
Unity Artifi cial
Intelligence Programming
Fifth Edition

 Add powerful, believable, and fun AI entities in your
game with the power of Unity

Dr. Davide Aversa

U
nity A

rtifi cial Intelligence Program
m

ing
Fifth Edition
D

r. D
avide Aversa

Things you will learn:

• Understand the basics of AI in
game design

• Create smarter game worlds and
characters with C# programming

• Apply automated character
movement using pathfinding
algorithm behaviors

• Implement character decision-making
algorithms using behavior trees

• Build believable and highly efficient
artificial flocks and crowds

• Create sensory systems for your
AI world

• Become well-versed with the basics
of procedural content generation

• Explore the application of machine
learning in Unity

 Developing artificial intelligence (AI) for game characters in Unity has never been easier. Unity
provides game and app developers with a variety of tools to implement AI, from basic techniques
to cutting-edge, machine learning-powered agents. Leveraging these tools via Unity's API or built-in
features allows limitless possibilities when it comes to creating game worlds and characters.

The updated fifth edition of Unity Artifi cial Intelligence Programming starts by breaking down AI into
simple concepts. Using a variety of examples, the book then takes those concepts and walks you
through actual implementations designed to highlight key concepts and features related to game AI in
Unity. As you progress, you'll learn how to implement a finite state machine (FSM) to determine how
your AI behaves, apply probability and randomness to make games less predictable, and implement
a basic sensory system. Later, you'll understand how to set up a game map with a navigation mesh,
incorporate movement through techniques such as A* pathfinding, and provide characters with
decision-making abilities using behavior trees.

By the end of this Unity book, you'll have the skills you need to bring together all the concepts and
practical lessons you've learned to build an impressive vehicle battle game.

Fifth Edition

Unity Artifi cial
Intelligence Programming

Unity Artificial
Intelligence
Programming

Fifth Edition

Add powerful, believable, and fun AI entities in your
game with the power of Unity

Dr. Davide Aversa

BIRMINGHAM—MUMBAI

Unity Artificial Intelligence Programming
Fifth Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Ashitosh Gupta
Senior Editor: Hayden Edwards
Content Development Editor: Abhishek Jadhav
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Sinhayna Bais
Marketing Coordinator: Elizabeth Varghese and Teny Thomas

First published: July 2013
Second edition: September 2015
Third edition: January 2018
Fourth edition: November 2018
Fifth edition: March 2022

Production reference: 1280222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-853-1

www.packt.com

http://www.packt.com

To my parents, Ferruccio and Sara, for their role in making me what I am
today. And to my life partner, Gioia, for shaping with me what I will be

tomorrow.

– Davide Aversa

Contributors

About the author
Dr. Davide Aversa holds a PhD in Artificial Intelligence (AI) and an MSc in AI and
robotics from the University of Rome La Sapienza in Italy. He has a strong interest in AI for
the development of interactive virtual agents and procedural content generation. He has
served as a program committee member for video game-related conferences such as the
IEEE conference on computational intelligence and games, and he also regularly participates
in game-jam contests. He also writes a blog on game design and game development.

About the reviewers
Giacomo Salvadori is a game developer, lecturer, and researcher who has worked in
many different environments, including private game companies, NGOs, academies, and
universities. He is led by his enthusiasm and passion for games.

Giacomo's fields of expertise are game design and programming. The areas of his studies
are AI and combat design. Outside work, Giacomo loves to spend time in nature and
dreams of traveling the world on a boat.

Kazimieras Mikelis is a self-taught video game software engineer specializing in AI
programming and technical systems design. Their first-hand expertise in game AI comes
from working in many diverse companies in the industry, from close-knit start-ups to big
studios building AAA games, on work ranging from small projects to cross-platform game
releases.

Ardent about exploring what games can offer as a medium, Kazimieras Mikelis authors a
blog on game development and enjoys unique idea-driven games in his free time.

Amir Reza Asadi is a software engineer and HCI researcher interested in using video
games to solve real-world problems. He is chair of the Metaverse ACM SIGCHI chapter.
He has also served as a reviewer for several high-profile conferences, including ACM CHI
and IEEE VR.

As an entrepreneur and owner of Humind Labs, he has launched various start-up
projects, including BeyondBoard AR. He aims to design novel experiences for emerging
technologies such as XR. On this adventure, he has written multiple papers and acquired
knowledge of various technologies, including Unity.

He is currently leading the design and development of Fashionator, a digital fashion
design platform. In his spare time, he studies the intersection of digital twins and AI in
the Metaverse.

Preface

Part 1: Basic AI

1
Introduction to AI

Understanding AI 4
AI in video games 5
AI techniques for video games 7
Finite state machines 7
Randomness and probability in AI 9
The sensor system 9

Flocking, swarming, and herding 11
Path following and steering 12
A* pathfinding 13
Navigation meshes 19
Behavior trees 21
Locomotion 24

Summary 26

2
Finite State Machines

Technical requirements 28
Implementing the player's tank 28
Initializing the Tank object 29
Shooting the bullet 30
Controlling the tank 31

Implementing a Bullet class 34
Setting up waypoints 37
Creating the abstract FSM class 39

Using a simple FSM for the
enemy tank AI 40
The Patrol state 44
The Chase state 46
The Attack state 47
The Dead state 49
Taking damage 50

Using an FSM framework 51
The AdvancedFSM class 51

Table of Contents

viii Table of Contents

The FSMState class 52
The state classes 53

The NPCTankController class 56

Summary 58

3
Randomness and Probability

Technical requirements 60
Introducing randomness
in Unity 60
Randomness in computer science 61
The Unity Random class 61
A simple random dice game 62

Learning the basics of probability 66
Independent and correlated events 67
Conditional probability 68
Loaded dice 68

Exploring more examples of
probability in games 70

Character personalities 70
Perceived randomness 71
FSM with probability 72
Dynamically adapting AI skills 76

Creating a slot machine 77
A random slot machine 77
Weighted probability 82
A near miss 87

Summary 89
Further reading 89

4
Implementing Sensors

Technical requirements 92
Basic sensory systems 92
Scene setup 93
The player's tank and the
aspect class 94
The player's tank 95
Aspect 98

AI characters 98
Sense 100
Sight 101
Touch 104

Testing 107
Summary 107

Table of Contents ix

Part 2: Movement and Navigation

5
Flocking

Technical requirements 112
Basic flocking behavior 112
Individual behavior 113
Controller 122

Alternative implementation 124
FlockController 127

Summary 132

6
Path Following and Steering Behaviors

Technical requirements 134
Following a path 134
Path script 134
Path-following agents 137

Avoiding obstacles 141

Adding a custom layer 143
Obstacle avoidance 145

Summary 150

7
A* Pathfinding

Technical requirements 151
Revisiting the A* algorithm 152
Implementing the A* algorithm 154
Node 154
PriorityQueue 155
The GridManager class 157

The AStar class 164
The TestCode class 167

Setting up the scene 170
Testing the pathfinder 173

Summary 174

x Table of Contents

8
Navigation Mesh

Technical requirements 176
Setting up the map 176
Navigation static 176
Baking the NavMesh 177
NavMesh agent 179
Updating an agent's destinations 180

Setting up a scene with slopes 182

Baking navigation areas with
different costs 184
Using Off Mesh Links to
connect gaps between areas 186
Generated Off Mesh Links 187
Manual Off Mesh Links 188

Summary 190

Part 3: Advanced AI

9
Behavior Trees

Technical requirements 194
Introduction to BTs 194
A simple example – a patrolling robot 195

Implementing a BT in Unity
with Behavior Bricks 197
Set up the scene 200
Implement a day/night cycle 201

Design the enemy behavior 202

Implementing the nodes 203
Building the tree 210
Attach the BT to the enemy 211

Summary 212
Further reading 213

10
Procedural Content Generation

Technical requirements 216
Understanding Procedural
Content Generation in games 216
Kinds of Procedural Content Generation 217

Implementing a simple goblin
name generator 218

Generating goblin names 218
Completing the goblin description 220

Learning how to use Perlin
noise 222
Built-in Unity Perlin noise 223

Generating random maps
and caves 225

Table of Contents xi

Cellular automata 226
Implementing a cave generator 227
Rendering the generated cave 233

Summary 239
Further reading 239

11
Machine Learning in Unity

Technical requirements 242
The Unity Machine Learning
Agents Toolkit 242
Installing the ML-Agents Toolkit 243
Installing Python and PyTorch on
Windows 244
Installing Python and PyTorch on
macOS and Unix-like systems 244

Using the ML-Agents Toolkit
– a basic example 245

Creating the scene 248
Implementing the code 249
Adding the final touches 252

Testing the learning
environment 254
Training an agent 255
Summary 256
Further reading 257

12
Putting It All Together

Technical requirements 260
Developing the basic
game structure 260
Adding automated navigation 261
Creating the NavMesh 262

Setting up the Agent 264
Fixing the GameManager script 266

Creating decision-making AI
with FSM 268
Summary 276

Index
Other Books You May Enjoy

Preface
Developing Artificial Intelligence (AI) for game characters in Unity has never been
easier. Unity provides game and app developers with a variety of tools to implement AI,
from basic techniques to cutting-edge machine learning-powered agents. Leveraging these
tools via Unity's API or built-in features allows limitless possibilities when it comes to
creating game worlds and characters.

This updated fifth edition of Unity Artificial Intelligence Programming starts by breaking
down AI into simple concepts. Using a variety of examples, the book then takes those
concepts and walks you through actual implementations designed to highlight key
concepts and features related to game AI in Unity. As you progress, you'll learn how to
implement a Finite State Machine (FSM) to determine how your AI behaves, apply
probability and randomness to make games less predictable, and implement a basic
sensory system. Later, you'll understand how to set up a game map with a navigation
mesh, incorporate movement through techniques such as A* pathfinding, and provide
characters with decision-making abilities using behavior trees.

By the end of this Unity book, you'll have the skills you need to bring together all the
concepts and practical lessons you've learned to build an impressive vehicle battle game.

Who this book is for
This Unity AI book is for Unity developers with a basic understanding of C# and the
Unity Editor who want to expand their knowledge of AI Unity game development.

What this book covers
Chapter 1, Introduction to AI, talks about what AI is and how it is used in games. We also
discuss the various techniques used to implement AI in games.

Chapter 2, Finite State Machines, discusses a way of simplifying how we manage the
decisions that AI needs to make. We use FSMs to determine how AI behaves in a
particular state and how it transitions to other states.

xiv Preface

Chapter 3, Randomness and Probability, discusses the basics behind probability, and
how to change the probability of a particular outcome. Then we look at how to add
randomness to our game to make the AI less predictable.

Chapter 4, Implementing Sensors, looks at making our characters aware of the world
around them. With the ability for our characters to see and hear, they will know when an
enemy is nearby and when to attack.

Chapter 5, Flocking, discusses the situation where many objects travel together as a group.
We will look at two different ways to implement flocking, and how it can be used to make
objects move together.

Chapter 6, Path-Following and Steering Behaviors, looks at how AI characters can follow
a path provided to reach a destination. Then we look at how AI characters can find a
target without having a predefined path, simply by moving toward a goal while avoiding
obstacles as they appear.

Chapter 7, A* Pathfinding, discusses a popular algorithm used to find the best route from a
given location to a target location. With A*, we scan the terrain and find the best path that
leads us to the goal.

Chapter 8, Navigation Mesh, discusses using the power of Unity to make pathfinding
easier to implement. By creating a Navigation Mesh (this requires Unity Pro), we will be
able to represent the scene around us in a better way than we could by using tiles and the
A* algorithm.

Chapter 9, Behavior Trees, teaches you about behavior trees, a popular decision-making
technique for game AI. We will explore the general architecture of behavior trees and how
to use them to control a simple agent. Then we will use the free plugin Behavior Bricks to
apply our new knowledge to a simple mini-game project.

Chapter 10, Procedural Content Generation, explores the basics of generative AI and
procedural content generation. We will see how to use Perlin noise to generate realistic
terrain, and how to use Cellular Automata to generate a cave-like dungeon map.

Chapter 11, Machine Learning in Unity, explores how to apply machine learning (in
particular, reinforcement learning) to game characters for games or simulations. We will
use the official Unity ML-Agents Toolkit. In the first part, we will learn how to configure
Unity and the external requirements for the toolkit. Then we will showcase two simple
practical examples.

Chapter 12, Putting It All Together, takes various elements of what you have learned
throughout the book and brings it all together into one last project. Here, you will apply
the remaining AI elements you have learned and create an impressive vehicle battle game.

Preface xv

To get the most out of this book
For this book, you only need to install a recent version of Unity3D. The code projects in
this book have been tested on macOS and Windows on Unity 2022 and Unity 2021 but,
with minor adjustments, they should work with future releases too.

For Chapter 9, Behavior Trees, you will need to install the Behavior Bricks plugin for Unity.
In Chapter 11, Machine Learning in Unity, we will install Python 3.7 and PyTorch.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Unity-Artificial-Intelligence-
Programming-Fifth-Edition. If there's an update to the code, it will be updated in
the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803238531_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Let's start creating the PlayerTankController class by setting up the
Start function and the Update function in the PlayerTankController.cs file."

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803238531_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803238531_ColorImages.pdf

xvi Preface

A block of code is set as follows:

public class PlayerTankController : MonoBehaviour {

 public GameObject Bullet;

 public GameObject Turret;

 public GameObject bulletSpawnPoint;

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

// ...

 private AudioSource m_ExplosionAudio

 private ParticleSystem m_ExplosionParticles

 private float m_CurrentHealth;

 private bool m_Dead;

 public float CurrentHealth { get; }

 // ...

Any command-line input or output is written as follows:

git clone --branch release_19 https://github.com/Unity-
Technologies/ml-agents.git

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "If you play
the scene and click on the Pull Lever button, you should see the final result."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

mailto:customercare@packtpub.com

Preface xvii

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Unity Artificial Intelligence Programming – Fifth Edition, we'd love to
hear your thoughts! Please select https://www.amazon.in/review/1803238534
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://www.amazon.in/review/1803238534

Part 1:
Basic AI

In this part, we will learn the goals of game AI and the basic techniques to implement
simple but effective AI characters in game.

We will cover the following chapters in this part:

• Chapter 1, Introduction to AI

• Chapter 2, Finite State Machines

• Chapter 3, Randomness and Probability

• Chapter 4, Implementing Sensors

1
Introduction to AI

This book aims to teach you the basics of artificial intelligence (AI) programming for
video games using one of the most popular commercial game engines available: Unity3D.
In the upcoming chapters, you will learn how to implement many of the foundational
techniques of any modern game, such as behavior trees and finite state machines.

Before that, though, you must have a little background on AI in terms of its broader,
academic, traditional domain, which we will provide in this introductory chapter. Then,
we'll learn how the applications and implementations of AI in games are different from
other domains and the essential and unique requirements for AI in games. Finally, we'll
explore the basic techniques of AI that are used in games.

In this chapter, we'll cover the following topics:

• Understanding AI

• AI in video games

• AI techniques for video games

4 Introduction to AI

Understanding AI
Intelligence is a natural and necessary aspect of life for all living organisms, such as
animals and humans. Without intelligence – mentioned in the broadest way possible here
– animals would not be able to look for food, bees would not be able to find flowers, and
we humans would have never been able to craft objects or light fires, let alone develop
games in Unity! On the contrary, computers are just electronic devices that can accept
data, perform logical and mathematical operations at high speeds, and output the results.
They lack any kind of intelligence. Computers would stay still and lifeless forever like
rocks without someone telling them what to do and how to do it.

From this point of view, AI is essentially the field that studies how to give machines the
spark of natural intelligence. It's a discipline that teaches computers how to think and
decide like living organisms to achieve any goal without human intervention.

As you can imagine, this is a vast subject. There's no way that such a small book will be
able to cover everything related to AI. Fortunately, for the goal of game AI, we do not need
a comprehensive knowledge of AI. We only need to grasp the basic concepts and master
the basic techniques. And this is what we will do in this book.

But before we move on to game-specific techniques, let's look at some of the main
research areas for AI:

• Computer vision: This is the ability to take visual input from visual sources – such
as videos and photos – and analyze them to identify objects (object recognition),
faces (face recognition), text in handwritten documents (optical character
recognition), or even to reconstruct 3D models from stereoscopic images.

• Natural Language Processing (NLP): This allows a machine to read and
understand human languages – that is, how we write and speak. The problem is
that human languages are difficult for machines to understand. Language ambiguity
is the main problem: there are many ways to say the same thing, and the same
sentence can have different meanings based on the context. NLP is a significant
cognitive step for machines since they need to understand the languages and
expressions we use before processing them and responding accordingly. Fortunately,
many datasets are available on the web to help researchers train machines for this
complex task.

AI in video games 5

• Machine learning: This branch of AI studies how machines can learn how to
perform a task using only raw data and experience, with or without human
intervention. Such tasks span from identifying if a picture contains the image of a
cat, to playing board games (such as the AlphaGo software, which, in 2017, was able
to beat the number one ranked player of the world in the game of Go), to perfectly
interpolating the faces of famous actors in our homemade videos (so-called
deepfakes). Machine learning is a vast field that spans all other AI fields. We will
talk more about it in Chapter 11, Machine Learning in Unity.

• Common sense reasoning: There is a type of knowledge that is almost innate
in human beings. For instance, we trivially know that things fall on the ground if
they're not supported or that we cannot put a big thing into a smaller one. However,
this kind of knowledge and reasoning (also called common sense knowledge) is
entirely undecipherable for computers. At the time of writing, nobody knows how
to teach machines such trivial – for us – things. Nevertheless, it is a very active (and
frustrating) research direction.

Fortunately for us, game AI has a much narrower scope. Instead, as we will see in the next
section, game AI has a single but essential goal: to make the game fun to play.

AI in video games
Different from general AI, game AI only needs to provide the illusion of intelligence. Its
goal is not to offer human-like intelligent agents but characters that are smart enough to
make a game fun to play.

Of course, making a game fun to play is no trivial matter, and to be fair, a good AI is just
one part of the problem. Nevertheless, if a good AI is not enough to make a game fun,
a bad AI can undermine even the most well-designed game. If you are interested in the
problem of what makes a game fun, I suggest that you read a good book on game design,
such as The Art of Game Design, by Jesse Schell.

However, for what concerns us, it is sufficient to say that it's essential to provide an
adequate level of challenge to the player. A fair challenge, in this case, means the game
should not be so difficult that the player can't beat the opponent, nor too easy that
winning becomes a tedious task. Thus, finding the right challenge level is the key to
making a game fun to play.

6 Introduction to AI

And that's where AI kicks in. The role of AI in games is to make it fun by providing
challenging opponents and interesting Non-Player Characters (NPCs) that behave
appropriately in the game world. So, the objective here is not to replicate the whole
thought process of humans or animals but to make the NPCs seem intelligent by reacting
to the changing situations in the game world so that they make sense to the player. This,
as we mentioned previously, provides the illusion of intelligence.

Information
It is essential to mention that AI in games is not limited to modeling NPC's
behaviors. AI is also used to generate game content (as we will see in Chapter
10, Procedural Content Generation) to control the story events and the narrative
pace (a notable example is given by the AI director in the Left 4 Dead series) or
even to invent entire narrative arcs.

Note that a good game AI doesn't need to be a complex AI. A recurring example is the AI
of the original Pac-Man arcade game. By any modern standard, the algorithm that governs
the behavior of the four ghosts chasing Pac-Man can barely be considered AI. Each ghost
uses a really simple rule to decide where to move next: measure the distance between the
ghost and a target tile and choose the direction to minimize the distance.

The target tile might be the location of Pac-Man itself (as in the case of the Red Ghost),
but it can also be something in front of Pac-Man (such as the Pink Ghost) or some other
tile. By simply changing the target tile's position, the Pac-Man arcade game can give each
ghost a distinctive personality and an AI that challenges us even after 40 years!

The golden rule is to use the smallest amount of AI necessary to achieve the game's design
goal. Of course, we may take this rule to the extreme and use no AI if we find out that it is
unnecessary. For instance, in Portal and Portal 2, all the characters are completely scripted
and there is no AI involved, yet nobody complained about the lack of AI.

Information
If you are interested in diving deeper into the Pac-Man AI, I suggest
that you watch this very detailed video from the Retro Game Mechanics
Explained YouTube channel: https://www.youtube.com/
watch?v=ataGotQ7ir8.

Alternatively, if you prefer to read, you can go to this very informative web
page: https://gameinternals.com/understanding-pac-
man-ghost-behavior.

https://www.youtube.com/watch?v=ataGotQ7ir8
https://www.youtube.com/watch?v=ataGotQ7ir8
https://gameinternals.com/understanding-pac-man-ghost-behavior
https://gameinternals.com/understanding-pac-man-ghost-behavior

AI techniques for video games 7

Another challenge for game AI is that other operations, such as graphics rendering and
physics simulation, need to share the processing power that's required for AI. And don't
forget that they are all happening in real time, so it's critical to achieve a steady frame
rate throughout the game. This means that game AI needs to be designed to not overtake
the computational resources. This is usually done by designing an algorithm that can be
interrupted and spread over multiple frames.

In general AI, many companies invest in a dedicated processor for AI calculations called
an AI accelerator (such as Google's Tensor Processing Unit). However, until games have
widespread access to such dedicated AI processors, we game AI developers still need to
pay attention to our algorithms' performance.

The next section will provide a general introduction to the most popular AI techniques
that are used in video games.

AI techniques for video games
In this section, we will look at some of the AI techniques that are commonly used in
different types of games. We'll learn how to implement each of these features in Unity in
the upcoming chapters. Since this book does not focus on AI techniques themselves but
on implementing these techniques inside Unity, we won't look at them in too much detail
here. So, let's just take this as a crash course before diving into the implementation details.

If you want to learn more about AI for games, there are some great books, such as
Programming Game AI by Example, by Mat Buckland, and Artificial Intelligence for Games,
by Ian Millington and John Funge. In addition, the AI Game Programming Wisdom and
Game AI Pro series also contain a lot of valuable resources and articles on the latest AI
techniques.

Finite state machines
Finite State Machines (FSMs) are probably one of the simplest, most used, and most
discussed AI models and, for most games, they represent the only AI technique. A
state machine consists of a finite number of states that are connected by one or more
transitions, resulting in a data structure known as a graph. Each game entity starts with
an initial state. Then, environment events trigger specific rules that will make the entity
move into another state. Such triggering rules are called transitions. A game entity can
only be in one state at any given time.

8 Introduction to AI

For example, let's consider an AI guard character in a typical shooting game. Its states
could be as simple as patrolling, chasing, and shooting:

Figure 1.1 – A simple FSM for an AI guard character

There are four components in a simple FSM:

• States: This component defines a set of states that a game entity or an NPC can
choose from (Patrol, Chase, and Shoot).

• Transitions: This component defines the relationships between different states.

• Rules: This component defines when to perform a state transition (Player in sight,
Close enough to attack, and Lost/killed player).

• Events: This is the component that will trigger to check the rules (the guard's visible
area, distance to the player, and so on).

So, a monster in Quake 2 may have the following states: standing, walking, running,
dodging, attacking, idle, and searching.

FSMs are widely used in games because they are simple to implement using only a bunch
of if or switch statements, but they are still powerful enough for simple and somewhat
complex games. On the other hand, they can get messy when we need a lot of states and
transitions. We'll learn how to manage a simple FSM in the next chapter.

AI techniques for video games 9

Randomness and probability in AI
Imagine an enemy bot in a First-Person Shooter (FPS) game that can always kill the
player with a headshot or an opponent in a racing game who always chooses the best
route and never collides with any obstacle. Such a level of intelligence will make the
game so hard that it will become almost impossible to win and, as a consequence, it
will be frustrating to play. On the opposite side of the spectrum, imagine an enemy that
chooses the same predictable route whenever it tries to escape from the player. After a
couple of games, the player will learn the enemy's pattern, and the game will feel boring.
AI-controlled entities that behave the same way every time the player encounters them
make the game predictable, easy to win, and therefore dull.

Of course, there are some cases in which intentional predictability is a desired feature.
In stealth games, for instance, we want the players to be able to predict the path of the
enemies so that the players can plan a sneaking route. But in other cases, unintentional
predictability can interfere with the game's engagement and make the player feel like the
game is not challenging or fair enough. One way to fix these too-perfect or too-stupid AIs
is to introduce intentional mistakes in their behavior. In games, we introduce randomness
and probability in the decision-making process of AI calculations.

There are multiple scenarios where we may want to introduce a bit of randomness. The
most straightforward case is when the NPC has no information and/or it doesn't matter
what decision it makes. For instance, in a shooting game, an enemy under fire may want
to decide where to cover. So, instead of always moving it to the closest cover, we may wish
to instruct the NPCs to sometimes choose a slightly far-away cover.

In other cases, we can use randomness for the outcomes of a decision. For example, we
can use randomness for hit probabilities, add or subtract random bits of damage to/from
base damage, or make an NPC hesitate before they start shooting.

The sensor system
Our AI characters need to know their surroundings and the world they interact with to
make a particular decision. Such information includes the following:

• The position of the player: This is used to decide whether to attack or chase or
keep patrolling.

• Buildings and nearby objects: This is used to hide or take cover.

10 Introduction to AI

• The player's health and the AI's health: This is used to decide whether to retreat
or advance.

• Location of resources on the map in a Real-Time Strategy (RTS) game: This is
used to occupy and collect resources that are required to update and/or produce
other units.

As you can imagine, choosing the correct method to collect game information can vary a
lot, depending on the type of game we are trying to build. In the next few sections, we'll
look at two basic strategies: polling and message (event) systems.

Polling
One method to collect such information is polling. Polling consists of directly checking
for the preceding information in Unity's FixedUpdate method of our AI character. In
this way, AI characters can just poll the information they are interested in from the game
world, do the checks, and take action accordingly. Polling works great if there aren't too
many things to check.

To make this method more efficient, we may want to program the characters to poll the
world states at different rates so that we do not have all the characters checking everything
at once. For instance, we may divide the polling agents into 10 groups (G1, G2, G3, and so
on) and assign the polling for each group at different frames (for example, G1 will poll at
frame 0, 60, 120, and so on; G2 will poll at frame 10, 70, 130, and so on).

As another example, we may decide to change the polling frequency based on the enemy's
type or state. For instance, enemies that are disengaged and far away may poll every 3-4
seconds, while enemies closer to the player and under attack may want to poll every 0.5
seconds.

However, polling is no longer enough as soon as the game gets bigger. Therefore, in more
massive games with more complex AI systems, we need to implement an event-driven
method using a global messaging system.

Messaging systems
In a messaging system, the game communicates events between the AI entity and the player,
the world, or the other AI entities through asynchronous messages. For example, when
the player attacks an enemy unit inside a group of patrol guards, the other AI units need to
know about this incident so that they can start searching for and attacking the player.

AI techniques for video games 11

If we were using the polling method, our AI entities would need to check the state of
all of the other AI entities to find out if one of them has been attacked. However, we
can implement this in a more manageable and scalable fashion: we can register the AI
characters that are interested in a particular event as listeners of that event; then, if that
event occurs, our messaging system will broadcast this information to all listeners. The AI
entities can then take the appropriate actions or perform further checks.

This event-driven system does not necessarily provide a faster mechanism than polling.
Still, it provides a convenient, central checking system that senses the world and informs
the interested AI agents, rather than having each agent check the same event in every
frame. In reality, both polling and messaging systems are used together most of the time.
For example, the AI may poll for more detailed information when it receives an event
from the messaging system.

Flocking, swarming, and herding
Many living beings such as birds, fish, insects, and land animals perform specific
operations such as moving, hunting, and foraging in groups. They stay and hunt in groups
because it makes them stronger and safer from predators than pursuing goals individually.
So, let's say you want a group of birds flocking, swarming around in the sky; it'll cost
too much time and effort for animators to design the movement and animations of each
bird. However, if we apply some simple rules for each bird to follow, we can achieve an
emergent intelligence for the whole group with complex, global behavior.

One pioneer of this concept is Craig Reynolds, who presented such a flocking algorithm
in his 1987 SIGGRAPH paper, Flocks, Herds, and Schools – A Distributed Behavioral
Model. He coined the term boid, which sounds like "bird" but refers to a bird-like object.
He proposed three simple rules to apply to each unit:

• Separation: Each boid needs to maintain a minimum distance from neighboring
boids to avoid hitting them (short-range repulsion).

• Alignment: Each boid needs to align itself with the average direction of its
neighbors and then move in the same velocity with them as a flock.

• Cohesion: Each boid is attracted to the group's center of mass (long-range attraction).

These three simple rules are all we need to implement a realistic and reasonably complex
flocking behavior for birds. This doesn't only work with birds. Flocking behaviors are
useful for modeling a crowd or even a couple of NPCs that will follow the player during
the game.

12 Introduction to AI

We'll learn how to implement such a flocking system in Unity in Chapter 5, Flocking.

Path following and steering
Sometimes, we want our AI characters to roam the game world and follow a roughly
guided or thoroughly defined path. For example, in a racing game, the AI opponents
need to navigate a road. In that case, simple reactive algorithms, such as our flocking boid
algorithm, are not powerful enough to solve this problem. Still, in the end, it all comes
down to dealing with actual movements and steering behaviors. Steering behaviors for AI
characters has been a research topic for a couple of decades now.

One notable paper in this field is Steering Behaviors for Autonomous Characters, again
by Craig Reynolds, presented in 1999 at the Game Developers Conference (GDC). He
categorized steering behaviors into the following three layers:

Figure 1.2 – Hierarchy of motion behaviors

To understand these layers, let's look at an example. Imagine that you are working at your
desk on a hot summer afternoon. You are thirsty, and you want a cold glass of iced tea. So,
we start from the first layer: we want a cold glass of iced tea (setting the goal), and we plan
out what we need to do to get it. We probably need to go to the kitchen (unless you have a
mini-fridge under your desk), fetch an empty glass, and then move to the fridge, open it,
and get the iced tea (we have made a high-level plan).

Now, we move to the second layer. Unless your kitchen is a direct straight line from
your desk, you need to determine a path: go around the desk, move through a corridor,
navigate around the kitchen furniture until you reach the cabinet with the glasses, and so
on. Now that you have a path, it is time to move to the third layer: walking the path. In
this example, the third layer is represented by your body, skeleton, and muscles moving
you along the path.

AI techniques for video games 13

Information
Don't worry – you don't need to master all three layers. As an AI programmer,
you only need to focus on the first two. The third layer is usually handled by
graphic programmers – in particular, animators.

After describing these three layers, Craig Reynolds explains how to design and implement
standard steering behaviors for individual AI characters. Such behaviors include seek and
flee, pursue and evade, wander, arrival, obstacle avoidance, wall following, and path following.

We'll implement some of these behaviors in Unity in Chapter 6, Path Following and
Steering Behaviors.

A* pathfinding
There are many games where you can find monsters or enemies that follow the player
or move to a particular point while avoiding obstacles. For example, let's take a look at
a typical RTS game. You can select a group of units and click a location where you want
them to move or click on the enemy units to attack them.

Then, your units need to find a way to reach the goal without colliding with the obstacles.
Of course, the enemy units also need to be able to do the same. The barriers could be
different for different units. For example, an airforce unit may pass over a mountain, while
the ground or artillery units need to find a way around it.

A* (pronounced A-star) is a pathfinding algorithm that's widely used in games because
of its performance, accuracy, and ease of implementation. Let's look at an example to see
how it works. Let's say we want our unit to move from point A to point B, but there's a
wall in the way, and it can't go straight toward the target. So, it needs to find a way to point
B while avoiding the wall:

Figure 1.3 – Top-down view of our map

14 Introduction to AI

This is a simple 2D example, but we can apply the same idea to 3D environments. To
find the path from point A to point B, we need to know more about the map, such as the
position of obstacles. For that, we can split our whole map into small tiles that represent
the entire map in a grid format, as shown in the following diagram:

Figure 1.4 – Map represented in a 2D grid

The tiles can also be of other shapes, such as hexagons or triangles. Each shape comes with
its advantages. For instance, hexagonal tiles are convenient because they do not have the
problem of diagonal moves (all the hexagons surrounding a target hexagon are at the same
distance). In this example, though, we have used square tiles because they are the more
intuitive shape that comes to mind when we think about grids.

Now, we can reference our map in a small 2D array.

We can represent our map with a 5x5 grid of square tiles for a total of 25 tiles. Now, we
can start searching for the best path to reach the target. How do we do this? By calculating
the movement score of each tile that's adjacent to the starting tile that is not occupied by
an obstacle, and then choosing the tile with the lowest cost.

If we don't consider the diagonal movements, there are four possible adjacent tiles to the
player. Now, we need to use two numbers to calculate the movement score for each of
those tiles. Let's call them G and H, where G is the cost to move from the starting tile to
the current tile, and H is the estimated cost to reach the target tile from the current tile.

Let's call F the sum of G and H, (F = G + H) – that is, the final score of that tile:

AI techniques for video games 15

Figure 1.5 – Valid adjacent tiles

In our example, to estimate H, we'll use a simple method called Manhattan length (also
known as taxicab geometry). According to this method, the distance (cost) between A
and B is the number of horizontal tiles, A and B, plus the number of vertical tiles between
A and B:

Figure 1.6 – Calculating G

The G value, on the other hand, represents the cost so far during the search. The preceding
diagram shows the calculations of G with two different paths. To compute the current
G, we must add 1 (the cost of moving one tile) to the previous tile's G score. However,
we can give different costs to different tiles. For example, we may want to set a higher
movement cost for diagonal movements (if we are considering them) or, for instance, to
tiles occupied by a pond or a muddy road.

16 Introduction to AI

Now that we know how to get G, let's learn how to calculate H. The following diagram shows
the H value for different starting tiles. Even in this case, we use the Manhattan distance:

Figure 1.7 – Calculating H

So, now that we know how to get G and H, let's go back to our original example to figure
out the shortest path from A to B. First, we must choose the starting tile and collect all its
adjacent tiles, as shown in the following diagram. Then, we must calculate each tile's G and
H scores, as shown in the tile's lower left and right corners. Finally, we must get the final
score, F, by adding G and H together. You can see the F score in the tile's top-left corner.

Now, we must choose the tile with the lowest F score as our next tile and store the
previous tile as its parent. Note that keeping records of each tile's parents is crucial
because we will use this backlink later to trace the sequence of nodes from the end to the
start to obtain the final path. In this example, we must choose the tile to the right of the
starting position and consider it the current tile:

Figure 1.8 – Starting position

AI techniques for video games 17

From the current tile, we repeat this process, starting with collecting the valid adjacent
tiles. There are only two free adjacent tiles this time: the one above the current tile and the
one at the bottom (in fact, the left tile is the starting tile – which we've already examined
– and the obstacle occupies the right tile). We calculate G and H, and then the F score of
those new adjacent tiles.

This time, we have four tiles on our map, all with the same score: six. Therefore, we can
choose any of them. In fact, in the end, we will find the shortest path independently of
which tile we explore first (proving the math behind this statement is outside the scope of
this book):

Figure 1.9 – Second step

In this example, from the group of tiles with a cost of 6, we chose the tile at the top left as
the starting position. Again, we must examine the adjacent tiles. In this step, there's only
one new adjacent tile with a calculated F score of 8. Because the lowest score is still 6 right
now, we can choose any tile with a score of 6:

Figure 1.10 – Third step

18 Introduction to AI

If we repeat this process until we reach our target tile, we'll end up with a board that shows
all the scores for each free tile:

Figure 1.11 – Reach target

There is only one step left. Do you remember the parent links that we stored in each node?
Now, starting from the target tile, we must use the stored parent tile to trace back a list of
tiles. The resulting list will be a path that looks something like this:

Figure 1.12 – Path traced back

What we explained here is the essence of the A* pathfinding algorithm, which is the basic
founding block of any pathfinding algorithm. Fortunately, since Unity 3.5, a couple of new
features such as automatic navigation mesh generation and the NavMesh Agent make
implementing pathfinding in your games much more accessible. As a result, you may not
even need to know anything about A* to implement pathfinding for your AI characters.
Nonetheless, knowing how the system works behind the scenes is essential to becoming a
solid AI programmer.

AI techniques for video games 19

We'll talk about NavMesh in the next section and then in more detail in Chapter 8,
Navigation Mesh.

Navigation meshes
Now that you know the basics of the A* pathfinding algorithm, you may notice that using
a grid in A* requires many steps to get the shortest path between the start and target
position. It may not seem notable but searching for a path tile-by-tile for huge maps with
thousands of mostly empty tiles is a severe waste of computational power. So, games often
use waypoints as a guide to move the AI characters as a simple and effective way to use
fewer computation resources.

Let's say we want to move our AI character from point A to point B, and we've set up
three waypoints, as shown in the following diagram:

Figure 1.13 – Waypoints

All we have to do now is apply the A* algorithm to the waypoints (there are fewer of these
compared to the number of tiles) and then simply move the character in a straight line
from waypoint to waypoint.

However, waypoints are not without issues. What if we want to update the obstacles in
our map? We'll have to place the waypoints again for the updated map, as shown in the
following diagram:

Figure 1.14 – New waypoints

20 Introduction to AI

Moreover, following each node to the target produces characters that look unrealistic. For
instance, they move in straight lines, followed by an abrupt change of direction, much
like the mechanical puppets in a theme park's attraction. Or the path that connects two
waypoints may be too close to the obstacles. For example, look at the preceding diagrams;
the AI character will likely collide with the wall where the path is close to the wall.

If that happens, our AI will keep trying to go through the wall to reach the next target,
but it won't be able to, and it will get stuck there. Sure, we could make the path more
realistic by smoothing out the zigzag path using splines, or we could manually check each
path to avoid grazing the edges of obstacles. However, the problem is that the waypoints
don't contain any information about the environment other than the trajectory that's
connecting two nodes.

To address such situations, we're going to need a tremendous number of waypoints, which
are very hard to manage. So, for everything other than straightforward games, we must
exchange the computational cost of a grid with the mental and design cost of managing
hundreds of waypoints.

Fortunately, there is a better solution: using a navigation mesh. A navigation mesh (often
called NavMesh) is another graph structure that we can use to represent our world,
similar to square tile-based grids and waypoint graphs:

Figure 1.15 – Navigation mesh

AI techniques for video games 21

A NavMesh uses convex polygons to represent the areas in the map where an AI entity
can travel. The most crucial benefit of using a NavMesh is that it contains much more
information about the environment than a waypoint system. With a NavMesh, we can
automatically adjust our path safely because we know that our AI entities can move freely
inside a region. Another advantage of using a NavMesh is that we can use the same mesh
for different types of AI entities. Different AI entities can have different properties such
as size, speed, and movement abilities. For instance, a set of waypoints may be suitable
for human characters, but they may not work nicely for flying creatures or AI-controlled
vehicles. Those may need different sets of waypoints (with all the problems that this adds).

However, programmatically generating a NavMesh based on a scene is a somewhat
complicated process. Fortunately, Unity includes a built-in NavMesh generator.

Since this is not a book on core AI techniques, we won't go into how to generate such
NavMeshes. Instead, we'll learn how to efficiently use Unity's NavMesh to implement
pathfinding for our AI characters.

Behavior trees
Behavior trees are another technique that's used to represent and control the logic
behind AI characters' decisions. They have become popular for their applications in AAA
games such as Halo and Spore. We briefly covered FSMs earlier in this chapter, which is a
straightforward way to define the logic of AI characters based on the transition between
different states in reaction to game events. However, FSMs have two main issues: they are
challenging to scale and reuse.

To support all the scenarios where we want our characters to be, we need to add a lot of
states and hardwire many transitions. So, we need something that scales better with more
extensive problems. Behavior trees represent a sensible step in the right direction.

As its name suggests, the essence of a behavior tree is a tree-like data structure. The leaves
of such trees are called tasks, and they represent our character's actions (for instance,
attack, chase, patrol, hide, and so on) or sensory input (for example, Is the player near?
or Am I close enough to attack?). Instead, the internal nodes of the trees are represented
by control flow nodes, which guide the execution of the tree. Sequence, Selector, and
Parallel Decorator are commonly used control flow nodes.

22 Introduction to AI

Now, let's try to reimplement the example from the Finite state machines section using a
behavior tree. First, we can break all the transitions and states into basic tasks:

Figure 1.16 – Tasks

Now, let's look at a Selector node. We represent a Selector with a circle with a question
mark inside it. When executed, a Selector node tries to execute all the child tasks/
sub-trees in sequential order until the first one that returns with success. In other words,
if we have a Selector with four children (for example, A, B, C, and D), the Selector node
executes A first. If A fails, then the Selector executes B. If B fails, then it executes C, and so
on. If any of the tasks return a Success, then the Sequence returns a Success as soon as that
task completes.

In the following example, the Selector node first chooses to attack the player. If the Attack
task returns a Success (that is, if the player is in attack range), the Selector node stops the
execution and returns with a Success to its parent node – if there is one. Instead, if the
Attack task returns with a failure, the Selector node moves to the Chase task. Here, we
repeat what we did previously: if the Chase task succeeds, the Selector node succeeds; if
the Chase task fails, it tries the Patrol task, and so on:

AI techniques for video games 23

Figure 1.17 – Selector node

What about the other kind of tasks – the ones that check the game state? We use them
with Sequence nodes, which are usually represented with a rectangle with an arrow inside
them. A Sequence node is similar to a Selector node with a crucial difference: it only
returns a Success message if every sub-tree returns with a Success. In other words, if we
have a Sequence with four children (for example, A, B, C, and D), the Sequence node
will execute A, then B, then C, and finally D. If all the tasks return a Success, then the
Sequence returns a Success.

In the following example, the first Sequence node checks whether the player character
is close enough to attack. If this task succeeds, it will proceed to the next task: attacking
the player. If the Attack task also returns with a Success message, the whole Sequence
terminates with success. Instead, if the Close Enough to Attack? task fails, then the
Sequence node does not proceed to the Attack task and returns a failed status to the
parent Selector node. Then, the Selector chooses the next task in the Sequence, Lost or
Killed Player, and the execution continues:

Figure 1.18 – Sequence tasks

24 Introduction to AI

The other two common nodes are Parallel and Decorator. A Parallel node executes all
of its child tasks simultaneously (while the Sequence and Selector nodes only execute
their child trees one by one). A Decorator is another type of node that has only one child.
It is used to change the behavior of its own single child's sub-tree, for instance, to run it
multiple times or invert the subtree's result (if the subtree returns a Success message, the
decorator returns a failure, and vice versa).

We'll learn how to implement a basic behavior tree system in Unity in Chapter 9,
Behavior Trees.

Locomotion
Animals (including humans) have a very complex musculoskeletal system that allows
them to move around their environment. Animals also have sophisticated brains that tell
them how to use such a system. For instance, we instinctively know where to put our steps
when climbing a ladder, stairs, or uneven terrain, and we also know how to balance our
bodies to stabilize all the fancy poses we want to make. We can do all this using a brain
that controls our bones, muscles, joints, and other tissues, collectively described as our
locomotor system.

Now, let's put this in a game development perspective. Let's say we have a human
character who needs to walk on uneven surfaces or small slopes, and we have only one
animation for a walk cycle. With the lack of a locomotor system in our virtual character,
this is what it would look like:

Figure 1.19 – Climbing stairs without locomotion

AI techniques for video games 25

First, we play the walk animation and move the player forward. But now, the character is
penetrating the surface. So, the collision detection system pulls the character above the
surface to stop this impossible configuration.

Now, let's look at how we walk upstairs in reality. We put our foot firmly on the staircase
and, using force, we pull the rest of our body onto the next step. However, it's not simple
to implement this level of realism in games. We'll need many animations for different
scenarios, including climbing ladders, walking/running upstairs, and so on. So, in the
past, only the large studios with many animators could pull this off. Nowadays, however,
we have automated systems for this:

Figure 1.20 – Unity extension for inverse kinematics

This system can automatically blend our animated walk/run cycles and adjust the
movements of the bones in the player's legs to ensure that the player's feet step on the
ground correctly (in literature, this is called inverse kinematics). It can also adjust the
animations that were initially designed for a specific speed and direction, to any speed
and direction on any surface, such as steps and slopes. In Chapter 6, Path Following
and Steering Behaviors, we'll learn how to use this locomotion system to apply realistic
movement to our AI characters.

26 Introduction to AI

Summary
In this chapter, we learned that game AI and academic AI have different objectives.
Academic AI researchers try to solve real-world problems and develop AI algorithms that
compete with human intelligence, with the ultimate goal of replacing humans in complex
situations. On the other hand, game AI focuses on building NPCs with limited resources
that seem to be intelligent to the player, with the ultimate goal of entertaining them. The
objective of AI in games is to provide a challenging opponent that makes the game more
fun to play.

We also learned about the different AI techniques that are used in games, such as FSMs,
randomness and probability, sensors, input systems, flocking and group behaviors, path
following and steering behaviors, AI pathfinding, navigation mesh generation, and
behavior trees.

We'll learn how to implement these techniques inside the Unity engine in the following
chapters. In the next chapter, we will start with the basics: FSMs.

2
Finite State

Machines
In this chapter, we'll learn how to implement a Finite State Machine (FSM) in a Unity3D
game by studying the simple tank game-mechanic example that comes with this book.

In our game, the player controls a tank. The enemy tanks move around the scene,
following four waypoints. Once the player's tank enters the vision range of the enemy
tanks, they start chasing it; then, once they are close enough to attack, they'll start
shooting at our player's tank.

To control the AI of our enemy tanks, we use an FSM. First, we'll use simple switch
statements to implement our tank AI states. Then, we'll use a more complex and
engineered FSM framework that will allow us greater flexibility in designing the
character's FSM.

The topics we will be covering in this chapter are the following:
• Implementing the player's tank
• Implementing a bullet class

• Setting up waypoints
• Creating the abstract FSM class

28 Finite State Machines

• Using a simple FSM for the enemy tank AI
• Using an FSM framework

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 2 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter02.

Implementing the player's tank
Before writing the script for our player's tank, let's look at how we set up the PlayerTank
game object. Our Tank object is a simple mesh with the Rigidbody and Box
Collider components.

The Tank object is composed of two separate meshes, the Tank and Turret, with Turret
being a child of Tank. This structure allows for the independent rotation of the Turret
object using the mouse movement and, at the same time, automatically following the
Tank body wherever it goes. Then, we create an empty game object for our SpawnPoint
transform. We use it as a reference position point when shooting a bullet. Finally, we need
to assign the Player tag to our Tank object. Now, let's take a look at the controller
class:

Figure 2.1 – Our tank entity

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter02

Implementing the player's tank 29

The PlayerTankController class controls the player's tank. We use the W, A, S, and
D keys to move and steer the tank and the left mouse button to aim and shoot from the
Turret object.

Information
In this book, we assume that you are using a QWERTY keyboard and a two-
button mouse, with the left mouse button set as the primary mouse button.
If you are using a different keyboard, all you have to do is pretend that you
are using a QWERTY keyboard or try to modify the code to adapt it to your
keyboard layout. It is pretty easy!

Initializing the Tank object
Let's start creating the PlayerTankController class by setting up the Start
function and the Update function in the PlayerTankController.cs file:

using UnityEngine;

using System.Collections;

public class PlayerTankController : MonoBehaviour {

 public GameObject Bullet;

 public GameObject Turret;

 public GameObject bulletSpawnPoint;

 public float rotSpeed = 150.0f;

 public float turretRotSpeed = 10.0f;

 public float maxForwardSpeed = 300.0f;

 public float maxBackwardSpeed = -300.0f;

 public float shootRate = 0.5f;

 private float curSpeed, targetSpeed;

 protected float elapsedTime;

 void Start() {

 }

 void Update() {

30 Finite State Machines

 UpdateWeapon();

 UpdateControl();

 }

We can see in the hierarchy that the PlayerTank game object has one child called Turret,
and in turn, the first child of the Turret object is called SpawnPoint. To set up the
controller, we need to link (by dragging and dropping) Turret and SpawnPoint into the
corresponding fields in the Inspector:

Figure 2.2 – The Player Tank Controller component in the Inspector

Later, after creating the Bullet object, we can assign it to the Bullet variable using
the Inspector. Then, finally, the Update function calls the UpdateControl and
UpdateWeapon functions. We will discuss the content of these functions in the following
section.

Shooting the bullet
The mechanism for shooting the bullet is simple. Whenever the player clicks the
left mouse button, we check whether the total elapsed time since the last fire is
greater than the weapon's fire rate. If it is, then we create a new Bullet object at the
bulletSpawnPoint transform's position. This check prevents the player from shooting
a continuous stream of bullets.

For this, we add the following function to the PlayerTankController.cs file:

void UpdateWeapon() {

 elapsedTime += Time.deltaTime;

 if (Input.GetMouseButtonDown(0)) {

 if (elapsedTime >= shootRate) {

Implementing the player's tank 31

 //Reset the time

 elapsedTime = 0.0f;

 //Instantiate the bullet

 Instantiate(Bullet,

 bulletSpawnPoint.transform.position,

 bulletSpawnPoint.transform.rotation);

 }

 }

}

Now, we can attach this controller script to the PlayerTank object. If we run the game, we
should be able to shoot from our tanks. Now, it is time to implement the tank's movement
controls.

Controlling the tank
The player can rotate the Turret object using the mouse. This part may be a little bit
tricky because it involves raycasting and 3D rotations. We assume that the camera
looks down upon the battlefield. Let's add the UpdateControl function to the
PlayerTankController.cs file:

void UpdateControl() {

 // AIMING WITH THE MOUSE

 // Generate a plane that intersects the Transform's

 // position with an upwards normal.

 Plane playerPlane = new Plane(Vector3.up,

 transform.position + new Vector3(0, 0, 0));

 // Generate a ray from the cursor position

 Ray RayCast =

 Camera.main.ScreenPointToRay(Input.mousePosition);

 // Determine the point where the cursor ray intersects

 // the plane.

 float HitDist = 0;

 // If the ray is parallel to the plane, Raycast will

 // return false.

32 Finite State Machines

 if (playerPlane.Raycast(RayCast, out HitDist)) {

 // Get the point along the ray that hits the

 // calculated distance.

 Vector3 RayHitPoint = RayCast.GetPoint(HitDist);

 Quaternion targetRotation =

 Quaternion.LookRotation(RayHitPoint –

 transform.position);

 Turret.transform.rotation = Quaternion.Slerp(

 Turret.transform.rotation, targetRotation,

 Time.deltaTime * turretRotSpeed);

 }

}

We use raycasting to determine the turning direction by finding the mousePosition
coordinates on the battlefield:

Figure 2.3 – Raycast to aim with the mouse

Implementing the player's tank 33

Information
Raycasting is a tool provided by default in the Unity physics engine. It allows
us to find the intersection point between an imaginary line (the ray) and a
collider in the scene. Imagine this as a laser pointer: we can fire our laser in a
direction and see the point where it hits. However, this is a relatively expensive
operation. While, in general, you can confidently handle 100–200 raycasts per
frame, their performance is greatly affected by the length of the ray and the
number and types of colliders in the scene. So, as a quick tip, try not to use a
lot of raycasts with mesh colliders and use layer masks to filter out unnecessary
colliders.

This is how it works:

1. Set up a plane that intersects with the player tank with an upward normal.
2. Shoot a ray from screen space with the mouse position (in the preceding diagram,

we assume that we're looking down at the tank).
3. Find the point where the ray intersects the plane.
4. Finally, find the rotation from the current position to that intersection point.

Then, we check for the key-pressed input and move or rotate the tank accordingly. We add
the following code at the end of the UpdateControl function:

if (Input.GetKey(KeyCode.W)) {

 targetSpeed = maxForwardSpeed;

} else if (Input.GetKey(KeyCode.S)) {

 targetSpeed = maxBackwardSpeed;

} else {

 targetSpeed = 0;

}

if (Input.GetKey(KeyCode.A)) {

 transform.Rotate(0, -rotSpeed * Time.deltaTime, 0.0f);

} else if (Input.GetKey(KeyCode.D)) {

 transform.Rotate(0, rotSpeed * Time.deltaTime, 0.0f);

34 Finite State Machines

}

//Determine current speed

curSpeed = Mathf.Lerp(curSpeed, targetSpeed, 7.0f *

 Time.deltaTime);

transform.Translate(Vector3.forward * Time.deltaTime *

 curSpeed);

The preceding code represents the classic WASD control scheme. The tank rotates with the
A and D keys, and moves forward and backward with W and S.

Information
Depending on your level of Unity expertise, you may wonder what about
the Lerp and Time.deltaTime multiplications. It may be worth a
slight digression. First, Lerp stands for Linear Interpolation and is a way to
transition between two values smoothly. In the preceding code, we use the
Lerp function to smoothly spread the velocity changes over multiple frames
so that the tank's movement doesn't look like it's accelerating and decelerating
instantaneously. The 7.0f value is just a smoothing factor, and you can play
with it to find your favorite value (the bigger the value, the greater the tank's
acceleration).

Then, we multiply everything by Time.deltaTime. This value represents
the time in seconds between now and the last frame, and we use it to make our
velocity independent from the frame rate. For more info, refer to https://
learn.unity.com/tutorial/delta-time.

Next, it is time to implement the projectiles fired by the player and enemy tanks.

Implementing a Bullet class
Next, we set up our Bullet prefab with two orthogonal planes and a box collider, using a
laser-like material and a Particles/Additive-Layer property in the Shader field:

https://learn.unity.com/tutorial/delta-time
https://learn.unity.com/tutorial/delta-time

Implementing a Bullet class 35

Figure 2.4 – Our Bullet prefab

The code in the Bullet.cs file is as follows:

using UnityEngine;

using System.Collections;

public class Bullet : MonoBehaviour {

 //Explosion Effect

 [SerializeField] // Used to expose in the inspector private

 // fields!

 private GameObject Explosion;

 [SerializeField]

 private float Speed = 600.0f;

 [SerializeField]

 private float LifeTime = 3.0f;

 public int damage = 50;

36 Finite State Machines

 void Start() {

 Destroy(gameObject, LifeTime);

 }

 void Update() {

 transform.position +=

 transform.forward * Speed * Time.deltaTime;

 }

 void OnCollisionEnter(Collision collision) {

 ContactPoint contact = collision.contacts[0];

 Instantiate(Explosion, contact.point,

 Quaternion.identity);

 Destroy(gameObject);

 }

}

The Bullet class has three properties: damage, Speed, and Lifetime – the latter so
that the bullet is automatically destroyed after a certain amount of time. Note that we use
[SerializeField] to show the private fields in the Inspector; by default, in fact, Unity
only shows public fields. It is a good practice to set fields that we need to access from other
classes as public-only.

As you can see, the Explosion property of the bullet is linked to the
ParticleExplosion prefab, which we're not going to discuss in detail. This
prefab is in the ParticleEffects folder, so we drop it into the Shader field.
Then, when the bullet hits something, we play this particle effect, as described in
the OnCollisionEnter method. The ParticleExplosion prefab uses the
AutoDestruct script to automatically destroy the Explosion object after a small
amount of time:

using UnityEngine;

public class AutoDestruct : MonoBehaviour {

 [SerializeField]

 private float DestructTime = 2.0f;

Setting up waypoints 37

 void Start() {

 Destroy(gameObject, DestructTime);

 }

}

The AutoDestruct script is small but convenient. It just destroys the attached object
after a certain number of seconds. Many Unity games use a similar script almost every
time for many situations.

Now that we have a tank that can fire and move, we can set up a simple patrolling path for
the enemy tanks.

Setting up waypoints
By default, the enemy tanks will patrol the game arena. To implement this behavior, we
need to specify first the patrolling path. We will explore path following thoroughly in
Chapter 6, Path Following and Steering Behaviors. For now, we limit ourselves to a simple
waypoints path.

To implement it, we put four Cube game objects at random places. They represent
waypoints inside our scene, and therefore, we name each one WanderPoint:

Figure 2.5 – WanderPoint

38 Finite State Machines

Here is what our WanderPoint objects look like:

Figure 2.6 – The WanderPoint properties

Note that we need to tag these points with a tag called WanderPoint. Later, we will
use this tag when we try to find the waypoints from our tank AI. As you can see in its
properties, a waypoint is just a Cube game object with the Mesh Renderer checkbox
disabled:

Figure 2.7 – The gizmo selection panel

Creating the abstract FSM class 39

To show these points in the editor (but not in the game), we use an empty object with a
gizmo icon, since all we need from a waypoint is its position and the transformation data. To
do that, click the small triangle near the object icon in the Inspector, as shown in Figure 2.7.

We are now ready to give life to the enemy tanks with the power of the FSM.

Creating the abstract FSM class
Next, we implement a generic abstract class to define the enemy tank AI class's methods.
This abstract class will be the skeleton of our AI and represent a high-level view of what an
enemy tank should do.

We can see the code of this class in the FSM.cs file:

using UnityEngine;

using System.Collections;

public class FSM : MonoBehaviour {

 protected virtual void Initialize() { }

 protected virtual void FSMUpdate() { }

 protected virtual void FSMFixedUpdate() { }

 // Use this for initialization

 void Start () {

 Initialize();

 }

 // Update is called once per frame

 void Update () {

 FSMUpdate();

 }

 void FixedUpdate() {

 FSMFixedUpdate();

 }

}

40 Finite State Machines

The enemy tanks need only to know the position of the player's tank, their next
destination point, and the list of waypoints to choose from while they're patrolling. Once
the player tank is in range, they rotate their turret object and start shooting from the bullet
spawn point at their fire rate.

As we explained before, we will extend this class in two ways: using a simple if-then-
else-based FSM (the SimpleFSM class) and a more engineered but more flexible FSM
(AdvancedFSM). These two FSM implementations will inherit the FSM abstract class,
and they will implement the three abstract methods: Initialize, FSMUpdate, and
FSMFixedUpdate.

We will see the two different ways to implement these three methods in the next sections.
For now, let's start with the basic implementation.

Using a simple FSM for the enemy tank AI
Let's look at the actual code for our AI tanks. First, let's create a new class, called
SimpleFSM, which inherits from our FSM abstract class.

You can find the source code in the SimpleFSM.cs file:

using UnityEngine;

using System.Collections;

public class SimpleFSM : FSM {

 public enum FSMState {

 None, Patrol, Chase, Attack, Dead,

 }

 //Current state that the NPC is reaching

 public FSMState curState = FSMState.Patrol;

 //Speed of the tank

 private float curSpeed = 150.0f;

 //Tank Rotation Speed

 private float curRotSpeed = 2.0f;

Using a simple FSM for the enemy tank AI 41

 //Bullet

 public GameObject Bullet;

 //Whether the NPC is destroyed or not

 private bool bDead = false;

 private int health = 100;

 // We overwrite the deprecated built-in rigidbody

 // variable.

 new private Rigidbody rigidbody;

 //Player Transform

 protected Transform playerTransform;

 //Next destination position of the NPC Tank

 protected Vector3 destPos;

 //List of points for patrolling

 protected GameObject[] pointList;

 //Bullet shooting rate

 protected float shootRate = 3.0f;

 protected float elapsedTime = 0.0f;

 public float maxFireAimError = 0.001f;

 // Status Radius

 public float patrollingRadius = 100.0f;

 public float attackRadius = 200.0f;

 public float playerNearRadius = 300.0f;

 //Tank Turret

 public Transform turret;

 public Transform bulletSpawnPoint;

42 Finite State Machines

Here, we declare a few variables. Our tank AI has four different states: Patrol, Chase,
Attack, and Dead. We are implementing the FSM that we described as an example in
Chapter 1, Introduction to AI:

Figure 2.8 – The enemy tank AI's FSM

In our Initialize method, we set up our AI tank's properties with default values.
Then, we store the positions of waypoints in our local variable. We get those waypoints
from our scene using the FindGameObjectsWithTag method, trying to find those
objects with the WandarPoint tag:

//Initialize the Finite state machine for the NPC tank
protected override void Initialize () {

 // Get the list of points

 pointList =

 GameObject.FindGameObjectsWithTag("WandarPoint");

 // Set Random destination point first

 FindNextPoint();

 // Get the target enemy(Player)

 GameObject objPlayer =

 GameObject.FindGameObjectWithTag("Player");

Using a simple FSM for the enemy tank AI 43

 // Get the rigidbody

 rigidbody = GetComponent<Rigidbody>();

 playerTransform = objPlayer.transform;

 if (!playerTransform) {

 print("Player doesn't exist. Please add one with

 Tag named 'Player'");

 }

}

The Update method that gets called every frame looks like the following:

protected override void FSMUpdate() {

 switch (curState) {

 case FSMState.Patrol:

 UpdatePatrolState();

 break;

 case FSMState.Chase:

 UpdateChaseState();

 break;

 case FSMState.Attack:

 UpdateAttackState();

 break;

 case FSMState.Dead:

 UpdateDeadState();

 break;

 }

 // Update the time

 elapsedTime += Time.deltaTime;

 // Go to dead state is no health left

 if (health <= 0) {

 curState = FSMState.Dead;

 }

}

44 Finite State Machines

We check the current state and then call the appropriate state method. Once the health
object has a value of zero or less, we set the tank to the Dead state.

Debugging Private Variables
A public variable in the Inspector is not only useful because we can quickly
experiment with different values but also because we can quickly look at
a glance at their value when debugging. For this reason, you may even be
tempted to make public (or expose to the Inspector) variables that should not
be changed by the component's user. Don't worry – there is a solution: you can
show the Inspector in Debug mode. In Debug mode, the Inspector also shows
private fields. To enable Debug mode, click on the three dots at the top right
and then click on Debug:

Figure 2.9 – Unity's Inspector in Debug mode

Now, let's see how to implement each state one by one.

The Patrol state
The Patrol state is the state in which the tank moves from waypoint to waypoint, looking
for the player. The Patrol state's code is shown here:

protected void UpdatePatrolState() {

 if (Vector3.Distance(transform.position, destPos) <=

Using a simple FSM for the enemy tank AI 45

 patrollingRadius) {

 print("Reached to the destination point\n

 calculating the next point");

 FindNextPoint();

 } else if (Vector3.Distance(transform.position,

 playerTransform.position) <= playerNearRadius) {

 print("Switch to Chase Position");

 curState = FSMState.Chase;

 }

 // Rotate to the target point

 Quaternion targetRotation = Quaternion.LookRotation(

 destPos - transform.position);

 transform.rotation = Quaternion.Slerp(

 transform.rotation, targetRotation,

 Time.deltaTime * curRotSpeed);

 // Go Forward

 transform.Translate(Vector3.forward * Time.deltaTime *

 curSpeed);

}

protected void FindNextPoint() {

 print("Finding next point");

 int rndIndex = Random.Range(0, pointList.Length);

 float rndRadius = 10.0f;

 Vector3 rndPosition = Vector3.zero;

 destPos = pointList[rndIndex].transform.position +

 rndPosition;

 // Check Range to decide the random point as the same

 // as before

 if (IsInCurrentRange(destPos)) {

 rndPosition = new Vector3(Random.Range(-rndRadius,

 rndRadius), 0.0f, Random.Range(-rndRadius,

 rndRadius));

46 Finite State Machines

 destPos = pointList[rndIndex].transform.position +

 rndPosition;

 }

}

protected bool IsInCurrentRange(Vector3 pos) {

 float xPos = Mathf.Abs(pos.x - transform.position.x);

 float zPos = Mathf.Abs(pos.z - transform.position.z);

 if (xPos <= 50 && zPos <= 50) return true;

 return false;

}

While our tank is in the Patrol state, we check whether it has reached the destination
point (that is, if the tank is100 units or less from the destination waypoint). If so, it finds
the next point to reach using the FindNextPoint method. This method simply chooses
a random point from among the waypoints we defined before.

On the other hand, if the tank has not reached its destination point, it checks the distance
to the player's tank. If the player's tank is in range (which, in this example, we choose to be
300 units), the AI switches to the Chase state. Finally, we use the remaining code in the
UpdatePatrolState function to rotate the tank and move it toward the next waypoint.

The Chase state
In the Chase state, the tank actively tries to get near the player's tank. In simple terms, the
destination point becomes the player's tank itself. The Chase state implementation code is
shown here:

protected void UpdateChaseState() {

 // Set the target position as the player position

 destPos = playerTransform.position;

 // Check the distance with player tank When

 // the distance is near, transition to attack state

 float dist = Vector3.Distance(transform.position,

 playerTransform.position);

Using a simple FSM for the enemy tank AI 47

 if (dist <= attackRadius) {

 curState = FSMState.Attack;

 } else if (dist >= playerNearRadius {

 curState = FSMState.Patrol;

 }

 transform.Translate(Vector3.forward * Time.deltaTime *

 curSpeed);

}

In this state, we first set the destination point as the player. Then, we continue checking
the player's distance from the tank. If the player is close enough, the AI switches to the
Attack state. On the other hand, if the player's tank manages to escape and goes too far,
the AI goes back to the Patrol state.

The Attack state
The Attack state is precisely what you expect: the enemy tank aims and shoots at the
player. The following code block is the implementation code for the Attack state:

protected void UpdateAttackState() {

 destPos = playerTransform.position;

 Vector3 frontVector = Vector3.forward;

 float dist = Vector3.Distance(transform.position,

 playerTransform.position);

 if (dist >= attackRadius && dist < playerNearRadius {

 Quaternion targetRotation =

 Quaternion. FromToRotation(destPos –

 transform.position);

 transform.rotation = Quaternion.Slerp(

 transform.rotation, targetRotation,

 Time.deltaTime * curRotSpeed);

 transform.Translate(Vector3.forward *

 Time.deltaTime * curSpeed);

 curState = FSMState.Attack;

48 Finite State Machines

 } else if (dist >= playerNearRadius) {

 curState = FSMState.Patrol;

 }

 // Rotate the turret to the target point

 // The rotation is only around the vertical axis of the

 // tank.

 Quaternion targetRotation = Quaternion.FromToRotation(

 frontVector, destPos - transform.position);

 turret.rotation = Quaternion.Slerp(turret.rotation,

 turretRotation, Time.deltaTime * curRotSpeed);

 //Shoot the bullets

 if (Mathf.Abs(Quaternion.Dot(turretRotation,

 turret.rotation)) > 1.0f - maxFireAimError) {

 ShootBullet();

 }

}

private void ShootBullet() {

 if (elapsedTime >= shootRate) {

 Instantiate(Bullet, bulletSpawnPoint.position,

 bulletSpawnPoint.rotation);

 elapsedTime = 0.0f;

 }

}

In the first line, we still set the destination point to the player's position. After all, even
when attacking, we need to keep a close distance from the player. Then, if the player tank
is close enough, the AI tank rotates the turret object in the direction of the player tank
and then starts shooting. Finally, if the player's tank goes out of range, the tank goes back
to the Patrol state.

Using a simple FSM for the enemy tank AI 49

The Dead state
The Dead state is the final state. Once a tank is in the Dead state, it explodes and gets
uninstantiated. The following is the code for the Dead state:

protected void UpdateDeadState() {

 // Show the dead animation with some physics effects

 if (!bDead) {

 bDead = true;

 Explode();

 }

}

As you can see, the code is straightforward – if the tank has reached the Dead state, we
make it explode:

protected void Explode() {

 float rndX = Random.Range(10.0f, 30.0f);

 float rndZ = Random.Range(10.0f, 30.0f);

 for (int i = 0; i < 3; i++) {

 rigidbody.AddExplosionForce(10000.0f,

 transform.position - new Vector3(rndX,

 10.0f, rndZ), 40.0f, 10.0f);

 rigidbody.velocity = transform.TransformDirection(

 new Vector3(rndX, 20.0f, rndZ));

 }

 Destroy(gameObject, 1.5f);

}

Here's a small function that gives a nice explosion effect. We apply a random
ExplosionForce function to the tank's Rigidbody component. If everything is correct,
you should see the tank flying in the air in a random direction for the player's amusement.

50 Finite State Machines

Taking damage
To complete the demo, we need to add another small detail: we need the tanks to take
damage when they get hit by a bullet. Every time a bullet enters the collision area of the tank,
the health property's value decreases, according to the Bullet object's damage value:

void OnCollisionEnter(Collision collision) {

 // Reduce health

 if(collision.gameObject.tag == "Bullet") {

 health -=collision.gameObject.GetComponent

 <Bullet>().damage;

 }

}

You can open the SimpleFSM.scene file in Unity; you should see the AI tanks
patrolling, chasing, and attacking the player. Our player's tank doesn't take damage from
AI tanks yet, so it never gets destroyed. But the AI tanks have the health property and take
damage from the player's bullets, so you'll see them explode once their health property
reaches zero.

If your demo doesn't work, try playing with different values in the Inspector for the
SimpleFSM components. After all, the values may change, depending on the scale of
your project:

Figure 2.10 – The AI tanks in action

In this demo, we used a very simple FSM, but now it's time to step up the challenge and
implement a complete FSM framework.

Using an FSM framework 51

Using an FSM framework
The FSM framework we're going to use here is adapted from the Deterministic Finite
State Machine framework, based on Chapter 3.1 of Game Programming Gems 1 by
Eric Dybsend. We'll only be looking at the differences between this FSM and the one
we made earlier. For this reason, it is important that you follow the example code
found in the Chapter02 folder of the book repository (https://github.com/
PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition). In particular, we will look at the AdvancedFSM scene.

In this section, we will study how the framework works and how we can use this to
implement our tank AI. AdvancedFSM and FSMState are the two main classes of our
framework. So, let's take a look at them first.

The AdvancedFSM class
The AdvancedFSM class manages all the FSMState classes we've implemented and
keeps them updated with the transitions and the current state. So, the first thing to
do before using our framework is to declare the transitions and states that we plan to
implement for our AI tanks.

Let's start by creating AdvancedFSM.cs:

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public enum Transition {

 None = 0, SawPlayer, ReachPlayer, LostPlayer, NoHealth,

}

public enum FSMStateID {

 None = 0, Patrolling, Chasing, Attacking, Dead,

}

Here, we define two enumerations, one for the set of states and one for the set of
transitions. Then, we add a list object to store the FSMState objects and two local
variables to store the current ID of the FSMState class and the current FSMState itself.

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition

52 Finite State Machines

The AddFSMState and DeleteState methods add and delete the instances of the
FSMState class in our list respectively. When the PerformTransition method
gets called, it updates the CurrentState variable with the new state, according to the
transition:

public class AdvancedFSM : FSM {

 private List<FSMState> fsmStates;

 private FSMStateID currentStateID;

 public FSMStateID CurrentStateID {

 get {

 return currentStateID;

 }

 }

 private FSMState currentState;

 public FSMState CurrentState {

 get {

 return currentState;

 }

 }

Now that the data part of the class is ready, we can proceed with the internal logic of the
FSM framework.

The FSMState class
FSMState manages the transitions to other states. It has a dictionary object called
map in which we store the key-value pairs of transitions and states. So, for example,
the SawPlayer transition maps to the Chasing state, LostPlayer maps to the
Patrolling state, and so on.

Let's create an FSMState.cs file:

using UnityEngine;

using System.Collections;

Using an FSM framework 53

using System.Collections.Generic;

public abstract class FSMState {

 protected Dictionary<Transition, FSMStateID> map =

 new Dictionary<Transition, FSMStateID>();

 // Continue...

The AddTransition and DeleteTransition methods add and delete transitions
from their state-transition dictionary map object. The GetOutputState method looks
up from the map object and returns the state based on the input transition.

The FSMState class also declares two abstract methods that its child classes need to
implement. They are as follows:

...

 public abstract void CheckTransitionRules(Transform

 player, Transform npc);

 public abstract void RunState(Transform player,

 Transform npc);

...

The CheckTransitionRules method has to check whether the state should carry out
the transition to another state. Instead, the RunState method does the actual execution
of the tasks for the currentState variable, such as moving toward a destination point
and chasing or attacking the player. Both methods require transformed data from the
player and the Non Playable Character (NPC) entity obtained using this class.

The state classes
Unlike the previous SimpleFSM example, we write the states for our tank AI in
separate classes that inherit from the FSMState class, such as AttackState,
ChaseState, DeadState, and PatrolState. All of them implement the
CheckTransitionRules and RunState methods. Let's take a look at the
PatrolState class as an example.

54 Finite State Machines

The PatrolState class
This class has three methods: a constructor, CheckTransitionRules, and RunState.
Let's create the PatrolState class in the PatrolState.cs file:

using UnityEngine;

using System.Collections;

public class PatrolState : FSMState {

 private Vector3 destPos;

 private Transform[] waypoints;

 private float curRotSpeed = 1.0f;

 private float curSpeed = 100.0f;

 private float playerNearRadius;

 private float patrollRadius;

 public PatrolState(Transform[] wp, float

 playerNearRadius, float patrollRadius) {

 waypoints = wp;

 stateID = FSMStateID.Patrolling;

 this.playerNearRadius = playerNearRadius;

 this.patrollRadius = patrollRadius;

 }

 public override void CheckTransitionRules(

 Transform player, Transform npc) {

 // Check the distance with player tank

 // When the distance is near, transition to chase

 // state

 if (Vector3.Distance(npc.position, player.position)

 <= playerNearRadius) {

 Debug.Log("Switch to Chase State");

 NPCTankController npcTankController =

 npc.GetComponent<NPCTankController>();

 if (npcTankController != null) {

Using an FSM framework 55

 npcTankController.SetTransition(

 Transition.SawPlayer);

 } else {

 Debug.LogError("NPCTankController not found

 in NPC");

 }

 }

 }

 public override void RunState(Transform player,

 Transform npc) {

 // Find another random patrol point if the current

 // point is reached

 if (Vector3.Distance(npc.position, destPos) <=

 patrollRadius) {

 Debug.Log("Reached to the destination point\n

 calculating the next point");

 FindNextPoint();

 }

 // Rotate to the target point

 Quaternion targetRotation =

 Quaternion.FromToRotation(Vector3.forward,

 destPos - npc.position);

 npc.rotation = Quaternion.Slerp(npc.rotation,

 targetRotation, Time.deltaTime * curRotSpeed);

 // Go Forward

 npc.Translate(Vector3.forward * Time.deltaTime *

 curSpeed);

 }

}

56 Finite State Machines

The constructor method takes the waypoints array, stores them in a local array, and
then initializes properties such as movement and rotation speed. The Reason method
checks the distance between itself (the AI tank) and the player tank. If the player tank is in
range, it sets the transition ID to the SawPlayer transition using the SetTransition
method of the NPCTankController class, which looks as follows:

public void SetTransition(Transition t) {

 PerformTransition(t);

}

The preceding function is just a wrapper method that calls the PerformTransition
method of the AdvanceFSM class. In turn, that method updates the CurrentState
variable with the one responsible for this transition, using the Transition object and
the state-transition dictionary map object from the FSMState class. The Act method
updates the AI tank's destination point, rotates the tank in that direction, and moves it
forward.

Other state classes also follow this template with different reasoning and acting
procedures. We've already seen them in our previous simple FSM examples, and therefore,
we won't describe them again here. See whether you can figure out how to set up these
classes on your own. If you get stuck, the assets that come with this book contain the code
for you to look at.

The NPCTankController class
For the tank AI, we set up the states for our NPC by using the NPCTankController
class. This class inherits from AdvanceFSM:

private void ConstructFSM() {

 PatrolState patrol = new PatrolState(waypoints,

 playerNearRadius, patrollingRadius);

 patrol.AddTransition(Transition.SawPlayer,

 FSMStateID.Chasing);

 patrol.AddTransition(Transition.NoHealth,

 FSMStateID.Dead);

 ChaseState chase = new ChaseState(waypoints);

 chase.AddTransition(Transition.LostPlayer,

 FSMStateID.Patrolling);

Using an FSM framework 57

 chase.AddTransition(Transition.ReachPlayer,

 FSMStateID.Attacking);

 chase.AddTransition(Transition.NoHealth,

 FSMStateID.Dead);

 AttackState attack = new AttackState(waypoints);

 attack.AddTransition(Transition.LostPlayer,

 FSMStateID.Patrolling);

 attack.AddTransition(Transition.SawPlayer,

 FSMStateID.Chasing);

 attack.AddTransition(Transition.NoHealth,

 FSMStateID.Dead);

 DeadState dead = new DeadState();

 dead.AddTransition(Transition.NoHealth,

 FSMStateID.Dead);

 AddFSMState(patrol);

 AddFSMState(chase);

 AddFSMState(attack);

 AddFSMState(dead);

}

Here's the beauty of using our FSM framework: since the states are self-managed within
their respective classes, our NPCTankController class only needs to call the Reason
and Act methods of the currently active state.

This fact eliminates the need to write a long list of the if/else and switch statements.
Instead, our states are now nicely packaged in classes of their own, which makes the code
more manageable, as the number of states and transitions between them grows more and
more in larger projects:

protected override void FSMFixedUpdate() {

 CurrentState.Reason(playerTransform, transform);

 CurrentState.Act(playerTransform, transform);

}

58 Finite State Machines

The main steps to use this framework can be summarized as follows:

1. Declare the transitions and states in the AdvanceFSM class.
2. Write the state classes inherited from the FSMState class, and then implement the

Reason and Act methods.
3. Write the custom NPC AI class inherited from AdvanceFSM.
4. Create states from the state classes, and then add transition and state pairs using the

AddTransition method of the FSMState class.
5. Add those states into the state list of the AdvanceFSM class, using the

AddFSMState method.
6. Call the CurrentState variable's Reason and Act methods in the game update

cycle.

You can play around with the AdvancedFSM scene in Unity. It'll run the same way as our
previous SimpleFSM example, but the code is now more organized and manageable.

Summary
In this chapter, we learned how to implement state machines in Unity3D based on
a simple tank game. We first looked at how to implement FSM by using switch
statements. Then, we studied how to use a framework to make AI implementation easier
to manage and extend.

In the next chapter, we will look at randomness and probability and see how we can use
them to make the outcome of our games more unpredictable.

3
Randomness and

Probability
In this chapter, we will look at how we can apply the concepts of probability and
randomness to game AI. Because we will talk more about the use of randomness in
game AI and less about Unity3D, we can apply the concepts of this chapter to any game
development middleware or technology framework. We'll be using Mono C# in Unity3D
for the demos, but we won't address much on the specific features of the Unity3D engine
and the editor itself.

Game developers use probability to add a little uncertainty to the behaviors of AI
characters and the wider game world. Randomness makes artificial intelligence look more
realistic and natural, and it is the perfect "spice" for all those cases in which we do not
need intentional predictability.

In this chapter, we will look at the following topics:

• Introducing randomness in Unity

• Learning the basics of probability

• Exploring more examples of probability in games

• Creating a slot machine

60 Randomness and Probability

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 3 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter03.

Introducing randomness in Unity
Game designers and developers use randomness in game AI to make a game and its
characters more realistic by altering the outcomes of characters' decisions.

Let's take an example of a typical soccer game. One of the rules of a soccer game is to
award a direct free kick to a team if one opposing team player commits a foul while trying
to retake control of the ball. However, instead of giving a free kick whenever that foul
happens, the game developer can apply a probability to reward only 98% of all the fouls
with a direct free kick.

After all, in reality, referees make mistakes sometimes. As a result of this simple change,
the player usually gets a direct free kick as expected. Still, when that remaining two
percent happens, the game provides more emotional feedback to both teams (assuming
that you are playing against another human, one player will be happy while the other will
complain with the virtual referee).

Of course, randomness is not always a desirable perk of AI. As we anticipated in the
introduction, some level of predictability allows players to learn the AI patterns, and
understanding the AI patterns is often the main component of gameplay. For example, in
a stealth game, learning the enemy guards' paths is necessary to allow the player to find a
sneaking route. Or imagine you need to design a boss for a game such as Dark Souls.

Learning the big boss attack patterns is the player's primary weapon and the only proper
way to achieve mastery for boss fights. As always, you have to follow the polar star of game
design: do only what it is fun for the player. If adding randomness adds only frustration
for the players, then you should remove it without exceptions.

However, in some cases, a bit of randomness is useful, and for some games, such as gambling
minigames, it is a necessary prerequisite. In those cases, how can a computer produce
random values? And more importantly, how can we use random numbers in Unity?

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter03

Introducing randomness in Unity 61

Randomness in computer science
Computers are deterministic machines: by design, if we give a computer the same input
multiple times, in the form of program code and data, it always returns the same output.
Therefore, how can we have a program return unpredictable and random output?

If we need genuinely random numbers, then we need to take this randomness from
somewhere else. That's why many advanced applications try to combine different external
sources of randomness into a random value: they may look at the movement of the mouse
during a specific interval, to the noise of the internet connection, or even ask the user to
smash the keyboard randomly, and so on. There is even dedicated hardware for random
number generation!

Fortunately, in games, we do not need such genuinely random numbers, and we can
use simpler algorithms that can generate sequences that look like a sequence of random
numbers. Such algorithms are called Pseudorandom Number Generators (PRNGs).
Using an initial seed, they can generate, in a deterministic way, a sequence of numbers
that statistically approximate the properties of a sequence of truly random numbers. The
catch is that if we start from the same seed, we always get the same sequence of numbers.

For this reason, we usually initialize the seed value from something that we imagine
is always different every time the user opens the application, such as, for instance, the
elapsed time in milliseconds since the computer started running, or the number of
milliseconds since 1970 (the Unix timestamp). Note, however, that having the possibility
to obtain the same random sequence every time is truly beneficial when debugging!

Finally, note that some PRNGs are more random than others. If we were creating
an encryption program, we would want to look into less predictable PRNGs, called
Cryptographically Secure Pseudorandom Number Generators (CSPRNGs).
Fortunately, for games, the simple Random Number Generation (RNG) that comes with
Unity is good enough.

The Unity Random class
The Unity3D script has a Random class to generate random data. You can set the
generator seed using the InitState(int seed) function. Usually, we wouldn't want
to repeatedly seed the same value, as this generates the same predictable sequence of
random numbers at each execution.

However, there are some cases in which we want to give the user control over the seed –
for instance, when we test the game or want the players to generate a procedural map/level
with a specific seed. Then, you can read the Random.value property to get a random
number between 0.0 and 1.0. This generator is inclusive, and therefore, this property can
return both 0.0 and 1.0.

62 Randomness and Probability

For example, in the following snippet, we generate a random color by choosing a random
value between 0 and 1 for the red, green, and blue components:

Color randomColor = new Color(Random.value, Random.value,
Random.value);

Another class method that can be quite handy is the Range method:

static function Range (min : float, max : float) : float

We can use the Range method to generate a random number from a range. When given
an integer value, it returns a random integer number between min (inclusive) and max
(exclusive). Therefore, if we set min to 1 and max to 4, we can get 1, 2, or 3, but never 4.
Instead, if we use the Range function for float values, both min and max are inclusive,
meaning we can get 1.0, or 4.0, or all the floats in between. Take note whenever a
parameter is exclusive or inclusive because it is a common source of bugs (and confusion)
when using the Unity Random class.

A simple random dice game
Let's set up a straightforward dice game in a new scene where we need to guess the output
of a six-sided dice (simulated by generating a random integer between one and six). The
player wins if the input value matches the dice result generated randomly, as shown in the
following DiceGame.cs file:

using UnityEngine;

using TMPro;

using UnityEngine.UI;

public class DiceGame : MonoBehaviour {

 public string inputValue = "1";

 public TMP_Text outputText;

 public TMP_InputField inputField;

 public Button button;

 int throwDice() {

 Debug.Log("Throwing dice...");

Introducing randomness in Unity 63

 Debug.Log("Finding random between 1 to 6...");

 int diceResult = Random.Range(1,7);

 Debug.Log($"Result: {diceResult}");

 return diceResult;

 }

 public void processGame() {

 inputValue = inputField.text;

 try {

 int inputInteger = int.Parse(inputValue);

 int totalSix = 0;

 for (var i = 0; i < 10; i++) {

 var diceResult = throwDice();

 if (diceResult == 6) { totalSix++; }

 if (diceResult == inputInteger) {

 outputText.text = $"DICE RESULT:

 {diceResult} \r\nYOU WIN!";

 } else {

 outputText.text = $"DICE RESULT:

 {diceResult} \r\nYOU LOSE!";

 }

 }

 Debug.Log($"Total of six: {totalSix}");

 } catch {

 outputText.text = "Input is not a number!";

 Debug.LogError("Input is not a number!");

 }

 }

}

64 Randomness and Probability

In the previous code, we saw the DiceGame class that implements the whole game.
However, we still need to set up the scene with the appropriate UI object to accept the
player's inputs and display the results:

1. First, we need to create guiText to show the result. Click on Game Object | UI |
Text - TextMeshPro. This will add New Text text to the game scene.

2. Center it at the top of the canvas.
3. Then, in the same way, create a button by selecting Game Object | UI |

Button – TextMeshPro and an input field by selecting Game Object | UI | Input
Field – TextMeshPro.

4. Arrange them vertically on the screen.
5. Create an empty game object and call it DiceGame. At this point, you should have

something similar to Figure 3.1:

Figure 3.1 – Our simple Unity interface

6. Select the text inside the button and replace Button with Play! in the
TextMeshPro component.

Introducing randomness in Unity 65

7. Select the New Text text and replace it with Result: in the TextMeshPro
component:

Figure 3.2 – The TextMeshPro component

8. Now, attach the DiceGame component to the DiceGame object, and connect into
the DiceGame component the tree UI elements that we created before:

Figure 3.3 – The DiceGame component

66 Randomness and Probability

9. Finally, select Button and look for the onClick() section in the Button
component. Drag and drop the DiceGame object into the field with None
(GameObject) and select DiceGame | processGame () from the drop-down menu.
This will connect the processGame function to the click event for the button:

Figure 3.4 – The On Click event configuration

At this point, the game should be ready. Click Unity's play button and give it a go.

To successfully manage random numbers, we need to have a basic understanding of the
laws of probability. So, that's what we are going to learn in the next section.

Learning the basics of probability
There are many ways to define probability. The most intuitive definition of probability is
called frequentism. According to frequentism, the probability of an event is the frequency
with which the event occurs when we repeat the observation an infinite amount of times.
In other words, if we throw a die 100 times, we expect to see a six, on average, 1/6th of the
times, and we should get closer and closer to 1/6th with 1,000, 10,000, and 1 million throws.

We can write the probability of event A occurring as P(A). To calculate P(A), we need to
know all the possible outcomes (N) for the observation and the total number of times in
which the desired event occurs (n).

We can calculate the probability of event A as follows:

If P(A) is the probability of event A happening, then the probability of event A not
happening is equal to the following:

Learning the basics of probability 67

The probability must be a real number between zero and one. Having a probability of
zero means that there's no chance of the desired event happening; on the other hand,
having a probability of one means that the event will occur for sure. As a consequence, the
following must equal to one:

However, not all events are alike. One of the most critical concepts in probability calculus is
the concept of independent and non-independent events. That's the topic of the next section.

Independent and correlated events
Another important concept in probability is whether the chance of a particular event
occurring depends on any other event somehow. For example, consider throwing
a six-sided die twice and getting a double six. Each die throw can be viewed as an
independent event. Each time you throw a die, the probability of each side turning up is
one in six, and the outcome of the second die roll does not change depending on the result
of the first roll. On the other hand, in drawing two aces from the same deck, each draw
is not independent of the others. If you drew an ace in the first event, the probability of
getting another ace the second time is different because there is now one less ace in the
deck (and one less card in the deck).

The independence of events is crucial because it significantly simplifies some calculations.
For instance, imagine that we want to know the probability of either event A or event B
happening. If A and B are two independent events, then we can add the probabilities of A
and B:

In the same way, if we want to know the probability that both A and B occur, then we can
multiply the individual probabilities together:

For instance, if we want to know the probability of getting two sixes by throwing two dice,
we can multiply 1/6 by 1/6 to get the correct probability: 1/36.

68 Randomness and Probability

Conditional probability
Now, let's consider another example. We are still throwing two dice, but this time, we are
interested in the probability that the sum of the numbers showing up on two dice is equal
to two. Since there's only one way to get this sum, one plus one, the probability is the same
as getting the same number on both dice. In that case, it would still be 1/36.

But how about getting the sum of the numbers that show up on the two dice to seven? As
you can see, there are a total of six possible ways of getting a total of seven, outlined in the
following table:

Figure 3.5 – The possible outcomes of two dice

In this case, we need to use the general probability formula. From the preceding table,
we can see that we have six outcomes that give us a total sum of seven. Because we know
that there are 36 total possible outcomes for 2 dice, we can quickly compute the final
probability as 6/36 or, simplifying, one-sixth (16.7%).

Loaded dice
Now, let's assume that we haven't been all too honest, and our dice are loaded so that the
side of the number six has a double chance of landing facing upward. Since we doubled
the chance of getting six, we need to double the probability of getting six – let's say, up
to roughly one-third (0.34) – and as a consequence, the rest is equally spread over the
remaining five sides (0.132 each).

We can implement a loaded dice algorithm this way: first, we generate a random value
between 1 and 100. Then, we check whether the random value falls between 1 and 35. If
so, our algorithm returns six; otherwise, we get a random dice value between one and five
(since these values have the same probability).

Learning the basics of probability 69

For this, we create a new class called DiceGameLoaded. The game is identical to
DiceGame but with an important difference: the throwDice function is changed,
as follows:

 int throwDice() {

 Debug.Log("Throwing dice...");

 int randomProbability = Random.Range(0, 100);

 int diceResult = 0;

 if (randomProbability < 35) {

 diceResult = 6;

 } else {

 diceResult = Random.Range(1, 5);

 }

 Debug.Log("Result: " + diceResult);

 return diceResult;

 }

To try this new version of the game, swap the DiceGame component with the DiceGame
component in the DiceGame object and rebind the onClick button event as we did
before. If we test our new loaded dice algorithm by throwing the dice multiple times,
you'll notice that the 6 value yields more than usual.

As you can see, the code is very similar to the non-loaded dice. However, this time, we are
throwing an unfair dice that returns six much more than it should: we first select a random
number between 0 and 100; if the number is less than 35, we return 6. Otherwise, we
choose a random number between 1 and 5. Therefore, we get a 6 35% of the time and every
other number roughly 15% of the time (we divide the remaining 75% by 5).

Remember that, in games, it's not cheating if the goal is to give the player a more exciting
and fun experience!

70 Randomness and Probability

Exploring more examples of probability in
games
In this section, we will explore some of the most common applications of probability and
randomness in video games.

Character personalities
Probability and randomness are not only about dice. We can also use a probability
distribution to specify an in-game character's specialties. For example, let's pretend we
designed a game proposal for a population management game for the local government.
We need to address and simulate issues such as taxation versus global talent attraction,
and immigration versus social cohesion. We have three types of characters in our proposal
– namely, workers, scientists, and professionals. Their efficiencies in performing their
particular tasks are defined in the following table:

Figure 3.6 – The efficiency of every character in performing each task

Let's take a look at how we can implement this scenario. Let's say the player needs to
build new houses to accommodate the increased population. A house construction would
require 1,000 units of workload to finish. We use the earlier value as the workload that can
be done per second per unit type for a particular task.

So, if you're building a house with one worker, it'll only take about 10 seconds to finish
the construction (1000/95), whereas it'll take more than 3 minutes if you are trying to
build with the scientists (1000/5 = 200 seconds). The same is true for other tasks, such as
research and development and corporate jobs. Of course, these factors can be adjusted or
enhanced later as the game progresses, making some entry-level tasks simpler and taking
less time.

Exploring more examples of probability in games 71

Then, we introduce special items that the particular unit type can discover. We don't want
to give out these items every time a particular unit has done its tasks. Instead, we want
to reward the player as a surprise. So, we associate the probability of finding such items
according to the unit type, as described in the following table:

Figure 3.7 – The probability of finding specific objects for each unit type

The preceding table shows a 30% chance of a worker finding some raw materials and a
10% chance of earning bonus income whenever they have built a factory or a house. This
allows the players to anticipate possible upcoming rewards once they've done some tasks
and make the game more fun because they do not know the event's outcome.

Perceived randomness
One critical aspect of randomness is that humans are terrible at understanding true
randomness. Instead, when us humans talk about random results, we think of equally
distributed results. For example, imagine a Massive Online Battle Arena (MOBA) game
such as League of Legends. Imagine that we have a hero with an ability that does colossal
damage but only hits 50% of the time. The player starts a game with such a hero, but the
hero misses that ability five times in a row due to bad luck. Put yourself in the shoes of
that player – you would think that the computer is cheating or that there is something
wrong, right?

However, getting 5 consecutive misses has a probability of 1 over 32. That is about 3.1%,
more than getting three of a kind in a five-card deal of poker (which is about 2.1%) –
unlikely but possible. If our game uses a perfectly random number generator, we may get
this scenario relatively often.

Let's put it another way. Given a sequence of misses (M) and hits (H), which sequence do
you find more random between HHHHHMMM and HMHMHHMH? I bet the second
one, where we interleave misses and hits. It feels more random than the first one (where
hits and misses are nicely grouped in strikes), even if they have the exact same chance of
occurring naturally.

72 Randomness and Probability

The point is that, sometimes, for the sake of player engagements, games need to tweak
their randomness to get something that feels more random than true randomness. Video
games do that in several ways. The most common one is keeping track of the number of
occurrences of a value that should be perceived as random.

So, for instance, we may keep track of the number of hits and misses of our hero's ability,
and when we see that the ratio between the two get too far away from the theoretical one
of 50% – for example, when we have 75% misses (or hits) – we rebalance the ratio by
forcing a hit (or vice versa).

FSM with probability
In Chapter 2, Finite State Machines, we saw how to implement an FSM using simple switch
statements or the FSM framework. We based the decision on choosing which state to
execute purely on a given condition's true or false value. Let's go back for a moment to the
FSM of our AI-controlled tank entity:

Figure 3.8 – The tank AI FSM

Exploring more examples of probability in games 73

For the sake of the example, we can give our tank entities some options to choose from
instead of doing the same thing whenever it meets a specific condition. For example, in our
earlier FSM, our AI tank would always chase the player tank once the player was in its line
of sight. Instead, we can split the player on sight transaction and connect it to an additional
new state, Flee. How can the AI decide which state to move to? Randomly, of course:

Figure 3.9 – FSM using probability

As shown in the preceding diagram, instead of chasing every time, now, when the AI tank
spots the player, there's a 50% chance that it'll flee the scene (maybe to report the attack to
the headquarters or something else). We can implement this mechanism the same way we
did with our previous dice example. First, we must randomly get a value between 1 and
100 and see whether the value lies between 1 and 50, or 51 and 100. If it's the former, the
tank will flee; otherwise, it will chase the player.

Another way to implement a random selection is by using the roulette wheel selection
algorithm. This algorithm is advantageous when we do not have exact probabilities or
know all the possible options at compile time (for instance, because we load the FSM rules
from a file).

74 Randomness and Probability

As the name suggests, the idea is to imagine a roulette wheel with one sector for each event.
However, the more probable an event is, the larger the sector is. Then, we mathematically
spin the wheel and choose the event corresponding to the sector where we ended up:

Figure 3.10 – The roulette wheel

In our example, we have three states: Chase, Flee, and SelfDestruct. We assign a weight
to each state, representing how probable they are with respect to each other. For instance,
in the figure, you can see that I set Chase with weight 80, Flee with weight 19, and
SelfDestruct with weight 1. Note that weights do not need to sum to 1 like probabilities,
nor 100, nor anything in particular.

In this case, however, I made them add to 100 because it is easier to translate weights into
probabilities: we can imagine Chase happening 80% of the time, Flee 19% of the time,
and in 1% of the cases, the tank self-destructing. However, in general, you can imagine the
weight of event X as the number of balls with X written on them and put inside a lottery box.

Let's see the result in the FSM.cs file:

using UnityEngine;

using System.Collections;

using System;

using System.Linq;

public class FSM : MonoBehaviour {

Exploring more examples of probability in games 75

 [Serializable]

 public enum FSMState {

 Chase,

 Flee,

 SelfDestruct,

 }

 [Serializable]

 public struct FSMProbability {

 public FSMState state;

 public int weight;

 }

 public FSMProbability[] states;

 FSMState selectState() {

 // Sum the weights of every state.

 var weightSum = states.Sum(state => state.weight);

 var randomNumber = UnityEngine.Random.Range(0,

 weightSum);

 var i = 0;

 while (randomNumber >= 0) {

 var state = states[i];

 randomNumber -= state.weight;

 if (randomNumber <= 0) {

 return state.state;

 }

 i++;

 }

 // It is not possible to reach this point!

 throw new Exception("Something is wrong in the

 selectState algorithm!");

 }

 // Update is called once per frame

 void Update () {

76 Randomness and Probability

 if (Input.GetKeyDown(KeyCode.Space))

 {

 FSMState randomState = selectState();

 Debug.Log(randomState.ToString());

 }

 }

}

The mechanism is straightforward. First, we sum all the weights to know the size of the
imaginary wheel. Then, we pick a number between 0 and this sum. Finally, we subtract
from this number the weights of each state (starting from the first one) until the number
gets negative. Then, as you can see in the Update() method, every time we press the
Spacebar, the algorithm chooses one random item from our states array.

Dynamically adapting AI skills
We can also use probability to specify the intelligence levels of AI characters or the global
game settings, affecting, in turn, a game's overall difficulty level to keep it challenging
and exciting for the players. As described in the book The Art of Game Design by Jesse
Schell, players only continue to play a game if the game keeps them in the flow channel
(a concept adapted to games from the psychological works on flow state of Mihály
Csíkszentmihályi):

Figure 3.11 – The player's flow channel

Creating a slot machine 77

If we present too tricky challenges to the players before they have the necessary skills, they
will feel anxious and disappointed. On the other hand, once they've mastered the game,
they will get bored if we keep it at the same pace. The area in which the players remain
engaged for a long time is between these two hard and easy extremes, which the original
author referred to as the flow channel. To keep the players in the flow channel, the game
designers need to feed challenges and missions that match the increasing skills that the
players acquire over time. However, it is not easy to find a value that works for all players,
since the pace of learning and expectations can differ from individual to individual.

One way to tackle this problem is to collect the player's attempts and results during
the gameplay sessions and to adjust the difficulty of the opponent's AI accordingly. So,
how can we change the AI's difficulty – for instance, by making the AI more aggressive,
increasing the probability of landing a perfect shot, or decreasing the probability of
erratic behavior?

Creating a slot machine
In this demo, we will design and implement a slot machine game with 10 symbols and 3
reels. To make it simple, we'll use the numbers from zero to nine as our symbols. Many
slot machines use fruit and other simple shapes, such as bells, stars, and letters. Some
other slot machines use a specific theme based on popular movies or TV franchises. Since
there are 10 symbols and 3 reels, that's a total of 1,000 (10^3) possible combinations.

A random slot machine
This random slot machine demo is similar to our previous dice example. This time, we are
going to generate three random numbers for three reels. The only payout will be when we
get three of the same symbols on the pay line. To make it simpler, we'll only have one line
to play against in this demo. If the player wins, the game will return 500 times the
bet amount.

78 Randomness and Probability

We'll set up our scene with all our UI elements: three texts for the reels, another text
element for the YOU WIN or YOU LOSE text (the betResult object), one text element
for the player's credits (Credits), an input field for the bet (InputField), and a button
to pull the lever (Button):

Figure 3.12 – Our GUI text objects

This is how our new script looks, as shown in the following SlotMachine.cs file:

using UnityEngine;

using UnityEngine.UI;

public class SlotMachine : MonoBehaviour {

 public float spinDuration = 2.0f;

 public int numberOfSym = 10;

 public Text firstReel;

 public Text secondReel;

 public Text thirdReel;

 public Text betResult;

 public Text totalCredits;

 public InputField inputBet;

 private bool startSpin = false;

 private bool firstReelSpinned = false;

 private bool secondReelSpinned = false;

 private bool thirdReelSpinned = false;

 private int betAmount;

 private int credits = 1000;

Creating a slot machine 79

 private int firstReelResult = 0;

 private int secondReelResult = 0;

 private int thirdReelResult = 0;

 private float elapsedTime = 0.0f;

First, we start by listing all the class attributes we need. Again, note that it is a good
programming practice to avoid public fields unless strictly necessary. Therefore, you
should use the [SerializeField] attribute instead. Here, however, we will use the
public attribute to avoid making the code listing too long.

Now, let's continue by adding three new functions: Spin, which starts the spinning of the
slot machine; OnGui, which we will use to update the user interface; and checkBet, a
function that checks the result of the spin and informs the players if they win or lose:

public void Spin() {

 if (betAmount > 0) {

 startSpin = true;

 } else {

 betResult.text = "Insert a valid bet!";

 }

}

private void OnGUI() {

 try {

 betAmount = int.Parse(inputBet.text);

 } catch {

 betAmount = 0;

 }

 totalCredits.text = credits.ToString();

}

void checkBet() {

 if (firstReelResult == secondReelResult &&

 secondReelResult == thirdReelResult) {

 betResult.text =

 "YOU WIN!"; credits += 500*betAmount;

 } else {

 betResult.text = "YOU LOSE!"; credits -= betAmount;

80 Randomness and Probability

 }

}

Next, we implement the main loop of the script. In the FixedUpdate function, we run
the slot machine by spinning each reel in turn. In the beginning, firstReelSpinned,
secondReelSpinned, and thirdReelSpinned are all false. Therefore, we enter in
the first if block. Here, we set the reel to a random value, and we end the function. We
repeat that until a certain amount of time has passed.

After that, we set the reel to the final value, and we set firstReelSpinned to true.
Then, the function will move to the second reel, where we repeat these steps. Finally, after
the third reel is finally set to its final value, we check the results with checkBet:

void FixedUpdate () {

 if (startSpin) {

 elapsedTime += Time.deltaTime;

 int randomSpinResult =

 Random.Range(0, numberOfSym);

 if (!firstReelSpinned) {

 firstReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 firstReelResult = randomSpinResult;

 firstReelSpinned = true;

 elapsedTime = 0;

 }

 } else if (!secondReelSpinned) {

 secondReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 secondReelResult = randomSpinResult;

 secondReelSpinned = true;

 elapsedTime = 0;

 }

 } else if (!thirdReelSpinned) {

Creating a slot machine 81

 thirdReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 thirdReelResult = randomSpinResult;

 startSpin = false;

 elapsedTime = 0;

 firstReelSpinned = false;

 secondReelSpinned = false;

 checkBet();

 }

 }

 }

}

Attach the script to an empty GameController object and then fill in the referenced
object in the Inspector. Then, we need to connect Button to the Spin() method. To do
that, select Button and fill the On Click () event handler in the Inspector, as shown in
the following screenshot:

Figure 3.13 – The On Click() event handler

When we click the button, we set the startSpin flag to true. Once spinning, in the
FixedUpdate() method, we generate a random value for each reel. Finally, once we've
got the value for the third reel, we reset the startSpin flag to false. While we are
getting the random value for each reel, we also track how much time has elapsed since the
player pulled the lever.

82 Randomness and Probability

Usually, each reel would take 3 to 5 seconds before landing the result in real-world
slot machines. Hence, we also take some time, as specified in spinDuration, before
showing the final random value. If you play the scene and click on the Pull Lever button,
you should see the final result, as shown in the following screenshot:

Figure 3.14 – Our random slot game in action

Since your chance of winning is 1 out of 100, it quickly becomes tedious, as you lose
several times consecutively. However, if you've ever played a slot machine, this is not
how it works, or at least not anymore. Usually, you can have several wins during your
play. Even though these small wins don't recoup your principal bet (and in the long run,
most players go broke), the slot machines still occasionally render winning graphics and
exciting sounds, which researchers refer to as losses disguised as wins.

So, instead of just one single way to win the jackpot, we want to modify the rules a bit so
that the slot machine pays out smaller returns during the play session.

Weighted probability
Real slot machines have something called a Paytable and Reel Strips (PARS) sheet, which
is the complete design document of the machine. The PARS sheet is used to specify the
payout percentage, the winning patterns, their payouts, and so on.

The number of payout prizes and the frequencies of such wins must be carefully selected
so that the house (the slot machine) always wins in the long run while making sure to
return something to the players from time to time to make the machine attractive to play.
This is known as payback percentage or Return to Player (RTP). For example, a slot
machine with a 90% RTP means that, over time, the machine returns an average of 90% of
all bets to the players.

Creating a slot machine 83

In this demo, we will not focus on choosing the house's optimal value to yield specific
wins over time, nor maintaining a particular payback percentage. Instead, we will
demonstrate how to weight probability for specific symbols showing up more times than
usual. So, let's say we want to make the 0 symbols appear 20% more than usual on the first
and third reel and return half of the bet as a payout.

In other words, a player only loses half of their bet if they got zero symbols on
the first and third reels, essentially disguising a loss as a small win. Currently, the
zero symbols have a probability of 1/10th (0.1), or a 10% probability. We'll change
this now to a 30% chance of zero landing on the first and third reels, as shown
in the following SlotMachineWeighted.cs file (remember to switch to the
SlotMachineWeighted component in the example code!):

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class SlotMachineWeighted : MonoBehaviour {

 public float spinDuration = 2.0f;

 // Number of symbols on the slot machine reels

 public int numberOfSym = 10;

 public Text firstReel;

 public Text secondReel;

 public Text thirdReel;

 public Text betResult;

 public Text totalCredits;

 public InputField inputBet;

 private bool startSpin = false;

 private bool firstReelSpinned = false;

 private bool secondReelSpinned = false;

 private bool thirdReelSpinned = false;

 private int betAmount = 100;

 private int credits = 1000;

 [Serializable]

84 Randomness and Probability

 public struct WeightedProbability {

 public int number;

 public int weight;

 }

 private List<WeightedProbability> weightedReelPoll =

 new List<WeightedProbability>();

 private int zeroProbability = 30;

 private int firstReelResult = 0;

 private int secondReelResult = 0;

 private int thirdReelResult = 0;

 private float elapsedTime = 0.0f;

New variable declarations are added, such as zeroProbability, to specify the
probability percentage of the zero symbols landing on the first and third reels. For
example, if zeroProbability is 30, the third reel will show 0 30% of the time. The
weightedReelPoll array list is used to fill the weighted symbols, as we did in our
earlier FSM example.

Then, we initialize this list in the Start() method, as shown in the following code:

void Start () {

 weightedReelPoll.Add(new WeightedProbability {

 number = 0,

 weight = zeroProbability

 });

 int remainingValuesProb = (100 - zeroProbability)/9;

 for (int i = 1; i < 10; i++) {

 weightedReelPoll.Add(new WeightedProbability {

 number = i,

 weight = remainingValuesProb

 });

}}

In practice, we set the value for 0 to 30, and we split the remaining 70 percentage points
between the remaining 9 numbers.

Creating a slot machine 85

We are also writing a revised and improved checkBet() method. Instead of just one
jackpot win option, we are now considering five conditions of jackpot: loss disguised as a
win, a near miss, any two symbols matched on the first and third row, and of course, the
lose condition:

void checkBet() {

 if (firstReelResult == secondReelResult &&

 secondReelResult == thirdReelResult) {

 betResult.text = "JACKPOT!";

 credits += betAmount * 50;

 } else if (firstReelResult == 0 &&

 thirdReelResult == 0) {

 betResult.text =

 "YOU WIN " + (betAmount/2).ToString();

 credits -= (betAmount/2);

 } else if (firstReelResult == secondReelResult) {

 betResult.text = "AWW... ALMOST JACKPOT!";

 } else if (firstReelResult == thirdReelResult) {

 betResult.text =

 "YOU WIN " + (betAmount*2).ToString();

 credits -= (betAmount*2);

 } else {

 betResult.text = "YOU LOSE!";

 credits -= betAmount;

 }

}

In the checkBet() method, we designed our slot machine to return 50 times the bet
if they hit the jackpot, to lose 50% of their bet if the first and third reels are 0, and to win
twice if the first and third reels match with any other symbol.

Then, as in the previous example, we generate values for the three reels in the
FixedUpdate() method, as shown in the following code:

private int PickNumber() {

 // Sum the weights of every state.

 var weightSum =

 weightedReelPoll.Sum(state => state.weight);

86 Randomness and Probability

 var randomNumber =

 UnityEngine.Random.Range(0, weightSum);

 var i = 0;

 while (randomNumber >= 0) {

 var candidate = weightedReelPoll[i];

 randomNumber -= candidate.weight;

 if (randomNumber <= 0) {

 return candidate.number;

 }

 i++;

 }

 // It should not be possible to reach this point!

 throw new Exception("Something is wrong in the

 selectState algorithm!");

}

void FixedUpdate () {

 if (startSpin) {

 elapsedTime += Time.deltaTime;

 int randomSpinResult =

 Random.Range(0, numberOfSym);

 if (!firstReelSpinned) {

 firstReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 int weightedRandom = PickNumber();

 firstReel.text = weightedRandom.ToString();

 firstReelResult = weightedRandom;

 firstReelSpinned = true;

 elapsedTime = 0;

 }

 } else if (!secondReelSpinned) {

 secondReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 secondReelResult = randomSpinResult;

 secondReelSpinned = true;

 elapsedTime = 0;

Creating a slot machine 87

 }

 }

...

For the first reel, we show the real random values as they occur during the spinning
period. Once the time is up, we choose the value from the poll that is already populated
with symbols according to the probability distribution. So, our zero symbols will have a
30% better chance of occurring than the rest.

In reality, the player is losing on their bets if they get two zero symbols on the first and third
reel; however, we make it seem like a win. It's just a lame message here, but this can work if
we combine it with nice graphics, maybe even fireworks, and nice winning sound effects.

A near miss
If the first and second reels return the same symbol, we have to provide the near-miss
effect to the players by returning the random value to the third reel close to the second
one. We can do this by checking the third random spin result first. If the random value is
the same as the first and second results, this is a jackpot, and we shouldn't alter the result.

But if it's not, then we should modify the result so that it is close enough to the other two.
Check the comments in the following code:

 else if (!thirdReelSpinned) {

 thirdReel.text = randomSpinResult.ToString();

 if (elapsedTime >= spinDuration) {

 if ((firstReelResult == secondReelResult)

 && randomSpinResult != firstReelResult) {

 // the first two reels have resulted

 // the same symbol

 // but unfortunately the third reel

 // missed

 // so instead of giving a random number

 // we'll return a symbol which is one

 // less than the other 2

 randomSpinResult = firstReelResult - 1;

 if (randomSpinResult < firstReelResult)

 randomSpinResult =

 firstReelResult - 1;

 if (randomSpinResult > firstReelResult)

88 Randomness and Probability

 randomSpinResult =

 firstReelResult + 1;

 if (randomSpinResult < 0)

 randomSpinResult = 0;

 if (randomSpinResult > 9)

 randomSpinResult = 9;

 thirdReel.text =

 randomSpinResult.ToString();

 thirdReelResult = randomSpinResult;

 } else {

 int weightedRandom = PickNumber();

 thirdReel.text =

 weightedRandom.ToString();

 thirdReelResult = weightedRandom;

 }

 startSpin = false;

 elapsedTime = 0;

 firstReelSpinned = false;

 secondReelSpinned = false;

 checkBet();

 }

 }

 }

}

And if that near miss happens, you should see it, as shown in the following screenshot:

Figure 3.15 – A near miss

Summary 89

We can go even further by adjusting the probability in real time, based on the bet amount
(but that'd be too shady). Finally, we can add a Game Over message that appears when the
player has bet all their money.

This demo shows you the basic implementation of a slot machine game. You can start
from this skeleton and improve it with nicer graphics, animations, and sound effects. The
important takeaway, though, is understanding that you can already create a game with
randomness and probability alone.

Summary
In this chapter, we learned about the applications of probability in AI game design. We
experimented with some of the techniques by implementing them in Unity3D. As a
bonus, we also learned about how a slot machine works and implemented a simple slot
machine game using Unity3D. Probability in games is about making the game, and the
characters, seem more realistic by adding uncertainty to their behavior so that players
cannot predict the outcome.

In the next chapter, we will look at implementing sensors and how they can make our AI
aware of its surroundings.

Further reading
To further study the advanced techniques on probability in games, such as decision
making under uncertainty using Bayesian techniques, I recommend reading AI for Game
Developers by David M. Bourg and Glenn Seeman. Rules of Play by Katie Salen is another
suggested book on game design.

4
Implementing

Sensors
As we discussed in the previous chapter, a character AI system needs to be aware of its
surrounding environment. For example, Non-Player Characters (NPCs) need to know
where the obstacles are, the direction the player is looking, whether they are in the player's
sight, and a lot more. The quality of the AI of our NPCs depends, for the most part, on
the information they can get from the environment. Sensor mistakes are apparent to the
player: we've all experienced playing a video game and laughing at an NPC that clearly
should have seen us, or, on the other hand, been frustrated because an NPC spotted us
from behind a wall.

Video game characters usually get the input information required by their underlying AI
decision-making algorithms from sensory information. For simplicity, in this chapter,
we will consider sensory information as any kind of data coming from the game world.
If there's not enough information, characters might show unusual behaviors, such as
choosing the wrong places to take cover, idling, or looping in strange actions without
knowing how to proceed. A quick search for AI glitches on YouTube opens the door to a
vast collection of common funny behaviors of AI, even in AAA games.

92 Implementing Sensors

In this chapter, we will look at the following topics:

• Introducing sensory systems

• Discovering what a sensory system is and how to implement two senses—sight
and touch—in Unity

• Building a demo where we can see our sensory system in action

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 4 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter04.

Basic sensory systems
An AI sensory system emulates senses such as sight, hearing, and even smell to get
information from other GameObjects. In such a system, the NPCs need to examine the
environment and check for such senses periodically based on their particular interest.

In a minimal sensory system, we have two principal elements: aspect (also called event
emitters) and sense (also called event senses). Every sense can perceive only a specific
aspect; for instance, an NPC with just the sense of hearing can only perceive the sound
(one of the aspects) emitted by another GameObject, or a zombie NPC can use its sense of
smell to prey on the player's brain. As in real life, we do not need a single sense for every
NPC; they can have sight, smell, and touch all at once.

In our demo, we'll implement a base interface, called Sense, that we'll use to implement
custom senses. In this chapter, we'll implement sight and touch senses. Sight is what
we use to see the world around them; if our AI character sees an enemy, we receive an
event in our code, and we act accordingly by doing some action in response. Likewise,
with touch, when an enemy gets too close, we want to be able to sense that. Finally, we'll
implement a minimal Aspect class that our senses can perceive.

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter04

Setting up our scene 93

Setting up our scene
Let's get started by setting up our scene:

1. First, we add a plane as a floor.
2. Let's create a few walls to block the line of sight from our AI character to the enemy.

We make these out of short—but wide—cubes that we group under an empty
GameObject called Obstacles.

3. Finally, we add a directional light to see what is going on in our scene.

We represent the player with a tank, similar to what we used earlier, and we represent
the NPCs with simple cubes. We also have a Target object to show us where the tank is
moving in our scene. Our Scene hierarchy should look similar to the following screenshot:

Figure 4.1 – The setup of the example's Hierarchy

94 Implementing Sensors

Now, let's position the tank, AI character, and walls randomly in our scene. First, make
sure to increase the size of the plane to something that looks good. Fortunately, in this
demo, all the objects are locked on the plane, and there is no simulated gravity so that
nothing can fall off the plane. Also, be sure to adjust the camera so that we can have a clear
view of the following scene:

Figure 4.2 – The space that our tank and player wander in

Now that we have the basics set up, let's look at how to implement the tank, AI character,
and aspects for our player character.

The player's tank and the aspect class
The Target object is a simple sphere object with the mesh render disabled. We have also
created a point light and made it a child of our Target object. Make sure that the light is
centered, or it will not be very helpful.

Look at the following code in the Target.cs file:

using UnityEngine;

public class Target : MonoBehaviour {

 [SerializeField]

 private float hOffset = 0.2f;

 void Update () {

 int button = 0;

 //Get the point of the hit position when the mouse

The player's tank and the aspect class 95

 //is being clicked

 if(Input.GetMouseButtonDown(button)) {

 Ray ray = Camera.main.ScreenPointToRay(

 Input.mousePosition);

 RaycastHit hitInfo;

 if (Physics.Raycast(ray.origin, ray.direction,

 out hitInfo)) {

 Vector3 targetPosition = hitInfo.point;

 transform.position = targetPosition +

 new Vector3(0.0f, hOffset, 0.0f);

 }

 }

 }

}

Attach this script to the Target object. The script detects the mouse-click event and then,
using the raycasting technique, detects the mouse-click location on the plane in the 3D
space, and updates the Target object's position in our scene. We will have a look at the
player's tank in the following section.

The player's tank
The player's tank is the simple model we used in Chapter 2, Finite State Machines, with
a non-kinematic Rigidbody component. We need the Rigidbody component to
generate trigger events whenever we do collision detection with AI characters and
environment objects. Finally, we need to assign the Player tag to our tank.

As we can easily see from its name, the PlayerTank script controls the player's tank. The
following is the code for the PlayerTank.cs file:

using UnityEngine;

public class PlayerTank : MonoBehaviour {

 public Transform targetTransform;

 [SerializeField]

 private float movementSpeed = 10.0f;

96 Implementing Sensors

 [SerializeField]

 private float rotSpeed = 2.0f;

 [SerializeField]

 private float targerReactionRadius = 5.0f;

 void Update () {

 //Stop once you reached near the target position

 if (Vector3.Distance(transform.position,

 targetTransform.position) < targetReactionRadius)

 return;

 //Calculate direction vector from current position

 // to target position

 Vector3 tarPos = targetTransform.position;

 tarPos.y = transform.position.y;

 Vector3 dirRot = tarPos - transform.position;

 //Build a Quaternion for this new rotation vector

 //using LookRotation method

 Quaternion tarRot =

 Quaternion.LookRotation(dirRot);

 //Move and rotate with interpolation

 transform.rotation= Quaternion.Slerp(

 transform.rotation, tarRot,

 rotSpeed * Time.deltaTime);

 transform.Translate(new Vector3(0, 0,

 movementSpeed * Time.deltaTime));

 }

}

The player's tank and the aspect class 97

This script retrieves the Target position on the map and updates the tank's destination
point and direction accordingly. The result of the preceding code is shown in the
following panel:

Figure 4.3 – The properties of our Tank object

After we assign the preceding script to the tank, be sure to assign the Target object to the
targetTransform variable.

98 Implementing Sensors

Aspect
Next, let's take a look at the Aspect class. Aspect is an elementary class with just one
public property, called aspectName. That's all the variables we need in this chapter.

Whenever our AI character senses something, we'll check this against aspectName to
see whether it's the aspect that the AI has been looking for:

using UnityEngine;

public class Aspect : MonoBehaviour {

 public enum Affiliation {

 Player,

 Enemy

 }

 public Affiliation affiliation;

}

Attach this aspect script to our player's tank and set the aspectName property as
Player.

AI characters
In this example, the AI characters roam around the scene in a random direction. They
have two senses: sight and touch. The sight sense checks whether the enemy aspect is
within a set visible range and distance. Touch detects whether the enemy aspect has
collided with the Box Collider around the character. As we have seen previously, our
player's tank has the Player aspect. Consequently, these senses are triggered when they
detect the player's tank.

For now, let's look at the script we use to move the NPCs around:

using UnityEngine;

using System.Collections;

public class Wander : MonoBehaviour {

 private Vector3 tarPos;

AI characters 99

 [SerializeField]

 private float movementSpeed = 5.0f;

 [SerializeField]

 private float rotSpeed = 2.0f;

 [SerializeField]

 private float minX = -45.0f;

 [SerializeField]

 private float maxX = 45.0f;

 [SerializeField]

 private float minZ = -45.0f;

 [SerializeField]

 private float maxZ = -45.0f;

 [SerializeField]

 private float targetReactionRadius = 5.0f;

 [SerializeField]

 private float targetVerticalOffset = 0.5f;

 void Start () {

 //Get Wander Position

 GetNextPosition();

 }

 void Update () {

 // Check if we're near the destination position

 if (Vector3.Distance(tarPos, transform.position) <=

 targetReactionRadius) GetNextPosition();

 // generate new random position

100 Implementing Sensors

 // Set up quaternion for rotation toward

 // destination

 Quaternion tarRot = Quaternion.LookRotation(

 tarPos - transform.position);

 // Update rotation and translation

 transform.rotation = Quaternion.Slerp(

 transform.rotation,

 tarRot, rotSpeed * Time.deltaTime);

 transform.Translate(new Vector3(0, 0, movementSpeed

 * Time.deltaTime));

 }

 void GetNextPosition() {

 tarPos = new Vector3(Random.Range(minX, maxX),

 targetVerticalOffset, Random.Range(minZ, maxZ));

 }

}

The Wander script generates a new random position in a specified range whenever an
AI character reaches its current destination point. Then, the Update method rotates
the NPCs and moves them toward their new destination. Attach this script to our AI
character so that it can move around in the scene.

Sense
The Sense class is the interface of our sensory system that the other custom senses can
implement. It defines two virtual methods, Initialize and UpdateSense, executed
from the Start and Update methods, respectively, and that we can override when
implementing custom senses as shown in the following code block:

using UnityEngine;

public class Sense : MonoBehaviour {

AI characters 101

 public bool bDebug = true;

 public Aspect.Affiliation targetAffiliation =

 Aspect.Affiliation.Enemy;

 public float detectionRate = 1.0f;

 protected float elapsedTime = 0.0f;

 protected virtual void Initialize() { }

 protected virtual void UpdateSense() { }

 void Start () {

 Initialize();

 }

 void Update () {

 UpdateSense();

 }

}

The basic properties of this script are the intervals between two consecutive sensing
operations and the name of the aspect it should look for. This script is not attached to
any objects; instead, we use it as a base for specific senses, such as Sight and Touch.

Sight
The Sight sense detects whether a specific aspect is within the perception field of the
character. If it perceives anything, it takes the specified action as shown in the following
code block:

using UnityEngine;

public class Sight: Sense {

 public int FieldOfView = 45;

 public int ViewDistance = 100;

 private Transform playerTrans;

102 Implementing Sensors

 private Vector3 rayDirection;

 protected override void Initialize() {

 //Find player position

 playerTrans = GameObject.FindGameObjectWithTag(

 "Player").transform;

 }

 protected override void UpdateSense() {

 elapsedTime += Time.deltaTime;

 // Detect perspective sense if within the detection

 // rate

 if (elapsedTime >= detectionRate) {

 DetectAspect();

 elapsedTime = 0.0f;

 }

 }

 //Detect perspective field of view for the AI Character

 void DetectAspect() {

 //Direction from current position to player

 //position

 rayDirection = (playerTrans.position –

 transform.position).normalized;

 //Check the angle between the AI character's

 //forward vector and the direction vector between

 //player and AI to detect if the Player is in the

 //field of view.

 if ((Vector3.Angle(rayDirection,

 transform.forward)) < FieldOfView) {

 RaycastHit hit;

 if (Physics.Raycast(transform.position,

AI characters 103

 rayDirection, out hit, ViewDistance)) {

 Aspect aspect =

 hit.collider.GetComponent<Aspect>();

 if (aspect != null) {

 //Check the aspect

 if (aspect.affiliation ==

 targetAffiliation) {

 print("Enemy Detected");

 }

 }

 }

 }

 }

We need to implement the Initialize and UpdateSense methods of the parent
Sense class, respectively. Then, in the DetectAspect method, we first check the angle
between the player and the AI's current direction. Then, if it's in the field-of-view range,
we shoot a ray in the direction of the player's tank. The length of the ray is the value in the
visible distance property.

The Raycast method returns when it first hits another object. Then, we check this
against the aspect component and the aspect name. In this way, even if the player is in the
visible range, the AI character will not see the player if they hide behind a wall.

The OnDrawGizmos method draws lines based on the perspective field (determined by
the view angle and viewing distance) to see the AI character's line of sight in the editor
window during playtesting. Attach this script to the AI character, and ensure to set the
aspect name to Enemy.

This method can be illustrated as follows:

 void OnDrawGizmos() {

 if (!Application.isEditor|| playerTrans == null)

 return;

 Debug.DrawLine(transform.position,

 playerTrans.position, Color.red);

 Vector3 frontRayPoint = transform.position +

 (transform.forward * ViewDistance);

104 Implementing Sensors

 //Approximate perspective visualization

 Vector3 leftRayPoint = Quaternion.Euler(

 0,FieldOfView * 0.5f ,0) * frontRayPoint;

 Vector3 rightRayPoint = Quaternion.Euler(0,

 - FieldOfView*0.5f, 0) * frontRayPoint;

 Debug.DrawLine(transform.position, frontRayPoint,

 Color.green);

 Debug.DrawLine(transform.position, leftRayPoint,

 Color.green);

 Debug.DrawLine(transform.position, rightRayPoint,

 Color.green);

 }

}

OnDrawGizmos is an event function that we can use when we want to draw gizmos
in the scene. Gizmos are visual debug aids that will only be rendered in the Scene view
(and are invisible in the normal Game view). In it, we can use gizmo functions such as
DrawLine, DrawIcon, and DrawSphere.

They are a handy way to quickly provide some visual feedback to our algorithms. You
can learn more about the gizmo functions by following this link: https://docs.
unity3d.com/ScriptReference/Gizmos.html.

Touch
Another sense we're going to implement is Touch, which is triggered when the player
entity is within a specific range of the AI entity as shown in the following code block. Our
AI character has a box collider component, and its Is Trigger flag is on:

using UnityEngine;

public class Touch : Sense {

 void OnTriggerEnter(Collider other) {

https://docs.unity3d.com/ScriptReference/Gizmos.html
https://docs.unity3d.com/ScriptReference/Gizmos.html

AI characters 105

 Aspect aspect = other.GetComponent<Aspect>();

 if (aspect != null) {

 //Check the aspect

 if (aspect.affiliation == targetAffiliation) {

 print("Enemy Touch Detected");

 }

 }

 }

}

We need to implement the OnTriggerEnter event fired whenever the collider
component collides with another collider component. Since our tank entity also has
collider and Rigidbody components, a collision event occurs as soon as the colliders of
the AI character and the player's tank coincide.

The following screenshot shows the box collider of our enemy AI that we are using to
implement the Touch sense:

Figure 4.4 – The collider component around our player

106 Implementing Sensors

In the following screenshot, we can see how our AI character is set up:

Figure 4.5 – Properties of our player

Inside the OnTriggerEnter method, we access the aspect component of the other
collider entity and check whether the name of the aspect is the same aspect that this AI
character is looking for. For demonstration purposes, we print out in the console that
the character detects the enemy aspect by the Touch sense. In a real game, we would not
print the event but rather trigger other actions, such as turning to face an enemy and then
chasing, attacking, and so on. Let's move on to testing our game.

Testing the game 107

Testing the game
Now, play the game in Unity3D and move the player's tank near the wandering AI
character by clicking on the ground. You should see the Enemy touch detected message
in the console log window whenever our AI character gets close to our player's tank.

Figure 4.6 – Our player and tank in action

The previous screenshot shows an AI agent with touch and perspective senses looking
for an enemy aspect. Move the player's tank in front of the AI character, and you'll get
the Enemy detected message. If you go into the editor view while running the game,
you should see the rendered debug drawings thanks to the OnDrawGizmos method
implemented in the Sight sense class.

Summary
This chapter introduced the concept of using sensors in implementing game AI, and we
implemented two senses, Sight and Touch, for our AI character. The sensory system is
just the first element of the decision-making system of a whole AI system. For example, we
can use the sensory system to control the execution of a behavior system or change the state
of a Finite State Machine once we have detected an enemy within the AI's line of sight.

We will cover how to apply behavior tree systems in Chapter 9, Behavior Trees. In the
meantime, in the next chapter, we'll look at how to implement flocking behaviors in
Unity3D, as well as how to implement Craig Reynold's flocking algorithm.

Part 2:
Movement and

Navigation

In this part, we will learn how to make characters move and find paths through game
environments.

We will cover the following chapters in this part:

• Chapter 5, Flocking

• Chapter 6, Path Following and Steering Behaviors

• Chapter 7, A* Pathfinding

• Chapter 8, Navigation Mesh

5
Flocking

During early summer evenings, you have probably seen flocks of birds flying in the sky.
You have probably noted how they seem to move as a single living object: they all move
in a particular direction, turn around, and grow and shrink. A flocking system aims
to replicate this behavior in games: we want to implement an algorithm to move many
objects as an organic group.

In games, we call each element of a flock a boid. To implement a flocking behavior, we do
not need to equip each boid with a high-level complex decision-making system; instead,
all we need to do is implement simple reactive rules for each boid that depend only on the
state of the flock itself. Thus, flocking is an excellent example of emergent behavior: each
boid reacts exclusively to its neighbor's behaviors; nevertheless, the flock seems to move as
if someone were coordinating it.

In this chapter, we will learn what these rules are and how to implement them in Unity3D.
We will implement two variations of flocking in this chapter. The first one is based on an
old flocking behavior demo that has been circulating in the Unity community since since
the game engine was created.

The second variation is based on Craig Reynold's original flocking algorithm from 1986.

In this chapter, we will cover the following topics:

• An overview of basic flocking behavior and how to implement it

• An alternative implementation of flocking behavior

112 Flocking

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 5 folder in the book's repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter05.

Basic flocking behavior
As we said in the introduction to this chapter, we can describe a flocking behavior by
using just three intuitive properties:

• Separation: This property, also called short-range repulsion, represents the
minimum distance between neighboring boids to avoid collisions. You can imagine
this rule as a force that pushes a boid away from the others.

• Alignment: This property represents the likelihood for each boid to move in the
same direction as the flock (we measure this as the average direction of all the
individual boids).

• Cohesion: This property, also called long-range attraction, represents the likelihood
for each boid to move toward the center of mass of the flock (we measure this by
averaging the position of each boid in the flock). Thus, you can imagine this rule as
a force that pushes a boid toward the center of the flock.

In this demo, we will create a scene with flocks of objects and implement the flocking
behavior in C#. For this first version, we compute all the rules by ourselves. Also, we will
create a boid commander that leads the crowd to control and track the general position of
the flock easily.

You can see the Hierarchy scene in the following screenshot. As you can see,
we have several boid entities named UnityFlock, under a controller named
UnityFlockController. UnityFlock entities are individual boid objects that refer to their
parent UnityFlockController entity, using it as a leader. The controller updates the next
destination point randomly once it reaches the current destination point:

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter05

Basic flocking behavior 113

Figure 5.1 – The scene hierarchy

UnityFlock is a prefab with just a cube mesh and a UnityFlock script. We can use
any other mesh representation for this prefab to represent something more interesting,
such as birds. You can add as many UnityFlock prefabs as you like. The algorithm will
automatically check the number of children in the UnityFlockController object.

Individual behavior
Boid is a term coined by Craig Reynold that refers to bird-like objects. We use this term
to describe each object in our flock. The boid behaviour consists of a group of objects,
each having their individual position, velocity, and orientation. Now, let's implement
the boid behavior. You can find the behavior that controls each boid in the flock in the
UnityFlock.cs script, which we'll examine now:

using UnityEngine;

using System.Collections;

public class UnityFlock : MonoBehaviour {

 public float minSpeed = 20.0f;

 public float turnSpeed = 20.0f;

 public float randomFreq = 20.0f;

114 Flocking

 public float randomForce = 20.0f;

 //alignment variables

 public float toOriginForce = 50.0f;

 public float toOriginRange = 100.0f;

 public float gravity = 2.0f;

 //seperation variables

 public float avoidanceRadius = 50.0f;

 public float avoidanceForce = 20.0f;

 //cohesion variables

 public float followVelocity = 4.0f;

 public float followRadius = 40.0f;

 //these variables control the movement of the boid

 private Transform origin;

 private Vector3 velocity;

 private Vector3 normalizedVelocity;

 private Vector3 randomPush;

 private Vector3 originPush;

 private Transform[] objects;

 private UnityFlock[] otherFlocks;

 private Transform transformComponent;

 private float randomFreqInterval;

As public fields, we declare the input values for our algorithm. These can be set up and
customized from within the Inspector. In this script, we perform the following operations:

1. We define the minimum movement speed (minSpeed) and rotation speed
(turnSpeed) for our boid.

2. We use randomFreq to determine how many times we want to update the
randomPush value, based on the randomForce value. Then, we use this force to
vary the single boid's velocity and make the flock's movement look more realistic.

Basic flocking behavior 115

3. toOriginRange specifies how much we want the flock to spread out. In other
words, it represents the maximum distance from the flock's origin in which we want
to maintain the boids (following the previously mentioned cohesion rule). We use the
avoidanceRadius and avoidanceForce properties to maintain a minimum
distance between individual boids (following the separation rule). Similarly, we use
followRadius and followVelocity to keep a minimum distance between
the leader or origin of the flock. The origin variable stores the parent object
that controls the entire flock; in other words, it is the flock leader. The boids need
to know about the other boids in the flock. Therefore, we use the objects and
otherFlocks attributes to store the neighboring boid's information.

This is the initialization method for our boid:

void Start () {

 randomFreqInterval = 1.0f / randomFreq;

 // Assign the parent as origin

 origin = transform.parent;

 // Flock transform

 transformComponent = transform;

 // Temporary components

 Component[] tempFlocks= null;

 // Get all the unity flock components from the parent

 // transform in the group

 if (transform.parent) {

 tempFlocks = transform.parent

 .GetComponentsInChildren<UnityFlock>();

 }

 // Assign and store all the flock objects in this group

 objects = new Transform[tempFlocks.Length];

 otherFlocks = new UnityFlock[tempFlocks.Length];

 for (int i = 0;i<tempFlocks.Length;i++) {

 objects[i] = tempFlocks[i].transform;

 otherFlocks[i] = (UnityFlock)tempFlocks[i];

116 Flocking

 }

 // Null Parent as the flock leader will be

 // UnityFlockController object

 transform.parent = null;

 // Calculate random push depends on the random

 // frequency provided

 StartCoroutine(UpdateRandom());

}

We set the parent of the object of our boid as origin, meaning that this is the controller
object for the other boids to follow. Then, we grab all the other boids in the group and
store them in the otherFlocks attribute for later reference.

Coroutines
Put simply, coroutines are functions that can be paused. With coroutines,
you can run a method, pause the execution for a desired amount of time
(for example, a single frame or several seconds), and then continue from the
following line as if nothing happened. They have two primary use cases: to run
a function after a specific interval (without keeping track of every frame of
elapsedTimes, as we did in other examples) or to split the computation
of some heavy algorithm over multiple frames (and, therefore, not incur in
frame drops). Coroutines, it turns out, are a pretty helpful tool to master.
You can read more at https://docs.unity3d.com/Manual/
Coroutines.html.

Now, we can implement the UpdateRandom coroutine. As a coroutine, the function
never actually terminates, but we run the body of the while loop for each random
time interval:

1. We define the UpdateRandom method as a coroutine by specifying the
IEnumerator return type:

IEnumerator UpdateRandom() {

 while (true) {

 randomPush =

 Random.insideUnitSphere * randomForce;

 yield return new WaitForSeconds(

 randomFreqInterval + Random.Range(

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html

Basic flocking behavior 117

 -randomFreqInterval / 2.0f,

 randomFreqInterval / 2.0f));

 }

}

2. The UpdateRandom() method updates the randomPush value throughout the
game with an interval based on randomFreq. Random.insideUnitSphere
returns a Vector3 object with random x, y, and z values within a sphere, with a
radius of the randomForce value.

3. We wait for a certain random amount of time before resuming while(true).
4. Loop to update the randomPush value again.
5. Now, here is our boid behavior's Update() method, which helps the boid entity

comply with the three rules of the flocking algorithm:

void Update() {

 //Internal variables

 float speed = velocity.magnitude;

 Vector3 avgVelocity = Vector3.zero;

 Vector3 avgPosition = Vector3.zero;

 int count = 0;

 Vector3 myPosition =

 transformComponent.position;

 Vector3 forceV;

 Vector3 toAvg;

 for (int i = 0; i < objects.Length; i++) {

 Transform boidTransform = objects[i];

 if (boidTransform != transformComponent) {

 Vector3 otherPosition =

 boidTransform.position;

 // Average position to calculate

 // cohesion

 avgPosition += otherPosition;

 count++;

118 Flocking

 //Directional vector from other flock

 // to this flock

 forceV = myPosition - otherPosition;

 //Magnitude of that directional

 //vector(Length)

 float directionMagnitude =

 forceV.magnitude;

 float forceMagnitude = 0.0f;

 if (directionMagnitude < followRadius)

 {

 if (directionMagnitude <

 avoidanceRadius) {

 forceMagnitude = 1.0f –

 (directionMagnitude /

 avoidanceRadius);

 if (directionMagnitude > 0)

 avgVelocity += (forceV /

 directionMagnitude) *

 forceMagnitude *

 avoidanceForce;

 }

 forceMagnitude =

 directionMagnitude /

 followRadius;

 UnityFlock tempOtherBoid =

 otherFlocks[i];

 avgVelocity += followVelocity *

 forceMagnitude *

 tempOtherBoid.normalizedVelocity;

 }

 }

 }

Basic flocking behavior 119

The preceding code implements the separation rule. First, we check the distance
between the current boid and the other boids, and then we update the velocity
accordingly, as explained in the comments in the preceding code block.

6. We now calculate the average velocity vector of the flock by dividing the current
velocity vector by the number of boids in the flock:

 if (count > 0) {

 //Calculate the average flock

 //velocity(Alignment)

 avgVelocity /= count;

 //Calculate Center value of the

 //flock(Cohesion)

 toAvg = (avgPosition / count) –

 myPosition;

 } else {

 toAvg = Vector3.zero;

 }

 //Directional Vector to the leader

 forceV = origin.position - myPosition;

 float leaderDirectionMagnitude =

 forceV.magnitude;

 float leaderForceMagnitude =

 leaderDirectionMagnitude / toOriginRange;

 //Calculate the velocity of the flock to the

 //leader

 if (leaderDirectionMagnitude > 0)

 originPush = leaderForceMagnitude *

 toOriginForce * (forceV /

 leaderDirectionMagnitude);

 if (speed < minSpeed && speed > 0) {

 velocity = (velocity / speed) * minSpeed;

 }

120 Flocking

 Vector3 wantedVel = velocity;

 //Calculate final velocity

 wantedVel -= wantedVel * Time.deltaTime;

 wantedVel += randomPush * Time.deltaTime;

 wantedVel += originPush * Time.deltaTime;

 wantedVel += avgVelocity * Time.deltaTime;

 wantedVel += gravity * Time.deltaTime *

 toAvg.normalized;

 velocity = Vector3.RotateTowards(velocity,

 wantedVel, turnSpeed * Time.deltaTime,

 100.00f);

 transformComponent.rotation =

 Quaternion.LookRotation(velocity);

 //Move the flock based on the calculated

 //velocity

 transformComponent.Translate(velocity *

 Time.deltaTime, Space.World);

 normalizedVelocity = velocity.normalized;

 }

7. We add up all the factors, such as randomPush, originPush, and
avgVelocity, to calculate the final target velocity vector, wantedVel. We also
update the current velocity to wantedVel with a linear interpolation by using the
Vector3.RotateTowards method.

8. We move our boid based on the new velocity using the Translate method.

Basic flocking behavior 121

9. As a final touch, we create a cube mesh, to which we add the UnityFlock script,
and then save it as a prefab, as shown in the following screenshot:

Figure 5.2 – The UnityFlock prefab

122 Flocking

Controller
Now, it is time to create the controller class. This class updates its position so that the
other individual boid objects know where to go. The origin variable in the preceding
UnityFlock script contains a reference to this object.

The following is the code in the UnityFlockController.cs file:

using UnityEngine;

using System.Collections;

public class UnityFlockController : MonoBehaviour {

 public Vector3 bound;

 public float speed = 100.0f;

 public float targetReachedRadius = 10.0f;

 private Vector3 initialPosition;

 private Vector3 nextMovementPoint;

 // Use this for initialization

 void Start () {

 initialPosition = transform.position;

 CalculateNextMovementPoint();

 }

 // Update is called once per frame

 void Update () {

 transform.Translate(Vector3.forward * speed *

 Time.deltaTime);

 transform.rotation =

 Quaternion.Slerp(transform.rotation,

 Quaternion.LookRotation(nextMovementPoint –

 transform.position), 1.0f * Time.deltaTime);

 if (Vector3.Distance(nextMovementPoint,

 transform.position) <= targetReachedRadius)

 CalculateNextMovementPoint();

 }

Basic flocking behavior 123

In the Update() method, we check whether our controller object is near the target
destination point. If it is, we update the nextMovementPoint variable again with the
CalculateNextMovementPoint() method that we just discussed:

void CalculateNextMovementPoint () {

 float posX = Random.Range(initialPosition.x - bound.x,

 initialPosition.x + bound.x);

 float posY = Random.Range(initialPosition.y - bound.y,

 initialPosition.y + bound.y);

 float posZ = Random.Range(initialPosition.z - bound.z,

 initialPosition.z + bound.z);

 nextMovementPoint = initialPosition + new Vector3(posX,

 posY, posZ);

}

The CalculateNextMovementPoint() method finds the next random destination
position in a range between the current position and the boundary vectors.

Finally, we put all of this together, as shown in Figure 5.1, which should give you flocks of
squares flying around realistically in the sunset:

Figure 5.3 – A demonstration of the flocking behavior using the Unity seagull sample

The previous example gave you the basics of flocking behaviors. In the next section, we will
explore a different implementation that makes use of Unity's Rigidbody component.

124 Flocking

Alternative implementation
In this section, we use the Unity physics engine to simplify the code a bit. In fact, in
this example, we attach a Rigidbody component to the boids to use the Rigidbody
properties to translate and steer them. In addition, the Rigidbody component is also
helpful in preventing the other boids from overlapping with each other.

In this implementation, we have two components: the individual boid behavior and the
controller behavior (the element referred to as the flock controller in the previous section).
As before, the controller is the object that the rest of the boids follow.

The code in the Flock.cs file is as follows:

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class Flock : MonoBehaviour {

 internal FlockController controller;

 private new Rigidbody rigidbody;

 private void Start() {

 rigidbody = GetComponent<Rigidbody>();

 }

 void Update () {

 if (controller) {

 Vector3 relativePos = Steer() * Time.deltaTime;

 if (relativePos != Vector3.zero)

 rigidbody.velocity = relativePos;

 // enforce minimum and maximum speeds for the

 // boids

 float speed = rigidbody.velocity.magnitude;

 if (speed > controller.maxVelocity) {

 rigidbody.velocity =

 rigidbody.velocity.normalized *

 controller.maxVelocity;

Alternative implementation 125

 } else if (speed < controller.minVelocity) {

 rigidbody.velocity =

 rigidbody.velocity.normalized *

 controller.minVelocity;

 }

 }

 }

We will create FlockController in a moment. In the meantime, in the Update()
method in the previous code block, we calculate the boid's velocity using the Steer()
method and apply the result to the boid's rigid-body velocity.

Next, we check whether the current speed of the Rigidbody component falls inside our
controller's maximum and minimum velocity ranges. If not, we cap the velocity at the
preset range:

private Vector3 Steer () {

 Vector3 center = controller.flockCenter –

 transform.localPosition; // cohesion

 Vector3 velocity = controller.flockVelocity –

 rigidbody.velocity; // allignement

 Vector3 follow = controller.target.localPosition –

 transform.localPosition; // follow leader

 Vector3 separation = Vector3.zero;

 foreach (Flock flock in controller.flockList) {

 if (flock != this) {

 Vector3 relativePos = transform.localPosition -

 flock.transform.localPosition;

 separation += relativePos.normalized;

 }

 }

 // randomize

126 Flocking

 Vector3 randomize = new Vector3((Random.value * 2) –

 1, (Random.value * 2) - 1, (Random.value * 2) - 1);

 randomize.Normalize();

 return (controller.centerWeight * center +

 controller.velocityWeight * velocity +

 controller.separationWeight * separation +

 controller.followWeight * follow +

 controller.randomizeWeight * randomize);

}

The steer() method implements the separation, cohesion, alignment, and follows
the leader rules of the flocking algorithm. Then, we add up all the factors with a
random weight value. We use this Flock script together with the Rigidbody and
SphereCollider components to create a Flock prefab, as shown in the following
screenshot (make sure to disable the gravity by unchecking Use Gravity):

Figure 5.4 – Flock

It is now time to implement the final piece of the puzzle: the FlockController
component.

Alternative implementation 127

FlockController
This FlockController component is similar to the one in the previous example. In
addition to controlling the flock's speed and position, this script also instantiates the boids
at runtime:

1. The code in the FlockController.cs file is as follows:

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class FlockController : MonoBehaviour {

 public float minVelocity = 1;

 public float maxVelocity = 8;

 public int flockSize = 20;

 public float centerWeight = 1;

 public float velocityWeight = 1;

 public float separationWeight = 1;

 public float followWeight = 1;

 public float randomizeWeight = 1;

 public Flock prefab;

 public Transform target;

 Vector3 flockCenter;

 internal Vector3 flockVelocity;

 public ArrayList flockList = new ArrayList();

 void Start () {

 for (int i = 0; i < flockSize; i++) {

 Flock flock = Instantiate(prefab,

 transform.position, transform.rotation)

 as Flock;

 flock.transform.parent = transform;

 flock.controller = this;

 flockList.Add(flock);

128 Flocking

 }

 }

2. We declare all the public properties to implement the flocking algorithm and then
start generating the boid objects based on the flock size input.

3. We set up the controller class and the parent Transform object, as we did last
time.

4. We add every boid object we create to the flockList array. The target variable
accepts an entity to be used as a moving leader. In this example, we create a sphere
entity as a moving target leader for our flock:

 void Update() {

 //Calculate the Center and Velocity of the

 // whole flock group

 Vector3 center = Vector3.zero;

 Vector3 velocity = Vector3.zero;

 foreach (Flock flock in flockList) {

 center +=

 flock.transform.localPosition;

 velocity += flock.GetComponent

 <Rigidbody>().velocity;

 }

 flockCenter = center / flockSize;

 flockVelocity = velocity / flockSize;

 }

}

5. In the Update method, we keep updating the average center and velocity of the
flock. These are the values referenced from the boid object and are used to adjust
the cohesion and alignment properties with the controller:

Alternative implementation 129

Figure 5.5 – Flock Controller
We need to implement our Target entity with the Target Movement (Script).
The movement script is the same as what we saw in our previous Unity3D sample
controller's movement script:

Figure 5.6 – The Target entity with the TargetMovement script

130 Flocking

6. Here is how our TargetMovement script works: we pick a random point nearby
for the target to move to, and when we get close to that point, we pick a new one.
The code in the TargetMovement.cs file is as follows:

using UnityEngine;

using System.Collections;

public class TargetMovement : MonoBehaviour {

 // Move target around circle with tangential speed

 public Vector3 bound;

 public float speed = 100.0f;

 public float targetReachRadius = 10.0f;

 private Vector3 initialPosition;

 private Vector3 nextMovementPoint;

 void Start () {

 initialPosition = transform.position;

 CalculateNextMovementPoint();

 }

 void CalculateNextMovementPoint () {

 float posX = Random.Range(initialPosition.x =

 bound.x, initialPosition.x+bound.x);

 float posY = Random.Range(initialPosition.y =

 bound.y, initialPosition.y+bound.y);

 float posZ = Random.Range(initialPosition.z =

 bound.z, initialPosition.z+bound.z);

 nextMovementPoint = initialPosition +

 new Vector3(posX, posY, posZ);

 }

 void Update () {

 transform.Translate(Vector3.forward * speed *

 Time.deltaTime);

Alternative implementation 131

 transform.rotation =

 Quaternion.Slerp(transform.rotation,

 Quaternion.LookRotation(nextMovementPoint –

 transform.position), Time.deltaTime);

 if (Vector3.Distance(nextMovementPoint,

 transform.position) <= targetReachRadius)

 CalculateNextMovementPoint();

 }

}

7. After we put everything together, we should see a nice flock of cubic boids flying
around in the scene, all chasing the spheric target:

Figure 5.7 – Flocking with Craig Reynold's algorithm

Now that we have implemented flocking behavior in two different ways, we can
experiment with different parameters and tweak the boids' behavior until we find a
movement we like. I want to conclude this chapter with an important takeaway: note that
we do not need complex algorithms to have a natural-looking behavior. For that, we just
need simple reactive rules and a way to combine them.

132 Flocking

Summary
In this chapter, we learned how to implement flocking behaviors in two ways. First, we
examined and learned how to implement a basic flocking algorithm using nothing other
than our scripts. Next, we implemented the same algorithm using Unity's Rigidbody
component to control the boid's movement and Sphere Collider to avoid collision with
other boids.

In our example, we always referred to boids as bird-like entities. However, we can use
flocking for many other applications: fishes swimming in the sea, sheep grazing on a
plane, a swarm of insects, and even groups of people walking on the street can show
flocking behavior. To adapt the algorithm to different scenarios, we just need to change
the flocking rules' values and eventually lock the movement to a plane.

In the next chapter, we will go beyond random movement and look at how to follow a
specific path. This is the first step toward learning how to avoid obstacles that are in
your way.

6
Path Following and
Steering Behaviors

In this short chapter, we will implement two Unity3D demos to explore steering
behaviors. In the first demo, we will implement a script to make an entity follow a simple
path. In the second demo, we will set up a scene with a couple of obstacles and program
an entity to reach a target while avoiding the obstacles.

Obstacle avoidance is a fundamental behavior for game characters when moving around
and interacting with the game world. However, obstacle avoidance is generally used with
other navigation systems (such as pathfinding or crowd simulations). In this chapter, we
will use the systems to make sure that we avoid the other agents and reach the target. We
will not talk about how fast the character will reach a destination, and we will not calculate
the shortest path to the target, as we'll talk about these in the next chapter.

In this chapter, we'll look at the following two fundamental aspects of movement:

• Following a path

• Avoiding obstacles

134 Path Following and Steering Behaviors

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 6 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter06.

Following a path
A path is a sequence of points in the game, connecting a point A to a point B. There are
many ways to build a path. Usually, a path is generated by other game systems such as
pathfinding (see Chapter 7, A* Pathfinding); however, in our demo, we construct the path
by hand using waypoints. So first, we write a Path.cs script that takes a list of game
objects as waypoints and create a path out of them.

Path script
Let's look at the path script responsible for managing the path for our objects. Consider
the following code in the Path.cs file:

using UnityEngine;

public class Path : MonoBehaviour {

 public bool isDebug = true;

 public Transform[] waypoints;

 public float Length {

 get {

 return waypoints.Length;

 }

 }

 public Vector3 GetPoint(int index) {

 return waypoints[index].position;

 }

 void OnDrawGizmos() {

 if (!isDebug)

 return;

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter06

Following a path 135

 for (int i = 1; i < waypoints.Length; i++) {

 Debug.DrawLine(waypoints[i-1].position,

 waypoints[i].position, Color.red);

 }

 }

}

As you can see, that is a straightforward script. It has a Length property that returns
the number of waypoints. The GetPoint method returns the position of a particular
waypoint at a specified index in the array. Then, we have the OnDrawGizmos method
called by the Unity3D frame to draw components in the editor environment. The drawing
here won't be rendered in the game view unless the gizmos flag, located in the top right
corner, is turned on.

Figure 6.1 – The gizmos visibility option in the Editor view

Now let's create the scene. Create an empty Path game object and attach to it the Path
script. Then, let's add to it some empty game objects as children. They will be the
waypoints markers.

Figure 6.2 – Here is how we organize the Hierarchy

136 Path Following and Steering Behaviors

Select the Path object. We now have to fill the Waypoints array in the Inspector with the
actual waypoint markers. As usual, we can do this by dragging and dropping the game
objects from the Hierarchy to the Inspector.

Figure 6.3 – The Path script configuration in the Inspector

The preceding list shows the Waypoints in the example project. However, you can move
the waypoints around in the editor, use the same waypoint multiple times, or whatever
else you like.

The other property is a checkbox to enable the debug mode and the waypoint radius.
If we enable the debug mode property, Unity draws the path formed by connecting the
waypoints as a gizmo in the editor view as shown in Figure 6.4.

Figure 6.4 – The path's gizmo is drawn in the editor view

Following a path 137

Now that we have a path, we need to design a character that can follow it. We do that in
the following section.

Path-following agents
For this demo, the main character is represented by a brave and valiant cube. But, of
course, the same script applies to whatever 3D models you want.

Let's start by creating a VehicleFollowing script. The script takes a couple of
parameters: the first is the reference to the path object it needs to follow (the Path
variable); then, we have the Speed and Mass properties, which we need to calculate the
character's velocity over time. Finally, if checked, the Is Looping flag instructs the entity
to follow the path continuously in a closed loop.

Let's take a look at the following code in the VehicleFollowing.cs file:

using UnityEngine;

public class VehicleFollowing : MonoBehaviour {

 public Path path;

 public float speed = 10.0f;

 [Range(1.0f, 1000.0f)]

 public float steeringInertia = 100.0f;

 public bool isLooping = true;

 public float waypointRadius = 1.0f;

 //Actual speed of the vehicle

 private float curSpeed;

 private int curPathIndex = 0;

 private float pathLength;

 private Vector3 targetPoint;

 Vector3 velocity;

138 Path Following and Steering Behaviors

First, we specify all the script properties. Then, we initialize the properties and set up the
starting direction of our velocity vector using the entity's forward vector. We do this in the
Start method, as shown in the following code:

void Start () {

 pathLength = path.Length;

 velocity = transform.forward;

}

In this script, there are only two methods that are really important: the Update and
Steer methods. Let's take a look at the first one:

 void Update() {

 //Unify the speed

 curSpeed = speed * Time.deltaTime;

 targetPoint = path.GetPoint(curPathIndex);

 //If reach the radius of the waypoint then move to

 //next point in the path

 if (Vector3.Distance(transform.position,

 targetPoint) < waypointRadius) {

 //Don't move the vehicle if path is finished

 if (curPathIndex < pathLength - 1)

 curPathIndex++;

 else if (isLooping)

 curPathIndex = 0;

 else

 return;

 }

 //Move the vehicle until the end point is reached

 //in the path

 if (curPathIndex >= pathLength)

 return;

 //Calculate the next Velocity towards the path

 if (curPathIndex >= pathLength - 1 && !isLooping)

Following a path 139

 velocity += Steer(targetPoint, true);

 else

 velocity += Steer(targetPoint);

 //Move the vehicle according to the velocity

 transform.position += velocity;

 //Rotate the vehicle towards the desired Velocity

 transform.rotation =

 Quaternion.LookRotation(velocity);

 }

In the Update method, we check whether the entity has reached a particular waypoint by
calculating if the distance between its current position and the target waypoint is smaller
than the waypoint's radius. If it is, we increase the index, setting in this way the target
position to the next waypoint in the waypoints array. If it was the last waypoint, we check
the isLooping flag.

If it is active, we set the destination to the starting waypoint; otherwise, we stop. An
alternative solution is to program it so that our object turns around and goes back the way
it came. Implementing this behavior is not a difficult task, so we leave this to the reader as
a helpful practice exercise.

Now, we calculate the acceleration and rotation of the entity using the Steer method.
In this method, we rotate and update the entity's position according to the speed and
direction of the velocity vector:

 public Vector3 Steer(Vector3 target, bool bFinalPoint =

 false) {

 //Calculate the directional vector from the current

 //position towards the target point

 Vector3 desiredVelocity =

 (target - transform.position);

 float dist = desiredVelocity.magnitude;

 //Normalize the desired Velocity

 desiredVelocity.Normalize();

 //

 if (bFinalPoint && dist < waypointRadius)

 desiredVelocity *=

140 Path Following and Steering Behaviors

 curSpeed * (dist / waypointRadius);

 else

 desiredVelocity *= curSpeed;

 //Calculate the force Vector

 Vector3 steeringForce = desiredVelocity - velocity;

 return steeringForce / steeringInertia;

 }

}

The Steer method takes two parameters: the target position and a boolean, which tells us
whether this is the final waypoint in the path. As first, we calculate the remaining distance
from the current position to the target position. Then we subtract the current position
vector from the target position vector to get a vector pointing toward the target position.
We are not interested in the vector's size, just in its direction, so we normalize it.

Now, suppose we are moving to the final waypoint, and its distance from us is less than
the waypoint radius. In that case, we want to slow down gradually until the velocity
becomes zero precisely at the waypoint position so that the character correctly stops in
place. Otherwise, we update the target velocity with the desired maximum speed value.
Then, in the same way as before, we can calculate the new steering vector by subtracting
the current velocity vector from this target velocity vector. Finally, by dividing this vector
by the steering inertia value of our entity, we get a smooth steering (note that the minimal
value for the steering inertia is 1, corresponding to instantaneous steering).

Now that we have a script, we can create an empty Cube object and put it at the beginning
of the path. Then, we add the VehicleFollowing script component to it, as shown in
the following screenshot:

Figure 6.5 – The properties of the VehicleFollowing script

Avoiding obstacles 141

You should see our cubic character follow the path if you run the scene. You can also see
the path in the editor view. Play around with the speed and steering inertia values of the
cube and radius values of the path, and see how they affect the system's overall behavior.

Avoiding obstacles
In this section, we explore obstacle avoidance. As a first step, we need, of course, obstacles.
So, we set up a scene similar to the one shown in Figure 6.6. Then, we create a script for
the main character to avoid obstacles while trying to reach the target point. The algorithm
presented here uses the raycasting method, which is very straightforward. However, this
means it can only avoid obstacles that are blocking its path directly in front of it:

Figure 6.6 – A sample scene setup

142 Path Following and Steering Behaviors

We make a few cube entities and group them under an empty game object called
Obstacles to create the environment. We also create another cube object called
Vehicle and give it the obstacle avoidance script. Finally, we create a plane object
representing the ground.

Figure 6.7 – Here is the structure of the scene's Hierarchy

It is worth noting that the Vehicle object does not perform pathfinding, that is, the active
search for a path to the destination. Instead, it only avoids obstacles locally as it follows
the path. Roughly speaking, it is the difference between you planning a path from your
home to the mall, and avoiding the possible people and obstacles you may find along the
path. As such, if we set too many walls up, the Vehicle might have a hard time finding the
target: for instance, if the Agent ends up facing a dead-end in a U-shaped object, it may
not be able to get out. Try a few different wall setups and see how your agent performs.

Avoiding obstacles 143

Adding a custom layer
We now add a custom layer to the Obstacles object:

1. To add a new layer, navigate to Edit | Project Settings:

Figure 6.8 – The Project Settings

2. Go to the Tags and Layer section.
3. Assign the name Obstacles to User Layer 8.

144 Path Following and Steering Behaviors

4. We then go back to our cube entity and set its Layers property to Obstacles:

Figure 6.9 – Creating a new layer

5. When we use raycasting to detect obstacles, we check for those entities, but only on
this layer. This way, the physics system can ignore objects hit by a ray that are not an
obstacle, such as bushes or vegetation:

Figure 6.10 – Assigning our new layer

6. For larger projects, our game objects probably already have a layer assigned to them.
As such, instead of changing the object's layer to Obstacles, we would instead make
a list of layers for our cube entity to use when detecting obstacles. We will talk more
about this in the next section.

Avoiding obstacles 145

Info
In games, we use layers to let cameras render only a part of the scene or have
lights illuminate only a subset of the objects. However, layers can also be used
by raycasting to ignore colliders selectively or to create collisions. You can
learn more about this at https://docs.unity3d.com/Manual/
Layers.html.

Obstacle avoidance
Now, it is time to code the script that makes the cube entity avoid the walls. As usual, we
first initialize our entity script with the default properties. Here, we also draw GUI text in
our OnGUI method. Let's take a look at the following code in the VehicleAvoidance.
cs file:

using UnityEngine;

public class VehicleAvoidance : MonoBehaviour {

 public float vehicleRadius = 1.2f;

 public float speed = 10.0f;

 public float force = 50.0f;

 public float minimumDistToAvoid = 10.0f;

 public float targetReachedRadius = 3.0f;

 //Actual speed of the vehicle

 private float curSpeed;

 private Vector3 targetPoint;

 // Use this for initialization

 void Start() {

 targetPoint = Vector3.zero;

 }

 void OnGUI() {

 GUILayout.Label("Click anywhere to move the vehicle

 to the clicked point");

 }

https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/Layers.html

146 Path Following and Steering Behaviors

Then, in the Update method, we update the Agent entity's position and rotation based on
the direction vector returned by the AvoidObstacles method:

 void Update() {

 //Vehicle move by mouse click

 var ray = Camera.main.ScreenPointToRay(

 Input.mousePosition);

 if (Input.GetMouseButtonDown(0) &&

 Physics.Raycast(ray, out var hit, 100.0f)) {

 targetPoint = hit.point;

 }

 //Directional vector to the target position

 Vector3 dir = (targetPoint - transform.position);

 dir.Normalize();

 //Apply obstacle avoidance

 AvoidObstacles(ref dir);

}

The first thing we do in the Update method is to retrieve the position of the mouse-click.
Then, we use this position to determine the desired target position of our character. To get
the mouse-click position, we shoot a ray from the camera in the direction it's facing. Then,
we take the point where the ray hits the ground plane as the target position.

Once we get the target position, we can calculate the direction vector by subtracting
the current position vector from the target position vector. Then, we call the
AvoidObstacles method passing this direction to it:

 public void AvoidObstacles(ref Vector3 dir) {

 //Only detect layer 8 (Obstacles)

 int layerMask = 1 << 8;

 //Check that the vehicle hit with the obstacles

 //within it's minimum distance to avoid

 if (Physics.SphereCast(transform.position,

Avoiding obstacles 147

 vehicleRadius, transform.forward, out var hit,

 minimumDistToAvoid, layerMask)) {

 //Get the normal of the hit point to calculate

 //the new direction

 Vector3 hitNormal = hit.normal;

 //Don't want to move in Y-Space

 hitNormal.y = 0.0f;

 //Get the new directional vector by adding

 //force to vehicle's current forward vector

 dir = transform.forward + hitNormal * force;

 }

 }

The AvoidObstacles method is also quite simple. Note that we use another very useful
Unity physics utility: a SphereCast. A SphereCast is similar to the Raycast but, instead of
detecting a collider by firing a dimensionless ray, it fires a chunky sphere. In practice, a
SphereCast gives width to the Raycast ray.

Why is this important? Because our character is not dimensionless. We want to be sure
that the entire body of the character can avoid the collision.

Another thing to note is that the SphereCast interacts selectively with the Obstacles layer
we specified at User Layer 8 in the Unity3D Tag Manager. The SphereCast method
accepts a layer mask parameter to determine which layers to ignore and consider during
raycasting. Now, if you look at how many layers you can specify in Tag Manager, you'll
find a total of 32 layers.

Therefore, Unity3D uses a 32-bit integer number to represent this layer mask parameter.
For example, the following would represent a zero in 32 bits:

0000 0000 0000 0000 0000 0000 0000 0000

By default, Unity3D uses the first eight layers as built-in layers. So, when you use a Raycast
or a SphereCast without using a layer mask parameter, it detects every object in those
eight layers. We can represent this interaction mask with a bitmask, as follows:

0000 0000 0000 0000 0000 0000 1111 1111

148 Path Following and Steering Behaviors

In this demo, we set the Obstacles layer as layer 8 (9th index). Because we only want to
detect obstacles in this layer, we want to set up the bitmask in the following way:

0000 0000 0000 0000 0000 0001 0000 0000

The easiest way to set up this bitmask is by using the bit shift operators. We only need to
place the on bit, 1, at the 9th index, which means we can just move that bit eight places to
the left. So, we use the left shift operator to move the bit eight places to the left, as shown
in the following code:

int layerMask = 1<<8;

If we wanted to use multiple layer masks, say, layer 8 and layer 9, an easy way would be to
use the bitwise OR operator, as follows:

int layerMask = (1<<8) | (1<<9);

Info
You can also find a good discussion on using layer masks on Unity3D's
online resources. The question and answer site can be found at http://
answers.unity3d.com/questions/8715/how-do-i-use-
layermasks.html.

Once we have the layer mask, we call the Physics.SphereCast method from
the current entity's position and in the forward direction. We use a sphere of radius
vehicleRadius (make sure that is big enough to contain the cubic vehicle in its
entirety) and a detection distance defined by the minimumDistToAvoid variable. In
fact, we want to detect only the objects that are close enough to affect our movement.

Then, we take the normal vector of the hit ray, multiply it with the force vector, and add
it to the current direction of the entity to get the new resultant direction vector, which we
return from this method:

http://answers.unity3d.com/questions/8715/how-do-i-use-layermasks.html
http://answers.unity3d.com/questions/8715/how-do-i-use-layermasks.html
http://answers.unity3d.com/questions/8715/how-do-i-use-layermasks.html

Avoiding obstacles 149

Figure 6.11 – How our cube entity avoids a wall

Then, in the Update method, we use this new direction to rotate the AI entity and update
the position according to the speed value:

 void Update () {

 //...

 //Don't move the vehicle when the target point is

 //reached

 if (Vector3.Distance(targetPoint,

 transform.position) < targetReachedRadius)

 return;

 //Assign the speed with delta time

 curSpeed = speed * Time.deltaTime;

 //Rotate the vehicle to its target directional

 //vector

 var rot = Quaternion.LookRotation(dir);

 transform.rotation =

 Quaternion.Slerp(transform.rotation, rot, 5.0f *

 Time.deltaTime);

 //Move the vehicle towards

150 Path Following and Steering Behaviors

 transform.position += transform.forward * curSpeed;

 transform.position = new Vector3(

 transform.position.x, 0, transform.position.z);

 }

Now, we only need to attach this new script to the Vehicle object (this can be a simple
cube as in the previous example). Remember that this new script needs to replace the
VehicleFollowing script we implemented in the previous section.

Figure 6.12 – Properties of our Vehicle Avoidance script

If everything is correct, you should be able to see the vehicle navigate across the plane
around the obstacles without any trouble. As usual, play with the Inspector parameters to
tweak the vehicle behavior.

Summary
In this chapter, we set up two scenes and studied how to build path-following agents with
obstacle avoidance behavior. We learned about the Unity3D layer feature and how to use
Raycasts and SphereCasts against a particular layer selectively. Although these examples
were simple, we can apply these simple techniques to various scenarios. For instance, we can
set up a path along a road. We can easily set up a decent traffic simulation using some vehicle
models combined with obstacle avoidance behavior. Alternatively, you could just replace
them with biped characters and build a crowd simulation. You can also combine them with
some finite state machines to add more behaviors and make them more intelligent.

The simple obstacle avoidance behavior that we implemented in this chapter doesn't
consider the optimal path to reach the target position. Instead, it just goes straight to that
target, and only if an obstacle is seen within a certain distance does it try to avoid it. For
this reason, it's supposed to be used among moving or dynamic objects and obstacles.

In the following chapter, we'll study how to implement a pathfinding algorithm, called A*,
to determine the optimal path before moving, while still avoiding static obstacles.

7
A* Pathfinding

In this chapter, we will implement the A* algorithm in Unity3D using C#. The A*
pathfinding algorithm is widely used in games and interactive applications because of
its simplicity and effectiveness. We talked about this algorithm previously in Chapter 1,
Introduction to AI. However, here, we'll review the algorithm again, this time from an
implementation perspective.

In this chapter, we will look at the following topics:

• Revisiting the A* algorithm

• Implementing the A* algorithm

• Setting up the scene

• Testing the pathfinder

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 7 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter07.

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter07

152 A* Pathfinding

Revisiting the A* algorithm
Let's review the A* algorithm before we proceed to implement it in the next section. The
foundation of any pathfinding algorithm is a representation of the world. Pathfinding
algorithms cannot search over the noisy structure of polygons in the game map; instead,
we need to provide them with a simplified version of the world. Using this simplified
structure, we can identify the locations that an agent can traverse, as well as the
inaccessible ones.

There are many ways of doing this; however, for this example, we use one of the most
straightforward solutions: a 2D grid. Therefore, we implement the GridManager class
to convert the "real" map into a 2D tile representation. The GridManager class keeps
a list of Node objects representing a single tile in the 2D grid. First, of course, we need
to implement the Node class too: this class stores node information such as its position,
whether it's a traversable node or an obstacle, the cost to pass through, and the cost to
reach the target node.

Once we have a world representation, we implement an AStar class for the actual A*
pathfinding algorithm. The class is elementary; the FindPath method includes all the
work. The class has two variables to keep track of the already visited nodes and the nodes
that will be explored. We call these variables the closed list and open list, respectively. We
implement the open list with a PriorityQueue class because we want to get Node with
the lowest score as fast as possible.

Instead, the closed list wants a data structure that allows us to efficiently check whether it
contains a specific Node: usually, a data structure called a set is a good choice.

Finally, the A* pseudocode is outlined here:

1. First, the algorithm takes the starting node and puts it in the open list.
2. As long as the open list is not empty, the algorithm proceeds to perform the

following steps.
3. It picks the first node from the open list and defines it as the current node (of

course, we are assuming that we are using PriorityQueues for the open list).

Revisiting the A* algorithm 153

4. Then, it gets the neighboring nodes of this current node, excluding obstacle types
(such as a wall or canyon that can't be passed through). This step is usually called
expansion.

5. For each neighbor node in step 4, it checks whether it is already in the closed list.
If not, it calculates the total cost (F) for this neighbor node using the following
formula:

Here, G is the total cost from the starting node to this node (usually computed by
adding the cost of moving from parent to neighbor to the G value of the parent
node), and H is the estimated total cost from this node to the final target node. We
will go over the problem of estimating the cost in later sections.

6. The algorithm stores that cost data in the neighbor node object, and it assigns the
current node as the neighbor's parent node. Later, we use this parent node data to
trace back the starting node from the end node, thus reconstructing the actual path.

7. It puts this neighbor node in the open list. The open list is a priority queue ordered
by the F value; therefore, the first node in the open list is always the one with the
lowest F value.

8. If there are no more neighbor nodes to process, the algorithm puts the current node
in the closed list and removes it from the open list.

9. The algorithm goes back to step 2.

Once you have completed this algorithm, if there's an obstacle-free path to reach the
target node from the start node, your current node is precisely at the target node position.
Otherwise, this means that there's no available path to the target node from the current
node position.

When we get a valid path, we have to trace back from the current node using the parent
pointer until we reach the start node again. This procedure gives us a path listing all the
nodes we chose during our pathfinding process, ordered from the target node to the start
node. As a final step, we just reverse this path list and get the path in the proper order.

Next, we will implement A* in Unity3D using C#. So, let's get started.

154 A* Pathfinding

Implementing the A* algorithm
First, we implement the basic classes that we introduced before, such as the Node class,
the GridManager class, and the PriorityQueue class. Then, we use them in the main
AStar class.

Node
The Node class represents each tile object in the 2D grid. Its code is shown in the
Node.cs file:

using UnityEngine;

using System;

public class Node {

 public float costSoFar;

 public float fScore;

 public bool isObstacle;

 public Node parent;

 public Vector3 position;

 public Node(Vector3 pos) {

 fScore = 0.0f;

 costSoFar = 0.0f;

 isObstacle = false;

 parent = null;

 position = pos;

 }

 public void MarkAsObstacle() {

 isObstacle = true;

 }

Implementing the A* algorithm 155

The Node class stores every valuable property we need for finding a path. We are talking
about properties such as the cost from the starting point (costSoFar), the total
estimated cost from start to end (fScore), a flag to mark whether it is an obstacle, its
positions, and its parent node. costSoFar is G, which is the movement cost value
from the starting node to this node so far, and fScore is obviously F, which is the total
estimated cost from the start to the target node. We also have two simple constructor
methods and a wrapper method to set, depending on whether this node is an obstacle
or not. Then, we implement the Equals and GetHashCode methods, as shown in the
following code:

 public override bool Equals(object obj) {

 return obj is Node node &&

 position.Equals(node.position);

 }

 public override int GetHashCode() {

 return HashCode.Combine(position);

 }

}

These methods are important. In fact, even if the Node class has multiple attributes,
two nodes that represent the same position should be considered equal as far as the
search algorithm is concerned. The way to do that is to override the default Equals and
GetHashCode methods, as in the preceding example.

PriorityQueue
A priority queue is an ordered data structure designed so that the first element (the head)
of the list is always the smallest or largest element (depending on the implementation).
This data structure is the most efficient way to handle the nodes in the open list because,
as we will see later, we need to quickly retrieve the node with the lowest F value.

Unfortunately, there is no easy out-of-the-box way to have a suitable priority queue (at
least, until Unity supports .NET 6). The code we will use for this is shown in the following
NodePriorityQueue.cs class:

using System.Collections.Generic;

using System.Linq;

156 A* Pathfinding

public class NodePriorityQueue {

 private readonly List<Node> nodes = new();

 public int Length {

 get { return nodes.Count; }

 }

 public bool Contains(Node node) {

 return nodes.Contains(node);

 }

 public Node Dequeue() {

 if (nodes.Count > 0) {

 var result = nodes[0];

 nodes.RemoveAt(0);

 return result;

 }

 return null;

 }

 public void Enqueue(Node node) {

 if (nodes.Contains(node)) {

 var oldNode = nodes.First(n => n.Equals(node));

 if (oldNode.fScore <= node.fScore) {

 return;

 } else {

 nodes.Remove(oldNode);

 }

 }

 nodes.Add(node);

 nodes.Sort((n1, n2) => n1.fScore < n2.fScore ? -1 :

 1);

 }

}

Implementing the A* algorithm 157

This implementation is not particularly efficient because it relies on the Sort method
to reorder the internal list of nodes after each insertion. This means that inserting a
node becomes increasingly costly the more nodes we have in the queue. If you need
better performance, you can find many priority queue implementations designed for
A* and search algorithms (such as the one you can find at https://github.com/
BlueRaja/High-Speed-Priority-Queue-for-C-Sharp).

For now, though, our small NodePriorityQueue class will do its job nicely. The class
is self-explanatory. The only thing you need to pay attention to is the Enqueue method.
Before adding a new node, we need to check whether there is already a node with the
same position but a lower F-score. If there is, we do nothing (we already have a better
node in the queue). If not, this means that the new node we are adding is better than the
old one. Therefore, we can remove the old one to ensure that we only have the best node
possible for each position.

The GridManager class
The GridManager class handles the 2D grid representation for the world map. We
keep it as a singleton instance of the GridManager class, as we only need one object to
represent the map. A singleton is a programming pattern that restricts the instantiation
of a class to one object and, therefore, it makes the instance easily accessible from
any point of the application. The code for setting up GridManager is shown in the
GridManager.cs file.

1. The first part of the class implements the singleton pattern. We look for
the GridManager object in the scene and, if we find it, we store it in the
staticInstance static variable:

using UnityEngine;

using System.Collections.Generic;

public class GridManager : MonoBehaviour {

 private static GridManager staticInstance = null;

 public static GridManager instance {

 get {

 if (staticInstance == null) {

 staticInstance = FindObjectOfType(

 typeof(GridManager)) as GridManager;

 if (staticInstance == null)

https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp
https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp

158 A* Pathfinding

 Debug.Log("Could not locate an

 GridManager object. \n You have

 to have exactly one GridManager

 in the scene.");

 }

 return staticInstance;

 }

 }

 // Ensure that the instance is destroyed when the

 // game is stopped in the editor.

 void OnApplicationQuit() {

 staticInstance = null;

 }

2. Then, we declare all the variables that we need to represent our map. numOfRows
and numOfColumns store the number of rows and columns of the grid.
gridCellSize represents the size of each grid. obstacleEpsilon is the
margin for the system we will use to detect obstacles (more on that later).

3. Then we have two Boolean variables to enable or disable the debug visualization of
the grid and obstacles. Finally, we have a grid of nodes representing the map itself.
We also add two properties to get the grid's origin in world coordinates (Origin)
and the cost of moving from one tile to the other (StepCost). The final product is
shown in the following code:

 public int numOfRows;

 public int numOfColumns;

 public float gridCellSize;

 public float obstacleEpsilon = 0.2f;

 public bool showGrid = true;

 public bool showObstacleBlocks = true;

 public Node[,] nodes { get; set; }

 public Vector3 Origin {

 get { return transform.position; }

Implementing the A* algorithm 159

 }

 public float StepCost {

 get { return gridCellSize; }

 }

4. Now we need to build the grid. For this, we use the ComputeGrid method that we
call on Awake. The code is shown here:

 void Awake() {

 ComputeGrid();

 }

 void ComputeGrid() {

 //Initialise the nodes

 nodes = new Node[numOfColumns, numOfRows];

 for (int i = 0; i < numOfColumns; i++) {

 for (int j = 0; j < numOfRows; j++) {

 Vector3 cellPos =

 GetGridCellCenter(i,j);

 Node node = new(cellPos);

 var collisions =

 Physics.OverlapSphere(cellPos,

 gridCellSize / 2 - obstacleEpsilon,

 1 << LayerMask.NameToLayer(

 "Obstacles"));

 if (collisions.Length != 0) {

 node.MarkAsObstacle();

 }

 nodes[i, j] = node;

 }

 }

 }

160 A* Pathfinding

5. The ComputeGrid function follows a simple algorithm. First, we just initialize the
nodes grid. Then we start iterating over each square of the grid (represented by the
coordinates i and j). For each square, we do as follows:

I. First, we create a new node positioned at the center of the square (in
world coordinates).

II. Then, we check whether that square is occupied by an obstacle. We do this by
using the OverlapSphere function. This Physics function returns all the
colliders inside or intersecting the sphere defined in the parameters. In our
case, we center the sphere at the center of the grid's cell (cellPos) and we
define the sphere's radius as a bit less than the grid cell size. Note that we are
only interested in colliders in the Obstacles layer, therefore we need to add
the appropriate layer mask.

III. If the OverlapSphere function returns anything, this means that we have an
obstacle inside the cell and, therefore, we define the entire cell as an obstacle.

GridManager also has several helper methods to traverse the grid and get the grid cell
data. We show some of them in the following list, with a brief description of what they do.
The implementation is simple:

1. The GetGridCellCenter method returns the position of the grid cell in world
coordinates from the cell coordinates, as shown in the following code:

 public Vector3 GetGridCellCenter(int col, int row)

 {

 Vector3 cellPosition =

 GetGridCellPosition(col, row);

 cellPosition.x += gridCellSize / 2.0f;

 cellPosition.z += gridCellSize / 2.0f;

 return cellPosition;

 }

 public Vector3 GetGridCellPosition(int col, int

 row) {

 float xPosInGrid = col * gridCellSize;

 float zPosInGrid = row * gridCellSize;

 return Origin + new Vector3(xPosInGrid, 0.0f,

Implementing the A* algorithm 161

 zPosInGrid);

 }

2. The IsInBounds method checks whether a certain position in the game falls
inside the grid:

public bool IsInBounds(Vector3 pos) {

 float width = numOfColumns * gridCellSize;

 float height = numOfRows * gridCellSize;

 return (pos.x >= Origin.x && pos.x <= Origin.x +

 width && pos.x <= Origin.z + height && pos.z >=

 Origin.z);

}

3. The IsTraversable method checks whether a grid coordinate is traversable (that
is, it is not an obstacle):

 public bool IsTraversable(int col, int row) {

 return col >= 0 && row >= 0 && col <

 numOfColumns && row < numOfRows &&

 !nodes[col, row].isObstacle;

 }

4. Another important method is GetNeighbours, which is used by the AStar class
to retrieve the neighboring nodes of a particular node. This is done by obtaining
the grid coordinate of the node and then checking whether the four neighbors'
coordinates (up, down, left, and right) are traversable:

public List<Node> GetNeighbours(Node node) {

 List<Node> result = new();

 var (column, row) =

 GetGridCoordinates(node.position);

 if (IsTraversable(column – 1, row)) {

 result.Add(nodes[column – 1, row]);

 }

 if (IsTraversable(column + 1, row)) {

 result.Add(nodes[column + 1, row]);

 }

162 A* Pathfinding

 if (IsTraversable(column, row – 1)) {

 result.Add(nodes[column, row – 1]);

 }

 if (IsTraversable(column, row + 1)) {

 result.Add(nodes[column, row + 1]);

 }

 return result;

}

5. Finally, we have debug aid methods used to visualize the grid and obstacle blocks:

 void OnDrawGizmos() {

 if (showGrid) {

 DebugDrawGrid(Color.blue);

 }

 //Grid Start Position

 Gizmos.DrawSphere(Origin, 0.5f);

 if (nodes == null) return;

 //Draw Obstacle obstruction

 if (showObstacleBlocks) {

 Vector3 cellSize = new Vector3(

 gridCellSize, 1.0f, gridCellSize);

 Gizmos.color = Color.red;

 for (int i = 0; i < numOfColumns; i++) {

 for (int j = 0; j < numOfRows; j++) {

 if (nodes != null && nodes[i,

 j].isObstacle) {

 Gizmos.DrawCube(

 GetGridCellCenter(i,j),

 cellSize);

 }

 }

 }

 }

Implementing the A* algorithm 163

 }

 public void DebugDrawGrid(Color color) {

 float width = (numOfColumns * gridCellSize);

 float height = (numOfRows * gridCellSize);

 // Draw the horizontal grid lines

 for (int i = 0; i < numOfRows + 1; i++) {

 Vector3 startPos = Origin + i *

 gridCellSize * new Vector3(0.0f, 0.0f,

 1.0f);

 Vector3 endPos = startPos + width * new

 Vector3(1.0f, 0.0f, 0.0f);

 Debug.DrawLine(startPos, endPos, color);

 }

 // Draw the vertial grid lines

 for (int i = 0; i < numOfColumns + 1; i++) {

 Vector3 startPos = Origin + i *

 gridCellSize * new Vector3(1.0f, 0.0f,

 0.0f);

 Vector3 endPos = startPos + height * new

 Vector3(0.0f, 0.0f, 1.0f);

 Debug.DrawLine(startPos, endPos, color);

 }

}

Gizmos can be used to draw visual debugging and setup aids inside the editor scene view.
OnDrawGizmos is called every frame by the engine. So, if the debug flags, showGrid
and showObstacleBlocks, are checked, we just draw the grid with lines and the
obstacle cube objects with cubes. We won't go through the DebugDrawGrid method, as
it's pretty simple.

Info
You can learn more about gizmos in the following Unity3D
reference documentation: https://docs.unity3d.com/
ScriptReference/Gizmos.html.

https://docs.unity3d.com/ScriptReference/Gizmos.html
https://docs.unity3d.com/ScriptReference/Gizmos.html

164 A* Pathfinding

The AStar class
The AStar class implements the pathfinding algorithm using the classes we have
implemented so far. If you want a quick review of the A* algorithm, see the Revisiting the
A* algorithm section earlier in this chapter. The steps for the implementation of AStar
are as follows:

1. We start by implementing a method called HeuristicEstimateCost to
calculate the cost between the two nodes. The calculation is simple. We just find the
direction vector between the two by subtracting one position vector from another.
The magnitude of this resultant vector gives the straight-line distance from the
current node to the target node:

using UnityEngine;

using System.Collections.Generic;

public class AStar {

 private float HeuristicEstimateCost(Node curNode,

 Node goalNode) {

 return (curNode.position –

 goalNode.position).magnitude;

 }

Info
In theory, you can replace this function with any function, returning the
distance between curNode and goalNode. However, for A* to return the
shortest possible path, this function must be admissible. In short, an admissible
heuristic function is a function that never overestimates the actual "real world"
cost between curNode and goalNode. As an exercise, you can easily verify
that the function we use in this demo is admissible. For more information on
the math behind heuristic functions, you can visit https://theory.
stanford.edu/~amitp/GameProgramming/Heuristics.
html.

2. Then, we have the main A* algorithm in the FindPath method. In the following
snippet, we initialize the open and closed lists. Starting with the start node, we put it
in our open list. Then, we start processing our open list:

 public List<Node> FindPath(Node start, Node goal) {

 //Start Finding the path

 NodePriorityQueue openList =

https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

Implementing the A* algorithm 165

 new NodePriorityQueue();

 openList.Enqueue(start);

 start.costSoFar = 0.0f;

 start.fScore = HeuristicEstimateCost(start,

 goal);

 HashSet<Node> closedList = new();

 Node node = null;

3. Then, we proceed with the main algorithm loop:

 while (openList.Length != 0) {

 node = openList.Dequeue();

 if (node.position == goal.position) {

 return CalculatePath(node);

 }

 var neighbours =

 GridManager.instance.GetNeighbours(

 node);

 foreach (Node neighbourNode in neighbours)

 {

 if (!closedList.Contains(

 neighbourNode)) {

 float totalCost = node.costSoFar +

 GridManager.instance.StepCost;

 float heuristicValue =

 HeuristicEstimateCost(

 neighbourNode, goal);

 //Assign neighbour node properties

 neighbourNode.costSoFar =

 totalCost;

 neighbourNode.parent = node;

166 A* Pathfinding

 neighbourNode.fScore =

 totalCost + heuristicValue;

 //Add the neighbour node to the

 //queue

 if (!closedList.Contains(

 neighbourNode)) {

 openList.Enqueue(

 neighbourNode);

 }

 }

 }

 closedList.Add(node);

 }

I. The preceding code implementation strictly follows the algorithm that we
have discussed previously, so you can refer back to it if something is not clear:

II. Get the first node from our openList. Remember, openList is always
sorted in increasing order. Therefore, the first node is always the node with the
lowest F value.

III. Check whether the current node is already at the target node. If so, exit the
while loop and build the path array.

IV. Create an array list to store the neighboring nodes of the current node being
processed. Then, use the GetNeighbours method to retrieve the neighbors
from the grid.

V. For every node in the array of neighbors, we check whether it's already in
closedList. If not, we calculate the cost values, update the node properties
with the new cost values and the parent node data, and put it in openList.

VI. Push the current node to closedList and remove it from openList.
VII. Go back to step I.

4. If there are no more nodes in openList, the current node should be at the target
node if there's a valid path available:

 //If finished looping and cannot find the goal

 //then return null

 if (node.position != goal.position) {

Implementing the A* algorithm 167

 Debug.LogError("Goal Not Found");

 return null;

 }

 //Calculate the path based on the final node

 return CalculatePath(node);

5. Finally, we call the CalculatePath method with the current node parameter:

 private List<Node> CalculatePath(Node node) {

 List<Node> list = new();

 while (node != null) {

 list.Add(node);

 node = node.parent;

 }

 list.Reverse();

 return list;

 }

}

6. The CalculatePath method traces through each node's parent node object and
builds an array list. Since we want a path array from the start node to the target
node, we just call the Reverse method.

Now, we'll write a test script to test this and set up a demo scene.

The TestCode class
The TestCode class uses the AStar class to find the path from the start node to the
target node, as shown in the following code from the TestCode.cs file:

using UnityEngine;

using System.Collections;

public class TestCode : MonoBehaviour {

 private Transform startPos, endPos;

 public Node startNode { get; set; }

 public Node goalNode { get; set; }

 public List<Node> pathArray;

168 A* Pathfinding

 GameObject objStartCube, objEndCube;

 private float elapsedTime = 0.0f;

 //Interval time between pathfinding

 public float intervalTime = 1.0f;

In the preceding snippet, we first set up the variables that we need to reference. The
pathArray variable stores the nodes array that's returned from the AStar FindPath
method.

In the following code block, we use the Start method to look for objects with the tags
Start and End and initialize pathArray. We are trying to find a new path at every
interval, specified by the intervalTime property, in case the positions of the start and
end nodes have changed. Finally, we call the FindPath method:

 void Start () {

 objStartCube =

 GameObject.FindGameObjectWithTag("Start");

 objEndCube =

 GameObject.FindGameObjectWithTag("End");

 pathArray = new List<Node>();

 FindPath();

 }

 void Update () {

 elapsedTime += Time.deltaTime;

 if (elapsedTime >= intervalTime) {

 elapsedTime = 0.0f;

 FindPath();

 }

 }

Since we implemented our pathfinding algorithm in the AStar class, finding a path is
much simpler. In the following snippet, we first take the positions of the start and end
game objects. Then, we create new Node objects using the GetGridIndex helper
methods in GridManager to calculate their respective row and column index positions
inside the grid.

Implementing the A* algorithm 169

After that, we call the AStar.FindPath method with the start node and target node,
storing the returned array list in the local pathArray property. Finally, we implement
the OnDrawGizmos method to draw and visualize the resulting path:

void FindPath() {

 startPos = objStartCube.transform;

 endPos = objEndCube.transform;

 //Assign StartNode and Goal Node

 var (startColumn, startRow) =

 GridManager.instance.GetGridCoordinates(

 startPos.position);

 var (goalColumn, goalRow) =

 GridManager.instance.GetGridCoordinates(

 endPos.position);

 startNode = new Node(

 GridManager.instance.GetGridCellCenter(

 startColumn, startRow));

 goalNode = new Node(

 GridManager.instance.GetGridCellCenter(

 goalColumn, goalRow));

 pathArray =

 new AStar().FindPath(startNode, goalNode);

}

We look through our pathArray and use the Debug.DrawLine method to draw the
lines, connecting the nodes in pathArray:

 void OnDrawGizmos() {

 if (pathArray == null)

 return;

 if (pathArray.Count > 0) {

 int index = 1;

 foreach (Node node in pathArray) {

 if (index < pathArray.Count) {

 Node nextNode = pathArray[index];

170 A* Pathfinding

 Debug.DrawLine(node.position,

 nextNode.position, Color.green);

 index++;

 }

 };

 }

 }

}

When we run and test our program, we should see a green line connecting the nodes from
start to end.

Setting up the scene
We are going to set up a scene that looks like the following screenshot:

Figure 7.1 – Our sample test scene with obstacles

Let's follow a step-by-step procedure to do this:

1. We create a directional light, the start and end game object, a few obstacle objects, a
plane entity to be used as ground, and two empty game objects in which we put the
GridManager and TestAStar scripts. After this step, our scene hierarchy should
be like this:

Setting up the scene 171

Figure 7.2 – The demo scene hierarchy

2. We create a bunch of cube entities and add them to the Obstacles layer.
GridManager looks for objects with this tag when it creates the grid world
representation:

Figure 7.3 – The Obstacle nodes seen in the Inspector

172 A* Pathfinding

3. We then create a cube entity and tag it as Start:

Figure 7.4 – The Start node seen in the Inspector

4. Then, we create another cube entity and tag it as End:

Figure 7.5 – The End node seen in the Inspector

5. We create an empty game object, and we attach the GridManager script to it.
We also set the name to GridManager because we use this name to look for the
GridManager object from inside the other scripts.

Setting up the scene 173

6. Then, we set up the number of rows and columns of the grid and the size of
each tile.

Figure 7.6 – GridManager script

Testing the pathfinder
Once we hit the Play button, we should see the A* pathfinding algorithm in action. By
default, once you play the scene, Unity3D switches to the Game view. However, since our
pathfinding visualization code draws in the debug editor view, to see the found path, you
need to switch back to the Scene view or enable Gizmos visualization:

Figure 7.7 – The first path found by the algorithm

174 A* Pathfinding

Now, try to move the start or end node around in the scene using the editor's movement
gizmo (not in the Game view, but the Scene view):

Figure 7.8 – A second path found by the algorithm

You should see that the path is updated dynamically in real time. On the other hand, if
there is no available path, you get an error message in the console window instead.

Summary
In this chapter, we learned how to implement the A* pathfinding algorithm in Unity3D.
First, we implemented our own A* pathfinding class, grid representation class, priority
queue class, and node class. Finally, we used debug draw functionalities to visualize the
grid and path information.

In later chapters, we will see that thanks to Unity3D's NavMesh and NavAgent features, it
may not be necessary for you to implement a custom pathfinding algorithm on your own.

Nonetheless, understanding a basic pathfinding algorithm gives you a better foundation
for getting to grips with many other advanced pathfinding techniques.

In the next chapter, we will extend the idea behind the A* algorithm to a more complex
world representation: navigation meshes.

8
Navigation Mesh

As we saw in Chapter 7, A* Pathfinding, the most critical decision in pathfinding is how to
represent the scene's geometry. The AI agents need to know where the obstacles are, and
it is our job as AI designers to provide the best representation we can to the pathfinding
algorithm. Previously, we created a custom representation by dividing the map into a 2D
grid, and then we implemented a custom pathfinding algorithm by implementing A*
using that representation. But wouldn't it be awesome if Unity could do all that for us?

Fortunately, Unity can do this using Navigation Meshes (NavMeshes). While in the
previous 2D representation, we divided the world into perfect squares, with NavMeshes,
we will divide the world using arbitrary convex polygons. This representation has two
exciting advantages: first, every polygon can be different, and therefore we can use a
small number of big polygons for vast open areas and many smaller polygons for very
crowded spaces; second, we do not need to lock the Agent on a grid anymore, and so the
pathfinding produces more natural paths.

This chapter will explain how we can use Unity's built-in NavMesh generator to make
pathfinding for AI agents much easier and more performant. Some years ago, NavMeshes
were an exclusive Unity Pro feature. Fortunately, this is not true anymore; NavMeshes are
available in the free version of Unity for everyone!

In this chapter, we will cover the following topics:

• Setting up the map

• Building the scene with slopes

176 Navigation Mesh

• Creating navigation areas

• An overview of Off Mesh Links

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 8 folder in the book repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter08.

Setting up the map
To get started, let's build a simple scene, as shown in the following screenshot. This is the
first scene in the example project and is called NavMesh01-Simple.scene. You can
use a plane as the ground object and several cube entities as the wall objects:

Figure 8.1 – An image of the NavMesh01-Simple scene, a plane with obstacles

In the following subsections, we will set up the walls as obstacles, bake the NavMesh, and
configure the tanks.

Navigation static
Once we add the floor and the obstacles, it is essential to mark them with the Navigation
Static tag so that the NavMesh generator knows that they need to be taken into account
during the baking process. To do this, select all of the objects, click on the Static button,
and choose Navigation Static, as shown in the following screenshot:

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter08

Setting up the map 177

Figure 8.2 – The Navigation Static property

Baking the NavMesh
Now that we have completed the scene, let's bake the NavMesh. To do that, follow these
steps:

1. Navigate to Window | AI | Navigation, and you should be able to see this window:

Figure 8.3 – Navigation window

178 Navigation Mesh

Info
All the properties in the Navigation window are pretty self-explanatory:
Agent Radius and Agent Height represent the size of the virtual agent used by
Unity to bake the NavMesh, Max Slope is the value in degrees of the sharpest
incline the character can walk up, and so on. If we have multiple AI agents,
we should bake the NavMesh using the radius and height of the smallest
AI character. For more information, you can check out the following Unity
reference documentation: https://docs.unity3d.com/Manual/
Navigation.html.

2. Select the plane and, in the Object tab, set its area to Walkable.

Figure 8.4 – The Object section of the Navigation panel

3. Leave everything else with the default values and click on Bake.
4. You should see a progress bar baking the NavMesh for your scene, and after a while,

you should see the NavMesh in your scene, as shown in the following screenshot:

Figure 8.5 – The baking of a NavMesh

https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html

Setting up the map 179

NavMesh agent
At this point, we have completed the super-simple scene setup. Now, let's add some AI
agents to see if it works:

1. As a character, we use our trustworthy tank model. However, do not worry if you're
working in a different scene and have a different model. Everything works the same
way independently of the model.

Figure 8.6 – Tank entity

2. Add the Nav Mesh Agent component to our tank entity. This component makes
pathfinding easy. We do not need to implement pathfinding algorithms such as A*
anymore. Instead, we only need to set the destination property of the component
at runtime, and the component will compute the path using Unity's internal
pathfinding algorithm.

180 Navigation Mesh

3. Navigate to Component | Navigation | Nav Mesh Agent to add this component:

Figure 8.7 – Nav Mesh Agent properties

Info
You can find the official Unity reference for the Nav Mesh Agent
at https://docs.unity3d.com/Manual/class-
NavMeshAgent.html.

One property to note is the Area Mask property. It specifies the NavMesh layers that this
NavMesh agent can walk on. We will talk about navigation layers in the Baking navigation
areas section.

Updating an agent's destinations
Now that we have set up our AI agent, we need a way to tell it where to go and update the
destination of the tank to the mouse click position.

So, let's add a sphere entity, which we use as a marker object, and then attach the
Target.cs script to an empty game object. Then, drag and drop this sphere entity onto
this script's targetMarker transform property in the Inspector.

https://docs.unity3d.com/Manual/class-NavMeshAgent.html
https://docs.unity3d.com/Manual/class-NavMeshAgent.html

Setting up the map 181

The Target.cs class
This script contains a simple class that does three things:

• Gets the mouse click position using a ray

• Updates the marker position

• Updates the destination property of all the NavMesh agents

The following lines show the Target class's code:

using UnityEngine;

using System.Collections;

public class Target : MonoBehaviour {

 private UnityEngine.AI.NavMeshAgent[] navAgents;

 public Transform targetMarker;

 public float verticalOffset = 10.0f;

 void Start() {

 navAgents = FindObjectsOfType(

 typeof(UnityEngine.AI.NavMeshAgent)) as

 UnityEngine.AI.NavMeshAgent[];

 }

 void UpdateTargets(Vector3 targetPosition) {

 foreach (UnityEngine.AI.NavMeshAgent agent in

 navAgents) {

 agent.destination = targetPosition;

 }

 }

 void Update() {

 // Get the point of the hit position when the mouse

 // is being clicked

 if(Input.GetMouseButtonDown(0)) {

 Ray ray = Camera.main.ScreenPointToRay(

 Input.mousePosition);

182 Navigation Mesh

 if (Physics.Raycast(ray.origin, ray.direction,

 out var hitInfo)) {

 Vector3 targetPosition = hitInfo.point;

 UpdateTargets(targetPosition);

 targetMarker.position = targetPosition +

 new Vector3(0, verticalOffset, 0);

 }

 }

 }

}

At the start of the game, we look for all the NavMeshAgent type entities in our game
and store them in our referenced NavMeshAgent array (note that if you want to spawn
new agents at runtime, you need to update the navAgents list). Then, whenever there's
a mouse click event, we do a simple raycast to determine the first object colliding with
the ray. If the beam hits an object, we update the position of our marker and update
each NavMesh agent's destination by setting the destination property with the new
position. We will be using this script throughout this chapter to tell the destination
position for our AI agents.

Now, test the scene, and click on a point that you want your tanks to go to. The tanks
should move as close as possible to that point while avoiding every static obstacle (in
this case, the walls).

Setting up a scene with slopes
Let's build a scene with some slopes, like this:

Figure 8.8 – Scene with slopes-NavMesh02-Slope.scene

Setting up a scene with slopes 183

One important thing to note is that the slopes and the wall should be in contact. If we
want to use NavMeshes, objects need to be perfectly connected. Otherwise, there'll be
gaps in the NavMesh, and the Agents will not be able to find the path anymore. There's
a feature called Off Mesh Link generation to solve similar problems, but we will look at
Off Mesh Links in the Using Off Mesh Links section later in this chapter. For now, let's
concentrate on building the slope:

1. Make sure to connect the slope properly:

Figure 8.9 – A well-connected slope

2. We can adjust the Max Slope property in the Navigation window's Bake tab
according to the level of slope in our scenes that we want to allow the Agents to
travel. We'll use 45 degrees here. If your slopes are steeper than this, you can use a
higher Max Slope value.

3. Bake the scene, and you should have generated a NavMesh, like this:

Figure 8.10 – The generated NavMesh

4. We will place some tanks with the Nav Mesh Agent component.
5. Create a new cube object and use it as the target reference position.

184 Navigation Mesh

6. We will be using our previous Target.cs script to update the destination
property of the AI agent.

7. Test run the scene, and you should see the AI agent crossing the slopes to reach the
target.

Congratulation, you have implemented your first basic NavMesh-powered AI. Now, you
can implement agents able to navigate over simple plains. What if we want more complex
scenarios? That's the topic of the next section.

Baking navigation areas with different costs
In games with complex environments, we usually have areas that are harder to traverse
than others. For example, crossing a lake with a bridge is less challenging than crossing
it without a bridge. To simulate this, we want to make crossing the lake more costly than
using a bridge. This section will look at navigation areas that define different layers with
different navigation cost values.

For this, we build a scene, as shown in Figure 8.11. Three planes represent two ground
planes separated by a water plane and connected by a bridge-like structure. As you can
see, crossing over the water plane is the most direct way to traverse the lake; however,
passing through the water costs more than using the bridge and, therefore, the pathfinding
algorithm will prefer the bridge to the water:

Figure 8.11 – Scene with layers – NavMesh03-Layers.scene

Baking navigation areas with different costs 185

Let's follow a step-by-step procedure so that we can create a navigation area:

1. Go to the Navigation window and select the Areas section:

Figure 8.12 – The Areas section in the Navigation window
Unity comes with three default layers: Default, Not Walkable, and Jump, each with
potentially different cost values.

2. Let's add a new layer called Water and give it a cost of 5.
3. Select the water plane.
4. Go to the Navigation window and, in the Object tab, set Navigation Area to Water:

Figure 8.13 – Water layer

5. Bake the NavMesh for the scene and run it to test it.

You should see that the AI agents now choose the slope rather than going through the
plane marked as the water layer because it's more expensive to traverse the water. Try
experimenting with placing the target object at different points on the water plane. You
should see that the AI agents sometimes swim back to the shore and sometimes take the
bridge rather than trying to swim across the water.

186 Navigation Mesh

Info
You can find the official Unity documentation for NavMesh Areas at
https://docs.unity3d.com/Manual/nav-AreasAndCosts.
html.

Using Off Mesh Links to connect gaps between
areas
Sometimes, there may be some gaps in the scene that can make the NavMeshes
disconnected. For instance, the Agents do not find a path in our previous examples if we
do not tightly connect the slopes to the walls, so we need to make it possible to jump over
such gaps. In another example, we may want to set up points where our agents can jump
off the wall onto the plane below. Unity has a feature called Off Mesh Links to connect
such gaps. Off Mesh Links can be set up manually or can be automatically generated by
Unity's NavMesh generator.

Here's the scene that we're going to build in this example. As you can see in Figure 8.14,
there's a small gap between the two planes.

Figure 8.14 – The scene with Off Mesh Links – NavMesh04-OffMeshLinks.scene

In this section, we will learn how to connect these two planes using Off Mesh Links.

https://docs.unity3d.com/Manual/nav-AreasAndCosts.html
https://docs.unity3d.com/Manual/nav-AreasAndCosts.html

Using Off Mesh Links to connect gaps between areas 187

Generated Off Mesh Links
Firstly, we use autogenerated Off Mesh Links to connect the two planes. To do that, we
need to follow these steps:

1. Mark these two planes as Off Mesh Link Generation and Static in the property
Inspector, as shown in the following screenshot:

Figure 8.15 – Off Mesh Link Generation and Static

2. Go to the Navigation window and look at the properties on the Bake tab. You can
set the distance threshold to autogenerate Off Mesh Links:

Figure 8.16 – Generated Off Mesh Links properties

3. Click on Bake, and you should have Off Mesh Links connecting the two planes,
like this:

Figure 8.17 – Generated Off Mesh Links

188 Navigation Mesh

4. Now, our AI agents can find the path between the planes. But first, ensure that
the tanks have Jump enabled in the Area Mask property of the Nav Mesh Agent
component, as shown in Figure 8.18:

Figure 8.18 – The Area Mask configuration for the Tanks

If everything is correct, agents will essentially jump to the other plane once they reach the
edge of the plane and find an Off Mesh Link component. But, of course, if jumping agents
are not what we want (after all, who has ever seen a jumping tank?), we should instead put
a bridge for the Agents to cross.

Manual Off Mesh Links
If we don't want to generate Off Mesh Links along the edge and, instead, we want the
Agents to reach a certain point before teleporting to the other side, then we need to set up
the Off Mesh Links manually, as we can see in Figure 8.19:

Using Off Mesh Links to connect gaps between areas 189

Figure 8.19 – Manual Off Mesh Links setup

Execute the following steps to set up the Off Mesh Links manually:

1. We initialize a scene with a significant gap between the two planes. Then, we place
two pairs of sphere entities on each side of the plane.

2. Choose a sphere and add an Off Mesh Link component by navigating to
Component | Navigation | Off Mesh Link. We only need to add this component to
one sphere.

3. Next, drag and drop the first sphere to the Start property and the other sphere to
the End property:

Figure 8.20 – Off Mesh Link component

190 Navigation Mesh

4. Go to the Navigation window and bake the scene.

Figure 8.21 – Manually generated Off Mesh Links

5. The manual Off Mesh Links now connect the two planes, and AI agents can use
them to traverse terrain, even in the presence of gaps.

Info
You can find Unity's official reference for Off Mesh Links at https://
docs.unity3d.com/Manual/nav-CreateOffMeshLink.
html.

This last demo concludes our exploration of Unity's NavMeshes. You should now know all
the basics of this vital tool for AI character development.

Summary
In this chapter, we learned how to generate and use NavMeshes to implement pathfinding
for our games. First, we studied how to set up different navigation layers with varying
costs for pathfinding. Then, using the destination property, we used the Nav Mesh Agent
component to find the path and move toward the target. Next, we set up Off Mesh Links
to connect the gaps between the NavMeshes using the autogeneration feature and a
manual setup with the Off Mesh Link component.

With all this information, we can now easily create simple games with a reasonably
complicated AI. For example, you can try to set the destination property of AI tanks to the
player's tank's position and make them follow it. Then, using simple FSMs, they can start
attacking the player once they reach a certain distance. FSMs have taken us far, but they
have their limits. In the next chapter, we will learn about Behavior Trees and how we can
use them to make AI decisions in even the most complex games.

https://docs.unity3d.com/Manual/nav-CreateOffMeshLink.html
https://docs.unity3d.com/Manual/nav-CreateOffMeshLink.html
https://docs.unity3d.com/Manual/nav-CreateOffMeshLink.html

Part 3:
Advanced AI

In this part, we will learn more complex techniques for creating characters' behavior and
decision-making abilities, including behavior trees and machine learning-powered agents.

We will cover the following chapters in this part:

• Chapter 9, Behavior Trees

• Chapter 10, Procedural Content Generation

• Chapter 11, Machine Learning in Unity

• Chapter 12, Putting It All Together

9
Behavior Trees

In a preceding chapter, we saw a basic but effective way to implement and manage
character states and behaviors: finite state machines (FSMs). FSMs are simple to
implement and intuitive, but they have a fatal flaw: it is tough to make them scale once
there are many states and transitions. For example, imagine a character that behaves
differently depending on its health and mana (high, medium, or low). We have a state in
which both health and mana are high, one in which health is medium and mana is high,
one in which they are both medium, and so on. In total, we have nine states just for those.
If we add other conditions (such as player proximity, time of day, equipment, player's
score, or whatever you may imagine), the number of states grows exponentially.

Luckily, we have a solution: behavior trees (BTs). In essence, BTs are just another way to
visualize complex FSMs, but they are fast, provide reusability, and are easy to maintain.
After their introduction in 2004 with Halo 2, they quickly became the preferred decision-
making technique in games.

In this chapter, we will be doing the following:

• Exploring the basic principles of BTs, knowledge that you will be able to transfer to
any BT plugin available for Unity (or other game engines)

• Implementing a small demo based on a popular free Unity plugin for
BTs: Behavior Bricks

194 Behavior Trees

Technical requirements
For this chapter, you need Unity3D 2022 and the free plugin for Unity, Behavior Bricks.
Don't worry, we will see how to install this plugin together. You can find the example
project described in this chapter in the Chapter 9 folder in the book repository
here: https://github.com/PacktPublishing/Unity-Artificial-
Intelligence-Programming-Fifth-Edition/tree/main/Chapter09.

Introduction to BTs
A BT is a hierarchical tree of nodes that controls the AI character's behavior flow. It can
also be used to coordinate groups of characters (for example, to model the attack pattern
of a small platoon), or even disembodied agents such as an AI story director.

When we execute a BT's node, the node can return three states: success, failure, or
running (if the node's execution is spread over multiple frames, for instance, if it plays an
animation). When the BT executor runs a tree, it starts from the root and executes every
node in order, according to rules written in the nodes themselves.

A node can be of three types:
• A task (a node without children), also called a leaf.
• A decorator (a node with a single child)
• A composite (a node with multiple children)

In general, leaves represent the Action that the characters can do or know (that is why
they are commonly called an Action or Task); they may be actions such as GoToTarget,
OpenDoor, Jump, or TakeCover, but also things like IsObjectNear? or IsHealthLow?.
These actions depend on the character, the game, and the general game implementation.

A decorator is a node that modifies (decorates) the sub-tree under it (therefore, it can
decorate both composite and task nodes). For example, a standard decorator is the Negate
node. The node inverts the return value of the sub-tree; for instance, if the sub-tree returns
Success, the decorator returns Failure and vice versa (of course, if the sub-tree returns
Running, the decorator returns Running as well). Another everyday decorator is Repeat, a
node that repeats its sub-tree a certain number of times.

Instead, a composite node represents a node with multiple children, and it is the most
interesting case. There are two common composite nodes: Sequence, which runs all its
children in order and returns Success if—and only if—all its children return Success, and
Selector, which tries to execute all its children in order but returns Success as soon as one
of its children returns Success. However, many BT implementations contain many more
composite nodes (such as nodes that run their children in parallel or according to some
dynamic priority value; we will see an example of such a node in the demo).

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter09

Introduction to BTs 195

Of course, this tree structure is not enough. Nodes need to exchange information with
each other or with the game world. For instance, a GoToTarget node needs to know
the target and its location; an IsObjectClose? node needs to know which object we are
referring to and what distance we consider close. Naturally, we could write a GoToX node
for each object in the game (such as GoToTree01 and GoToDoor23), but you can easily
imagine that this becomes messy very quickly.

For this reason, all the BT implementations contain a data structure called Blackboard. As
in a real-life physical blackboard, every node can write and read data into it; we just need
to specify where to look for each node.

A simple example – a patrolling robot
Let's look at this example (which we will later implement in Unity). Imagine a patrolling
robot that shoots anything that gets near it but works only during the daytime. We show
the possible BT for this kind of agent in the following diagram:

Figure 9.1 – Example BT for a simplified day-only patrolling robot

196 Behavior Trees

Let's run this BT, assuming that the target is close and it is not night:

1. The first node is a Repeat decorator; it does nothing but cycle the BTs, therefore, we
can ignore it for now.

2. The SELECTOR node starts executing its first child; we go down to the left.
3. We are now at the first Sequence node; again, we execute the first node. IsNight?

returns Failure (because it is not night!). Whenever one node returns Failure, the
whole Sequence node returns Failure.

4. We traverse back up the tree to the SELECTOR node; now, we go to the second
branch.

5. Again, we execute Sequence.
6. This time, however, IsTargetClose? returns Success, so we can proceed to the next

node, Shoot, which runs a game function spawning an in-game projectile.

The pattern of Sequence | Condition | Action is equivalent to if Condition is Success then
Action. This pattern is so common that many BT implementations allow you to stack the
Condition and the Action together. Therefore, we can rewrite the tree as follows:

Figure 9.2 – A simplified BT

Implementing a BT in Unity with Behavior Bricks 197

This tree is the same as the previous one but with a simplified Sequence pattern.

Implementing a BT in Unity with Behavior
Bricks
Behavior Bricks is a robust but free BT implementation for Unity developed by the
Complutense University of Madrid in Spain. Using Behavior Bricks, you can start using
BTs in your projects without implementing BTs from scratch. It also has a visual editor
where you can drop and connect nodes without any additional code.

Follow these steps to install Behavior Bricks:

1. We need to go to the Unity Asset Store by going on the website https://
assetstore.unity.com/.

2. Search for Behavior Bricks.
3. Click on Add to My Assets. Once it's done, we can import it into our project.

Figure 9.3 – Behavior Bricks Asset Store main page

https://assetstore.unity.com/
https://assetstore.unity.com/

198 Behavior Trees

4. Go to Package Manager (Window | Package Manager).
5. Go to My Assets.

Figure 9.4 – The Package Manager window

6. Import the Behavior Bricks package by clicking on the Import button.

Implementing a BT in Unity with Behavior Bricks 199

Figure 9.5 – Behavior Bricks in Package Manager

At this point, Behavior Bricks is ready to go, and we can proceed with our demo. The
following steps give you a brief idea of the steps to follow:

1. Set up the scene.
2. Implement a day/night cycle.
3. Design the enemy behavior.
4. Implement the nodes.
5. Build the tree.
6. Attach the BT to the enemy.

Now, let's take a look at each of these steps individually.

200 Behavior Trees

Set up the scene
Let's follow a step-by-step process to do this:

1. We start by adding the game objects to the scene. We add a big plane to the scene,
we add a Box Collider that encloses the entire plane, and we call it Floor
(you may also add a texture if you like; be creative as it helps to have fun with these
simple demos).

Figure 9.6 – Example of the Floor Box Collider

2. We add a sphere and a cube; we call the sphere Player and the cube Enemy. In the
Enemy, we add another empty object and move it just outside the cube. We call it
shootPoint, and it represents the placeholder for where the enemy shoots.

3. Then, place all these objects on the floor; you should have something similar to
the following:

Figure 9.7 – The scene of our demo

4. Now, because we want the player and the enemy to move around, we need to create
a NavMesh as described in Chapter 8, Navigation Mesh. Remember to add the
NavMesh Agent component to both Player and Enemy!

Implementing a BT in Unity with Behavior Bricks 201

5. Finally, if it is not present, add the MainLight tag to the Direct Light object.

Implement a day/night cycle
In this demo, we want to implement a basic day/night cycle. To do that, we attach the
script DayNightCycle.cs to the Direct Light object. As with many scripts in this demo,
we adapt the code from the Quick Start Guide provided by Behavior Bricks:

using UnityEngine;

public class DayNightCycle : MonoBehaviour {

 public event System.EventHandler OnChanged;

 public float dayDuration = 10.0f;

 public bool IsNight { get; private set; }

 public Color nightColor = Color.white * 0.1f;

 private Color dayColor;

 private Light lightComponent;

 void Start() {

 lightComponent = GetComponent<Light>();

 dayColor = lightComponent.color;

 }

 void Update() {

 float lightIntensity = 0.5f + Mathf.Sin(Time.time *

 2.0f * Mathf.PI / dayDuration) / 2.0f;

 bool shouldBeNight = lightIntensity < 0.3f;

 if (IsNight != shouldBeNight) {

 IsNight = shouldBeNight;

 // Invoke event handler (if set).

 OnChanged?.Invoke(this,

 System.EventArgs.Empty);

 }

 lightComponent.color = Color.Lerp(nightColor,

202 Behavior Trees

 dayColor, lightIntensity); }

}

This script implements a typical day/night cycle. The way it works is quite intuitive. Let's
have a look:

• At each Update step, we update the lightIntensity variable according to a
sinusoidal wave.

• The variable cycles from 0 to 1 and, when the value is smaller than 0.3, we decide
that it is nighttime.

• Finally, we update the light color according to the lightIntensity value,
interpolating the day and night colors.

• Note the onChanged event. We call it every time we switch from daytime to
nighttime, and from nighttime to daytime. Later, we use this event to create an
IsNight node in the BT.

Design the enemy behavior
Now, it is time to design the enemy behavior. We need to do this before writing a single
line of code. For this demo, we will adapt the code and assets provided by the example
project in the Behavior Bricks Quick Start Guide. For more information, you can refer to it
at this URL: http://bb.padaonegames.com/doku.php?id=quick:program.

Figure 9.8 – The target BT we want to implement

http://bb.padaonegames.com/doku.php?id=quick:program

Implementing the nodes 203

The BT in Figure 9.8 describes the following behavior:

• If it is night, the enemy is deactivated.

• If the target is very close, the enemy shoots at the target.

• If the target is further away, the enemy chases the target.

• Otherwise, the enemy just wanders around.

There are two important things to note:

• First, the two IsTargetClose? nodes differ in the value we consider close. In
particular, we want to shoot the target only if we are close to it; otherwise, we just
start chasing it.

• Second, and most importantly, the order of the nodes matters. Because the Selector
works from left to right and stops at the first Success, we cannot put ChaseTarget
before Shoot. Otherwise, the enemy will never shoot!

As a rule of thumb, we need to order conditions from the highest to the lowest priority.
In fact, in the example, we put at the very end the action to execute when everything else
fails (AlwaysTrue is a condition that always succeeds and works like the else branch of an
if condition).

Note that Wander is in a different color because it is not a node but another BT. The lovely
property of BTs is that you can reuse common BTs as nodes inside more complex BTs. The
Wander BT simply makes the enemy move randomly on the map; fortunately, Behavior
Bricks already includes it, so we don't need to implement it!

Implementing the nodes
After we have made a plan for our BT, the next step is to check whether our BT
implementation of choice (in our case, Behavior Bricks) already includes some of the
nodes we need. Of course, we want to reuse as many pre-made nodes as possible. Reading
the Behavior Bricks documentation, we can see that it already includes nodes such as
IsTargetClose, MoveToGameObject, Wander, and AlwaysTrue, plus, of course, Repeat
and Selector.

204 Behavior Trees

Therefore, we need to write all the other tasks. Note that Behavior Bricks tasks are not
MonoBehaviors; therefore, we do not need to attach them to some object in the scene.
We only need to put the scripts in any folder in our project's assets, and we are good. Let's
look at a step-by-step process to do this:

1. Let's start with the ShootOnce action by creating a ShootOnce.cs file in the
project assets. First, we create a simple Action attribute called ShootOnce that, as
the name says, shoots a single bullet:

using UnityEngine;

using Pada1.BBCore;

using Pada1.BBCore.Tasks;

using BBUnity.Actions;

[Action("Chapter09/ShootOnce")]

[Help("Clone a 'bullet' and shoots it through the Forward
axis with the specified velocity.")]

public class ShootOnce : GOAction {

 // ….

}

In the beginning, we import Behavior Bricks modules. Then, we create the
ShootOnce class by extending the generic GOAction class.

Note the class attributes; Behavior Bricks uses them to populate the BT visual editor.
In the Action attribute, we specify that Action is an action, and we put it in the
Chapter09 collection with the name ShootOnce. The Help attribute is just a
documentation string describing the action's purpose.

2. We describe the class attributes as usual. The only difference is that we decorate each
attribute with the InParam attribute, which specifies that the BT executor needs to
retrieve the following value from the blackboard:

[InParam("shootPoint")]

public Transform shootPoint;

[InParam("bullet")]

public GameObject bullet;

Implementing the nodes 205

[InParam("velocity", DefaultValue = 30f)]

public float velocity;

For this action, we need a Bullet prefab, a place to instantiate the bullet
(shootPoint) and the bullet velocity. Later, we will see how to set them up from
the visual interface.

3. Now, it is time to write the real meat:

public override void OnStart() {

 if (shootPoint == null) {

 shootPoint =

 gameObject.transform.Find("shootPoint");

 if (shootPoint == null) {

 Debug.LogWarning("Shoot point not

 specified. ShootOnce will not work for "

 + gameObject.name);

 }

 }

 base.OnStart();

}

public override TaskStatus OnUpdate() {

 if (shootPoint == null || bullet == null) {

 return TaskStatus.FAILED;

 }

 GameObject newBullet = Object.Instantiate(

 bullet, shootPoint.position,

 shootPoint.rotation *

 bullet.transform.rotation);

 if (newBullet.GetComponent<Rigidbody>() == null) {

 newBullet.AddComponent<Rigidbody>();

 }

 newBullet.GetComponent<Rigidbody>().velocity =

 velocity * shootPoint.forward;

 return TaskStatus.COMPLETED;

}

206 Behavior Trees

Every Behavior Bricks node contains some default method called during the BT
execution. We can overwrite them in our custom implementations. In this example,
we see two of them: OnStart and OnUpdate. They are used very similarly to how
we use Start and Update in MonoBehavior:

 � The BT executor calls OnStart when the game creates the BT. In it, we
initialize all the references we need. In this case, we get a reference to the
shootPoint object. Note also that we must call base.Onstart() to
initialize the base class.

 � In OnUpdate, we write the intended action for the node, that is, what we want
this node to do when the BT executor invokes it. In this case, the code is self-
explanatory: we create a bullet and shoot it at the velocity stored in the settings.

If there is no problem, we mark the node as complete (so that the BT knows that it
is a Success); otherwise (for example, if there is no shootPoint value), we mark
the node as Failed.

4. Now that we have a base class for shooting once, we can create a new Action
attribute for shooting continuously. Let's create a Shoot.cs file with the following
content:

Using UnityEngine;

using Pada1.BBCore

using Pada1.BBCore.Tasks;

[Action("Chapter09/Shoot")]

[Help("Periodically clones a 'bullet' and shoots it
through the Forward axis with the specified velocity.
This action never ends.")]

public class Shoot : ShootOnce {

 [InParam("delay", DefaultValue = 1.0f)]

 public float delay;

 // Time since the last shoot.

 private float elapsedTime = 0;

 public override TaskStatus OnUpdate() {

 if (delay > 0) {

 elapsedTime += Time.deltaTime;

Implementing the nodes 207

 if (elapsedTime >= delay) {

 elapsedTime = 0;

 return TaskStatus.RUNNING;

 }

 }

 base.OnUpdate();

 return TaskStatus.RUNNING; }

}

This class simply extends the ShootOnce class, adds a delay attribute (the
time between consecutive shots), and then continuously reruns its parent class
(ShootOnce). Note that this Action always returns RUNNING, meaning that it
never completes as long as the BT selects it.

5. In the same way, we can create the remaining Action attribute. For instance, the
SleepForever action is very straightforward: it just does nothing and suspends
the execution of the BTs. Note that the class extends BasePrimitiveAction,
which is the most basic form of Action in Behavior Bricks:

using Pada1.BBCore;

using Pada1.BBCore.Framework;

using Pada1.BBCore.Tasks;

[Action("Chapter09/SleepForever")]

[Help("Low-cost infinite action that never ends. It does
not consume CPU at all.")]

public class SleepForever : BasePrimitiveAction {

 public override TaskStatus OnUpdate() {

 return TaskStatus.SUSPENDED;

 }

}

6. Finally, we need to implement IsNightCondition. We show the
IsNightCondition code in the following listing:

using Pada1.BBCore;

using Pada1.BBCore.Framework;

208 Behavior Trees

using Pada1.BBCore.Tasks;

using UnityEngine;

[Condition("Chapter09/IsNight")]

[Help("Checks whether it is night time.")]

public class IsNightCondition : ConditionBase {

 private DayNightCycle light;

 public override bool Check() {

 return SearchLight() && light.IsNight;

 }

 public override TaskStatus

 MonitorCompleteWhenTrue() {

 if (Check()) {

 return TaskStatus.COMPLETED;

 }

 if (light != null) {

 light.OnChanged += OnSunset;

 }

 return TaskStatus.SUSPENDED;

 }

 public override TaskStatus MonitorFailWhenFalse()

 {

 if (!Check()) {

 return TaskStatus.FAILED;

 }

 light.OnChanged += OnSunrise;

 return TaskStatus.SUSPENDED;

 }

/// ...

 private bool searchLight() {

 if (light != null) {

Implementing the nodes 209

 return true;

 }

 GameObject lightGO =

 GameObject.FindGameObjectWithTag(

 "MainLight");

 if (lightGO == null) {

 return false;

 }

 light = lightGO.GetComponent<DayNightCycle>();

 return light != null;

 }

}

This class is more complex than the others, so let's go slow. First of all,
IsNightCondition extends ConditionBase, which is a basic condition template
in Behavior Bricks. This class does a simple job: on start, it searches for a light with the
MainLight tag. If that exists, it takes its DayNightCycle reference, stores it in the
light variable, and registers with the OnChanged event. Then, every time we ask for
this condition, we check whether the isNight variable in light is true or false (see
the Check method).

However, checking this every time would be very inefficient, in general. So, the
BaseCondition class contains two helpful functions:

• MonitorCompleteWhenTrue is a function that is called by the BT executor
when the last returned value is false and, in practice, sets up a system that
suspends BT execution until the variable becomes true again.

• MonitorFailWhenFalse is a dual function: it is called when the monitored
value is true and suspends BT execution until the variable switches to false.

For instance, let's look at MonitorCompleteWhenTrue. If Check is true (so it is
night), we simply return Complete; otherwise, we register the OnSunset function with
the OnChanged event. When the day/night cycle switches from day to night, OnSunset
is called and, in turn, EndMonitorWithSuccess is called. MonitorFailWhenFalse
works in the same way but in the opposite direction (monitoring when we pass from night
to day):

 public void OnSunset(object sender,

 System.EventArgs night) {

 light.OnChanged -= OnSunset;

210 Behavior Trees

 EndMonitorWithSuccess();

 }

 public void OnSunrise(object sender,

 System.EventArgs e) {

 light.OnChanged -= OnSunrise;

 EndMonitorWithFailure();

 }

In the preceding code block, there are the two OnSunset and OnSunrise event
handlers included in the class. As usual, you can find the complete commented code in the
book's repository.

Building the tree
Now that we have our nodes, we need to assemble the tree. To do that, follow these steps:

1. Right-click in the Inspector and go to the Create sub-menu.
2. Then, select Behavior Tree.
3. Choose a location and save.
4. An empty editor window should show onscreen; this is the tree editor.
5. You can right-click anywhere and start adding and connecting nodes.
6. To implement our tree, you need to recreate the tree shown in the following

screenshot:

Figure 9.9 – The enemy BT in the Behavior Bricks editor

Implementing the nodes 211

7. Select all the nodes, one at a time, and look for the input parameters; these are the
parameters we specified in our classes. These parameters may be CONSTANT,
meaning that we directly write a value for them, or a BLACKBOARD reference.

8. We need to set up the parameters with the following values:

 � In the first IsTargetClose, we specify the blackboard player as target and
the constant 7 as closeDistance (if the player is not listed, click on New
Parameter).

 � In the second IsTargetClose, we specify the blackboard player as target and
the constant 20 as closeDistance.

 � In Shoot, we need to set 30 as the delay, the blackboard shootPoint as
shootPoint (you probably need to create it with New Parameter), the
blackboard bullet as the bullet prefab, and the constant 30 as velocity.

 � In MoveToGameObject, the target is the player value in the blackboard.

9. In Wander, we set a new blackboard parameter (floor) as wanderArea.

Attach the BT to the enemy
Now, it is time to attach this BT to the enemy's BT executor. For that, follow these steps:

1. Select the Enemy game object and add the Behavior Executor component to it.
2. In the Behavior field, drag and drop the BT we created before.
3. In Behavior Parameters, a list of all the blackboard parameters we defined in the

previous step (player, floor, the enemy shootPoint firing location, and
bullet) should appear.

212 Behavior Trees

4. Fill them with the appropriate objects, as shown in Figure 9.10:

Figure 9.10 – The behavior executor component

At this point, the enemy should be ready to go. Click Play and you should see the enemy
wandering around and, when close enough to the player, start chasing and shooting at it.
Note that we did not implement a controller for the player, therefore, to change its position
you need to edit the player in the Scene view (or attach one of the control scripts we
developed in the previous chapters). For more details, look at the code included in this book.

Now that we have completed our first BT, what if we want to replicate with Behavior
Bricks the same AI that we developed in Chapter 2, Finite State Machines, using an FSM?
Try that as an exercise.

Summary
In this chapter, we explored the general background behind any BT implementation. We
saw what a BT is, what its basic components are, and how can we use a BT to describe
game character behavior. Then, we implemented a demo using a free plugin called
Behavior Bricks. In the demo, we created the behavior for a simple scenario: the player
and a patrolling robot. We also implemented a day/night cycle to spice up the scenario.

BTs are the cornerstones of modern AI for game characters. Implementation details and
deeper examples would require a full book to explain them fully. Luckily, the web is full
of resources for the curious reader.

Now, we will take a break from AI character design by looking at a different application
of AI in games. In the next chapter, we will look at the fascinating field of procedural
content generation.

Further reading 213

Further reading
• The official Behavior Bricks project page from the Complutense University of

Madrid in Spain: http://gaia.fdi.ucm.es/research/bb/.

• Behavior Bricks official documentation: http://bb.padaonegames.com/
doku.php.

• Chris Simpson (the developer of Project Zomboid) wrote a nice explanation
of BTs on Gamasutra: https://www.gamasutra.com/blogs/
ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_
they_work.php.

• Chapter 6 of GameAI Pro, which explores many implementation details of BTs (in
C++), is free and available at the following link: https://www.gameaipro.
com/ GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_
Starter_Kit.pdf.

http://gaia.fdi.ucm.es/research/bb/
http://bb.padaonegames.com/doku.php
http://bb.padaonegames.com/doku.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gameaipro.com/ GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf
https://www.gameaipro.com/ GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf
https://www.gameaipro.com/ GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf

10
Procedural Content

Generation
Game AI is not only used to tell NPCs where to go or what to do. We can also use
game AI to create parts of our games, to generate assets or music, to adapt the game
story to the player's actions as a movie director, and even to generate narrative arcs and
character backstories entirely. In the general AI world, this is the topic of Computational
Creativity, a branch of AI concerned with the design of algorithms to enhance human
creativity or completely automate tasks requiring human-level creativity.

The scope of computational creativity is broad and cutting edge. It started in 1952
with Alan Turing writing the first algorithm capable of generating love letters. Today,
it continues with powerful machine-learning-powered algorithms attempting to write
poetry, compose symphonies, or produce astounding visual art pieces.

Luckily for us, in games, we are interested in a more limited subset of this discipline.
We are not interested in producing algorithms with human-level creativity (with all
the philosophical questions attached to this endeavor). Instead, we only want to write
algorithms that can automatically expand the contents of our game, be it by generating
thousands of random dungeons, hundreds of new weapons, models of alien flora and
animals, or anything else. This is called Procedural Content Generation (PCG), and it is
a prominent protagonist of videogame automation.

216 Procedural Content Generation

In this chapter, we will cover the following topics:

• Understanding the basic concept of PCG in video games

• Dipping our toes into PCG by implementing a random generator for the names
of Goblin NPCs

• Implementing a simple cave/dungeon generator

Technical requirements
 For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 10 folder in the book's repository: https://github.
com/PacktPublishing/Unity-Artificial-Intelligence-Programming-
Fifth-Edition/tree/main/Chapter10.

Understanding Procedural Content Generation
in games
As discussed in the introduction, we are refering to all the algorithms that can generate
game content at runtime with PCG algorithms. A PCG algorithm may create the level
design, weapons, graphical assets, musical themes, enemies, NPCs, characters' backstories,
and whatever else you set your mind on. If you think about any element in a game, there is
a chance that there is at least one game that attempted to generate it procedurally. But why
should you?

Nowadays, PCG has become a synonym of random for the general public. Many games
advertise having procedurally generated levels as a way of saying that they offer thousands
of different levels that change at every playthrough. While PCG may indicate some
process of causality, it is worth noting that that's just part of the PCG landscape (even if,
probably, the most marketable). More properly, PCG is the opposite of randomness: it is
an algorithm that very deterministically starts from a seed and produces some content
(but, of course, if we use a random seed, we obtain random outputs).

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter10

Understanding Procedural Content Generation in games 217

There are two principal use cases for PCG:

• The first is to use PCG to generate persistent content that is impossible to pre-generate
during development. If the content is too big to be stored in a file or manual
generation requires too much effort, we may have this necessity. For instance, the
original space simulation game Elite (1985) used PCG to store 8 galaxies with a
256-star system each (in addition to the game code) in just 32 KB. With the increase
in available disk space, this use case is no longer the biggest. However, it is still
possible to find uses. The new version of Elite, called Elite: Dangerous, released in
2014, used the same approach to represent a real-scale copy of the Milky Way with
the astounding number of 400 billion fully explorable star systems. Note that there
is no randomness involved: the galaxy is persistent, and all the players share it in the
game. It would be simply impossible to store the individual data for each star system
on disk.

More Info
You can find an inspiring and exciting analysis of the generative algorithm of
the original Elite game at this URL: https://www.gamedeveloper.
com/design/algorithms-for-an-infinite-universe.

• The second is the most common use case: add variety and replayability to a game by
casually generating content at every playthrough. Rogue-like games popularized this
PCG use, but the most successful videogame using PCG to forge a different random
world at every new run is, without doubt, Minecraft. With PCG, you do not need to
craft every level manually or to design hundreds of different levels: you just need to
specify the rules and let the software automatically generate a wide variety of levels
or weapons.

Now that we understand why, let's explore some different types of PCG algorithms.

Kinds of Procedural Content Generation
During the long history of game development, PCG has been used for a wide variety of
tasks. As a result, we can identify six applications of PCG:

• Runtime Content Generation: This is the type of PCG we instinctively think about
when we hear PCG. It includes the generation at runtime of the game contents. The
creation of random worlds in Minecraft or random maps and weapons in Diablo are
typical examples of this category.

https://www.gamedeveloper.com/design/algorithms-for-an-infinite-universe
https://www.gamedeveloper.com/design/algorithms-for-an-infinite-universe

218 Procedural Content Generation

• Offline Content Generation: This is the type of PCG we use during development.
Even if we do not plan to give the players the ability to explore a randomly
generated world, PCG is still useful for designers and developers. For instance,
if we create a forest, we can use PCG to create 3D models of trees with different
shapes (SpeedTree is a standard tool used for this purpose). We can also use PCG
to kickstart the manual design of levels. Suppose we want to design an island. We
may start by generating a simple random PCG island, then choose the one that most
inspires us, and finally apply manual editing and modeling to it to create the final
island we will ship in the final game. There are many other applications of PCG for
design tools, but they go way out of the scope of this chapter.

• Player-Mediated Content Generation: These types of PCG algorithms use the
players' input as a source of randomness.

• Dynamic Systems: This kind of PCG generates NPCs' behavior and a narrative
background by simulating dynamic systems. A notable example is the A-Life system
of the game called S.T.A.L.K.E.R.. In the game, the A-Life system simulates the
life cycle of thousands of inhabitants of the game world. Consequently, the system
provides infinite non-scripted characters to interact with and unlimited side-quests.

But that is enough theory for now. Let's start coding.

Implementing a simple goblin name generator
In the previous section, we explained that the primary purpose of PCG is to provide
variety while removing from the developer the burden of scripting such variety by hand.
So, imagine that we are developing an old-school RPG, and we want the players to be able
to interact with the NPC characters of a goblin encampment.

In the encampment, there are hundreds of goblins, and we really want to avoid coming up
with the name and the occupation of every one of them. Not only because it's boring and
time-consuming, but if we're going to have random encounters with goblins in the game
world, we need to have the ability to create new goblins on the fly.

Fortunately, we have a more fun (for us) solution: to write an algorithm generating a huge
number of random goblin characters.

Generating goblin names
In order to generate something, we need to find some kind of generative rule. To find such
a rule, the best thing is to look at different examples of what we want to generate and try
to figure out if some pattern connects them. For example, for goblin names, we can look
for insight in a bunch of goblin names from World of Warcraft.

Implementing a simple goblin name generator 219

Let's look at some of them: Grizzle Gearslip, Hobart Grapplehammer, and Helix Blackfuse.
Continuing with this list, we may identify a common pattern:

• The names are composed of two or three syllables.

• The syllables have similar sounds, such as Bax, Griz, Hel, Hob, and so on.

• The surname is always composed of the name of an object or an adjective (gear,
grapple, black, bolt) followed by a verb.

• The theme of the surnames is usually related to mechanical engineering.

That's enough to get started. We create a new scene, and we create a new script called
GoblinNameGenerator, and we paste inside the following code:

class GoblinNameGenerator {

 static string[] NameDatabase1 = { "Ba", "Bax", "Dan",

 "Fi", "Fix", "Fiz", }; //... and more

 static string[] NameDatabase2 = { "b", "ba", "be",

 "bi", "d", "da", "de","di", }; // ... and more

 static string[] NameDatabase3 = { "ald", "ard", "art",

 "az", "azy", "bit","bles", "eek", "eka", "et",

 "ex", "ez", "gaz", "geez", "get", "giez",

 "iek", }; // ... and more

 static string[] SurnameDatabase1 = { "Bolt", "Boom",

 "Bot", "Cog", "Copper","Damp", "Dead", "Far", "Fast",

 "Fiz", "Fizz", "Fizzle", "Fuse", "Gear",

 "Giga", "Gold", "Grapple" }; // ... and more

 static string[] SurnameDatabase2 = { "basher", "blade",

 "blast", "blaster","bolt", "bomb", "boot", "bottom",

 "bub", "button", "buttons", "cash",

 "clamp", }; // ... and more

 private static string RandomInArray(string[] array) {

 return array[Random.Range(0, array.Length)];

220 Procedural Content Generation

 }

 public static string RandomGoblinName() {

 return RandomInArray(NameDatabase1) +

 RandomInArray(NameDatabase2) +

 RandomInArray(NameDatabase3) + " " +

 RandomInArray(SurnameDatabase1) +

 RandomInArray(SurnameDatabase2);

 }

}

This code straightforwardly converts the rules of goblin names into a procedural
algorithm. The NameDatabase1, NameDatabase2, and NameDatabase3
arrays contain the first, middle, and last syllables of the first name. Similarly,
SurnameDatabase1 and SurnameDatabase2 have the two parts of a goblin's
surname. To generate the name, we chose a random piece from each list, and we put
everything together.

Completing the goblin description
Now that we have a name, we need only other small details. So, let's create an empty object
and attach to it a new MonoBehavior instance named GoblinWriter.

This new script contains the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class GoblinWriter : MonoBehaviour {

 public TMPro.TextMeshProUGUI textMesh;

 public List<string> goblinJobs;

 public int goblinMaxAge = 200;

 void Start() {

 UpdateString();

 }

Implementing a simple goblin name generator 221

 void Update() {

 if (Input.GetKeyDown(KeyCode.Space)) {

 UpdateString();

 }

 }

 void UpdateString() {

 string goblinName =

 GoblinNameGenerator.RandomGoblinName();

 string goblinAge = Random.Range(20,

 goblinMaxAge).ToString();

 string goblinJob = goblinJobs[Random.Range(0,

 goblinJobs.Count)];

 textMesh.text = $"{goblinName} is a {goblinAge}

 years old goblin {goblinJob}.";

 }

}

The script has three exposed properties. The first, textMesh, is a reference to the
TextMesh element that will show the text on screen (you can create one by going to
GameObject | UI | Text – TextMeshPro). The second, goblinJobs, stores a list of jobs
we want to give to the goblins. As you can see in Figure 10.1, I added four jobs: warrior,
archer, blacksmith, and shaman. The third, goblinMaxAge, represents the maximum
age for my goblins.

Figure 10.1 – The Goblin Writer script in the Inspector

222 Procedural Content Generation

Whenever we call UpdateString (that is, at the start of the game and every time we press
Spacebar), we simply extract a value from the set of possible values for the age, the job, and
the name, and construct a string. Once we have everything set up, we can run the demo, and
we should see a new goblin description every time we press Spacebar (Figure 10.2).

Figure 10.2 – One of the many random goblins we can generate

The example is simple, but it is an effective way to add variety to any game.

Info
The Dungeon Master manual of the fifth edition of Dungeon & Dragons
contains several examples of this kind of composition and randomness-driven
procedural generation. Inside it, you can find a lot of tables to generate
treasures, weapons, side-quests, characters, and so on. Sure, it is designed
to be used with pen and dice, but nothing stops you from translating paper
algorithms into computer algorithms!

Now that we have a taste for procedural generation, let's step up the game. Let's introduce
another handy tool for the PCG developer: Perlin noise.

Learning how to use Perlin noise
Perlin noise is an algorithm to define digital noise developed by Ken Perlin in 1983. It
quickly became the de facto algorithm to generate natural-looking patterns in a considerable
number of procedural content generation algorithms. For example, Perlin noise is used to
create 3D landscapes, 2D textures, procedural animations, and much more.

Learning how to use Perlin noise 223

Figure 10.3 – The difference between Perlin noise (left) and white noise (right)

But what makes Perlin noise different from other noises? The short answer is that it looks
more natural. This answer, however, just changes the question into what does it mean to be
more natural? Let's imagine standard non-Perlin noise, for instance, a sequence of random
numbers between 0 and 1. The sequence may be something like 0, 0.9, 0.2, 0.3, 0.95, and
so on.

As you can see, the numbers can jump up and down without any criteria. If these numbers
represent the position of a character in the game, the character will appear to teleport
itself left and right frantically. That is not how things move in real life.

Perlin noise is different because, in the sequence of numbers, two consecutive numbers
will always be close together. For example, after 0.9 we may have 0.91, 0.92, or 0.88 but
never 0.1. The effect is like a buoy floating on the sea: it can move unpredictably left and
right, up and down, but with a certain smoothness – a certain naturalness.

This looks perfect. However, how can we use Perlin noise in Unity? Luckily, Unity offers
the Perlin noise algorithm as a built-in tool.

Built-in Unity Perlin noise
Unity offers a simple function to access Perlin noise:

Mathf.PerlinNoise(xCoord, yCoord);

Unity implements Perlin noise as an infinite 2D plane that you can randomly sample
in code using the Mathf.PerlinNoise function. You can simply sample a random
coordinate to get a random value on the Perlin noise plane.

224 Procedural Content Generation

Info
Note that Unity only offers you 2D Perlin noise. However, Perlin noise can
be easily extended to 3D (for instance, to create volumetric smoke) or even
four and more dimensions. If you need 3D Perlin noise, you need to develop
the algorithm yourself or look for the many open source implementations
you can find online (for instance, https://gist.github.com/
tntmeijs/6a3b4587ff7d38a6fa63e13f9d0ac46d).

Imagine you want to create a random 2D texture using Unity's built-in Perlin noise. You
can do that by starting at an arbitrary point (xStart and yStart) and then copying
every surrounding point's value into the texture as you can see in the following example
(the full PerlinTexture.cs file is included in the GitHub repository):

 void CalculateNoise() {

 for (float y = 0.0f; y < noiseTex.height; y++) {

 for (float x = 0.0f; x < noiseTex.width; x++) {

 float xCoord =

 xOrg + x / noiseTex.width * scale;

 float yCoord =

 yOrg + y / noiseTex.height * scale;

 float value =

 Mathf.PerlinNoise(xCoord, yCoord);

 pix[(int)y * noiseTex.width + (int)x] =

 new Color(value, value, value);

 }

 }

 // Copy the pixel data to the texture and load it

 // into the GPU.

 noiseTex.SetPixels(pix);

 noiseTex.Apply();

 }

However, we can also use 2D Perlin noise to generate 1D Perlin noise. In that case, we fix
one coordinate (x or y) and we move the other in a straight line.

https://gist.github.com/tntmeijs/6a3b4587ff7d38a6fa63e13f9d0ac46d
https://gist.github.com/tntmeijs/6a3b4587ff7d38a6fa63e13f9d0ac46d

Generating random maps and caves 225

Suppose we want to animate a bobbing sphere, floating gently up and down like a balloon.
We can do that by setting its y coordinate (canonically representing the up and down
direction) to the value of the Perlin noise:

using UnityEngine;

public class Bobbling : MonoBehaviour {

 // Range over which height varies.

 public float heightScale = 1.0f;

 // Distance covered per second along X axis of Perlin

 // plane.

 public float xScale = 1.0f;

 void Update() {

 float height = heightScale *

 Mathf.PerlinNoise(Time.time * xScale, 0.0f);

 Vector3 pos = transform.position;

 pos.y = height;

 transform.position = pos;

 }

}

If you attach this small script to any object, you will see the object randomly moving up
and down.

That's just the tip of the iceberg of Perlin noise application, but I hope that it will get you
started. However, it is time for us to continue our journey into PCG. In the next section,
we will generate a random cave using a new technique called Cellular Automata.

Generating random maps and caves
Another widespread application of PCG is the generation of maps and dungeons. For
example, in the roguelike genre (a type of game that takes its name from the 1980s game
Rogue), players face a randomly generated dungeon every time they start a game. Likewise,
in Minecraft, players begin the game by generating a random world to explore and in which
they need to survive. The examples are numerous – too many to be listed here.

226 Procedural Content Generation

There are significant numbers of algorithms to create game worlds. Some use fractal noise
to generate random heightmaps. Some others create dungeon-like structures by creating
random rooms and connecting them with corridors. Others build maps by randomly
arranging manually premade rooms into a myriad of different combinations like in a
puzzle (if you have ever played the tabletop game Carcassonne, you know what I am
talking about).

This demo will explore a simple technique well suited for the generation of caves or
natural-looking scenes, called Cellular Automata.

Cellular automata
Cellular Automata (CA) is not only a PCG algorithm. CA have been studied since 1950
as an abstract computational model. However, their popularity exploded only after the
release of Conway's Game of Life in the 70s.

The basic idea of CA is to simulate the behavior of cells in a 2D grid. Each cell in the grid
has two states: dead or alive. Each cell will die or live depending on rules that depend only
on their neighbors.

Figure 10.4 – A configuration of cells in the Game of Life

The behavior of a CA algorithm depends only on these evolution rules. So, we start
from an initial configuration of alive and dead cells and then let the system evolve
independently. In Game of Life, for example, we have four simple rules:

• Live cells with fewer than two live neighbors are underpopulated, and therefore
they die.

• Live cells with two or three live neighbors keep living in the next generation.

• Live cells with more than three live neighbors are overpopulated, and therefore
they die.

• Dead cells with exactly three live neighbors become alive again due to reproduction.

Generating random maps and caves 227

It turns out that these four simple rules are powerful enough to make the algorithm itself
Turing complete. This means that it is possible to write a configuration of live and dead
cells that, after applying the above four rules, is able to do any computation like a normal
computer, for instance, multiplying numbers or playing chess. If you are interested in
this, Paul Rendell has a detailed description of the pattern on his web page (http://
rendell-attic.org/gol/tm.htm).

But let's come back to our goal. Luckily for us, we need to do something much more
simple than implementing a CPU with our CA. In PCG, CA are an excellent choice
because they are easy to implement and generate maps that look like natural environments
such as deserts, caves, island archipelagos, and so on.

Implementing a cave generator
To implement our cave generator, we need two components:

• A component that generates and stores the map abstractly (for example, as
an array of integers)

• A component that will render the abstract map in a visible 3D object in
the game

So, let's start by implementing the first component. We'll call it CaveGenerator:

using UnityEngine;

using System;

public class CaveGenerator : MonoBehaviour {

 [SerializeField]

 private int width;

 [SerializeField]

 private int height;

 [SerializeField]

 private int seed;

 [SerializeField]

 private bool useRandomSeed;

http://rendell-attic.org/gol/tm.htm
http://rendell-attic.org/gol/tm.htm

228 Procedural Content Generation

 private int[,] map;

 void Start() {

 InitializeRandomGrid();

 DrawCaveMesh();

 }

 void Update() {

 if (Input.GetKeyDown(KeyCode.G)) {

 CellularAutomata(false);

 DrawCaveMesh();

 } else if (Input.GetKeyDown(KeyCode.Space)) {

 CellularAutomata(true);

 DrawCaveMesh();

 } else if (Input.GetKeyDown(KeyCode.N)) {

 InitializeRandomGrid();

 DrawCaveMesh();

 }

 }

The component exposes four attributes to the Inspector. The first two are simply the
weight and height of the map expressed as number of cells. Then we have the seed
of the random generator in case we want to create specific maps (this is especially
useful for debugging purposes). In general, though, we want a random map every time
we start the game; that's why we have a useRandomSeed property: if it is true, we
initialize a random seed. Finally, we have a private bidimensional array to store the map
representation.

After the properties specification, we need to initialize the Start and Update callbacks.
These functions will simply call the other functions that we will define next. In Update,
we can also see the keys we use to control the demo: every time we press Spacebar, we run
another step of the CA simulation; when we press the N key, we initialize a new map.

When we press the G key, we run a different rule for the CA (more on this when we set up
the CA rules).

Generating random maps and caves 229

We'll now implement the InitializeRandomGrid function. This function initializes
the map with random dead and alive cells. However, there are two additional tips. First,
the function creates a border of walls (alive cells) around the map. This is because maps
are usually bounded, and we do not want the players to jump off the map. This border of
walls will ensure that the final map will not have caves leading out of the map edges:

 void InitializeRandomGrid() {

 map = new int[width, height];

 if (useRandomSeed) {

 seed = (int)DateTime.Now.Ticks;

 }

 System.Random randomGen =

 new System.Random(seed.GetHashCode());

 int mapMiddle = (height / 2);

 for (int c = 0; c < width; c++) {

 for (int r = 0; r < height; r++) {

 if (c == 0 || c == width - 1 || r == 0 || r

 == height - 1) {

 map[c, r] = 1;

 } else {

 if (c == mapMiddle) {

 map[c, r] = 0;

 } else {

 map[c, r] = (randomGen.Next(0, 100)

 < 50) ? 1 : 0;

 }

 }

 }

 }

 }

230 Procedural Content Generation

The second trick is to keep a vertical line of empty spaces (dead cells). That's the purpose
of the check on the mapMiddle variable. The motivation for this blank line is simple: it
empirically gives better results by generating a main connected cave extending over the
entire map. You can remove it to get multiple isolated smaller caves or find a different
starting pattern that offers a better outcome according to your tastes and use cases. The
InitializeRandomGrid function initializes something like the image in Figure 10.5.

Figure 10.5 – The initial state of the map

Now, we'll look at a small utility function that we use to count the walls around a specific
map cell:

 int GetSurroundingWallCount(int c, int r, int size) {

 int wallCount = 0;

 for (int iX = c - size; iX <= c + size; iX ++) {

 for (int iY = r - size; iY <= r + size; iY ++)

 {

 if (iX != c || iY != r) {

 wallCount += isWall(iX, iY) ? 1 : 0;

 }

 }

 }

 return wallCount;

 }

 bool isWall(int c, int r) {

 if (c < 0 || r < 0) {

 return true;

 }

 if (c > width - 1 || r > height - 1) {

 return true;

Generating random maps and caves 231

 }

 return map[c, r] == 1;

 }

The first function is straightforward. It looks at the cells around the target coordinates and
counts the number of walls. It also takes a size parameter indicating the radius around
the target coordinate. If size is equal to 1, we check the eight cells around the target
coordinates (imagine a 3x3 square). If size is equal to 2, we also check the neighbors'
neighbors (imagine a 5x5 square).

The isWall function is used to check if a specific coordinate represents a wall. You
may ask: why don't we just check the value of map at (c,r)? Because we may enter
coordinates outside the array (for instance, (-1,-1)). In that case, we assume that
every cell outside the map is a wall (and it will remain a wall). This simplifies the logic for
GetSurroundingWallCount.

Now it is time to get to the meat – the CA rules:

 void CellularAutomata(bool clean = false) {

 int[,] newmap = new int[width, height];

 for (int c = 0; c < width; c ++) {

 for (int r = 0; r < height; r ++) {

 int numWalls =

 GetSurroundingWallCount(c, r, 1);

 int numWalls2 =

 GetSurroundingWallCount(c, r, 2);

 if (isWall(c,r)) {

 if (numWalls > 3) {

 newmap[c, r] = 1;

 } else {

 newmap[c, r] = 0;

 }

 } else {

 if (!clean) {

 if (numWalls >= 5 || numWalls2 <=

 2) {

 newmap[c, r] = 1;

 } else {

232 Procedural Content Generation

 newmap[c, r] = 0;

 }

 } else {

 if (numWalls >= 5) {

 newmap[c, r] = 1;

 } else {

 newmap[c, r] = 0;

 }

 }

 }

 }

 }

 map = newmap;

 }

For the cave generator, we use two sets of rules. The first set (obtained when clean is
equal to true) is described as follows:

• If a cell is a wall, it remains a wall as long as it has more than three neighboring
walls. Otherwise, it becomes an empty space.

• If a cell is empty, it remains empty as long as it has fewer than five neighboring
walls. Otherwise, it becomes a wall.

The second set of rules is identical to the first, but it also checks the neighbors of radius
2. If too many empty spaces surround an empty cell, then it becomes a wall. This optional
behavior removes large empty spaces, promoting more narrow passages. However, this
can also leave isolated 1x1 walls that look like noise (which is why this set of rules is
enabled with the clean parameter equal to false).

By running these rules, we get maps such as the one in Figure 10.6.

Generating random maps and caves 233

Figure 10.6 – A random cave generated by our algorithm

We now have a perfectly working algorithm but no way to show it in the game. For this,
we have the DrawCaveMesh function:

 void DrawCaveMesh() {

 MeshGenerator meshGen =

 GetComponent<MeshGenerator>();

 meshGen.GenerateMesh(map, 1);

 }

This function simply invokes a mesh generator. We will implement MeshGenerator in
the next section.

Rendering the generated cave
Given the abstract map representation (the bidimensional array stored in map), we need
something that converts it into a mesh rendered on screen. We can do this in multiple
ways. To allow flexibility, we start by defining an abstract component:

using UnityEngine;

public abstract class MeshGenerator : MonoBehaviour {

 abstract public void GenerateMesh(int[,] map, float

 squareSize);

}

This simple abstract class tells Unity that every valid MeshGenerator should contain a
GenerateMesh function. This function takes as input the array map and the size of each
cell expressed in Unity units.

234 Procedural Content Generation

That's cool, but obviously not very useful right now. We still cannot render anything. Do
not worry; we will now implement a simple mesh renderer.

Basic mesh renderer
The idea of this renderer is to spawn a 1x1 cube for each wall cell. We'll call this renderer
WallGenerator:

public class WallGenerator : MeshGenerator {

 public GameObject wallCube;

 public override void GenerateMesh(int[,] map,

 float squareSize) {

 foreach (Transform t in transform) {

 Destroy(t.gameObject);

 }

 int width = map.GetLength(0);

 int height = map.GetLength(1);

 for (int c = 0; c < width; c++) {

 for (int r = 0; r < height; r++) {

 if (map[c, r] == 1) {

 GameObject obj = Instantiate(wallCube,

 new Vector3(c * squareSize, 0, r *

 squareSize), Quaternion.identity);

 obj.transform.parent = transform;

 }

 }

 }

 transform.position =

 new Vector3(-width / 2.0f, 0, -height / 2.0f);

 MergeCubes();

 }

First of all, note that this class extends our abstract MeshGenerator class. Second, this
component exposes a single parameter called wallCube. This parameter contains a
reference to a wall prefab (basically a colored 3D cube).

Generating random maps and caves 235

Then, we implement the GenerateMesh function. The implementation is once again
straightforward:

1. We destroy all the existing walls (stored as children).
2. Then, we iterate over every cell in the abstract map and spawn a wallCube object

in the proper location.
3. We shift the map by half the size (for visualization purposes).

There is a problem, though. Unity is not suitable for spawning thousands of GameObjects.
So, if our map is 200x200, this function will potentially spawn 40,000 GameObjects
just for rendering the map. The result will be a pretty slow game (and we are not even
spawning characters yet).

Fortunately, there is a quick solution:

 private void MergeCubes() {

 transform.GetComponent<MeshFilter>().mesh =

 new Mesh();

 MeshFilter[] meshFilters =

 GetComponentsInChildren<MeshFilter>();

 CombineInstance[] combine =

 new CombineInstance[meshFilters.Length];

 int i = 0;

 while (i < meshFilters.Length) {

 combine[i].mesh = meshFilters[i].sharedMesh;

 combine[i].transform =

 meshFilters[i].transform.localToWorldMatrix;

 meshFilters[i].gameObject.SetActive(false);

 i++;

 }

 transform.GetComponent<MeshFilter>().mesh =

 new Mesh();

 transform.GetComponent<MeshFilter>()

 .mesh.indexFormat =

 UnityEngine.Rendering.IndexFormat.UInt32;

 transform.GetComponent<MeshFilter>()

236 Procedural Content Generation

 .mesh.CombineMeshes(combine, true);

 transform.gameObject.SetActive(true);

 foreach (Transform t in ransform) {

 Destroy(t.gameObject);

 }

 }

The MergeCubes function takes all the cubic children we just spawned and combines
them in a single game object with a single mesh. We do that by leveraging the built-in
CombineMeshes tool.

As you can see in the preceding code, we first get all the children (all the individual walls).
Then, for each one of them, we create CombineInstance. The only tricky thing to
remember is to store the coordinates of the mesh in world coordinates (Unity does that by
calling .transform.localToWorldMatrix).

Once we have all the CombineInstance objects, we replace the map's mesh with the
mesh obtained by combining all the walls.

Info
Depending on the size of the map, the default mesh IndexFormat
may be unable to contain all the vertices of the combined mesh.
We can solve this by using 32-bit indexing with transform.
GetComponent<MeshFilter>().mesh.indexFormat =
UnityEngine.Rendering.IndexFormat.UInt32;.

Finally, we destroy all the children.

Now we can set up the scene. The final outcome is shown in the following screenshot.

Figure 10.7 – The CaveGen Hierarchy

Generating random maps and caves 237

First, let's create a big plane to use for the ground level, and then an object called
CaveGen. The CaveGen object contains a MeshRenderer and a MeshFilter
component (but no mesh).

Now attach the CaveGenerator and WallRenderer components to this object and
configure them as in the following screenshot.

Figure 10.8 – The CaveGenerator and WallGenerator components

The final touch is adding a Wall prefab to Wall Cube. Then, finally, we can click Play, and
we should see something similar to Figure 10.9.

Figure 10.9 – The initial random configuration

238 Procedural Content Generation

We can now continue the map generation by pressing Spacebar (or G if we want to apply
the second set of CA rules). After some time, you may note that the map stabilizes into a
map like the one in Figure 10.10. At that point, your map is ready (but you can start over
by pressing N).

Figure 10.10 – The completely evolved map

Not bad for a PCG algorithm that we wrote in less than 130 lines of code.

Advanced mesh renderer
WallGenerator is quick and effective; however, it is not optimal. The final mesh
contains a lot of redundant vertices, and we still have this pixelated look. There are many
other different algorithms that we can use to generate a mesh. A standard solution is to
use the Marching Squares algorithm (also called Marching Cubes if applied to 3D).

This algorithm is a bit complex, and a detailed discussion would go way beyond
the scope of this book. However, in the code of this demo, I've included a
MarchingCubesGenerator component for you to use and explore. The
algorithm is taken from an official Unity tutorial (https://www.youtube.com/
watch?v=yOgIncKp0BE) and I have adapted it for this demo.

To use it, you just need to replace the WallGenerator component with
MarchingCubesGenerator. If you now run the game and run the CA for a couple of
generations, you should see something like Figure 10.11.

https://www.youtube.com/watch?v=yOgIncKp0BE
https://www.youtube.com/watch?v=yOgIncKp0BE

Summary 239

Figure 10.11 – The map rendered using MarchingCubesGenerator

As you can see, we get smoother walls and much fewer vertices (with improved
performance). If you like this cave generator and want to explore it in depth, I encourage
you to go to the official tutorial by navigating to https://learn.unity.com/
tutorial/generating-content.

Summary
In this chapter, we barely scratched the surface of PCG. First, we started with a simple
algorithm to create randomized goblin biographies. Then, we unleashed the power of CA
to develop an intricate cave system and discovered two techniques to render abstract grids
in 3D maps.

However, as I said, this is just the beginning. PCG represents a massive class of algorithms
blending the boundary between programming and art. PCG alone is a programming field
worth exploring, and this short chapter's goal was to give you just a tiny taste of it.

Now, though, we have no more time for PCG. It is time to move on to machine learning in
the next chapter.

Further reading
If you are interested in a deeper exploration of PCG in Unity, Ryan Watkins wrote an
entire book on the topic titled Procedural Content Generation for Unity Game Development
for Packt.

https://learn.unity.com/tutorial/generating-content
https://learn.unity.com/tutorial/generating-content

11
Machine Learning

in Unity
Machine learning is the hottest buzzword in Artificial Intelligence (AI). Nowadays,
everything contains (or claims to contain) some machine learning-powered AI that is
supposed to improve our life: calendars, to-do apps, photo management software, every
smartphone, and much more. However, even if the phrase machine learning is just a
marketing gimmick most of the time, it is without question that machine learning has
improved significantly in recent years. Most importantly, though, there are now plenty
of tools that allow everybody to implement a learning algorithm without any previous
academic-level AI knowledge.

At the moment, machine learning is not used in game development (except for
applications for procedural content generation). There are many reasons for that. The
main reason, though, is that a designer can't control the output of a machine learning
agent, and in game design, uncontrollable outcomes often correlate to not-fun games. For
this reason, game AI developers prefer more predictable and straightforward techniques,
such as behavior trees.

On the other hand, being able to use machine learning algorithms in Unity is useful
for non-gaming purposes, such as simulations, AI research, and some serious gaming
applications. Whatever the reason, Unity provides a complete toolkit for machine learning
that spares us the complication of interfacing the game engine with an external machine
learning framework.

242 Machine Learning in Unity

In this chapter, we will look at the following topics:

• An introduction to the Unity Machine Learning Agents Toolkit

• Setting up the Unity Machine Learning Agents Toolkit

• Seeing how to run a simple example

Machine learning is an extensive topic; therefore, we do not expect to cover every single
aspect of it. Instead, look at the toolkit documentation and the additional resources linked
at the end of this chapter for further reference.

Technical requirements
For this chapter, you need Unity3D 2022, Python 3.7, PyTorch, and the ML-Agents
Toolkit installed on your system. Don't worry if you don't; we will go over the installation
steps. You can find the example project described in this chapter in the Chapter 11
folder in the book's repository: https://github.com/PacktPublishing/Unity-
Artificial-Intelligence-Programming-Fifth-Edition/tree/main/
Chapter11

The Unity Machine Learning Agents Toolkit
The Unity Machine Learning Agents Toolkit (ML-Agents Toolkit) is a collection of
software and plugins that help developers write autonomous game agents powered by
machine learning algorithms. You can explore and download the source code at the
GitHub repository at https://github.com/Unity-Technologies/ml-agents.

The ML-Agents Toolkit is based on the reinforcement learning algorithm. Simplistically,
reinforcement learning is the algorithmic equivalent of training a dog. For example, if you
want to teach a dog some trick, you give him a command, and then, when the dog does
what you expect, you reward him. The reward tells your dog that it responded correctly to
the command, and therefore, the next time it hears the same command, it will do the same
thing to get a new reward.

Note
In reinforcement learning, you can also punish your agent when doing
the wrong things, but in the dog-training example, I can assure you that
punishment is entirely unnecessary. Just give them rewards!

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter11
https://github.com/Unity-Technologies/ml-agents

Installing the ML-Agents Toolkit 243

For an AI agent trained with reinforcement learning, we perform a similar cycle:

1. When an agent acts, the action influences the world (such as changing the Agent's
position, moving an object around, collecting a coin, gaining score points, and so on).

2. The algorithm then sends the new world state back to the Agent with a reward (or
punishment).

3. When the Agent decides its following action, it will choose the action that
maximizes the expected reward (or minimizes the expected punishment).

For this reason, it is clear that training a reinforcement learning agent requires several
simulations of the scenario in which the Agent acts, receives a reward, updates its
decision-making values, performs another action, and so on. This work is offloaded from
Unity to Torch via PyTorch. Torch is a popular open source machine learning library
used, among others, by tech giants such as Facebook and IBM.

Refer to the Further reading section at the end of the chapter for more information on
reinforcement learning.

Let's now see how to install the toolkit.

Installing the ML-Agents Toolkit
As a first step, we need to download the toolkit. We can do this by cloning the repository
with the following command:

git clone --branch release_19 https://github.com/Unity-
Technologies/ml-agents.git

This command creates an ml-agents folder in your current folder. The ML-Agents
Toolkit is composed of two main components:

• A Python package containing the Python interface for Unity and PyTorch's trainers
(stored in the ml-agents folder)

• A Python package containing the interface with OpenAI Gym (https://gym.
openai.com/), a toolkit for training reinforcement learning agents (stored in the
gym-unity folder).

Information
Git is the most famous version-control application in the world. It is used to
store your source code, keep track of different versions, collaborate with other
people, and much more. If you are not already using Git, you should really
check it out. You can download it from https://git-scm.com/.

https://gym.openai.com/
https://gym.openai.com/
https://git-scm.com/

244 Machine Learning in Unity

Now, it is time to install the required dependencies.

Installing Python and PyTorch on Windows
The suggested version of Python for the ML-Agents Toolkit is version 3.7. You can
install it in many ways, the faster of which is by searching in Microsoft Store for Python
3.7 (or follow this link: https://www.microsoft.com/en-us/p/python-
37/9nj46sx7x90p).

On Windows, you need to manually install PyTorch before installing the mlagents
package. To do that, you can simply run this command in a terminal:

pip3 install torch~=1.7.1 -f https://download.pytorch.org/whl/
torch_stable.html

Information
If you have any difficulties installing PyTorch, you can refer to the official
installation guide at https://pytorch.org/get-started/
locally/.

After this step, you should be able to follow the same installation steps for macOS and
Unix-like systems.

Installing Python and PyTorch on macOS and Unix-like
systems
To install the ML-Agents Toolkit on macOS or Linux, you need first to install Python 3.6
or Python 3.7 (at the moment, the ML-Agents Toolkit recommends only these two Python
versions).

Then, you can run the following command:

python -m pip install mlagents==0.28.0

On macOS and Linux, this command installs automatically the correct version of PyTorch.

After the installation, if everything is correct, you should be able to run the mlagents-
learn --help command without any errors from any place in the system.

https://www.microsoft.com/en-us/p/python-37/9nj46sx7x90p
https://www.microsoft.com/en-us/p/python-37/9nj46sx7x90p
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/

Using the ML-Agents Toolkit – a basic example 245

Note
Pip3 is automatically installed with any Python 3.x distribution. If, for some
reason, you don't have pip3 installed, try following the official guide:
https://pip.pypa.io/en/latest/installing/.

Using the ML-Agents Toolkit – a basic example
Now that everything is installed, we can start using the ML-Agents Toolkit. First, let's
explain the basic architecture of an ML-Agents scene.

An ML-Agents scene is called a learning environment. The learning environment is a
standard Unity scene and contains two main elements:

• The agent: Obviously, the Agent is the central object in the ML-Agents Toolkit.
An agent is an object that performs an action, receives information from the
environment, and can receive rewards for actions. To create an Agent, you need to
subclass the Agent class and write the behavior for the agent. For instance, if the
Agent is a car, we need to write how the car is controlled by the input and how we
can reward and penalize the car (for example, we can reward the vehicle for going
above a certain speed and punish it when it goes off-road). A learning environment
can have as many agents as you like.

• The academy: This component is a singleton (therefore, it doesn't need to be
explicitly instantiated in the scene in a game object) that orchestrates the agents in
the scene and is responsible for their training and decision making. Each sequence
of actions and data collection is called an episode. An episode usually starts from
a default starting configuration and ends when the Agent performs a maximum
number of steps, reaches a goal, or fails to reach a goal. In particular, for every
episode, the academy does the following operations:

 � Invokes OnEpisodeBegin() for each Agent in the scene.

 � Invokes CollectObservations(VectorSensor sensor) for each
Agent in the scene. This function is used to collect information on the
environment so that each Agent can update its internal model.

 � Invokes OnActionReceived() for every Agent in the scene. This function
executes the action chosen by each Agent and collects the rewards (or penalty).

 � If an agent completes its episode, the academy calls OnEpisodeBegin()
for the Agent. This function is responsible for resetting the Agent in the
starting configuration.

https://pip.pypa.io/en/latest/installing/

246 Machine Learning in Unity

To start using the ML-Agents Toolkit, we need to do the following:

1. Open Unity and create an empty project.
2. Go to Windows | Package Manager.
3. In the top-left menu, select Unity Registry:

Figure 11.1 – The Unity Package Manager

Using the ML-Agents Toolkit – a basic example 247

4. Look for the ML Agents package and install it:

Figure 11.2 – The ML Agents package in Package Manager
We need to make sure that we are using the correct runtime.

248 Machine Learning in Unity

5. To do so, go to Edit | Project Settings | Player, and for each platform (PC, Mac,
Android, and so on), go into Other Settings and make sure that Api Compatibility
Level is set to .NET Framework. If not, adjust these settings to be as we need them
and then save, as follows:

Figure 11.3 – The Project Settings window with the correct settings

Creating the scene
Creating a learning environment is easy. Let's create a simple 3D scene with a plane, a
sphere, and a cube, as shown in the following screenshot:

Using the ML-Agents Toolkit – a basic example 249

Figure 11.4 – The basic demo scene

We put the cube at the plane's center and add a Rigidbody component to the sphere.
This scene aims to train a rolling ball to reach the target (the cube) without falling from
the plane.

Implementing the code
Now, we need to implement the code that will describe the Agent's behavior and the
ML-Agent's academy. The agent's behavior script describes how the Agents perform
actions in the simulation, the reward the Agent receives, and how we reset it to start a
new simulation:

1. Select the sphere. Let's add to it a new script, called SphereAgent, with the
following content:

using System.Collections.Generic;

using UnityEngine;

using Unity.MLAgents;

using Unity.MLAgents.Sensors;

using Unity.MLAgents.Actuators;

public class SphereAgent : Agent {

 Rigidbody rBody;

 public Transform Target;

 public float forceMultiplier = 10;

 void Start () {

250 Machine Learning in Unity

 rBody = GetComponent<Rigidbody>();

 }

 override public void OnEpisodeBegin() {

 if (transform.position.y < -1.0) {

 // The agent fell

 transform.position = Vector3.zero;

 rBody.angularVelocity = Vector3.zero;

 rBody.velocity = Vector3.zero;

 } else {

 // Move the target to a new spot

 Target.position = new Vector3(Random.value *

 8 - 4, 0.5f, Random.value * 8 - 4);

 }

 }

}

This is the base agent for our demo. OnEpisodeBegin is a function called by the
system every time we want to reset the training scene. In our example, we check
whether the sphere fell from the plane and bring it back to zero; otherwise, we move
it to a random location.

2. We need to add the CollectObservations method to SphereAgent. The
agent uses this method to get information from the game world and then uses it to
perform a decision:

 override public void CollectObservations(

 VectorSensor sensor) {

 // Calculate relative position

 Vector3 relativePosition =

 Target.position - transform.position;

 // Relative position

 sensor.AddObservation(relativePosition.x/5);

 sensor.AddObservation(relativePosition.z / 5);

 // Distance to edges of platform

 sensor.AddObservation(

Using the ML-Agents Toolkit – a basic example 251

 (transform.position.x + 5) / 5);

 sensor.AddObservation(

 (transform.position.x - 5) / 5);

 sensor.AddObservation(

 (transform.position.z + 5) / 5);

 sensor.AddObservation(

 (transform.position.z - 5) / 5);

 // agent velocity

 sensor.AddObservation(rBody.velocity.x / 5);

 sensor.AddObservation(rBody.velocity.z / 5); }

In this example, we are interested in the following:

 � The relative position of the sphere agent from the cube (the target). We are only
interested in the x and z values because the sphere only moves on the plane
(note that we normalize the values by dividing by 5, which is half the default
plane size).

 � The distance from the plane's edges.

 � The sphere's velocity.

3. We need to implement the OnActionReceived method. This method is called
whenever the Agent needs to act. The method takes a single parameter of the
ActionBuffer type. The ActionBuffer object contains a description of the
control inputs for the sphere. In our case, we only need two continuous actions,
corresponding to the force applied along the x and z axes of the game.

4. We also need to define the rewards. As said before, we reward the Agent with one
point by calling SetReward when we reach the target. If the Agent falls off the
plane, we end the episode with zero points by calling EndEpisode. The final
version of the code is the following:

 public override void OnActionReceived(

 ActionBuffers actionBuffers) {

 // Actions, size = 2

 Vector3 controlSignal = Vector3.zero;

 controlSignal.x =

 actionBuffers.ContinuousActions[0];

 controlSignal.z =

 actionBuffers.ContinuousActions[1];

252 Machine Learning in Unity

 rBody.AddForce(controlSignal * forceMultiplier);

 // Rewards

 float distanceToTarget = Vector3.Distance(this.

 transform.localPosition, Target.localPosition);

 // Reached target

 if (distanceToTarget < 1.42f) {

 SetReward(1.0f);

 EndEpisode();

 }

 // Fell off platform

 else if (this.transform.localPosition.y < 0) {

 EndEpisode();

 }

 }}

Now, it is time to connect this SphereAgent script to our sphere.

Adding the final touches
Now, we need to connect all the pieces to make the demo work:

1. First, we attach the SphereAgent script to the sphere.
2. We drag and drop the cube into the Target field of the Sphere Agent component.
3. We add a Decision Requester component by clicking on Add Component. We can

leave the default settings.
4. In the Behavior Parameters script, we set up MovingSphere.
5. We set the Vector Observation | Space Size value to 8, corresponding to the

number of observations we added in the CollectObservations method.

Using the ML-Agents Toolkit – a basic example 253

6. Finally, we set the Actions | Continuous Actions value to 2. At this point, the
sphere scripts should look like the following screenshot:

Figure 11.5 – The Inspector view for the sphere agent

It is now to test our environment.

254 Machine Learning in Unity

Testing the learning environment
Before we start learning, we want to test the environment by controlling the Agents with
manual input. It is very useful to debug the learning environment without wasting hours
of the training process.

Fortunately, the ML-Agents Toolkit makes it very handy to control an agent with live
input. We only need two steps:

1. We add the Heuristic method to the SphereAgent component. This function
allows us to manually specify the values of the ActionBuffer objects. In our case,
we want to add the two continuous actions to the input axes of the controller:

 public override void Heuristic(

 in ActionBuffers actionsOut) {

 var continuousActionsOut =

 actionsOut.ContinuousActions;

 continuousActionsOut[0] =

 Input.GetAxis("Horizontal");

 continuousActionsOut[1] =

 Input.GetAxis("Vertical");

 }

2. Now, we go to the Inspector and set the Behavior Type parameter to Heuristic Only:

Figure 11.6 – The Behavior Type configuration

At this point, you can press Play in Unity, and you should be able to control the sphere
using the arrow key (or a gaming controller stick). You can test the environment by
checking the episode's behavior. If you reach the target cube, it should disappear and
spawn in another random location. If you fall from the plane, you should respawn on
the plane.

If everything looks fine, it is time to train the Agent automatically.

Training an agent 255

Training an agent
Before we can start training, we need to write a training configuration file. Open your
terminal and go into any empty folder. Then, create a sphere.yaml file with the
following code:

behaviors:

 MovingSphere:

 trainer_type: ppo

 hyperparameters:

 batch_size: 10

 buffer_size: 100

 learning_rate: 3.0e-4

 beta: 5.0e-4

 epsilon: 0.2

 lambd: 0.99

 num_epoch: 3

 learning_rate_schedule: linear

 beta_schedule: constant

 epsilon_schedule: linear

 network_settings:

 normalize: false

 hidden_units: 128

 num_layers: 2

 reward_signals:

 extrinsic:

 gamma: 0.99

 strength: 1.0

 max_steps: 500000

 time_horizon: 64

 summary_freq: 10000

Then, we need to be sure to change the Behavior Type parameter in the sphere object to
Default.

Now, from the same folder, we should be able to run the following command:

mlagents-learn sphere.yaml --run-id=myMovingSphere

256 Machine Learning in Unity

run-id is a unique ID for your running session. If everything is going according to
plan, you should see the Start training by pressing the Play button in the Unity Editor
message on the terminal window at some point. Now, you can do as the message says and
press Play in Unity.

After the training is complete, you will find the trained model in the results/
myMovingSphere/MovingSphere.onnx file (the results folder inside the folder,
in which you run the mlagents-learn command).

Copy this file inside your Unity project and then put this in the Model placeholder in the
Behavior Parameters component of the sphere:

Figure 11.7 – The trained MovingSphere model inside the behavior parameters

Now, if you press Play, the Sphere will move autonomously according to the training
model. It is not something big and complex, but it is automated learning nevertheless.

Summary
In this chapter, we barely scratched the surface of machine learning and how to use it for
training Unity agents. We learned how to install Unity's official ML-Agents Toolkit, set up
a learning environment, and trained the model. However, this is just a basic introduction
to the ML-Agents Toolkit, and many unexplored directions are waiting for you. I
encourage you to look at the ML-Agents official repository; it includes many interesting
demo projects.

In the next chapter, we will wrap everything up by developing an AI agent into a more
complex game demo.

Further reading 257

Further reading
• For more information, I encourage you to check the in-depth documentation

for ML-Agents in the official repository (https://github.com/Unity-
Technologies/ml-agents/tree/master/docs).

• For a more in-depth (but still very accessible) introduction to reinforcement
learning, there is a good article on freeCodeCamp (https://medium.
freecodecamp.org/an-introduction-to-reinforcement-
learning-4339519de419).

• If you are willing to go even deeper into reinforcement learning, a perfect next step
is Deep Reinforcement Learning Hands-On, Second Edition, Maxim Lapan, Packt
Publishing.

https://github.com/Unity-Technologies/ml-agents/tree/master/docs
https://github.com/Unity-Technologies/ml-agents/tree/master/docs
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

12
Putting It All

Together
Over the previous eleven chapters, we've looked at various AI methods and built some
simple demo applications using Unity3D. In this final chapter, we'll develop a more
complex game example using some of the techniques we explored in previous chapters.
The techniques we'll be using in this chapter include navigation meshes and finite-state
machines (FSMs), but, more importantly, we will learn how to navigate and add AI to a
pre-existing complex game. So, unlike the other chapters, this example is more like a real-
world scenario.

In this chapter, we'll add AI to a simple tank combat game called TANKS! and contained
in one of the official Unity tutorials, which, in turn, was inspired by an historic tank game
called Combat for the Atari 2600. In the default version, TANKS! is a two-player game.
Each player takes control of a tank, and the goal is to destroy each other. To make things
more complicated, the player can decide the shot's strength (and, thus, the distance) by
pressing and holding the Spacebar for a shorter or longer duration.

However, because we are AI developers, we want to build an AI for the enemy tank to play
in single-player mode. So, this is what we'll do in this chapter.

260 Putting It All Together

In this chapter, we will cover the following topics:

• Developing the basic game structure

• Adding automated navigation

• Creating decision-making AI with FSM

Technical requirements
For this chapter, you just need Unity3D 2022. You can find the example project described
in this chapter in the Chapter 12 folder in the book's GitHub repository: https://
github.com/PacktPublishing/Unity-Artificial-Intelligence-
Programming-Fifth-Edition/tree/main/Chapter12.

Developing the basic game structure
For this demo, we will write an AI for the free tutorial game TANKS!. You can download
the base game from Unity Asset Store (https://assetstore.unity.com/
packages/essentials/tutorial-projects/tanks-tutorial-46209), or
follow along with the version included in the Chapter 12 folder of this book's GitHub
repository. The version included with this book has the advantage of already having been
tested for Unity 2022.

In either case, the game is the same. When we start the game, we see a pleasant desert
scenario, with rocks, structures, palm trees, and so on. Using the keyboard, we should be able
to control the blue tank (the tank moves with W, A, S, and D and shoots with the Spacebar).

The following screenshot shows the basic structure of the game:

Figure 12.1 – Basic hierarchy of the game

https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Unity-Artificial-Intelligence-Programming-Fifth-Edition/tree/main/Chapter12

Adding automated navigation 261

The first time you start with an existing project, spend as much time as you can
familiarizing yourself with the game structure, the basic scripts, and the components. You
must know how to operate at ease in a project you don't know. To do this, run the game
a couple of times, try minor modifications to the code to see the effect, and add debug
messages to learn about the flow in which information moves around the game. The
following image will give you an idea of how the game will look when we run it:

Figure 12.2 – The TANKS! game in action

Info
It may be helpful to follow the complete Unity tutorial, available at https://
unity3d.com/learn/tutorials/s/tanks-tutorial. Even if
it does not involve AI and is quite old (the tutorial has been recorded in 2015),
you will still find many important teachings for game development, such as
how to design a game manager, basic controls, and audio.

Adding automated navigation
The first step is to modify the level to support automated navigation. In the original game,
the players control all the moving objects (the tanks), so pathfinding is unnecessary. Now
that we want to add AI, we need to have a world representation through which the AI can
move. Luckily, this process is straightforward, thanks to NavMeshes.

https://unity3d.com/learn/tutorials/s/tanks-tutorial
https://unity3d.com/learn/tutorials/s/tanks-tutorial

262 Putting It All Together

Creating the NavMesh
To do this, perform the following steps:

1. Open the Navigation window (Window | AI | Navigation) and look at the
NavMesh generation parameters. In this case, NavMesh generation is relatively easy:
we are only interested in moving around on the ground surface plane, so there are
no jumps, no links, and no slopes we need to care of.

2. The only adjustment to the default NavMesh parameters we need to make is for the
baking agent size (that is, the measures of the virtual agent used by Unity to verify
whether a location is large enough to allow the Agent to pass).

3. The tanks used in the game are about three units large, so we need to instruct the
generator to remove the areas that are too small for the tank to pass through. The
following screenshot shows the baking setting for the navigation mesh:

Figure 12.3 – The NavMesh baking options
Just to be on the safe side, we use an Agent Radius value of 1.8 and reduce the
Max Slope value to about 20 (after all, we are not interested in slopes: the game is
completely flat).

4. After that, press Bake. You should get a nice NavMesh, as in the following
screenshot:

Adding automated navigation 263

Figure 12.4 – The baked NavMesh in the map

5. We now want to add some patrolling points that the AI tank can follow. To do this,
we create an empty GameObject; feel free to create as many other GameObject
instances as you like.

6. Then, we create a PatrolPoint tag, and tag all the patrol points with it.

Figure 12.5 – The patrol points labeled PPoint in the Editor view

264 Putting It All Together

Now that we have a world representation and a set of points that we can use to wander
around, we need to create an AI-controlled agent.

Setting up the Agent
Unfortunately, the game does not support AI, so we need to add the Agent ourselves. To
do this, perform the following steps:

1. We have to identify the player tank. There is no tank in the scene, as you can see
from the game hierarchy. As you should know from your preliminary exploration, it
is the job of GameManager to spawn the tanks. The tank model we'll use is a prefab
called CompleteTank.

2. Let's copy the prefab and call it CompleteTankAI.
3. Then we need to add the Nav Mesh Agent component to it so that we can move it

around on the new NavMesh.

Figure 12.6 – The Inspector for the Nav Mesh Agent component
But this is not enough. First, we'll reuse the TankShooting script from the
TANKS! demo, so we need to disable shooting if this script is attached to an AI
(otherwise, the player could shoot for the AI agent).

Adding automated navigation 265

4. For this, we create a public Boolean variable, called m_IsAI. Note that for this
demo, we are using the variable naming convention of the original tutorial. This
is to not confuse people working from the Asset Store. Moreover, it is always
wise to adopt the coding convention of an existing project without imposing our
preferences on the entire code base. Anyway, let's add the following lines to the
Update script:

private void Update () {

 if (m_IsAI) {

 return;

 }

 …

These lines just stop the Update script for the AI agent, thereby disabling player
input for AI characters. It is important to enable this variable in the AI tank prefab.
We also need to add another patch; in fact, if we disable the input, we will also
disable the shot strength.

5. So, we need to add this back into the Fire function:

// We need to make Fire public.

public void Fire (){

 // Set the fired flag so only Fire is only called

 // once.

 m_Fired = true;

 // Create an instance of the shell and store a

 // reference to its rigidbody.

 Rigidbody shellInstance = Instantiate (m_Shell,

 m_FireTransform.position,

 m_FireTransform.rotation) as Rigidbody;

 // New lines: if AI, we shoot with average force.

 if (m_IsAI) {

 m_CurrentLaunchForce =

 m_MaxLaunchForce / 2.0f;

 }

 // Set the shell's velocity to the launch force in

 // the fire position's forward direction.

266 Putting It All Together

 shellInstance.velocity =

 m_CurrentLaunchForce * m_FireTransform.forward;

 // Change the clip to the firing clip and play it.

 m_ShootingAudio.clip = m_FireClip;

 m_ShootingAudio.Play ();

 // Reset the launch force. This is a precaution in

 // case of missing button events.

 m_CurrentLaunchForce = m_MinLaunchForce;

}

We are replacing the variable shooting force with a constant shooting force for
simplicity.

Info
As an exercise, you could make m_CurrentLaunchForce a parameter of
the Fire() functions. We also make the Fire() function public: in fact, we
need to call this function from the FSM that we'll implement later.

Finally, we can remove the TankMovement component from the Tank AI prefab. Now it
is time to update the GameManager script to enable player versus computer mode.

Fixing the GameManager script
As a final step, we need to instruct the GameManager script to spawn a player tank and
an AI tank:

1. Open the GameManager script and add a new public variable in which we'll store
the new AI tank prefab:

// Reference to the prefab the players will control.

public GameObject m_TankPrefab;

// Reference to the prefab the AI will control.

public GameObject m_TankAIPrefab;

2. Then, modify the SpawnAllTanks function in this way:

private void SpawnAllTanks(){

 // Spaw the Player

 m_Tanks[0].m_Instance = Instantiate(m_TankPrefab,

Adding automated navigation 267

 m_Tanks[0].m_SpawnPoint.position,

 m_Tanks[0].m_SpawnPoint.rotation);

 m_Tanks[0].m_PlayerNumber = 01;

 m_Tanks[0].Setup();

 // Spawn the AI Tanks

 for (int i = 1; i < m_Tanks.Length; i++) {

 m_Tanks[i].m_Instance =

 Instantiate(m_TankAIPrefab,

 m_Tanks[i].m_SpawnPoint.position,

 m_Tanks[i].m_SpawnPoint.rotation);

 m_Tanks[i].m_PlayerNumber = i + 1;

 m_Tanks[i].Setup();

 }

}

Now that this game is a single-player game, we assume that the first tank is
always the player (we spawn the m_TankPrefab model), and any other tank is
AI-controlled (we spawn the m_TankAIPrefab model).

3. Finally, just add the prefab to the Inspector as follows. Remember to enable the m_
IsAI variable in the CompleteTankAI prefab and change its layer from Player
to AI.

Figure 12.7 – The Game Manager script in the inspector

Now that we have set up the basics, it is finally time to write the AI of the enemy tanks.

268 Putting It All Together

Creating decision-making AI with FSM
In Chapter 2, Finite State Machines, we saw how to implement a simple FSM. In this
section, we are using the same technique, but will apply it to the more complex scenario of
this demo.

First, we need an FSM plan. We are interested only in connecting the FSM to the existing
game for this demo, so we will keep it simple. The FSM for our tank is composed of just
two states – patrolling and shooting.

The plan is nice and straightforward:

1. The AI tank starts in the Patrol state and wanders around the previously defined
patrolling points.

2. Then, if the players get in range, the tank switches to the Attack state.
3. In the Attack state, the tank turns toward the player and starts shooting at it.
4. Finally, if we are in the Attack state and the players leave the AI's range, the tank

will return to the Patrol state.

Figure 12.8 – The simple FSM for the enemy tanks

For the implementation, perform the following steps:

1. Let's start with the FSM class:

using UnityEngine;

using System.Collections;

Creating decision-making AI with FSM 269

public class FSM : Complete.TankMovement {

 // Next destination position of the NPC Tank

 protected Vector3 destPos;

 // List of points for patrolling

 protected GameObject[] pointList;

 protected virtual void Initialize() { }

 protected virtual void FSMUpdate() { }

 protected virtual void FSMFixedUpdate() { }

 // Use this for initialization

 void Start() {

 Initialize();

 }

 // Update is called once per frame

 void Update() {

 FSMUpdate();

 }

 void FixedUpdate() {

 FSMFixedUpdate();

 }

}

As you can see, this class extends the Complete.TankMovement script. In this
way, we can reuse the existing TankMovement code for things such as the engine
sounds and other cosmetic aspects.

As explained in Chapter 2, Finite State Machines, the FSM class stores the data
we need for the decision-making AI. Moreover, it contains the functions that the
actual Tank Controller can override for the Update, FixedUpdate, and Start
methods. In the FSM class, we want to store all the patrol points and the destination
point (the current patrol points the tank is looking for).

270 Putting It All Together

2. Now it is time for the complete controller. We create a new AITankController
script with the following initial content:

using UnityEngine;

using System;

using UnityEngine.AI;

public class AITankController : FSM {

 public Complete.TankShooting tankShooter;

 public Complete.TankHealth tankHealth;

 public float playerChaseRadius = 15.0f;

 public float platerAttackRadius = 10.0f;

 public float shootRate = 3.0f;

 public float targetReachedRadius = 5.0f;

 private bool isDead = false;

 private float elapsedTime = 0.0f;

 private GameObject player = null;

 private NavMeshAgent navMeshAgent;

 public enum FSMState {

 None, Patrol, Attack, Dead,

 }

 // Current state that the NPC is reaching

 public FSMState curState;

…

In the preceding code, the class starts by extending FSM and defining the states. As
you can see in the FSMState enum, we have Patrol and Attack, an empty state
(None), and a final state (Dead). Then we add some class attributes to store the data
we need.
The first two attributes are references to the TankShooter and TankHealth
scripts in the tank. We will use them to check the health and to fire bullets. Then
we have an isDead Boolean to stop FSM execution. Then we have elapsedTime
and shootRate for controlling how rapidly the tank will shoot, followed by two
private attributes that store a reference to the player (if in range) and a reference to
NavMeshAgent. Lastly, we have a variable holding the current state in the FSM.

Creating decision-making AI with FSM 271

3. The Initialize function is used to initialize, of course, the FSM:

 //Initialize the Finite state machine for the NPC
tank

 protected override void Initialize() {

 navMeshAgent = GetComponent<NavMeshAgent>();

 // Get the list of points

 pointList = GameObject.FindGameObjectsWithTag(

 "PatrolPoint");

 int rndIndex = UnityEngine.Random.Range(0,

 pointList.Length);

 destPos =

 pointList[rndIndex].transform.position;

 }

In this function, we do three things:

 � We get the reference to NavMeshAgent.

 � We get a list of all PatrolPoint in the scene

 � We randomly select one of the patrol points as the Agent's current destination.

4. Then it is time for the Update function. Before this, however, we need to expose
the tanks' current health. Let's add the following line to the TankHealth
component:

 // ...

 private AudioSource m_ExplosionAudio

 private ParticleSystem m_ExplosionParticles

 private float m_CurrentHealth;

 private bool m_Dead;

 public float CurrentHealth { get; }

 // ...

We add the CurrentHealth property so that we can get read-only public access
to the private member, m_CurrentHealth.

272 Putting It All Together

5. We are now ready to implement the FSM's FSMUpdate method:

 protected override void FSMUpdate() {

 switch (curState) {

 case FSMState.Patrol:

 UpdatePatrolState();

 break;

 case FSMState.Attack:

 UpdateAttackState();

 break;

 case FSMState.Dead:

 UpdateDeadState();

 break;

 }

 elapsedTime += Time.deltaTime;

 // Go to dead state is no health left

 if (tankHealth.CurrentHealth <= 0) {

 curState = FSMState.Dead;

 }

 }

As we explained previously, the main task of the Update function is to invoke the
proper function depending on the current state. In addition to that, FSMUpdate
also updates the elapsedTime timer and sets the Agent to the Dead state if the
tank has no health.

6. The Dead state is very simple: the tank does nothing, and writes on the console that
it is dead:

 private void UpdateDeadState() {

 if (!isDead) {

 Debug.Log("Dead");

 }

 }

7. The Attack state is more interesting:

 private void UpdateAttackState() {

Creating decision-making AI with FSM 273

 Collider[] players = Physics.OverlapSphere(

 Transform.position, playerChaseRadius,

 LayerMask.GetMask("Players"));

 if (players.Length == 0) {

 curState = FSMState.Patrol;

 player = null;

 navMeshAgent.enabled = true;

 return;

 }

 player = players[0].gameObject;

 Vector3 _direction =

 (player.transform.position –

 transform.position).normalized;

 Quaternion _lookRotation =

 Quaternion.LookRotation(_direction);

 transform.rotation =

 Quaternion.Slerp(transform.rotation,

 _lookRotation, Time.deltaTime * 3);

 if (elapsedTime > shootRate) {

 tankShooter.Fire();

 elapsedTime = 0;

 }

 }

In the first part of the preceding code, we cast a sphere using Unity's physics engine
to see all the players in a radius of 15 units. Then, if there is none (meaning that the
player is out of range), we switch to the Patrol state, remove the player reference,
enable the NavMeshAgent component, and terminate the state. Otherwise, we
proceed with the attack: we get the player reference, rotate the tank in its direction,
and shoot (at the correct rate).

Luckily, the original game already implemented the Fire function! That's why
good class design is essential: if a class is functional, you can reutilize it very well,
even for things that you didn't initially consider!

274 Putting It All Together

8. Finally, we have the Patrol state function:

 private void UpdatePatrolState() {

 Collider[] players = Physics.OverlapSphere(

 transform.position, playerAttackRadius,

 LayerMask.GetMask("Players")"));

 if (players.Length > 0) {

 curState = FSMState.Attack;

 player = players[0].gameObject;

 navMeshAgent.enabled = false;

 return;

 }

 if (IsInCurrentRange(destPos)) {

 int rndIndex = UnityEngine.Random.Range(0,

 pointList.Length);

 destPos =

 pointList[rndIndex].transform.position;

 }

 navMeshAgent.destination = destPos;

 }

If no player is in range, then we proceed to wander around. First, we check whether
we have reached the current destination. If so, we need to select a new destination.
Then, we set up the patrol point as the destination of the navMeshAgent
component (as described in Chapter 8, Navigation Mesh).

9. The IsInCurrentRange function is just a simple comparison, as shown in the
following code:

 protected bool IsInCurrentRange(Vector3 pos) {

 float xPos =

 Mathf.Abs(pos.x - transform.position.x);

 float zPos =

 Mathf.Abs(pos.z - transform.position.z);

 if (xPos <= targetReachedRadius && zPos <=

Creating decision-making AI with FSM 275

 targetReachedRadius) return true;

 return false;

 }

10. That's it. Add the AITankController script to the CompleteAITank prefab
and connect all the required elements. You can see how the AITankController
component should look in the following screenshot:

Figure 12.9 – The AI Tank Controller script in the Inspector
Remember also to set the prefab's layer to AI.

Figure 12.10 – The Layer configuration for the CompleteTankAI prefab

At this point, everything is in place. So run the game and enjoy your simple tank moving
around, shooting at you.

276 Putting It All Together

Summary
In this chapter, we applied some of the AI techniques that we learned previously to our
simple tanks combat game. Then, of course, we'd be able to use some more techniques in
a larger game scope. Still, in this short chapter, we reused the simple FSM framework that
we built in Chapter 2, Finite State Machines, as well as Unity's built-in navigation meshes
capabilities.

This example project is a perfect starting point for exploring the AI techniques introduced
in this book. You can implement many more improvements to the AI of this demo, and I
encourage you to play with it a bit more. There are several pieces of low-hanging fruit, so
here are my suggestions:

As a first exercise, you can increase the number of states, for instance, by adding a Chasing
state in which the tank will actively look for the player. This structure is like the Attack
state, but with a bigger radius. Then, as a more significant step, try to replace the FSM
with a Behavior tree. The Behavior tree that we implemented in the Behavior tree demo
is incredibly apt for this scenario. Finally, you need to change the script to call the correct
function for the tank game, but it is an excellent exercise.

We hope that you learned something new in areas related to AI in games and Unity3D.
We just scratched the surface of gameplay AI programming, but if you have reached the
end of this book, you are suited for any challenge you may encounter in the future. Good
luck, and have fun!

Index

A
A* algorithm

AStar class 164-167
GridManager class 157- 163
implementing 154
Node class 154, 155
PriorityQueue 155-157
reviewing 152, 153
TestCode class 167-170

abstract FSM class
creating 39, 40

academy
about 245
operations 245

Action 194
AdvancedFSM class

about 51
creating 51, 52

advanced mesh renderer 238
agent

about 245
setting up 264-266
training 255

AI agent
destinations, updating 180

AI agent, destinations
Target.cs class 181, 182

AI characters
about 98
game, testing 107
moving, script used 98, 100
senses, implementing 100, 101
Sight sense, implementing 101-104
Touch sense, implementing 104-106

AI sensory system 92
AI skill

adapting, dynamically 76, 77
AI, states

Attack 47, 48
Chase 46
Dead 49
Patrol 44-46

AI techniques, for video games
about 7
A* pathfinding 13-18
behavior trees 21-24
Finite State Machines (FSMs) 7, 8
flocking 11
herding 11
locomotion 24, 25
NavMesh 19-21

278 Index

path following 12, 13
randomness and probability 9
sensor system 9
steering 12, 13
swarming 11

AI techniques for video games,
sensor system

messaging systems 10, 11
polling 10

A* pathfinding 13-18
Artificial Intelligence (AI)

about 4, 5, 241
in video games 5-7
techniques 4, 5

aspect 92
Aspect class 98
AStar class 164-167
Attack state 47, 48
automated navigation

adding 261
agent, setting up 264-266
GameManager script, fixing 266, 267
NavMesh, creating 262-264

B
Behavior Bricks

used, for implementing BT
in Unity 197-199

behavior trees (BTs)
about 21-24, 193-195
attaching, to enemy 211, 212
building 210, 211
implementing, in Unity with

Behavior Bricks 197-199
node, types 194
patrolling robot 195-197

behavior trees (BTs), in Unity
with Behavior Bricks

day/night cycle, implementing 201, 202
enemy behavior, designing 202, 203
scene, setting up 200

Blackboard 195
boid 11, 111
bullet

shooting 30
Bullet class

implementing 34- 36

C
CaveGenerator

implementing 227-233
caves

generating 225
Cellular Automata (CA) 225-227
Chase state 46
composite node 194
computer science

randomness 61
coroutines

about 116
reference link 116

Cryptographically Secure Pseudorandom
Number Generators (CSPRNGs) 61

custom layer
adding, to obstacle object 143-145

D
day/night cycle

implementing 201, 202
Dead state 49
decision-making AI

creating, with FSM 268-275

Index 279

decorator node 24, 194
DeltaTime

reference link 34
DetectAspect method 103
Deterministic Finite State

Machine framework 51
dice game 62-66
Dynamic Systems 218

E
enemy

behavior trees (BTs),
attaching to 211, 212

enemy behavior
designing 202, 203

enemy tank AI
simple FSM, using for 40-44

episode 245
event emitters 92
event senses 92

F
Finite State Machines (FSMs)

about 7, 193
components 8
used, for creating decision-

making AI 268-275
with probability 72-76

Fire() function 266
First-Person Shooter (FPS) 9
FlockController component 127-131
flocking behavior

about 112, 113
controller class, creating 122, 123
individual behavior 113-116

flocking behavior, properties
alignment 112
cohesion 112
separation 112

frequentism 66
FSM framework

using 51
FSMState class 52, 53

G
Game Developers Conference (GDC) 12
GameManager script

fixing 266, 267
games

testing 107
Procedural Content Generation 216, 217

game structure
developing 260

generated cave
rendering 233

Git
about 243
download link 243

gizmo functions
reference link 104

gizmos 104
goblin description

completing 220-222
goblin name generator

implementing 218
goblin names

generating 218-220
graph 7
GridManager class 157-163
grids 14

280 Index

H
Halo 21

I
inverse kinematics 25

L
leaf 194
learning environment

about 245
testing 254

Linear Interpolation (Lerp) 34
long-range attraction 112

M
machine learning 241
macOS

PyTorch, installing on 244
Manhattan length 15
map

agent’s destination, updating 180
Navigation Static 176
NavMesh agent 179, 180
NavMesh, baking 177, 178
setting up 176

map rendered, with
MarchingCubesGenerator 239

maps
generating 225

Marching Cubes 238
Marching Squares 238
Massive Online Battle Arena (MOBA) 71
MeshGenerator 233

mesh renderer
implementing 234-238

message (event) systems 10, 11
Microsoft Store for Python 3.7

URL 244
ML-Agents Toolkit

about 242
code, implementing 249-252
final touches, adding 252
installing 243
scene, creating 248, 249
using 245-247

N
navigation areas

baking, with different costs 184, 185
Navigation Static 176
NavMesh

about 19-21
baking 177, 178
creating 262-264

NavMesh agent 179, 180
Negate node 194
Node class 154, 155
nodes

implementing 203-210
states 194

Non-Player Characters (NPCs) 6, 53
NPCTankController class 56-58

O
obstacle avoidance 133, 141, 142, 145-150
Obstacles object

custom layer, adding 143-145
Offline Content Generation 218

Index 281

Off Mesh Links
about 183
autogenerated 187, 188
reference link 190
setting up, manually 188-190
using, to connect gaps

between areas 186
OnDrawGizmos method 103, 104
OpenAI Gym

URL 243

P
Parallel node 24
path

about 134
script 134-136

pathfinder
testing 173, 174

pathfinding 134
path-following agents 137-141
Patrol state 44-46
PatrolState class 54, 56
Paytable and Reel Strips (PARS) 82
Perlin noise

built-in Unity 223, 225
using 222, 223

pip3
reference link 245

Player-Mediated Content Generation 218
player’s tank

about 95
aspect script, attaching 98
implementing 28
script 95, 97

polling 10
PriorityQueue 155, 157

probability
about 66, 67
conditional probability 68
correlated events 67
FSM with 72-76
independent events 67
loaded dice 68, 69

probability in games, examples
AI skill, adapting dynamically 76, 77
character personalities 70, 71
exploring 70
FSM, with probability 72-76
perceived randomness 71, 72

Procedural Content Generation
in games 216
types 217, 218
use cases, principal 217

Pseudorandom Number
Generators (PRNGs) 61

public variables
debugging 44

Python
installing, on macOS 244
installing, on Unix-like systems 244
installing, on Windows 244

PyTorch
installing, on Windows 244
reference link, for installation guide 244

R
randomness

in computer science 61
in Unity 60

Random Number Generation (RNG) 61
raycasting 33
Raycast method 103
Return to Player (RTP) 82

282 Index

Rigidbody component
implementing 124-126

roulette wheel selection algorithm 73
Runtime Content Generation 217

S
scene

pathfinder, testing 173, 174
setting up 93, 94, 170-173, 200

scene, with slopes
setting up 182-184

sense 92
Sense class

about 100
methods 103

sensory systems
AI sensory system 92
aspect 92
sense 92

set 152
Sight sense

about 101
implementing 103

simple FSM
using, for enemy tank AI 40-44

singleton pattern 157
slot machine

creating 77
demo 77-82
near-miss effect 87- 89
weighted probability 82-87

SpeedTree 218
Spore 21
state classes 53

T
tank

controlling 31-34
damage, taking 50

Tank object
initializing 29, 30

Target.cs class 181, 182
Target object

about 94
properties 97
script, attaching 95

target tile 6
Task 194
tasks 21
taxicab geometry 15
TestCode class 167-170
Torch 243
Touch sense

about 104
implementing 105, 106

transitions 7

U
Unity

Behavior Bricks, used for
implementing BT in 197-199

randomness 60
UnityFlock 113
Unity Random class 61, 62
Unix-like systems

PyTorch, installing on 244
Update method 100
UpdateRandom coroutine

implementing 116-120

Index 283

V
video games

artificial intelligence (AI) 5-7

W
WallGenerator 238
Wander script 100
waypoints

setting up 37-39
Windows

Python, installing on 244
PyTorch, installing on 244

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

286 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning C# by Developing Games with Unity 2021 – Sixth Edition

Scottie Crump

ISBN: 978-1-80181-394-5
• Follow simple steps and examples to create and implement C# scripts in Unity
• Develop a 3D mindset to build games that come to life
• Create basic game mechanics such as player controllers and shooting projectiles

using C#
• Divide your code into pluggable building blocks using interfaces, abstract classes,

and class extensions
• Become familiar with stacks, queues, exceptions, error handling, and other core

C# concepts
• Learn how to handle text, XML, and JSON data to save and load your game data
• Explore the basics of AI for games and implement them to control enemy behavior

https://www.packtpub.com/product/learning-c-by-developing-games-with-unity-2021-sixth-edition/9781801813945

Other Books You May Enjoy 287

Hands-On Unity 2021 Game Development – Second Edition

Nicolas Alejandro Borromeo

ISBN: 978-1-80107-148-2
• Explore both C# and Visual Scripting tools to customize various aspects of a game,

such as physics, gameplay, and the UI
• Program rich shaders and effects using Unity's new Shader Graph and Universal

Render Pipeline
• Implement postprocessing to improve graphics quality with full-screen effects
• Create rich particle systems for your Unity games from scratch using VFX Graph

and Shuriken
• Add animations to your game using the Animator, Cinemachine, and Timeline
• Use the brand new UI Toolkit package to create user interfaces
• Implement game AI to control character behavior

https://www.packtpub.com/product/hands-on-unity-2021-game-development-second-edition/9781801071482

288

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Unity Artificial Intelligence Programming – Fifth Edition, we'd love to
hear your thoughts! If you purchased the book from Amazon, please select https://
www.amazon.in/review/1803238534 for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://www.amazon.in/review/1803238534
https://www.amazon.in/review/1803238534

	Cover
	Title
	Copyright and Credits
	Table of Contents
	Part 1:
Basic AI
	Chapter 1: Introduction to AI
	Understanding AI
	AI in video games
	AI techniques for video games
	Finite state machines
	Randomness and probability in AI
	The sensor system
	Flocking, swarming, and herding
	Path following and steering
	A* pathfinding
	Navigation meshes
	Behavior trees
	Locomotion

	Summary

	Chapter 2: Finite State Machines
	Technical requirements
	Implementing the player's tank
	Initializing the Tank object
	Shooting the bullet
	Controlling the tank

	Implementing a Bullet class
	Setting up waypoints
	Creating the abstract FSM class
	Using a simple FSM for the enemy tank AI
	The Patrol state
	The Chase state
	The Attack state
	The Dead state
	Taking damage

	Using an FSM framework
	The AdvancedFSM class
	The FSMState class
	The state classes
	The NPCTankController class

	Summary

	Chapter 3: Randomness and Probability
	Technical requirements
	Introducing randomness in Unity
	Randomness in computer science
	The Unity Random class
	A simple random dice game

	Learning the basics of probability
	Independent and correlated events
	Conditional probability
	Loaded dice

	Exploring more examples of probability in games
	Character personalities
	Perceived randomness
	FSM with probability
	Dynamically adapting AI skills

	Creating a slot machine
	A random slot machine
	Weighted probability
	A near miss

	Summary
	Further reading

	Chapter 4: Implementing Sensors
	Technical requirements
	Basic sensory systems
	Scene setup
	The player's tank and the aspect class
	The player's tank
	Aspect

	AI characters
	Sense
	Sight
	Touch

	Testing
	Summary

	Part 2:
Movement and Navigation
	Chapter 5: Flocking
	Technical requirements
	Basic flocking behavior
	Individual behavior
	Controller

	Alternative implementation
	FlockController

	Summary

	Chapter 6: Path Following and Steering Behaviors
	Chapter 7: A* Pathfinding
	Technical requirements
	Revisiting the A* algorithm
	Implementing the A* algorithm
	Node
	PriorityQueue
	The GridManager class
	The AStar class
	The TestCode class

	Setting up the scene
	Testing the pathfinder

	Summary

	Chapter 8: Navigation Mesh
	Technical requirements
	Setting up the map
	Navigation static
	Baking the NavMesh
	NavMesh agent
	Updating an agent's destinations

	Setting up a scene with slopes
	Baking navigation areas with different costs
	Using Off Mesh Links to connect gaps between areas
	Generated Off Mesh Links
	Manual Off Mesh Links

	Summary

	Part 3:
Advanced AI
	Chapter 9: Behavior Trees
	Technical requirements
	Introduction to BTs
	A simple example – a patrolling robot

	Implementing a BT in Unity with Behavior Bricks
	Set up the scene
	Implement a day/night cycle
	Design the enemy behavior

	Implementing the nodes
	Building the tree
	Attach the BT to the enemy

	Summary
	Further reading

	Chapter 10: Procedural Content Generation
	Technical requirements
	Understanding Procedural Content Generation in games
	Kinds of Procedural Content Generation

	Implementing a simple goblin name generator
	Generating goblin names
	Completing the goblin description

	Learning how to use Perlin noise
	Built-in Unity Perlin noise

	Generating random maps and caves
	Cellular automata
	Implementing a cave generator
	Rendering the generated cave

	Summary
	Further reading

	Chapter 11: Machine Learning
in Unity
	Technical requirements
	The Unity Machine Learning Agents Toolkit
	Installing the ML-Agents Toolkit
	Installing Python and PyTorch on Windows
	Installing Python and PyTorch on macOS and Unix-like systems

	Using the ML-Agents Toolkit – a basic example
	Creating the scene
	Implementing the code
	Adding the final touches

	Testing the learning environment
	Training an agent
	Summary
	Further reading

	Chapter 12: Putting It All Together
	Technical requirements
	Developing the basic game structure
	Adding automated navigation
	Creating the NavMesh
	Setting up the agent
	Fixing the GameManager script

	Creating decision-making AI with FSM
	Summary

	Index

