in the top-right corner. We’ve been here before, so you

might remember the window that pops up. Select the 3D template, name your project

ObstacleCourse, and save it to whichever folder you want.

Chapter 13 ObstaCle COurse Design anD Outline

147

In your Project window, navigate to the Assets folder, where you’ll see there’s already

a folder named Scenes inside it. Add some new folders to give it a little company:

Materials, Prefabs, and Scripts.

While we’re at it, let’s rename the default SampleScene asset (located in your Assets/

Scenes folder) to “main”. This can be done by right-clicking the asset in the Project and

then selecting “Rename”. After confirming the rename, Unity might pop up a window

asking you if you’d like to reload the scene. Go ahead and do that.

The scene will have a Directional Light and a Main Camera in it by default. We can

leave those be, but we also want to add a basic floor for the player to stand on. Using

the top-left menus, select GameObject ➤ 3D Object ➤ Plane. Select the Plane if it isn’t

already selected, and navigate to the Inspector to set it up:

 1. Name it “Floor”.

 2. Set the Transform position to (0, 0, 0) to ensure that it is centered

at the world origin.

 3. To make it large enough that we shouldn’t have to worry about

running out of space, set its scale to (1000, 1, 1000).

Your Project view should look like Figure 13-2 when you’re done.

Figure 13-2. Our Project window once we’ve added our folders and renamed
the scene

Chapter 13 ObstaCle COurse Design anD Outline

148

 Summary
We’ve established how our project is expected to play: a simple top-down obstacle

course where the player moves around with the WASD keys and avoids dangerous

obstacles while attempting to navigate to the end of the level. Next, we’ll start

implementing the pieces one at a time.

Chapter 13 ObstaCle COurse Design anD Outline

149
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_14

CHAPTER 14

Player Movement
With our new project in place, let’s start coding our player’s movement. We’re going to

get a little fancy with it to exercise our programming skills and learn about some new

methods.

As we mentioned in the last chapter, we want movement to be fluid – not jerky, but

not slippery, either. A little bit of time to build to the maximum speed will make it less

of a sudden jerk when the player begins moving. Likewise, we want some time to lose

speed after you stop holding down the movement keys. It won’t be much, because a

game like this requires tight control of the character, so we definitely don’t want the

player feeling like they’re skidding around.

We’ll handle the player’s movement velocity frame by frame. The velocity is a

vector (an object with X, Y, and Z values) that depicts the change in position the player

will be constantly experiencing from their movement. We use units per second as our

measurement. For example, if velocity is (15, 0, 12), then the player will be moving right

at 15 units per second and forward at 12 units per second. They won’t be moving on the

Y axis, because the player has no up or down movement – just forward, back, right, and

left. When playing the game, you might think to describe the Z axis as “up and down,”

because that’s the direction it will take your character on the screen, but it’s actually

forward and back. Remember, the camera is positioned overhead, pointing down at the

player, so if the player were to actually go directly up in world space, they’d be going

toward the camera.

To move the player with the sort of smoothness we’re after, we’ll be increasing or

decreasing the velocity based on the player’s input and constantly moving them by that

velocity. The WASD and arrow keys will both work for movement, so the player can

use whichever they prefer. While holding the keys, the velocity will change gradually to

produce the desired movement.

While the player is moving, we’ll point their model in the direction their velocity is

taking them. To visualize this, the player is given a simple model made of a few cubes,

one of which pokes out along the player’s local forward axis.

https://doi.org/10.1007/978-1-4842-5656-5_14#ESM

150

 Player Setup
Let’s set up our player GameObject. We’ll be staying in the same “main” scene for now,

using it as a playground of sorts to develop and test whatever we’re working on at the

moment.

The hierarchy will look as pictured in Figure 14-1 – we’ll walk through the process of

creating each GameObject in a bit.

The base GameObject named “Player” is the Transform that we’ll actually move. Of

course, this means the children will move with it. But we don’t rotate this Transform,

because it holds our camera. Remember that children will act as if they are physically

attached to their parent, so if we spin that base Player GameObject around, the camera

will swivel around with it. This will be very jarring and disorienting for the player.

That’s why we create an empty GameObject named Model and place it inside

the Player. This is the “model holder.” It’s just there to store all of our model-related

GameObjects. Our script will reference this Transform and rotate it to face the

movement direction. This way, the base GameObject (which holds the camera) is never

rotated. Only the model is.

The model holder simply has two cubes inside it, one named Base and one named

Top.

Here’s what you’ll do to create it:

• Create an empty GameObject (Ctrl+Shift+N on Windows or

Cmd+Shift+N on Mac) and name it Player.

• Create an empty child of this GameObject (while selecting the Player,

Alt+Shift+N on Windows or Opt+Shift+N on Mac) and name it Model.

Ensure that its local position is (0, 0, 0) so that it’s positioned exactly

on the Player.

Figure 14-1. A view of our Player in the Hierarchy

Chapter 14 player MoveMent

151

• Create a cube that’s a child of Model by right-clicking Model in the

Hierarchy and selecting 3D Object ➤ Cube. Name this cube Base.

Set its local position to (0, 2.5, 0) and set its scale to (1.4, 5, 1.4). This

is local scale, but all of its parents have a scale of 1, so it’s equivalent

to world scale. The local Y position is half the Y scale, to keep the

bottom of the cube at the pivot point instead of the center (the pivot

point being the position of the Player GameObject).

• Create a second cube, this time a child of Base. Name it Top; set its

position to (0, .5, .5) and its scale to (.33, .1, .7).

• The Main Camera GameObject should already be present in the

scene. Drag it onto the Player GameObject, making it a direct child of

the player root (not the Model!). For now, we’ll give it a local position

of (0, 24, –5) and rotation of (70, 0, 0) to put it a good way over the

player’s head, back a little bit, and tilted down. Figure 14-2 shows

how the camera Transform should look in the Inspector.

• Create a prefab for the Player by dragging the Player from the

Hierarchy window to the Prefabs folder in the Project window.

The Top cube will poke out along the forward axis of the player (the facing direction).

This way, we always know where the player is pointing.

Figure 14-2. The Transform component of our Main Camera in the Inspector

Chapter 14 player MoveMent

152

 Materials and Colors
Now we want to color the cubes, each one a different color so the Top stands out from

the Base. To do this, we use materials. A material is a built-in Unity asset that stores

information about how a mesh (or a 2D image) should be rendered. Most notably, they

allow you to apply textures to meshes. Textures are pretty much normal 2D images that are

stretched over and wrapped around a mesh (3D object). This is how we turn objects from

flat surfaces that render only a single color to things like rock, tree bark, tile floors, plaster

walls, and so on. Some games use pictures of real things; others use stylized drawings.

Materials have many different settings, but they relate mostly to integrating art assets

into your game project. As we’ve said before, we’re not really going to dig into that over

the course of our book. We’ll use materials simply to apply color to our solid objects,

which is one of the most basic ways to use a material.

In the Project view, create a material named Player Base and another one named

Player Top, both within your Materials folder. With either one of the new materials

selected, the Inspector will show a somewhat daunting list of fields we can edit for the

material. Luckily, we only need one little control. Near the top, just beneath the bold

text “Main Maps,” there’s a swatch of color to the right side of the word “Albedo” (see

Figure 14-3), with an eyedropper icon beside it.

This is a color field for the material. By default, it’s a shade of white. Click that

rectangle to pop up a color window that lets us change the color, shown in Figure 14-4.

You can also click the eyedropper and then click a color anywhere on your screen to

select that color.

Figure 14-3. The color field for a material is the rectangle with an eyedropper icon
beside it

Chapter 14 player MoveMent

153

Let’s learn how computers look at color. It’s a concept that will likely come up often for

a game developer, even if you’re just programming. Don’t worry, it’s not too complicated.

The top half of the color popup window is an interactive wheel with a square in

the middle. Click the wheel to change the shade of the color. Click within the square to

change how vibrant and bright the color is.

The bottom half of the window lets you set number values directly. The first three

fields will resemble individual components of the color, showing a single letter on the

left side, a colorful bar to the right of it, and then a little box with a number in it. The

number is the value of that color component. The letter is short for a word that depicts

what the component controls. The bar is a visual representation of how raising or

lowering that component value will change the color. You can click within the bar to

Figure 14-4. The color popup window showing the default color for a new
material

Chapter 14 player MoveMent

154

change the color component individually. You can also just edit the number directly, if

you’re savvy like that.

So what are the color components? It depends on the color model you’re using.

There are two models that computers use to depict a color: RGB (Red, Green, Blue) and

HSV (Hue, Saturation, Value). Each model resembles a color in a different way, but they

can both be easily converted to and from the other. You can change the color model with

the little dropdown field beneath the color wheel.

The HSV model tends to be a little easier to understand and predict. Hue is the

color – red, green, blue, purple, cyan, yellow, and so on. It is a value from 0 to 360,

which corresponds to an angle on the color wheel. Saturation is a value from 0 to 100,

depicting how vibrant the color is. A lower value will make it turn closer and closer to a

gray shade. Value is the brightness of the color. A lower value will shift the color closer to

black. It also ranges from 0 to 100.

The RGB model stores the amount of red, green, and blue in the color, either ranging

from 0 to 255 or, alternatively, from 0 to 1 (using fractional values). All shades of color

can be obtained by mixing the correct proportion of these three primary colors. For

example, black is no color (0, 0, 0), white is the maximum amount of each color (255,

255, 255), and yellow is a mix of red and green (255, 255, 0). Colors which use a more

even mix of all three components will appear less saturated; colors which use high values

in one or two components will be more vibrant, the sort of shade you might see in toys or

fancy sports cars. Colors which use a low amount in all components will be darker.

That covers the first three fields, but what about the fourth field, with the letter “A”

beside it?

This is alpha. It’s there regardless of the color model. It determines transparency,

and ranges from 0 to 100. Changing it won’t do anything because our material itself

doesn’t support transparency, but just so you know, a low alpha makes the color more

transparent (see-through), and a high alpha makes it more solid (also called oblique).

Finally, the bottom field is the hexadecimal value of the color. Sometimes shortened

to hex value, this is a way to describe a color in a single string of letters and numbers.

Change this field, and you’ll change all of the color components at once. It is, however,

less user-friendly and pretty much looks like an arbitrary slur of characters.

I’ve chosen a pale yellow for the base and a pale blue for the top. You can exhibit

some creativity and choose your own colors if you like, but if you want to have it chosen

for you, the hex value for the yellow I’m using is FFEF86, and for the blue, it’s B6DAF5.

Just type that into the Hexadecimal field in the color window for either material, and

you’ll get the same color.

Chapter 14 player MoveMent

155

Now that you have your materials, you just need to apply them to the correct cube

GameObjects. Technically, this is done through the Mesh Renderer component in

the Inspector, but it’s easiest to just click and drag the material asset from the Project

window to the desired GameObject in the Hierarchy or Scene window, which will apply

the material to the Mesh Renderer automatically.

And at that, we have our player hierarchy set up, and we even have a colored model.

Let’s press on and start doing some coding.

 Declaring Our Variables
To begin coding our movement, we’ll need a script that we have attached to the Player.

Create one in the Scripts folder within the Project window and name it “Player”. Place an

instance of the script as a component on the root GameObject, the one named Player, by

dragging the script from the Project window to the Player in the Hierarchy window.

Now, open up your project in your code editor if you haven’t already. An easy way

to do this is by clicking the Assets button in the top toolbar and then selecting “Open C#

Project.” If this doesn’t bring up your code editor, you probably need to set the editor by

navigating through the top bar to Edit ➤ Preferences ➤ External Tools and setting the

External Script Editor field.

Once you’ve given Visual Studio Code a moment to open up, you’ll need to open the

Player script we just made. You can do this by pressing Ctrl+P on Windows or Cmd+P on

Mac and then typing “Player” in the popup box that results. This is a quick way to open a

file by name, assuming you know what you’re looking for.

You can also use Ctrl+Shift+E on Windows or Cmd+Shift+E on Mac to open the

Explorer in the left sidebar; then find and click the Player script there to open it.

The first thing we’ll do is declare some variables that we’ll be using to handle the

movement of the player. They’ll go right at the top of the class declaration for our script:

public class Player : MonoBehaviour

{

 //References

 [Header("References")]

 public Transform trans;

 public Transform modelTrans;

 public CharacterController characterController;

Chapter 14 player MoveMent

156

 //Movement

 [Header("Movement")]

 [Tooltip("Units moved per second at maximum speed.")]

 public float movespeed = 24;

 [Tooltip("Time, in seconds, to reach maximum speed.")]

 public float timeToMaxSpeed = .26f;

 private float VelocityGainPerSecond { get { return movespeed /

timeToMaxSpeed; } }

 [Tooltip("Time, in seconds, to go from maximum speed to stationary.")]

 public float timeToLoseMaxSpeed = .2f;

 private float VelocityLossPerSecond { get { return movespeed /

timeToLoseMaxSpeed; } }

 [Tooltip("Multiplier for momentum when attempting to move in a

direction opposite the current traveling direction (e.g. trying to move

right when already moving left).")]

 public float reverseMomentumMultiplier = 2.2f;

 private Vector3 movementVelocity = Vector3.zero;

}

You’ve pretty much seen everything we’re doing here already at some point in

the previous chapters, except for the declarations “VelocityGainPerSecond” and

“VelocityLossPerSecond”. These are properties, a concept we haven’t discussed yet. They

probably look a little confusing to you right now, but we’ll clear that up in a bit.

The first thing we do is declare references to other components that we plan on

using. When you declare a variable of a component type (like Transform), you can set

the value of the variable through the Inspector, so we don’t have to write code to find

the component we want. We just set the references once in the Inspector, and then we

can use them anywhere in our code. We use the Header attribute on the first reference,

“trans”, to put a bold title above the references in the Inspector, keeping them in their

own little section at the top of the script.

We have a “trans” variable to point to the player Transform, which we do for

performance reasons – it’s slightly faster for a script to hold its own reference to its own

Transform instead of using the built-in member “transform” each time. We also have a

Chapter 14 player MoveMent

157

reference to our model holder transform, “modelTrans”, and a reference to a component

we haven’t used yet, called a CharacterController. This is how we’ll be moving our

character – we’ll add that component and learn about it later in this chapter.

Moving down, we have a comment “//Movement” and a new header to separate a

different set of variables, these ones pertaining to movement. We also use the Tooltip

attribute with each variable, which gives us a way to provide a description for our

variables. These are neat because they’ll show up in the Unity editor when you hold

your mouse over a variable field in the Inspector. Not only do they act something like

comments for your code but they’ll also help document the purpose of your variables

within the engine. If you’re programming for a team of game developers, this can be

useful to help guide non-coders on how to use the scripts you write.

The tooltips offer some insight on what each variable is for, but let’s go over them in

one place:

• movespeed is the maximum speed at which the player is capable of

moving per second.

• timeToMaxSpeed is the time taken, in seconds, to build up to the

maximum speed.

• timeToLoseMaxSpeed is the time taken, in seconds, to go from

the maximum speed to stationary when you stop holding down the

movement keys entirely.

• reverseMomentumMultiplier is used to make it easier for the player

to stop traveling in one direction and begin traveling in the opposite

direction at a moment’s notice. While working against existing

velocity (e.g., if the player begins holding the right arrow, but they

were already traveling left), the velocity that we gain is multiplied

by this value. So if we want to gain speed twice as fast when working

against existing velocity, we would set this to 2. If we want to gain

speed 50% faster, we’d set it to 1.5. Conversely, we could make it

harder to reverse momentum by making the value lower than 1.0,

although we don’t plan on doing that.

These are the movement-related variables we expose in the Inspector. These ones

can be changed to alter the player’s movement dynamics if we ever see fit. Once we’ve

got some obstacles and game mechanics in place to give us a frame of reference, we may

want to change the values a bit.

Chapter 14 player MoveMent

158

Lastly, movementVelocity is a private variable of type Vector3, which is a data type

exposed by the Unity engine to resemble a vector of three axes: the X, Y, and Z values. As

we’ve learned already, vectors can resemble various things, from a rotation angle (each

axis is between 0 and 360) to a position to a scale. We use it to represent the current

ongoing velocity of the player, measured in units per second. The values will range from

movespeed to negative movespeed on the X and Z axes.

 Properties
VelocityGainPerSecond and VelocityLossPerSecond are two examples of our first usage

of properties. We’ve declared them as simple means of “folding up” a common math

operation to a more understandable name, so we can just point to that name instead of

typing out the math operation every time we want to use it. Remember, Don’t Repeat

Yourself!

Properties can be looked at as some thing of a crossbreed of variables and methods. They

are declared much like variables, but they prompt a block of code instead of ending with a

semicolon, and they don’t get a default value assigned to them. When referring to them and

setting them, they are treated like variables: you can get their value, and you can set it.

But when declaring them, you define what gets returned when their value is

referenced and/or what happens when their value is set. This is where they behave

something like a method. Within the code block of a property, you can declare what we

call a getter and a setter. Simply enough, they are declared with the get or set keyword,

respectively, followed by a code block.

The getter is a block of code that is run whenever the property is referenced. It must

return a value, as methods do.

The setter is a block of code that is run whenever the property is being set to a new

value. It does not return a value. Within the setter block, you can access the value being

assigned to the variable by typing “value”.

A property can declare a getter, a setter, or both. If only one is declared, you can

only perform that operation on the property. That is to say, you can’t get the value of a

property that doesn’t declare a getter, just as you can’t set the value if it doesn’t declare

a setter. In our case, we aren’t declaring a setter. We don’t plan on setting the value for

either of these properties, since we’re just using them to give us a shortcut to a common

math operation. So we just declare a “get” block and put a single line of code in it that

returns the result of the math operation.

Chapter 14 player MoveMent

159

It might look a little confusing because of the way it’s formatted. As we’ve depicted

before, C# doesn’t really pay attention to line breaks and indention. It isn’t part of the

syntax. When the code is read by the computer, it’s not really using line breaks and

indention to know when statements and code blocks end. Rather, it’s paying attention

to curly braces and semicolons. It doesn’t care if we throw a bunch of line breaks in the

middle of a statement, so long as we end that statement with a semicolon like we’re

supposed to. We just use line breaks and indention in specific ways to create a consistent

and readable standard for code – not because the syntax is forcing us to.

These rules can be stretched and broken at times. We’ve done that with our property

declarations. Since they’re just a single, simple line of code in a “get” block, we don’t

space them out as you would normally space out a property. We declare it all in one line

for brevity’s sake.

Normally, you might format it like this:

private float VelocityGainPerSecond

{

 get

 {

 return movespeed / timeToMaxSpeed;

 }

}

You can do it this way if you prefer. Some people might even insist that you space it

all out like this, because it’s “the proper way.” But I think it’s less clunky on one line, so I

do it like that. If I had a setter as well, or if my getter had more than one line of code in it,

I would absolutely spread it out like that last example, but this is a good example of when

it’s not a big deal to forsake the “rules” of code formatting if you’re more comfortable

with the result.

 Tracking the Velocity
Now we know what sort of variables are available to us in our script, so let’s start working

on the per-frame update logic that makes the movement actually happen. Most of this

logic is about handling the movementVelocity variable – that’s the bread and butter,

because it depicts how much we move every second.

Chapter 14 player MoveMent

160

Before we start typing away in the Update method, one practice you might want to

develop is the act of separating different chunks of Update logic into smaller methods.

For example, to neatly separate the movement logic from any other logic we may be

running in the Update method somewhere down the road, we can just declare a method

“private void Movement()”, write all our movement logic there, and then call that method

in Update.

This can be an organizational lifesaver if you ever have a particularly complicated

script. Your code editor will help you out by letting you fold up individual blocks of code,

so you can easily hide away the code you don’t need to see.

This is what it’ll look like, before we throw down any of the actual movement logic.

All of this is nested in the script class block, of course:

private void Movement()

{

 //...movement code goes here.

}

private void Update()

{

 Movement();

}

We declare Movement as a simple, private method with nothing to return. We then

call it in Update. If we implement something new in the Player script later, we can do the

same thing, keeping the new set of logic in its own space as well.

Now let’s start filling the Movement method with code. Keep in mind, all of this

code is running every frame, so it’ll be running in small but very frequent increments,

constantly. And of course, any value that we expect to be applied “per second” must be

multiplied by Time.deltaTime as we did before.

First, we’ll use a nested series of “if” and “else” blocks to alter the movementVelocity

based on the player input as well as the current state of the movementVelocity (to allow

us to apply the reverseMomentumMultiplier when working against existing velocity).

After that, we’ll check if there is any movementVelocity on this frame and, if so, use it to

move the player.

Let’s get to it. We’ll start with the Z axis to implement forward and backward

movement and go over it piece by piece. First, we’ll detect the W key or the up arrow key

to handle forward velocity. To cap the velocity so that it never goes over “movespeed”

Chapter 14 player MoveMent

161

in either direction, we use simple math methods “Mathf.Min” and “Mathf.Max”. Each

method lets us pass two float parameters into it and will return the lowest (Mathf.Min) or

highest (Mathf.Max) of the two. Pretty basic, right?

This is a common way to cap a value while increasing or lowering it. It’s a cleaner,

shorter alternative to adding to the value and then checking if it’s higher than the

maximum to set it back down to the maximum if it is. We just have one line of code that

uses Mathf.Min or Mathf.Max to set the value. Instead of increasing or decreasing the

value, we set it to the result of the Min or Max call. Here is an example of increasing a

value this way:

value = Mathf.Min(maximumValue,value + addedAmount);

In this example, we set “value” to the result of the Min method. The Min method is

given two parameters and will return the lowest of the two. The first one is the maximum

amount we want “value” to be capped at. The second is the current state of “value” plus

whatever amount we want to add to it. If the result of adding to “value” is lower than that

maximum amount, then the result is returned. But if the result goes over the maximum

value, we’ll always get the maximumValue instead. Beautiful, isn’t it?

A similar concept can be used when subtracting:

value = Mathf.Max(minimumValue,value - addedAmount);

Here, we use Mathf.Max instead, and we subtract instead of adding. In this case, if

the result of subtracting from “value” is higher than the minimum value, we will get the

result. If the result goes under the minimum value, we’ll get the minimumValue instead.

To sum it up, we use Min when adding to cap at a maximum amount, and we use
Max when subtracting to cap at a minimum amount.

Putting the pieces together, we handle forward movement like this:

//If W or the up arrow key is held:

if (Input.GetKey(KeyCode.W) || Input.GetKey(KeyCode.UpArrow))

{

 if (movementVelocity.z >= 0) //If we're already moving forward

 //Increase Z velocity by VelocityGainPerSecond, but don't go higher

than 'movespeed':

 movementVelocity.z = Mathf.Min(movespeed,movementVelocity.z +

VelocityGainPerSecond * Time.deltaTime);

Chapter 14 player MoveMent

162

 else //Else if we're moving back

 //Increase Z velocity by VelocityGainPerSecond, using the

reverseMomentumMultiplier, but don't raise higher than 0:

 movementVelocity.z = Mathf.Min(0,movementVelocity.z +

VelocityGainPerSecond * reverseMomentumMultiplier * Time.

deltaTime);

}

This may look a bit scary at first, but let’s break down what’s happening. Keep in

mind that velocity.z will be negative if the player is moving backward and positive if the

player is moving forward. If velocity.z is “movespeed”, then the player is moving at full

speed forward. If velocity.z is “–movespeed” (negative movespeed), then the player is

moving at full speed backward.

The process goes like this, in plain English:

• If either the W key or the up arrow key is held

• …and the player currently has forward (positive) momentum or

no momentum at all, then add to the forward momentum, but

never let it go higher than “movespeed”.

• …and the player currently has backward (negative) momentum,

increase and use the reverseMomentumMultiplier. Since

the velocity is negative, we don’t allow it to go over 0.

This way, as soon as we hit 0 velocity, we stop using the

reverseMomentumMultiplier.

Understand this, and you’ll be fine for the rest of this chapter. Whenever we change

the velocity, we change it using this concept of Min and Max to cleanly cap the value

while we assign it.

The amount we’re adding to the velocity to increase it is making use of one of the

properties we declared earlier: VelocityGainPerSecond. Let’s take a look at the amount

we’re adding in seclusion (when not reversing momentum):

movementVelocity.z + VelocityGainPerSecond * Time.deltaTime

This is fairly straightforward. Thanks to the property, it practically describes itself in

plain English: start with Z velocity and add the velocity gain per second. Since it’s “per

second,” it has to be multiplied by Time.deltaTime, as we learned before. Another

thing we previously learned: The multiplication operator “*” will take precedence over a

Chapter 14 player MoveMent

163

“+” or “–” operator. This means it’s always calculated first, with whatever is on its left and

right sides, and then the “+” or “–” will be calculated with the result of that. So we know

that VelocityGainPerSecond alone is being multiplied by Time.deltaTime, not the result

of movementVelocity.z + VelocityGainPerSecond.

If you want this to be visually clear, you can use parentheses to separate them

yourself. Some would argue that it’s not necessary, since it does the same thing, but if it

makes it easier for you to read and understand, then go for it:

 movementVelocity.z + (VelocityGainPerSecond * Time.deltaTime)

Moving on, when we’re reversing momentum, we have this:

movementVelocity.z + VelocityGainPerSecond * reverseMomentumMultiplier *

Time.deltaTime

It’s the same thing, but we throw the “*” operator in there to apply the

reverseMomentumMultiplier. You probably know that the order in which we multiply

things doesn’t count for anything. We could switch the position of any of those latter

three references however we want, and the result is the same.

And with that, you’ve learned pretty much all of the concepts you need to learn to

understand how this velocity-handling system operates. There are no surprises left – just

little variances on what we’ve already done.

Moving on, we can now see how backward movement looks. This code will go

immediately after the “if” code block that we just wrote (the one that checks for W or the

up arrow key being pressed):

//If S or the down arrow key is held:

else if (Input.GetKey(KeyCode.S) || Input.GetKey(KeyCode.DownArrow))

{

 if (movementVelocity.z > 0) //If we're already moving forward

 movementVelocity.z = Mathf.Max(0,movementVelocity.z -

VelocityGainPerSecond * reverseMomentumMultiplier * Time.

deltaTime);

 else //If we're moving back or not moving at all

 movementVelocity.z = Mathf.Max(-movespeed,movementVelocity.z -

VelocityGainPerSecond * Time.deltaTime);

}

Chapter 14 player MoveMent

164

This is pretty much a copy-and-paste of the forward movement, but with certain

little changes made. Notice that it starts by checking for the S or down arrow key, but

this time with an “else if”, not a normal “if”. This is to ensure that if both the up and down

movement keys are held, only one of them (the up key) will have priority instead of both

happening at the same time.

As well as this, we now use Max instead of Min, because we’re subtracting the

velocity now.

Let’s put it to plain English again:

• If either the S key or the down arrow key is held

• …and the player currently has forward (positive) momentum,

then decrease the forward momentum while applying

reverseMomentumMultiplier, but never let it go lower than 0.

• …and the player currently has backward (negative) momentum

or no momentum at all, decrease the momentum, but never let it

go lower than “–movespeed”.

This leaves one final condition we need to account for: the loss of velocity when

neither the forward nor backward key is held. If we don’t implement this, the player

will just keep going after releasing the movement keys. That’s definitely not what we

want.

We’ll put an “else” after the “else if” that checks if the back key is held, and then, if

momentum is positive, we decrease it and cap at 0. If it’s negative, we increase it and,

again, cap at 0. If it’s exactly 0, we don’t do anything:

else //If neither forward nor back are being held

{

 //We must bring the Z velocity back to 0 over time.

 if (movementVelocity.z > 0) //If we're moving up,

 //Decrease Z velocity by VelocityLossPerSecond, but don't go any

lower than 0:

 movementVelocity.z = Mathf.Max(0,movementVelocity.z -

VelocityLossPerSecond * Time.deltaTime);

Chapter 14 player MoveMent

165

 else //If we're moving down,

 //Increase Z velocity (back towards 0) by VelocityLossPerSecond,

but don't go any higher than 0:

 movementVelocity.z = Mathf.Min(0,movementVelocity.z +

VelocityLossPerSecond * Time.deltaTime);

}

This leaves us with nothing to do but copy over these principles and apply them to

right/left instead of forward/back. To write this code, we can recycle most of what we’ve

already written. We’ll copy and paste the code that handles forward/back movement

(everything in the Movement method so far) and then change the hotkeys to A/D and

the left/right arrows. We’ll also change any reference to the Z axis to instead reference

the X axis and edit the comments to keep them accurate.

Be diligent with this! If you accidentally leave a “.z” instead of a “.x” somewhere, you’ll

be in for some unexpected behavior:

if (Input.GetKey(KeyCode.D) || Input.GetKey(KeyCode.RightArrow))

{

 if (movementVelocity.x >= 0) //If we're already moving right

 //Increase X velocity by VelocityGainPerSecond, but don't go higher

than 'movespeed':

 movementVelocity.x = Mathf.Min(movespeed,movementVelocity.x +

VelocityGainPerSecond * Time.deltaTime);

 else //If we're moving left

 //Increase x velocity by VelocityGainPerSecond, using the

reverseMomentumMultiplier, but don't raise higher than 0:

 movementVelocity.x = Mathf.Min(0,movementVelocity.x +

VelocityGainPerSecond * reverseMomentumMultiplier * Time.deltaTime);

}

else if (Input.GetKey(KeyCode.A) || Input.GetKey(KeyCode.LeftArrow))

{

 if (movementVelocity.x > 0) //If we're already moving right

 movementVelocity.x = Mathf.Max(0,movementVelocity.x -

VelocityGainPerSecond * reverseMomentumMultiplier * Time.

deltaTime);

Chapter 14 player MoveMent

166

 else //If we're moving left or not moving at all

 movementVelocity.x = Mathf.Max(-movespeed,movementVelocity.x -

VelocityGainPerSecond * Time.deltaTime);

}

else //If neither right nor left are being held

{

 //We must bring the X velocity back to 0 over time.

 if (movementVelocity.x > 0) //If we're moving right,

 //Decrease X velocity by VelocityLossPerSecond, but don't go any

lower than 0:

 movementVelocity.x = Mathf.Max(0,movementVelocity.x -

VelocityLossPerSecond * Time.deltaTime);

 else //If we're moving left,

 //Increase X velocity (back towards 0) by VelocityLossPerSecond,

but don't go any higher than 0:

 movementVelocity.x = Mathf.Min(0,movementVelocity.x +

VelocityLossPerSecond * Time.deltaTime);

}

 Applying the Movement
This leaves us with nothing left but applying the movement velocity so the player actually

moves. To do this, we’ll use the CharacterController. This is a built-in Unity component

designed to provide movement and collision detection for a character. If we just moved

the player by setting their Transform position, it wouldn’t detect collisions (the player

would pass through everything). But moving them through a CharacterController

component will cause them to bump into and slide against solid objects in their path.

First, let’s set up the CharacterController component on the Player GameObject

(the same one with the Player script component attached to it).

Add a CharacterController by selecting the Player in the Hierarchy, then navigating

to the bottom of the Inspector window and clicking the Add Component button. This

will bring up a little dropdown box. Now you can navigate to the CharacterController

by clicking Physics and then CharacterController. Alternatively, you can search for a

Chapter 14 player MoveMent

167

component type by name: type “Character Controller” into the search bar and press

Enter or click the CharacterController listing when it shows.

The CharacterController uses a capsule shape to test for collisions. This is

represented in the Scene window as a wireframe set of green lines. That’s how big the

player is perceived to be with the current settings of the Controller.

Locate the Center, Radius, and Height members of the CharacterController in the

Inspector. For our purposes, we want a Center of (0, 2.5, 0), a Radius of 1, and a Height

of 5. This makes the collider mostly cover the Player, with a bit of overhang on the sides

so we retain a little bit of personal space. The rest of the settings can be left as is. When

you’re done, the CharacterController should look like Figure 14-5 in the Inspector.

With that set up, we can now set the reference to the CharacterController variable

that we declared in our Player script. Applying references to components in the editor

like this can be done in various ways:

• In the Inspector, click the little circle icon at the right side of the

“characterController” field in the Player script. This opens a popup

window that lets you select any GameObjects in the Scene that have a

CharacterController attached. Click one to set the value.

• In the Inspector, left-click and drag the bold text “Character

Controller” that makes up the header of the component. You can

then drop it onto the variable field in the Player script to set the

reference.

Figure 14-5. The CharacterController component of the Player is shown in the
Inspector

Chapter 14 player MoveMent

168

• In the Hierarchy, left-click and drag the Player GameObject itself

into the Inspector and drop it on the variable field in the Player

script. Unity will recognize that the field wants a CharacterController

reference and find that component on the GameObject you’re

dragging.

Any way will work, and some are more convenient than others at times.

Once the field is set, it will show the name of the GameObject who owns the

CharacterController, and after it, it will specify “(Character Controller)” to note the

actual Component type that’s stored.

While we’re at it, we’ll also need to set the reference to “trans” and “modelTrans”,

which should be listed just above the CharacterController field that we just set.

This works the same way. You can drag the Transform component of the player

directly onto the “trans” field and then drag the “Model” GameObject from the Hierarchy

onto the field in the Inspector.

Now we can head back to our code and apply the movement. At the bottom of the

Movement method, past all of the code that handles the input and movement velocity,

add this bit:

//If the player is moving in either direction (left/right or up/down):

if (movementVelocity.x != 0 || movementVelocity.z != 0)

{

 //Applying the movement velocity:

 characterController.Move(movementVelocity * Time.deltaTime);

 //Keeping the model holder rotated towards the last movement direction:

 modelTrans.rotation = Quaternion.Slerp(modelTrans.rotation,Quaternion.

LookRotation(movementVelocity),.18F);

}

This starts out pretty simple. We check if the X and Z axes have movement: if X is

not 0 or (the “||” operator) if Z is not 0. If so, we apply the movement by reaching into

our “characterController” reference and calling its method “Move”. This method takes

a single argument: a Vector3 for the movement desired on this frame. We multiply it by

Time.deltaTime to ensure it’s “per second” instead of “per frame.”

Beneath this, we rotate the model holder to point along the movement direction.

This involves working with rotations, something we haven’t done much yet, so it comes

with a little bit of unfamiliar territory.

Chapter 14 player MoveMent

169

Unity represents rotations with a type called Quaternion. These are mathematically

somewhat complicated (they even sound intimidating), but luckily, we don’t have

to mess with that math. Mostly, you just call built-in methods when working with

rotations like this. Just know that a single instance of Quaternion represents a rotation,

which is pretty much a direction that something can point toward, or an angle at which

something can be tilted. In the Inspector, we look at it as a Vector3, where each value

is between 0 and 360, because that’s a more user-friendly way of looking at it. But

internally, Unity represents rotations as Quaternions.

The built-in methods we’re using here are “Quaternion.Slerp” and “Quaternion.

LookRotation”.

Slerp is a term you’ll hear somewhat often in game development, particularly when

dealing with vectors and rotation. It is short for “spherical linear interpolation.” To put it

simply, it’s a method that takes three arguments:

• The rotation we start with (a Quaternion)

• The rotation we want to end with (also a Quaternion)

• A float for how fast we want to get there

The float is a multiplier, between 0 and 1, and pretty much means “What fraction of

the way to the desired rotation will we be going on this frame?” So if it’s set to 0, we’ll go

nowhere at all; if it’s set to 1, we’ll get there immediately. But if it’s set to something like

.18, we’ll get 18% of the way there.

If you look at how we use this method, you’ll see how this generates a smooth

change. Each frame, we set the rotation again, calling the Slerp method to do so. Each

call to the Slerp method takes the current rotation as the start and the same target

direction as the end. So we’ll rotate 18% of the way to the desired rotation on the first

frame, then another 18% of what remains on the next frame, and so on. Each frame, the

difference between the current rotation and the target rotation becomes smaller and

smaller. This generates a comfortable sort of “spring effect” where at first, the rotation

is snappier and more pronounced, but as the difference becomes smaller, the rotation

smoothly comes to a stop. This will make it look somewhat more visually appealing than

rotating by a flat amount each frame.

To get the desired rotation (the second parameter in the Slerp call), we call

Quaternion.LookRotation. This is a method that takes a Vector3 parameter and returns

back a rotation pointing forward along whatever direction that vector is heading.

Chapter 14 player MoveMent

170

To sum up the whole line of code, we pass in movementVelocity to a Quaternion.

LookRotation call to get a Quaternion pointing us forward along the direction our

movement is taking us. We use Slerp to take our rotation toward that one by .18× the

difference per frame.

If we didn’t want a smooth effect, we could do this instead:

modelTrans.rotation = Quaternion.LookRotation(movementVelocity);

That will directly set the model rotation to jerk our player to face along the

movement direction immediately. It won’t look terrible, but it will be jerky – particularly

when going from a standstill to flip in the opposite direction.

With that said, we’ve implemented our movement. It looks nice and it feels nice. At

last, we could now play our game and see it in action. Make sure your Player script is

saved since the last change.

You should be able to move your player around with either the WASD keys or the

arrow keys. The camera should stay in a fixed position above the player, moving with

them as they go (but remaining in the same local position). The player model will

smoothly rotate themselves to point at the current movement direction.

 Summary
In this chapter, we gave our player the ability to move. We learned how to create and

apply basic materials to add some color to our GameObjects, how to use the Mathf.Max

and Mathf.Min methods to cap values as we raise or decrease them, and how to handle

our player’s velocity per frame so they gradually pick up and lose speed based on their

input with the WASD keys. We also exercised some foresight in how we wanted our

GameObjects to be set up in the Hierarchy to make sure our model rotated separately

from the rest of the Player. This keeps the camera in the same location even as the player

model turns to point along the movement direction. Some other key points to remember

are as follows:

• A property is much like a variable, but it defines code blocks for

exactly what happens when we get or set the variable.

• When adding to a number value, use Min to cap the resulting value

below a maximum amount.

Chapter 14 player MoveMent

171

• When subtracting from a number value, use Max to cap the resulting

value above a minimum amount.

• The Slerp method can be used to move one value toward another by

a fraction of the difference between those two values.

• A Quaternion is a data type that resembles a rotation. The

“Transform.rotation” member is a Quaternion that resembles a

Transform’s current facing direction.

• The Quaternion.LookRotation method takes a Vector3 as its

parameter and returns a Quaternion rotation to point a Transform

toward the direction that vector travels.

Chapter 14 player MoveMent

173
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_15

CHAPTER 15

Death and Respawning
In this chapter, we’ll be implementing a bare-bones system to allow us to “kill” our

player (don’t worry, it’s very nonviolent) and send them back to the spawn point.

We’ll set the spawn point when the game first starts, so that wherever we place the

player in the scene, that’s where they’ll respawn. We won’t be doing anything flashy

for now. When the player dies, their model will disappear, and the Player script will

be disabled to keep it from updating. After a few seconds of wait (to punish them for

failing), we’ll move them back to the spawn point and enable them again.

To start, we’ll declare these variables in the Player script class, underneath the

movement-related variables we declared before:

//Death and Respawning

[Header("Death and Respawning")]

[Tooltip("How long after the player's death, in seconds, before they are

respawned?")]

public float respawnWaitTime = 2f;

private bool dead = false;

private Vector3 spawnPoint;

Since these variables relate to a different system, we’ll start them with a new Header

attribute to keep our Inspector looking tidy. We declare a float that we can edit in the

Inspector if we want to, depicting how long the player must wait before they are revived.

We also declare two private variables for our own uses, which we don’t need to be

setting in the Inspector:

• dead, a bool depicting whether the player is alive (false) or dead

(true) at the time

• spawnPoint, a Vector3 for the location at which the player will

respawn

https://doi.org/10.1007/978-1-4842-5656-5_15#ESM

174

 Enabling and Disabling
To set our spawn point, we’ll declare a Start method. If you recall, this is a built-in Unity

event for scripts (the MonoBehaviour class we inherit from). Declare it, and Unity will

automatically call it for us when the script is initializing, before any Update calls occur.

This would be a good time to mention that there are two similar built-in event

methods you might use to do this: Awake and Start. They both run only once in the

lifetime of a script component (unless you call them yourself, in your own code). There

are a few subtle differences, though:

• When a scene first loads in, all Awake calls will always happen before

any Start calls happen. If one script should always be initialized before

another, you would use Awake on that script and Start on the other.

• Awake will happen as soon as the script is initialized, whether it’s

enabled or not. On the other hand, Start will happen on the first

frame that the script is enabled.

If the initialization code you’re writing needs to occur as soon as an object is

spawned, but that object is going to be inactive when it first spawns, then you’d want to

use Awake. Aside from that, you’d generally want to use Start if you don’t need Awake. If

you use Start by default with all your scripts, then you have the option of using Awake to

easily make a script initialize before the others if you need to sometime down the road.

We haven’t used the concept of enabling and disabling scripts or GameObjects much

yet. We’re going to learn about that and make use of it in this chapter.

By default, GameObjects are active, meaning that all of their components will run

and update. We can deactivate them through our code as well as in the Unity editor itself,

by selecting the GameObject and unchecking the box just left of the GameObject name

at the head of the Inspector (see Figure 15-1).

Figure 15-1. The head of the Inspector showing the Player GameObject. The
checkbox to the left side of the Player name can be unchecked to deactivate the
GameObject

Chapter 15 Death anD respawning

175

Disabling a GameObject stops all of its components from running. That includes

renderers, collision detection and other physics-related components, lights, cameras,

and so on. It also means all of the children of that GameObject won’t be active, either.

Deactivated GameObjects will have gray text for their name in the Hierarchy to make it

obvious that they’re not active. Since the children of an inactive GameObject are also

deactivated, their names will be gray as well (see Figure 15-2).

This goes for components too, and that includes script components. Each

component which supports enabling/disabling will have a checkbox beside its header in

the Inspector (see Figure 15-3).

Components are enabled by default, but we could disable them in the editor if we

only want them to begin operating at some later point in the game, when our code

enables them.

Some components and scripts won’t have this checkbox because they don’t have

any consistent logic that can be turned on or off on a moment’s notice. Your scripts

won’t have the checkbox if they don’t declare any of the built-in events that are affected

by enabling/disabling the script, like Start and Update – but not Awake, because as

mentioned, it doesn’t care if the script is enabled or disabled. It happens either way, as

soon as possible.

For the most part, you’ll probably get off fine using Start, but this is a nice distinction

to know about if you ever get into some edge case where you want Awake instead.

Figure 15-2. An inactive GameObject beside an active GameObject in the
Hierarchy

Figure 15-3. Folded Player script component and CharacterController component
in the Inspector. The checkbox to the left of the component name can be unchecked
to disable the component

Chapter 15 Death anD respawning

176

As mentioned, deactivating a GameObject will deactivate all of its children too. But

each GameObject has its own, individual state depicting whether it is active or disabled.

Even if a GameObject is active in and of itself, it could still effectively be disabled

because any of its parents are inactive.

Unity retains the state of each individual GameObject, but its “actual state” is

dependent upon the state of its parents as well. This means if you have a child that’s

deactivated, and then you deactivate and later enable its parent, the child remains

deactivated – it stores its own state.

Unity gives us the ability to make this distinction ourselves in our code. With a

reference to a GameObject, we have two separate bool variables we can access to check

the GameObject state:

• GameObject.active is the GameObject’s current, effective state,

which will be false if any of its parents are inactive and true if its

parents are active and the GameObject itself is active.

• GameObject.activeSelf is the GameObject’s individual state. Even

if this is true, the GameObject could still be inactive because any of

its parents are inactive. To put it simply, this state is only used if all

parents are active; if any of the parents are not active, this is ignored,

and the GameObject will be inactive regardless.

Technically, these are properties, like those math properties we made for movement

in the last chapter. They only allow us to get them, not to set them. To set the active state

of a GameObject, we need to use a method.

We’ll do that in a second, but for now, let’s write that Start method and set our spawn

point. It’s just one line of code in the method:

void Start()

{

 spawnPoint = trans.position;

}

That’s pretty self-explanatory: as soon as the script is first enabled, we set

spawnPoint to the Player’s Transform.position. After this, we won’t be changing the

spawn point.

Chapter 15 Death anD respawning

177

 Death Method
Now we have our spawn point. Let’s make a method that kills the player when it’s called.

We’ll make it public, and we’ll have it return nothing (void):

public void Die()

{

 if (!dead)

 {

 dead = true;

 Invoke("Respawn",respawnWaitTime);

 movementVelocity = Vector3.zero;

 enabled = false;

 characterController.enabled = false;

 modelTrans.gameObject.SetActive(false);

 }

}

First, we make sure we avoid an awkward case where the Die method somehow gets

called when the player is already dead, with a simple “if” that checks if we’re alive before

proceeding.

We then immediately set “dead” to true, since we plan on being very dead by the end

of this method. We use a new concept, Invoke, which we haven’t used yet before.

Invoking methods is a means of calling a method after a given wait period. First, we

give a string for the name of the method we want to call: “Respawn”. Then, we give it a

float for the number of seconds we want to wait before the method should be called.

We haven’t declared this Respawn method yet, but we will after. It’s important that

the names are exactly the same. Even if you just mess up the capitalization, for example,

by naming the method “respawn” instead of “Respawn”, it won’t be called. Unity will,

however, log a message in the Console for you if it fails to invoke the method, to let you

know why it’s not working.

When you invoke a method, you can’t pass any parameters into that method. It

only follows that the method must also be declared with no parameters as well. If it has

parameters, the invoke will fail.

After the Invoke call, we want to make sure the player loses all of their momentum

when they die, so they don’t have any left when they respawn later. The movement

velocity is reset to (0, 0, 0) using a bit of shorthand: Vector3.zero. It’s just a slightly shorter

Chapter 15 Death anD respawning

178

way to type “new Vector3(0,0,0).” It does the same thing. Technically, Vector3.zero is just

a property in the Vector3 type. It has a getter, but no setter, and always returns a new

Vector3(0,0,0).

Then we set “enabled” to false. This is an instance variable that every component

type has, depicting whether or not the component is enabled. Scripts are components

too. Set it to false, and your script stops running. It’s as easy as that. This doesn’t

interrupt the code that’s currently running, it just prevents built-in events like Update

from occurring until the script is re-enabled. Our invoked method will still happen even

though the script is disabled.

We do the same for the CharacterController. Since this is the component that’s

catching collisions for the player, if we don’t deactivate it, the player will still be there as

far as physics are concerned, so they’ll still be touched by anything that might pass by.

For GameObjects, we have to call the SetActive method and pass in the value we

want to set it to: true or false. We go through the modelTrans to access its GameObject.

Remember, a Transform is just a more specific version of a Component, and all

Components (including scripts) have a “.gameObject” member pointing to the

GameObject that they’re attached to. Using this, we don’t need to declare a separate

reference to the model GameObject.

 Respawn Method
The Respawn method is already being invoked, so now we just need to declare it. It

will set “dead” back to false, place the player back at the spawn point, and enable the

script, CharacterController, and model again. This reverts the player back to a normal,

functioning state, ready to try the level again:

public void Respawn()

{

 dead = false;

 trans.position = spawnPoint;

 enabled = true;

 characterController.enabled = true;

 modelTrans.gameObject.SetActive(true);

}

Chapter 15 Death anD respawning

179

That pretty much does it for our simple death-and-respawn system. Now, when a

hazard touches the player, all we need is a reference to the Player script, through which

we can call the public method Die. We’ll handle that in the next chapter, but to test if the

method works beforehand, we can throw down some simple, temporary code that lets

us kill the player on the spot with a hotkey. Since you’re an expert programmer now, you

can write this up in no time, right? Just write this code in the Update method:

if (Input.GetKeyDown(KeyCode.T))

 Die();

Save, run the game, move away from the initial point, and press T. Your character

should vanish, and since we deactivate the model instead of the root Player GameObject,

our camera doesn’t get deactivated with it. After the wait time, which is 2 seconds by

default, you should pop back up at the spawn point and be able to move around again.

One final measure we could take would be to reset the player’s rotation when they

respawn. It’s a little odd to see your character respawn facing the same angle. This won’t

be hard at all. You can probably guess how to do this yourself, but I’ll tell you how to add

it anyway.

Beneath your spawnPoint variable, declare this variable:

private Quaternion spawnRotation;

Set that variable to the modelTrans.rotation in your Start method:

spawnRotation = modelTrans.rotation;

Finally, apply the rotation to the modelTrans somewhere in your Respawn method:

modelTrans.rotation = spawnRotation;

Now, if you ever want the player to spawn at a particular rotation, you can rotate

their model to point that way, and it’ll stick throughout the game. You can vary this for

each level, if you ever need to.

Once again, the reason we’re dealing only with the Model instead of the root when

it comes to rotation is because the camera is a child of the root, so if we ever rotate the

root, the camera pivots around it, which changes the direction the camera faces. Since

all of our movement is in world directions, none of it is going to change to match the new

camera rotation.

Chapter 15 Death anD respawning

180

You can try this for yourself, if you want to see what I mean in action. Apply some Y

rotation to the Player in the Inspector – 90 degrees, let’s say. Then play, and try moving

around. The W or up arrow key will now take you to the left side of your screen, and the S

or down arrow key will now take you to the right side of your screen. It’s no fun, right?

Just switch that Y rotation back to 0 when you’re done playing, and everything will go

back to normal.

 Summary
In this chapter, we set up our player’s death and respawning. Now we’ll have a method to

call to “kill” the player when we’re coding our hazardous obstacles. Some key points to

remember are as follows:

• Deactivating a GameObject will stop all of its attached components

from doing whatever it is they do. As well, all child GameObjects will

be considered inactive.

• You can deactivate a GameObject in the Scene by selecting it and

unchecking the box to the left of its name in the Inspector header.

• Awake() and Start() are both built-in events you can declare in a

script to run the code within as soon as the script is loaded and ready,

one time only for each script instance.

• All Awake calls will occur before any Start calls.

• Awake calls will occur even if the script or its GameObject is inactive.

They might be inactive by default in the Scene, or they could be a

prefab that’s inactive, which means it will still be inactive when it’s

first created. Either way, the Awake calls are still going to go off as

soon as possible.

• Start calls do not occur on an inactive script or GameObject. They

will wait until the script first becomes active before they are called.

• The Invoke method can be used to call a function by name on the

script after a given wait duration.

Chapter 15 Death anD respawning

181
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_16

CHAPTER 16

Basic Hazards
Now that our player can be killed, let’s start coding up some villainy to kill them. We’ll

make a generic script called Hazard that makes a GameObject kill the player on touch.

We’ll use this to create dangerous projectiles and an obstacle type that periodically fires

them.

 Collision Detection
Before we make a script that reacts to a touch, we’ll need to dive into collision detection

to understand how Unity deals with such things. There are three major concepts that

relate: colliders, Rigidbodies, and layers.

Colliders are components that, when added to a GameObject, give it an invisible

shape that will interact with other colliders. There are various types of colliders that

provide different shapes: spheres, boxes, capsules, and even a mesh collider that can add

collisions to a complex mesh shape.

You’ll notice that the physical objects we’ve created thus far, like the floor we created

under the player (a plane) and the cubes that make up the player model, all have collider

components of some sort on them. A plane will have a Mesh Collider, a cube will have a

Box Collider.

I didn’t mention it before to avoid treading this ground too early, but we

don’t actually need any colliders on our player model itself. We already have the

CharacterController providing collisions for the whole Player object. So you can go

ahead and remove the Box Collider components from the Base and Top GameObjects

that make up the player model, just to tidy them up. You can do this by clicking the little

gear icon on the top right of the component listing in the Inspector and then clicking

“Remove Component,” shown in Figure 16-1.

https://doi.org/10.1007/978-1-4842-5656-5_16#ESM

182

A collider can be marked as a trigger collider via a checkbox field in the Inspector.

Trigger colliders don’t act as physical objects, allowing other objects to pass through

them – however, they still send certain event messages to attached script components,

which lets us use them to detect when an object enters an area or gets near a switch or

something to that effect.

A Rigidbody is a component that adds physical behavior to a GameObject. When

a Rigidbody is attached to a GameObject, it is realistically affected by collisions – for

example, it will be pushed and rotated by other objects hitting it or pressing against

it. It also adds gravity to the object and enables you to add force (motion) and torque

(twisting and rotating) to the object through scripting.

To enable collisions, a Rigidbody still needs a collider – that’s what defines its shape

in the physics engine. An object with a Rigidbody but no collider can have gravity and

can have forces applied to it, but it will pass through other objects.

If you’re using a Rigidbody like this, you would not directly move or rotate the

Transform through your code. Rather, you’d add force and torque to it through a

reference to the Rigidbody component. Interfering with the Rigidbody by changing the

Transform directly could cause unwanted results, since the Unity engine is simulating

the physics itself and doesn’t account for any sudden movements you cause to the

Transform.

Nothing in our game is going to require such realistic physics control. What we’ll be

doing to move things like projectiles, where we directly move the Transform, is known as

kinematic movement.

Rigidbodies can be marked as kinematic through the “Is Kinematic” field in the

Inspector. This will override these behaviors that move and twist the object. If you

want to have finer control over an object, like a player character, you would mark it as

kinematic. If it’s kinematic, you’ll apply movement to it through the Transform, but it will

still trigger collisions in other objects.

Figure 16-1. After clicking the little gear in the top-right corner of a component
header in the Inspector, the “Remove Component” option can be selected

Chapter 16 BasiC hazards

183

The general rules of thumb are

• If it moves, use a Rigidbody. If it remains still, don’t use a Rigidbody.

• If it moves by script or animations, make the Rigidbody kinematic. If

it moves like a normal, physical object with forces and torque, don’t

make it kinematic.

• If you need scripts to respond to collisions between two

GameObjects, at least one of those GameObjects needs to have a

Rigidbody attached.

For our Player GameObject, we don’t have a Rigidbody attached. This is because

we’re using a CharacterController to move our Player, and the CharacterController acts

as a Rigidbody.

Layers are another concept that can influence collisions. Every GameObject is part

of a single layer. You can see a GameObject’s layer in the header of the Inspector, with

the text “Layer” beside a dropdown field. The layer “Default” is automatically assigned

to new GameObjects, so all of ours will have this layer. A GameObject has to be part of

some layer. There are some set up in Unity by default, which you’ll see if you click the

Layer dropdown for any GameObject (see Figure 16-2).

Figure 16-2. The Layer dropdown button for a generic Cube GameObject in the
Inspector. The button has been clicked, which expands the list to show available
layers. Clicking a layer will assign it to the GameObject

Chapter 16 BasiC hazards

184

You can also create your own layers and name them whatever you like. To do this, go

from the Layer dropdown menu of any GameObject and click the “Add Layer…” button at

the bottom of the list (visible in Figure 16-2).

The Inspector will change to show a list of all layers, as pictured in Figure 16-3.

Figure 16-3. The Inspector “Tags & Layers” view, showing fields for each layer

Chapter 16 BasiC hazards

185

There are a total of 32 slots you can use for layers. The first eight (layers 0–7) are

built-in layers that you cannot rename. Layers 8–31 are all reserved for us, the game

developer. We can type a name into any of these slots to make the layer available for

assigning to a GameObject.

You’re probably wondering what the point of them is. The two major purposes are

rendering and collisions. You can make cameras only render GameObjects of certain

layers, and you can make certain layers only collide with certain other layers. For

example, you could selectively hide GameObjects from the player camera or distinguish

between friend and foe so that the player is not hurt by friendly attacks or projectiles.

Let’s declare layers for our project so that we can have fine-tuned control over which

objects will be colliding with each other.

Name layer 8 “Player” and layer 9 “Hazard.”

Now select your Player to revert the Inspector out of the layer menu. Assign the

Player layer to the player. Now that we’ve named it, it’ll show up in the dropdown list.

When you change the layer of a GameObject that has children, Unity will ask if you

want to change the layer of the children as well. That’s what we want, so select the “Yes,

change children” option, and all of the children of our Player GameObject will be placed

in the Player layer as well.

As of now, all layers will collide with all other layers. We can change that through the

Edit ➤ Project Settings window. Click the Physics entry on the left side of your screen,

and if necessary, scroll down to the bottom of the contents on the right side of the

window. You’ll see something like a staircase of upside-down checkboxes, as shown in

Figure 16-4.

Chapter 16 BasiC hazards

186

Figure 16-4. The Project Settings window, showing the Physics section. At the
bottom, the Layer Collision Matrix field is unfolded to show an array of checkboxes
corresponding to layer names

Chapter 16 BasiC hazards

187

If you don’t see it, you probably need to click the field titled “Layer Collision Matrix”

at the bottom to unfold it so the checkboxes show.

This “collision matrix” depicts which layers are able to touch each other. There are

layer names on the left side and the top side of all these checkboxes, and where those

layer names cross, that is the layer combination that the checkbox is associated with.

Easier yet, if you place your mouse over any of the checkboxes, it will display the two

layers associated with it – for example, “Default/Player” or “Hazard/Player.” If the box is

checked, these layers can collide with each other. If it is unchecked, the layers will pass

through each other. You can even make a layer unable to collide with objects of the same

layer, if you want.

This can be useful to ensure that the hazards don’t touch anything they don’t need

to touch. We only need them touching the player; we may also want them to hit walls

and the floor. Generally, the Default layer can be used for environmental objects, so

we’ll plan to leave our floor and walls in the Default layer and enable collisions between

Hazard and Player and Hazard and Default. As far as we’re concerned, we don’t want

the Hazards colliding with anything else. We can even disable their collisions with

themselves, so that traveling projectiles don’t touch each other. To set it up like this, the

matrix should look as pictured in Figure 16-5.

Figure 16-5. The Layer Collision Matrix field after we've set our Hazards to only
collide with Default and Player layers

Chapter 16 BasiC hazards

188

 Hazard Script
Let’s get to creating our Hazard script. This will make a GameObject kill the player on the

spot when they touch. Create a script named Hazard in your project and open it up in

your code editor.

The collision will be handled by Unity, and we’ll set up our collider to make the

shape we want our hazard to use. Our code just has to define what happens when the

collision occurs.

There are built-in script event methods for this. The one we’ll be using is

OnTriggerEnter. It occurs once when a trigger collider of ours first hits another collider.

It won’t occur again unless the object stops touching our collider and then touches

it again. It takes a single parameter, of type Collider, which will be given by the Unity

engine when it calls the event. This parameter points to the other Collider that we

touched, so you can name it “other.”

Here’s how the declaration will look:

private void OnTriggerEnter(Collider other)

{

}

Of course, nest it directly in the Hazard class.

Inside this method, we can use the “other” parameter to grab the associated

gameObject (the one we hit); and through the gameObject, we can check the layer. This

is an int variable that depicts the number of the layer. Remember, 0 is Default, 8 is our

Player layer, and 9 is our Hazard layer.

We’ll check if the layer is 8, to make sure we’ve hit the player. We may have already

set up our physics detection such that Hazards only touch the Player, but you never know

what might happen down the road, so we’ll check to make sure anyway:

private void OnTriggerEnter(Collider other)

{

 if (other.gameObject.layer == 8)

 {

 Player player = other.GetComponent<Player>();

Chapter 16 BasiC hazards

189

 if (player != null)

 player.Die();

 }

}

Inside that if, we create a local variable and attempt to get the Player script

component using this new GetComponent method.

The GetComponent method can be accessed through any other Component

reference. In this case, we use the Collider “other.” It can also be grabbed through a

GameObject reference.

The <…> part is a new concept for us. To put it loosely, it is the concept of generics –

a feature of C# that allows types to be passed around as parameters to classes and

methods, among other things, by listing the types between angle brackets (the < and >

symbols).

The GetComponent method declares a generic type parameter that specifies

which type of component we want to get. Within the GetComponent method, this

parameter can be referenced as though it was an actual type, allowing some pretty cool

and powerful behavior to be defined. Rather than returning some specific type, the

GetComponent method returns the generic type it is given.

This means the return type effectively changes on the spot to whatever type we pass

in when we call the method. You can’t do that with a normal parameter. This allows us

to call GetComponent<Player> and receive a Player back instead of a Component. This

way, we don’t have to make a typecast to apply the reference to our new local variable.

If we didn’t do this, we’d have to specify the type of component through a normal

parameter, and we’d get a Component returned to us instead. As a less specific class, the

Component instance can’t be stored in a Player reference, and we’d get an error. We’d

have to fix it with a typecast. Ultimately, it looks much cleaner to use the generic version

of the method.

Generics are a somewhat complicated topic, so I could definitely say more about

them here, but luckily, you don’t need to be well-versed in the inner workings of generics

to simply use them in method calls. That’s a path you can go down at a later time.

Anyway, after we call the GetComponent method, we then check to see if we actually

got anything from it. If the GameObject didn’t have a Player component on it, the

GetComponent method would simply return null. We only want to proceed if that did

not happen (player != null), in which case we call our method player.Die().

Chapter 16 BasiC hazards

190

That does it for the Hazard script. Let’s test it real quick by creating a stationary

Hazard that we can touch with the player:

• Create a Sphere. Set its scale to (3, 3, 3). Place it somewhere near the player,

either by dragging it with the position handle (hotkey W) or copying the

player X and Z positions into the Sphere position in the Inspector. Set its Y

position to 1.5 to make sure it’s resting on the floor neatly.

• Set the Sphere’s layer to Hazard in the Inspector.

• Check the “Is Trigger” field of the Sphere Collider component in the

Inspector. It won’t receive OnTriggerEnter calls if it isn’t marked as a

trigger collider.

• Attach a Hazard script component to the sphere.

Now play the game and run your Player into the Sphere. It should kill the player on

contact.

You can delete the Sphere after you’ve finished playing around with it.

 Projectile Script
Now we can create a Projectile script that provides forward movement. When we get

around to it, we’ll make our Shooting script, which will spawn the projectiles and point

their forward axis in the direction they should be traveling. Knowing that, all we need to

do is make the projectile move forward until it reaches its maximum range.

We’ll create a Projectile script and declare some variables:

[Header("References")]

public Transform trans;

[Header("Stats")]

[Tooltip("How many units the projectile will move forward per second.")]

public float speed = 34;

[Tooltip("The distance the projectile will travel before it comes to a

stop.")]

public float range = 70;

private Vector3 spawnPoint;

Chapter 16 BasiC hazards

191

You’ve read the tooltips, so you ought to know what the variables mean. We use the

same “trans” reference, since it should be a little bit faster than referencing “transform”

itself. The spawnPoint will be set in Start, to memorize where the projectile was when it

spawned:

void Start()

{

 spawnPoint = trans.position;

}

We’ll use that to make sure it doesn’t travel further than it should, in the Update
method:

void Update()

{

 //Move the projectile along its local Z axis (forward):

 trans.Translate(0,0,speed ∗ Time.deltaTime,Space.Self);

 //Destroy the projectile if it has traveled to or past its range:

 if (Vector3.Distance(trans.position,spawnPoint) >= range)

 Destroy(gameObject);

}

This time, we use the method “Translate” to move the Transform. This method

has various overloads that allow slightly different parameter inputs, but the one we’ve

chosen is using three float values for the X, Y, and Z movement we want and an enum

“Space,” which determines whether the Transform should be moved in world or local

coordinates. This enum only has two options: Space.World and Space.Self (“self”

meaning “local”).

This parameter has a default value of Space.World. This means if you want, you

can omit the parameter entirely, and it will assume its default value and run just fine.

However, since we want to rotate the projectile however we like and have it always go

along its own forward axis, that means we want local movement instead, so we need to

specify the parameter.

After applying the movement, we use another new method, Vector3.Distance. This

takes two Vector3 instances and returns the distance between them as a float. We check

if the distance between the projectile and the spawn point has exceeded the “range”

Chapter 16 BasiC hazards

192

variable. If so, we destroy the GameObject that the Projectile script is attached to, with a

method Destroy, available through any Unity object.

Now let’s create a projectile prefab. We’ll set it up in the scene and then drag and

drop it to the Project to make the prefab asset.

It’ll be pretty simple:

• Create a Sphere named Projectile. Set its layer to Hazard.

• Check the Is Trigger box in its collider.

• Add the Hazard and Projectile scripts. Set the “trans” reference

for the Projectile script by dragging and dropping the Transform

component right there in the Inspector.

• Add a Rigidbody. Check the Is Kinematic box. You can uncheck the

Use Gravity box if you want, but gravity won’t apply to a kinematic

Rigidbody anyway.

• Create a new Material in your Project view. Name it Projectile. I’ve

picked a slightly off-red color for mine, with a hex value of E81010.

• Drag the new material from the Project window onto the sphere in

the Scene window.

• Now we’re done, so make a prefab for the projectile by dragging it

from the Hierarchy to the Assets ➤ Prefabs folder in the Project. If

you never made the folder, you can do so now. Or if you’re that type,

you can just be messy and throw the prefab anywhere in there.

If everything is set up correctly, your Projectile should look like Figure 16-6 in the

Inspector.

Chapter 16 BasiC hazards

193

If you want, you can give it a test and position the projectile somewhere in your

scene, play the game, and watch it move. You can even jump in front of it with the player

to see the Hazard script in action again, if you’re so inclined.

Figure 16-6. The Inspector view of our fully setup Projectile

Chapter 16 BasiC hazards

194

Once you’re done playing with it, you can safely remove the projectile instance from

the scene, since we’ve made a prefab of it already.

 Shooting Script
Now we’ll create a “shooter” obstacle and a Shooting script to fire projectiles. This will

give us our first example of spawning GameObjects on the fly through code.

Let’s build the GameObject. We’re going to use a very minimal amount of creativity

to make this one. We’ll use a cube for its base and a cylinder “barrel” poking out of it. It

should look something like Figure 16-7 by the time you’re done with it.

Figure 16-7. The final appearance of our Shooter GameObject

Chapter 16 BasiC hazards

195

Here’s how you’ll go about putting it together:

• Create an empty GameObject and name it Shooter.

• Create a cube as a child of Shooter. Name it Base. Set its local position

to (0, 2, 0) and its local scale to (2, 4, 2). You can leave the collider

on it as is, so that if we ever bump into the shooter itself, we’ll slide

against it like a wall.

• Create a cylinder as a child of Base. Name it Barrel. Give it a local

position of (0, .2, .7), a local rotation of (90, 0, 0), and a local scale of

(.8, .2, .4). It should now be a short cylinder poking out the front side

of the Base cube, near to the top.

• Create an empty GameObject with no initial parent (Ctrl+Shift+N).

Name it Spawn Point. Drag it onto the Barrel in the Hierarchy to make

it a child. Leave the local scale and rotation as is. Set its local position

to (0, 1.5, 0) to put it a little bit in front of the barrel.

• If you want, make a Material named Shooter and apply it to your Base

and Barrel. I’ve colored mine a pale cyan with a hex value of A1DED1.

The Spawn Point will be an invisible GameObject used for its position and rotation.

We’ll spawn new projectiles there and rotate them to point in the same direction.

Let’s get to it. Make a Shooting script and open it up.

This one’s pretty short, and you’re an expert at this process now, so here it goes:

[Header("References")]

public Transform spawnPoint;

public GameObject projectilePrefab;

[Header("Stats")]

[Tooltip("Time, in seconds, between the firing of each projectile.")]

public float fireRate = 1;

private float lastFireTime = 0;

Chapter 16 BasiC hazards

196

void Update()

{

 if (Time.time >= lastFireTime + fireRate)

 {

 lastFireTime = Time.time;

 Instantiate(projectilePrefab,spawnPoint.position,spawnPoint.

rotation);

 }

}

Of course, those will be the contents inside the Shooting class. We have a reference to

the Spawn Point Transform and to the GameObject of the Projectile prefab. We set these

in the Inspector, as always.

We also have a public “fireRate” variable and a float which stores the current game

time at which a projectile was last fired. To implement the wait time between each spawn,

we use the Time.time variable, which gives the time, in seconds, since the game began.

It starts at 0 and counts up over the course of the game being played. To see if it’s time to

spawn a new projectile yet, we just need to check if the current time (Time.time) is greater

than the Time.time at which we last fired (lastFireTime), plus the seconds between each

firing (rateOfFire). Of course, in order for this to make any sense, we have to also reset the

lastFireTime to the current Time.time again every time we fire a projectile.

To spawn a prefab on the fly, we use the built-in method Instantiate. It takes three

parameters: a pointer to the thing we want to create, a Vector3 for the initial position we

want it to have, and a Quaternion for the initial rotation we want it to have. We’ll point to

the projectile prefab and use the position and rotation of the Spawn Point to neatly align

the projectiles with the barrel.

That’s it! We can save the script and attach it to the base Shooter GameObject. Set the

reference to Spawn Point by dragging it from the Hierarchy to the field in the Inspector.

The projectile prefab can be dragged from the Project onto its respective field.

Create a prefab for the Shooter to make sure we don’t accidentally lose it somehow

(having to rebuild it would be a little frustrating).

Now you can play and test the results. If you’ve set the Shooter up as described, it will

keep spawning projectiles at the Spawn Point position, firing them off along its forward

direction, toward where the so-called barrel points. Watching from your Scene window,

you can travel out with the projectiles to see that they’re disappearing once they reach

the end of their range. If your Shooter is not positioned at the correct vertical location,

Chapter 16 BasiC hazards

197

just set the root “Shooter” GameObject Y position to 0, or delete it and drag and drop a

new prefab instance down, which should snap to the correct Y location automatically

since we made the pivot point at the bottom.

 Summary
This chapter implemented our first obstacle type, a stationary Shooter that fires

projectiles periodically. Some things to remember are as follows:

• A Rigidbody can be added to a GameObject to provide realistic

physics simulation for that GameObject, including gravity and forces

that push, twist, and turn the GameObject.

• A Rigidbody that is marked as kinematic will not be controlled by

the physics system. If you’re going to directly move a Transform,

its Rigidbody should be kinematic; otherwise, your influences on

the Transform position will cause unpredictable disruptions to the

natural physics performed by the Unity engine.

• For collision-related events to be sent on scripts, one of the colliding

entities must have a Rigidbody attached, even if it’s a kinematic one.

• The CharacterController counts as a kinematic Rigidbody. You

don’t need a Rigidbody attached to a GameObject that already has a

CharacterController.

• Every GameObject is part of one layer. Layers can be used to

determine which objects collide with each other and which do not.

• The OnTriggerEnter built-in event is called when a trigger collider

first detects a collision with another collider.

• The Transform.Translate method is used to move a Transform by a

given X, Y, and Z amount. The movement can be performed in world

or local space using the fourth parameter.

• The Destroy method is available from within scripts and can be used

to destroy a GameObject, removing it from the game world entirely.

• The Instantiate method is also available from within scripts. It can

be used to create a new instance of a prefab, with the desired initial

position and rotation as parameters.

Chapter 16 BasiC hazards

199
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_17

CHAPTER 17

Walls and Goals
Now that we have some obstacles taking shape and our player movement working nicely,

we can start thinking about setting up levels and a win condition for them: touching a

goal object.

To block out our levels, we’ll use simple cubes based off a prefab, with variations on

their scale and position to stretch them out however we need to make our level. It might

look a bit shoddy, but again, we’re programmers, not designers.

 Walls
Create a cube and name it Wall. Make a material, also named Wall, apply whatever color

you like, and throw it on there. I’m using a brown with a hex value of 601E1E. We’ll leave

the collider as is. It won’t be a trigger, because we want it to be physical and block the

player. It doesn’t need a Rigidbody because it doesn’t move.

Make it as tall as you like and position it so the bottom is touching the floor. When we

set up our “Floor” plane at the start of the project, we made sure to position it at (0, 0, 0).

This means the floor has a Y position of 0, so you can perfectly touch the bottom of the

wall to the floor by setting the wall Y position to half the Y scale. I have my wall at a size of

10 (which means a Y position of 5).

If you’ve accidentally moved your Floor plane, you can fix it by setting its Y position

to 0 again, although you’ll have to adjust any other GameObjects in the scene to match.

Now we can make a prefab out of this wall. Going forward, we’ll make sure all the

walls we add to any of our levels are instances of this prefab. Yes, it was easy to make, but

if we make new ones each time or make a separate one for each level and copy-paste it,

we won’t be able to make a change to all of them at once if we should ever need to.

To shape a level and confine the player within it, we can copy-paste instances of

this prefab and change their position, rotation, and scale however we like, letting them

overlap and stick together.

https://doi.org/10.1007/978-1-4842-5656-5_17#ESM

200

Whenever we start a new level (we’ll make each one in a separate scene), we just

throw a wall prefab instance down, reposition its Y correctly (its pivot point is at the

center, so it won’t line up to the floor correctly when we place it), and then just copy-

paste that to make more instances on a dime.

The rect transform tool (hotkey T) can be particularly useful in quickly sizing a block

like this. Just make sure you set the Tool Handle Rotation control (hotkey X) to Local, not

Global, so that when working with rotated walls, the rect tool matches the rotation of the

selected wall. Figure 17-1 shows the location of the Tool Handle Rotation button up at

the right side of the transform tools in the toolbar.

You can then drag the edges or corners of the walls to pull them, allowing you to

easily stretch and shrink the walls.

I’d recommend never changing the Y scale of individual walls, to keep them all

uniformly flat on top. It also means the Y scale remains original, so we can change it for

all our walls at once with a change to the prefab, although the pivot point complicates

this because their Y position will have to be shifted down to make them touch the floor

again (otherwise, they’ll hover above it if you made them shorter or stick through it if you

made them taller).

Another little trick you might be interested in when setting up walls this way would

be to get a nice overhead view of the scene. That little gizmo in the top-right corner of the

Scene window comes in handy here (see Figure 17-2).

Figure 17-1. The Tool Handle Rotation, highlighted with a red box, is shown in
the Local setting

Figure 17-2. The gizmo displayed in the top-right corner of the Scene window

Chapter 17 Walls and Goals

201

You can click the gray cube at the center of the gizmo to switch between Perspective

and Isometric camera modes. The current setting is displayed in text beneath the gizmo

(Persp or Iso). Just click that cube to toggle between the two settings. Isometric mode

makes everything look “more 2D,” so to speak, while Perspective mode looks more

standard, with field of view stretching objects as they near the edges of the screen.

Isometric mode can make it easier to line objects up accurately.

The gizmo also shows little cones pointing off the central cube. Three of these

cones are color-coded by their axis (red, green, and blue) and labeled for the X, Y, and Z

axes. Any of the cones can be clicked to spin the camera around to view the world from

straight on at that angle: top, bottom, left, right, and so on, depending upon which cone

you clicked. If you click the green cone, you get a view from the top of the world, letting

you get a bird’s-eye view of the level as you edit it.

As we develop more functionality to our game, you can play with your own level

designs and get creative with it.

 Goals
Alright, let’s make a simple Goal script to define a means of winning the level. This is

going to be much like a Hazard: detect a touch from the Player and run some code when

it happens.

Let’s make a layer to use for our goals first. Using the Layer dropdown found in the

head of the Inspector for any GameObject, click “Add Layer…” to reach the layer menu

just as we did before, and write the name “Goal” in the User Layer 10 slot.

Once again, go to the collision detection matrix by navigating to Edit ➤ Project

Settings, selecting the Physics tab on the left, and then scrolling down to the Layer

Collision Matrix field at the bottom. Make the Goal only collide with the Player – nothing

else, shown in Figure 17-3.

Chapter 17 Walls and Goals

202

Let’s create the GameObject for it while we’re at it:

• Create an empty GameObject named Goal.

• Add a cylinder child and scale it to (4, .1, 4), making it like a thin disc.

Give it a (0, .1, 0) local Y position. Check the “Is Trigger” field in its

collider.

• If you want, make a material “Goal,” apply it to the cylinder, and give

it some color. I’m using a bright green (the color of success in video

games), hex value 2CFF28.

• Apply the Goal layer to the root GameObject (the one aptly named

Goal). This should also provide an option to apply the layer to all

children as well. Say “Yes, change children” to that.

• Give the root Goal GameObject a kinematic Rigidbody. There may

not be a collider attached to the Goal itself, but the Rigidbody will use

the child cylinder’s collider without any further setup on our part.

Figure 17-3. Within the Physics tab of the Project Settings window, we have
scrolled down to the Layer Collision Matrix and set our Goal layer to collide only
with the Player layer

Chapter 17 Walls and Goals

203

By the end, it should look something like Figure 17-4. The collider sticks up past the

cylinder a little, but that won’t hurt anything.

Now, create a Goal script in your Scripts folder with the Project window. Attach an

instance of the new script to the Goal root GameObject.

While we’re at it, make a prefab out of the Goal by dragging it to the Prefabs folder in

your Project window.

The Goal script will be pretty short: when the player touches the Goal, we’ll load the

“main” scene again. We haven’t gotten there yet, but eventually, each level is going to

be in its own scene, and the “main” scene will be the menu that the user sees when they

start the game, allowing them to select a level to play on. For now, we’ll just send them

over there again when they win. It’s not much of a rewarding experience, but it’s the

journey that counts, right?

Figure 17-4. Our Goal GameObject, with the shape of its collider visible as green
lines arcing over and beneath it

Chapter 17 Walls and Goals

204

To do this, we need to add a new “using” statement at the top of our script file, up

there with the rest of them. You’ve probably paid little attention to these since their

first mention. To recap, they exist to tell the compiler what other “namespaces” (tidy

containers for related code definitions) we want to use in this script file.

We need a particular namespace that allows us to run a method to change the

current scene in-game. Add this “using” anywhere in there with the rest, up at the top of
the script file:

using UnityEngine.SceneManagement;

Now add this code within the script class:

void OnTriggerEnter(Collider other)

{

 if (other.gameObject.layer == 8)

 SceneManager.LoadScene("main");

}

We’ve seen most of this before: we detect a touch from our trigger collider and make

sure the other GameObject is the player (layer 8), and if so, we run this method to load

a scene by its name, “main”. If you never actually named the scene “main”, either do that

now or just write whatever name your scene uses in the method call (but make sure you

don’t mistype it).

This method can be customized with an extra parameter to specify that we want to

load the scene “additively,” which means the loaded scene gets mixed in with the current

one and none of the GameObjects of our current scene get lost. But if you don’t specify

this, it loads the new scene in by replacing the existing scene entirely (including the

Player). Since we’re just loading the same scene again, it will reset everything back to its

original state. In this case, that’s what we want.

We’re not done just yet, though. Before we can load a scene in-game, that scene has

to be added to our Build Settings. Let’s learn what that means.

 Build Settings for Scenes
If we ever want to turn our game into a program that we can send to users to play without

use of the Unity editor, we need to build the project. This copies our Unity project

into a set of files that can run the game independently of the editor – for example, as

Chapter 17 Walls and Goals

205

an executable (.exe) file. But first we need to add any scenes we’re using to the Build

Settings. If the scenes aren’t in the Build Settings, they don’t get “put in the build” and

can’t be loaded in-game. We may be able to open them and play them in the Unity

editor, but if we want to load them through a script, they must be added to the build.

The Build Settings (see Figure 17-5) are accessed by heading to File ➤ Build Settings

or with the hotkey Ctrl+Shift+B.

Figure 17-5. The Build Settings window

Chapter 17 Walls and Goals

206

This is where you can find your target platform, which should be “PC, Mac & Linux

Standalone” by default. On the right, we have relevant options specifying how the project

would be built, such as the target platform (Windows, Mac, or Linux, although you’ll

need to have installed the appropriate build modules in the Unity Hub to see all these

options). To the left, there’s a listing of other platforms available to target. You can switch

the target platform here. That’s how you would target things like WebGL (to let your

game run in a web browser) or even game consoles. We won’t dive into those topics right

now, though.

We’re focused on the top portion of the window, the “Scenes In Build” section. Right

now, it’s just an empty rectangle. At the bottom-right corner, we can click the button

“Add Open Scenes” to put our currently opened “main” scene into that list, as pictured in

Figure 17-6.

This will include the scene in the game when the game is built. We only need to do it

this one time, and the scene will remain in that list. If we want to delete a scene, we can

select it and press Delete on our keyboard or right-click and click Remove Selection.

All the way at the right side of the entry for our “main” scene, you’ll see a little

number 0. This is the scene build index. It starts at 0 and goes up as we add scenes. If we

had other scenes in here, we could reorder them by dragging and dropping with the left

mouse button.

The build index is another means of loading a scene with the method we used in our

Goal script. Now that our “main” scene is in here, we could go back to our Goal script

and change the “main” string to use the build index instead, meaning we’d just pass a 0

as the parameter. In our case, it’ll do the same thing.

Figure 17-6. The Scenes In Build section of the Build Settings window, after we
have added our main scene to the list

Chapter 17 Walls and Goals

207

But the most important thing about adding the scene to the build settings is to

ensure that it actually makes it into the build and to designate it as the first scene in the

project, so that it’s the first thing that loads when you start the game. In the Unity editor,

we just load whichever scene we want and don’t worry about this, but if we were to make

a finished product and send it to players, we’d need to send them to the correct scene

when they first load the game up. Similarly, any level scenes we want to load for the

player will have to be added to the build settings to make them available when playing a

built version of the game.

The scene at build index 0 is always the one that will load first when the game is run

from a build. Since our “main” scene is intended to be the home screen where the user

selects the level they wish to play, we want that to be our first scene.

Now that the main scene is part of the build settings, the goal should function just as

expected. With a goal placed down somewhere the player can touch it, go ahead and test

it out. Touching the goal should reset the scene back to its original state, reloading all the

GameObjects within. It might come with a little bit of a hiccup. That’s expected – loading

in new scenes can come with a short wait.

 Summary
This chapter taught us how to set up walls for our level and how to edit them

conveniently with the rect tool. We’ve coded our Goal script and set up a prefab for a

consistent Goal GameObject which will take the player back to the “main” scene when

they touch the goal. Some points to remember are as follows:

• To access the class required to load a scene, include a “using
UnityEngine.SceneManagement;” line at the very top of the

script file.

• If you want to load a scene in-game, it must be added to the build in

the Build Settings window.

• In the list of scenes added to the build, each scene is assigned its own

build index, a number based on the scene’s order in the list.

• To perform a scene load, call the SceneManager.LoadScene

method. You can use a string for the name of the scene or an int for

the scene build index.

Chapter 17 Walls and Goals

209
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_18

CHAPTER 18

Patrolling Hazards
Now that the game is shaping up more, it’s in need of some greater obstacle variety. In

this chapter, we’ll implement “patrollers.”

Patrollers are objects that we set up with a series of points they’ll travel along. They

move from one point to the next, starting at the first point and going down the list. Once

they reach the last point, they double back to the first point again and then repeat the

process. We can set the points up however we want and use however many points we

want. If we want an obstacle to travel in a simple line back and forth, we can just use

two points: one at one end of the line and another at the opposite end. Alternatively, we

could have them run along a series of points that lead them down a more complicated

path.

 Resembling a Patrol Point
The first challenge we’ll need to face is managing the patrol points. How are we going to

resemble each patrol point and access it in our Patroller script?

The only data we really need for patrol points is a position – that’s all they really are,

right? So we could expose Vector3 instances in the Inspector and manually type in the

position of each patrol point. But that’s not very convenient.

Instead, we can use empty GameObjects in the Scene to resemble patrol points. This

way, we can position them using the transform tools and view them in the Scene to know

where they actually are. Then, we can set references to each patrol point Transform and

grab its “.position”.

If we’d used Vector3s, we wouldn’t really be able to visualize where a point is.

We’d have to make a GameObject, put it where we want, and then copy its position

value into a field in our Patroller script. And if we’re doing that, why not just use empty

GameObjects as the points instead?

https://doi.org/10.1007/978-1-4842-5656-5_18#ESM

210

The next challenge we face is how we’d go about referencing all of these patrol point

Transforms in our Patroller script. We might think to declare a bunch of variables, one

for each patrol point. We’d name them patrolPoint1, patrolPoint2, and so on. We’d set

them as references to patrol point Transforms in the Inspector. We could declare, say, ten

of them, because we don’t think we’ll ever need more than ten. Any points that aren’t set

(meaning the value is null) would be ignored, so we’d double back to point 1 as soon as

we reach the last point that isn’t null.

But that’s kind of awful. Not only is it a pain to code the logic for switching from one

point to the next, it’s simply not doing all we want it to do. It’s limiting us to however

many points we’re willing to spend the time creating variables for, and it requires that we

set a reference to each point.

This is where arrays come into play.

 Arrays
Arrays are a means of storing a collection of a certain data type in a single object. An

instance of an array is given a type (such as Transform) and a length. The length is the

number of items that the array stores.

Say we create an array of type Transform, with a length of 20. We now have a single

object that stores 20 separate Transform references, all of which are initially set to null.

But how do we access individual items within the array?

This is known as indexing. Each item in the array corresponds to an index – an

integer value, like an ID that can be used to point to a specific “slot” in the array. The

index of the first item will be 0. The next item will be 1 and then the next 2, going all of

the way up to 19 in an array with a length of 20 (since it starts at 0, not 1, the last index

will always be 1 point less than the length).

To declare an array, you declare it like a normal variable, but after the type, you put

an empty set of square braces []:

public Transform[] arrayOfTransforms;

public Vector3[] arrayOfPoints;

To create an instance of an array, it’s much like calling a constructor to create an

instance of a class as you normally would. The difference is that we use square braces []

instead of parentheses () after the type name. Within those square braces, we put a single

Chapter 18 patrolling hazards

211

parameter, which is the number of entries the array will store. This parameter resembles

the array length. It can be accessed at any time through the .Length member:

//Create an array storing 5 Transforms:

arrayOfTransforms = new Transform[5];

//Log the length:

Debug.Log(arrayOfTransform.Length); //This will log the number 5

In the preceding code, we’ve declared an array storing up to five Transforms. The

first has an index of 0, and the rest have indexes of 1, 2, 3, and 4. Notice that the last index

is equal to Length – 1, not Length. That’s due to the index starting at 0 instead of 1.

To access the Transforms through the array, we reference the array and then type an

indexer, which is a square brace set [] with an integer value inside it. That integer value

is the index of the item we want to grab out of the array. For example, we would grab the

first Transform in the array like this:

Transform first = arrayOfTransforms[0];

Often when working with arrays, we don’t just pass in literal values like 0 or 4 as our

index. It kind of eliminates the purpose of arrays.

What we can do is keep an integer “currentPointIndex” variable in our Patroller and

use that to keep track of the index of the point we’re currently traveling toward.

When we reach the point, we increase currentPointIndex by 1 and then use it as an

index to grab the next point in the array.

If you ever try to grab from an array using an index that’s too high or is a negative

value, an error will be thrown. It doesn’t just double back to the beginning automatically

for us, so we have to account for that ourselves.

Luckily, that’s not so hard. Whenever we’re ready to switch to the next point, we

simply check if the currentPointIndex is already the last index in the array, which is equal

to array.Length – 1. If so, we set the currentPointIndex back to 0. If not, we just increase it

by 1.

This creates a neat loop through the items of the array, and it works no matter how

many items we store in the array.

Chapter 18 patrolling hazards

212

 Setting Up Patrol Points
Let’s figure out how we plan on setting up references to our patrol points before we begin

coding anything.

Arrays can be serialized just like other data types (so long as they store a type that

also supports serialization). If you’ll recall, a value being serialized means it shows up in

the Inspector so that we can edit it and save its state within the Scene.

When an array is serialized, you can set its length to whatever you want, and Unity

will give you a field for each item (index) in the array. We could then drag and drop the

Transforms of our patrol points into those fields to set the array up manually. It would

look something like this in the Inspector, shown in Figure 18-1.

But we’re not chumps, so we won’t be doing that. Dragging and dropping patrol

points into this array to set up the patroller will be somewhat tedious, so we’ll be setting

the references through code instead.

We want to automate this part of our workflow so it’s easier for us to set up patrollers.

It may be slightly less performant as a result. Finding the patrol points at runtime is

always going to be slower than just setting up the references directly in the Scene,

when the game isn’t playing. But the performance hit shouldn’t be noticeable anyway,

particularly for a game with such a small scope. Sometimes it’s worth it to implement a

simple feature like this to make the game easier to develop. If you’re too hard on yourself

just to make the game run as fast as possible, you might end up never releasing the game

in the first place because developing it drove you crazy!

So what do we have to do to set up these patrol points and grab the references to

them in our code?

Figure 18-1. A view of a serialized array of Transforms in the Inspector. We've
set the length to 5 manually. None of the references have been set yet, showing as
“None” (equivalent to null)

Chapter 18 patrolling hazards

213

In order to find all of the patrol points associated with a single Patroller instance

through code, we’ll be grabbing all of the children of the GameObject with the Patroller

script attached. So all of the empty GameObjects we use to resemble patrol points will

have to be children of the Patroller they belong to. This keeps them neatly tucked inside

the Patroller they belong to in the Hierarchy, so it’s a win-win.

But we don’t want them to move or spin with the Patroller, so we’ll just unparent

them as soon as we find them and set up our references. That way, they stay put in the

scene even as the Patroller moves and rotates. It would be anarchy if we forgot this step.

The Patroller would keep moving toward a point that stays a fixed distance away from it,

so it’d never reach the first point at all.

We need to distinguish patrol points from other children that aren’t meant to be

patrol points. We’re simply going to use the GameObject name to do that. We’ll name

them all “Patrol Point” followed by a set of parentheses with the patrol point index within

it, such as “(0)” for the first point and “(1)” for the next.

Our code is going to use that index value to properly order the patrol points in an

array, so it’s important that we always get it right.

Luckily for us, Unity will automatically do this sort of numbering for us when we

copy-paste GameObjects.

Try it yourself. Create a Cube in the scene, and with Ctrl+C and Ctrl+V, copy and

paste it a few times. You’ll notice that Unity automatically renames the new cubes,

adding a “(1)” after the first copy you create and then a “(2)” after the next and so on.

We’ll use this to our advantage to make it easier to plop down a bunch of patrol

points. We can just name the first patrol point “Patrol Point (0) “, and then whenever we

copy and paste it, Unity will increase the index value for us. We’ll still have to manually

change the numbers if we ever want to add or remove a patrol point in the middle of the

sequence, though. We’ll just have to suck it up and deal with that.

Let’s set up the GameObject for a Patroller so we can see this in action.

We’ll use a system similar to that of the Player. A base, empty GameObject aligned

with the floor (a Y position value of 0) will hold all the other GameObjects. We’ll have a

model within, which we’ll be rotating instead of the base GameObject:

• Create an empty GameObject named “Patroller”. Position it

somewhere by your Player and make sure its Y position stays at 0.

• Create a Cube, name it Model Base, and make it a child of the

Patroller. Set its local position to (0, 1.5, 0) and its scale to (3, 3, 3).

The 1.5 Y position keeps the bottom touching the floor nicely.

Chapter 18 patrolling hazards

214

• Since this will be a Hazard, check the Is Trigger field of the Model

Base’s Box Collider component.

• Create a second cube, name it Model Top, and make it a child of

Model Base. Set its local position to (0, .5, .5) and its local scale to

(.2, .2, .7). This will stick out at the top and front of the model, much

like with the player, to give us better indication of where it’s pointing.

We’ll also delete its Box Collider component so the player isn’t killed

by this little protruding piece (we’ll show some mercy).

• Set the layer of the Patroller to Hazard, and when Unity pops up a box

asking to change the layer of children, agree. We want the Patroller

and all of its children to be in the Hazard layer.

• Give the root Patroller GameObject a Rigidbody component, and

make it a kinematic one by checking the Is Kinematic box.

• Add a Hazard script component to the root Patroller GameObject. It

will automatically use the box collider present in its child, the Model

Base, to detect collisions that kill the player.

• You can create a new material for the model if you want. I’ll use the

same color for the patrollers as well as the wanderers we’ll be making

later, so I’m giving the material a more generic name: MobileHazard.

I’ll color it some kind of pink, with a hex value of EF7796. Of course,

apply that material to the Model Base and Model Top cubes.

The model will look something like shown in Figure 18-2.

Chapter 18 patrolling hazards

215

Now let’s set up patrol points so we’ll have them ready when we start testing the

code that detects them. Just create an empty GameObject that’s a child of the Patroller

with Alt+Shift+N (Option+Shift+N for Mac users) while selecting the Patroller. As we

discussed, name it “Patrol Point (0)”. That’ll be the first point. Leave it right where the

Patroller GameObject is, with a local position of (0, 0, 0). That way, the patroller will

always double back on its initial Scene position.

Then, copy and paste the Patrol Point and position the new one at the next position

you want the patroller to run to. The index in the name should go up by 1 point

automatically. If you want, keep doing that until you’ve mapped out a path you’re

satisfied with (or just leave it at two points for a straight line). Remember, after reaching

the last point (the patrol point with the highest index number), the patroller will go back

to “Patrol Point (0)” and do it all again.

If you’ve created four patrol points, your Hierarchy should look something like

Figure 18-3.

Figure 18-2. Our Patroller model

Chapter 18 patrolling hazards

216

 Detecting Patrol Points
Now we can start coding the Patroller. Create a script called Patroller and attach an

instance of that new script to the root “Patroller” GameObject.

Before we implement anything else, let’s do the part that relates to arrays: set up the

patrol points. We’re going to handle a couple of different firsts here, so bear with me.

We’ll declare an array of Transforms called patrolPoints, nested directly in the

Patroller script:

private Transform[] patrolPoints;

You’ll notice it’s private, which makes it not show in the Inspector, since we won’t be

setting it up that way.

Now we need to set the array up in the Start method. We’re going to split this

functionality up a little bit to keep things neat-looking. We’ll do so by declaring a private

method for us to use in our Start method. This private method will get all children of the

Patroller and return only the ones with a name that starts with “Patrol Point”.

To do this, we’ll be exploring some new concepts. First, we’ll use the built-in method

GetComponentsInChildren<T>, which you can call from a GameObject or a Component.

The <T> part means that it takes a single generic type parameter, as we saw before with

the GetComponent<T> method that we used in our Hazard script. It works much the

same way: it’s simply asking us what type of component we want to look for. It’ll search

all child GameObjects of the GameObject we call the method from and return an array

storing all instances that it found of the given component type within the children.

Since every GameObject has a Transform that can’t be removed from it, we can

call GetComponentsInChildren<Transform> on our root Patroller GameObject to

get a Transform for each child within it. Then, we can easily grab a reference to the

Figure 18-3. The hierarchy of our Patroller GameObject after we've created four
patrol points

Chapter 18 patrolling hazards

217

GameObject of each child, since Transforms have a “.gameObject” member pointing to

the GameObject that the Transform belongs to. Thus, finding all of the Transforms is just

as well as finding all of the GameObjects.

Then we need to go over each item in that array and select only the ones with the

correct name (the patrol points).

This is where we need a List and a loop.

The List is our first example of a class that takes a generic type. Technically, it should

be List<T> since it takes one generic type parameter.

A list is an array that’s generally a bit less performant, but has less of the limitations

that arrays have.

Arrays have to be created with a length. You must abide by that length from that

point on. You’ll have “Length” items in the array, no more and no less. You can set items

to null if you don’t need them, but they’ll still be there in the array.

A List doesn’t need to be created with a length in mind, and it allows you to add and

remove items on the fly. This is perfect for us. We have no idea how many patrol points

there will be at first, so we very well can’t create an array to store them in.

Aside from that difference, Lists operate like arrays. You still index them with a set of

square braces [] to grab the items within. They’ll still throw an error if you try to grab an

index that doesn’t exist.

We’re going to create a List, fill it with just the patrol point Transforms, and then

return that List in this private method.

The loop is what we use to go through all of the Transforms in the initial array so we

can add only the patrol points to the List.

We’ll get to that in a second, but let’s finally declare this method and get ready to add

our loop. You know how generics work for methods, but this is the first time you’ll see

them for class types:

//Returns a List containing the Transform of each child

// with a name that starts with "Patrol Point (".

private List<Transform> GetUnsortedPatrolPoints()

{

 //Get the Transform of each child in the Patroller:

 Transform[] children = gameObject.GetComponentsInChildren<Transform>();

 //Declare a local List storing Transforms:

 List<Transform> points = new List<Transform>();

}

Chapter 18 patrolling hazards

218

Here, we declare a private method called GetUnsortedPatrolPoints. The return type

is a List. When supplying a generic class as a type, you need to write out the <T> part as

well. That’s how the compiler knows what sort of object should be stored in the List. This

way it knows that when we call this method, we’ll get a List of Transforms returned to us.

Within the method, we use the GetComponentsInChildren method, as we talked

about earlier. All we have to supply is the generic type parameter, which is <Transform>.

We create a local variable called “children” to store this resulting array of Transforms.

Then, we declare a new local List<Transform> to store just the points in. This line

looks somewhat redundant: List<Transform> comes first to signify the variable type, and

then shortly after, we’re typing it out again to construct a new instance.

There’s a little “syntax sugar” you can use to avoid this, if it hurts your eyes so badly.

The “var” keyword can replace the variable type, which makes the compiler simply

figure out what the type is meant to be itself. In this situation, it’s easy to do so: we’re

assigning a value to the variable immediately after, and that value is obviously going to

be a List<Transform>, right?

var points = new List<Transform>();

When I say “syntax sugar,” I mean that this is purely in the syntax: it’s not changing

the functionality of our variable at all. It still stores a List<Transform> and only that. It’s

just that we’re telling the compiler we’re too lazy to type the name out ourselves and

asking it to figure it out for us.

 The “for” Loop
Now we’re set up to do our loop. Simply put, a loop is a block of code that runs multiple

times. There are different kinds of loops for different purposes, but the one we’re using is

a for loop.

Let’s look at a simple example that’s not exactly what we need, but it shows a basic

use of the for loop:

for (int i = 0; i < 5; i++)

{

}

Chapter 18 patrolling hazards

219

First, we give the “for” keyword and then a set of parentheses (). Within the

parentheses, we have three separate tiny statements, all declared on the same line, but

each one still separated by a semicolon “;” like they normally are.

The first statement is the initializer. It’s a variable declaration that occurs at the start

of the loop. We declare a variable named “i”. This variable is initialized when the loop

begins and only exists within the code block of the loop. You can’t access it outside of the

loop.

The second statement is the condition. We’ve written “i < 5”. This is just a bool

expression – something that returns true or false.

The third statement is the iterator which is just “i++”. This is a slightly shorter way

of typing “i += 1”. In fact, if you really had your mind set on needless typing, you could

type “i = i + 1”. But the shortest way is “i++”, so that’s what you’ll see most often in other

people’s code.

So what is this loop doing?

First, the initializer code runs one time at the start of the loop.

Then, this recurring process happens any number of times:

• The condition is evaluated (i < 5).

• If the condition is true, the code inside the block is run, then the

iterator is run (i++), and then this process repeats – back to the

condition again.

• If the condition is false, break out of the loop.

In the example, this means the code in the block runs five times. After each iteration

of the loop, the variable “i” increases by 1. Once “i” becomes 5, the condition is no longer

true, so the loop stops iterating.

When the loop finishes, the code beneath it will continue running as normal.

At any point within the loop, we can access “i” to get its current value.

You might be able to guess how we can apply that to our current problem.

We want to loop over every item in the “children” array of Transforms, operating

once on each item. We’ll use the “i” variable to refer to the current item in the loop – the

index we want to grab from the array. It starts at 0 and goes up by 1 each iteration, which

is perfect to go through each item in the array.

Chapter 18 patrolling hazards

220

To ensure that we operate on each index in the array, we just need to know how

many items are in the array, to make sure the loop stops as soon as we hit that last index

(otherwise, we’ll get an error for trying to access a nonexistent index). To do that, we use

the “children.Length” value in the condition:

for (int i = 0; i < children.Length; i++)

This is the standard way to iterate over every item in an array or list and perform

some action on each of those items individually. To get the item, we just use “i” as the

index: “children[i]”.

Now, what are we doing to each item in our loop?

What we need to do is check if the GameObject name starts with “Patrol Point (“ and,

if so, add it to the “points” List we made earlier.

This is how our method looks once we’ve added our for loop:

private List<Transform> GetUnsortedPatrolPoints()

{

 //Get the Transform of each child in the Patroller:

 Transform[] children = gameObject.GetComponentsInChildren<Transform>();

 //Declare a local List storing Transforms:

 var points = new List<Transform>();

 //Loop through the child Transforms:

 for (int i = 0; i < children.Length; i++)

 {

 //Check if the child's name starts with "Patrol Point (":

 if (children[i].gameObject.name.StartsWith("Patrol Point ("))

 {

 //If so, add it to the 'points' List:

 points.Add(children[i]);

 }

 }

 //Return the point List:

 return points;

}

Chapter 18 patrolling hazards

221

Within the loop, we use “children[i]” to get the current child Transform in the loop.

We reach into that and access the .gameObject and then reach further to access its name.

This is a string, which has a handy instance method “StartsWith”. This simply returns true

if the name starts with the given string parameter.

If so, we reference our “points” List and call its instance method “Add”. This takes one

parameter, which is, of course, the item to add to the List. The item will be added to the

end of the List (meaning it has the highest index).

Of course, we wouldn’t want to forget to actually return the list when we’re done, so

we add that “return points;” statement to the bottom.

At last, we’ve made our method. Now we just have to put it to use.

 Sorting Patrol Points
We have a method to get an unsorted List of patrol points. Now we need to get that list

and, once again, employ a for loop. Iterating over each patrol point, we’ll isolate the

index out of the patrol point name, convert it to an integer, and store the patrol point by

that index in our “patrolPoints” array.

Remember, our main goal is to set up “patrolPoints”, the array we declared in the

script to store the properly sorted array of patrol points.

So let’s declare that Start method and see what it looks like:

void Start()

{

 //Get an unsorted list of patrol points:

 List<Transform> points = GetUnsortedPatrolPoints();

 //Only continue if we found at least 1 patrol point:

 if (points.Count > 0)

 {

 //Prepare our array of patrol points:

 patrolPoints = new Transform[points.Count];

 for (int i = 0; i < points.Count; i++)

 {

 //Quick reference to the current point:

 Transform point = points[i];

Chapter 18 patrolling hazards

222

 //Isolate just the patrol point number within the name:

 int closingParenthesisIndex = point.gameObject.name.

IndexOf(')');

 string indexSubstring = point.gameObject.name.Substring(14,

closingParenthesisIndex - 14);

 //Convert the number from a string to an integer:

 int index = Convert.ToInt32(indexSubstring);

 //Set a reference in our script patrolPoints array:

 patrolPoints[index] = point;

 //Unparent each patrol point so it doesn't move with us:

 point.SetParent(null);

 //Hide patrol points in the Hierarchy:

 point.gameObject.hideFlags = HideFlags.HideInHierarchy;

 }

 //Start patrolling at the first point in the array:

 SetCurrentPatrolPoint(0);

 }

}

First, we use the “var” keyword again in our declaration of a local variable storing

the result of calling that private method we just wrote. Just like that, we’ll have all of our

Patrol Point GameObjects stored in a List<Transform>.

Pressing on, we see our first use of the List<T>.Count member. This is equivalent

to the .Length member of an array, but for a List, it’s called Count, and resembles the

number of items currently stored in the List. Using this member, we declare an “if” that

ensures there’s at least one item in the list before we press on.

Now that we have “points.Count” to tell us how many patrol points there are in total,

we can pass that as the length of the “patrolPoints” array.

This initializes the array with just the right amount of items: one for each patrol

point in the list. They’re all null at first, but we’re about to set each one in the for loop we

declare next.

Chapter 18 patrolling hazards

223

The loop iterates over each point in “points”, using “points.Count” as the total

number of iterations to perform.

This time, we do a common operation at the start of the loop code block:

//Quick reference to the current point:

Transform point = points[i];

This creates a local variable storing the current point we’re iterating on. Now, instead

of typing “points[i]” to refer to the current point, we just type “point”.

Grabbing an item from a collection takes a little longer than referencing an existing

variable, so if you’re going to access an item multiple times in your loop, it’ll be faster to

store it in a local variable instead. Not only that, but it’s just a little easier to type.

The next section involves some new concepts regarding the manipulation of strings:

//Isolate just the patrol point number within the name:

int closingParenthesisIndex = point.gameObject.name.IndexOf(')');

string indexSubstring = point.gameObject.name.Substring(14,closing

ParenthesisIndex - 14);

The first line declares an integer value, using the string .IndexOf method.

To understand what this does, let’s learn a little more about strings.

Strings are just collections of characters, where each character is a single letter,

number, or symbol in the string. Technically, these characters are resembled as the

“char” data type.

Strings actually function something like an array or a list, in that you can index

them to grab a specific character from them. And just like an array, their index starts at

0 for the first character and then goes up by 1 per character. They even have a .Length

member you can use to get the total number of characters in the string.

The .IndexOf method takes one parameter: a char or a string. It searches the string

from left to right until it finds that parameter occurring within the string. If it finds it, it

returns the index of the char – or if a string was given, it returns the index that the first

char in that string occurs at.

The parameter we give is ‘)’. You’ll notice that’s using single quotes, not double

quotes as you would normally use when declaring a string. This is how you declare a

char. Just use single quotes and, of course, only put one character within them.

So that variable declaration is essentially asking “What index is the ‘)’ character

placed at?”

Chapter 18 patrolling hazards

224

Once we have that, we can use another handy string method: Substring.

This method takes a start index and a count, both integers. It returns a piece of

the string (a substring, so to speak). It starts at “startIndex” and returns a new string

containing “count” characters from that point of the string and onward.

To put it simply, it’ll return a piece of the string, starting at “startIndex” and ending at

“startIndex + count”.

Our goal is simply to get a new string containing only the characters between the

‘(‘ and the ‘)’ in the Patrol Point name. If you count out the characters in “Patrol Point (” ,

starting at 0, you’ll get 13 (remember, the spaces count too). That puts you right at the

index of the ‘(‘ character. So just go one character higher, and we’ll start at the character

immediately after.

The count is a little trickier. We could have patrol points with double-digit or, God

forbid, even triple-digit indexes. So we can’t just say 1 or 2 or 3. We need a string with

just the numbers of the index in it – it can’t include the ‘)’ at the end or anything else. We

need to be precise.

This is why we needed to grab the index of the closing ‘)’ character just before. Using

that, we can do a little math: the index of the ‘)’ character minus 14 is the number of

characters we want to get. For example, if index 13 is the ‘(‘ and index 15 is the ‘)’, then

there’s only one character between them – index 14. So 15 – 14 gives us a count of 1. We

grab one character, starting at index 14, which means we’re just grabbing the character at

that index.

Okay, moving on, we see why we needed this data in the first place:

//Convert the number from a string to an integer:

int index = Convert.ToInt32(indexSubstring);

//Set a reference in our script patrolPoints array:

patrolPoints[index] = point;

We declare an integer for the index – not a string anymore, because as you’ll see, we

plan on passing this index to the array to assign the item value. We can’t do that with a

string, even if it only contains numbers.

To convert the string of numbers to an integer, we use System.Convert.ToInt32. This

is a native C# method that takes a string and gives back an integer. Don’t worry about

why it’s called “ToInt32” instead of just “ToInt” – that’s just technical stuff.

If the string has any non-number characters in it, an error will be thrown. That’s why

we had to be all picky about how we created the substring.

Chapter 18 patrolling hazards

225

Note that if you don't have a “using System;” declared at the top of your script
file, this won't work! Convert comes from the “System” namespace. You’ll have to either

declare that using or, if you’d rather, just change the “Convert” to “System.Convert”

instead. Otherwise, you’ll get a compiler error.

Next, we have this bit:

//Unparent each patrol point so it doesn't move with us:

point.SetParent(null);

//Hide patrol points in the Hierarchy:

point.gameObject.hideFlags = HideFlags.HideInHierarchy;

The first line is somewhat self-explanatory. We call the SetParent method of the

point (which is a Transform). This takes one parameter, the Transform we want to set

the parent to. We pass in null, which means “no parent at all.” This makes sure the patrol

points don’t move with the Patroller when it moves.

The next line is another new concept.

Unity uses this enum “HideFlags” to let us specify certain little things about the

destruction and visibility of objects. It can hide scripts from the Inspector so they

don’t show at all. It can also hide GameObjects from the Hierarchy, which is what

we’re asking it to do here: we set the hideFlags member of each point GameObject to

“HideInHierarchy”, which does just as the name suggests – makes the GameObject no

longer show up in the Hierarchy.

This is just to clean things up for us while we’re playing. Since the patrol points are

no longer parented to their respective Patrollers in-game, they’ll all be spread about

willy-nilly in the Hierarchy when we’re playing. This can make it somewhat cluttered

(particularly if we had lots of different patrollers in the same scene), so we fix that by

hiding them.

Of course, Unity will revert everything back to the way it was once we stop playing, so

all of our patrol points will be visible in the Hierarchy again.

The final line is the calling of a method that we’re going to declare in a bit:

//Start patrolling at the first point in the array:

SetCurrentPatrolPoint(0);

It does just what it says. It sets our current patrol point – the one the Patroller will be

moving toward – to the first one in the patrolPoints array. Like I said, we’ll be declaring

that in a bit.

Chapter 18 patrolling hazards

226

And that’s that! It took the learning of a fair number of new concepts, but our patrol

points should be setting themselves up properly in-game. We won’t be able to see any

effect until we make the Patroller move along the points, though, so let’s get on that.

 Moving the Patroller
Let’s move back up to the top of the script to declare the variables we’ll be needing

to handle moving the Patroller. So far, the only variable we have is the “patrolPoints”

variable. Let’s give it some company by adding in these variables – the new ones are in

bold, so make sure not to declare a second “patrolPoints” variable:

//Consts:

private const float rotationSlerpAmount = .68f;

[Header("References")]

public Transform trans;

public Transform modelHolder;

[Header("Stats")]

public float movespeed = 30;

//Private variables:

private int currentPointIndex;

private Transform currentPoint;

private Transform[] patrolPoints;

The very first variable declaration is another new concept.

It’s called a “const”. It’s short for constant. Shortly put, it means “a variable that can’t

be changed.”

It’s declared just like a normal variable, but of course, you throw that “const”

keyword before the type name. This marks the variable as constant. You have to assign

a value to it right there when you declare it, and if you ever try to change its value, a

compiler error will prevent you.

This is used to ensure that a variable that shouldn’t be changed won’t be changed.

This way, you can assign a name to some value you’re planning on using within your

code, and if you ever need to change it, you can do so in one place. However, it makes it

clear that the value is not meant to change within the code.

Chapter 18 patrolling hazards

227

We’ll get into the purpose of this const variable later, when we start rotating the

Patroller to face the direction of movement. For now, let’s move on.

You know about the references, since we’ve done them a few times. The first one

points to our own Transform – slightly faster than using “.transform” – and the second

one will point to the model Transform. That’s so we can rotate just the model, not the

root GameObject, like we do with the player.

We then have the movespeed, which is self-explanatory, and then some private

variables:

• currentPointIndex is an int resembling the index in the

“patrolPoints” array that we’ll use to get the current patrol point.

• currentPoint is a reference to the Transform of the patrol point we’re

currently moving toward.

Let’s move on to declare our “void Update()” method, where the real magic happens.

Declare a “void Update()” if there isn’t one already and put this code in it:

//Only operate if we have a currentPoint:

if (currentPoint != null)

{

 //Move root GameObject towards the current point:

 trans.position = Vector3.MoveTowards(trans.position,currentPoint.

position,movespeed ∗ Time.deltaTime);

 //If we're on top of the point already, change the current point:

 if (trans.position == currentPoint.position)

 {

 //If we're at the last patrol point...:

 if (currentPointIndex >= patrolPoints.Length - 1)

 {

 //...we'll set to the first patrol point (double back):

 SetCurrentPatrolPoint(0);

 }

 else //Else if we're not at the last patrol point

 SetCurrentPatrolPoint(currentPointIndex + 1);

// Go to the index after the current.

 }

Chapter 18 patrolling hazards

228

 //Else if we're not on the point yet, rotate the model towards it:

 else

 {

 Quaternion lookRotation = Quaternion.LookRotation((currentPoint.

position - trans.position).normalized);

 modelHolder.rotation = Quaternion.Slerp(modelTrans.rotation,

lookRotation,rotationSlerpAmount);

 }

}

First, we move the root Transform toward the point, using the method Vector3.

MoveTowards. This takes three arguments: a Vector3 for the position being moved, a

Vector3 for the position to move toward, and a float for the distance to move. It moves

the first vector toward the second by that float amount and returns the result. If the

movement amount is enough to overshoot the target point, it’ll just return the target

point instead – it won’t go past it. That way, we won’t have any awkward situations where

the patroller shoots on past its patrol point.

After performing the movement, we do an “if” asking if our position is equal to

the point position – in other words, if we’ve already reached the point. We know the

MoveTowards method will return exactly the currentPoint.position once we reach it and

won’t overshoot that point, so we can safely compare the positions this way.

If we have reached the point, we then check whether our current point index is

equal to or greater than the length of the patrolPoints array – minus 1, to account for the

indexes starting at 0. In other words, we’re asking “Are we at the last point?” If so, we call

this SetCurrentPatrolPoint method (which we still haven’t declared) to set the patrol

point to the first patrol point by giving it the index 0.

Otherwise, if we’re not at the last point, we call the same method, but pass the

currentPointIndex + 1 to use the next patrol point in the array.

If we have not yet reached the point, we’ll just rotate our model toward it. We do this

with much the same method as we used to, Slerping the current model rotation toward

the rotation required to look at the point. We use that const variable we declared earlier,

rotationSlerpAmount.

The main difference here is the method we use to get our LookRotation. This is

vector stuff, and we aren’t going to get too deeply vested in it during this first example

project. We’ll have more room to play with directions and whatnot in later chapters.

Chapter 18 patrolling hazards

229

For now, just know that when trying to get a direction to point from a Vector “from” to a

Vector “to”, you simply do this: “(to – from).normalized”. In our case, “to” is the current

point, and “from” is our position: we want the direction from our position to the position

of the point, so we end up with this:

(currentPoint.position - trans.position).normalized

As we’ve demonstrated before, Quaternion.LookRotation converts this to a

Quaternion pointing along that given direction.

Anyway, let’s move along. We have one final method we need to declare, the

SetCurrentPatrolPoint method.

This method is just a simple way to make sure we Don’t Repeat Ourselves. Whenever

we change the current point, we’ll be doing so by index, but we need to also make sure

currentPoint gets set. So we have this method to simplify things – it just automates the

setting of currentPoint for us.

Declare it anywhere in the script class:

private void SetCurrentPatrolPoint(int index)

{

 currentPointIndex = index;

 currentPoint = patrolPoints[index];

}

Now if you play, everything should work out. The points find themselves on Start, the

Patroller begins moving, and it properly rotates the model to face the current point while

moving toward it.

 Summary
This chapter went over a lot of new and important concepts and taught us some pretty

handy tricks. We implemented a new type of obstacle and learned how to work with

arrays and the “for” loop. We also worked with generic methods and classes (resembled

by the angle brackets “<>”) a little more. Some things to remember are as follows:

• An array stores many instances of a specific data type in a single

value. We refer to one of these instances as an “item” in the array.

Chapter 18 patrolling hazards

230

• To access a specific item within an array, square braces [] are used.

This is called an indexer. Within the square braces, we provide an

integer for the index of the item we want to access. The index is a

number value used to represent an item in the array.

• The “.Length” member of an array returns the number of items stored

in the array. This cannot be changed after the array is created.

• The first index in an array is always 0. The last index is the Length of

the array minus 1.

• Serialized arrays will show in the Inspector, allowing you to set their

length and assign a value to each member.

• A List is an array that does not have a fixed Length. With a List, you

may add and remove items on the fly, and the “.Length” member is

replaced with “.Count”, which returns not the maximum number of

elements that can be stored, but rather the number of items currently

stored.

• The “gameObject.hideFlags” member can be set to hide a

GameObject from the Hierarchy.

• In general, a loop is a block of code that can run multiple times based

on the situation.

• A for loop is a block of code that commonly declares an iterator
variable to store an integer value and then repeatedly runs the code

in its code block and, each time, performs some operation on the

iterator – usually either increasing it by 1 or decreasing it by 1. You’ll

see and use the for loop all over the place and for various purposes,

but its most common use is to iterate over each item in an array and

perform some code on it, using the iterator as the item index.

• The GameObject.GetComponentsInChildren<T> method takes a

single generic type parameter (the “T”) and can be called to return

an array of type T. This array stores references to all instances of

components of type T found in children of the GameObject that the

method was called from.

Chapter 18 patrolling hazards

231

• To get all GameObjects that are a child of a given GameObject, you

can just get the Transforms of all children with a call to GetCom

ponentsInChildren<Transform>() and then use the “Transform.

gameObject” member to grab a reference to the GameObject that

each returned Transform belongs to.

• The “.IndexOf” method can be called when reaching into a string to

return the index that a given string occurs at within that string. For

example, “hello”.IndexOf(“e”) would return 1. Character “h” is at

index 0, and “e” is at index 1.

• The “.Substring” method can be called when reaching into a string to

return only a portion of the text contained in the string. It takes two

parameters: the index of the character to start at and the number of

characters afterward to include in the returned string.

• A variable that is declared with the “const” keyword is a variable that

cannot be changed from whatever value it is initially assigned.

Chapter 18 patrolling hazards

233
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_19

CHAPTER 19

Wandering Hazards
In this chapter, we’ll implement an obstacle type that is placed within a wander region,

which is pretty much an invisible box, and will randomly move to a new point within

the region at random times. They’ll look like the Patrollers we implemented in the

last chapter, but their movement will be constrained within the wander region they’re

associated with. To avoid sudden movement that kills the player in frustrating ways, we’ll

make the wanderers turn to point in the direction they’re going to travel next, wait a little,

and then move. This gives the player a little time to react.

 Wander Regions
The Wanderer script will be used to create obstacles that are confined to a box, randomly

selecting a new point to run to within that box. When they select a new point, we call

it retargeting. Every time they retarget, they turn to face that new point, wait a certain

duration, and then begin moving toward it. Once they reach it, they just stand there and

wait for their next retargeting.

Of course, they’ll use the Hazard script to kill the player on touch.

First of all, we need to define the boxes they’re confined to.

We’ll create a script to resemble one of these boxes, called a wander region. Go

ahead and make a new script named WanderRegion, and while we’re at it, we’ll make

a Wanderer. The Wanderer is the script that goes on the obstacle itself, the thing that

moves and acts as a hazard.

Open up the WanderRegion first, and let’s get started on it.

Defining the box of a region is simply a Vector3 “size” variable. The box is positioned

on the transform.position of the WanderRegion and sized equal to this variable.

https://doi.org/10.1007/978-1-4842-5656-5_19#ESM

234

The region does two things:

• Defines a space that Wanderers will attach themselves to, providing

them with a method to get a random point within that space.

• Contains all Wanderer obstacles as its children. On Start, it finds all

of these children and gives them a reference to itself (the region). The

Wanderers will use this reference to get a new point whenever they

need to retarget.

Let’s get to the code – place this within the WanderRegion script class:

[Tooltip("Size of the box.")]

public Vector3 size;

public Vector3 GetRandomPointWithin()

{

 float x = transform.position.x + Random.Range(size.x * -.5f,size.x * .5f);

 float z = transform.position.z + Random.Range(size.z * -.5f,size.z * .5f);

 return new Vector3(x,transform.position.y,z);

}

void Awake()

{

 //Get all of our Wanderer children:

 var wanderers = gameObject.GetComponentsInChildren<Wanderer>();

 //Loop through the children:

 for (int i = 0; i < wanderers.Length; i++)

 {

 //Set their .region reference to 'this' script instance:

 wanderers[i].region = this;

 }

}

We’ve just learned about arrays and the GetComponentsInChildren method, so

the Start method we’ve written is pretty familiar. As you’ll recall, the “this” keyword can

be used to refer to the object instance that the code is running from – in this case, the

Chapter 19 Wandering hazards

235

WanderRegion instance. So all we’re really doing is finding all of the Wanderers that

are children of the Region, looping through them, and giving them a reference to this

WanderRegion.

We’re doing this in void Awake() because it occurs before Start. This way, we can

expect that our Wanderers will already have their .region set when their own Start

method is called.

Since we haven’t written that variable in the Wanderer script yet, we’ll be plagued by

the error in the compiler until we do.

We’ll write the rest of the Wanderer logic later, but we need to fix that error before

then. Just open up the Wanderer script and declare this variable within the script class:

[HideInInspector] public WanderRegion region;

We declare it as public, since the WanderRegion script needs to be able to access

it. However, we don’t expect to be setting this member manually in the Inspector – the

whole point of detecting them in the WanderRegion script is to avoid this. So we ought to

give it the [HideInInspector] attribute so it doesn’t show up.

Moving on, the GetRandomPointWithin method will be called by the Wanderers

(through their .region reference). It uses a little random number generation to grab a

point somewhere within the box.

The method we use to generate a random number is called Random.Range.

It’s pretty simple: give it a minimum value and a maximum value. It gives back some

random value between the two.

Since the box of the region is meant to be centered on its Transform, the X and

Z position of the Transform is always used as a base. Then, our range is defined as

“anywhere between half the size in the negative direction and half the size in the positive

direction.”

We only care about the X and Z axes because the Wanderers should remain at the

same Y position throughout the game (just like everything else, pretty much).

When we return the point, we use the X and Z values we randomly generated, but

pass the Y position of the box Transform. Thus, we need to make sure our regions are

always touching the floor, or they’ll give incorrect Y positions to their Wanderers.

This is all we need for the WanderRegion script, but it kind of sucks. We can’t see

the box. That makes it hard to design levels. We’d have to measure the size manually, for

example, with a cube scaled to the same size of the box, positioned at the same location.

Let’s make a better solution instead.

Chapter 19 Wandering hazards

236

 A Basic Editor Extension
Unity gives its developers various ways to extend the editor itself. We can write code that

changes how our Inspectors behave, draws gizmos to the Scene view, or even defines

entirely custom windows (like the Inspector and Hierarchy, except developed by us

instead of coming default in the engine).

We’re going to explore a simple concept – a custom inspector that we can use to draw

a box to the Scene view whenever a WanderRegion is selected.

Editor extension is a wide topic with many pitfalls that can catch you off guard. We’re

going to keep this lightweight and easy to implement – you’ve got enough on your plate

anyway, right?

In spite of that, extensions to the Unity editor can be particularly useful in easing the

flow of development. When working with a team, they can aid designers in dealing with

tools created by the programmers.

All we want to do is make it so when our WanderRegion is being viewed in the

Inspector, a box shows up in the Scene view, using the “size” member of the region.

 Editor Scripts
When creating anything that extends the editor, you must do two things:

• Place the code that relates to editor extending in a script somewhere

within a folder named “Editor” in your Assets. It can be buried down

a hundred different folders, if you want – but at least one of them

must be named “Editor”.

• In any script that extends the editor, write a “using UnityEditor;”

statement at the top. This namespace contains the relevant classes

for extending the editor.

In your Scripts folder, create another folder, named Editor.

In that Editor folder, create a script called WanderRegionInspector. The name

doesn’t have to be exactly that, but when writing a custom inspector, I find it’s a good

practice to simply name it the same as the script you’re writing the inspector for and

then add “Inspector” at the end.

Open it up and add that “using UnityEditor;” namespace at the top to ensure that we

have access to the names we’re going to be using.

Chapter 19 Wandering hazards

237

 Custom Inspectors
Now we need to modify the script class in two ways to make it no longer a script

component, but instead a custom Inspector class.

The first is a CustomEditor attribute, with a single parameter pointing at the “typeof”

the WanderRegion. Remember, the “typeof(…)” syntax is necessary whenever referring

directly to a type (that’s not a generic type parameter).

The second modification is the class we inherit from. Instead of MonoBehaviour,

we’ll change it to Editor.

In the end, your class will be declared like so:

[CustomEditor(typeof(WanderRegion))]

public class WanderRegionInspector : Editor

{

 //...

}

Now we can write the contents.

We can declare variables, but they’ll get reset whenever the Inspector switches away

from our script, so we can’t really store anything persistent.

In our case, we don’t need variables. We have our “size” variable in the

WanderRegion, so we’ll use that. We just need to declare a built-in event method called

OnSceneGUI.

This method runs whenever the scene GUI is drawing, while the Inspector is

showing an instance of WanderRegion. Within the method, we can call other built-in

Unity methods that let us draw stuff to the scene.

 Accessing the Inspector Target
Before we begin, we need access to the WanderRegion that we’re inspecting. The Editor

class that we’ve inherited from provides us with a variable pointing to just that. It’s called

“target”.

But the “target” variable has a funny little quirk: its type is “Object”. In other words,

the compiler views it as the most basic form of Unity object – any object, of any more

specific type. So whenever we access it, the compiler won’t know that we’re expecting it

to be a WanderRegion.

The fix is simple: we just explicitly cast it.

Chapter 19 Wandering hazards

238

Instead of typing “target”, we type “(WanderRegion)target”.

That’s somewhat tedious if you’re accessing the target many times in your inspector

code. A workaround is to declare a simple property that performs the typecast for us.

Write this declaration within the WanderRegionInspector class:

//Quick reference to target with a typecast:

private WanderRegion Target

{

 get

 {

 return (WanderRegion)target;

 }

}

Instead of referencing “target” with a lowercase T, we reference “Target” with an

uppercase T. This gets us the property instead of the inherited variable. Sneaky, isn’t it?

Since the property is of the WanderRegion type, there’s no need to cast it when we

reference it. The casting is already done in the getter.

 Drawing to the Scene
Anyway, now for the functionality of our custom inspector. We won’t actually change the

way the script is shown in the inspector itself (although we could). We’ll just draw to the

scene while the script is showing in the Inspector.

Add this code somewhere beneath the Target property declaration:

//The height of the box display.

private const float BoxHeight = 10f;

void OnSceneGUI()

{

 //Make the handles white:

 Handles.color = Color.white;

 //Draw a wireframe cube resembling the wander region:

 Handles.DrawWireCube(Target.transform.position + (Vector3.up *

BoxHeight * .5f),new Vector3(Target.size.x,BoxHeight,Target.size.z));

}

Chapter 19 Wandering hazards

239

First, we declare a const variable depicting the height of the box display. We’ll do 10

units. The height is just visual – remember, the random points we get from the region are

always going to have a Y position equal to that of the WanderRegion itself.

Then, we declare the built-in method OnSceneGUI.

This is another method like Update and Start – Unity will call it for us when the scene

GUI is updating. Within this method, we can call certain other built-in methods to draw

to the scene.

The Handles object provides us with various means of drawing (you guessed it)

handles to the scene. Handles can be visual elements or things that can be interacted

with by clicking them.

First, we set the Handles.color variable, which we can set at any time to change the

color of our handles before we draw them. We set it to Color.white, a shorthand property

for declaring a new Color resembling white. Many of these shorthand properties exist for

other basic colors, like red, green, or blue. It’s just for convenience and readability.

The method we call next is telling Unity to draw a wireframe cube. Wireframe means

it’s not a solid cube – it’s just the edges, a visualization of a box.

We do a little vector trickery to get the position of the cube. Since the position is the

center of the cube, we want to draw it such that the bottom is touching the floor – the Y

position of the WanderRegion.

So we start at the position of the WanderRegion, which we get with Target.transform.

position. Then, we “go up” by half of the BoxHeight const we declared earlier.

The Vector3.up is another one of those shorthand properties. You’ll see these often if

you read code written by other Unity programmers. It just returns “new Vector3(0, 1, 0)”.

Multiply that by a float – like half of the box height – and we get a vector with that float in

the Y axis and 0 in the X and Z axes.

This is how people often do vector math, so that’s why I’ve written it this way. Now

that you know this, you’ll have an easier time reading other people’s code.

You could just as easily change it to this:

Target.transform.position + new Vector3(0, BoxHeight * .5f, 0)

They both do the same thing in a different way.

Moving on, the next parameter is the size of the box. We construct a new Vector3

here (no shorthand properties can save us now) and give it the size.x and size.z from our

Target, which will be set in the Inspector. Of course, the height is BoxHeight – we don’t

care about the Y axis of the WanderRegion.size.

Chapter 19 Wandering hazards

240

Save that and navigate to Unity. Now, create an empty GameObject, name it Wander

Region, and attach a WanderRegion script instance to it.

At first, the size will be (0, 0, 0), so change the X and Z axes to something higher

than 0 and you should see the box show up, centered around your Wander Region

GameObject. Figure 19-1 shows how it will look in an empty scene.

The box will dynamically update to match the size in the Inspector, and it’ll stay 10

units high no matter what the size.y value is set to, as intended. Now we don’t have to

do any tedious tricks to visualize how large our regions will be when we’re sizing and

placing them.

 Wanderer Setup
Let’s set up a Wanderer obstacle so it’s ready to test – then we’ll write the script for it.

The Wanderer will have a very similar hierarchy to the Patroller. We’ll use the same

model too:

• Create an empty GameObject (Ctrl+Shift+N). Name it Wanderer.

• Attach a Hazard script, a kinematic Rigidbody, and a Wanderer script.

• Copy-paste the Model Base and its child, Model Top, from the

Patroller we made earlier. Make it a child of the Wanderer, and set its

local position to (0, 1.5, 0). Leave the scale as is.

Figure 19-1. A Wander Region box showing in the Scene view. The “size” property
is set to (20, 0, 35), making the box 20 units wide and 35 units long

Chapter 19 Wandering hazards

241

• The Model Base should have Is Trigger checked on its Box Collider

component already, but if not, make sure to do that.

• Make sure the Wanderer and all of its children are in the Hazard layer.

The Wanderer needs to be a child of the Wander Region it belongs to as well, so don’t

forget to drop it in there.

 Wanderer Script
We’ve put it off long enough – it’s time to tackle the script resembling a wandering

obstacle.

Let’s detail how they’ll behave as far as the programming is concerned.

At any given moment, a Wanderer will either be Idle, Rotating, or Moving:

• While Idle, they just stand there and wait.

• While Rotating, they’re not moving, but are turning toward the next

position they’ve targeted. After they finish turning, they wait a certain

extra amount of time to give the player time to react to the final

rotation. Then, they begin Moving.

• While Moving, they travel toward the point (which they will now be

directly facing) until they reach it, where they stop and become Idle

again.

We’ll declare a State enum directly inside the Wanderer script class and a private

member of the State type. As shown in the following, we’ll put them next to the “region”

member we declared earlier – the new code you should add now is shown in bold:

private enum State

{

 Idle,

 Rotating,

 Moving

}

private State state = State.Idle;

[HideInInspector] public WanderRegion region;

Chapter 19 Wandering hazards

242

This is a common practice to handle objects that need to toggle in and out of

different “modes” that designate different behavior. In our Update method, we’ll use the

current value of “state” to determine what the Wanderer should be doing at any given

moment.

Because State is a private enum declared inside the script class, we can only access

it from this script class. Thus, there’s no need to name it “WandererState” or anything of

the sort.

Beneath those variables, we’ll declare the rest of our variables:

[Header("References")]

public Transform trans;

public Transform modelTrans;

[Header("Stats")]

public float movespeed = 18;

[Tooltip("Minimum wait time before retargeting again.")]

public float minRetargetInterval = 4.4f;

[Tooltip("Maximum wait time before retargeting again.")]

public float maxRetargetInterval = 6.2f;

[Tooltip("Time in seconds taken to rotate after targeting, before moving

begins.")]

public float rotationTime = .6f;

[Tooltip("Time in seconds after rotation finishes before movement

starts.")]

public float postRotationWaitTime = .3f;

private Vector3 currentTarget; //Position we're currently targeting

private Quaternion initialRotation; //Our rotation when we first retargeted

private Quaternion targetRotation; //The rotation we're aiming to reach

private float rotationStartTime; //Time.time at which we started rotating

At this point, “trans”, “modelTrans”, and “movespeed” ought to be pretty self-

explanatory.

Chapter 19 Wandering hazards

243

The retarget interval is defined as a float for the minimum and another for the

maximum. We’ll use Random.Range to get a time between the two and Invoke a

retargeting to happen in that amount of time.

The rotation time will be used to measure just the period of rotating toward the

target point.

The postRotationWaitTime is the time it takes to start moving after the rotation

finishes. So once a retargeting begins, it takes the sum of both these values before the

obstacle actually moves.

The private variables are pretty much explained in their comments, and we’ll go

into further detail once we get to using them. Each one of these variables is set again

whenever a retargeting occurs; they’re all storing data that we’ll need to properly

perform a retargeting.

 Handling the State
The rest is going to be a bit of fun. We’re going to use method invoking and the changing

of our states to create a sort of recurring loop between idle and rotating and moving.

First, let’s declare some methods in the Wanderer script, down beneath our
variables:

//Called on Start and invokes itself again after each call.

//Each invoke will wait a random time within the retarget interval.

void Retarget()

{

 //Set our current target to a new random point in the region:

 currentTarget = region.GetRandomPointWithin();

 //Mark our initial rotation:

 initialRotation = modelTrans.rotation;

 //Mark the rotation required to look at the target:

 targetRotation = Quaternion.LookRotation((currentTarget - trans.

position).normalized);

 //Start rotating:

 state = State.Rotating;

 rotationStartTime = Time.time;

Chapter 19 Wandering hazards

244

 //Begin moving again 'postRotationWaitTime' seconds after rotation ends:

 Invoke("BeginMoving",rotationTime + postRotationWaitTime);

}

//Called by Retarget to initiate movement.

void BeginMoving()

{

 //Make double sure that we're facing the targetRotation:

 modelTrans.rotation = targetRotation;

 //Set state to Moving:

 state = State.Moving;

}

Here, we declare a Retarget method to handle the assigning of a new target. Inside,

we call that method we declared in the WanderRegion script to get a new random point,

assigning it to our private variable “currentTarget”. We save our current rotation and,

again, use LookRotation with the same “(to – from).normalized” formula to get the

direction from the current position to the target position. That will be our target rotation,

which we’ll reach over the course of the rotationTime.

To initiate rotation, we mark the time that it began, and we set our state to Rotating.

After, we invoke the method we declared just below this one, called BeginMoving. It

will happen once the rotationTime and the postRotationWaitTime have both elapsed.

The BeginMoving method is just a few lines of code: set the state to Moving and

ensure we’re pointing exactly at the target rotation, just to be safe in choppy situations

where there’s a lot of time between frames.

With that in place, we just need to make sure that we initiate the process in our
Start() method. We just need to call Retarget():

void Start()

{

 //On start, call Retarget() immediately.

 Retarget();

}

Chapter 19 Wandering hazards

245

 Reacting to the State
Now we just need the frame-by-frame logic that moves or rotates the Wanderer based on

the current value of “state”. Put this in your Update method:

if (state == State.Moving)

{

 //Measure the distance we're moving this frame:

 float delta = movespeed * Time.deltaTime;

 //Move towards the target by the delta:

 trans.position = Vector3.MoveTowards(trans.

position,currentTarget,delta);

 //Become idle and invoke the next Retarget once we hit the point:

 if (trans.position == currentTarget)

 {

 state = State.Idle;

 Invoke("Retarget",Random.Range(minRetargetInterval,maxRetarget

Interval));

 }

}

else if (state == State.Rotating)

{

 //Measure the time we've spent rotating so far, in seconds:

 float timeSpentRotating = Time.time - rotationStartTime;

 //Rotate from initialRotation towards targetRotation:

 modelTrans.rotation = Quaternion.Slerp(initialRotation,targetRotation,

timeSpentRotating / rotationTime);

}

With you being an expert programmer now, the movement is old news. We did the

same thing with patrollers in the previous chapter: measure the delta (movement on

this frame), and then use Vector3.MoveTowards to move the root Transform toward the

target point by “delta” distance.

Chapter 19 Wandering hazards

246

After, we make sure to stop moving once we reach the point by becoming Idle –

again, MoveTowards won’t overshoot the point, but we might as well save ourselves

some unnecessary calculation and stop calling it when we know we’re already there.

Also, we use this moment to invoke the Retarget method again. We use Random.Range

to get a random time within the retarget interval.

The rotation of the model is where things get a bit different – notably, we’re using

Slerp in a different way than we have before.

As you’ll recall, Slerp takes one rotation and moves it toward another by a fraction of

the difference between the two and returns the result.

Some examples are as follows:

• If that fraction is 0, there’s no change, so we simply get the first

rotation returned back as is.

• If the fraction is .5, a rotation halfway between the two is returned.

• Make it 1, and the rotation is moved all the way to the target, so we

simply get the target rotation returned back as is.

Up until now, we’ve only used this by passing in the current rotation of some

Transform as the first rotation and Slerping it toward a target rotation.

But that’s not the only way to do it. We’re making a game here, and we want to

implement this mechanic in a way that makes it more fun. We’re making the wanderers

rotate toward their target to ensure that the player sees them do it so they can react to

the rotation and get out of the way. So we want it to take a certain amount of time for the

rotation to finish, consistently. The method we’ve used up until now doesn’t really do that.

To counter this, we’ll use the same two rotations every time we call the Slerp method

and keep applying the result to the Transform. Before, we Slerped the current rotation

toward the target rotation. Now, we’ve marked the initial rotation of the wanderers

when they began the turn, and we’re going to Slerp that initial rotation toward the target

rotation.

The tricky part is figuring out what fraction we pass in as the third parameter.

We’ve already set up the variables required to do this earlier. We know how long we

want it to take to make the turn (rotationTime) and the time at which the turn began

(rotationStartTime).

So we want the fraction we give to the Slerp to start at 0 when we first begin turning

and then raise to 1 over the turn duration. In other words, start at the initial rotation, and

change to the target rotation over the duration.

Chapter 19 Wandering hazards

247

We do this by grabbing the “time spent rotating so far.” This is just “current time –

begin time.” For example, if we began at 16.2 and the current time is 16.6, that’s 16.6 –

16.2 = .4 seconds spent rotating so far.

Then, we just need to turn that into a fraction (a value between 0 and 1) of the total

time we want it to take.

Whenever you have to ask “What fraction of the value Y is the value X?” you just do

“X/Y”. In a more understandable example, let’s say we’re coding an RPG and we want to

know what percentage of their maximum health our player character is at.

To get this, you’d just do “currentHealth/maxHealth”. This is a fraction, so a value

between 0 and 1, but you can easily turn it to a percentage by multiplying it by 100 and

then tacking a % sign on the end.

We’re doing much the same thing here. We’re dividing the “rotation time so far” by

the “total rotation time desired,” thus converting it to a value that starts at 0 and raises to

1 over the rotationTime.

And that covers it all – we should have operational Wanderers now.

We never actually attached the Wanderer script to our GameObject. Now that it’s

ready, go ahead and do that – remember, put it on the root Wanderer GameObject, not

the model. Set the “trans” reference to the root Transform and set the “modelTrans”

reference to that of the Model Base.

Ensure that the Wanderer is a child of a Wander Region with a big enough box to play

around in, hit Play, and watch it go.

 Summary
This chapter put another new obstacle into motion and taught us how to extend the

Unity editor to implement a custom Inspector for a script.

• The Random.Range method takes two int or float parameters and

returns a random value between the two.

• When you need to determine the time that has passed since a certain

event occurred, you can set a float variable to “Time.time” when the

event first occurs. Afterward, use “Time.time – floatVariable” to get

the time, in seconds, since the event occurred.

• To calculate what fraction the float “X” is of the float “Y”, just divide

“X/Y”. This will return .5 if X is half of Y or .75 if it is 75% of Y and so on.

Chapter 19 Wandering hazards

248

• Scripts which extend the Editor must be placed somewhere within

a folder we’ve named “Editor” in our Project window. You can have

more than one Editor folder in your project if you like, and they can

be nested in other folders.

• Scripts which extend the Editor rely on classes in the UnityEditor

namespace, so you’ll want to place a “using UnityEditor;” line at the

start of your editor scripts.

Chapter 19 Wandering hazards

249
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_20

CHAPTER 20

Dashing
To give the player a little more interesting movement, we’re going to implement an

option for them to quickly “dash” in the direction they’re moving – or, more specifically,

in the direction they have held down with the movement keys. If they’re holding W and

D, they’ll dash diagonally forward and right, for example.

When dashing, the player will stop moving by normal means, giving control to

the dash movement instead. Once they finish dashing, we’ll revert control back to the

normal movement, and we’ll set the movement velocity to full power in the direction

they were dashing. This way, they’ll continue moving in the dash direction after it

finishes, instead of coming to an instant stop. If they’re not holding any movement keys

anymore, the momentum will fade away smoothly as it always does.

 Dashing Variables
Let’s set up our variables to begin implementing the dash. Write these variables beneath
your existing variables in the Player script:

//Dashing

[Header("Dashing")]

[Tooltip("Total number of units traveled when performing a dash.")]

public float dashDistance = 17;

[Tooltip("Time taken to perform a dash, in seconds.")]

public float dashTime = .26f;

https://doi.org/10.1007/978-1-4842-5656-5_20#ESM

250

private bool IsDashing

{

 get

 {

 return (Time.time < dashBeginTime + dashTime);

 }

}

private Vector3 dashDirection;

private float dashBeginTime = Mathf.NegativeInfinity;

As you can see, the only variables we need to expose in the Inspector are the

dash distance and dash time. The dash will travel in the movement direction by

“dashDistance” units over “dashTime” seconds.

Beneath that, we declare a bool private property “IsDashing”. It only has a getter, and

returns true if we’re currently dashing and false if not.

It uses the variable “dashBeginTime” declared further below, coupled with the

dashTime, to know the time at which the last dash began and how long a dash takes.

Comparing that to the current time, we can figure if we’re currently dashing or not.

The Mathf.NegativeInfinity reference we use when declaring “dashBeginTime” is a

built-in shortcut to get the very lowest number we could possibly get.

This is just a safety measure: if we merely set the “dashBeginTime” to 0 at the start of

the game, then we would technically be performing a dash as soon as the game begins.

By setting the begin time to a super-low value, we ensure that even if we (for some

reason) have an extremely long-lasting dash, we won’t be dashing right when the game

starts.

In reality, we could probably get away with something like –5, because when would

we ever have a dash that lasts five seconds or longer? But better safe than sorry, right?

For the IsDashing property, you might’ve instead thought to declare a normal bool

variable and set it to true when a dash begins and then back to false when the dash

ends. But our property is a little cleaner: the status of dashing is handled somewhat

automatically. All we have to do to begin a dash is set the dashBeginTime, and the rest

handles itself. Time.time will raise above “dashBeginTime + dashTime” on its own, and

the property will begin returning false again.

Of course, we also need to know what direction the dash occurred in, so we keep a

Vector3 for that.

Chapter 20 Dashing

251

As a direction, this will be set to 0, 1, or -1 on its X and Z axes. When we move, we’ll

multiply the movement per second by this direction. For example, if we held only the D

or right arrow key, the dashDirection would be (1, 0, 0). Multiplying that by a float value

is just a simple way to apply the movement only to the appropriate axis: the other two

axes are 0 and, thus, no movement occurs.

If we held D and W, we’d get (1, 0, 1) instead, applying movement also to the Z axis,

and so on for all the different directions one can move with the WASD/arrow keys.

 Dashing Method
The Dashing method will be much like our Movement method. It will handle all of the

dashing-related logic, keeping it tucked away in a separate private method that gets

called in our Update method. We’ll declare it just below the Movement method we made

before.

The logic will be fairly simple:

• If we are not dashing, we’ll check if the space key is pressed. If so…

• Figure out the dash direction by checking which movement keys

are held. If no movement key is being held, we don’t perform the

dash at all. If at least one key is held, we perform the dash.

• If we are dashing, we’ll simply move along the dash direction using

the CharacterController, just like when we move normally. Since the

IsDashing property will automatically start returning false as soon as

the dash time is up, we don’t have to worry about bringing the dash

to an end.

To perform the dash, we’ll need to set dashDirection to the movement direction

held by the movement keys. Knowing that, we’ll be sure to store the movement direction

in a variable as we go, so we don’t have to check the input twice. We’ll also need to

set dashBeginTime to the current Time.time. That will cause the IsDashing property

to begin returning true, which prevents us from performing a dash again while we’re

already dashing.

On top of that, we’ll set our movementVelocity to full speed in the dash direction.

This way, when the dash finishes and normal movement takes control instead, we’ll have

velocity in the dash direction.

Chapter 20 Dashing

252

We’ll also rotate the model Transform to face along the dash direction.

Let’s see the code – remember, place this code beneath your Movement method in
the Player script:

private void Dashing()

{

 if (!IsDashing) //If we aren't dashing right now

 {

 //If the space key is pressed

 if (Input.GetKey(KeyCode.Space))

 {

 //Find the direction we're holding with the movement keys:

 Vector3 movementDir = Vector3.zero;

 //If holding W or up arrow, set z to 1:

 if (Input.GetKey(KeyCode.W) || Input.GetKey(KeyCode.UpArrow))

 movementDir.z = 1;

 //Else if holding S or down arrow, set z to -1:

 else if (Input.GetKey(KeyCode.S) || Input.GetKey(KeyCode.

DownArrow))

 movementDir.z = -1;

 //If holding D or right arrow, set x to 1:

 if (Input.GetKey(KeyCode.D) || Input.GetKey(KeyCode.

RightArrow))

 movementDir.x = 1;

 //Else if holding A or left arrow, set x to -1:

 else if (Input.GetKey(KeyCode.A) || Input.GetKey(KeyCode.

LeftArrow))

 movementDir.x = -1;

 //If at least one movement key was held:

 if (movementDir.x != 0 || movementDir.z != 0)

 {

 //Start dashing:

 dashDirection = movementDir;

Chapter 20 Dashing

253

 dashBeginTime = Time.time;

 movementVelocity = dashDirection * movespeed;

 modelTrans.forward = dashDirection;

 }

 }

 }

 else //If we are dashing

 {

 characterController.Move(dashDirection * (dashDistance / dashTime)

* Time.deltaTime);

 }

}

Everything here is pretty self-explanatory, except perhaps the “modelTrans.forward =

dashDirection;” line.

This .forward property is a Transform member that allows us to get or set the

forward-facing direction of the Transform. We’ve used it before to get the direction the

Transform is facing, but never to set it. It works just as you’d expect – if given a direction

you want the Transform to face along, you can set its .forward to instantly turn it so that

its front side faces that direction.

Similar variants exist for .right and .up to set the right-side facing and the top-side

facing of a Transform. Conversely, if you wanted to point the bottom, back, or left

side along a specific direction, you’d simply set the .up, .forward, or .right, but flip the

direction you’re applying to the value by multiplying it by -1. That is to say, if you wanted

to point the left side along a direction, all you have to do is point the right side at the

opposite direction, right? That’s why there are only .forward, .right, and .up members

and not opposite members like .back, .left, and .down.

The way we move our CharacterController is much like with movement. In order

to achieve the desired distance, we need to move by the dashDistance divided over the

dashTime and, of course, multiply by Time.deltaTime to ensure that it happens per

second.

Chapter 20 Dashing

254

 Final Touches
We need only make a few more changes to fully implement dashing.

First, we need to go to our “private void Movement()” method and wrap all of that

movement code in an “if (!IsDashing)” block:

//Only move if we aren't dashing:

if (!IsDashing)

{

 //...the rest of the movement code goes here

}

This prevents any of the movement logic from occurring while a dash performs.

We also need to add the Dashing method call in Update, so that the Update method

looks like this:

void Update()

{

 Movement();

 Dashing();

}

You’d be surprised how easy it is to forget this step, test the code, and wonder why

nothing is happening!

One final bit of robustness we’ll add is to ensure that dashing always ends as soon

as we die. That way, if we’ve set up our game to have a very low respawn wait time and a

long-lasting dash, the dash won’t continue after we respawn.

In the public void Die() method, add this line somewhere within the if block:

dashBeginTime = Mathf.NegativeInfinity;

Again, we apply it to Mathf.NegativeInfinity instead of 0 just to be extra safe.

That should do us. You can now test your dashing in-game: just hold any movement

keys down (at least one key is necessary) and press Space.

If you want, you can play with the dash distance and time until you like the way they

feel. I will teach you one final trick when dealing with “distance over time” like this. If you

want to get the actual “distance per second” of the dash so you can better compare the

Chapter 20 Dashing

255

dash speed to the regular movespeed, simply divide dashDistance by dashTime.

For example, with the default settings given to the script, we have a dashDistance of 17

units and a dashTime of .26 seconds.

With that, we have 17/.26. This means the dash will move the player by a little over 65

units per second. Our normal movespeed, by default, is 24 units per second.

When trying to balance the speed, this can be a useful way to look at it.

 Dash Cooldown
One final implementation we might want is a dash cooldown. If you’re into making

games, I’m sure you know that a cooldown just means a duration one must wait after

doing something, before they’re allowed to do it again. If we don’t have one, the player

might as well be dashing all the time, right? We want to make them covet their dash a

little bit more than that.

First, let’s add a variable for the dash cooldown and a property “CanDashNow”. Of

course, we’ll put these with the rest of the dashing-related variables:

[Tooltip("Time after dashing finishes before it can be performed again.")]

public float dashCooldown = 1.8f;

private bool CanDashNow

{

 get

 {

 return (Time.time > dashBeginTime + dashTime + dashCooldown);

 }

}

The cooldown is just a standard float that we can set in the Inspector. The

CanDashNow property is similar to the IsDashing property. It can only be gotten, not set.

It returns true if the current time has gone past the dash begin time, plus the time it takes

to perform a dash, plus the dash cooldown wait time.

Next, in our Dashing() method, we’ll change the first “if” statement from this

if (!IsDashing) //If we aren't dashing right now

Chapter 20 Dashing

256

to this:

//If we aren't dashing right now, and dash is not on cooldown:

if (!IsDashing && CanDashNow)

This will cause a sneaky problem to occur. One of those “I don’t throw an error, but I

fundamentally break your game” sort of problems. Play it now, and the dash will last as

long as the cooldown + the wait time together.

This is because we changed our “if”, but we’re still performing the dash movement in

an “else” below it.

Now that the condition of the “if” has changed, the “else” doesn’t quite cover the

same situation anymore.

Before, we just said “Are we not dashing?”

So the else says “Are we dashing?”

Now, we say “Are we not dashing, and can we dash now?”

This makes the else say “Are we dashing, OR can we NOT dash now?”

Of course, as soon as the dash begins, we can’t dash until the cooldown is up. So the

“else” will keep happening until the dash goes off cooldown!

There are two ways to solve this.

The first way would be to change the “else” to a separate “if” that checks IsDashing

itself, by replacing the “else” line with this and leaving the following code block the same:

if (IsDashing)

The second way is to keep the first “if” and the “else” as is and then add the

CanDashNow check into the same “if” that checks for the space key being pressed

instead. In other words, leave the “else” as it is, and change the first two “if”s to this

instead:

//If we aren't dashing right now:

if (!IsDashing)

{

 //If dash is not on cooldown, and the space key is pressed:

 if (CanDashNow && Input.GetKey(KeyCode.Space))

 {

 //[...]

Chapter 20 Dashing

257

This way, the “if” that corresponds to the “else” remains the same, so the logic isn’t

broken in the same way it was before.

Either way works. One might argue that the second way is “more efficient” or

“cleaner.” One might also argue that the dash occurs as soon as the key is pressed in the

first way, which can make it feel very slightly more responsive.

This is because the “else” won’t occur until the next frame; as long as the

corresponding “if” evaluates to true, the “else” is guaranteed not to happen on that

frame. If the “else” was changed to an “if” block instead (the first way), it would evaluate

to “true” as soon as the dash begins, on that same frame. If the player is experiencing

choppy framerate, this could make a more noticeable difference, since there will be more

time between frames. However, it could also make the dash distance a little greater than

you might expect in such situations, since the player gets that extra frame of movement.

It’s interesting to see these little differences that come with each implementation,

and in some situations, they might count. Here, it really isn’t going to be a big deal either

way – just little nuances.

 Summary
This chapter gave our player an extra tool to use in avoiding obstacles – a quick dash. Our

player’s movement for this project is now at its final stage, with no more features to add.

We also learned how the Transform facing direction properties “.up”, “.right”, and

“.forward” can be used to turn a certain side of the Transform toward a direction, and we

learned how to pinpoint some tricky changes in logic that can occur in your “else” blocks

when you make changes to their corresponding “if”.

Chapter 20 Dashing

259
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_21

CHAPTER 21

Designing Levels
In this chapter, we'll start thinking about how to support multiple levels that the player

can choose from when they first load the game. We’ll make separate scenes for each level

and position a camera in each one that views the level from above as a sort of “sneak

peek” when choosing levels.

 Prefabs and Variants
Before getting into designing levels for your game, you ought to consider how you’ll go

about making little tweaks in the balance as you go along. We discussed the purpose of

prefabs and their variants early on. This is one of those moments where you’ll want to

give them some thought – it might save you some heartache down the road.

We can always perform overrides on prefab instances to make, for example, superfast

patrollers, shooters that fire more or less often, or projectiles that move faster or slower

or are bigger or smaller.

However, if at any point you need to make a change, you’ll end up with scattered

overrides across various instances and scenes.

A smarter alternative might be to make prefab variants for the slightly different

versions of your obstacles. If you stick to this, you can have consistent variations across

your levels that the player will recognize. Make a fast and slow variant for the projectile

prefab. Make a slow, large patroller variant. Make a quick, tiny wanderer variant.

This not only regulates your game design to make it easier for the player to predict

and adapt to situations, but it gives you a clean setup that can be changed across all your

levels just by tweaking the prefabs and/or their variants. If you overrode 50 different

shooter instances across 15 different levels, you couldn’t change them all at once if

you ever decided to make the player move a little faster or slower and found that your

shooters now needed to be tweaked in comparison.

https://doi.org/10.1007/978-1-4842-5656-5_21#ESM

260

Part of the fun of making games is playing with the numbers and tweaking things

until they’re just right, so I’m not going to tell you how to design the game yourself.

That’s not really in the scope of a book about game programming, after all. I will,

however, teach you how to create a simple variant of a Shooter that fires faster than the

normal prefab.

In case you forgot, a prefab variant is created by right-clicking a prefab asset in the

Project window, unfolding the “Create” menu, and then selecting “Prefab Variant,” as

shown in Figure 21-1.

Figure 21-1. The right-click context menu leading us to create a prefab variant for
our Shooter prefab

Chapter 21 Designing LeveLs

261

This will create a new asset acting as a variant to the Shooter prefab, and you can

type whatever name you want for it. Let’s name it “Shooter (Fast)”. If you’re going to have

variants for many of your obstacle prefabs, you may want to consider ways to ensure

that your assets remain tidy. For example, by naming it “Shooter (Fast)” instead of “Fast

Shooter”, we ensure that the variant remains next to the original Shooter in the Project

view – since the names are sorted alphabetically, we want a name that’s similar enough

to the base prefab to keep both assets sorted together. If you’d rather, you could also put

all prefabs and variants for each type of obstacle in a dedicated folder, such as “Shooters”

or “Patrollers.”

The variant works like a prefab, so you can open it by double-clicking it in the Project

view if you need to make edits to child GameObjects. We just need to change how

frequently our shooter fires, so we can just select the “Shooter (Fast)” in the Project and

use the Inspector to change its Fire Rate to a lower value, like .5.

After that, you can drag and drop the “Shooter (Fast)” into the Scene and test it out.

If you want visual indication of which shooters are faster, you can use a separate material

for them. Remember to open up the variant asset and apply the material to it there,

rather than applying it only to the instance you’ve placed in the scene.

You don’t have to stop there if you don’t want to. Here are some ideas on further

ways to use variants:

• Projectiles that move faster or slower and are larger or smaller. You

can then create Shooter variants that use different types of projectiles.

• Wanderers that are smaller, but retarget more frequently, move

quicker, and don’t take as long to start moving after retargeting.

• Larger or smaller patrollers with varying movespeed.

• Shooters that spin in circles. Remember that Rotating script we made

before this project? Copy that over, throw it on a shooter, and have it

spin while it fires projectiles.

 Making Levels
I’m not going to try to guide you through the creation of a full level and all of its

obstacles, because that would be a lot of tedious work for you, and it probably wouldn’t

be very fun for you to spend time recreating my idea of a level anyway. You have the tools

Chapter 21 Designing LeveLs

262

to make your own levels now, so I’ll leave you to it. Instead, I’ll give you some tips on how

to start, and we’ll start thinking about what needs to go in each level to make the whole

process come together.

Before we begin, let’s create a material for the floor Plane we’ve been using. It’s a

somewhat stale gray by default, and with the way our camera is positioned, it’s filling

any space that isn’t covered by walls, obstacles, or the player. Let’s make it a bit more

appealing. Create a material named Floor and apply it to your Floor GameObject (or

Plane if you never renamed it). I find that a dark-blue color with a hex value of 1D2A36

works well with the color of our walls, and the darkness makes the pale yellow of our

Player stand out.

Moving on, let’s make a new scene. To do so, just use the Ctrl+N hotkey (Cmd+N for

Mac users), or navigate to File in the top-left corner of Unity and select New Scene.

Once you’ve made the new scene, use the Hierarchy to select and delete the Main

Camera that comes with it by default.

First, a level should always have

• A Plane positioned at the world origin (0, 0, 0) and scaled on the X

and Z axes so it’s large enough to cover the whole screen at all times.

Just go crazy and give it 1000 scale on both axes if you want. And

don’t forget to apply your Floor material to it.

• A Goal prefab instance somewhere the player can reach it. What’s a

level you can’t win, after all? If you never made a prefab out of your

Goal, you can go back to your “main” scene and make one real quick.

If you’ve deleted your Goal and never made a prefab, you’ll have to

recreate it (look over Chapter 17 again).

• A Directional Light to make sure there’s a global source of light for

the scene. We’ve just been using the default light that comes with a

new scene, but you can change the settings of the Light component

in the Inspector for the Directional Light if you want to play around

with it. The most notable settings would be the color of the light (a

pale yellow by default, to somewhat mimic the sun) and the intensity

value, which determines how brightly the light shines.

• A Player prefab instance at the location you want the player to spawn.

You can start it out at position (0, 0, 0) and move it if you ever find a

need to.

Chapter 21 Designing LeveLs

263

If your scene looks too dark, it could be due to the “Auto Generate Lighting” option

being off by default in new scenes.

Check all the way at the bottom-right corner of the Unity editor. Does it say “Auto

Generate Lighting Off” as shown in Figure 21-2?

You can click that text to bring up the Lighting window. The bottom of this window

shows a section containing a checkbox with the text “Auto Generate” next to it. Check

that box, as shown in Figure 21-3, and the scene should begin looking properly lit.

 Adding Walls
With that sorted, you can place an instance of your Wall prefab down to begin blocking

out the level so the player can’t just go wherever they want. Once you place it, move it up

so its bottom is aligned with the floor correctly. You can do this by setting its Y position to

half of its Y scale.

So you don’t have to fix the Y position every time you want a new wall, just copy-

paste that wall from here on out.

As we mentioned before, the rect transform tool (hotkey T) can be quite useful for

moving and sizing these walls. The tool tends to work best when viewing the walls from

above. Remember, you can use the gizmo in the top-right corner of the Scene view to

quickly assume a top-down view on the level – just click the green cone.

Figure 21-2. The Auto Generate Lighting option is shown in the bottom-right
corner of the Unity editor. Here, it is off

Figure 21-3. The bottom of the Lighting window, where the Auto Generate
checkbox has been ticked

Chapter 21 Designing LeveLs

264

As you add walls, you can fill the space you block out with obstacles. Use your

imagination and come up with some trials for the player. Or don’t – you don’t have to be

a level designer to be a programmer, after all.

 Level View Camera
Next, we’re going to make a means of previewing the level before playing it. This will

be done with a simple Camera GameObject. We’ll set it up to view the level from

whatever vantage point we agree with for our preview. In the following chapter, we’ll

make use of this camera when the player is viewing the level before deciding if they

want to play it or not.

If you haven’t already, delete the preexisting camera in the scene and make a new

one. Rename it to “Level View Camera” (without the quotes). Make sure you get the

name exactly right, because we’re going to be finding it by name with our code later!

To easily position the camera how you like, just move your Scene camera to view

the level from a nice angle by holding right-click and using the WASD keys. Then, select

the Camera in the Hierarchy and, using the top menu, select GameObject ➤ Align with

View, or use the hotkey Ctrl+Shift+F. This will place the Level View Camera right where

your Scene view camera is currently positioned and even point it in the same direction

too. This beats dragging and rotating the camera around with the transform tools.

 Summary
This chapter shed some light on the process of designing levels by adding walls, using

our prefabs, and creating variants to spice up the gameplay and how a new scene should

be set up for a level.

Every level should have the following:

• A plane for the floor

• A camera named “Level View Camera” positioned where you want

the level to be previewed from

• A Directional Light (the default one will do)

Chapter 21 Designing LeveLs

265

• A Player prefab instance where you want the player to start the level

• A Goal prefab instance wherever you like

In the next chapter, we’ll set up the flow from one scene to another so we can preview

levels and properly implement menus that let the player get to all of the different levels

we make. If you’re having fun designing levels, don’t let all this talk about progress stop

you, though – knock yourself out.

Chapter 21 Designing LeveLs

267
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_22

CHAPTER 22

Menus and UI
Unity has a feature-packed UI management system that was introduced more recently,

where you mostly design your UI through GameObjects with relevant Components on

them. But before this, we had an old code-based system for drawing UI to the screen

primarily through method calls within our scripts.

Our next example project will dive into more detail on using this new UI system,

because it needs UI as part of the core game experience. For this game, we’re just trying

to create a rough and dirty system to allow players to load levels through a main menu.

As such, I want to demonstrate how to use that old code-based UI – what we’d call the

“legacy GUI” – to draw the menus quick and easy.

This can come in handy when you want a quick solution for GUI to test some

features. It may not look pretty, but in the early stages of development, we often don’t

care about that so much. The legacy GUI is unlikely to be your best bet if you want to

create a “real game,” but it’s very simple to use and easy to integrate into your code, so

long as you don’t expect it to be fancy.

 Scene Flow
Let’s examine a quick overview of how the loading of scenes is expected to flow for our

game by the time we’re done with this.

The first scene in our build settings – the one that loads first – will be the main

menu scene. We won’t have anything in this scene but a basic camera and an empty

GameObject with a script that handles the main menu GUI.

This script will be called LevelSelectUI. It will call a little built-in method to instruct

Unity that its GameObject should not be destroyed when a new scene is loaded. This

way, the LevelSelectUI script can keep running after a level scene is opened.

Each level will have a scene all to itself. They’ll be numbered by their index in the Build

Settings, and they’ll only show in the menu once we’ve added them to the build settings.

https://doi.org/10.1007/978-1-4842-5656-5_22#ESM

268

An instance of the Player prefab will be in each level scene, but the Player script

will be disabled by default by unchecking the box beside its name in the Inspector, as

we learned before. As well as this, the Camera GameObject inside the Player will be

inactive – not just the Camera component, but the whole GameObject.

You can make this change through the Player prefab. First, make sure you’ve updated

the Player prefab with any overrides that aren’t applied yet. Do this by selecting the

Player in your Hierarchy, then clicking the Overrides dropdown in the header of the

Inspector, and selecting “Apply All.”

Now open the Player prefab by double-clicking it in the Project window. Make the

camera inactive by default, and disable the Player script by default. Now any level scenes

you created (assuming you made one in the last chapter) will update to have the player

at the initial state we desire.

Each level scene will have a Level View Camera on it, as we described in the previous

chapter. This camera will be enabled by default, so when the LevelSelectUI loads the scene,

we see the preview of the level, not the player’s view of the level. The player model will

show in the level, but since the Player script is disabled, we won’t be able to move or act.

As long as we’re not in the main scene, our UI script will draw us a button we can

press to play the game.

Once that button is pressed, we disable the Level View Camera, enable the Player

script, and activate the player’s camera. Now the level is being played officially. We don’t

need the UI anymore, so we destroy the GameObject holding the LevelSelectUI script.

When the player wins the level or uses the escape menu to quit (we’ll implement

that in the next chapter), they’ll be brought back to the main scene again. Since we’ll be

loading the main scene again, the same GameObject with the LevelSelectUI script on it

will be there waiting for us again, so we can select our next level to play.

To set this up, we’ll start by cleaning any excess stuff out of the “main” scene we’ve

had around since the start. If you’ve made something of a level in that scene already and

don’t want to lose it, just rename the scene in the Project window and then create a new

scene named Main. Otherwise, if you just have a bunch of junk lying around for testing,

make sure you’ve made a prefab out of anything important and applied any important

overrides to existing prefabs; then delete it all away.

Create a script named LevelSelectUI and attach it to an empty GameObject named

Level Selection in the scene.

Now go to your Build Settings and make sure the Main scene is at build index 0 and

any levels you’ve created are beneath it, as shown in Figure 22-1.

Chapter 22 Menus and uI

269

One final step you can take is to stop the camera in the main scene from drawing

anything but solid color. In the Inspector for the Camera component, change the “Clear

Flags” field – the first one listed for the component – from Skybox to Solid Color. The field

directly beneath it, a color field titled Background, can be changed to whatever you like.

The camera will draw that color in the background instead of drawing the default view of

the sky. I’ll set mine to a gray blue with a hex value of 5B6980.

 Level Selection Script
The first thing to do for our LevelSelectUI script is to make sure it doesn’t get destroyed

when we load a new scene.

This is a simple method call away. Declare a Start method like this:

void Start()

{

 //Make sure this object persists when the scene changes:

 DontDestroyOnLoad(gameObject);

}

That’s all we need to do to handle that. Now when we change scenes, this object will

stick around in the newly loaded scene. This also means that if we load the scene this

object originated from, we’ll end up with two copies of it. That’s why we’ll destroy it when

the player decides on a level to play: we don’t want it sticking around past that point.

Now, let’s get into the UI code.

To use the legacy UI, you have to declare a built-in method “void OnGUI()”. This

method is called whenever a new GUI event happens. These events are a range of

different things: the mouse moving, mouse buttons being pressed, or keys being pressed.

Most often, the event that triggers an OnGUI call is simply a “Repaint” event that

happens constantly, sometimes multiple times per frame, to update and draw the GUI.

Figure 22-1. The Build Settings with our Main scene located at build index 0
(listed on the right side), with a few level scenes beneath it

Chapter 22 Menus and uI

270

The only time we can call GUI methods is within the OnGUI method.

These GUI methods can be accessed through two objects: GUI and GUILayout. They

both have mostly the same functionality – the same methods going by the same names.

The difference is that GUI requires that we specify a position on the screen and a width

and height of each thing we want to draw, while GUILayout automatically lays itself out,

determining the position and size of GUI elements on its own unless we override it.

Positioning elements on a screen with code can be a bit of a pain. We’ll do it a little

bit later, but for the most part, since we’re making placeholder GUI anyway, we’ll let the

system lay it out for us to save some development time.

First, make sure LevelSelectUI has this using statement at the top of the script file:

using UnityEngine.SceneManagement;

We used this before to reload the scene when we made our Goal script. It gives us

access to the SceneManager object, which we’ll use when loading in new scenes.

Then declare some variables at the top of our LevelSelectUI script class:

//Build index of the currently-loaded scene.

private int currentScene = 0;

//Current scene's level view camera, if any.

private GameObject levelViewCamera;

//Current ongoing scene loading operation, if any.

private AsyncOperation currentLoadOperation;

The current scene build index (the number associated with it in the Build Settings)

will be tracked so we can display the level number that we’re currently viewing to the

user in a text label with the GUI.

It starts at 0, because that’s what we expect the main menu UI to be. When we load a

new scene, we’ll update this index to match it.

We’ll also store a reference to the level view camera of the current scene, which will

initially be null for the main scene, but will be set when we load a new scene.

The last variable is of a type we haven’t used yet. An AsyncOperation resembles an

ongoing operation that occurs asynchronously – meaning it happens while the game

continues to play. An activity that’s particularly laborious on the computer processor will

cause the whole program to freeze until it finishes. This often makes for an unpleasant

experience. In this situation, we can run the operation gradually in the background,

Chapter 22 Menus and uI

271

devoting only part of the processing power to it. This is what asynchronous means. The

opposite, synchronous, is the standard way code runs: the processor will perform one

activity at a time.

Loading scenes can cause a noticeable hiccup – it’s a somewhat demanding task.

This is why there’s a way to load them asynchronously. But we often need to react when

the scene finishes loading, so we need some way to track the progress of the operation.

To handle this, the method that loads a scene asynchronously will return to us an

instance of AsyncOperation. We can use this instance to check if the operation has

finished yet. We’ll do so to know when we should try to find our level view camera. If we

try to find it immediately after we begin loading the scene – even if we loaded the scene

synchronously – it likely won’t exist yet.

Let’s get to the code that shows our basic GUI and allows us to load in new scenes.

Declare a void OnGUI method in LevelSelectUI:

void OnGUI()

{

 GUILayout.Label("OBSTACLE COURSE");

 //If this isn't the main menu:

 if (currentScene != 0)

 {

 GUILayout.Label("Currently viewing Level " + currentScene);

 //Show a PLAY button:

 if (GUILayout.Button("PLAY"))

 {

 //If the button is clicked, start playing the level:

 PlayCurrentLevel();

 }

 }

 else //If this is the main menu

 GUILayout.Label("Select a level to preview it.");

 //Starting at scene build index 1, loop through the remaining scene

indexes:

 for (int i = 1; i < SceneManager.sceneCountInBuildSettings; i++)

 {

Chapter 22 Menus and uI

272

 //Show a button with text "Level [level number]"

 if (GUILayout.Button("Level " + i))

 {

 //If that button is pressed, and we aren't already waiting for

a scene to load:

 if (currentLoadOperation == null)

 {

 //Start loading the level asynchronously:

 currentLoadOperation = SceneManager.LoadSceneAsync(i);

 //Set the current scene:

 currentScene = i;

 }

 }

 }

}

Since this is the OnGUI method, we can call GUILayout methods within it. Each

one doesn’t bother us about where on the screen we want the results to be drawn. It just

moves them down as it goes, each one drawing underneath the last.

The first GUI method we see is a call to GUILayout.Label. A Label is simply a means

of drawing some text on the screen. We draw the title of our game, “OBSTACLE COURSE”.

We then react to the currentScene variable to display something different based on

whether we’re in the main menu or if we’re already previewing a level.

The main menu is index 0, so anything that’s not index 0 will be a level we’re

previewing.

If we’re previewing a level, we show a Label telling the user which level they’re

viewing.

We then use a call to GUILayout.Button, wrapped in an “if” statement.

This method call not only shows a button on the screen but returns true if it was

pressed on this event or false if it was not. Anything within that if block will be the code

we want to run if the button is pressed. In our case, we run a method we’ll be declaring

in a moment: PlayCurrentLevel.

If we’re not previewing a level, we must be at the main menu. We show a different

Label instructing the user to click a level below.

Of course, we’ll draw buttons to choose between the levels below. We’ll do a

for loop, starting at index 1 this time instead of 0. This loop will go over all of the

Chapter 22 Menus and uI

273

levels in the build settings, except for the one at index 0 (the main menu). To get the

number of scenes in the build settings, we go through SceneManager to reference the

.sceneCountInBuildSettings member.

For each level scene, we draw a button with the text “Level” plus the level number

written on it.

If one of these buttons is clicked, and so long as we haven’t already started loading

a scene, we begin loading the scene at the current index (“i”) with SceneManager.

LoadSceneAsync. In our Goal script, we load the level synchronously, which is done

with the method LoadScene. This time, we want to do it asynchronously, so we call

LoadSceneAsync instead.

As we established before, it returns an AsyncOperation, which we apply to our

currentLoadOperation variable to keep it around.

Once we determine that the scene has loaded, we’ll null out this variable so we can

once again load a new level. Until that happens, our “if” prevents the user from loading a

different scene while one is still processing.

Now we need some per-frame logic to detect when that operation finishes so we can

do some setup.

We’ll do this with an Update method:

void Update()

{

 //If we have a current load operation and it's done:

 if (currentLoadOperation != null && currentLoadOperation.isDone)

 {

 //Null out the load operation:

 currentLoadOperation = null;

 //Find the level view camera in the scene:

 levelViewCamera = GameObject.Find("Level View Camera");

 //Log an error if we couldn't find the camera:

 if (levelViewCamera == null)

 Debug.LogError("No level view camera was found in the scene!");

 }

}

The AsyncOperation “.isDone” member is a bool that we can use to check if it’s

finished or not. So long as we have a currentLoadOperation, we’ll check if it’s done yet.

Chapter 22 Menus and uI

274

Once it’s done, we set it to null again and use the GameObject.Find method to try to get a

level view camera in the newly loaded scene.

GameObject.Find takes a string for a GameObject name and searches the scene for

it. If it finds it, it returns it. Otherwise, it just returns null. One thing to note about this

method is that it won’t find GameObjects that are inactive.

If we did fail to find a level view camera, we will throw an error with Debug.LogError,

which is like Debug.Log, except that it shows up as a shiny red error in the Console instead

of a neutral message. This will alert us if we ever forgot to add the camera.

Now all we need to do is determine what happens when the player clicks the Play

button.

We already wrote the method call, so let’s declare the method itself:

private void PlayCurrentLevel()

{

 //Deactivate the level view camera:

 levelViewCamera.SetActive(false);

 //Try to find the Player GameObject:

 var playerGobj = GameObject.Find("Player");

 //Throw an error if we couldn't find it:

 if (playerGobj == null)

 Debug.LogError("Couldn't find a Player in the level!");

 else //If we did find the player:

 {

 //Get the Player script attached and enable it:

 var playerScript = playerGobj.GetComponent<Player>();

 playerScript.enabled = true;

 //Through the player script, access the camera GameObject and

activate it:

 playerScript.cam.SetActive(true);

 //Destroy self; we'll come back when the main scene is loaded

again:

 Destroy(this.gameObject);

 }

}

Chapter 22 Menus and uI

275

First, we deactivate the level view camera so it doesn’t render anymore. We don’t

want two cameras trying to render at the same time.

Then we try to find the Player by name. There should be one in every level; if there

isn’t, we log an error. If there is, we grab the Player component from it and enable it.

We then reach through the Player script to access the “cam” member – which we’ll

need to declare because we haven’t yet. Let’s do that now, since our code will throw an

error until we do. Open up your Player script. In the References header, add this variable:

public GameObject cam;

With that line added to the Player, your code shouldn’t throw any errors.

This “cam” variable will be a pointer to the player’s Camera GameObject. It’ll

be inactive by default, so we can’t use GameObject.Find to get it. We’ll just rely on a

reference in the Player script, since we need to grab the script anyway to enable it. We

still need to set the reference, though, so make sure you open the Player prefab through

the Project and assign the reference there to apply it across all of your Player instances.

Anyway, after we’ve activated the camera, the only thing left to do is to bid farewell to

the LevelSelectUI script and its containing GameObject by destroying them. Remember,

if we don’t do this, then it will still be drawing the GUI and it will still be persisting after

the main scene is reloaded, leaving us with two separate instances of it, both drawing at

the same time.

With this in effect, the system should now be fully contained. Starting in the main

scene, play the game and you’ll see the GUI in the top-left corner, as shown in Figure 22- 2.

Of course, it’s not particularly fancy, and it’s just a little thing up there, but it functions.

Figure 22-2. The main scene GUI, before any levels have been loaded. Here, we
have two level scenes added to the Build Settings, providing us with buttons for
Level 1 and Level 2

Chapter 22 Menus and uI

276

If you click a level button, the level should load in. If you’ve set up the level correctly,

the Level View Camera should be active by default, while the player’s camera is not. This

means we see the level at first through the Level View Camera.

With a level loaded, the GUI will adapt to show a Play button. Pressing this will

deactivate the level view camera, enable the player camera, and set the player into

action, allowing us to control it.

Step on a Goal in the level, and you’ll find yourself transported back to the main

menu, where you can go through the same process again to play another level.

 Summary
This chapter gives us some additional robustness for the game. We’ve given the player a

menu they can use to select which level they wish to play and return them to this menu

when they reach the goal of a level. We also switch the Player script off by default and

provide a preview of the level, giving control to the Player script only after the user has

clicked a Play button.

Some things to remember are as follows:

• To make a GameObject stick around even when we load a new

scene in-game, call the DontDestroyOnLoad method and pass the

GameObject as a parameter.

• OnGUI is a built-in event where we can call certain methods to draw

GUI to the screen.

• GUI and GUILayout are two classes with static methods in them

that we can call within OnGUI. They’re mostly the same methods,

but GUI methods must have their position and size specified in their

parameters, while GUILayout methods will automatically position

and size themselves.

• An asynchronous operation is one that occurs in the background,

sometimes taking many frames to finish. A synchronous operation

is one that occurs all at once, which can cause a drop in framerate

(or even temporarily freeze the game) if the operation is particularly

intensive to run.

Chapter 22 Menus and uI

277

• SceneManager.LoadSceneAsync loads a scene asynchronously,

returning an AsyncOperation instance when it is called.

• The AsyncOperation has a “.isDone” bool property that can be used

to check if the scene has finished loading (true) or not (false).

• SceneManager.sceneCountInBuildSettings returns the number of

scenes added to the build.

• The GameObject.Find method takes a string and attempts to find a

GameObject with that name. If it finds one, it will return it. If not, it

returns null.

• For one of our levels to work properly, it should have a Camera in it

named Level View Camera. If the name isn’t exact, the GameObject.

Find call won’t be able to find it.

Now all we need is some means of returning to the main menu from within the

game. We’ll handle that in the next chapter.

Chapter 22 Menus and uI

279
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_23

CHAPTER 23

In-Game Pause Menu
Now we need some means of getting back to the main menu from within the game. We’ll add

this in the form of a menu that the player can open by pressing the Esc key. It also wouldn’t

hurt for that menu to pause the game while it’s up and unpause when we close it.

 Freezing Time
Everything in our game is based on time. We use Time.deltaTime to measure the

distance something will move in a frame. We use Time.time to measure how long it’s

been since something happened. We use Invokes to time the player’s respawning and

the Wanderer retargeting.

This can all be manipulated with the Time.timeScale member.

It’s a multiplier for how much time passes. It can be changed on a dime to make time

pass slower, faster, or not at all.

By default, it’s set to 1. If we wanted to make time pass at half speed, for example,

we’d set it to .5. If we wanted time to pass twice as fast, we’d set it to 2. If we want to freeze

time, we set it to 0.

The timeScale properly adjusts the timing of invoked methods, the Time.deltaTime

variable, and the Time.time variable – which is great for us, because it means it just

works with all of our existing features out of the box.

This means all we have to do to freeze time is this:

Time.timeScale = 0;

But we want to do it through a pause menu that’s toggled with the Escape key.

The menu will show in the middle of the screen and have two options: one to resume

the game and another to quit to the main menu – a simple, bare-bones menu.

To make sure it’s only operable when the level has begun playing (not when we’re

still previewing), we’ll go ahead and implement it on the Player script class. Since the

https://doi.org/10.1007/978-1-4842-5656-5_23#ESM

280

Player script is disabled until the game begins playing, we won’t be able to open the

pause menu when we’re still in the level select menu.

First, declare a bool “paused” on the Player script:

private bool paused = false;

Then, declare a Pausing method, like our Movement and Dashing methods:

private void Pausing()

{

 if (Input.GetKeyDown(KeyCode.Escape))

 {

 //Toggle pause status:

 paused = !paused;

 //If we're now paused, set timeScale to 0:

 if (paused)

 Time.timeScale = 0;

 //Otherwise if we're no longer paused, revert timeScale to 1:

 else

 Time.timeScale = 1;

 }

}

We’ll call that in our Update method, and we’ll also only run the Movement and

Dashing logic if the game is not currently paused:

void Update()

{

 if (!paused)

 {

 Movement();

 Dashing();

 }

 Pausing();

}

Chapter 23 In-Game pause menu

281

Now we won’t be able to detect input for dashes or movement when the game is still

paused – just a little bonus robustness.

This will give us the pausing functionality, but no visual indication of it. We need an

OnGUI method.

To handle the displaying of the box in the middle of the screen, we’ll use a

GUILayout.BeginArea call. This method lets us give it a Rect, which is short for rectangle,

to define a box on the screen that we want to place GUILayout elements within.

It works somewhat intuitively. We call GUILayout.BeginArea, passing in the Rect

we want to use as our area on the screen to contain the elements in. Then we run any

GUILayout methods we want to put in the area – buttons, labels, whatever. Once we’re

finished, we call GUILayout.EndArea to break out of the area.

The part that’s a bit tricky is creating the Rect to define the space on the screen that

the area should take up.

A Rect constructor takes four values: an X, a Y, a width, and a height.

The X and Y work much like they do in world space units in our game, only they’re

resembling the 2D space of our screen now – and rather than working with the concept of

units, each point is just 1 pixel of our screen. A pixel is one tiny colored dot that makes up

your computer monitor. Most modern monitors are over a thousand pixels wide and tall.

Another notable difference is that a value of (0, 0) is not the center of the screen – it’s

the top-left corner. An increase in X goes toward the right edge of the screen, and an

increase in Y goes toward the bottom edge of the screen.

Luckily for us, there’s an easy way to measure the width and height of our screen in

pixels: the Screen.width and Screen.height variables.

Cut those values in half, and we get the center of the screen: (Screen.width ∗ .5f,

Screen.height ∗ .5f).

But the X and Y position of our Rect isn’t the center of the area we’re defining. That

would make this too easy. Rather, it’s the top-left corner of the area. That’s generally how

things work in 2D space – particularly with the legacy GUI systems.

Let’s declare the method and see how we get around this problem:

void OnGUI()

{

 if (paused)

 {

 float boxWidth = Screen.width * .4f;

 float boxHeight = Screen.height * .4f;

Chapter 23 In-Game pause menu

282

 GUILayout.BeginArea(new Rect(

 (Screen.width * .5f) - (boxWidth * .5f),

 (Screen.height * .5f) - (boxHeight * .5f),

 boxWidth,

 boxHeight));

 if (GUILayout.Button("RESUME GAME",GUILayout.Height(boxHeight *

.5f)))

 {

 paused = false;

 Time.timeScale = 1;

 }

 if (GUILayout.Button("RETURN TO MAIN MENU",GUILayout.

Height(boxHeight * .5f)))

 {

 Time.timeScale = 1;

 SceneManager.LoadScene(0);

 }

 GUILayout.EndArea();

 }

}

I’ve spaced out each individual parameter in the “new Rect” to make it easier to read.

This doesn’t affect the method call, it’s just a formatting thing.

Again, the parameters, in order from top to bottom, are X, Y, width, height.

Before we start the area, we declare some shorthand local variables for the width and

height of the box we want our area to resemble.

For the X and Y, we start at the center of the screen (width or height multiplied in

half). But since it’s the top-left corner of the box that we’ll be placing at the center of the

screen, it won’t look right if we just do that. We need to shift it to the left by half of the

box width and up by half of the box height. That’s why we subtract half of the box width/

height from the X/Y values, respectively.

After that, we can call our GUILayout.Button methods and then make sure we call

GUILayout.EndArea to break the custom area we began earlier.

In those buttons methods, we have an extra parameter. The GUILayout.Height(…)

calls coming after the button text are a way to customize a GUILayout method to have a

Chapter 23 In-Game pause menu

283

manually defined height. Rather than letting the system determine the height on its own,

we take control of it by supplying this option.

A similar option exists for GUILayout.Width, among others, but we don’t have any

need for that: the buttons will size themselves to the width of their containing area

automatically.

In our GUILayout.Height options, we specify that the height should be half of our

boxHeight, so that the two buttons together take up the full height.

When the resume button is pressed, we unpause the game and revert the timeScale

to 1 again so time flows as normal.

When the quit button is pressed, we load the main scene (index 0) and also make

sure we reset the flow of time, since that variable won’t reset itself when the scene

reloads.

Oh, and remember that in order to access the SceneManager, we’ll need to make

sure the script has the correct using statement at the top:

using UnityEngine.SceneManagement;

And with that, we should now be able to play the game through the main scene,

navigate to a level, and test our new pause menu.

Pressing Escape will bring the menu up, as shown in Figure 23-1.

Returning to the main menu resets the process neatly, landing us back in the main

scene where we can use the menu to go to a level again.

Figure 23-1. The in-game pause menu is shown over the player character

Chapter 23 In-Game pause menu

284

 Summary
We’ve added one final component to our scene flow and menus: the option for the player

to quit a level after they’ve started playing it with a menu opened by pressing the Esc key.

This doubles as a pause feature by freezing time when the menu is open.

Some key points to remember are as follows:

• Time.timeScale is the multiplier for how much time actually passes

in-game per second of real time. We can set it to change the rate that

time flows. .5 is half as fast as normal, 2 is twice as fast, 0 freezes time,

and so on.

• A Rect is a basic data type that resembles a rectangle: an X and Y

position resembling the top-left corner of the rectangle and a width

and height for the rectangle size.

• GUILayout.BeginArea is a method that starts a GUILayout area

in a given rectangle of the screen, represented by a Rect. You call

BeginArea and then any GUILayout methods you want to be part of

the area, and then when you’re done, you call GUILayout.EndArea.

• Most GUILayout methods that draw some element to the screen

can be supplied options at the end of the call. We used GUILayout.
Height to specify the height we wanted our buttons to use rather than

allowing the layout system to figure it out on its own.

Chapter 23 In-Game pause menu

285
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_24

CHAPTER 24

Spike Traps
The final obstacle we’ll implement will be a spike trap. It will teach you a new concept

and give you more practice with the concepts we learned in previous chapters, like

Lerping over time, working with state, and Invoking methods to time transitions in the

state.

Our spike trap will be a thin, square “plate” laid out on the floor which has lots of

little “spikes” sticking out of it. For simplicity’s sake, we’ll make the whole thing out

of cubes. When the trap activates, the spikes quickly raise, poking up out of the plate.

They’ll remain raised for a moment and then slowly lower back down.

While the spikes are raising, the trap is a Hazard, killing the player if they’re standing

over it. But when the spikes are raised or in the process of lowering back down, they act

merely as a normal, physical collider that blocks the player from passing by, without

actually killing them on touch.

Once the spikes finish lowering back down, the player can safely walk over the trap

again. To accomplish this, we’ll be using two separate Box Colliders on two separate

GameObjects: one for the Hazard collider and one for the harmless collider. We’ll

activate and deactivate them as we go, based on the state of the trap.

 Designing the Trap
Before we get into the little details on how we’ll implement the trap in code, let’s figure

out how it will look and build it in the Scene. Once you’re done, you should have a trap

looking something like Figure 24-1.

https://doi.org/10.1007/978-1-4842-5656-5_24#ESM

286

You can make the trap in any of your level scenes. Just move your camera off to a

clear place where other stuff won’t get in your way, and let’s begin.

Create the root GameObject, an empty one named Spike Trap. Place it in the Hazard

layer.

Right-click the Spike Trap and create a Cube child. Name it “Plate”. Remove its

default Box Collider. Unity should automatically place it in the Hazard layer to match its

parent. If not, go ahead and do that yourself. Set its scale to (9, .1, 9), making it very thin,

but wide and long. Set its local Y position to (0, .05, 0) to make sure the root GameObject

(the pivot point) is at the bottom of it, not the center. There isn’t much difference, but it’s

nice to be neat.

Now right-click the Spike Trap and add a new empty GameObject child. Name it

“Spikes”. This will be the parent of all the individual spikes.

Normally, you would have a model for the spikes, probably holding all of them in

one mesh so a single GameObject could be used for all of the spikes at once. But we

aren’t creating our own meshes or artwork, so we’ll use a separate GameObject for each

individual spike. This will leave us with a somewhat cluttered Hierarchy, since we’ll have

lots of spikes in the trap, but we can always “fold up” the Spikes GameObject to tuck

them away.

We’ll use some tricks to distribute our spikes evenly across the surface of the plate

without hand-placing each one. First, we’ll need a single Spike instance that we can

copy-paste around. Add a Cube as a child to the Spikes GameObject. Name it Spike and

set its scale to (.2, 1, .2). The height is left at 1 to allow us to handle it through code –

you’ll see how we manage this when we get to that point. For now, just don’t think about

Figure 24-1. A fully lowered Spike Trap (left) next to a fully raised Spike Trap
(right)

Chapter 24 Spike trapS

287

how tall the spikes are. To align the bottoms of the spikes with the Spikes GameObject,

set their Y position to .5. This is important. The bottom of each spike must be lined up

with the Spikes GameObject – no higher or lower! A local Y position of .5 will do exactly

that.

At this point, we’re at a crossroads. How much do we care? Do we copy-paste our

spikes and drag them around with the transform tools willy-nilly with no concern for

their placement, or do we try to make them neatly lined up and pretty?

If you prefer a sloppier trap (it might look a bit more gnarly and brutal that way), you

can do it that way – just make sure all of the spikes have the same Y position value.

But our trap, pictured in Figure 24-1, is made with some special tricks that distribute

the spikes evenly without painstakingly dragging them into precise positions.

First, let’s position this first spike in one of the corners. We’ll put it at the top-left

corner, with a little bit of margin between it and the edge of the trap. Set its position to

(-4, .5, 4).

Now you have one spike, up there in the corner but not right at the edge of the

corner, since that would look a bit odd. To copy-paste it and position each one an even

distance away from the last without doing it by hand, we can use a little trick in the

Inspector.

When you type a number value into a field in the Inspector, you can do math

equations, and Unity will automatically calculate the result for you. For example, try

typing 5 + 5 into a number field, like a Transform’s position. As soon as you press Enter or

lose focus on the field by pressing Tab or clicking somewhere else, Unity will replace the

equation with the result: 10.

We can use this to simply add to or subtract from one of the position axes of a Spike.

Copy and paste the Spike instance and edit its X position field to add “ + 2” at the end.

That is, leave whatever position value is currently in the field, and append the math at

the end – if the field is –4, set it to “–4 + 2”. The result will be calculated and adjusted

precisely, without the need for us to drag the spike with the mouse and try to get them all

evenly spaced.

Do this until you run out of space to place more spikes. You should have a row of five

spikes, stretching from the left side of the trap to the right side, as shown in Figure 24-2.

Chapter 24 Spike trapS

288

We can’t use the Inspector math trick on more than one GameObject at a time,

though. So we can’t just copy-paste a row of spikes and adjust their Z position to slide all

5 of them down at once.

Luckily, there’s an easy solution. We can just make them all children of a temporary

empty GameObject and then copy-paste and move the parent.

Create an empty GameObject in the Spikes holder, select all of the spikes, drag them

over the new empty GameObject, and then copy-paste that GameObject. Then, adjust

its Z position using the Inspector math trick, adding “ – 2”. You can then copy-paste that

row and decrease its Z by 2 again. Repeat that until you have a total of five rows of spikes,

covering the whole trap neatly.

We don’t need those empty GameObjects to make the spike trap function, so if you

don’t want them around anymore, you can delete them. Of course, if we delete them

now, it will delete the spikes inside them as well, so you’ll first have to drag the spikes

out to make them children of the Spikes holder once again. If you’d like to keep the

spikes grouped by row, you can leave them as is, although you may wish to name them

something descriptive like “Spike Row” instead of the default “GameObject” name.

And there you have it – precisely positioned spikes, without copy-pasting all 25 of

them one at a time.

You can then create materials for the spike trap plate and the spikes themselves, if

you want.

You can apply a material to all of the spikes at once by selecting them, navigating

to their Mesh Renderer component in the Inspector, and finding the subheading

Figure 24-2. The Spike Trap so far, with just one row of spikes

Chapter 24 Spike trapS

289

“Materials” within. It will show a field set to “Default-Material.” Just drag and drop your

material from the Project window onto that field. Unity will detect that each Spike has

the same component on it so that when we edit a field in that component, it applies the

change to all of them. This is the same as dragging and dropping the material from the

Project onto a GameObject in the Scene view. They both set the same field – doing it

through the Scene is just a convenience feature.

While you’re at it, you can also remove the Box Collider component from all of the

spikes at once. We don’t need colliders for individual spikes – we’ll use one collider

that spreads over all of them. With all of the spikes selected, remove the Box Collider

component in the Inspector.

For my spike trap, I’ve used a light-blue color with a hex value of DAFFF9 for the

plate and a deep maroon with a hex value of F1236B for the spikes.

 Raising and Lowering
You may be wondering why your spikes aren’t the same height as the spikes shown in

Figure 24-1. This is because we haven’t set them up fully yet. There’s a new concept to be

learned! Well, not so much a new concept as a side effect of an existing concept. We’re

going to achieve the effect of raising/lowering our spikes with a bit of magic involving

pivot points and scaling.

Like I said before, there’s a reason we made sure the bottom of each spike was

vertically positioned to neatly line up with the Spikes GameObject.

Select your Spikes GameObject, switch to the scale transform tool (hotkey R), ensure

that you are using the local pivot point (hotkey Z to toggle; the gizmos should appear at

the base of the trap, not at the center of your spikes), and drag up the green box for the Y

axis, increasing the Y scale. Since the spikes are all children of this empty GameObject,

they all grow taller, as expected (see the left side of Figure 24-3). But the important thing

is how the pivot point is scaling them “away from it.”

Try to instead select all of the Spike instances within the Spikes GameObject, but

don’t select the Spikes GameObject itself. You can do this in the Hierarchy by clicking

once on the topmost Spike, then holding Shift, and clicking once on the bottommost

Spike. Scale up the Y axis again, just as you did before, and you’ll get something more

like the right side of Figure 24-3. The spikes scale up by their individual pivot points – the

center of each spike – and thus stick out further and further down as we scale them up.

Chapter 24 Spike trapS

290

The first option is what we want: the spikes should only go up, not down, when we

raise the scale of the Spikes GameObject. That’s why we’ve set our trap up in such a

specific way. The spikes all have a Y scale of 1 and a Y position of .5. Since local position

and scale are multiplied by the scale of the parent, this means they’re exactly as many

units tall as the Y scale of their pivot point – the Spikes GameObject – and they’re exactly

half that height above it, which keeps their bottoms precisely positioned at the pivot

point. We can now define the height of all the spikes simply by setting the Y scale of the

Spikes GameObject. We also need only change the scale of one GameObject to raise or

lower the spikes, rather than keeping all of the spikes in an array, looping over them, and

changing each one individually.

 Writing the Script
Now you know how we plan on raising and lowering our spikes. Let’s implement the part

of the script that does this. We’ll add the collisions after (don’t worry, it’s easy), so don’t

think about that part for now.

Create a script named SpikeTrap. Add an instance of it to the Spike Trap root

GameObject we made.

Figure 24-3. Scaling up the Y axis of the Spikes GameObject to 5 (left) and
scaling up the Y axis of each individual Spike to 5 (right). Both traps are at the
same Y position

Chapter 24 Spike trapS

291

First, let’s go over the process the trap will be playing out. The trap will have four

states, which we define in an enum named State, declared in the SpikeTrap script class:

private enum State

{

 Lowered,

 Lowering,

 Raising,

 Raised

}

The states are somewhat self-explanatory:

• While Lowered or Raised, the spikes aren’t moving. They’re sitting

still, with the spikes either fully lowered or fully raised.

• While Lowering, the spikes are growing shorter, starting at the

maximum height and lowering down to the minimum height.

• While Raising, the spikes are growing taller, starting at the minimum

height and raising up to the maximum height.

Initially, it will have its spikes in the Lowered position, so that’s what we set the state

to when we declare the variable, just below the enum declaration:

private State state = State.Lowered;

“Lowered” is also the first item in the enum, so that’s what it would naturally be set to

if we didn’t provide a value when we declared the state variable. Just to be explicit, we’ll

provide the default value anyway.

We’ll also declare two const floats, depicting the height of the spikes when lowered

and the height of the spikes when raised:

private const float SpikeHeight = 3.6f;

private const float LoweredSpikeHeight = .08f;

If you wanted to have different kinds of spike traps which have longer or shorter

spikes – although it won’t affect much – you could make these variables public instead

of private and take out the “const” keyword, which will make the variables show in the

Inspector so they can be customized.

Chapter 24 Spike trapS

292

Now let’s declare the variables we’ll be using, down below the “state” variable:

[Header("Stats")]

[Tooltip("Time in seconds after lowering the spikes before raising them

again.")]

public float interval = 2f;

[Tooltip("Time in seconds after raising the spikes before they start

lowering again.")]

public float raiseWaitTime = .3f;

[Tooltip("Time in seconds taken to fully lower the spikes.")]

public float lowerTime = .6f;

[Tooltip("Time in seconds taken to fully raise the spikes.")]

public float raiseTime = .08f;

The tooltips pretty much explain the purpose of each variable. The repeating process

the trap will take is

• Begin raising over “raiseTime” seconds.

• Once raising finishes, wait “raiseWaitTime” seconds.

• Begin lowering over “lowerTime” seconds.

• Once lowering finishes, wait “interval” seconds.

• Repeat.

We’ll also need a private variable that we’ll use to track the Time.time that the trap

started raising or lowering last:

private float lastSwitchTime = Mathf.NegativeInfinity;

And we’ll need a reference to the Spikes GameObject, which we’ll store in a variable

named “spikeHolder”:

[Header("References")]

[Tooltip("Reference to the parent of all the spikes.")]

public Transform spikeHolder;

Chapter 24 Spike trapS

293

Now we’ll declare the logic which raises and lowers the spikes, in the Update
method:

if (state == State.Lowering)

{

 //Get the spike holder local scale:

 Vector3 scale = spikeHolder.localScale;

 //Update the Y scale by lerping from max height to min height:

 scale.y = Mathf.Lerp(SpikeHeight,LoweredSpikeHeight,(Time.time -

lastSwitchTime) / lowerTime);

 //Apply the updated scale to the spike holder:

 spikeHolder.localScale = scale;

 //If the spikes have finished lowering:

 if (scale.y == LoweredSpikeHeight)

 {

 //Update the state and Invoke the next raising in 'interval'

seconds:

 Invoke("StartRaising",interval);

 state = State.Lowered;

 }

}

else if (state == State.Raising)

{

 //Get the spike holder local scale:

 Vector3 scale = spikeHolder.localScale;

 //Update the Y scale by lerping from min height to max height:

 scale.y = Mathf.Lerp(LoweredSpikeHeight,SpikeHeight,(Time.time -

lastSwitchTime) / raiseTime);

 //Apply the updated scale to the spike holder:

 spikeHolder.localScale = scale;

Chapter 24 Spike trapS

294

 //If the spikes have finished raising:

 if (scale.y == SpikeHeight)

 {

 //Update the state and Invoke the next lowering in 'raiseWaitTime'

seconds:

 Invoke("StartLowering",raiseWaitTime);

 state = State.Raised;

 }

}

The “if” and the “else if” both contain much the same code, with little changes to

distinguish between raising and lowering. We use the Mathf.Lerp method, which is

equivalent to Lerping a Vector3 or a Quaternion, only it works on two float values instead

of vectors or Quaternions.

While Lowering, we Lerp from the fully raised height of the spikes down to the fully

lowered height.

While Raising, we Lerp from the fully lowered height of the spikes up to the fully

raised height.

As soon as the Lerp has brought the height to the exact height we seek, we change

the state to Raised or Lowered, and then we use Invoke to kick off the next transition in

the correct amount of time.

The fraction we pass to our Lerp calls is similar to what we did with the rotation

of our Wanderers. When raising or lowering begins, we’ll mark the Time.time that it

began – that will happen in the Invoked methods, which we’ll be writing next. We use

that to get the time, in seconds, since the transition first began. Using that, we can divide

by the time we want the transition to take overall (lowerTime or raiseTime). This makes

the fraction start at 0 and raise to 1 over the duration.

The StartRaising and StartLowering methods will be short and sweet. Declare them

somewhere above the Update method:

void StartRaising()

{

 lastSwitchTime = Time.time;

 state = State.Raising;

}

Chapter 24 Spike trapS

295

void StartLowering()

{

 lastSwitchTime = Time.time;

 state = State.Lowering;

}

As you can see, these methods just update the lastSwitchTime so the Lerp knows

when the transition began and set the State so the Update method will kick in and begin

applying the transition.

With this, all we need to do now is ensure that the process gets kicked off in a Start

method, right above the Update method:

void Start()

{

 //Spikes will be lowered by default.

 //We'll start raising them 'interval' seconds after Start.

 Invoke("StartRaising",interval);

}

Now, save that code and let’s see it in action. It won’t kill the player yet, but it should

work visually. Before you test it, make sure you attach a SpikeTrap script component to

the root Spike Trap GameObject, and make sure you set the “spikeHolder” reference to

the “Spikes” pivot point GameObject. Also, the Spikes Y scale should be set to the same

value as our const LoweredSpikeHeight, which we set to .08. That will ensure the spikes

are in their proper, fully lowered position when the scene first loads in.

 Adding Collisions
Now the trap works visually, but it still needs to interact with the player. This part won’t

be too hard to implement. As we said at the start of the chapter, the trap will be a Hazard

that kills the player during the Raising state, and then while Raised and Lowering, it will

act as a normal collider that blocks the player but does not kill.

Right-click the Spike Trap and add a new empty GameObject child. Name it “Hitbox”.

It should be in the Hazard layer. Add a Hazard script component and a Box Collider.

Make sure the Box Collider is marked as a trigger collider and give it a Size vector to fit

the width and length of the plate but make it a bit taller. Something like (9, 4, 9) will do.

Chapter 24 Spike trapS

296

This will cause it to stick through the ground, since the pivot is at its center. We can raise

it up by changing the Center vector to (0, 2, 0).

Now, copy and paste the Hitbox. Rename this new one to “Collider”, remove the

Hazard component, and make its collider not a trigger. This is the one that will physically

impede the character, but not kill them on touch. Switch its layer to Default. It’s not a

hazard, it’s pretty much equivalent to a wall.

By default, make both the Hitbox and Collider GameObjects be inactive by selecting

them and unchecking the checkbox at the left side of their name in the Inspector. The

default state of the Spike Trap is Lowered, so neither collider should be active at the start.

Let’s make it operational now. We just need to sprinkle some lines of code in here

and there. All we’re doing is calling GameObject.SetActive, which we’ve used before.

You’ll recall that it takes a single parameter, a bool that should be true to set the state to

active or false to set the state to inactive.

Add these reference variables to the SpikeTrap script:

public GameObject hitboxGameObject;

public GameObject colliderGameObject;

Save, and drag and drop our Hitbox and Collider GameObjects onto their

corresponding reference fields in the Inspector to set up the references.

Now, add this line to turn on the Hazard collider in the StartRaising method:

hitboxGameObject.SetActive(true);

Add this line to turn off the physical collisions once we’ve fully lowered, after we've
Invoked StartRaising in the Update method:

colliderGameObject.SetActive(false);

Down below, after we've Invoked the StartLowering call, add these lines to both

enable the physical collisions and disable the hitbox:

//Activate the collider to block the player:

colliderGameObject.SetActive(true);

//Deactivate the hitbox so it no longer kills the player:

hitboxGameObject.SetActive(false);

Chapter 24 Spike trapS

297

That’ll do it. If you’ve set everything up correctly, the trap will now kill the player if

they’re standing on it when it’s raising, and once it finishes raising, it will block the player

until it fully lowers.

If you haven’t already, don’t forget to make a prefab for the Spike Trap. With all

that spike setup, it would be extra painful to accidentally delete it with no way of

getting it back!

 Summary
This chapter gives us our final obstacle type, a deadly (if a bit blunt) spike trap that

shows a unique behavior of toggling between a Hazard collider and a normal, nonlethal

collider based on its state.

We’ve learned that when scaling a parent, the children scale relative to the pivot

point. We’ve demonstrated how to introduce a pivot point to all of our spikes to not only

scale them all at the same time but also to make them scale how we want them to. We

also exercised some tricks to quickly set up our spikes by row instead of creating each

one separately.

This marks the final implementation of our first example project.

Chapter 24 Spike trapS

299
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_25

CHAPTER 25

Obstacle Course
Conclusion
At last, we’ve reached the end of our first project. Let’s go over the final steps you might

take when finished with a project: “building” it so that others can play it. I’ll leave you

with some further ideas for features to add to the game as well.

 Building the Project
Although our project is anything but a polished and pretty gem waiting to be distributed

to the masses, we can still get some hands-on experience with the building of a Unity

project.

We discussed this topic briefly already. Building a project converts it to a format

acceptable for an end user who wants to play your game. It copies our Unity project into

a set of files that can be run without the Unity editor. This is necessary if you ever want to

make a game available to a base of players – you very well can’t ask them all to download

the Unity editor and play your game through it, and you certainly don’t want to give out

all of your code and assets to the players.

Building a project is a simple task. It’s mostly done with a few button presses. You’ve

already seen the Build Settings menu, shown in Figure 25-1. It is found under File ➤

Build Settings or with the hotkey Ctrl+Shift+B.

https://doi.org/10.1007/978-1-4842-5656-5_25#ESM

300

We previously learned about the top section, titled Scenes In Build. The section

beneath it is where you pick the target platform to deploy to (left) and related settings

(right). By default, it’s PC, Mac & Linux Standalone. The project will be deployed to a

particular operating system (Windows, Mac, or Linux). This can be changed with the

Target Platform field, but support for building to each operating system comes from a

different Build Support module installed through the Unity Hub. If you want to build to

a target platform that isn’t listed, you probably don’t have the module installed. All you

Figure 25-1. The Build Settings menu for our project, set to build for Windows

Chapter 25 ObstaCle COurse COnClusiOn

301

have to do is go through the Unity Hub program and install the Build Support module for

the operating system you want to target, which we talked about back in Chapter 1.

The remaining fields aren’t particularly relevant to the everyday user. All you should

need to do is just click one of the two buttons in the bottom-right corner: Build or Build

And Run, the only difference being whether or not the built project will be automatically

executed when it finishes. Before building can begin, you’ll have to select a folder to

store the built project in. Unity will generate the necessary files within that chosen folder.

 Player Settings
The Player Settings can be accessed with the button in the bottom-left corner of the

Build Settings window (shown in Figure 25-1). They can also be reached through Edit ➤

Project Settings and then by clicking the Player tab on the left.

Player Settings relate to the built program. There are fields for a variety of different

settings, but most of it doesn’t really concern your average hobbyist user, and when you

hit the point that it does concern you, there are plenty of places to learn about it. The

most important area to look at is the Resolution and Presentation section, displayed in

Figure 25-2.

Figure 25-2. The Resolution and Presentation section of the Player Settings

Chapter 25 ObstaCle COurse COnClusiOn

302

Here’s a quick overview of the fields that may interest you in this section:

• Fullscreen Mode

Defines the default display for the window. Is it fullscreen or

windowed by default? If it’s windowed, it will be a movable

window that is not fullscreened (not a “windowed fullscreen”).

• Default Is Native Resolution

If this box is checked, the game window will use the resolution of

the user’s computer by default. If you uncheck the box, two extra

fields will appear, allowing you to set the default height and width

of the game window yourself.

If you’ve set Fullscreen Mode to Windowed, this field won’t show.

• Run In Background

Check this box if the game logic (your scripts, physics, etc.) should

continue to operate even when the user minimizes the window or

loses focus on it. Alternatively, if the box is unchecked, the game

will pause (freeze in place) whenever the user minimizes it.

• Display Resolution Dialog

This setting defines whether or not Unity shows the resolution

dialog when the game starts. This is a popup box which lets the

user make their own decision for the resolution when they start

the game.

By default, it is Disabled. It’s recommended that you don’t rely on

this feature, since Unity has deprecated it – meaning they don’t

plan on supporting it in the future.

• Resizable Window

If this box is checked, the window can be resized by the user

clicking and dragging on the corners or edges. If it’s not checked,

the window will be stuck in the default size you’ve specified.

Chapter 25 ObstaCle COurse COnClusiOn

303

• Allow Fullscreen Switch

If checked, the user can use the default hotkey for their operating

system to toggle fullscreen on or off (in Windows, this is done with

Alt+Enter).

• Force Single Instance

If checked, only one instance (window) of the game can be run at

any time. Attempting to run a second one will simply bring focus

to the already-running instance instead.

Aside from these features, there’s also the option of defining a custom splash screen.

The splash screen is a sequence of graphics that pop up when the game first runs,

usually showing the logo of involved companies. You’ve probably seen this in games

you’ve played before. By default, your game will have a splash screen of the Unity logo,

lasting a couple of seconds. If you’re using the free license of Unity, you cannot disable

this – you don’t get a state-of-the-art game engine for free without giving a little credit!

You can, however, add your own logos to the splash screen, customize the background

color, and add a background image. Of course, this is probably not of much concern

to you at this stage – but do remember that, if you want to lose the official Unity splash

screen when your game runs, you have to have a paid version of Unity.

 Recap
This project has been a great, big series of firsts, each one making you more comfortable

and equipped with programming in Unity. Before we move on to the next project, let’s

take a quick overview of what major concepts we learned to use in this one:

• Moving with a CharacterController component.

• Turning a number value from “per frame” to “per second.” If you

want to move X units per second, move by “X ∗ Time.deltaTime” per

frame.

• Slerping and Lerping positions, rotations, and float values. This is

pretty much just moving value A toward value B by a fraction of the

distance between the two.

Chapter 25 ObstaCle COurse COnClusiOn

304

• Calculating the time since an event happened. When the event first

occurs, set a variable X to the current value of Time.time. Later, use

“Time.time – X” to get the seconds that have passed since.

• Invoking methods to run code after a specific duration has passed.

• Calling the GameObject.SetActive method to activate and deactivate

GameObjects through code.

• Using a basic enum to depict the state of an object and changing the

way they behave based on this state.

• Calling the Random.Range method to generate a random value

between two given numbers.

• How a pivot point can affect the scaling of a Transform.

 Additional Features
Now that you’ve got all this newfound experience, you can always add features to the

project yourself. Thinking your way around a problem on your own is a great way to

develop yourself as a programmer. Even if you bite off more than you can chew and

attempt something too difficult, you’re probably going to pick up at least a few tidbits of

information that make you more knowledgeable – and who knows, they might help you

solve a different problem in the future.

Striking out on your own to implement a feature in a game project doesn’t mean you

have to do it independently. A few Internet searches can make all the difference when it

comes to solving problems or coding up new mechanics.

Getting an error message that doesn’t make sense to you? Use your favorite search

engine, like Google, and type the error message out (you can even select an error in the

Unity Console window and press Ctrl+C to copy the whole message). Chances are you’ll

find other people making a similar mistake to the one you’ve made, asking others for

help figuring it out, and there you may find your answer.

Unsure how to go about implementing something? Search for it, and so long as it’s

not a particularly niche mechanic, you’ll likely be able to find a guide or tutorial for it.

Dealing with a component type you’re not used to? Search for it, and Unity’s

documentation page will likely be one of your first results. You can see all of the

members of any built-in class and read the descriptions for individual variables or

Chapter 25 ObstaCle COurse COnClusiOn

305

methods. Knowing what sort of relevant data and methods are at your disposal is often

one of the first steps when it comes to planning your code.

In this day and age, the information you need is probably just a couple well-chosen

search terms away.

If you ever run into trouble that you can’t seem to think your way around and

you can’t find a solution online, you can either set it down and come back to it when

you’ve gotten better (there’s no shame in this!) or head to some online community

and ask for help with your particular problem. Unity’s official question-and-answer

site, located at answers.unity3d.com, is a great place for beginners to present

their questions or problems so more experienced Unity users and coders can help

illuminate the correct path. If you’re going to do this, be thorough. You don’t want

your question to generate more questions! Describe what you’re trying to accomplish,

what’s in your scene, and what’s happening that you’re trying to fix. If code is involved,

copy-paste any of it that relates so others can check it for errors – particularly the

subtle ones you may not have noticed.

Sometimes, the act of trying to describe your problem with enough detail that

someone else may be able to solve it for you is enough to help you realize what’s going

wrong. One day, you’ll realize you’ve gotten so good that you don’t need other people’s

help. You’re good enough at finding the answer yourself that you solve the hurdles

before you ever hit the point of asking for help. Or perhaps the problems you face will

be deep enough that properly explaining them so others can help is more trouble than

figuring it out yourself.

I’ll give you some ideas for features you might want to add to this project on your own:

• Teleportation

Two teleporter pads are placed on the ground at different locations.

Touch either one, and you’ll get warped to the location of the other

one. Use an Inspector reference to the Transform of the other

teleporter pad to link them together. That way you can move them

around – even in-game – and it’ll still work.

• Fancy shooters

Make Shooters with multiple barrels sticking out in different

directions, all of them firing at the same rate. Create shooters that are

constantly spinning. Mix the two for much more daunting obstacles.

Chapter 25 ObstaCle COurse COnClusiOn

306

• Checkpoints

Larger levels can have checkpoints spread throughout them. When

the player touches the checkpoint, they unlock it, making it the

current checkpoint. Whenever they die, they respawn at the current

checkpoint (if they have one unlocked). Just make sure the player

can’t go back and unlock a worse checkpoint by touching it again!

• Lives

Give the player a limited number of lives. Whenever they die, take a

life away. If they run out of lives, kick them back to the main menu

and make them feel bad by telling them they’re a loser. This way,

they can lose their progress earned by reaching new checkpoints.

Consider also rewarding them with more lives when they reach a new

checkpoint.

If you’re tired of doing what I say, don’t be afraid to try to implement something that

you think would be fun or interesting. You might fail and never get it done. It happens

sometimes. But you’ll learn in the process.

Or just keep following the book and save that for after!

 Summary
In this chapter, we’ve handled some loose ends, leaving us ready to set aside our first

example project and move on to the next. We learned how to use the Build Settings

window to build our project, and we learned about the Player Settings window, which

contains properties relating to the appearance and behavior of our project once it is built.

Next, we’ll move on to a project that will give you plenty of practice working with

object-oriented programming concepts like inheritance.

Chapter 25 ObstaCle COurse COnClusiOn

Tower Defense

PART II

309
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_26

CHAPTER 26

Tower Defense Design
and Outline
It’s time to start our next project – a little tower defense game. We’ll get some practice

using inheritance, learn how to perform basic pathfinding for our enemy AI, get some

experience with collision detection through scripts instead of colliders, and learn to use

the newest UI features of Unity.

 Gameplay Overview
If you’re unfamiliar with the genre, a tower defense is a game where the player places

structures (towers) on the playing field which defend against oncoming enemy attackers.

One level at a time, enemies spawn in at a certain location and attempt to navigate their

way to their goal. Whenever an enemy reaches the goal, you lose a life. This is sometimes

referred to as “leaking.” Once you lose all of your lives, you lose the game. Using money

gathered from winning levels and/or slaying enemies, you build more and more towers

to prevent enemies from leaking and to stay in the game.

Our tower defense will have a simple setup: the playing field is a rectangle, longer

than it is wide, with the player camera hovering over it and pointing down at it, a camera

orientation much like in our first project.

Enemies spawn at the top of the playing field – the spawn point – and navigate to the

bottom, the leak point. Your towers sit between them and their goal. They will navigate

around your towers using basic Unity pathfinding, which is the act of finding a walkable

route around all obstacles without touching or passing through them. Certain levels

will instead have flying enemies which simply go over all our towers, no pathfinding

involved.

Our towers can be positioned to route enemies along specific paths, particularly

in the interest of keeping them in range of our strongest towers for a longer duration.

https://doi.org/10.1007/978-1-4842-5656-5_26#ESM

310

This is called “mazing” – the player will try to build an ideal maze that keeps the enemies

in the right places for the longest time possible. Figure 26-1 shows the finished project

with a small maze set up and some ground enemies navigating through it.

The game will transition back and forth between two states:

• Build mode, where there are no enemies spawning and the player

can purchase and sell towers

• Play mode, where a round of enemies will spawn in sequence, one

after the other, and attempt to reach the leak point.

The game will start in build mode so the player can construct their first towers. Once

the player is ready to begin the level, they must press a button. At this point, we perform

our pathfinding to check what route the enemies will take to reach the goal. If pathfinding

cannot find a route through the towers, the player will be warned, and they won’t be able

to start the level. Otherwise, if the player hasn’t blocked the path, we enter build mode.

Build mode will spawn the enemies, each one following closely behind the last. The

level ends as soon as all the enemies have either been slain or have leaked. If the player’s

health has dropped below 0 during this level, we gently break the news that they’ve lost.

Otherwise, we enter build mode again, and the process can repeat itself.

Figure 26-1. Ground enemies resembled by red cubes navigate through our maze
while our arrow and cannon towers (blue) fire at them. The basic pale-brown
cubes are barricades used to cheaply expand the maze

Chapter 26 tower Defense Design anD outline

311

Some tower defense games will have the enemies run through a path that the player

can’t build towers on – for example, the enemies might be down in a trench, while the

towers can only be built on cliffs above. This solves the problem of the player being able

to block enemies off with their towers and doesn’t require any pathfinding. It’s a game

design thing, so I won’t get into the differences between the two, but the concept of

“mazing” isn’t really a thing if you don’t allow the enemies to mingle with the towers like

we will. We want some practice with pathfinding anyway, so our method will suit us well.

The player earns money to build more towers as they slay enemies, as well as a

chunk of extra money at the end of each round.

We’ll implement a small variety of tower types:

• Arrow Towers, which rapidly fire a seeking projectile at a single

targeted enemy at a time. Their projectiles are guaranteed to hit the

target, homing in on them constantly. They can strike both ground

enemies and flying enemies alike.

• Cannon Towers, which fire arcing projectiles at the ground where

their target stands. Their projectiles deal damage in a radius, capable

of hurting multiple enemies at once, but move slower and can be

inaccurate. They do not fire at flying enemies. Since they fire at the

ground location of their target, they might not even hit a target if it is

quick enough.

• Hot Plates, which are flat towers that do not block enemies, allowing

them to walk right over. They constantly apply damage to all enemies

who stand on them. They’re worthless against flying enemies.

• Barricades, which do not attack, but act as a cheap means of

building a maze for enemies to navigate through. They’re a price-

efficient means of keeping enemies in range of your towers longer.

Again, these are worthless against flying enemies.

 Technical Overview
We’re going to get into some new concepts in this project. It wouldn’t be worth doing if it

didn’t challenge us in some new ways, right?

The movement will be handled first, some rudimentary stuff that isn’t far off from

what we’ve already done. The player is nothing but a floating camera in this project,

Chapter 26 tower Defense Design anD outline

312

since they don’t have one character they’re controlling, but that camera must be able to

move around the stage. We’ll implement basic camera controls: arrow key movement,

movement by dragging the mouse, and the option to scroll in and out with the mouse

scroll wheel.

After that, we’ll get our first taste of pathfinding. The process of pathfinding is a

complicated topic, but Unity makes it a bit simpler for us. Luckily, that means we won’t

have to implement a pathfinding algorithm ourselves – although they can be a bit of fun

if you’re into that stuff. We’ll learn how to work with this system to give our enemies a

path around the towers.

We’ll also learn the concept of raycasting. It’s a means of detecting if a collision

occurs along a given line, starting at one Vector3 position and traveling along a given

direction for a given amount of distance. This can be useful in a multitude of ways, but

we’ll be using it to detect the point on the playing stage beneath our mouse cursor so

that we can point and click to where we want to place towers. In other words, we’ll use it

to get the world position on the stage beneath our mouse.

We’ll also get some practice using inheritance. We learned about it before we started

making our example projects, but this is the first time we’ll put it to practical use. Using

inheritance, we can reuse logic that certain towers share while still maintaining flexibility

that allows us to define towers that behave differently than others (flame traps) or towers

that don’t do much of anything (barricades). Our projectiles will also have varying forms:

some will seek a target and be guaranteed to hit it; others will arc and flop down on a

targeted ground location. They’re both still projectiles, sharing some logic, but they

differentiate in specific ways that are implemented in their lower types. For our enemies,

we’ll have a base type that defines general stuff – notably, their health and the process of

dying – and we’ll implement lower types to contain the logic of ground enemies vs. flying

enemies.

In build mode, we’ll implement Unity’s latest and greatest UI system to create

something a bit more polished and complex than our GUI experience with our last

project. We’ll also get some experience with converting positions to points on a grid.

All towers will have the same size, and we’ll only allow the player to place them along

increments of that size. You can place them perfectly side by side, with no space

between them, or you can leave an entire tower’s space between the two – but you can’t

do anything in between. This will require a bit of math-related tomfoolery, but it’s not

boring math. It’s programming math – the fun sort.

Chapter 26 tower Defense Design anD outline

313

At the end of every round, we’ll give the player money for making it through, and

we’ll scale up the strength of our enemies. We’ll have levels with flying enemies every

fourth round, learning how to use a new operator to detect when that occurs.

 Project Setup
To get started, create a new Unity project through the Unity Hub, using the 3D template

and naming it TowerDefense, as shown in Figure 26-2.

In the Project view, we’ll create folders for Materials, Prefabs, and Scripts, all inside

the Assets folder, which should already have a Scenes folder inside it. We’ll rename the

default “SampleScene” to “Main”, just to sound more official.

 Summary
We’ve gone over how our project is expected to play and briefly considered the details of

implementation. Simply put, it’s a basic form of the tower defense genre with enemies

spawning on one side of the stage and attempting to reach the bottom, while the player-

built towers attempt to stop them. We’ll explore a lot of important concepts in the

making of this project, like inheritance, raycasting, and pathfinding, so let’s jump right in

and start implementing the pieces one by one.

Figure 26-2. Creating our project through the Unity Hub

Chapter 26 tower Defense Design anD outline

315
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_27

CHAPTER 27

Camera Movement
First things first, let’s get some camera movement in working order. The player has to be

able to move around the stage to be able to see the whole thing, after all. We’ll allow the

player to move the camera with the arrow keys as well as by right-clicking and dragging

with the mouse. We’ll also provide the option to use the scroll wheel to zoom in or out,

which lets the player control how close their camera is to the stage.

All of the movement will be applied to a Vector3 variable called targetPosition.

Instead of directly applying the movement to the camera Transform, we update this

vector variable with any changes in position we want to make to the camera. Every

frame, we Lerp the camera toward that target position. This way, we can easily make the

movement smooth and gradual with our Lerp call.

It also makes it easy to restrict the camera to a certain area. Before we move the

camera toward the target position, we’ll ensure that each axis of the target position is

within a certain range. We define variables for the minimum and maximum X, Y, and Z

values we want to allow the camera within. By setting these, we can prevent the player

from accidentally moving the camera so far away that they can’t see the stage anymore

and get lost in the void. It will also prevent them from zooming too far in or out.

 Setting Up
With your default scene open, let’s set a few things up before we get rolling on the code.

Create a Plane. Name it Stage. This is the floor. Keep its position set to (0, 0, 0) and set

its scale to (7, 1, 20). There. We’ve designed our level, and it only took us mere seconds.

We sure are talented.

Now let’s set up the camera. The camera that comes with the scene by default will

work. We’ll rename it to “Player Camera.” We’ll have it positioned over the level, pointing

down at it with a slight upward angle so it’s not pointing straight down. A Y position of

54 by default will work just fine. We’ll use an X rotation of 70. A rotation of 90 will point

straight down, so we just skew it 20 degrees off to give it that little tilt we want.

https://doi.org/10.1007/978-1-4842-5656-5_27#ESM

316

We’ll make a Player script and attach it to the Player Camera GameObject. Let’s

declare some basic variables – a reference header, for now including only our quick

Transform reference, and variables for the minimum and maximum X, Y, and Z values

the camera will be confined to:

[Header("References")]

public Transform trans;

[Header("X Bounds")]

public float minimumX = -70;

public float maximumX = 70;

[Header("Y Bounds")]

public float minimumY = 18;

public float maximumY = 80;

[Header("Z Bounds")]

public float minimumZ = -130;

public float maximumZ = 70;

Those default settings will work for us, but we’ll have them exposed in the Inspector

in case we want to change them at some point. Save the changes to the script, go to the

script component on the camera GameObject, and set that Transform reference to the

Transform of the same GameObject. Remember, that’s just a slightly faster means of

referencing our own Transform, as opposed to using the “.transform” member that all

scripts have. We’d more than likely be fine if we didn’t do this, but it’s a good habit to get

used to.

We’ll start by defining the methods we’ll be calling to make things work. We’ll use

Start and Update, and we’ll have some private methods that are called in Update. Just

like with our Player in the first project, we’ll be doing this simply to split the code up into

neat blocks, keeping things clean and neatly separated.

After we declare the methods, we’ll implement each one, one at a time. For now,

though, we’ll just leave them empty and make sure we’re calling them in Update:

void ArrowKeyMovement()

{

}

Chapter 27 Camera movement

317

void MouseDragMovement()

{

}

void Zooming()

{

}

void MoveTowardsTarget()

{

}

//Events:

void Start()

{

}

void Update()

{

 ArrowKeyMovement();

 MouseDragMovement();

 Zooming();

 MoveTowardsTarget();

}

This maps out our overall process. Just looking at the Update method, you can see

how we plan on running things. With the methods named like they are, it practically

spells itself out in plain English:

• First, check arrow key movement. If the player is pressing any arrow

keys, the movement is applied to a Vector3 targetPosition variable.

• Then add mouse drag movement to the targetPosition as well,

checking if the player is holding right-click and moving their mouse.

Chapter 27 Camera movement

318

• Now add up and down movement caused by zooming. In world

directions, this movement is up and down, so the Y axis, but if you’re

looking through the camera, it’s like going forward or back, since the

camera is pointing down at the stage.

• At last, we move the camera toward the targetPosition. We know

the target position has been updated to match whatever input

the player gave last, whether it be arrow key movement, mouse

movement, or scrolling to zoom. Now we just restrict the target

position to the bounds we declared as variables up at the top; then

we Lerp the camera toward the target position.

 Arrow Key Movement
To implement the arrow key movement, we’ll write a simpler take on the code we wrote

for the player movement of our first project. We use the Input.GetKey method to check if

a key is pressed and apply movement directly to the targetPosition if it is.

First, we need to declare some variables. We still don’t have a targetPosition variable,

after all. While we’re at it, we’ll declare a variable for the sensitivity of mouse drag

movement, which will come into play a bit later, as well as a variable for the amount of

smoothing applied to the camera movement.

Add these variable declarations under your existing variable declarations in the
Player script:

[Header("Movement")]

[Tooltip("Distance traveled per second with the arrow keys.")]

public float arrowKeySpeed = 80;

[Tooltip("Multiplier for mouse drag movement. A higher value will result

in the camera moving a greater distance when the mouse is moved.")]

public float mouseDragSensitivity = 2.8f;

[Tooltip("Amount of smoothing applied to camera movement. Should be a

value between 0 and 1.")]

[Range(0,.99f)]

public float movementSmoothing = .75f;

Chapter 27 Camera movement

319

private Vector3 targetPosition;

[Header("Scrolling")]

[Tooltip("Amount of Y distance the camera moves per mouse scroll

increment.")]

public float scrollSensitivity = 1.6f;

The tooltips pretty much explain the variables. We’re using a new attribute, Range,

for our movementSmoothing variable. This attribute is used to make sure a number

variable is clamped between certain values in the Inspector. It also adds a handy little

slider control to the variable in the Inspector to make setting it easier. We use it to make

sure the smoothing is clamped between 0 and .99f. The smoothing variable will be used

when we Lerp the camera toward the target position. It’s the third parameter in the Lerp

call – the fraction. We’ll use all that stuff later, though – and we’ll talk about why we want

the maximum value to be .99f instead of 1.

One thing that might slip the mind is that our target position is going to default to

(0, 0, 0). This means the camera will always initially try to move there at the start of the

game. To remedy that, all we need to do is set the target position to the camera position

in our Start method:

void Start()

{

 targetPosition = trans.position;

}

This makes it so that whatever position we place the Player Camera at in the scene is

the position it will start at.

Now, add this code inside the ArrowKeyMovement method:

//If up arrow is held,

if (Input.GetKey(KeyCode.UpArrow))

{

 //...add to target Z position:

 targetPosition.z += arrowKeySpeed * Time.deltaTime;

}

Chapter 27 Camera movement

320

//Otherwise, if down arrow is held,

else if (Input.GetKey(KeyCode.DownArrow))

{

 //...subtract from target Z position:

 targetPosition.z -= arrowKeySpeed * Time.deltaTime;

}

//If right arrow is held,

if (Input.GetKey(KeyCode.RightArrow))

{

 //..add to target X position:

 targetPosition.x += arrowKeySpeed * Time.deltaTime;

}

//Otherwise, if left arrow is held,

else if (Input.GetKey(KeyCode.LeftArrow))

{

 //...subtract from target X position:

 targetPosition.x -= arrowKeySpeed * Time.deltaTime;

}

That’ll do it. The targetPosition will have the arrow key movement applied to it, using

arrowKeySpeed multiplied by Time.deltaTime to ensure it’s “per second” instead of “per

frame.”

The movement won’t actually apply yet, though. Let’s remedy that so we can test our

features as we implement them.

 Applying Movement
To apply the movement, we’ll simply clamp each axis of our target position (X, Y, and Z)

between the minimum and maximum values and then Lerp the camera position toward

the target position.

Rather than using if and else blocks and clamping the value between a minimum

and maximum ourselves, which would take multiple lines of code for each axis, we

Chapter 27 Camera movement

321

can use the method Mathf.Clamp. It takes three number parameters – the value, the

minimum, and the maximum:

• If the value is below the minimum, the minimum is returned instead.

• If the value is above the maximum, the maximum is returned.

• Otherwise, if it’s somewhere between, we just get the value returned

back to us unchanged.

Add this code in the MoveTowardsTarget method:

//Clamp the target position to the bounds variables:

targetPosition.x = Mathf.Clamp(targetPosition.x,minimumX,maximumX);

targetPosition.y = Mathf.Clamp(targetPosition.y,minimumY,maximumY);

targetPosition.z = Mathf.Clamp(targetPosition.z,minimumZ,maximumZ);

//Move if we aren't already at the target position:

if (trans.position != targetPosition)

{

 trans.position = Vector3.Lerp(trans.position,targetPosition,

1 - movementSmoothing);

}

We set each axis of our targetPosition vector individually, calling Mathf.Clamp for

each one. This results in three pretty repetitive lines of code, the only difference in each

one being the axis we refer to throughout: the letter X, Y, or Z. When you type this out,

make sure you’re getting it right – don’t copy-paste and change only some of the Xs into

Ys or Zs. That can cause some pretty confusing behavior!

Moving on, the movement is only applied if the camera (trans.position) is not (!=)

already where it needs to be (targetPosition). When moving, we set the position to the

result of our Lerp call. That call will move the camera toward the target position.

You’ll notice the fraction we pass in as our third parameter in the Lerp call

isn’t just the movementSmoothing variable given as is. Rather, we give it “1 –

movementSmoothing”.

This is just so the variable makes more sense when you read its name and decide

what value to give it. You would expect it to be smoother if the value is higher, right? A

maximum movementSmoothing value should be the smoothest, while a minimum value

should be the least smooth. If we gave the fraction as is, it would be quite the opposite.

Chapter 27 Camera movement

322

Remember, this fraction given to the Lerp call is “How much of the distance between

the two positions will we move?” If it’s a higher value, we move more. That means the

camera will be snappy, getting where it’s going more quickly. A value of 1 will simply

apply no smoothing at all. A low value like .05f will move much less per frame and, thus,

the smoothing will be more noticeable.

By doing “1 – movementSmoothing”, we ensure that, if the smoothing is something

like .8f, we get 1 – .8f. That’s .2f – a low value, resulting in more smoothing. In other

words, we’re pretty much “flipping” the value around when we pass it to the Lerp call.

At this point, you can probably see why our Range attribute was set to keep the

smoothing value at a maximum of .99f instead of 1. If the smoothing were allowed to

be 1, then we would simply be giving “1 – 1” as the fraction, resulting in 0. This would

mean the camera would never move at all! By giving it a maximum value of .99f, we

ensure that we never accidentally break the movement that way. If you can predict some

situation where your code keels over and breaks, you should probably not trust yourself

to remember that it’s possible and avoid it in the future – because you probably won’t

remember it. And then some months later, you’ll break it. And then you’ll spend two

hours and a few pulled-out tufts of hair trying to figure out what went wrong. And kick

yourself when you realize what caused the problem.

Anyway, you should now be able to test our arrow key movement in-game. Try

playing with the smoothing value through the Inspector and note the difference when

it’s lower or higher. A very high value makes the movement very slow and slippery, while

a very low value makes it snappy at the risk of being somewhat unpleasantly jarring.

I’ve set the default value to .75f because I feel it’s a comfortable middle ground – not so

smooth that it’s clunky, but still smooth enough to notice it.

 Mouse Dragging
Let’s get a move on. The next step is implementing camera movement.

Add this code in the MouseDragMovement method:

//If the right mouse button is held,

if (Input.GetMouseButton(1))

{

 //Get the movement amount this frame:

 Vector3 movement = new Vector3(-Input.GetAxis("Mouse X"),0,-Input.

GetAxis("Mouse Y")) * mouseDragSensitivity;

Chapter 27 Camera movement

323

 //If there is any movement,

 if (movement != Vector3.zero)

 {

 //...apply it to the targetPosition:

 targetPosition += movement;

 }

}

This first method call hasn’t been used yet: Input.GetMouseButton. This is a simple

one, much like GetKey. It checks if a specific mouse button is currently being held down.

It uses an integer value as its parameter, identifying which mouse button to check:

• 0 is the left mouse button.

• 1 is the right mouse button.

• 2 is the middle mouse button (which can be pressed down for a click

in most all mice).

This will return true while the right mouse button is held down and false while it is not.

We then declare a local Vector3 named movement. We use another new Input

method here: GetAxis. This is a more general means of reading input, where you provide

a string as the means of identifying which kind of input you’re after. In our case, we use

“Mouse X” and “Mouse Y.” These return what we call the “delta” for the mouse position,

which means “how much it’s moved from its last position.” For example, if the user didn’t

move the mouse left or right on this frame, Mouse X returns 0. If they did, it returns some

fraction representing how much they moved the mouse.

The values will work opposite to how we want them to affect our target position,

though:

• Mouse X will be positive when the mouse cursor goes right and

negative when it goes left.

• Mouse Y will be positive when the mouse cursor goes up and

negative when it goes down.

If we apply it directly to the target position movement, we get an awkward result

where the camera movement follows the direction of the mouse cursor. That’s opposite

to how you normally expect it to work when you drag your camera around in games like

this. It sort of goes against the idea of “dragging.”

Chapter 27 Camera movement

324

That’s why we have the “–” sign before each Input.GetAxis call. It flips the returned

values around: if the delta was positive, it becomes negative, and vice versa. In other

words, if the mouse cursor moves right, the camera moves left, and so on for the other

directions. If you don’t get this, take those “–” symbols out and try it yourself. You’ll

probably feel all sorts of wrong trying to move your camera with the mouse.

The Vector3 we create is also correctly mapping the mouse axes to the actual 3D

direction we want to move our camera. Remember, we’re operating on world direction

here, not a direction local to the camera. The Mouse Y isn’t actually “up and down” in-

game, since the camera is pointing down. To go “up” from the perspective of the camera,

we really need to go forward in world directions. Thus, the mouse Y movement needs to

correspond to the Z axis when we move the camera, so we provide it as the Z axis when

we create the vector, and we leave the Y axis at 0 so that no movement occurs there.

After the vector is created, we multiply it by our mouseDragSensitivity variable,

giving us an easy way to adjust the amount of movement the mouse generates for the

camera. Since it’s tied to a variable like this, we could later implement a way for the

player to set this themselves, such as through an options menu in-game.

After this, all that’s left to do is apply the movement to targetPosition, assuming there

was any movement.

That’s all we need to make this feature work. You can test it out if you like. Note how

changing the sensitivity variable affects the movement.

 Zooming
To implement the zooming, we need to detect mouse scrolling. We can do this with a

new member of Input by the name of mouseScrollDelta. This is a Vector2, which is just

like a Vector3 except that it only has X and Y axes – no Z. The X axis corresponds to the

mouse wheel being pressed left or right, which some mice support (but not all of them).

It’ll be –1 if the wheel was ticked left or 1 if the wheel was ticked right. But we don’t need

that function. The Y axis is what we’re after: it measures how much the wheel has been

scrolled up (positive) or down (negative) this frame.

Like with the mouse dragging, that value doesn’t correspond to the movement we

want. We want to go down toward the stage whenever the mouse wheel is scrolled up,

which means we need to decrease our Y position. We want to go up when the wheel is

scrolled down, increasing our Y position. The way it is by default, we’ll do the opposite.

Again, we can just fix this by inverting, or “flipping,” the Y value with a “–” sign.

Chapter 27 Camera movement

325

You’ll see it in the following code, which you’ll be writing in the Zooming method:

//Get the scroll delta Y value and flip it:

float scrollDelta = -Input.mouseScrollDelta.y;

//If there was any delta,

if (scrollDelta != 0)

{

 //...apply it to the Y position:

 targetPosition.y += scrollDelta * scrollSensitivity;

}

As is usually the case with operator stuff, we could accomplish the same “flipping”

effect if we subtracted from the Y axis, changing that “+=” into a “-=”. It doesn’t really

make a difference how we do it, just so long as we make sure it gets done!

With that in place, we now have all of our movement options up and running: arrow

keys, right-click mouse dragging, and scroll wheel to zoom in and out. It’s all clamped

with our bounds variables, keeping the player within view of the stage at all times, and

we use some configurable smoothing to add that feeling of luxury.

 Summary
This chapter got our player camera movement working, exercising some concepts we’ve

worked with already and teaching us a few new tricks, primarily relating to detecting

mouse input. Here’s a rundown of things to remember:

• The Mathf.Clamp method takes three number parameters (int or

float): a value to clamp, a minimum, and a maximum. It will return

the value, but will clamp it to never be lower than the minimum or

greater than the maximum.

• The Input.GetMouseButton method returns true if a given mouse

button is being held on this frame. It takes an int value to identify

which mouse button is in question: 0 is the left mouse button, 1 is the

right mouse button, and 2 is the middle mouse button.

Chapter 27 Camera movement

326

• Input.GetAxis(“Mouse X”) returns the mouse X movement on this

frame: positive when the cursor moves right and negative when it

moves left.

• Input.GetAxis(“Mouse Y”) returns the mouse Y movement on this

frame: positive when the cursor moves up and negative when it

moves down.

• The Input.mouseScrollDelta property returns a Vector2 (a vector

with just X and Y values) representing mouse scrolling that has

occurred on this frame. The X axis is left and right movement, which

not all mice support, and the Y axis is forward and back scrolling –

the standard scrolling that all mice should support.

With that out of the way, we can focus on the core mechanics of towers, projectiles,

and enemies in our next chapter.

Chapter 27 Camera movement

327
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_28

CHAPTER 28

Enemies, Towers,
and Projectiles
In this chapter, we’ll create our first tower, the arrow tower, and set up the groundwork

for towers firing projectiles at enemies. To accommodate this, we’ll also set up the base

for our enemies, giving them health points and making them “die” when their health

runs out. They won’t move yet, but they’ll give our towers something to shoot at.

These features will give us plenty of practice with the concept of inheritance. We’ll

learn how to share the common functionality of an upper type, like a generic enemy,

with the more specific implementation of lower types, like ground enemies and flying

enemies.

 Layers and Physics
Before we begin, let’s set up the layers we’ll be working with so they’ll be ready to use

later. Navigate to Edit ➤ Project Settings ➤ Tags and Layers. Under the Layers dropdown,

add these four layers to the given “user layer” fields:

• User Layer 8: Enemy

• User Layer 9: Tower

• User Layer 10: Projectile

• User Layer 11: Targeter

By the end, it should look like Figure 28-1.

https://doi.org/10.1007/978-1-4842-5656-5_28#ESM

328

While we have the Project Settings open, let’s also set up the physics collision

detection matrix. We did this for our last project too – it’s how we make sure certain

layers only collide with layers that relate to them. In that same Project Settings window,

click the Physics tab on the left, sitting above the Tags and Layers tab we just used.

Figure 28-1. Our layer settings in the Project Settings window

Chapter 28 enemies, towers, and projeCtiles

329

We’ll set ours up as shown in Figure 28-2. Targeters will be used to detect enemies

that come within range of towers, so we want them to only collide with the Enemy layer.

Aside from that, nothing else is that important. We’ll make our Projectile layer only

collide with Enemies and make our Enemies not collide with each other or with Towers.

It isn’t a big deal, anyway – we don’t really plan on using collisions for this project. Our

projectiles won’t actually strike enemies, as far as the collision system is concerned,

because we’re just scripting them to reach a certain point and then disappear. Our

enemies won’t be stopped by collisions, since we’re moving their Transforms directly

along a predetermined path. But we’ll set it up this way to be prim and proper.

 Basic Enemies
For now, we’ll be creating a base class for our enemies. This will hold logic that both

ground enemies and flying enemies will use, but not the specific stuff that differentiates

between them – notably, how they move. Every enemy needs to have health points and

a means of taking damage. They’ll also need to die when their health runs out. Since

both types of enemies share this logic, we’ll put that in the base class and implement

their movement in separate subclasses. These subclasses are FlyingEnemy and

GroundEnemy. We’ll code them later.

Figure 28-2. Our settings for the Layer Collision Matrix field, found in the Physics
tab of the Edit ➤ Project Settings window

Chapter 28 enemies, towers, and projeCtiles

330

Create an Enemy script and let’s declare some variables:

[Header("References")]

public Transform trans;

public Transform projectileSeekPoint;

[Header("Stats")]

public float maxHealth;

[HideInInspector] public float health;

[HideInInspector] public bool alive = true;

The first four variables are simple enough:

• trans – A quick reference to the Transform of the root GameObject.

• projectileSeekPoint – A reference to a Transform which will

resemble where seeking projectiles should home in on. The Enemy

script will be on the root GameObject, which will be positioned

on the floor level. We don’t want homing projectiles to aim for our

enemies’ feet, though, so we want to expose a separate Transform

that our projectiles will aim for.

• maxHealth – Maximum amount of health an enemy can have.

• health – The current health the enemy has. We want our enemies

to always spawn at maximum life, so we don’t let ourselves set this

variable in the Inspector, giving it the HideInInspector attribute.

However, we keep it public so other classes can see how much health

the Enemy has if they ever need to.

Finally, we have the bool alive variable. When an enemy dies, we’ll be calling the

Destroy method to remove the enemy GameObject from the world. Sometimes, this

doesn’t necessarily happen instantly. It might take until the end of the frame (after all of

our Update logic goes through) for the enemy, and thus its Enemy script, to be destroyed.

This means we might have a case where an enemy is technically dead, but not quite

gone yet. Thus, we keep track of their state in this variable so we can always make sure

they’re actually alive before we do anything to them with other scripts, like towers.

Chapter 28 enemies, towers, and projeCtiles

331

We’ll need the current health to be set to the maximum health in a Start method;

otherwise, it’ll stay at 0 all the time, so declare this method in your Enemy script:

protected virtual void Start()

{

 health = maxHealth;

}

We’ve heard of the protected keyword before. It’s used in place of public or private,

and means that this member can only be accessed by this class or any class which

inherits from this class. If we made it private, we’d be unable to mess with this method at

all in the inheriting types we plan on declaring later, GroundEnemy and FlyingEnemy.

But what is virtual?
The virtual keyword makes our method overridable by lower types. This means that

a class which inherits from Enemy, such as our GroundEnemy or FlyingEnemy, can

declare their own Start method that “overrides” this one. Overriding the method means

declaring their own logic that runs when the Start method is called, so that Enemy.Start

runs first and then their code runs after. This is only possible if the method is marked as

virtual – and the inheriting type has to have access to the method, which is why we made

it protected instead of private. It could also be public.

We’ll see an example of how to override a method in a bit, but the point here is that

we’ve made the method virtual to ensure that inheriting classes can still declare their

own logic that happens on Start. If we didn’t make this method virtual, then declaring

another method named Start in a script that inherits from this one would “hide” the

original declaration. Only one of them would actually be called by Unity when the script

is initialized – the lower type, the one that inherits from Enemy, would get called. Thus,

we must declare the method as virtual to ensure that if one of our lower types wants to

run their own Start logic, they can do so by overriding the method, rather than “hiding”

it and causing the original Start not to run.

Now let’s declare a method in the Enemy script to make the enemy take damage. It’s

a simple method that takes life away from the enemy and then checks if the enemy has

just lost the last of their remaining life. If so, it calls a second method, Die, which destroys

the enemy and sets “alive” to false:

public void TakeDamage(float amount)

{

 //Only proceed if damage taken is more than 0:

Chapter 28 enemies, towers, and projeCtiles

332

 if (amount > 0)

 {

 //Reduce health by 'amount' but don't go under 0:

 health = Mathf.Max(health - amount,0);

 //If all health is lost,

 if (health == 0)

 {

 //...call Die:

 Die();

 }

 }

}

public void Die()

{

 if (alive)

 {

 alive = false;

 Destroy(gameObject);

 }

}

We don’t want to “kill the enemy twice,” so we make sure they’re alive before we

proceed to Destroy the GameObject that the Enemy script is attached to – which will be

the root GameObject of the enemy. Of course, we also mark their death by setting “alive”

to false.

All that’s left now is to create a temporary enemy to test with. We’ll replace it with a

more specific version down the road, but for now, we just want something we can test

the Enemy script out on:

• Create an empty GameObject named Test Enemy. Position it

anywhere on the floor, keeping its Y value at 0. Set its layer to Enemy.

• Add a Rigidbody, mark it as kinematic, and add a non-trigger box

collider. Set the collider size to (5, 8, 5) and set its center to (0, 4, 0).

Chapter 28 enemies, towers, and projeCtiles

333

• Right-click the Test Enemy in the Hierarchy and add a Cube child.

Remove its BoxCollider component; we want the collider to be on the

root only. Set its scale to the same size we gave that collider: (5, 8, 5).

Set the local Y position to 4. It should now be covered by the collider.

Its layer should also be Enemy.

• Add the Enemy script to the root GameObject (named Test Enemy).

Assign the “trans” reference to the root Transform, and assign the

“projectileSeekPoint” reference to the Cube Transform. This will

make projectiles home in on the center of the cube; if we had made

it the root Transform, they’d home in on the very bottom of the cube.

Set the Max Health to 12.

• I’ll make an Enemy material and apply it to the Cube, giving it a red

color with a hex value of DD1717.

 Projectiles
To implement projectiles, we’ll be using inheritance again to declare a base Projectile

class and then two separate subtypes: SeekingProjectile and ArcingProjectile. Every

projectile deals a certain amount of damage, travels at a certain speed, and targets a

certain Enemy that’s being fired at. The difference is how they move and how they inflict

that damage.

Seeking projectiles home in on the target enemy’s projectileSeekPoint Transform,

which we made a public reference to earlier for just this purpose. They move at a set

speed, directly toward that point, until they reach it. Once they reach it, they damage the

enemy and destroy themselves.

Arcing projectiles lock in their target location as soon as they are spawned. They

aim for the base Enemy Transform, which is on the floor level, because we want them

to look as though they are being lobbed and landing on the floor, where they “blow up”

(without any cool special effects, unfortunately) and deal damage to all enemies around

that impact point. They won’t be targeting flying enemies, so we don’t have to worry

about how they react to enemies that aren’t positioned on the floor.

Create a Projectile script. The first thing we’ll do is add the abstract keyword to the

class declaration line:

public abstract class Projectile : MonoBehaviour

Chapter 28 enemies, towers, and projeCtiles

334

This is an inheritance-related keyword. When we mark a class as abstract, we are

implying that the class itself is not meant to have instances created and directly worked

with. Rather, it acts as an upper type for more specific classes that inherit from it – but

the class itself is never instanced directly. It merely serves as a base for other classes

which share similar purposes.

Once you add that “abstract” keyword to make the class declaration line look like

the preceding code, save the script and go to the Unity editor. Try to drag and drop the

Projectile script onto a GameObject in your scene. Once you drop it, Unity will give you a

popup error message:

Can’t add script behaviour Projectile. The script class can’t be abstract!

The class is abstract and thus should not be created directly. The only way to create

an instance of a script class is by adding it as a component to a GameObject – but

it’s abstract, so Unity will prevent us from doing that. However, once we create our

SeekingProjectile and make it inherit from Projectile, we will be able to add it, because

we won’t mark that one as abstract.

As such, declaring a class as abstract not only makes it clear that it is not meant to

be used as is but also enforces that by preventing us (or others using our code) from

misusing it at some point down the road.

Now let’s write the contents of our base Projectile class:

[HideInInspector] public float damage;

[HideInInspector] public float speed;

[HideInInspector] public Enemy targetEnemy;

public void Setup(float damage,float speed,Enemy targetEnemy)

{

 this.damage = damage;

 this.speed = speed;

 this.targetEnemy = targetEnemy;

 OnSetup();

}

protected abstract void OnSetup();

First, you’ll notice we have HideInInspector attributes given to our three variables. You

might think that we would have the damage and speed variables show in the Inspector,

Chapter 28 enemies, towers, and projeCtiles

335

but that’s not how we’ll be setting the values up. We don’t want to tie the damage to our

projectile script instances: we want the tower that spawns the projectile to set the data.

Next, you’ll notice our intended method of applying the damage and speed: through

this Setup method, which simply takes “damage” and “speed” parameters and applies

them directly to the projectile’s variables.

This will be called by the tower instance that fires the projectile. We want the towers

to determine the damage and speed themselves. That way, we can have variations of

towers which deal more damage or fire quicker projectiles, without having to create a

separate projectile prefab with those settings on each one. For example, we might have a

bunch of variations of arrow towers, where each one gets stronger, gaining more damage

and firing quicker projectiles – but they all use the same projectile prefab, because they

all fire the same arrow. If we set the damage on the Projectile script itself, we’d have to

make a separate prefab for each type of arrow tower.

Similarly, if we ever get to a point where we want to change a tower’s stats on the fly

in-game, we can do so: since the tower passes the damage and speed to each projectile

it creates, as soon as we change the tower’s damage and speed, any new projectiles it

creates will reflect that change. This would be useful if you wanted to, say, implement a

tower that strengthens all towers within a certain range of it by boosting their damage.

And finally, after setting our variables in the Setup method, we call another method:

OnSetup. This is a method we declare in the following, but it’s different than any other

methods we’ve declared so far. It’s marked with the abstract keyword, just like our

class, and it has no code block coming after it. It has no curly braces – just a method

declaration with no parameters and then a semicolon.

An abstract method is much like a virtual method. It can be overridden by

lower types, but unlike virtual methods, an abstract method cannot provide its own

implementation – which is why it has no code block after it. As well as this, an abstract

method can only go in an abstract class, and any inheriting classes must implement an

abstract method. Even if the inheriting class doesn’t actually want to run any code when

the method is called, it still must declare the method.

So this OnSetup method we declare is a means of giving our lower types a method

that they can override to declare their own logic for what happens after the projectile

sets up. By declaring the method, we give ourselves something that can be called, but we

don’t specify any code to run when it’s called. That’s for our lower types to decide. It’s

something like an event, akin to the Start and Update methods Unity provides us, except

this time we’ve declared it ourselves!

Chapter 28 enemies, towers, and projeCtiles

336

Our SeekingProjectile doesn’t actually need this logic, but our ArcingProjectile will.

It needs to be told when its targetEnemy has been set so that it can mark the position of

the enemy as soon as possible. That’s how it knows where it will land. If we just did that

in a Start method, the targetEnemy would still be null because the Setup method doesn’t

get called until after the Projectile is created by the tower!

We’ll see how to override the method later.

We also mark this method as protected, giving our lower types access to it, but not

public because other classes shouldn’t be able to call it – they have no reason to.

Now let’s implement the projectiles our arrow towers will use. Create a new script

named SeekingProjectile. Change the declaration line to this:

public class SeekingProjectile : Projectile

The only difference from the default is that we’ve made it inherit from our

“Projectile” script instead of “MonoBehaviour”, the base class for all scripts. Now our

script has the same members as Projectile: damage, speed, and targetEnemy.

This will generate an error because we have inherited from Projectile, but we have

not implemented the abstract OnSetup method that Projectile expects us to. We’ll

handle that in a bit.

The behavior for our seeking projectiles is somewhat simple. They’re fired

at a specific Enemy and will travel toward them until they touch the enemy

“projectileSeekPoint” transform. If the enemy dies while the projectile is traveling, it will

continue to the point the enemy was at when it died.

To accomplish this, we’ll store the enemy projectileSeekPoint position every Update

call to keep track of where the Enemy was last positioned, as long as they’re still alive.

We’ll move toward this position. Even if the enemy has died, we’ll always have its last

position stored.

We’ll declare these variables:

[Header("References")]

public Transform trans;

//Private variables:

private Vector3 targetPosition;

Chapter 28 enemies, towers, and projeCtiles

337

Now let’s set that targetPosition variable on every frame and move the enemy. We’ll

put this in the Update method:

if (targetEnemy != null)

{

 //Mark the enemy's last position:

 targetPosition = targetEnemy.projectileSeekPoint.position;

}

//Point towards the target position:

trans.forward = (targetPosition - trans.position).normalized;

//Move towards the target position:

trans.position = Vector3.MoveTowards(trans.position, targetPosition,speed *

Time.deltaTime);

//If we have reached the target position,

if (trans.position == targetPosition)

{

 //Damage the enemy if it's still around:

 if (targetEnemy != null)

 targetEnemy.TakeDamage(damage);

 //Destroy the projectile:

 Destroy(gameObject);

}

This is all the logic we need for the SeekingProjectile, but if we save and check the

Unity Console, we’ll see an error message:

CS0534: ‘SeekingProjectile’ does not implement inherited abstract member
‘Projectile.OnSetup()’

As we discussed before, this is because when an upper class, like our Projectile script,

has an abstract method declaration in it, all lower types, like SeekingProjectile, must

provide an implementation of that method. They have to override it. Even if they don’t

want to actually run any code in that method, they still must have a declaration for it.

The declaration will be quite simple:

protected override void OnSetup(){}

Chapter 28 enemies, towers, and projeCtiles

338

Just throw that in our SeekingProjectile script class. We declare the same method,

OnSetup, with the same protected access modifier, but this time we specify it as an

“override.” This means we’re declaring it as an override to a method by the same name in

the upper type. We can write whatever code we want in our version of the method, and

whenever OnSetup is called from Projectile.Setup, our code will run. But we don’t want

to actually do anything in the method call, so we simply put an empty code block {} at the

end. Since it has a code block, we don’t need a semicolon at the end.

That should do it. We can’t test our projectiles until we have towers to fire them, but

let’s set up an Arrow prefab so it’s ready to use in our arrow tower.

We’ll create a very blunt-looking arrow out of two cubes:

• Create an empty GameObject. Name it Arrow and set its layer to

Projectile.

• Attach a SeekingProjectile script instance to the Arrow. Set the

“trans” reference to point at the Transform of the Arrow.

• Right-click the Arrow and create a child Cube GameObject. Name it

Shaft. Set its local position to (0, 0, .75) and set its scale to (.4, .4, 1.5).

• Create another Cube, this time a child of the Shaft. Name it Head. Set

its local position to (0, 0, .625). Set its local scale to (3, 1, .25).

• I’ll create an Arrow material and assign it to both cubes, giving it a

yellow color with a hex value of F2F89F.

When you’re finished, it should look something like Figure 28-3.

Chapter 28 enemies, towers, and projeCtiles

339

With that, we can create a prefab for the Arrow and remove it from the scene.

 Targeters
We’ll use a system where our towers have a “targeter” to detect enemies within range.

Using trigger collisions, targeters will detect when enemies touch their collider, which

can be a sphere collider or a box collider, and will store those enemies in a List. When

enemies leave the collider, it removes them from the List.

Each tower will have a Targeter GameObject nested inside it, which is an empty

GameObject with the collider attached, as well as the Targeter script we’re about to write.

Towers will use a reference to their Targeter to figure out which enemy they want to

attack next. Arrow towers and cannon towers will have targeters that cover their attack

range and will use the list of enemies as a collection of valid targets. In the case of the

“hot plates” we’ll be coding later, they’ll use a box collider covering just the area taken up

by the plate itself and constantly drain health from enemies detected by the targeter.

To detect when enemies touch the Targeter, we’ll use the OnTriggerEnter event,

which we used in the first project as well (to code the Hazard script).

Figure 28-3. Our Arrow GameObject

Chapter 28 enemies, towers, and projeCtiles

340

Create a new script named Targeter. We’ll only need two variables:

[Tooltip("The Collider component of the Targeter. Can be a box or sphere

collider.")]

public Collider col;

//List of all enemies within the targeter:

[HideInInspector] public List<Enemy> enemies = new List<Enemy>();

First, we have a reference to the Collider of the Targeter. The Collider type is the

base class for Unity’s built-in collider components. In our case, we expect it to be a

SphereCollider or a BoxCollider. If you’ll recall from Chapter 11, these components are

both lower types of the Collider class (they inherit from it), so the Collider-type field can

store a reference to them. That’s the magic of inheritance, and we’ll be seeing more of it

later. You can always store an object, like a Box or Sphere Collider, as a reference in an

upper, “less specific” type, like a Collider.

A Box Collider is more specific than a generic Collider. It uses the members of a

Collider, but also adds its own members and does extra stuff itself. However, we can still

store it as a Collider, because we know that it has all the same members as a Collider.

Nothing is going to go wrong if we access those members. It’s guaranteed to have them.

But if we want to access the Box Collider members, we have to “cast” it back to a Box

Collider, because once we store it as a Collider, the compiler is no longer sure exactly

what type it is. You’ll see an example of how all this works in a second, when we actually

interact with the Collider.

Second, we also declare a List we’ll be using to store all enemies that are currently

within that collider. If you’ll recall, Lists are like arrays, but we can add and remove items

from a List on the spot, and the size of the List automatically updates whenever we do.

When an enemy touches the collider, we add them to this List. When an enemy leaves

the collider, we remove them from this List. We initialize the List as a new instance when

we declare it. Since it’s a List, not an array, we don’t have to specify the size. It can store

however many enemies we need it to store.

We also make it hidden in the Inspector. Lists can be serialized and thus shown in

the Inspector to allow us to set them up with an initial collection of items. While this can

be useful, we don’t want or need it in this case. We want the List to be handled in-game

by our code only.

Chapter 28 enemies, towers, and projeCtiles

341

We’ll also declare a handy property that returns true if there are enemies within the

Targeter or false if there are not:

//Return true if there are any targets:

public bool TargetsAreAvailable

{

 get

 {

 return enemies.Count > 0;

 }

}

Your first idea of how to implement this might be to do an “if” to check if the Count is

greater than 0 and, if so, “return true;” or else “return false;”.

But the way we’ve done it works too – and in just one line of code. Remember, the

> operator simply takes a number on each side and returns true if the left number is

greater than the right. It’s already returning a bool – the data type our property should

return. We can return the result of that operator as is, no if’s or else’s required.

This property may seem redundant, but it’s a nice way to make your code read

like plain English. Whenever a tower needs to ask its targeter if there are any targets

available, rather than typing “if (targeter.enemies.Count > 0)”, we can just type “if

(targeter.TargetsAreAvailable)”. It makes it obvious what we’re asking – granted, it was

already somewhat obvious, but more clarity never hurt anyone!

Moving on, we want to automate the way towers set their Targeter size. Towers which

fire projectiles will have a “range” stat of their own. Rather than fiddling with the size

of their Targeter colliders to depict their range, we’ll just set that “range” variable and

have our scripts automatically size the colliders based on it. For that, we need a Targeter

method that can set the size based on range.

Box Colliders and Sphere Colliders have different means of measuring their size. Box

colliders have a “size” Vector3 depicting the width, height, and length of the box. Sphere

colliders instead use a “radius” float depicting the radius of the sphere – in other words,

the distance from the center of the sphere to its edge.

The Collider type itself doesn’t deal with the size at all, and that’s the type we store

our reference “col” as. As far as the compiler is concerned, a Collider doesn’t have those

variables. A BoxCollider has a size. A SphereCollider has a radius. But a simple Collider

has neither. So we’ll have to cast the Collider reference to a Box Collider or Sphere

Collider – whichever it actually is – to be able to access the size/radius member.

Chapter 28 enemies, towers, and projeCtiles

342

Let’s observe one way we might implement this, using “is” to check the type and then

“as” to cast the Collider to a more specific type. Write this method in the Targeter script:

public void SetRange(int range)

{

 if (col is BoxCollider)

 {

 //We multiply range by 2 to make sure the targeter covers a space

'range' units in any direction.

 (col as BoxCollider).size = new Vector3(range * 2,30,range * 2);

 //Shift the Y position of the center up by half the height:

 (col as BoxCollider).center = new Vector3(0,15,0);

 }

 else if (col is SphereCollider)

 {

 //Sphere collider radius is the distance from the center to the

edge.

 (col as SphereCollider).radius = range;

 }

}

We use “is” to return true if “col” is pointing at a BoxCollider or false if it is not. If

so, we cast it to a BoxCollider, in a set of parentheses (), using the “as” keyword. This is

safe to do now, because we know that it is a BoxCollider – we just checked. We can then

reach into it to access the “size” member. We’re telling the compiler to look at it as a

BoxCollider, not a Collider.

The same process goes for the sphere collider. If the collider isn’t a BoxCollider, we’ll

instead check if it’s a SphereCollider. If so, do the cast, reach in, and access “radius.”

For box colliders, we always give them a height value of 30 units, which should cover

enough space above the targeter to reach any flying enemies we have later on. The center

has to be adjusted to shift the collider upward by half the height, so its bottom lines up

with the Targeter instead of its center – otherwise, half of it will stick through the floor.

This way, we can leave the targeters at a Y position of 0, aligned with the floor, and their

colliders will size and position themselves appropriately.

Chapter 28 enemies, towers, and projeCtiles

343

This way of doing it is technically a bit slower than it could be. We’re casting to a

BoxCollider three times: once to check if it “is” a box collider, then again to set the size,

and then again to set the center. We then cast to a sphere collider to check if it “is” one,

and if so, we cast it again to assign the value.

For our purposes, this method works fine. It does what we need it to do. It’s not likely

to cause a noticeable performance hit. However, there are some situations where being

conscientious about these things can make a difference – for example, in a loop that’s

occurring thousands of times. Casting from one type to another is not free. It spends a

little bit of our processing power.

If we wanted to be extra vigilant, we could perform the cast once with the “as”

operator, storing the result in a local variable:

BoxCollider boxCol = col as BoxCollider;

This will result in “null” if the Collider is not actually a BoxCollider. We can use that

in place of the “is” we used before, simply checking if the boxCol is null. If it is null, then

it’s not a box collider. If it is not null, we can proceed – and we’ve already cast it to the

local variable, so we can avoid casting it twice more when assigning the values by using

“boxCol” instead of “(col as BoxCollider)”. After that, we could just run through the same

process to check if the collider is a SphereCollider instead.

All in all, it would use less casts to get the same result – but the code would be a little

longer and a bit clunkier.

With that out of the way, we now have a means of setting up the Targeter range (and,

in doing so, the tower range) with a method, and it’ll automatically work regardless of the

collider type the Targeter is set up with. We’ll call it once we get around to implementing

the towers themselves.

Next, we need to keep track of enemies, properly adding and removing them from

our List<Enemy>.

We’ll write the OnTriggerEnter built-in Unity event in our Targeter script:

void OnTriggerEnter(Collider other)

{

 var enemy = other.gameObject.GetComponent<Enemy>();

 if (enemy != null)

 enemies.Add(enemy);

}

Chapter 28 enemies, towers, and projeCtiles

344

When a collider enters ours, we declare the “enemy” local variable which attempts to

grab an Enemy component from the same GameObject that the collider was attached to.

We use the shorthand “var” for the variable type, just to be lazy. The compiler knows that

we’re expecting to get an Enemy returned to us, so it figures out what type we want the

variable to be.

The GetComponent method will return null if the component was not found.

We check if we successfully found an Enemy component and, if so, add it to the

“enemies” List.

You’ll recall that, when we set up our test Enemy GameObject, we made sure that the

Collider was part of the root GameObject, not attached to the Cube within. This was to

ensure that it’s easy for us to grab the Enemy component. Since they’re both on the same

GameObject, we can reliably call GetComponent on the same GameObject that the

collider is attached to. If we had the collider attached to the Cube, then it wouldn’t detect

the Enemy component at all, because that’s on the root GameObject.

A very similar process will be used to remove enemies from the List when they exit

the collider. We write an OnTriggerExit method and use the same means to look for

the Enemy component, but this time, call the Remove method of our List instead of

the Add method:

void OnTriggerExit(Collider other)

{

 var enemy = other.gameObject.GetComponent<Enemy>();

 if (enemy != null)

 enemies.Remove(enemy);

}

The Remove method will remove the given instance from the List if it actually exists

in the List. If not, it simply does nothing.

With the targeted enemies being tracked, we can now implement a method that

our towers can use to find the enemy that’s closest to them. We can do this by looping

through the enemies in the List, checking the distance between their position and the

tower position, and keeping track of which Enemy had the lowest distance. We’ll use a

local variable for the lowest distance we found so far and another local variable to store

the Enemy who had the lowest distance.

But we have another problem to solve. If an enemy dies while inside the List, the List

won’t automatically remove them. The Enemy will become “null” in the List, but it will

Chapter 28 enemies, towers, and projeCtiles

345

still be an item in the List, taking up an index. Thus, we must be ready to deal with null

references when we loop through the items in our List. We’ll have to remove the null

ones from the List as we go.

This brings forth another problem. When you remove from a List while looping

through the List, you must be conscious about the effect that will have on the indexes

stored in the List. Every item in the List that’s stored “ahead” of the removed item will be

shifted back to account for the removed item. Their indexes all decrease by 1 point.

We’ll go over an example of this. Here’s a basic loop that goes through the List of

enemies, storing the current Enemy in a local variable and either removing them from

the List if they’re “null” or doing some code on them if they’re not null:

//Loop through enemies:

for (int i = 0; i < enemies.Count; i++)

{

 var enemy = enemies[i]; //Current enemy

 //If the enemy has been destroyed:

 if (enemy == null)

 {

 //Remove it from the list:

 enemies.RemoveAt(i);

 }

 else //If the enemy is still around

 {

 // [do something with the enemy]

 }

}

The List.RemoveAt method is like Remove, but instead of taking an Enemy instance

to remove, it just takes the index of the item we want to remove.

This might look like a fine way of doing it, but it messes with our indexes and causes

some unwanted behavior. Let’s say, for example, our List has indexes 0–5, totaling six

enemies.

Now imagine indexes 0, 1, and 2 go by with no problem, but then, when our “i” is

at 3, we find an enemy that’s null. We now have indexes 4 and 5 ahead of us, still left to

operate on.

Chapter 28 enemies, towers, and projeCtiles

346

So we remove that enemy at index 3. Now the enemies ahead of it are shifted back by

the List. Index 4 becomes index 3. Index 5 becomes index 4.

Our “i” is still set to 3. Our loop iteration finishes, and the “for” increments “i” by 1

again. We’re now at an “i” value of 4.

We’ve completely skipped an item! The item that was at index 4 was shifted to 3, but

we skipped past index 3 and moved right along.

The solution is simple enough. We just subtract 1 from “i” after we remove the item

from the List. Then, the “for” loop will add 1 when the iteration finishes, and we end up

back at the same index instead of skipping it.

With that complication settled, let’s write our method. Add this to the Targeter script:

public Enemy GetClosestEnemy(Vector3 point)

{

 //Lowest distance we've found so far:

 float lowestDistance = Mathf.Infinity;

 //Enemy that had the lowest distance found so far:

 Enemy enemyWithLowestDistance = null;

 //Loop through enemies:

 for (int i = 0; i < enemies.Count; i++)

 {

 var enemy = enemies[i]; //Quick reference to current enemy

 //If the enemy has been destroyed or is already dead

 if (enemy == null || !enemy.alive)

 {

 //Remove it and continue the loop at the same index:

 enemies.RemoveAt(i);

 i -= 1;

 }

 else

 {

 //Get distance from the enemy to the given point:

 float dist = Vector3.Distance(point,enemy.trans.position);

Chapter 28 enemies, towers, and projeCtiles

347

 if (dist < lowestDistance)

 {

 lowestDistance = dist;

 enemyWithLowestDistance = enemy;

 }

 }

 }

 return enemyWithLowestDistance;

}

The method will return an Enemy, or null if no enemies are in the Targeter, and take

a single Vector3 argument, which is the point from which we want to calculate distance.

We’ll be using the tower position as the parameter when we call the method, which

should be the same as the targeter position anyway, but by using the parameter instead

of just using the Targeter position, we make sure we can call this method to get the

enemy closest to any point we want, if we ever need to.

The “lowestDistance” is where we’ll store the distance between us and the Enemy

that, so far, is closest to us. We start it at Infinity to ensure that the first distance we

calculate is guaranteed to be set as the lowest.

The “enemyWithLowestDistance” explains itself: whenever we find an enemy whose

distance is lower than “lowestDistance,” we’ll update “lowestDistance” and store the

Enemy reference here.

Once we’ve looped through all enemies and checked their distance, we’ll be left with

“enemyWithLowestDistance” storing the one that was closest. We then just return that

enemy.

The loop starts off like they all do: “i” begins at 0 and increases by 1 until it matches

the Count of the List. We declare a local variable “enemy” to store the current enemy,

“enemies[i]”.

We then check if the enemy is null, or, if it is not null, we check if it’s dead. In some of

our first chapters, we briefly mentioned the purpose of the exclamation mark ! which we

see here, placed before “enemy.alive”. It just flips the value of the bool: if it was “false” it

becomes “true,” and vice versa. It’s equivalent to saying “enemy.alive == false” except it

makes us look smarter when we type it this way.

We do the same thing as before to remove the enemy, but this time, we decrease “i”

by 1 to account for the indexes shifting back, as we just discussed.

Chapter 28 enemies, towers, and projeCtiles

348

If the enemy is not dead, we calculate the distance between them and the given

“point” parameter using Vector3.Distance. We compare that distance to the lowest

distance we’ve found so far. If this one is lower yet, we update our lowest distance and

store a reference to that Enemy, which will later be returned.

This method will also automatically handle a situation where the method gets called,

but there are no enemies in the List. It will return null instead of throwing an error. The

local variable “enemyWithLowestDistance” will be initialized to null. The for loop will do

nothing at all if the List has a Count of 0, so it gets skipped completely. Then, we return

that variable, which is still “null.”

With that, our Targeters are ready for use in towers. We’ll just use them as an empty

GameObject with a trigger Sphere or Box collider attached, in the Targeter layer. They’ll

be children of our root Tower GameObject so they go wherever the tower goes.

We’ll set one up after we’ve coded our tower logic.

 Towers
For this chapter, the only tower we’ll be fully implementing is the Arrow Tower. However,

we’ll be using inheritance to set up a system where future tower types we create will be

able to reuse the portion of functionality that they share with the arrow tower.

We went over the towers we expect to implement in the previous chapter: the

Arrow Tower, Cannon Tower, Barricade, and Hot Plate. Let’s review the scripts we’ll be

declaring to resemble those towers and how we’ll get the effects we want for each tower

by using those scripts.

Tower
Base class for all towers. It’s a normal script, inheriting from the script class

MonoBehaviour.

It defines how much the tower costs and how much of that cost is refunded to the

player if they were to sell the tower. A mere Tower will do nothing to hurt enemies, but

will block them, forcing them to walk around it. We’ll use it for barricades, since that’s

their only purpose, but all other towers will use lower types inheriting from Tower to

implement their damage-dealing logic.

TargetingTower
Inherits from Tower.

This is a tower with a Targeter reference and a range variable (which is an int),

both set in the Inspector. The range variable directly corresponds to the size of the

Chapter 28 enemies, towers, and projeCtiles

349

Targeter, and we’ll set the Targeter to that size in the Start method of the tower (using the

SetRange method we declared for Targeter).

We won’t use this type directly for any towers, but the Hot Plate tower can inherit

from it to use the Targeter as a box collider that detects enemies touching the plate.

The Targeter will be sized the same as the tower itself, which will be a thin cube on the

ground. Since the hot plate script will inherit from TargetingTower, it can access the

Targeter reference we declare, reaching into it to loop through all targets and “burn”

them all on every frame.

This means most of our hot plate logic is already handled by our Targeter. All we have

to do with the script is make it deal damage.

FiringTower
Inherits from TargetingTower.

This is the script we’ll use for arrow towers and cannon towers. The logic of

targeting a single enemy that’s within range and periodically firing a projectile at

them is handled here. We’ll automatically assign a new target enemy whenever the

targeted enemy dies or gets out of range. The closest enemy within range is targeted

whenever we need to find a new target. Of course, we’ll use the Targeter reference

inherited from TargetingTower to find the closest enemy – remember, we declared a

method for that as well.

As far as firing projectiles goes, we’ll have a reference to the projectile prefab we

want to spawn. All we need to do is spawn it at the tower “projectile spawn point”

Transform position and call its Setup method to pass in the damage, speed, and

target enemy provided by the tower. The rest is handled by the projectile itself. If it’s a

seeking projectile (for arrow towers), it will home in on the targeted enemy. If it’s an

arcing projectile (for cannon towers), it will arc at the initial position of the targeted

enemy and impact there.

This specification handles all of our use cases. We’ve planned out the inheritance in

a way that lets us reuse functionality that needs to be shared between towers. If we coded

each tower type individually, we’d have to give each one certain members that they all

share anyway: how much gold they cost, how much gold they sell back for, the Targeter

reference used by all but the barricade, and so on. Instead, we just inherit from the

correct type, and those members are automatically shared. Most importantly, any future

code that deals with towers now has this base “Tower” class that it can interact with to

resemble any tower.

Chapter 28 enemies, towers, and projeCtiles

350

Let’s get to it. Create a Tower script and write this code in the script class:

public int goldCost = 5;

[Range(0f,1f)]

public float refundFactor = .5f;

All we’re giving our base towers is a gold cost (how much money we must pay to

buy the tower) and a refund factor, which is a float between 0 and 1 resembling what

fraction of the goldCost you are paid back when you sell the tower. That is, the user

loses “goldCost” money when they buy the tower. When they sell it, they get back

“goldCost ∗ refundFactor”. So if refundFactor is .5f, then the user only gets back half of

the money they spent for the tower. This is a common feature in tower defense games. If

we gave the player back all their money whenever they sold a tower, they might as well

just pawn back all their cannon towers before facing an air level and then make arrow

towers instead, since cannon towers can’t attack air enemies. This mechanic fixes that,

punishing the player a bit for selling their old towers.

Other than that, we have no scripting to do for a basic tower. They have no

functionality in and of themselves.

Moving down the line, let’s make a TargetingTower script with this code in it:

public class TargetingTower : Tower

{

 public Targeter targeter;

 public int range = 45;

 protected virtual void Start()

 {

 targeter.SetRange(range);

 }

}

First, we make sure to inherit from Tower, not MonoBehaviour, in the declaring line

of the class, after the colon “:”. We declare a Targeter reference and a range. We declare

a Start method – again, making it virtual because we want to ensure that lower types are

able to override it if they need to. In this method, we call the SetRange method for our

Targeter, setting it up with the correct range value as soon as possible.

That’s all we need for our TargetingTower.

Chapter 28 enemies, towers, and projeCtiles

351

 Arrow Towers
Before we script our arrow tower, let’s set the GameObjects up so we know the hierarchy

we’ll be working with. Towers will always be 10 units wide and 10 units long at the base.

They shouldn’t exceed this size. This consistency will help us later, and keeps everything

looking uniform.

When you’re done, the arrow tower will look like Figure 28-4.

• Create an empty GameObject. Name it Arrow Tower. Set its layer to

Tower.

• Right-click the Arrow Tower and create a child Cube named Base.

Scale it to (10, 6, 10) and set its local position to (0, 3, 0). This will put

its bottom at the position of the root Transform, as we’ve been doing.

• Right-click the Base and create a child Cylinder. Just leave its name as

Cylinder. Set its local position to (0, .6, 0) and scale to (.8, .1, .8).

• Right-click the Cylinder and create a child Cube. Name it Barrel (even

though it’s quite rectangular). Position it at (0, 2.2, .3) and scale it at

(.2, 2.5, .65).

• Right-click the Barrel and create an empty GameObject child. Name it

Projectile Spawn Point. Position it at (0, 0, .5) and leave its scale as is.

• Create an empty GameObject named Targeter that’s a child of the

root Arrow Tower. Change its layer to Targeter. Give it a trigger

Sphere Collider and a kinematic Rigidbody.

• Add an instance of our Targeter script to the Targeter. Set the “Col”

field to reference the Sphere Collider of the Targeter.

• I’ll make a Tower material and give all of the pieces a low-saturation

blue color with a hex value of 7698B1.

Chapter 28 enemies, towers, and projeCtiles

352

Let’s move on and create a FiringTower script. We’ll have to write some actual

per- frame code for this!

Change the declaring line to make it inherit from TargetingTower:

public class FiringTower : TargetingTower

Add these variables within the script class:

[Tooltip("Quick reference to the root Transform of the tower.")]

public Transform trans;

[Tooltip("Reference to the Transform that the projectile should be

positioned and rotated with initially.")]

public Transform projectileSpawnPoint;

Figure 28-4. Our Arrow Tower

Chapter 28 enemies, towers, and projeCtiles

353

[Tooltip("Reference to the Transform that should point towards the enemy.")]

public Transform aimer;

[Tooltip("Seconds between each projectile being fired.")]

public float fireInterval = .5f;

[Tooltip("Reference to the projectile prefab that should be fired.")]

public Projectile projectilePrefab;

[Tooltip("Damage dealt by each projectile.")]

public float damage = 4;

[Tooltip("Units per second travel speed for projectiles.")]

public float projectileSpeed = 60;

private Enemy targetedEnemy;

private float lastFireTime = Mathf.NegativeInfinity;

You’re an elite programmer now, so I’ll let you read the tooltips to see what the

purpose of each variable is. Even if you think you don’t get it, don’t fret. We’ll be seeing

the variables in use soon and going over how they’re being used.

The two at the bottom that don’t have a tooltip are somewhat self-explanatory: the

enemy we’re currently targeting, which is the one we’ll be shooting at, and the Time.time

at which we last fired a projectile, which we’ll use to know when it’s time to fire our next

projectile.

Our Update method will use a few separate methods to split the logic up neatly and

reuse some of it. Let’s start with that, to get a good overview of how it all works:

void Update()

{

 if (targetedEnemy != null) //If there is a targeted enemy

 {

 //If the enemy is dead or is not in range anymore, get a new target:

 if (!targetedEnemy.alive || Vector3.Distance(trans.

position,targetedEnemy.trans.position) > range)

 {

 GetNextTarget();

 }

Chapter 28 enemies, towers, and projeCtiles

354

 else //If the enemy is alive and in range,

 {

 //Aim at the enemy:

 AimAtTarget();

 //Check if it's time to fire again:

 if (Time.time > lastFireTime + fireInterval)

 {

 Fire();

 }

 }

 }

 //Else if there is no targeted enemy and there are targets available

 else if (targeter.TargetsAreAvailable)

 GetNextTarget();

}

If there is a targeted enemy set (it’s not null), we then proceed to check if they are

dead or otherwise outside of the tower’s range. This is done with the trusty Vector3.

Distance call, comparing our transform position to that of the targeted enemy. If the

distance exceeds our “range” variable, we can’t shoot that enemy anymore, so we call a

method GetNextTarget(). We’ll declare that in a bit – it’s just one line of code, calling the

Targeter.GetClosestEnemy method.

Otherwise, if the enemy is alive and in range, we’ll call AimAtTarget, which will rotate

the portion of our tower that holds “the barrel” toward the target enemy (we’ll get to

declaring that soon). Then, we check if the current game time has gone over the time

at which we last fired, plus the fireInterval, which is how long we want to wait between

each projectile being fired. We’ve done this sort of thing before, so that’s no big deal. Of

course, we’re calling another method we have yet to declare, Fire. That method will set

“lastFireTime” to the current time and spawn the projectile.

Let’s declare the AimAtTarget method. It’s a little bulky, but simple enough:

private void AimAtTarget()

{

 //If the 'aimer' has been set, make it look at the enemy on the Y axis

only:

 if (aimer)

Chapter 28 enemies, towers, and projeCtiles

355

 {

 //Get to and from positions, but set both Y values to 0:

 Vector3 to = targetedEnemy.trans.position;

 to.y = 0;

 Vector3 from = aimer.position;

 from.y = 0;

 //Get desired rotation to look from the 'from' position to the 'to'

position:

 Quaternion desiredRotation = Quaternion.LookRotation((to - from).

normalized,Vector3.up);

 //Slerp current rotation towards the desired rotation:

 aimer.rotation = Quaternion.Slerp(aimer.rotation,desiredRotation,.

08f);

 }

}

The “aimer” will be set to the Cylinder on top of the tower, which is the parent of the

Barrel, so the Barrel will spin with it too. We only want the Cylinder and Barrel to rotate

toward our target and only along the Y axis, which spins without tilting it off the tower.

Due to the way we set up the barrel, it sticks out along the forward axis of the Cylinder.

So as long as we point the cylinder directly toward the target enemy, the barrel will point

there as well.

To make sure we’re operating on the Y rotation axis only, we set up these two

Vector3 variables, “from” and “to,” so that we can set their Y position to 0. Then we

use them to get a direction to point from the “aimer” and toward the target enemy. By

leveling their Y axis, we take it out of the equation. As far as the direction is concerned,

everything is on the X and Z axes only – they’re always equal on the Y axis, so that the

“from” and “to” are never considered higher or lower than the other. This way, we don’t

look up or down at enemies, just outward, spinning in a circle atop the tower. That

equates to Y rotation axis only.

We use Quaternion.LookRotation to get the direction from “from” toward “to,” as we’ve

done before. In case you’ve forgotten, LookRotation returns a rotation where the forward

facing is pointing at the direction given as the first parameter, and the second parameter,

Vector3.up, is where the up axis should point. So we’re saying “point the front of the

Chapter 28 enemies, towers, and projeCtiles

356

cylinder at the target enemy, and keep the top pointing upward.” If we did Vector3.down

instead, the top of the cylinder would instead point straight down, which would flip it over.

We store that rotation in the “desiredRotation” variable. Then, we Slerp the “aimer”

rotation toward that variable at a fraction of .08f per frame. This makes it nice and

smooth.

Now we need GetNextTarget, which is just one line of code – but we need to use it

twice, so why not make a method, right?

private void GetNextTarget()

{

 targetedEnemy = targeter.GetClosestEnemy(trans.position);

}

It just resets our targetedEnemy to the enemy that’s closest to the tower. If there is no

enemy within range, we’ll get “null” back; and, according to the Update code, we’ll wait

until there are targets available before trying again.

Now, the most important bit is shooting arrows at the target:

private void Fire()

{

 //Mark the time we fired:

 lastFireTime = Time.time;

 //Spawn projectile prefab at spawn point, using spawn point rotation:

 var proj = Instantiate<Projectile>(projectilePrefab,

projectileSpawnPoint.position,projectileSpawnPoint.rotation);

 //Setup the projectile with damage, speed, and target enemy:

 proj.Setup(damage,projectileSpeed,targetedEnemy);

}

We make sure to set the lastFireTime to the current Time.time; otherwise, we’ll be

shooting arrows every single frame. We then spawn the projectile, storing it in a local

variable. The first parameter is the prefab to spawn, the second is the position to spawn

it at (we use the spawn point Transform at the tip of our Barrel), and the third is the

rotation it should use (again, the same rotation used by the spawn point Transform,

aligned with the Barrel).

This might seem a little off to you – we’re Instantiating an entire prefab, but we’re

referencing just the Projectile script to do it. Remember, the “projectilePrefab” variable

Chapter 28 enemies, towers, and projeCtiles

357

is of the Projectile type, not GameObject. Are we not just Instantiating a lonely Projectile

script instance? Is that even possible? What would it be attached to?

Well, that’s not what we’re doing. Unity allows us to Instantiate prefabs and get

back a reference to whatever part of them we actually want to interact with. When

we Instantiate a script, we’re really saying “I want to create this prefab, but when

you’re done, just return to me the Projectile script.” This spares us having to call

GetComponent<Projectile> after Instantiating the prefab.

You can do this with different component types too – say you were coding a

first- person game and wanted to create a block and throw it outward on the spot.

You could reference the block prefab as its attached Rigidbody (instead of as a

GameObject), then Instantiate<Rigidbody>, and use the reference to add force to the

Rigidbody that throws the block outward. It’s just a little more convenient than if we

were forced to Instantiate the GameObject of the prefab.

And as you can see, the reason we want to access the Projectile script is so we can

easily call the Setup method afterward, passing in the tower damage and projectile speed

and giving the projectile its targeted enemy.

That’ll do it. Add a FiringTower script to the root Transform of our Arrow Tower, go

over all the fields in the Inspector, and set the references we’ll need (you know what they

are by now!); and don’t forget to make a prefab out of the root GameObject. Figure 28-5

shows how the FiringTower should look in the Inspector once you’re done.

Now you can put it all together and see it in action. Throw some arrow towers down

with your prefab, or copy-paste the instances that are already in the scene. The Test

Figure 28-5. A look at the FiringTower script of our Arrow Tower in the Inspector,
with all the references correctly set

Chapter 28 enemies, towers, and projeCtiles

358

Enemy shouldn’t have a prefab made because we’ll be making Ground Enemies and

Flying Enemies instead, but for the sake of testing, you can copy-paste to create some

extra test enemies, put them within range of the towers, and play the game. If everything

is set up right, the arrow towers should automatically find their targets and fire at them

until they perish.

If your arrow towers aren’t firing, make sure you’ve got everything in the correct

layers: test enemies in the Enemy layer, towers in the Tower layer, and the Targeter

of the towers in the Targeter layer. If you still experience problems, run through your

script instances, like Enemy, FiringTower, and Targeter, and double-check that all of the

references are set correctly.

Figure 28-6 shows a setup with enemies and arrow towers in action. I’ve given the

Stage plane a material to darken it so the towers and enemies look nice on it, using a

dark-blue color with a hex value of 0A1F38.

Figure 28-6. A row of six Arrow Towers firing at three test enemies positioned
around them

Chapter 28 enemies, towers, and projeCtiles

359

 Summary
This chapter implemented our first tower type, the Arrow Tower, and basic enemies that

don’t yet move. Using inheritance, we’ve set a solid foundation for implementing the

other tower and enemy types. Some points to remember are as follows:

• A class marked as abstract is meant to serve as a base class for others

to inherit from. You can’t create instances of an abstract class. You’re

expected to inherit from the abstract class and create instances of the

inheriting class.

• When removing items from a List within a loop, remember to

subtract from “i” to account for the change in indexes when an item

is removed.

• A method declared as virtual can be overridden by lower types to

allow inheriting classes to provide their own implementation of the

method.

• Overriding a virtual method is done by declaring a method with

the same name and return type in an inheriting class, but with the

“override” keyword before the return type.

• A method declared as abstract is like a virtual method, but it has

no implementation of its own (no code block after the declaration),

and it must be part of an abstract class. Any inheriting classes must

declare their own override version of the abstract method, or an

error will be thrown.

Chapter 28 enemies, towers, and projeCtiles

361
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_29

CHAPTER 29

Build Mode
In this chapter, we’ll implement the user interface that shows during “build mode”

to allow the user to buy new towers and sell old towers. Before we begin, let’s outline

the functionality we’re going to implement. From the player’s perspective, what will

they be able to do in build mode? After this, we’ll do a quick primer of the important

components and concepts behind Unity’s UI. We’ll then set up our own UI and learn

how to make our buttons actually do something when we click them, implementing all

of the build mode functionality bit by bit.

Our finished Build Mode UI is shown in Figure 29-1. We’ll be using Unity’s new UI

system to design our UI out of GameObjects with appropriate components rather than

coding using the GUI or GUILayout method like we did before. Since the UI is a bigger

part of the game this time, we’ll put more effort into making it passable without creating

any art for it ourselves. However, to keep the project from becoming unwieldy, we won’t

be making UI for a start screen or an in-game pause menu or anything of that sort. We

did that in the first example project.

Figure 29-1. End result of our Build Mode user interface

https://doi.org/10.1007/978-1-4842-5656-5_29#ESM

362

The buttons on the left side are what we’ll call the build buttons. Clicking any of

these buttons will select the corresponding tower for building, and the button will

change color to indicate that it is the currently selected button. One build button can be

selected at a time, or none at all can be selected.

While a build button is selected, you can left-click the stage to attempt to build the

tower at that location. Pressing Escape will deselect the button.

While there is no build button selected, you can instead left-click the stage to select

an existing tower. This will show a little popup panel that provides us with an option

to sell the tower. This panel will also have a little X button in its top-right corner that

you can press to close the panel if you don’t want to sell the tower – or you can press

Escape. To continuously position this panel over the tower no matter how the camera is

positioned, we’ll learn how to convert a world position to its corresponding location on

the screen – in other words, go from “world position” to “screen position.” This way we

can keep updating the location of the UI so that it always draws above the Tower.

Whenever a tower is bought, we’ll use Unity’s built-in pathfinding to check if the

way is clear from the enemy spawn point at the upper end of the stage to the enemy leak

point at the bottom end of the stage. If the way is not clear, we won’t let the player start

the level until they sell something to clear the path.

Build mode will be the initial state of the game when the player first starts playing.

They’ll start with some gold to spend on their first towers, and when they’re ready, they’ll

hit Play. The enemies will spawn and move toward the leak point. Once all enemies are

gone, we’ll enter build mode again, and the cycle repeats.

In this chapter, we’ll set up the Play button and define an empty method for

performing the pathfinding. In the next chapter, we’ll actually implement the pathfinding.

 UI Basics
One could write an entire book about designing and implementing UI in Unity. I’m sure

there are more than a few out there. This chapter won’t go into that much detail, because

that would be a very long chapter. We’ll go over the basics of Unity’s UI system and put it

to use. When we’re done, our UI will be mapped out, and the build mode features will be

functional.

There are some considerations to make when you go about designing and

implementing a user interface. You must ensure that the placement of elements is

conducive to differing screen sizes and ratios.

Chapter 29 Build Mode

363

You might already know this, but a screen is made up of many small dots called

pixels. Each dot is a tiny colored light on your screen. These many thousands of dots

spread over the monitor will together form the picture that we see. The resolution of a

screen is its width and height in pixels (that might not be the exact definition of the word,

but pretty much everyone on Earth uses it that way).

Since different screens sometimes come in different sizes, we can’t be sure just how

much space we have to work with. Some monitors have a differing aspect ratio. That’s

the width-to-height ratio of a monitor. Common HD monitors are 16:9, which means 16

pixels wide for every 9 pixels tall. Common resolutions for this aspect ratio are 1600×900

and 1920×1080. But your user could be running the game on a different aspect ratio, like

16:10, 5:4, 4:3, or some new ratio or blown-up resolution invented ten years down the

road. You can’t rule out that a player might have any of these aspect ratios.

To combat this, we have certain tools for positioning and sizing elements based on the

screen width and height to ensure that there aren’t any situations where things just don’t

show up on your screen. If you design your UI to have a constant, static size of 1600x900,

any lower resolution will simply cut off part of your UI because the screen can’t contain it.

We’ll learn about Unity’s solutions for this in a bit.

Unity’s UI system represents each element of the UI as a GameObject with relevant

UI components attached, depending upon the type of element. These elements can be

found through GameObject ➤ UI. We start with a Canvas GameObject, which is the root

of all of our UI. All UI elements will be children of that GameObject. If you create a UI

element without a Canvas in your scene, a new Canvas will be created, and the element

you made will automatically be made a child of the new Canvas.

The Canvas represents the area that the UI is drawn in. Once you’ve created a

Canvas, you’ll see a white rectangle showing in your scene that resembles the Canvas.

This is easiest to spot when you switch to 2D mode by clicking the button just under

the top-left corner of the Scene window (beneath the tab that reads Scene), shown in

Figure 29-2. It’s also recommended to keep your Tool Handle Position and Rotation at

Pivot and Local, shown also in Figure 29-2 (toggle these with the Z and X hotkeys).

Figure 29-2. The Scene tab with the 2D button toggled on, the Tool Handle
Position set to Pivot, and the Tool Handle Rotation set to Local

Chapter 29 Build Mode

364

Once you’re in 2D mode, the Scene window will not allow you to use the Z axis,

instead restricting you to the X and Y axes only, looking forward into the scene. This is

ideal for editing UI, since it keeps a straight-on look at the Canvas. Similarly, if we were

working on a 2D game, we’d keep this setting on all the time.

Select the Canvas in the Hierarchy and press F to center your view on it. That white

rectangle is the bounding box for all your UI. Any UI positioned outside of it will not

be visible. If you create a UI element, like a button, you can then switch to your Game

window to see the button displaying on the screen, as long as the button is within that

white rectangle.

When a Canvas is created, Unity will also create a new GameObject called

“EventSystem” if one does not already exist. This handles input for interactable elements

like buttons. If all of your elements stop responding to your input, you may have

accidentally deleted this GameObject. You can add a new one through GameObject ➤

UI ➤ Event System. There should only be one in your scene.

Since UI elements are GameObjects, their parenting will “attach” them to each other

such that moving a parent will move its children as well. It also determines the order that

elements are rendered in. Elements are drawn in a top-to-bottom order: those higher in

the hierarchy will be drawn first. This means if you have two elements that overlap each

other, the one that’s lowest in the Hierarchy will appear “on top” of the other, covering it.

You can change the order by dragging and dropping in the Hierarchy, just like with

normal GameObjects. There are also methods in the Transform class that allow you to

change order by code, if you should ever need to.

The Canvas GameObject has components that deal with the way the UI renders and

scales with screen size.

The Render Mode field of the Canvas component has three possible settings that

determine how the canvas and its elements are rendered:

• Screen Space – Overlay will render elements over the screen with no

fancy side effects. It’s your average UI setup.

• Screen Space – Camera is much like Overlay, but it references a

target Camera and renders the UI as if viewed by that camera. You

can use this to give the UI a perspective tilt.

• World Space considers elements to be part of the world. This can be

used to create interfaces that are meant to seem as if they are in the

game world itself, such as a floating hologram menu or menus on an

in-game computer screen.

Chapter 29 Build Mode

365

The Canvas Scaler component handles the screen size and how the elements adapt

to changes in the screen size. Most notable is the UI Scale Mode field, which has three

possible options:

• Constant Pixel Size will keep every element the same size in pixels,

regardless of the size of the screen or the aspect ratio of the screen.

This can cause elements to appear relatively large on small screens

compared to large screens or vice versa.

• Scale With Screen Size will provide us with a Reference Resolution

field (a width and a height). This is the size the UI is designed

for. If the screen is larger or smaller, the UI is scaled up or down

proportionately. It also provides us with a Screen Match Mode field

determining how the scaling reacts if the aspect ratio of the screen

is different than that of our Reference Resolution. There are three

options for this field:

• Match Width or Height will scale all elements by the difference

in the width, the height, or a combination somewhere between.

A resulting Match field between 0 and 1 determines how much a

change in width will affect our UI sizing vs. how much a change

in height will affect it. A value of 0 will cause the UI to only scale

if the width is changed. A value of 1 will only scale if the height is

changed. A value of .5 will provide an even mix of both.

• Expand will increase the size of the canvas, but never decrease it

from the reference resolution.

• Shrink will decrease the size of the canvas, but never increase it

from the reference resolution.

• Constant Physical Size will size UI elements by their physical

size rather than a number of pixels. We specify a physical unit

measurement to use, such as inches, centimeters, or millimeters,

and the width and height of our elements will use this measurement

instead of pixels.

Chapter 29 Build Mode

366

 The RectTransform
Rather than the Transform component that all other GameObjects use, UI elements will

have a different, lower type of Transform called RectTransform. As a lower type, it has

all of the members of a Transform, plus some of its own. Most notably, it adds a width,

height, pivot point, and anchoring. The width and height work in conjunction with scale,

acting not as a multiplier like scale, but a float value depicting the size.

You’ll most commonly move your elements using the rect tool (hotkey T). We’ve

used it before, so you’re already familiar with it – but note that when you change the size

of an element by dragging at its edges or corners, the width and height is what you’re

changing, not the scale. However, the scale tool (hotkey R) still changes the scale of the

element, leaving the width and height unaffected.

This difference is most notable if you ever change the size of an element that has

children inside it. Scale will affect all children, while the width and height do not.

The pivot point of a RectTransform is resembled by the circle icon, by default in the

center of the element. To change the pivot, click and drag the circle. It will snap to the

edges of the element and the center of the width or height. Notice that rotation will spin

the object around the pivot point.

The RectTransform employs a concept of anchors, which provide a means of fixing

an element in a specific place relative to its parent element.

The anchors are visualized by four white triangular handles. By default for a new

element, they’ll all be positioned in the center of the Canvas, bundled up together,

shown on the left side of Figure 29-3. You can click and drag the center of them to

move them all at once or click an individual handle to pull it and separate it from the

rest, shown on the right side of Figure 29-3. While pulling a single handle, two other

handles react, keeping themselves aligned so that the four handles are always making a

rectangular shape together.

Figure 29-3. The four anchor handles for a UI element, all positioned together on
the left, and the same four handles with some space between them on the right

Chapter 29 Build Mode

367

If you hold Ctrl before clicking an individual anchor handle, dragging will instead

move all of them at once.

Each anchor corresponds to a corner of the associated element and how that corner

is positioned within its parent element. The corner of the element will retain its position

relative to the anchor point.

One common use for this is to anchor elements to one corner of the Canvas. If you

leave your anchors at the center of the screen but place your elements at the edges of the

screen, a change in screen size will likely mean your elements are no longer on the edge

of the screen. To fix this, you can anchor them to the side of the screen you want them

attached to. Our panel for build buttons in Figure 29-1, for example, is anchored to the

top-left corner of the screen so that no matter the size or orientation of the screen, the

elements are always tied to that corner.

The Inspector has a handy means of easily assigning anchor presets, shown in

Figure 29-4. This provides various options for assigning the horizontal and vertical

anchors to the center or corners of the parent with a single click.

Figure 29-4. The anchor preset button in the Rect Transform of the Inspector (left).
When clicked, it shows the dropdown box of anchor presets (right)

Chapter 29 Build Mode

368

 Building Our UI
With all that preliminary prattling out of the way, let’s get back to the real world and

start working on our own UI. Our UI is a simple mixture of panels (colored rectangles)

and buttons with text inside them. Since elements are just GameObjects with certain

components attached, we can make use of prefabs to define a consistent style that we

can change all at once down the road if we want to. We can override the stuff we need to,

like what the text says in a button, the size, the anchors, and so on, but keep things like

color attached to the prefabs so we can easily make edits to all instances.

Before we begin, let’s set up our Canvas, and don’t forget to make sure you have an

EventSystem in the scene:

• Select your Canvas. In the Inspector, locate the Canvas Scaler.

• Change the UI Scale Mode field to Scale With Screen Size.

• Set the Reference Resolution to 1280×720. That’s 1280 on the X axis

and 720 on the Y axis.

• Set Screen Match Mode to Match Width or Height.

• Change the Match slider to .5.

Now let’s create a generic button:

• Make a GameObject ➤ UI ➤ Button and view it in the Inspector.

• Ignore the Image component and focus instead on the Button

component. Change its Normal Color field to an orange with a hex

value of F0B683.

• Change its Highlighted Color to FFD6B2, a slightly paler variant. This

will show when the mouse hovers over the button.

• Change its Pressed Color to a slightly darker variant with a hex value

of DA9E69. This color shows while the mouse button is held down

over the button.

• Make its Selected Color match the Normal Color.

• Select the Text element within and set its Color field to a hex value of

0F1B64.

Chapter 29 Build Mode

369

• If you’d like to keep things a little more organized, create a UI

subfolder inside your Prefabs folder in the Project window. Drag and

drop the Button here to create a prefab for it.

That will serve as the base for our buttons. The text inside isn’t important; we’ll

override that when we implement the prefab. We just want to create a consistent

template of colors so we don’t have to set the same fields each time.

Moving on, let’s make a generic panel:

• Create a GameObject ➤ UI ➤ Panel. By default, it will be sized to the

whole canvas.

• In the Image component, give it a dark-blue color with a hex value

of 4B5374. Set the “A” field to 100 if it is not already. This is alpha – a

value of 100 makes the color fully solid, while a value of 0 makes it

totally transparent. We want it solid.

• Create a prefab for this panel as well. It’s just a colored rectangle that

we can lay elements on to group them up nicely.

We can use this instance of panel for the build buttons on the left side. Using the

anchor preset in the Inspector, select the top-left preset, which will anchor the element

to the top-left corner of the canvas. Its width and height should show in the Inspector

after this. Change these to 180 width and 400 height. Then, apply the same top-left

anchor preset again, but this time, hold Alt before you click the preset, which will snap

the panel to the top-left. Alternatively, you can use the rect tool, click within the panel,

and drag to move it until its top-left corner is at the top-left corner of the Canvas. It

should snap into place once you get close enough. While you’re at it, set the name to

“Build Button Panel.”

We want our build buttons to be a bit different than a normal button, since we need

a tower gold cost displayed in them as well. We’ll create a prefab variant of the Button to

make these:

• Right-click the Button prefab in the Project and select Create ➤

Prefab Variant. Name the variant Build Button.

• Create an instance of the Build Button by dragging and dropping it

from the Project onto the Build Button Panel in the Hierarchy.

• Change its width to 160 and height to 80.

Chapter 29 Build Mode

370

• Change the button anchor to the top-left preset.

• Change the name of the Text child element to Tower Text.

• In the Text component, set the Font Style to Bold and the Font

Size to 22.

• With the Alignment field, change the alignment of the text by clicking

the fourth button from the left. This will move the text to the top of

the button.

• The Color field of the text should still be a hex value of 0F1B64 from

the base button prefab.

• Copy and paste the Tower Name GameObject and change the

name to Gold Cost. Change the Font Style back to Normal and the

Alignment field to Center (the second button from the right side).

Change the text to “XX gold,” and we’ll fill in the gold cost on a per-

tower basis. Using the position tool (hotkey W), move the copy down

so it’s near the bottom of the button.

• Select the base Build Button GameObject. Using the Overrides

dropdown near the top-right corner of the Inspector, click Apply All

to apply the changes we made to our prefab variant.

Now that the generic build button is set up as a prefab, copy and paste it and drag

each one down to fill the panel. Sized as they are, you should fit four of them – one for

each tower. Just drag them on the Y axis with the move tool (hotkey W) and keep the

space between them roughly equal.

Change each button’s GameObject name, for example, “Arrow Tower Button,” if

you want to keep things neat-looking. Set the tower name text and the gold cost text

accordingly:

• An Arrow Tower will cost 5 gold.

• A Cannon Tower will cost 8 gold.

• A Hot Plate will cost 12 gold.

• A Barricade will cost 2 gold.

Chapter 29 Build Mode

371

With that panel done, let’s add a panel that shows our current gold. We’ll script it to

function correctly later:

• Add an instance of the Panel prefab as a child to the Canvas. Name it

Current Gold Panel.

• Set its anchor preset to Bottom Left.

• Size it to 140 width and 52 height.

• Right-click the panel in the Hierarchy and select UI ➤ Text to add a

Text element child. Name it Current Gold Text.

• Color the text a pure yellow (the color of sweet gold), hex value

FFFE00.

• Make the text bold, give it 30 font size, and write “50 gold”. That’s how

much gold the player will start with. In the Alignment field, center

and justify the text by selecting the middle button of each group

(second from the left and second from the right).

Now we’ll create the Play button in the center of the screen:

• Drag and drop an instance of the Button prefab onto the Canvas

GameObject in the Hierarchy. Name it Play Button.

• Set its anchor preset to Bottom Center.

• Set its size to 240 width and 70 height.

• Position it at the bottom and center of the screen with the rect tool or

hold Alt and reapply the anchor preset to snap it in place.

• Change the text Font Style to Bold and size to 62; center and justify

the alignment.

Lastly, we’ll create an element that doesn’t show all the time, the Tower Selling
Panel, which we’ll position over the selected tower to show a button letting the user sell

it, as well as an X button to deselect the tower:

• Create an instance of the Panel prefab as a child to the Canvas. Name

it Tower Selling Panel.

• Set its anchor to Middle Center. Using the rect tool, drag its pivot to

the middle of the bottom edge. It should snap in place.

Chapter 29 Build Mode

372

• Set its width to 186 and height to 68.

• Override its background color to a lighter blue with a hex value of

8BB0D8.

• Add an instance of the Button prefab as a child to the Tower Selling

Panel. Name it Sell Button and give it a width of 110 and a height of

58. Set its X position to –32.

• Rename the text GameObject of the Sell Button to SELL Text, change

the text to “SELL”, make it bold, give it a font size of 32, and justify the

text at the top with the Alignment field.

• Copy-paste the SELL text; rename it to Refund Text; set its text to “for

XX gold”; set its Font Size to 18, Font Style to Normal, and Alignment

to justify and center; and drag it down with the move tool until it’s

under the “SELL” text.

• Add another Button instance to the Tower Selling Panel. Name it “X

Button”. Leave its anchor at Middle Center and set both its width and

height to 38. Set its X position to 60 and its Y position to 10.

• Set the X Button text to read “X”. Make it bold, justified, and centered

with a font size of 34.

• Finally, deactivate the Tower Selling Panel. We’ll make it show by

script when we need it to, but we don’t want it to show by default.

The Refund Text will be referenced in our Player script, and we will update the text

to replace the “XX” with the actual refund value of the selected tower whenever the

player selects a new tower. When you’re done, the Tower Selling Panel should look like

Figure 29-5, and the other elements we’ve created should look like Figure 29-1.

Chapter 29 Build Mode

373

 Events
UI elements that have some form of interaction with the user will have event fields

exposed in the Inspector, such as a button having an “OnClick” event. These fields allow

us to attach functionality to the event so that some action is performed when the event

happens – like when a button is clicked. We’ll learn how to do it ourselves in a moment,

but first, let’s go over the concept.

We can add as many actions as we want to a single event for a single UI element.

Each action we add will first ask us to reference some object we want to interact with.

Then, a dropdown field will appear that lets us point to some member on that object: a

variable or a method.

If we drop a GameObject on this field, we can access members from any of the

components attached to it or from the GameObject itself. For example, if we drop the

Player Camera GameObject on the field, we can access members from the GameObject

type as well as the Transform and Player script.

What happens next depends on what we point to within the object we referenced:

• If we point at a variable, a field will pop up that lets us set the value

of the variable. When the event occurs, the variable value is set to

whatever we put in that field.

Figure 29-5. The Tower Selling Panel

Chapter 29 Build Mode

374

• If we point at a method, it must be a public method with no more

than one parameter, and the parameter must be of a type that’s

serializable – such as a basic value type, a script, or a built-in

component. If the method declares a parameter, we’ll get a field to

set the parameter value. When the event occurs, the method is called,

using the parameter value we provided in the field.

The type of data accepted in this field will change based on the type the code

expects, of course – a string variable will show a field you can type in, a GameObject

variable would show a field to reference a GameObject by dragging and dropping from

the Hierarchy, and so on.

We can’t reference variables that we declare in our own scripts, but we can reference

those of built-in Unity types. The Object data type accepted by the field is the base class

for many Unity types, so we can reference a GameObject and set its “name” variable to

change its name, or we could call its SetActive method to deactivate or activate it. We

could reference a component and call one of its built-in methods. It doesn’t have to be

code we wrote ourselves. But it can be that too – so long as we call a method we declared,

rather than trying to set a variable.

We’ll use these events to call methods from our Player script when it’s time to

implement the functionality of our buttons. We’ll give each build button method calls

that set the corresponding Tower prefab to build and give us a reference to the button so

we can change its color back and forth when it’s selected and deselected.

When our script is ready to build a tower, it can use that tower prefab variable to

determine which tower to Instantiate, and since it’s a Tower, it will have a goldCost

variable we can use to determine if the player has enough money to build it.

But enough talking about it. Let’s get to writing code to make our UI more than just a

bunch of buttons that do nothing.

 Setting Up
When we place towers on the stage, we’ll always keep them at a Y position of 0, with X

and Z values at multiples of 10 (e.g., 10, 20, 30, and so on, including negative values).

A tower is 10 units wide and long, so we’re only allowing the player to place them along

increments of the tower size. Ultimately, it’s something like a grid of towers, where only

Chapter 29 Build Mode

375

one tower can be in a single cell of the grid at a time. In order to place a tower on the

stage, we need to let the user point and click where they want it to go, though.

To do this, we’ll be exploring a handful of new methods and concepts. We’ll learn

how to perform a raycast. This is a physics method that effectively “shoots a ray” out

into the scene to test if hits any colliders. You define a point for the ray to start from, a

direction for it to travel in, and a total distance for it to travel. If the ray hits anything, the

method will give back information about what it hit.

To get the point on the stage that the player mouse cursor is hovering over, we

can cast a ray starting at the mouse cursor position and shooting out at the stage.

Conveniently, Unity has a built-in method in the Camera component that lets us convert

a point on the screen to a Ray instance. The Ray is a type that stores an origin and

direction of a ray, which we can plug into the raycast method.

Let’s dive in. We’ll start by giving the player an indication of where their mouse

cursor is hovering over the stage. To do this, we’ll raycast from the mouse and get the

point the ray touched on the stage and then position a “highlighter” object there. But

we don’t want to just show the player the exact point on the stage that they touched. We

want it to conform to multiples of 10 to show them the sort of grid pattern that towers

will be placed in.

To start, we’ll make our highlighter be a thin cube the size of a tower:

• Create a Cube with no parent. Name it Highlighter.

• Set its scale to (10, .4, 10).

• Create a material named Highlighter and give the cube a color with

a hex value of B7FAF6. We’ll also make it a bit transparent. Give it

an alpha of 30 and change the Rendering Mode field at the very top

of the material in the Inspector to “Transparent.” If you leave the

Rendering Mode at the default setting of “Opaque,” the alpha will be

ignored, and the object will always be fully solid.

• By default, deactivate the highlighter.

This cube is now the size of a tower on the X and Z axes, so we just need to script it to

position itself under the mouse cursor on the stage and to always snap to multiples of 10

with its X and Z position.

Chapter 29 Build Mode

376

We’ll use our Player script for most of the build mode functionality, so open it up

in your code editor. First, let’s create a distinction between build mode and play mode

using an enum Mode, declared at the top of the Player script:

private enum Mode

{

 Build,

 Play

}

private Mode mode = Mode.Build;

We’ll need to reference the highlighter Transform so we can move it around. While

we’re at it, let’s declare the rest of the variables we’ll need for build mode logic. We need

to access some classes from the UnityEngine.UI namespace, which is where built-in UI

components are declared, so add this “using” to the top of the Player script file:

using UnityEngine.UI;

Then let’s declare our variables:

[Header("Build Mode")]

[Tooltip("Layer mask for highlighter raycasting. Should include the layer

of the stage.")]

public LayerMask stageLayerMask;

[Tooltip("Reference to the Transform of the Highlighter GameObject.")]

public Transform highlighter;

[Tooltip("Reference to the Tower Selling Panel.")]

public RectTransform towerSellingPanel;

[Tooltip("Reference to the Text component of the Refund Text in the Tower

Selling Panel.")]

public Text sellRefundText;

[Tooltip("Reference to the Text component of the current gold text in the

bottom-left corner of the UI.")]

public Text currentGoldText;

Chapter 29 Build Mode

377

[Tooltip("The color to apply to the selected build button.")]

public Color selectedBuildButtonColor = new Color(.2f,.8f,.2f);

//Mouse position at the last frame.

private Vector3 lastMousePosition;

//Current gold the last time we checked.

private int goldLastFrame;

//True if the cursor is over the stage right now, false if not.

private bool cursorIsOverStage = false;

//Reference to the Tower prefab selected by the build button.

private Tower towerPrefabToBuild = null;

//Reference to the currently selected build button Image component.

private Image selectedBuildButtonImage = null;

//Currently selected Tower instance, if any.

private Tower selectedTower = null;

Let’s go over these variables and how we plan to use them:

• stageLayerMask – A LayerMask is a built-in Unity type we haven’t

used before. It resembles a set of all of our collision layers (defined

in our Project Settings) and allows us to check or uncheck each one

individually. We’ll pass it to our raycast call to define which layers the

ray should collide with and which it should ignore. In the Inspector,

the layer mask field shows as a dropdown listing all layers, where

each layer can be clicked to toggle it on or off.

• highlighter – A reference to the Highlighter, which we’ll use to

position it. We’ll also go through this to get the GameObject so we

can deactivate the highlighter when the mouse is not hovering over

the stage.

• towerSellingPanel – A reference to the RectTransform of the Tower

Selling Panel. We’ll use this to constantly position the panel above

the selected tower.

Chapter 29 Build Mode

378

• sellRefundText – Through a reference to the Text component of our

“for XX gold” text element in the Tower Selling Panel, we’ll change

the “XX” to match the gold the Tower will give when sold.

• currentGoldText – Like the sell refund text, we use this to set the

indicator of the player’s current gold in the bottom-left corner.

• selectedBuildButtonColor – The color applied to the selected build

button to distinguish it as the currently selected button. We initialize

this to a default value of 20% red, 80% green, and 20% blue. We can

change it in the Inspector if we want.

• lastMousePosition – We keep track of the mouse position each

frame here. By comparing the mouse position from the last frame to

the current mouse position, we can tell if the mouse moved. We’ll

only perform our raycast if it’s moved, just to save some unnecessary

processing.

• goldLastFrame – We also keep track of the gold we had on the

last frame, using this to detect when we need to update the

currentGoldText.

• cursorIsOverStage – If the raycast ever fails to find the stage, we’ll set

this to “false” and deactivate our highlighter so it stops showing up.

• towerPrefabToBuild – A pointer to the Tower prefab we want to

build. This will be set by a method we’ll set to be called from the build

button OnClick event. If it’s not null, then a build button is selected,

and clicking the stage will attempt to build this Tower.

• selectedBuildButtonImage – A pointer to the Image component

of the build button that’s currently selected. Again, this is set by the

OnClick event we’ll be setting up. We’ll use this to change the color of

the selected build button to distinguish it from the others.

• selectedTower – Currently selected Tower instance. This is what will

be sold when the Tower Selling Panel “SELL” button is clicked. If it’s

null, there is no selected tower. This should always be null if there’s a

build button selected.

Chapter 29 Build Mode

379

Once you’ve added the code and saved the script, go ahead and set up the references

in the Inspector. Once you’re done, the Build Mode variables of your Player script in the

Inspector should look like Figure 29-6.

In the layer mask, we’ve unchecked every layer except for the “Default,” which is the

layer our stage will be part of. This is important! If you forget to set a layer mask, it will

default to “Nothing,” where no layers are checked. This will guarantee that your raycast

won’t collide with anything and probably leave you desperately wondering why.

 Build Mode Logic
Let’s declare a separate method to handle all build mode–related logic. In your Update

method, add the two lines at the end to call the method only while “mode” is set to

Mode.Build:

void Update()

{

 ArrowKeyMovement();

 MouseDragMovement();

 Zooming();

 MoveTowardsTarget();

 //Run build mode logic if we're in build mode:

 if (mode == Mode.Build)

 BuildModeLogic();

}

Figure 29-6. The Build Mode settings of our Player script in the Inspector after all
references have been set

Chapter 29 Build Mode

380

And let’s declare the method – like our Update method, we’ll separate the

functionality of our build mode into several other method calls to keep things tidy:

void BuildModeLogic()

{

 PositionHighlighter();

 PositionSellPanel();

 UpdateCurrentGold();

 //If the left mouse button is clicked while the cursor is over the

stage:

 if (cursorIsOverStage && Input.GetMouseButtonDown(0))

 {

 OnStageClicked();

 }

 //If Escape is pressed:

 if (Input.GetKeyDown(KeyCode.Escape))

 {

 DeselectTower();

 DeselectBuildButton();

 }

}

Of course, we still have to define these methods we’re calling, but this shows us the

high-level overview of build mode logic:

• PositionHighlighter will raycast from the mouse cursor toward

the stage. If it hits the stage, we’ll update the highlighter position

and ensure that it’s active (visible). If it does not hit the stage, we’ll

deactivate the highlighter.

• PositionSellPanel will reposition the Tower Selling Panel to the

screen position of the selected Tower, if there is presently a selected

Tower.

• UpdateCurrentGold will update the text of the gold indicator at the

bottom-left corner to match the gold the player currently has.

Chapter 29 Build Mode

381

• OnStageClicked will be called whenever the stage is clicked. This

uses the “cursorIsOverStage” bool we declared to only call the

method when the cursor is actually hovering over the stage. That’s set

in the PositionHighlighter method, which performs the raycast.

• DeselectTower clears out the selected tower and deactivates (hides)

the Tower Selling Panel. We call it on various other occasions.

• DeselectBuildButton clears the selected tower prefab and reverts the

color of the selected build button back to its normal state.

Let’s start declaring these methods one at a time. First and foremost, let’s position

the highlighter and learn how to perform a raycast:

void PositionHighlighter()

{

 //If the mouse position this frame is different than last frame:

 if (Input.mousePosition != lastMousePosition)

 {

 //Get a ray at the mouse position, shooting out of the camera:

 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

 RaycastHit hit; //Information on what was hit will be stored here

 //Cast the ray and check if it hit anything, using our layer mask:

 if (Physics.Raycast(ray,out hit,Mathf.Infinity,stageLayerMask.value))

 {

 //If it did hit something, use hit.point to get the location it

hit:

 Vector3 point = hit.point;

 //Round the X and Z values to multiples of 10:

 point.x = Mathf.Round(hit.point.x * .1f) * 10;

 point.z = Mathf.Round(hit.point.z * .1f) * 10;

 //Clamp Z between -80 and 80 to prevent sticking over the edge

of the stage:

 point.z = Mathf.Clamp(point.z,-80,80);

 //Ensure Y is always 0:

 point.y = .2f;

Chapter 29 Build Mode

382

 //Make sure the highlighter is active (visible) and set its

position:

 highlighter.position = point;

 highlighter.gameObject.SetActive(true);

 cursorIsOverStage = true;

 }

 else //If the ray didn't hit anything,

 {

 //... mark cursorIsOverStage as false:

 cursorIsOverStage = false;

 //Deactivate the highlighter GameObject so it no longer shows:

 highlighter.gameObject.SetActive(false);

 }

 }

 //Make sure we keep track of the mouse position this frame:

 lastMousePosition = Input.mousePosition;

}

We only perform the raycast if the mouse position is different on this frame than it

was on the last frame.

We declare a Ray variable. To get the camera that’s tagged “MainCamera” in the

scene, we reference Camera.main. The camera included in the scene by default will have

this tag, but if not, it should be set in the Inspector, just beneath the name field for the

Player Camera, shown in Figure 29-7.

Using the Camera.main member gives us an easy way to grab this Camera

component on the fly. The Camera method we call, ScreenPointToRay, returns a new

Ray instance that resembles a ray shooting out of the camera, originating at a specific

Figure 29-7. The tag field in the head of the Inspector for our Player Camera
GameObject

Chapter 29 Build Mode

383

screen position. The parameter we give is the screen position we want to use. We get a

Ray that starts at the mouse position and shoots out of the camera.

After this, we declare another local variable: a RaycastHit named “hit”. We then call

Physics.Raycast, and as you can see, we provide the “hit” as a parameter, but we use a

new keyword before it: “out”.

A parameter in a method can be declared as an “out” parameter, which means that

the value is passed in as a reference, so that any modifications made to it will be reflected

in our variable.

To understand what this means, you need to realize the distinction between value
types and reference types.

A reference type is created by declaring a class. When we reference a class, we are

pointing at a single instance of the type. A variable and a parameter will both point to the

same instance, and any modifications made to either one will automatically affect the

other – because, again, they’re both pointing at the exact same data. If you create a class

instance and store it in variable A, then create many other variables that all reference

variable A, then everything points to the same, single instance of the class.

A value type is created by declaring a struct, which is much like a class except that it

is treated differently when passed around. Whenever a struct is referenced, such as when

assigning a variable or passing a variable into a method call as a parameter, the data is

copied and a new instance is given. If you create a struct instance and store it in variable

A, then create many other variables that all reference variable A, each variable will store

its own instance of the struct. Each assignment copies the struct.

Examples of structs are strings, floats, and ints.

If we declare an int variable and assign it some value and then give it to a method

call, any changes made to that parameter within the method won’t affect our variable,

for example:

void ChangeNumber(int number)

{

 number += 5;

}

int someNumber = 5;

ChangeNumber(someNumber);

Debug.Log(someNumber); //Still logs 5.

Chapter 29 Build Mode

384

This is because int is a value type. It’s a struct, not a class. When you give your

“someNumber” variable as a parameter, you’re really creating a copy of it and passing

that into the method call, so that any changes the method makes to the parameter are

not reflected on our variable. They don’t point to the same data.

A parameter marked with “out” is a way of navigating around this. RaycastHit

is a struct, and thus, it’s passed as a value type. But the raycast method declares the

RaycastHit parameter as “out”, and thus, any changes made to it in the method will affect

the same data we pass in. Our variable and the parameter will both point to the same

instance, as if it were a class. If the raycast method detects a hit, it can then fill up the

RaycastHit with information that we can access through our variable.

That being said, the parameters we give to our Physics.Raycast call are in the order of

• The Ray to cast

• The “out” RaycastHit to fill with data about the hit, if one occurs

• The maximum distance to cast the ray, which we give Mathf.Infinity

• The value of the layer mask to use

When you give a layer mask to a method like this, it usually doesn’t ask you for the

LayerMask instance itself. It asks for an int value. To get this, just reference the “.value”

member of the LayerMask, and it will work its magic behind the scenes.

You can call Physics.Raycast with many different kinds of parameters – it has

13 overloads! You can leave out the “hit”, you can substitute a Ray for its individual

components (origin and direction) and other such odd cases, but the one we’re using

gives us all the control we need.

The raycast method is wrapped in an “if” because it returns true if it hits something

and false if it does not. Using this, we can react accordingly: if the ray didn’t hit the stage,

we deactivate the highlighter and set “cursorIsOverStage” to false. If it did hit the stage,

we use the only member of “hit” we need to concern ourselves with: “.point”. This is the

position that the ray struck on the collider it hit (the stage).

We use some math to round the number out to a multiple of 10. The equation isn’t

terribly complex: we multiply the value by .1f first, so that, for example, a value of 14

becomes 1.4 instead. Then we round that value, moving to the nearest multiple of 1 – so

1.4 would become 1 instead. After that, we can just multiply by 10 to scale it back up.

Thus, 14 goes to 1.4, then to 1, and then back to 10. We do this for both axes, but the Z

axis then gets clamped between –80 and 80. This prevents the user from placing towers

too close to the bottom or top of the stage.

Chapter 29 Build Mode

385

We set the Y value to .2, which is half of the height of our Highlighter cube. That

keeps it nice and flush against the stage plane.

After performing our math and setting the position up, we certainly wouldn’t want

to forget to actually apply it to the highlighter. We also make sure the highlighter is active

and cursorIsOverStage is set to true.

This gives us a small portion of the functionality we need. There’s still much to do to

make our build mode work like we want it to!

 The Dictionary
To store towers that have been built, we’re going to use a new type of collection – not a

List or an array, but a Dictionary. It’s a very useful type of collection that stores items not

by an index, but by a “key.” The Dictionary is a generic class, taking two generic types

when declared: the key type and the value type.

The keys are what identify the values (items) stored within the Dictionary. Whenever

you want to store an item in a Dictionary or get an item from a Dictionary, you always

supply a key. Rather than giving an int index like in arrays and Lists, we give an instance

of the key type and get back the associated value. If there is no value stored in the

Dictionary by that key, we get an error.

Shortly put, the key is how we identify the value. Every item in the Dictionary is

paired with a key, and there’s only one value per key.

In our case, the key is a Vector3 for the tower position, and the value is the Tower

itself. Declare this Dictionary beneath your other private variables:

private Dictionary<Vector3, Tower> towers = new Dictionary<Vector3,

Tower>();

The first type, Vector3, is the key. The second type, Tower, is the value. This means

we store our Tower instances by their position on the stage. Whenever we add a tower,

its key is simply the Tower.transform.position. This works perfectly for us, because we

know that there will only ever be one Tower in the same position at a time – we don’t

plan on allowing users to build towers inside of each other, after all. It also means that

all we need to do to grab a Tower instance at a location is to pass in the location as a key

to our Dictionary. If a tower exists there, we’ll get it. And since we’re neatly rounding the

position of our highlighter to multiples of 10, we can use its position to get the Tower at

its location (if there is one).

Chapter 29 Build Mode

386

Getting and setting from a Dictionary is done with indexing, just like arrays and Lists,

using the [] syntax. Instead of putting an index in, we put a key.

This means that, if we want to get the Tower at our highlighter position, we can

simply type

towers[highlighter.position]

To set a Tower when we build it, we can do

towers[somePosition] = someTower;

Most importantly, we need to know if a tower exists at a location before we allow the

user to build there. To do this, the Dictionary provides us with a method “ContainsKey”.

This method takes a key and returns true if there is a value associated with it or false if

there is not.

To check if a tower exists at “somePosition”, we need only do this:

//Check if the tower exists:

if (towers.ContainsKey(somePosition))

{

 //If it does exist, we can safely grab it:

 var tower = towers[somePosition];

}

But enough theory – let’s just use our Dictionary to see it in action. We’ll implement

the OnStageClicked method, which we already set to call whenever the user left-clicks

while cursorIsOverStage.

In this method, we behave based on whether or not a build button is currently

selected.

If a build button is selected, clicking the stage should attempt to build the tower,

assuming we have enough money to do so.

If no build button is selected, then clicking the stage will select the tower under the

cursor, if there is one. Later, we’ll position the Tower Selling Panel over the selected tower,

but for now, we just need to set “selectedTower”, make sure the Tower Selling Panel is

active (and thus visible), and reset the refund text to read the correct amount of gold:

void OnStageClicked()

{

 //If a build button is selected:

Chapter 29 Build Mode

387

 if (towerPrefabToBuild != null)

 {

 //If there is no tower in that slot and we have enough gold to

build the selected tower:

 if (!towers.ContainsKey(highlighter.position) && gold >=

towerPrefabToBuild.goldCost)

 {

 BuildTower(towerPrefabToBuild,highlighter.position);

 }

 }

 //If no build button is selected:

 else

 {

 //Check if a tower is at the current highlighter position:

 if (towers.ContainsKey(highlighter.position))

 {

 //Set the selected tower to this one:

 selectedTower = towers[highlighter.position];

 //Update the refund text:

 sellRefundText.text = "for " + Mathf.CeilToInt(selectedTower.

goldCost * selectedTower.refundFactor) + " gold";

 //Make sure the sell tower UI panel is active so it shows:

 towerSellingPanel.gameObject.SetActive(true);

 }

 }

}

The BuildTower method is a new one, which we’ll declare in a second. It takes the

Tower prefab to build and the position to build it at.

Since we don’t work with fractions of gold, we call Mathf.CeilToInt when we calculate

the refund amount. The term “Ceil” means “round the fraction up.” If there’s even a tiny

fraction, it gets rounded up – for example, 2.004f becomes 3. “ToInt” implies that we

want the float to get converted to an int when it’s returned. There is an alternative that’s

just “Mathf.Ceil” which returns the value back as a float instead.

Chapter 29 Build Mode

388

Let’s declare BuildTower before we forget:

void BuildTower(Tower prefab,Vector3 position)

{

 //Instantiate the tower at the given location and place it in the

Dictionary:

 towers[position] = Instantiate<Tower>(prefab,position,Quaternion.

identity);

 //Decrease player gold:

 gold -= towerPrefabToBuild.goldCost;

 //Update the path through the maze:

 UpdateEnemyPath();

}

Here we see the assignment of a value in the “towers” Dictionary. We use the

position as a key and assign a Tower reference as the value, for which we Instantiate a

new prefab instance. We subtract the gold cost from our current gold and then call a

method “UpdateEnemyPath”. We’ll declare that method later and implement it in the

next chapter. It’s how we’ll find a path through the maze for our enemies to take.

 OnClick Event Methods
With that in place, we still have no way of building a tower. We need to declare methods

to call when our build buttons are clicked, and then we must hook those methods up to

the OnClick event.

As we established before, any public method with a single parameter of a serializable

type can be called through a UI event. We have two things to do when a build button is

clicked: set the selected button Image component and set the towerPrefabToBuild. Since

we can’t use two parameters for a single method call, we’ll have to split the functionality

into two separate methods:

public void OnBuildButtonClicked(Tower associatedTower)

{

 //Set the prefab to build:

 towerPrefabToBuild = associatedTower;

Chapter 29 Build Mode

389

 //Clear selected tower (if any):

 DeselectTower();

}

public void SetSelectedBuildButton(Image clickedButtonImage)

{

 //Keep a reference to the Button that was clicked:

 selectedBuildButtonImage = clickedButtonImage;

 //Set the color of the clicked button:

 clickedButtonImage.color = selectedBuildButtonColor;

}

To ensure that the Tower Selling Panel disappears and the selected tower clears when

we click a build button, we run DeselectTower() in the first method. We also store the Image

component of the clicked build button. This Image component has its own “color” field

that works in conjunction with the various color fields present in the Button component. By

default, the Image color is white, which doesn’t affect the color of the button. Whatever the

Button defines as the color is what it will be. But by setting this color, we can mix the Image

color with the Button color instead, giving us an easy way to replace the color without

having to set all of the various color fields of the Button component. This way, we don’t

have to remember what to set the colors back to when we want to revert the color to its

normal state. We just set the Image color back to white, and the Button colors take over.

Notice that we’ve made the methods public. We won’t be able to assign them in the

events if they’re private. To be able to access our methods, we need to compile the code

so the methods are detected. Since we’re trying to call methods that we haven’t declared

yet, we’ll get compiler errors when we save and head over to the editor again. To combat

that, we’ll have to declare everything we haven’t declared yet. We’ll declare them as

simple one-line methods for now, with empty curly braces – just to appease the compiler

until we’re ready to code the contents of the methods:

void PositionSellPanel() {}

void UpdateCurrentGold() {}

public void DeselectTower() {}

void DeselectBuildButton() {}

void UpdateEnemyPath() {}

Chapter 29 Build Mode

390

DeselectTower will be called as an event when the user clicks the “X” in the Tower

Selling Panel, so it’s important that we declare it as public. The rest are all private.

With that, we should have no errors left to trudge through when we save and return

to the editor.

For now, all we’ll be setting up is our Arrow Tower build button, since we don’t have

the other towers or their prefabs set up yet. Select the Arrow Tower build button and

head to the bottom of the Button component in the Inspector:

• Where the OnClick event is listed, click the little checkmark in the

bottom right to add an event.

• Beneath the dropdown field with “Runtime” selected, there should

be an Object field set to None. Drag the Player Camera GameObject

from the Hierarchy onto this field.

• The field titled “No Function” will become available. Clicking it,

you’ll see options for GameObject, Transform, Camera, and more.

• Click the Player option. More options will unfold, each one a

variable or method that we can interact with. Select our method

“OnBuildButtonClicked.”

• A field will pop up for the Tower prefab associated with the button.

This is our parameter. Drag the Arrow Tower prefab from the Project

onto this field.

• Again, click the Plus, drag the Player Camera GameObject onto the

first field, and, this time, select Player ➤ SetSelectedBuildButton.

Scroll up in the Inspector and drag the Image component from this

build button, dropping it onto the parameter field.

When you’re done, the OnClick event should look like Figure 29-8.

Figure 29-8. The OnClick event with our two method calls set up to occur

Chapter 29 Build Mode

391

At last, a portion of the functionality is operational. Playing now, you should

be able to click the Arrow Tower button to make it turn green, indicating that it is

selected. Pressing Escape won’t do anything yet, because we haven’t implemented

DeselectBuildButton yet, but clicking the stage should build an instance of the tower.

Let’s implement that method. We declared it already to get the compiler off our back,

but we never filled it with code:

void DeselectBuildButton()

{

 //Null the tower prefab to build, if there is one:

 towerPrefabToBuild = null;

 //Reset the color of the selected build button, if there is one:

 if (selectedBuildButtonImage != null)

 {

 selectedBuildButtonImage.color = Color.white;

 selectedBuildButtonImage = null;

 }

}

It’s simple enough. It’s already being called when we press Escape, through our

BuildModeLogic method. It nulls out the variables associated with the currently selected

build button and reverts the Image component back to the default white color so the

button doesn’t appear selected anymore.

Now let’s implement UpdateCurrentGold:

void UpdateCurrentGold()

{

 //If the gold has changed since last frame:

 if (gold != goldLastFrame)

 //Update the text to match:

 currentGoldText.text = gold + " gold";

 //Keep track of the gold value each frame:

 goldLastFrame = gold;

}

Chapter 29 Build Mode

392

With that in place, building a tower should immediately cause our gold to decrease

in the bottom-left corner.

We still can’t sell towers, though. We need to position the sell panel constantly to

keep it above the selected tower by implementing the PositionSellPanel method:

void PositionSellPanel()

{

 //If there is a selected tower:

 if (selectedTower != null)

 {

 //Convert tower world position, moved forward by 8 units, to screen

space:

 var screenPosition = Camera.main.WorldToScreenPoint(selectedTower.

transform.position + Vector3.forward * 8);

 //Apply the position to the tower selling panel:

 towerSellingPanel.position = screenPosition;

 }

}

Here, we use a new Camera method: WorldToScreenPoint. It takes a position in

world space and converts it to a point on the screen. The position we give is the selected

tower position, but we move it forward by 8 units to place the panel somewhere “above”

the Tower on our screen.

We already set the selected tower when the stage is clicked while a tower is not being

built. With this in place, you should be able to play the game, click the Arrow Tower build

button, click the stage to build one, then press Escape to deselect the build button, and

then click the tower you built to select it. The panel should show above it, showing the

correct amount of gold refund in the text, shown in Figure 29-9.

Chapter 29 Build Mode

393

Since we haven’t set up the Sell or X button to do anything yet, clicking them will be

somewhat disappointing. Let’s change that.

We need to implement the methods we plan on calling with our events. First off is a

method that occurs when the Sell button is clicked:

public void OnSellTowerButtonClicked()

{

 //If there is a selected tower,

 if (selectedTower != null)

 //Sell it:

 SellTower(selectedTower);

}

And, of course, we must implement that SellTower method:

void SellTower(Tower tower)

{

 //Since it's not going to exist in a bit, deselect the tower:

 DeselectTower();

 //Refund the player:

 gold += Mathf.CeilToInt(tower.goldCost * tower.refundFactor);

 //Remove the tower from the dictionary using its position:

 towers.Remove(tower.transform.position);

Figure 29-9. The Tower Selling Panel showing above an Arrow Tower

Chapter 29 Build Mode

394

 //Destroy the tower GameObject:

 Destroy(tower.gameObject);

 //Refresh pathfinding:

 UpdateEnemyPath();

}

Again, we Ceil the refund value and add the money back to the player’s current gold.

To remove the Tower from our “towers” Dictionary, we call the Remove method. It takes

the key of the value we want to remove. Since the key is the position of the associated

tower, all we need to do is reach into the given tower parameter and reference its

“transform.position”.

Then we destroy the tower GameObject.

Since a Tower just got removed from the stage, we need to update the enemy

path again to ensure that it finds the easiest path through the stage, considering a

better route may have just opened up with the loss of that tower. That’s why we call

UpdateEnemyPath.

We also need to code the contents of our method to deselect a tower:

public void DeselectTower()

{

 //Null selected tower and hide the sell tower panel:

 selectedTower = null;

 towerSellingPanel.gameObject.SetActive(false);

}

You know how to add events now. It’s the same thing we did with the build button.

For the Sell button, add an event that calls Player ➤ OnSellTowerButtonClicked.

For the X button, add an event that calls Player ➤ DeselectTower.

Neither of these methods has a parameter to reference, so we just need to point at

the method and be on our way.

With that, the core functionality of Build Mode will be operational:

• Clicking a Build Button will select it, turning it green. For now, the

other three build buttons aren’t wired up with their events because

we haven’t made the tower yet, so they won’t do anything, but the

Arrow Tower will.

Chapter 29 Build Mode

395

• Clicking the stage with a build button selected will build the tower

there, if the player has the money to do so.

• Pressing Escape with a build button selected or a tower selected will

clear the selection.

• Clicking a tower without a build button selected will select the tower,

showing the sell panel above it. Clicking Sell will sell the tower and

refund us, while clicking X will deselect the tower so the panel stops

showing.

• Clicking the build button while a tower is selected will also clear the

tower selection.

• Any change in gold from buying or selling a tower will update the

gold indicator in the bottom left.

In the next chapter, we’ll start working on our enemy pathfinding and spawning for

Play Mode.

 Summary
This was a significant chapter with many new concepts to explore. We learned how to

• Set up a Canvas and add UI elements as child GameObjects. The

drawing order follows the order of element GameObjects from top

to bottom in the Hierarchy: lower elements render on top of higher

elements.

• Attach actions that occur on certain events in a UI element. This gives

us the ability to call a method from a script or component or to set

the value of a property in a component or GameObject. If you want

to call a method through an action, the method must be public and

must have no more than one parameter.

• Perform a raycast to test for a collision from a starting point, moving

along a direction for a maximum amount of distance.

Chapter 29 Build Mode

396

• Convert to a screen position from a world position using a Camera.

• Use a LayerMask to define the layers a raycast can collide with.

• Get a Ray that shoots out of the Camera from a given screen position

within the Camera.

• Use a Dictionary to store objects by key-value pairs.

Chapter 29 Build Mode

397
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_30

CHAPTER 30

Play Mode
With our Build Mode giving the player a means of buying and selling towers, we can now

begin to work on Play Mode. During Play Mode, enemies spawn at the spawn point near

the top of the stage and navigate around towers using pathfinding, traveling toward the

leak point at the bottom of the stage.

In this chapter, we’ll implement pathfinding whenever the player buys or sells a

tower, keeping an updated path from spawn point to leak point. If the path is blocked,

we’ll prevent the player from clicking the Play button until the path becomes unblocked

(they’ll have to sell towers to clear the way).

We’ll implement both the GroundEnemy and FlyingEnemy types, which inherit

from our base Enemy script but provide their own implementations of movement.

GroundEnemy follows the path, and FlyingEnemy just takes a straight shot, going over

the towers.

We’ll also implement a system for spawning the enemies at specific intervals so they

travel in a single file line and increasing their health each level to keep up with the player

building more towers. We’ll make it so enemies “leak” when they reach the leak point,

taking a life from the player.

Finally, we’ll reward the player with gold when the level is finished, or if they’ve lost

all their lives already, we’ll end their session by throwing a panel over the UI that displays

a “game over” message.

 Spawn and Leak Points
Let’s set up the spawn point and leak point at each side of the Stage plane. Our enemies

will be 5 units wide and long, so we’ll make “plates” on the floor that are the same size:

• Create an empty GameObject. Name it Spawn Point. Set its position

to (0, 0, 96).

• Add a child Cube. Set its position to (0, .1, 0) and its size to (5, .2, 5).

https://doi.org/10.1007/978-1-4842-5656-5_30#ESM

398

• Copy-paste the Spawn Point and rename it to Leak Point. Make sure

you’ve selected the root itself, not the Cube inside it. Set its position

to (0, 0, –96) to put it at the bottom side of the stage instead of the top.

• I’ll create Spawn Point and Leak Point materials and apply them to

their corresponding cube, giving the spawn point a cyan color with a

hex value of 92F09A and a red color with a hex value of FF2227 for the

leak point.

Once you’re finished, the stage should look like Figure 30-1 when it’s viewed from

above: just a long, rectangular strip with a square plate on each end.

Figure 30-1. The Stage plane viewed from above, with the Spawn Point at the top
and the Leak Point at the bottom

Chapter 30 play Mode

399

In your Player script, add two reference variables pointing to the Transform of the

spawn point and leak point:

public Transform spawnPoint;

public Transform leakPoint;

Save and return to the editor to set these references so they’re ready to go when we

need them.

 Locking the Play Button
When we implement pathfinding, we’ll be “locking” the Play button if the way from the

spawn point to the leak point is blocked after the player builds a tower. We want a means

of preventing the player from clicking that button, and we want to put some text above

the button explaining the situation.

To do this, we’ll position a Panel over the Play Button, rendering on top of it –

meaning the panel must be lower in the Hierarchy than the Play Button. While this panel

is active, it will block the Play Button. Clicking the button won’t work because the click

will be “stolen” by the panel, which doesn’t do anything when we click it.

Once the panel is in place, we’ll reference it in the Player script, from which we can

activate it if the path is blocked and deactivate it once it’s unblocked. The text message

associated with the panel will be a child of it so that it also gets activated and deactivated.

Let’s create the panel:

Right-click the Canvas and add a Panel. Name it Play Button Lock Panel. It should

already be below the Play Button in the Hierarchy, making it display over the button:

• Set the anchor preset to Bottom Center.

• Size the panel to 240 width and 70 height.

• Center the panel over the Play Button, or just hold Alt and apply the

anchor preset again.

• Change the color field of the panel Image component to a red with a hex

value of FD5757. Change the alpha to .7, making it partially transparent.

The panel will act as something of a screen that lays out over the button, adding a

washed-out red color to it. Figure 30-2 compares the Play Button with and without the

panel showing over it.

Chapter 30 play Mode

400

Now let’s add the text that will show above the Play Button while the panel is active:

• Right-click the Play Button Lock Panel and add a child UI ➤ Text.

Change its size to 340 width by 80 height. Set its Y position to 85.

• Make the text bold with a font size of 22.

• Type this message into the text box in the Text component: “Towers

are blocking enemies from reaching the leak point! Can’t play until a

path is cleared!”

• Set the text color to a pale red with a hex value of FF4949.

When you’re finished, the button should look like Figure 30-3 while the panel is

active. By default, make the panel inactive so it doesn’t show when the game first starts.

Figure 30-2. The Play Button in its normal state (top) vs. when the Lock Panel is
active (bottom)

Figure 30-3. The Play Button while the Play Button Lock Panel is active

Chapter 30 play Mode

401

We’ll be needing a reference pointing to the GameObject of the panel so we can

activate and deactivate it.

Add this reference to the Player script:

[Tooltip("Reference to the sell button lock panel GameObject.")]

public GameObject sellButtonLockPanel;

And of course, don’t forget to return to the editor and set the reference.

 Pathfinding Setup
Unity provides options for pathfinding and associated AI, like local avoidance (AI that

prevents navigating objects from bumping into each other while moving toward their

goal). It even has solutions for dealing with slopes and open space that can be jumped

over. We don’t need this sort of functionality for our game, though. We just want to find

a path around our towers on our flat stage, no jumping or slopes involved, and we want

to move our enemies with our own scripts. Luckily, the fancy features don’t get in our

way or force us to use them. We’ll be able to call a method that calculates a path from

point A to point B and gives us the resulting points along the path in sequence.

There are some steps we’ll need to take to set up pathfinding for our project. Firstly,

we need to mark the Stage as Navigation Static. This is done in the Navigation window,

which you can open through Window ➤ AI ➤ Navigation on the top bar. Click the Object

tab at the top of the Navigation window and select the Stage in the Hierarchy window.

This should change the Navigation window to show a checkbox field titled “Navigation

Static” for the Stage, shown in Figure 30-4. Check that box.

Figure 30-4. Navigation window while selecting the Stage. The Navigation Static
checkbox has been ticked

Chapter 30 play Mode

402

This marks the Stage as a static part of the world that we can find a path over. To

update the navigation data after making a change like this, we must go to the Bake tab in

the Navigation field, shown in Figure 30-5.

This tab displays information about the size of the “baked agent.” An agent is the

term for an object that’s using the navigation. They are resembled as cylinders:

• Agent Radius is the distance from the center of the cylinder to the

edge. Since our enemies are 5 units wide and long, a radius of 2.5

would make the agents the same size as the enemies. We’ll set it

instead to a value of 3 to give a little extra space between the enemies

and the towers.

• Agent Height is the number of units tall the cylinder is. Our enemies

are 8 units tall.

Figure 30-5. Bake tab of the Navigation window

Chapter 30 play Mode

403

• Max Slope is the highest angle of a slope the agent will be able to

walk up.

• Step Height is the maximum height an agent can step up or down.

The latter three values don’t really mean anything to us, since we have such a basic

use case.

Once you’ve set the values, click Bake. Unity will generate a NavMesh asset

resembling the navigation data associated with the scene. This will be located in the

Project in a folder named after the scene.

The baked NavMesh will show in the Scene view as a light-blue overlay on the Stage

as long as the Navigation window is around. This shows us the walkable areas for our

agents. The center of the agent can walk anywhere in the highlighted space. Since it’s

the center of the agent, it will be spaced away from the edges by an amount equal to

the agent radius field. This ensures that the agent will only be allowed to go into places

which won’t cause it to stretch outside the walkable area.

We still haven’t defined our towers as obstacles that block navigation. The navigation

system doesn’t automatically qualify any collider as an obstacle. We have to add a

NavMeshObstacle component to our towers to specify them as an obstacle that should

be navigated around:

• Open the Arrow Tower prefab by double-clicking it in the Project

window and add a NavMeshObstacle component to its root

GameObject.

• Set the center to (0, 3, 0) and the size to (10, 6, 10).

• Check the “Carve” field. This field resembles whether or not the

NavMeshObstacle should carve out a space from the NavMesh. If this

was set to false, the obstacle would not affect the NavMesh itself, but

would be avoided by any agents using Unity’s built-in NavMeshAgent

component. We aren’t using the component – we’re just finding a

path on the NavMesh. This means the obstacle won’t do anything for

us unless we enable the Carve feature.

• Save the prefab and return to the scene.

We’ll do this for all of our other tower types as well; otherwise, enemies will navigate

right through them.

Chapter 30 play Mode

404

With that in place, you can play the game, build some arrow towers, and then switch

to the Scene view while the Navigation window is open somewhere in your editor. You

should see the NavMeshObstacle components doing their job, carving out a space in the

NavMesh, as shown in Figure 30-6.

 Finding a Path
In the previous chapter, we declared an empty method called UpdateEnemyPath and ran

it whenever a tower was built or sold. This is where we’ll do our pathfinding.

Because the path relates to ground enemies, we’re going to declare the path as a

static variable in the GroundEnemy script. You’ll recall from Chapter 9 that a static

variable is a variable that is tied not to each instance of the class, but to the class type

itself. With static variables, one instance of the variable exists for the whole class, and any

instance of the class which uses this variable will be pointing to the same thing.

Figure 30-6. Some arrow towers are placed on the Stage, causing the walkable
area of the NavMesh to wrap around them

Chapter 30 play Mode

405

A common example of how one might use this is to create a count of the total

number of instances of a class that have been created:

public class ExampleScript : MonoBehaviour

{

 public static int instancesCreated = 0;

 void Start()

 {

 instancesCreated += 1;

 }

}

The variable “instancesCreated” is given the “static” keyword. In the Start method,

we add 1 to that variable. This will make each script instance add 1 to the total count,

and since the variable is static, they’re all pointing to the same thing.

Since they are tied to the class type itself, not its individual instances, static

variables can be accessed by reaching into the class name. For example, a different

script could grab the instancesCreated at any moment by referencing “ExampleScript.

instancesCreated”.

Let’s put this to practice. Create a GroundEnemy script. Open it and make it inherit

from our base Enemy class, so the class declaration line reads like this:

public class GroundEnemy : Enemy

To access necessary navigation-related methods, we’ll need to write this “using” at
the top of the script file:

using UnityEngine.AI;

This gives us access to the NavMeshPath class, which is what we will use to store a

path given to us by the navigation system. Declare this variable inside the class script:

public static NavMeshPath path;

This is our static variable pointing to the path that our ground enemies will take.

Since they’ll all take the same path anyway, it wouldn’t make sense to give them an

instanced (non-static) variable that has to be set for each ground enemy when it is

Instantiated. With our static variable, we can set the path up in our Player script, and our

GroundEnemy instances will have access to it at all times to begin moving along the path

as soon as they spawn.

Chapter 30 play Mode

406

The NavMeshPath needs to be initialized to an instance by calling the constructor,

but we can’t do it right where it is in the script class declaration. It must be done

from Start. We’ll do it from the Player script Start method, since we won’t have any

GroundEnemy instances starting up before the path is needed – for example, the player

will be building towers and updating the path before the first enemy ever spawns.

We’ll also need to update the path once at the start, before any enemies spawn, to

ensure that if the player starts the level without building any towers, the path will still be

set up to go from the spawn point to the leak point.

Add these two lines in the Player Start method:

GroundEnemy.path = new NavMeshPath();

UpdateEnemyPath();

Since the variable is static, we access it through the class name from anywhere we

like. We assign a new instance of the NavMeshPath here, just once at the start of the

game. If we neglect this step, we’ll get a compiler error when we try to find the path

because the NavMeshPath can’t be null.

Now add the “using UnityEngine.AI;” line to the Player script as well so we

can access the NavMesh class. This class has the method “CalculatePath”, which is a

simple means of pathfinding from one point to another and storing the path in a given

NavMeshPath instance.

We need to call this method from the UpdateEnemyPath method that we declared

earlier. However, if we simply call the method there, we’ll run into a problem. Even

though we always call UpdateEnemyPath after we Instantiate a newly bought tower

or Destroy a sold tower, the effects of creating and destroying the towers don’t always

happen immediately. It might take until next frame for our NavMeshObstacle to start

or stop affecting the NavMesh. Thus, we can’t just run the CalculatePath method

immediately, because it might still calculate the path before the obstacle is added or

removed. We need to do it shortly after the UpdateEnemyPath method is called.

To accomplish this, we’ll declare a PerformPathfinding method:

void PerformPathfinding()

{

 //Pathfind from spawn point to leak point, storing the result in

GroundEnemy.path:

 NavMesh.CalculatePath(spawnPoint.position, leakPoint.position,

NavMesh.AllAreas, GroundEnemy.path);

Chapter 30 play Mode

407

 if (GroundEnemy.path.status == NavMeshPathStatus.PathComplete)

 {

 //If the path was successfully found, make sure the lock panel is

inactive:

 sellButtonLockPanel.SetActive(false);

 }

 else //If the path is blocked,

 {

 //Activate the lock panel:

 sellButtonLockPanel.SetActive(true);

 }

}

And then Invoke that method to occur in a brief moment in the UpdateEnemyPath

method:

void UpdateEnemyPath()

{

 Invoke("PerformPathfinding",.1f);

}

We call NavMesh.CalculatePath, as mentioned before. The first parameter is the start

point of the search, and the second parameter is the end point of the search. We use the

position of our spawn point and leak point. The third parameter is asking for an area

mask. This is like a layer mask, but it corresponds to area types that we can set up in the

Navigation window. These types allow you to specify different types of ground, each one

with its own “cost” value. The pathfinding operation will account for the cost of areas

when trying to find the ideal path. This can be used to define areas of ground that are

walkable, but more costly to walk on than others – for example, ground that burns those

who walk on it would have a high cost, and thus, the pathfinding might choose to go

around it rather than cutting through it. We don’t have a need for this feature, so we just

reference the static member NavMesh.AllAreas area mask to fill this parameter. Lastly,

we give GroundEnemy.path as the path to fill with data.

Afterward, we can reference the path “.status” member, which is an enum

“NavMeshPathStatus” that will depict whether or not the path made it to the destination.

If it did, the path will be PathComplete. If the path could not make it all the way to the

end point, it will be PathPartial.

Chapter 30 play Mode

408

We activate or deactivate the sell button lock panel based on whether or not the path

was complete.

At that, you should be able to play the game and see the effects. If you build a line of

towers blocking the path, the lock panel will activate, preventing you from pressing Play,

as depicted in Figure 30-7.

Selling one of these towers to unblock the way will cause the button to unlock.

Figure 30-7. The Play button has locked because we have blocked the way with
our towers

Chapter 30 play Mode

409

 Play Mode Setup
The Play button will start the level when it is pressed and begin spawning enemies. We’ll

spawn one enemy at a time until a certain number of enemies have been spawned.

Enemies will either die to towers or leak by reaching the leak point. Either way, they

get destroyed. Once all enemies have finished spawning and no enemies are left in the

game, the level is complete. If the player has no health left, they’ve lost, so we’ll toggle

on a panel that covers the screen, telling them how disappointing they are. If not, we just

return to build mode, give the player money, and increase the current level by 1.

Let’s declare the relevant variables for all of this logic at once in the Player script. We’ll

make a new heading, down beneath the Build Mode heading, and add these variables:

//Play Mode:

[Header("Play Mode")]

[Tooltip("Reference to the Build Button Panel to deactivate it when play

mode starts.")]

public GameObject buildButtonPanel;

[Tooltip("Reference to the Game Lost Panel.")]

public GameObject gameLostPanel;

[Tooltip("Reference to the Text component for the info text in the Game

Lost Panel.")]

public Text gameLostPanelInfoText;

[Tooltip("Reference to the Play Button GameObject to deactivate it in play

mode.")]

public GameObject playButton;

[Tooltip("Reference to the Enemy Holder Transform.")]

public Transform enemyHolder;

[Tooltip("Reference to the ground enemy prefab.")]

public Enemy groundEnemyPrefab;

[Tooltip("Reference to the flying enemy prefab.")]

public Enemy flyingEnemyPrefab;

[Tooltip("Time in seconds between each enemy spawning.")]

public float enemySpawnRate = .35f;

Chapter 30 play Mode

410

[Tooltip("Determines how often flying enemy levels occur. For example if

this is set to 4, every 4th level is a flying level.")]

public int flyingLevelInterval = 4;

[Tooltip("Number of enemies spawned each level.")]

public int enemiesPerLevel = 15;

[Tooltip("Gold given to the player at the end of each level.")]

public int goldRewardPerLevel = 12;

//The current level.

public static int level = 1;

//Number of enemies spawned so far for this level.

private int enemiesSpawnedThisLevel = 0;

//Player's number of remaining lives; once it hits 0, the game is over:

public static int remainingLives = 40;

The first chunk of variables are all references to various things, which we’ll need to

set up now:

• buildButtonPanel should be set to the Build Button Panel in our

Canvas so we can deactivate and activate it accordingly when

entering play mode or build mode.

• gameLostPanel will be a UI panel we’ll create that lays over the

screen when the player has lost all their lives. We’ll create it in a bit.

• gameLostPanelInfoText is a text element inside the Game Lost

Panel that tells us how many lives we had left (so we know how badly

we lost) and what level we lost at. We’ll have to set the text to make it

have the proper information.

• playButton points to the Play Button. Like the buildButtonPanel,

we’ll be deactivating it in play mode to hide it and reactivating it

when build mode begins again.

• enemyHolder should be set to a new, empty GameObject named

Enemy Holder. We’ll use this as the parent to all enemies; and, when

all enemies are destroyed, we know the level has ended.

Chapter 30 play Mode

411

• groundEnemyPrefab and flyingEnemyPrefab will be set when we

create the associated prefabs for enemies.

The remaining variables are explained in their tooltips. We have a means of changing

the time between each enemy spawning, how many ground levels must pass before a

flying level occurs, how many enemies will spawn in each level, and how much gold

the player earns at the end of the level, a static variable for the current level and the

lives remaining, and a private variable that we’ll use to track how many enemies we’ve

spawned so we know when to stop.

Let’s create the Game Lost Panel so it’s ready to use when we need it:

• Add an instance of our Panel prefab as a child to the Canvas. Name

it Game Lost Panel. It should automatically cover the whole Canvas.

If not, open the anchor presets dropdown, hold Alt, and click the

bottom-right “Stretch” option.

• Add a child Text element to the Game Lost Panel. It should be

centered on the panel. Name it Game Over Text. Give it a width of

340. Make it bold, center and justify it, give it a font size of 48, set

the Vertical Overflow field to Overflow, and give it a color with a hex

value of FFA800.

• Add another child Text element to the Game Lost Panel. Name it

Info Text. Give it a Y position of –182 and size of 340×274. Center it

horizontally and align it to the top. Give it 24 font size and a hex value

of FFC044. Clear the text out; we’ll set it through script.

Once you’ve finished, deactivate the Game Lost Panel by default and drag and drop a

reference to it and the Info Text into your Player variables. Make sure it’s the lowest child

of the Canvas, since we want it to draw over the top of everything else.

Again, make sure you’ve set up your Enemy Holder (just an empty GameObject) and

set the reference to it, as well as the Build Button Panel.

First off, let’s declare play mode logic for our Update method. We’ll do much the

same thing we did with the BuildModeLogic method. Locate this portion of your Update

method:

//Run build mode logic if we're in build mode:

if (mode == Mode.Build)

 BuildModeLogic();

Chapter 30 play Mode

412

And add an “else” that calls a PlayModeLogic method instead:

//Run build mode logic if we're in build mode:

if (mode == Mode.Build)

 BuildModeLogic();

else

 PlayModeLogic();

Beneath all of your build mode–related methods in the Player script, declare the

PlayModeLogic:

public void PlayModeLogic()

{

 //If no enemies are left and all enemies have already spawned

 if (enemyHolder.childCount == 0 && enemiesSpawnedThisLevel >=

enemiesPerLevel)

 {

 //Return to build mode if we haven't lost yet:

 if (remainingLives > 0)

 GoToBuildMode();

 else

 {

 //Update game lost panel text with information:

 gameLostPanelInfoText.text = "You had " + remainingLives + "

lives by the end and made it to level " + level + ".";

 //Activate the game lost panel:

 gameLostPanel.SetActive(true);

 }

 }

}

To detect when the level is finished, we use the Enemy Holder, checking its

Transform.childCount member, which tells us how many children it has. If it has no

children and we’ve already spawned all of the enemies we plan on spawning for that

level, we count the level as finished.

If we haven’t run out of lives yet, we run GoToBuildMode to switch back to build

mode. We’ll declare it soon.

Chapter 30 play Mode

413

If we have run out of lives, the Game Lost Panel will ruin our fun by sprawling across

our screen and preventing us from seeing anything or hitting any buttons.

Let’s declare a GoToPlayMode to define the logic that occurs when it’s time to switch

from build mode to play mode:

void GoToPlayMode()

{

 mode = Mode.Play;

 //Deactivate build button panel and play button:

 buildButtonPanel.SetActive(false);

 playButton.SetActive(false);

 //Deactivate highlighter:

 highlighter.gameObject.SetActive(false);

}

It’s pretty self-explanatory: we don’t want the highlighter or build button panel to

show during play mode, we just deactivate them.

Now, let’s switch back to build mode from play mode, which we already scripted to

occur when the level ends and we still have lives left:

void GoToBuildMode()

{

 mode = Mode.Build;

 //Activate build button panel and play button:

 buildButtonPanel.SetActive(true);

 playButton.SetActive(true);

 //Reset enemies spawned:

 enemiesSpawnedThisLevel = 0;

 //Increase level:

 level += 1;

 gold += goldRewardPerLevel;

}

Chapter 30 play Mode

414

We reactivate the build button panel. The highlighter will reactivate itself on its own

when we mouse over the stage again, as it always does in build mode, so we needn’t

worry about it. We also reset and increment the relevant variables.

Now, declare a StartLevel method that we’ll hook up to our Play button OnClick

event:

public void StartLevel()

{

 //Switch to play mode:

 GoToPlayMode();

 //Repeatedly invoke SpawnEnemy:

 InvokeRepeating("SpawnEnemy",.5f,enemySpawnRate);

}

Of course, set it up in the Play button to make sure it gets called when the button is

clicked. We’ve done this in the previous chapter with our build button and tower selling

button.

The first line of code is obvious – switch to play mode – but the second line is new

to us.

 Spawning Enemies
To repeatedly spawn an enemy, we’ll use this new form of invoking: the InvokeRepeating

method. This method will keep invoking a method at a given rate. It takes three

parameters:

• The method name of the method to invoke, as a string.

• The initial wait time in seconds. The first call takes this long to occur

after we call InvokeRepeating.

• The interval time in seconds. After the first call occurs, this is the

time between each call thereafter.

InvokeRepeating will keep invoking our method until we cancel it by calling the

CancelInvoke method. We can call CancelInvoke with no parameters to cancel all

ongoing method invokes for the script, or we can give a string parameter for the name of

a single method we want to stop invoking.

Chapter 30 play Mode

415

Our SpawnEnemy method will spawn either the ground enemy prefab or the flying

enemy prefab based on the level, using an operator we haven’t used yet: the “%” symbol,

called a modulus operator. This operator takes a number value on either side. The

number on the left will continuously be subtracted from by the number on the right until

the remainder is less than the number on the right. Then, that remainder is returned.

Let’s see it in action and declare the method we’re invoking:

void SpawnEnemy()

{

 Enemy enemy = null;

 //If this is a flying level

 if (level % flyingLevelInterval == 0)

 {

 enemy = Instantiate(flyingEnemyPrefab,spawnPoint.position +

(Vector3.up ∗ 18),Quaternion.LookRotation(Vector3.back));
 }

 else //If it's a ground level

 {

 enemy = Instantiate(groundEnemyPrefab,spawnPoint.

position,Quaternion.LookRotation(Vector3.back));

 }

 //Parent enemy to the enemy holder:

 enemy.trans.SetParent(enemyHolder);

 //Count that we spawned the enemy:

 enemiesSpawnedThisLevel += 1;

 //Stop invoking if we've spawned all enemies:

 if (enemiesSpawnedThisLevel >= enemiesPerLevel)

 {

 CancelInvoke("SpawnEnemy");

 }

}

Chapter 30 play Mode

416

We declare a null variable for the enemy we plan on spawning, and then we spawn

either a ground or flying enemy prefab, assigning the new enemy to that variable. As

you may recall, the Instantiate method takes arguments in the order of prefab to spawn,

position to spawn it at, and rotation to spawn it with. Our flying enemies are spawned

at the spawn point, plus 18 units in the global up direction. We also make sure to make

enemies look at the global back direction, which points them toward the leak point.

Our equation to ask “Is this a flying level?” is “level % flyingLevelInterval”. The

flyingLevelInterval will remain at 4 by default all the time, so let’s observe the behavior as

the “level” increases.

For levels 1, 2, and 3, the left-side number in our modulus operator is less than 4, so

the remainder is just the same as the left-hand value. The result is 1, 2, and 3. We are not

on an air level, because the result is not 0.

Once we hit level 4, the left-side number is now equal to the right-hand value, so the

right-hand value is subtracted from it once, leaving a remainder of 0. That means it is a

flying level.

Then the level becomes 5, 6, and 7. For these, the right-hand value (4) can still be

subtracted only once before the remainder is too low to subtract any more, so it gets

returned. Again, we get 1, 2, and 3. Then we hit 8, and the right-hand value is subtracted

twice now, leaving 0 again – another flying level.

And so on, the flying levels will come at levels 4, 8, 12, 16, and so on, simply by

automatically spawning a different prefab when the level is a multiple of 4 (or whatever

the variable is set to).

Aside from that, the method then makes the new enemy a child of the Enemy Holder,

which is how we’ll track how many enemies are left alive. Then we count +1 spawned

enemy and cancel the repeating invoke with the CancelInvoke call if we’ve reached the

target number of enemies spawned.

Now we need to code the GroundEnemy and FlyingEnemy to make them function

correctly.

Before we do this, let’s change the way they set their health. In the base Enemy script,

we’ll give them a healthGainPerLevel variable, declared under their maxHealth:

public float healthGainPerLevel;

We’ll change the Start method to set the max health to the base value it is given in

the prefab, plus the health gained per level, which, of course, we must multiply by the

current level:

Chapter 30 play Mode

417

protected virtual void Start()

{

 maxHealth = maxHealth + (healthGainPerLevel ∗ (Player.level - 1));
 health = maxHealth;

}

We multiply by the level – 1 so that at level 1, the max health is the base value given in

the prefab, and only levels won after that will add to enemy health.

While we’re at it, we can also declare a method we’ll be using in a bit: a Leak

method for the base Enemy class that we’ll call from our lower classes when they reach

the leak point.

Declare this in the Enemy class:

public void Leak()

{

 Player.remainingLives -= 1;

 Destroy(gameObject);

}

We’ll take away a life from the player, referencing the static variable to do so. We’ll

also destroy the enemy.

 Enemy Movement
Let’s make our GroundEnemy movement, and then we’ll work on our FlyingEnemy. We

already made our GroundEnemy script earlier, but we never implemented an Update

method to make it move.

First, we’ll need some variables. Below the static path variable we declared earlier,

add these too:

public float movespeed = 22;

private int currentCornerIndex = 0;

private Vector3 currentCorner;

Chapter 30 play Mode

418

private bool CurrentCornerIsFinal

{

 get

 {

 return currentCornerIndex == (path.corners.Length - 1);

 }

}

The NavMeshPath stores the path as an array “.corners”. Each “corner” in the array

is just a Vector3 for a point along the path. To make them move along the path, we just

need to move them along these points, from index 0 to the last index in the array. We’ll

store an int for the current index of the corner we’re in, as well as a Vector3 for the

current corner so we don’t have to get it from the array every time.

We also declare a simple property that provides a shorthand to test if the current

corner is the last one in the “path.corners” array.

We’ll change our Start method to add a line that initializes the current corner as the

first one in the array:

protected override void Start()

{

 base.Start();

 currentCorner = path.corners[0];

}

Then we’ll implement an Update method to move and point toward the current

corner. Once we’ve reached the corner, we check the CurrentCornerIsFinal property

to see if we just reached the last corner in the array. If so, we Leak(). If not, we

GetNextCorner() which we’ll also declare before the Update method:

private void GetNextCorner()

{

 //Increment the corner index:

 currentCornerIndex += 1;

 //Set currentCorner to corner with the updated index:

 currentCorner = path.corners[currentCornerIndex];

}

Chapter 30 play Mode

419

void Update()

{

 //If this is not the first corner,

 if (currentCornerIndex != 0)

 //Point from our position to the current corner position:

 trans.forward = (currentCorner - trans.position).normalized;

 //Move towards the current corner:

 trans.position = Vector3.MoveTowards(trans.position,currentCorner,moves

peed ∗ Time.deltaTime);

 //Whenever we reach a corner,

 if (trans.position == currentCorner)

 {

 //If it's the last corner (positioned at the path goal)

 if (CurrentCornerIsFinal)

 Leak();

 else

 GetNextCorner();

 }

}

The rest of it we’ve seen before already. The reason we only point at the corner if it

is not the first one is because the first corner will be at the position of the spawn point,

where we are already. Trying to point at a position that’s exactly where we already are can

cause some odd flipping behavior, so we avoid that with the first “if” in the Update call.

To implement the GroundEnemy, just use our test enemy from before, but remove

the Enemy component and add a GroundEnemy instead.

If you need to make it from scratch

• Create an empty GameObject named Ground Enemy. Change it to

the Enemy layer.

• Add a Box Collider sized (5, 6, 5) with a center of (0, 3, 0).

• Add a kinematic Rigidbody.

• Add a Cube sized and positioned the same as the box collider: a scale

of (5, 6, 5) and a center of (0, 3, 0).

Chapter 30 play Mode

420

• Add a GroundEnemy script instance and set its Max Health to 12,

Health Gain Per Level to 2, and Movespeed to 22. Set the “trans”

reference to the root Transform, but set the “projectileSeekPoint”

reference to the child Cube Transform.

• Apply the Enemy material with a hex value of DD1717.

Then, create a prefab for the Ground Enemy, and don’t forget to reference that

prefab in the Player script’s groundEnemyPrefab variable.

Let’s implement flying enemies while we’re at it. They’ll be even simpler than the

ground enemies. Create a FlyingEnemy script:

public class FlyingEnemy : Enemy

{

 [Tooltip("Units moved per second.")]

 public float movespeed;

 private Vector3 targetPosition;

 protected override void Start()

 {

 base.Start();

 //Set target position to the last corner in the path:

 targetPosition = GroundEnemy.path.corners[GroundEnemy.path.corners.

Length - 1];

 //But make the Y position equal to the one we were given at start:

 targetPosition.y = trans.position.y;

 }

 void Update()

 {

 //Move towards the target position:

 trans.position = Vector3.MoveTowards(trans.position,targetPosition,

movespeed ∗ Time.deltaTime);

Chapter 30 play Mode

421

 //Leak if we've reached the target position:

 if (trans.position == targetPosition)

 Leak();

 }

}

This makes for a similar but simplified script. It simply uses the last corner in

the GroundEnemy.path as its “targetPosition”, set once on Start. It overrides the

targetPosition.y, which would normally be on the ground level, to instead set it to the

Y position that the Player script spawned the FlyingEnemy at. This keeps our Y position

unchanged when our Update method moves us toward the targetPosition.

Once it reaches the target position, it calls Leak().

Setting up the prefab is similar to the ground enemy, but we’ll add a second cube to

act as somewhat crude-looking “wings”:

• Create an empty GameObject named Flying Enemy and set its layer

to Enemy.

• Add a Box Collider with a size of (3, 3, 3), add a kinematic Rigidbody,

and add a FlyingEnemy script. Set the “trans” reference and the

“projectileSeekPoint” both to the root Transform. Set Max Health to

8, Health Gain Per Level to 3, and Movespeed to 19.

• Add a Cube child named Body. Remove its collider and set its scale to

(3, 3, 3).

• Add another Cube as a child of Body. Name it Wings, remove its

collider, and set its scale to (3, .15, 1)

• Apply the Enemy material to both cubes.

When you’re done, create a prefab out of the Flying Enemy and delete the instance

from the scene. Your enemy should look something like a plus symbol, shown in

Figure 30-8.

Chapter 30 play Mode

422

With both prefabs referenced, test out our newly implemented features! Figure 30-9

shows a depiction of a ground level and flying level.

Figure 30-8. The Flying Enemy

Figure 30-9. A level with arrow towers firing at ground enemies (left) next to a
level with arrow towers firing at flying enemies (right)

Chapter 30 play Mode

423

Figure 30-10 shows the Game Over screen when we’ve lost. It waits until all enemies

are gone to end the game, so that the user can see how many lives they would’ve needed

to stay in the game.

 Summary
This chapter got our core mechanics in place at last. We learned how to run basic

pathfinding for our ground enemies whenever a tower is built or sold and how to lock

the Play button from being pressed by rendering a panel over it when pathfinding fails

to find a route through the maze. We also implemented both of our enemy types and

completed the game loop of transitioning from build mode to play mode and then

back again.

Some points to remember are as follows:

• Meshes in your game world that you want to pathfind over must be

marked as Navigation Static through the Navigation window. You’ll

need to bake the settings in the Navigation window after making

changes.

Figure 30-10. Game Over screen, depicting a loss with –10 lives at level 5

Chapter 30 play Mode

424

• NavMeshObstacle components with the “Carve” checkbox ticked

will carve a hole out of the NavMesh where they are, preventing the

pathfinding from going over that space.

• A static variable in a class will be a single instance attached to the

class itself, rather than each instance of the class having their own

copy of the variable.

• NavMesh.CalculatePath calculates a path between two points. It

takes four parameters: the start point of the search, the end point of

the search, an area mask resembling which areas are valid to walk

over, and a NavMeshPath to fill with the path data.

• NavMeshPath.status returns a NavMeshPathStatus enum that can

be used to determine if a path made it all the way to the end point. It

will be “.PathComplete” if it reaches the end point or “.PathPartial” if

the way was blocked and it could not reach the end.

• InvokeRepeating can be used within a script to continuously Invoke

a script method at a given rate, only stopping when CancelInvoke is

called.

Chapter 30 play Mode

425
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_31

CHAPTER 31

More Tower Types
At last, it’s time to implement our final three tower types: Cannon Towers, for which we’ll

need to implement a projectile that arcs; Hot Plates, which will be surprisingly easy; and

Barricades, which will be even easier yet.

 Arcing Projectiles
Our Cannon Tower projectile is intended to curve downward as it travels toward its

mark. It’s far from a grand flourish, but it will give a little extra sense of weight to our

so- called cannonballs.

The projectile will use its “speed” value to determine how fast it travels toward its

target on the X and Z axes – outward from the tower. Its Y axis will be handled separately,

following a curve from the spawn position to the floor over the duration it takes to reach

the destination on the X and Z axes.

Let’s create a new ArcingProjectile script. Make it inherit from Projectile:

public class ArcingProjectile : Projectile

And start off with these variables:

public Transform trans;

[Tooltip("Layer mask to use when detecting enemies the explosion will

affect.")]

public LayerMask enemyLayerMask;

[Tooltip("Radius of the explosion.")]

public float explosionRadius = 25;

[Tooltip("Curve that should go from value 0 to 1 over 1 second. Defines

the curve of the projectile.")]

public AnimationCurve curve;

https://doi.org/10.1007/978-1-4842-5656-5_31#ESM

426

//Position we're aiming to travel to. Will always have a Y value of 0.

private Vector3 targetPosition;

//Our position when we spawned.

private Vector3 initialPosition;

//Total distance we'll travel from initial position to target position,

not counting the Y axis.

private float xzDistanceToTravel;

//Time.time at which we spawned.

private float spawnTime;

private float FractionOfDistanceTraveled

{

 get

 {

 float timeSinceSpawn = Time.time - spawnTime;

 float timeToReachDestination = xzDistanceToTravel / speed;

 return timeSinceSpawn / timeToReachDestination;

 }

}

I’ll let the comments and tooltips speak for themselves and explain just the stuff

that’s new.

The AnimationCurve is a built-in class that’s going to resemble the curve the

projectile takes to reach its destination. Unity has a special little popup editor that lets us

set up the curve ourselves using visual tools. We can then reference our AnimationCurve

in our code and call its Evaluate method, passing in a float. That float resembles the time,

anywhere from the start of the curve to the end, and the method returns the value that

the curve has at that point. You’ll see how the curve looks in a moment, and we’ll go over

how it works in more detail. We’ll be using it to resemble the arc the projectile takes.

The FractionOfDistanceTraveled member is a shorthand means of getting a value

from 0 to 1 resembling how much of the distance toward our target we have traveled

so far. timeSinceSpawn is the number of seconds that have passed since the projectile

spawned. timeToReachDestination is the total distance we need to travel (X and Z axes

only) divided by the units we travel per second, which results in the number of seconds it

Chapter 31 More tower types

427

takes to reach our target position. Thus, we divide the time since we spawned by the time

we expect to take to reach the destination.

We’ll override the protected abstract OnSetup method given in Projectile. As we

established before, this method is automatically called after the Projectile is set up with

its speed, damage, and target enemy variables. We’ll use it to set up the private variables

we’ll use to get things done:

protected override void OnSetup()

{

 //Set initial position to our current position, and target position to

the target enemy position:

 initialPosition = trans.position;

 targetPosition = targetEnemy.trans.position;

 //Make sure the target position is always at a Y of 0:

 targetPosition.y = 0;

 //Calculate the total distance we'll need to travel on the X and Z

axes:

 xzDistanceToTravel = Vector3.Distance(new Vector3(trans.position.x,

targetPosition.y, trans.position.z), targetPosition);;

 //Mark the Time.time we spawned at:

 spawnTime = Time.time;

}

To set xzDistanceToTravel, we use a simple Vector3.Distance call, but since we

don’t want the Y position of the projectile to play into the equation, we just create a new

Vector3, giving it the X and Z values from our Transform, but leaving its Y position at 0.

Since the targetPosition Y value is set to 0 just beforehand, we know that they’re both

equal on the Y axis, meaning it won’t affect the distance between them.

Save that code and head to the Unity editor. Let’s set up the projectile that will hold

the script and check out this AnimationCurve member while we’re at it:

• Create a Sphere and name it Cannon. Set its scale to (4, 4, 4) and put

it in the Projectile layer.

Chapter 31 More tower types

428

• Remove the Sphere Collider component and attach an

ArcingProjectile script component. Set the “trans” reference to the

Transform component. For the Enemy Layer Mask, check only the

Enemy layer and leave the others unchecked.

• Create a material for it if you want, or just use the Arrow material to

make it the same color as the Arrow Tower projectiles.

When you click the “curve” field, a popup Curve editor will show. Inside this editor a

graph of sorts is visible, which is where the curve will be laid out – although there won’t

be a curve at all by default. The buttons on the bottom of the editor are presets which can

be clicked to fill the graph in with a curve. Click the third preset from the left so that your

curve editor looks like Figure 31-1.

Figure 31-1. The Curve editor with the third preset selected

Chapter 31 More tower types

429

The horizontal axis (left to right) resembles time, and the vertical axis (up and

down) resembles the value. As you can see, each axis has number values on the bottom,

showing what the time or value is at that point on the axis.

The bottom left is 0 value and 0 time. The top right is 1 value and 1 time.

To make use of the curve, we simply pass in a time and get back the value

corresponding to that time. The equivalent of this, in person, is to place your finger

somewhere on the bottom axis, like on the 0.5 mark (halfway through the curve). Then,

trace your finger up until it touches the green line of the curve. After that, just trace your

finger straight left until you hit the vertical axis. Whatever the value is at that point, that’s

your result.

That’s what the AnimationCurve.Evaluate method does: we give it a float parameter

for the time, and it gives us the corresponding value.

That preset is exactly the value we want for our curve. We’ll use the Evaluate return

value as the fraction to Lerp the Y value of the projectile toward the Y value of the target

position (which will be 0, the floor level). It will start at 0 (the bottom left of the curve),

and over time, it will raise to a value of 1.

Don’t forget to create a prefab out of the Cannon and remove it from the scene. Now

let’s declare our Update method and see how this Lerp call is going to work:

void Update()

{

 //First, we'll move along the X and Z axes.

 //Get the current position and zero out the Y axis:

 Vector3 currentPosition = trans.position;

 currentPosition.y = 0;

 //Move the current position towards the target position by 'speed' per

second:

 currentPosition = Vector3.MoveTowards(currentPosition, targetPosition,

speed * Time.deltaTime);

 //Now set the Y axis of currentPosition:

 currentPosition.y = Mathf.Lerp(initialPosition.y, targetPosition.y,

curve.Evaluate(FractionOfDistanceTraveled));

 //Apply the position to our Transform:

 trans.position = currentPosition;

Chapter 31 More tower types

430

 //Explode if we've reached the target position:

 if (currentPosition == targetPosition)

 Explode();

}

First, we get the position of our Transform in a new Vector3. We’ll apply this

value to the Transform after we’ve modified it. We set its Y position to 0 and then use

MoveTowards to travel only on the X and Z axes toward the target position.

Then we handle the Y axis. Each frame, we set our Y position to the result of a Lerp

call starting at the initial Y position (when we first spawned) and moving toward the

target Y position (the floor). Thus, we want the fraction (third parameter) to start at 0, our

position, and raise to 1 (the floor position) over the duration it takes to reach the target

position. If we just passed in FractionOfDistanceTraveled, it wouldn’t curve, though. It

would take a straight line. So we pass that value into the curve.Evaluate method. With

the time going from 0 to 1 over the duration of the projectile’s path, it works out perfectly:

the curve takes our Lerp value from 0 to 1 in a fancy way.

But before we can test, we need to declare the Explode method to damage enemies

in a radius:

private void Explode()

{

 Collider[] enemyColliders = Physics.OverlapSphere(trans.position,

explosionRadius, enemyLayerMask.value);

 //Loop through enemy colliders:

 for (int i = 0; i < enemyColliders.Length; i++)

 {

 //Get Enemy script component:

 var enemy = enemyColliders[i].GetComponent<Enemy>();

 //If we found an Enemy component:

 if (enemy != null)

 {

 float distToEnemy = Vector3.Distance(trans.position,enemy.

trans.position);

 float damageToDeal = damage * (1 - Mathf.Clamp(distToEnemy /

explosionRadius, 0f, 1f));

Chapter 31 More tower types

431

 enemy.TakeDamage(damageToDeal);

 }

 }

 Destroy(gameObject);

}

Here, we use a new method: Physics.OverlapSphere. This tests for collisions against

colliders in a sphere at the position given in the first parameter, sized by the radius given

in the second parameter, and using a layer mask given in the third parameter. That’s

where we use our enemy layer mask to make sure we’re only getting Enemy instances. It

returns an array containing all the Colliders touched by the sphere.

We then loop through these colliders, grab their Enemy component, and calculate

the distance from the projectile to the Enemy. Using that, we can calculate a value from

0 to 1 resembling how far the enemy is from the center of the explosion radius, where 0 is

right in the middle of the projectile and 1 is at the very edge. We want to do full damage

to enemies in the center and less as they grow further from the center, so we need to

“flip” the value by subtracting it from 1. That gives us a multiplier for the damage to deal.

Of course, we deal the damage to the enemy with the TakeDamage method. After

doing this for each touched enemy, we Destroy the projectile.

 Cannon Tower
Let’s get our Cannon Tower prefab ready to test our ArcingProjectile script:

• Create an empty GameObject. Name it Cannon Tower and place

it in the Tower layer. Give it a NavMeshObstacle component with

a size of (10, 6, 10) and a center of (0, 3, 0). Make sure to check the

“Carve” box.

• Add a Cube child named Base. Scale it to (10, 6, 10) and position it at

(0, 3, 0).

• Add a Sphere child to the root Cannon Tower GameObject. Position it

at (0, 6, 0) and scale it to (7, 7, 7).

Chapter 31 More tower types

432

• Add a Cylinder child to the root Cannon Tower GameObject. Name

it Barrel and give it a 90 degree X rotation to point it forward. Give it

a position of (0, 7.5, 3) and a scale of (2, 1, 2). Make it a child of the

Sphere so it turns when the Sphere turns.

• Add an empty GameObject as a child of the Barrel. Name it Projectile

Spawn Point and give it a position of (0, 1, 0) to put it at the end of

the barrel. To point its forward axis out from the barrel, give it an X

rotation of 270.

• Open your Arrow Tower prefab and locate the Targeter we made for

it. Copy it with Ctrl+C or by right-clicking and clicking Copy in the

context menu. Return to the scene and paste the Targeter, make it a

child of the root Cannon Tower GameObject, and set its local position

to (0, 0, 0).

• Add a FiringTower script component to the root Cannon Tower

GameObject. Set the references. The “aimer” should be the Sphere,

and the projectile prefab should be the Cannon we created earlier.

• Set the Gold Cost to 8, Range to 30, Fire Interval to .75, Damage to 9,

and Projectile Speed to 80.

• Apply the Tower material to all the individual pieces.

• Create a prefab out of the root GameObject and then remove it from

the scene.

When you’re done, your Cannon Tower should look something like Figure 31-2.

Chapter 31 More tower types

433

One final step: The Build Button for our Cannon Towers needs its OnClick events set

up so that we can build the tower to test it.

You know how to do this. Find the Cannon Tower Build Button GameObject tucked

away in the Canvas and set it up with two events, each pointing at the Player Camera

GameObject. One calls Player.OnBuildButtonClicked and provides the Cannon Tower

prefab as a parameter. The other calls Player.SetSelectedBuildButton and provides the

Image component, just above the Button component, as its parameter. It should look like

Figure 31-3.

Figure 31-2. Our Cannon Tower

Figure 31-3. The OnClick event in the Inspector, at the bottom of the Button
component of our Cannon Tower Build Button GameObject

Chapter 31 More tower types

434

With that, you should now be able to hop into the game, select the Cannon Tower

build button, and place some Cannon Towers. Once you play the level, you’ll see the

cannon towers firing. Particularly when you watch from an angle in the Scene view, you

can tell how the projectiles curve toward the ground instead of taking a straight line

toward it. If you want to watch it very closely, you can click the Pause button beside the

Play button in the Unity editor, get your camera in position in the Scene view, and use

the hotkey Ctrl+Alt+P to “step” one frame forward at a time. Hold the keys to play out the

frames in quick succession.

There’s just one final step. Our Cannon Towers can still attack flying enemies. We

didn’t want that. Only Arrow Towers should fire at flying enemies.

To implement this, we’ll go up the inheritance chain to our FiringTower script. First,

add a variable up at the top of the script class that specifies if the tower can or cannot

attack flying enemies:

[Tooltip("Can the tower attack flying enemies?")]

public bool canAttackFlying = true;

Before you forget, go uncheck that field in the Cannon Tower prefab so they can’t

attack flying enemies.

In the Update method, locate this block:

else //If the enemy is alive and in range,

{

 //Aim at the enemy:

 AimAtTarget();

 //Check if it's time to fire again:

 if (Time.time > lastFireTime + fireInterval)

 {

 Fire();

 }

}

Chapter 31 More tower types

435

And update it to this:

else //If the enemy is alive and in range,

{

 if (canAttackFlying || targetedEnemy is GroundEnemy)

 {

 //Aim at the enemy:

 AimAtTarget();

 //Check if it's time to fire again:

 if (Time.time > lastFireTime + fireInterval)

 {

 Fire();

 }

 }

}

We’ve added an “if” that checks whether the tower can attack flying enemies, or, if it

can’t, we check that the targeted enemy is a GroundEnemy.

With that, our cannon towers are complete!

 Hot Plates
Two tower types to go. I promised this one would be easy, and it’s a short script, so I’m

going to show the whole thing at once (except for the usings). Create a script named

HotPlate and write this code:

public class HotPlate : TargetingTower

{

 public float damagePerSecond = 10;

 void Update()

 {

 //If we have any targets:

 if (targeter.TargetsAreAvailable)

 {

 //Loop through them:

Chapter 31 More tower types

436

 for (int i = 0; i < targeter.enemies.Count; i++)

 {

 Enemy enemy = targeter.enemies[i];

 //Only burn ground enemies:

 if (enemy is GroundEnemy)

 enemy.TakeDamage(damagePerSecond * Time.deltaTime);

 }

 }

 }

}

Simple enough, right? Since it inherits from TargetingTower, it will already have its

targeter set up automatically, tracking enemies within. We just need to “burn” them for

constant damage per second. Since the targeter will find flying enemies as well, we need

to make sure we only burn an enemy if it’s a GroundEnemy.

Let’s set up the prefab and build button:

• Create an empty GameObject named Hot Plate. Put it in the Tower

layer and give it a Hot Plate script. Set the Gold Cost to 12 and Range

to 5. Its damage per second should also be at 10. The reason we set

Range to 5 is because, if you’ll recall, we’ve set the Range field up to

mean “how far away from the center of the Tower.” Thus, it needs to

be half of the size of the plate, not the full size!

• Add an empty GameObject child to the Hot Plate. Name it Targeter

and put it in the Targeter layer. Give it a trigger Box Collider, a

Targeter script component with the “col” field set to a reference to

that Box Collider, and a kinematic Rigidbody.

• Add a cube as a child to the Hot Plate, positioned at (0, .05, 0) with

a scale of (10, .1, 10). I’ll apply a new material to mine with a bright-

orange color using a hex value of FF6034.

• Don’t forget to set the Targeter reference in the Hot Plate script.

• Create a prefab for the Hot Plate and delete it from the scene.

Then, set up the build button the same way we set up the Cannon Tower build

button – but, of course, reference the Hot Plate prefab.

Chapter 31 More tower types

437

That’s it. Our Hot Plates won’t have a NavMeshObstacle member because they are

meant to be walked over by enemies, not navigated around.

 Barricades
Barricades are just Towers with nothing else to them. They’ll be a simple cube with no

cool turret on top:

• Create an empty GameObject named Barricade and put it in the

Tower layer.

• Add a base Tower script with a Gold Cost of 2.

• Once again, give it a NavMeshObstacle component with a

size of (10, 6, 10) and a center of (0, 3, 0). Make sure to check the

“Carve” box.

• Add a Cube child and give it the same position (0, 3, 0) and

scale (10, 6, 10) as the NavMeshObstacle. You can remove the Box

Collider component.

• Since they don’t blow things up, I’m giving my Barricade a drab-

brown color with a hex value of A6843F.

You know the drill. Make a prefab, delete the instance from the scene, and set up the

build button.

 Summary
With that, we’ve implemented all four of our tower types and hooked them all up to

their corresponding build buttons. We learned how to use the AnimationCurve and how

to test for all Colliders touching an imaginary sphere using the Physics.OverlapSphere

method.

Figure 31-4 shows a little maze set up with all four tower types involved.

Chapter 31 More tower types

438

Figure 31-4. A little maze with Barricades, Arrow Towers, a Hot Plate with some
unfortunate enemies standing on it, and a Cannon Tower

Chapter 31 More tower types

439
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_32

CHAPTER 32

Tower Defense
Conclusion
We have at last concluded our second project. It’s no finished game, but we’ve learned

quite a lot along the way. Let’s get a quick refresher on it all and then review some ideas

for additional features you could try to implement on your own.

 Inheritance
A major focus of this project was inheritance. We talked about it in the first part, but this

project puts it to work. We used base classes like Tower and Projectile to define a set of

variables and logic that can be implemented in different ways:

• A Tower can be bought and sold. To implement that, we need not

concern ourselves with what specific type of Tower it is. We can

reference it as a Tower to grab its gold cost and refund factor. We

don’t know what it does, but we don’t need to. We just need to let

the player put it on the stage or take it off and adjust the player’s gold

accordingly.

• A Projectile stores a travel speed and damage and is always spawned

with a certain enemy as its target. When creating a projectile, we

need not worry about whether it’s an Arcing or Seeking projectile. We

just give it a speed, damage, and target enemy and let the subclass do

the rest.

This demonstrates one of the important takeaways of inheritance: that you can

reference an upper type like Tower or Projectile even if a lower type is actually stored in

the reference. If you only need the features of a Tower, like gold cost and refund factor,

https://doi.org/10.1007/978-1-4842-5656-5_32#ESM

440

you can look at any more specific version as a Tower. If you ever need to make the

distinction of what exact type it is, you can do so with casting. We demonstrated this with

the Targeter, casting the Collider type to BoxCollider or SphereCollider.

We also put abstract classes to use, which is a means of making a class that cannot

have instances of itself created. These classes are never intended to be used as is, instead

acting as base classes that we inherit from to get use out of them. You’ll only ever create

instances of the lower types of the abstract class, not the abstract class itself.

This led us to using abstract and virtual methods. You declare the method, marking it

either as “abstract” or “virtual,” on the upper type:

public class UpperType

{

 public virtual void Setup()

 {

 //[setup code for the upper type goes here]

 }

}

You can then declare the method on a lower type to allow it to extend the method

with its own logic. This is done with the “override” keyword:

public class LowerType : UpperType

{

 public override void Setup()

 {

 //Call the upper type's version of the method:

 base.Setup();

 //[setup code for the lower type goes here]

 }

}

You’ll recall that abstract methods can only be declared on abstract classes, and the

abstract method declaration won’t give its own code block. The lower type must declare

an override for the abstract method and provide a code block for the implementation

(even if it’s just an empty code block). However, with virtual methods, lower types are not

forced to declare an override.

Chapter 32 tower Defense ConClusion

441

 UI
We put Unity’s UI system to use to make something a bit more than just the bare

minimum. We learned that this UI system operates through GameObjects and

components, making use of the hierarchical structure of parents and children. All our UI

elements are children of the Canvas and can further be nested inside each other. Using

pivots, we can determine how individual elements and their children rotate and scale.

Of course, most UI requires some form of responsiveness to the user. We learned

how to add functionality by responding to events, using OnClick events found in the

Inspector to call methods on our Player script when our build buttons were pressed.

You can use this to call methods or set built-in variables on a GameObject or any of its

scripts or components. But if you’re trying to call a method you declared on one of your

scripts, that method must be public, and it must either have no parameters or have one

parameter of a serializable type like a script, a built-in type, or a component.

 Raycasting
We learned how to use Physics.Raycast to fire a ray that will strike any colliders of a given

LayerMask, returning true if an object was hit. Using this, we detected objects under

the mouse by converting mouse position to a ray shooting out of the Camera with the

ScreenPointToRay method.

If you visit the official Unity scripting API for the raycast method, you’ll see that it has

many overrides allowing you to call it with different parameters. You can avoid using the

Ray and RaycastHit types that we used and opt to instead simply give a Vector3 for the

ray start point and a Vector3 for the direction it travels in:

if (Physics.Raycast(origin,direction))

{

 //...

}

If this method is used, the “maxDistance” parameter defaults to Mathf.Infinity, so

the ray will travel infinitely in the direction it was cast. If you’d rather give a maximum

distance yourself, you can provide a third parameter (a float).

Chapter 32 tower Defense ConClusion

442

Alternatively, you can use another similar override with an “out RaycastHit”

as a third parameter and a “maxDistance” as a fourth parameter. Pretty much any

combination you could need is covered!

 Pathfinding
We learned how to perform some basic pathfinding to give us a series of points for our

ground enemies to travel along to take them through the player’s maze. Through the

Navigation window, we marked our Stage plane as Navigation Static, updated the Agent

settings to match the size of our enemies, and Baked the settings to the scene. This

allows us to call NavMesh.CalculatePath to fill an existing NavMeshPath instance with

the points that make up the path.

By making our path a static variable in the GroundEnemy class, we allowed

ourselves to access it from other classes without requiring a reference to an instance of a

GroundEnemy.

 Additional Features
You might already be cracking your knuckles in preparation to tweak numbers for the

game, like enemy health and speed, tower damage and rate of fire, and gold costs and

rewards. Those things can be fun to play with, and our current settings certainly don’t

make the game particularly challenging. I’ll leave that design stuff to you and suggest

some features that require a bit of coding and implementation.

 Health Bars
One feature of polish we’re missing is an indication of enemy health. It’s not very

satisfying to watch our cannon towers shooing at our enemies when we can’t even see

their damage “splashing” to nearby enemies! The obvious answer would be to give each

enemy a health bar above its head.

You can do this with world space UI. You’ll need to add a separate Canvas to the

scene and change its Render Mode to World Space. You’ll also want to change the

“Reference Pixels Per Unit” field of the Canvas Scaler component to something lower,

like 10.

Chapter 32 tower Defense ConClusion

443

Health bars can then be positioned in world space, but they still must be children of

the world space Canvas, or they won’t render. Since health bars can’t be children of their

corresponding Enemy, you’ll have to make the Player script create a health bar prefab

instance for each Enemy when it is spawned and then script the health bars to position

themselves above the enemy’s head every frame and to automatically destroy themselves

when the enemy dies. Alternatively, you could put a health bar prefab instance in the

enemy prefabs, so they spawn with their own health bar and then script the bar to make

itself a child of the World Canvas after – but this means you’d have to place a health bar

on each enemy prefab separately.

You can use a Panel as a dark-red background for the health bar and then use

a bright-red Panel inside that one as the “fill.” Size the “fill” to completely cover the

background. Every frame, set the X axis of the “fill” scale to the percentage of life

remaining on the enemy the health bar is associated with: enemy.health/enemy.

maxHealth. That would be done with a script attached to the health bar, with a reference

to the RectTransform of the “fill” panel. Once the enemy loses health, the fill begins to

shrink, but the background panel will be there to show behind it.

You can determine how the fill panel shrinks by setting its origin with the rect tool.

The origin is that blue circle we talked about, which can be clicked and dragged. If you

leave the origin in the center of the panel, the shrinking will pull the left and right sides

of the panel in toward the center until nothing remains. If you put it at the left side, then

the right side will shift toward the left until nothing remains.

 Types for Armor and Damage
Some tower defense games make use of differing types of armor and damage. Each

level, enemies will use a different armor type from a selection of, say, three, like metal,

wood, or magic. Each tower could then be assigned a damage type, and each damage

type is strong against certain armor types, but weak against others. This encourages the

player to have a range of towers that deal damage in all the types so that no enemies are

particularly difficult to handle.

 More Complex Pathing
Make the ground enemies touch little points on the stage along the way to the leak

point. Rather than running from the spawn point to the leak point, put a few extra points

Chapter 32 tower Defense ConClusion

444

between the two, designated by similar colored plates (cylinders). For example, enemies

could go from the spawn point to the first plate, then to the second plate, and then to the

leak point.

This is a fun little mechanic that gives the player something to maze around. If you

know your enemies will have to touch certain spots on the stage before they continue,

you can maze laboriously around those points and place your most important towers

within range of them to ensure they get used as much as possible. Enemies will have to

navigate through the maze, touch the point, and then navigate back out. It adds an extra

layer of tactics to the mazing concept.

To implement this, ground enemy pathfinding would have to be changed. You can’t

just pathfind from the spawn point to the leak point anymore. You could implement this

with a List<Vector3> to store all the points. Pathfind from the spawn point to the first

plate. Add the corners to the List. Then, pathfind from the first plate to the second plate,

and add those corners to the List. Then, pathfind from the second plate to the leak point,

and add the corners.

That can be done using the List instance method “AddRange”. It adds the items from

an array or List to the end of another List, for example:

var points = new List<Vector3>();

// [Perform pathfinding]

//Add points:

points.AddRange(path.corners);

This adds the path corners to the “points” List.

You would also need to make sure that towers can’t be built directly on top of the

points. Since enemies must touch the point, placing a tower on top of it makes the path

impossible. Each point should be centered at a position a multiple of 10, placing it

directly in the slot a tower would normally go. Then you can update the tower building

logic to not allow placing towers when the highlighter is on top of one of these points.

 Range Indicators
Give the player some indication of the range that firing towers have. You could

make a thin Cylinder with a semi-transparent material, named Range Highlighter.

When the player puts their mouse over a Tower (detected with a raycast), make that

Chapter 32 tower Defense ConClusion

445

the highlighted tower. Whenever the highlighted tower changes, make sure it’s a

FiringTower by performing a cast. If so, size the range highlighter Cylinder to match the

tower’s range and center the Cylinder on the tower. If it’s not a FiringTower, hide the

range highlighter by deactivating it.

 Upgrading Towers
Give the player a means to upgrade existing towers, paying some gold to make them

stronger. You could change the Tower Selling Panel to give it an “Upgrade” button and

some text for the tower name and current level. When the player upgrades a tower,

charge them some gold and strengthen some of the tower’s stats based on what type of

tower it is: damage, projectile speed, and range could all rise. Or you could make the

player upgrade individual stats and track the level of each stat separately.

 Summary
Now that we’ve gone over the important stuff you’ve learned throughout this project

and given you some ideas for additional features to implement, it’s up to you to

decide if you want to linger on this project and try to expand it yourself or move on

to our next project to continue the book. This project has taken us a long way with

programming fundamentals like inheritance and working with collections like Lists

and Dictionaries. In the next project, we’ll be dealing with physics and 3D movement

systems more in- depth.

Chapter 32 tower Defense ConClusion

Physics Playground

PART III

449
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_33

CHAPTER 33

Physics Playground
Design and Outline
For our third example project, we’ll be tackling some new topics pertaining to the physics

of the Unity engine. We’ll implement a mouse-aimed camera with 3D movement for our

player, including jumping, gravity, and wall jumping. We’ll play with some objects using

proper Rigidbody-controlled physics, giving our player a means of pushing and pulling

them from a distance. We’ll also tinker with joints to attach Rigidbodies to each other and

“force fields” to play with adding forces to Rigidbodies and/or our player on the fly.

 Feature Outline
This project will play less like a game and more like a testing ground. We’ll get our hands

dirty with different aspects of the physics engine, as well as working with fully 3D player

controls, since up until now our projects have used top-down camera angles.

 Camera
Our camera will have two modes: first-person and third-person. You’re probably

comfortable with these terms already. First-person is “through the eyes of the character,”

turning left, right, up, or down as the mouse moves. Third-person is “over the shoulder,”

hovering behind the character and orbiting around them as the mouse moves.

We’ll allow the player to switch between these modes on the fly with the press of a

hotkey, smoothly moving the camera from one mode into the other. We’ll have proper

smoothing applied to our camera’s rotation, configurable in the Inspector to allow us to

select how much smoothing we want. This not only makes first-person rotation smoothly

respond to the mouse, but also the third-person orbiting.

The player will also be able to change how far the third-person camera will hover

behind their character, using the scroll wheel of their mouse to draw the camera closer

https://doi.org/10.1007/978-1-4842-5656-5_33#ESM

450

or pull it further away. Of course, we’ll limit this to a certain minimum and maximum

distance to keep the player from going crazy with it.

 Player Movement
Since we have a mouse-aimed camera, we’ll be implementing a “more 3D” movement

system than our first project: the WASD keys to move local to the direction the camera

is pointing, Space while grounded to jump, and Space while midair to attempt to “wall

jump” off of a nearby surface. Once we go midair, whether by jumping or running off a

ledge, we’ll carry with us any ongoing velocity. Once we become grounded again, that

velocity will drag out over time, if we aren’t using WASD to move.

Wall jumps are performed by pressing Space while midair with a surface anywhere

near the sides of our character. It can be behind, in front, left, or right; it doesn’t matter. It

just has to be close enough.

A wall jump will provide upward and outward momentum. If we’re not holding

any WASD keys when we perform a wall jump, it just goes straight up. If we are holding

WASD keys, we’ll also “push off” in that local direction – for example, holding W will

move us forward as well as upward.

To implement this, we’ll be using a different method of tracking our player velocity,

employing only one velocity variable that handles velocity given by movement as well as

external forces like force fields pushing us. This will demonstrate a handful of new and

useful concepts for working with vectors.

 Pushing and Pulling
To experiment with applying forces to Rigidbodies, we’ll give our player a “telekinesis”

power, allowing them to point at an object that has a Rigidbody and either hold left-click

to pull the object toward them or hold right-click to push it away from them.

This power will be limited so that it only works on objects that are close enough

to the player. We’ll draw a simple four-pixel square at the center of the screen to

demonstrate where the mouse is pointing and change its color to respond to what the

telekinesis is currently doing. It will be gray when the player is not pointing at something

that can be affected by telekinesis, white if the player is pointing at something valid that’s

in range, orange if the object is valid but not in range, and green while we are actively

pulling or pushing something.

Chapter 33 physiCs playground design and outline

451

 Moving Platforms
By default, our player will simply remain still even if the object they’re standing on is

moving. If you want to have floating platforms that move around, you probably want the

player to move with the platform. We’ll code up a means of setting up a platform that

other objects will “attach” to when they land on it. With that in place, we’ll code a script

that makes a platform move back and forth between two points to exhibit that the player

moves with it.

 Swings
We’ll learn how to create a series of linked objects, assembling something like a chain

to hold up a swinging platform. The player can use their telekinesis to push and pull the

platform to make it swing and can stand on it while it’s moving. They can even apply

telekinesis to individual links in the swing.

 Force Fields and Jump Pads
We’ll implement two similar systems: force fields that constantly add velocity in a given

direction to all objects that remain within them and jump pads that apply a sudden

change in velocity to any object when it first touches the pad. Both of these systems can be

adjusted to make them work on miscellaneous GameObjects, the player, or both. Since the

player velocity is handled by our own script, not a Rigidbody, we’ll have to react differently

when the player touches the field as opposed to an object controlled by a Rigidbody.

 Project Setup
Let’s get our project ready before we begin. With Unity Hub, create a new project using

the 3D template. I’ll name mine “PhysicsPlayground”.

In Edit ➤ Project Settings ➤ Tags and Layers, we’ll set up three layers:

• 8: Player – Only the player character will use this layer.

• 9: ForceField – Jump pads and force fields will use this layer.

Chapter 33 physiCs playground design and outline

452

• 10: Unmovable – We’ll make the player’s “telekinesis” work on all

layers except this one. If we ever want a GameObject that’s controlled

by a Rigidbody, but can’t be pulled and pushed by the player, we can

put it in this layer.

When you’re done, your layer settings should look like Figure 33-1.

We’ll also rename our default scene from “SampleScene” to “Main” and create these

folders in the Assets folder through the Project window:

• Materials

• Prefabs

• Scripts

 Summary
With a general idea of how our project will play and the features we expect to implement,

let’s press on and start adding mechanics one by one. When we’re done, we’ll have hands-

on experience with most of the major concepts and components of Unity’s built- in physics.

Figure 33-1. Our layer settings in the Edit ➤ Project Settings window

Chapter 33 physiCs playground design and outline

453
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_34

CHAPTER 34

Mouse-Aimed Camera
Before we give the player any means of moving around, we’ll have to set up the player

GameObject and provide them with a way of changing the direction they’re facing. We’ll

do that here, implementing our first- and third-person cameras. Both systems will be

handled by one script, and the player will be able to press a hotkey to smoothly switch

from one to the other.

Coding the first-person camera will be a bit simpler. We position it where the player’s

eyes would be, and we rotate it based on changes in the mouse position. Move the

mouse left, the camera and the player will turn left, and so on.

The third-person camera requires some extra legwork. We want it to be positioned a

certain distance behind the player at all times, orbiting around the player as the mouse

moves, but always looking at a certain point on the player. We also want to prevent it from

passing through walls in its way, so that it instead slides along the surface of the wall.

 Player Setup
Let’s get the player all set up in the scene:

• Create an empty GameObject named Player. Position it at (0, 0, 0).

Apply the Player layer to it.

• Add a child empty GameObject to the root Player GameObject. Name

it Model Holder. Remember, you can right-click the Player and select

“Create Empty” to add a child directly to it. It should automatically

have the Player layer. Keep its local position at (0, 0, 0).

• Add a Capsule child to the Model Holder. Set its local position to

(0, 3, 0) and scale it to (2, 3, 2). This makes it 6 units tall and puts its

bottom right at the root Player position.

https://doi.org/10.1007/978-1-4842-5656-5_34#ESM

454

• Remove the Capsule Collider component from the Capsule. We’ll be

using a CharacterController for collisions instead, which will be set

up in the next chapter.

• Add another empty GameObject as a child of the root Player

GameObject. Name it Camera X Target. Leave its local position at

(0, 0, 0). We’ll just be using it for its Transform.

• Copy and paste the Camera X Target and rename this new instance to

Camera Y Target.

• In the Hierarchy, locate the “Main Camera” GameObject that’s

included in the scene by default. Drag it onto the Player to make it a

child of the root Player GameObject, just like the Model Holder and

the Camera Targets. If you’ve deleted the Main Camera, you can just

right-click the Player and create a new Camera instead.

Change its layer to Player. Name it Player Camera. In the “Clipping Panes”

field, set the “Near” value to 0.01 instead of the default value of 0.3. Set its

local position to (0, 5.4, 0), placing it up near the top of the player.

 How It Works
The root Player GameObject holds all of the others. This one never rotates. It should

remain at (0, 0, 0) rotation at all times. The Model Holder is what we apply rotation to,

keeping it facing forward along the facing direction of the camera, but only on the Y

rotation axis, which is what turns it left and right. We don’t want to affect its X rotation,

which would tilt it up toward the sky or down toward the ground. If you were working

with a player model, you wouldn’t want their whole body to tilt up and down when they

raise or lower their head, right? You would, however, likely want to have their upper body

bend forward or back as they look down or up, but our player is just a capsule, so we

won’t be getting into that here.

The two Camera Target GameObjects will play several important roles in our camera

system. You can effectively look at them as one entity, the Camera Target, but we have

them as two separate Transforms, one for X rotation and one for Y rotation, to avoid

problems down the road that would occur if we applied both axes of rotation to the same

Transform. When we use their rotation, we’ll add the X and Y rotation together.

Let’s detail the purpose of our Camera Target:

Chapter 34 Mouse-aiMed CaMera

455

• Whenever the player moves the mouse, we’ll immediately apply that

rotation to the Camera Target, keeping it pointing in the direction

the first-person camera should be pointing. X rotation is applied to

Camera X Target, and Y rotation is applied to Camera Y Target. If

we’re in first-person mode, the actual camera will have its rotation

Slerped toward that of the Camera Target to generate an effect of

smoothing to the first-person camera movement.

• The target position of the third-person camera is determined by

raycasting directly backward from the Camera Target rotation. If

that ray hits a wall, the target position is at the “hit.point” where the

ray struck the wall. Otherwise, it’s at the end of the range of the ray,

which is determined by a variable we can change in the Inspector.

The third-person camera will always move toward the target position,

using Lerp so we can add smoothing if we want.

As you can see, our whole process revolves somewhat around the Camera Target.

Every frame, we’ll check mouse movement and rotate the Camera Target first based on

that: left and right mouse movement applies to the Camera Y Target, while up and down

mouse movement applies to the Camera X Target. Then we run logic based on whether

we are in first- or third-person mode. Either way, that logic is going to rely on the Camera

Target to determine how the camera moves and rotates: first-person mode just smoothly

follows the rotation of the Target, and third-person mode determines its target position

based on the Target facing and then Lerps toward that position.

The Camera Target position is not important, though. When we cast the ray to

determine our third-person camera target position, we don’t actually originate the ray at

the Camera Target position, so it doesn’t matter where we place the Target. All we use it

for is its facing direction.

We’ll instead provide ourselves with a Vector3 variable that we can use to set an

orbit point for the third-person camera. This is the point around which the third-person

camera spins as the mouse moves. That means it’s the origin point for the ray we’ll be

casting to determine the target position.

This orbit point will be local to the Model Holder so that as the Model Holder rotates

with the third-person camera movement, the orbit point remains at the same position

relative to it. This allows us to place the orbit point somewhere off to the side of the

character model, such as beside one of their shoulders, and the point will always remain

relative to the model rotation.

Chapter 34 Mouse-aiMed CaMera

456

This orbit point is also the point that the camera will be pointed toward (the point it

will “look at”).

 Script Setup
Let’s get to it. In your Project, right-click your Scripts folder and select Create ➤ C#

Script. Name the new script “PlayerCamera”.

Let’s start off with the variables, and we’ll be using Start, Update, and LateUpdate

events:

public class PlayerCamera : MonoBehaviour

{

 //References:

 [Header("References")]

 [Tooltip("The base Transform of the player, which should never rotate.")]

 public Transform playerBaseTrans;

 [Tooltip("Set this to the Transform that has the Camera component

(which should also have the PlayerCamera component).")]

 public Transform trans;

 [Tooltip("Reference to the Camera X Target Transform.")]

 public Transform cameraXTarget;

 [Tooltip("Reference to the Camera Y Target Transform.")]

 public Transform cameraYTarget;

 [Tooltip("The Transform holding the model. This is what will rotate on

the Y axis to turn left/right as the camera turns.")]

 public Transform modelHolder;

 //Movement and Positioning:

 [Header("Movement and Positioning")]

 [Tooltip("How quickly the camera turns. This is a multiplier for how

much of the mouse input applies to the rotation (in degrees).")]

 public float rotationSpeed = 2.5f;

Chapter 34 Mouse-aiMed CaMera

457

 [Tooltip("The amount of smoothing applied to the third-person

camera. A higher value will cause the camera to more gradually turn

when the mouse is moved.")]

 [Range(0,.99f)]

 public float thirdPersonSmoothing = .25f;

 [Tooltip("The third-person camera will be kept this many units off of

walls it touches. Setting this higher can help prevent the camera from

clipping with bumpy walls.")]

 public float wallMargin = .5f;

 [Tooltip("The amount of smoothing applied to the first-person

camera. A higher value will cause the camera to more gradually turn

when the mouse is moved.")]

 [Range(0,.99f)]

 public float firstPersonSmoothing = .8f;

 [Tooltip("Position, local to the Model Holder, for the camera to use

when in first-person mode.")]

 public Vector3 firstPersonLocalPosition = new Vector3(0,5.4f,0);

 [Tooltip("Position, local to the Model Holder, for the camera to orbit

around when in third-person mode.")]

 public Vector3 thirdPersonLocalOrbitPosition = new Vector3(0,5.4f,0);

 //Bounds:

 [Header("Bounds")]

 [Tooltip("Minimum distance from the for the third person camera to have

from its orbit point.")]

 public float minThirdPersonDistance = 5;

 [Tooltip("Maximum distance from the for the third person camera to have

from its orbit point.")]

 public float maxThirdPersonDistance = 42;

 [Tooltip("Resembles the current third person distance. Set this to

whatever you want the initial distance value to be.")]

 public float thirdPersonDistance = 28;

Chapter 34 Mouse-aiMed CaMera

458

 [Tooltip("Multiplier for scroll wheel movement. A higher value will

result in a greater change in third-person distance when scrolling the

mouse wheel.")]

 public float scrollSensitivity = 8;

 [Tooltip("X euler angles for the camera when it is looking as far down

as it can.")]

 public int xLookingDown = 65;

 [Tooltip("Y euler angles for the camera when it is looking as far up as

it can.")]

 public int xLookingUp = 310;

 [Header("Misc")]

 [Tooltip("The layer mask for what the third-person camera will be

obstructed by, and what it will ignore and pass through. You'll

probably want this to include environmental objects, but not smaller

entities.")]

 public LayerMask thirdPersonRayLayermask;

 [Tooltip("The key to press to change from first-person to third-person,

or vice versa.")]

 public KeyCode modeToggleHotkey = KeyCode.C;

 [Tooltip("The key to hold down to hold the camera still, unlock the

mouse cursor, and allow mouse movement.")]

 public KeyCode mouseCursorShowHotkey = KeyCode.V;

 [Tooltip("Is the camera currently in first-person mode (true) or third-

person mode (false)? This can be set to determine the default mode

when the game starts.")]

 public bool firstPerson = true;

 //Is the mouse cursor currently showing? Toggled on by holding the

mouseCursorShowHotkey.

 private bool showingMouseCursor = false;

 //Target position for the third-person camera.

 private Vector3 thirdPersonTargetPosition;

Chapter 34 Mouse-aiMed CaMera

459

 //Gets the third-person camera orbit point in world space.

 private Vector3 OrbitPoint

 {

 get

 {

 return modelHolder.TransformPoint(thirdPersonLocalOrbitPosition);

 }

 }

 //Gets the rotation of both the X and Y Camera Targets together.

 private Quaternion TargetRotation

 {

 get

 {

 //Construct a new rotation out of Euler angles, using the

rotation of the X target and Y target together:

 return Quaternion.Euler(cameraXTarget.

eulerAngles.x,cameraYTarget.eulerAngles.y,0);

 }

 }

 //Gets a direction pointing forward along the TargetRotation.

 private Vector3 TargetForwardDirection

 {

 get

 {

 //Return the forward axis of the TargetRotation:

 return TargetRotation * Vector3.forward;

 }

 }

 //Unity events:

 void Start()

 {

 }

Chapter 34 Mouse-aiMed CaMera

460

 void Update()

 {

 }

 void LateUpdate()

 {

 }

}

Our tooltips and comments explain the variables and their purposes, so I won’t go

over it all again. If any of the variables are confusing to you, they’ll be explained once

they come into play in the following code.

One thing you probably don’t recognize is the LateUpdate event. This is just like

Update, in that it is called every frame – however, all scripts will first call their Update,

and then all scripts will call their LateUpdate. This way, if you want to be sure something

happens after the rest of your scripts occur, you can place it in LateUpdate instead,

because by the time LateUpdates are being called, every script will have already run its

Update.

We do this with our camera logic so that any movement the player takes will happen

first, before we, for example, raycast using a position relative to our Model Holder to

determine our target position. This just ensures the camera operations occur after the

player movement. If instead the player always moved after the camera determined

its target position, then the target position would be “one frame behind” the player

movement, which could be noticeable if the framerate drops low enough.

Now, let’s get the script ready to run when the time comes. Add the PlayerCamera

script component to the Player Camera GameObject and set the references so that it

looks like Figure 34-1. Also make sure to set the Third Person Ray Layermask to only

include the Default layer. If you don’t set it, it will include no layers at all, so the third-

person camera will never slide against walls like we want it to.

Chapter 34 Mouse-aiMed CaMera

461

With that done, let’s do our usual routine and map out the basic functionality with

some private methods that are called in our Unity event methods:

void Start()

{

 //By default, don't show the mouse:

 SetMouseShowing(false);

}

void Update()

{

Figure 34-1. View of the Player Camera script component in the Inspector after
we’ve set it up

Chapter 34 Mouse-aiMed CaMera

462

 //Process hotkeys:

 Hotkeys();

}

//LateUpdate occurs after all Update calls for this script and all others.

void LateUpdate()

{

 //Update camera target rotation, so long as we're not showing the mouse

cursor:

 if (!showingMouseCursor)

 UpdateTargetRotation();

 //Perform positioning logic based on the mode we're in:

 if (firstPerson)

 FirstPerson();

 else

 ThirdPerson();

}

This outlines the general behavior of our camera. First, the Start method will call a

method that we’ll declare in a bit: SetMouseShowing. If “false” is passed as a parameter,

this will hide the mouse cursor and allow mouse movement to move the camera. If

“true” is passed instead, the camera will not respond to mouse movement, and the

mouse cursor will show. We’ll make use of it in a moment.

The Update method calls only one method: Hotkeys. This is where the pressing of

our mode toggling hotkey and our mouse showing hotkey is handled.

The LateUpdate method will call UpdateTargetRotation to handle mouse input and

update the rotation of the Camera Targets based on that, but only while the cursor is

showing (in other words, while the mouse showing hotkey is not held down). It will then

call either the FirstPerson or the ThirdPerson method based on what mode we are in.

Chapter 34 Mouse-aiMed CaMera

463

 Hotkeys
Let’s declare our Hotkeys method, somewhere up above the Unity event methods we
just declared:

void Hotkeys()

{

 //Toggling first and third-person mode:

 if (Input.GetKeyDown(modeToggleHotkey))

 {

 firstPerson = !firstPerson;

 }

 //Toggling mouse mode:

 if (Input.GetKeyDown(mouseCursorShowHotkey))

//Whenever the mouse cursor hotkey is pressed

 SetMouseShowing(true); //Show the mouse

 if (Input.GetKeyUp(mouseCursorShowHotkey))

//Whenever the mouse cursor hotkey is let go of

 SetMouseShowing(false); //Don't show the mouse

}

Whenever the modeToggleHotkey is first pressed down, we use “firstPerson =

!firstPerson;” to flip the value of the bool. You’ll recall that the “!” can be placed before a

value resulting in a bool to “invert” the result, turning true to false or false to true.

After that, the camera will automatically Lerp itself to the position it should be at,

which will be implemented in the FirstPerson and ThirdPerson methods, so we don’t

have to do anything else to make the mode transition.

We also ensure that whenever the mouseCursorShowHotkey is first pressed down,

we SetMouseShowing to true, so that the cursor shows and the camera stops responding

to mouse movement; when the hotkey is released, we undo that, hiding the cursor again

and relieving control to the camera.

Chapter 34 Mouse-aiMed CaMera

464

The next step would be to actually declare that SetMouseShowing method. Let’s put

it right above the Hotkeys method:

void SetMouseShowing(bool value)

{

 //Enable or disable the cursor visibility:

 Cursor.visible = value;

 showingMouseCursor = value;

 //Set the cursor lock state based on 'value':

 if (value)

 Cursor.lockState = CursorLockMode.None;

 else

 Cursor.lockState = CursorLockMode.Locked;

}

Cursor.visible is a built-in static member we can set to hide (false) or show (true) the

cursor. But if we just set that, the hidden cursor would still hit the edge of the screen and

stop going if the player moved it too far in one direction, and if the game was running in

windowed mode, the cursor would begin showing again once the mouse left the screen.

We use Cursor.lockState to remedy this. A value of CursorLockMode.Locked will lock

the cursor at the center of the screen. Even though you can’t see it, it will be kept there,

which lets us move the mouse as much as we want without it hitting the edges of the

game window.

The reason we want a way to easily toggle that off with the mouseCursorShowHotkey

is so that we have a way to click somewhere else in the Unity editor while testing, such as

to change a value in the Inspector or click the Play button to stop playing.

 Mouse Input
Let’s code our UpdateTargetRotation method to handle the Camera Targets. We’ll

declare this underneath the Hotkeys method:

void UpdateTargetRotation()

{

 //The X rotation we should be receiving uses the mouse Y because

rotating along the X axis makes us look up/down.

Chapter 34 Mouse-aiMed CaMera

465

 float xRotation = (Input.GetAxis("Mouse Y") * -rotationSpeed);

 //The Y rotation we should be receiving uses the mouse X because the

rotating along the Y axis makes us look left/right.

 float yRotation = (Input.GetAxis("Mouse X") * rotationSpeed);

 //Apply the rotation to the camera:

 cameraXTarget.Rotate(xRotation,0,0);

 cameraYTarget.Rotate(0,yRotation,0);

 //We'll keep the camera target's X eulerAngles between the xLookingUp

and xLookingDown values.

 //This prevents the camera from looking too far up or down.

 if (cameraXTarget.localEulerAngles.x >= 180)

 //If the X rotation is anywhere between 180 and 360

 {

 if (cameraXTarget.localEulerAngles.x < xLookingUp)

//and it's less than the looking up value,

 // set it to the xLookingUp:

 cameraXTarget.localEulerAngles = new Vector3(xLookingUp,0,0);

 }

 else //If the X rotation is anywhere between 0 and 180

 {

 if (cameraXTarget.localEulerAngles.x > xLookingDown)

//and it's past the x looking down value,

 // set it to the xLookingDown:

 cameraXTarget.localEulerAngles = new Vector3(xLookingDown,0,0);

 }

}

First, we create both an xRotation and a yRotation variable. The “x” and “y” in the

names refer to the axis of rotation that the Camera Target will be receiving. This doesn’t

correlate to the X and Y axes of the mouse movement, though, so it might look like we

have it backward at first:

• X rotation tilts the Transform up toward the sky (negative) or down

toward the ground (positive).

Chapter 34 Mouse-aiMed CaMera

466

Mouse Y input is up (positive) and down (negative). Thus, the Y

input is used for the X rotation, but it has to be flipped so that up is

negative and down is positive.

• Y rotation turns the Transform to the right (positive) or left

(negative).

Mouse X input is left (negative) and right (positive). This maps nicely

to the Y rotation as is, so we don’t have to flip it.

We also multiply the input by rotationSpeed, which can be raised or lowered to

change the mouse sensitivity.

The rotation is then applied to the corresponding Camera Target Transform: X

rotation to the X target and Y rotation to the Y target. Each axis of rotation is performed

on a separate Transform to avoid any twisting that would come with applying both

rotations to the same Transform.

Afterward, we make sure the X rotation value of the X Target is clamped between

the two variables we declared before: xLookingDown and xLookingUp. The

“localEulerAngles” member is the “rotation” Vector3 you’ll see in the Inspector when

you view a Transform. An X rotation of 0 points the camera directly forward, which is

equivalent to 360, where it resets to 0 again. The value can also be depicted as a negative

amount, rotating in the opposite direction: a rotation of –10 is equivalent to 350, for

example, because a rotation that’s less than 0 (a negative rotation) will double back to

360 and decrease from there. Thus, you can depict the same rotation as a negative or

positive value: –90 is equivalent to 270, for example.

These two variables define the X rotation values we want to prevent the Target from

going past. If looking down as far as possible, it should not be able to tilt any further

down than an X rotation of “xLookingDown”. Looking up as far as possible, it should not

be able to look any further up than an X rotation of “xLookingUp”. Figure 34-2 shows the

camera on the player, viewed from the right side, looking down at the maximum amount

and looking up at the maximum amount. The blue arrow for the Z axis is what we’re

paying attention to here, since that’s the local forward direction of the camera.

Chapter 34 Mouse-aiMed CaMera

467

Figure 34-3 provides a visualization of the angles involved when viewing the player

from the same right-side angle. A rotation of 0, which is equivalent to 360, will point the

camera straight forward. Adding to the angle will rotate clockwise, pointing the camera

further and further down, while subtracting from it will point it further upward. If it

rotates lower than 0, it resets to 360, and likewise, if it rotates higher than 360, it resets to

0. Figure 34-3 also depicts where our xLookingDown and xLookingUp angles lie.

Figure 34-2. Viewing the player and camera from the right side shows the camera
looking all the way down (left) and all the way up (right)

Chapter 34 Mouse-aiMed CaMera

468

This should help make sense of why we have to be more particular when we clamp

the rotation. Just using a clamp method to clamp the rotation between 65 and 310, for

example, would do precisely what we don’t want to do. Thus, we separate the logic into

two conditions. If the rotation is on the bottom half of that circle – between 0 and 180 –

we don’t let it raise past xLookingDown, which is set to 65. If the rotation is on the upper

half of that circle – between 180 and 360 – we don’t let it go below the xLookingUp value,

which is set to 310.

This accounts for the “doubling back” that occurs when the camera goes from, say, 5

degrees to 355 degrees.

Figure 34-3. Visualization of a single axis of rotation, separated into increments
of 90 degrees (red). In green, angles of 65 degrees and 310 degrees are also shown to
visualize our default xLookingDown and xLookingUp values

Chapter 34 Mouse-aiMed CaMera

469

 First-Person Mode
With the Camera Targets properly rotating, we can implement the first-person camera

mode. This will do two things: Lerp the camera toward the firstPersonLocalPosition

if it is not there already, and then update the camera rotation by Slerping it toward

the current rotation of the Camera Target, which is acquired using TargetRotation

(combining the X Target and Y Target rotations into one Quaternion). We calculate the

Slerp result separately and then use only the X and Y Euler angles of that result, to make

sure no odd Z rotation occurs. We don’t want Z rotation because it would tilt the camera

to the left or right, as if the player were cocking their head (imagine the camera doing a

barrel roll; that’s Z rotation):

void FirstPerson()

{

 //If the camera isn't in its first-person location, move it there:

 Vector3 targetWorldPosition = modelHolder.TransformPoint(firstPersonLoc

alPosition);

 if (trans.position != targetWorldPosition)

//If the camera isn't at the first person camera location yet

 {

 //Lerp the camera transform towards the first person camera location:

 trans.position = Vector3.Lerp(trans.position,targetWorldPosition,.2f);

 }

 //Get the rotation of the camera, slerped towards the target rotation:

 Quaternion targetRotation = Quaternion.Slerp(trans.rotation,

TargetRotation,1.0f - firstPersonSmoothing);

 //Apply just the X and Y axes to the camera:

 trans.eulerAngles = new Vector3(targetRotation.

eulerAngles.x,targetRotation.eulerAngles.y,0);

 //Make the model face the same direction way as the camera, but with

the Y axis removed from the direction:

 modelHolder.forward = new Vector3(trans.forward.x,0,trans.forward.z);

}

Chapter 34 Mouse-aiMed CaMera

470

First, the camera is moved toward the position we want it to be at while in first-

person mode, if it’s not already there. This is how we smoothly transition the camera

from third-person mode to first-person mode, moving it from its location behind the

player to the local position it’s expected to have when in first-person mode. To do this,

we use the TransformPoint method to make the position relative to the modelHolder

position, rotation, and scale. For example, if a value of (0, 5.4, 0) is passed into the

TransformPoint call, it goes from “5.4 units above the world origin” to “5.4 units above

the modelHolder.”

This system works fine for our purposes, since we’ll have our

firstPersonLocalPosition variable set to (0, 5.4, 0). If we had an X or Z value that was not

0, this could cause the first-person camera to lag slightly behind where it should be when

the player is moving their mouse. This is because the model holder is spinning on the

Y axis (left and right) as the mouse moves left and right. That doesn’t affect the result

of transforming the Y position from local to world space, but it will affect the X and Z

positions. Thus, the target position changes as the model turns when there is a non-zero

value in the X or Z, so it will constantly be smoothing into that position.

Like I said, that won’t be a problem for us, but if we did have some model with a head

positioned forward or to the side and we wanted to line our first-person camera up with

it properly, it could make for an awkward experience.

A workaround to that would be to use a “transitioning” bool variable, marking it

as true when we begin transitioning from third- to first-person. While transitioning,

use the Lerp to move the camera to the target position, and check if it’s reached the

position yet (or come within a short distance of it). Once it has reached the point,

mark “transitioning” as false. While transitioning is false, the camera should be locked

in place, so just set its position without using Lerp. This keeps the smooth transition

when first switching to first-person mode, but after the transition completes, it locks

the camera in that place so it doesn’t lag behind the point it should be when the model

spins.

 Third-Person Mode
Our third-person logic will use the OrbitPoint that we declared earlier to define the

origin of a ray and the TargetRotation to determine the direction the ray travels in. Since

the TargetRotation is always pointing in the direction the camera should be looking

forward at, we’ll point the ray directly backward from that rotation, traveling only as far

Chapter 34 Mouse-aiMed CaMera

471

as the thirdPersonDistance variable. If it hits a wall, we’ll set the target position to that

point. Otherwise, we set the target position to the end of the ray.

Of course, we also need to smooth the camera position toward the target position

with a Lerp afterward:

void ThirdPerson()

{

 //We'll calculate the third-person target position by casting a ray

backwards from the orbit point.

 //Make a new ray at the position of the orbit point, pointing directly

backwards from the camera target:

 Ray ray = new Ray(OrbitPoint, -TargetForwardDirection);

 RaycastHit hit;

 //Cast the ray using thirdPersonDistance plus the wall margin to

account for walls just outside the distance:

 if (Physics.Raycast(ray,out hit,thirdPersonDistance + wallMargin,thirdP

ersonRayLayermask.value))

 {

 //If the ray hits something, set the target position to the hit point:

 thirdPersonTargetPosition = hit.point;

 //We'll offset it back towards the cameraTarget by 'wallMargin' distance:

 thirdPersonTargetPosition += (TargetForwardDirection * wallMargin);

 }

 else //If the ray didn't hit anything

 {

 //Set the target position to 'distance' units directly behind the

camera target

 thirdPersonTargetPosition = OrbitPoint - (TargetForwardDirection *

thirdPersonDistance);

 }

 //Lerp the camera towards the target position using our smoothing

settings:

 trans.position = Vector3.Lerp(trans.position,thirdPersonTargetPosition,

1.0f - thirdPersonSmoothing);

Chapter 34 Mouse-aiMed CaMera

472

 //Now that the camera has been moved properly, make it look at the

orbit point:

 trans.forward = (OrbitPoint - trans.position).normalized;

 //Make the model face the same direction as the camera, with no Y axis

position influence:

 modelHolder.forward = new Vector3(trans.forward.x,0,trans.forward.z);

}

We declared the OrbitPoint property with the rest of the variables. If you check what

the OrbitPoint actually does, it’s just calling TransformPoint with the modelHolder to

get the thirdPersonLocalOrbitPosition as a world position, relative to the model holder,

much like we did with the first-person local position earlier. Rather than typing out that

bulky line each time, we give ourselves a more concise name: OrbitPoint.

We also use the TargetForwardDirection property we declared before, which uses a

simple trick of creating a Quaternion (rotation) out of the combined Euler angles of our X

target and our Y target and then multiplying that by a direction: forward. This results in a

direction that travels forward along the rotation. The property pretty much points in the

direction the first-person camera should be pointing, and the opposite direction of this is

where the third-person camera aims to be.

You probably recognize the raycast method call from our second project. The ray and

the “out hit” are passed in, which we just created beforehand. The third parameter is the

ray distance, and the fourth is the layer mask value to use.

You may be wondering why the ray distance parameter has the “wallMargin” added

to it. Think about it like this: if we set our camera up to have a wall margin of 2, that

means we’re expecting our camera to distance itself 2 units away from walls behind it.

However, if the ray was only as long as the “thirdPersonDistance”, and we positioned

our camera at the end of the ray whenever there was no wall there, what if a wall was

a mere 1 unit, or .005 units, away from the end of the ray? Then our camera would be

closer than 2 units to the wall. By extending the ray, we ensure that, if a wall is just a little

further away than the tip of the ray, it’ll still get detected and the camera will be kept

“wallMargin” units away from it as a result.

If the ray hits anything, we set the target position to the hit point and then move it

away from the wall using the TargetForwardDirection, which is the opposite direction

that we sent the ray in. Of course, we use wallMargin to determine how far from the wall

Chapter 34 Mouse-aiMed CaMera

473

it should be moved. If wallMargin was set to 0, the target position would simply remain

exactly at the hit point.

If the ray did not hit anything, we still have to set the target position. We set it to the

OrbitPoint, traveling backward from the Camera Target – the same direction we used to

cast the ray – by the desired thirdPersonDistance.

After that, we just have to make sure we’re Lerping the camera position to the target

position at all times. This uses the same concept we’ve employed several times before:

the smoothing value is “flipped” by doing “1 – smoothing”, because if we just used the

smoothing variable as is, a higher value would result in less smoothing, not more, which

would be somewhat opposite to what you would expect.

We also have to make sure the camera is always pointing at the OrbitPoint.

Remember, to get a direction to make an object at position “from” look at an object at

position “to”, this is the equation:

(to - from).normalized

So our equation gets a direction from the camera position to the OrbitPoint and

makes that the “forward” direction of the camera.

We also have to spin the model holder to always point forward with the camera. But

we can’t allow the camera’s X rotation to influence it. We only want the model holder to

spin left and right, not tilt up and down. To do this, we simply construct a new Vector3

and “cut out” the Y direction of the camera’s forward facing. This gives us a direction

that mimics the camera forward facing, but only on the X and Z axes, preventing the

possibility of any upward or downward tilting.

Now all that’s left is giving our player a means of changing the third-person distance,

which we can tie to the scroll wheel. Since we already have our Hotkeys method

handling basic input like this, we can add a little chunk of code that changes the distance

variable when the scroll wheel is detected. The new code is in bold text in the following:

void Hotkeys()

{

 //Toggling first and third-person mode:

 if (Input.GetKeyDown(modeToggleHotkey))

 {

 firstPerson = !firstPerson;

 }

Chapter 34 Mouse-aiMed CaMera

474

 //Toggling mouse mode:

 if (Input.GetKeyDown(mouseCursorShowHotkey))

//Whenever the mouse cursor hotkey is pressed

 SetMouseShowing(true); //Show the mouse

 if (Input.GetKeyUp(mouseCursorShowHotkey))

//Whenever the mouse cursor hotkey is let go of

 SetMouseShowing(false); //Don't show the mouse

 //Scroll wheel for third-person distance:

 if (!firstPerson) //Only check for it while we're in third-person mode

 {

 //Get scroll wheel delta this frame:

 float scrollDelta = Input.GetAxis("Mouse ScrollWheel");

 //Subtract delta from thirdPersonDistance, multiplying it by the

scroll sensitivity:

 thirdPersonDistance = Mathf.Clamp(thirdPersonDistance - scrollDelta

* scrollSensitivity,minThirdPersonDistance,maxThirdPersonDistance);

 }

}

 Testing
You should now be able to playtest your camera and watch it in action. Set up a Plane

positioned at (0, 0, 0) with a (100, 1, 100) scale to give you some basis of where the

ground is, add a tall Cube next to the player so you have something to test the third-

person camera wall detection with, and move your mouse around to see it in action.

Remember, our default hotkeys are C to switch from first-person to third-person or vice

versa and V to show your cursor again and freeze the camera in place. Once you click

away from the Game window (e.g., to the Inspector or Hierarchy), you can let go of V,

and the camera will remain frozen until you click back into the Game window and tap

V again. You can also play with the smoothing values. If you don’t notice the smoothing

much, turn it up high in the Inspector, and it will become much more obvious.

Chapter 34 Mouse-aiMed CaMera

475

 Summary
With that, we’ve implemented a camera that can switch smoothly between first- and

third-person modes. Our Camera Targets have the rotation applied to them every frame,

and the actual camera GameObject uses that rotation to determine first-person rotation

and third-person target position. We smooth the first-person camera rotation toward

its target rotation every frame. For the third-person camera, it is constantly moved

toward its target position, orbiting around the OrbitPoint, and kept facing forward at the

OrbitPoint.

Chapter 34 Mouse-aiMed CaMera

477
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_35

CHAPTER 35

Advanced 3D Movement
In this chapter, we’ll be implementing the movement system for our player. This includes

using the WASD keys to move, pressing Space to jump, and gravity to make the player

fall back to the ground. In a later chapter, we’ll also implement a wall jumping mechanic

that allows the player to “push off” of a nearby wall to gain extra upward and outward

momentum while midair.

 How It Works
Let’s get an overview of how we expect this system to work before we start poking into

the code. This movement system will operate with a few concepts that are similar to that

of our player movement in the first project:

• Momentum is gained in the direction held by the WASD keys.

• Ongoing momentum is lost over time when no WASD keys are held.

• Attempting to move against ongoing momentum will provide an

increase in momentum gain so the player can more easily reverse the

direction they’re traveling in.

We’ll also use a CharacterController to perform our movement, just like in the first

project. This time, however, we have to account for that pesky Y axis – the player has

to fall when they run off of a ledge, so we’ll need to make them accumulate downward

momentum when they’re midair.

To make things slightly more realistic, we’ll keep any ongoing momentum when the

player becomes midair, whether by jumping or falling off a ledge. This means that all

velocity they have acquired through movement will keep going in the same direction

after they jump or step off a ledge. The velocity won’t begin to drag out until they land

on the ground again. Because this can feel a bit sticky, we’ll still allow them to influence

their movement with the WASD keys while midair, but we’ll use a multiplier for midair

https://doi.org/10.1007/978-1-4842-5656-5_35#ESM

478

movement so we can decrease how effective it is. We want them to be able to draw back

if they’ve made a poor jump or wiggle toward a wall if they didn’t jump straight enough

at it, but we don’t want them to have the same control that they have on the ground.

This time, we have to make the movement local to our player model. In our previous

projects, our movement systems used world space directions because the camera

never rotated. This time, the player model will be facing whatever direction the player

is looking toward. The WASD keys are no longer going to provide velocity in consistent

directions. They’ll have to be local to the facing of the player.

We can achieve this in a few different ways. Your first idea might be to simply store

movement velocity as local to the player. We could do it much the same way as we

did in our first project, maintaining a “movementVelocity” variable where the Z axis

corresponds to the W and S keys and the X axis corresponds to the A and D keys. For

example, if we are traveling straight forward, we might have a movementVelocity of (0, 0,

26). This vector represents 26 units of forward (Z axis) momentum per second.

Since our CharacterController expects us to move it by giving a world space

vector, not local to the Transform facing, this means we would have to make our

“movementVelocity” local to the facing of our Model Holder, supplying the result to our

CharacterController.Move method.

For example, when our movementVelocity is (0, 0, 26), we see it as “26 units of

forward momentum, relative to the direction our Model Holder is facing.” But the way

we want to look at it is not the way our CharacterController will see it. If we pass it into a

CharacterController.Move call, it will see it as “26 units forward in world space,” which

could also be considered “north.” It disregards the direction our Model Holder is facing

and creates a very awkward experience for our player.

Thus, we have to make the “movementVelocity” local to our Model Holder, using a

method on the Transform. This will handle the conversion from local to world space for

us. If we transform “movementVelocity” from local to world space when it is (0, 0, 26),

and our Model Holder is actually looking backward (south), the “movementVelocity”

becomes (0, 0, –26), which takes us south instead of north. This goes for any direction the

Model Holder faces. If we are facing directly right, it would become (26, 0, 0) instead or

(–26, 0, 0) if we are facing directly left or any shade between.

This is viable and doing it this way can work. We can handle the velocity the same

way we did in our first project, the only difference being that we must transform it from

local to world space before we supply it to our CharacterController.

Chapter 35 advanCed 3d MoveMent

479

But maintaining this is not as easy when it comes to things like falling off of ledges

and jumping. Remember, with the movement local to our Model Holder facing, we can

obtain forward momentum and then easily steer it by turning the mouse. Whatever way

we are facing, that is where the velocity takes us. But once the player becomes midair,

we want them to no longer be able to turn their camera to adjust their momentum. You

can’t just do a big leap forward, then spin around midair, and start going backward. That

isn’t how it works!

So we must add complications. We would have to convert our “movementVelocity”

to world space whenever we become midair. This way, it gets locked into the world

direction we were facing when we started the jump and is stuck that way. But then

what happens when we land? More complications! The world velocity will have to be

converted back to local “movementVelocity” once we land, so that we can steer our

momentum again.

This all adds a layer of complexity and finicking to the management of our velocity,

and it becomes more awkward when you consider how you might have external

velocities applied to the player that are not capped by their maximum movement speed,

like if something shoved the player or if the player performed a “dash” move like the one

we implemented in our first project.

We’ll use a different approach to simplify things. Rather than looking at how far we’re

moving on each individual axis, we’ll look at what is known as the magnitude of our

velocity Vector3. The magnitude of a vector is a math equation you can perform to get

what can be seen as the distance that the vector traverses. It is also sometimes referred

to as the length of the vector. We can get the magnitude of a vector by simply using the

“Vector3.magnitude” property. It returns a float. We don’t really need to know what the

math equation is, because the plain English version is simpler anyway: it returns “how

far the vector travels.” If you were to add Vector3 “A” to a Vector3 position “B”, then “B”

will be moving “A.magnitude” units of distance from where it was.

The counterpart of the magnitude, so to speak, is the Vector3.normalized member.

A normalized vector is essentially “converting it to a direction.” More specifically, it is

scaling the magnitude of the vector to 1. The “.normalized” member is a property that

returns a new vector, going in the same direction but with its magnitude scaled down

to 1.

Chapter 35 advanCed 3d MoveMent

480

We’ve used it before. Most notably, we have learned that “(to – from).normalized” is

how we get the direction to point from a position of Vector3 “from” to another position of

Vector3 “to”. For example, to get a direction pointing from an enemy to the player, do this:

(playerPosition - enemyPosition).normalized

A direction is still a Vector3, it’s just that it has a magnitude of 1. Thus, it can be multiplied

by a float to scale the magnitude to whatever that float value is. This is why “.normalized” is

effectively turning the vector into a direction. Once you’ve normalized a Vector3, you can

then multiply it by a float “X” to get a Vector3 that travels X units in that direction.

We’re about to make use of these concepts to code our movement system. Our

velocity will be stored in a single vector depicting the world space velocity our player

currently has. This is always world space and never gets converted back and forth.

When we check for input of the WASD keys, we don’t manage our velocity in “units

per second.” We just get the local direction that the movement keys are held down in.

The local direction is (0, 0, 1) if just W is held. It’s (1, 0, –1) if D (right) and S (backward)

are held. And so on.

We can then convert that local direction to a world space direction using the

TransformDirection method with our Model Holder reference. It takes a direction that is

meant to be local to this Transform and returns back that same direction, but conveyed

in world space.

Using that direction, we can then apply our velocity gain per second (a float) to our

world velocity. To cap the movement at a maximum speed, we’ll use the magnitude

of worldVelocity. If the magnitude is equal to our movespeed variable, we are already

moving “movespeed” units per second in the direction we are traveling, so we won’t

allow our player to go any faster in that direction (you’ll see how that’s done in a bit).

That’s a general overview of how our process will work – and notably, how it

differs from our first project. Before you get overwhelmed with all the details, let’s start

implementing it all one piece at a time.

 Player Script
We already set up our Player GameObject in the previous chapter, so all we have to do

to get set up is add a CharacterController component to the root Player GameObject.

Set its Center to (0, 3, 0), its Height to 6, and its Radius to 1, which will make it match the

Capsule we added to our Model Holder before.

Chapter 35 advanCed 3d MoveMent

481

Now, create a Player script in your Scripts folder. Let’s get it started by declaring our

variables and an outline of the methods that split up our Update logic:

public class Player : MonoBehaviour

{

 //Variables

 [Header("References")]

 [Tooltip("Reference to the root Transform, on which the Player script

is attached.")]

 public Transform trans;

 [Tooltip("Reference to the Model Holder Transform. Movement will be

local to the facing of this Transform.")]

 public Transform modelHolder;

 [Tooltip("Reference to the CharacterController component.")]

 public CharacterController charController;

 [Header("Gravity")]

 [Tooltip("Maximum downward momentum the player can have due to

gravity.")]

 public float maxGravity = 92;

 [Tooltip("Time taken for downward velocity to go from 0 to the

maxGravity.")]

 public float timeToMaxGravity = .6f;

 //Property that gets the downward momentum per second to apply as gravity:

 public float GravityPerSecond

 {

 get

 {

 return maxGravity / timeToMaxGravity;

 }

 }

 //Y velocity is stored in a separate float, apart from the velocity vector:

 private float yVelocity = 0;

Chapter 35 advanCed 3d MoveMent

482

 [Header("Movement")]

 [Tooltip("Maximum ground speed per second with normal movement.")]

 public float movespeed = 42;

 [Tooltip("Time taken, in seconds, to reach maximum speed from a stand-

still.")]

 public float timeToMaxSpeed = .3f;

 [Tooltip("Time taken, in seconds, to go from moving at full speed to a

stand-still.")]

 public float timeToLoseMaxSpeed = .2f;

 [Tooltip("Multiplier for additional velocity gain when moving against

ongoing momentum. For example, 0 means no additional velocity, .5

means 50% extra, etc.")]

 public float reverseMomentumMulitplier = .6f;

 [Tooltip("Multiplier for velocity influence when moving while

midair. For example, .5 means 50% speed. A value greater than 1 will

make you move faster while midair.")]

 public float midairMovementMultiplier = .4f;

 [Tooltip("Multiplier for how much velocity is retained after bouncing

off of a wall. For example, 1 is full velocity, .2 is 20%.")]

 [Range(0,1)]

 public float bounciness = .2f;

 //Movement direction, local to the model holder facing:

 private Vector3 localMovementDirection = Vector3.zero;

 //Current world-space velocity; only the X and Z axes are used:

 private Vector3 worldVelocity = Vector3.zero;

 //True if we are currently on the ground, false if we are midair:

 private bool grounded = false;

 //Velocity gained per second. Applies midairMovementMultiplier when we

are not grounded:

 public float VelocityGainPerSecond

 {

Chapter 35 advanCed 3d MoveMent

483

 get

 {

 if (grounded)

 return movespeed / timeToMaxSpeed;

 //Only use the midairMovementMultiplier if we are not grounded:

 else

 return (movespeed / timeToMaxSpeed) * midairMovementMultiplier;

 }

 }

 //Velocity lost per second based on movespeed and timeToLoseMaxSpeed:

 public float VelocityLossPerSecond

 {

 get

 {

 return movespeed / timeToLoseMaxSpeed;

 }

 }

 [Header("Jumping")]

 [Tooltip("Upward velocity provided on jump.")]

 public float jumpPower = 76;

 //Update Logic:

 void Movement()

 {

 }

 void VelocityLoss()

 {

 }

 void Gravity()

 {

 }

Chapter 35 advanCed 3d MoveMent

484

 void Jumping()

 {

 }

 void ApplyVelocity()

 {

 }

 //Unity Events:

 void Update()

 {

 Movement();

 VelocityLoss();

 Gravity();

 Jumping();

 ApplyVelocity();

 }

}

To define gravity, we declare a maximum downward velocity value that can be

applied by gravity and the time we want it to take, in seconds, to reach that maximum

velocity. Decrease the timeToMaxGravity variable, and gravity will take full effect on your

player faster. Increase it and the player will be “floatier,” taking longer to begin falling fast

after they have jumped or stepped off an edge.

The actual Y velocity is stored as a float, while the X and Z axes of our velocity will

be stored in the “worldVelocity” Vector3. This is so we can track the magnitude of our

outward velocity for movement, without the Y axis affecting it. It’ll make more sense why

we do it this way when we apply our movement to the velocity.

Our movement variables are similar to those of our first project. The “movespeed” is

the maximum velocity on the X and Z axes that we want to be able to have just by moving

while grounded. External forces might make us move faster than that, but if we’re just

Chapter 35 advanCed 3d MoveMent

485

moving around while grounded, we won’t be able to pick up any more speed than

“movespeed”.

We also use “timeToMaxSpeed” and “timeToLoseMaxSpeed” which are used in

the VelocityGainPerSecond and VelocityLossPerSecond properties, just like in the

movement system of our first project.

The “reverseMomentumMultiplier” is also the same concept we used in our first

project, although we’ll be implementing it a little differently. It is a multiplier for our

movespeed which is added as bonus speed when we are working to move against

ongoing velocity – trying to go right when we are already traveling left, for example. The

higher you set it, the quicker the player can switch directions.

The “midairMovementMultiplier” is how we prevent the player from gaining as

much velocity from midair movement as they would with grounded movement. We

apply it when getting the VelocityGainPerSecond property, but only while “grounded” is

false (meaning we’re midair).

The “bounciness” is a new variable that we use to determine how hard the player

bounces off of walls that they hit while midair. We don’t want the player to slide against

walls that they strike while midair. If they did, then they would keep sliding against a

wall; and if they rose up over the wall, they would keep going. Thus, you could jump at a

wall, faceplant into it for a second, and then rise up over it and keep going forward as if

you didn’t just smack into the wall. To avoid that, we’ll redirect the player’s momentum

away whenever they strike a wall. Alternatively, you could set “bounciness” to 0 to make

the player completely stop traveling outward when they hit a wall – they won’t bounce

off of it, they’ll just plop against it like a ball of wet paper towel.

Beneath the variables, our process is outlined with our empty methods:

• Movement() will check if the player is holding the WASD keys,

updating the “localMovementDirection” vector variable we declared

based on which keys are held. If any keys are held, it will convert

the local movement direction to world space based on the direction

the Model Holder is facing and then apply VelocityGainPerSecond

in that direction. Since this occurs first, other methods can use the

“localMovementDirection” to check which movement keys are held,

if they need to.

Chapter 35 advanCed 3d MoveMent

486

• VelocityLoss() causes our ongoing velocity to “drag out” while we are

grounded; and we are either not holding any movement keys, or our

velocity magnitude is greater than “movespeed”.

• Gravity() subtracts from “yVelocity” as long as we are midair, but

only if our downward velocity has not exceeded “maxGravity”.

• Jumping() checks for the Space key being pressed while grounded. If

so, it adds “jumpPower” upward momentum by adding to “yVelocity”.

• ApplyVelocity() puts our “worldVelocity” and “yVelocity” together

and applies it as movement per second with the CharacterController.

We’ll use some information given to us by the CharacterController

to determine if we touched ground during that movement, and if

so, we’ll set “grounded” to true, or otherwise we’ll set it to “false.”

Conversely, we’ll also check if we bumped our head during the

movement. If so, we’ll lose our upward velocity so we start falling as

soon as we hit our head instead of sliding against the surface until

gravity begins to pull us down.

To make sure things are ready when we begin, go ahead and add an instance of

the Player script to the root “Player” GameObject. Set the three references: “trans”

should point to the root “Player” Transform, the Model Holder can be dragged from the

Hierarchy onto the corresponding field to reference it, and the CharacterController you

just added to the Player can be found and dragged to the Char Controller field through

the same Inspector view.

 Movement Velocity
Let’s start with basic grounded movement and work up from there. First, we’ll fill

in the code for our Movement method, which will make our WASD keys affect our

“worldVelocity”. Add the following code to your empty Movement method:

void Movement()

{

 //Every frame, we'll reset local movement direction to zero and set its

X and Z based on WASD keys:

 localMovementDirection = Vector3.zero;

Chapter 35 advanCed 3d MoveMent

487

 //Right and left (D and A):

 if (Input.GetKey(KeyCode.D))

 localMovementDirection.x = 1;

 else if (Input.GetKey(KeyCode.A))

 localMovementDirection.x = -1;

 //Forward and back (W and S):

 if (Input.GetKey(KeyCode.W))

 localMovementDirection.z = 1;

 else if (Input.GetKey(KeyCode.S))

 localMovementDirection.z = -1;

 //If any of the movement keys are held this frame:

 if (localMovementDirection != Vector3.zero)

 {

 //Convert local movement direction to world direction, relative to

the model holder:

 Vector3 worldMovementDirection = modelHolder.TransformDirection

(localMovementDirection.normalized);

 //We'll calculate a multiplier to add the reverse momentum

multiplier based on the direction we're trying to move.

 float multiplier = 1;

 //Dot product will be 1 if moving directly towards existing velocity,

 // 0 if moving perpendicular to existing velocity,

 // and -1 if moving directly away from existing velocity.

 float dot = Vector3.Dot(worldMovementDirection.

normalized,worldVelocity.normalized);

 //If we're moving away from the velocity by any amount,

 if (dot < 0)

 //Now, flipping the 'dot' with a '-' makes it between 0 and 1.

 //Exactly 1 means moving directly away from existing momentum.

 //Thus, we'll get the full 'reverseMomentumMultiplier' only

when it's 1.

 multiplier += -dot * reverseMomentumMulitplier;

Chapter 35 advanCed 3d MoveMent

488

 //Calculate the new velocity by adding movement velocity to the

current velocity:

 Vector3 newVelocity = worldVelocity + worldMovementDirection *

VelocityGainPerSecond * multiplier * Time.deltaTime;

 //If world velocity is already moving more than 'movespeed' per second:

 if (worldVelocity.magnitude > movespeed)

 //Clamp the magnitude at that of our world velocity:

 worldVelocity = Vector3.ClampMagnitude(newVelocity,worldVeloci

ty.magnitude);

 //If we aren't moving over 'movespeed' units per second yet,

 else

 //Clamp the magnitude at a maximum of 'movespeed':

 worldVelocity = Vector3.ClampMagnitude(newVelocity,movespeed);

 }

}

As we previously discussed, we’ll use the WASD keys to get a “local movement

direction” that simply points in the direction the player is holding with the WASD keys.

The X and Z axes are all we’re using, and they’ll either be 0, 1, or –1. This is the direction

the player is attempting to move in, local to the facing of the Model Holder.

We convert this from local to world space by calling “modelHolder.

TransformDirection”, storing the result in the variable named

“worldMovementDirection”. With this, we know the direction we want our velocity to be

influenced toward by our movement, and it’s in world space so we can use it to add to

our “worldVelocity”.

You might wonder why we normalize our “localMovementDirection” when we pass

it into the TransformDirection method. Technically, the magnitude is not 1 for our world

direction vector if two movement keys are being held. For example, the magnitude of a

vector like (1, 0, 1) is not 1, it’s a little higher because it traverses a little more distance

than a vector that’s just (0, 0, 1) or (1, 0, 0). Thus, we actually get a little more movement

when we move diagonally, unless we normalize it. This just makes it so that diagonal

movement is not “more effective” than moving directly forward, backward, left, or right.

Before we apply the change in velocity using that world direction, we calculate the

“multiplier” variable, which is how we apply the reverse momentum influence. This

uses a new Vector3 method, “Dot”. It returns what is known as the “dot product” of two

Chapter 35 advanCed 3d MoveMent

489

Vectors. It should be given two normalized vectors – which means two vectors with a

magnitude of 1. As the comments describe, the dot product will be 1 if vector A points

in the same direction as vector B, 0 if it points perpendicular (a 90-degree angle away),

and –1 if it points in the exact opposite direction. It’s not just one of those three values,

though – it’s a fraction anywhere between them. So if A points in almost the same

direction as B, but not exactly, it might return something a little lower than 1, like .9.

We’ll use the “dot” to determine how much of our “reverseMomentumMultiplier”

gets added to the “multiplier” we declared. First, we check if “dot” is less than 0. If it’s

greater than 0, it’s traveling in a direction no more than 90 degrees off of the direction the

world velocity is taking us. Thus, it’s not really reversing momentum, so we don’t apply

any extra multiplier. Since we declare “multiplier” with a default value of 1, this means

it’s not going to affect the movement at all.

However, if it’s less than 0, we add to the multiplier, using “dot” as a fraction

for how much of the reverseMomentumMultiplier is used. We flip “dot” so that it’s

anywhere between 0 and 1, not –1 and 0. If we don’t do that, it would decrease the value

of “multiplier,” since we’d be adding a negative value. Of course, you could also just

subtract the value without flipping “dot” if you changed the line to this instead:

multiplier -= dot * reverseMomentumMulitplier;

Both versions do the same thing in slightly different ways. Use whichever makes

more sense to you, if you want!

With that, we have our multiplier. It will be anywhere from 1 to 1.6, if

“reverseMomentumMultiplier” is at its default value of .6.

After that, we perform a little vector trickery to apply the velocity. We first calculate

the new velocity in a separate vector. This is done by starting with the existing

worldVelocity and adding the velocity we want to add on this frame. This equation is

simple enough. We use the world movement direction we calculated earlier and multiply

that by the velocity we want to gain per second; plus, we apply the “multiplier” we just

calculated, and of course, Time.deltaTime is part of the equation, since it is “velocity

gained per second.”

When we apply the new velocity, we have to make sure we aren’t increasing the

velocity above the magnitude it should be allowed to have. Since we aren’t handling

each individual axis (X, Y, and Z) separately as we were in our first project, we have to

do this differently. The simple solution is to use the Vector3.ClampMagnitude static

method. It takes a Vector3 and a float for the maximum magnitude we want that vector

Chapter 35 advanCed 3d MoveMent

490

to be allowed. It returns back the same vector; but, if the magnitude was greater than the

float value, it will be scaled down to the float value. If the magnitude was not greater, the

vector is returned as is.

We clamp the magnitude in two different ways. If it’s already at something greater

than “movespeed”, then that means some external force may have given us a shove.

We don’t want to constantly clamp our magnitude at “movespeed” because then this

isn’t possible anymore. External forces which push us harder than we are able to move

on our own will immediately be negated if we constantly clamp our world velocity to

“movespeed” magnitude.

But if we aren’t moving any faster than “movespeed”, we clamp it to a maximum of

“movespeed”.

This allows us to apply the velocity so that our momentum is adjusted in the

direction our movement takes us, but without ever allowing our ongoing momentum to

be greater than “movespeed”. The same concept applies when the magnitude is greater

than “movespeed”. Say we’re shoved by something, like an enemy striking us or a force

field pushing us. We have 60 movespeed, but our world velocity magnitude is now 90

due to the external force. If we move against the momentum, then the clamping of the

magnitude doesn’t matter. We’ll be decreasing the world velocity magnitude because

we are losing velocity: moving directly against it, we’re simply decreasing its magnitude.

But if we move in the same direction, our movement won’t give us more speed, since the

magnitude is prevented from raising over its current value.

 Applying Movement
Let’s apply the movement to our player so we can see it in action. We’ll add this code to

the last method we call in Update, the ApplyVelocity method:

void ApplyVelocity()

{

 // While grounded, apply slight downward velocity to keep our grounded

state correct:

 if (grounded)

 yVelocity = -1;

 //Calculate the movement we'll receive this frame:

Chapter 35 advanCed 3d MoveMent

491

 Vector3 movementThisFrame = (worldVelocity + (Vector3.up * yVelocity))

* Time.deltaTime;

 //Calculate where we expect to be after moving if we don't hit anything:

 Vector3 predictedPosition = trans.position + movementThisFrame;

 //Only call Move if we have a minimum of .03 velocity:

 if (movementThisFrame.magnitude > .03f)

 charController.Move(movementThisFrame);

 //Checking grounded state:

 if (!grounded && charController.collisionFlags.HasFlag(CollisionFlags.

Below))

 grounded = true;

 else if (grounded && !charController.collisionFlags.

HasFlag(CollisionFlags.Below))

 grounded = false;

 //Bounce off of walls when we hit our sides while midair:

 if (!grounded && charController.collisionFlags.HasFlag(CollisionFlags.Sides))

 worldVelocity = (trans.position - predictedPosition).normalized *

(worldVelocity.magnitude * bounciness);

 //Lose Y velocity if we're going up and collided with something above us:

 if (yVelocity > 0 && charController.collisionFlags.

HasFlag(CollisionFlags.Above))

 yVelocity = 0;

}

Because we’ll be asking our CharacterController “Did we hit something below us the

last time we called Move()?” to determine if we are grounded or not, we apply a constant,

negligible amount of downward velocity while we are grounded. This way, if we move

while grounded, we’ll go down a little bit, causing us to touch the floor beneath us. If we

didn’t do this, we’d move directly outward, and the CharacterController would not think

we were grounded because our bottom didn’t touch anything.

We store the vector we will be moving on this frame in a variable and later pass

that into the Move call with our CharacterController. The velocity is simple enough:

worldVelocity is our X and Z velocity, and we add (0, yVelocity, 0) to that. Remember,

Chapter 35 advanCed 3d MoveMent

492

Vector3.up is just a shorthand way of typing “new Vector3(0, 1, 0)”. Multiplying a float by

Vector3.up is just saying “go up by this amount.”

We also store a vector for the position we expect to have after moving, if nothing gets

in our way. This is used to calculate bouncing direction.

To prevent calling Move when there’s barely any velocity, we only call it when the

distance we are going to move is greater than .03. This will help us prevent an issue

down the road with platforms. It’ll also cut out Move calls that aren’t really moving us

anywhere noticeable, which can save a little on performance.

After we move, we can then use the CharacterController.collisionFlags member to

check which parts of the capsule making up our controller had collisions during the last

move call.

This is a bit mask, which behaves like a layer mask. Remember how layer masks

are essentially a list of “checkboxes” for each entry? Each individual layer can be true

or false. This is how the collision flags work, except instead of layers, we have collision

directions: Below, Sides, and Above. We can use the “HasFlag” method to return true

if a collision occurred Below, at the Sides, or Above. Of course, it will return false if a

collision did not occur there.

We check if we are currently not grounded and hit something below us. If so, we

become grounded.

After that, we check if we are grounded, but did not hit anything below us. In that

case, we must become midair (not grounded).

We also perform our “bouncing” here. When we hit something from our side while

midair, we adjust our velocity. This is done by redirecting it from the predicted position

to the actual position we ended up at. We then multiply that direction by the magnitude,

which is affected by “bounciness.” If the bounciness is 1, we get the full magnitude

redirected. If it were .5 instead, we’d only get 50% of the magnitude, causing some of our

momentum to be lost when we hit the wall.

After that, we check also for collisions at our top. If we struck something above us, we

lose all positive yVelocity. If we didn’t implement this, we would keep rising up against

anything above us until gravity dropped our yVelocity below 0. This way, it immediately

drops to 0 once we bump our head, causing us to start falling.

With that, you can test movement by using the WASD keys. Of course, we still have to

actually make the movement stop once we let go of the WASD keys; otherwise, we’ll just

keep moving.

Chapter 35 advanCed 3d MoveMent

493

 Losing Velocity
Let’s implement the VelocityLoss method:

void VelocityLoss()

{

 //Lose velocity as long as we are grounded, and we either are not

holding movement keys, or are moving faster than 'movespeed':

 if (grounded && (localMovementDirection == Vector3.zero ||

worldVelocity.magnitude > movespeed))

 {

 //Calculate velocity we'll be losing this frame:

 float velocityLoss = VelocityLossPerSecond * Time.deltaTime;

 //If we're losing more velocity than the world velocity magnitude:

 if (velocityLoss > worldVelocity.magnitude)

 //Zero out velocity so we're totally still:

 worldVelocity = Vector3.zero;

 //Otherwise if we're losing less velocity:

 else

 //Apply velocity loss in the opposite direction of the world

velocity:

 worldVelocity -= worldVelocity.normalized * velocityLoss;

 }

}

This isn’t terribly complicated. We first supply the situation when velocity loss

should occur:

• We must be grounded, not midair.

• We must not be holding any of the WASD keys. To determine this,

we use the “localMovementDirection” vector which we set in the

Movement method every frame.

• Alternatively, if we are holding any of the WASD keys, we will still lose

velocity if our world velocity magnitude is greater than “movespeed”.

Chapter 35 advanCed 3d MoveMent

494

To apply the velocity loss, we first calculate how much magnitude we should lose on

this frame in a quick variable. Then, we must apply it one of two ways. If the magnitude

we are losing on this frame is greater than the magnitude of our world velocity, then

applying it should just end all momentum, so we set worldVelocity to “zero.”

Otherwise, if we aren’t going to lose all velocity magnitude on this frame, we

apply the velocity loss as momentum in the opposite direction that the worldVelocity

is currently traveling in. Seeing this, it should become a bit clearer why we must

differentiate between the two methods of applying the velocity. If we just did the latter

method every frame, then we would never actually stop moving completely. We would

apply velocity in the opposite direction until our momentum reversed; then we’d do

it again and again, constantly reversing the direction because we’re constantly adding

some amount of velocity every frame.

That should now allow us to move around in-game and, once we let go of the WASD

keys, lose all of our velocity over time.

 Gravity and Jumping
Now all that’s left is the vertical axis. First, we’ll fill in the Gravity method, which is a

simple few lines of code:

void Gravity()

{

 //While not grounded,

 if (!grounded && yVelocity > -maxGravity)

 //Decrease Y velocity by GravityPerSecond, but don't go under

-maxGravity:

 yVelocity = Mathf.Max(yVelocity - GravityPerSecond * Time.

deltaTime,-maxGravity);

}

Since maxGravity is set as a positive value, depicting the “maximum downward

momentum we can have due to gravity,” we have to do a little flipping when we apply it

to yVelocity. If yVelocity is positive, we’ll go up. If it’s negative, we’ll go down. Thus, the

gravity needs to subtract from our yVelocity. We use Max to ensure that should it drop

below “–maxGravity”, it instead is set to “–maxGravity”.

Chapter 35 advanCed 3d MoveMent

495

We only do this if our yVelocity is not already less than “–maxGravity”. This makes

sure that external forces can drive us downward harder than gravity can, but should that

happen, gravity will not keep applying.

With that, you can add a cube to your scene to walk on, position your player on top of

it, and then play and walk off the edge. You should start falling as soon as your figurative

feet leave the cube.

Let’s give ourselves a way to get back up onto the cube, though, and

implement jumping:

void Jumping()

{

 if (grounded && Input.GetKeyDown(KeyCode.Space))

 {

 //Start traveling 'jumpPower' upwards per second:

 yVelocity = jumpPower;

 //Stop counting ourselves as grounded since we know we just jumped:

 grounded = false;

 }

}

Again, not too complicated. We only allow jumping while grounded, and it occurs

when you press Space. Since we know we’re grounded and will have no downward

velocity (except the default –1 to keep ground detection functioning correctly), our

yVelocity can simply be set to the “jumpPower” with an “=” rather than adding to it with

a “+=”.

You might wonder why it’s necessary to bother setting “grounded” to false when a

jump occurs. You’ll recall that, while grounded, we constantly set our “yVelocity” to –1 in

the ApplyVelocity method, which is called just after the Jumping method. This would still

occur immediately after a jump if we didn’t set “grounded” to “false” here, which would

make jumping do nothing.

With that, you can test again and try jumping with Space. You’ll rise and fall based

on the gravity settings and the jump power. How high the jump takes you is dependent

upon a combination of all those variables: the maximum gravity, the time taken to apply

maximum gravity, and the jump power.

Chapter 35 advanCed 3d MoveMent

496

 Summary
In this chapter, we learned some more advanced tricks for working with vectors to

implement player movement, jumping, and gravity in a mouse-aimed setup. Some key

things to remember are as follows:

• The magnitude (also called length) of a vector is the amount of

distance it traverses.

• A normalized vector is a vector with a magnitude of 1. This can be

looked at as a “direction.” Multiply it by float “X” to go X units in the

given direction.

• After calling Move with a CharacterController, you can test where

collisions occurred on the collider using the “collisionFlags” member.

Chapter 35 advanCed 3d MoveMent

497
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_36

CHAPTER 36

Wall Jumping
With our player movement, gravity, and jumping implemented in the last chapter, we’ll

move on to give our player the ability to push off a nearby wall for an extra midair jump.

There are different ways to design a wall jumping mechanic. You might only allow a

wall jump to be performed in the opposite direction that the player’s velocity is traveling

in, to enforce the idea that they are “pushing off” of the wall and redirecting their

momentum.

Our system will be a bit more allowing. We’ll simply test for collisions with walls

near the player, and if we can find any, we’ll allow the wall jump. The wall jump will go

straight up if the player is holding no WASD movement keys. If they are holding any keys,

it will also push off in the local direction they’re holding. For example, holding S will

attempt to wall jump backward or D to wall jump toward the player’s right side.

 Variables
First off, let’s declare the variables that relate to wall jumping. Everything’s going in the

Player script, of course, so open it up. Beneath the last variable we declared, which was

“jumpPower”, add these variables:

[Header("Wall Jumping")]

[Tooltip("Outward velocity provided by wall jumping.")]

public float wallJumpPower = 40;

[Tooltip("Upward velocity provided by wall jumping.")]

public float wallJumpAir = 56;

[Tooltip("Maximum distance from the player's side that a wall can be

detected for a wall jump.")]

public float wallDetectionRange = 2.4f;

https://doi.org/10.1007/978-1-4842-5656-5_36#ESM

498

[Tooltip("Cooldown time for wall jumps, in seconds.")]

public float wallJumpCooldown = .3f;

[Tooltip("Only layers included in this mask will count as walls that can be

jumped off.")]

public LayerMask wallDetectionLayerMask;

//Time.time when we last performed a wall jump.

private float lastWallJumpTime;

//Returns true if wall jump is not on cooldown, false if it is on cooldown.

private bool WallJumpIsOffCooldown

{

 get

 {

 //Current time must be greater than the last wall jump time, plus

wall jump cooldown:

 return Time.time > lastWallJumpTime + wallJumpCooldown;

 }

}

• “wallJumpPower” is the velocity we’ll be applying on the X and Z

axes when a wall jump occurs. This is only applied if any of the WASD

keys are held when the jump is first ordered.

• “wallJumpAir” is the upward velocity, which will always be applied

regardless of the WASD keys.

• “wallDetectionRange” depicts the maximum distance away from the

player a wall can be when we wall jump off it. Anything that’s further

from the player than this will not be detected for wall jumping.

• “wallJumpCooldown” is a short cooldown we’ll apply to wall jumps

so the player can only perform one every .3 seconds.

• “wallDetectionLayerMask” will be used when we check for walls

near the player.

Chapter 36 Wall Jumping

499

• “lastWallJumpTime” will be set to the current Time.time whenever

we perform a wall jump. It will be used to check if the wall jump is on

cooldown.

• “WallJumpIsOffCooldown” is a shorthand property for checking if

the wall jump is off cooldown (true) or on cooldown (false).

Once you’ve written these variables, be sure to save the script and go set up that layer

mask in the Inspector for your Player. We’ll make it include just the Default layer, not any

of the others.

In the Inspector, our new Wall Jumping variables will look like Figure 36-1 when

finished.

 Detecting Walls
We’ll need to know if a wall is near us before we allow a wall jump to occur. To detect if

a wall is nearby, we’ll call the method Physics.OverlapBox. This takes some parameters

defining an invisible box in world space. It tests if any colliders are inside this box or

touching it, gathers them all in a Collider[] array, and then returns that array.

All we’ll need is to know if at least one collider is returned to us. We don’t really need

to mess with the returned array. We just need to check if its Length member is greater

than 0. To do this, we can define a WallIsNearby method that performs the check using

OverlapBox and then returns true if the returned array length is greater than 0 or false if

it is not.

If we’re clever about it, this can be done in a single line of code within the

WallIsNearby method, but your first instinct is probably to do it in more than one line.

I’ll give a few code samples that you don’t have to write into your Player script yet, just to

demonstrate the point.

Figure 36-1. The Wall Jumping variables of our Player script in the Inspector

Chapter 36 Wall Jumping

500

The following code sample shows one way of doing it, with the parameters of the

OverlapBox call excluded just to keep the extra clutter out of the way for now:

private bool WallIsNearby()

{

 Collider[] colliders = Physics.OverlapBox();

 if (colliders.Length > 0)

 return true;

 else

 return false;

}

Pretty simple, right? Store the returned array in a local variable and check the Length

member. It’s not necessarily wrong, it’s just doing it in more lines of code than necessary.

Here is how you might do the same thing with one line of code in the method

instead:

private bool WallIsNearby()

{

 return Physics.OverlapBox().Length > 0;

}

As you can see, we are calling OverlapBox, but we’re not storing the returned array in

a local variable before we access it. We’re simply reaching directly into the returned array

after the closing “)” of the OverlapBox method call. Doing this, we can grab the Length

member of the array and use the “>” operator to get a bool value: true if the array has any

members in it and false if it does not.

This comes out to one simple equation that can be returned as it is, no variables

required. As long as the value coming after the “return” keyword evaluates to the correct

type, you can use operators and method calls to get the value. You don’t have to just

“return false” or “return true”!

With that out of the way, let’s write the actual method, including the parameters

we’ll use to define the OverlapBox. To spread the method call out so it’s a little more

comfortable to read, I’ll put each parameter on its own line of code. This is the final

version of the method, so declare it beneath our Wall Jumping variables in the
Player script:

Chapter 36 Wall Jumping

501

private bool WallIsNearby()

{

 return Physics.OverlapBox(

 trans.position + Vector3.up * (charController.height * .5f),

 Vector3.one * wallDetectionRange,

 modelHolder.rotation,

 wallDetectionLayerMask.value).Length > 0;

}

This is something you may see when method calls have lots of parameters or when

the parameters are large and unwieldy. Each parameter is given with its comma at the

end to separate it from the next parameter, but we also add a line break after the comma.

Let’s go over what these parameters are.

The first parameter is a Vector3 depicting the world position of the center of

the box. We start at the root Transform position, which is at the floor level, right at

the bottom of our Capsule model. We add a vector going straight up by half of our

CharacterController’s Height setting, which we’ve set in the Inspector to a value of 6. So

effectively, the box center is halfway up the height of the player.

The second parameter is the “half extents” of the box. This is a Vector3 depicting half

of the size of the box. X is width, Y is height, and Z is length. It is given as “half extents”

instead of the full size of the box.

For this parameter, we use “Vector3.one”, which is shorthand for “new Vector3(1, 1, 1)”.

We multiply it by the wallDetectionRange. This is effectively the same as typing this:

new Vector3(wallDetectionRange, wallDetectionRange, wallDetectionRange)

It’s just a bit shorter. Ultimately, this parameter depicts that each side of the box will

be “wallDetectionRange” away from the center. The total size of the box is double the

wallDetectionRange, if you measure it from one side to the opposite.

The third parameter is a Quaternion for the rotation of the box. We give the box

Quaternion.identity for its rotation, which just means “no rotation.” It will point forward

along the world forward direction, just as if you had created a new Cube in the Scene.

Lastly, the fourth parameter is our layer mask value, which lets us define which

layers constitute as walls that can be jumped off. We’ve seen this previously in our use of

the raycast method.

Chapter 36 Wall Jumping

502

 Performing the Jump
With everything set up, let’s add an extra method to check for the Space key being

pressed and perform the wall jump if applicable.

We’ll add a Wall Jumping method amid our existing Update logic methods we’ve

declared in the past, between Gravity and Jumping:

void Movement() {...}

void VelocityLoss() {...}

void Gravity() {...}

void WallJumping()

{

}

void Jumping() {...}

void ApplyVelocity() {...}

And we’ll call it in the Update method, of course. We want it to occur before our

Jumping method:

void Update()

{

 Movement();

 VelocityLoss();

 Gravity();

 WallJumping();

 Jumping();

 ApplyVelocity();

}

Chapter 36 Wall Jumping

503

Now let’s fill in the WallJumping method:

void WallJumping()

{

 //If midair and wall jump is off cooldown:

 if (!grounded && WallJumpIsOffCooldown)

 {

 //If space is pressed:

 if (Input.GetKeyDown(KeyCode.Space))

 {

 //Make sure a wall is nearby to jump off:

 if (WallIsNearby())

 {

 //If any movement keys are held,

 if (localMovementDirection != Vector3.zero)

 //Apply outward movement by converting local movement

direction to world-space

 // relative to the model holder, and multiplying by

wall jump power:

 worldVelocity = modelHolder.TransformDirection(local

MovementDirection) * wallJumpPower;

 //We'll also apply Y velocity. If we're falling,

 if (yVelocity <= 0)

 // all downward momentum is replaced with the wall jump air:

 yVelocity = wallJumpAir;

 //If not falling, just add wall jump air to existing velocity:

 else

 yVelocity += wallJumpAir;

 //Apply wall jump cooldown:

 lastWallJumpTime = Time.time;

 }

 }

 }

}

Chapter 36 Wall Jumping

504

The first three if’s amount to “while midair and wall jump is off cooldown, when the

Space key is first pressed, and if a wall is nearby.” On those conditions, we perform the

wall jump.

To apply outward momentum, we transform the local movement direction (which

WASD keys are held) to world space and multiply that by the wall jump power. We

directly set the worldVelocity to this value with an “=” operator rather than adding the

velocity as extra. This means if you jump off a wall, all existing outward velocity will be

ended, and the wall jump velocity will replace it.

For example, this way the player can jump directly at a wall and wall jump backward

in the opposite direction. If we just added the wall jump velocity to the world velocity,

then attempting to go backward with a wall jump wouldn’t be as effective, since it would

be working against ongoing momentum. The two would likely just cancel each other out,

unless your wall jump power was sufficiently high.

If you would rather have ongoing momentum be retained when a wall jump occurs,

you can change the line to include the current world velocity magnitude as well as the

jump power:

worldVelocity = modelHolder.TransformDirection(localMovementDirection) *

(wallJumpPower + worldVelocity.magnitude);

This is the same thing, but rather than just multiplying by wallJumpPower, we

multiply by the power plus the ongoing magnitude of our world velocity. In other words,

however fast the velocity was moving before is added to the wall jump power, but it’s all

directed along the wall jump direction instead of whatever direction we were traveling

before.

This can make for more convincing wall jumps if you were, say, pushed by an

external force. Rather than all of your momentum being replaced by the wall jump

power, which could look awkward if the wall jump power was less than the momentum

you had, your existing momentum gets redirected and the wall jump power is also added

to it as extra velocity. Wall jumping back and forth between two walls repeatedly this way

could “stack up” a lot of velocity, though.

In the end, it’s just a matter of how you want to implement the mechanic. For our

purposes, I’ll be leaving it at the first example, with no “worldVelocity.magnitude”

involved. If you think it’s more fun the second way, go ahead and replace the line.

After we add that outward velocity, we then add the upward velocity. This is done

one of two ways. If we’re falling, we want the wall jump to counteract that downward

Chapter 36 Wall Jumping

505

momentum, so we directly set “yVelocity” rather than adding to it. This overrides any

negative velocity we already had.

Otherwise, if we wall jump when we’re already rising, we just add extra upward velocity.

Lastly, we set the Time.time at which the last wall jump was performed, which puts it

on cooldown.

With that, you can go and test out the new features. Try creating some cubes and

making them tall enough to jump up against and wall jump off. You can stand next to

the wall, jump with no WASD keys held, and press Space again while midair to just go

straight up. The default cooldown is low enough that you can keep going up and up this

way (although you can raise it if that sort of power frightens you).

You can also put two tall cubes next to each other and wall jump back and forth

between them.

Remember, if you forgot to set up the layer mask in the Inspector, the walls around

the player might not be detected, preventing you from performing wall jumps. Similarly,

if you neglected to change the Player’s layer, the player might still be layered “Default”

causing them to count as a wall themselves, which would allow wall jumping even if no

wall is nearby.

 Summary
In this chapter, we learned how to use the Physics.OverlapBox method to test for

colliders within a box-shaped area. Using this, we allow the player to press Space while

midair with a wall nearby to push off the wall for an extra aerial jump.

Chapter 36 Wall Jumping

507
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_37

CHAPTER 37

Pulling and Pushing
In this chapter, we’ll make use of raycasting to allow the player to point their camera at

a GameObject with a Rigidbody and hold left-click to pull the object toward them or

right-click to push it away from them. Rather than pulling and pushing by moving the

Transform directly, we’ll apply force to the Rigidbody so that the physics system handles

the motion instead for us.

 Script Setup
The pushing and pulling features will be implemented in a separate “Telekinesis” script

that we’ll attach to the Player GameObject. We’ll do this instead of writing everything in

the Player script, just to keep things organized.

Start off by creating a script named Telekinesis in the Scripts folder of your project.

Open it up, and let’s declare our variables:

public class Telekinesis : MonoBehaviour

{

 public enum State

 {

 Idle,

 Pushing,

 Pulling

 }

 private State state = State.Idle;

 [Header("References")]

 public Transform baseTrans;

 public Camera cam;

https://doi.org/10.1007/978-1-4842-5656-5_37#ESM

508

 [Header("Stats")]

 [Tooltip("Force applied when pulling a target.")]

 public float pullForce = 60;

 [Tooltip("Force applied when pushing a target.")]

 public float pushForce = 60;

 [Tooltip("Maximum distance from the player that a telekinesis target

can be.")]

 public float range = 70;

 [Tooltip("Layer mask for objects that can be pulled and pushed.")]

 public LayerMask detectionLayerMask;

 //Current target of telekinesis, if any.

 private Transform target;

 //The world position that the target detection ray hit on the current target.

 private Vector3 targetHitPoint;

 //Rigidbody component of target. For something to be marked as a

target, it must have a Rigidbody.

 //So as long as 'target' is not null, this won't be null either.

 private Rigidbody targetRigidbody;

 //If there is no current target, this is always false. Otherwise, true

if the target is in range, false if they are not.

 private bool targetIsOutsideRange = false;

 //Gets the Color that the cursor should display based on the state and

target distance.

 private Color CursorColor

 {

 get

 {

 if (state == State.Idle)

 {

 //If there is no target, return gray:

 if (target == null)

Chapter 37 pulling and pushing

509

 return Color.gray;

 //If there is a target but it's not in range, return orange:

 else if (targetIsOutsideRange)

 return new Color(1,.6f,0);

 //If there is a target and it is in range, return white:

 else

 return Color.white;

 }

 //If we're pushing or pulling, return green:

 else

 return Color.green;

 }

 }

}

Our variables explain themselves in their tooltips and comments, so let’s go over how

the system works and where the variables find their purpose.

Every frame, we’ll cast a ray using the “detectionLayerMask” with infinite distance

(range). If a valid target is found with the ray, we’ll set the related variables:

• target

• targetHitPoint

• targetRigidbody

• targetIsOutsideRange

This gives us all we need to know about our target, if we have one. As you can

see, we still target objects that are outside of our “range” variable, but we have the

“targetIsOutsideRange” bool to tell us if the target can actually be pulled or pushed.

We then check for input: holding the left mouse button while we have a valid, in- range

target will pull the target toward us, while right-click will push the target away.

We’ll set our “state” based on what we were doing on this frame: nothing (Idle),

pushing, or pulling.

Chapter 37 pulling and pushing

510

Our CursorColor property reacts to the “state” as well as whether we have a target

that is in range, returning a different Color based on these factors:

• If there is no target, CursorColor returns gray.

• If there is a target but it is outside the range, CursorColor returns

orange.

• If there is a target and it is inside range, CursorColor returns white.

• While we are pushing or pulling a target, CursorColor returns green.

The “cursor” is a small dot we’ll draw in the center of the screen, where the raycast

originates. Of course, this dot will use CursorColor to define its color. This will make it

automatically update based on the situation, to give the player some indication of when

they have a valid target, when the target is outside range, and when they’re actively

pulling or pushing their target.

Before we continue, let’s set up the Telekinesis script. First, add an instance of the

script to your root Player GameObject (the same one that has the Player script instance).

Set the “baseTrans” reference to the Player Transform and drag and drop the Player

Camera onto the “cam” reference field. Make sure to also set the layer mask to include

only the Default layer. When you’re done, your script should look something like

Figure 37-1 in the Inspector.

Figure 37-1. Our Telekinesis script with all of its fields correctly set in the
Inspector

Chapter 37 pulling and pushing

511

Moving on, let’s map out our basic functionality with some methods:

//Update logic:

void TargetDetection()

{

}

//FixedUpdate logic:

void PullingAndPushing()

{

}

//Unity events:

void Update()

{

 TargetDetection();

}

void FixedUpdate()

{

 PullingAndPushing();

}

You’ll notice we’re using a new built-in Unity event here: FixedUpdate. This is where

the actual pulling and pushing will be performed, while the raycast for target detection

will instead occur in the normal Update event that we’re so used to.

 FixedUpdate
The FixedUpdate method is like Update, but you should use FixedUpdate instead if you

intend on interacting with the physics system through code. Notably, applying forces to

Rigidbodies should be done through FixedUpdate instead of Update. It occurs not once

per frame, but at a set interval with the same amount of time between each FixedUpdate.

Unity warns that unexpected results can occur in physics components if you interact

with them in Update instead of FixedUpdate!

Chapter 37 pulling and pushing

512

How frequently the physics updates are called is dependent on a value that you

can set by navigating to the Edit ➤ Project Settings window, clicking the Time tab, and

locating the Fixed Timestep value, shown in Figure 37-2. By default, the value is set to .02,

which means FixedUpdates are called 50 times per second.

Setting the value lower will generate more updates per second but comes at the cost

of performance. Of course, setting it higher will save on performance but may make

physics less accurate or downright choppy at particularly high values.

Within a FixedUpdate call, Time.deltaTime will still work the same way, returning

the Fixed Timestep value always. You can also access Time.fixedDeltaTime to get this

value within your code. You can even set it in-game to dynamically change the update

frequency of physics.

Figure 37-2. The Time tab is open in the Project Settings window, where the Fixed
Timestep field is at the top of the listings

Chapter 37 pulling and pushing

513

 Target Detection
Before coding our FixedUpdate logic, let’s get our target detection working so we know

what we’re dealing with.

We’ll fill in the TargetDetection method we declared before with this code:

void TargetDetection()

{

 //Get a ray going out of the center of the screen:

 var ray = cam.ViewportPointToRay(new Vector3(.5f,.5f,0));

 RaycastHit hit;

 //Cast the ray using detectionLayerMask:

 if (Physics.Raycast(ray,out hit,Mathf.Infinity,detectionLayerMask.value))

 {

 //If the ray hit something,

 if (hit.rigidbody != null && !hit.rigidbody.isKinematic) // and it

has a non-kinematic Rigidbody,

 {

 //Set the telekinesis target:

 target = hit.transform;

 targetRigidbody = hit.rigidbody;

 targetHitPoint = hit.point;

 //Based on distance, set targetIsOutsideRange:

 if (Vector3.Distance(baseTrans.position,hit.point) > range)

 targetIsOutsideRange = true;

 else

 targetIsOutsideRange = false;

 }

 //If the thing the ray hit has no Rigidbody

 else

 ClearTarget();

 }

 else //If the ray didn't hit anything

 ClearTarget();

}

Chapter 37 pulling and pushing

514

Here, we exhibit usage of the Camera.ViewportPointToRay method. This method

is just like the ScreenPointToRay method that we used in our second project to detect

where to place our tower building highlighter. The only difference is that it operates

by the “viewport” instead of by a pixel position on the screen. It’s just a different way

to locate a position on the camera view. Rather than specifying pixels, such as half of

the width and height of the screen, we specify a fraction between 0 and 1 for the X and

Y values. The X is left and right, and the Y is up and down, just like with pixels, but we

don’t have to concern ourselves with the screen width and height. (0, 0) is the bottom-

left corner of the camera, and (1, 1) is the top-right corner. Thus, (.5f, .5f) will get us the

center. Since we don’t have to plug the mouse position into the method, this one will suit

us just fine as an easy way to get a ray shooting out of the center of the screen.

The Z axis doesn’t do anything, so we just leave it at 0.

We cast the ray. If the ray hit anything, the “hit” will be filled with data about what

was hit, as we’ve come to understand about raycasting.

We’ll only mark something as a target if it has a Rigidbody and only if that Rigidbody

is not kinematic. You’ll recall that a kinematic Rigidbody is not controlled by the physics

system. We can’t apply forces to such a Rigidbody anyway, so they don’t make for valid

targets.

We set our four target-related variables for future reference.

If the target did not have a non-kinematic Rigidbody, or if the ray simply didn’t hit

anything in the first place, we call a ClearTarget method.

Let’s declare that method. It’s a simple one that just resets the values of the variables

to null and false. I’ll put it down below the CursorColor property:

void ClearTarget()

{

 //Clear and reset variables that relate to targeting:

 target = null;

 targetRigidbody = null;

 targetIsOutsideRange = false;

}

That does it for target detection. We can now expect our camera to constantly

be shooting a ray out of its center, striking only the layers defined in our

“detectionLayerMask”. It will detect and store information about the target the ray strikes,

if any. Otherwise, it clears the target.

Chapter 37 pulling and pushing

515

 Pulling and Pushing
Now we can fill in the method that does the interesting part: detecting mouse buttons

and applying forces to pull or push the target.

We’ll fill in the PullingAndPushing method with this code:

void PullingAndPushing()

{

 //If we have a target that is within range:

 if (target != null && !targetIsOutsideRange)

 {

 //If the left mouse button is down

 if (Input.GetMouseButton(0))

 {

 //Pull the target from the hit point towards our position:

 targetRigidbody.AddForce((baseTrans.position - targetHitPoint).

normalized * pullForce,ForceMode.Acceleration);

 state = State.Pulling;

 }

 //Else if the right mouse button is down

 else if (Input.GetMouseButton(1))

 {

 //Push the target from our position towards the hit point:

 targetRigidbody.AddForce((targetHitPoint - baseTrans.position).

normalized * pushForce,ForceMode.Acceleration);

 state = State.Pushing;

 }

 //If neither mouse buttons are held down

 else

 state = State.Idle;

 }

 //If we don't have a target or we have one but it is not in range:

 else

 state = State.Idle;

}

Chapter 37 pulling and pushing

516

The target Rigidbody is accessed so we can call its AddForce method. This method

takes a Vector3 for the amount of force to apply, as well as a ForceMode enum that

defines how the force applies to the Rigidbody.

To apply the force, we use that familiar equation to get the direction we desire:

(to - from).normalized

Then we multiply that direction by the force we want to apply, either “pullForce” or

“pushForce” based on which one we’re doing.

The ForceMode has four values that change two factors of how the force is applied:

• Does it happen as a constant push, like one object pressing against

another, or as a sudden impact, like an explosion?

• Is it affected by the mass of the Rigidbody?

Those four possible values are

• Force, which is a constant push that is affected by mass

• Acceleration, which is a constant push that ignores mass

• Impulse, which is a sudden push that is affected by mass

• VelocityChange, which is a sudden push that ignores mass

Our selection, Acceleration, ensures that the force we apply is not going to be an

instant impulse, as if the object was being hit by a wave of force from an explosion or

something of the sort. It is more like a gradual, constant influence pulling it toward us.

It is also ignoring the mass, which means if we pull or push a Rigidbody with a very

high mass, the force will still affect the Rigidbody just as much. This makes it so you can

make heavy objects and still allow the player to pull and push them.

Aside from applying the force, we also manage the “state” enum so that it always

reflects what we were doing during the last FixedUpdate call.

With that in place, we can now pull and push Rigidbodies, but we still need to draw

our cursor.

Chapter 37 pulling and pushing

517

 Cursor Drawing
We’ll make a basic four-pixel (two-by-two) square in the center of the screen that gives

the player indication of where their telekinesis ray is being cast from, with a color that

responds to the situation.

To do this, all we need is one line of code in an OnGUI event method. As you may

remember, we can call GUI methods from the built-in OnGUI event to draw 2D user

interface elements to the screen. In our situation, this will be a quick and easy way

to draw a simple swatch of color to the screen through code, rather than setting up a

Canvas with a UI element for our cursor.

We’ll write our OnGUI method beneath the FixedUpdate method:

void OnGUI()

{

 //Draw a 2x2 rectangle of the CursorColor at the center of the screen:

 UnityEditor.EditorGUI.DrawRect(new Rect(Screen.width * .5f,Screen.

height * .5f,2,2),CursorColor);

}

We’re reaching into the UnityEditor namespace to access this method because

it’s only available through “EditorGUI,” not the normal “GUI”. You could put a “using

UnityEditor;” line at the very top of the script file and cut out the “UnityEditor” part of

the reference, if you want, but since we’re only using one UnityEditor reference in the

script, it won’t save us much typing.

One thing to note is that you won’t be able to build a game if you’re running

EditorGUI methods in your game code. The methods are really only meant for use in the

Unity editor, which is fine for our purposes. If you were coding for a real game instead of

just testing features like we are, you would want to implement the cursor with an actual

UI element, like a Panel, and you’d change its color through a reference.

Moving on, the method we’re calling is a basic one that just draws a rectangle with a

given solid color. It takes a Rect as its first parameter and the Color as the second.

You may remember our usage of the Rect data type (short for rectangle) from our

first project:

• The first parameter is the X position of the left side of the rectangle.

• The second parameter is the Y position of the top side of the

rectangle.

Chapter 37 pulling and pushing

518

• The third parameter is the width.

• The fourth parameter is the height.

A value of 0 in the X position is the left edge of the screen, while a value of “Screen.

width” would put it all the way at the right edge of the screen.

Similarly, 0 for the Y axis is the bottom edge, while “Screen.height” is the top.

We simply put our rectangle right in the center of the screen by using half of the

screen width and height as its position.

The rectangle is not filled in by default – it’s just a rectangular outline, a 1-pixel-thin

border. However, if we make it only 2 pixels wide and 2 pixels tall, it will show as a 2×2

square – four pixels in total, all pressed up against each other. It’s small, but we don’t

want it to get in the way of what you’re trying to point at anyway, so it will do.

Once this code is in, you’ll be able to see where that ray is coming out of your screen.

To test out the Telekinesis features, try creating three cubes on the ground near the

player. Give each one a Rigidbody and give each one a higher mass than the last one.

You can make the scale match the mass too, if you want – make the second cube have a

scale of (2, 2, 2) and a mass of 2, for example. Then, point at them with the center of your

camera and try to pull (left-click) and push (right-click). You’ll see how the Rigidbody

takes over the physics, causing the object to turn and bounce as it moves.

 Summary
This chapter taught us how to apply external forces to Rigidbodies using the AddForce

method, as well as the four different options for applying force that Unity provides to us.

We also learned that Unity’s physics simulations occur at a fixed timestep, not “once per

frame,” and any code that interacts with the physics system constantly should occur in a

FixedUpdate event, not Update.

Chapter 37 pulling and pushing

519
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_38

CHAPTER 38

Moving Platforms
In this chapter, we’ll focus on implementing a moving, floating platform that travels back

and forth between two locations.

Making a platform move like this isn’t very hard. We’re experts now. We know how

to move Transforms in world space, in local space, and from one point toward another

point – we’ve done all that stuff before.

So the problem we’ll face with a moving platform is not getting it to move how we want

it to move – rather, it’s getting everything sitting on top of the platform to move with it.

It’s a somewhat tricky situation. You might expect that having a Rigidbody sitting on

top of a moving platform would cause the Rigidbody to move with it. But this isn’t always

the case.

In Unity, a Transform’s motion is either being controlled by the physics system – a

Rigidbody – or it’s being controlled by us. If it has no Rigidbody attached or it has a

kinematic Rigidbody attached, that means we are in control of its movement. It’s not

“part of the physics simulation” anymore.

Rigidbodies won’t react to anything that’s not part of the physics simulation. If you

have a stack of cubes sitting on top of a platform and those cubes all have a Rigidbody

attached, but the platform does not have a Rigidbody, then the cubes aren’t going to

move when the platform moves. Rather, the platform will slide out from underneath the

cubes while they remain still the whole time. Once the platform is no longer underneath

them, they’ll fall.

But if the object the cubes are sitting on is part of the physics simulation – that is,

in control of a Rigidbody – then the cubes will properly react to the movement of that

object.

For example, if we threw one Rigidbody-controlled cube at this stack of cubes,

causing one of the lower cubes to be shoved by the impact, then the cubes resting atop

that one will indeed react to its movement, because there are no kinematic Rigidbodies,

there are no scripts moving Transforms of their own accord, and it’s just Unity’s physics

doing its thing.

https://doi.org/10.1007/978-1-4842-5656-5_38#ESM

520

 Scene Setup
To work around this, we’ll do a little bit of hacking to get our way. It would be easier

to make our platform move by directly setting its Transform position, but as we just

established, that isn’t going to work for us. We’ll have to use a non-kinematic Rigidbody,

and we’ll have to allow the Rigidbody to move the platform itself.

There are several tweaks we’ll have to make to allow a Rigidbody to act as a floating

platform without any hiccups or kinks occurring.

Let’s create the platform:

• Create a Cube. Name it Moving Platform.

• Set its scale to (16, .3, 16).

• Place it somewhere unobstructed on the X and Z axes and set its Y

position to 9 to put it above the ground.

• Add a Rigidbody component.

• I’ll make a MovingPlatform material for it, using a dark-blue color

with a hex value of 2A2B3D.

This gives us a simple floating platform, like a square plate hovering above the

ground, shown in Figure 38-1.

Chapter 38 Moving platforMs

521

Now we need to use the Inspector to tweak some fields for our Rigidbody

component. First, we know we want the platform to float, so we’ll uncheck the “Use

Gravity” field. This means it won’t gather downward momentum when midair.

It will, however, still be pushed downward when Rigidbodies resting on top of it are

driving their weight against it – and they will be, since they’ll be subject to gravity. To

counter this, we could constrain the Rigidbody’s position so that its Y axis is frozen – but

this means we won’t be able to make a platform that moves on the Y axis. Instead, we’ll

simply give the platform a very high mass to ensure that the objects on top of it won’t

budge it. In the Mass field, set the value to 1e+09. You can also type 1000000000 – that’s

nine zeroes – to get the same value. This is the maximum mass a Rigidbody can have.

We also want to make sure that the platform does not tilt or twist as a result of the

weight on top of it. We’ll do that with the Constraints field, which contains two fields

inside it: Freeze Position and Freeze Rotation. Each axis has a checkbox that can be

ticked to ensure that the Rigidbody does not change the object’s position or rotation for

that axis. Check all three boxes for the Freeze Rotation field, ensuring our platform does

not rotate (unless we script it to).

Figure 38-1. The Moving Platform hovering over the floor

Chapter 38 Moving platforMs

522

When you’re done, your Rigidbody component should look like Figure 38-2.

 Platform Movement
Let’s get the platform movement working, and then we’ll test it by placing some cubes on

it. We’ll interact with the Rigidbody.velocity member to move the platform rather than

directly moving the Transform.

The Rigidbody.velocity is a Vector3 depicting the velocity that the Rigidbody is

moving per second. This is not modified by the mass, meaning it’s the actual amount of

movement that the Rigidbody expects to be occurring per second.

Normally, you wouldn’t modify the “velocity” directly. You would apply forces with

AddForce and let Unity handle the velocity itself. But we need a finer degree of control

over our platform movement, so we’re going to break that rule.

Our platform will be positioned where we want it to start at. It will travel back and

forth from this initial position to a Vector3 location that we’ll set in the Inspector. Every

time it reaches its destination – either going to the target position or going back to the

initial position – it will wait a given amount of time before starting on the way back.

Figure 38-2. The Rigidbody component of our Moving Platform in the
Inspector. It has maximum mass, does not use gravity, and has rotation frozen
for all three axes

Chapter 38 Moving platforMs

523

Let’s start by creating a PlatformMovement script and declaring our variables:

public class PlatformMovement : MonoBehaviour

{

 private enum State

 {

 Stationary,

 MovingToTarget,

 MovingToInitial

 }

 [Header("References")]

 [Tooltip("The Transform of the platform.")]

 public Transform trans;

 [Tooltip("The Rigidbody of the platform.")]

 public Rigidbody rb;

 [Header("Stats")]

 [Tooltip("World-space position the platform should move to.")]

 public Vector3 targetPosition;

 [Tooltip("Amount of time taken to move from one position to the other.")]

 public float timeToChangePosition = 3;

 [Tooltip("Time to wait after moving to a new position, before beginning

to move to the next position.")]

 public float stationaryTime = 1f;

 //Returns the units to travel per second when moving.

 private float TravelSpeed

 {

 get

 {

 //Distance between the two positions, divided by number of

seconds taken to change position:

 return Vector3.Distance(initialPosition,targetPosition) /

timeToChangePosition;

 }

 }

Chapter 38 Moving platforMs

524

 //Gets the current position we're moving towards based on state.

 private Vector3 CurrentDestination

 {

 get

 {

 if (state == State.MovingToInitial)

 return initialPosition;

 else

 return targetPosition;

 }

 }

 //Gets the current distance from our position to the current

destination.

 private float DistanceToDestination

 {

 get

 {

 return Vector3.Distance(trans.position,CurrentDestination);

 }

 }

 //World position of platform on Start.

 private Vector3 initialPosition;

 //Current state of the platform.

 private State state = State.Stationary;

 //State for the platform to use next - either MovingToTarget or

MovingToInitial.

 private State nextState = State.MovingToTarget;

}

The only variable that might not have a clear purpose to you is probably the

“nextState”. This variable is used to store the state value we want to switch to after we wait

the “stationaryTime”. Since our “state” will be set to Stationary during this time, we need

a second State variable to store whether we must move toward the target position or the

initial position once stationary time ends.

Chapter 38 Moving platforMs

525

Let’s move on to declare our Start and FixedUpdate methods, as well as a method

that we can invoke to switch to the next state. We’ll put it all down below the variables
we just declared:

//Transitions 'state' to the 'nextState'.

void GoToNextState()

{

 state = nextState;

}

//Unity events:

void Start()

{

 //Mark the position of the platform at start:

 initialPosition = trans.position;

 //Invoke the first transition in state after 'stationaryTime' seconds:

 Invoke("GoToNextState",stationaryTime);

}

void FixedUpdate()

{

 if (state != State.Stationary)

 {

 //Set velocity to travel from our position towards the current destination

by 'TravelSpeed' per second:

 rb.velocity = (CurrentDestination - trans.position).normalized *

TravelSpeed;

 //Calculate how much distance our velocity is going to move us this frame:

 float distanceMovedThisFrame = (rb.velocity * Time.deltaTime).magnitude;

 //If the distance we'll move this Update is enough to reach the

destination:

 if (distanceMovedThisFrame >= DistanceToDestination)

 {

 //Reset velocity to zero and snap us to the position so we don't

overshoot it:

Chapter 38 Moving platforMs

526

 rb.velocity = Vector3.zero;

 trans.position = CurrentDestination;

 //Based on our current state, determine what the next state

will be:

 if (state == State.MovingToInitial)

 nextState = State.MovingToTarget;

 else

 nextState = State.MovingToInitial;

 //Become stationary and invoke the transition to the next state

in 'stationaryTime' seconds:

 state = State.Stationary;

 Invoke("GoToNextState",stationaryTime);

 }

 }

 else //If we are stationary

 //Maintain velocity at 0 to prevent unwanted movement:

 rb.velocity = Vector3.zero;

}

The Start method sets our “initialPosition” right away so we know where the

platform is supposed to return to after reaching its “targetPosition”. It also Invokes

our “GoToNextState” method, which is how we switch our “state” from Stationary to

whatever we last set our “nextState” value to. This Invoke in the Start method kicks off

the repeating process. The default “state” is Stationary, so something must trigger our

first movement toward the target position. That’s why the default value of “nextState” is

set to MovingToTarget when we declare the variable.

Our FixedUpdate handles the movement towards the current destination while our

“state” is not Stationary.

The value we apply to “velocity” is familiar – we’ve been over moving an object

toward another many times before, so I’m sure you recognize the “(to – from).

normalized” equation.

Our method of determining if we’re about to hit our destination is a simple equation

getting the movement our velocity is going to take us on this frame (velocity multiplied

by deltaTime) and then calculating the magnitude of that vector. That gets us the

distance we’re going to travel on this frame. Since we know our velocity is pointing us at

Chapter 38 Moving platforMs

527

the current destination, all we need to do is compare “the distance to our destination”

with “the distance we’re traveling on this frame.” If we’re traveling an equal or greater

distance, we’ll be reaching or overshooting our target this frame. In that case, we can

initiate the switch to Stationary, snap our position to the destination (to avoid any

overshooting), and Invoke the switch to the next state. Before we switch our “state”

value, though, we use it to determine what our “nextState” should be. If “state” is

MovingToTarget, then our next state needs to take us back to the initial position, and vice

versa.

With that, let’s get it up and running. Save your code and attach a PlatformMovement

script to our Moving Platform GameObject. Set the “trans” and “rb” to the Transform

and Rigidbody components of the same GameObject. For the “targetPosition”, we can

write in the same value as our current position and then add a little bit to one of the axes.

I’ll add 15 points to the Z axis.

Figure 38-3 shows the PlatformMovement script in the Inspector, assuming its initial

position is at the world origin, but with a Y value of 9.

If you don’t want to find and view the platform from the player’s perspective, you can

deactivate the root Player GameObject for now so that it doesn’t take mouse focus when

the game starts and simply view the platform in your Scene window instead.

Either way, if you observe the platform while the game is playing, you’ll see it

meander back and forth between its points as we expect it to. But all that fussing with

using a Rigidbody was to ensure that other Rigidbodies move when they’re on top of the

platform, so let’s add two cubes stacked atop each other and test that:

Figure 38-3. The PlatformMovement script in the Inspector

Chapter 38 Moving platforMs

528

• Create a cube named Big Cube. Scale it to (6, 6, 6) and drag it up until

it’s a little above the platform. Just make sure it’s not sticking into the

platform, which could cause some unsavory results. The Rigidbody

gravity will drag it down and make it touch anyway.

• Add a Rigidbody and give it a Mass of 6.

• Copy-paste the Big Cube and rename the copy to Little Cube. Set its

scale to (2, 2, 2) and the Rigidbody mass to 2. Drag it so it’s above the

Big Cube, but again, not quite touching it.

When you’re done, your setup should look something like Figure 38-4.

Figure 38-4. Our Moving Platform with the Big Cube and Little Cube resting on
top of it

Chapter 38 Moving platforMs

529

If you test it out, you’ll see that the cubes do indeed move with the platform, but

they’ll likely not last very long before toppling over. The sudden change in velocity when

the platform starts and stops gives them a jolt. If this were a problem for us, we would

likely want to implement some smoothing to the starting and stopping of movement.

The platform will also stop if it hits any static colliders, like a wall with a collider but

no Rigidbody. Since it waits to reach its destination before turning back, it can get stuck

this way. Generally, you’ll want to keep the platform in a path that won’t be obstructed

by anything. Since it has such high mass, it should be able to shove other Rigidbodies out

of its way, but any static Collider (no Rigidbody attached) will block it indefinitely.

 Player Platforming
Now that the platform is moving and other Rigidbodies on top of it are moving with it, we

just need to make our player attach to the platform when they land on it.

We’ll be creating two scripts to handle this:

• A Platform script will be attached to any GameObject that the player

should “stick to” when standing on.

• A PlatformDetector script will be attached to any GameObject that

is not controlled by a Rigidbody, but that should stick to platforms it

lands on. This will be attached to the Player.

Create both of those scripts right now, one named Platform and one named

PlatformDetector. We want both of their classes to exist before we begin.

First off, open the Platform script and fill it with this code:

public class Platform : MonoBehaviour

{

 void OnTriggerEnter(Collider other)

 {

 //Try to find a PlatformDetector on the touching object:

 PlatformDetector detector = other.GetComponent<PlatformDetector>();

 //If there is a detector,

 if (detector != null)

 //Set this Transform as its 'platform' variable:

 detector.platform = transform;

 }

Chapter 38 Moving platforMs

530

 void OnTriggerExit(Collider other)

 {

 //Try to find a PlatformDetector on the touching object:

 PlatformDetector detector = other.GetComponent<PlatformDetector>();

 //If there is a detector,

 if (detector != null)

 //Null out its 'platform' variable:

 detector.platform = null;

 }

}

This simply sets the PlatformDetector’s “platform” variable to the Transform of the

platform whenever a GameObject that has a detector touches the Platform. Conversely,

whenever the PlatformDetector stops touching the Platform, its “platform” variable is set

to null.

Now open your PlatformDetector and give it this code:

public class PlatformDetector : MonoBehaviour

{

 [Tooltip("Transform to move with the platform.")]

 public Transform trans;

 //The Transform of the platform we are currently standing on, if any:

 [HideInInspector] public Transform platform = null;

 //Position of the platform on the last Update.

 private Vector3 platformPreviousPosition;

 //True if we have set the position of the platform at least once since

it was first set.

 //False if we have not yet set the position of the current platform.

 private bool firstPositionLogged = false;

 //Unity events:

 void FixedUpdate()

 {

 //If we are standing on a platform

 if (platform != null)

Chapter 38 Moving platforMs

531

 {

 //If we have already logged the platform position at least once

and it is not the same as its current position

 if (firstPositionLogged && platformPreviousPosition !=

platform.position)

 {

 //Add the change in platform position to our trans.position:

 trans.position += platform.position - platformPreviousPosition;

 }

 //Log the platform position this frame:

 platformPreviousPosition = platform.position;

 firstPositionLogged = true;

//Mark that we have logged the position at least one

 }

 else //If we are not standing on a platform

 {

 //We'll mark that we have not set the platform's position yet.

 //When a new platform is assigned, we won't move the transform

until this is set to 'true'.

 firstPositionLogged = false;

 }

 }

}

This is a simple little system that tracks the position of the Platform at the end of the

last FixedUpdate, as long as there is a platform. Each Update, it compares the platform’s

current position to the platform’s last position. Whatever the difference is, it adds that to

the position of the Transform referenced in the Inspector for the script, which can be our

Player.

This effectively makes our attached Transform move by whatever the platform has

moved each FixedUpdate.

But in order to ensure that the first FixedUpdate that occurs after we acquire

a platform does not compare the platform position to the default value of

“platformPreviousPosition”, we must use this “firstPositionLogged” bool. If we didn’t

do this, then the very first frame that the “platform” variable was set during would use

Chapter 38 Moving platforMs

532

a “platformPreviousPosition” that has not yet been updated. It could be at the default

value of Vector3.zero, or it could be at whatever it was set to last when we had a different

platform under us. This would create a very incorrect difference in the two positions

during the first frame that we land on a platform, which could cause some very strange

movements to the Transform using the PlatformDetector.

With that, we need to make the Player contain a trigger collider that will trip the

Platform and, of course, add a PlatformDetector as well. We’ll cover the bottom of our

player with a little trigger collider that will touch platforms we stand on:

• Add a Rigidbody to the root Player Transform and set it to kinematic.

• Add a Sphere Collider and check the Is Trigger box. Set its Radius to

1 to match our CharacterController and raise it up with a Center Y

value of .8 so it pokes down off the bottom of the player just a bit.

Now, be sure to add a Platform script to your existing Moving Platform GameObject.

With that, you should be able to hop on the platform with the Player and watch them

move along with it. Once you step or jump off, you’ll become detached and no longer

share its movement.

 Summary
In this chapter, we highlighted the difference between GameObjects that are controlled

by the Unity physics system – those with non-kinematic Rigidbodies attached – and

those that are controlled by scripts editing their Transform position. We implemented

our platform movement using a Rigidbody rather than a Transform to ensure that other

Rigidbodies react to its movement. We also defined a means of automatically attaching

the player, which is not controlled by a Rigidbody, to the platform.

Chapter 38 Moving platforMs

533
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_39

CHAPTER 39

Joints and Swings
This chapter will go over an example of some basic usage of a physics component

called the Configurable Joint, which can be used to bind GameObjects together with

the physics system. We’ll use it to create a chain of objects, each one attached to the one

above it to create something like a rope. At the bottom of the rope, we’ll attach a platform

that will swing with the rope. Our player can use their “telekinesis” to pull the swing or its

joints and then jump on the platform to ride it.

 Swing Setup
Let’s set up the GameObjects of our swing first so they’re all ready to be connected by

joints. The swing will consist of a hovering cube that remains stationary and cannot

be pulled or pushed. Beneath this cube, three identical “chain links” will hang below.

Each chain link is a sphere with a long, slender cube hanging beneath it. Each sphere

will connect to the cube of the chain link above it. The finished product is shown in

Figure 39-1.

https://doi.org/10.1007/978-1-4842-5656-5_39#ESM

534

Start by creating an empty GameObject named “Swing” with no parent. We’ll use

this as a root for the Swing. We’ll be able to select it to move the whole Swing and all its

pieces wherever we want.

Figure 39-1. The full Swing GameObject hovering above the floor, consisting of the
Hovering Cube on top, three Chain Links hanging below it, and a Platform cube
connected at the bottom

Chapter 39 Joints and swings

535

You can set up the Swing wherever you want on the X and Z axes – find a clear place

in your Scene and set it there. Keep its Y position set to 0.

• Add a Cube child to the Swing. Name it Hovering Cube. Set its scale

to (10, 10, 10) and its local position to (0, 35, 0). Set its layer to “10:

Unmovable”.

• Add an empty child GameObject to the Swing. Name it Chain Link

and set its local position to (0, 30, 0).

• Add a Sphere child to the Chain Link. Leave its local position at (0, 0, 0)

and set its scale to (2, 2, 2).

• Add a Cube child, also to the Chain Link. Set its scale to (.3, 5, .3) to

make it slender and long. Set its local position to (0, –3.5, 0) to place it

just beneath our Sphere.

After we set this one Chain Link up, we’ll be copy-pasting it to create the others. But

first, let’s make sure it has the components we need so we aren’t adding them and setting

them up three times.

We’ll need each Chain Link root GameObject (not the Sphere or Cube within) to

have a Rigidbody and a Configurable Joint added. Go ahead and add each of those now

and give the Rigidbody a Mass value of 1.5.

You might think we should add a Rigidbody not to our Chain Link, but to both the

Sphere and the Cube within it, but this isn’t necessary.

The Rigidbody of the Chain Link will detect the Box Collider and Sphere Collider

of its child GameObjects and will consider them fused together to form a single body,

acting as if both of those colliders are part of the same object. We can effectively think of

them as two pieces of metal welded together. If the Cube is struck by something, then it

moves and the Sphere pivots with it – and vice versa.

These are known as compound colliders and can be used to represent a more

complex object by shaping it out of “primitive” collider types. Primitive colliders are the

colliders for basic built-in shapes: Box Collider, Sphere Collider, and Capsule Collider.

By creating a parent GameObject with a Rigidbody attached, then adding children with

primitive colliders, we create one whole object with a more complex shape than just a

cube, sphere, or capsule.

You can do this to “summarize” the shape of a more complex mesh with a

combination of primitive shapes.

Moving on to our Configurable Joint, we have a few values to set.

Chapter 39 Joints and swings

536

The Configurable Joint component is attached to the GameObject that you want

to connect another GameObject to, and the Rigidbody of the other GameObject is

referenced in the Configurable Joint. So when making a chain out of these Chain Link

objects, this means that the Configurable Joint will be attached to the upper (higher) link

in the chain, and the link beneath that chain will be referenced as the “Connected Body”

member (the first member listed in the Inspector).

The Anchor value of the Configurable Joint is a Vector3 depicting from where the

Connected Body pivots. The location is local to the Transform of the GameObject with

the Configurable Joint component. We want our Anchor to be at a value of (0, –6, 0).

The position of the anchor is shown in the Scene as a dark-gray set of position

handles. With our Anchor setting, this will place it at the bottom of the cube, shown in

Figure 39-2.

Figure 39-2. The Chain Link is shown sticking out of the bottom of our Hovering
Cube. The Configurable Joint Anchor location is visible at the bottom of the Chain
Link Cube as a small set of arrows

Chapter 39 Joints and swings

537

This will ensure that the Chain Link we position below this one will be pivoting

around the bottom of this link, not the center of the Sphere (which would be quite

awkward).

Moving on, the six “Motion” and “Angular Motion” dropdown fields in the

Configurable Joint are all that’s left to set.

Each of these fields represents a single axis: X, Y, or Z. Each one can be set to Locked,

Limited, or Free. The Motion fields represent whether the Rigidbody can change position

on that axis. The Angular Motion fields represent whether the Rigidbody can rotate on

that axis:

• When Locked, the axis is not changed by the joint at all.

• When Limited, the axis is affected, but limited by the other fields that

can be customized down below.

• When Free, the axis can move as much as warranted with no

limitations.

For our purposes, we’ll set all three of the Motion fields to Locked because we don’t

want the joints to cause movement, just rotation – they pivot around each other.

As for the Angular Motion fields

• If we allow angular X motion, the chain links can swing forward and
back.

• If we allow angular Y motion, the chain links can twist sideways,

allowing the platform to turn.

• If we allow angular Z motion, the chain links can swing right and left.

The swing will be more controlled if you only allow it to pivot on the X or Z axis and

lock the other two. The Y axis isn’t all too important, simply depicting whether we’ll see

the cubes twisting and turning from the forces applied to them.

For our tests, let’s set the X angular motion to Free and set both the Y and Z angular

motions to Locked. This will allow it to swing forward and back only, something like

a pendulum. Since this is all local to the Transform, if you want it to swing left or right

instead, you can just rotate the entire Swing on the Y axis instead of changing the

Configurable Joint settings.

The rest of the fields beneath the Motion fields won’t need any tampering. At this

point, Figure 39-3 shows how your Rigidbody and Configurable Joint components

should look in the Inspector.

Chapter 39 Joints and swings

538

Now, let’s continue the setup:

• Select the Chain Link and copy-paste it. With the copy selected,

decrease its Y position by 7 units in the Inspector. You can do this by

simply typing a “– 7” after the current Y position value in the field,

and Unity will calculate the new value as soon as you click away from

the field. This will position the second Chain Link so that the bottom

of its Sphere is just beneath the Cube of the upper link. If you’d rather

type the value in yourself, it should be a Y position of 23.

Figure 39-3. Our Rigidbody and Configurable Joint components shown in the
Inspector

Chapter 39 Joints and swings

539

• Again, copy and paste the Chain Link we just made, and apply the

same –7 units to the Y axis so the Y position is 16.

We now have three Chain Links, all touching at their tips to create – you guessed it – a

chain. They stick out the bottom of our Hovering Cube, as shown in Figure 39-4.

Figure 39-4. Our entire Swing object while selected. Each Configurable Joint
Anchor is also shown at the bottom of each Cube

Chapter 39 Joints and swings

540

We just need a platform at the bottom of the “chain” now:

• Add a Cube child to the Swing GameObject. Name it Platform. Set the

scale to (25, .5, 25) and position it at (0, 9.75, 0) so it’s just beneath the

lowest Chain Link.

• Add a Rigidbody component to the Platform. To prevent the platform

from colliding with the player and tilting about, check all three Freeze

Rotation boxes. Set Mass to 4 and Drag to .15.

• I’ll add the existing MovingPlatform material to the cube as well,

giving it a dark-blue color.

With that, our setup of the bits and pieces of our swing is complete, which means

your swing should at last look like it does in Figure 39-1 from before.

 Connecting the Joints
In order to connect the joints to each other, we’ll first want to connect the upmost Chain

Link to the Hovering Cube itself.

To add a Configurable Joint component, you will have to add a Rigidbody as well.

Trying to add one without a Rigidbody already attached will result in Unity automatically

adding one.

Since we don’t want our Hovering Cube to be affected by any collisions or forces,

we’ll constrain its position and rotation through the Rigidbody. Check all six boxes under

the Constraints field of the Rigidbody in the Inspector. You can also uncheck the Use

Gravity field, since it wouldn’t make much sense to apply gravity when we’ve already

frozen our Rigidbody in place.

The Rigidbody settings should look like Figure 39-5 when you’re done.

Chapter 39 Joints and swings

541

Now we have the Hovering Cube anchored in place above the ground, so if we attach

our first Chain Link to it by a Configurable Joint (which we’ll do in a second), the link will

be bound to the Hovering Cube by that joint, keeping it from falling freely through the

air. With the other links attached to that one, they’ll all hang off the Hovering Cube.

With a Configurable Joint added to your Hovering Cube, don’t forget to set the

Anchor to the bottom of the cube with a value of (0, –.5, 0). Remember, the Anchor is

local to the Transform, so each unit in the Anchor is multiplied by the Transform scale.

For our Chain Links, the scale was (1, 1, 1) so the Anchor value was effectively in world

units, but since our Hovering Cube is scaled to (10, 10, 10), that means each unit in the

Anchor setting is worth 10 world space units. That’s why it’s –.5 to put it at the bottom of

the Cube, not –5. Think of it as “50% of the height of the cube,” not “.5 units”.

We also need to lock our Motion values in the Configurable Joint of the Hovering

Cube. Following the same settings you used on the Chain Links, shown before in

Figure 39-3, apply them again to the Hovering Cube: set all six fields to Locked except for

the Angular X Motion, which should remain set to Free.

Now let’s attach each link to the one above it. Remember, the “Connected Body” field

of the Configurable Joint should be set to the link that is lower to the ground. If you haven’t

changed the Chain Link names after copy-pasting them, their names should be as follows:

• Chain Link is the highest one.

• Chain Link (1) is the middle one.

• Chain Link (2) is the lowest one.

Figure 39-5. Rigidbody settings in the Inspector for our Hovering Cube

Chapter 39 Joints and swings

542

So first, select the Hovering Cube and drag Chain Link (the topmost one) from the

Hierarchy onto the “Connected Body” field of the Configurable Joint. This binds the first

Chain Link to the Hovering Cube.

Now we can go down the chain and attach each lower link to the upper link:

• Chain Link should have its Connected Body set to the Rigidbody of

Chain Link (1).

• Chain Link (1) should be set to Chain Link (2).

• Finally, Chain Link (2) should have the Platform Rigidbody as its

Connected Body, which binds the Platform to the bottom link.

 Finishing Touches
You should now be able to play the game, run over to your Swing with the Player, and

try pulling and pushing the Platform or the Chain Links with the Telekinesis feature.

Remember, the swing has been set to only swing on the X axis, which is forward and

backward. This means it’s like a pendulum, swaying back and forth in only one direction.

Trying to pull and push it from the wrong side won’t generate much of a reaction.

With our current gravity settings, the swinging may seem a bit “off.” Unity’s default

gravity settings are tweaked to appear realistic when the unit of measurement for your

game is 1 meter. As you’ll recall from our earliest chapters, what a single unit resembles

is totally relative. Since our player is 6 units tall, we’re really using a unit measurement

of about 1 foot. The gravity setting thus thinks we’re a bit larger than we really are: the

player would be 6 meters tall by that standard, not 6 feet! This can account for the swing

moving in a somewhat “slow-motion” way.

As with many things, you can change the force that gravity applies in the Edit ➤

Project Settings window. The gravity is the first field shown when the Physics tab is

selected, as depicted in Figure 39-6.

Chapter 39 Joints and swings

543

This shows a Vector3 for the gravity force applied to Rigidbodies constantly (per

second). Of course, the X and Z axes are set to 0 since gravity does not standardly pull

you in such directions. The Y axis is what we want.

The default setting of –9.81 mimics the pull of gravity on Earth but using meters as

a measurement. Since a meter is about 3.28 feet, we can multiply this default setting of

9.81 by 3.28, which is roughly 32.2. Of course, it should be –32.2 since we want it to be

downward force.

Once you’ve set the gravity this way, your swing movement should look more

natural.

One final touch is to add a Platform script to our Platform cube GameObject. Once

you’ve done that, try setting the swing in motion with Telekinesis and then hopping onto

it. The Player should stick to the swing and move with it.

As expected, since everything involved in the motion of the Swing is driven by

the physics system, other Rigidbodies will stay on the swing and move with it as well.

Try stacking some Rigidbody cubes on top of the swing and then set it in motion with

Telekinesis.

 Summary
This chapter taught us how to use the Configurable Joint component to attach two

Rigidbodies such that they pivot around each other. Some key points to remember are as

follows:

• Box Colliders, Sphere Colliders, and Capsule Colliders are considered

primitive collider types. These are the most basic and cheap collider

types.

Figure 39-6. In the Project Settings window, the Physics tab is selected, exposing
the Gravity field

Chapter 39 Joints and swings

544

• A parent GameObject with a Rigidbody attached will consider all

its children with primitive Collider components to be part of the

same whole object. When one collider is struck, it’s as if they were all

struck, since the Rigidbody considers them one attached unit.

• The Configurable Joint component should be attached to the

GameObject to which the other Rigidbody is attached. The

“Connected Body” field refers to the Rigidbody that should be

attached to the GameObject with the Configurable Joint component.

Chapter 39 Joints and swings

545
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_40

CHAPTER 40

Force Fields and
Jump Pads
In this chapter, we’ll be implementing a configurable ForceField script that pairs with a

trigger collider to apply force to Rigidbodies and/or the player. Based on a variable set in

the Inspector determining the type of force to apply, we’ll either apply it constantly while

the trigger is touched or once when the trigger is first entered. Based on the force mode

you choose, you could make an object either get pushed as if by a large fan or get shoved

up like a “jump pad” thrusting them all at once.

 Script Setup
Let’s start by creating a script named ForceField in the Scripts folder and declaring our

variables:

public class ForceField : MonoBehaviour

{

 [Tooltip("Should the force field affect the player?")]

 public bool affectsPlayer = true;

 [Tooltip("Should the force field affect Rigidbodies?")]

 public bool affectsRigidbodies = true;

 [Tooltip("Method of applying force.")]

 public ForceMode forceMode;

 [Tooltip("Amount of force applied.")]

 public Vector3 force;

https://doi.org/10.1007/978-1-4842-5656-5_40#ESM

546

 [Tooltip("Should the force be applied in world space or local space

relative to this Transform's facing?")]

 public Space forceSpace = Space.World;

 //Gets the force in world space.

 public Vector3 ForceInWorldSpace

 {

 get

 {

 //If it's world-space we can just return 'force' as-is:

 if (forceSpace == Space.World)

 return force;

 //If it's local space, we use our transform to convert 'force'

from local to world space:

 else

 return transform.TransformDirection(force);

 }

 }

}

This gives us a basic setup allowing each script to control how it behaves with some

tweaking of the variables in the Inspector. We can make the force field affect only the

player, only Rigidbodies, or both. We can change the force mode, the amount of force

applied, and whether the force is applied locally (Space.Self) or in world space (Space.

World). We also have a property giving us a quick way to grab the amount of force to

apply, automatically converting it to a world space direction relative to the Transform

that the ForceField is attached to if the “forceSpace” is Space.Self. This is done with the

Transform.TransformDirection method, which takes a Vector3 and converts it from

being local to the Transform to instead be world space.

This way, instead of using “force” directly, we can use the “ForceInWorldSpace”

when calling Rigidbody.AddForce, and we’ll know it’s applying the force in the correct

direction, in world space (which is what Rigidbody.AddForce expects).

Chapter 40 ForCe Fields and Jump pads

547

When we learned how to pull and push Rigidbodies for our Telekinesis script,

we went over the four different ForceMode settings. To sum it up, the Force and

Acceleration modes apply constant force, where Force is affected by the Rigidbody

mass and Acceleration is not. Conversely, Impulse and VelocityChange modes apply a

sudden shove, where Impulse is affected by Rigidbody mass and VelocityChange is not.

 Force Field Setup
Let’s set up a simple ForceField GameObject so it’s ready to roll when we’ve finished

coding it:

• Start by creating an empty GameObject as a root. Name it Force Field.

Set its layer to ForceField. Add a Rigidbody, mark it as kinematic, and

add the ForceField script.

• Add a Cube child to the Force Field. Leave its scale at (1, 1, 1) and set

its local position to (0, .5, 0). This puts the bottom of the cube at the

position of the root Force Field GameObject.

• Check the “Is Trigger” box for the Cube’s Box Collider component.

• Create a material named Force Field in your Materials folder. Change

the first field, Rendering Mode, to Transparent. I’ll apply a green-blue

color with a hex value of AAFFE3 and give it transparency by setting

the alpha to 25. Apply the material to the Cube we made.

• Drag and drop the Force Field root GameObject from the Hierarchy

to the Prefabs folder in the Project view to create a prefab.

This gives us a simple little semi-transparent box with a trigger collider attached,

shown in Figure 40-1. We can use the prefab to create a force field of any size. Scaling up

the root Transform will increase the size of the force field while keeping it at the same

position on the ground.

Chapter 40 ForCe Fields and Jump pads

548

 Adding Velocity to the Player
Before we make the ForceField apply its force, we still need some method of applying

force to our Player. Since the Player doesn’t use a Rigidbody, we must implement this

ourselves. Luckily, it won’t be so hard at all. We’ll add this method in our Player script,
just beneath our old WallIsNearby method:

Figure 40-1. The Force Field GameObject

Chapter 40 ForCe Fields and Jump pads

549

public void AddVelocity(Vector3 amount)

{

 //Add the velocity X and Z to our 'worldVelocity':

 worldVelocity += new Vector3(amount.x,0,amount.z);

 //Add the velocity Y to our 'yVelocity':

 yVelocity += amount.y;

 //Ensure that we become midair if our Y velocity was raised above 0.

 //If we don't do this, it will be set to -1 again in ApplyVelocity if

we are grounded.

 if (yVelocity > 0)

 grounded = false;

}

This method exposes a simple process of adding velocity in all three axes to the

Player, working with our existing system. You’ll recall that the Player “worldVelocity”

is a Vector3, but it is for the X and Z axes only, keeping a value of 0 at its Y axis. The

“yVelocity” float handles the Y axis instead. Thus, we can’t just add the velocity to our

“worldVelocity”, so we create a new Vector3 that applies only the X and Z axes when

we add the velocity to “worldVelocity”. We then separately add the “amount.y” to our

“yVelocity”.

You might recall that, in the ApplyVelocity method which makes the Player move by

its velocity per second, we constantly apply a –1 “yVelocity” while the Player is grounded.

Thus, if we had a ForceField shoving the player upward when the player is already

grounded, it would immediately be overridden by the Player setting their velocity back

to –1 before moving. That’s why we must make sure we set “grounded” to false if the Y

velocity has become a positive value.

 Applying Forces
To apply forces to touching objects, we’ll need two separate trigger collider events.

OnTriggerStay will handle the Force and Acceleration force modes, making them apply

their force constantly at a rate of “force” per second while the trigger is first touched.

OnTriggerEnter will handle the Impulse and VelocityChange force modes, making them

apply “force” as is, not per second, but only once when the trigger is first touched.

Chapter 40 ForCe Fields and Jump pads

550

Each of these methods provides us with a single parameter pointing at the other

Collider that was touched.

Let’s declare those methods and their contents within the ForceField script class:

void OnColliderTouched(Collider other)

{

 //If we affect the player,

 if (affectsPlayer)

 {

 // check for a Player component on the other collider's GameObject:

 var player = other.GetComponent<Player>();

 //If we found one, call AddVelocity:

 if (player != null)

 {

 //If the force mode is a constant push mode, use Time.deltaTime

to make the force "per second".

 if (forceMode == ForceMode.Force || forceMode == ForceMode.

Acceleration)

 player.AddVelocity(ForceInWorldSpace * Time.deltaTime);

 else //Otherwise, use the force as-is.

 player.AddVelocity(ForceInWorldSpace);

 }

 }

 //If we affect Rigidbodies,

 if (affectsRigidbodies)

 {

 // check for a Rigidbody component on the other collider's GameObject:

 var rb = other.GetComponent<Rigidbody>();

 //If we found one, call AddForce:

 if (rb != null)

 rb.AddForce(ForceInWorldSpace,forceMode);

 }

}

Chapter 40 ForCe Fields and Jump pads

551

void OnTriggerEnter(Collider other)

{

 //Impulse and VelocityChange modes will apply force only when the

trigger is first entered.

 if (forceMode == ForceMode.Impulse || forceMode == ForceMode.VelocityChange)

 OnColliderTouched(other);

}

void OnTriggerStay(Collider other)

{

 //Acceleration and Force modes will apply force constantly as long as

the collision stays in contact.

 if (forceMode == ForceMode.Acceleration || forceMode == ForceMode.Force)

 OnColliderTouched(other);

}

We detect the collider being touched with an Enter and a Stay method, and each one

calls the same “OnColliderTouched” method we declared in the preceding code.

This method checks for a Player component on the GameObject of the touching

Collider if the “affectsPlayer” bool is true, and if it finds one, it adds force to the player.

Whether or not we use Time.deltaTime in the force depends on the ForceMode,

since Force and Acceleration modes are expected to apply “per second” through the

OnTriggerStay method, while Impulse and VelocityChange are expected to apply only

once through the OnTriggerEnter method.

Roughly the same thing is done with Rigidbodies: if the “affectsRigidbodies” bool is true

and there is a Rigidbody attached, apply force. For Rigidbodies, we don’t need to use Time.

deltaTime to apply the constant force. The Rigidbody.AddForce method will automatically

look at the force as “per second” if we use either the Force or Acceleration mode.

With that, you can set up some force fields in your Scene and try them out. They’re

somewhat small by default, but we can set their scale value to whatever we want or

simply use the scale tool (hotkey R) to scale them by eye.

Set the “force” vector to something noticeable: try a Y value of 100, for example.

Using Force or Acceleration mode will cause the touching entities to hover upward while

they remain in the force field. Using Impulse or VelocityChange will apply the force all at

once, causing the entity to jerk upward instead. This would be useful for making a “jump

pad” of sorts, allowing the player to reach high places by stepping on it or to launch

objects far distances by pushing or pulling them onto it with Telekinesis.

Chapter 40 ForCe Fields and Jump pads

552

You can also place force fields sideways on walls and switch the Force Mode to Self to

apply the force relative to the Force Field facing direction. Just remember to keep track of

where your axes are pointing when you set the “force” variable. The arrows shown by the

position tool (hotkey W) when you select your Force Field will point in the local direction

of each axis, so you can know which axis to apply force in. If the arrows are pointing

along the world direction, just press the X hotkey to make them local to the selected

Transform. For example, Figure 40-2 shows a Force Field on the side of a wall, with the

position tool arrows showing local to the Force Field. In this case, if you want the Force

Field to shove entities away from the wall, you would set your force as the Y axis (the

green arrow) of the “force” vector.

 Summary
In this chapter, we implemented a Force Field script that can be used for a sudden shove,

like a jump pad for our player or a constant force. We combined our knowledge of adding

forces to Rigidbodies, as well as trigger colliders and their associated collision detection

events: OnTriggerStay and OnTriggerEnter.

Figure 40-2. A Force Field is shown sticking off the side of a wall, with its Y axis
pointing away from the wall

Chapter 40 ForCe Fields and Jump pads

553
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5_41

CHAPTER 41

Conclusion
This chapter marks the conclusion of our final example project and this book. We’ve

come a long way and learned a lot since we started, but don’t think of getting bored yet.

C# is an old language rich with features, and we’ve hardly demonstrated all that the

Unity game engine is capable of. There’s plenty more to learn. Don’t stop seeking out

new information and adding tools to your belt!

Let’s get a summary of what we went over with this project, and then we’ll part with

some ideas on where to take your learning from here. Even if you decide not to structure

your learning very rigidly past this point, just trying to implement new things can take

you a long way. If you’ve followed this book from start to finish, you ought to have an

understanding of the environment you’re working in that allows you some room to

wiggle and try out stuff you’re really interested in. You might not have as much guidance

this way, but working out solutions yourself can help you become better at problem

solving. Keep trying new things, and if you get in over your head, take a step back and

reevaluate. You can always come back to a lofty project some time down the road, when

you’ve learned new things and become a better programmer – and working on things

you care about most will help to keep your interest piqued.

 Physics Playground Recap
This project gives us experience dealing with Unity’s 3D physics system, as well as some

new concepts on how to deal with vectors and 3D motion. Here’s a summary of the

major takeaways:

• The magnitude of a vector is a float value depicting how much

distance the vector travels. It can also be called the length of a vector.

The “.magnitude” member of Vector3 is a property that returns the

magnitude.

https://doi.org/10.1007/978-1-4842-5656-5_41#ESM

554

• Normalizing a vector makes it point in the same direction it did

before, but only have a magnitude of 1. This means that multiplying

a normalized vector by a float X will travel X units in the direction the

vector points.

• Physics updates are not synchronized with normal frame updates.

Each physics update will occur at a set interval, with the default being

50 updates per second (once every .02 seconds). If necessary, they

might happen multiple times per frame, or they might happen only

once every three frames – it all depends on the framerate. The gist

of it is that the updates will occur 50 times per second whether the

game is running slow (low framerate, choppy) or fast (high framerate,

smooth).

• Scripts which interact on every frame with physics components like

the Rigidbody should use the FixedUpdate built-in event method,

not Update. FixedUpdate occurs every physics update, so 50 times

per second by default.

• If a GameObject is to be controlled by a Rigidbody, you should not

move its Transform directly through scripts. Instead, add forces with

the Rigidbody.AddForce method.

• The Rigidbody.velocity property can be used to get or set the velocity

of a Rigidbody through script. It’s not recommended to set the

velocity every FixedUpdate unless you have a special use case for it.

You generally want to be using the AddForce method.

• For Rigidbodies to be carried along by the movement of another

GameObject, such as a moving platform, the movement of all objects

involved must be part of the physics system. Moving a Transform

directly will not cause Rigidbody-controlled GameObjects resting on

top of it to move with it.

• Primitive collider types are the colliders for basic shapes: Box

Collider, Sphere Collider, and Capsule Collider.

Chapter 41 ConClusion

555

• To create a Rigidbody with a shape defined by multiple primitive

colliders, use a root GameObject with a Rigidbody component

attached, and then attach Colliders to child GameObjects. This is a

compound collider. Only the root GameObject needs a Rigidbody

component. All Colliders will count as part of the same whole object

controlled by the root Rigidbody.

 Further Learning for Unity
Let’s go over some loose ends pertaining to the Unity engine that you may be interested

in checking out. These are things we didn’t get into during our projects to keep things

from getting bloated. If you’re interested in learning about a feature of the engine, the

Unity Manual pages on the official Unity site offer a good starting point.

Your favorite search engine should have an easy time guiding you to Manual pages.

Just search for “unity manual” and tack on the feature you’re interested in at the end, for

example, “unity manual terrains.”

 The Asset Store
The Unity Asset Store can be accessed using the Asset Store window in the Unity editor

or by visiting it on the Web (a quick search should find it). The Asset Store is a place

where other Unity developers can upload products for use within the engine, including

scripts for code extensions and game functionality, 3D models or 2D graphics, music,

sound effects, and so on. As the name depicts, anything that could be used as an asset in

your Project window could be placed on the Asset Store. You can download these assets

into your project right from the window in the Unity editor.

The Asset Store contains both free and paid assets. If you’re in need of something

that you can’t quite make yourself, you might just be able to find it there.

 Terrains
Unity has a built-in system for creating and editing 3D terrains. You add the terrain to the

Scene as a flat surface and then use tools to change the shape, allowing you to form hills

and valleys. You can then add textures, which are images that get drawn onto the terrain.

Chapter 41 ConClusion

556

These images might represent grass, rock, dirt, and so on. You can mix textures, blending

the images together to create the look of a gradual transition between different types of

ground. There’s also support for adding trees and grass that sway in the wind.

 Coroutines
The coroutine is a concept that can be employed to provide some timing-related

functionality for method calls that you can’t quite achieve with Invoke calls. A coroutine

is a method that can be “yielded” with a special line of code. Yielding can stop execution

of the code for some given amount of time – a number of seconds or until the next frame

or until some condition is true. After the wait, the code continues execution at the same

line, with all the same local variables in the same state. This can be useful for handling

more delicate processes without the need for invoking many different methods. It can

also be used to perform a strenuous task bit by bit to prevent from generating a drop in

framerate or a lengthy pause in gameplay: a loop with very many iterations can “yield”

until next frame every five to ten iterations so that it “runs in the background” instead of

doing it all at once.

The concept of coroutines in programming is not necessarily specific to Unity,

but Unity has its own implementation of coroutines unique to the engine. The

MonoBehaviour class (base class for all script components) is the entry point for calling

coroutines, after all.

 Script Execution Order
Under the Edit ➤ Project Settings window, there is a tab called Script Execution Order

which we never had a reason to use in our example projects. It may prove useful to you at

some point in the future, so it’s good to know what it’s for.

The name entails its purpose pretty well: it allows you to specify a consistent order in

which your scripts receive event calls like Update or Start. You can make the event calls

for one script always occur before another if the order is important in some special way.

Chapter 41 ConClusion

557

 Further Learning for C#
Polishing up your skills with the programming language you use can be a good way to

expand your horizons. Knowing all you’re capable of doing with the language may guide

you to solutions you wouldn’t have found otherwise. This section will provide an overview

of some of the features we didn’t get to go over in detail with our example projects.

 Delegates
Delegates provide a means of declaring a variable that can point at methods, something

like a way to reference a method as if it were an object instance. The variable can be

called like a method, without knowing exactly which method is attached to it.

To sum up the process

• Declare a delegate, giving it a name, return type, and any number of

parameters. This is like a template or a blueprint that methods must

follow.

• You can now declare a variable that uses the delegate name as the

variable type.

• Any method which matches the delegate return type and parameters

can be assigned to the variable. The variable can then be called like a

method.

Let’s review the syntax involved in each of these steps:

//Declare the delegate like a method but with the 'delegate' keyword before.

//We provide a return type (string), name (MyDelegate), and two parameters.

delegate string MyDelegate(string a, int b);

//You can now declare a variable whose type is the delegate name.

MyDelegate delegateVariable;

//Now declare a method that matches the return type and parameters of the

delegate.

string AddNumberToString(string a, int b)

{

 return a + b;

}

Chapter 41 ConClusion

558

//Since the method matches the delegate return type and parameters, we can

assign the method to the variable.

delegateVariable = AddNumberToString;

//The delegate variable can be called like a method.

delegateVariable("Hello World",1);

In this example scenario, you might as well just call the method by its name directly,

of course. An actual use case might be a custom UI system where a Button class exposes

a delegate variable that is called when the button is pressed. When creating a button,

we can supply any method that matches the delegate to be called when the button is

pressed, making it easy to reuse the button for different purposes. We could even change

the method that the delegate variable points to on the fly to change what occurs when

the button is pressed.

 Documentation Comments
C# defines a system of “documentation comments” that can be written before definitions

such as classes, methods, variables, properties, and so on. These comments use a

special syntax to define documentation for code, right within the lines of the code. Code

editors and other software can read the comments and use their contents in useful

ways. One purpose for this that you’ll see used widely is the “summary” tag, which uses

documentation comments to place a description of a definition which will then pop up

when you mouse over that definition anywhere in the code editor.

For example, you might write a summary before a class you declared. Sometime

later, when you declare a variable with the class name as its type, you can mouse over the

class name and see that description you wrote.

In fact, Unity provides a summary description for most of their built-in classes.

You’ve probably seen them when you leave your mouse hovering over a type or method

name for a second in Visual Studio Code.

The following code shows how to write a basic “summary” for one of our existing

methods: the WallIsNearby method we declared for our Player in the last example

project. Documentation comments always start with three slashes “///” instead of the

two “//” that make up a normal comment. They contain “tags” inside them: an opening

Chapter 41 ConClusion

559

tag, like “<summary>”, and then a closing tag of the same name but with a slash before it,

like “</summary>”. The text that belongs to the tag goes between those two tags:

/// <summary>

/// Checks if a wall is near enough to the player for them to wall jump off

of it.

/// Returns true if there is a wall, false if there is not.

/// </summary>

private bool WallIsNearby()

{

 ...

}

As you can see, it always starts with “///”, with a single space coming after the three

slashes (because it looks prettier that way). We start the “<summary>” tag, write the text

we wish to serve as the summary, and then write the closing tag “</summary>”.

Documentation comments can also provide other kinds of data that is used in other

ways. Methods can have a description provided for each of their parameters so that while

you write out a method call, the description of each parameter is shown to you as you

type. This is done with the “<param>” tag. Methods can also have a “<returns>” tag that

gives a description of what the method returns (assuming it doesn’t return void).

Here is an example of “param” and “returns” tags, using our (somewhat useless)

method we declared for our delegate a little bit ago:

/// <summary>

/// Describe what the method does here.

/// </summary>

/// <param name="a">Describe parameter 'a' here.</param>

/// <param name="b">Describe parameter 'b' here.</param>

/// <returns>Describe what the method returns here.</returns>

string AddNumberToString(string a, int b)

{

 return a + b;

}

This shows how to declare a parameter within a tag: the param tag has a “name=”

passage within that is used to specify the name of the associated parameter.

Chapter 41 ConClusion

560

You may be interested to know that this method of writing and formatting data with

this “tag” syntax is widely used to represent various different kinds of data through text

files, and is known as XML: Extensible Markup Language. It’s a flexible and readable way

to declare text data.

In favor of keeping our code samples a bit less bulky, we haven’t employed this

custom throughout this book. However, you’ll often see it if you look at other people’s C#

code. It can be useful to maintain since it allows you to get a description of a method on

the fly just by hovering your mouse over it. This can make it easier to work with code you

wrote a while ago, where the details on how to use it might have since slipped your mind.

For example, you might forget what a method returns or the purpose of each parameter

it declares. Having that information pop up as you type can make things clearer. It can

also be useful when writing code that others are meant to use. We may not be able to

go check what a built-in Unity method does or what a class is for, so it’s nice to have a

summary when we mouse over it.

Writing these documentation comments out for every declaration sounds tedious,

though, doesn’t it? Luckily, most code editing software will automatically create relevant

documentation comments when you type “///” before a method declaration. But since

Visual Studio Code relies mostly on extensions to provide language-specific features, you

won’t find this functionality out of the box.

At the time of writing, there is an extension called “C# XML Documentation

Comments” which can be installed to automatically add documentation comments like

this. Other extensions likely exist which do the same thing too. If you forgot how to find

and install extensions in Visual Studio Code, take a quick peek back at Chapter 1.

 Exceptions
Many programming languages have control structures in place that revolve around

reacting when code that you’re running throws an exception. “Exception” is the C#

word for “error.” Any code that results in an error popping up in your Console in Unity is

“throwing an exception.”

Exceptions are actual data types that all inherit from a base class Exception, which

is in the System namespace. When an exception is thrown, it’s done with a simple line

of code: the “throw” keyword and then a constructor that creates an Exception instance.

The most basic form is to use the base Exception class:

Chapter 41 ConClusion

561

void DoSomething()

{

 if (a)

 throw new Exception("Failed to do something.");

 else

 {

 //...

 }

}

However, more particular types exist that inherit from Exception, which make it clearer

what went wrong and why the error occurred. For example, IndexOutOfRangeException

occurs when trying to get an index from a collection (array, List, etc.) that does not

contain an item at that index.

A control structure that you’ll commonly see when coding is the “try…catch…finally”:

try

{

 //Run some code you think might produce an exception here in the 'try'

block.

}

catch (Exception e)

{

 //If an exception occurs in the 'try', this code will run and the

Exception will be 'caught' so it isn't thrown as a message in the

Console.

 //The 'Exception e' parameter will point to the Exception that was

thrown, which may contain useful data.

}

finally

{

 //This code runs after the fact, no matter whether an exception

occurred or not.

}

Chapter 41 ConClusion

562

This can be used to define “fallback code” for what should occur if an exception

was thrown while some code was running. Whatever type the “catch” block declares as

its parameter, that’s the type of Exception that will be handled. You can even declare

multiple “catch” blocks, each one catching a different type of Exception. If your “try”

block results in some Exception being thrown that is of a type that none of your “catch”

blocks are expecting, the Exception will show up in the Console and is considered

“uncaught” or “unhandled.” But as long as the Exception is caught by one of your “catch”

blocks, it won’t end up in the Console.

 Advanced C#
If you feel confident and want to further explore the nitty-gritty details of C#, this section

will list some extra features and talking points that you may be interested in learning

about, briefly explaining the basic concept so you can explore it on your own after.

 Operator Overloading
Operator overloads are something like methods that can be declared in a class to write

your own code that occurs when a certain kind of operator is used with your class

instance. This allows you to, for example, allow two instances of your class to be operated

on by a “+” operator. You could also allow some other type to be added to your class

with the “+” operator, like an int or string. When the operator occurs, it’ll be your code

running and generating the result based on the operands (which is the technical term for

“the values on either side of the operator”).

 Conversions
As well as overloading operators like “+”, “–”, “∗”, and so on, there are also “conversion

operators” that you can declare within a class. They allow you to write code that

determines what is returned when your class type is implicitly or explicitly converted

to another type. If you have some data structures that are similar to each other, you can

declare conversion operators to allow easy conversion from one type to the other.

An example of such a conversion within Unity’s built-in types is that of Vector2 and

Vector3. The Vector2 type is just a vector with only an X and Y value. The Vector3 is

pretty much the same, but it has the Z axis as well. A Vector2 can implicitly convert to a

Chapter 41 ConClusion

563

Vector3 – implicit meaning we don’t have to tell it to convert, it just does it if necessary.

A Vector3 can explicitly convert to a Vector2 – explicit meaning we must tell it to convert

by using a conversion operator, because data will be lost when we convert it.

Both cases were implemented with a conversion operator declared in each vector

class, specifying what to return when performing the conversion.

 Generic Types
Generics are a somewhat confusing but very powerful feature. We already lightly

explored generics during this book, but to give true justice to this concept, you may

want to do some further digging. Learning how to declare classes and methods that use

generic types can be a good way to gain further understanding so you don’t just know

how to work with generic types, but how to use them in your own definitions.

 Structs
We went over the difference between classes and structs before, but we never learned

how to declare structs and when you might consider using them.

Generally speaking, structs will give you more trouble than classes. If you don’t quite

know how to use them, you’ll have your compiler throwing errors at you in no time. They

can be a bit of a pain. That being said, knowing when and how to use them can get you a

few steps ahead of the game.

 Summary
Our final chapter has given you some ideas for further learning to pursue on your own,

as well as some basic demonstrations. Here’s a short summary:

• A coroutine is a method call that can yield on the spot, stopping its

operation for a given amount of time and then resuming in the same

state. This means you can yield in the middle of a loop and then

continue at that same point in the loop.

• A delegate is something like a way to store a reference to a method in

a variable.

Chapter 41 ConClusion

564

• An exception is the C# word for “error.” When code throws an

exception, that means something went wrong and generated an error,

like those seen in the Console window of Unity.

• Data types like classes and structs can declare overloads to allow

specified operators (like + and –) to be used with the type or to allow

conversions to other types.

With these ideas in mind, it’s now up to you to decide where to go – isn’t that

exciting? The concepts discussed briefly in this chapter are a good place to start. The

more tools you have on your belt and the more experience you have with using them, the

easier it will be to find clever solutions to the problems you face. If you encounter new

syntax, don’t be afraid to look for information on it and figure out how it works!

Chapter 41 ConClusion

565
© Casey Hardman 2020
C. Hardman, Game Programming with Unity and C#, https://doi.org/10.1007/978-1-4842-5656-5

Index

Symbols
&& operator, 86
> and < operators, 85
== operator, 83, 127
|| operator, 85

A
Abstract method, 335, 337, 440
Access modifier, 91
AddForce method, 518
Advanced C#

conversion, 562, 563
generics, 563
operator overloading, 562
structs, 563

Agent Height, 402
Agent Radius, 402
AimAtTarget method, 354
Alignment field, 370
Anchor elements, 367
ApplyVelocity method, 549
Arcing projectile

AnimationCurve, 426, 427
colliders, 431
curve editor, 428
Explode method, 430
FractionOfDistanceTraveled

member, 426
Lerp call, 429

OnSetup method, 427
script creation, 425

Armor /damage, 443
ArmorType, 116
Arrays

currentPointIndex variable, 211
indexing, 210
parentheses () method, 210
square brace set [], 211

Arrow GameObject, 339
Arrow key movement, 318, 319
Arrow Tower Button, 370
Arrow towers, 351–354, 404
Assets folder, 12, 20, 58, 131, 147, 313, 452
Assignment operator, 73
Asynchronous operation, 276
AsyncOperation method, 271, 273, 277
Attributes, 110–111
Awake() event, 180
Axes, 23, 48

B
Barricades, 437, 438
bool alive variable, 330
Box colliders, 340, 342, 343
BoxCollider/SphereCollider, 440
Breakpoints

buttons, 134
control panel, 134
DebuggingTest, 132

https://doi.org/10.1007/978-1-4842-5656-5#ESM

566

GameObject, 132
variable box, 133

buildButtonPanel, 410
Build buttons, 369
Build mode

buttons, 362
first towers, 362
functionality, 394
position, 362
UI, 361
user interface, 361

Build mode–logic, 379
camera, 382
gold indicator, 380
highlighter, 380, 381
screen position, 380

BuildModeLogic() method, 380, 391, 411
Buisld Mode settings, 379
Build settings

menu, 300
scene, 206
Unity editor, 207
Unity Hub program, 301
window, 205

Build Support module, 300
BuildTower method, 387, 388
Built-in method, 375
Button component, 390

C
C#

delegates, 557, 558
document comments, 558–560
exceptions, 560, 561

CalculatePath method, 406
Calling methods, 67, 68

Camera component, 375
Camera movement, 315

apply, 320–322
methods, 317, 318
mouse drag, 322, 323
setting up, 315, 316
start/update, 316
target position, 323
zooming, 324, 325

CancelInvoke method, 414
CanDashNow property, 255
Cannonballs, 425
Cannon tower prefab

ArcingProjectile script, 431
build button, 433
FiringTower script, 434, 435
OnClick event, 433

Canvas GameObject, 363
Canvas Scaler component, 365
CharacterController

applying references, 167
collisions, 167
component, 166, 167
method, 168
Quarternion, 169
slerp, 169

Checkpoints, 306
Child GameObjects

dragged cube, 30
hierarchy window, 29
highlighted object, 31
indention, 31
movement/rotation/scaling, 31
parent-child relationship, 31
transform, 29

Classes, 67, 87
accessing members, 90–93
constructor, 98

Breakpoints (cont.)

Index

567

declaring, 87
declaring constructors, 95–98
instance methods, 93–95
variables, 89, 90

Class statement, 62
Code blocks, 61, 63
Code editors

blank space, 6
breakpoints, 7
color themes, 5
debugger, 7
downloading, 5
extension, 6
Microsoft Visual Studio, 4

Collider[] array, 499
Collider type, 340
Collision detection

colliders, 181
collision matrix, layer, 187
kinematic movement, 182
layers, 183, 184, 186
Rigidbody, 182, 197

Color field, 152
Comments, 63, 64
Compiling, 57
Complex pathing, 444
Component

camera, 16
functionality, 16
GameObject, 14, 15
sliders, 16

Compound colliders, 535
Conditions

AND operators, 86
else block, 81, 82
else if block, 82, 83
enum, 80
equality operators, 83, 84

greater than/lesser than
operators, 85

if block, 77, 78
OR operators, 85
overloads, 79

Configurable Joint component,
543, 544

Console window, 58, 78
const keyword, 231
Constructor chaining

armor, 120
base, 119
currentDurability, 119, 121
dealsBluntDamage member, 121
equipment class, 119
item class code, 118
maxDurability, 119
parameters, 118

Conversion operators, 562
Coroutine, 556
Creating plane, 24
Cube Base, 35
Cube Middle, 35
Cube Top, 35
CurrentCornerIsFinal

property, 418
Current Gold Panel, 371
currentGoldText, 378
cursorIsOverStage, 378
CursorLockMode.Locked, 464

D
Dashing

cooldown, 255–257
methods, 251–253
public void Die() method, 254
variables, 249–251

Index

568

Data types, 69
Death method

CharacterController, 178
invoke, 177
SetActive method, 178

Debug.DrawLine method, 67
Debugging

breakpoint (see Breakpoints)
environment prompt box, 131
launch.json file, 130
run button, 130
unity documentation, 135, 136
Unity editor, 131
Update method, 129

Debug.Log method, 69, 137
Delegates, 557, 563
DeselectBuildButton()

method, 381, 391
DeselectTower() method, 381, 389, 390
Designing levels

adding walls, 263
camera GameObject, 264
creation, 261–263
directional light, 262, 264
player prefab instance, 262
prefabs/variant, 259–261

Detecting, patrol points
class types, 217
GetComponent<T> method, 216
for loop, 218–221, 230
list, 217
List<Transform>, 218
script, 216

Dictionary, 385
Containskey, 386
private variables, 385
towers, 388

DontDestroyOnLoad method, 276

E
Editor extension

accessing inspectors, 237
CustomEditor attribute, 237
drawing scene, 238–240
scripts, 236

Else statement, 62
Enabling /disabling

folded player script
component, 175

inactive GameObject, 175
initialization code, 174
Player GameObject,

checkbox, 174
Start method, 174, 176
Unity, 176

Enemy component, 419
Enemy Holder, 410, 411
Enemy script, 330

method, 331
protected keyword, 331
variables, 330
version, 332, 333

enum Mode, 376
EventSystem, Canvas, 368
Explicit conversion, 123

F
Fancy shooters, 305
File-type extension, 57
FiringTower script, 349, 350, 357
FixedUpdate built-in event

method, 554
FixedUpdate method, 511, 512, 525
Flying enemies, 329, 422
flyingEnemyPrefab, 411
FlyingEnemy script, 420

Index

569

flyingLevelInterval, 416
Force fields

adding velocity, 548, 549
position tool, 552
Rigidbodies, 551
script class, 550
script creation, 545–547
set up, 547

Frames per second (FPS), 65, 78,
109, 110

Freezing time
declare method, 281
GUILayout.BeginArea call, 281
GUILayout.Button methods, 282
in-game pause menu, 283
movement/dashing methods, 280
rect constructor, 281
Time.deltaTime, 279

G
Game Lost Panel, 410, 411, 413
gameLostPanelInfoText, 410
GameObject.Find method, 277
GameObject.

GetComponentsInChildren<T>
method, 230

GameObjects
creating Cube, 18
dropdown menu, 18
Mesh Filter, 19
Mesh Renderer, 19
transform, 19
type, 373
Unity editor, 17

GameObject, setup
model holder, 150
transform component, 150, 151

Game Over screen, 423
Generic button, 368
Generic panel, 369
GetComponent method, 189, 344
GetNextCorner() method, 418
GetNextTarget() method, 354, 356
GetRandomPointWithin

method, 235
Getter property, 158
Goal script

collision detection matrix, 201
GameObject, creation, 202
prefab, 203
project setting window, 202
trigger collider, 204
using statement, 204

goldCost variable, 374
goldLastFrame, 378
GoToBuildMode() method, 413
Gravity method, 494
Ground enemies, 329, 422
GroundEnemy instances, 405
GroundEnemy movement, 417
groundEnemyPrefab

variable, 411, 420
GroundEnemy script, 404
GUILayout methods, 276
GUILayout.BeginArea, 284
GUILayout.Height, 284
GUILayout method, 361

H
Handles.color variable, 239
Hazard script, 17, 188–190
HD monitors, 363
Health bars, 443
HealthGainPerLevel variable, 416

Index

570

HideInInspector attributes, 334
Hierarchy window, 14
Highlighter cube, 377, 385
Highlighter position, 386
Hotkeys method, 463
Hot plate, 435, 436, 438

I
“If” statement, 62
Inheritance, 439, 440

base class, 113
constructor chaining (see Constructor

chaining)
data, 113
declaring classes, 115–117
number value, 124
RPG, 113–115
subtypes/casting, 122–124
suffix, 124

doubles, 125
explicit conversion, 124
float value, 125
integer value, 125
unsigned version, 124

type checking, 126, 127
virtual methods, 127, 128

Initializer, 219
Input.GetKeyDown method, 101
Input.GetMouseButton

method, 323
Inspector window, 14, 20
Instance variables, 89
Instantiate method, 197, 416
Invoke method, 177, 180
InvokeRepeating method, 414
IsDashing property, 255
Iterator, 219

J
Joints

chain link, 541
connected body, 542
Hovering Cube, 540
Rigidbody settings, 541

K
KeyCode data type, 79, 80
Kinematic Rigidbody, 197

L
lastMousePosition, 378
LateUpdate method, 462
Layers

Collision Matrix field, 329
dropdown, 327
Project Settings window, 328

Leak method, 417
Leak point, 397, 398
LevelSelectUI script

built-in method, 269
currentLoadOperation variable, 273
GUILayout.Button, 272
GUI methods, 270
level button, 276
main scene, 275
OnGUI method, 271, 272
scene build index, 270
Start method, 269
synchronous, 271
Update method, 273
using statement, 270

Lives, 306
Local position, 29
Local variables, 89, 101

Index

571

LogInfo method, 99
LogMyMessage method, 71
LookRotation, 355

M
Materials, 152

color field, 152
color model, 154
color popup window, 153
components, 153
hexadecimal value, 154
HSV model, 154
RGB model, 154

Mathf.Max method, 170
Mathf.Min method, 170
maxDistance parameter, 441
Max Slope, 403
Mazing, 310
Mesh Filter, 19
Mesh Renderer, 19
Method declaration, 70–72
Methods

empty GameObject, 66
function, 64
script, 66
update, 65
void, 65

modelTrans reference, 247
Modulus operator, 415
Mouse-aimed camera

first-person mode, 469, 470
hotkeys, 463, 464
OrbitPoint, 470–474
player set up, 453, 454
script setup, 456–462
target GameObjects, 454, 455
testing, 474

UpdateTargetRotation method, 464
viewing player, 467
xLookingDown/xLookingUp values, 468
xRotation/yRotation variable, 465

MouseDragMovement method, 322
mouseDragSensitivity variable, 324
Movement method, 486, 488–490
Movement-related variables, 173
movementSmoothing value, 321
movementVelocity variable, 158, 159, 478
MoveTowardsTarget method, 321
Multiplier, 25

N
Navigation-related methods, 405
Navigation window, 401, 402
NavMesh asset, 403
NavMesh.CalculatePath, 407
NavMeshObstacle component,

403, 404, 437
NavMeshPath class, 405
NavMeshPath instance, 442
NavMeshPath stores, 418
Nested prefabs, 48, 49
Normalized vector, 479, 496

O
Object-oriented programming (OOP), 54
Obstacle course design

death/respawn, 145
gameplay overview, 142, 143
level, 145, 146
mastering programming, 141
player controls, 143, 144
project setup, 147, 148
scripts, 146

Index

572

OnClick event methods, 373, 388, 390
OnColliderTouched method, 551
OnSellTowerButtonClicked()

method, 393
OnSetup method, 335
OnStageClicked method, 381, 386
OnTriggerEnter method, 339, 551
OnTriggerExit method, 344
OnTriggerStay method, 551
Operators, 73–75
Overriding values

asset, 44
components, 44, 45
GameObject, 46, 47
local position, 44
prefab instance, 44
prefab instance vs. asset, 46
root, 45
Skyscrapper, 45
soldier, 44
transform component, 47

P
Parameters, 68, 75
Parenting, 29
Pathfinding algorithm, 312, 442
Pathfinding operation, 407
Pathfinding setup, 401
Patrollers, 209
Patrol point

arguments, 228
array (see Arrays)
compiler error, 226
detect (see Detecting, Patrol points)
indexer, 230
LookRotation, 228
private variables, 227

resembling, 209, 210
setting up (see Set up, Patrol point)
sorting, 221–226
variable, 226

PerformPathfinding method, 406
Physics method, 375
Physics playground design

camera, 449
floating platforms, 451
force fields/jump pads, 451
player movement, 450
project setup, 451, 452
pushing/pulling, 450
swing, 451

Physics.Raycast, 383, 384
Pivot points

Cube Base, 38
GameObject, 37, 38
skyscrapper, 37, 38
tool handle position control, 36
transform tool, 36

Platform script, 529
PlatformDetector script, 529
Platform movement

big cube, 528
declaring variables, 523
FixedUpdate methods, 525, 526
GameObject, 527
Rigidbody, 519
Rigidbody.velocity, 522

Play button
active, 400
Build Mode heading, 409
locked, 408
Lock Panel, 400
normal/active, 400
setup, 409
variables, 410

Index

573

Player Camera GameObject, 382
Player movement

declaring variables, 155–158
GameObject (see GameObject, setup)
properties, 158, 159
velocity (see Velocity)
WASD/arrow keys, 149

Player platforming, 529–532
Player script, 373

build mode, 376
enum Mode, 376

Player Settings, 301
fields, 302, 303
resolution/presentation, 301
splash screen, 303

Play mode, 310
PlayModeLogic method, 412
Positions, 23
PositionSellPanel method, 380, 389, 392
Position tool, 22
Prefabs

asset, 41, 43
editing, 42
making/placing, 41
variant, 49–51, 369

Primitive collider, 543
Private modifier, 91
private void Movement() method, 254
Programming languages, 53, 59
Project, creation, 8
Projectile class

arrow tower, 338
contents, 334
damage, 335
declaration, 337
error message, 337
projectileSeekPoint position, 336
speed variables, 334

variables, 336
Projectile layer, 329
Projectile script, 190–194
Project window, 12
Protected keyword, 331
Protected modifier, 91
Public modifier, 91
PullingAndPushing method, 515, 516
Pulling/pushing

cursor drawing, 517, 518
Telekinesis script, 507–511

Q
Quaternion, 169
Quaternion.LookRotation

method, 170, 171

R
Random.Range method, 247
Range indicators, 444
Raycast method, 384, 441
Rect data type, 517
Rect tool, 22
RectTransform, 366

anchors, 366
circle icon, 366

Rect transform tool, 263
Reference type, 383
Refund Text, 372
Remove method, 394
Rendering Mode field, 375
Render Mode, 364
Respawn method, 178, 180
Retargeting, 233
Rigidbodies, 182, 546
Rigidbody.AddForce method, 546, 551

Index

574

Rigidbody.velocity property, 554
Roleplaying game (RPG)

armor, 114
base class, 114
equipment, 114
fields, 113
terminology, 115

rotationPerSecond variable, 107
Rotation tool, 22

S
Scale tool, 22, 27
Scale/unit measurements, 24–26
Scene flow

build settings, 267, 269
LevelSelectUI script, 267
Player prefab, 268

SceneManager.LoadScene method, 207
Scene setup

component, 522
hovering, 521
non-kinematic Rigidbody, 520
platform creation, 520

Scene window, 13
Screen Match Mode field, 365
ScreenPointToRay method, 441
Script Execution Order, 556
Scripts, 13, 57–59, 103

attributes, 110, 111
class, 105
frames/seconds, 109, 110
GameObjects, 103
namespaces, 104
rotating transform, 107–109
using statement, 105
variables, 106
Vector3, 106

vector variable, 103
window tab, 104

SeekingProjectile script class, 333, 338
selectedBuildButtonColor, 378
selectedBuildButtonImage, 378
selectedTower, 378
sellRefundText, 378
Semicolons, 61
SetActive method, 178, 374
Setter property, 158
Setup method, 336, 357
Set up, Patrol point

array of Transforms, 212
GameObject, 213
hierarchy, 216
index value, 213
model, 213, 215

Shooting script, 194–197
SimpleRotation script, 107
Skyscraper GameObject, 33
Slerp method, 169, 171, 246
SpawnEnemy method, 415
Spawn point, 397, 398
Sphere Collider component, 341, 428
Spike trap, 285

adding collisions, 295–297
copy-paste, 287
designing, 285
fully lower/raised, 286
GameObject, 286
material creation, 288, 289
one row spikes, 288
raising/lowering, 289, 290
repeating process, 292
script writing, 290, 291, 294, 295
sloppier, 287
vectors/Quaternion, 294

stageLayerMask, 377

Index

575

StartLevel method, 414
StartLowering methods, 294
Start method, 331, 405, 406
StartRaising methods, 294, 296
Static members

built-in methods, 101
instanced method, 99
Item class, 99
NumberOfInstances variable, 100
Start method, 100

Step Height, 403
Strong vs. weak typing, 55–57
Substring method, 231
Swing setup

angular motion, 537
chain link, 536
compound colliders, 535
Configurable Joint component, 536
GameObjects, 533, 534
hovering cube, 539
platform, 540
primitive colliders, 535
Rigidbody, 535, 538

Synchronous operation, 276
Syntax, 53, 54

T
TakeDamage method, 68
TargetDetection method, 513, 514
Targeter

collider type, 340
creation, 340
distance, 348
enemies, 341, 344
looping, 344, 345
position, 347
reference, 348, 350

script, 346
towers, 343

Targeter.GetClosestEnemy method, 354
Telekinesis

feature, 542
project settings window, 543
Rigidbody, 543

Teleportation, 305
Terrains, 555
Text component, 370
Textures, 152
3D movement

ApplyVelocity method, 490–492, 495
CharacterController.Move method, 478
Gravity method, 494
Jumping method, 495
length, 479
magnitude, 479
maxGravity, 494
normalized vector, 479
player script, 481–487
project, 477
TransformDirection method, 480
VelocityLoss method, 493, 494

Time.timeScale, 284
Toolbar, 21
Tower

arcing projectile (see Arcing projectile)
barricades, 437
cannon (see Cannon tower prefab)
hot plates, 435–437
instance, 385
maze set up, 437, 438

Tower defense games, 311
project creation, 313
project setup, 313
types, 311

towerPrefabToBuild, 378

Index

576

Tower Selling Panel, 371–373, 377, 389, 393
Tower.transform.position, 385
Transform.childCount member, 412
Transform class, 364
Transform component, 19
TransformDirection method, 480, 488
Transform tools, 21, 22, 24
Transform.TransformDirection method, 546
trans variable, 156
Trigger colliders, 182, 197
Typecast, 122

U
Unity

manual documentation, 135
scripting API documentation, 136
windows (see Windows)

Unity Asset Store, 555
UnityEngine.UI, 376
Unity Hub, 1

building projects, 3
documentation, 4
downloading button, 2, 3
installation, 4
license, 2
modules, 3
one-time setup, 2
program, 9
project (see Project, creation)

Unity pathfinding, 309
Unity’s documentation page, 304
Unity’s UI system, 362

Canvas, 363, 364
elements, 363
physical size, 365
pixels, 365
render elements, 364

scale mode, 365
scene window, 364
screen size, 364, 365
Tool Handle Rotation, 363

Unity users, 305
UpdateEnemyPath method, 394, 406, 407
Update method, 317, 337
Upgrade existing towers, 445

V
Value type, 383
Variables, 89
Variant asset, 50
Vector3.ClampMagnitude static

method, 489
Vector3 variable, 455
Velocity

Mathf.Min/Mathf.Max methods, 161
script class block, 160
speed backward, 162
Time.deltaTime, 160
Update method, 160
up/down movement keys, 164
VelocityGainPerSecond, 163
X axis, 165, 166

VelocityGainPerSecond, 158
VelocityLossPerSecond, 158
Virtual keyword, 331
Virtual methods, 127, 128
void Update() method, 227

W, X, Y
WallIsNearby method, 499
Wall jumping

collisions, 497
detection, 499–501

Index

577

Update logic methods, 502–505
variables, 497–499

Walls
Floor plane, 199
gizmo, 200, 201
prefab, 199
rect transform tool, 200
tool handle rotation, 200

Wanderer
Editor extension (see Editor extension)
region, 233–235
scripts (see Wanderer scripts)
setup, 240, 241

Wanderer scripts, 248
enum, 241
handling, state, 243, 244
postRotationWaitTime, 243

reacting, state, 245–247
variables, 242

Weapon/armor instance, 122
Weapon constructor, 121
Weapon variable, 124
While statement, 62
Windows

layout, 12
tabs, 11

World position, 29
World scale, 35
World vs. local

coordinates, 32

Z
Zooming method, 325

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Installation and Setup
	Installing Unity
	Installing Our Code Editor
	Creating a Project
	Summary

	Chapter 2: Unity Basics
	Windows
	Project Window
	Scene Window
	Hierarchy Window
	Inspector Window
	Components
	Adding GameObjects
	Summary

	Chapter 3: Manipulating the Scene
	Transform Tools
	Positions and Axes
	Making a Floor
	Scale and Unit Measurements
	Summary

	Chapter 4: Parents and Their Children
	Child GameObjects
	World vs. Local Coordinates
	A Simple Building
	Pivot Points
	Summary

	Chapter 5: Prefabs
	Making and Placing Prefabs
	Editing Prefabs
	Overriding Values
	Nested Prefabs
	Prefab Variants
	Summary

	Chapter 6: Programming Primer
	Programming Languages and Syntax
	What Code Does
	Strong vs. Weak Typing
	File-Type Extensions
	Scripts
	Summary

	Chapter 7: Code Blocks and Methods
	Statements and Semicolons
	Code Blocks
	Comments
	Methods
	Calling Methods
	Basic Data Types
	Returning Values with Methods
	Declaring Methods
	Operators
	Summary

	Chapter 8: Conditions
	The “if” Block
	Overloads
	Enums
	The “else” Block
	The “else if” Block
	Operators for Conditions
	Equality Operators
	Greater Than and Less Than
	Or
	And

	Summary

	Chapter 9: Working with Objects
	Classes
	Variables
	Accessing Class Members
	Instance Methods
	Declaring Constructors
	Using the Constructor
	Static Members

	Summary

	Chapter 10: Working with Scripts
	Usings and Namespaces
	Script Class
	Rotating a Transform
	Frames and Seconds
	Attributes
	Summary

	Chapter 11: Inheritance
	Inheritance in Action: RPG Items
	Declaring Our Classes
	Constructor Chaining
	Subtypes and Casting
	Number Value Types
	Type Checking
	Virtual Methods
	Summary

	Chapter 12: Debugging
	Setting Up the Debugger
	Breakpoints
	Using Unity’s Documentation
	Summary

	Part I: Obstacle Course
	Chapter 13: Obstacle Course Design and Outline
	Gameplay Overview
	Technical Overview
	Player Controls
	Death and Respawn
	Levels
	Level Selection
	Obstacles

	Project Setup
	Summary

	Chapter 14: Player Movement
	Player Setup
	Materials and Colors
	Declaring Our Variables
	Properties
	Tracking the Velocity
	Applying the Movement
	Summary

	Chapter 15: Death and Respawning
	Enabling and Disabling
	Death Method
	Respawn Method
	Summary

	Chapter 16: Basic Hazards
	Collision Detection
	Hazard Script
	Projectile Script
	Shooting Script
	Summary

	Chapter 17: Walls and Goals
	Walls
	Goals
	Build Settings for Scenes
	Summary

	Chapter 18: Patrolling Hazards
	Resembling a Patrol Point
	Arrays
	Setting Up Patrol Points
	Detecting Patrol Points
	The “for” Loop

	Sorting Patrol Points
	Moving the Patroller
	Summary

	Chapter 19: Wandering Hazards
	Wander Regions
	A Basic Editor Extension
	Editor Scripts
	Custom Inspectors
	Accessing the Inspector Target
	Drawing to the Scene

	Wanderer Setup
	Wanderer Script
	Handling the State
	Reacting to the State

	Summary

	Chapter 20: Dashing
	Dashing Variables
	Dashing Method
	Final Touches
	Dash Cooldown
	Summary

	Chapter 21: Designing Levels
	Prefabs and Variants
	Making Levels
	Adding Walls
	Level View Camera
	Summary

	Chapter 22: Menus and UI
	Scene Flow
	Level Selection Script
	Summary

	Chapter 23: In-Game Pause Menu
	Freezing Time
	Summary

	Chapter 24: Spike Traps
	Designing the Trap
	Raising and Lowering
	Writing the Script
	Adding Collisions
	Summary

	Chapter 25: Obstacle Course Conclusion
	Building the Project
	Player Settings
	Recap
	Additional Features
	Summary

	Part II: Tower Defense
	Chapter 26: Tower Defense Design and Outline
	Gameplay Overview
	Technical Overview
	Project Setup
	Summary

	Chapter 27: Camera Movement
	Setting Up
	Arrow Key Movement
	Applying Movement
	Mouse Dragging
	Zooming
	Summary

	Chapter 28: Enemies, Towers, and Projectiles
	Layers and Physics
	Basic Enemies
	Projectiles
	Targeters
	Towers
	Arrow Towers
	Summary

	Chapter 29: Build Mode
	UI Basics
	The RectTransform
	Building Our UI
	Events
	Setting Up
	Build Mode Logic
	The Dictionary
	OnClick Event Methods
	Summary

	Chapter 30: Play Mode
	Spawn and Leak Points
	Locking the Play Button
	Pathfinding Setup
	Finding a Path
	Play Mode Setup
	Spawning Enemies
	Enemy Movement
	Summary

	Chapter 31: More Tower Types
	Arcing Projectiles
	Cannon Tower
	Hot Plates
	Barricades
	Summary

	Chapter 32: Tower Defense Conclusion
	Inheritance
	UI
	Raycasting
	Pathfinding
	Additional Features
	Health Bars
	Types for Armor and Damage
	More Complex Pathing
	Range Indicators
	Upgrading Towers

	Summary

	Part III: Physics Playground
	Chapter 33: Physics Playground Design and Outline
	Feature Outline
	Camera
	Player Movement
	Pushing and Pulling
	Moving Platforms
	Swings
	Force Fields and Jump Pads

	Project Setup
	Summary

	Chapter 34: Mouse-Aimed Camera
	Player Setup
	How It Works
	Script Setup
	Hotkeys
	Mouse Input
	First-Person Mode
	Third-Person Mode
	Testing
	Summary

	Chapter 35: Advanced 3D Movement
	How It Works
	Player Script
	Movement Velocity
	Applying Movement
	Losing Velocity
	Gravity and Jumping
	Summary

	Chapter 36: Wall Jumping
	Variables
	Detecting Walls
	Performing the Jump
	Summary

	Chapter 37: Pulling and Pushing
	Script Setup
	FixedUpdate
	Target Detection
	Pulling and Pushing
	Cursor Drawing
	Summary

	Chapter 38: Moving Platforms
	Scene Setup
	Platform Movement
	Player Platforming
	Summary

	Chapter 39: Joints and Swings
	Swing Setup
	Connecting the Joints
	Finishing Touches
	Summary

	Chapter 40: Force Fields and Jump Pads
	Script Setup
	Force Field Setup
	Adding Velocity to the Player
	Applying Forces
	Summary

	Chapter 41: Conclusion
	Physics Playground Recap
	Further Learning for Unity
	The Asset Store
	Terrains
	Coroutines
	Script Execution Order

	Further Learning for C#
	Delegates
	Documentation Comments
	Exceptions

	Advanced C#
	Operator Overloading
	Conversions
	Generic Types
	Structs

	Summary

	Index

