
M A N N I N G

Joseph Hocking
Foreword by Jesse Schell

THIRD EDITION

Multiplatform game development in C#

3D camera control • Chapter 2

Raycasting • Chapter 3

Displaying 2D graphics • Chapter 5

2D physics • Chapter 6

Put a GUI on your game • Chapter 7

Manage the player's inventory • Chapter 9

Make HTTP requests • Chapter 10

Sound effects and music • Chapter 11

Deploy to desktop, web, or mobile

And much, much more!

• Chapter 13

Learn a laundry list of techniques
for building your own games:

Praise for earlier editions of
Unity in Action

Step-by-step examples and clear prose make this the go-to book for Unity!
—Victor M. Perez, Software developer

Everything you need to know about Unity in one single resource.
—Dan Kacenjar, Cornerstone Software

Start creating your own game prototypes in no time.
—David Torrubia Iñigo, Fintonic

The text is clear and concise, and the examples are outstanding.
—Dan Kacenjar, Sr., Wolters Kluwer

All the roadblocks evaporated, and I took my game from concept to build in short order.
—Philip Taffet, SOHOsoft

Joe Hocking wastes none of your time and gets you coding fast.
—Jesse Schell, author of The Art of Game Design

I’ve wanted to program in Unity for a long time, and this book has given me the
confidence to do so.

—Robin Dewson, Schroders

Gets you up and running in no time.
—Sergio Arbeo, codecantor

Unity in Action, Third Edition
MULTIPLATFORM GAME DEVELOPMENT IN C#

JOSEPH HOCKING
FOREWORD BY JESSE SCHELL

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Becky Whitney
20 Baldwin Road Review editor: Mihaela Batinić
PO Box 761 Production editor: Deirdre S. Hiam
Shelter Island, NY 11964 Copy editor: Sharon Wilkey

Proofreader: Jason Everett
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617299339

Printed in the United States of America

http://www.manning.com

v

brief contents
PART 1 FIRST STEPS...1

1 ■ Getting to know Unity 3

2 ■ Building a demo that puts you in 3D space 23

3 ■ Adding enemies and projectiles to the 3D game 50

4 ■ Developing graphics for your game 75

PART 2 GETTING COMFORTABLE ..101

5 ■ Building a Memory game using Unity’s 2D
functionality 103

6 ■ Creating a basic 2D platformer 128

7 ■ Putting a GUI onto a game 147

8 ■ Creating a third-person 3D game: Player movement and
animation 171

9 ■ Adding interactive devices and items within the
game 200

BRIEF CONTENTSvi

PART 3 STRONG FINISH ..227

10 ■ Connecting your game to the internet 229

11 ■ Playing audio: Sound effects and music 257

12 ■ Putting the parts together into a complete game 282

13 ■ Deploying your game to players’ devices 314

vii

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 FIRST STEPS ...1

1 Getting to know Unity 3
1.1 Why is Unity so great? 4

Unity’s strengths and advantages 4 ■ Downsides to be aware of 6
Example games built with Unity 7

1.2 How to use Unity 10
Scene view, Game view, and the Toolbar 12 ■ The mouse and
keyboard 14 ■ The Hierarchy view and the Inspector panel 15
The Project and Console tabs 16

1.3 Getting up and running with Unity programming 16
Running code in Unity: Script components 17 ■ Using Visual
Studio, the included IDE 18 ■ Printing to the console: Hello
World! 19

CONTENTSviii

2 Building a demo that puts you in 3D space 23
2.1 Before you start . . . 24

Planning the project 24 ■ Understanding 3D coordinate
space 25

2.2 Begin the project: Place objects in the scene 27
The scenery: Floor, outer walls, and inner walls 28 ■ Lights and
cameras 30 ■ The player’s collider and viewpoint 32

2.3 Make things move: A script that applies transforms 33
Visualizing how movement is programmed 33 ■ Writing code to
implement the diagram 34 ■ Understanding local vs. global
coordinate space 35

2.4 Script component for looking around: MouseLook 37
Horizontal rotation that tracks mouse movement 38 ■ Vertical
rotation with limits 39 ■ Horizontal and vertical rotation at the
same time 41

2.5 Keyboard input component: First-person controls 44
Responding to keypresses 44 ■ Setting a rate of movement
independent of the computer’s speed 45 ■ Moving the
CharacterController for collision detection 46 ■ Adjusting
components for walking instead of flying 47

3 Adding enemies and projectiles to the 3D game 50
3.1 Shooting via raycasts 51

What is raycasting? 51 ■ Using the ScreenPointToRay command
for shooting 52 ■ Adding visual indicators for aiming and
hits 54

3.2 Scripting reactive targets 57
Determining what was hit 57 ■ Alerting the target that it was
hit 58

3.3 Basic wandering AI 60
Diagramming how basic AI works 60 ■ “Seeing” obstacles with a
raycast 61 ■ Tracking the character’s state 62

3.4 Spawning enemy prefabs 64
What is a prefab? 64 ■ Creating the enemy prefab 65
Instantiating from an invisible SceneController 65

3.5 Shooting by instantiating objects 68
Creating the projectile prefab 68 ■ Shooting the projectile and
colliding with a target 70 ■ Damaging the player 73

CONTENTS ix

4 Developing graphics for your game 75
4.1 Understanding art assets 76

4.2 Building basic 3D scenery: Whiteboxing 78
Whiteboxing explained 79 ■ Drawing a floor plan for the
level 79 ■ Laying out primitives according to the plan 80

4.3 Texturing the scene with 2D images 82
Choosing a file format 83 ■ Importing an image file 84
Applying the image 85

4.4 Generating sky visuals by using texture images 87
What is a skybox? 87 ■ Creating a new skybox material 88

4.5 Working with custom 3D models 90
Which file format to choose? 91 ■ Exporting and importing the
model 92

4.6 Creating effects by using particle systems 95
Adjusting parameters on the default effect 96 ■ Applying a new
texture for fire 98 ■ Attaching particle effects to 3D objects 99

PART 2 GETTING COMFORTABLE101

5 Building a Memory game using Unity’s 2D functionality 103
5.1 Setting up everything for 2D graphics 104

Preparing the project 105 ■ Displaying 2D images (aka
sprites) 107 ■ Switching the camera to 2D mode 108

5.2 Building a card object and making it react to clicks 110
Building the object out of sprites 110 ■ Mouse input code 111
Revealing the card on a click 112

5.3 Displaying the various card images 113
Loading images programmatically 113 ■ Setting the image from
an invisible SceneController 114 ■ Instantiating a grid of
cards 116 ■ Shuffling the cards 118

5.4 Making and scoring matches 119
Storing and comparing revealed cards 120 ■ Hiding mismatched
cards 120 ■ Text display for the score 121

5.5 Restart button 123
Programming a UIButton component by using SendMessage 124
Calling LoadScene from SceneController 126

CONTENTSx

6 Creating a basic 2D platformer 128
6.1 Setting up the graphics 129

Placing the scenery 129 ■ Importing sprite sheets 130

6.2 Moving the player left and right 132
Writing keyboard controls 133 ■ Colliding with the block 134

6.3 Playing the sprite’s animation 134
Explaining the Mecanim animation system 134 ■ Triggering
animations from code 136

6.4 Adding the ability to jump 137
Falling from gravity 137 ■ Applying an upward impulse 138
Detecting the ground 139

6.5 Additional features for a platform game 140
Unusual floors: Slopes and one-way platforms 140 ■ Implementing
moving platforms 142 ■ Camera control 145

7 Putting a GUI onto a game 147
7.1 Before you start writing code . . . 149

Immediate mode GUI or advanced 2D interface? 149 ■ Planning
the layout 150 ■ Importing UI images 151

7.2 Setting up the GUI display 151
Creating a canvas for the interface 151 ■ Buttons, images, and
text labels 153 ■ Controlling the position of UI elements 156

7.3 Programming interactivity in the UI 157
Programming an invisible UIController 158 ■ Creating a pop-up
window 160 ■ Setting values using sliders and input fields 163

7.4 Updating the game by responding to events 166
Integrating an event system 166 ■ Broadcasting and listening for
events from the scene 167 ■ Broadcasting and listening for events
from the HUD 168

8 Creating a third-person 3D game: Player movement and
animation 171

8.1 Adjusting the camera view for third-person 173
Importing a character to look at 174 ■ Adding shadows to the
scene 175 ■ Orbiting the camera around the player
character 177

8.2 Programming camera-relative movement controls 180
Rotating the character to face movement direction 180 ■ Moving
forward in that direction 183

CONTENTS xi

8.3 Implementing the jump action 184
Applying vertical speed and acceleration 185 ■ Modifying the
ground detection to handle edges and slopes 186

8.4 Setting up animations on the player character 190
Defining animation clips in the imported model 192 ■ Creating
the animator controller for these animations 194 ■ Writing code
that operates the animator 197

9 Adding interactive devices and items within the game 200
9.1 Creating doors and other devices 201

Doors that open and close on a keypress 201 ■ Checking distance
and facing before opening the door 203 ■ Operating a color-
changing monitor 205

9.2 Interacting with objects by bumping into them 206
Colliding with physics-enabled obstacles 206 ■ Operating the door
with a trigger object 207 ■ Collecting items scattered around the
level 210

9.3 Managing inventory data and game state 212
Setting up player and inventory managers 212 ■ Programming the
game managers 214 ■ Storing inventory in a collection object: List
vs. Dictionary 217

9.4 Inventory UI for using and equipping items 220
Displaying inventory items in the UI 220 ■ Equipping a key to use
on locked doors 223 ■ Restoring the player’s health by consuming
health packs 224

PART 3 STRONG FINISH ..227

10 Connecting your game to the internet 229
10.1 Creating an outdoor scene 231

Generating sky visuals by using a skybox 231 ■ Setting up an
atmosphere that’s controlled by code 232

10.2 Downloading weather data from an internet service 235
Requesting HTTP data using coroutines 238 ■ Parsing
XML 242 ■ Parsing JSON 243 ■ Affecting the scene based on
weather data 246

10.3 Adding a networked billboard 247
Loading images from the internet 247 ■ Displaying images on the
billboard 250 ■ Caching the downloaded image for reuse 251

CONTENTSxii

10.4 Posting data to a web server 253
Tracking current weather: Sending post requests 254 ■ Server-side
code in PHP 255

11 Playing audio: Sound effects and music 257
11.1 Importing sound effects 258

Supported file formats 258 ■ Importing audio files 260

11.2 Playing sound effects 261
Explaining what’s involved: Audio clip vs. source vs. listener 261
Assigning a looping sound 263 ■ Triggering sound effects from
code 264

11.3 Using the audio control interface 265
Setting up the central AudioManager 265 ■ Volume control
UI 267 ■ Playing UI sounds 271

11.4 Adding background music 272
Playing music loops 272 ■ Controlling music volume
separately 276 ■ Fading between songs 278

12 Putting the parts together into a complete game 282
12.1 Building an action RPG by repurposing projects 283

Assembling assets and code from multiple projects 284
Programming point-and-click controls: Movement and devices 286
Replacing the old GUI with a new interface 292

12.2 Developing the overarching game structure 299
Controlling mission flow and multiple levels 299 ■ Completing a
level by reaching the exit 303 ■ Losing the level when caught by
enemies 305

12.3 Handling the player’s progression through the game 307
Saving and loading the player’s progress 307 ■ Beating the game
by completing three levels 311

13 Deploying your game to players’ devices 314
13.1 Start by building for the desktop: Windows, Mac, and

Linux 317
Building the application 317 ■ Adjusting player settings: Setting
the game’s name and icon 318 ■ Platform-dependent
compilation 319

13.2 Building for the web 321
Building the game embedded in a web page 321 ■ Communicating
with JavaScript in the browser 322

CONTENTS xiii

13.3 Building for mobile: iOS and Android 325
Setting up the build tools 326 ■ Texture compression 331
Developing plugins 332

13.4 Developing XR (both VR and AR) 341
Supporting virtual reality headsets 341 ■ AR Foundation for
mobile Augmented Reality 342

afterword 349

appendix A Scene navigation and keyboard shortcuts 353
appendix B External tools used alongside Unity 356
appendix C Modeling a bench in Blender 360
appendix D Online learning resources 369

index 373

xv

foreword
I started programming games in 1982. It wasn’t easy. We had no internet. Resources
were limited to a handful of mostly terrible books and magazines that offered fascinat-
ing but confusing code fragments, and as for game engines—well, there weren’t any!
Coding games was a massive uphill battle.

 How I envy you, reader, holding the power of this book in your hands. The Unity
engine has done so much to open game programming up to so many people. Unity
has managed to strike an excellent balance by being a powerful, professional game
engine that’s still affordable and approachable for someone just getting started.

 Approachable, that is, with the right guidance. I once spent time in a circus troupe
run by a magician. He was kind enough to take me in and helped guide me toward
becoming a good performer. “When you stand on a stage,” he pronounced, “you
make a promise. And that promise is ‘I will not waste your time.’”

 What I love most about Unity in Action is the “action” part. Joe Hocking wastes none
of your time and gets you coding fast—and not just nonsense code, but interesting
code that you can understand and build from, because he knows you don’t just want
to read his book, and you don’t just want to program his examples—you want to be
coding your own game.

 And with his guidance, you’ll be able to do that sooner than you might expect. Fol-
low Joe’s steps, but when you feel ready, don’t be shy about diverging from his path
and breaking out on your own. Skip to what interests you most—try experiments, be
bold and brave! You can always return to the text if you get too lost.

FOREWORDxvi

 But let’s not dally in this foreword—the entire future of game development is
impatiently waiting for you to begin! Mark this day on your calendar, for today is the
day that everything changed. It will be forever remembered as the day you started
making games.

 JESSE SCHELL

 CEO OF SCHELL GAMES

 AUTHOR OF THE ART OF GAME DESIGN

xvii

preface
I’ve been programming games for quite some time, but started using Unity only rela-
tively recently. Unity didn’t exist when I first started developing games; the first ver-
sion was released in 2005. Right from the start, it had a lot of promise as a game
development tool, but it didn’t come into its own until several versions later. In partic-
ular, platforms like iOS and Android (collectively referred to as mobile) didn’t emerge
until later, and those platforms factor heavily into Unity’s growing prominence.

 Initially, I viewed Unity as a curiosity, an interesting development tool to keep an
eye on but not actually use. During that time, I was programming games for both
desktop computers and websites and doing projects for a range of clients. I was using
tools like Blitz3D and Adobe Flash, which were great to program in but were limiting
in a lot of ways. As those tools started to show their age, I kept looking for better ways
to develop games.

 I started experimenting with Unity around version 3 and then completely switched
to it for my development work at Synapse Games. At first, I worked for Synapse on web
games, but we eventually moved over to mobile games. And then we came full circle
because Unity enabled us to deploy to the web in addition to mobile, all from one
codebase!

 I’ve always seen sharing knowledge as important and have taught game develop-
ment for several years. A large part of why I do this is the example set by my many
mentors and teachers. (Incidentally, you may even have heard of one of my teachers
because he was such an inspiring person: Randy Pausch delivered “The Last Lecture”

shortly before he passed away in 2008.) I’ve taught classes at several schools and have
always wanted to write a book about game development.

 In many ways, what I’ve written here is the book I wish had existed back when I was
first learning Unity. Among Unity’s many virtues is a huge treasure trove of learning
resources, but those resources tend to take the form of unfocused fragments (like the
script reference or isolated tutorials) and require much digging to find what you
need. Ideally, I’d have a book that wrapped up everything I needed to know in one
place and presented it in a clear and logical manner, so now I’m writing such a book
for you. I’m targeting people who already know how to program but who are newcom-
ers to Unity, and possibly new to game development in general. The choice of projects
reflects my experience of gaining skills and confidence by doing a variety of freelance
projects in rapid succession.

 In learning to develop games using Unity, you’re setting out on an exciting adven-
ture. For me, learning how to develop games meant putting up with a lot of hassle.
You, on the other hand, have the advantage of a single coherent resource to learn
from: this book!

xix

acknowledgments
I would like to thank Manning Publications for giving me the opportunity to write this
book. The editors I worked with, including Robin de Jongh and especially Dan
Maharry, helped me throughout this undertaking, and the book is much stronger for
their feedback. Becky Whitney took over as primary editor for this third edition, while
Candace West filled that role on the second edition. My sincere thanks also to the many
others who worked with me during the development and production of the book: Deir-
dre Hiam, the project editor; Sharon Wilkey, the copyeditor; Jason Everett, the proof-
reader; and Mihaela Batinić, the reviewing editor.

 My writing benefited from the scrutiny of reviewers every step of the way. Thanks
to Aharon Sharim Rani, Alain Couniot, Alain Lompo, Alberto Simões, Bradley Irby,
Brent Boylan, Chris Lundberg, Cristian Antonioli, David Moskowitz, Erik Hansson,
Francesco Argese, Hilde Van Gysel, James Matlock, Jan Kroken, John Ackley, John
Guthrie, Jose San Leandro, Joseph W. White, Justin Calleja, Kent R. Spillner, Krishna
Chaitanya Anipindi, Martin Tidman, Max Weinbrown, Nenko Ivanov Tabakov, Nick
Keers, Owain Williams, Robert Walsh, Satej Kumar Sahu, Scott Chaussée, and Walter
Stoneburner. Special thanks to the notable review work by technical development edi-
tor Scott Chaussee and by technical proofreader Christopher Haupt. René van den
Berg and Shiloh Morris stepped into those roles for the second edition, while René
was technical proofreader on the third edition and Robin Dewson did the tech edit.
And I also want to thank Jesse Schell for writing the foreword to my book.

 Next, I’d like to recognize the people who’ve made my experience with Unity a
fruitful one. That, of course, starts with Unity Technologies, the company that makes

ACKNOWLEDGMENTSxx

Unity (the game engine). I am also indebted to the community at the Game Develop-
ment site on Stack Exchange (https://gamedev.stackexchange.com); while writing
the first edition, I visited that QA site almost daily to learn from others and to answer
questions. And the biggest push for me to use Unity came from Alex Reeve, my boss at
Synapse Games. Similarly, I’ve picked up tricks and techniques from my coworkers, in
both that and every job I’ve held since, and they all show up in the code I write.

 Finally, I want to thank my wife, Virginia, for her support during the time I was
writing the book. Until I started working on it, I never really understood how much a
book project takes over your life and affects everyone around you. Thank you so much
for your love and encouragement.

https://gamedev.stackexchange.com

xxi

about this book
Who should read this book
Unity in Action, Third Edition is a book about programming games in Unity. Think of it
as an intro to Unity for experienced programmers. The goal of this book is straightfor-
ward: to take people who have some programming experience, but no experience
with Unity, and teach them how to develop a game by using Unity.

 The best way of teaching development is through example projects, with students
learning by doing, and that’s the approach this book takes. I’ll present topics as steps
toward building sample games, and you’ll be encouraged to build these games in
Unity while exploring the book. We’ll go through a selection of projects every few
chapters, rather than one monolithic project developed over the entire book. (Some-
times other books take the “one monolithic project” approach, but that can make it
hard to jump into the middle if the early chapters aren’t relevant to you.)

 This book has more rigorous programming content than most Unity books (espe-
cially beginners’ books). Unity is often portrayed as a list of features with no program-
ming required, which is a misleading view that won’t teach people what they need to
know in order to produce commercial titles. If you don’t already know how to pro-
gram a computer, I suggest going to one of the various “free interactive coding les-
sons” websites (https://learnprogramming.online, for example) and then coming
back to this book after learning how to program.

 Don’t worry about the exact programming language; C# is used throughout this
book, but skills from other languages will transfer quite well. Although the first part of
the book takes its time introducing new concepts and will carefully and deliberately

https://learnprogramming.online

ABOUT THIS BOOKxxii

step you through developing your first game in Unity, the remaining chapters move a
lot faster in order to take you through projects in multiple game genres. The book
ends with a chapter describing deployment to various platforms including the web
and mobile, but the main thrust of the book doesn’t make any reference to the ulti-
mate deployment target because Unity is wonderfully platform-agnostic.

 As for other aspects of game development, extensive coverage of art disciplines
would water down how much the book can cover and would be largely about software
external to Unity (for example, the animation software used). Discussion of art tasks
will be limited to aspects specific to Unity or that all game developers should know.
(Note, though, that appendix C is about modeling custom objects.)

How this book is organized: A roadmap
Chapter 1 introduces you to Unity, the cross-platform game development environ-
ment. You’ll learn about the fundamental component system underlying everything in
Unity, as well as how to write and execute basic scripts.

 Chapter 2 progresses to writing a demo of movement in 3D, covering topics like
mouse and keyboard input. Defining and manipulating both 3D positions and rota-
tions are thoroughly explained.

 Chapter 3 turns the movement demo into a first-person shooter, teaching you ray-
casting and basic AI. Raycasting (shooting a line into the scene and seeing what it
intersects) is a useful operation for all sorts of games.

 Chapter 4 covers importing and creating art assets. This is the one chapter of the book
that does not focus on code, because every project needs (basic) models and textures.

 Chapter 5 teaches you how to create a 2D puzzle game in Unity. Although Unity
started exclusively for 3D graphics, it now has excellent support for 2D graphics.

 Chapter 6 expands the 2D game explanations with platform game mechanics. In
particular, we’ll implement controls, physics, and animation for the player.

 Chapter 7 introduces you to the latest GUI functionality in Unity. Every game needs
a UI, and the latest versions of Unity feature an improved system for creating UIs.

 Chapter 8 shows how to create another movement demo in 3D, seen only from the
third-person perspective this time. Implementing third-person controls will demon-
strate key 3D math operations, and you’ll learn how to work with an animated character.

 Chapter 9 goes over how to implement interactive devices and items within your
game. The player will have multiple ways of operating these devices, including touching
them directly, touching triggers within the game, or pressing a button on the controller.

 Chapter 10 covers how to communicate with the internet. You’ll learn how to send
and receive data by using standard internet technologies, like HTTP requests to get
XML or JSON data from a server.

 Chapter 11 teaches how to program audio functionality. Unity has great support
for both short sound effects and long music tracks; both sorts of audio are crucial for
almost all video games.

ABOUT THIS BOOK xxiii

 Chapter 12 walks you through bringing together pieces from different chapters
into a single game. In addition, you’ll learn how to program point-and-click controls
and how to save the player’s game.

 Chapter 13 goes over building the final app, with deployment to multiple plat-
forms like desktop, web, mobile, and even VR. Unity enables you to create games for
every major gaming platform!

 Four appendixes provide additional information about scene navigation, external
tools, Blender, and learning resources.

About the code
All the source code in the book, whether in code listings or snippets, is in a fixed-
width font like this, which sets it off from the surrounding text. In most listings, the
code is annotated to point out key concepts. The code is formatted so that it fits
within the available page space in the book by adding line breaks and using indenta-
tion carefully.

 The only software required is Unity; this book uses Unity 2020.3.12, which is the
current default release as I write this. Certain chapters do occasionally discuss other
pieces of software, but those are treated as optional extras and not core to what you’re
learning.

WARNING Unity projects remember which version of Unity they were cre-
ated in and will issue a warning if you attempt to open them in a different ver-
sion. If you see that warning while opening this book’s sample downloads,
click Continue and ignore it.

The code listings sprinkled throughout the book generally show what to add or
change in existing code files; unless it’s the first appearance of a given code file, don’t
replace the entire file with subsequent listings. Although you can download complete
working sample projects to refer to, you’ll learn best by typing out the code listings
and looking at the working samples only for reference. Those downloads are available
from the publisher’s website (https://www.manning.com/books/unity-in-action-
third-edition) and on GitHub (https://github.com/jhocking/uia-3e).

liveBook discussion forum
Purchase of Unity in Action, Third Edition, includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://livebook.manning
.com/#!/book/unity-in-action-third-edition/discussion. You can also learn more
about Manning's forums and the rules of conduct at https://livebook.manning.com/
#!/discussion.

https://www.manning.com/books/unity-in-action-third-edition
https://www.manning.com/books/unity-in-action-third-edition
https://github.com/jhocking/uia-3e
https://livebook.manning.com/#!/book/unity-in-action-third-edition/discussion
https://livebook.manning.com/#!/book/unity-in-action-third-edition/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOKxxiv

 Mannings’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

xxv

about the author
JOE HOCKING is a software engineer who specializes in interactive media development.
He currently works for Qualcomm, wrote most of the third edition while working for
BUNDLAR, and wrote the first edition while at Synapse Games. He has also taught
classes at the University of Illinois Chicago, the School of the Art Institute of Chicago,
and Columbia College Chicago. He lives in the Chicago suburbs with his wife and two
kids. His website is www.newarteest.com.

http://www.newarteest.com

xxvi

about the cover illustration
The figure on the cover of Unity in Action, Third Edition is captioned “Habit of the Mas-
ter of Ceremonies of the Grand Signior.” The Grand Signior was another name for a
sultan of the Ottoman Empire. The illustration is taken from A Collection of the Dresses
of Different Nations, Ancient and Modern by Thomas Jefferys, published in London
between 1757 and 1772. The title page states that these are hand-colored copperplate
engravings, heightened with gum arabic. Jefferys (1719–1771) was called “Geogra-
pher to King George III.” An English cartographer who was the leading map supplier
of his day, Jefferys engraved and printed maps for government and other official bod-
ies and produced a wide range of commercial maps and atlases, especially of North
America. His work as a mapmaker sparked an interest in local dress customs of the
lands he surveyed, which are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introduc-
ing the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’s volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It is now hard to tell the inhabitant of one continent apart from another. Perhaps, try-
ing to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life, or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers

ABOUT THE COVER ILLUSTRATION xxvii

based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’s pictures.

Part 1

First steps

It’s time to take your first steps in using Unity. If you don’t know anything
about Unity, that’s okay! I’m going to start by explaining what Unity is, including
the fundamentals of how to program games in it. Then we’ll walk through a
tutorial about developing a simple game in Unity. This first project will teach you
several specific game development techniques, as well as give you a good over-
view of how the process works. Onward to chapter 1!

3

Getting to know Unity

If you’re anything like me, you’ve had developing a video game on your mind for a
long time. But it’s a big jump from playing games to making them. Numerous game
development tools have appeared over the years, and we’re going to discuss one of
the most recent and most powerful of these tools.

 Unity is a professional-quality game engine used to create video games targeting
a variety of platforms. It’s not only a professional development tool used daily by
thousands of seasoned game developers, but also one of the most accessible mod-
ern tools for novice game developers. Until recently, a newcomer to game develop-
ment would face lots of imposing barriers right from the start, but Unity makes it
easy to start learning these skills.

 Because you’re reading this book, chances are you’re curious about computer
technology and have either developed games with other tools or built other kinds of
software, such as desktop applications or websites. Creating a video game isn’t
fundamentally different from writing any other kind of software; it’s mostly a

This chapter covers
 What makes Unity a great choice

 Operating the Unity editor

 Programming in Unity

4 CHAPTER 1 Getting to know Unity

difference of degree. For example, a video game is a lot more interactive than most
websites, and thus involves different sorts of code, but the skills and processes involved
in creating both are similar.

 If you’ve already cleared the first hurdle on your path to learning game develop-
ment, having learned the fundamentals of programming software, then your next step
is to pick up some game development tools and translate that programming knowl-
edge into the realm of gaming. Unity is a great choice of game development environ-
ment to work with.

To start, go to www.unity.com to learn more about the software. Although Unity’s orig-
inal focus was on 3D games, Unity works great for 2D games as well, and this book cov-
ers both. Indeed, even when demonstrated on a 3D project, many topics (saving data,
playing audio, and so on) apply to both. Section 1.2 will walk you through installing
Unity as a newcomer, but first let’s discuss specific reasons to choose this tool.

1.1 Why is Unity so great?
Let’s take a closer look at that description from the beginning of the chapter: Unity is
a professional-quality game engine used to create video games targeting a variety of
platforms. That’s a fairly straightforward answer to the straightforward question “What
is Unity?” But what exactly does that answer mean, and why is Unity so great?

1.1.1 Unity’s strengths and advantages

Game engines provide a plethora of features that are useful across many games. A
game implemented using a particular engine will get all those features, while adding
custom art assets and gameplay code specific to that game. Unity has physics simula-
tion, normal maps, screen space ambient occlusion (SSAO), dynamic shadows . . . and
the list goes on. Many game engines boast such features, but Unity has two main
advantages over similar cutting-edge game development tools: an extremely produc-
tive visual workflow and a high degree of cross-platform support.

 The visual workflow is a fairly unique design, different from most other game
development environments. Whereas other game development tools are often a

A warning about terminology
This book is about programming in Unity and is therefore primarily of interest to cod-
ers. Although many other resources discuss different aspects of game development
and Unity, in this book programming takes front and center.

Incidentally, note that the word developer may have an unfamiliar meaning in the con-
text of game development: developer is a synonym for programmer in disciplines like
web development, but in game development, developer often refers to anyone who
works on a game, and programmer is a specific role within that. Other kinds of game
developers are artists and designers, but this book focuses on programming.

http://www.unity.com

5Why is Unity so great?

complicated mishmash of disparate parts that must be wrangled, or perhaps a pro-
gramming library that requires you to set up your own integrated development envi-
ronment (IDE), build-chain, and whatnot, the development workflow in Unity is
anchored by a sophisticated visual editor.

 The editor is used to lay out the scenes in your game and to tie together art assets
and code into interactive objects. The beauty of this editor is that it enables professional-
quality games to be built quickly and efficiently, giving developers tools to be incredibly
productive, while still using an extensive list of the latest technologies in video gaming.

NOTE Most other game development tools that have a central visual editor
are also saddled with limited and inflexible scripting support, but Unity
doesn’t suffer from that disadvantage. Although everything created for Unity
ultimately goes through the visual editor, this core interface can be used to
link projects to custom code that runs in Unity’s game engine. Experienced
programmers shouldn’t dismiss this development environment, mistaking it
for some click-together game creator with limited programming capability!

The editor is especially helpful for doing rapid iteration, honing the game through
cycles of prototyping and testing. You can adjust objects in the editor and move things
around even while the game is running. Plus, Unity allows you to customize the editor
itself by writing scripts that add new features and menus to the interface.

 Besides the editor’s significant productivity advantages, the other main strength of
Unity’s tool set is a high degree of cross-platform support. Not only is Unity multiplat-
form in terms of deployment targets (you can deploy to PC, web, mobile, or consoles),
but it’s also multiplatform in terms of development tools (you can develop a game on
Microsoft Windows or Apple macOS). This platform-agnostic nature is largely because
Unity started as Mac-only software and was later ported to Windows. The first version
launched in 2005 and initially supported only Mac, but within months Unity had been
updated to work on Windows as well.

 Successive versions gradually added more deployment platforms, such as a cross-
platform web player in 2006, iPhone in 2008, Android in 2010, and even game con-
soles like Xbox and PlayStation. More recently, Unity has added deployment to
WebGL, the new framework for graphics in web browsers, and even has support for
extended reality (XR)—both virtual reality (VR) and augmented reality (AR)—plat-
forms like Oculus and VIVE. Few game engines support as many deployment targets
as Unity, and none make deploying to multiple platforms so simple.

 In addition to these main strengths, a third, more subtle, benefit comes from the
modular component system used to construct game objects. In a component system,
components are mix-and-match packets of functionality, and objects are built up as a
collection of components, rather than as a strict hierarchy of classes. A component sys-
tem is a different (and usually more flexible) approach to object-oriented program-
ming (OOP) that constructs game objects through composition rather than
inheritance. Figure 1.1 diagrams an example comparison.

6 CHAPTER 1 Getting to know Unity

In a component system, objects exist on a flat hierarchy, and different objects have dif-
ferent collections of components. An inheritance structure, in contrast, has different
objects on completely different branches of the tree. The component arrangement
facilitates rapid prototyping, because you can quickly mix and match components
rather than having to refactor the inheritance chain when objects change.

 Although you could write code to implement a custom component system if one
didn’t exist, Unity already has a robust component system, and this system is even inte-
grated with the visual editor. Instead of being able to manipulate components only in
code, you can attach and detach components within the visual editor. Meanwhile, you
aren’t limited to building objects only through composition; you still have the option
of using inheritance in your code, including all the best-practice design patterns that
have emerged based on inheritance.

1.1.2 Downsides to be aware of

Unity has many advantages that make it a great choice for developing games, and I
highly recommend it, but I’d be remiss if I didn’t mention its weaknesses. In particu-
lar, the combination of the visual editor and sophisticated coding, though very effec-
tive with Unity’s component system, is unusual and can create difficulties. In complex
scenes, you can lose track of which objects in the scene have specific components
attached. Unity does provide a search feature for finding attached scripts, but it could
be more robust; sometimes you still encounter situations requiring you to manually
inspect everything in the scene in order to find script linkages. This doesn’t happen
often, but when it does happen, it can be tedious.

 Another disadvantage that can be surprising and frustrating for experienced pro-
grammers is that linking in external code libraries can be difficult. Old versions of
Unity didn’t support external code libraries at all actually, so they had to be manually
copied into every project. Now Unity comes with the Package Manager, and libraries

Inheritance

Enemy

Enemy
component

Enemy
component Enemy

component

Shooter
componentShooter

component

Motion
component

Motion
component

Mobile enemy

Mobile enemy

Mobile shooter

Mobile shooter

Stationary
shooter

Stationary shooter

Component system

The separate inheritance branches
for mobile and stationary enemies
need separate duplicated shooter
classes. Every behavior change and new
enemy type requires a lot of refactoring.

The mix-and-match components
enable a single shooter component
to be added anywhere it’s needed,
on both mobile and stationary enemies.

Figure 1.1 Inheritance versus composition

7Why is Unity so great?

(or packages) are referenced from a central shared location. These packages work
great for optional functionality provided by Unity itself (Unity doesn’t automatically
include functionality that you don’t need in every single project), and future chapters
will occasionally have you installing packages for things like advanced font handling.
Creating your own packages can be tricky, however, making it awkward to share code
among multiple projects. You may find it simpler to just manually copy code between
projects and deal with any version mismatches down the road, which is not an ideal
trade-off to be making.

NOTE Difficulty working with version-control systems (such as Git or Subver-
sion) used to be a significant weakness of Unity, but more recent versions
work fine. You may find out-of-date resources telling you that Unity doesn’t
work with version control, but newer resources describe which files and fold-
ers in a project need to be put in the repository and which don’t. To start out,
read Unity’s documentation (http://mng.bz/BbhD) or look at the .gitignore
file maintained by GitHub (http://mng.bz/g7nl).

A third weakness has to do with the sometimes dizzying array of options. Unity offers
multiple approaches to some functionalities, and it is not always clear which approach
you should use. To a certain extent, that situation is inevitable for a tool under active
development, but still results in confusion and discomfort for users. This evolutionary
messiness can bewilder even Unity veterans, so newcomers to Unity will definitely face
confusion at times. This book highlights such features and offers guidance.

 For example, chapter 7 explains how to develop a user interface (UI) for Unity
games. Well, Unity actually has three UI systems (which are compared at http://
mng.bz/r60X) because of successively developed systems that improve on their prede-
cessor. This book covers the second UI system (Unity UI, or uGUI) because it is still
preferred over the incomplete third UI system (UI Toolkit), but I wouldn’t be sur-
prised if UI Toolkit matures to production-ready within a few years. In the interim,
newcomers may have difficulty deciding on a UI approach.

1.1.3 Example games built with Unity
You’ve heard about the pros and cons of Unity, but you might still need convincing
that its development tools can give first-rate results. Visit the Unity gallery at
https://unity.com/case-study to see a constantly updated list of games and simula-
tions developed using Unity. This section explores a handful of games, showcasing
multiple genres and deployment platforms. All game titles are trademarks of their
respective game companies, and screenshots are also copyrighted to those companies,
with all rights reserved.

DESKTOP (WINDOWS, MAC, LINUX) AND CONSOLE (PLAYSTATION, XBOX, SWITCH)
Because the Unity editor runs on the same platform, deployment to Windows or Mac
is often the most straightforward target platform. Meanwhile, console games developed
in Unity are often released on PC too, thanks to Unity’s easy cross-platform deployment.
Here are a couple of examples of desktop and console games in different genres:

http://mng.bz/BbhD
http://mng.bz/g7nl
http://mng.bz/r60X
http://mng.bz/r60X
http://mng.bz/r60X
https://unity.com/case-study

8 CHAPTER 1 Getting to know Unity

 Fall Guys (figure 1.2), a chaotic 3D action game developed by Mediatonic
(trademarks of Mediatonic Limited)

 Cuphead (figure 1.3), a 2D platformer developed by Studio MDHR

MOBILE (IOS AND ANDROID)
Unity can also deploy games to mobile platforms like iOS (iPhones and iPads) and Android
(phones and tablets). Here are three examples of mobile games in different genres:

 Monument Valley 2 (figure 1.4), a puzzle game developed by ustwo

Figure 1.2 Fall Guys

Figure 1.3 Cuphead

Figure 1.4 Monument Valley 2

9Why is Unity so great?

 Guns of Boom (figure 1.5), a first-person shooter developed by Game Insight

 Animation Throwdown (figure 1.6), a collectible card game developed by
Kongregate

VIRTUAL REALITY (OCULUS, VIVE, PLAYSTATION VR)
Unity can even deploy to XR platforms, including virtual reality headsets. Here are a
couple of examples of VR games in different genres:

 Beat Saber (figure 1.7), a rhythm game developed by Beat Games

Figure 1.5 Guns of Boom

Figure 1.6 Animation Throwdown

Figure 1.7 Beat Saber

10 CHAPTER 1 Getting to know Unity

 I Expect You to Die (figure 1.8), an escape puzzle game developed by Schell
Games

As you can see from these examples, Unity’s strengths can definitely translate into
commercial-quality games. But even with Unity’s significant advantages over other
game development tools, newcomers may misunderstand the involvement of pro-
gramming in the development process.

 Unity is often portrayed as a list of features with no programming required, which
is a misleading view that won’t teach people what they need to know in order to pro-
duce commercial titles. Though it’s true that you can click together a fairly elaborate
prototype using preexisting components even without a programmer being involved
(which is itself a pretty big feat), rigorous programming is required to move beyond
an interesting prototype to a polished game ready for release.

1.2 How to use Unity
The previous section talked a lot about the productivity benefits of Unity’s visual edi-
tor, so let’s go over what the interface looks like and how it operates. If you haven’t
already done so, download the program by going to www.unity.com and clicking Get
Started. Here you will see a breakdown of the various subscription plans offered.
Everything in this book works in the free version, so select the Individual tab and click
the button under the free Personal edition. The paid versions of Unity differ mainly in
commercial licensing terms, not in underlying functionality.

 The website has separate downloads for new and returning users. The difference is
simply that the download for new users will launch into a software wizard that directs
users to intro tutorials, whereas the download for returning users goes straight to the
main application with no introduction. So even if you are new to Unity, get the down-
load for returning users and skip the intro content (it’s redundant with this book,
after all).

 You’ll actually download a lightweight installation manager rather than the main
Unity application. This manager application, called Unity Hub, exists to simplify the
installation and use of multiple versions of Unity simultaneously. As shown in figure
1.9, installing the editor will be the first thing that happens when you launch Unity
Hub. Install whichever is the default Recommended Release; this book uses Unity

Figure 1.8 I Expect You to Die

https://unity.com/

11How to use Unity

2020.3.12 (the current default release as of this writing). If you later want to install
additional versions of Unity (newer versions than the default are available), click
Installs on the side menu in Unity Hub.

TIP By the time you read this, newer Unity versions will likely have been
released. Advanced features will have changed, and possibly even the look of
the interface could be different, but the fundamental concepts covered by
this book will still be true. The explanations given in this book will generally
still apply to whichever future version of Unity is current.

WARNING Projects remember which version of Unity they were created in
and will issue a warning if you attempt to open them in a different version.
Sometimes it doesn’t matter (for example, ignore the warning if it appears
while opening this book’s sample downloads), but sometimes you don’t want
to open a project in the wrong version.

Continuing on from installing the editor, go to the Learn tab to download a first proj-
ect. Select any project to look around in (you won’t be doing much with it anyway) but
note that figure 1.10 shows Karting. Unity will download and launch the selected proj-
ect. You may see a warning message about importing files to set up the new project;
realize that the import can take several minutes.

When Unity Hub runs for the first time,
it will start on the tab for installing a
version of Unity. Click the Add button
and then install the default
Recommended release.

The next several screenshots use
the Karting microgame. To install
that project, click the Learn tab and
then select that project in the list.

After the first launch,
Unity Hub will start on
the Projects list.

Return to Installs to see
which versions of Unity
are currently installed
and to install new versions.

The Unity version that a given project
will launch in. If you need to change this
(e.g., you want to upgrade a project),
click in this column for a menu of
versions installed on this machine.

Use these buttons to Add
existing projects (e.g., this
book’s code samples) to the
list or to create a New project.

Figure 1.9 Unity Hub on first launch versus subsequently

12 CHAPTER 1 Getting to know Unity

 Once the new project is finally loaded, choose Load Scene to dismiss the initial
pop-up. If it isn’t already open, navigate to Assets/Karting/Scenes/ in the file browser
at the bottom of the editor, and double-click MainScene (scene files have the Unity
cube icon). You should see a screen similar to figure 1.10.

The interface in Unity is split into sections: the Scene tab, the Game tab, the Toolbar,
the Hierarchy tab, the Inspector, the Project tab, and the Console tab. Each section
has a different purpose, but all are crucial to the game-building life cycle:

 You can browse through all the files in the Project tab.
 You can position objects in the current scene by using the Scene tab.
 The Toolbar has controls for working with the scene.
 You can drag and drop object relationships in the Hierarchy tab.
 The Inspector lists information about selected objects, including linked code.
 You can test playing in Game view while watching error output in the Console tab.

This is the default layout in Unity; all of the views are in tabs and can be moved
around or resized, docking in different places on the screen. Later, you can play
around with customizing the layout, but for now, the default layout is the best way to
understand what all the views do.

1.2.1 Scene view, Game view, and the Toolbar
The most prominent part of the interface is the Scene view in the middle. This is where
you can see what the game world looks like and move objects around. Mesh objects in
the scene appear as, well, their mesh (defined in a moment). You can also see other

Scene and Game are tabs
for viewing the 3D scene and
playing the game, respectively.

Hierarchy shows a text
list of all objects in the
scene, nested according
to how they’re linked
together. Drag objects
in the hierarchy to link
them.

Project and Console
are tabs for viewing
all files in the project
and messages from
the code, respectively.

Navigate folders on the left, and
then double-click MainScene.

The whole top area is the Toolbar.
To the left are buttons for looking
around and moving objects, and
in the middle is the Play button.

The Inspector is on the right side.
This displays information about
the currently selected object (a
list of components mostly).

The Tutorials list
appears only in
the starter micro-
games and won’t
be here normally.

Figure 1.10 Parts of the interface in Unity

13How to use Unity

objects in the scene, represented by icons and colored lines: cameras, lights, audio
sources, collision regions, and so forth. Note that the view you’re seeing here isn’t the
same as the view in the running game—you’re able to look around the scene at will
without being constrained to the game’s view.

DEFINITION A mesh object is a visual object in space. Visuals in 3D graphics are
constructed out of lots of connected lines and shapes—hence the word mesh.

The Game view isn’t a separate part of the screen but rather another tab located right
next to Scene (look for tabs at the top left of views). A couple of places in the interface
have multiple tabs like this; if you click a different tab, the view is replaced by the new
active tab. When the game is running, what you see in this view is the game. It isn’t
necessary to manually switch tabs every time you run the game, because the view auto-
matically switches to Game when the game starts.

TIP While the game is running, you can switch back to the Scene view, allow-
ing you to inspect objects in the running scene. This capability is extremely
useful for seeing what’s going on while the game is running and is a helpful
debugging tool that isn’t available in most game engines.

Speaking of running the game, that’s as simple as clicking the Play button just above the
Scene view. That whole top section of the interface is referred to as the Toolbar, and Play
is located right in the middle. Figure 1.11 breaks apart the full editor interface to show
only the Toolbar at the top as well as the Scene/Game tabs right underneath.

At the left side of the Toolbar are buttons for scene navigation and transforming
objects—to look around the scene and to move objects. I suggest you spend time prac-
ticing these, because they are two of the most important activities you’ll do in Unity’s
visual editor. (They’re so important that they get their own section following this one.)

Options for aspects of the scene to display
(e.g., toggle button to show lighting) Play

Icons for cameras, lights,
audio sources, etc.

View through the camera
when one is selected

Rect
Scale

Rotate

Translate
Navigate
scene

Figure 1.11 Editor screenshot cropped to show Toolbar, Scene, and Game

14 CHAPTER 1 Getting to know Unity

 The right-hand side of the Toolbar is where you’ll find drop-down menus for lay-
outs and layers. As mentioned earlier, the layout of Unity’s interface is flexible, so the
Layout menu allows you to switch layouts. As for the Layers menu, that’s advanced
functionality that you can ignore for now (layers are mentioned in future chapters).

1.2.2 The mouse and keyboard

Scene navigation is primarily done using the mouse, along with a few modifier keys
used to change what the mouse is doing. The three main navigation maneuvers are
Move, Orbit, and Zoom. The specific mouse movements vary depending on the
mouse you’re using and are described in appendix A. The three movements involve
clicking and dragging while holding down a combination of Alt (or Option on Mac)
and Ctrl (Command on a Mac). Spend a few minutes moving around in the scene to
understand what Move, Orbit, and Zoom do.

TIP Although Unity can be used with one- or two-button mice, I highly rec-
ommend getting a three-button mouse (and yes, a three-button mouse works
fine on a Mac).

Transforming objects is also done through three main maneuvers, and the three
scene navigation moves are analogous to the three transforms: Translate, Rotate, and
Scale (figure 1.12 demonstrates the transforms on a cube).

When you select an object in the scene, you can then move it around (the mathemati-
cally accurate technical term is translate), rotate it, and scale its size. Relating back to
scene navigation maneuvers, Move corresponds to Translate for the camera, Orbit
corresponds to Rotate, and Zoom corresponds to Scale. Besides the buttons on the
Toolbar, you can switch these functions by pressing W, E, or R on the keyboard. When
you activate a transform, you’ll notice that a set of color-coded arrows or circles
appears over the object in the scene; this is the Transform gizmo, and you can click
and drag this gizmo to apply the transformation.

 A fourth tool is next to the transform buttons. Called the Rect tool, it’s designed for
use with 2D graphics. This one tool combines movement, rotation, and scaling. Simi-
larly, the fifth button is for a tool that combines movement, rotation, and scaling for

Translate Rotate Scale

Figure 1.12 Applying the three transforms: Translate, Rotate, and Scale. (The
lighter lines are the previous state of the object before it was transformed.)

15How to use Unity

3D objects. Personally, I prefer to manipulate the three transforms separately, but you
may find the combined tools more convenient.

 Unity has a host of other keyboard shortcuts for speeding up a variety of tasks.
Refer to appendix A to learn about them. And with that, on to the remaining sections
of the interface!

1.2.3 The Hierarchy view and the Inspector panel

Looking at either side of the screen, you’ll see the Hierarchy tab on the left and the
Inspector tab on the right (see figure 1.13). Hierarchy lists the name of every object in
the scene and nests the names together according to their hierarchy linkages in the
scene. Basically, it’s a way of selecting objects by name instead of hunting them down
and clicking them within the Scene view. The Hierarchy linkages group objects
together visually, like folders, allowing you to move the entire group as one.

The Inspector shows you information about the currently selected object. Select an
object, and the Inspector is then filled with information about that object. The infor-
mation shown is pretty much a list of components, and you can even attach or remove
components from objects. All game objects have at least one component, Transform,
so you’ll always see at least information about positioning and rotation in the Inspec-
tor. Often, objects will have several components listed here, including scripts attached
to them.

Figure 1.13 Editor screenshot cropped to show the Hierarchy and Inspector tabs

16 CHAPTER 1 Getting to know Unity

1.2.4 The Project and Console tabs

At the bottom of the screen, you’ll see Project and Console (see figure 1.14). As with
Scene and Game, these aren’t two separate portions of the screen, but rather tabs that
you can switch between.

 Project shows all the assets (art, code, and so on) in the project. Specifically, on the
left side of the view is a listing of the project’s directories; when you select a directory,
the right side of the view shows the individual files in that directory. The directory list-
ing in Project is similar to the list view in Hierarchy, but Hierarchy shows objects in the
scene; Project shows files that may not be contained within any specific scene (includ-
ing scene files—when you save a scene, it shows up in Project!).

TIP Project view mirrors the Assets directory on disk, but generally, you
shouldn’t move or delete files directly by going to the Assets folder in your
OS’s file explorer. If you do those things within the Project view, Unity will
keep in sync with that folder.

The Console tab is the place where messages from the code show up. Some of these
messages will be debugging output that you placed deliberately, but Unity also emits
error messages if it encounters problems in the script you wrote.

1.3 Getting up and running with Unity programming
Now let’s look at how the process of programming works in Unity. Although art assets
can be laid out in the visual editor, you need to write code to control them and make
the game interactive. Complex programming in Unity is done using C# as the pro-
gramming language.

 Launch Unity and create a new project: choose New in Unity Hub, or choose File >
New Project if Unity is already running. Type a name for the project, leave the default
3D template (future chapters mention 2D), and then choose where you want to save
the project. A Unity project is simply a directory full of various asset and settings files,

Figure 1.14 Editor screenshot cropped to show the Project and Console tabs

17Getting up and running with Unity programming

so save the project anywhere on your computer. Click Create, and then Unity will
briefly disappear while it sets up the project directory.

 Alternatively, you could open the chapter 1 sample project. I strongly recommend
you try to follow the upcoming instructions in a new project, and look at the finished
sample only afterward to check your work, but it’s up to you. Choose Add in Unity Hub
to add a downloaded project folder to the list and then click the project in the list.

WARNING If you are opening the book’s sample project rather than creating
a new project, Unity may emit the following message: Rebuilding Library
because the asset database could not be found! This refers to the project’s
Library folder; that folder contains files generated by Unity and used while
working, but it is not necessary to distribute those files.

When Unity reappears, you’ll be looking at a blank project. Next, let’s discuss how
programs get executed in Unity.

1.3.1 Running code in Unity: Script components

All code execution in Unity starts from code files linked to an object in the scene. Ulti-
mately, this code execution is all part of the component system described earlier;
game objects are built up as a collection of components, and that collection can
include scripts to execute.

NOTE Unity refers to the code files as scripts, using a definition of script that’s
most commonly encountered with JavaScript running in a browser: the code is
executed within the Unity game engine, as opposed to compiled code that runs
as its own executable. But don’t get confused, because many people define the
word differently; for example, scripts often refer to short, self-contained utility
programs. Scripts in Unity are more akin to individual OOP classes, and scripts
attached to objects in the scene are object instances.

As you’ve probably surmised from this description, in Unity, scripts are components—
not all scripts, mind you, only scripts that inherit from MonoBehaviour, the base class
for script components. MonoBehaviour defines the invisible groundwork for attaching
components to game objects, and (as shown in listing 1.1) inheriting from it provides
a couple of automatically run methods that you can implement. Those methods
include Start(), called once when the object becomes active (which is generally as
soon as the scene with that object has loaded), and Update(), which is called every
frame. Your code is run when you put it inside these predefined methods.

DEFINITION A frame is a single cycle of the looping game code. Nearly all video
games (not only in Unity, but video games in general) are built around a core
game loop, where the code executes in a cycle while the game is running.
Each cycle includes drawing the screen—hence the name frame (like the
series of still frames of a movie).

18 CHAPTER 1 Getting to know Unity

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class HelloWorld : MonoBehaviour {
 void Start() {
 // do something once
 }

 void Update() {
 // do something every frame
 }
}

This is what the file contains when you create a new C# script: the minimal boilerplate
code that defines a valid Unity component. Unity has a script template tucked away in
the bowels of the application, and when you create a new script, Unity copies that tem-
plate and renames the class to match the name of the file (which is HelloWorld.cs in
my case). Unity also has empty shells for Start() and Update(), because those are the
two most common places from which you’ll call your custom code.

 To create a script, select C# Script from the Create menu, which you access either
under the Assets menu (note that Assets and GameObjects both have listings for Cre-
ate, but they’re different menus) or by right-clicking in the Project view. Type in a
name for the new script, such as HelloWorld. As explained later in the chapter (see
figure 1.16), you’ll click and drag this script file onto an object in the scene. Double-
click the script, and it’ll automatically be opened in another program for editing, as
discussed next.

1.3.2 Using Visual Studio, the included IDE

Programming isn’t done within Unity exactly, but rather code exists as separate files
that you point Unity to. Script files can be created within Unity, but you still need to use
a text editor or IDE to write all the code within those initially empty files. Unity comes
with Microsoft Visual Studio, an IDE for C# (figure 1.15 shows what it looks like). You
can visit https://visualstudio.microsoft.com to learn more about this software.

NOTE If Unity opens a different IDE than Visual Studio, you may want to
switch the External Tools preference. Go to Preferences > External Tools >
External Script Editor to select an IDE.

NOTE Visual Studio organizes files into groupings called a solution. Unity
automatically generates a solution that has all the script files, so you usually
don’t need to worry about that.

Various flavors of Visual Studio are available (many programmers prefer Visual Studio
Code), or you could use an IDE from a completely different company, like JetBrains
Rider. Switching to a different IDE is as simple as going to External Tools in Unity’s
preferences. I generally use Visual Studio for Mac, but you could use a different IDE

Listing 1.1 Code template for a basic script component

Include namespaces for Unity
and .NET/Mono classes.

The syntax for inheritance

Put code here that runs once.

Put code here that
runs every frame.

https://visualstudio.microsoft.com/

19Getting up and running with Unity programming

and not have any problems following along with this book. Beyond this introductory
chapter, I’m not going to talk about the IDE.

 Always keep in mind that, although the code is written in Visual Studio, the code
isn’t run there. The IDE is pretty much a fancy text editor, and the code is run when
you click Play within Unity.

1.3.3 Printing to the console: Hello World!
All right, you already have an empty script in the project, but you also need an object
in the scene to attach the script to. Recall figure 1.1 depicting how a component sys-
tem works; a script is a component, so it needs to be set as one of the components on
an object.

 Choose GameObject > Create Empty, and a blank GameObject will appear in the
Hierarchy list. Now drag the script from the Project view over to the Hierarchy view
and drop it on the empty GameObject. As shown in figure 1.16, Unity will highlight
valid places to drop the script, and dropping it on the GameObject will attach the
script to that object.

 To verify that the script is attached to the object, select the GameObject and look
at the Inspector view. You should see two components listed: the Transform compo-
nent, which is the basic position/rotation/scale component all objects have and
which can’t be removed, and below that, your script.

NOTE Eventually, this action of dragging objects from one place and dropping
them on other objects will feel routine. A lot of linkages in Unity, not only
attaching scripts to objects, are created by dragging things on top of each other.

Don’t click the Run button within
Visual Studio; click Play in Unity
to run the code.

Script files open as tabs in the
main viewing area. Multiple
script files can be open at once.

Solution view shows all
script files in the project.

Document Outline may
not be showing by default.
Select it under View > Other
Windows.

Figure 1.15 Parts of the interface in Visual Studio

20 CHAPTER 1 Getting to know Unity

When a script is linked to an object, you’ll see something like figure 1.17, with the
script showing up as a component in the Inspector. Now the script will execute when
you play the scene, although nothing is going to happen yet because you haven’t writ-
ten any code. Let’s do that next!

Double-click the script to open it and get back to listing 1.1. The classic place to start
when learning a new programming environment is having it print the text Hello
World!, so add the line in the following listing inside the Start() method.

...
void Start() {
 Debug.Log("Hello World!");
}
...

Listing 1.2 Adding a console message

Click and drag the script
from the Project view up
to the Hierarchy view and
release on the GameObject.

Figure 1.16 How to link
a script to a GameObject

Figure 1.17 Linked script being
displayed in the Inspector

Add the logging
command here.

21Getting up and running with Unity programming

The Debug.Log() command prints a message to the Console view in Unity. Mean-
while, that line goes in the Start() method because, as was explained earlier, that
method is called as soon as the object becomes active. Start() will be called once, as
soon as you click Play in the editor. Once you’ve added the log command, save the
script, click Play in Unity, and switch to the Console view. You’ll see the message Hello
World! appear. Congratulations—you’ve written your first Unity script! Of course, the
code will be more elaborate in later chapters, but this is an important first step.

WARNING Always remember to save the file after making adjustments to a
script! A pretty common mistake is to adjust the code and then immediately
click Play in Unity without saving, resulting in the game still using the code
from before you adjusted it.

Now it’s time to save the scene; this creates a .unity file with the Unity icon. The scene
file is a snapshot of everything currently loaded in the game so that you can reload
this scene later. Saving this scene may hardly seem worthwhile because it’s so simple (a
single empty GameObject)—but if you don’t save the scene, you’ll find it empty again
when you come back to the project after quitting Unity.

“Hello World!” steps in brief
Let’s reiterate and summarize the steps from the last few pages:

1. Create a new project.
2. Create a new C# script.
3. Create an empty GameObject.
4. Drag the script onto the object.
5. Add the log command to the script.
6. Click Play!

Errors in the script
To see how Unity indicates errors, purposely put a typo in the HelloWorld script. For
example, if you type an extra parenthesis symbol, an error message will appear in the
Console tab with a red error icon.

Script containing
the error

Location within that
script (line, character)

Description
of the error

A script error being displayed in the Console tab

22 CHAPTER 1 Getting to know Unity

Summary
 Unity is a multiplatform development tool.
 Unity’s visual editor has several sections that work in concert.
 Scripts are attached to objects as components.
 Code is written inside scripts by using Visual Studio.

(continued)
Get used to reading these error messages, because this will be your main way of solv-
ing problems in your code. Notice how the message is structured: it first indicates
which file has the error, then shows a line number within that file, and finally provides
a description of the error that occurred.

23

Building a demo that
 puts you in 3D space

Chapter 1 concluded with the traditional “Hello World!” introduction to a new pro-
gramming tool; now it’s time to dive into a nontrivial Unity project, a project with
interactivity and graphics. You’ll put objects into a scene and write code to enable a
player to walk around that scene. Basically, it’ll be Doom without the monsters
(something like the depiction in figure 2.1). The visual editor in Unity enables new
users to start assembling a 3D prototype right away, without needing to write a lot of
boilerplate code first (for things like initializing a 3D view or establishing a render-
ing loop).

 It’s tempting to immediately start building the scene in Unity, especially with
such a simple (in concept!) project. But it’s always a good idea to pause at the

This chapter covers
 Understanding 3D coordinate space

 Putting a player in a scene

 Writing a script that moves objects

 Implementing FPS controls

24 CHAPTER 2 Building a demo that puts you in 3D space

beginning and plan out what you’re going to do, and this is especially important right
now because you’re new to the process.

NOTE Remember, the project for every chapter can be downloaded from the
book’s website (http://mng.bz/VBY5). First open the project in Unity and
then open the main scene (usually just named Scene) to run and inspect.
While you’re learning, I recommend you type out all the code yourself and
use the downloaded sample only for reference.

2.1 Before you start . . .
Unity makes it easy for a newcomer to get started, but let’s go over a couple of points
before you build the complete scene. Even when working with a tool as flexible as
Unity, you need to have a sense of the goal you’re working toward. You also need to
grasp how 3D coordinates operate, or you could get lost as soon as you try to position
an object in the scene.

2.1.1 Planning the project

Before you start programming anything, you always want to pause and ask yourself, “So
what am I building here?” Game design is a huge topic, with many impressively large
books focused on how to design a game. Fortunately, for our purposes, you need only
a brief outline of this simple demo in mind to develop a basic learning project. These
initial projects won’t be terribly complex designs anyway, in order to avoid distracting
you from learning programming concepts. You can (and should!) worry about higher-
level design issues after you’ve mastered the fundamentals of game development.

 For this first project, you’ll build a basic first-person shooter (FPS) scene. We will
create a room to navigate around, and players will see the world from their character’s
point of view and can control the character by using the mouse and keyboard. All the
interesting complexity of a complete game can be stripped away for now to concen-
trate on the core mechanics: moving around in a 3D space. Figure 2.2 depicts the
road map for this project, laying out the checklist I built in my head:

1. Set up the room: create the floor, outer walls, and inner walls.
2. Place the lights and camera.

Figure 2.1 Screenshot of the 3D demo
(basically, Doom without the monsters)

http://mng.bz/VBY5

25Before you start . . .

3. Create the player object (including attaching the camera on top).
4. Write movement scripts: rotate with the mouse and move with the keyboard.

Don’t be scared off by everything in this road map! It sounds like a lot of steps in this
chapter, but Unity makes them easy. The upcoming sections about movement scripts
are so extensive only because we’ll be going through every line so that you can under-
stand all the concepts in detail.

 This project is a first-person demo in order to keep the art requirements simple;
because you can’t see yourself, it’s fine for “you” to be a cylindrical shape with a cam-
era on top! Now you need to understand how 3D coordinates work so that placing
everything in the visual editor will be easy.

2.1.2 Understanding 3D coordinate space

If you think about the simple plan we’re starting with, it has three aspects: a room, a
view, and controls. All of these items rely on you understanding how positions and
movements are represented in 3D computer simulations. If you’re new to working
with 3D graphics, you might not already know this stuff.

 It all boils down to numbers that indicate points in space, and the way those num-
bers correlate to the space is through coordinate axes. If you think back to math class,
you’ve probably seen and used x- and y-axes (see figure 2.3) for assigning coordinates
to points on the page. This is referred to as a Cartesian coordinate system.

 Two axes give you 2D coordinates, with all points in the same plane. Three axes are
used to define 3D space. Because the x-axis goes along the page horizontally and the
y-axis goes along the page vertically, we now imagine a third axis that sticks straight
into and out of the page, perpendicular to both the x- and y-axes. Figure 2.4 depicts
the x-, y-, and z-axes for 3D coordinate space. Everything that has a specific position in
the scene will have x-, y-, and z-coordinates: the position of the player, the placement
of a wall, and so forth.

1. Set up the boundaries of
 the room. First create the
 floor, then create the outer
 walls, and then place the
 inner walls.

2. Players need to be able to
 see the room. Put lights
 around the room, and place
 the camera that will be the
 player’s view.

3. Create the primitive shape
 for the player. Attach the
 camera to the top of this
 shape so that as this object
 moves, the camera moves
 with it.

4. Write movement scripts
 for the player. First write
 code to rotate with the
 mouse; then write code
 to move with keyboard.

Figure 2.2 Road map for the 3D demo

26 CHAPTER 2 Building a demo that puts you in 3D space

In Unity’s Scene view, you can see these three axes displayed. In the Inspector, you can
type in the three numbers required to position an object. You will not only write code
to position objects using these three-number coordinates, but also define movements
as a distance to move along each axis.

Vertical axis
(usually labeled y)

Coordinates that define the point’s
position. The numbers indicate each
distance along one axis: (x, y).

Horizontal axis
(labeled x)

(6, 5)

Figure 2.3 Coordinates along the x- and y-axes define a 2D point.

Vertical axis
(labeled y)

The z-axis is
perpendicular
to the page;
imagine this line
sticking straight
into and out
of the page.

Horizontal axis
(labeled x)

Whereas 2D coordinates have
two numbers, one along each
axis, 3D coordinates have
three numbers: (x, y, z).

(6, 7, 5)

Figure 2.4 Coordinates along the x-, y-, and z-axes define a 3D point.

Left-handed vs. right-handed coordinates
The positive and negative direction of each axis is arbitrary, and the coordinates still
work no matter in which direction the axes point. You simply need to maintain con-
sistency within a given 3D graphics tool (animation tool, game development tool, and
so forth).

27Begin the project: Place objects in the scene

Now that you have a plan in mind for this project and know how coordinates are used
to position objects in 3D space, it’s time to start building the scene.

2.2 Begin the project: Place objects in the scene
Let’s create and place objects in the scene. First, you’ll set up all the static scenery—
the floor and walls. Then you’ll place lights around the scene and position the cam-
era. Lastly, you’ll create the object that will be the player, the object to which you’ll
attach scripts to walk around the scene. Figure 2.5 shows what the editor will look like
with everything in place.

 Chapter 1 showed how to create a new project in Unity, so you’ll do that now.
Choose New in Unity Hub (or File > New Project in the editor) and then name your
new project in the window that pops up. The scene starts out mostly empty, and the
first objects to create are the most obvious ones.

But in almost all cases, x goes to the right and y goes up; what differs between dif-
ferent tools is whether z goes into or comes out of the page. These two directions
are referred to as left-handed or right-handed; as this figure shows, if you point your
thumb along the x-axis and your index finger along the y-axis, then your middle finger
points along the z-axis.

Unity uses a left-handed coordinate system, as do many 3D art applications. Many
other tools use right-handed coordinate systems (OpenGL, for example), so don’t get
confused if you ever see different coordinate directions.

The z-axis points in a different direction on the left hand versus the right hand.

Left-handed
coordinates

Right-handed
coordinates

y-axis

x-axis

z-axis

28 CHAPTER 2 Building a demo that puts you in 3D space

2.2.1 The scenery: Floor, outer walls, and inner walls

Select the GameObject menu at the top of the screen and then hover over 3D Object
to see that drop-down menu. Select Cube to create a new cube object in the scene (later,
we’ll use other shapes, like Sphere and Capsule). Adjust the position and scale of this
object, as well as its name, to make the floor. Figure 2.6 shows which values the floor
should be set to in the Inspector (it’s a cube only initially, before you stretch it out).

NOTE You can think about the numbers for position in terms of any units you
want, as long as you’re consistent throughout the scene. The most common
choice for units is meters, and that’s what I generally choose, but I also use
feet sometimes, and I’ve even seen other people decide that the numbers are
inches!

Repeat the same steps to create outer walls for the room. You can create new cubes
each time, or you can copy and paste existing objects by using the standard shortcuts.
Move, rotate, and scale the walls to form a perimeter around the floor. Experiment
with different numbers (for example, 1, 4, 50 for Scale) or use the transform tools
introduced in section 1.2.2 (remember that the mathematical term for moving and
rotating in 3D space is transform).

TIP Recall the navigation controls in chapter 1 to view the scene from differ-
ent angles or zoom out for a bird’s-eye view. If you ever get lost in the scene,
press F to reset the view on the currently selected object.

Lights—both directional and
point lights are in this scene.

Camera view—
the camera
object is located
right on top of
the player; these
angled white lines
indicate the
camera’s field
of view.

Player—this is a basic capsule object.

Figure 2.5 Scene in the editor with floor, walls, lights, a camera, and the player

29Begin the project: Place objects in the scene

Once the outer walls are in place, create inner walls to navigate around. Position the
inner walls however you like; the idea is to create hallways and obstacles to walk
around once you write code for movement. The exact Transform values that the walls
end up with will vary depending on how you rotate and scale the cubes to fit, and on
how the objects are linked together in the Hierarchy view. If you need an example to
copy working values from, download the sample project and refer to the walls there.

TIP Drag objects on top of each other in the Hierarchy view to establish link-
ages. Objects that have accompanying objects attached are referred to as par-
ents; objects attached to parent objects are referred to as children. When the
parent object is moved (or rotated or scaled), the child objects are trans-
formed along with it.

DEFINITION A root object (closely related to the concepts of parent and child
objects) is an object at the base of a hierarchy that does not itself have a par-
ent. Thus, all root objects are parents, but not all parents are root objects.

You can also create empty game objects to use for organizing the scene. From the
GameObject menu, choose Create Empty. By linking visible objects to a root object,
their Hierarchy list can be collapsed. For example, in figure 2.7, the walls are all chil-
dren of an empty root object (named Building) so that the Hierarchy list will look
organized.

WARNING Before linking any child objects to it, make sure to reset the Trans-
form options (Position and Rotation to 0, 0, 0 and Scale to 1, 1, 1) of the
empty root object to avoid any oddities in the position of child objects.

At the top, you can type in a name for
the object. For example, call the floor
object Floor.

Position and scale the cube to create
a floor for the room. It won’t look
like a cube anymore after being
stretched out with differing scale
values on different axes.

Meanwhile, the position is lowered
slightly to compensate for the height;
we set the Y scale to 1, and the object
is positioned around its center.

The remaining components filling
the view come with a new Cube
object but don’t need to be adjusted
right now. These components include
a Mesh Filter (to define the geometry
of the object), a Mesh Renderer (to
define the material on the object),
and a Box Collider (so that the object
can be collided with during movement).

Figure 2.6 Inspector view for the floor

30 CHAPTER 2 Building a demo that puts you in 3D space

Remember to save the changed scene if you haven’t yet. Now the scene has a room in
it, but we still need to set up the lighting. Let’s take care of that next.

2.2.2 Lights and cameras

Typically, you light a 3D scene with a directional light and then a series of point lights.
Start with a directional light. The scene probably already has one by default, but if
not, create one by choosing GameObject > Light and selecting Directional Light.

Figure 2.7 The Hierarchy view showing the walls
and floor organized under an empty object

What is GameObject?
All scene objects are instances of the GameObject class, similar to the way all script
components inherit from the MonoBehaviour class. This fact was more explicit with
the empty object actually named GameObject, but is still true regardless of whether
the object is named Floor, Camera, or Player.

GameObject is really a container for a bunch of components. The main purpose of
GameObject is to provide MonoBehaviour something to attach to. What exactly the
object is in the scene depends on which components have been added to that Game-
Object. Cube objects have a Cube component, Sphere objects have a Sphere com-
ponent, and so on.

Types of lights
You can create several types of light sources, defined by how and where they project
light rays. The three main types are point, spot, and directional.

In point lights, all the light rays originate from a single point and project out in all direc-
tions, like a light bulb in the real world. The light is brighter up close because the light
rays are bunched up.

In spot lights, all the light rays originate from a single point but project out in only a
limited cone. No spot lights are used in the current project, but these lights are com-
monly used to highlight parts of a level.

In directional lights, all the light rays are parallel and project evenly, lighting everything
in the scene the same way. This is like the sun in the real world.

31Begin the project: Place objects in the scene

The position of a directional light doesn’t affect the light cast from it, only the direc-
tion the light source is facing, so technically, you could place that light anywhere in
the scene. I recommend placing the directional light high above the room so that it
intuitively feels like the sun and so that it’s out of the way when you’re manipulating
the rest of the scene. Rotate this light and watch the effect on the room; I recommend
rotating it slightly on both the x- and y-axes to get a good effect.

 You will see an Intensity setting when you look in the Inspector (see figure 2.8). As
the name indicates, that setting controls the brightness of the light. If this were the
only light, it’d have to be more intense, but because you’ll add a bunch of point lights
as well, this directional light can be pretty dim—for example, 0.6 Intensity. This light
should also have a slight yellow tinge, like the sun, while the other lights will be white.

As for point lights, create several by using the same menu and place them in dark
spots around the room to make sure all the walls are lit. You don’t want too many,
because performance can degrade if the game has lots of lights. Placing one near
each corner should be fine (I suggest raising them to the tops of the walls), plus one
placed high above the scene (for example, a Y position of 18) to give variety to the
light in the room.

 Note that point lights have a Range setting added to the Inspector (see figure 2.9).
This controls how far away the light reaches; whereas directional lights cast light
evenly throughout the entire scene, point lights are brighter when an object is closer.
The point lights closer to the floor should have a range of around 18, but the light
placed high up should have a range of around 40 to reach the entire room. Set Inten-
sity to 0.8 for the lights closer to the floor, while the high one is dim extra light to fill
the space, at intensity 0.4.

Here is where you control
the light’s brightness, from
0 for completely dark.

The remaining settings don’t need to
be adjusted right now. These settings
include the color of the light, shadows
cast by the light, and even a silhouette
projection (think of the Bat signal).

Figure 2.8 Directional light settings in the Inspector

Other than Range, the settings
for point lights are the same
as for directional lights.

Here is where you control light range,
with the same units as position and scale.

(If you see an error about realtime not
supported, just ignore it or switch Mode
to Mixed.)

Figure 2.9 Point light settings in the Inspector

32 CHAPTER 2 Building a demo that puts you in 3D space

The other kind of object needed for the player to see the scene is a camera, but the
“empty” scene came with a main camera, so you’ll use that. If you ever need to create
new cameras (such as for split-screen views in multiplayer games), Camera is another
choice in the same GameObject menu, like Cube and Lights. We will position the
camera around the top of the player so that the view appears to be through the
player’s eyes.

2.2.3 The player’s collider and viewpoint

For this project, a simple primitive shape will do to represent the player. In the Game-
Object menu (remember, hover over 3D Object to expand the menu), click Capsule.
Unity creates a cylindrical shape with rounded ends; this primitive shape will repre-
sent the player. Position this object at 1.1 on the y-axis (half the height of the object,
plus a bit to avoid overlapping the floor). You can move the object along the x-axis
and z-axis wherever you like, as long as it’s inside the room and not touching any walls.
Name the object Player.

 In the Inspector, you’ll notice that this object has a capsule collider assigned to it.
That’s a logical default choice for a capsule object, just as cube objects have a box col-
lider by default. But this particular object will be the player and thus needs a slightly
different sort of component than most objects. Remove the capsule collider by click-
ing the menu icon at the top right of that component, shown in figure 2.10; that will
display a menu that includes the option Remove Component. The collider is a green
mesh surrounding the object, so you’ll see the green mesh disappear after deleting
the capsule collider.

Instead of a capsule collider, we’re going to assign a character controller to this object. At
the bottom of the Inspector is a button labeled Add Component; click that button to
open a menu of components that you can add. In the Physics section of this menu,
you’ll find Character Controller; select that option. As the name indicates, this com-
ponent will allow the object to behave like a character.

 You need to complete one last step to set up the player object: attaching the cam-
era. As mentioned previously in section 2.2.1, objects can be dragged onto each other
in the Hierarchy view. Drag the camera object onto the player capsule to attach the
camera to the player. Now position the camera so that it’ll look like the player’s eyes (I

Click this icon to access a menu
with the Remove Component option.

Figure 2.10 Removing a component in the Inspector

33Make things move: A script that applies transforms

suggest a Position of 0, 0.5, 0). If necessary, reset the camera’s Rotation to 0, 0, 0 (this
will be off if you’ve rotated the capsule).

 You’ve created all the objects needed for this scene. What remains is writing code
to move the player object.

2.3 Make things move: A script that applies transforms
To have the player walk around the scene, you’ll write movement scripts attached to
the player. Remember, components are modular bits of functionality that you add to
objects, and scripts are a kind of component. Eventually, those scripts will respond to
keyboard and mouse input, but first you’ll make the player spin in place.

 This modest beginning will teach you how to apply transforms in code. Remember
that the three transforms are Translate, Rotate, and Scale; spinning an object means
changing the rotation. But there’s more to know about this task than only “this
involves rotation.”

2.3.1 Visualizing how movement is programmed

Animating an object (such as making it spin) boils down to moving it a small amount
every frame, with the frames playing over and over. By themselves, transforms apply
instantly, as opposed to visibly moving over time. But applying the transforms over and
over causes the object to appear to visibly move, like a series of still drawings in a flip-
book. Figure 2.11 illustrates how this works.

Recall that script components have an Update() method that runs every frame. To
spin the cube, add code inside Update() that rotates the cube a small amount. This
code will run over and over every frame. Sounds pretty simple, right?

Frame 1

Rotate cube
by 15 degrees

Rotate cube
by 15 degrees

Rotate cube
by 15 degrees

Frame 2 Frame 3 Frame 4

Figure 2.11 The appearance of movement: a cyclical process of transforming between still pictures

34 CHAPTER 2 Building a demo that puts you in 3D space

2.3.2 Writing code to implement the diagram

Now let’s put into action the concepts we’ve just discussed. Create a new C# script
(remember, from the Assets menu, open the Create submenu), name it Spin, and
write in this code (don’t forget to save the file after typing in it!).

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Spin : MonoBehaviour {
 public float speed = 3.0f;

 void Update() {
 transform.Rotate(0, speed, 0);
 }
}

To add the script component to the player object, drag the script up from the Project
view and drop it onto Player in the Hierarchy view. Now click Play, and you’ll see the
view spin around; you’ve written code to make an object move! This code is pretty
much the default template for a new script plus two new added lines, so let’s examine
what those two lines do.

 First, we’ve added the variable for speed toward the top of the class definition (the
f after the number tells the computer to treat this as a float value; otherwise, C# treats
decimal numbers as a double). The rotation speed is defined as a variable rather than
a constant because Unity does something handy with public variables in script compo-
nents, as described in the following tip.

TIP Public variables are exposed in the Inspector so that you can adjust the
component’s values after adding a component to a game object. This is
referred to as serializing the value, because Unity saves the modified state of
the variable.

Figure 2.12 shows what the component in the Inspector looks like when you select the
Player object. You can type in a new number, and then the script will use that value
instead of the default value defined in the code. This is a handy way to adjust settings
for the component on different objects, working within the visual editor instead of
hardcoding every value.

Listing 2.1 Making the object spin

Pull Unity’s classes
into this script.

Declare a public variable
for the speed of rotation.

Put the Rotate command here
so that it runs every frame.

Figure 2.12 The Inspector displaying
a public variable declared in the script

35Make things move: A script that applies transforms

The second line to examine from listing 2.1 is the Rotate() method. That’s inside
Update() so that the command runs every frame. Rotate() is a method of the Trans-
form class, so it’s called with dot notation through the transform component of this
object (as in most object-oriented languages, this.transform is implied if you type
just transform). The transform is rotated by speed degrees every frame, resulting in a
smooth spinning movement. But why are the parameters to Rotate() listed as (0,
speed, 0) as opposed to, say, (speed, 0, 0)?

 Recall that three axes exist in 3D space, labeled x, y, and z. Understanding how these
axes relate to positions and movements is fairly intuitive, but these axes can also be used
to describe rotations. Aeronautics describes rotations in a similar way, so programmers
working with 3D graphics often use a set of terms borrowed from aeronautics: pitch,
yaw, and roll. Figure 2.13 illustrates what these terms mean: pitch is rotation around the
x-axis, yaw is rotation around the y-axis, and roll is rotation around the z-axis.

Given that we can describe rotations around the x-, y-, and z-axes, that means the
three parameters for Rotate() are X, Y, and Z rotation. Because we want the player to
only spin around sideways, as opposed to tilting up and down, a number should be
given for only the Y rotation, and 0 for X and Z rotation.

 Hopefully, you can guess what will happen if you change the parameters to
(speed, 0, 0) and then play the scene. Try that now! Next, you need to understand
one other subtle point about rotations and 3D coordinate axes, embodied in an
optional fourth parameter to the Rotate() method.

2.3.3 Understanding local vs. global coordinate space

By default, the Rotate() method operates on local coordinates. The other kind of
coordinates you could use are global. You tell the method whether to use local or

Pitch

Yaw

Roll

Figure 2.13 Illustration of pitch, yaw, and roll rotation of an aircraft

36 CHAPTER 2 Building a demo that puts you in 3D space

global coordinates by using an optional fourth parameter and writing either
Space.Self or Space.World, like so: Rotate(0, speed, 0, Space.World).

 Refer to the explanation about 3D coordinate space in section 2.1.2 and ponder
these questions: Where is (0, 0, 0) located? Which direction is the x-axis pointing in?
Can the coordinate system itself move around?

 It turns out that every single object has its own origin point, as well as its own direc-
tion for the three axes, and this coordinate system moves around with the object. This
is referred to as local coordinates. The overall 3D scene also has its own origin point and
its own direction for the three axes, and this coordinate system never moves. This is
referred to as global coordinates. Therefore, when you specify local or global for the
Rotate() method, you’re telling it whose x-, y-, and z-axes to rotate around (see fig-
ure 2.14).

If you’re new to 3D graphics, this is somewhat of a mind-bending concept. The differ-
ent axes are depicted in figure 2.14 (notice how “left” to the plane is a different direc-
tion than “left” to the world), but the easiest way to understand local and global is
through an example.

 Select the player object and then tilt it a bit (something like 30 for the X rotation).
This will throw off the local coordinates so that local and global rotations look differ-
ent. Now try running the Spin script both with and without Space.World added to the
parameters. If it’s too hard for you to visualize what’s happening, try removing the
spin component from the player object and instead spin a tilted cube placed in front
of the player. You’ll see the object rotating around different axes when you set the
command to local or global coordinates.

Global coordinate axes

Local coordinate axes

These axes are aligned to
the tilted object but out
of alignment with the
global coordinates.

Figure 2.14 Local versus global coordinate axes

37Script component for looking around: MouseLook

2.4 Script component for looking around: MouseLook
Now you’ll make rotation respond to input from the mouse (that is, rotation of the
object this script is attached to, which in this case will be the player). You’ll do this in
several steps, progressively adding new movement abilities to the character. First, the
player will rotate only side to side, and then the player will rotate only up and down.
Eventually, the player will be able to look around in all directions (rotating horizon-
tally and vertically at the same time), a behavior referred to as mouse-look.

 Given that we will use three types of rotation behavior (horizontal, vertical, and
both), you’ll start by writing the framework for supporting all three. Create a new C#
script, name it MouseLook, and write in this code.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MouseLook : MonoBehaviour {
 public enum RotationAxes {
 MouseXAndY = 0,
 MouseX = 1,
 MouseY = 2
 }
 public RotationAxes axes = RotationAxes.MouseXAndY;

 void Update() {
 if (axes == RotationAxes.MouseX) {
 // horizontal rotation here
 }
 else if (axes == RotationAxes.MouseY) {
 // vertical rotation here
 }
 else {
 // both horizontal and vertical rotation here
 }
 }
}

Notice that an enum is used to choose horizontal or vertical rotation for the Mouse-
Look script. Defining an enum data structure allows you to set values by name, rather
than typing in numbers and trying to remember what each number means (is 0 hori-
zontal rotation? Is it 1?). If you then declare a public variable typed to that enum, it
will display in the Inspector as a drop-down menu (see figure 2.15), which is useful for
selecting settings.

Listing 2.2 MouseLook framework with enum for the Rotation setting

Define an enum data
structure to associate
names with settings.

Declare a public variable
to set in Unity’s editor.

Put code here for
horizontal rotation only.

Put code here for
vertical rotation only.

Put code here for both
horizontal and vertical
rotation.

Figure 2.15 The Inspector displays public
enum variables as a drop-down menu.

38 CHAPTER 2 Building a demo that puts you in 3D space

Remove the Spin component (the same way you removed the player’s capsule earlier,
using the menu at the top right) and attach this new script to the player object
instead. Use the Axes drop-down menu in the Inspector to switch the direction of
rotation. With the horizontal/vertical rotation setting in place, you can fill in code for
each branch of the conditional statement.

WARNING Make sure to stop the game before changing the menu setting for
this axis. Unity allows you to edit the Inspector during the game (to test set-
tings changes) but then reverts the change after you stop the game.

2.4.1 Horizontal rotation that tracks mouse movement

The first and simplest branch is for horizontal rotation. Start by writing the same rota-
tion command you used in listing 2.1 to make the object spin. Don’t forget to declare
a public variable for the rotation speed; declare the new variable after axes but before
Update(), and call the variable sensitivityHor because speed is too generic a name
after you have multiple rotations involved. Increase the value of the variable to 9 this

Namespaces
Namespaces are an optional programming construct used to organize the code in a
project. Because namespaces are not mandatory, they are omitted from both the
script files created by Unity and this book’s sample projects. In fact, if you aren’t
already familiar with namespaces, you may wish to skip this discussion for now.

While this book’s sample code doesn’t use namespaces, you should strongly con-
sider using them in your own projects, as that will establish clearer organization in a
large codebase. Namespaces contain related classes and interfaces, and putting
classes into namespaces solves the problem of naming conflicts. Two classes can
have the same name if they are in different namespaces.

To put a class into a namespace, enclose it inside curly braces like so:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace UnityInAction {

 public class MouseLook : MonoBehaviour {
 ...
 }
}

To then access that class in other code (for example, with the GetComponent state-
ment introduced in the next section), either that other code must also be in the same
namespace or you add a statement such as using UnityInAction; to the code.
And namespaces don’t interfere with script components, so you can still use that
class in Unity’s editor without trouble.

39Script component for looking around: MouseLook

time, because that value needs to be bigger for the code written over the next couple
of listings. The adjusted code should look like this listing.

...
public RotationAxes axes = RotationAxes.MouseXAndY;
public float sensitivityHor = 9.0f;

void Update() {
 if (axes == RotationAxes.MouseX) {
 transform.Rotate(0, sensitivityHor, 0);
 }
...

Set the Axes menu of the MouseLook component to horizontal rotation and play the
script; the view will spin as before. The next step is to make the rotation react to
mouse movement, so let’s introduce a new method: Input.GetAxis(). The Input
class has a bunch of methods for handling input devices (such as the mouse), and the
GetAxis() method returns numbers correlated to the movement of the mouse (posi-
tive 1 to –1, depending on the direction of movement). GetAxis() takes the name of
the axis desired as a parameter, and the horizontal axis is called Mouse X.

 If you multiply the rotation speed by the axis value, the rotation will respond to
mouse movement. The speed will scale according to mouse movement, scaling down
to zero or even reversing direction. The Rotate command now looks like the follow-
ing listing.

...
transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityHor, 0);
...

WARNING Make sure to type a space in Mouse X. The axis names for this com-
mand are defined by Unity, not the axis names from our code. Typing MouseX
for this axis is a common mistake.

Click Play and then move the mouse around. As you move the mouse from side to
side, the view will rotate from side to side. That’s pretty cool! The next step is to rotate
vertically instead of horizontally.

2.4.2 Vertical rotation with limits

For horizontal rotation, we’ve been using the Rotate() method, but we’ll take a differ-
ent approach with vertical rotation. Although that method is convenient for applying
transforms, it’s also kind of inflexible. It’s useful only for incrementing the rotation

Listing 2.3 Horizontal rotation, not yet responding to the mouse

Listing 2.4 Rotate command adjusted to respond to the mouse

Italicized code was already in script;
it’s shown here for reference.

Declare a variable for
the speed of rotation.

Put the Rotate command here
so that it runs every frame.

Note the use of GetAxis() to get mouse input.

40 CHAPTER 2 Building a demo that puts you in 3D space

without limit, which was fine for horizontal rotation, but vertical rotation needs limits
on how much the view can tilt up or down. This listing shows the vertical rotation code
for MouseLook; a detailed explanation of the code will immediately follow.

...
public float sensitivityHor = 9.0f;
public float sensitivityVert = 9.0f;

public float minimumVert = -45.0f;
public float maximumVert = 45.0f;

private float verticalRot = 0;

void Update() {
 if (axes == RotationAxes.MouseX) {
 transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityHor, 0);
 }
 else if (axes == RotationAxes.MouseY) {
 verticalRot -= Input.GetAxis("Mouse Y") * sensitivityVert;
 verticalRot = Mathf.Clamp(verticalRot, minimumVert, maximumVert);

 float horizontalRot = transform.localEulerAngles.y;

 transform.localEulerAngles = new Vector3(verticalRot, horizontalRot, 0);
 }
...

Set the Axes menu of the MouseLook component to vertical rotation and play the new
script. Now the view won’t rotate sideways but will tilt up and down when you move the
mouse up and down. The tilt stops at upper and lower limits.

 This code introduces several new concepts that need to be explained. First off, we’re
not using Rotate() this time, so we need a variable in which to store the rotation angle
(this variable is called verticalRot here, and remember that vertical rotation goes
around the x-axis). The Rotate() method increments the current rotation, whereas
this code sets the rotation angle directly. It’s the difference between saying “add 5 to the
angle” and “set the angle to 30.” We do still need to increment the rotation angle, but
that’s why the code has the -= operator: to subtract a value from the rotation angle,
rather than set the angle to that value. By not using Rotate(), we can manipulate the
rotation angle in various ways aside from only incrementing it. The rotation value is
multiplied by Input.GetAxis(), as in the code for horizontal rotation, except now we
ask for Mouse Y because that’s the vertical axis of the mouse.

 The rotation angle is manipulated further on the next line. We use Mathf.Clamp()
to keep the rotation angle between minimum and maximum limits. Those limits are
public variables declared earlier in the code, and they ensure that the view can tilt
only 45 degrees up or down. The Clamp() method isn’t specific to rotation but is gen-
erally useful for keeping a number variable between limits. To see what happens, try

Listing 2.5 Vertical rotation for MouseLook

Declare variables used
for vertical rotation.

Declare a private variable
for the vertical angle.

Increment the vertical
angle based on the mouse.

Clamp the vertical angle
between minimum and

maximum limits.

Keep
 the same

 Y angle
(i.e., no

horizontal
rotation).

Create a new vector from
the stored rotation values.

41Script component for looking around: MouseLook

commenting out the Clamp() line; now the tilt doesn’t stop at upper and lower limits,
allowing you to even rotate completely upside down! Clearly, viewing the world upside
down is undesirable, hence the limits.

 Because the angles property of transform is a Vector3, we need to create a new
Vector3 with the rotation angle passed in to the constructor. The Rotate() method
was automating this process for us, incrementing the rotation angle and then creating
a new vector.

DEFINITION A vector is multiple numbers stored together as a unit. For exam-
ple, a Vector3 is three numbers (labeled x, y, z).

WARNING The reason we need to create a new Vector3 instead of changing
values in the existing vector in the transform is that those values are read-only
for transforms. This is a common mistake that can trip you up.

One more rotation setting for MouseLook needs code: horizontal and vertical rotation
at the same time.

2.4.3 Horizontal and vertical rotation at the same time
This last chunk of code won’t use Rotate() either, for the same reason: the vertical
rotation angle is clamped between limits after being incremented. That means the
horizontal rotation needs to be calculated directly now. Remember, Rotate() was
automating the process of incrementing the rotation angle, shown here.

Euler angles vs. quaternion
You’re probably wondering why the property is called localEulerAngles and not
localRotation. First, you need to know about quaternions.

Quaternions are another mathematical construct for representing rotations. They’re
distinct from Euler angles, which is the name for the x-, y-, z-axes approach we’ve
been taking. Remember the whole discussion of pitch, yaw, and roll? Well, that
method of representing rotations uses Euler angles. Quaternions are . . . different.
It’s hard to explain quaternions, because they’re an obscure aspect of higher math,
involving movement through four dimensions. For a detailed explanation, try “Using
Quaternion to Perform 3D Rotations” on the Cprogramming.com website (http://
mng.bz/xX0B).

It’s a bit easier to explain why quaternions are used to represent rotations: interpo-
lating between rotation values (going through a bunch of in-between values to gradu-
ally change from one value to another) looks smoother and more natural when using
quaternions.

To return to the initial question, we use localEulerAngles because localRotation
is a quaternion, rather than Euler angles. Unity also provides the Euler angles property
to make manipulating rotations easier to understand; the Euler angles property is con-
verted to and from quaternion values automatically. Unity handles the harder math
for you behind the scenes, so you don’t have to worry about handling it yourself.

https://shortener.manning.com/xX0B
https://shortener.manning.com/xX0B
https://shortener.manning.com/xX0B

42 CHAPTER 2 Building a demo that puts you in 3D space

...
else {
 verticalRot -= Input.GetAxis("Mouse Y") * sensitivityVert;
 verticalRot = Mathf.Clamp(verticalRot, minimumVert, maximumVert);

 float delta = Input.GetAxis("Mouse X") * sensitivityHor;
 float horizontalRot = transform.localEulerAngles.y + delta;

 transform.localEulerAngles = new Vector3(verticalRot, horizontalRot, 0);
}
...

The first couple of lines, dealing with verticalRot, are exactly the same as in listing
2.5. Remember that rotating around the object’s x-axis is vertical rotation. Because
horizontal rotation is no longer being handled using the Rotate() method, that’s
what the delta and horizontalRot lines are doing. Delta is a common mathematical
term for the amount of change, so our calculation of delta is the amount that rotation
should change. That amount of change is then added to the current rotation angle to
get the desired new rotation angle.

 Finally, both angles, vertical and horizontal, are used to create a new vector that’s
assigned to the transform component’s angle property.

In case you’ve gotten lost on where to make the various changes and additions we’ve
gone over, this listing has the full finished script. Alternatively, download the example
project.

Listing 2.6 Horizontal and vertical MouseLook

delta is the
amount to
change the
rotation by.

Increment the rotation angle by delta.

Disallow physics rotation on the player
Although this doesn’t matter quite yet for this project, most modern FPS games use
a complex physics simulation affecting everything in the scene. This simulation
causes objects to bounce and tumble around. Although this behavior looks and works
great for most objects, the player’s rotation needs to be solely controlled by the
mouse and not affected by the physics simulation.

For that reason, mouse input scripts usually set the freezeRotation property on the
player’s Rigidbody. Add this Start() method to the MouseLook script:

...
void Start() {
 Rigidbody body = GetComponent<Rigidbody>();
 if (body != null) {
 body.freezeRotation = true;
 }
}

(A Rigidbody is an additional component an object can have. The physics simulation
acts on Rigidbody components and manipulates objects they’re attached to.)

This component may
not have been added,
so check if it exists.

43Script component for looking around: MouseLook

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MouseLook : MonoBehaviour {
 public enum RotationAxes {
 MouseXAndY = 0,
 MouseX = 1,
 MouseY = 2
 }
 public RotationAxes axes = RotationAxes.MouseXAndY;

 public float sensitivityHor = 9.0f;
 public float sensitivityVert = 9.0f;

 public float minimumVert = -45.0f;
 public float maximumVert = 45.0f;

 private float verticalRot = 0;

 void Start() {
 Rigidbody body = GetComponent<Rigidbody>();
 if (body != null) {
 body.freezeRotation = true;
 }
 }

 void Update() {
 if (axes == RotationAxes.MouseX) {
 transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityHor, 0);
 }
 else if (axes == RotationAxes.MouseY) {
 verticalRot -= Input.GetAxis("Mouse Y") * sensitivityVert;
 verticalRot = Mathf.Clamp(verticalRot, minimumVert, maximumVert);

 float horizontalRot = transform.localEulerAngles.y;

 transform.localEulerAngles = new Vector3(verticalRot, horizontalRot, 0);
 }
 else {
 verticalRot -= Input.GetAxis("Mouse Y") * sensitivityVert;
 verticalRot = Mathf.Clamp(verticalRot, minimumVert, maximumVert);

 float delta = Input.GetAxis("Mouse X") * sensitivityHor;
 float horizontalRot = transform.localEulerAngles.y + delta;

 transform.localEulerAngles = new Vector3(verticalRot, horizontalRot, 0);
 }
 }
}

When you set the Axes menu and run the new code, you’re able to look around in all
directions while moving the mouse. Great! But you’re still stuck in one place, looking
around as if mounted on a turret. The next step is moving around the scene.

Listing 2.7 The finished MouseLook script

44 CHAPTER 2 Building a demo that puts you in 3D space

2.5 Keyboard input component: First-person controls
Looking around in response to mouse input is an important part of first-person con-
trols, but you’re only halfway there. The player also needs to move in response to key-
board input. Let’s write a keyboard control component to complement the mouse
control component; create a new C# script called FPSInput and attach that to the
player (alongside the MouseLook script). For the moment, set the MouseLook compo-
nent to horizontal rotation only.

TIP The keyboard and mouse controls explained here are split into separate
scripts. You don’t have to structure the code this way and could have every-
thing bundled into a single player control script. But a component system
(such as the one in Unity) tends to be most flexible and therefore most useful
when you have functionality split into several smaller components.

The code you wrote in the previous section affected rotation only, but now we’ll
change the object’s position instead. Refer to listing 2.1; type that into FPSInput, but
change Rotate() to Translate(). When you click Play, the view slides up instead of
spinning around.

 Try changing the parameter values to see how the movement changes (in particu-
lar, try swapping the first and second numbers). After experimenting with that for a
bit, you can move on to adding keyboard input.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class FPSInput : MonoBehaviour {
 public float speed = 6.0f;

 void Update() {
 transform.Translate(0, speed, 0);
 }
}

2.5.1 Responding to keypresses

The code for moving according to keypresses is similar to the code for rotating
according to the mouse. The GetAxis() method is used as well and in a similar way.
This listing demonstrates how to use it.

...
void Update() {
 float deltaX = Input.GetAxis("Horizontal") * speed;
 float deltaZ = Input.GetAxis("Vertical") * speed;

Listing 2.8 Spin code from listing 2.1, with a couple of minor changes

Listing 2.9 Positional movement responding to keypresses

This will be too fast at first
but will be corrected later.

Change Rotate() to Translate().

Horizontal and Vertical
are indirect names for
keyboard mappings.

45Keyboard input component: First-person controls

 transform.Translate(deltaX, 0, deltaZ);
}
...

As before, the GetAxis() values are multiplied by speed to determine the amount of
movement. Whereas before, the requested axis was always “Mouse something,” now
we pass in either Horizontal or Vertical. These names are abstractions for input set-
tings in Unity; if you look in the Edit menu under Project Settings and then look
under Input Manager, you’ll find a list of abstract input names and the exact controls
mapped to those names. Both the left and right arrow keys and the letters A and D are
mapped to Horizontal, whereas both the up and down arrow keys and the letters W
and S are mapped to Vertical.

 Note that the movement values are applied to the x- and z-coordinates. As you prob-
ably noticed while experimenting with the Translate() method, the x-coordinate
moves from side to side, and the z-coordinate moves forward and backward.

 Put in this new movement code and you should be able to move around by press-
ing either the arrow keys or W, A, S, and D letter keys, the standard in most FPS
games. The movement script is nearly complete, but we have a few more adjustments
to go over.

2.5.2 Setting a rate of movement independent of the computer’s speed

It’s not obvious right now because you’ve been running the code on only one computer
(yours), but if you ran the code on different machines, it’d run at different speeds.
That’s because some computers can process code and graphics faster than others.
Right now, the player would move at different speeds on different computers because
the movement code is tied to the computer’s speed. That is referred to as frame-rate
dependent, because the movement code is dependent on the frame rate of the game.

 Imagine you run this demo on two computers, one that gets 30 frames per second
(fps) and one that gets 60 fps. That means Update() would be called twice as often on
the second computer, and the same speed value of 6 would be applied every time. At
30 fps, the rate of movement would be 180 units/second, and the movement at 60 fps
would be 360 units/second. For most games, movement speed that varies like this
would be bad news.

 The solution is to adjust the movement code to make it frame-rate independent. This
speed of movement is not dependent on the frame rate of the game. The way to
achieve this is by not applying the same speed value at every frame rate. Instead, scale
the speed value higher or lower depending on how quickly the computer runs. This is
achieved by multiplying the speed value by another value called deltaTime.

...
void Update() {
 float deltaX = Input.GetAxis("Horizontal") * speed;

Listing 2.10 Frame-rate independent movement using deltaTime

46 CHAPTER 2 Building a demo that puts you in 3D space

 float deltaZ = Input.GetAxis("Vertical") * speed;
 transform.Translate(deltaX * Time.deltaTime, 0, deltaZ * Time.deltaTime);
}
...

That was a simple change. The Time class has properties and methods that are useful
for timing, and one of those properties is deltaTime. We know that delta means the
amount of change, so that means deltaTime is the amount of change in time. Specifi-
cally, deltaTime is the amount of time between frames. The time between frames var-
ies at different frame rates (for example, 30 fps has a deltaTime of 1/30th of a
second), so multiplying the speed value by deltaTime will scale the speed value on dif-
ferent computers.

 Now the movement speed will be the same on all computers. But the movement
script is still not quite done. When you move around the room, you can pass through
walls, so we need to adjust the code further to prevent that.

2.5.3 Moving the CharacterController for collision detection

Directly changing the object’s transform doesn’t apply collision detection, so the char-
acter will pass through walls. To apply collision detection, what we want to do instead
is use CharacterController, a component that makes the object move more like a
character in a game, including colliding with walls. Recall that, back when we set up
the player, we attached a CharacterController, so now we’ll use that component with
the movement code in FPSInput.

...
private CharacterController charController;

void Start() {
 charController = GetComponent<CharacterController>();
}

void Update() {
 float deltaX = Input.GetAxis("Horizontal") * speed;
 float deltaZ = Input.GetAxis("Vertical") * speed;
 Vector3 movement = new Vector3(deltaX, 0, deltaZ);
 movement = Vector3.ClampMagnitude(movement, speed);

 movement *= Time.deltaTime;
 movement = transform.TransformDirection(movement);
 charController.Move(movement);
}
...

This code excerpt introduces several new concepts. The first concept to point out is
the variable for referencing the CharacterController. This variable creates a local

Listing 2.11 Moving CharacterController instead of Transform

Variable for referencing
the CharacterController

Access other
components attached
to the same object.

Limit diagonal movement
to the same speed as
movement along an axis.

Transform the movement
vector from local to
global coordinates.

Tell the CharacterController
to move by that vector.

47Keyboard input component: First-person controls

reference to the object (code object, that is—not to be confused with scene objects);
multiple scripts can have references to this one CharacterController instance.

 That variable starts out empty, so before you can use the reference, you need to
assign an object for it to refer to. This is where GetComponent() comes into play; that
method returns other components attached to the same GameObject. Rather than
passing a parameter inside the parentheses, you use the C# syntax of defining the type
inside angle brackets, <>.

 Once you have a reference to the CharacterController, you can call Move() on
the controller. Pass in a vector to that method, similar to the way the mouse rotation
code used a vector for rotation values. Also, similar to the way rotation values were lim-
ited, use Vector3.ClampMagnitude() to limit the vector’s magnitude to the move-
ment speed. The clamp is used because, otherwise, diagonal movement would have a
greater magnitude than movement directly along an axis (picture the sides and hypot-
enuse of a right triangle).

 But there’s one tricky aspect to the movement vector here, and it has to do with
local versus global, as we discussed earlier for rotations. We’ll create the vector with a
value to move, say, to the left. That’s the player’s left, though, which may be a com-
pletely different direction from the world’s left—that is, we’re talking about left in
local space, not global space.

 We need to pass a movement vector defined in global space to the Move() method,
so we’re going to need to convert the local space vector into a global space vector.
Doing that conversion is complex math, but fortunately for us, Unity takes care of that
math for us, and we simply need to call the TransformDirection() method in order
to, well, transform the direction.

DEFINITION Transform in this context means to convert from one coordinate
space to another (refer to section 2.3.3 if you don’t remember what a coordi-
nate space is). Don’t get confused with the other definitions of transform,
including both the Transform component and the action of moving the
object around the scene. It’s sort of an overloaded term, because all these
meanings refer to the same underlying concept.

Test playing the movement code now. If you haven’t done so already, set the Mouse-
Look component to both horizontal and vertical rotation. You can look around the
scene fully and fly around the scene by using keyboard controls. This is pretty great if
you want the player to fly around the scene, but what if you want the player walking
instead of flying?

2.5.4 Adjusting components for walking instead of flying

Now that collision detection is working, the script can have gravity, and the player will
stay down against the floor. Declare a gravity variable and use that value for the
y-axis.

48 CHAPTER 2 Building a demo that puts you in 3D space

...
public float gravity = -9.8f;
...
void Update() {
 ...
 movement = Vector3.ClampMagnitude(movement, speed);

 movement.y = gravity;

 movement *= Time.deltaTime;
 ...

Now there’s a constant downward force on the player, but it’s not always pointed
straight down, because the player object can tilt up and down with the mouse. Fortu-
nately, everything we need to fix that is already in place, so we need only to make
minor adjustments to the way components are set up on the player. First, set the
MouseLook component on the player object to horizontal rotation only. Add the
MouseLook component to the camera object, and set that one to vertical rotation only.
That’s right; you’re going to have two objects responding to the mouse!

 Because the player object now only rotates horizontally, there’s no longer any
problem with the downward force of gravity being tilted. The camera object is par-
ented to the player object (remember when we did that in the Hierarchy view?), so
even though the camera rotates vertically independently from the player, the camera
rotates horizontally along with the player.

Listing 2.12 Adding gravity to the movement code

Use the gravity value
instead of just 0.

Polishing the finished script
Use the RequireComponent attribute to ensure that other components needed by
the script are also attached. Sometimes other components are optional (that is, the
code says, “If this other component is also attached, then . . . ”), but other times you
want to make the other components mandatory. Add RequireComponent to the top
of the script in order to enforce that dependency, and give the required component
as a parameter inside parentheses.

Similarly, if you add the AddComponentMenu attribute to the top of your scripts, that
script will be added to the component menu in Unity’s editor. Tell the attribute the
name of the menu item you want to add, and then the script can be selected when
you click Add Component at the bottom of the Inspector. Handy! A script with both
attributes added to the top would look something like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(CharacterController))]
[AddComponentMenu("Control Script/FPS Input")]
public class FPSInput : MonoBehaviour {
...

49Summary

Listing 2.13 shows the full finished script. Along with the small adjustments to the way
components are set up on the player, the player can walk around the room. Even with
the gravity variable being applied, you can still use this script for flying movement by
setting Gravity to 0 in the Inspector.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(CharacterController))]
[AddComponentMenu("Control Script/FPS Input")]
public class FPSInput : MonoBehaviour {
 public float speed = 6.0f;
 public float gravity = -9.8f;

 private CharacterController charController;

 void Start() {
 charController = GetComponent<CharacterController>();
 }

 void Update() {
 float deltaX = Input.GetAxis("Horizontal") * speed;
 float deltaZ = Input.GetAxis("Vertical") * speed;
 Vector3 movement = new Vector3(deltaX, 0, deltaZ);
 movement = Vector3.ClampMagnitude(movement, speed);

 movement.y = gravity;

 movement *= Time.deltaTime;
 movement = transform.TransformDirection(movement);
 charController.Move(movement);
 }
}

Congratulations on building this 3D project! We covered a lot of ground in this chap-
ter, and now you’re well versed in how to code movement in Unity. As exciting as this
first demo is, it’s still a long way from being a complete game. After all, the project
plan described this as a basic FPS scene, and what’s a shooter if you can’t shoot? So
give yourself a well-deserved pat on the back for this chapter’s project and then get
ready for the next step.

Summary
 3D coordinate space is defined by x-, y-, and z-axes.
 Objects and lights in a room set the scene.
 The player in a first-person scene is essentially a camera.
 Movement code applies small transforms repeatedly in every frame.
 FPS controls consist of mouse rotation and keyboard movement.

Listing 2.13 The finished FPSInput script

50

Adding enemies and
 projectiles to the 3D game

The movement demo from the previous chapter was pretty cool but still not really a
game. Let’s turn that movement demo into a first-person shooter. If you think
about what else we need now, it boils down to the ability to shoot and having things
to shoot at.

 First, we’re going to write scripts that enable the player to shoot objects in the
scene. Then, we’re going to build enemies to populate the scene, including code to
both wander around aimlessly and react to being hit. Finally, we’re going to enable
the enemies to fight back, emitting fireballs at the player. None of the scripts from
chapter 2 need to change; instead, we’ll add scripts to the project—scripts that han-
dle the additional features.

This chapter covers
 Taking aim and firing, both for the player and

for enemies

 Detecting and responding to hits

 Making enemies that wander around

 Spawning new objects in the scene

51Shooting via raycasts

 I’ve chosen a first-person shooter for this project for a couple of reasons. One is sim-
ply that FPS games are popular: people like shooting games, so let’s make a shooting
game. A subtler reason has to do with the techniques you’ll learn; this project is a great
way to learn about several fundamental concepts in 3D simulations. For example,
shooting games are a great way to teach raycasting. In a bit, we’ll get into the specifics
of what that is, but for now, you need to know only that it’s a useful concept for many
tasks in 3D simulations. Although raycasting is useful in a wide variety of situations, it
just so happens that using raycasting makes the most intuitive sense for shooting.

 Creating wandering targets to shoot at gives us a great excuse to explore code for
computer-controlled characters, as well as to use techniques for sending messages and
spawning objects. In fact, this wandering behavior is another place that raycasting is
valuable, so we’re already going to be looking at a different application of the tech-
nique after having first learned about it with shooting. Similarly, the approach to send-
ing messages that’s demonstrated in this project is also useful elsewhere. In future
chapters, you’ll see other applications for these techniques, and even within this one
project we’ll go over alternative situations.

 Ultimately, we’ll approach this project one new feature at a time, with the game
always playable at every step, but also always feeling like there’s a missing part to work
on next. This road map breaks the steps into small, understandable changes, with only
one new feature added at a time:

1. Write code enabling the player to shoot into the scene.
2. Create static targets that react to being hit.
3. Make the targets wander around.
4. Spawn the wandering targets automatically.
5. Enable the targets/enemies to shoot fireballs at the player.

NOTE This chapter’s project assumes you already have a first-person move-
ment demo to build on. We created a movement demo in chapter 2, but if
you skipped straight to this chapter, you will need to download the sample
files for chapter 2.

3.1 Shooting via raycasts
The first new feature to introduce into the 3D demo is shooting. Looking around and
moving are certainly crucial features for a first-person shooter, but it’s not a game
until players can affect the simulation and apply their skills. Shooting in 3D games can
be implemented with a few approaches, and one of the most important approaches is
raycasting.

3.1.1 What is raycasting?

As the name indicates, raycasting casts a ray into the scene. Clear, right? Well, okay, so
what exactly is a ray?

52 CHAPTER 3 Adding enemies and projectiles to the 3D game

DEFINITION A ray is an imaginary or invisible line in the scene that starts at a
point of origin and extends out in a specific direction.

In raycasting, you create a ray and then determine what intersects it. Figure 3.1 illus-
trates the concept. Consider what happens when you fire a bullet from a gun: the bul-
let starts at the position of the gun and then flies forward in a straight line until it hits
something. A ray is analogous to the path of the bullet, and raycasting is analogous to
firing the bullet and seeing what it hits.

As you can imagine, the math behind raycasting often gets complicated. Not only is it
tricky to calculate the intersection of a line with a 3D plane, but you need to do that
for all polygons of all mesh objects in the scene (remember, a mesh object is a 3D visual
constructed from lots of connected lines and shapes). Fortunately, Unity handles the
difficult math behind raycasting, but you still have to worry about higher-level con-
cerns such as where the ray is being cast from and why.

 In this project, the answer to the latter question (why) is to simulate a bullet being
fired into the scene. For a first-person shooter, the ray generally starts at the camera
position and then extends out through the center of the camera view. In other words,
you’re checking for objects straight in front of the camera; Unity provides commands
to make that task simple. Let’s look at these commands.

3.1.2 Using the ScreenPointToRay command for shooting

You’ll implement shooting by projecting a ray that starts at the camera and extends
forward through the center of the view. Unity provides the ScreenPointToRay()
method to perform this action.

 Figure 3.2 illustrates what happens when this method is invoked. It creates a ray
that starts at the camera and projects at an angle, passing through the given screen
coordinates. Usually, the coordinates of the mouse position are used for mouse picking
(selecting the object under the mouse), but for first-person shooting, the center of
the screen is used. Once you have a ray, it can be passed to the Physics.Raycast()
method to perform raycasting using that ray.

A ray projected
through a 3D scene

Origin of the ray
(imagine a gun)

Point of
intersection
(i.e., where
the ray hit)

Figure 3.1 A ray is an imaginary line,
and raycasting is finding where that
line intersects.

53Shooting via raycasts

Let’s write code that uses the methods we just discussed. In Unity, create a new C#
script, call it RayShooter, attach that script to the camera (not the player object), and
then write the code from this listing in it.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RayShooter : MonoBehaviour {
 private Camera cam;

 void Start() {
 cam = GetComponent<Camera>();
 }

 void Update() {
 if (Input.GetMouseButtonDown(0)) {
 Vector3 point = new Vector3(cam.pixelWidth/2, cam.pixelHeight/2, 0);
 Ray ray = cam.ScreenPointToRay(point);
 RaycastHit hit;
 if (Physics.Raycast(ray, out hit)) {
 Debug.Log("Hit " + hit.point);
 }
 }
 }
}

You should note several things in this code listing. First, the Camera component is
retrieved in Start(), just like the CharacterController in the previous chapter.
Then, the rest of the code is put in Update() because it needs to check the mouse
repeatedly, as opposed to just one time. The Input.GetMouseButtonDown() method
returns true or false, depending on whether the mouse has been clicked, so putting
that command in a conditional means the enclosed code runs only when the mouse

Listing 3.1 RayShooter script to attach to the camera

The camera is the origin
of this ray, similar to the
gun previously.

Ray projects from
the camera through this
point on the screen

The screen
(i.e., the camera’s window
into the 3D scene)

Figure 3.2 ScreenPointToRay() projects a ray from the camera through the given
screen coordinates.

Access other components
attached to the same object.

Respond to the left
(first) mouse button.

The middle
of the screen

is half its
width and

height.

Create the ray at that position
by using ScreenPointToRay().

The raycast fills a referenced
variable with information.Retrieve coordinates

where the ray hit.

54 CHAPTER 3 Adding enemies and projectiles to the 3D game

has been clicked. You want to shoot when the player clicks the mouse—hence the con-
ditional check of the mouse button.

 A vector is created to define the screen coordinates for the ray (remember that a
vector is several related numbers stored together). The camera’s pixelWidth and
pixelHeight values give you the size of the screen, so dividing those values in half
gives you the center of the screen. Although screen coordinates are 2D, with only hor-
izontal and vertical components and no depth, a Vector3 was created because
ScreenPointToRay() requires that data type (presumably because calculating the ray
involves arithmetic on 3D vectors). ScreenPointToRay() was called with this set of
coordinates, resulting in a Ray object (a code object, not a game object; the two can be
confused sometimes).

 The ray is then passed to the Raycast() method, but it’s not the only object passed
in. There’s also a RaycastHit data structure; RaycastHit is a bundle of information
about the intersection of the ray, including where the intersection happened and
what object was intersected. The C# syntax out ensures that the data structure manip-
ulated within the command is the same object that exists outside the command, as
opposed to the objects being separate copies in the different function scopes.

 With those parameters in place, the Physics.Raycast() method can do its work.
This method checks for intersections with the given ray, fills in data about the intersec-
tion, and returns true if the ray hit anything. Because a Boolean value is returned, this
method can be put in a conditional check, just as you used Input.GetMouseButton-
Down() earlier.

 For now, the code emits a console message to indicate when an intersection
occurred. This console message displays the 3D coordinates of the point where the ray
hit (the x, y, z values we discussed in chapter 2). But it can be hard to visualize where
exactly the ray hit; similarly, it can be hard to tell where the center of the screen is (the
location where the ray shoots through). Let’s add visual indicators to address both
problems.

3.1.3 Adding visual indicators for aiming and hits

Our next step is to add two kinds of visual indicators: an aiming spot at the center of
the screen and a mark in the scene where the ray hit. For a first-person shooter, the
latter is usually bullet holes, but for now, you’re going to put a blank sphere on the
spot (and use a coroutine to remove the sphere after 1 second). Figure 3.3 shows what
you’ll see.

DEFINITION Coroutines are a way of handling tasks that execute incrementally
over time. In contrast, most functions make the program wait until they finish.

First, let’s add indicators to mark where the ray hits. Listing 3.2 shows the script after
making this addition. Run around the scene, shooting; it’s pretty fun seeing the
sphere indicators!

55Shooting via raycasts

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RayShooter : MonoBehaviour {
 private Camera cam;

 void Start() {
 cam = GetComponent<Camera>();
 }

 void Update() {
 if (Input.GetMouseButtonDown(0)) {
 Vector3 point = new Vector3(cam.pixelWidth/2, cam.pixelHeight/2, 0);
 Ray ray = cam.ScreenPointToRay(point);
 RaycastHit hit;
 if (Physics.Raycast(ray, out hit)) {
 StartCoroutine(SphereIndicator(hit.point));
 }
 }
 }

 private IEnumerator SphereIndicator(Vector3 pos) {
 GameObject sphere = GameObject.CreatePrimitive(PrimitiveType.Sphere);
 sphere.transform.position = pos;

 yield return new WaitForSeconds(1);

 Destroy(sphere);
 }
}

The new method is SphereIndicator(), plus a one-line modification in the existing
Update() method. This method creates a sphere at a point in the scene and then
removes that sphere a second later. Calling SphereIndicator() from the raycasting
code ensures that there will be visual indicators showing exactly where the ray hit.

Listing 3.2 RayShooter script with sphere indicators added

Target point
in the center
of the screen

Sphere indicates
where the wall
was hit

Figure 3.3 Shooting repeatedly after adding visual indicators for aiming and hits

This function is mostly the same
raycasting code from listing 3.1.

Launch a coroutine
in response to a hit.

Coroutines use
IEnumerator functions.

The yield keyword tells
coroutines where to pause.

Remove this GameObject
and clear its memory.

56 CHAPTER 3 Adding enemies and projectiles to the 3D game

This function is defined with IEnumerator, and that type is tied in with the concept of
coroutines.

 Technically, coroutines aren’t asynchronous (asynchronous operations don’t stop
the rest of the code from running; think of downloading an image in the script of a
website), but through clever use of enumerators, Unity makes coroutines behave simi-
larly to asynchronous functions. The secret sauce in coroutines is the yield keyword;
that keyword causes the coroutine to temporarily pause, handing back the program
flow and picking up again from that point in the next frame. In this way, coroutines
seemingly run in the background of a program, through a repeated cycle of running
partway and then returning to the rest of the program.

 As the name indicates, StartCoroutine() sets a coroutine in motion. Once a corou-
tine is started, it keeps running until the function is finished; it pauses along the way.
Note the subtle but significant point that the method passed to StartCoroutine() has
a set of parentheses following the name: this syntax means you’re calling that function,
as opposed to passing its name. The called function runs until it hits a yield command,
at which point the function pauses.

 SphereIndicator() creates a sphere at a specific point, pauses for the yield state-
ment, and then destroys the sphere after the coroutine resumes. The length of the
pause is controlled by the value returned at yield. A few types of return values work in
coroutines, but the most straightforward is to return a specific length of time to wait.
Returning WaitForSeconds(1) causes the coroutine to pause for 1 second. Create a
sphere, pause for 1 second, and then destroy the sphere: that sequence sets up a tem-
porary visual indicator.

 Listing 3.2 gave you indicators to mark where the ray hits. But you also want an
aiming spot in the center of the screen.

...
void Start() {
 cam = GetComponent<Camera>();

 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
}

void OnGUI() {
 int size = 12;
 float posX = cam.pixelWidth/2 - size/4;
 float posY = cam.pixelHeight/2 - size/2;
 GUI.Label(new Rect(posX, posY, size, size), "*");
}
...

Another new method has been added to the RayShooter class, called OnGUI(). Unity
comes with both a basic and more advanced UI system. Because the basic system has a

Listing 3.3 Visual indicator for aiming

Hide the mouse cursor at
the center of the screen.

This is just the rough
size of this font.

The GUI.Label() command
displays text onscreen.

57Scripting reactive targets

lot of limitations, we’ll build a more flexible advanced UI in future chapters, but for
now, it’s much easier to display a point in the center of the screen by using the basic
UI. Much like Start() and Update(), every MonoBehaviour automatically responds to
an OnGUI() method. That function runs every frame right after the 3D scene is ren-
dered, resulting in everything drawn during OnGUI() appearing on top of the 3D
scene (imagine stickers applied to a painting of a landscape).

DEFINITION Render is the action of the computer drawing the pixels of the 3D
scene. Although the scene is defined using x-, y-, and z-coordinates, the actual
display on your monitor is a 2D grid of colored pixels. To display the 3D
scene, the computer needs to calculate the color of all the pixels in the 2D
grid; running that algorithm is referred to as rendering.

Inside OnGUI(), the code defines 2D coordinates for the display (shifted slightly to
account for the size of the label) and then calls GUI.Label(). That method displays a
text label. Because the string passed to the label is an asterisk (*), you end up with
that character displayed in the center of the screen. Now it’s much easier to aim in our
nascent FPS game!

 Listing 3.3 also adds cursor settings to the Start() method. All that’s happening is
that the values are being set for cursor visibility and locking. The script will work per-
fectly fine if you omit the cursor values, but these settings make first-person controls
work a bit more smoothly. The mouse cursor will stay in the center of the screen, and
to avoid cluttering the view, will turn invisible and will reappear only when you press Esc.

WARNING Always remember that you can press Esc to unlock the mouse cursor
in order to move it away from the middle of the Game view. While the mouse
cursor is locked, it’s impossible to click the Play button and stop the game.

That wraps up the first-person shooting code . . . well, that wraps up the player’s end
of the interaction, anyway, but we still need to take care of targets.

3.2 Scripting reactive targets
Being able to shoot is all well and good, but at the moment, players don’t have any-
thing to shoot at. We’re going to create a target object and give it a script that will
respond to being hit. Or rather, we’ll slightly modify the shooting code to notify the
target when hit, and then the script on the target will react when notified.

3.2.1 Determining what was hit

First, you need to create a new object to shoot at. Create a new cube object (Game-
Object > 3D Object > Cube) and then scale it up vertically by setting the Y scale to 2
and leaving X and Z at 1. Position the new object at 0, 1, 0 to put it on the floor in the
middle of the room, and name the object Enemy.

 Create a new script called ReactiveTarget and attach that to the newly created
box. Soon, you’ll write code for this script, but leave it as the default for now; you’re

58 CHAPTER 3 Adding enemies and projectiles to the 3D game

creating this script file ahead of time because the next code listing requires it to exist
in order to compile.

 Go back to RayShooter and modify the raycasting code according to the following
listing. Run the new code and shoot the new target; debug messages appear in the
console instead of sphere indicators in the scene.

...
if (Physics.Raycast(ray, out hit)) {
 GameObject hitObject = hit.transform.gameObject;
 ReactiveTarget target = hitObject.GetComponent<ReactiveTarget>();
 if (target != null) {
 Debug.Log("Target hit");
 } else {
 StartCoroutine(SphereIndicator(hit.point));
 }
}
...

Notice that you retrieve the object from RaycastHit, just as the coordinates were
retrieved for the sphere indicators. Technically, the hit information doesn’t return the
game object hit; it indicates the Transform component hit. You can then access game-
Object as a property of transform.

 Then, you use the GetComponent()method on the object to check whether it’s a
reactive target (that is, whether it has the ReactiveTarget script attached). As you saw
previously, that method returns components of a specific type that are attached to the
GameObject. If no component of that type is attached to the object, GetComponent()
won’t return anything. You check whether null was returned and run different code
in each case.

 If the hit object is a reactive target, the code emits a debug message instead of start-
ing the coroutine for sphere indicators. Now let’s inform the target object about the
hit so it can react.

3.2.2 Alerting the target that it was hit

All that’s needed in the code is a one-line change, as shown next.

...
if (target != null) {
 target.ReactToHit();
} else {
 StartCoroutine(SphereIndicator(hit.point));
}
...

Listing 3.4 Detecting whether the target object was hit

Listing 3.5 Sending a message to the target object

Retrieve the object
the ray hit.

Check for the ReactiveTarget
component on the object.

Call a method of the target instead
of just emitting the debug message.

59Scripting reactive targets

Now the shooting code calls a method of the target, so let’s write that target method.
In the ReactiveTarget script, write in the code from the next listing. The target
object will fall over and disappear when you shoot it; refer to figure 3.4.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ReactiveTarget : MonoBehaviour {

 public void ReactToHit() {
 StartCoroutine(Die());
 }

 private IEnumerator Die() {
 this.transform.Rotate(-75, 0, 0);

 yield return new WaitForSeconds(1.5f);

 Destroy(this.gameObject);
 }
}

Most of this code should be familiar to you from previous scripts, so we’ll go over it only
briefly. First, you define the ReactToHit()method, because that’s the method name
called in the shooting script. This method starts a coroutine that’s similar to the sphere
indicator code from earlier; the main difference is that it operates on the object of this
script rather than creating a separate object. Expressions like this.gameObject refer
to the GameObject that this script is attached to (and the this keyword is optional, so
code could refer to gameObject without anything in front of it).

 The first line of the coroutine function makes the object tip over. As discussed in
chapter 2, rotations can be defined as an angle around each of the three coordinate
axes, x, y, and z. Because we don’t want the object to rotate side to side, leave Y and Z
as 0 and assign an angle to the X rotation.

Listing 3.6 ReactiveTarget script that dies when hit

Method called by
the shooting script

Topple the enemy, wait 1.5 seconds,
and then destroy the enemy.

A script can destroy itself (just
as it could a separate object).

Figure 3.4 The target object
falling over when hit

60 CHAPTER 3 Adding enemies and projectiles to the 3D game

NOTE The transform is applied instantly, but you may prefer seeing the
movement when objects topple over. Once you start looking beyond this
book for more advanced topics, you might want to look up tweens, systems
used to make objects move smoothly over time.

The second line of the method uses the yield keyword that’s so significant to corou-
tines, pausing the function there and returning the number of seconds to wait before
resuming. Finally, the game object destroys itself in the last line of the function.
Destroy(this.gameObject) is called after the wait time, just as the code called
Destroy(sphere) before.

WARNING Be sure to call Destroy() on this.gameObject and not simply this!
Don’t get confused between the two; this refers only to this script component,
whereas this.gameObject refers to the object the script is attached to.

The target now reacts to being shot—great! But it doesn’t do anything else on its own,
so let’s add more behavior to make this target a proper enemy character.

3.3 Basic wandering AI
A static target isn’t terribly interesting, so let’s write code that’ll make the enemy wan-
der around. Code for wandering around is pretty much the simplest example of artifi-
cial intelligence (AI), or computer-controlled entities. In this case, the entity is an
enemy in a game, but it could also be a robot in the real world or a voice that plays
chess, for example.

3.3.1 Diagramming how basic AI works

Multiple approaches to AI exist (seriously,
AI is a major area of research for computer
scientists). For our purposes, we’ll stick
with a simple one. As you become more
experienced and your games get more
sophisticated, you’ll probably want to
explore the various approaches to AI.

 Figure 3.5 depicts the basic process.
In every frame, the AI code will scan
around its environment to determine
whether it needs to react. If an obstacle
appears in its way, the enemy turns to
face a different direction. Regardless of
whether the enemy needs to turn, it will
always move forward steadily. As such,
the enemy will ping-pong around the
room, always moving forward and turn-
ing to avoid walls.

Step 1:
Move forward a little bit.

Step 2:
Raycast forward to look
for obstacles.

Step 3:
Turn away from obstacles.

Step 4:
Frame rendered, return to step 1.

Figure 3.5 Basic AI: cyclical process of
moving forward and avoiding obstacles

61Basic wandering AI

 The code will look pretty familiar, because it moves enemies forward by using the
same commands as moving the player forward. The AI code will also use raycasting,
similar to, but in a different context from, shooting.

3.3.2 “Seeing” obstacles with a raycast
As you saw in the introduction to this
chapter, raycasting is a technique that’s
useful for multiple tasks within 3D simu-
lations. One easily grasped task is shoot-
ing, but another task raycasting can be
useful for is scanning around the scene.
Given that scanning around the scene is
a step in AI code, that means raycasting is
used in AI code.

 Earlier, you created a ray that origi-
nated from the camera, because that’s
where the player was looking from. This
time, you’ll create a ray that originates
from the enemy. The first ray shot out through the center of the screen, but this time
the ray will shoot forward in front of the character; figure 3.6 illustrates this. Then,
just as the shooting code used RaycastHit information to determine whether any-
thing was hit and where, the AI code will use RaycastHit information to determine
whether anything is in front of the enemy and, if so, how far away.

 One difference between raycasting for shooting and raycasting for AI is the radius
of the ray. For shooting, the ray was treated as infinitely thin, but for AI, the ray will be
treated as having a large cross section. In terms of the code, this means using the
SphereCast()method instead of Raycast(). The reason for this difference is that bul-
lets are tiny, whereas checking for obstacles in front of the character requires us to
account for the width of the character.

 Create a new script called WanderingAI, attach that to the target object (alongside
the ReactiveTarget script), and write the code from the next listing. Play the scene
now and you should see the enemy wandering around the room; you can still shoot
the target, and it will react the same way as before.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WanderingAI : MonoBehaviour {
 public float speed = 3.0f;
 public float obstacleRange = 5.0f;

 void Update() {
 transform.Translate(0, 0, speed * Time.deltaTime);

Listing 3.7 Basic WanderingAI script

Values for the speed of
movement and the distance at
which to react to obstacles

Move forward
continuously every frame,
regardless of turning.

In every frame, the AI character
projects a ray in front of it to
detect obstacles. This character
is facing a wall, so the raycast will
detect a close obstacle.

Figure 3.6 Using raycasting to “see” obstacles

62 CHAPTER 3 Adding enemies and projectiles to the 3D game

 Ray ray = new Ray(transform.position, transform.forward);
 RaycastHit hit;
 if (Physics.SphereCast(ray, 0.75f, out hit)) {
 if (hit.distance < obstacleRange) {
 float angle = Random.Range(-110, 110);
 transform.Rotate(0, angle, 0);
 }
 }
 }
}

This listing adds a couple of variables to represent the speed of movement and the dis-
tance at which the AI reacts to obstacles. Then, transform.Translate() is added in
the Update() method to move forward continuously (including the use of deltaTime
for frame rate–independent movement). In Update(), you’ll also see raycasting code
that looks a lot like the shooting script from earlier; again, the same technique of ray-
casting is being used here to see instead of shoot. The ray is created using the enemy’s
position and direction, instead of using the camera.

 As explained earlier, the raycasting calculation is done using the Physics.Sphere-
Cast() method. This method takes a radius parameter to determine how far around
the ray to detect intersections, but in every other respect, it’s exactly the same as
Physics.Raycast(). This similarity includes how the command fills in hit information,
checks for intersections just as before, and uses the distance property to be sure to react
only when the enemy gets near an obstacle (as opposed to a wall across the room).

 When the enemy has a nearby obstacle right in front of it, the code rotates the
character a semi-random amount toward a new direction. I say semi-random because
the values are constrained to the minimum and maximum values that make sense for
this situation. Specifically, we use the Random.Range() method, which Unity provides
for obtaining a random value between constraints. In this case, the constraints were
just slightly beyond an exact left or right turn, allowing the character to turn suffi-
ciently to avoid obstacles.

3.3.3 Tracking the character’s state

One oddity of the current behavior is that the enemy keeps moving forward after fall-
ing over from being hit. That’s because, right now, the Translate() method runs
every frame no matter what. Let’s make small adjustments to the code to keep track of
whether the character is alive—or to put it in another (more technical) way, we want
to track the alive state of the character.

 Having the code keep track of and respond differently to the current state of the
object is a common code pattern in many areas of programming, not just AI. More
sophisticated implementations of this approach are referred to as state machines, or
possibly even finite-state machines.

A ray at the same
position and pointing
in the same direction

as the character

Perform raycasting with
a circular volume around
the ray.

Turn toward a
semi-random

new direction.

63Basic wandering AI

DEFINITION A finite-state machine (FSM) is a code structure in which the cur-
rent state of the object is tracked, well-defined transitions exist between states,
and the code behaves differently based on the state.

We’re not going to implement a full FSM, but it’s no coincidence that a common
place to see the initials FSM is in discussions of AI. A full FSM would have many states
for the many behaviors of a sophisticated AI application, but in this basic AI, we need
to track only whether the character is alive. The next listing adds a Boolean value,
isAlive, toward the top of the script, and the code needs occasional conditional
checks of that value. With those checks in place, the movement code runs only while
the enemy is alive.

...
private bool isAlive;

void Start() {
 isAlive = true;
}

void Update() {
 if (isAlive) {
 transform.Translate(0, 0, speed * Time.deltaTime);
 ...
 }
}

public void SetAlive(bool alive) {
 isAlive = alive;
}
...

The ReactiveTarget script can now tell the WanderingAI script whether the enemy is
alive.

...
public void ReactToHit() {
 WanderingAI behavior = GetComponent<WanderingAI>();
 if (behavior != null) {
 behavior.SetAlive(false);
 }
 StartCoroutine(Die());
}
...

Listing 3.8 WanderingAI script with alive state added

Listing 3.9 ReactiveTarget tells WanderingAI when it dies

Boolean value to track
whether the enemy is alive

Initialize that value.

Move only if the
character is alive.

Public method allowing outside
code to affect the “alive” state

Check if this character has a
WanderingAI script; it might not.

64 CHAPTER 3 Adding enemies and projectiles to the 3D game

3.4 Spawning enemy prefabs
At the moment, only one enemy is in the scene, and when it dies, the scene is empty.
Let’s make the game spawn enemies so that whenever the enemy dies, a new one
appears. This is easily done in Unity by using prefabs.

3.4.1 What is a prefab?

Prefabs are a flexible approach to visually defining interactive objects. In a nutshell, a
prefab is a fully fleshed-out game object (with components already attached and set
up) that doesn’t exist in any specific scene but rather exists as an asset that can be cop-
ied into any scene.

 This copying can be done manually, to ensure that the enemy object (or other pre-
fab) is the same in every scene. More importantly, though, prefabs can also be
spawned from code; you can place copies of the object into the scene by using com-
mands in scripts and not only by doing so manually in the visual editor.

DEFINITION An asset is any file that shows up in the Project view; these could
be 2D images, 3D models, code files, scenes, and so on. I mentioned this term
briefly in chapter 1 but didn’t emphasize it until now.

A copy of a prefab is called an instance, analogous to instance referring to a specific
code object created from a class. Try to keep the terminology straight: prefab refers to
the game object existing outside of any scene; instance refers to a copy of the object
that’s placed in a scene.

AI code structure
The AI code in this chapter is contained within a single class so that learning and
understanding it is straightforward. This code structure is perfectly fine for simple AI
needs, so don’t be afraid that you’ve done something wrong and that a more complex
code structure is an absolute requirement. For more complex AI needs (such as a
game with a wide variety of highly intelligent characters), a more robust code struc-
ture can help facilitate developing the AI.

As alluded to in chapter 1’s example for composition versus inheritance, sometimes
you’ll want to split chunks of the AI into separate scripts. Doing so will enable you to
mix and match components, generating unique behavior for each character. Think
about the similarities and differences among your characters, and those differences
will guide you as you design your code architecture. For example, if your game has
some enemies that move by charging headlong at the player and some that slink
around in the shadows, you may want to make Locomotion a separate component.
Then you can create scripts for both LocomotionCharge and LocomotionSlink, and
use different Locomotion components on different enemies.

The exact AI code structure you want depends on the design of your specific game;
there’s no one right way to do it. Unity makes it easy to design flexible code architec-
tures like this.

65Spawning enemy prefabs

DEFINITION Also analogous to object-oriented terminology, instantiate is the
action of creating an instance.

3.4.2 Creating the enemy prefab

To create a prefab, first create an object in the scene that will become the prefab.
Because our enemy object will become a prefab, we’ve already done this first step.
Now all we do is drag the object down from the Hierarchy view and drop it in the Proj-
ect view; this will automatically save the object as a prefab (see figure 3.7).

 Back in the Hierarchy view, the original object’s name will turn blue to signify that
it’s now linked to a prefab. We don’t actually want the object in the scene anymore
(we’re going to spawn the prefab, not use the instance already in the scene), so delete
the enemy object now. If you want to edit the prefab further, just double-click the pre-
fab in the Project view to open it and then click the back arrow at the top left of the
Hierarchy view to close it again.

WARNING The interface for working with prefabs has improved a lot since
earlier versions of Unity, but editing prefabs can still cause confusion. For
example, you are not technically in any scene after you double-click a prefab,
so remember to click the back arrow in the Hierarchy view when you are done
editing the prefab. In addition, if you nest prefabs (so that one prefab con-
tains other prefabs), working with them can get confusing.

Now we have the actual prefab object to spawn in the scene, so let’s write code to cre-
ate instances of the prefab.

3.4.3 Instantiating from an invisible SceneController

Although the prefab itself doesn’t exist in the scene, an object must be in the scene
for the enemy spawning code to attach to. We’ll create an empty game object and can
attach the script to that, but the object won’t be visible in the scene.

Drag the object down from
Hierarchy view into Project
view to create a prefab.

Figure 3.7 Drag objects
from Hierarchy to Project
to create prefabs.

66 CHAPTER 3 Adding enemies and projectiles to the 3D game

TIP The use of empty GameObjects for attaching script components is a
common pattern in Unity development. This trick is used for abstract tasks
that don’t apply to any specific object in the scene. Unity scripts are intended
to be attached to visible objects, but not every task makes sense that way.

Choose GameObject > Create Empty, rename the new object Controller, and ensure
that its position is 0, 0, 0. (Technically, the position doesn’t matter because the object
isn’t visible, but putting it at the origin will make life simpler if you ever parent any-
thing to it.) Create a script called SceneController.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SceneController : MonoBehaviour {
 [SerializeField] GameObject enemyPrefab;
 private GameObject enemy;

 void Update() {

 if (enemy == null) {
 enemy = Instantiate(enemyPrefab) as GameObject;
 enemy.transform.position = new Vector3(0, 1, 0);
 float angle = Random.Range(0, 360);
 enemy.transform.Rotate(0, angle, 0);
 }
 }
}

Attach this script to the controller object, and in the Inspector you’ll see a variable slot
for the enemy prefab. This works similarly to public variables, but there’s an import-
ant difference.

TIP To reference objects in Unity’s editor, I recommend decorating variables
with SerializeField instead of declaring them to be public. As explained in
chapter 2, public variables show up in the Inspector (in other words, they’re
serialized by Unity), so most tutorials and sample code you’ll see use public
variables for all serialized values. But these variables can also be modified by
other scripts (these are public variables, after all), whereas the Serialize-
Field attribute allows you to keep the variables private. C# defaults to private
if a variable isn’t explicitly made public, and that’s better in most cases because
you want to expose that variable in the Inspector but don’t want the value to be
changed by other scripts.

WARNING Prior to version 2019.4, Unity had a bug in which SerializeField
would cause the compiler to emit a warning about that field not being initial-
ized. If you ever encounter this bug, the script still functions fine, so techni-
cally you can just ignore those warnings or get rid of them by adding = null
to those fields.

Listing 3.10 SceneController that spawns the enemy prefab

Serialized variable for
linking to the prefab object

Private variable to keep track of
the enemy instance in the scene

Spawn a new enemy
only if one isn’t already
in the scene.

Method
that copies
the prefab

object

67Spawning enemy prefabs

Drag the prefab asset up from Project to the empty variable slot. When the mouse gets
near, you should see the slot highlight to indicate that the object can be linked there
(see figure 3.8). Once the enemy prefab is linked to the SceneController script, play
the scene to see the code in action. An enemy will appear in the middle of the room
just as before, but now if you shoot the enemy, it will be replaced by a new enemy.
That’s much better than just one enemy that’s gone forever!

TIP This approach of dragging objects onto the Inspector’s variable slots is a
handy technique that comes up in a lot of scripts. Here we linked a prefab to
the script, but you can also link to objects in the scene and can even link to
specific components (rather than the overall GameObject). In future chap-
ters, we’ll use this technique often.

The core of this script is the Instantiate() method, so take note of that line. When we
instantiate the prefab, that creates a copy in the scene. By default, Instantiate()
returns the new object as a generic Object type, but Object is pretty useless directly, and
we need to handle it as a GameObject. In C#, use the as keyword for typecasting to con-
vert from one type of code object into another type (written with the syntax original-
object as new-type).

 The instantiated object is stored in enemy, a private variable of the GameObject
type. (Keep the distinction between a prefab and an instance of the prefab straight:
enemyPrefab stores the prefab; enemy stores the instance.) The if statement that
checks the stored object ensures that Instantiate() is called only when enemy is
empty (or null, in coder-speak). The variable starts out empty, so the instantiating

Drag the prefab up from
Project view to the slot
in the Inspector.

Figure 3.8 Link the enemy
prefab to the script’s prefab slot.

68 CHAPTER 3 Adding enemies and projectiles to the 3D game

code runs once right from the beginning of the session. The object returned by
Instantiate() is then stored in enemy so that the instantiating code won’t run again.

 Because the enemy destroys itself when shot, that empties the enemy variable and
causes Instantiate() to be run again. In this way, an enemy is always in the scene.

3.5 Shooting by instantiating objects
All right, let’s add another bit of functionality to the enemies. Much as we did with the
player, first we made them move—now let’s make them shoot! As I mentioned back
when introducing raycasting, that was just one of the approaches to implementing
shooting. Another approach involves instantiating prefabs, so let’s take that approach
to making the enemies shoot back. The goal of this section is to see figure 3.9 when
playing.

3.5.1 Creating the projectile prefab

This time, shooting will involve a projectile in the scene. Shooting with raycasting was
basically instantaneous, registering a hit the moment the mouse was clicked, but this
time enemies are going to emit fireballs that fly through the air. Admittedly, they’ll be
moving pretty fast, but not instantaneously, giving the player a chance to dodge out of
the way. Instead of using raycasting to detect hits, we’ll use collision detection (the
same collision system that keeps the moving player from passing through walls).

Destroying GameObjects and memory management
It’s somewhat unexpected for existing references to become null when an object
destroys itself. In a memory-managed programming language like C#, normally you
aren’t able to directly destroy objects; you can only dereference them so that they
can be destroyed automatically. This is still true within Unity, but the way GameObjects
are handled behind the scenes makes it look like they were destroyed directly.

To display objects in the scene, Unity has to have a reference to all objects in its
scene graph. As such, even if you removed all references to the GameObject in your
code, this scene graph reference would still prevent the object from being destroyed
automatically. Because of this, Unity provides the Destroy()method to tell the game
engine, “Remove this object from the scene graph.” As part of that behind-the-scenes
functionality, Unity also overloads the == operator to return true when checking for
null. Technically, that object still exists in memory, but it may as well not exist any
longer, so Unity has it appearing as null. You could confirm this by calling Get-
InstanceID()on the destroyed object.

Note that the developers of Unity have considered changing this behavior to more
standard memory management. If they do, this spawning code will need to change
as well, probably by swapping the (enemy==null) check with a new parameter like
(enemy.isDestroyed).

(If most of this discussion was Greek to you, just don’t worry about it; this was a tan-
gential technical discussion for people interested in these obscure details.)

69Shooting by instantiating objects

The code will spawn fireballs in the same way that enemies spawn: by instantiating a
prefab. As explained in the previous section, the first step when creating a prefab is to
create an object in the scene that will become the prefab, so let’s create a fireball.

 To start, choose GameObject > 3D Object > Sphere. Rename the new object Fire-
ball. Now create a new script, also called Fireball, and attach that script to this
object. Eventually, we’ll write code in this script, but leave it as the default for now
while we work on a few other parts of the Fireball object. So that it appears like a
fireball and not just a gray sphere, we’re going to give the object a bright orange color.
Surface properties such as color are controlled using materials.

DEFINITION A material is a packet of information that defines the surface prop-
erties of any 3D object that the material is attached to. These surface proper-
ties can include color, shininess, and even subtle roughness.

Choose Assets > Create > Material. Name the new material something like Flame and
drag it onto the object in the scene. Select the material in the Project view in order to
see the material’s properties in the Inspector. As figure 3.10 shows, click the color swatch
labeled Albedo (that’s a technical term that refers to the main color of a surface). Click-
ing that will bring up a color picker in its own window; slide both the rainbow-colored
ring and the main picking area to set the color to orange.

 We’re also going to brighten the material to make it look more like fire. Adjust the
Emission value (one of the other attributes in the Inspector). The check box is off by
default, so turn it on to brighten up the material.

 Now you can turn the fireball object into a prefab by dragging the object down from
Hierarchy into Project, just as you did with the enemy prefab. As with the enemy, we
need only the prefab now, so delete the instance in the Hierarchy. Great—we have a
new prefab to use as a projectile! Next up is writing code to shoot using that projectile.

Figure 3.9 Enemy shooting
a fireball at the player.

70 CHAPTER 3 Adding enemies and projectiles to the 3D game

3.5.2 Shooting the projectile and colliding with a target

Let’s make adjustments to the enemy in order to emit fireballs. Because code to recog-
nize the player will require a new script (just like ReactiveTarget was required by the
code to recognize the target), first create a new script and name it PlayerCharacter.
Attach this script to the player object in the scene. Now open up WanderingAI and add
to the code from this listing.

...
[SerializeField] GameObject fireballPrefab;
private GameObject fireball;
...
if (Physics.SphereCast(ray, 0.75f, out hit)) {
 GameObject hitObject = hit.transform.gameObject;
 if (hitObject.GetComponent<PlayerCharacter>()) {
 if (fireball == null) {
 fireball = Instantiate(fireballPrefab) as GameObject;
 fireball.transform.position =
 transform.TransformPoint(Vector3.forward * 1.5f);
 fireball.transform.rotation = transform.rotation;

Listing 3.11 WanderingAI additions for emitting fireballs

Click the color swatch to
bring up the color picker.

Adjust the hue on the outer ring
and the value in the main area.

Figure 3.10 Setting the color of a material

Add these two fields before any
methods, just as in SceneController.

Player is detected in the same
way as the target object in
RayShooter.

Same null Game-
Object logic as
SceneController

Instantiate() method
here is just as it was
in SceneController.

Place the fireball in front
of the enemy and point
in the same direction.

71Shooting by instantiating objects

 }
 }
 else if (hit.distance < obstacleRange) {
 float angle = Random.Range(-110, 110);
 transform.Rotate(0, angle, 0);
 }
}
...

You’ll notice that all the annotations in this listing refer to similar (or the same) bits in
previous scripts. Previous code listings showed everything needed for emitting fire-
balls; now we’re mashing together and remixing bits of code to fit in the new context.

 Just as in SceneController, you need to add two GameObject fields toward the top
of the script: a serialized variable for linking the prefab to, and a private variable for
keeping track of the instance created by the code. After doing a raycast, the code
checks for the PlayerCharacter on the object hit; this works just as the shooting code
checking for ReactiveTarget on the object hit. The code that instantiates a fireball
when there isn’t already one in the scene works like the code that instantiates an
enemy. The positioning and rotation are different, though; this time, you place the
instance just in front of the enemy and point it in the same direction.

 Once all the new code is in place, a new Fireball Prefab slot will appear in the
Inspector when you select the Enemy prefab, like the Enemy Prefab slot in the Scene-
Controller component. Click the Enemy prefab in the Project view (double-click to
actually open the prefab, but just a single click selects it), and the Inspector will show
that object’s components, as if you’d selected an object in the scene. Although the
earlier warning about interface awkwardness often applies when editing prefabs, the
interface makes it easy to adjust the components on a prefab without opening it, and
that’s all we’re doing. As shown in figure 3.11, drag the Fireball prefab from Project onto
the Fireball Prefab slot in the Inspector (again, just as you did with SceneController).

Select the Enemy prefab to show its
components in the Inspector.

Drag the Fireball prefab
from Project view to the
slot in the Inspector.

Figure 3.11 Link the fireball prefab to the script’s prefab slot.

72 CHAPTER 3 Adding enemies and projectiles to the 3D game

Now the enemy will fire at the player when the player is directly ahead of it . . . well, try
to fire. The bright orange sphere appears in front of the enemy but just sits there
because we haven’t written its script yet. Let’s do that now.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Fireball : MonoBehaviour {
 public float speed = 10.0f;
 public int damage = 1;

 void Update() {
 transform.Translate(0, 0, speed * Time.deltaTime);
 }

 void OnTriggerEnter(Collider other) {
 PlayerCharacter player = other.GetComponent<PlayerCharacter>();
 if (player != null) {
 Debug.Log("Player hit");
 }
 Destroy(this.gameObject);
 }
}

The crucial new bit to this code is the OnTriggerEnter() method, called automati-
cally when the object has a collision, such as with the walls or with the player. At the
moment, this code won’t work entirely; if you run it, the fireball will fly forward thanks
to the Translate() line, but the trigger won’t run, queuing up a new fireball by
destroying the current one. A couple of other adjustments need to be made to compo-
nents on the Fireball object. The first change is making the collider a trigger. To
adjust that, go to the Inspector and click the Is Trigger check box in the Sphere Col-
lider component.

TIP A collider component set as a trigger will still react to touching/overlapping
other objects but will no longer stop other objects from physically passing
through.

The fireball also needs a Rigidbody, a component used by the physics system in Unity.
By giving the fireball a Rigidbody component, you ensure that the physics system is able
to register collision triggers for that object. Click Add Component at the bottom of the
Inspector and choose Physics > Rigidbody. In the component that’s added, deselect Use
Gravity (see figure 3.12) so that the fireball won’t be pulled down by gravity.

 Play now, and fireballs are destroyed when they hit something. Because the fireball-
emitting code runs whenever a fireball isn’t already in the scene, the enemy will shoot
more fireballs at the player. Now just one more thing remains for shooting at the player:
making the player react to being hit.

Listing 3.12 Fireball script that reacts to collisions

Move forward in the
direction it faces.

Called when another object
collides with this trigger

Check if the other object
is a PlayerCharacter.

73Shooting by instantiating objects

3.5.3 Damaging the player

Earlier, you created a PlayerCharacter script but left it empty. Now you’ll write code
to have the player react to being hit.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PlayerCharacter : MonoBehaviour {
 private int health;

 void Start() {
 health = 5;
 }

 public void Hurt(int damage) {
 health -= damage;
 Debug.Log($"Health: {health}");
 }
}

The listing defines a field for the player’s health and reduces the health on command.
In later chapters, we’ll go over text displays to show information on the screen, but for
now, we can display information about the player’s health only by using debug
messages.

DEFINITION String interpolation is a mechanism to insert the evaluation of code
(for example, the value of a variable) into a string. Several programming lan-
guages support string interpolation, including C#. For example, look at the
health message in listing 3.13.

Now you need to go back to the Fireball script to call the player’s Hurt() method.
Replace the debug line in the Fireball script with player.Hurt(damage) to tell the
player they’ve been hit. And that’s the final bit of code we need!

Listing 3.13 Player that can take damage

Uncheck this value.

Figure 3.12 Turn off gravity in the Rigidbody component.

Initialize the health value.

Decrement the player’s health.

Construct the message by
using string interpolation.

74 CHAPTER 3 Adding enemies and projectiles to the 3D game

 Whew! That was a pretty intense chapter, with lots of code introduced. Combining
the previous chapter with this one, you now have most of the functionality in place for
a first-person shooter.

Summary
 A ray is an imaginary line projected into the scene.
 Raycasting operations are useful for both shooting and sensing obstacles.
 Making a character wander around involves basic AI.
 New objects are spawned by instantiating prefabs.
 Coroutines are used to spread out functions over time.

75

Developing
 graphics for your game

We’ve been focusing mostly on how the game functions and not as much on how
the game looks. That was no accident—this book is mostly about programming
games in Unity. Still, it’s important to understand how to work on and improve the
visuals. Before we get back to the book’s main focus on coding various parts of the
game, let’s spend a chapter learning about game art so that your projects won’t
always end up with just blank boxes sliding around.

 All of the visual content in a game is made up of art assets. But what exactly does
that mean?

This chapter covers
 Understanding art assets used in game

development

 Building prototype levels through whiteboxing

 Using 2D images in Unity

 Importing custom 3D models

 Crafting particle effects

76 CHAPTER 4 Developing graphics for your game

4.1 Understanding art assets
An art asset is an individual unit of visual information (usually a file) used by the game.
This overarching umbrella term applies to all visual content: image files are art assets,
3D models are art assets, and so on. Indeed, an art asset is simply a specific type of
asset, which you’ve learned is any file used by the game (such as a script)—hence the
main Assets folder in Unity. Table 4.1 describes the five main kinds of art assets used in
building a game.

Creating art for a new game generally starts with either 2D images or 3D models
because those assets form a base on which everything else relies. As the names imply,
2D images are the foundation of 2D graphics, whereas 3D models are the foundation of
3D graphics. Specifically, 2D images are flat pictures. Even if you have no previous
familiarity with game art, you’re probably already familiar with 2D images from the
graphics used on websites; 3D models, on the other hand, may need to be defined for
a newcomer.

DEFINITION A model is a 3D virtual object. Chapter 1 introduced the term mesh
object, and 3D model is practically a synonym. The terms are frequently used
interchangeably, but mesh object strictly refers to the geometry of the 3D object
(the connected lines and shapes), whereas model is a bit more ambiguous and
often includes other attributes of the object.

The next two types of assets on the list are materials and animations. Unlike 2D images
and 3D models, materials and animations don’t do anything in isolation and are
much harder for newcomers to understand. 2D images and 3D models are easily
understood through real-world analogs: paintings for the former, sculptures for the
latter. Materials and animations aren’t as directly relatable to the real world. Instead,

Table 4.1 Types of art assets

Type of art asset Definition

2D image Flat pictures. To make a real-world analogy, 2D images are like paintings and
photographs.

3D model 3D virtual objects (almost a synonym for mesh objects). To make a real-world analogy,
3D models are like sculptures.

Material A packet of information that defines the surface properties of any object that the
material is attached to. These surface properties can include color, shininess, and
even subtle roughness.

Animation Packets of information that define the movement of the associated object. These
are detailed movement sequences created ahead of time, as opposed to code that
calculates positions on the fly.

Particle system An orderly mechanism for creating and controlling large numbers of small moving
objects. Many visual effects, like fire, smoke, or spraying water, are created this way.

77Understanding art assets

both are abstract packets of information that layer onto 3D models. In fact, materials
were already introduced in a basic sense in chapter 3.

DEFINITION A material is a packet of information that defines the surface prop-
erties (color, shininess, and so forth) of any object that it’s attached to. Defin-
ing surface properties separately enables multiple objects to share a material
(all the castle walls, for example).

Continuing the art analogy, you can think of a material as the medium (clay, brass,
marble, and so on) that the sculpture is made of. Similarly, an animation is also an
abstract layer of information that’s attached to a visible object.

DEFINITION An animation is a packet of information that defines the move-
ment of the associated object. Because these movements can be defined inde-
pendently from the object itself, they can be used in a mix-and-match way
with multiple objects.

For a concrete example, think about a character walking around. The overall position
of the character is handled by the game’s code (for example, the movement scripts
you wrote in chapter 2). But the detailed movements of feet hitting the ground, arms
swinging, and hips rotating are an animation sequence that’s being played back; that
animation sequence is an art asset.

 To help you understand how animations and 3D models relate, let’s make an anal-
ogy with puppeteering: the 3D model is the puppet, the animator is the puppeteer
who makes the puppet move, and the animation is a recording of the puppet’s move-
ments. The movements defined this way are created ahead of time and are usually
small-scale movements that don’t change the overall positioning of the object. This is
in contrast to the sort of large-scale movements that were done in code in previous
chapters.

 The final kind of art asset from table 4.1 is a particle system. Particle systems are use-
ful for creating visual effects, like fire, smoke, or spraying water.

DEFINITION A particle system is an orderly mechanism for creating and con-
trolling large numbers of moving objects. These moving objects are usually
small—hence the name particle—but they don’t have to be.

The particles (the individual objects under the control of a particle system) can be any
mesh object that you choose. But for most effects, the particles will be a square dis-
playing a picture (a flame spark or a smoke puff, for example).

 Much of the work of creating game art is done in external software, not within
Unity itself. Materials and particle systems are created within Unity, but the other art
assets are created using external software. Refer to appendix B to learn more about
external tools; a variety of art applications are used for creating 3D models and anima-
tion. 3D models created in an external tool are then saved as an art asset that’s
imported by Unity. I use Blender when explaining how to model in appendix C

78 CHAPTER 4 Developing graphics for your game

(download it from www.blender.org), but that’s just because Blender is open source
and thus available to all readers.

NOTE The project download for this chapter includes a folder named scratch.
Although that folder is in the same place as the Unity project, it’s not part of
the Unity project; that’s where I put extra external files.

As you work through the project for this chapter, you’ll see examples of most of these
types of art assets (animations are a bit too complex for now and are addressed later in
the book). You’re going to build a scene that uses 2D images, 3D models, materials,
and a particle system. In some cases, you’ll bring in already existing art assets and
learn how to import them into Unity, but at other times (especially with the particle
system), you’ll create the art asset from scratch within Unity.

 This chapter only scratches the surface of game art creation. Because this book
focuses on how to program in Unity, extensive coverage of art disciplines would
reduce how much the book could cover. Creating game art is a giant topic in and of
itself, easily able to fill several books. In most cases, a game programmer would need
to partner with a game artist who specializes in that discipline. That said, it’s extremely
useful for game programmers to understand how Unity works with art assets and pos-
sibly even create their own rough stand-ins to be replaced later (commonly known as
programmer art).

NOTE Nothing in this chapter directly requires projects from the previous
chapters. But you’ll want to have movement scripts like the ones from chapter
2 so that you can walk around the scene you’ll build. If necessary, you can
grab the player object and scripts from the project download. Similarly, this
chapter ends with moving objects that are similar to the ones created in previ-
ous chapters.

4.2 Building basic 3D scenery: Whiteboxing
The first content creation topic we’ll go over is whiteboxing. This process is usually the
first step in building a level on the computer (after designing the level on paper). As
the name suggests, you block out the walls of the scene with blank geometry (white
boxes). Looking at the list of art assets in table 4.1, this blank scenery is the most basic
sort of 3D model, and it provides a base on which to display 2D images.

 If you think back to the primitive scene you created in chapter 2, that was basically
whiteboxing (you just hadn’t learned the term yet). Some of this section will be a
rehash of work done in the beginning of chapter 2, but we’ll cover the process a lot
faster this time, as well as discuss more new terminology.

NOTE Another term that is frequently used is grayboxing. It means the same
thing. I tend to use whiteboxing because that was the term I first learned, but
others use grayboxing, which is just as accepted. The actual color used varies
anyway, similar to the way blueprints aren’t necessarily blue.

https://www.blender.org/

79Building basic 3D scenery: Whiteboxing

4.2.1 Whiteboxing explained

Blocking out the scene with blank geometry serves a couple of purposes. First, this
process enables you to quickly build a sketch that will be progressively refined over
time. This activity is closely associated with level design and/or level designers.

DEFINITION Level design is the discipline of planning and creating scenes (or
levels) in the game. A level designer is a practitioner of level design.

As game development teams have grown in size and team members have become
more specialized, a common level-building workflow is for the level designer to create
a first version of the level through whiteboxing. This rough level is then handed over
to the art team for visual polish. But even on a tiny team, where the same person is
both designing levels and creating art for the game, this workflow of first doing white-
boxing and then polishing the visuals generally works best. You have to start some-
where, after all, and whiteboxing gives a clear foundation on which to build up the
visuals.

 A second purpose served by whiteboxing is that the level quickly reaches a playable
state. The level may not be finished (indeed, a level right after whiteboxing is far from
finished), but this rough version is functional and can support gameplay. At a mini-
mum, the player can walk around the scene (think of the demo in chapter 2). In this
way, you can test to make sure the level is coming together well (for example, are the
rooms the right size for this game?) before investing a lot of time and energy in
detailed work. If something is off (say you realize the spaces need to be bigger),
changing and retesting is much easier in the whiteboxing stage.

 Moreover, being able to play the under-construction level is a huge morale boost.
Don’t discount this benefit: building all the visuals for a scene can take a great deal of
time, and having to wait a long time before you can experience any of that work in the
game can start to feel like a slog. Whiteboxing builds a complete (if primitive) level
right away, and it’s exciting to then play the game as it continually improves.

 All right, so you understand why levels start with whiteboxing. Now let’s build a
level!

4.2.2 Drawing a floor plan for the level

Building a level on the computer follows designing the level on paper. We’re not
going to get into a huge discussion about level design; just as chapter 2 noted about
game design, level design (which is a subset of game design) is a large discipline that
could fill an entire book by itself. For our purposes, we’re going to draw a basic level,
with little design going into the plan, in order to give us a target to work toward.

 Figure 4.1 is a top-down drawing of a simple layout with four rooms connected by a
central hallway. That’s all we need for a plan right now: a bunch of separated areas
and interior walls to place. In a real game, your plan would be more extensive and
include things like enemies and items.

80 CHAPTER 4 Developing graphics for your game

You could practice whiteboxing by building this floor plan, or you could draw your
own simple level to practice that step too. The specifics of the room layout matter lit-
tle for this exercise. The important thing for our purposes is to have a floor plan
drawn so that we can move forward with the next step.

4.2.3 Laying out primitives according to the plan

Building the whitebox level in accordance with the drawn floor plan involves position-
ing and scaling a bunch of blank boxes to be the walls in the diagram. As described in
section 2.2.1, choose GameObject > 3D Object > Cube to create a blank box that you
can position and scale as needed.

The first object will be the floor of the scene. In the Inspector, rename the object and
lower it to -0.5 Y to account for the height of the box itself (figure 4.2 depicts this).
Then stretch the object along the x- and z-axes.

Player startWall

Figure 4.1 Floor plan for the level:
four rooms and a central corridor

More advanced level editing within Unity
In the workflow featured in this chapter, the level is first blocked out with primitives,
and then the final-level geometry is built in an external 3D art tool. However, Unity
also offers ProBuilder, a more robust tool for level editing. You could still choose to
use that for blocking out a level that gets detailed in an external 3D art tool, but Pro-
Builder could even be your sole level-design tool.

Open the Package Manager window (choose Window > Package Manager) and search
the Unity Registry for ProBuilder. Once that package is installed, it operates as
described on the Unity website (https://unity.com/features/probuilder).

Meanwhile, a different approach to editing the level is called constructive solid geom-
etry (CSG). In that approach, you use shapes referred to as brushes, and everything
from the initial prototype to final-level geometry is built within Unity. Go to Realtime
CSG (https://realtimecsg.com) for more information.

https://unity.com/features/probuilder
https://realtimecsg.com

81Building basic 3D scenery: Whiteboxing

Repeat these steps to create the walls of the scene. You probably want to clean up the
Hierarchy view by making the walls children of a common base object (remember,
position the root object at 0, 0, 0, and then drag objects onto it in Hierarchy), but
that’s not required. Also put a few simple lights around the scene so that you can see
it; referring to chapter 2, create lights by selecting them in the Light submenu of the
GameObject menu. The level should look something like figure 4.3 once you’re done
with whiteboxing.

Set up your player object or camera to move around (create the player with a charac-
ter controller and movement scripts; refer to chapter 2 if you need a full explanation).
Now you can walk around the primitive scene to experience your work and test it out.
And that’s how you do whiteboxing! Pretty simple—but all you have right now is blank
geometry, so let’s dress up the geometry with pictures on the walls.

Name of the object

Position of the floor
(lowered slightly to
account for thickness)

Scale out on X and Z

Figure 4.2 Inspector view of the box positioned and scaled for the floor

The Player object

A room (blocked
out with
interior walls)

A light (there are several
throughout the level)

Figure 4.3 Whitebox level of the floor plan in figure 4.1

Exporting whitebox geometry to external art tools
Much of the work when adding visual polish to the level is done in external 3D art
applications like Blender. Because of this, you may want to have the whitebox geom-
etry in your art tool to refer to. By default, there’s no export option for primitives laid
out within Unity, but Unity offers an optional package (called FBX Exporter) that adds
this functionality to the editor.

82 CHAPTER 4 Developing graphics for your game

4.3 Texturing the scene with 2D images
The level at this point is a rough sketch. It’s playable, but clearly a lot more work
needs to be done on the visual appearance of the scene. The next step in improving
the look of the level is applying textures.

DEFINITION A texture is a 2D image being used to enhance 3D graphics. That’s
the totality of what the term means; don’t confuse yourself by thinking that
any of the uses of textures are part of how the term is defined. No matter how
the image is being used, it’s still referred to as a texture.

NOTE Texture is routinely used as both a verb and a noun. In addition to the
noun definition, the word describes the action of using 2D images in 3D
graphics.

Textures have multiple uses in 3D graphics, but the most straightforward use is to be
displayed on the surface of 3D models. Later in this chapter, we’ll discuss how this
works for more complex models, but for our whiteboxed level, the 2D images will act
as wallpaper covering the walls (see figure 4.4).

As you can see from the comparison in figure 4.4, textures turn what was an obviously
unreal digital construct into a brick wall. Other uses for textures include masks to cut
out shapes and normal maps to make surfaces bumpy. Later, you may want to look up
more information about textures in the resources mentioned in appendix D.

(continued)
Open the Package Manager and search for FBX Exporter. This is a preview package,
so you’ll need to select Show Preview Packages in the Package Manager window’s
Advanced menu. Once that package is installed, it operates as described in the Unity
documentation (http://mng.bz/AOYW).

Incidentally, you don’t need this package for levels made with ProBuilder, the
advanced level-editing tool mentioned earlier, since that tool already has a model
exporter.

Before texturing
(shading only from lights)

After applying textures
(1 floor texture, 1 on all walls)

Figure 4.4 Comparing the level before and after textures

http://mng.bz/AOYW

83Texturing the scene with 2D images

4.3.1 Choosing a file format

A variety of file formats is available for saving 2D images, so which should you use?
Unity supports the use of many file formats, so you could choose any of the ones
shown in table 4.2.

DEFINITION The alpha channel is used to store transparency information in an
image. The visible colors come in three channels of information: Red, Green,
and Blue. Alpha is an additional channel of information that isn’t visible but
controls the transparency of the image.

Although Unity will accept any of the image types shown in table 4.2 to import and
use as a texture, the file formats vary considerably in the features they support. Two
factors are particularly important for 2D images imported as textures: how is the
image compressed, and does it have an alpha channel?

 The alpha channel is a straightforward consideration. Because the alpha channel
is used often in 3D graphics, an image that has an alpha channel is preferred.

 Image compression is a slightly more complicated consideration, but it boils down
to “lossy compression is bad.” Both no compression and lossless compression preserve
the image quality, whereas lossy compression reduces the image quality (hence the
term lossy) as part of reducing the file size.

 Between these two considerations, the two file formats I recommend for Unity tex-
tures are PNG and TGA. Targas (TGA) used to be the favorite file format for texturing
3D graphics, before PNG became widely used on the internet. These days, PNG is
almost equivalent technologically but is much more widespread, because it’s useful
both on the web and as a texture.

Table 4.2 2D image file formats supported by Unity

File type Pros and cons

PNG Commonly used on the web. Lossless compression; has an alpha channel.

JPG Commonly used on the web. Lossy compression; no alpha channel.

GIF Commonly used on the web. Lossy compression; no alpha channel. (Technically, the loss
isn’t from compression; rather, data is lost when the image is converted to 8-bit. Ultimately,
it amounts to the same thing.)

BMP Default image format on Windows. No compression; no alpha channel.

TGA Commonly used for 3D graphics; obscure everywhere else. No or lossless compression; has
an alpha channel.

TIFF Commonly used for digital photography and publishing. No or lossless compression; no
alpha channel.

PICT Default image format on old Macs. Lossy compression; no alpha channel.

PSD Native file format for Adobe Photoshop. No compression; has an alpha channel. The main
reason to use this file format would be the advantage of using Photoshop files directly.

84 CHAPTER 4 Developing graphics for your game

 PSD is also commonly recommended for Unity textures, because it’s an advanced
file format and because it’s convenient that the same file you work on in Photoshop
also works in Unity. But I tend to prefer keeping work files separate from “finished”
files that are exported over to Unity (this same mindset comes up again later with 3D
models).

 The upshot is that all the images I provide in the example projects are PNG, and I
recommend that you work with that file format as well. With this decision made, it’s
time to bring some images into Unity and apply them to the blank scene.

4.3.2 Importing an image file

Let’s start creating and preparing the textures we’ll use. The images used to texture
levels are usually tileable so that they can be repeated across large surfaces like the
floor.

DEFINITION A tileable image (sometimes referred to as a seamless tile) is an
image in which opposite edges match up when placed side by side. This way,
the image can be repeated without any visible seams between the repeats. The
concept for 3D texturing is just like wallpaper on web pages.

You can obtain tileable images in several ways, including by manipulating photo-
graphs or even painting them by hand. Tutorials and explanations of these techniques
can be found in numerous books and websites, but we don’t want to get bogged down
with that right now. Instead, let’s grab a couple of tileable images from one of the
many websites that offer a catalog of such images for 3D artists to use.

 I obtained a couple of images from www.textures.com (see figure 4.5) to apply to
the walls and floor of the level. Find a couple of images you think look good for the
floor and walls; I chose BrickRound0067 and BrickLargeBare0032.

Download the images you want and prepare them for use as textures. Technically, you
could use the images directly as they were downloaded, but they aren’t ideal for use as
textures. Although they’re certainly tileable (the important reason you’re using these
images), they aren’t the right size and are the wrong file format.

Figure 4.5 Seamlessly tiling stone and
brick images obtained from Textures.com

https://www.textures.com/

85Texturing the scene with 2D images

 The size (in pixels) of a texture should be in powers of 2. For reasons of technical
efficiency, graphics chips like to handle textures in sizes that are 2N: 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048 (the next number is 4096, but at that point the image is too
big to use as a texture). In your image editor (Photoshop, GIMP, or whatever; refer to
appendix B), scale the downloaded image to 256 × 256 pixels, and save it as a PNG.

 Now drag the files from their location in the computer into the Project view in
Unity. This will copy the files into your Unity project (see figure 4.6), at which point
they’re imported as textures and can be used in the 3D scene. If dragging the file over
would be awkward, you could instead right-click in Project and select Import New
Asset to access a file picker.

TIP Organizing your assets into separate folders is probably a good idea as
your projects start to get more complex. In the Project view, create folders for
Scripts and Textures and then move assets into the appropriate folders. Sim-
ply drag files to their new folder.

WARNING Unity has several keywords that it responds to in folder names, with
special ways of handling the contents of these special folders. Those keywords
are Resources, Plugins, Editor, and Gizmos. Later in the book, we’ll go over
what some of these special folders do, but for now, avoid naming any folders
with those words.

Now the images are imported into Unity as textures, ready to use. But how do we
apply the textures to objects in the scene?

4.3.3 Applying the image

Technically, textures aren’t applied to geometry directly. Instead, textures can be part
of materials, and materials are applied to geometry. As explained in the introduction,

A folder in your computer

Project view in Unity

Figure 4.6 Drag images from outside Unity to import them into the
Project view.

86 CHAPTER 4 Developing graphics for your game

a material is a set of information defining the properties of a surface; that information
can include a texture to display on that surface. This indirection is significant because
the same texture can be used with multiple materials. That said, typically each texture
goes with a different material, so for convenience Unity allows you to drop a texture
onto an object and then it creates a new material automatically.

 If you drag a texture from Project view onto an object in the scene, Unity will cre-
ate a new material and apply it to the object. Figure 4.7 illustrates the maneuver. Try
that now with the texture for the floor.

Besides this convenient method of automatically creating materials, the “proper” way
to create a material is to choose Assets > Create > Material; the new asset will appear in
the Project view. Now select the material to show its properties in the Inspector (you’ll
see something like figure 4.8) and drag a texture to the main texture slot; the setting
is called Albedo (that’s a technical term for the base color), and the texture slot is the
square to the left side of the label. Meanwhile, drag the material up from Project onto
an object in the scene to apply the material to that object. Try these steps now with the
texture for the wall: create a new material, drag the wall texture into this material, and
drag the material onto a wall in the scene.

You should now see the stone and brick images appear on the surface of the floor and
wall objects, but the images look rather stretched out and blurry. The single image is

Figure 4.7 One way to apply
textures is to drag them from
Project onto Scene objects.

Figure 4.8 Select a
material to see it in the
Inspector and then drag
textures to the material
properties.

87Generating sky visuals by using texture images

being stretched out to cover the entire floor. Instead, you want the image to repeat a
few times over the floor surface.

 You can set this appearance by using the tiling property of the material. Select the
material in Project and then change the tiling number in the Inspector (with separate
X and Y values for tiling in each direction). Make sure you’re setting the tiling of the
main map and not the secondary map (this material optionally uses a secondary texture
map for advanced effects). The default tiling is 1 (that’s no tiling, with the image being
stretched over the entire surface); change the numbers to something like 8 and see what
happens in the scene. Change the numbers in both materials to tiling that looks good.

NOTE Adjusting the tiling property like this is useful only for texturing white-
box geometry. In a polished game, the floor and walls will be built with more
intricate art tools, and that includes setting up their textures.

Great—now the scene has textures applied to the floor and walls! You can also apply
textures to the sky of the scene. Let’s look at that process.

4.4 Generating sky visuals by using texture images
The brick and stone textures provide a much more natural look to the walls and floor.
Yet the sky is currently blank and unnatural; we also want a realistic look for the sky. The
most common approach to this task is a special kind of texturing using pictures of the sky.

4.4.1 What is a skybox?

By default, the camera’s background color is dark blue. Ordinarily, that color fills in
any empty area of the view (for example, above the walls of this scene), but it’s possi-
ble to render pictures of the sky as background. This is where a skybox comes in.

DEFINITION A skybox is a cube surrounding the camera with pictures of the sky
on each side. No matter what direction the camera is facing, it’s looking at a
picture of the sky.

Properly implementing a skybox can be tricky; figure 4.9 shows a diagram of how a
skybox works. Rendering tricks are needed for the skybox to appear as a distant back-
ground. Fortunately, Unity already takes care of all that for you.

The skybox—functionality needed:

Render behind everything else in the scene.

Stay centered on the camera, so that
the sky will seem too far away for the
player’s movements to affect it.

Full brightness with no shading applied,
to avoid any lighting differences
between sides of the cube.

Figure 4.9 Diagram of a skybox

88 CHAPTER 4 Developing graphics for your game

New scenes come with a simple default skybox already assigned to them. This is why
the sky has a gradient from light to dark blue, rather than being a flat dark blue. Open
the lighting window (Window > Rendering > Lighting), switch to the Environment
tab, and then note that the first setting is Skybox Material. This window has a multiple
settings panels related to the advanced lighting system in Unity, but for now, we care
about only the first setting.

 Just like the brick textures earlier, skybox images can be obtained from a variety of
websites. Search for skybox textures or simply get them from the book’s sample project.
For example, I obtained the TropicalSunnyDay set of skybox images from Heiko Irr-
gang at https://93i.de/. Once this skybox is applied to the scene, you will see some-
thing like figure 4.10.

As with other textures, skybox images are first assigned to a material, and that gets
used in the scene. Let’s examine how to create a new skybox material.

4.4.2 Creating a new skybox material
First, create a new material (as usual, either right-click and choose Create, or choose
Create from the Assets menu) and then select that material to see its settings in the
Inspector. Next, you need to change the shader used by this material. The top of the
material settings has a Shader menu (see figure 4.11). In section 4.3, we pretty much
ignored this menu because the default works fine for most standard texturing, but a
skybox requires a special shader.

DEFINITION A shader is a short program that outlines instructions for drawing
a surface, including whether to use any textures. The computer uses these
instructions to calculate the pixels when rendering the image. The most com-
mon shader takes the color of the material and darkens it according to the
light, but shaders can also be used for all sorts of visual effects.

Every material has a shader that controls it (you could think of a material as an
instance of a shader). New materials are set to the Standard shader by default. This
shader displays the color of the material (including the texture) while applying light
and shadows across the surface.

Figure 4.10 Scene with background
pictures of the sky

https://93i.de/

89Generating sky visuals by using texture images

For skyboxes, Unity has a different shader. Click the menu to see the drop-down list
(see figure 4.11) of all the available shaders. Select the Skybox section and choose 6
Sided in the submenu. With this shader active, the material now has six large texture
slots (instead of only the small Albedo texture slot that the standard shader has).
These six texture slots correspond to the six sides of a cube, so these images should
match up at the edges to appear seamless. For example, figure 4.12 shows the images
for the sunny skybox.

Import the skybox images into Unity the same way you brought in the brick textures:
drag the files into the Project view or right-click in Project and select Import New Asset.
We need to change one subtle import setting; click the imported texture to see its prop-
erties in the Inspector and change the Wrap Mode setting (shown in figure 4.13) from
Repeat to Clamp. Don’t forget to click Apply when you’re done. Ordinarily, textures
can be tiled repeatedly over a surface, and for this to appear seamless, opposite edges
of the image bleed together. But this blending of edges can create faint lines in the sky
where images meet, so the Clamp setting (similar to the Clamp() function in chapter 2)
will limit the boundaries of the texture and get rid of this blending.

Shader property
of a material

Select Skybox shaders
in the menu.

6 Sided is one choice in
the submenu that opens.

Figure 4.11 The drop-down menu of available shaders

Figure 4.12 Six images for the sides of a skybox

90 CHAPTER 4 Developing graphics for your game

Now you can drag these images to the texture slots of the skybox material. The image
names correspond to the texture slot to assign them to (such as left or front). Once all
six textures are linked up, you can use this new material as the skybox for the scene.
Open the lighting window again and set this new material to the Skybox slot; either
drag the material to that slot, or click the tiny circle icon to bring up a file picker. Now
click Play to see the new skybox.

TIP By default, Unity will display the skybox (or at least its main color) in the
editor’s Scene view. You may find this color distracting while editing objects,
so you can toggle the skybox on or off. Across the top of the Scene view’s
pane are buttons that control what’s visible; look for the Effects button to tog-
gle the skybox on or off.

Woo-hoo—you’ve learned how to create sky visuals for your scene! A skybox is an ele-
gant way to create the illusion of a vast atmosphere surrounding the player. The next
step in polishing the visuals in your level is to create more complex 3D models.

4.5 Working with custom 3D models
In the previous sections, we looked at applying textures to the large flat walls and
floors of the level. But what about more detailed objects? What if you want, say, inter-
esting furniture in the room? You can accomplish that by building 3D models in exter-
nal 3D art apps. Recall the definition from the introduction to this chapter: 3D
models are the mesh objects in the game (the three-dimensional shapes). Well, you’re
going to import a 3D mesh of a simple bench.

 Applications widely used for modeling 3D objects include Autodesk Maya and
Autodesk 3ds Max. Both are expensive commercial tools, so the sample for this chap-
ter uses the open source app Blender. The sample download includes a .blend file

Faint lines may be visible at the
edges of the skybox images ...

... so change the Wrap Mode of the
textures from Repeat to Clamp.

Figure 4.13 Correct faint edge lines by adjusting the Wrap mode.

91Working with custom 3D models

that you can use; figure 4.14 depicts the bench
model in Blender. If you’re interested in learn-
ing how to model your own objects, you’ll find
an exercise in appendix C about modeling this
bench in Blender.

 Besides custom-made models created by your-
self or an artist you’re working with, many 3D
models are available for download from game art
websites. One great resource for 3D models is the
Unity Asset Store, accessible within Unity or at
https://assetstore.unity.com.

4.5.1 Which file format to choose?

After you obtain a model made in an external art tool, you need to export the asset
from that software. Just as with 2D images, multiple file formats are available for you
to use when exporting the 3D model, and these file types have various pros and cons.
Table 4.3 lists the 3D file formats that Unity supports.

Choosing an option boils down to whether the file supports animation. Because COL-
LADA and FBX are the only two options that include animation data, those are the
two options to choose. Whenever it’s available (not all 3D tools have it as an export
option), FBX export tends to work best, but if you’re using a tool without FBX export,
then COLLLADA works well too. In our case, Blender supports FBX export, so we’ll
use that file format.

Table 4.3 3D Model file formats supported by Unity

File type Pros and cons

FBX Mesh and animation; recommended option when available.

COLLADA (DAE) Mesh and animation; another good option when FBX isn’t available.

OBJ Mesh only; this is a text format, so sometimes useful for streaming over the internet.

3DS Mesh only; a pretty old and primitive model format.

DXF Mesh only; a pretty old and primitive model format.

Maya Works via FBX; requires this application to be installed.

3ds Max Works via FBX; requires this application to be installed.

Blender Works via FBX; requires this application to be installed.

This includes both the 3D mesh geometry
and a texture applied to the mesh.

Figure 4.14 The bench model in Blender

https://assetstore.unity.com

92 CHAPTER 4 Developing graphics for your game

Note that the bottom of table 4.3 lists several 3D art applications. Unity allows you to
directly drop those applications’ files into your project. This functionality seems
handy at first but has some caveats.

 For starters, Unity doesn’t load those application files directly; instead, it exports
the model behind the scenes and loads that exported file. Because the model is being
exported to FBX anyway, it’s preferable to do that step explicitly. Furthermore, this
export requires you to have the relevant application installed. This requirement is a
big hassle if you plan to share files among multiple computers (for example, a team of
developers working together). I don’t recommend using 3D art application files
directly in Unity.

4.5.2 Exporting and importing the model

All right, it’s time to export the model from Blender and then import it into Unity.
First, open the bench in Blender and then choose File > Export > FBX. Once the file
is saved, import it into Unity the same way that you import images. Drag the FBX file
from the computer into Unity’s Project view or right-click in Project and choose
Import New Asset. The 3D model will be copied into the Unity project and show up
ready to be put in the scene.

NOTE The sample download includes the .blend file so that you can practice
exporting the FBX file from Blender. Even if you don’t end up modeling any-
thing yourself, you may need to convert downloaded models into a format
Unity accepts. If you want to skip all steps involving Blender, use the provided
FBX file.

You should change a few import settings immediately. First, Unity defaults imported
models to a very small scale (refer to figure 4.15, which shows what you see in the
Inspector when you select the model); change the Scale Factor to 50 to partially coun-
teract the 0.01 unit conversion. You may also want to click the Generate Colliders
check box, but that’s optional; without a collider, you can walk through the bench.
Then, switch to the Animation tab in the import settings and deselect Import Anima-
tion (this model doesn’t have animation). Click Apply at the bottom after making
these changes.

glTF file format
While FBX is the best 3D format with built-in support, you may instead want to use
glTF files in Unity. This newer 3D file format sees increased use these days. The glTF
specification is developed by the Khronos Group, the same people behind COLLADA,
and they maintain a Unity add-on at https://github.com/KhronosGroup/UnityGLTF.

Personally, I find their glTF plugin unwieldy and prefer the GLTFUtility package made
by a user named Siccity, available at https://github.com/Siccity/GLTFUtility.

https://github.com/KhronosGroup/UnityGLTF
https://github.com/Siccity/GLTFUtility

93Working with custom 3D models

That takes care of the imported mesh. Now for the texture. Import the bench texture
(the image in figure 4.16) in the same way as the bricks for walls earlier: drag the
image file from this project’s scratch folder into Unity’s Project view, or right-click in
Project and select Import New Asset. The image looks somewhat odd, with different
parts of the image appearing on different parts of the bench; the model’s texture
coordinates were edited to define this mapping of image to mesh.

DEFINITION Texture coordinates are an extra set of values for each vertex that
assign polygons to areas of the texture image. Think about it like wrapping
paper; the 3D model is the box being wrapped, the texture is the wrapping
paper, and the texture coordinates represent the points on the box where the
wrapping paper will go.

NOTE Even if you don’t want to model the bench, you may want to read the
detailed explanation of texture coordinates in appendix C. Texture coordi-
nates (as well as other related terms like UVs and mapping) can be useful to
understand when programming games.

Default size is too small,
so set the scale to 50.

Optional: Generate a
collider or you can walk
through the bench.

Turn off animation because
the bench is static.

Click Apply after making
changes to import settings.

Figure 4.15 Adjust import settings for the 3D model.

This image relates to the model
by using texture coordinates.

To understand the concept of
texture coordinates, refer to appendix C.

Figure 4.16 The 2D image for the bench texture

94 CHAPTER 4 Developing graphics for your game

When Unity imported the FBX file, it also generated a material with the same settings
as the material in Blender. If the image file used in Blender has been imported into
Unity, the generated material will automatically link to that texture. If the automatic
linkage doesn’t work right, or if you need to use a different texture image, then you
can extract the model’s material for further editing. Refer back to figure 4.15; under
the Materials tab, you should find a button labeled Extract Materials. Now you can
select the material asset and then drag images to Albedo just as you did for brick walls.

 New materials are often too shiny, so you may want to reduce the Smoothness set-
ting to 0 (smoother surfaces are shinier). Finally, having adjusted everything as
needed, you can put the bench in the scene. Drag the model up from the Project view
and place it in one room of the level; as you drag the mouse, you should see it in the
scene. Once you drop the bench in place, you should see something like figure 4.17.
Congratulations—you’ve created a textured model for the level!

NOTE We’re not going to do it in this chapter, but typically, you’d also
replace the whitebox geometry with models created in an external tool. The
new geometry might look essentially identical, but you’ll have much more
flexibility in controlling the texture.

Figure 4.17 The imported
bench in the level

Animating characters with Mecanim
The model you created is static, sitting still where placed. You can also animate in
Blender and then play the animation in Unity. The process of creating 3D animation
is long and involved, and this isn’t a book about animation, so we’re not going to dis-
cuss that here. As has already been mentioned for modeling, a lot of existing
resources can help you learn more about 3D animation. But be warned: it is a huge
topic. There’s a reason animator is a specialized role within game development.

95Creating effects by using particle systems

4.6 Creating effects by using particle systems
Besides 2D images and 3D models, the remaining
type of visual content that game artists create is a par-
ticle system. The definition in this chapter’s introduc-
tion explained that particle systems are orderly
mechanisms for creating and controlling large num-
bers of moving objects. Particle systems are useful for
creating visual effects like fire, smoke, or spraying
water. The fire effect in figure 4.18 was created using a
particle system.

 Whereas most other art assets are created in exter-
nal tools and imported into the project, particle sys-
tems are created within Unity itself. Unity provides
flexible and powerful tools for creating particle
effects.

NOTE Much like the situation with the Mecanim animation system, Unity
used to have an older legacy particle system and gave its newer system a spe-
cial name, Shuriken. At this point, the legacy particle system has been phased
out, so the separate name is no longer necessary.

To begin, create a new particle system and watch the default effect play. From the
GameObject menu, choose Effects > Particle System, and you’ll see basic white puff-
balls spraying upward from the new object. Or rather, you’ll see particles spraying
upward while you have the object selected. When you select a particle system, the par-
ticle playback panel is displayed in the corner of the screen and indicates the amount
of time that has elapsed (see figure 4.19).

 The default effect looks pretty neat already, but let’s go through parameters you
can use to customize the effect.

Unity has a sophisticated system called Mecanim for managing animations on mod-
els. The special name Mecanim identifies the newer, more advanced animation sys-
tem that was added to Unity as a replacement for the older animation system. The
older system is still around, identified as legacy animation. But it may be phased out
in a future version of Unity, at which point Mecanim will be the animation system.

Although we don’t work with any animations in this chapter, we’ll play animations on
characters in future chapters.

Figure 4.18 Fire effect created
using a particle system

96 CHAPTER 4 Developing graphics for your game

4.6.1 Adjusting parameters on the default effect

Figure 4.20 shows the entire list of settings for a particle system. We’re not going to go
through every single setting in that list; instead, we’ll look at those relevant to making
the fire effect. Once you understand how a few of the settings work, the rest should be
fairly self-explanatory. Each setting’s label is, in fact, a whole information panel. Ini-
tially, only the first information panel is expanded; the rest of the panels are col-
lapsed. Click the setting’s label to expand that information panel.

TIP Many of the settings are controlled by a curve displayed at the bottom of
the Inspector. That curve represents how the value changes over time: the left
side of the graph indicates when the particle first appears, the right side indi-
cates when the particle is gone, the bottom is a value of 0, and the top is the
maximum value. Drag points around the graph and double-click or right-
click the curve to insert new points.

Adjust parameters of the particle system as indicated in figure 4.20, and it’ll look more
like a jet of flame.

Pause or reset the particle
effect playing in the scene.

Click and drag the label
Playback Time to play
back and forth.

Figure 4.19 Playback panel for a particle system

97Creating effects by using particle systems

Looping: The particle system keeps
playing forever; leave the default.

Lifetime: How long the particle exists;
reduce to 3.

Speed: How fast the particle is moving;
reduce to 1.

Size: How big the particle is; leave the default.

Rotation: The orientation of the particle;
click the arrow menu to change to Between
Two Constants, and set to 0 and 180.

Color: Tint the particles. We want a dim
orange, like RGB values 182, 101, 58.

Select settings’ curves (e.g., Size over Lifetime)
to edit them here. Add points to the curve by
double-clicking or by right-clicking and choosing
Add Key.

Renderer: Set what each particle looks like.
You could even set this to a mesh, but leave
it as Billboard and drag a new material
(explained shortly).

Rotation over Lifetime: The particle rotates
while it moves. The default is off; turn this
on and set Random Between to -80 and 80
to make different particles rotate in different
directions.

Size over Lifetime: The particle grows and
shrinks. The default is off; turn this on and
click the arrow to set a curve. The bottom of
this image shows a curve that quickly grows
and then slowly shrinks back to 0.

Shape: The shape of the area emitted from.
The default is a wide cone, but we want a
small box to make a tight jet of flame (set to
Box, and all numbers to 0.2)

Emission: How quickly particles are emitted;
leave the default.

Local simulation space is fine for a still
particle system, but World may be better for
a system that’s moving.

Figure 4.20 The Inspector displays settings
for a particle system (pointing out settings for
the fire effect).

98 CHAPTER 4 Developing graphics for your game

4.6.2 Applying a new texture for fire

Now the particle system looks more like a jet of flame, but
the effect still needs the particles to look like flame, not
white blobs. That requires importing a new image into
Unity. Figure 4.21 depicts the image I painted; I made an
orange dot and used the Smudge tool to draw out the ten-
drils of the flame (and then I drew the same thing in yellow).

 Whether you use this image from the sample project,
draw your own, or download a similar one, you need to
import the image file into Unity. As explained previously,
drag image files into the Project view, or choose Assets >
Import New Asset.

 Just as with 3D models, textures aren’t applied to particle systems directly. You add
the texture to a material and apply that material to the particle system. Create a new
material and then select it to see its properties in the Inspector. Drag the fire image
from Project up to the texture slot. That links the fire texture to the fire material, so
now you want to apply the material to the particle system. Figure 4.22 shows how to do
this: select the particle system, expand Renderer at the bottom of the settings, and
drag the material onto the Material slot.

As you did for the skybox material, you need to change the shader for a particle mate-
rial. Click the Shader menu near the top of the material settings to see the list of avail-
able shaders. Instead of the standard default, a material for particles needs one of the
shaders under the Particles submenu. As shown in figure 4.23, in this case, we want
Standard Unlit. Now switch the material’s Rendering Mode to Additive. This will make
the particles appear to be hazy and brighten the scene, just like a fire.

DEFINITION Additive is a shader effect that adds the color of the particle to the
color behind it, as opposed to replacing the pixels. This makes the pixels
brighter and makes black on the particle turn invisible. These shaders have
the same visual effect as the Additive layer effect in Photoshop.

Figure 4.22 Assign a material to the particle system.

Figure 4.21 The image
used for fire particles

99Creating effects by using particle systems

WARNING Changing this shader may cause Unity to emit a warning about
needing to apply to systems. Click the Apply to Systems button at the bot-
tom of the Inspector.

With the fire material assigned to the fire particle effect, it’ll now look like figure 4.18.
This looks like a pretty convincing jet of flame, but the effect doesn’t work only when
sitting still. Next, let’s attach it to an object that moves around.

4.6.3 Attaching particle effects to 3D objects
Create a sphere (remember, GameObject > 3D Object > Sphere). Create a new script
called BackAndForth and attach it to the new sphere.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BackAndForth : MonoBehaviour {
 public float speed = 3.0f;
 public float maxZ = 16.0f;
 public float minZ = -16.0f;

 private int direction = 1;

 void Update() {
 transform.Translate(0, 0, direction * speed * Time.deltaTime);

 bool bounced = false;
 if (transform.position.z > maxZ || transform.position.z < minZ) {
 direction = -direction;
 bounced = true;
 }
 if (bounced) {
 transform.Translate(0, 0, direction * speed * Time.deltaTime);
 }
 }
}

Listing 4.1 Moving an object back and forth along a straight path

From the material’s
Shader menu, choose
Particles > Standard Unlit.

After choosing the particle shader,
change Rendering Mode to Additive.

Figure 4.23 Setting the shader for the fire particle material

These are the positions the
object moves between.

Which direction is the
object currently moving in?

Toggle the
direction
back and

forth.
Apply a second movement in the
new direction if the object switched
directions.

100 CHAPTER 4 Developing graphics for your game

Run this script, and the sphere glides back and forth in the central corridor of the
level. Now you can make the particle system a child of the sphere, and the fire will
move with the sphere. Just as with the walls of the level, in the Hierarchy view, drag the
particle object onto the sphere object.

WARNING You usually have to reset the position of an object after making it
the child of another object. For example, we want the particle system at 0, 0, 0
(this is relative to the parent). Unity will preserve the placement of an object
from before it was linked as a child.

Now the particle system moves along with the sphere. However, the fire isn’t deflect-
ing from the movement, which looks unnatural. That’s because, by default, particles
move correctly only in the local space of the particle system. To complete the flaming
sphere, find Simulation Space in the particle system settings (it’s in the top panel of
figure 4.20) and switch from Local to World.

NOTE In this script, the object moves back and forth in a straight line, but video
games commonly have objects moving around complex paths. Unity comes
with support for complex navigation and paths; see https://docs.unity3d
.com/Manual/Navigation.html to read about it.

I’m sure that, at this point, you’re itching to apply your own ideas and add more con-
tent to this sample game. You should do that—you could create more art assets, or
even test your skills by bringing in the shooting mechanics developed in chapter 3. In
the next chapter, we’ll switch gears to a different game genre and start over with a new
game. Even though future chapters will switch to other game genres, everything from
these first four chapters will still apply and be useful.

Summary
 Art asset is the term for all individual graphics.
 Whiteboxing is a useful first step for level designers to block out spaces.
 Textures are 2D images displayed on the surface of 3D models.
 3D models are created outside Unity and imported as FBX files.
 Particle systems are used to create many visual effects (fire, smoke, water, and

so on).

https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html

Part 2

Getting comfortable

You’ve built your first game prototypes in Unity, so now you’re ready to
stretch yourself by tackling other game genres. At this point, the rhythms of
working in Unity should feel familiar: create a script with such and such func-
tion, drag this object to that slot in the Inspector, and so forth. You’re not trip-
ping over details of the interface so much anymore, which means the remaining
chapters don’t need to rehash the basics. Let’s run through a succession of addi-
tional projects that will progressively teach you more and more about develop-
ing games in Unity.

103

Building a
 Memory game using

 Unity’s 2D functionality

Up to now, we’ve been working with 3D graphics, but you can also work with 2D
graphics in Unity. So in this chapter, you’ll build a 2D game. You’re going to
develop the classic children’s game Memory: you’ll display a grid of card backs,
reveal the card front when it’s clicked, and score matches. These mechanics cover
the basics you need to know to develop 2D games in Unity.

 Although Unity originated as a tool for 3D games, it’s used often for 2D games
as well. Unity has had built-in 2D graphics support since version 4.3 in 2013, but
even before then 2D games were already being developed in Unity (especially

This chapter covers
 Displaying 2D graphics in Unity

 Making objects clickable

 Loading new images programmatically

 Maintaining and displaying state by using UI text

 Loading levels and restarting the game

104 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

mobile games that took advantage of Unity’s cross-platform nature). In prior versions
of Unity, game developers required a third-party framework to emulate 2D graphics
within Unity’s 3D scenes. Eventually, the core editor and game engine were modified
to incorporate 2D graphics, and this chapter will teach you about that functionality.

 The 2D workflow in Unity is more or less the same as the workflow to develop a 3D
game: import art assets, drag them into a scene, and write scripts to attach to the
objects. The primary kind of art asset in 2D graphics is called a sprite.

DEFINITION Sprites are 2D images displayed directly on the screen, as opposed
to images displayed on the surface of 3D models (that is, textures).

You can import 2D images into Unity as sprites in much the same way you can import
images as textures (see chapter 4). Technically, these sprites will be objects in 3D space,
but they’ll be flat surfaces all oriented perpendicular to the z-axis. Because they’ll all face
the same direction, you can point the camera straight at the sprites, and players will be
able to discern their movements only along the x- and y-axes (in two dimensions).

 In chapter 2, we discussed the coordinate axes: having three dimensions adds a z-
axis perpendicular to the x- and y-axes you were already familiar with. Two dimensions
are just those x- and y-axes (that’s what your teacher was talking about in math class!).

5.1 Setting up everything for 2D graphics
You’re going to create the classic game of Memory. For those unfamiliar with this
game, a series of cards are dealt out facedown. Every card has a matching card located
somewhere else, but the player sees only the reverse side of the card. The player can
turn over two cards at a time, attempting to find matching cards; if the two cards cho-
sen aren’t a match, they’ll flip back, and then the player can guess again.

 Figure 5.1 shows a mock-up of the game we’re going to build; compare this to the
road map diagram from chapter 2. The mock-up this time depicts exactly what the
player will see (whereas the mock-up for our 3D scene depicted the space around the
player and then where the camera went for the player to see through). Now that you
know what you’ll be building, it’s time to get to work!

Score—the number
of matches made

Reset button—click
this to start over

Cards—initially facedown, show image when clicked

Score: 1

Figure 5.1 Mock-up of what the Memory game will look like

105Setting up everything for 2D graphics

5.1.1 Preparing the project

The first step is to gather up and display graphics for our game. In much the same way
as building the 3D demo previously, you want to start the new game by putting
together the minimum set of graphics for the game to operate, and after that’s in
place, you can start programming the functionality.

 That means you’ll need to create everything depicted in figure 5.1: card backs for
hidden cards, a series of card fronts for when they turn over, a score display in one
corner, and a reset button in the opposite corner. We also need a background for the
screen, so all together, our art requirements sum up to figure 5.2.

TIP As always, a finished version of the project, including all necessary art
assets, can be downloaded from http://mng.bz/VBY5, this book’s website.
You can copy the images from there to use in your own project.

Gather the required images and then
create a new project in Unity. In the
New Project window that comes up,
you’ll notice project templates (shown
in figure 5.3) that let you switch
between 2D and 3D mode. In previous
chapters, we’ve worked with 3D graph-
ics, and because that’s the default
value, we haven’t been concerned with
this setting. In this chapter, though,
you’ll want to select the 2D template
when creating a new project.

 With the new project for this chap-
ter created and set for 2D, we can start
putting our images into the scene.

Card back

Reset button

Background (table top)

Card front
(four symbols)

Figure 5.2 Art assets
required for the Memory
game

Figure 5.3 Create new projects in either 2D or 3D
mode with these buttons.

http://mng.bz/VBY5

106 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

2D Editor mode and 2D Scene view
The 2D/3D setting for new projects adjusts two settings within Unity’s editor, both of
which you can adjust manually later if you wish. Those two settings are the 2D Editor
mode and the 2D Scene view. The 2D Scene view controls how the scene is displayed
within Unity; toggle the 2D button along the top of the Scene view.

You set 2D Editor mode by opening the Edit menu and selecting Editor from the Proj-
ect Settings drop-down list. Within those settings, you’ll see the Default Behavior
Mode setting with selections for either 3D or 2D.

Setting the editor to 2D mode causes imported images to be set to Sprite. As you
saw in chapter 4, images normally import as textures, but that’s easy to switch in the
Inspector. Just select the asset to see its settings, and remember to click Apply after
making any changes.

2D Editor mode also causes new scenes to lack the default 3D lighting setup; this
lighting doesn’t harm 2D scenes, but it’s unnecessary. If you ever need to remove it
manually, delete the directional light that comes with new scenes and turn off the
skybox in the lighting window (click the tiny circle icon for a file picker and choose
None from the list).

2D Scene view toggle

2D view toggle button

2D/3D Behavior
Mode menu

Default Behavior Mode setting within Edit > Project Settings > Editor

107Setting up everything for 2D graphics

5.1.2 Displaying 2D images (aka sprites)

Drag all the image files into the Project view to import them, ensuring that the images
are imported as sprites and not textures. (This is automatic if the editor is set to 2D.
Select an asset to see its import settings in the Inspector.) Now drag the table_top
sprite (our background image) up from the Project view into the empty scene. As with
mesh objects, in the Inspector there’s a Transform component for the sprite; type 0, 0,
5 to position the background image.

TIP Another import setting to take note of is Pixels Per Unit. Because Unity
was previously a 3D engine that had 2D graphics grafted in, one unit in Unity
isn’t necessarily one pixel in the image. You could set the Pixels Per Unit set-
ting to 1:1, but I recommend leaving it at the default of 100:1 (because the
physics engine doesn’t work properly at 1:1, and the default is better for com-
patibility with others’ code).

The 0s for the X and Y positions are straightforward (this sprite will fill the entire
screen, so you want it at the center), but that 5 for the Z position might seem odd. For
2D graphics, shouldn’t only X and Y matter? Well, X and Y are the only values that
matter for positioning the object on the 2D screen, but the Z value still matters for
stacking objects.

 Lower Z values are closer to the camera, so sprites with lower Z values are displayed
on top of other sprites (refer to figure 5.4). Accordingly, the background sprite

Creating packed sprite atlases
Although we’re going to use separate images in this project, you can have multiple
sprites laid out in a single image. The image is usually called a sprite sheet when
numerous frames of an animation are combined into one image, but the more general
term for multiple images combined into one is an atlas.

Animated sprites are common in 2D games, and we’ll implement those in the next
chapter. Multiple frames can be imported as multiple images, but games usually
have all the frames of animation laid out in a sprite sheet. Basically, all the separate
frames appear as a grid on one large image.

In addition to keeping frames of animation together, sprite atlases are also often
used for still images. That’s because atlases can optimize the performance of sprites
in two ways: by reducing the amount of wasted space in images by packing them
tightly, and by reducing the draw calls of the video card (every new image that’s
loaded causes a bit more work for the video card).

Sprite atlases can be created using external tools like TexturePacker (see appendix
B), and that approach will certainly work. But Unity includes sprite-packing function-
ality, which packs together multiple sprites automatically. To use this feature, enable
Sprite Packer in Editor settings (choose Edit > Project Settings and switch the Mode
to Always Enabled). Now you can create Sprite Atlas assets that contain individual
sprites. For more information, look at Unity’s documentation at http://mng.bz/ZxOZ.

http://mng.bz/ZxOZ

108 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

should have the highest Z value. You’ll set your background to a positive Z position,
and then give everything else a 0 or negative Z position.

 Other sprites will be positioned with values with up to two decimal places because
of the Pixels Per Unit setting mentioned earlier. A ratio of 100:1 means that 100 pixels
in the image are 1 unit in Unity; put another way, 1 pixel is 0.01 units. But before you
put any more sprites into the scene, let’s set up the camera for this game.

5.1.3 Switching the camera to 2D mode

Now let’s adjust settings on the main camera in the scene. You might think that
because the Scene view is set to 2D, what you see in Unity is what you’ll see in the
game. Somewhat unintuitively, though, that isn’t the case.

WARNING Whether or not the Scene view is set to 2D has nothing to do with
the camera view in the running game.

It turns out that, regardless of whether the Scene view is set to 2D mode, the camera in
the game is set independently. This can be handy in many situations so that you can
toggle the Scene view back to 3D to work on certain effects within the scene. This dis-
connect does mean that what you see in Unity isn’t necessarily what you see in the
game, and it can be easy for beginners to forget this.

 The most important camera setting to adjust is Projection. The camera projection
is probably already correct because you created the new project in 2D mode, but this
is still important to know about and worth double-checking. Select the camera in
Hierarchy to show its settings in the Inspector, and then look for the Projection set-
ting (see figure 5.5). For 3D graphics, the setting should be Perspective, but for 2D
graphics, the camera projection should be Orthographic.

Sprites

z-axis

Stacked sprites seen in 2D
(Orthographic) view

3D (Perspective) view

Figure 5.4 How sprites stack along the z-axis

109Setting up everything for 2D graphics

DEFINITION Orthographic is the term for a flat camera view that has no appar-
ent perspective. This is the opposite of a Perspective camera view, in which
closer objects appear larger and lines recede into the distance.

Although the Projection mode is the most important camera setting for 2D graphics,
we have a few other settings to adjust as well. Next, we’ll look at Size, which is under
Projection. The camera’s orthographic size determines the size of the camera view
from the center of the screen up to the top of the screen. In other words, set Size to
half the pixel dimensions of the screen you want. If you later set the resolution of the
deployed game to the same pixel dimensions, you’ll get pixel-perfect graphics.

DEFINITION Pixel-perfect means one pixel on the screen corresponds to one
pixel in the image (otherwise, the video card will make the images subtly
blurry while scaling up to fit the screen).

Let’s say you want a pixel-perfect 1024 × 768 screen. That means the camera height
should be 384 pixels. Divide that by 100 (because of the pixels-to-units scale) and you
get 3.84 for the camera size. Again, that math is SCREEN_SIZE / 2 / 100f (f as in float,
rather than an int value). Given that the background image is 1024 × 768 (select the
asset to check its dimensions), then clearly this value of 3.84 is what we want for our
camera.

 The remaining adjustments to make in the Inspector are the camera’s background
color and Z position. As mentioned previously for sprites, higher Z positions are fur-
ther away into the scene. As such, the camera should have a pretty low Z position; set
the position of the camera to 0, 0, -100. Next make sure the camera’s Clear Flag is set
to Solid Color instead of Skybox; this setting determines the camera background. The
camera’s background color should probably be black; the default color is blue, and

The camera’s background
visual

Background color

Perspective/orthographic
projection

Camera size (half the
screen height)

Figure 5.5 Camera settings to adjust for 2D graphics

110 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

that’ll look odd displayed along the sides if the screen is wider than the background
image (which is likely). Click the color swatch next to Background and set the color
picker to black.

 Now save the scene as Scene and click Play. You’ll see the Game view filled with our
tabletop sprite. As you saw, getting to this point wasn’t completely straightforward
(again, that’s because Unity was a 3D game engine that has recently had 2D graphics
grafted in). But the tabletop is completely bare, so our next step is to put a card on the
table.

5.2 Building a card object and making it react to clicks
Now that the images are all imported and ready to use, let’s build the card objects that
form the core of this game. In Memory, all the cards are initially face down, and
they’re face up only temporarily, when you choose a pair of cards to turn over. To
implement this functionality, you’re going to create objects that consist of multiple
sprites stacked on top of one another. Then, you’ll write code that makes the cards
reveal themselves when clicked with the mouse.

5.2.1 Building the object out of sprites

Drag one of the card images into the scene. Use one of the card fronts, because you’ll
add a card back on top to hide the image. Technically, the position right now doesn’t
matter, but eventually it will, so you may as well position the card at -3, 1, 0. Now drag
the card_back sprite into the scene. Make this new sprite a child of the previous card
sprite (remember, in the Hierarchy, drag the child object onto the parent object) and
then set its position to 0, 0, -0.1 (Keep in mind that this position is relative to the par-
ent, so this means, “Put it at the same X and Y but move it closer on Z.”)

NOTE In this setup, the back of the card and the front of the card are sepa-
rate objects. That makes the graphics simpler to set up, and revealing the
“front” is as simple as turning off the “back.” However, since Unity is always
3D even when the scene looks 2D, you could make a 3D card that flips over.
That would be more complex to set up but may have advantages for certain
graphical effects. There’s no one right way to implement things, just different
pros and cons to balance.

TIP Instead of the Move, Rotate, and Scale tools that we used in 3D, in 2D
mode we use a single manipulation tool called the Rect tool. In 2D mode, this
tool is selected automatically, or you can click the fifth control button in the
top-left corner of Unity. With this tool active, click and drag objects to do all
three operations (move/rotate/scale) in two dimensions.

With the card back in place, as depicted in figure 5.6, the graphics are ready for a
reactive card that can be revealed.

111Building a card object and making it react to clicks

5.2.2 Mouse input code

In order to respond when the player clicks them, the card sprites need to have a col-
lider component. New sprites don’t have a collider by default, so they can’t be clicked.
You’re going to attach a collider to the root card object, but not to the card back, so
that only the card front and not the card back will receive mouse clicks.

 To do this, select the root card object in Hierarchy (don’t click the card in the
scene, because the card back is on top and you’ll select that part instead). Then click
the Add Component button in the Inspector. Select Physics 2D (not Physics, because
that system is for 3D physics and this is a 2D game) and then choose a box collider.

 Besides a collider, the card needs a script in order to be reactive to the player click-
ing it, so let’s write some code. Create a new script called MemoryCard and attach it to
the root card object (again, not the card back). This listing shows the code that makes
the card emit debug messages when clicked.

dusing System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MemoryCard : MonoBehaviour {
 public void OnMouseDown() {
 Debug.Log("testing 1 2 3");
 }
}

TIP If you’re not in this habit yet, organizing your assets into separate folders
is probably a good idea. Create folders for scripts and drag files within the
Project view. Be careful to avoid the special folder names Unity responds to:
Resources, Plugins, Editor, and Gizmos. Later in the book, we’ll go over what
some of these special folders do, but for now avoid naming any folders with
those words.

Listing 5.1 Emitting debug messages when clicked

Card back is a child of
the card front sprite.

Position slightly in front of
the parent sprite. (Remember,
this is the local position relative
to the parent.)

Figure 5.6 Hierarchy linking and position for the card back sprite

The function is called when
the object is clicked.

Just emit a test message
to the console for now.

112 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

Nice—we can click the card now! Just like Update(), OnMouseDown() is another func-
tion provided by MonoBehaviour, this time responding when the object is clicked. Play
the game and watch messages appear in the console. But this only prints to the con-
sole for testing; we want the card to be revealed.

5.2.3 Revealing the card on a click

Rewrite the code to match this listing (the code won’t run quite yet, but don’t worry).

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MemoryCard : MonoBehaviour {
 [SerializeField] GameObject cardBack;

 public void OnMouseDown() {
 if (cardBack.activeSelf) {
 cardBack.SetActive(false);
 }
 }
}

We’ve made two key additions to the script: a reference to an object in the scene, and
the SetActive() method that deactivates that object. The first part, the reference to
an object in the scene, is similar to what we’ve done in previous chapters: mark the
variable as serialized and then drag the object from Hierarchy over to the variable
in the Inspector. With the object reference set, the code will now affect the object in
the scene.

 The second key addition to the code is the SetActive command. This command
will deactivate any GameObject, making that object invisible. If we now drag
card_back in the scene to this script’s variable in the Inspector, the card back disap-
pears when you click the card during a game. Hiding the card back will reveal the card
front; we’ve accomplished yet another important task for the Memory game! But this
is still only one card, so now let’s create a bunch of cards.

TIP Forgetting to drag over the object when a script has a serialized variable
is a fairly common mistake, so it’s useful to recognize that error message in
the Console tab. Code that uses a serialized variable that hasn’t been set will
throw a null reference error. Actually, a null reference error gets thrown any
time the code attempts to use a variable not set yet, whether or not it’s a seri-
alized variable.

Listing 5.2 Script that hides the back when the card is clicked

Variable that appears
in the Inspector

Run deactivate code only if the
object is currently active/visible.

Set the object to
inactive/invisible.

113Displaying the various card images

5.3 Displaying the various card images
We’ve programmed a card object that initially shows the card back but reveals itself
when clicked. That was a single card, but the game needs a whole grid of cards, with
different images on most cards. We’ll implement the grid of cards by using a couple of
concepts seen in previous chapters, along with some concepts you haven’t seen
before. Chapter 3 introduced the concepts of using an invisible SceneController
component and instantiating clones of an object. The SceneController will apply dif-
ferent images to different cards this time.

5.3.1 Loading images programmatically

The game we’re creating has four card images. All eight cards on the table (two for
each symbol) will be created by cloning the same original, so all cards will initially
have the same symbol. We’ll have to change the image on the card in the script, load-
ing different images programmatically.

 To examine how images can be assigned programmatically, let’s write simple test
code (which will be replaced later) to demonstrate the technique. First, add this code
to the MemoryCard script.

...
[SerializeField] Sprite image;
void Start() {
 GetComponent<SpriteRenderer>().sprite = image;
}
...

After you save this script, the new image variable will appear in the Inspector because
it has been set as serialized. Drag a sprite up from the Project view (pick one of the
card images, and not the same as the image already in the scene) and drop it on the
Image slot. Now run the scene and you’ll see the new image on the card.

 The key to understanding this code is to know about the SpriteRenderer compo-
nent. You’ll notice in figure 5.7 that the card back object has just two components: the
standard Transform component on all objects in the scene, and a new component
called SpriteRenderer. This component makes the GameObject into a sprite object
and determines which sprite asset will be displayed. Note that the first property in the
component is called sprite and links to one of the sprites in the Project view; the
property can be manipulated in code, and that’s precisely what this script does.

 As it did with CharacterController and custom scripts in previous chapters, the
GetComponent() method returns other components on the same object, so we use it
to reference the SpriteRenderer object. The sprite property of SpriteRenderer can
be set to any sprite asset, so this code sets that property to the Sprite variable
declared at the top (which we filled with a sprite asset in the editor).

Listing 5.3 Test code to demonstrate changing the sprite image

Reference to the Sprite
asset that will be loaded Set the sprite for

this SpriteRenderer
component.

114 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

Well, that wasn’t too hard! But it’s only a single image. We have four images to use, so
now delete the new code from listing 5.3 (it was only a demonstration of how the tech-
nique works) to prepare for the next section.

5.3.2 Setting the image from an invisible SceneController

Recall that, in chapter 3, we created an invisible object in the scene to control spawn-
ing objects. We’re going to take that approach here as well, using an invisible object to
control more abstract features that aren’t tied to any specific object in the scene.

 First, create an empty GameObject (remember, choose GameObject > Create
Empty). Then create a new script, SceneController, in the Project view, and drag this
script asset onto the controller GameObject. Before writing code in the new script,
add the contents of the next listing to the MemoryCard script instead of what you saw in
listing 5.3.

...
[SerializeField] SceneController controller;

private int _id;
public int Id {
 get {return _id;}
}

public void SetCard(int id, Sprite image) {
 _id = id;
 GetComponent<SpriteRenderer>().sprite = image;
}
...

The primary change from previous listings is that we’re now setting the sprite image
in SetCard() instead of Start(). Because that’s a public method that takes a sprite as
a parameter, you can call this function from other scripts and set the image on this

Listing 5.4 New public methods in MemoryCard

Sprite asset displayed
on this Sprite object

Color that tints this Sprite
object (default is white for
no tint)

Figure 5.7 A sprite object in the
scene has the SpriteRenderer
component attached to it.

Added getter function (an idiom
common in languages like C# and Java) Public method that

other scripts can use
to pass new sprites
to this object

SpriteRenderer code line
just as in the deleted code
demonstration

115Displaying the various card images

object. Note that SetCard() also takes an ID number as a parameter, and the code
stores that number. Although we don’t need the ID quite yet, soon we’ll write code
that compares cards for matches, and that comparison will rely on the IDs of the
cards.

NOTE Depending on what programming languages you’ve used in the past,
you may not be familiar with the concept of getters and setters. Long story short,
they are functions that run when you attempt to access the property associated
with them (for example, retrieving the value of card.Id). There are multiple
reasons to use getters and setters, but in this case the Id property is read-only
because we have a function to only get the value and not set it.

Finally, note that the code has a variable for the controller. Even as SceneController
starts cloning card objects to fill the scene, the card objects also need a reference to
the controller to call its public methods. As usual, when the code references objects in
the scene, drag the controller object in Unity’s editor to the serialized variable slot in
the Inspector. Do this once for this single card, and all of the copies to come later will
have the reference as well. With that additional code now in MemoryCard, write this
code in SceneController.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SceneController : MonoBehaviour {
 [SerializeField] MemoryCard originalCard;
 [SerializeField] Sprite[] images;

 void Start() {
 int id = Random.Range(0, images.Length);
 originalCard.SetCard(id, images[id]);
 }
}

For now, this is a short snippet to demonstrate the concept of manipulating cards
from SceneController. Most of this should already be familiar to you (for example, in
Unity’s editor, drag the card object to the serialized variable slot in the Inspector), but
the array of images is new. As shown in figure 5.8, in the Inspector you can set the
number of elements. Type in 4 for the array length and then drag the sprites for card
images onto the array slots. Now these sprites can be accessed in the array, like any
other object reference.

 Incidentally, we used the Random.Range() method in chapter 3, so hopefully you
recall that. The exact boundary values didn’t matter there, but this time it’s important
to note that the minimum value is inclusive and may be returned, whereas the return
value is always below the maximum.

Listing 5.5 First pass at SceneController for the Memory game

Reference for the
card in the scene

An array for references
to the sprite assets

Call the public method we
added to MemoryCard.

116 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

Click Play to run this new code. You’ll see different images being applied to the
revealed card each time you run the scene. The next step is to create a whole grid of
cards instead of only one.

5.3.3 Instantiating a grid of cards

SceneController already has a reference to the card object, so now you’ll use the
Instantiate() method (see the next listing) to clone the object numerous times, as
we did when spawning objects in chapter 3.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SceneController : MonoBehaviour {
 public const int gridRows = 2;
 public const int gridCols = 4;
 public const float offsetX = 2f;
 public const float offsetY = 2.5f;

 [SerializeField] MemoryCard originalCard;
 [SerializeField] Sprite[] images;

 void Start() {
 Vector3 startPos = originalCard.transform.position;

 for (int i = 0; i < gridCols; i++) {
 for (int j = 0; j < gridRows; j++) {
 MemoryCard card;
 if (i == 0 && j == 0) {
 card = originalCard;
 } else {
 card = Instantiate(originalCard) as MemoryCard;

Listing 5.6 Cloning the card eight times and positioning in a grid

Type in the number
of array elements.

Drag sprite assets onto
array elements.

Figure 5.8 The filled-in array of sprites

Values for how many grid
spaces to make and how
far apart to place them

Position of the first
card; all other cards
will be offset from
here.

Nested loops to define both
columns and rows of the grid

Container reference for either
the original card or the copies

117Displaying the various card images

 }

 int id = Random.Range(0, images.Length);
 card.SetCard(id, images[id]);

 float posX = (offsetX * i) + startPos.x;
 float posY = -(offsetY * j) + startPos.y;
 card.transform.position = new Vector3(posX, posY, startPos.z);

 }
 }
 }
}

Although this script is much longer than the previous listing, there’s not a lot to
explain because most of the additions are straightforward variable declarations and
math. The oddest bit of this code is probably the if/else statement that begins if
(i == 0 && j == 0). That conditional either uses the original card object for the first
grid slot or clones the card object for all other grid slots. Because the original card
already exists in the scene, if you copied the card at every iteration of the loop, you’d
end up with one too many cards in the scene. The cards are then positioned by offset-
ting them according to the number of iterations through the loop.

TIP Just as when moving 3D objects, 2D objects could have transform.position
incremented repeatedly in Update() to achieve smooth movement over time.
But as you saw when moving the first-person player, collision detection isn’t
applied when adjusting transform.position directly. For that reason, the next
chapter’s code will move sprites by adjusting rigidbody2D.velocity.

Run the code now, and a grid of eight cards will be created (as depicted in figure 5.9).
The last step in preparing the grid of cards is to organize them into pairs instead of
keeping them random.

For 2D graphics, you need to offset
only X and Y; keep Z the same.

Figure 5.9 The grid of eight cards,
which are revealed when you click
them

118 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

5.3.4 Shuffling the cards

Instead of making every card random, we’ll define an array of all the card IDs (num-
bers 0 through 3 twice, for a pair of each card) and then shuffle that array. We’ll then
use this array of card IDs when setting cards, rather than making each one random.

...
void Start() {
 Vector3 startPos = originalCard.transform.position;

 int[] numbers = {0, 0, 1, 1, 2, 2, 3, 3};
 numbers = ShuffleArray(numbers);

 for (int i = 0; i < gridCols; i++) {
 for (int j = 0; j < gridRows; j++) {
 MemoryCard card;
 if (i == 0 && j == 0) {
 card = originalCard;
 } else {
 card = Instantiate(originalCard) as MemoryCard;
 }

 int index = j * gridCols + i;
 int id = numbers[index];
 card.SetCard(id, images[id]);

 float posX = (offsetX * i) + startPos.x;
 float posY = -(offsetY * j) + startPos.y;
 card.transform.position = new Vector3(posX, posY, startPos.z);
 }
 }
}

private int[] ShuffleArray(int[] numbers) {
 int[] newArray = numbers.Clone() as int[];
 for (int i = 0; i < newArray.Length; i++) {
 int tmp = newArray[i];
 int r = Random.Range(i, newArray.Length);
 newArray[i] = newArray[r];
 newArray[r] = tmp;
 }
 return newArray;
}
...

Now, when you click Play, the grid of cards will be a shuffled assortment that reveals
exactly two of each card image. The array of cards was run through the Knuth (also
known as Fisher-Yates) shuffle algorithm, a simple yet effective way of shuffling the ele-
ments of an array. This algorithm loops through the array and swaps every element of
the array with another randomly chosen array position.

Listing 5.7 Placing cards from a shuffled list

Much of this listing is context to
show where the additions go.

Declare an integer array
with a pair of IDs for all
four card sprites.

Call a function that will shuffle
the elements of the array.

Retrieve IDs from the shuffled list
instead of random numbers.

An implementation of the
Knuth shuffle algorithm

119Making and scoring matches

 You can click all the cards to reveal them, but the game of Memory is supposed to
proceed in pairs. We need a bit more code.

5.4 Making and scoring matches
The last step in making a fully functional Memory game is checking for matches.
Although we now have a grid of cards that are revealed when clicked, the various cards
don’t affect each other in any way. In the game of Memory, every time a pair of cards is
revealed, we should check to see if the revealed cards match.

 This abstract logic—checking for matches and responding appropriately—
requires that cards notify SceneController when they’ve been clicked. That requires
the additions to SceneController shown in the next listing.

...
private MemoryCard firstRevealed;
private MemoryCard secondRevealed;

public bool canReveal {
 get {return secondRevealed == null;}
}
...
public void CardRevealed(MemoryCard card) {
 // initially empty
}
...

The CardRevealed() method will be filled in momentarily; we need the empty scaffold-
ing for now to refer to in MemoryCard without any compiler errors. Note that we have a
read-only getter again, this time used to determine whether another card can be
revealed. The player can reveal another card only when two cards aren’t already revealed.

 We also need to modify MemoryCard to call the (currently empty) method in order
to inform SceneController when a card is clicked. Modify the code in MemoryCard
according to this listing.

...
public void OnMouseDown() {
 if (cardBack.activeSelf && controller.canReveal) {
 cardBack.SetActive(false);
 controller.CardRevealed(this);
 }
}

public void Unreveal() {
 cardBack.SetActive(true);
}
...

Listing 5.8 SceneController, which must keep track of revealed cards

Listing 5.9 MemoryCard modifications for revealing cards

Getter function that returns false if
a second card is already revealed

Check the controller’s
canReveal property to
make sure only two cards
are revealed at a time.

Notify the controller when
this card is revealed.

A public method so that SceneController
can hide the card again (by turning
card_back back on)

120 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

If you were to put a debug statement inside CardRevealed() to test the communica-
tion between objects, you’d see the test message appear whenever you click a card.
Let’s first handle one revealed pair.

5.4.1 Storing and comparing revealed cards

The card object was passed into CardRevealed(), so let’s start keeping track of the
revealed cards.

...
public void CardRevealed(MemoryCard card) {
 if (firstRevealed == null) {
 firstRevealed = card;
 } else {
 secondRevealed = card;
 Debug.Log("Match? " + (firstRevealed.Id == secondRevealed.Id));
 }
}
...

The listing stores the revealed cards in one of the two card variables, depending on
whether the first variable is already occupied. If the first variable is empty, fill it; if it’s
already occupied, fill the second variable and check the card IDs for a match. The
Debug statement prints either true or false in the console.

 At the moment, the code doesn’t respond to matches—it only checks for them.
Now let’s program the response.

5.4.2 Hiding mismatched cards

We’ll use coroutines again because the reaction to mismatched cards should pause to
allow the player to see the cards. Refer to chapter 3 for a full explanation of corou-
tines; long story short, using a coroutine will allow us to pause before checking for a
match. This listing shows more code for you to add to SceneController.

...
private int score = 0;
...
public void CardRevealed(MemoryCard card) {
 if (firstRevealed == null) {
 firstRevealed = card;
 } else {
 secondRevealed = card;
 StartCoroutine(CheckMatch());
 }
}

Listing 5.10 Keeping track of revealed cards in SceneController

Listing 5.11 SceneController scores a match or hides missed matches

Store card objects in one of the
two card variables, depending
on whether the first variable is
already occupied.

Compare the IDs of the two revealed cards.

Add to the list near the
top of SceneController

The only changed line in this function,
which calls the coroutine when both
cards are revealed

121Making and scoring matches

private IEnumerator CheckMatch() {
 if (firstRevealed.Id == secondRevealed.Id) {
 score++;
 Debug.Log($"Score: {score}");
 }
 else {
 yield return new WaitForSeconds(.5f);

 firstRevealed.Unreveal();
 secondRevealed.Unreveal();
 }

 firstRevealed = null;
 secondRevealed = null;
}
...

First, add a score value to track. Then, launch a coroutine to CheckMatch() when a
second card is revealed. That coroutine has two code paths, depending on whether
the cards match. If they match, the coroutine doesn’t pause; the yield command gets
skipped over. If the cards don’t match, the coroutine pauses for half a second before
calling Unreveal() on both cards, hiding them again. Finally, whether or not a match
was made, the variables for storing cards are both nulled out, paving the way for
revealing more cards.

 When you play the game, mismatched cards will display briefly before hiding
again. Debug messages appear when you score matches, but we want the score dis-
played as a label on the screen.

5.4.3 Text display for the score

Displaying information to the player is half of the reason for a UI in a game (the other
half is receiving input from the player. UI buttons are discussed in the next section).

DEFINITION UI stands for user interface. Another closely related term is GUI, or
graphical user interface, which refers to the visual part of the interface, such as
text and buttons, and which is what a lot of people mean when they say UI.

Unity has multiple ways to create text displays, but using the TextMeshPro package is
the best approach. This advanced text system was developed externally and later
acquired by Unity.

 TextMeshPro may already be installed (when creating a new project, Unity installs
several commonly used packages), but if not, then you must install it in Package Man-
ager. From the menu, choose Window > Package Manager to open that window and
scroll down to TextMeshPro in the list on the left, as shown in figure 5.10. Select that
package and then click the Install button.

 With that package installed, you can create a TextMeshPro object in the scene by
going to the GameObject menu and choosing 3D Object > Text – TextMeshPro. Since

Increment the score if the revealed
cards have matching IDs.

Construct the message by
using string interpolation.

Unreveal the cards if
they do not match.

Clear out the variables whether
or not a match was made.

122 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

this will be the first time TextMeshPro is used in this project, the TMP Importer window
will automatically appear. Click the Import TMP Essentials button, and after the
required resources finish downloading, the text object will appear in the scene.

NOTE 3D text might sound incompatible with a 2D game, but don’t forget
that this is technically a 3D scene that looks flat because it’s being seen
through an orthographic camera. That means we can put 3D objects into the
2D game if we want—they’re displayed in a flat perspective.

WARNING TextMeshPro is also listed under GameObject > UI. Later chapters
cover Unity’s UI system, and you’ll use that other GameObject instead in
those chapters. Don’t get the two versions confused; while both are Text-
MeshPro objects, we are not using Unity’s advanced UI system in this chapter.

Select the new text object to see its settings in the Inspector. Position this object at
-2.3, 3.1, -10; that’s 230 pixels to the left and 310 pixels up, putting it in the top-left
corner and nearer to the camera so that it’ll appear on top of other game objects. Also
decrease Width to 5 and Height to 1 since the new text starts out huge.

 Scroll down to the TextMeshPro settings. We could customize the text in tons of
ways but are going to leave most of the defaults for now. Figure 5.11 shows the settings
we’ll change, and you can learn about them all in the Unity documentation
(http://mng.bz/RqQP).

Select a package
in this list.

If needed, switch the list to Unity Registry.

Click the Install button.

Figure 5.10 Installing TextMeshPro via Package Manager

https://shortener.manning.com/RqQP

123Restart button

Enter Score: in the big Text Input box and decrease Font Size to 8. Manipulating this
text object during the game requires just a few adjustments in the scoring code.

...
using TMPro;
...
[SerializeField] TMP_Text scoreLabel;
...
private IEnumerator CheckMatch() {
 if (firstRevealed.Id == secondRevealed.Id) {
 score++;
 scoreLabel.text = $"Score: {score}";
 }
...

As you can see, text is a property of the object that you can set to a new string. Put the
score variable into the string to display that value.

 Drag the text object in the scene to the scoreLabel variable you added to Scene-
Controller and then click Play. Now you should see the score displayed while you
play the game and make matches. Huzzah—the game works!

5.5 Restart button
At this point, the Memory game is fully functional. You can play the game, and all the
essential features are in place. But this playable core is still lacking the overarching
functionality that players expect or need in a finished game. For example, right now
you can play the game only once; you need to quit and restart to play again. Let’s add
a control to the screen so that players can start the game over without having to quit.

Listing 5.12 Displaying the score on a text object

Width and Height
are near the top.

Then scroll down...
...to the Text settings.

Type in the Text Input box
and set Font Size.

Figure 5.11 Inspector settings for this text object

Include TextMeshPro code.

124 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

 This functionality divides into two tasks: create a UI button and reset the game
when that button is clicked. Figure 5.12 shows what the game will look like with the
Start button.

Neither task is specific to 2D games, by the way. All games need UI buttons, and all
games need the ability to reset. We’ll go over both topics to round out this chapter.

5.5.1 Programming a UIButton component by using SendMessage

First, place the button sprite in the scene by dragging it up from the Project view. Give
it a position like 4.5, 3.25, -10; that will place the button in the top-right corner
(that’s 450 pixels to the right and 325 pixels up) and move it nearer to the camera so
that it’ll appear on top of other game objects. Because we want to be able to click this
object, give it a collider (just as with the card object, choose Add Component > Physics
2D > Box Collider 2D).

NOTE As alluded to in the previous section, Unity provides multiple ways to
create UI displays, including an advanced UI system introduced in later ver-
sions of Unity. For now, we’ll build the single button out of standard display
objects. A future chapter will teach you about the advanced UI functionality;
the UI for both 2D and 3D games is ideally built with that system.

Now create a new script called UIButton and assign it to the button object.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class UIButton : MonoBehaviour {
 [SerializeField] GameObject targetObject;
 [SerializeField] string targetMessage;
 public Color highlightColor = Color.cyan;

Listing 5.13 Code to make a generic and reusable UI button

Figure 5.12 Complete Memory game
screen, including the Start button

Reference a target object
to inform about clicks.

125Restart button

 public void OnMouseEnter() {
 SpriteRenderer sprite = GetComponent<SpriteRenderer>();
 if (sprite != null) {
 sprite.color = highlightColor;
 }
 }
 public void OnMouseExit() {
 SpriteRenderer sprite = GetComponent<SpriteRenderer>();
 if (sprite != null) {
 sprite.color = Color.white;
 }
 }

 public void OnMouseDown() {
 transform.localScale = new Vector3(1.1f, 1.1f, 1.1f);
 }
 public void OnMouseUp() {
 transform.localScale = Vector3.one;
 if (targetObject != null) {
 targetObject.SendMessage(targetMessage);
 }
 }
}

The majority of this code happens inside a series of OnMouseSomething functions. Like
Start() and Update(), these are a series of functions automatically available to all
script components in Unity. MouseDown was already mentioned in section 5.2.2, but
these other functions also respond to mouse interactions if the object has a collider.
MouseEnter and MouseExit are a pair of events used for hovering the mouse cursor
over an object: MouseEnter triggers when the mouse cursor first moves over an object,
and MouseExit triggers when the mouse cursor moves away. Similarly, MouseDown and
MouseUp are a pair of events for clicking the mouse. MouseDown triggers when the
mouse button is physically pressed, and MouseUp triggers when the mouse button is
released.

 You can see that this code tints the sprite when the mouse hovers over it and scales
the sprite when it’s clicked. In both cases, you can see that the change (in color or
scale) happens when the mouse interaction begins, and then the property returns to
the default (either white or scale 1) when the mouse interaction ends. For scaling, the
code uses the standard transform component that all GameObjects have. For tint,
though, the code uses the SpriteRenderer component that sprite objects have; the
sprite is set to a color that’s defined in Unity’s editor through a public variable.

 In addition to returning the scale to 1, SendMessage() is called when the mouse is
released. SendMessage() calls the function of the given name in all components of
that GameObject. Here, the target object for the message, as well as the message to
send, are both defined by serialized variables. This way, the same UIButton compo-
nent can be used for all sorts of buttons, with the target of different buttons set to dif-
ferent objects in the Inspector.

Tint the button when the
mouse hovers over it.

The button’s size
pops a bit when
it’s clicked.

Send a message to the target
object when the button is clicked.

126 CHAPTER 5 Building a Memory game using Unity’s 2D functionality

 Normally, when doing OOP in a strongly typed language like C#, you need to know
the type of a target object in order to communicate with that object (for example, to
call a public method of the object, like calling targetObject.SendMessage() itself).
But scripts for UI elements may have lots of types of targets, so Unity provides the
SendMessage() method to communicate specific messages with a target object even if
you don’t know exactly what type of object it is.

WARNING Using SendMessage() is less efficient for the CPU than calling pub-
lic methods on known types (that is, using object.SendMessage("Method")
versus component.Method()), so use SendMessage() only when it’s a big win
in terms of making the code simpler to understand and work with. As a gen-
eral rule, that will be the case only if lots of different types of objects could be
receiving the message. In situations like that, the inflexibility of inheritance
or even interfaces will hinder the game development process and discourage
experimentation.

With this code written, wire up the public variables in the button’s Inspector. The
highlight color can be set to whatever you’d like (although the default cyan looks
pretty good on a blue button). Meanwhile, put the SceneController object in the tar-
get object slot, and then type Restart as the message.

 If you play the game now, the Reset button in the top-right corner changes color in
response to the mouse and makes a slight visual pop when clicked. But an error mes-
sage will be emitted when you click the button; in the console, you’ll see an error
about there not being a receiver for the Restart message. That’s because we haven’t
written a Restart() method in SceneController, so let’s add that.

5.5.2 Calling LoadScene from SceneController

The SendMessage() method from the button attempts to call Restart() in the
SceneController, so let’s add that now.

...
using UnityEngine.SceneManagement;
...
public void Restart() {
 SceneManager.LoadScene("Scene");
}
...

You can see the one thing Restart() does is call LoadScene(). That method loads a
saved scene asset (the file created when you click Save Scene in Unity). Pass the name
of the scene you want to load into the method. In my case, the scene was saved with
the name Scene, but if you used a different name, pass that to the method instead.

Listing 5.14 SceneController code that reloads the level

Include SceneManagement code.

If your scene has a different name,
change the name in this string.

127Summary

 Click Play to see what happens. Reveal a few cards and make a few matches. If you
then click the Reset button, the game starts over, with all cards hidden and a score of
0. Great, just what we wanted!

 As the name LoadScene() indicates, this method can load different scenes. But
what exactly happens when a scene loads, and why does this reset the game? What
happens is that everything from the current level (all objects in the scene, and thus all
scripts attached to those objects) is flushed from memory, and then everything from
the new scene is loaded. Because the new scene is the saved asset of the current scene
(in this case), everything is flushed from memory and then reloaded from scratch.

TIP You can mark specific objects to exclude from the default memory flush
when a level is loaded. Unity provides the DontDestroyOnLoad() method to
keep an object around in multiple scenes. You’ll use this method on parts of
the code architecture in later chapters.

Another game successfully completed! Well, completed is a relative term; you could
always implement more features, but everything from the initial plan is done. Many of
the concepts from this 2D game apply to 3D games as well, especially the checking of
game state and loading levels. It’s time to switch gears yet again and move away from
this Memory game and on to new projects.

Summary
 Displaying 2D graphics in Unity uses an orthographic camera.
 For pixel-perfect graphics, the camera size should be half the screen height.
 Clicking sprites requires that you first assign 2D colliders to them.
 New images for sprites can be loaded programmatically.
 UI text can be made using 3D text objects.
 Loading levels resets the scene.

128

Creating
 a basic 2D platformer

Let’s create a new game and continue learning about Unity’s 2D functionality.
Chapter 5 covered the fundamental concepts, so this chapter builds on those to
create a more elaborate game. Specifically, you are going to build the core func-
tionality of a 2D platform game. Also called a platformer, this common type of 2D
action game is best known for classics like Super Mario Brothers: a character viewed
from the side runs and jumps on platforms, and the view scrolls around to follow.
Figure 6.1 shows what the end result will be.

 This project will teach concepts like moving the player left and right, playing the
sprite’s animation, and adding the ability to jump. We’ll also go over several special
features common in platform games, like one-way floors and moving platforms.

This chapter covers
 Moving sprites around continuously

 Playing sprite-sheet animation

 Working with 2D physics (collision, gravity)

 Implementing camera control for side-scrolling
games

129Setting up the graphics

Going from this shell to a full game mostly means repeating those concepts over
and over.

 To get started, create a new project in 2D mode as in the last chapter: from Unity
Hub, choose New, or from the File menu choose New Project; then select 2D in the
window that appears. In the new project, create two folders, called Sprites and
Scripts, to contain the various assets. You could adjust the camera as in chapter 5,
but for now just reduce Size to 4. This project doesn’t require a perfect camera setup,
although you would need to adjust the size for a polished game that’s ready for
release.

TIP The camera icon in the center of the screen can get in the way, so you
can hide it by using the Gizmos menu. Along the top of the Scene view is a
label for Gizmos. That term refers to the abstract shapes and icons in the
editor. Click Gizmos for an alphabetical list and then click the icon next to
Camera.

Now save the empty scene (and of course click Save periodically while you work) to
create the Scene asset in this project. Everything is empty at the moment, so the first
step will be bringing in art assets.

6.1 Setting up the graphics
Before you can program the functionality of a 2D platform game, you need to import
images into the project (remember, images in a 2D game are referred to as sprites
instead of textures) and then place those sprites into the scene. This game will be the
shell of a 2D platform game, with a player-controlled character running around a
basic and mostly empty scene, so all you need are a couple of sprites for the platforms
and for the player. Let’s go over each separately, because although the images in this
example are simple, some nonobvious considerations are involved.

6.1.1 Placing the scenery

Simply put, you need a single blank white image to use here. An image called
blank.png is included in the sample project for this chapter; download the sample

Figure 6.1 The final product of this
chapter

130 CHAPTER 6 Creating a basic 2D platformer

project and copy blank.png from there. Then drag the PNG into the Sprites folder of
your new project, and make sure in the Inspector that Import Settings indicate it’s a
Sprite rather than a Texture (that should be automatic for a 2D project, but it’s worth
double-checking).

 What you’re doing now is essentially the same as the whiteboxing from chapter 4,
but in 2D instead of 3D. Whiteboxing in 2D is done with sprites rather than meshes
but maintains the same activity of blocking out blank floors and walls for the player to
move around.

 To place the floor object, drag the blank sprite into the scene as shown in figure
6.2 (around Position 0.15, -1.27, 0), set Scale to 50, 2, 1, and change its name to
Floor. Then drag in another blank sprite, set its Scale to 6, 6, 1, place it on the floor
off to the right (around Position 2, -0.63, 0), and name it Block.

 Simple enough; now the floor and block are done. The other object you need is a
character for the player.

6.1.2 Importing sprite sheets

The only other art asset you need is the player’s sprite, so also copy stickman.png from
the sample project. But unlike the blank image, this PNG is a series of separate sprites
assembled into one image. As shown in figure 6.3, the stickman image is the frames of
two animations: standing idle and a walk cycle.

 We’re not going into detail on how to animate, but suffice to say that idle and cycle
are both common terms used by game developers. Idle refers to subtle movement
while doing nothing, and cycle is an animation that loops continuously.

 As explained in chapter 5, an image file may be a bunch of sprite images packed
together, rather than just a single sprite. Images like this are called sprite sheets when
the multiple sprite images are frames of an animation. In Unity, an image imported as
multiple sprites will still appear in the Project view as a single asset, but if you click the
arrow on the asset, it’ll expand and show all the individual sprite images. Figure 6.4
shows how that looks.

Floor selected
Position the floor just below
the center of the scene.

Figure 6.2 Floor platform placement

131Setting up the graphics

Drag stickman.png into the Sprites folder to import the image, but this time change a
lot of Import Settings in the Inspector. Select the sprite asset, set Sprite Mode to Mul-
tiple, and then click Sprite Editor to open that window. Click Slice at the top left of
the window, set Type to Grid By Cell Size (shown in figure 6.4), use Size 32, 64 (this is
the size of each frame in the sprite sheet), and click Slice to see the frames split up.
Now close the Sprite Editor window and click Apply to keep the changes.

NOTE The Sprite Editor window requires the 2D Sprite package. Creating a
new 2D project should have automatically installed that package, but if not,
then open Window > Package Manager and look for 2D Sprite in the list on the
left side of the window. Select that package and then click the Install button.

WARNING The buttons on top of the Sprite Editor window get hidden if the
window is too small. If you don’t see the Slice button, try dragging the corner
of the window to resize it.

Frames 0–1: Standing Frames 2–5: Walk animation

Extra space just to make it POT
(power of two) for compression

Figure 6.3 Stickman sprite sheet—six frames in a row

Switch the type of slicing.

Type in the size of slices.

Click this button to split
up the sprite sheet.

Click this arrow
to expand the
sliced sprites.

Figure 6.4 Slicing a sprite sheet into separate frames

132 CHAPTER 6 Creating a basic 2D platformer

The sprite asset is now split up, so click the arrow to expand the frames. Drag one
(probably the first) stickman sprite into the scene, place it standing on the middle of
the floor, and name it Player. There, the player object is in the scene!

6.2 Moving the player left and right
Now that the graphics are set up, let’s start programming the player’s movement. First
off, the player entity in the scene needs a couple of additional components for us to
control. As mentioned briefly in previous chapters, the physics simulation in Unity
acts on objects with the special Rigidbody component, and you want physics (colli-
sions and gravity in particular) to act on the character.

 Meanwhile, the character also needs a Collider component to define its boundar-
ies for collision detection. The difference between these components is subtle but
important: the Collider defines the shape for physics to act on, and the Rigidbody tells
the physics simulation what objects to act on.

NOTE These components are kept separate (even though they are closely
related) because many objects that don’t need the physics simulation them-
selves do need to collide with other objects that are acted on by physics.

One other subtlety to be aware of is that Unity has a separate physics system for 2D
games instead of 3D physics. Thus, in this chapter you’ll be using components from
the Physics 2D section instead of the regular Physics section of the list.

 Select Player in the scene. In the Inspector, click Add Component and then choose
Physics 2D > Rigidbody 2D, as shown in figure 6.5. Then click Add Component again
to add Physics 2D > Box Collider 2D. The Rigidbody needs a small amount of fine-
tuning, so in the Inspector set Collision Detection as Continuous, turn on Constraints >
Freeze Rotation Z (normally, the physics simulation will attempt to rotate objects while
moving them, but characters in games don’t behave like normal objects), and reduce
Gravity Scale to 0 (you’ll reset this later, but for now you don’t want gravity). The player
entity is now ready for the script that controls movement.

Click Add Component, then
Physics 2D, and then scroll
down to Rigidbody.

After the component is added, look
at the settings in the Inspector...

Set Gravity Scale to 0.

Set Collision Detection
to Continuous.

Don’t allow rotation.

Figure 6.5 Add and adjust the Rigidbody 2D component

133Moving the player left and right

6.2.1 Writing keyboard controls

To begin, you’ll make the player move left and right; vertical movement is important also
in a platformer, but you’ll deal with that later. Create a C# script called Platformer-
Player in the Scripts folder, and then drag that onto the Player object in the scene.
Open the script and write the code from this listing.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PlatformerPlayer : MonoBehaviour {
 public float speed = 4.5f;

 private Rigidbody2D body;

 void Start() {
 body = GetComponent<Rigidbody2D>();
 }

 void Update() {
 float deltaX = Input.GetAxis("Horizontal") * speed;
 Vector2 movement = new Vector2(deltaX, body.velocity.y);
 body.velocity = movement;
 }
}

After writing the code, click Play and you can move the player by using the arrow keys.
The code is fairly similar to movement code in previous chapters, with the main differ-
ence being that it acts on Rigidbody2D instead of CharacterController. Character-
Controller is for 3D, so for a 2D game you use a Rigidbody component. Note that the
movement is applied to Rigidbody’s velocity, rather than something like position.

NOTE This code doesn’t need to use delta time. In previous chapters, we needed
to factor in the time between frames to achieve frame rate–independent
movement, but we don’t need to do that in this chapter. Here, we are adjusting
velocity, which is inherently frame-rate independent, rather than position. In
previous chapters, we were adjusting position directly.

TIP By default, Unity applies a bit of acceleration to arrow key input. That
can feel sluggish for a platformer, though. For snappier control, increase Sen-
sitivity and Gravity of Horizontal input to 6. To find those settings, choose
Edit > Project Settings > Input Manager; you’ll see a long list, but Horizontal
is the first section.

Great—this project is most of the way there for horizontal movement! You need to
address only collision detection.

Listing 6.1 PlatformerPlayer script to move with arrow keys

Need this other component
attached to this GameObject

Set only horizontal
movement; preserve
preexisting vertical
movement.

134 CHAPTER 6 Creating a basic 2D platformer

6.2.2 Colliding with the block

As you’ve probably noticed, the player walks through the block right now. There are
no colliders on the floor or block, so the player can move through them. To fix this,
add Box Collider 2D to Floor and Block: select each object in the scene, click Add
Component in the Inspector, and choose Physics 2D > Box Collider 2D.

 And that’s all you need to do! Click Play now, and the player won’t be able to move
through the block. As with moving the player in chapter 2, if you had adjusted the
player’s position directly, collision detection wouldn’t work. But Unity’s built-in colli-
sion detection can work if you apply the movement to the player’s physics compo-
nents. In other words, moving Transform

.position would have ignored collision detec-
tion, so instead you manipulated Rigidbody2D
.velocity in the movement script.

 Adding colliders to more complex art could
be slightly trickier, but frankly not much harder
in that case. Even if the art is not exactly a rect-
angle, you may still want to use box colliders and
roughly surround the shape of obstacles in the
scene. Alternatively, you could try other collider
shapes, including arbitrary custom polygon
shapes. Figure 6.6 illustrates how to work with
polygon colliders for oddly shaped objects.

 Anyway, collision detection is now working,
so the next step is making the player animate
along with its movement.

6.3 Playing the sprite’s animation
When stickman.png was imported, it was split into multiple frames for animating. Now
let’s play that animation, so that the player isn’t sliding around but appears to be walking.

6.3.1 Explaining the Mecanim animation system

As mentioned briefly in chapter 4, the animation system in Unity is called Mecanim.
It’s designed so that you can visually set up a complex network of animations for a
character and then control those animations with a minimum of code. The system is
most useful for 3D characters (thus, we cover it in more detail in future chapters) but
is still useful for 2D characters too.

 The heart of the animation system is composed of two kinds of assets: animation
clips and animator controllers. Notice animation versus animator : clips are the individ-
ual animation loops to play, whereas the controller is the network controlling when to
play animations. This network is a state machine diagram, and the states in the diagram
are different animations that could be playing. The controller shifts between states in
reaction to conditions it is watching, and plays a different animation in each state.

Click this button to drag
around points in the scene.

Figure 6.6 Edit the shape of the
polygon collider with the Edit Collider
button.

135Playing the sprite’s animation

 Unity will create both kinds of assets automatically when you drag a 2D animation
into the scene. That is, when you drag the frames of an animation into the scene,
Unity will automatically create an animation clip and an animator controller using
those frames. As depicted in figure 6.7, expand all the frames of the sprite asset, select
frames 0–1, drag them into the scene, and type the name stickman_idle in the con-
firmation window.

The action of dragging frames into the Scene view creates two things in the Asset view:
a clip named stickman_idle and a controller named stickman_0. This action also
creates an object called stickman_0 in the scene, but you don’t need that, so delete it.
Rename the controller stickman with no suffix. Great—you created the character’s
idle animation!

 Now repeat the process for the walk animation. Select frames 2–5, drag them into
the scene, and name the animation stickman_walk. This time, delete both stickman_2
in the scene and the new controller in Assets; only one animator controller is needed
to control both animation clips, so keep the old one and delete stickman_2, the newly
created one.

 To apply the controller to your player character, select Player in the scene and click
Add Component to choose Miscellaneous > Animator. As shown in figure 6.7, drag
the stickman controller into the controller slot in the Inspector. With the Player still
selected, open Window > Animation > Animator (shown in figure 6.8). Animations in
the Animator window are displayed as blocks, referred to as states, and the controller
switches between states when running. This particular controller already has the idle
state in it, but you need to add a walking state; drag the stickman_walk animation clip
from Assets into the Animator window.

1. Select multiple frames and
 drag them into the Scene...

2. ...to create animations automatically.
 (Delete the second controller and
 extra scene objects.)

3. After adding an Animator
 component to the Player,
 drag in the controller.

Animator
controller

Animation
clips

Figure 6.7 Steps to use sprite-sheet frames in an Animator component

136 CHAPTER 6 Creating a basic 2D platformer

 By default, the idle animation will play too fast. To decrease the idle speed, select
the idle animation state, and in the right-hand panel set the Speed setting to 0.2.
With that change, the animations are all set up for the next step.

6.3.2 Triggering animations from code

Now that you’ve set up animation states in the animator controller, you can switch
between those states to play the different animations. As mentioned in the preceding
section, a state machine switches states in reaction to conditions it is watching. In
Unity’s animation controllers, those conditions are referred to as parameters, so let’s
add one. Figure 6.8 pointed out the relevant controls: select the Parameters tab and
click the + button for a menu of parameter types. Add a float parameter called speed.

 Next, you need to switch between animation states based on that parameter. Right-
click stickman_idle and select Make Transition; that’ll start dragging out an arrow
from the idle state. Click stickman_walk to connect to that state, and because transi-
tions are unidirectional, also right-click stickman_walk to transition back.

 Now select the transition from idle (you can click the arrows themselves), uncheck
Has Exit Time, and click the + at the bottom to add a condition (again, shown in fig-
ure 6.8). Make the condition speed Greater (than) 0.1 so the states will transition
in that condition. Now do it again for the walk-to-idle transition: select the transition
from walk, uncheck Has Exit Time, add a condition, and make the condition speed
Less (than) 0.1.

 Finally, the PlatformerPlayer script can manipulate the animator controller, as
shown in this listing.

Click the
Parameters
tab.

Then click the + button
to add a float parameter
called speed.

Each of these blocks is an animation
state. The Animator switches
between states while running,
playing the animation for that state.

Uncheck to allow
transitions to cut
off animations in the
middle of playing.

Right-click a state and select Make
Transition to connect it to another
state. Be sure to make transitions
both to and from each state, since
each transition is one-way.

Click the + button to add a condition
indicating when to transition. In this
case, we’ll switch from idle to walk
when speed is greater than 0.1.

Figure 6.8 Animator window, showing animation states and transitions

137Adding the ability to jump

...
private Animator anim;
...
void Start() {
 body = GetComponent<Rigidbody2D>();
 anim = GetComponent<Animator>();
}

void Update() {
 ...
 anim.SetFloat("speed", Mathf.Abs(deltaX));
 if (!Mathf.Approximately(deltaX, 0)) {
 transform.localScale = new Vector3(Mathf.Sign(deltaX), 1, 1);
 }
}
...

Wow, that was barely any code for controlling the animations! Most of the work is han-
dled by Mecanim, and only a small amount of code is needed to operate the anima-
tions. Play the game and move around to watch the player sprite animate. This game is
really coming along, so on to the next step!

6.4 Adding the ability to jump
The player can move back and forth but isn’t yet moving vertically. Vertical movement
(both falling off ledges and jumping to higher platforms) is an important part of plat-
form games, so let’s implement that next.

6.4.1 Falling from gravity

Somewhat counterintuitively, before you can make the player jump, it needs gravity to
jump against. As you may recall, earlier you set Gravity Scale to 0 on the player’s Rigid-
body. That was so the player wouldn’t fall because of gravity. Well, turn that back to 1
now: select the Player object in the scene, find Rigidbody in the Inspector, and then
type 1 in Gravity Scale.

 Gravity is now affecting the player, but (assuming you had added a Box Collider to
the Floor object) the floor is holding them up. Walk off the sides of the floor to fall
into oblivion. By default, gravity affects the player somewhat weakly, so you’ll want to
increase the magnitude of its effect. The physics simulation includes a global gravity
setting, which you can adjust in the Edit menu. Specifically, choose Edit > Project Set-
tings > Physics 2D. As shown in figure 6.9, at the top of the various controls and set-
tings, you should see Gravity Y; change that to -40.

 You may have noticed one subtle issue: the falling player sticks to the side of the
floor. To see this problem, walk off the edge of the platform and immediately reverse
direction to move back toward the platform. Ugh, not good! Fortunately, Unity makes
that easy to fix. Just add the Physics 2D > Platform Effector 2D components to Block

Listing 6.2 Triggering animations along with moving

Existing code to help show
where to position new code

Speed is greater than zero
even if velocity is negative.

Floats aren’t always exact, so
compare using Approximately().

When moving, scale positive or
negative 1 to face right or left.

138 CHAPTER 6 Creating a basic 2D platformer

and Floor. This effector makes objects in the scene behave more like platforms in a
platform game. Figure 6.10 points out two settings to adjust: Set Used By Effector on
the collider, and turn off Use One Way on the effector (we’ll use this latter setting for
other platforms, but not now).

That takes care of the downward part of vertical movement, but you still need to take
care of the upward part.

6.4.2 Applying an upward impulse

The next action you need is jumping. That is an upward jolt applied when the player
clicks the Jump button (we’ll use the spacebar). Although your code directly changed
the velocity for horizontal movement, you’re going to leave vertical velocity alone so
gravity can do its work. Instead, objects can be influenced by other forces besides grav-
ity, so you’ll add an upward force. Add this code to the PlatformerPlayer script.

...
public float jumpForce = 12.0f;
...

Listing 6.3 Jumping when pressing the spacebar

In this long list of settings, you
need to change only the intensity
of Gravity here at the top.

Figure 6.9 Gravity intensity
in Physics settings

Use this collider for
the platform effector.

This isn’t a one-way platform,
so turn off this setting.

Figure 6.10 Collider and
effector settings in the Inspector

139Adding the ability to jump

body.velocity = movement;

if (Input.GetKeyDown(KeyCode.Space)) {
 body.AddForce(Vector2.up * jumpForce, ForceMode2D.Impulse);
}
...

The important line is the AddForce() command. The code adds an upward force to
the Rigidbody and does so in impulse mode. An impulse is a sudden jolt, as opposed to
a continuously applied force. This code, then, applies a sudden upward jolt when the
spacebar is pressed.

 Meanwhile, gravity continues to affect the jumping player, resulting in a nice arc
when the player jumps. You may have noticed another issue, however, so let’s address
that.

6.4.3 Detecting the ground

The jump control has one subtle problem: the player can jump in midair! If the player
is already in midair (either because they jumped or because they are falling), pressing
the spacebar applies an upward force, but it shouldn’t. Instead, the jump control
should work only when the player is on the ground. You therefore need to detect
when the player is on the ground.

...
private BoxCollider2D box;
...
box = GetComponent<BoxCollider2D>();
...
body.velocity = movement;

Vector3 max = box.bounds.max;
Vector3 min = box.bounds.min;
Vector2 corner1 = new Vector2(max.x, min.y - .1f);
Vector2 corner2 = new Vector2(min.x, min.y - .2f);
Collider2D hit = Physics2D.OverlapArea(corner1, corner2);

bool grounded = false;
if (hit != null) {
 grounded = true;
}

if (grounded && Input.GetKeyDown(KeyCode.Space)) {
...

With this code in place, the player can no longer jump in midair. This addition to the
script checks for colliders below the player and takes them into account in the condi-
tional statement for jumping. Specifically, the code first gets the bounds of the

Listing 6.4 Checking if the player is on the ground

Existing code to help show
where to position new code

Add force only when the spacebar is pressed.

Get this component to use the
player’s collider as an area to check.

Check below the
collider’s min Y values.

If a collider was detected
under the player . . .

. . . add grounded to
the jump condition.

140 CHAPTER 6 Creating a basic 2D platformer

player’s collision box and then looks for overlapping colliders in an area of the same
width just below the player. The result of that check is stored in the grounded variable
and used in the conditional.

6.5 Additional features for a platform game
At this point, the most crucial aspects of the player’s movement, walking and jumping,
are implemented. Let’s round out this platformer demo by adding new functionality
to the environment around the player.

6.5.1 Unusual floors: Slopes and one-way platforms

Right now, this demo has normal, level floors to stand on. Many interesting kinds of
platforms are used in platform games, though, so let’s implement a few other options.
The first unusual floor you’ll create is a slope. Duplicate the Floor object, set the

Designing levels by using tilemaps
For our project, the floors and platforms are blank, white rectangles. A finished game
should have nicer graphics, but an image the size of a level would be way too big for
the computer to handle. The most common solution to this problem is to use tilemaps.
In a nutshell, that’s a technique for constructing a larger, combined image out of lots
of small tiling images. This image shows an example of a tilemap.

Note that the map is constructed of small blocks that are repeated throughout the
map. In that way, no single image is very large, but the entire screen can be covered
with custom artwork. An official tilemap system for Unity is available by looking for
2D Tilemap Editor in Window > Package Manager.

You can find details in the Unity documentation (https://docs.unity3d.com/Manual/
class-Tilemap.html). Alternatively, you could use an external library like SuperTiled2-
Unity (www.seanba.com/supertiled2unity), which imports tilemaps created in Tiled,
a popular (and free) tilemap editor.

Tilemap

The faint grid lines show tile boundaries;
this grid isn’t there in the actual map.

Image courtesy of Tiled (www.mapeditor.org), using tiles by OpenGameArt.org (https://lpc.opengameart.org/).

https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://seanba.com/supertiled2unity

141Additional features for a platform game

duplicate’s rotation to 0, 0, -25, move it off to the left side (around -3.47, -1.27, 0),
and name it Slope. Refer all the way back to figure 6.1 to see what this looks like.

 If you play now, the player already slides up and down correctly when moving but
slowly slides down because of gravity when idle. To address this, let’s turn off gravity
for the player when the player is both standing on the ground and idle. Fortunately,
you already detect the ground, so that can be reused in the new code. Indeed, only a
single new line is needed.

...
body.gravityScale = (grounded && Mathf.Approximately(deltaX, 0)) ? 0 : 1;
if (grounded && Input.GetKeyDown(KeyCode.Space)) {
...

With that adjustment to the movement code, your player character correctly navigates
slopes. Next, one-way platforms are another sort of unusual floor common in plat-
formers. I’m talking about platforms that you can jump through but still stand on; the
player bonks their head against the bottom of normal, fully solid platforms.

 Because they’re fairly common in platform games, Unity provides functionality for
one-way platforms. As you may recall, when you added the Platform Effector compo-
nent earlier, a one-way setting was turned off. Now turn that on! To create a new plat-
form, duplicate the Floor object, scale the duplicate 10, 1, 1, place it above the floor
around position -1.68, 0.11, 0, and name the object Platform. Oh, and don’t forget
to turn on Use One Way in the Platform Effector component.

 The player jumps through the platform from below, but stands on it when coming
down from above. We have one possible issue to fix, shown in figure 6.11. Unity may
display the platform sprite on top of the player (to see this more easily, test with Jump
Force set to 7), but you probably want the player on top. You could adjust the player’s
Z position as you did in chapter 5, but this time you’ll adjust something else to show
another option. Sprite renderers have a sorting order that can be used to control
which sprites appear on top. Set Order in Layer to 1 in the Player’s Sprite Renderer
component.

 That takes care of both sloped floors and one-way platforms. I’m going to cover
one more sort of unusual floor, but it is significantly more complex to implement.

Listing 6.5 Turning off gravity when standing on the ground

Check both on ground
and not moving.Existing code to help show

where to position new code

The platform may overlap the player,
but we want it the other way around.

Figure 6.11 Platform sprite
overlapping the player sprite

142 CHAPTER 6 Creating a basic 2D platformer

6.5.2 Implementing moving platforms

A third sort of unusual floor common in platform games is the moving platform.
Implementing one requires both a new script to control the platform itself and
changes in the player’s movement script to handle moving platforms. You’re going to
write a script that takes two positions, start and finish, and makes the platform
bounce between them. First, create a new C# script called MovingPlatform and write
this code in it.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MovingPlatform : MonoBehaviour {
 public Vector3 finishPos = Vector3.zero;
 public float speed = 0.5f;

 private Vector3 startPos;
 private float trackPercent = 0;
 private int direction = 1;

 void Start() {
 startPos = transform.position;
 }

 void Update() {
 trackPercent += direction * speed * Time.deltaTime;
 float x = (finishPos.x - startPos.x) * trackPercent + startPos.x;
 float y = (finishPos.y - startPos.y) * trackPercent + startPos.y;
 transform.position = new Vector3(x, y, startPos.z);

 if ((direction == 1 && trackPercent > .9f) ||
 (direction == -1 && trackPercent < .1f)) {
 direction *= -1;
 }
 }
}

Listing 6.6 MovingPlatform script for floors that move back and forth

Position to move to

How far along the “track”
between start and finish

Current movement direction

Placement in the scene is
the position to move from

Change direction at
both start and end.

Drawing custom gizmos
The majority of the code you’ll write is for the running game, but Unity scripts can also
affect Unity’s editor. An often-overlooked feature of Unity is the ability to add new
menus and windows. Your scripts can also draw custom helper images in the Scene
view; such helper images are called gizmos.

You’re already familiar with gizmos like the green boxes to display colliders. Those
are built into Unity, but you can also draw your own gizmos in scripts. For example,
drawing a line that shows the movement path of the platform could be useful, as shown
here.

143Additional features for a platform game

Drag this script onto the platform object. Great—the platform moves left and right
when you play the scene! Now you need to adjust the player’s movement script to
attach the player to the moving platform. Here are the changes to make.

The code for drawing that line is simple. Usually, when writing code that affects Unity’s
editing interface, you need to add using UnityEditor; at the top (because most
editor functions reside in that namespace), but in this case, you don’t even need that.
Add this method to the MovingPlatform script:

...
void OnDrawGizmos() {
 Gizmos.color = Color.red;
 Gizmos.DrawLine(transform.position, finishPos);
}
...

You need to know a few things about this code. One, it all happens in a method called
OnDrawGizmos(). Like Start() or Update(), OnDrawGizmos() is another method
name Unity recognizes. Within the method are two lines of code: one sets the drawing
color, and the other tells Unity to draw a line from the platform’s position to the finish
position.

Similar commands are used for other gizmo shapes. DrawLine() is used to define
a line by using start and end points, but the similar command DrawRay() is used to
draw a line in a given direction. That’s handy for visualizing raycasts coming from AI
characters.

Gizmos are visible only in the Scene view by default, but note that the Game view has
a Gizmos button along the top. Oh, and although this project is a 2D game, drawing
custom gizmos works just as well in 3D games.

A custom gizmo

Gizmos show only in the
Scene view, not the Game
view, to help with editing.

This line is a custom gizmo
drawn to show the movement
of this platform.

144 CHAPTER 6 Creating a basic 2D platformer

...
 body.AddForce(Vector2.up * jumpForce, ForceMode2D.Impulse);
}

MovingPlatform platform = null;
if (hit != null) {
 platform = hit.GetComponent<MovingPlatform>();
}
if (platform != null) {
 transform.parent = platform.transform;
} else {
 transform.parent = null;
}

anim.SetFloat("speed", Mathf.Abs(deltaX));
...

Now the player moves with the platform after jumping on it. This change mostly comes
down to attaching the player as a child of the platform; remember, when you set a parent
object, the child object moves with the parent. Listing 6.7 uses GetComponent() to check
whether the ground detected is a moving platform. If so, it sets that platform as the
player’s parent; otherwise, the player is detached from any parent.

 There’s a big problem, though: the player inherits the platform’s scale, resulting in
weird scaling. That can be fixed by counter-scaling (scaling the player down to coun-
teract the platform’s scale up).

...
 anim.SetFloat("speed", Mathf.Abs(deltaX));

 Vector3 pScale = Vector3.one;
 if (platform != null) {
 pScale = platform.transform.localScale;
 }
 if (!Mathf.Approximately(deltaX, 0)) {
 transform.localScale = new Vector3(
 Mathf.Sign(deltaX) / pScale.x, 1/pScale.y, 1);
 }
}
...

The math for counter-scaling is straightforward: set the player to 1 divided by the plat-
form’s scale. When the player’s scale is then multiplied by the platform’s scale, that
leaves a scale of 1. The only tricky bit of this code is multiplying by the sign of the
movement value; as you may recall from earlier, the player is flipped based on the
movement direction.

 And that’s moving platforms fully implemented. This platformer demo needs only
one final touch.

Listing 6.7 Handling moving platforms in PlatformerPlayer

Listing 6.8 Correcting scaling of the player

Check whether the platform
under the player is a moving
platform.

Either attach to the platform
or clear transform.parent.

Existing code to help show
where to position new code

Default scale 1 if not
on moving platform

Replace existing scaling
with new code.

145Additional features for a platform game

6.5.3 Camera control

Moving the camera is the final feature you’ll add to this 2D platformer. Create a script
called FollowCam, drag it onto the camera, and then write the following in it.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class FollowCam : MonoBehaviour {
 public Transform target;

 void LateUpdate() {
 transform.position = new Vector3(
 target.position.x, target.position.y, transform.position.z);
 }
}

With that code written, drag the Player object to the script’s target slot in the Inspector.
Play the scene, and the camera moves around, keeping the player at the center of the
screen. You can see that the code applies the target object’s position to the camera, and
you set the player as the target object. Note that the method name is LateUpdate()
instead of Update(); that’s yet another name Unity recognizes. LateUpdate() also exe-
cutes every frame, but it happens after Update() every frame.

 It’s slightly jarring that the camera moves exactly with the player at all times. The
camera in most platformers has all kinds of subtle but complicated behavior, highlight-
ing different parts of the level as the player moves around. In fact, camera control for
platform games is a surprisingly deep topic; try searching for “platform game camera”
and see all the results. In this case, though, you’re just going to make the camera’s
movement smoother and less jarring; this listing makes that adjustment.

...
public float smoothTime = 0.2f;

private Vector3 velocity = Vector3.zero;
...
void LateUpdate() {
 Vector3 targetPosition = new Vector3(
 target.position.x, target.position.y, transform.position.z);

 transform.position = Vector3.SmoothDamp(transform.position,
 targetPosition, ref velocity, smoothTime);
}
...

Listing 6.9 FollowCam script to move with the player

Listing 6.10 Smoothing the camera movement

Preserve the Z position
while changing X and Y.

Preserve Z position
while changing X and Y.

Smooth transition from
current to target position

146 CHAPTER 6 Creating a basic 2D platformer

The main change is calling a function called SmoothDamp(); the other changes (like
adding time and velocity variables) are all to support that function. That’s a func-
tion Unity provides for making values smoothly transition to a new value. In this case,
the values are the positions of the camera and target.

 The camera moves smoothly with the player now. You implemented the player’s
movement, several kinds of platforms, and now camera control. Looks like this chap-
ter’s project is finished!

Summary
 Sprite sheets are a common way to handle 2D animation.
 Characters in games don’t behave like objects in the real world, so you must

adjust their physics accordingly.
 Rigidbody objects can be controlled either by applying forces or by setting their

velocity directly.
 Levels in 2D games are often constructed with tilemaps.
 A simple script can make the camera smoothly follow the player.

147

Putting
 a GUI onto a game

In this chapter, you’ll build a 2D interface display for a 3D game. So far, we’ve
focused on the virtual scene itself while building a first-person demo. But every
game needs abstract interaction and information displays in addition to the virtual
scene the gameplay takes place in. This is true for all games, whether they’re 2D or
3D, first-person shooters or puzzle games. So, while the techniques in this chapter
will be used on a 3D game, they apply to 2D games as well.

 These abstract interaction displays are referred to as the UI, or more specifically,
the GUI. GUI (short for Graphical User Interface) refers to the visual part of the
interface, such as text and buttons (see figure 7.1). Technically, the UI includes

This chapter covers
 Comparing old and newer GUI systems

 Creating a canvas for the interface

 Positioning UI elements by using anchor points

 Adding interactivity to the UI (buttons, sliders,
and so on)

 Broadcasting and listening for events from the UI

148 CHAPTER 7 Putting a GUI onto a game

nongraphical controls, such as the keyboard or game pad, but people tend to be refer-
ring to the graphical parts when they say “user interface.”

 Although any software requires some sort of UI in order for the user of that soft-
ware to control it, games often use their GUI in a slightly different way from other
software. In a website, for example, the GUI basically is the website (in terms of visual
representation). In a game, though, text and buttons are often an additional overlay
on top of the Game view, a kind of display called a heads-up display (HUD).

DEFINITION A heads-up display (HUD) superimposes graphics on top of the
view of the world. The concept of a HUD originated with military jets—
its purpose was to enable pilots to see crucial information without having to
look down. Similarly, a GUI superimposed on the Game view is referred to as
the HUD.

This chapter shows how to build the game’s HUD by using the UI tools in Unity. As
you saw in chapter 5, Unity provides multiple ways to create UI displays. This chapter
demonstrates the advanced UI system that replaced Unity’s first UI system. I also dis-
cuss the previous UI system and the advantages of the newer system.

 To learn about the UI tools in Unity, you’ll build on top of the FPS project from
chapter 3. The project in this chapter involves these steps:

1. Planning the interface
2. Placing UI elements on the display
3. Programming interactions with the UI elements
4. Making the GUI respond to events in the scene
5. Making the scene respond to actions on the GUI

Copy the project from chapter 3 and open the copy to start working in this chapter. As
usual, the art assets you need are in the sample download. With those files set up,
you’re ready to start building the game’s UI.

Pop-up window
displayed over
the Game view

A wall within the
scene: this is the
main Game view.

Settings button:
part of the HUD
displayed over
the Game view

Figure 7.1 The GUI you’ll create for a game

149Before you start writing code . . .

NOTE All the examples in this chapter are built on top of the FPS game cre-
ated in chapter 3. But the content of this chapter is largely independent of
that base project; we’ll just add a graphical interface on top of the existing
game demo. Although I’ve suggested that you download the chapter 3 proj-
ect, you’re free to use whatever game demo you’d like.

7.1 Before you start writing code . . .
To start building the HUD, you first need to understand how the UI system works.
Unity provides multiple approaches to building a game’s HUD, so we need to go over
how those systems work. Then we can briefly plan the UI and prepare the art assets
that we’ll need.

7.1.1 Immediate mode GUI or advanced 2D interface?

From its first version, Unity has come with an immediate mode GUI system. The
immediate mode system makes it easy to put a clickable button on the screen. Listing
7.1 shows the code to do that: simply attach this script to any object in the scene.

DEFINITION Immediate mode refers to explicitly issuing draw commands every
frame—instead of defining all the visuals once, and then for every frame the
system knows what to draw without you having to tell it again. The latter
approach is called retained mode.

For another example of immediate mode UI, recall the target cursor displayed in
chapter 3. This GUI system is entirely based on code, with no work done in Unity’s
editor.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BasicUI : MonoBehaviour {
 void OnGUI() {
 if (GUI.Button(new Rect(10, 10, 40, 20), "Test")) {
 Debug.Log("Test button");
 }
 }
}

The core of the code in this listing is the OnGUI() method. Much like Start() and
Update(), every MonoBehaviour automatically responds to OnGUI(). That function
runs every frame after the 3D scene is rendered, providing a place to put GUI drawing
commands. This code draws a button; note that the command for a button is exe-
cuted every frame (that is, in immediate mode style). The button command is used in
a conditional that responds when the button is clicked.

Listing 7.1 Example of a button using the immediate mode GUI

Function called every frame
after everything else renders

Parameters: position
X, pos Y, width,
height, text label

150 CHAPTER 7 Putting a GUI onto a game

 Because the immediate mode GUI makes it easy to get a few buttons onscreen with
minimal effort, we’ll sometimes use it for examples in future chapters. But default but-
tons are about the only thing easy to create with that system, so more recent versions
of Unity now have a new interface system based on 2D graphics laid out in the editor.
This newer interface system takes a bit more effort to set up, but you’ll probably want
to use it in finished games because it produces more polished results.

 The newer UI system works in retained mode, so the graphics are laid out once
and then drawn every frame without needing to be continually redefined. In this sys-
tem, graphics for the UI are placed in Unity’s editor. This provides two advantages
over the immediate mode UI: (1) you can see what the UI looks like while placing UI
elements, and (2) this system makes it straightforward to customize the UI with your
own images.

NOTE Chapter 1 mentioned that Unity has three UI systems (which are com-
pared at http://mng.bz/205X) because successively developed systems
improved on their predecessor. This book covers the second UI system (Unity
UI, or uGUI) because it is still preferred over the incomplete third UI system
(UI Toolkit).

To use this system, you’re going to import images and then drag objects into the
scene. Next, let’s plan how this UI will look.

7.1.2 Planning the layout
The HUD for most games comprises a few UI controls repeated over and over. There-
fore, this project doesn’t need to be terribly complex in order for you to learn how to
build a game’s UI. You’re going to put a score display and a Settings button in the cor-
ners of the screen over the main Game view (see figure 7.2). The Settings button will
bring up a pop-up window, which will have both a text field and a slider.

 For this example, those input controls will be used for setting the player’s name
and movement speed, but ultimately those UI elements could control any settings rel-
evant to your game. Well, that plan is pretty simple! The next step is bringing in the
images that are needed.

Score display,
with both an
image and text

Pop-up window
in the center
of the screen.
Open with the
Settings (gear)
button.

Close button:
closes the pop-up
window

Input controls:
text input for name,
slider for speed

Settings button:
opens pop-up window
when clicked

Name

Speed

2

Figure 7.2 Planned GUI

https://shortener.manning.com/205X

151Setting up the GUI display

7.1.3 Importing UI images

This UI requires some images to display for things like buttons. The UI is built from
2D images like the graphics in chapter 5, so you’ll follow the same two steps:

1. Import images (if needed, set them to Sprite).
2. Drag the sprites into the scene.

To accomplish these steps, first drag the images into Project view to import them.
Then, in the Inspector, change their Texture Type setting to Sprite (2D and UI).

WARNING The Texture Type setting defaults to Texture in 3D projects and to
Sprite in 2D projects. If you want sprites in a 3D project, you need to manually
adjust this setting.

Get all the necessary images from the sample download (see figure 7.3) and then
import them into your project. Make sure all the imported assets are set to Sprite;
you’ll probably need to adjust Texture Type in the settings displayed after importing.

These sprites comprise the buttons, score display, and pop-up that you’ll create. Now
that the images are imported, let’s put these graphics onto the screen.

7.2 Setting up the GUI display
The art assets are the same kind of 2D sprites we used in chapter 5, but we’ll use those
assets in the scene a bit differently. Unity provides special tools to make the images a
HUD that’s displayed over the 3D scene, rather than displaying the images as part of
the scene. Some special tricks are used when positioning UI elements, because of the
needs of a display that may change on different screens.

7.2.1 Creating a canvas for the interface

One of the most fundamental and nonobvious aspects of how the UI system works is
that all images must be attached to a canvas object.

TIP Canvas is a special kind of object that Unity renders as the UI for a game.

Open the GameObject menu to see the objects you can create; in the UI category,
choose Canvas. A canvas object will appear in the scene (it may be clearer to rename
the object HUD Canvas). This object represents the entire extent of the screen, and it’s

This image will be
the Close button
on the pop-up.

This image will be
the score display in
the top-left corner.

This image will be
the Settings button in
the top-right corner.

This image will be a
scaled background
of the pop-up.

close enemy gear popup

Figure 7.3 Images that are needed for this chapter’s project

152 CHAPTER 7 Putting a GUI onto a game

huge compared to the 3D scene because it scales one pixel of the screen to one unit in
the scene.

WARNING When you create a canvas object, an EventSystem object is auto-
matically created too. That object is required for UI interaction, but you can
otherwise ignore it.

Switch to 2D view mode (refer to figure 7.4) and double-click the canvas in the Hierar-
chy to zoom out and view it fully. The 2D view mode is automatic when the entire proj-
ect is 2D, but in a 3D project, this toggle must be clicked to switch between the UI and
the main scene. To return to viewing the 3D scene, toggle off the 2D view mode and
then double-click the building to zoom in to that object.

TIP Don’t forget this tip from chapter 4: across the top of the Scene view’s
pane are buttons that control what’s visible, so look there for the Effects but-
ton to turn off the skybox.

The canvas has settings that you can adjust. The first is the Render Mode option.
Leave this at the default setting (Screen Space—Overlay), but you should know what
the three possible settings mean:

 Screen Space—Overlay—Renders the UI as 2D graphics on top of the camera
view. (This is the default setting.)

 Screen Space—Camera—Also renders the UI on top of the camera view, but UI
elements can rotate for perspective effects.

 World Space—Places the canvas object within the scene, as if the UI were part of
the 3D scene.

2D view mode: switch to this
view when working in 2D (which
includes working in the UI).

Canvas object displayed in
the Scene view

It’s scaled very large because
1 unit in the scene = 1 pixel
on the UI.

The borders of the canvas
scale to match the game’s
screen.

If you see the colored arrows of
the manipulator, the Rect tool is
not on. That tool button is in the
top-left corner of Unity; you will
see blue dots on every corner of
a 2D object.

Figure 7.4 A blank canvas object in the Scene view

153Setting up the GUI display

The two modes besides the initial default can sometimes be useful for specific effects
but are slightly more complicated.

 The other important setting is Pixel Perfect. This setting causes the rendering to
subtly adjust the position of images so that they’re always perfectly crisp and sharp (as
opposed to blurring them when positioned between pixels). Go ahead and select that
check box. Now the HUD canvas is set up, but it’s still blank and needs sprites.

7.2.2 Buttons, images, and text labels

The canvas object defines an area to display as the UI, but it still requires sprites to dis-
play. Referring to the UI mock-up in figure 7.2, you’ll see an image of the
block/enemy in the top-left corner, text displaying the score next to that, and a gear-
shaped button in the top-right corner. Accordingly, the UI section of the GameObject
menu contains options to create an image, text, or button. Create one of each, but
using the TextMeshPro version when applicable. That is, choose GameObject > UI >
Image, then Text - TextMeshPro, then Button - TextMeshPro.

NOTE Just as in chapter 5, you need to have the TextMeshPro package
installed, so go to Window > Package Manager if no TextMeshPro versions are
displayed in the menu of UI objects. The TMP Importer window will automat-
ically appear when you create a TextMeshPro object for the first time. Click
the Import TMP Essentials button.

To display correctly, UI elements need to be a child of the canvas object. Unity does
this automatically, but remember that, as usual, you can drag objects around the Hier-
archy view to make parent-child linkages (see figure 7.5).

Objects within the canvas can be parented together for positioning purposes, just like
any other objects in the scene. For example, you should drag the text object onto the
image so that the text will move with the image. The default button object also has a
text object as its child, but this project’s button doesn’t need a text label, so delete the
default text object.

 Roughly position the UI elements into their corners. In the next section, we’ll
make the positions exact; for now, just drag the objects until they’re pretty much in
position. Click and drag the image object to the top left of the canvas; the button goes
in the top right.

Canvas object

Image object
(child of Canvas in
the Hierarchy)

Figure 7.5 Canvas with an image linked in the Hierarchy view

154 CHAPTER 7 Putting a GUI onto a game

TIP As noted in chapter 5, you use the Rect tool in 2D mode. I described it as
a single manipulation tool that encompasses all three transforms: Move,
Rotate, and Scale. These operations have to be separate tools in 3D but are
combined in 2D because that’s one less dimension to worry about. In 2D
mode, this tool is selected automatically, or you can click the button near the
top-left corner of Unity.

At the moment, the images are blank. If you select a UI object and look at the Inspec-
tor, you should see a Source Image slot near the top of the image component. As
shown in figure 7.6, drag over sprites (remember, not textures!) from the Project view
to assign images to the objects. Assign the enemy sprite to the image object, and the
gear sprite to the button object (click Set Native Size after assigning sprites to properly
size the image object).

That took care of the appearance of both the enemy image and the gear button. As
for the text object, the Inspector has a bunch of settings (see figure 7.7). First, type a
single number in the large Text Input box; this text will be overwritten later, but it’s
useful because it looks like a score display within the editor. The text is the wrong size,
so change the Font Size to 24. Also click the first Font Style button for Bold, and then
change Vertex Color to black. You also want to set this label to left horizontal align-
ment and middle vertical alignment. For now, the remaining settings can be left at
their default values.

NOTE The most commonly adjusted property that we didn’t just touch on is
the font. To use a TrueType font with TextMeshPro, first import the font into
Unity and then choose Window > TextMeshPro > Font Asset Creator.

Now that sprites have been assigned to the UI images and the score text is set up, you
can click Play to see the HUD on top of the 3D game. The canvas displayed in Unity’s
editor shows the bounds of the screen, and UI elements are drawn onto the screen in
the positions shown in figure 7.8.

1. Drag the sprite from
 Project view up to
 Source Image setting ...

2. ... and the image will
 appear on the UI element.

3. Click Set Native Size to
 resize the image correctly.

Figure 7.6 Assigning 2D sprites to the Image property of UI elements.

155Setting up the GUI display

Great, you made a HUD with 2D images displayed over the 3D game! One more com-
plex visual setting remains: positioning UI elements relative to the canvas.

The UI object displays text typed
here.

Create a TextMeshPro font asset
by using the Font Asset Creator
window; set the font here.

Make the text bigger or smaller,
as well as Bold or Italic.

Set the color of the text.

These buttons adjust the
horizontal and vertical alignment
of the text.

Click this bar to show more
settings.

Turn off Raycast Target for text
objects that shouldn’t be clickable
(which is most of them).

Figure 7.7 Settings for a UI text object

The canvas displayed in
Scene view

HUD overlays the 3D level
in Game view.

Figure 7.8 The GUI as seen in the editor (left) and when playing the game (right)

156 CHAPTER 7 Putting a GUI onto a game

7.2.3 Controlling the position of UI elements

All UI objects have an anchor, displayed in the edi-
tor as an X shape (see figure 7.9). An anchor is a
flexible way of positioning objects on the UI.

DEFINITION The anchor of an object is the point
where an object attaches to the canvas or
screen. That object’s position is measured rela-
tive to the anchor.

Positions are values like “50 pixels on the x-axis.” But that leaves the question: 50 pix-
els from what? This is where anchors come in. The purpose of an anchor is to keep
the object in place relative to the anchor point, whereas the anchor moves around rel-
ative to the canvas. The anchor is defined as something like “center of the screen,”
and then the anchor will stay centered while the screen changes size. Similarly, setting
the anchor to the right-hand side of the screen will keep the object rooted to the
right-hand side even if the screen changes size (for example, if the game is played on
different monitors).

 The easiest way to understand what I’m talking about is to see it in action. Select
the image object and look over at the Inspector. Anchor settings will appear right
below the transform component (see figure 7.10). By default, UI elements have their
anchor set to Center, but you want to set the anchor to Top Left for this image; figure
7.10 shows how to adjust that by using the Anchor Presets.

Change the gear button’s anchor as well. Set it to Top Right for this object; click the
top-right Anchor Preset. Now try scaling the window left and right: click and drag on
the side of the game’s view. Thanks to the anchors, the UI objects will stay in their cor-
ners while the canvas changes size. As figure 7.11 shows, these UI elements are now
rooted in place while the screen moves.

Click the Anchor button (it looks
like a target) to open the entire
Anchor Presets menu.

You can type in exact numbers
in the RectTransform settings,
but usually the anchor presets
work best.

For example, click this button
to set a top-right anchor.

(Strech presets affect the image
size as well as position.)

Figure 7.10 How to adjust anchor settings

Anchor point icon

The image
object

Figure 7.9 The anchor point of an
image object

157Programming interactivity in the UI

TIP Anchor points can adjust scale as well as position. We’re not going to
explore that functionality in this chapter, but each corner of the image can be
rooted to a different corner of the screen. In figure 7.11, the images didn’t
change size, but we could adjust the anchors so that when the screen changes
size, the image stretches with it.

All of the visual setup is done, so it’s time to program interactivity.

7.3 Programming interactivity in the UI
Before you can interact with the UI, you need to have a mouse cursor. As you may
recall, we adjusted Cursor settings in the Start() method of the RayShooter code.
Those settings lock and hide the mouse cursor, a behavior that works for the controls
in an FPS game but that interferes with using the UI. Remove those lines from Ray-
Shooter so that you can click the HUD.

 While you have RayShooter open, you could also make sure not to shoot while
interacting with the GUI. Here is the code for that.

using UnityEngine.EventSystems;
...
void Update() {
 if (Input.GetMouseButtonDown(0) &&
!EventSystem.current.IsPointerOverGameObject()) {
 Vector3 point = new Vector3(
 camera.pixelWidth/2, camera.pixelHeight/2, 0);
 ...

Listing 7.2 Adding a GUI check to the code in RayShooter

Drag the side of the Game view
to change the size of the screen.

The canvas scales with it, and
the images stay positioned at
their anchors in the corners.

Figure 7.11 Anchors stay in place while the screen changes size.

Include UI system code frameworks.

Italicized code was already in
script; shown for reference.

Check that GUI isn’t being used.

158 CHAPTER 7 Putting a GUI onto a game

Now you can play the game and click the button, although it doesn’t do anything yet.
You can watch the tinting of the button change as you mouse over it and click. This
mouseover and click behavior is a default tint that can be changed for each button,
but the default looks fine for now. You could speed up the default fading behavior;
Fade Duration is a setting in the button component, so try decreasing that to 0.01 to
see how the button changes.

TIP Sometimes the default interaction controls of the UI also interfere with
the game. Remember the EventSystem object that was created automatically
along with the canvas? That object controls the UI interaction controls, and by
default it uses the arrow keys to interact with the GUI. You may need to turn off
the arrow keys to avoid interacting with the GUI by accident: to do this, dese-
lect the Send Navigation Event check box in the settings for EventSystem.

But nothing else happens when you click the button because you haven’t yet linked it
up to any code. Let’s take care of that next.

7.3.1 Programming an invisible UIController

In general, UI interaction is programmed with a standard series of steps that’s the
same for all UI elements:

1. Create a UI object in the scene (the button created in the previous section).
2. Write a script to call when the UI is operated.
3. Attach that script to an object in the scene.
4. Link UI elements (such as buttons) to the object with that script.

To follow these steps, first we need to create a controller object to link to the button.
Create a script called UIController and drag that script onto the controller object in
the scene.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using TMPro;

public class UIController : MonoBehaviour {
 [SerializeField] TMP_Text scoreLabel;

 void Update() {
 scoreLabel.text = Time.realtimeSinceStartup.ToString();
 }

 public void OnOpenSettings() {
 Debug.Log("open settings");
 }
}

Listing 7.3 UIController script used to program buttons

Import the TextMeshPro
code framework.

Reference the Text object in the
scene to set the text property.

Method called by
Settings button

159Programming interactivity in the UI

TIP You might be wondering why we need separate objects for Scene-
Controller and UIController. Indeed, this scene is so simple that you could
have one controller handling both the 3D scene and the UI. As the game gets
more complex, though, it’ll become increasingly useful for the 3D scene and
the UI to be separate modules, communicating indirectly. This notion
extends well beyond games to software in general: software engineers refer to
this principle as separation of concerns.

Now drag objects to component slots to wire them up. Drag the Score label (the text
object we created before) to the UIController text slot. The code in UIController
sets the text displayed on that label. Currently, the code displays a timer to test the text
display; that will later be changed to the score.

 Next, add an OnClick entry to the button to drag the controller object onto. Select
the button to see its settings in the Inspector. Toward the bottom, you should see an
On Click panel; initially that panel is empty, but you can click the + button to add an
entry (as you can see in figure 7.12). Each entry defines a single function that gets
called when that button is clicked; the listing has both a slot for an object and a menu
for the function to call. Drag the controller object to the object slot, and then look for
UIController in the menu; select OnOpenSettings() in that section.

On Click event panel near
the bottom of the settings

Drag an object in the scene
to the object slot; then
choose a function in the
menu.

Press the + button to add
an entry in the panel.

Figure 7.12 The On Click panel toward the bottom of the button settings

Responding to other mouse events
OnClick is the only event that the button component exposes, but UI elements can
respond to multiple interactions. To go beyond the default interactions, use an Event-
Trigger component.

Add a new component to the button object and look for the Event section of the com-
ponent’s menu. Select EventTrigger from that menu. Although the button’s OnClick
responded to only a full click (the mouse button being pressed down and then
released), let’s try responding to the mouse button being pressed but not released.
Perform the same steps as for OnClick, only responding to a different event. First
add another method to UIController:

160 CHAPTER 7 Putting a GUI onto a game

Play the game and click the button to output debug messages in the console. Again,
the code is currently random output to test the button’s functionality. We want to
open a settings pop-up, so let’s create that pop-up window next.

7.3.2 Creating a pop-up window

The UI has a button to open a pop-up window, but there’s no pop-up yet. That will be
a new image object, along with several controls (such as buttons and sliders) attached
to that object. The first step is to create a new image, so choose GameObject > UI >
Image. Just as before, the new image has a slot in the Inspector called Source Image.
Drag a sprite to that slot to set this image. This time, use the sprite called popup.

 Ordinarily, the sprite is stretched over the entire image object; this was how the
score and gear images worked, and you clicked the Set Native Size button to resize the
object to the size of the image. This behavior is the default for image objects, but the
pop-up will use a sliced image instead.

DEFINITION A sliced image is split into nine sections that scale differently from
one another. By scaling the edges of the image separately from the middle,
you ensure that the image can scale to any size you want, and it maintains its
sharp, crisp edges. In other development tools, these kinds of images often
have “9” somewhere in the name (such as 9-slice, 9-patch, scale-9) to indicate
the nine sections of the image.

As you can see in figure 7.13, the image component has an Image Type setting. This
setting defaults to Simple, which was the correct image type earlier. For the pop-up,
though, set Image Type to Sliced. Unity will probably display an error, complaining
that the image doesn’t have a border, so we’ll correct that next.

 The error happens because the popup sprite doesn’t have the nine border sections
defined yet. To set that up, first select the popup sprite in the Project view. In the
Inspector, you should see the Sprite Editor button (see figure 7.14); click that button,
and the Sprite Editor window will appear.

(continued)
...
public void OnPointerDown() {
 Debug.Log("pointer down");
}
...

Now click Add New Event Type to add a new type to the EventTrigger component.
Choose Pointer Down for the event. This will create an empty panel for that event,
just like OnClick had. Click the + button to add an event listing, drag the controller
object to this entry, and select OnPointerDown() in the menu. There you go!

161Programming interactivity in the UI

WARNING As mentioned in chapter 6, the Sprite Editor window requires the
2D Sprite package. Creating a 2D project may automatically install that pack-
age, but for this project, you need to open Window > Package Manager and
look for 2D Sprite in the list on the left side of the window. Select that pack-
age and then click the Install button.

In the Sprite Editor, you can see green lines that indicate how the image will be sliced.
Initially, the image won’t have any border (all of the Border settings are 0). Increase
the border width to 12 for all four sides, which will result in the border shown in fig-
ure 7.14. Because all four sides (Left, Right, Bottom, and Top) have the border set to
12 pixels wide, the border lines will intersect into nine sections. Close the editor win-
dow and apply the changes.

Change the pop-up image
from Simple to Sliced.

The Set Native Size button
applies only to Simple and
is replaced by a check box
for Fill Center.

Figure 7.13 Settings for the image component, including Image Type

Click the Sprite Editor button ...

... to open a window and
edit the sprite’s borders.

Type in L R B T (left, right, bottom, top)
numbers to adjust the green border
slices. For the pop-up sprite, set all
borders to 12 pixels.

Figure 7.14 Sprite Editor button in the Inspector and a pop-up window

162 CHAPTER 7 Putting a GUI onto a game

 Now that the sprite has the nine sections defined, the sliced image will work cor-
rectly (and the Image component settings will show Fill Center; make sure that setting
is on). Click and drag the blue indicators in the corner of the image to scale it (switch
to the Rect tool described in chapter 5 if you don’t see any scale indicators). The bor-
der sections will maintain their size while the center portion scales.

 Because the border sections maintain their size, a sliced image can be scaled to any
size and still have crisp edges. This is perfect for UI elements—different windows may
be different sizes but should still look the same. For this pop-up, enter a width of 250
and a height of 200 to make it look like figure 7.15 (also, center it on position 0, 0, 0).

TIP The way that UI images stack on top of each other is determined by their
order in the Hierarchy view. In the Hierarchy list, drag the pop-up object
above other UI objects (always staying attached to the canvas, of course). Now
move the pop-up around within the Scene view; you can see how images over-
lap the pop-up window. Finally, drag the pop-up to the bottom of the canvas
hierarchy so that it will display on top of everything else.

The pop-up object is set up now, so write some code for it. Create a script called Set-
tingsPopup and drag that script onto the pop-up object.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SettingsPopup : MonoBehaviour {
 public void Open() {
 gameObject.SetActive(true);
 }
 public void Close() {
 gameObject.SetActive(false);
 }
}

Listing 7.4 SettingsPopup script for the pop-up object

Figure 7.15 Sliced image scaled
to dimensions of the pop-up

Turn the object on to
open the window.

Deactivate this object
to close the window.

163Programming interactivity in the UI

Next, open UIController to make a few adjustments.

...
[SerializeField] SettingsPopup settingsPopup;
void Start() {
 settingsPopup.Close();
}
...
public void OnOpenSettings() {
 settingsPopup.Open();
}
...

This code adds a slot for the pop-up object, so drag the pop-up to UIController. The
pop-up will be closed initially when you play the game, and it’ll open when you click
the Settings button.

 At the moment, there’s no way to close it again, so add a button to the pop-up. The
steps are pretty much the same as for the button created earlier: choose GameObject
> UI> Button - TextMeshPro, position the new button in the top-right corner of the
pop-up, drag the close sprite to this UI element’s Source Image property, and then
click Set Native Size to correctly resize the image. Unlike with the previous button, we
want this text label, so select the text object and type Close in the text field, reduce
Font Size to 14, and set Vertex Color to white. In the Hierarchy view, drag this button
onto the pop-up object so that it will be a child of the pop-up window. And as a final
touch of polish, adjust the button transition to a Fade Duration value of 0.01 and a
darker Normal Color setting of 210, 210, 210, 255.

 To make the button close the pop-up, it needs an OnClick entry; click the + button
on the button’s On Click panel, drag the pop-up window into the object slot, and
choose SettingsPopup > Close() from the function list. Now play the game, and this
button will close the pop-up window.

 The pop-up window has been added to the HUD. The window is currently blank,
though, so let’s add controls to it.

7.3.3 Setting values using sliders and input fields

As with the buttons we made earlier, adding controls to the settings pop-up involves two
main steps. You create UI elements attached to the canvas and link those objects to a
script. The input controls we need are a text field and a slider, as well as a static text
label to identify the slider. Choose GameObject > UI > InputField - TextMeshPro to
create the text field, GameObject > UI > Slider to create the slider object, and Game-
Object > UI > Text - TextMeshPro to create the text label object (see figure 7.16).

 Make all three objects children of the pop-up by dragging them in the Hierarchy
view and then position them as indicated in the figure, lined up in the middle of the
pop-up. To make a label for the slider, set the text object to Speed and color it black.

Listing 7.5 Adjusting UIController to handle the pop-up

Close the pop-up when
the game starts.

Replace the debug text with
the pop-up’s method.

164 CHAPTER 7 Putting a GUI onto a game

The input field is for typing in text, and the content of the big text box is shown
before the player types something else; set this value to Name. You can leave the
options Content Type and Line Type at their defaults; if desired, you can use Content
Type to restrict typing to things like only letters or only numbers, whereas you can use
Line Type to switch from a single line to multiline text.

WARNING You won’t be able to click the slider if the text label covers it. Move
the text object above the slider in the Hierarchy, or better yet turn off the
Raycast Target setting (expand Extra Settings as shown in figure 7.7) so that
mouse clicks will ignore this object.

WARNING You should probably leave the Input Field at the default size for
this example, but if you do decide to shrink it, reduce only the Width, not the
Height. If you set the Height to less than 30, that’s too small for the text to
appear.

As for the slider itself, several settings appear toward the bottom of the component
inspector. Min Value is set to 0 by default; leave that. Max Value defaults to 1, but
make it 2 for this example. Similarly, both Value and Whole Numbers can be left at
their defaults; Value controls the starting value of the slider, and Whole Numbers con-
strains it to 0, 1, 2 rather than decimal values (a constraint we don’t want).

 And that wraps up all the objects. Now you need to write the code that the objects
are linked to; add the methods shown in the following listing to SettingsPopup.

...
public void OnSubmitName(string name) {
 Debug.Log(name);
}
public void OnSpeedValue(float speed) {
 Debug.Log($"Speed: {speed}");
}
...

Listing 7.6 SettingsPopup methods for the pop-up’s input controls

Input controls
on the pop-up:

a text InputField

a numerical Slider

The Close button is
in the top corner,
while a text label
is placed just
over the slider.

Figure 7.16 Input controls added to the pop-up window

Triggers when the user
types in the input field

Triggers when the user
adjusts the slider

Constructs the message using
string interpolation

165Programming interactivity in the UI

Great! We have methods for the controls to use. Now select the input object, and at
the bottom of the settings you’ll see an On End Edit panel; events listed here are trig-
gered when the user finishes typing. Add an entry to this panel, drag the pop-up to
the object slot, and choose SettingsPopup.OnSubmitName() in the function list.

WARNING Be sure to select the function in the End Edit panel’s top section,
Dynamic String, and not the bottom section, Static Parameters. The OnSubmit-
Name() function appears in both sections, but selecting it under Static Param-
eters will send only a single string defined ahead of time; dynamic string refers
to whatever value is typed in the input field.

Follow these same steps for the slider: look for the event panel toward the end of the
component settings (in this case, the panel is OnValueChanged), click + to add an
entry, drag in the settings pop-up, and choose SettingsPopup.OnSpeedValue() in the
list of dynamic value functions.

 Now both of the input controls are connected to code in the pop-up’s script. Play
the game, and watch the console while you move the slider or press Enter after typing
input.

Saving settings between plays by using PlayerPrefs
A few methods are available for saving persistent data in Unity, and one of the sim-
plest is called PlayerPrefs. Unity provides an abstracted way (that is, you don’t
worry about the details) to save small amounts of information that work on all plat-
forms (with their differing filesystems). PlayerPrefs isn’t too useful for large
amounts of data (in future chapters, we’ll use other methods to save the game’s
progress), but it’s perfect for saving settings.

PlayerPrefs provides simple commands to get and set named values (it works a lot
like a hash table or dictionary). For example, you can save the speed setting by add-
ing the line PlayerPrefs.SetFloat("speed", speed); inside the OnSpeed-
Value() method of the SettingsPopup script. That method will save the float in a
value called speed.

Similarly, you’ll want to initialize the slider to the saved value. Add the following code
to SettingsPopup:

using UnityEngine.UI;
...
[SerializeField] Slider speedSlider;
void Start() {
 speedSlider.value = PlayerPrefs.GetFloat("speed", 1);
}
...

Note that the get command has both the value to get as well as a default value in
case speed wasn’t previously saved.

Import the UI code framework.

166 CHAPTER 7 Putting a GUI onto a game

Although the controls generate debug output, they still don’t affect the game. Making
the HUD affect the game (and vice versa) is the topic of the final section of this chapter.

7.4 Updating the game by responding to events
Up to now, the HUD and main game have been ignoring each other, but they ought
to be communicating back and forth. That could be accomplished via script refer-
ences, as you’ve done for other sorts of inter-object communication, but that
approach would have major downsides. In particular, doing so would tightly couple
the scene and the HUD; you want to keep them fairly independent of each other so
that you can freely edit the game without worrying that you’ve broken the HUD.

 To alert the UI of actions in the scene, we’re going to use a broadcast messenger
system. Figure 7.17 illustrates how this event messaging system works: scripts can regis-
ter to listen for an event, other code can broadcast an event, and listeners will be
alerted about broadcast messages. Let’s go over a messaging system to accomplish
that.

TIP C# does have a built-in system for handling events, so you might wonder
why we don’t use that. Well, the built-in event system enforces targeted mes-
sages, whereas we want a broadcast messenger system. A targeted system
requires the code to know exactly where messages originate from; broadcasts
can originate from anywhere.

7.4.1 Integrating an event system

To alert the UI of actions in the scene, we’re going to use a broadcast messenger sys-
tem. Although Unity doesn’t have this feature built in, you can download a good code
library for this purpose. This messenger system is great for providing a decoupled way
of communicating events to the rest of the program. When some code broadcasts a
message, that code doesn’t need to know anything about the listeners, allowing for a
great deal of flexibility in switching around or adding objects.

Objects can register to
listen for specific events,
assigning a function as
the callback.

Messenger is a central module
that routes messages between
broadcasters and listeners.

Other objects can tell
Messenger to broadcast
specific events. Messenger
will route the message to
everything listening for
that event.

ListenObject

• Awake()

• OnEventReceived

• Add listener

• Broadcast message
• Update()

Messenger

BroadcastObj

Figure 7.17 Diagram of the broadcast event system we’ll implement

167Updating the game by responding to events

 Create a script called Messenger and paste in the code from https://github.com/
jhocking/from-unity-wiki/blob/main/Messenger.cs. Then, you also need to create a
script called GameEvent and fill it with the code from listing 7.7.

public static class GameEvent {
 public const string ENEMY_HIT = "ENEMY_HIT";
 public const string SPEED_CHANGED = "SPEED_CHANGED";
}

This script defines constants for a couple of event messages; the messages are more
organized this way, and you don’t have to remember and type the message string all
over the place.

 Now the event messenger system is ready to use, so let’s start using it. First, we’ll
communicate from the scene to the HUD, and then we’ll go in the other direction.

7.4.2 Broadcasting and listening for events from the scene

Up to now, the score display has displayed a timer as a test of the text display function-
ality. But we want to display a count of enemies hit, so let’s modify the code in UICon-
troller. First, delete the entire Update() method, because that was the test code. When
an enemy dies, it will emit an event, so the following listing makes UIController listen
for that event.

...
private int score;

void OnEnable() {
 Messenger.AddListener(GameEvent.ENEMY_HIT, OnEnemyHit);
}
void OnDisable() {
 Messenger.RemoveListener(GameEvent.ENEMY_HIT, OnEnemyHit);
}

void Start() {
 score = 0;
 scoreLabel.text = score.ToString();

 settingsPopup.Close();
}

private void OnEnemyHit() {
 score += 1;
 scoreLabel.text = score.ToString();
}
...

Listing 7.7 GameEvent script to use with Messenger

Listing 7.8 Adding event listeners to UIController

Declare which
method responds
to the ENEMY_HIT
event.

When an object
is deactivated,
remove the
listener to
avoid errors.

Initialize the
score to 0.

Increment the score in
response to the event.

https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs
https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs
https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs

168 CHAPTER 7 Putting a GUI onto a game

First notice the OnEnable() and OnDisable() methods. Much like Start() and
Update(), every MonoBehaviour automatically responds when the object is activated or
deactivated. A listener gets added and removed in OnEnable()/OnDisable(). This lis-
tener is part of the broadcast messaging system, and it calls OnEnemyHit() when that
message is received. OnEnemyHit()increments the score and then puts that value in
the score display.

 The event listeners are set up in the UI code, so now we need to broadcast that
message whenever an enemy is hit. The code to respond to hits is in RayShooter, so
emit the message as shown here.

...
if (target != null) {
 target.ReactToHit();
 Messenger.Broadcast(GameEvent.ENEMY_HIT);
} else {
...

Play the game after adding that message and watch the score display when you shoot
an enemy. You should see the count going up every time you make a hit. That covers
sending messages from the 3D game to the 2D interface, but we also want an example
going in the other direction.

7.4.3 Broadcasting and listening for events from the HUD

In the previous section, an event was broadcast from the scene and received by the
HUD. In a similar way, UI controls can broadcast a message that both players and ene-
mies listen for. In this way, the settings pop-up can affect the settings of the game.
Open WanderingAI and add this code.

...
public const float baseSpeed = 3.0f;
...
void OnEnable() {
 Messenger<float>.AddListener(GameEvent.SPEED_CHANGED, OnSpeedChanged);
}
void OnDisable() {
 Messenger<float>.RemoveListener(GameEvent.SPEED_CHANGED, OnSpeedChanged);
}
...
private void OnSpeedChanged(float value) {
 speed = baseSpeed * value;
}
...

Listing 7.9 Broadcast event message from RayShooter

Listing 7.10 Event listener added to WanderingAI

Message broadcast
added to hit response

Base speed that is adjusted
by the speed setting

Method that was declared in
listener for event SPEED_CHANGED

169Updating the game by responding to events

OnEnable() and OnDisable() add and remove, respectively, an event listener here,
too, but the methods have a value this time. That value is used to set the speed of the
wandering AI.

TIP The code in the previous section used a generic event, but this messag-
ing system can also pass a value along with the message. Supporting a value in
the listener is as simple as adding a type definition; note the <float> added
to the listener command.

Now make the same changes in FPSInput to affect the speed of the player. The code
in the next listing is almost the same as that in listing 7.10, except that the player has a
different number for baseSpeed.

...
public const float baseSpeed = 6.0f;
...
void OnEnable() {
 Messenger<float>.AddListener(GameEvent.SPEED_CHANGED, OnSpeedChanged);
}
void OnDisable() {
 Messenger<float>.RemoveListener(GameEvent.SPEED_CHANGED, OnSpeedChanged);
}
...
private void OnSpeedChanged(float value) {
 speed = baseSpeed * value;
}
...

Finally, broadcast the speed values from SettingsPopup in response to the slider.

public void OnSpeedValue(float speed) {
 Messenger<float>.Broadcast(GameEvent.SPEED_CHANGED, speed);
 ...

Now the enemy and player have their speed changed when you adjust the slider. Click
Play and try it out!

Listing 7.11 Event listener added to FPSInput

Listing 7.12 Broadcast message from SettingsPopup

This value is changed
from listing 7.10.

Send slider value as <float> event.

Exercise: Changing the speed of spawned enemies
Currently, the speed value is updated only for enemies already in the scene and not
for newly spawned enemies; new enemies aren’t created at the correct speed set-
ting. I’ll leave it as an exercise for you to figure out how to set the speed on spawned
enemies. Here’s a hint: add a SPEED_CHANGED listener to SceneController,
because that script is where enemies are spawned from.

170 CHAPTER 7 Putting a GUI onto a game

You now know how to build a graphical interface by using the new UI tools offered by
Unity. This knowledge will come in handy in all future projects, even as we explore dif-
ferent game genres.

Summary
 Unity has both an immediate mode GUI system as well as a newer system based

on 2D sprites.
 Using 2D sprites for a GUI requires that the scene have a canvas object.
 UI elements can be anchored to relative positions on the adjustable canvas.
 Set the Active property to turn UI elements on and off.
 A decoupled messaging system is a great way to broadcast events between the

interface and the scene.

171

Creating a third-
person 3D game: Player

 movement and animation

In this chapter, you’ll create another 3D game, but this time you’ll be working in a
new game genre. In chapter 2, you built a movement demo for a first-person game.
Now you’re going to write another movement demo, but this time it’ll involve third-
person movement. The most important difference is the placement of the camera
relative to the player: a player sees through their character’s eyes in first-person view,

This chapter covers
 Adding real-time shadows to the scene

 Making the camera orbit around its target

 Changing rotation smoothly using the lerp
algorithm

 Handling ground detection for jumping, ledges,
and slopes

 Applying and controlling animation for a lifelike
character

172 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

and the camera is placed outside the character in third-person view. This view is probably
familiar to you from adventure games, like the long-lived Legend of Zelda series or the
more recent Uncharted series. (Skip ahead to figure 8.3 if you want to see a comparison
of first-person and third-person views.)

 The project in this chapter is one of the more visually exciting prototypes we’ll
build in this book. Figure 8.1 shows how the scene will be constructed. Compare this
with the diagram of the first-person scene we created in chapter 2 (figure 2.2).

You can see that the room construction is the same, and the use of scripts is much the
same. But the look of the player, as well as the placement of the camera, are different
in each case. Again, what defines this as a
third-person view is that the camera is out-
side the player’s character and looking
inward at that character. You’ll use a model
that looks like a humanoid character
(rather than a primitive capsule) because
now players can actually see themselves.

 Recall that two of the types of art assets dis-
cussed in chapter 4 were 3D models and ani-
mations. As mentioned in earlier chapters,
the term 3D model is almost a synonym for
mesh object; the 3D model is the static shape
defined by vertices and polygons (that is,
mesh geometry). For a humanoid character,
this mesh geometry is shaped into a head,
arms, legs, and so forth (see figure 8.2).

1. Set up the walls, floor,
 and lights in the room.
 Simply import this from
 previous projects.

2. Import the character.
 Use a humanoid model
 this time, because in a
 third-person view, the
 player can see the character.

3. Turn on shadows for this
 scene. We can see the player
 now, so shadows are important.

4. Position the camera for this
 demo. The camera should be
 outside the character, looking
 down at it.

5. Write movement scripts for
 the camera and player. First
 write code to orbit the camera
 around the character; then write
 code to move the character
 around (including jumping!).

Figure 8.1 Road map for the third-person movement demo

Figure 8.2 Wireframe view of the model we’ll
use in this chapter

173Adjusting the camera view for third-person

 As usual, we’ll focus on the last step in the road map: programming objects in the
scene. Here’s a recap of our plan of action:

1. Import a character model into the scene.
2. Implement camera controls to look at the character.
3. Write a script that enables the player to run around on the ground.
4. Add the ability to jump to the movement script.
5. Play animations on the model based on its movements.

Copy the project from chapter 2 to modify it, or create a new Unity project (be sure
it’s set to 3D, not the 2D project from chapter 5) and copy over the scene file from
chapter 2’s project. Either way, also grab the scratch folder from this chapter’s down-
load to get the character model we’ll use.

NOTE You’re going to build this chapter’s project in the walled area from
chapter 2. You’ll keep the walls and lights but replace the player and all the
scripts. If you need the sample files, download them from that chapter.

Assuming you’re starting with the completed project from chapter 2 (the movement
demo, not later projects), let’s delete everything we don’t need for this chapter. First,
disconnect the camera from the player in the Hierarchy list (drag the camera object
off the player object). Now delete the player object; if you hadn’t disconnected the
camera first, that would be deleted too, but what you want is to delete only the player
capsule and leave the camera. Alternatively, if you already deleted the camera by acci-
dent, create a new camera object by choosing GameObject > Camera.

 Delete all the scripts as well (which involves removing the script component from
the camera and deleting the files in the Project view), leaving only the walls, floor, and
lights.

8.1 Adjusting the camera view for third-person
Before you can write code to make the player move around, you need to put a charac-
ter in the scene and set up the camera to look at that character. You’ll import a face-
less humanoid model to use as the player character, and then place the camera above
at an angle to look down at the player obliquely. Figure 8.3 compares what the scene
looks like in first-person view with what the scene will look like in third-person view
(shown with a few large blocks, which you’ll add in this chapter). You’ve prepared the
scene already, so now you’ll put a character model into the scene.

174 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

8.1.1 Importing a character to look at

The scratch folder for this chapter’s download includes both the model and the tex-
ture. As you’ll recall from chapter 4, FBX is the model, and TGA is the texture. Import
the FBX file into the project: either drag the file into the Project view, or right-click in
the Project view and select Import New Asset.

 Then look in the Inspector to adjust import settings for the model. Later in the
chapter, you’ll adjust imported animations, but for now, you need to make only a cou-
ple of adjustments in the Model and Materials tabs. First, go to the Model tab and
change the Scale Factor value to 10 (to partially counteract the Convert Units value of
0.01) so that the model will be the correct size.

 A bit farther down, you’ll find the Normals option (see figure 8.4). This setting
controls how lighting and shading appear on the model, using a 3D math concept
known as, well, normals.

First-person demo Third-person demo

Figure 8.3 Side-by-side comparison of first-person and third-person views

Set the Scale Factor to partially
counteract the Convert Units
value. This determines how big
the model is in Unity, compared
to how big it was in the 3D art
tool.

Select how to handle Normals
on the model.

Figure 8.4 Import
settings for the
character model

175Adjusting the camera view for third-person

DEFINITION Normals are direction vectors sticking out of polygons that tell the
computer which direction the polygon is facing. This facing direction is used
for lighting calculations.

The default setting for Normals is Import, which will use the normals defined in the
imported mesh geometry. But this particular model doesn’t have correctly defined
normals and will react in odd ways to lights. Instead, change the setting to Calculate so
that Unity will calculate a vector for the facing direction of every polygon. Once
you’ve adjusted these settings, click the Apply button in the Inspector.

 Next, import the TGA file into the project (in order to assign this image as the tex-
ture on the player’s material). Go to the Materials tab and click the Extract Materials
button. Extract to whatever location you feel like; then select the material that
appeared and drag the texture image onto the Albedo texture slot in the Inspector.
Once the texture is applied, you won’t see a dramatic change in the model’s color
(this texture image is mostly white), but shadows that are painted into the texture will
improve the look of the model.

 With the texture applied, drag the player model from the Project view up into the
scene. Position the character at 0, 1.1, 0 so that it’ll be in the center of the room and
raised up to stand on the floor. We have a third-person character in the scene!

NOTE The imported character has arms stuck straight out to each side, rather
than the more natural arms-down pose. That’s because animations haven’t
been applied yet; that arms-out position is referred to as the T-pose, and the stan-
dard is for animated characters to default to a T-pose before they’re animated.

8.1.2 Adding shadows to the scene

Before we move on, I want to explain a bit about the shadow being cast by the charac-
ter. We take shadows for granted in the real world, but shadows aren’t guaranteed in
the game’s virtual world. Fortunately, Unity can handle this detail, and shadows are
turned on for the default light that comes with new scenes.

 Select the directional light in your scene and then look in the Inspector for the
Shadow Type option. That setting (figure 8.5) is already on Soft Shadows for the
default light, but notice that the menu also has a No Shadows option.

 That’s all you need to do to set up shadows in this project, but there’s a lot more
you should know about shadows in games. Calculating the shadows in a scene is a par-
ticularly time-consuming part of computer graphics, so games often cut corners and
fake things in various ways to achieve the visual look desired.

 The kind of shadow cast from the character is referred to as real-time shadow
because the shadow is calculated while the game is running and moves around with
moving objects. A perfectly realistic lighting setup would have all objects casting and
receiving shadows in real time, but in order for the shadow calculations to run fast
enough, the appearance of real-time shadows can be primitive, plus the game may
even limit which lights cast shadows. Note that only the directional light is casting
shadows in this scene.

176 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

Another common way of handling shadows in games is with a technique called light-
mapping.

DEFINITION Lightmaps are textures applied to the level geometry, with pictures
of the shadows baked into the texture image.

DEFINITION Drawing shadows onto a model’s texture is referred to as baking
the shadows.

Because these images are generated ahead of time (rather than while the game is
running), they can be very elaborate and realistic. On the downside, because the
shadows are generated ahead of time, they won’t move. As such, lightmaps are great to
use for static-level geometry, but not for dynamic objects like characters. Lightmaps are
generated automatically rather than being painted by hand. The computer calculates
how the lights in the scene will illuminate the level while subtle darkness builds up in
corners.

 Whether or not to use real-time shadows or
lightmaps isn’t an all-or-nothing choice. You can
set the Culling Mask property on a light so that
real-time shadows are used only for certain
objects, allowing you to use the higher-quality
lightmaps for other objects in the scene. Simi-
larly, though you almost always want the main
character to cast shadows, sometimes you don’t
want the character to receive shadows; all mesh
objects (in either Mesh Renderer or Skinned
Mesh Renderer components) have settings to
cast and receive shadows. Figure 8.6 shows how
those settings appear when you select the floor.

Select the Directional light
and turn on Soft Shadows.

Figure 8.5 Before and after casting shadows from the directional light

Shadows are projected
from this mesh.

This mesh darkens from
shadows projected onto it.

Figure 8.6 The Cast Shadows and
Receive Shadows settings in the
Inspector

177Adjusting the camera view for third-person

DEFINITION Culling is a general term for removing unwanted things. The
word comes up a lot in computer graphics in many contexts, but in this case
culling mask is the set of objects you want to remove from shadow casting.

All right, now you understand the basics of how to apply shadows to your scenes.
Lighting and shading a level can be a big topic in itself (books about level editing will
often spend multiple chapters on lightmapping), but here we’ll restrict ourselves to
turning on real-time shadows on one light. And with that, let’s turn our attention to
the camera.

8.1.3 Orbiting the camera around the player character

In the first-person demo, the camera was linked to the player object in Hierarchy view
so that they’d rotate together. In third-person movement, though, the player charac-
ter will be facing different directions independently of the camera. Therefore, you
don’t want to drag the camera onto the player character in the Hierarchy view this
time. Instead, the camera’s code will move its position along with the character but
will rotate independently of the character.

 First, place the camera where you want it to be relative to the player; I went with
position 0, 3.5, -3.75 to put the camera above and behind the character (reset rota-
tion to 0, 0, 0 if needed). Then create a script called OrbitCamera and write the code
from listing 8.1. Attach the script component to the camera and then drag the player
character into the target slot of the script. Now you can play the scene to see the cam-
era code in action.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class OrbitCamera : MonoBehaviour {
 [SerializeField] Transform target;

 public float rotSpeed = 1.5f;

 private float rotY;
 private Vector3 offset;

 void Start() {
 rotY = transform.eulerAngles.y;
 offset = target.position - transform.position;
 }

 void LateUpdate() {
 float horInput = Input.GetAxis("Horizontal");
 if (!Mathf.Approximately(horInput, 0)) {
 rotY += horInput * rotSpeed;
 } else {

Listing 8.1 Camera script for rotating around a target while looking at it

Serialized reference to the
object to orbit around

Store the starting position
offset between the camera
and the target.

Either rotate the camera
slowly using arrow keys . . .

178 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

 rotY += Input.GetAxis("Mouse X") * rotSpeed * 3;
 }

 Quaternion rotation = Quaternion.Euler(0, rotY, 0);
 transform.position = target.position - (rotation * offset);
 transform.LookAt(target);
 }
}

As you’re reading through the listing, note the serialized variable for target. The
code needs to know which object to orbit the camera around, so this variable is serial-
ized to appear within Unity’s editor and have the player character linked to it. The
next couple of variables are rotation values that are used in the same way as in the
camera control code from chapter 2.

 And an offset value is declared; offset is set within Start() to store the position
difference between the camera and target. This way, the relative position of the cam-
era can be maintained while the script runs. In other words, the camera will stay at the
initial distance from the character regardless of which way it rotates. The remainder
of the code is inside the LateUpdate() function.

TIP Remember, LateUpdate() is another method provided by Mono-
Behaviour and it’s similar to Update(); it’s a method run every frame. The
difference, as the name implies, is that LateUpdate() is called on all objects
after Update() has run on all objects. This way, you can ensure that the cam-
era updates after the target has moved.

First, the code increments the rotation value based on input controls. This code looks
at two input controls—horizontal arrow keys and horizontal mouse movement—so a
conditional is used to switch between them. The code checks whether horizontal
arrow keys are being pressed; if they are, then it uses that input, but if not, it checks
the mouse. By checking the two inputs separately, the code can rotate at different
speeds for each type of input.

 Next, the code positions the camera based on the position of the target and the
rotation value. The transform.position line is probably the biggest “aha!” in this
code, because it provides crucial math that you haven’t seen before. Multiplying a
position vector by a quaternion results in a position that’s shifted over according to
that rotation (note that the rotation angle was converted to a quaternion by using
Quaternion.Euler). This rotated position vector is then added as the offset from the
character’s position to calculate the position for the camera. Figure 8.7 illustrates the
steps of the calculation and provides a detailed breakdown of this rather conceptually
dense line of code.

NOTE The more mathematically astute among you may be thinking, “Hmm,
that transforming-between-coordinate-systems thing in chapter 2 . . . can’t I
do that here, too?” Yes, you could transform the offset position by using a
rotated coordinate system to get the rotated offset, but that would require set-
ting up the rotated coordinate system first, and it’s more straightforward not
to need that step.

. . . or rotate
quickly with
the mouse.

Maintain
 the starting

offset, shifted
according to
the camera’s

rotation.
No matter where the camera is relative
to the target, always face the target.

179Adjusting the camera view for third-person

Finally, the code uses the LookAt() method to point the camera at the target; this
function points one object (not just cameras) at another object. The rotation value
calculated previously was used to position the camera at the correct angle around the
target, but in that step the camera was only positioned and not rotated. Thus, without
the final LookAt() line, the camera position would orbit around the character but
wouldn’t necessarily be looking at it. Go ahead and comment out that line to see what
happens.

The camera has its script for orbiting around the player character; next up is code
that moves the character around.

1. Define a position to use as
the offset for the camera.

Multiply the offset vector by a quaternion
to get the rotated offset position.

Then determine the position for the camera by
subtracting the rotated offset from the target’s position.

2. Multiply the offset position
with a quaternion to get the
rotated offset position.

3. Subtract from the player’s
position to figure out where
to offset relative to the player.

Offset position

Final camera
position

Player’s position

transform.position = target.position – (rotation × _offset);

Figure 8.7 The steps for calculating the camera’s position

Cinemachine
We just wrote a custom script for controlling the camera. However Unity also offers
Cinemachine, a suite of tools for advanced camera control. That package would be
overkill for the straightforward camera behavior in this chapter, but for many projects,
Cinemachine is well worth experimenting with.

Open the Package Manager window (Window > Package Manager) and search the
Unity Registry for Cinemachine. Read more about it at http://mng.bz/PXvP.

http://mng.bz/PXvP

180 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

8.2 Programming camera-relative movement controls
Now that the character model is imported into Unity and you’ve written code to con-
trol the camera view, it’s time to program controls for moving around the scene. Let’s
program camera-relative controls that’ll move the character in various directions
when arrow keys are pressed, as well as rotate the character to face those different
directions.

Implementing camera-relative controls involves two primary steps: first rotate the
player character to face the direction of the controls and then move the character for-
ward. Let’s write the code for these two steps next.

8.2.1 Rotating the character to face movement direction

First you’ll write code to make the character face in the direction of the arrow keys.
Create a C# script called RelativeMovement that uses the code from listing 8.2. Drag
that script onto the player character and then link the camera to the target property
of the script component (just as you linked the character to the target of the camera
script). Now the character will face different directions when you press the controls,
facing directions relative to the camera, or stand still when you’re not pressing any
arrow keys (that is, when rotating using the mouse).

What does “camera-relative” mean?
The whole notion of camera-relative is a bit nonobvious but crucial to understand.
This is similar to the local versus global distinction mentioned in previous chapters:
“left” points in different directions when you mean “left of the local object” or “left
of the entire world.” In a similar way, when you “move the character to the left,” do
you mean toward the character’s left, or the left side of the screen?

The camera in a first-person game is placed inside the character and moves with it,
so no distinction exists between the character’s left and the camera’s left. A third-
person view places the camera outside the character, though, and thus the camera’s
left may be pointed in a different direction from the character’s left. For example, the
directions are literally opposite if the camera is looking at the front of the character.
As such, you have to decide what you want to have happen in your specific game and
controls setup.

Although games occasionally do it the other way, most third-person games make their
controls camera-relative. When the player presses the left button, the character moves
to the left of the screen, not the character’s left. Over time and through experiments
with trying out different control schemes, game designers have figured out that players
find the controls more intuitive and easier to understand when “left” means “left-hand
side of the screen” (which, not coincidentally, is also the player’s left).

181Programming camera-relative movement controls

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RelativeMovement : MonoBehaviour {
 [SerializeField] Transform target;

 void Update() {
 Vector3 movement = Vector3.zero;

 float horInput = Input.GetAxis("Horizontal");
 float vertInput = Input.GetAxis("Vertical");
 if (horInput != 0 || vertInput != 0) {

 Vector3 right = target.right;
 Vector3 forward = Vector3.Cross(right, Vector3.up);
 movement = (right * horInput) + (forward * vertInput);

 transform.rotation = Quaternion.LookRotation(movement);
 }
 }
}

This listing starts the same way listing 8.1 did, with a serialized variable for target. Just
as the previous script needed a reference to the object it would orbit around, this
script needs a reference to the object it’ll move relative to. Then we get to the
Update() function. The first line of the function declares a Vector3 value of 0, 0, 0.
The remaining code will replace this vector if the player is pressing any buttons, but
it’s important to have a default value in case there isn’t any input.

 Next, check the input controls, just as you have in previous scripts. Here’s where X
and Z values are set in the movement vector, for horizontal movement around the
scene. Remember that Input.GetAxis() returns 0 if no button is pressed, and it varies
between 1 and –1 when those keys are being pressed; putting that value in the move-
ment vector sets the movement to the positive or negative direction of that axis (the
x-axis is left/right, and the z-axis is forward/backward).

 The next several lines calculate the camera-relative movement vector. Specifically,
we need to determine the sideways and forward directions to move in. The sideways
direction is easy; the target transform has a property called right, and that will point
to the camera’s right because the camera was set as the target object. The forward
direction is trickier, because the camera is angled forward and down into the ground,
but we want the character to move around perpendicular to the ground. This forward
direction can be determined using the cross product.

Listing 8.2 Rotating the character relative to the camera

This script needs a reference to
the object to move relative to.

Start with vector (0, 0, 0) and add
movement components progressively.Handle

movement
only while

arrow keys
are pressed.

Calculate the player’s
forward direction by using

the cross product of the
target’s right direction.

Add together the input in each direction to
get the combined movement vector.

LookRotation()
calculates a
quaternion

facing in that
direction.

182 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

DEFINITION The cross product is one kind of mathematical operation that can
be done on two vectors. Long story short, the cross product of two vectors is a
new vector pointed perpendicular to both input vectors. Think about the 3D
coordinate axes: the z--axis is perpendicular to both the x- and y-axes. Don’t
confuse cross product with dot product; the dot product (explained later in
the chapter) is a different but also commonly seen vector math operation.

In this case, the two input vectors are the right and up directions. Remember that we
already determined the camera’s right. Meanwhile, Vector3 has several shortcut prop-
erties for common directions, including the direction pointed straight up from the
ground. The vector perpendicular to both of those points in the direction the camera
faces, but aligned perpendicular to the ground.

 Add the inputs in each direction to get the combined movement vector. The final
line of code applies that movement direction to the character by converting Vector3
into a quaternion by using Quaternion.LookRotation() and assigning that value. Try
running the game now to see what happens!

Smoothly rotating (interpolating) by using lerp
Currently, the character’s rotation snaps instantly to different directions, but it’d look
better if the character smoothly rotated. You can do so using a mathematical opera-
tion called lerp. First add this variable to the script:

public float rotSpeed = 15.0f;

Then replace the existing transform.rotation line at the end of listing 8.2 with the
following code:

 ...
 Quaternion direction = Quaternion.LookRotation(movement);
 transform.rotation = Quaternion.Lerp(transform.rotation,
 direction, rotSpeed * Time.deltaTime);
 }
 }
}

Now, instead of snapping directly to the LookRotation() value, that value is used
indirectly as the target direction to rotate toward. The Quaternion.Lerp() method
smoothly changes between the current and target rotations.

The term for smoothly changing from one value to another is interpolate; you can
interpolate between two of any kind of value, not just rotation values. Lerp is a quasi-
acronym for linear interpolation, and Unity provides lerp methods for vectors and float
values too (to interpolate positions, colors, or anything else). Quaternions also have
a closely related alternative method for interpolation called slerp (for spherical linear
interpolation). For slower turns, slerp rotations may look better than lerp.

183Programming camera-relative movement controls

Currently, the character is rotating in place without moving; in the next section, you’ll
add code for moving the character around.

NOTE Because moving sideways uses the same keyboard controls as orbiting
the camera, the character will slowly rotate while the movement direction
points sideways. This doubling up of the controls is desired behavior in this
project.

8.2.2 Moving forward in that direction

As you’ll recall from chapter 2, in order to move the player around the scene, you
need to add a character controller component to the player object. Select the player
and then choose Component > Physics > Character Controller. In the Inspector, you
should slightly reduce the controller’s radius to 0.4, but otherwise the default settings
are all fine for this character model. Here’s what you need to add in the Relative-
Movement script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(CharacterController))]
public class RelativeMovement : MonoBehaviour {
...
public float moveSpeed = 6.0f;

private CharacterController charController;

void Start() {
 charController = GetComponent<CharacterController>();
}

 void Update() {
 ...
 movement = (right * horInput) + (forward * vertInput);
 movement *= moveSpeed;
 movement = Vector3.ClampMagnitude(movement, moveSpeed);
 ...
 }

Listing 8.3 Adding code to change the player’s position

Incidentally, this code uses Lerp() in a somewhat nontraditional way. Normally, the
third value changes over time, but we are instead keeping the third value constant
and changing the first value. In traditional usage, the start and end points are con-
stant, but here we keep moving the start closer to the end, resulting in smooth inter-
polation toward that endpoint. This nontraditional use is explained at the Unity
Answers website (http://answers.unity.com/answers/730798/view.html).

The surrounding lines are
context for placing the
RequireComponent() method.

A pattern you’ve seen
in previous chapters,
used for getting
access to other
components.

The facing directions are magnitude 1, so
multiply with the desired speed value.

Limit diagonal movement to the same
speed as movement along an axis.

http://answers.unity.com/answers/730798/view.html

184 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

 movement *= Time.deltaTime;
 charController.Move(movement);
 }
}

If you play the game now, you will see the character (stuck in a T-pose) moving around
in the scene. Pretty much the entirety of this listing is code you’ve already seen, so I’ll
review everything briefly.

 First, a RequireComponent attribute is at the top of the code. As explained in chap-
ter 2, RequireComponent will force Unity to make sure the GameObject has a compo-
nent of the type passed into the command. This line is optional; you don’t have to
require it, but without this component, the script will have errors.

 Next, a movement value is declared, followed by getting this script a reference to
the character controller. As you’ll recall from previous chapters, GetComponent()
returns other components attached to the given object, and if the object to search on
isn’t explicitly defined, then it’s assumed to be this.gameObject.GetComponent()
(the same object as this script).

 Movement values are still assigned based on the input controls, but now you also
account for the movement speed. Multiply all movement axes by the movement
speed, and then use Vector3.ClampMagnitude() to limit the vector’s magnitude to
the movement speed. The clamp is needed because, otherwise, diagonal movement
would have a greater magnitude than movement directly along an axis (picture the
sides and hypotenuse of a right triangle).

 Finally, at the end, you multiply the movement values by deltaTime to get frame
rate–independent movement (recall that frame rate–independent means the character
moves at the same speed on different computers with different frame rates). Pass the
movement values to CharacterController.Move() to make the movement.

 This handles all the horizontal movement. Next, let’s take care of vertical movement.

8.3 Implementing the jump action
In the previous section, you wrote code to make the character run around on the
ground. In the chapter introduction, I also mentioned making the character jump, so
let’s do that now. Most third-person games do have a control for jumping. And even if
they don’t, they almost always have vertical movement from the character falling off
ledges. Our code will handle both jumping and falling. Specifically, this code will have
gravity pulling the player down at all times, but occasionally an upward jolt will be
applied when the player jumps.

 Before you write this code, let’s add a few raised platforms to the scene. The game
currently has nothing to jump on or fall from! Create a couple more cube objects, and
then modify their positions and scale to give the player platforms to jump on. In the
sample project, I added two cubes and used these settings: Position 5, 0.75, 5 and
Scale 4, 1.5, 4; Position 1, 1.5, 5.5, and Scale 4, 3, 4. Figure 8.8 shows the raised
platforms.

Always multiply movements
by deltaTime to make them
frame-rate independent.

185Implementing the jump action

8.3.1 Applying vertical speed and acceleration

As mentioned when you first started writing the RelativeMovement script in listing
8.2, the movement values are calculated in separate steps and added to the movement
vector progressively. This listing adds vertical movement to the existing vector.

...
public float jumpSpeed = 15.0f;
public float gravity = -9.8f;
public float terminalVelocity = -10.0f;
public float minFall = -1.5f;

private float vertSpeed;
...
void Start() {
 vertSpeed = minFall;
 ...
}

 void Update() {
 ...
 if (charController.isGrounded) {
 if (Input.GetButtonDown("Jump")) {
 vertSpeed = jumpSpeed;
 } else {
 vertSpeed = minFall;
 }
 } else {
 vertSpeed += gravity * 5 * Time.deltaTime;
 if (vertSpeed < terminalVelocity) {
 vertSpeed = terminalVelocity;
 }
 }
 movement.y = vertSpeed;

 movement *= Time.deltaTime;
 charController.Move(movement);
 }
}

Listing 8.4 Adding vertical movement to the RelativeMovement script

Position 5, 0.75, 5
Scale 4, 1.5, 4

Position 1, 1.5, 5.5
Scale 4, 3, 4

Figure 8.8 A couple of raised platforms added to the sparse scene

Initialize the vertical speed to the
minimum falling speed at the
start of the existing function.

CharacterController has an
isGrounded property to check if
the controller is on the ground.

React to the
Jump button
while on the

ground. If not on the ground, apply gravity
until terminal velocity is reached.

This is existing code, simply
for reference on where the
new code goes.

186 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

As usual, you start by adding a few new variables to the top of the script for various
movement values, and initialize the values correctly. Then, you skip down to just after
the big if statement for horizontal movement, where you’ll add another big if state-
ment for vertical movement. Specifically, the code will check whether the character is
on the ground, because the vertical speed will be adjusted differently in each case.
CharacterController includes isGrounded for checking whether the character is on
the ground; this value is true if the bottom of the character controller collided with
anything in the last frame.

 If the character is on the ground, the vertical speed value (the private vertSpeed
variable) should be reset to nothing. The character isn’t falling while on the ground,
so its vertical speed is 0; if the character then steps off a ledge, you’re going to get a
nice, natural-looking motion because the falling speed will accelerate from nothing.

NOTE Well, the vertical speed is not exactly 0; you’re setting the value to min-
Fall, a slight downward movement, so that the character will always be press-
ing down against the ground while running around horizontally. Some
downward force is required for running up and down on uneven terrain.

The exception to this grounded speed value occurs if the jump button is clicked. In that
case, the vertical speed should be set to a high number. The if statement checks Get-
ButtonDown(), a new input function that works much like GetAxis() does, returning
the state of the indicated input control. And much like Horizontal and Vertical input
axes, the exact key assigned to Jump is defined by going to Input Manager settings under
Edit > Project Settings (the default key assignment is Space—that is, the spacebar).

 Getting back to the larger if condition, if the character is not on the ground, then
the vertical speed should be constantly reduced by gravity. Note that this code doesn’t
simply set the speed value but rather decrements it; this way, it’s not a constant speed
but rather a downward acceleration, resulting in a realistic falling movement. Jump-
ing will happen in a natural arc, as the character’s upward speed gradually reduces to
0 and it starts falling instead.

 Finally, the code makes sure the downward speed doesn’t exceed terminal velocity.
Note that the operator is less than and not greater than, because downward is a nega-
tive speed value. Then, after the big if statement, assign the calculated vertical speed
to the y-axis of the movement vector.

 And that’s all you need for realistic vertical movement! By applying a constant
downward acceleration when the character isn’t on the ground, and adjusting the
speed appropriately when the character is on the ground, the code creates nice falling
behavior. But this all depends on detecting the ground correctly, and a subtle glitch
remains that you need to fix.

8.3.2 Modifying the ground detection to handle edges and slopes
As explained in the previous section, the isGrounded property of CharacterController
indicates whether the bottom of the character controller collided with anything in the
last frame. Although this approach to detecting the ground works the majority of the

187Implementing the jump action

time, you’ll probably notice that the character seems to float in the air while stepping
off edges.

 That’s because the collision area of the character is a surrounding capsule (you
can see it when you select the character object), and the bottom of this capsule will
still be in contact with the ground when the player steps off the edge of the platform.
Figure 8.9 illustrates the problem. This won’t do at all!

Similarly, if the character stands on a slope, the current ground detection will cause
problematic behavior. Try it now by creating a sloped block against the raised plat-
forms. Create a new cube object and set its transform values to Position -1.5, 1.5, 5,
Rotation 0, 0, -25, and Scale 1, 4, 4.

 If you jump onto the slope from the ground, you’ll find that you can jump again
from midway up the slope and thereby ascend to the top. That’s because the slope
touches the bottom of the capsule obliquely, and the code currently considers any col-
lision on the bottom to be solid footing. Again, this won’t do; the character should
slide back down, not have a solid footing to jump from.

NOTE Sliding back down is desired only on steep slopes. On shallow slopes,
such as uneven ground, you want the player to run around unaffected. If you
want one to test on, make a shallow ramp by creating a cube and set it to Posi-
tion 5.25, 0.25, 0.25, Rotation 0, 90, 75, Scale 1, 6, 3.

All these problems have the same root cause: checking for collisions on the bottom of
the character isn’t a great way to determine whether the character is on the ground.
Instead, let’s use raycasting to detect the ground. In chapter 3, the AI used raycasting
to detect obstacles in front of it; let’s use the same approach to detect surfaces below
the character. Cast a ray straight down from the player’s position. If it registers a hit
just below the character’s feet, the player is standing on the ground.

 This introduces a new situation to handle: when the raycast doesn’t detect ground
below the character, but the character controller is colliding with the ground. As in
figure 8.9, the capsule still collides with the platform while the character is walking off
the edge. Figure 8.10 adds raycasting to the diagram to show what will happen now:

... but the collision capsule around
the character is still touching the
platform edge. As a result, the player
appears to be floating in the air.

The character has completely
stepped off the platform ...

Figure 8.9 Diagram showing the character controller capsule touching the platform edge

188 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

the ray doesn’t hit the platform, but the capsule does touch the edge. The code needs
to handle this special situation.

In this case, the code should make the character slide off the ledge. The character will
still fall (because it’s not standing on the ground), but it’ll also push away from the
point of collision (because it needs to move the capsule away from the platform it’s
hitting). Thus, the code will detect collisions with the character controller and
respond to those collisions by nudging away. This listing adjusts the vertical movement
with everything we just discussed.

...
private ControllerColliderHit contact;
...
 bool hitGround = false;
 RaycastHit hit;
 if (vertSpeed < 0 &&
 Physics.Raycast(transform.position, Vector3.down, out hit)) {
 float check =
 (charController.height + charController.radius) / 1.9f;
 hitGround = hit.distance <= check;
 }

 if (hitGround) {
 if (Input.GetButtonDown("Jump")) {
 vertSpeed = jumpSpeed;
 } else {
 vertSpeed = minFall;
 }
 } else {
 vertSpeed += gravity * 5 * Time.deltaTime;
 if (vertSpeed < terminalVelocity) {
 vertSpeed = terminalVelocity;
 }

 if (charController.isGrounded) {
 if (Vector3.Dot(movement, contact.normal) < 0) {
 movement = contact.normal * moveSpeed;

Listing 8.5 Using raycasting to detect the ground

Raycasting straight down from
the middle correctly detects
that the character isn’t
standing on the ground ...

... but the collision capsule around
the character is still touching the
platform edge. The code must
handle this situation.

Figure 8.10 Diagram of raycasting downward while stepping off a ledge

Needed to store collision
data between functions

Check if the player is falling.

Distance to check against
(extend slightly beyond the

bottom of the capsule)

Instead
 of using

isGrounded,
check the

raycasting
result.

Raycasting
didn’t detect
ground, but

the capsule is
touching the

ground.

Respond slightly differently
depending on whether the character

is facing the contact point.

189Implementing the jump action

 } else {
 movement += contact.normal * moveSpeed;
 }
 }
 }
 movement.y = vertSpeed;

 movement *= Time.deltaTime;
 charController.Move(movement);
 }

 void OnControllerColliderHit(ControllerColliderHit hit) {
 contact = hit;
 }
}

This listing contains much of the same code as the previous listing; the new code is
interspersed throughout the existing movement script, and this listing needs the exist-
ing code for context. The first line adds a new variable to the top of the Relative-
Movement script. This variable is used to store data about collisions between functions.

 The next several lines do raycasting. This code also goes below horizontal movement
but before the if statement for vertical movement. The actual Physics.Raycast()
call should be familiar from previous chapters, but the specific parameters are different
this time. Although the position to cast a ray from is the same (the character’s position),
the direction will be down this time instead of forward. Then, you check how far away
the raycast was when it hit something; if the distance of the hit is at the distance of the
character’s feet, the character is standing on the ground, so set hitGround to true.

WARNING The way the check distance is calculated is not obvious, so let’s go
over that in detail. First, take the height of the character controller (which is
the height without the rounded ends) and then add the rounded ends.
Divide this value in half because the ray was cast from the middle of the char-
acter (that is, already halfway down) to get the distance to the bottom of the
character. But you really want to check a little beyond the bottom of the char-
acter to account for tiny inaccuracies in the raycasting, so divide by 1.9
instead of 2 to get a distance that’s slightly too far.

Having done this raycasting, use hitGround instead of isGrounded in the if statement
for vertical movement. Most of the vertical movement code will remain the same, but
add code to handle when the character controller collides with the ground even
though the player isn’t over the ground (that is, when the player walks off the edge of
the platform). We’ve added a new isGrounded conditional, but note that it’s nested
inside the hitGround conditional so that isGrounded is checked only when hitGround
doesn’t detect the ground.

 The collision data includes a normal property (again, a normal vector says which
way something is facing) that tells us the direction to move away from the point of col-
lision. But one tricky thing is that you want the nudge away from the contact point to

Store the collision data
in the callback when a

collision is detected.

190 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

be handled differently depending on in which direction the player is already moving.
When the previous horizontal movement is toward the platform, you want to replace
that movement so that the character won’t keep moving in the wrong direction; but
when facing away from the edge, you want to add to the previous horizontal movement
in order to keep the forward momentum away from the edge. The movement vector’s
facing relative to the point of collision can be determined using the dot product.

DEFINITION The dot product is another mathematical operation that can be
done on two vectors. The dot product of two vectors ranges between N and
–N (with N determined by multiplying the magnitude of the input vectors).
Positive N means they point in exactly the same direction, and –N means they
point in exactly opposite directions. Don’t confuse dot product and cross
product; the cross product is a different but also commonly seen vector math
operation.

Vector3 includes a Dot() function to calculate the dot product of two given vectors. If
you calculate the dot product between the movement vector and the collision normal,
that will return a negative number when the two directions face away from each other,
and a positive number when the movement and the collision face the same direction.

 The very end of listing 8.5 adds a new method to the script. In the previous code,
you were checking the collision normal, but where did that information come from?
It turns out that collisions with the character controller are reported through a call-
back function called OnControllerColliderHit() that MonoBehaviour provides; in
order to respond to the collision data anywhere else in the script, that data must be
stored in an external variable. That’s all the method is doing here: storing the colli-
sion data in contact so that this data can be used within the Update() method.

 Now the errors are corrected around platform edges and on slopes. Go ahead and
play to test it out by stepping over edges and jumping onto the steep slope. This move-
ment demo is almost complete. The character is moving around the scene correctly,
so only one thing remains: animating the character out of the T-pose.

8.4 Setting up animations on the player character
Besides the more complex shape defined by mesh geometry, a humanoid character
needs animations. In chapter 4, you learned that an animation is a packet of informa-
tion that defines movement of the associated 3D object. The concrete example I gave
was of a character walking around, and that situation is exactly what you’re going to
be doing now!

 The character is going to run around the scene, so you’ll assign animations that
make the arms and legs swing back and forth. Figure 8.11 shows what the game will
look like when the character has an animation playing while it moves around the
scene.

 A good analogy for understanding 3D animation is puppeteering: 3D models are
the puppets, the animator is the puppeteer, and an animation is a recording of the pup-
pet’s movements. Animations can be created with a few approaches; most character

191Setting up animations on the player character

animation in modern games (certainly all the animations on this chapter’s character)
uses a technique called skeletal animation.

DEFINITION In skeletal animation, a series of bones is set up inside the model,
and then the bones are moved around during the animation. When a bone
moves, the model’s surface linked to that bone moves along with it.

As the name implies, skeletal animation makes the most intuitive sense when simulating
the skeleton inside a character (figure 8.12 illustrates this), but the skeleton is an
abstraction that’s useful anytime you want a model to bend and flex while still having
a definite structure to its movement (for example, a tentacle that waves around).
Although the bones move rigidly, the model surface around the bones can bend and
flex.

 Achieving the result illustrated in figure 8.11 involves several steps: first, define ani-
mation clips in the imported file, then set up the controller to play those animation clips,
and finally, incorporate that animation controller in your code. The animations on the
character model will be played back according to the movement scripts you’ll write.

 Of course, the very first thing you need to do, before any of those steps, is turn on
the animation system. Select the player model in the Project view to see its Import

The character is now moving
its arms and legs instead
of sliding around in a T-pose.

Figure 8.11 Character moving around with a run animation playing

Bone (invisible in Unity) Visible mesh

The arm bone was moved, and
the arm mesh moved with it.

Figure 8.12 Skeletal animation of a humanoid character

192 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

settings in the Inspector. Select the Animation tab and make sure Import Animation is
checked. Then go to the Rig tab and switch Animation Type from Generic to Humanoid
(this is a humanoid character, naturally). Note that this last menu also has a Legacy
setting; Generic and Humanoid are both settings within the umbrella term Mecanim.

Click the Apply button at the bottom of the Inspector to lock these settings onto the
imported model and then continue defining animation clips.

WARNING You may notice a warning (not an error) in the console that says,
conversion warning: spine3 is between humanoid transforms. That spe-
cific warning isn’t a cause for worry; it indicates that the skeleton in the
imported model has extra bones beyond the skeleton that Mecanim expects.

8.4.1 Defining animation clips in the imported model

The first step in setting up animations for our character is defining the various anima-
tion clips that’ll be played. If you think about a lifelike character, different movements
can happen at different times: sometimes the player is running around, sometimes
the player is jumping on platforms, and sometimes the character is just standing there
with its arms down. Each movement is a separate clip that can play individually.

 Often, imported animations come as a single long timeline that can be cut up into
shorter individual animations. To split up the animation clips, first select the Anima-
tions tab in the Inspector. You’ll see a Clips panel, shown in figure 8.13; this lists all the
defined animation clips, which initially are one imported clip. You’ll notice + and –
buttons at the bottom of the list; you use these buttons to add and remove clips on the
list. Ultimately, you need four clips for this character, so add and remove clips as nec-
essary while you work.

Explaining Unity’s Mecanim animation system
Unity has a sophisticated system for managing animations on models, called
Mecanim. You were introduced to this animation system in chapter 6 with the caveat
that we’d go into more detail later, so some of this chapter will be a review of previous
explanations, now focusing on 3D animations instead of 2D.

The name Mecanim identifies the newer, more advanced animation system that was
added to Unity as a replacement for the older animation system. The older system is
still around, identified as Legacy animation, but it may be phased out in a future ver-
sion of Unity, at which point Mecanim will simply be the animation system.

Although the animations you’re going to use are all included in the same FBX file as
our character model, one of the major advantages of Mecanim’s approach is that you
can apply animations from other FBX files to a character. For example, all of the
human enemies can share a single set of animations. This has multiple advantages,
including keeping all your data organized (models can go in one folder, whereas ani-
mations go in another folder) as well as saving time spent animating each separate
character.

193Setting up animations on the player character

When you select a clip, information about that clip (shown in figure 8.14) will appear
in the area below the list. The top of this information area shows the name of this clip,
and you can type in a new name. Name the first clip idle. Define Start and End
frames for this animation clip; this allows you to slice a chunk out of the longer
imported animation. The idle animation goes from frames 3 to 141 of the total time-
line, so enter those numbers for Start and End. Next up are the Loop settings.

DEFINITION Loop refers to a recording that plays over and over repeatedly. A
looping animation clip is one that plays again from the start as soon as play-
back reaches the end.

The idle animation loops, so select both Loop Time and Loop Pose. Incidentally, the
green indicator dot tells you when the pose at the beginning of the clip matches the
pose at the end for correct looping; this indicator turns yellow when the poses are
somewhat off, and it turns red when the start and end poses are completely different.

 Below the Loop settings is a series of settings related to the root transform. The word
root means the same thing for skeletal animation as it does for a hierarchy connected
within Unity: the root object is the base object that everything else is connected to.
Thus, the animation root can be thought of as the base of the character, and everything
else moves relative to that base.

Animation clips listed
by name, along with the
start and end frames

+/– buttons to add
more clips to the list

Figure 8.13 The Clips list in Animation settings

The name of the animation
clip; type a new one here.

Set Start and End frames
for this clip.

Turn on looping playback
(including an option to
blend together the start
and end poses).

This color indicates how well
the start and end poses match
(for looping): Green signifies
very matched. Yellow signifies
somewhat similar poses. Red
signifies completely different
poses.

Select how each component of
the root will be transformed
(rotation, vertical position,
horizontal position).

Figure 8.14 Information about the selected animation clip

194 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

A few settings can be used for setting up that base, and you may want to experiment
here when working with your own animations. For our purposes, though, the three
Based Upon menus should be set to Body Orientation, Center Of Mass, and Center
Of Mass, in that order.

 Now click Apply and you’ve added an idle animation clip to your character. Do the
same for two more clips: walk starts at frame 144 and ends at 169, and run starts at 171
and ends at 190. All the other settings should be the same as for idle because they’re
also animation loops.

 The fourth animation clip is jump, and the settings for that clip differ a bit. First,
this isn’t a loop but rather a still pose, so don’t select Loop Time. Set the Start and End
to 190.5 and 191; this is a single-frame pose, but Unity requires that Start and End be
different. The animation preview below won’t look quite right because of these tricky
numbers, but this pose will look fine in the game. Click Apply to confirm the new ani-
mation clips, and then move on to the next step: creating the animator controller.

8.4.2 Creating the animator controller for these animations

The next step is to create the animator controller for this character. This step allows
us to set up animation states and create transitions between those states. Various ani-
mation clips are played during different animation states, and then our scripts will
cause the controller to shift between animation states.

 This might seem like an odd bit of indirection—putting the abstraction of a con-
troller between our code and the actual playing of animations. You may be familiar
with systems that enable you to play animations directly from your code; indeed, the
old Legacy animation system worked in exactly that way, with calls like Play("idle").
But this indirection enables us to share animations between models, rather than being
able to play only animations that are internal to this model. In this chapter, we won’t
take advantage of this ability, but keep in mind that it can be helpful when you’re
working on a larger project. You can obtain your animations from several sources,
including multiple animators, or you can buy individual animations from stores
online (such as the Unity Asset Store).

 Begin by creating a new animator controller asset (Assets > Create > Animator
Controller—not Animation, a different sort of asset). In the Project view, you’ll see an
icon with a funny-looking network of lines on it (see figure 8.15); rename this asset
player. Select the character in the scene and you’ll notice this object has a compo-
nent called Animator; any model that can be animated has this component, in addi-
tion to the Transform component and whatever else you’ve added. The Animator
component has a Controller slot for you to link a specific animator controller, so drag
and drop your new controller asset (and be sure to uncheck Apply Root Motion).

 The animator controller is a tree of connected nodes (hence the icon on that
asset) that you can see and manipulate by opening the Animator view. This is another
view, just like Scene or Project (shown in figure 8.16), except this view isn’t open by
default. Choose Window > Animation and select Animator from this menu (be careful

195Setting up animations on the player character

not to get confused with the Animation window; that’s a separate selection from Ani-
mator). The node network displayed here is whichever animator controller is cur-
rently selected (or the animator controller on the selected character).

TIP Remember that you can move tabs around in Unity and dock them wher-
ever you like to organize the interface. I like to dock the Animator right next
to the Scene and Game tabs.

Initially, we have only two default nodes, for Entry and Any State. You’re not going to
use the Any State node. Instead, you’ll drag in animation clips to create new nodes. In
the Project view, click the arrow on the side of the model asset to expand that asset
and see what it contains. Among the contents of this asset are the animation clips you
defined (see figure 8.17), so drag those clips into the Animator view. Don’t bother
with the walking animation (that could be useful for other projects) and drag in idle,
run, and jump.

The animator controller (as it
appears in the Project view)

Uncheck Apply Root Motion,
which will move the player
object around the scene
along with the animation.
That’s desirable for some
animations, but not this one.

Figure 8.15 Animator
controller and Animator
component

A series of number or Boolean values can be
created here to control the animations. The
currently active state transitions between
states on the graph when these values change.

Each node on the graph is
an animation state. The
named animation clip plays
when the controller is in that
state.
(The orange node is the
default animation state,
before any transitions
happen.)

The lines connecting nodes
are transitions. Transitions
have a direction for
transitioning from A to B.

Figure 8.16 The Animator view with our completed animator controller

196 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

Right-click the Idle node and select Set As Layer Default State. That node will turn
orange while the other nodes stay gray; the default animation state is where the net-
work of nodes starts before the game has made any changes. You’ll need to link the
nodes together with lines indicating transitions between animation states; right-click a
node and select Make Transition to start dragging out an arrow that you can click on
another node to connect. Connect nodes in the pattern shown in figure 8.16 (be sure
to make transitions in both directions for most nodes, but not from jump to run).
These transition lines determine how the animation states connect to each other and
control the changes from one state to another during the game.

 The transitions rely on a set of controlling values, so let’s create those parameters.
At the top left is the Parameters tab (shown previously in figure 8.16); click that to see
a panel with a + button for adding parameters. Add a float called Speed and a Boolean
called Jumping. Those values will be adjusted by our code, and they’ll trigger transi-
tions between animation states. Click the transition lines to see their settings in the
Inspector (see figure 8.18).

Here’s where you’ll adjust how the animation states change when the parameters
change. For example, click the Idle-to-Run transition to adjust the conditions of that
transition. Under Conditions, add one and set it to Speed, Greater, and 0.1. Turn off

Click the arrow to expand
an asset and see its contents.

The imported model contains
the various animation clips.

Figure 8.17 Expanded
model asset in Project
view

Click a transition to
select it and see its
settings.

Uncheck this value for
most transitions, so
that the animation can
be interrupted.

Change this setting
if the transition itself
can also be interrupted.

These arrows control
how long the transition
takes (hold Alt while
dragging the mouse to
navigate this graph).

Define conditions for
transitioning between
animation states when
the parameters change.

Figure 8.18 Transition settings in the Inspector

197Setting up animations on the player character

Has Exit Time (that would force playing the animation all the way through, as
opposed to cutting short immediately when the transition happens). Then, click the
arrow next to the Settings label to see that entire menu; other transitions should be
able to interrupt this one, so change the Interruption Source menu from None to
Current State. Repeat this for all the transitions in table 8.1.

In addition to these menu-based settings is a complex visual interface, shown in figure
8.18, just above the Condition setting. This graph allows you to visually adjust the
length in time of a transition. The default transition time looks fine for both transi-
tions between Idle and Run, but all of the transitions to and from Jump should be
shorter so that the character will snap faster to the jump animation. The shaded area
of the graph indicates how long the transition takes; to see more detail, Alt+left-click
(or Option+left-click on a Mac) the graph to pan across it and Alt+right-click to scale
it (these are the same controls as navigating in the Scene view). Use the arrows on top
of the shaded area to shrink it to under 4 milliseconds for all three Jump transitions.

 Finally, you can perfect the animation network by selecting the animation nodes
one at a time and adjusting the ordering of transitions. The Inspector will show a list
of all transitions to and from that node; you can drag items in the list (their drag han-
dles are the icon on the left side) to reorder them. Make sure the Jump transition is
on top for both the Idle and Run nodes so that the Jump transition has priority over
the other transitions.

 While you’re looking at these settings, you can also change the playback speed if
the animation looks too slow (Run looks better at 1.5 speed). The animator controller
is set up, so now you can operate the animations from the movement script.

8.4.3 Writing code that operates the animator

Finally, you’ll add methods to the RelativeMovement script. As explained earlier, most
of the work of setting up animation states is done in the animator controller; only a
small amount of code is needed to operate a rich and fluid animation system, shown
here.

Table 8.1 Conditions for all transitions in this animator controller

Transition Condition Interruption

Idle-to-Run Speed greater than 0.1 Current state

Run-to-Idle Speed less than 0.1 None

Idle-to-Jump Jumping is true None

Run-to-Jump Jumping is true None

Jump-to-Idle Jumping is false None

198 CHAPTER 8 Creating a third- person 3D game: Player movement and animation

...
private Animator animator;
...
animator = GetComponent<Animator>();
...
 animator.SetFloat("Speed", movement.sqrMagnitude);

 if (hitGround) {
 if (Input.GetButtonDown("Jump")) {
 vertSpeed = jumpSpeed;
 } else {
 vertSpeed = minFall;
 animator.SetBool("Jumping", false);
 }
 } else {
 vertSpeed += gravity * 5 * Time.deltaTime;
 if (vertSpeed < terminalVelocity) {
 vertSpeed = terminalVelocity;
 }
 if (contact != null) {
 animator.SetBool("Jumping", true);
 }

 if (charController.isGrounded) {
 if (Vector3.Dot(movement, contact.normal) < 0) {
 movement = contact.normal * moveSpeed;
 } else {
 movement += contact.normal * moveSpeed;
 }
 }
 }
...

Again, much of this listing is repeated from previous listings; the animation code is a
handful of lines interspersed throughout the existing movement script. Pick out the
animator lines to find additions to make in your code.

 The script needs a reference to the Animator component, and then the code sets
values (either floats or Booleans) on the animator. The only somewhat nonobvious bit
of code is the condition (contact != null) before setting the Jumping Boolean. That
condition prevents the animator from playing the jump animation when the game
starts. Even though the character is technically falling for a split second, no collision
data is generated until the character touches the ground for the first time.

 And there you have it! Now we have a nice third-person movement demo, with
camera-relative controls and character animation playing.

Listing 8.6 Setting values in the Animator component

Added inside the
Start() function

Just below
the entire if
statement for
horizontal
movement

Don’t trigger this value right
at the beginning of the level.

199Summary

Summary
 Third-person view means the camera moves around the character instead of

inside the character.
 Simulated shadows, like real-time shadows and lightmaps, improve the graphics.
 Controls can be relative to the camera instead of relative to the character.
 You can improve on Unity’s ground detection by casting a ray downward.
 Sophisticated animation set up with Unity’s animator controller results in life-

like characters.

200

Adding interactive
 devices and items
 within the game

Implementing functional items is the next topic we’re going to focus on. Previous
chapters covered various elements of a complete game: movement, enemies, the
UI, and so forth. But our projects have lacked anything to interact with other than
enemies, nor have they had much in the way of game state. In this chapter, you’ll
learn how to create functional devices like doors.

This chapter covers
 Programming doors that the player can open

 Enabling physics simulations that scatter a stack
of boxes

 Building collectible items that players store in
their inventory

 Using code to manage game state, such as
inventory data

 Equipping and using inventory items

201Creating doors and other devices

 We’ll also discuss collecting items, which involves both interacting with objects in
the level and tracking game state. Games often have to track state like the player’s cur-
rent stats, progress through objectives, and so on. The player’s inventory is an exam-
ple of this sort of state, so you’ll build a code architecture that can keep track of items
collected by the player. By the end of this chapter, you’ll have built a dynamic space
that really feels like a game!

 We’ll start by exploring devices (such as doors) that are operated with keypresses
from the player. After that, you’ll write code to detect when the player collides with
objects in the level, enabling interactions like pushing objects around or collecting
inventory items. Then you’ll set up a robust Model-View-Controller (MVC) style of
code architecture to manage data for the collected inventory. Finally, you’ll program
interfaces to make use of the inventory for gameplay, such as requiring a key to open
a door.

WARNING Previous chapters were relatively self-contained and didn’t techni-
cally require projects from earlier chapters, but this time some of the code
listings make edits to scripts from chapter 8. If you skipped directly to this
chapter, download the sample project for chapter 8 to build on that.

The example project will have these devices and items randomly strewn about the
level. A polished game would have a lot of careful design behind the placement of
items, but we don’t need to carefully plan out a level that only tests functionality. How-
ever, even though the placement of objects doesn’t require a plan, the bullet points at
the start of the chapter lay out the order in which we’ll implement things. As usual,
the explanations build up the code step by step, but if you want to see all the finished
code in one place, you can download the sample project.

9.1 Creating doors and other devices
Although levels in games consist mostly of static walls and scenery, they also usually
incorporate a lot of functional devices. I’m talking about objects that the player can
interact with and operate—things like lights that turn on or a fan that starts turning.
The specific devices can vary a lot and are mostly limited only by your imagination,
but almost all of them use the same sort of code to have the player activate the device.
You’ll implement a couple of examples in this chapter, and then you should be able to
adapt this same code to work with all sorts of other devices.

9.1.1 Doors that open and close on a keypress

The first kind of device you’ll program is a door that opens and closes, and you’re
going to start with operating the door by pressing a key. You could have lots of devices
in a game, and lots of ways to operate those devices. We’re eventually going to look at
a couple of variations, but doors are the most common interactive devices found in
games, and using items with a keypress is the most straightforward approach to start
with.

202 CHAPTER 9 Adding interactive devices and items within the game

 The scene has a few spots where a gap exists between walls, so place a new object
that blocks the gap. I created a new cube object and then set its transform to Position
2.5, 1.5, 17 and Scale 5, 3, 0.5, creating the door shown in figure 9.1.

Create a C# script, call it DoorOpenDevice, and put that script on the door object. This
code will cause the object to operate as a door.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class DoorOpenDevice : MonoBehaviour {
 [SerializeField] Vector3 dPos;

 private bool open;

 public void Operate() {
 if (open) {
 Vector3 pos = transform.position - dPos;
 transform.position = pos;
 } else {
 Vector3 pos = transform.position + dPos;
 transform.position = pos;
 }
 open = !open;
 }
}

The first variable defines the offset that’s applied when the door opens. The door will
move this amount when it opens, and then it will subtract this amount when it closes.
The second variable is a private Boolean for tracking whether the door is open or
closed. In the Operate() method, the object’s transform is set to a new position, add-
ing or subtracting the offset depending on whether the door is already open; then
open is toggled on or off.

Listing 9.1 Script that opens and closes the door on command

Figure 9.1 Door object
fit into a gap in the wall

Amount to offset the position
by when the door opens

Boolean to keep track of
the open state of the door

Open or close the door
depending on the open state.

203Creating doors and other devices

 As with other serialized variables, dPos appears in the Inspector. But this is a Vector3
value, so instead of one input box, we have three, all under the one variable name. Type
in the relative position of the door when it opens; I decided to have the door slide down
to open, so the offset is 0, -2.9, 0 (because the door object has a height of 3, moving
down 2.9 leaves a tiny sliver of the door sticking up out of the floor).

NOTE The transform is applied instantly, but you may prefer seeing the
movement when the door opens. As mentioned in chapter 3, you can use
tweens to make objects move smoothly over time. The word tween means dif-
ferent things in different contexts, but in game programming it refers to code
commands that cause objects to move around; appendix D mentions tween-
ing systems for Unity.

Other code needs to call Operate() to make the door open and close (the single func-
tion call handles both cases). You don’t yet have that other script on the player, so writ-
ing that is the next step.

9.1.2 Checking distance and facing before opening the door

Create a new script and name it DeviceOperator. This listing implements a control
key that operates nearby devices.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class DeviceOperator : MonoBehaviour {
 public float radius = 1.5f;

 void Update() {
 if (Input.GetKeyDown(KeyCode.C)) {
 Collider[] hitColliders =
 Physics.OverlapSphere(transform.position, radius);
 foreach (Collider hitCollider in hitColliders) {
 hitCollider.SendMessage("Operate",
 SendMessageOptions.DontRequireReceiver);
 }
 }
 }
}

The majority of this listing should look familiar, but a crucial new method is at the
center. First, establish a value for how far away to operate devices from. Then, in the
Update() function, look for keyboard input. Just as the RelativeMovement script uses
GetButtonDown() and a button from the project’s input settings, this time you’ll use
GetKeyDown() for input from a specific letter key.

Listing 9.2 Device control key for the player

How far away from the
player to activate devices

Respond when the named
key is pressed down.

OverlapSphere()
returns a list of
nearby objects. SendMessage() tries to

call the named function,
regardless of the target’s
type.

204 CHAPTER 9 Adding interactive devices and items within the game

 Now we get to the crucial new method: OverlapSphere(). This method returns an
array of all objects that are within a given distance of a given position. By passing in
the position of the player and the radius variable, this method detects all objects near
the player. What you do with this list can vary (perhaps you set off a bomb and want to
apply an explosive force), but in this situation you want to attempt to call Operate()
on all nearby objects.

 That method is called via SendMessage() instead of the typical dot notation, an
approach you also saw with UI buttons in previous chapters. As was the case there, you
use SendMessage() because you don’t know the exact type of the target object, and
that command works on all GameObjects. But this time you’re going to pass the Dont-
RequireReceiver option to the method. This is because most of the objects returned
by OverlapSphere() won’t have an Operate() method; normally, SendMessage()
prints an error message if nothing in the object received the message, but in this case
the error messages would be distracting because you already know most objects will
ignore the message.

 Once the code is written, you can attach this script to the player object. Now you
can open and close the door by standing near it and pressing the key.

 You can fix one little detail. Currently, it doesn’t matter which way the player is fac-
ing, as long as the player is close enough. But you could also adjust the script to oper-
ate only devices the player is facing, so let’s do that. Recall from chapter 8 that you can
calculate the dot product for checking facing. That’s a mathematical operation done
on a pair of vectors that returns a range between –N and N, with N meaning they point
in exactly the same direction and –N when they point in exactly opposite directions.
Well, N is 1 when the vectors are normalized, resulting in an easy-to-work-with range
from –1 to 1.

DEFINITION When a vector is normalized, the result continues to point in the
same direction, but its length (also referred to as its magnitude) is adjusted to
1. Many mathematical operations work best with normalized vectors, so Unity
provides properties that return normalized vectors.

Here is the new code in the DeviceOperator script.

...
foreach (Collider hitCollider in hitColliders) {
 Vector3 hitPosition = hitCollider.transform.position;
 hitPosition.y = transform.position.y;

 Vector3 direction = hitPosition - transform.position;
 if (Vector3.Dot(transform.forward, direction.normalized) > .5f) {
 hitCollider.SendMessage("Operate",
 SendMessageOptions.DontRequireReceiver);
 }
}
...

Listing 9.3 Adjusting DeviceOperator to operate only devices that the player faces

Vertical correction so
the direction won’t
point up or down

Send the message only
when facing the right

direction.

205Creating doors and other devices

To use the dot product, you first determine the direction to check against. That would
be the direction from the player to the object; make a direction vector by subtracting
the position of the player from the position of the object (with the vertical position
corrected, so that the direction will be horizontal instead of pointing down at the low-
ered door). Then call Vector3.Dot() with both that direction vector and the forward
direction of the player. When the dot product is close to 1 (specifically, this code
checks whether it is greater than 0.5), the two vectors are close to pointing in the same
direction.

 With this adjustment made, the door won’t open and close when the player faces
away from it, even if the player is close. And this same approach to operating devices
can be used with any sort of device. To demonstrate that flexibility, let’s create another
example device.

9.1.3 Operating a color-changing monitor

We’ve created a door that opens and closes, but that same device-operating logic can
be used with any sort of device. You’re going to
create another device that’s operated in the same
way; this time, you’ll create a color-changing dis-
play on the wall.

 Create a new cube and place it so that one side
is barely sticking out of the wall. For example, I
went with Position 10.9, 1.5, -5. Now create a new
script called ColorChangeDevice and attach that
script (listing 9.4) to the wall display. Run up to the
wall monitor and press the same “operate” key as
used with the door; you should see the display
change color, as figure 9.2 illustrates.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ColorChangeDevice : MonoBehaviour {
 public void Operate() {
 Color random = new Color(Random.Range(0f,1f),
 Random.Range(0f,1f), Random.Range(0f,1f));
 GetComponent<Renderer>().material.color = random;
 }
}

Listing 9.4 Script for a device that changes color

Declare a method with the same
name as the door script.

The numbers are RGB
values that range
from 0 to 1.The color is set in the material

attached to the object.

Figure 9.2 Color-changing display
embedded in the wall

206 CHAPTER 9 Adding interactive devices and items within the game

To start with, declare the same function name as the door script used. Operate is the
function name that the device operator script uses, so you need to use that name for it
to be triggered. Inside this function, the code assigns a random color to the object’s
material (remember, color isn’t an attribute of the object itself, but rather the object
has a material, and that material can have a color).

NOTE Although the color is defined with Red, Blue, and Green components,
as is standard in most computer graphics, the values in Unity’s Color object
vary between 0 and 1, instead of 0 and 255, as is common in most places
(including Unity’s color picker UI).

All right, so we’ve gone over one approach to interacting with devices in the game and
have even implemented a couple of devices to demonstrate. Another way of interact-
ing with items is by bumping into them, so let’s go over that next.

9.2 Interacting with objects by bumping into them
In the previous section, devices were operated by keyboard input from the player, but
that’s not the only way players can interact with items in the level. Another straightfor-
ward approach is to respond to collisions with the player. Unity handles most of that
for you, by having collision detection and physics built into the game engine. Unity
will detect collisions for you, but you still need to program the object to respond.

 We’ll go over three collision responses that are useful for games:

 Push away and fall over
 Trigger a device in the level
 Disappear on contact (for item pickups)

9.2.1 Colliding with physics-enabled obstacles

To start, you’re going to create a pile of boxes and then cause the pile to collapse
when the player runs into it. Although the physics calculations involved are compli-
cated, Unity has all of that built in and will scatter the boxes in a realistic way.

 By default, Unity doesn’t use its physics simulation to move objects around. That
can be enabled by adding a Rigidbody component to the object. This concept was first
discussed in chapter 3, because the enemy’s fireballs also needed a Rigidbody compo-
nent. As I explained in that chapter, Unity’s physics system will act only on objects that
have a Rigidbody component. Look for Rigidbody by clicking Add Component and
going to the Physics (not Physics 2D!) menu.

 Create a new cube object and then add a Rigidbody component to it. Create sev-
eral such cubes and position them in a neat stack. For example, in the sample down-
load, I created five boxes and stacked them into two tiers (see figure 9.3).

207Interacting with objects by bumping into them

The boxes are now ready to react to physics forces. To have the player apply a force to
the boxes, make the small addition shown in the following listing to the Relative-
Movement script (this is one of the scripts written in chapter 8) that’s on the player.

...
public float pushForce = 3.0f;
...
void OnControllerColliderHit(ControllerColliderHit hit) {
 contact = hit;

 Rigidbody body = hit.collider.attachedRigidbody;
 if (body != null && !body.isKinematic) {
 body.velocity = hit.moveDirection * pushForce;
 }
}
...

There’s not much to explain about this code: whenever the player collides with some-
thing, check whether the collided object has a Rigidbody component. If so, apply a
velocity to that Rigidbody.

 Play the game and then run into the pile of boxes; you should see them scatter
around realistically. And that’s all you have to do to activate physics simulation on a
stack of boxes in the scene! Unity has physics simulation built in, so you don’t have to
write much code. That simulation can cause objects to move around in response to
collisions, but another possible response is firing trigger events, so let’s use those trig-
ger events to control the door.

9.2.2 Operating the door with a trigger object

Previously, the door was operated by a keypress. This time it will open and close in
response to the character colliding with another object in the scene.

Listing 9.5 Adding physics force to the RelativeMovement script

Each box has a Rigidbody
component. Their positions are

–4.2 0.5 –2.3
–4.2 0.5 –1.2
–4.2 0.5 –0.1
–4.2 1.5 –1.9
–4.2 1.5 –0.7

Figure 9.3 Stack of five boxes to collide with

Amount of force to apply

Check if the
collided object has a
Rigidbody to receive
physics forces.

Apply velocity to
the physics body.

208 CHAPTER 9 Adding interactive devices and items within the game

 Create yet another door and place it in another wall gap (I duplicated the previous
door and moved the new door to -2.5, 1.5, -17). Now create a new cube to use for
the trigger object, and select the Is Trigger check box for the collider (this step was
illustrated when making the fireball in chapter 3). In addition, set the trigger object to
the Ignore Raycast layer; the top-right corner of the Inspector has a Layer menu.
Finally, you should turn off Cast Shadows from this object (remember, this setting is
under Mesh Renderer when you select the object).

WARNING These tiny steps are easy to miss but important: To use an object as
a trigger, be sure to turn on Is Trigger. In the Inspector, look for the check
box in the Collider component. Also, change the layer to Ignore Raycast so
that the trigger object won’t show up in raycasting.

NOTE When trigger objects were introduced in chapter 3, the object needed
to have a Rigidbody component added. Rigidbody isn’t required for the trig-
ger this time because the trigger will be responding to the player (versus col-
liding with a wall, the earlier situation). For triggers to work, either the trigger
or the object entering the trigger needs to have Unity’s physics system
enabled; a Rigidbody component fulfills this requirement, but so does the
player’s character controller.

Position and scale the trigger object so that it both encompasses the door and sur-
rounds an area around the door; I used Position -2.5, 1.5, -17 (same as the door)
and Scale 7.5, 3, 6. Additionally, you may want to assign a semitransparent material to
the object so that you can visually distinguish trigger volumes from solid objects. Cre-
ate a new material by using the Assets menu, and select the new material in the Project
view. Looking at the Inspector, the top setting is Rendering Mode (currently set to the
default value of Opaque); select Transparent in this menu.

 Now click the Albedo color swatch to bring up the Color Picker window. Pick
green in the main part of the window, and lower the alpha by using the bottom slider.
Drag this material from Project onto the object; figure 9.4 shows the trigger with this
material.

Box with a semitransparent
material surrounding
the door it triggers

Figure 9.4 Trigger volume surrounding the door it will trigger

209Interacting with objects by bumping into them

DEFINITION Triggers are often referred to as volumes rather than objects to con-
ceptually differentiate solid objects from objects you can move through.

Play the game now and you can freely move through the trigger volume. Unity still
registers collisions with the object, but those collisions don’t affect the player’s move-
ment anymore. To react to the collisions, you need to write code. Specifically, you
want this trigger to control the door. Create a new script called DeviceTrigger.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class DeviceTrigger : MonoBehaviour {
 [SerializeField] GameObject[] targets;

 void OnTriggerEnter(Collider other) {
 foreach (GameObject target in targets) {
 target.SendMessage("Activate");
 }
 }

 void OnTriggerExit(Collider other) {
 foreach (GameObject target in targets) {
 target.SendMessage("Deactivate");
 }
 }
}

This listing defines an array of target objects for the trigger; even though it’ll be a list
of only one most of the time, it’s possible to have multiple devices controlled by a sin-
gle trigger. Loop through the array of targets to send a message to all the targets. This
loop happens inside the OnTriggerEnter() and OnTriggerExit() methods. These
functions are called once when another object first enters and exits the trigger (as
opposed to being called over and over while the object is inside the trigger volume).

 Notice that the messages being sent are different from before; now you need to
define the Activate() and Deactivate() functions on the door. Add the code in the
next listing to the DoorOpenDevice script.

...
public void Activate() {
 if (!open) {
 Vector3 pos = transform.position + dPos;
 transform.position = pos;
 open = true;
 }
}

Listing 9.6 Code for a trigger that controls a device

Listing 9.7 Adding activate and deactivate functions to the DoorOpenDevice script

List of target objects that
this trigger will activate

OnTriggerEnter() is called
when another object enters
the trigger volume . . .

. . . whereas OnTriggerExit()
is called when an object
leaves the trigger volume.

Open the door only if it isn’t already open.

210 CHAPTER 9 Adding interactive devices and items within the game

public void Deactivate() {
 if (open) {
 Vector3 pos = transform.position - dPos;
 transform.position = pos;
 open = false;
 }
}
...

The new Activate() and Deactivate() methods are much the same code as the
Operate() method from earlier, except now separate functions open and close the
door instead of only one function that handles both cases.

 With all the necessary code in place, you can now use the trigger volume to open
and close the door. Put the DeviceTrigger script on the trigger volume and then link
the door to the targets property of that script; in the Inspector, first set the size of the
array and then drag objects from the Hierarchy view over to slots in the targets array.
Because you have only one door that you want to control with this trigger, type 1 in the
array’s Size field and then drag that door into the target slot.

 With all of this done, play the game and watch what happens to the door when the
player walks toward and away from it. It’ll open and close automatically as the player
enters and leaves the trigger volume.

 That’s another great way to put interactivity into levels! But this trigger volume
approach doesn’t work only with devices like doors; you can also use this approach to
make collectible items.

9.2.3 Collecting items scattered around the level

Many games include items that can be picked up by the player. These items include
equipment, health packs, and power-ups. The basic mechanism of colliding with items
to pick them up is simple; most of the complicated stuff happens after items are
picked up, but we’ll get to that a bit later.

 Create a sphere object and place it hovering at about waist height in an open area
of the scene. Make the object small (like Scale 0.5, 0.5, 0.5), but otherwise prepare it
as you did with the large trigger volume. Select the Is Trigger setting in the collider,
set the object to the Ignore Raycast layer, and then create a new material to give the
object a distinct color. Because the object doesn’t cover much, you don’t need to
make it semitransparent, so don’t turn down the alpha slider this time. Also, as men-
tioned in chapter 8, settings are available for removing the shadows cast from this

Close the door only if it isn’t already closed.

Exercise: Trigger devices in 2D platformer
In this chapter, you’ve implemented triggers in a 3D game, but the logic is almost
exactly the same to do this in a 2D game; you’d just be reacting to 2D colliders
instead, using OnTrigger2D. As an exercise, go back to the 2D platform game from
chapter 6 and implement trigger volumes and devices in that platformer.

211Interacting with objects by bumping into them

object; whether to use the shadows is a judgment call, but for small pickup items like
this, I prefer to turn them off.

 Now that the object in the scene is ready, create a new script to attach to that
object. Call the script CollectibleItem.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class CollectibleItem : MonoBehaviour {
 [SerializeField] string itemName;

 void OnTriggerEnter(Collider other) {
 Debug.Log($"Item collected: {itemName}");
 Destroy(this.gameObject);
 }
}

This script is extremely short and simple. Give the item a name value so that different
items can be in the scene. OnTriggerEnter()destroys itself. A debug message is also
being printed to the console; eventually it will be replaced with useful code.

WARNING Be sure to call Destroy() on this.gameObject and not this!
Don’t get confused between the two; this refers only to this script compo-
nent, whereas this.gameObject refers to the object the script is attached to.

Back in Unity, the variable you added to the code should become visible in the Inspec-
tor. Type in a name to identify this item; I went with energy for my first item. Then
duplicate the item a few times and change the name of the copies; I also created ore,
health, and key (these names must be exact because they’ll be used in code later).
Also create separate materials for each item to give them distinct colors: I used light
blue energy, dark gray ore, pink health, and yellow key.

TIP Rather than a name, as we’ve done here, items in more complex games
often have an identifier used to look up further data. For example, one item
might be assigned ID 301, and ID 301 correlates to a certain display name,
image, description, and so forth.

Now make prefabs of the items so you can clone them throughout the level. In chap-
ter 3, I explained that dragging an object from the Hierarchy view down to the Project
view will turn that object into a prefab; do that for all four items.

NOTE The object’s name will turn blue in the Hierarchy list; blue names indi-
cate objects that are instances of a prefab. Right-click a prefab instance to pick
Select Prefab and select the prefab that the object is an instance of.

Listing 9.8 Script that makes an item delete itself on contact with the player

Type the name of this
item in the Inspector.

212 CHAPTER 9 Adding interactive devices and items within the game

Drag out instances of the prefabs and place the items in open areas of the level; even
drag out multiple copies of the same item to test with. Play the game and run into
items to collect them. That’s pretty neat, but at the moment nothing happens when
you collect an item. You’re going to start keeping track of the items collected; to do
that, you need to set up the inventory code structure.

9.3 Managing inventory data and game state
Now that you’ve programmed the features of collecting items, you need background
data managers (similar to web coding patterns) for the game’s inventory. The code
you’ll write will be similar to the MVC architectures behind many web applications.
The advantage of these data managers is in decoupling data storage from the objects
that are displayed onscreen, allowing for easier experimentation and iterative devel-
opment. Even when the data and/or displays are complex, changes in one part of the
application don’t affect other parts of the application.

 That said, such structures vary a lot among games, because not every game has the
same data-management needs. For example, a role-playing game will have high data-
management needs, so you probably want to implement something like an MVC
architecture. A puzzle game, though, has little data to manage, so building a complex
decoupled structure of data managers would be overkill. Instead, the game state can
be tracked in the scene-specific controller objects (indeed, that’s how we handled
game state in previous chapters).

 In this project, you need to manage the player’s inventory. Let’s set up the code
structure needed for that.

9.3.1 Setting up player and inventory managers

The general idea here is to split up all the data management into separate, well-
defined modules, with each managing its own area of responsibility. You’re going to
create separate modules to maintain player state in PlayerManager (things like the
player’s health) and maintain the inventory list in InventoryManager. These data
managers will behave like the model in MVC; the controller is an invisible object in most
scenes (it wasn’t needed here, but recall SceneController in previous chapters), and
the rest of the scene is analogous to the view.

 A higher-level manager of managers will keep track of all the separate modules.
Besides keeping a list of all the managers, this higher-level manager will control the
life cycles of the various managers—in particular, initializing them at the start. All the
other scripts in the game will be able to access these centralized modules by going
through the main manager. Specifically, other code can use static properties in the
main manager to connect with the specific module desired.

 For the main manager to reference other modules in a consistent way, these modules
must all inherit properties from a common base. You’re going to do that with an inter-
face; many programming languages (including C#) allow you to define a sort of blue-
print that other classes need to follow. Both PlayerManager and InventoryManager will

213Managing inventory data and game state

implement a common interface (called IGameManager in this case), and then the main
Managers object can treat both PlayerManager and InventoryManager as type IGame-
Manager. Figure 9.5 illustrates the setup I’m describing.

Incidentally, whereas all of the code architecture I’ve been talking about consists of
invisible modules that exist in the background, Unity still requires scripts to be linked
to objects in the scene in order to run that code. As you’ve done with the scene-spe-
cific controllers in previous projects, you’re going to create an empty GameObject to
link these data managers to.

Design patterns for accessing centralized shared modules
Over the years, a variety of design patterns have emerged to solve the problem of
connecting parts of a program to centralized modules that are shared throughout the
program. For example, the Singleton pattern was enshrined in the original “Gang of
Four” book about design patterns.

But that pattern has fallen out of favor with many software engineers, so they use
alternative patterns like service locator and dependency injection. In my code, I use
a compromise between the simplicity of static variables and the flexibility of a service
locator.

This design leaves the code simple to use while also allowing for swapping in differ-
ent modules. For example, requesting InventoryManager by using a singleton will
always refer to the exact same class, and thus will tightly couple your code to that
class; conversely, requesting Inventory from a service locator leaves the option to
return either InventoryManager or DifferentInventoryManager. Sometimes it’s
handy to be able to switch between slightly different versions of the same module
(deploying the game on different platforms, for example).

Managers

• static Player

• static Inventory

• List<IGameManager>

PlayerManager

IGameManager

IGameManager

InventoryManager

Figure 9.5 Diagram of the various modules and how they’re related

214 CHAPTER 9 Adding interactive devices and items within the game

9.3.2 Programming the game managers

All right, so that explains all the concepts behind what you’ll do; it’s time to write the
code. To start, create a new script called IGameManager.

public interface IGameManager {
 ManagerStatus status {get;}

 void Startup();
}

Hmm, there’s barely any code in this file. Note that it doesn’t even inherit from
MonoBehaviour; an interface doesn’t do anything on its own and exists only to impose
structure on other classes. This interface declares one property (a variable that has a
getter function) and one method; both need to be implemented in any class that
implements this interface. The status property tells the rest of the code whether this
module has completed its initialization. The purpose of Startup() is to handle the
initialization of the manager, so initialization tasks happen there and the function sets
the manager’s status.

 Notice that the property is of type ManagerStatus. That’s an enum you haven’t
written yet, so create the ManagerStatus script.

public enum ManagerStatus {
 Shutdown,
 Initializing,
 Started
}

This is another file with barely any code in it. This time, you’re listing the possible
states that managers can be in, thereby enforcing that the status property will always
be one of these listed values.

 Now that IGameManager is written, you can implement it in other scripts. Listings
9.11 and 9.12 contain code for InventoryManager and PlayerManager, respectively.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class InventoryManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 public void Startup() {
 Debug.Log("Inventory manager starting...");

Listing 9.9 Base interface that the data managers will implement

Listing 9.10 ManagerStatus: possible states for IGameManager status

Listing 9.11 InventoryManager

This is an enum you
need to define.

Property can be
read from anywhere
but set only within
this script.

Any long-running
startup tasks go here.

215Managing inventory data and game state

 status = ManagerStatus.Started;
 }
}

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PlayerManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 public int health {get; private set;}
 public int maxHealth {get; private set;}

 public void Startup() {
 Debug.Log("Player manager starting...");

 health = 50;
 maxHealth = 100;

 status = ManagerStatus.Started;
 }

 public void ChangeHealth(int value) {
 health += value;
 if (health > maxHealth) {
 health = maxHealth;
 } else if (health < 0) {
 health = 0;
 }

 Debug.Log($"Health: {health}/{maxHealth}");
 }
}

For now, InventoryManager is a shell that will be filled in later, whereas Player-
Manager has all the functionality needed for this project. These managers both inherit
from the MonoBehaviour class and implement the IGameManager interface. That
means the managers gain all the functionality of MonoBehaviour while also needing to
implement the structure imposed by IGameManager. The structure in IGameManager
was one property and one method, so the managers define those two things.

 The status property was defined so that the status could be read from anywhere
(the getter is public) but set only within this script (the setter is private). The method
in the interface is Startup(), so both managers define that function. In both manag-
ers, initialization completes right away (InventoryManager doesn’t do anything yet,
whereas PlayerManager sets a couple of values), so the status is set to Started. But
data modules may have long-running tasks as part of their initialization (such as load-
ing saved data), in which case Startup() will launch those tasks and set the manager’s
status to Initializing. Change status to Started after those tasks complete.

Listing 9.12 PlayerManager

For long-running tasks, use
status Initializing instead.

Both inherit a class
and implement an
interface.

These values could be
initialized with saved data.

Other scripts can’t set health
directly but can call this function.

216 CHAPTER 9 Adding interactive devices and items within the game

 Great! We’re finally ready to tie everything together with a main manager of man-
agers. Create one more script and call it Managers.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(PlayerManager))]
[RequireComponent(typeof(InventoryManager))]

public class Managers : MonoBehaviour {
 public static PlayerManager Player {get; private set;}
 public static InventoryManager Inventory {get; private set;}

 private List<IGameManager> startSequence;

 void Awake() {
 Player = GetComponent<PlayerManager>();
 Inventory = GetComponent<InventoryManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Player);
 startSequence.Add(Inventory);

 StartCoroutine(StartupManagers());
 }

 private IEnumerator StartupManagers() {
 foreach (IGameManager manager in startSequence) {
 manager.Startup();
 }

 yield return null;

 int numModules = startSequence.Count;
 int numReady = 0;

 while (numReady < numModules) {
 int lastReady = numReady;
 numReady = 0;

 foreach (IGameManager manager in startSequence) {
 if (manager.status == ManagerStatus.Started) {
 numReady++;
 }
 }

 if (numReady > lastReady)
 Debug.Log($"Progress: {numReady}/{numModules}");
 yield return null;
 }

 Debug.Log("All managers started up");
 }
}

Listing 9.13 The manager of managers!

Ensure that the various
managers exist.

Static properties
that other code
uses to access
managers

The list of managers to loop through
during the startup sequence

Launch the startup
sequence asynchronously.

Keep looping until all
managers are started.

Pause for one frame
before checking again.

217Managing inventory data and game state

The most important parts of this pattern are the static properties at the top. Those
enable other scripts to use syntax like Managers.Player or Managers.Inventory to
access the various modules. Those properties are initially empty, but they’re filled
immediately when the code runs in the Awake() method.

TIP Like Start() and Update(), Awake is another method automatically pro-
vided by MonoBehaviour. It’s similar to Start(), running once when the code
first starts running. But in Unity’s code-execution sequence, Awake() runs
even sooner than Start(), allowing for initialization tasks that absolutely
must run before any other code modules.

The Awake() method also lists the startup sequence, and then launches the coroutine
to start all the managers. Specifically, the function creates a List and then uses
List.Add() to add the managers.

DEFINITION List is a collection data structure provided by C#. List objects are
similar to arrays: they’re declared with a specific type and store a series of
entries in sequence. But a list can change size after being created, whereas
arrays are created at a static size that can’t change later.

Because all the managers implement IGameManager, this code can list them all as that
type and can call the Startup() method defined in each. The startup sequence is run
as a coroutine so that it will run asynchronously, with other parts of the game proceed-
ing too (for example, a progress bar animated on a startup screen).

 The startup function first loops through the entire list of managers and calls
Startup() on each one. Then it enters a loop that keeps checking whether the man-
agers have started up and won’t proceed until they all have. Once all the managers are
started, the startup function finally alerts us to this fact before finally completing.

TIP The managers you wrote earlier have such simple initialization that no
waiting is required, but in general this coroutine-based startup sequence can
elegantly handle long-running asynchronous startup tasks like loading saved
data.

Now all of the code structure has been written. Go back to Unity and create a new
empty GameObject; as usual with these sorts of empty code objects, position it at 0, 0,
0 and give the object a descriptive name like Game Managers. Attach the Managers,
PlayerManager, and InventoryManager script components to this new object.

 When you play the game now, no visible change in the scene should occur, but in
the console, you should see a series of messages logging the progress of the startup
sequence. Assuming the managers are starting up correctly, it’s time to start program-
ming the inventory manager.

9.3.3 Storing inventory in a collection object: List vs. Dictionary

The list of items collected could also be stored as a List object. This listing adds a list
of items to InventoryManager.

218 CHAPTER 9 Adding interactive devices and items within the game

...
private List<string> items;

public void Startup() {
 Debug.Log("Inventory manager starting...");

 items = new List<string>();

 status = ManagerStatus.Started;
}

private void DisplayItems() {
 string itemDisplay = "Items: ";
 foreach (string item in items) {
 itemDisplay += item + " ";
 }
 Debug.Log(itemDisplay);
}

public void AddItem(string name) {
 items.Add(name);

 DisplayItems();
}
...

This listing makes two key additions to InventoryManager: a List object to store items
in and a public method, AddItem(), that other code can call. This function adds the
item to the list and then prints the list to the console. Now let’s make a slight adjust-
ment in the CollectibleItem script to call the new AddItem() method.

...
void OnTriggerEnter(Collider other) {
 Managers.Inventory.AddItem(itemName);
 Destroy(this.gameObject);
}
...

Now when you run around collecting items, you should see your inventory growing in
the console messages. This is pretty cool, but it does expose one limitation of List
data structures: as you collect multiples of the same type of item (such as collecting a
second Health item), you’ll see both copies listed, instead of aggregating all items of
the same type (refer to figure 9.6). Depending on your game, you may want the inven-
tory to track each item separately, but in most games, the inventory should aggregate
multiple copies of the same item. It’s possible to accomplish this using List, but it’s
done more naturally and efficiently using Dictionary instead.

Listing 9.14 Adding items to InventoryManager

Listing 9.15 Using the new InventoryManager in CollectibleItem

Initialize the empty item list.

Print console message of
the current inventory.

Other scripts can’t manipulate the
item list directly but can call this.

219Managing inventory data and game state

DEFINITION Dictionary is another collection data structure provided by C#.
Entries in the dictionary are accessed by an identifier (or key) rather than by
their position in the list. This is similar to a hash table but more flexible,
because the keys can be literally any type (for example, “Return the entry for
this GameObject”).

Change the code in InventoryManager to use Dictionary instead of List. Replace
everything from listing 9.14 with the code from this listing.

...
private Dictionary<string, int> items;

public void Startup() {
 Debug.Log("Inventory manager starting...");

 items = new Dictionary<string, int>();

 status = ManagerStatus.Started;
}

private void DisplayItems() {
 string itemDisplay = "Items: ";
 foreach (KeyValuePair<string, int> item in items) {
 itemDisplay += item.Key + "(" + item.Value + ") ";
 }
 Debug.Log(itemDisplay);
}

public void AddItem(string name) {
 if (items.ContainsKey(name)) {
 items[name] += 1;
 } else {
 items[name] = 1;
 }

 DisplayItems();
}
...

Overall, this code looks the same as before, but a few tricky differences exist. If you
aren’t already familiar with Dictionary data structures, note that this one was
declared with two types. Whereas List was declared with only one type (the type of
values that’ll be listed), a Dictionary declares both the type of key (that is, what the
identifiers will be) and the type of value.

 A bit more logic exists in the AddItem() method. Before, every item was appended
to the List, but now you need to check whether the Dictionary already contains that

Listing 9.16 Dictionary of items in InventoryManager

Figure 9.6 Console message with multiples
of the same item listed multiple times

Dictionary is declared with two
types: the key and the value.

Check for existing entries
before entering new data.

220 CHAPTER 9 Adding interactive devices and items within the game

item; that’s what the ContainsKey() method is for. If it’s a new entry, then you’ll start
the count at 1, but if the entry already exists, then increment the stored value. Play
with the new code and you’ll see that the inventory messages have an aggregated
count of each item (refer to figure 9.7).

Whew, finally, collected items are managed in the player’s inventory! This probably
seems like a lot of code to handle a relatively simple problem, and if this were the
entire purpose, then, yeah, it would be over-engineered. The point of this elaborate
code architecture, though, is to keep all the data in separate flexible modules, a useful
pattern when the game gets more complex. For example, now you can write UI dis-
plays, and the separate parts of the code will be much easier to handle.

9.4 Inventory UI for using and equipping items
The collection of items in your inventory can be used in multiple ways within the game,
but all of those uses first rely on some sort of inventory UI so that players can see their
collected items. Then, when the inventory is being shown to the player, you can pro-
gram interactivity into the UI by enabling players to click their items. Again, you’ll
program a couple of specific examples (equipping a key and consuming health packs),
and then you should be able to adapt this code to work with other types of items.

NOTE As mentioned in chapter 7, Unity has both an older immediate mode
GUI and a newer sprite-based UI system. We’ll use the immediate mode GUI
in this chapter because that system is faster to implement and requires less
setup; less setup is great for practice exercises. The sprite-based UI system is
more polished, though, and for an actual game, you’d want a more polished
interface.

9.4.1 Displaying inventory items in the UI

To show the items in a UI display, you first need to add a couple more methods to
InventoryManager. Right now, the item list is private and accessible only within the
manager. To display the list, that information must have public methods for accessing
the data. Add two methods shown in the following listing to InventoryManager.

...
public List<string> GetItemList() {
 List<string> list = new List<string>(items.Keys);
 return list;
}

public int GetItemCount(string name) {
 if (items.ContainsKey(name)) {

Listing 9.17 Adding data access methods to InventoryManager

Figure 9.7 Console message with
multiples of the same item aggregated

Returns a List of all
the Dictionary keys

Returns how many of that
item are in inventory

221Inventory UI for using and equipping items

 return items[name];
 }
 return 0;
}
...

The GetItemList() method returns a list of items in the inventory. You might be
thinking, “Wait a minute, didn’t we just spend lots of effort to convert the inventory
away from a List?” The difference now is that each type of item will appear only once
in the list. If the inventory contains two health packs, for example, the word health
will still appear only once in the list. That’s because the List was created from the keys
in the Dictionary, not from every individual item.

 The GetItemCount() method returns a count of how many of a given item are in
the inventory. For example, call GetItemCount("health") to ask, “How many health
packs are in the inventory?” This way, the UI can display a number of each item along
with displaying each item.

 With these methods added to InventoryManager, you can create the UI display.
Let’s display all the items in a horizontal row across the top of the screen. The items
will be displayed using icons, so you need to import those images into the project.
Unity handles assets in a special way if those assets are in a folder called Resources.

TIP Assets placed into the Resources folder can be loaded in code by using
the Resources.Load() method. Otherwise, assets can be placed in scenes
only through Unity’s editor.

Figure 9.8 shows the four icon images, along with the directory structure showing
where to put those images. Create a folder called Resources and then create a folder
called Icons inside it.

The icons are all set up, so create a new empty GameObject named Controller and
then assign it a new script called BasicUI.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BasicUI : MonoBehaviour {

Listing 9.18 BasicUI to display the inventory

Figure 9.8 Image assets for equipment
icons placed inside the Resources folder

222 CHAPTER 9 Adding interactive devices and items within the game

 void OnGUI() {
 int posX = 10;
 int posY = 10;
 int width = 100;
 int height = 30;
 int buffer = 10;

 List<string> itemList = Managers.Inventory.GetItemList();
 if (itemList.Count == 0) {
 GUI.Box(new Rect(posX, posY, width, height), "No Items");
 }
 foreach (string item in itemList) {
 int count = Managers.Inventory.GetItemCount(item);
 Texture2D image = Resources.Load<Texture2D>($"Icons/{item}");
 GUI.Box(new Rect(posX, posY, width, height),
 new GUIContent($"({count})", image));
 posX += width+buffer;
 }
 }
}

This listing displays the collected items in a horizontal row (see figure 9.9) along with
displaying the number collected. As mentioned in chapter 3, every MonoBehaviour
automatically responds to an OnGUI() method. That function runs every frame right
after the 3D scene is rendered.

Inside OnGUI(), first define a bunch of values for positioning UI elements. These val-
ues are incremented when you loop through all the items in order to position UI ele-
ments in a row. The specific UI element drawn is GUI.Box; those are noninteractive
displays that show text and images inside boxes.

 The Resources.Load() method is used to load assets from the Resources folder.
This method is a handy way to load assets by name; notice that the name of the item is
passed as a parameter. You have to specify a type to load. Otherwise, the return value
for that method is a generic object.

 The UI shows us what items have been collected. Now you can use the items.

Display a
message if the
inventory is
empty.

Method loads
assets from

the Resources
folder.

Shift sideways each
time through the loop.

Figure 9.9 UI display of the inventory

223Inventory UI for using and equipping items

9.4.2 Equipping a key to use on locked doors

Let’s go over a couple of examples of using inventory items so that you can extrapo-
late out to any type of item you want. The first example involves equipping a key
required to open the door.

 At the moment, the DeviceTrigger script doesn’t pay attention to your items
(because that script was written before the inventory code). This listing shows how to
adjust that script.

...
public bool requireKey;

void OnTriggerEnter(Collider other) {
 if (requireKey && Managers.Inventory.equippedItem != "key") {
 return;
 }
...

As you can see, all that’s needed is a new public variable in the script and a condition
that looks for an equipped key. The requireKey Boolean appears as a check box in the
Inspector so that you can require a key from some triggers but not others. The condition
at the beginning of OnTriggerEnter() checks for an equipped key in Inventory-
Manager; that requires you to add the code from the next listing to InventoryManager.

...
public string equippedItem {get; private set;}
...
public bool EquipItem(string name) {
 if (items.ContainsKey(name) && equippedItem != name) {
 equippedItem = name;
 Debug.Log($"Equipped {name}");
 return true;
 }

 equippedItem = null;
 Debug.Log("Unequipped");
 return false;
}
...

At the top, add the equippedItem property that gets checked by other code. Then add
the public EquipItem() method to allow other code to change which item is
equipped. That method equips an item if it isn’t already equipped, or unequips if that
item is already equipped.

Listing 9.19 Requiring a key in DeviceTrigger

Listing 9.20 Equipping code for InventoryManager

Check that inventory
has the item and that
the item isn’t already
equipped.

224 CHAPTER 9 Adding interactive devices and items within the game

 Finally, in order for the player to equip an item, add that functionality to the UI.
This listing adds a row of buttons for that purpose.

...
 foreach (string item in itemList) {
 ...
 posX += width+buffer;
 }

 string equipped = Managers.Inventory.equippedItem;
 if (equipped != null) {
 posX = Screen.width - (width+buffer);
 Texture2D image = Resources.Load($"Icons/{equipped}") as Texture2D;
 GUI.Box(new Rect(posX, posY, width, height),
 new GUIContent("Equipped", image));
 }

 posX = 10;
 posY += height+buffer;

 foreach (string item in itemList) {
 if (GUI.Button(new Rect(posX, posY, width, height),
 $"Equip {item}")) {
 Managers.Inventory.EquipItem(item);
 }
 posX += width+buffer;
 }
 }
}

GUI.Box() is used again to display the equipped item. But that element is noninterac-
tive, so the row of Equip buttons is drawn using GUI.Button() instead. That method
creates a button that executes the code inside the if statement when clicked.

 With all the necessary code in place, select the requireKey option in DeviceTrigger
and then play the game. Try running into the trigger volume before equipping a key;
nothing happens. Now collect a key and click the button to equip it. Running into the
trigger volume opens the door.

 Just for fun, you could put a key at Position -11, 5, -14 to add a simple gameplay
challenge to see if you can figure out how to reach the key. Whether or not you try
that, let’s move on to using health packs.

9.4.3 Restoring the player’s health by consuming health packs

Using items to restore the player’s health is another generally useful example. That
requires two code changes: a new method in InventoryManager and a new button in
the UI (see listings 9.22 and 9.23, respectively).

Listing 9.21 Adding equip functionality to BasicUI

Italicized code was already in the
script, shown here for reference.

Display the
currently
equipped

item.

Loop through all items
to make buttons.

Run the contained code
if the button is clicked.

225Inventory UI for using and equipping items

...
public bool ConsumeItem(string name) {
 if (items.ContainsKey(name)) {
 items[name]--;
 if (items[name] == 0) {
 items.Remove(name);

 }
 } else {
 Debug.Log($"Cannot consume {name}");
 return false;
 }

 DisplayItems();
 return true;
}
...

...
 foreach (string item in itemList) {
 if (GUI.Button(new Rect(posX, posY, width, height),
 $"Equip {item}")) {
 Managers.Inventory.EquipItem(item);
 }

 if (item == "health") {
 if (GUI.Button(new Rect(posX, posY + height+buffer, width,
 height), "Use Health")) {
 Managers.Inventory.ConsumeItem("health");
 Managers.Player.ChangeHealth(25);
 }
 }

 posX += width+buffer;
 }
 }
}

The new ConsumeItem() method is pretty much the reverse of AddItem(). It checks
for an item in the inventory and decrements if the item is found. It has responses to a
couple of tricky cases, such as if the item count decrements to 0. The UI code calls this
new inventory method, and it calls the ChangeHealth() method that PlayerManager
has had from the beginning.

 If you collect some health items and then use them, you’ll see health messages
appear in the console. And there you go—multiple examples of how to use inventory
items!

Listing 9.22 New method in InventoryManager

Listing 9.23 Adding a health item to BasicUI

Check whether the item is in inventory.

Remove the entry if the count goes to 0.

Response if that item isn’t in inventory

Italicized code was
already in script,
shown here for
reference.

Start of
new code

Run the contained code
if the button is clicked.

226 CHAPTER 9 Adding interactive devices and items within the game

Summary
 Both keypresses and collision triggers can be used to operate devices.
 Objects with physics enabled can respond to collision forces or trigger volumes.
 Complex game state is managed via special objects that can be accessed globally.
 Collections of objects can be organized in List or Dictionary data structures.
 Tracking the equip state of items can be used to affect other parts of the game.

Part 3

Strong finish

You know a fair amount about Unity by now. You know how to program the
player’s controls, create enemies that wander around, and add interactive
devices to the game. You even know how to build a game using both 2D and 3D
graphics! That’s almost everything you need to know to develop a complete
game, but not quite. You still need to learn about a few final tasks, like putting
audio in the game, and you need to understand how to put together all the dis-
parate pieces we’ve been working with. This is the home stretch, with just four
chapters left!

229

Connecting your
 game to the internet

In this chapter, you’ll learn how to send and receive data over a network. The proj-
ects built in previous chapters represented a variety of game genres, but all have
been isolated to the player’s machine. Connecting to the internet and exchanging
data is increasingly important for games in all genres.

 Many games exist almost entirely over the internet, with constant connection to
a community of other players; games of this sort are referred to as massively multi-
player online (MMO) and are most widely known through MMO role-playing
games (MMORPGs). Even when a game doesn’t require such constant connectivity,
modern video games usually incorporate features like reporting scores to a global

This chapter covers
 Generating dynamic visuals for the sky

 Downloading data using web requests in
coroutines

 Parsing common data formats like XML and JSON

 Displaying images downloaded from the internet

 Sending data to a web server

230 CHAPTER 10 Connecting your game to the internet

list of high scores, or they record analytics to help improve the game. Unity provides
support for such networking, so we’ll be going over those features.

 Unity supports multiple approaches to network communication, since different
approaches are better suited to different needs. This chapter covers the most general
sort of internet communication: issuing HTTP requests.

As a good comparison, imagine how a modern single-page web application works (as
opposed to old-school web development based on web pages generated server-side).
In an online game built around HTTP requests, the project developed in Unity is
essentially a thick client that communicates with the server in an Ajax style. However,
the familiarity of this approach can be misleading for experienced web developers.
Video games often have much more stringent performance requirements than web
applications, and these differences can affect design decisions.

WARNING Time scales can be vastly different between web apps and video
games. Half a second can seem like a short wait for updating a website, but
pausing even just a fraction of that time can be excruciating in the middle of
a high-intensity action game. The concept of fast is definitely relative to the
situation.

Online games usually connect to a server specifically intended for that game. For
learning purposes, however, we’ll connect to some freely available internet data
sources, including both weather data and images we can download. The last section of
this chapter requires you to set up a custom web server; that section is optional
because of that requirement, although I’ll explain an easy way to do it with open
source software.

 The plan for this chapter is to go over multiple uses of HTTP requests so you can
learn how they work within Unity:

 Setting up an outdoor scene (in particular, building a sky that can react to the
weather data)

 Writing code to request weather data from the internet

What are HTTP requests?
I assume most readers know what HTTP requests are, but here’s a quick primer just
in case: Hypertext Transfer Protocol (HTTP) is a communication protocol for sending
requests to and receiving responses from web servers. When you click a link on a
web page, your browser (the client) sends out a request to a specific address, and
then that server responds with the new page. HTTP requests can be set to a variety
of methods, in particular either GET or POST, to retrieve or to send data.

HTTP requests are reliable, and that’s why the majority of the internet is built around
them. The requests themselves, as well as the infrastructure for handling such
requests, are designed to be robust and handle a wide range of failures in the network.

231Creating an outdoor scene

 Parsing the response and then modifying the scene based on the data
 Downloading and displaying an image from the internet
 Posting data to your own server (in this case, a log of weather conditions)

The actual game that you’ll use for this chapter’s project matters little. Everything in
this chapter will add new scripts to an existing project and won’t modify any of the
existing code. For the sample code, I used the movement demo from chapter 2,
mostly so we can see the sky in first-person view when it gets modified.

 The project for this chapter isn’t directly tied into the gameplay, but obviously for
most games you create, you would want the networking tied to the gameplay (for
example, spawning enemies based on responses from the server). On to the first step!

10.1 Creating an outdoor scene
Because we’re going to be downloading weather data, we’ll first set up an outdoor
area where the weather will be visible. The trickiest part of that will be the sky, but first
let’s take a moment to apply outdoors-looking textures on the level geometry.

 Just as in chapter 4, I obtained a couple of images from www.textures.com to apply
to the walls and floor of the level. Remember to change the size of the downloaded
images to a power of 2, such as 256 × 256.

 Then import the images into the Unity project, create materials, and assign the
images to the materials (that is, drag an image into the texture slot of the material).
Drag the materials onto the walls or floor in the scene, and increase tiling in the mate-
rial (try numbers like 8 or 9 in one or both directions) so that the image won’t be
stretched in an ugly way. Once the ground and walls are taken care of, it’s time to
address the sky.

10.1.1 Generating sky visuals by using a skybox

Start by importing the skybox images as you did in chapter 4. Once again, I obtained
skybox images from www.93i.de/, but this time I got the DarkStormy set in addition to
TropicalSunnyDay (the sky will be more complex in this project). Simply get them
from the book’s sample project or download skybox images you find elsewhere.
Import these textures into Unity and (as explained in chapter 4) set their Wrap Mode
to Clamp.

 Now create a new material to use for this skybox. At the top of the settings for this
material, click the Shader menu to see the drop-down list with all the available shaders.
Move down to the Skybox section and choose 6-Sided in that submenu. With this shader
active, the material now has six texture slots (instead of only the small Albedo texture
slot that the standard shader had).

 Drag the SunnyDay skybox images to the texture slots of the new material. The
names of the images correspond to the texture slot to assign them to (top, front, and
so on). Once all six textures are linked, you can use this new material as the skybox for
the scene.

https://www.textures.com/
https://93i.de/

232 CHAPTER 10 Connecting your game to the internet

 Assign this skybox material by opening the Lighting window (Window > Rendering
> Lighting). Switch to the Environment tab and assign the material for your skybox to
the Skybox slot at the top of the window (either drag the material over or click the little
circle button next to the slot). Click Play and you should see something like figure 10.1.

Great, now you have an outdoors scene! A skybox is an elegant way to create the illu-
sion of a vast atmosphere surrounding the player. But the skybox shader built into
Unity does have one significant limitation: the images can never change, resulting in a
sky that appears completely static. We’ll address that limitation by creating a new cus-
tom shader.

10.1.2 Setting up an atmosphere that’s controlled by code

The images in the TropicalSunnyDay set look great for a sunny day, but what if we
want to transition between sunny and overcast weather? This will require a second set
of sky images (some pictures of a cloudy sky), so we need a new shader for the skybox.

 As explained in chapter 4, a shader is a short program with instructions for how to
render the image. This implies that you can program new shaders, and that is, in fact,
the case. We’re going to create a new shader that takes two sets of skybox images and
transitions between them. Get a shader for this purpose from https://github.com/
jhocking/from-unity-wiki/blob/main/SkyboxBlended.shader.

 In Unity, create a new shader script: Go to the Create menu just like when you create
a new C# script, but select a Standard Surface Shader instead. Name the asset Skybox-
Blended and then double-click the shader to open the script. Copy the code from that
webpage and paste it into the shader script. The top line is Shader "Skybox/Blended",
which tells Unity to add the new shader into the shader list under the Skybox category
(the same category as the regular skybox).

NOTE We won’t go over all the details of the shader program right now.
Shader programming is a pretty advanced computer graphics topic, thus out-
side the scope of this book. You may want to look that up after you’ve finished
this book; if so, start with the Unity Manual at http://mng.bz/wQzQ.

Figure 10.1 Scene with background
pictures of the sky

https://github.com/jhocking/from-unity-wiki/blob/main/SkyboxBlended.shader
https://github.com/jhocking/from-unity-wiki/blob/main/SkyboxBlended.shader
https://github.com/jhocking/from-unity-wiki/blob/main/SkyboxBlended.shader
http://mng.bz/wQzQ

233Creating an outdoor scene

Now you can set your material to the Skybox Blended shader. Again, select the mate-
rial and then look for the Shader menu at the top of the material’s settings. There are
now 12 texture slots, in two sets of six images. Assign TropicalSunnyDay images to the
first six textures just as before; for the remaining textures, use the DarkStormy set of
skybox images.

 This new shader also added a Blend slider near the top of the settings. The Blend
value controls how much of each set of skybox images you want to display; when you
adjust the slider from one side to the other, the skybox transitions from sunny to over-
cast. You can test by adjusting the slider and playing the game, but manually adjusting
the sky isn’t terribly helpful while the game is running, so let’s write code to transition
the sky.

 Create an empty object in the scene and name it Controller. Create a new script
and name it WeatherController. Drag that script onto the empty object and then
write this listing in that script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WeatherController : MonoBehaviour {
 [SerializeField] Material sky;
 [SerializeField] Light sun;

 private float fullIntensity;

 private float cloudValue = 0f;

 void Start() {
 fullIntensity = sun.intensity;
 }

 void Update() {
 SetOvercast(cloudValue);
 cloudValue += .005f;
 }

 private void SetOvercast(float value) {
 sky.SetFloat("_Blend", value);
 sun.intensity = fullIntensity - (fullIntensity * value);
 }
}

I’ll point out several things in this code, but the key new method is SetFloat(), which
appears almost at the bottom. Everything up to that point should be fairly familiar, but
that one is new. The method sets a number value on the material. The first parameter
to that method defines which value specifically. In this case, the material has a property
called _Blend (note that material properties in code start with an underscore).

Listing 10.1 WeatherController script transitioning from sunny to overcast

Reference the material in Project
view, not only objects in the scene.

Initial intensity of the light is
considered “full” intensity.

Increment the value every frame
for a continuous transition.

Adjust both the material’s Blend
value and the light’s intensity.

234 CHAPTER 10 Connecting your game to the internet

 As for the rest of the code, we define a few variables, including both the material
and a light. For the material, you want to reference the blended skybox material we just
created, but what’s with the light? That’s so that the scene will also darken when tran-
sitioning from sunny to overcast; as the Blend value increases, we’ll turn down the light.
The directional light in the scene acts as the main light and provides illumination
everywhere. Drag both the material and the light onto the variables in the Inspector.

NOTE The advanced lighting system in Unity takes the skybox into account to
achieve realistic results. But this lighting approach won’t work right with a
changing skybox, so you may want to freeze the lighting setup. In the Light-
ing window, you can turn off the Auto Generate check box at the bottom;
then the setup will update only when you click the button. Set the Blend of
the skybox to the middle for an average look and then click the Generate but-
ton (next to the Auto check box) to manually bake lightmaps (lighting infor-
mation was saved in a new folder that’s named after the scene).

When the script starts, it initializes the intensity of the light. The script will store the
starting value and consider that to be the full intensity. This full intensity will be used
later in the script when dimming the light.

 Then the code increments a value every frame and uses that value to adjust the sky.
Specifically, it calls SetOvercast() every frame, and that function encapsulates the
multiple adjustments made to the scene. I’ve already explained what SetFloat() is
doing, so we won’t go over that again, and the last line adjusts the intensity of the light.

 Now play the scene to watch the code running. You’ll see the depiction in figure
10.2: over a couple of seconds, you’ll see the scene transition from a sunny day to dark
and overcast.

WARNING One unexpected quirk about Unity is that the Blend change on the
material is permanent. Unity resets objects in the scene when the game stops
running, but assets that were linked directly from the Project view (such as the
skybox material) are changed permanently. This happens only within Unity’s
editor (changes don’t carry over between plays after the game is deployed out-
side the editor), thus resulting in frustrating bugs if you forget about it.

Sunny before transition Overcast after transition

Figure 10.2 Before and after: scene transition from sunny to overcast

235Downloading weather data from an internet service

Watching the scene transition from sunny to overcast is pretty cool. But this was all just
a setup for the actual goal: having the weather in the game sync up to real-world
weather conditions. For that, we need to start downloading weather data from the
internet.

10.2 Downloading weather data from an internet service
Now that we’ve set up the outdoors scene, we can write code that will download weather
data and modify the scene based on that data. This task will provide a good example of
retrieving data by using HTTP requests. Many web services provide weather data; an
extensive list is posted at ProgrammableWeb (www.programmableweb.com). I chose
OpenWeather; the code examples use its API (application programming interface, a
way to access their service using code commands instead of a graphical interface)
located at http://openweathermap.org/api.

DEFINITION A web service, or web API, is a server connected to the internet that
returns data upon request. There’s no technical difference between a web
API and a website; a website is a web service that happens to return the data
for a web page, and browsers interpret HTML data as a visible document.

NOTE Web services often require you to register, even for free service. For
example, if you go to the API page for OpenWeather, it has instructions for
obtaining an API key, a value you will paste into requests.

The code you’ll write will be structured around the same Managers architecture from
chapter 9. This time, you’ll have a WeatherManager class that gets initialized from the
central manager of managers. WeatherManager will be in charge of retrieving and stor-
ing weather data, but to do so, it’ll need the ability to communicate with the internet.

 To accomplish that, you’ll create a utility class called NetworkService to handle
the details of connecting to the internet and making HTTP requests. WeatherManager
can then tell NetworkService to make those requests and pass back the response. Fig-
ure 10.3 shows how this code structure will operate.

 For this to work, obviously WeatherManager will need to have access to the Network-
Service object. You’re going to address this by creating the object in Managers and

• GetData()

• OnResponse()

• HTTPRequest()

WeatherManager
NetworkService

IGameManager

1. The manager gets
 asked for data. 2. The manager tells the service

 to make the request.

3. The service sends the HTTP
 response back to the manager.

Figure 10.3 How the networking code will be structured

https://www.programmableweb.com
http://openweathermap.org/api

236 CHAPTER 10 Connecting your game to the internet

then injecting the NetworkService object into the various managers when they’re ini-
tialized. In this way, not only will WeatherManager have a reference to the Network-
Service, but so will any other managers you create later.

 To start bringing over the Managers code architecture from chapter 9, first copy
over ManagerStatus and IGameManager (remember that IGameManager is the interface
that all managers must implement, whereas ManagerStatus is an enum that IGame-
Manager uses). You’ll need to modify IGameManager slightly to accommodate the new
NetworkService class, so create a new script called NetworkService (delete
:MonoBehaviour and otherwise leave it empty for now; you’ll fill it in later) and then
adjust IGameManager.

public interface IGameManager {
 ManagerStatus status {get;}

 void Startup(NetworkService service);
}

Next let’s create WeatherManager to implement this slightly adjusted interface. Create
a new C# script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WeatherManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 // Add cloud value here (listing 10.8)
 private NetworkService network;

 public void Startup(NetworkService service) {
 Debug.Log("Weather manager starting...");

 network = service;

 status = ManagerStatus.Started;
 }
}

This initial pass at WeatherManager doesn’t really do anything. For now, the class
implements the minimum amount that IGameManager requires: declare the status
property from the interface and implement the Startup() function. You’ll fill in this
empty framework over the next few sections. Finally, copy over Managers from chapter
9 and adjust it to start up WeatherManager.

Listing 10.2 Adjusting IGameManager to include NetworkService

Listing 10.3 Initial script for WeatherManager

The startup function now
takes one parameter: the
injected object.

Store the injected NetworkService object.

237Downloading weather data from an internet service

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(WeatherManager))]

public class Managers : MonoBehaviour {
 public static WeatherManager Weather {get; private set;}

 private List<IGameManager> startSequence;

 void Awake() {
 Weather = GetComponent<WeatherManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Weather);

 StartCoroutine(StartupManagers());
 }

 private IEnumerator StartupManagers() {
 NetworkService network = new NetworkService();

 foreach (IGameManager manager in startSequence) {
 manager.Startup(network);
 }

 yield return null;

 int numModules = startSequence.Count;
 int numReady = 0;

 while (numReady < numModules) {
 int lastReady = numReady;
 numReady = 0;

 foreach (IGameManager manager in startSequence) {
 if (manager.status == ManagerStatus.Started) {
 numReady++;
 }
 }

 if (numReady > lastReady)
 Debug.Log($"Progress: {numReady}/{numModules}");

 yield return null;
 }

 Debug.Log("All managers started up");
 }
}

And that’s everything needed codewise for the Managers code architecture. As you
have in previous chapters, create the game managers object in the scene and then
attach both Managers and WeatherManager to the empty object. Even though the

Listing 10.4 Managers adjusted to initialize WeatherManager

Require the new manager instead
of player and inventory.

Instantiate NetworkService
to inject in all managers.

Pass the network service to
managers during startup.

238 CHAPTER 10 Connecting your game to the internet

manager isn’t doing anything yet, you can see startup messages in the console when
it’s set up correctly.

 Whew, we had quite a few boilerplate things to get out of the way! Now we can get
on with writing the networking code.

10.2.1 Requesting HTTP data using coroutines

NetworkService is currently an empty script, so you can write code in it to make
HTTP requests. The primary class you need to know about is UnityWebRequest. Unity
provides the UnityWebRequest class to communicate with the internet. Instantiating a
request object using a URL will send a request to that URL.

 Coroutines can work with the UnityWebRequest class to wait for the request to
complete. Coroutines were introduced in chapter 3, where we used them to pause
code for a set period of time. Recall the explanation given there: coroutines are spe-
cial functions that seemingly run in the background of a program, in a repeated cycle
of running partway and then returning to the rest of the program. When used along
with the StartCoroutine() method, the yield keyword causes the coroutine to tem-
porarily pause, handing back the program flow and picking up again from that point
in the next frame.

 In chapter 3, the coroutines yielded at WaitForSeconds(), an object that caused
the function to pause for a specific number of seconds. Yielding a coroutine when
sending a request will pause the function until that network request completes. The
program flow here is similar to making asynchronous Ajax calls in a web application:
first you send a request, then you continue with the rest of the program, and after
some time you receive a response.

THAT WAS THE THEORY; NOW LET’S WRITE THE CODE

All right, let’s implement this stuff in our code. First open the NetworkService script
and replace the default template with the contents of this listing.

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;

public class NetworkService {
 private const string xmlApi =
"http://api.openweathermap.org/data/2.5/weather?q=Chicago,

➥ us&mode=xml&appid=APIKEY";

 private IEnumerator CallAPI(string url, Action<string> callback) {
 using (UnityWebRequest request = UnityWebRequest.Get(url)) {

 yield return request.SendWebRequest();

Listing 10.5 Making HTTP requests in NetworkService

URL to send request to

Create UnityWebRequest
object in GET mode.

Pause while
downloading.

239Downloading weather data from an internet service

 if (request.result == UnityWebRequest.Result.ConnectionError) {
 Debug.LogError($"network problem: {request.error}");
 } else if (request.result == UnityWebRequest.Result.ProtocolError) {
 Debug.LogError($"response error: {request.responseCode}");
 } else {
 callback(request.downloadHandler.text);
 }
 }
 }

 public IEnumerator GetWeatherXML(Action<string> callback) {
 return CallAPI(xmlApi, callback);
 }
}

WARNING The Action type (explained in “Understanding how the callback
works”) is contained in the System namespace; notice the additional using
statements at the top of the script. Don’t forget this detail in your scripts!

Remember the code design explained earlier: WeatherManager will tell Network-
Service to go fetch data. All this code doesn’t actually run yet; you’re setting up code
that will be called by WeatherManager a bit later. To explore this code listing, let’s start
at the bottom and work our way up.

WRITING COROUTINE METHODS THAT CASCADE THROUGH EACH OTHER

GetWeatherXML()is the coroutine method that outside code can use to tell Network-
Service to make an HTTP request. Notice that this function has IEnumerator for its
return type; methods used in coroutines must have IEnumerator declared as the
return type.

 It might look odd at first that GetWeatherXML() doesn’t have a yield statement.
Coroutines are paused by the yield statement, which implies that every coroutine
must yield somewhere. It turns out that the yielding can cascade through multiple
methods. If the initial coroutine method itself calls another method, and that other
method yields part of the way through, then the coroutine will pause inside that sec-
ond method and resume there. Thus, the yield statement in CallAPI() pauses the
coroutine that was started in GetWeatherXML(); figure 10.4 shows this code flow.

Check for errors in
the response.

Delegate can be called just
like the original function.

Yield cascades through coroutine
methods that call each other.

* GetData() {
 StartCoroutine()
}

* OnResponse()

* HTTPRequest() {
 CallAPI()
}

* CallAPI() {
 yield request

 callback()
}

WeatherManager NetworkService1. The manager tells the
 service to make a request.

4. The service sends an HTTP
 response back to the manager.

(Do this by starting the coroutine.)

2. In the service, one
 method calls another.

3. The coroutine pauses at
 the yield statement in
 the second method.

Figure 10.4 How the network coroutine works

240 CHAPTER 10 Connecting your game to the internet

The next potential head-scratcher is the callback parameter of type Action.

UNDERSTANDING HOW THE CALLBACK WORKS

When the coroutine is started, the method is called with a parameter called callback,
and callback has the Action type. But what is an Action?

DEFINITION The Action type is a delegate (C# has a few approaches to dele-
gates, but this one is the simplest). Delegates are references to some other
method/function. They allow you to store the function (or rather, a pointer
to the function) in a variable and to pass that function as a parameter to
another function.

If you’re unfamiliar with the concept of delegates, realize that they enable you to pass
around functions just as you do numbers and strings. Without delegates, you can’t
pass around functions to call later—you can only directly call the function immedi-
ately. With delegates, you can tell code about other methods to call later. This is useful
for many purposes, especially for implementing callback functions.

DEFINITION A callback is a function used to communicate back to the calling
object. Object A could tell Object B about one of the methods in A. B could
later call A’s method to communicate back to A.

In this case, for example, the callback is used to communicate the response data back
after waiting for the HTTP request to complete. In CallAPI(), the code first makes an
HTTP request, then yields until that request completes, and finally uses callback()
to send back the response.

 Note the <> syntax used with the Action keyword; the type written in the angle
brackets declares the parameters required to fit this Action. In other words, the func-
tion this Action points to must take parameters matching the declared type. In this
case, the parameter is a single string, so the callback method must have a signature
like this:

MethodName(string value)

The concept of a callback may make more sense after you’ve seen it in action, which
you will in listing 10.6; this initial explanation is so that you’ll recognize what’s going
on when you see that additional code.

 The rest of listing 10.5 is pretty straightforward. The request object is created
inside a using statement so that the object’s memory will be cleaned up once we’re
done with that object. The conditional checks for errors in the HTTP response. There
are two kinds of errors: the request could’ve failed because of a bad internet connec-
tion, or the response returned could have an error code. A const value is declared
with the URL to make the request to. (Incidentally, you should replace APIKEY at the
end with your OpenWeather API key.)

241Downloading weather data from an internet service

MAKING USE OF THE NETWORKING CODE

That wraps up the code in NetworkService. Now let’s use NetworkService in
WeatherManager.

...
public void Startup(NetworkService service) {
 Debug.Log("Weather manager starting...");

 network = service;
 StartCoroutine(network.GetWeatherXML(OnXMLDataLoaded));

 status = ManagerStatus.Initializing;
}

public void OnXMLDataLoaded(string data) {
 Debug.Log(data);

 status = ManagerStatus.Started;
}
...

Three primary changes are made to the code in this manager: starting a coroutine to
download data from the internet, setting a different startup status, and defining a call-
back method to receive the response.

 Starting the coroutine is simple. Most of the complexity behind coroutines was
handled in NetworkService, so calling StartCoroutine() is all you need to do here.
Then you set a different startup status, because the manager isn’t finished initializing;
it needs to receive data from the internet before startup is complete.

WARNING Always start networking methods by using StartCoroutine();
don’t just call the function normally. This can be easy to forget because creat-
ing request objects outside of a coroutine doesn’t generate any sort of com-
piler error.

When you call the StartCoroutine() method, you need to invoke the method used as
a parameter. That is, actually type the parentheses—()—and don’t provide only the
name of the function. In this case, the coroutine method needs a callback function as
its one parameter, so let’s define that function. We’ll use OnXMLDataLoaded() for the
callback; notice that this method has a string parameter, which fits the
Action<string> declaration from NetworkService. The callback function doesn’t do
a lot right now; the debug line simply prints the received data to the console to verify
that the data was received correctly. Then the last line of the function changes the
startup status of the manager to say that it’s completely started up.

Listing 10.6 Adjusting WeatherManager to use NetworkService

Start loading
data from the
internet.

Instead of Started, make
the status Initializing.

Callback method after
the data is loaded

242 CHAPTER 10 Connecting your game to the internet

 Click Play to run the code. Assuming you have a solid internet connection, you
should see a bunch of data appear in the console. This data is simply a long string, but
the string is formatted in a specific way that we can make use of.

10.2.2 Parsing XML

Data that exists as a long string usually has individual bits of information embedded
within the string. You extract those bits of information by parsing the string.

DEFINITION Parsing means analyzing a chunk of data and dividing it into sepa-
rate pieces of information.

To parse the string, it needs to be formatted in a way that allows you (or rather, the parser
code) to identify separate pieces. A couple of standard formats are commonly used to
transfer data over the internet; one of the most common standard formats is XML.

DEFINITION XML stands for Extensible Markup Language. It’s a set of rules for
encoding documents in a structured way, similar to HTML web pages.

Fortunately, Unity (or rather Mono, the code framework built into Unity) provides
functionality for parsing XML. The weather data we requested is formatted in XML,
so we’re going to add code to WeatherManager to parse the response and extract the
cloudiness. Put the URL into a web browser to see the response data; there’s a lot
there, but we’re interested only in the node that contains something like <clouds
value="40" name="scattered clouds"/>.

 In addition to adding code to parse XML, we’re going to use the same messenger sys-
tem as we did in chapter 7. That’s because once the weather data is downloaded and
parsed, we still need to inform the scene about that. Create a script called Messenger and
paste in the code from https://github.com/jhocking/from-unity-wiki/blob/main/
Messenger.cs.

 Then you need to create a script called GameEvent. As explained in chapter 7, this
messenger system is great for providing a decoupled way of communicating events to
the rest of the program.

public static class GameEvent {
 public const string WEATHER_UPDATED = "WEATHER_UPDATED";
}

Once the messenger system is in place, adjust WeatherManager.

using System;
using System.Xml;
...
public float cloudValue {get; private set;}

Listing 10.7 GameEvent code

Listing 10.8 Parsing XML in WeatherManager

Be sure to add needed using statements.
Cloudiness is
modified internally
but read-only
elsewhere.

https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs
https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs
https://github.com/jhocking/from-unity-wiki/blob/main/Messenger.cs

243Downloading weather data from an internet service

...
public void OnXMLDataLoaded(string data) {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(data);
 XmlNode root = doc.DocumentElement;

 XmlNode node = root.SelectSingleNode("clouds");
 string value = node.Attributes["value"].Value;
 cloudValue = Convert.ToInt32(value) / 100f;
 Debug.Log($"Value: {cloudValue}");

 Messenger.Broadcast(GameEvent.WEATHER_UPDATED);

 status = ManagerStatus.Started;
}
...

You can see that the most important changes were made inside OnXMLDataLoaded().
Previously, this method simply logged the data to the console to verify that data was
coming through correctly. This listing adds a lot of code to parse the XML.

 First create a new empty XML document; this is an empty container that you can
fill with a parsed XML structure. The next line parses the data string into a structure
contained by the XML document. Then we start at the root of the XML tree so that
everything can search up the tree in subsequent code.

 At this point, you can search for nodes within the XML structure to pull out indi-
vidual bits of information. In this case, <clouds> is the only node we’re interested in.
Find that node in the XML document and then extract the value attribute from that
node. This data defines the cloud value as a 0–100 integer, but we’re going to need it
as a 0–1 float in order to adjust the scene later. Converting that is a simple bit of math
added to the code.

 Finally, after extracting out the cloudiness value from the full data, broadcast a
message that the weather data has been updated. Currently, nothing is listening for
that message, but the broadcaster doesn’t need to know anything about listeners
(indeed, that’s the entire point of a decoupled messenger system). Later, we’ll add a
listener to the scene.

 Great—we’ve written code to parse XML data! But before we move on to applying
this value to the visible scene, I want to go over another option for data transfer.

10.2.3 Parsing JSON

Before continuing to the next step in the project, let’s explore an alternative format
for transferring data. XML is one common format for data transferred over the inter-
net; another common one is JSON.

DEFINITION JSON stands for JavaScript Object Notation. Similar in purpose to
XML, JSON was designed to be a lightweight alternative. Although the syntax
for JSON was originally derived from JavaScript, the format is not language-
specific and is readily used with a variety of programming languages.

Parse XML into a searchable structure.

Pull out a single node
from the data.

Convert the value to a 0–1 float.

Broadcast message to
inform the other scripts.

244 CHAPTER 10 Connecting your game to the internet

Unlike XML, Mono doesn’t come with a parser for this format. Fortunately, numerous
good JSON parsers are available. Unity itself provides a JsonUtility class, while exter-
nally developed options include Json.NET from Newtonsoft. I generally use Json.NET
in my games, because Newtonsoft’s library is widely used outside Unity in the whole
.NET ecosystem. It can be installed using Unity’s new Package Manager system, and
that’s how it’s installed in the sample project.

WARNING Json.NET has actually been packaged for Unity multiple times, and
this book uses the package from jilleJr. However, recently Unity packaged
Json.NET as com.unity.nuget.newtonsoft-json, and uses that as a dependency
for other packages. Thus, if you have one of those other packages installed
(such as Version Control), then you already have Json.NET in your project,
and trying to install Json.NET a second time will cause errors. The easiest way
to check is to expand the Packages folder (below Assets) in the Project view
and look for Newtonsoft Json.

The GitHub page at http://mng.bz/7l4y has multiple sections about how to install,
and “Installation via Pure UPM” explains the steps we need. As mentioned way back in
chapter 1, the Unity Package Manager (UPM) is easiest to use with packages made by
Unity itself. However, UPM is increasingly supported by external package authors as
well; for example, the glTF package mentioned in chapter 4 is installed this way. While
packages made by Unity are listed in the Package Manager window and can be
selected there, externally created packages need to be installed by adjusting the mani-
fest text file.

 As explained by the GitHub page, navigate to the Unity project’s folder on your
computer, open the Packages folder in there, and then open manifest.json in any text
editor. The installation documentation on GitHub lists all the text to paste into the
package manifest, so do that. Installing a package always involves adding an entry in
the dependencies block; in addition, some packages (for example, this JSON library)
will also have scopedRegistries for you to add. Return to Unity, where it will take a
moment for the new package to download.

 Now you can use this library to parse JSON data. We’ve been getting XML from the
OpenWeather API, but as it happens, OpenWeather can also send the same data for-
matted as JSON. To do that, modify NetworkService to request JSON.

...
private const string jsonApi =
"http://api.openweathermap.org/data/2.5/weather?q=Chicago,us&appid=APIKEY";
...
public IEnumerator GetWeatherJSON(Action<string> callback) {
 return CallAPI(jsonApi, callback);
}
...

Listing 10.9 Making NetworkService request JSON instead of XML

The URL is slightly different this time.

https://shortener.manning.com/7l4y

245Downloading weather data from an internet service

This is pretty much the same as the code to download XML data, except that the URL
is slightly different. The data returned from this request has the same values, but it’s
formatted differently. This time we’re looking for a chunk like "clouds":{"all":40}.

 There wasn’t a ton of additional code required this time. That’s because we set up
the code for requests into nicely parceled separate functions, so every subsequent
HTTP request will be easy to add. Nice! Now let’s modify WeatherManager to request
JSON data instead of XML.

...
using Newtonsoft.Json.Linq;
...
public void Startup(NetworkService service) {
 Debug.Log("Weather manager starting...");

 network = service;
 StartCoroutine(network.GetWeatherJSON(OnJSONDataLoaded));

 status = ManagerStatus.Initializing;
}
...
public void OnJSONDataLoaded(string data) {
 JObject root = JObject.Parse(data);

 JToken clouds = root["clouds"];
 cloudValue = (float)clouds["all"] / 100f;
 Debug.Log($"Value: {cloudValue}");

 Messenger.Broadcast(GameEvent.WEATHER_UPDATED);

 status = ManagerStatus.Started;
}
...

As you can see, the code for working with JSON looks similar to the code for XML.
The only real difference is that the data is parsed into a JSON object instead of an
XML document container.

NOTE Json.NET provides multiple approaches to parsing the data, and the
alternative used here is referred to as JSON Linq. This alternative approach
doesn’t require as much setup, which is convenient for a small example like
this. The main approach, however, requires first creating a new class with
fields that mirror the structure of the JSON data. The data then populates
this class by using the command JsonConvert.DeserializeObject.

DEFINITION Deserialize means pretty much the same thing as parse, only with
the implication that a code object is being created out of the data. This is the
reverse of serialize, which means to encode a code object into a form that can
be transferred and stored, such as a JSON string.

Listing 10.10 Modifying WeatherManager to request JSON

Be sure to add the needed
using statement.

Network
request
changed

Instead of an XML container,
parse into a JSON object.

Syntax has changed, but
this code is still doing
the same things.

246 CHAPTER 10 Connecting your game to the internet

Aside from the different syntax, all the steps are the same. Extract the value from the
data chunk (for some reason, the value is called all this time, but that’s just a quirk of
the API), do some simple math to convert the value to a 0–1 float, and broadcast an
update message. With that done, it’s time to apply the value to the visible scene.

10.2.4 Affecting the scene based on weather data

Regardless of exactly how the data is formatted, once the cloudiness value is extracted
from the response data, we can use that value in the SetOvercast() method of
WeatherController. Whether XML or JSON, the data string ultimately gets parsed into
a series of words and numbers. The SetOvercast() method takes a number as a param-
eter. In section 9.1.2, we used a number incremented every frame, but we could just as
easily use the number returned by the weather API. This shows the full Weather-
Controller script again, after modifications.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WeatherController : MonoBehaviour {
 [SerializeField] Material sky;
 [SerializeField] Light sun;

 private float fullIntensity;

 void OnEnable() {
 Messenger.AddListener(GameEvent.WEATHER_UPDATED, OnWeatherUpdated);
 }
 void OnDisable() {
 Messenger.RemoveListener(GameEvent.WEATHER_UPDATED, OnWeatherUpdated);
 }

 void Start() {
 fullIntensity = sun.intensity;
 }

 private void OnWeatherUpdated() {
 SetOvercast(Managers.Weather.cloudValue);
 }

 private void SetOvercast(float value) {
 sky.SetFloat("_Blend", value);
 sun.intensity = fullIntensity - (fullIntensity * value);
 }
}

Notice that the changes aren’t only additions; several bits of test code got removed.
Specifically, we removed the local cloudiness value that was incremented every frame;
we don’t need that anymore, because we’ll use the value from WeatherManager.

Listing 10.11 WeatherController that reacts to downloaded weather data

Add/remove event listeners.

Use the cloudiness value
from WeatherManager.

247Adding a networked billboard

 A listener gets added and removed in OnEnable()/OnDisable() (these are the
functions of MonoBehaviour called when the object is turned on or off). This listener is
part of the broadcast messaging system and calls OnWeatherUpdated() when that mes-
sage is received. OnWeatherUpdated() retrieves the cloudiness value from Weather-
Manager and calls SetOvercast() using that value. In this way, the appearance of the
scene is controlled by downloaded weather data.

 Run the scene now and you’ll see the sky update according to the cloudiness in the
weather data. You may see it take time to request the weather; in a real game, you’d
probably want to hide the scene behind a loading screen until the sky updates.

Now that you know how to get numerical and string data from the internet, let’s do
the same thing with an image.

10.3 Adding a networked billboard
Although the responses from a web API are almost always text strings formatted in
XML or JSON, many other sorts of data are transferred over the internet. Besides text
data, the most common kind of data requested is images. The UnityWebRequest
object can be used to download images too.

 You’re going to learn about this task by creating a billboard that displays an image
downloaded from the internet. You need to code two steps: downloading an image to
display and applying that image to the billboard object. As a third step, you’ll improve
the code so that the image will be stored to use on multiple billboards.

10.3.1 Loading images from the internet

First let’s write the code to download an image. You’re going to download some public
domain landscape photography (see figure 10.5) to test with. The downloaded image
won’t be visible on the billboard yet; I’ll show you a script to display the image in the
next section, but before that, let’s get the code in place that will retrieve the image.

Game networking beyond HTTP
HTTP requests are robust and reliable, but the latency between making a request and
receiving a response is too slow for many games. HTTP requests are therefore a good
way of sending relatively slow-paced messages to a server (such as moves in a turn-
based game, or submission of high scores for any game), but something like a mul-
tiplayer FPS would need a different approach to networking.

These approaches involve various communication technologies, as well as tech-
niques to compensate for lag. Unity provides one API for multiplayer games, called
MLAPI, but other options include Mirror or Photon.

The cutting edge for networked action games is a complex topic that goes beyond the
scope of this book. You can look up more information on your own, starting with the
Unity Multiplayer Networking site (https://docs-multiplayer.unity3d.com/).

https://docs-multiplayer.unity3d.com/

248 CHAPTER 10 Connecting your game to the internet

The code architecture for downloading an image looks much the same as the archi-
tecture for downloading data. A new manager module (called ImagesManager) will be
in charge of downloaded images to be displayed. Once again, the details of connect-
ing to the internet and sending HTTP requests will be handled in NetworkService,
and ImagesManager will call upon NetworkService to download images for it.

 The first addition to the code is in NetworkService. This listing adds image down-
loading to that script.

...
private const string webImage =
"http://upload.wikimedia.org/wikipedia/commons/c/c5/Moraine_Lake_17092005.jpg";
...
public IEnumerator DownloadImage(Action<Texture2D> callback) {
 UnityWebRequest request = UnityWebRequestTexture.GetTexture(webImage);
 yield return request.SendWebRequest();
 callback(DownloadHandlerTexture.GetContent(request));
}
...

The code that downloads an image looks almost identical to the code for download-
ing data. The primary difference is the type of callback method; note that the callback
takes a Texture2D this time instead of a string. That’s because you’re sending back the
relevant response: you downloaded a string of data previously—now you’re download-
ing an image. This listing contains code for the new ImagesManager. Create a new
script and enter this code.

Listing 10.12 Downloading an image in NetworkService

Figure 10.5 Image of Moraine Lake
in Banff National Park, Canada

Put this const up near the
top with the other URLs.

This callback takes a Texture2D
instead of a string.

Retrieve the downloaded image by
using the DownloadHandler utility.

249Adding a networked billboard

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ImagesManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 private NetworkService network;

 private Texture2D webImage;

 public void Startup(NetworkService service) {
 Debug.Log("Images manager starting...");

 network = service;

 status = ManagerStatus.Started;
 }

 public void GetWebImage(Action<Texture2D> callback) {
 if (webImage == null) {
 StartCoroutine(network.DownloadImage(callback));
 }
 else {
 callback(webImage);
 }
 }
}

The most interesting part of this code is GetWebImage(); everything else in this script
consists of standard properties and methods that implement the manager interface.
When GetWebImage() is called, it’ll return (via a callback function) the web image.
First, it’ll check whether webImage already has a stored image. If not, it’ll invoke the
network call to download the image. If webImage already has a stored image, GetWeb-
Image() will send back the stored image (rather than downloading the image anew).

NOTE Currently, the downloaded image is never being stored, which means
webImage will always be empty. Code that specifies what to do when webImage
is not empty is already in place, so you’ll adjust the code to store that image in
the following sections. This adjustment is in a separate section because it
involves some tricky code wizardry.

Of course, just like all manager modules, ImagesManager needs to be added to Manag-
ers, and this listing details the additions.

...
[RequireComponent(typeof(ImagesManager))]
...

Listing 10.13 Creating ImagesManager to retrieve and store images

Listing 10.14 Adding the new manager to Managers

Variable to store the
downloaded image

Check whether the image
is already stored.

Invoke the callback right
away (don’t download) if
there’s a stored image.

250 CHAPTER 10 Connecting your game to the internet

public static ImagesManager Images {get; private set;}
...
void Awake() {
 Weather = GetComponent<WeatherManager>();
 Images = GetComponent<ImagesManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Weather);
 startSequence.Add(Images);

 StartCoroutine(StartupManagers());
}
...

Unlike the way we set up WeatherManager, GetWebImage() in ImagesManager isn’t
called automatically on startup. Instead, the code waits until it’s invoked; that’ll hap-
pen in the next section.

10.3.2 Displaying images on the billboard

The ImagesManager you just wrote doesn’t do anything until it’s called upon, so now
we’ll create a billboard object that will call methods in ImagesManager. First create a
new cube and then place it in the middle of the scene, at something like Position 0,
1.5, -5 and Scale 5, 3, 0.5 (see figure 10.6).

You’re going to create a device that operates just like the color-changing monitor in
chapter 9. Copy the DeviceOperator script and put it on the player. As you may recall,
that script will operate nearby devices when the C key is pressed. Also create a script
for the billboard device called WebLoadingBillboard, put that script on the billboard
object, and enter this code.

using System.Collections;
using System.Collections.Generic;

Listing 10.15 WebLoadingBillboard device script

Billboard without image Billboard with downloaded image

Figure 10.6 The billboard object, before and after displaying the downloaded image

251Adding a networked billboard

using UnityEngine;

public class WebLoadingBillboard : MonoBehaviour {
 public void Operate() {
 Managers.Images.GetWebImage(OnWebImage);
 }

 private void OnWebImage(Texture2D image) {
 GetComponent<Renderer>().material.mainTexture = image;
 }
}

This code does two primary things: it calls ImagesManager.GetWebImage() when the
device is operated, and it applies the image from the callback function. Textures are
applied to materials, so you can change the texture in the material that’s on the bill-
board. Figure 10.6 shows what the billboard will look like after you play the game.

Great, the downloaded image is displayed on the billboard! But this code could be
optimized further to work with multiple billboards. Let’s tackle that optimization
next.

10.3.3 Caching the downloaded image for reuse

As noted in section 10.3.1, ImagesManager doesn’t yet store the downloaded image.
That means the image will be downloaded over and over for multiple billboards. This
is inefficient, because it’ll be the same image each time. To address this, we’re going
to adjust ImagesManager to cache images that have been downloaded.

DEFINITION Cache means to keep stored locally. The most common (but not
only!) context involves files, such as images, downloaded from the internet.

The key is to provide a callback function in ImagesManager that first saves the image, and
then calls the callback from WebLoadingBillboard. This is tricky to do (as opposed to
the current code that directly uses the callback from WebLoadingBillboard) because
the code doesn’t know ahead of time what the callback from WebLoadingBillboard
will be. Put another way, there’s no way to write a method in ImagesManager that calls

Call the method in
ImagesManager.

The downloaded image is
applied to the material in

the callback.

AssetBundles: How to download other kinds of assets
Downloading an image is fairly straightforward using UnityWebRequest, but what
about other kinds of assets, like mesh objects and prefabs? UnityWebRequest has
properties for text and images, but other assets are a bit more complicated.

Unity can download any kind of asset through a mechanism called AssetBundles.
Long story short, you first package assets into a bundle, and then Unity can extract
the assets after downloading the bundle. The details of both creating and download-
ing AssetBundles are beyond the scope of this book; if you want to learn more, start
by reading the Unity Manual at http://mng.bz/m1X2 and http://mng.bz/5Zn1.

http://mng.bz/5Zn1
http://mng.bz/m1X2

252 CHAPTER 10 Connecting your game to the internet

a specific method in WebLoadingBillboard because we don’t yet know what that specific
method will be. The way around this conundrum is to use lambda functions.

DEFINITION A lambda function (also called an anonymous function) is a function
that doesn’t have a name. These functions are usually created on the fly
inside other functions.

Lambda functions are a tricky code feature supported in multiple programming lan-
guages, including C#. By using a lambda function for the callback in ImagesManager,
the code can create the callback function on the fly by using the method passed in
from WebLoadingBillboard. You don’t need to know the method to call ahead of
time, because this lambda function doesn’t exist ahead of time! This listing shows how
to do this voodoo in ImagesManager.

using System;
...
public void GetWebImage(Action<Texture2D> callback) {
 if (webImage == null) {
 StartCoroutine(network.DownloadImage((Texture2D image) => {
 webImage = image;
 callback(webImage);
 }));
 }
 else {
 callback(webImage);
 }
}
...

The main change is in the function passed to NetworkService.DownloadImage(). Pre-
viously, the code was passing through the same callback method from WebLoading-
Billboard. After the change, though, the callback sent to NetworkService is a separate
lambda function declared on the spot that called the method from WebLoading-
Billboard. Take note of the syntax to declare a lambda function: () => {}.

 Making the callback a separate function makes it possible to do more than call the
method in WebLoadingBillboard; specifically, the lambda function also stores a local
copy of the downloaded image. Thus, GetWebImage() has to download the image only
the first time; all subsequent calls will use the locally stored image.

 Because this optimization applies to subsequent calls, the effect will be noticeable
only on multiple billboards. Let’s duplicate the billboard object so that a second bill-
board will be in the scene. Select the billboard object, click Duplicate (look under the
Edit menu or right-click), and move the duplicate over (for example, change the X
position to 18).

 Now play the game and watch what happens. When you operate the first billboard,
a noticeable pause occurs while the image downloads from the internet. But when you

Listing 10.16 Lambda function for callback in ImagesManager

Store the
downloaded

image. The callback is used in the lambda
function instead of being sent
directly to NetworkService.

253Posting data to a web server

then walk over to the second billboard, the image will appear immediately because it
has already been downloaded.

 This is an important optimization for downloading images (there’s a reason web
browsers cache images by default). One more major networking task remains to go
over: sending data back to the server.

10.4 Posting data to a web server
We’ve gone over multiple examples of downloading data, but we still need to see an
example of sending data. This last section does require you to have a server to send
requests to, so this section is optional. But it’s easy to download open source software to
set up a server to test on.

 I recommend XAMPP for a test server. Go to www.apachefriends.org to download
XAMPP (on macOS you need to rename the .bz2 to .dmg) and follow the installation
instructions. Once that’s installed and the server is running, you can access XAMPP’s
htdocs folder with the address http://localhost/ just as you would a server on the
internet. Once you have XAMPP up and running, create a folder called uia in htdocs;
that’s where you’ll put the server-side script.

 Whether you use XAMPP or your own existing web server, the actual task will be to
post weather data to the server when the player reaches a checkpoint in the scene.
This checkpoint will be a trigger volume, just like the door trigger in chapter 9. You
need to create a new cube object, position it off to one side of the scene, set the col-
lider to Trigger, and apply a semitransparent material as you did in chapter 9 (remem-
ber, set the material’s Rendering Mode). Figure 10.7 shows the checkpoint object with
a green semitransparent material applied.

Now that the trigger object is in the scene, let’s write the code that it invokes.

Trigger volume:
box with a semitransparent
material

Figure 10.7 The checkpoint object that triggers data sending

https://www.apachefriends.org

254 CHAPTER 10 Connecting your game to the internet

10.4.1 Tracking current weather: Sending post requests

The code that’s invoked by the checkpoint object will cascade through several scripts.
As with the code for downloading data, the code for sending data will involve Weather-
Manager telling NetworkService to make the request, and NetworkService handles
the details of HTTP communication. This shows the adjustments you need to make to
NetworkService.

...
private const string localApi = "http://localhost/uia/api.php";
...
private IEnumerator CallAPI(string url, WWWForm form, Action<string>

callback) {
 using (UnityWebRequest request = (form == null) ?
 UnityWebRequest.Get(url) : UnityWebRequest.Post(url, form)) {

 yield return request.SendWebRequest();

 if (request.result == UnityWebRequest.Result.ConnectionError) {
 Debug.LogError($"network problem: {request.error}");
 } else if (request.result == UnityWebRequest.Result.ProtocolError) {
 Debug.LogError($"response error: {request.responseCode}");
 } else {
 callback(request.downloadHandler.text);
 }
 }
}

public IEnumerator GetWeatherXML(Action<string> callback) {
 return CallAPI(xmlApi, null, callback);
}
public IEnumerator GetWeatherJSON(Action<string> callback) {
 return CallAPI(jsonApi, null, callback);
}

public IEnumerator LogWeather(string name, float cloudValue, Action<string>
callback) {

 WWWForm form = new WWWForm();
 form.AddField("message", name);
 form.AddField("cloud_value", cloudValue.ToString());
 form.AddField("timestamp", DateTime.UtcNow.Ticks.ToString());

 return CallAPI(localApi, form, callback);
}
...

First, notice that CallAPI() has a new parameter. This is a WWWForm object, a series of val-
ues to send along with the HTTP request. A condition in the code uses the presence of

Listing 10.17 Adjusting NetworkService to post data

Address of the server-side
script; change this if needed. Added arguments to

CallAPI() parameters

Either POST using
WWWForm or GET without

Calls modified
because of changed
parameters

Define a form with values to send.

Send a timestamp along
with the cloudiness.

255Posting data to a web server

a WWWForm object to alter the request created. Normally we want to send a GET request,
but WWWForm will change it to a POST request to send data. All the other changes in the
code react to that central change (for example, modifying the GetWeather() code
because of the CallAPI() parameters). The following code is what you need to add in
WeatherManager.

...
public void LogWeather(string name) {
 StartCoroutine(network.LogWeather(name, cloudValue, OnLogged));
}
private void OnLogged(string response) {
 Debug.Log(response);
}
...

Finally, make use of this code by adding a checkpoint script to the trigger volume in
the scene. Create a script called CheckpointTrigger, put that script on the trigger vol-
ume, and enter the contents of the next listing.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class CheckpointTrigger : MonoBehaviour {
 public string identifier;

 private bool triggered;

 void OnTriggerEnter(Collider other) {
 if (triggered) {return;}

 Managers.Weather.LogWeather(identifier);
 triggered = true;
 }
}

An Identifier slot will appear in the Inspector; name it something like checkpoint1.
Run the code, and data will be sent when you enter the checkpoint. The response will
indicate an error, though, because no script is on the server to receive the request.
That’s the last step in this section.

10.4.2 Server-side code in PHP

The server needs to have a script to receive data sent from the game. Coding server
scripts is beyond the scope of this book, so we won’t go into detail here. We’ll just whip

Listing 10.18 Adding code to WeatherManager that sends data

Listing 10.19 CheckpointTrigger script for the trigger volume

Track if the checkpoint has
already been triggered.

Call to send data.

256 CHAPTER 10 Connecting your game to the internet

up a PHP script, because that’s the easiest approach. Create a text file in htdocs (or
wherever your web server is located) and name it api.php (listing 10.20).

<?php

$message = $_POST['message'];
$cloudiness = $_POST['cloud_value'];
$timestamp = $_POST['timestamp'];
$combined = $message." cloudiness=".$cloudiness." time=".$timestamp."\n";

$filename = "data.txt";
file_put_contents($filename, $combined, FILE_APPEND | LOCK_EX);

echo "Logged";

?>

Note that this script writes received data into data.txt, so you also need to put a text
file with that name on the server. Once api.php is in place, you’ll see weather logs
appear in data.txt when triggering checkpoints in the game. Great!

Summary
 Skybox is designed for sky visuals that render behind everything else.
 Unity provides UnityWebRequest to download data.
 Common data formats like XML and JSON can be parsed easily.
 Materials can display images downloaded from the internet.
 UnityWebRequest can also post data to a web server.

Listing 10.20 Server script written in PHP that receives our data

Extract post data into variables.

Define the filename to write to.

Write
the file.

257

Playing audio:
 Sound effects and music

Although graphics get most of the attention when it comes to content in video
games, audio is crucial too. Most games play background music and have sound
effects. Accordingly, Unity has audio functionality so that you can put sound effects
and music into your games. Unity can import and play a variety of audio file for-
mats, adjust the volume of sounds, and even handle sounds playing from a specific
position within the scene.

This chapter covers
 Importing and playing audio clips for various sound

effects

 Using 2D sounds for the UI and 3D sounds in the
scene

 Modulating the volume of all sounds when they play

 Playing background music while the game is being
played

 Fading in and out between different background
tunes

258 CHAPTER 11 Playing audio: Sound effects and music

NOTE Audio is handled the same way for both 2D and 3D games. Although
the sample project in this chapter is a 3D game, everything we’ll do applies to
2D games as well.

This chapter starts off looking at sound effects rather than music. Sound effects are
short clips that play along with actions in the game (such as a gunshot that plays when
the player fires), whereas the sound clips for music are longer (often running into
minutes) and playback isn’t directly tied to events in the game. Ultimately, both boil
down to the same kind of audio files and playback code, but the simple fact that the
sound files for music are usually much larger than the short clips used for sound
effects (indeed, files for music are often the largest files in the game!) merits covering
them in a separate section.

 The complete road map for this chapter will be to take a game without sound and
do the following:

1. Import audio files for sound effects.
2. Play sound effects for the enemy and for shooting.
3. Program an audio manager to control volume.
4. Optimize the loading of music.
5. Control music volume separately from sound effects, including cross-fading

tracks.

NOTE In this chapter, we’ll simply add audio capabilities on top of an existing
game demo. All of the examples in this chapter are built on top of the FPS
created in chapter 3, and you could download that sample project, but you’re
free to use whatever game demo you’d like.

Once you have an existing game demo copied to use for this chapter, you can tackle
the first step: importing sound effects.

11.1 Importing sound effects
Before you can play any sounds, you obviously need to import the sound files into
your Unity project. First, you’ll collect sound clips in the desired file format, and then
you’ll bring the files into Unity and adjust them for your purposes.

11.1.1 Supported file formats
Much as you saw with art assets in chapter 4, Unity supports a variety of audio formats
with different pros and cons. Table 11.1 lists the audio file formats that Unity supports.

 The primary consideration differentiating audio files is the compression applied.
Compression reduces a file’s size but accomplishes that by throwing out a bit of infor-
mation from the file. Audio compression is clever about throwing out only the least
important information so that the compressed sound still sounds good.

 Nevertheless, compression results in a small amount of loss of quality, so you
should choose uncompressed audio when the sound clip is short and thus wouldn’t be
a large file. Longer sound clips (especially music) should use compressed audio,

259Importing sound effects

because the audio clip would be prohibitively large otherwise. Unity adds a small wrin-
kle to this decision, though.

TIP Although music should be compressed in the final game, Unity can com-
press the audio after you’ve imported the file. When developing a game in
Unity, you usually want to use uncompressed file formats even for lengthy
music, as opposed to importing compressed audio.

Because Unity will compress the audio after it’s been imported, you should always
choose either WAV or AIF file format. You’ll probably need to adjust the import set-
tings differently for short sound effects and longer music (in particular, to tell Unity
when to apply compression), but the original files should always be uncompressed.

Table 11.1 Audio file formats supported by Unity

File type Pros and cons

WAV Default audio format on Windows. Uncompressed sound file.

AIF Default audio format on Mac. Uncompressed sound file.

MP3 Compressed sound file; sacrifices a bit of quality for much smaller files.

OGG Compressed sound file; sacrifices a bit of quality for much smaller files.

MOD Music tracker file format. A specialized kind of efficient digital music.

XM Music tracker file format. A specialized kind of efficient digital music.

How digital audio works
In general, audio files store the waveform that’ll be created in the speakers when the
sound plays. Sound is a series of waves that travel through the air, and different
sounds are made with different sizes and frequencies of sound waves. Audio files
record these waves by sampling them repeatedly at short time intervals and saving
the state of the wave at each sample.

Recordings that sample waves more frequently get a more accurate recording of them
changing over time—the gaps between changes are smaller. But more frequent sam-
ples mean more data to save, resulting in a larger file. Compressed sound files
reduce the file size through a number of tricks, including tossing out data at sound
frequencies that aren’t noticeable to listeners.

Music trackers are a special type of sequencer software used to create music.
Whereas traditional audio files store the raw waveform for the sound, sequencers
store something more akin to sheet music: the tracker file is a sequence of notes,
with information like intensity and pitch stored with each note. These “notes” consist
of little waveforms, but the total amount of data stored is reduced because the same
note is used repeatedly throughout the sequence. Music composed this way can be
efficient, but this is a fairly specialized sort of audio.

260 CHAPTER 11 Playing audio: Sound effects and music

There are various ways to create sound files (appendix B mentions tools like Audacity,
which can record sounds from a microphone), but for our purposes we’ll download
sounds from one of the many free sound websites. We’re going to use clips down-
loaded from www.freesound.org in WAV file format.

WARNING “Free” sounds are offered under a variety of licensing schemes, so
always make sure that you’re allowed to use the sound clip in the way you
intend. For example, many free sounds are for noncommercial use only.

The sample project uses the following public domain sound effects (of course, you
can choose to download your own sounds; look for a 0 license listed on the side):

 “thump” by hy96
 “ding” by Daphne_in_Wonderland
 “swish bamboo pole” by ra_gun
 “fireplace” by leosalom

Once you have the sound files to use in your game, the next step is to import the
sounds into Unity.

11.1.2 Importing audio files

After gathering some audio files, you need to bring them into Unity. Just as you did
with art assets in chapter 4, you have to import audio assets into the project before
they can be used in the game.

 The mechanics of importing files are simple and are the same as with other assets:
drag the files from their location on the computer to the Project view within Unity
(create a folder called Sound FX to drag the files into). Well, that was easy! But just like
other assets, these audio files have import settings (shown in figure 11.1) to adjust in
the Inspector.

 Leave the Force To Mono option unchecked. This refers to mono versus stereo
sound. Often, sounds are recorded in stereo, resulting in two waveforms in the file,
one for the left ear/speaker, and one for the right. To save on file size, you might want

Should stereo sounds be
converted to mono?

Ambisonic sounds are
directional effects used in VR.

Select different platforms to
apply settings; select Default
to apply to all platforms.

Ready the sound by loading it
ahead of time and/or behind
the scenes while other code
is running?

Load all at once or stream
this audio?

Data format for storing the
(possibly compressed) audio.
Choose PCM or Vorbis.

Figure 11.1 Import settings for audio files

https://freesound.org/

261Playing sound effects

to halve the audio information so that the same waveform is sent to both speakers
rather than separate waves sent to the left and right speakers. (A Normalize setting,
which applies only when mono is on, is grayed out when mono is off.)

 Below Force To Mono, you’ll see check boxes for Load In Background and Pre-
load Audio Data. The preload setting relates to balancing playback performance and
memory usage; preloading audio will consume memory while the sound waits to be
used but will avoid having to wait to load. Thus, you don’t want to preload long audio
clips, but turn it on for short sound effects like this.

 Meanwhile, loading audio in the background will allow the program to keep run-
ning while the audio is loading; this is generally a good idea for long music clips so
that the program doesn’t freeze. But this means the audio won’t start playing right
away. Usually you want to keep this setting off for short sound clips to ensure that they
load completely before they play. Because the imported clips are short sound effects,
you should leave Load In Background unchecked.

 Finally, the most important settings are Load Type and Compression Format. Com-
pression Format controls the formatting of the audio data that’s stored. As discussed
in the previous section, music should be compressed, so choose Vorbis (it’s the name
of a compressed audio format) in that case. Short sound clips don’t need to be com-
pressed, so choose PCM (pulse code modulation, the technical term for the raw, sam-
pled sound wave) for these clips. The third setting, ADPCM, is a variation on PCM and
occasionally results in slightly better sound quality.

 Load Type controls how the data from the file will be loaded by the computer.
Because computers have limited memory and audio files can be large, sometimes you
want the audio to play while it’s streaming into memory, saving the computer from
needing to have the entire file loaded. But a bit of computing overhead is required
when streaming audio like this, so audio plays fastest when it’s loaded into memory
first. Even then, you can choose whether the loaded audio data will be in compressed
form or will be decompressed for faster playback. Because these sound clips are short,
they don’t need to stream and can be set to Decompress On Load.

 The last option is Sample Rate Setting; leave this at Preserve Sample Rate so Unity
won’t change the samples in the imported file. At this point, the sound effects are all
imported and ready to use.

11.2 Playing sound effects
Now that you have sound files added to the project, you naturally want to play the
sounds. The code for triggering sound effects isn’t terribly hard to understand, but
the audio system in Unity does have multiple parts that must work in concert.

11.2.1 Explaining what’s involved: Audio clip vs. source vs. listener

Although you might expect playing a sound to be simply a matter of telling Unity
which clip to play, it turns out that you must define three parts in order to play sounds
in Unity: AudioClip, AudioSource, and AudioListener. The reason for breaking the

262 CHAPTER 11 Playing audio: Sound effects and music

sound system into multiple components has to do with Unity’s support for 3D sounds:
the different components tell Unity positional information that it uses for manipulat-
ing 3D sounds.

As an analogy, imagine a room in the real world. The room has a stereo playing a CD.
If a man comes into the room, he hears it clearly. When he leaves the room, he hears
it less clearly, and eventually not at all. Similarly, if we move the stereo around the
room, he’ll hear the music changing volume as it moves. As figure 11.2 illustrates, in
this analogy the CD is an AudioClip, the stereo is an AudioSource, and the man is the
AudioListener.

The first of the three parts is an audio clip. This is the sound file that we imported in
the preceding section. This raw waveform data is the foundation for everything else
the audio system does, but audio clips don’t do anything by themselves.

 The next kind of object is an audio source. This is the object that plays audio clips.
This is an abstraction over what the audio system is actually doing, but it’s a useful
abstraction that makes 3D sounds easier to understand. A 3D sound played from a
specific audio source is located at the position of that audio source; 2D sounds must
also be played from an audio source, but the location doesn’t matter.

2D vs. 3D sound
Sounds in games can be either 2D or 3D. 2D sounds are what you’re already familiar
with: standard audio that plays normally. The moniker 2D sound mostly means not
3D sound.

3D sounds are specific to 3D simulations and may not already be familiar to you; these
are sounds that have a specific location within the simulation. Their volume and pitch
are influenced by the movement of the listener. A sound effect triggered in the distance
will sound faint, for example.

Unity supports both kinds of audio, and you decide whether an audio source should
play audio as 2D sounds or 3D sounds. Things like music should be 2D sounds, but
using 3D sounds for most sound effects will create immersive audio in the scene.

AudioClip AudioSource

AudioListener

Figure 11.2 The three things
you control in Unity’s audio
system

263Playing sound effects

 The third kind of object involved in Unity’s audio system is an audio listener. As the
name indicates, this is the object that hears sounds projected from the audio sources.
This is another abstraction on top of what the audio system is doing (obviously, the
actual listener is the player of the game!), but—much as the position of the audio
source gives the position that the sound is projected from—the position of the audio
listener gives the position that the sound is heard from.

Although both the audio clips and the AudioSource components have to be assigned,
an AudioListener component is already on the default camera when you create a new
scene. Typically, you want 3D sounds to react to the position of the viewer.

11.2.2 Assigning a looping sound

All right, now let’s set our first sound in Unity! The audio clips were already imported,
and the default camera has an AudioListener component, so we need to assign only
an AudioSource component. We’re going to put a crackling fire sound on the Enemy
prefab, the enemy character that wanders around.

NOTE Because the enemy will sound like it’s on fire, you might want to give it
a particle system so that it looks like it’s on fire. You can copy over the particle
system created in chapter 4 by making the particle object into a prefab and
then choosing Export Package from the Asset menu. Alternatively, you could
redo the steps from chapter 4 here (after first double-clicking the Enemy pre-
fab to open it for editing, rather than editing the scene) to create a new parti-
cle object from scratch.

Usually, you need to open a prefab into the scene to edit it, but just adding a compo-
nent onto the object can be done without double-clicking the prefab to open it. Select
the Enemy prefab so that its properties appear in the Inspector. Now add a new com-
ponent: choose Audio > Audio Source. An AudioSource component will appear in the
Inspector.

 Tell the audio source what sound clip to play. Drag an audio file from the Project
view up to the Audio Clip slot in the Inspector; we’re going to use the “fireplace”
sound effect for this example (refer to figure 11.3).

 Skip down a bit in the settings and select both Play On Awake and Loop (of course,
make sure that Mute isn’t checked). Play On Awake tells the audio source to begin
playing as soon as the scene starts (in the next section, you’ll learn how to trigger

Advanced sound control using audio mixers
Audio mixers are an advanced alternative way to control audio in Unity. Rather than
playing audio clips directly, audio mixers enable you to process audio signals and
apply various effects to your clips. Learn more about AudioMixer in Unity’s documen-
tation. You can watch a Unity tutorial video, for example: http://mng.bz/Mlp3.

http://mng.bz/Mlp3

264 CHAPTER 11 Playing audio: Sound effects and music

sounds manually while the scene is running). Loop tells the audio source to keep play-
ing continuously, repeating the audio clip when playback is over.

 You want this audio source to project 3D sounds. As explained earlier, 3D sounds
have a distinct position within the scene. That aspect of the audio source is adjusted
using the Spatial Blend setting, which is a slider from 2D to 3D. Set it to 3D for this
audio source.

 Now play the game and make sure your speakers are turned on. You can hear a
crackling fire coming from the enemy, and the sound becomes faint if you move away
because you used a 3D audio source.

11.2.3 Triggering sound effects from code

Setting the AudioSource component to play automatically is handy for some looping
sounds, but for the majority of sound effects, you’ll want to trigger the sound with
code commands. That approach still requires an AudioSource component, but now
the audio source will play sound clips only when told to by the program, instead of
automatically all the time.

 Add an AudioSource component to the player object (not the camera object). You
don’t have to link in a specific audio clip because the audio clips will be defined in
code. You can turn off Play On Awake because sounds from this source will be trig-
gered in code. Also, adjust Spatial Blend to 3D because this sound is located in the
scene. Now make the additions shown in the next listing to RayShooter, the script that
handles shooting.

...
[SerializeField] AudioSource soundSource;
[SerializeField] AudioClip hitWallSound;
[SerializeField] AudioClip hitEnemySound;

Listing 11.1 Sound effects added in the RayShooter script

The audio clip to play

Spatial Blend can set this audio
source to either 2D or 3D.

Should this audio play as
soon as the scene starts?

Should the playback loop?

Figure 11.3 Settings for the AudioSource component

References the two sound
files you want to play

265Using the audio control interface

...

if (target != null) {
 target.ReactToHit();
 soundSource.PlayOneShot(hitEnemySound);
} else {
 StartCoroutine(SphereIndicator(hit.point));
 soundSource.PlayOneShot(hitWallSound);
}
...

The new code includes several serialized variables at the top of the script. Drag the
player object (the object with an AudioSource component) to the soundSource slot in
the Inspector. Then drag the audio clips to play onto the sound slots; “swish” is for hit-
ting the wall, and “ding” is for hitting the enemy.

 The other two lines added are PlayOneShot() methods. PlayOneShot() causes an
audio source to play a given audio clip. Add those methods inside the target condi-
tional to play sounds when various objects are hit.

NOTE You could set the clip in the AudioSource and call Play() to play the
clip. Multiple sounds would cut one another off, though, so we used PlayOne-
Shot() instead. Replace PlayOneShot() with this code and shoot a bunch
rapidly to see (er, hear) the problem: soundSource.clip=hitEnemySound;
soundSource.Play();.

All right, play the game and shoot around. You now have several sound effects in the
game. These same basic steps can be used to add all sorts of sound effects. A robust
sound system in a game requires a lot more than a bunch of disconnected sounds,
though; at a minimum, all games should offer volume control. You’ll implement that
control next through a central audio module.

11.3 Using the audio control interface
Continuing the code architecture established in previous chapters, you’re going to
create an AudioManager. Recall that the Managers object has a master list of the vari-
ous code modules used by the game, such as a manager for the player’s inventory.
This time, you’ll create an audio manager to stick into the list. This central audio
module will allow you to modulate the volume of audio in the game and even mute it.
Initially, you’ll worry about only sound effects, but in later sections you’ll extend the
AudioManager to handle music as well.

11.3.1 Setting up the central AudioManager

The first step in setting up AudioManager is to put in place the Managers code frame-
work. From the chapter 10 project, copy over IGameManager, ManagerStatus, and
NetworkService; we won’t change them. (Remember that IGameManager is the inter-
face that all managers must implement, whereas ManagerStatus is an enum that

If target is not null, the player
has hit an enemy, so . . .

. . . call PlayOneShot() to play
the Hit An Enemy sound, or . . .

. . . call PlayOneShot() to play the Hit
A Wall sound if the player missed.

266 CHAPTER 11 Playing audio: Sound effects and music

IGameManager uses. NetworkService provides calls to the internet and won’t be used in
this chapter.)

NOTE Unity will probably issue a warning because NetworkService is
assigned but not used. You can ignore Unity’s warning; we want to enable the
code framework to access the internet, even though we don’t use that func-
tionality in this chapter.

Also copy over the Managers file, which will be adjusted for the new AudioManager.
Leave it as is for now (or comment out the erroneous sections if the sight of compiler
errors drives you crazy!). Create a new script called AudioManager that the Managers
code can refer to.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class AudioManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 private NetworkService network;

 // Add volume controls here (listing 11.4)

 public void Startup(NetworkService service) {
 Debug.Log("Audio manager starting...");

 network = service;

 // Initialize music sources here (listing 11.11)

 status = ManagerStatus.Started;
 }
}

This initial code looks like managers from previous chapters; this is the minimum
amount that IGameManager requires the class to implement. The Managers script can
now be adjusted with the new manager.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(AudioManager))]

public class Managers : MonoBehaviour {
 public static AudioManager Audio {get; private set;}

Listing 11.2 Skeleton code for AudioManager

Listing 11.3 Managers script adjusted with AudioManager

Any long-running
startup tasks go here.

Set status to Initializing if there
are long-running startup tasks.

267Using the audio control interface

 private List<IGameManager> startSequence;

 void Awake() {
 Audio = GetComponent<AudioManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Audio);

 StartCoroutine(StartupManagers());
 }

 private IEnumerator StartupManagers() {
 NetworkService network = new NetworkService();

 foreach (IGameManager manager in startSequence) {
 manager.Startup(network);
 }

 yield return null;

 int numModules = startSequence.Count;
 int numReady = 0;

 while (numReady < numModules) {
 int lastReady = numReady;
 numReady = 0;

 foreach (IGameManager manager in startSequence) {
 if (manager.status == ManagerStatus.Started) {
 numReady++;
 }
 }

 if (numReady > lastReady)
 Debug.Log($"Progress: {numReady}/{numModules}");

 yield return null;
 }

 Debug.Log("All managers started up");
 }
}

As you have in previous chapters, create the Game Managers object in the scene and
then attach both Managers and AudioManager to the empty object. Playing the game
will show the managers’ startup messages in the console, but the audio manager
doesn’t do anything yet.

11.3.2 Volume control UI

With the bare-bones AudioManager set up, it’s time to give it volume control function-
ality. These volume control methods will then be used by UI displays to mute the
sound effects or adjust the volume.

List only AudioManager
in this project, instead of
PlayerManager, and so on.

268 CHAPTER 11 Playing audio: Sound effects and music

 You’ll use the UI tools that were the focus of chapter 7. Specifically, you’re going to
create a pop-up window with a button and a slider to control volume settings (see fig-
ure 11.4). I’ll list the steps involved without going into detail; if you need a refresher,
refer to chapter 7. If needed, install the TextMeshPro and 2D Sprite packages (refer
back to chapters 5 and 6 for these) before starting:

1. Import popup.png as a sprite (set Texture Type to Sprite).
2. In the Sprite Editor, set a 12-pixel border on all sides (remember to apply

changes).
3. Create a canvas in the scene (GameObject > UI > Canvas).
4. Turn on the Pixel Perfect setting for the canvas.
5. (Optional) Name the object HUD Canvas and switch to 2D view mode.
6. Create an image connected to that canvas (GameObject > UI > Image).
7. Name the new object Settings Popup.
8. Assign the popup sprite to the image’s Source Image.
9. Set Image Type to Sliced and turn on Fill Center.

10. Position the pop-up image at 0, 0 to center it.
11. Scale the pop-up to 250 width and 150 height.
12. Create a button (GameObject > UI > Button - TextMeshPro).
13. Parent the button to the pop-up (drag it in the Hierarchy).
14. Position the button at 0, 40.
15. Expand the button’s hierarchy to select its text label.
16. Change the text to Toggle Sound.
17. Create a slider (GameObject > UI > Slider).
18. Parent the slider to the pop-up and position it at 0, 15.
19. Set the slider’s Value (at the bottom of the Inspector) to 1.

Those are all the steps to create the settings pop-up! Now that the pop-up has been
created, let’s write code that it’ll work with. This will involve a script on the pop-up
object itself as well as the volume control functionality that the pop-up script calls.
First, adjust the code in AudioManager according to this listing.

Button

Slider

Image
(with pop-up sprite)

Figure 11.4 UI display for
mute and volume control

269Using the audio control interface

...
public float soundVolume {
 get {return AudioListener.volume;}
 set {AudioListener.volume = value;}
}

public bool soundMute {
 get {return AudioListener.pause;}
 set {AudioListener.pause = value;}
}

public void Startup(NetworkService service) {
 Debug.Log("Audio manager starting...");

 network = service;

 soundVolume = 1f;

 status = ManagerStatus.Started;
}
...

Properties for soundVolume and soundMute were added to AudioManager. For both
properties, the get and set functions were implemented using global values on Audio-
Listener. The AudioListener class can modulate the volume of all sounds received by
all AudioListener instances. Setting AudioManager’s soundVolume property has the
same effect as setting the volume on AudioListener. The advantage here is encapsula-
tion: everything having to do with audio is being handled in a single manager, without
code outside the manager needing to know the details of the implementation.

 With those methods added to AudioManager, you can now write a script for the
pop-up. Create a script called SettingsPopup and add the contents of this listing.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SettingsPopup : MonoBehaviour {

 public void OnSoundToggle() {
 Managers.Audio.soundMute = !Managers.Audio.soundMute;
 }

 public void OnSoundValue(float volume) {
 Managers.Audio.soundVolume = volume;
 }
}

Listing 11.4 Volume control added to AudioManager

Listing 11.5 SettingsPopup script with controls for adjusting the volume

Property with getter
and setter for volume

Implement the getter/setter
using AudioListener.

Add a similar property to mute.

Italicized code was already in
script, shown here for reference.

Initialize the value (0 to 1
range; 1 is full volume).

Button will toggle the mute
property of AudioManager.

Slider will adjust the volume
property of AudioManager.

270 CHAPTER 11 Playing audio: Sound effects and music

This script has two methods that affect the properties of AudioManager: OnSound-
Toggle() sets the soundMute property, and OnSoundValue() sets the soundVolume
property. As usual, link in the SettingsPopup script by dragging it onto the Settings
Popup object in the UI.

 Then, to call the functions from the button and slider, link the pop-up object to
interaction events in those controls. In the Inspector for the button, look for the
panel labeled On Click. Click the + button to add a new entry to this event. Drag Set-
tings Popup to the object slot in the new entry and then look for SettingsPopup in
the menu; select OnSoundToggle() to make the button call that function.

 Now select the slider and link a function, just as you did with the button. First look
for the interaction event in a panel of the slider’s settings; in this case, the panel is
called OnValueChanged. Click the + button to add a new entry and then drag
Settings Popup to the object slot. In the function menu, find the SettingsPopup
script and then choose OnSoundValue() under Dynamic Float.

WARNING Remember to choose the function under Dynamic Float and not
Static Parameter! Although the method appears in both sections of the list, in
the latter case it will receive only a single value typed in ahead of time.

The settings controls are now working, but we need to address one more script—the
pop-up is currently always covering up the screen. A simple fix is to make the pop-up
open only when you press the M key. Create a new script called UIController, link
that script to the controller object in the scene, and write this code.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class UIController : MonoBehaviour {
 [SerializeField] SettingsPopup popup;

 void Start() {
 popup.gameObject.SetActive(false);
 }

 void Update() {
 if (Input.GetKeyDown(KeyCode.M)) {
 bool isShowing = popup.gameObject.activeSelf;
 popup.gameObject.SetActive(!isShowing);

 if (isShowing) {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 } else {
 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
 }

Listing 11.6 UIController that toggles the settings pop-up

References the pop-up
object in the scene

Initializes the hidden pop-up

Toggles the pop-up
with the M key

Also toggles the cursor
along with the pop-up

271Using the audio control interface

 }
 }
}

To wire up this object reference, drag the settings pop-up to the slot on this script.
Play now and try changing the slider (remember to activate the UI by pressing the M
key) while shooting around to hear the sound effects; you’ll hear the sound effects
change volume according to the slider.

11.3.3 Playing UI sounds

You’re going to make another addition to AudioManager now to allow the UI to play
sounds when buttons are clicked. This task is more involved than it seems at first,
owing to Unity’s need for an AudioSource. When sound effects were issued from
objects in the scene, it was fairly obvious where to attach the AudioSource. But UI
sound effects aren’t part of the scene, so you’ll set up a special AudioSource for
AudioManager to use when there isn’t any other audio source.

 Create a new empty GameObject and attach it as a child of the main Game Manag-
ers object; this new object is going to have an AudioSource used by AudioManager, so
call the new object Audio. Add an AudioSource component to this object (leave the
Spatial Blend setting at 2D this time, because the UI doesn’t have a specific position in
the scene) and then add this code to use this source in AudioManager.

...
[SerializeField] AudioSource soundSource;
...
public void PlaySound(AudioClip clip) {
 soundSource.PlayOneShot(clip);
}
...

A new variable slot will appear in the manager’s Inspector; drag the Audio object onto
this slot. Now modify the pop-up script (as shown in the following listing) to add the
UI sound effect.

...
[SerializeField] AudioClip sound;
...
public void OnSoundToggle() {
 Managers.Audio.soundMute = !Managers.Audio.soundMute;
 Managers.Audio.PlaySound(sound);
}
...

Listing 11.7 Playing sound effects in AudioManager

Listing 11.8 Adding sound effects to SettingsPopup

Variable slot in the Inspector to
reference the new audio source

Play sounds that don’t
have any other source.

Inspector slot to reference
the sound clip

Play the sound effect when
the button is clicked.

272 CHAPTER 11 Playing audio: Sound effects and music

Drag the UI sound effect onto the variable slot; I used the 2D sound “thump.” When
you click the UI button, that sound effect plays at the same time (when the sound isn’t
muted, of course!). Even though the UI doesn’t have an audio source itself, Audio-
Manager has an audio source that plays the sound effect.

 Great, we’ve set up all our sound effects! Now let’s turn our attention to music.

11.4 Adding background music
You’re going to add background music to the game, and you’ll do that by adding
music to AudioManager. As explained in the chapter introduction, music clips aren’t
fundamentally different from sound effects. The way digital audio functions through
waveforms is the same, and the commands for playing the audio are largely the same.
The main difference is the length of the audio, but that difference cascades out into
numerous consequences.

 For starters, music tracks tend to consume a large amount of memory on the com-
puter, and that memory consumption must be optimized. You must watch out for two
areas of memory issues: having the music loaded into memory before it’s needed, and
consuming too much memory when loaded.

 Optimizing when music loads is done using the Resources.Load() command intro-
duced in chapter 9. As you learned, this command allows you to load assets by name.
Though that’s certainly one handy feature, that’s not the only reason to load assets
from the Resources folder. Another key consideration is delaying loading: normally,
Unity loads all assets in a scene as soon as the scene loads, but assets from Resources
aren’t loaded until the code manually fetches them. In this case, we want to lazy-load
the audio clips for music. Otherwise, the music could consume a lot of memory even
when it isn’t being used.

DEFINITION With lazy loading, a file isn’t loaded ahead of time but rather is
delayed until it’s needed. Typically, data responds faster (for example, the
sound plays immediately) if it’s loaded in advance of use, but lazy loading can
save a lot of memory when responsiveness doesn’t matter as much.

The second memory consideration is dealt with by streaming music off the disc. As
explained in section 11.1.2, streaming the audio saves the computer from ever need-
ing to have the entire file loaded at once. The style of loading was a setting in the
Inspector of the imported audio clip. Ultimately, playing background music requires
several steps, including steps to cover these memory optimizations.

11.4.1 Playing music loops

The process of playing music involves the same series of steps as UI sound effects did
(background music is also 2D sound without a source within the scene), so we’re
going to go through all those steps again:

1. Importing audio clips.
2. Setting up an AudioSource for AudioManager to use.

273Adding background music

3. Writing code to play the audio clips in AudioManager.
4. Adding music controls to the UI.

Each step will be modified slightly to work with music instead of sound effects. Let’s
look at the first step.

STEP 1: IMPORTING AUDIO CLIPS

Obtain some music by downloading or recording tracks. For the sample project, I
went to www.freesound.org and downloaded the following public domain music
loops:

 “loop” by Xythe/Ville Nousiainen
 “Intro Synth” by noirenex

Drag the files into Unity to import them and then adjust their import settings in the
Inspector. As explained earlier, audio clips for music generally have different settings
than audio clips for sound effects. First, the audio format should be set to Vorbis, for
compressed audio. Remember, compressed audio will have a significantly smaller file
size. Compression also degrades the audio quality slightly, but that slight degradation
is an acceptable trade-off for long music clips; set Quality to 50% in the slider that
appears.

 The next import setting to adjust is Load Type. Again, music should stream from
the disc rather than being loaded completely. Choose Streaming from the Load Type
menu. Similarly, turn on Load In Background so that
the game won’t pause or slow down while music is
loading.

 Even after you adjust all the import settings, the asset
files must be moved to the correct location in order to
load correctly. Remember that the Resources.Load()
command requires the assets to be in the Resources
folder. Create a new folder called Resources, create a
folder within that called Music, and drag the audio files
into the Music folder (see figure 11.5). That takes care
of step 1.

STEP 2: SETTING UP AN AUDIOSOURCE FOR AUDIOMANAGER TO USE

Step 2 is to create a new AudioSource for music playback. Create another empty Game-
Object, name this object Music 1 (instead of Music because we’ll add Music 2 later in
the chapter), and attach it as a child of the Audio object.

 Add an AudioSource component to Music 1 and then adjust the settings in the
component. Deselect Play On Awake but turn on the Loop option this time; whereas
sound effects usually play only once, music plays over and over in a loop. Leave the
Spatial Blend setting at 2D, because music doesn’t have any specific position in the
scene.

Figure 11.5 Music audio clips
placed inside the Resources
folder

https://freesound.org/

274 CHAPTER 11 Playing audio: Sound effects and music

 You may want to reduce the Priority value too. For sound effects, this value didn’t
matter, so we left the value at the default 128. But for music, you probably want to
lower this value, so I set the music source to 60. This value tells Unity which sounds are
most important when layering multiple sounds; somewhat counterintuitively, lower
values are higher priority. When too many sounds are playing simultaneously, the
audio system will start discarding sounds; by making music higher priority than sound
effects, you ensure that the music will keep playing when too many sound effects trig-
ger at the same time.

STEP 3: WRITING CODE TO PLAY THE AUDIO CLIPS IN AUDIOMANAGER

The Music audio source has been set up, so add the following listing to AudioManager.

...
[SerializeField] AudioSource music1Source;

[SerializeField] string introBGMusic;
[SerializeField] string levelBGMusic;
...
public void PlayIntroMusic() {
 PlayMusic(Resources.Load($"Music/{introBGMusic}") as AudioClip);
}
public void PlayLevelMusic() {
 PlayMusic(Resources.Load($"Music/{levelBGMusic}") as AudioClip);
}

private void PlayMusic(AudioClip clip) {
 music1Source.clip = clip;
 music1Source.Play();
}

public void StopMusic() {
 music1Source.Stop();
}
...

As usual, the new serialized variables will be visible in the Inspector when you select
the Game Managers object. Drag Music 1 into the audio source slot. Then type in the
names of the music files in the two string variables: intro-synth and loop.

 The remainder of the added code calls commands for loading and playing music
(or, in the last added method, stopping the music). The Resources.Load() command
loads the named asset from the Resources folder (taking into account that the files are
placed in the Music subfolder within Resources). A generic object is returned by that
command, but the object can be converted to a more specific type (in this case, an
AudioClip) by using the as keyword.

 The loaded audio clip is then passed into the PlayMusic() method. This function
sets the clip in the AudioSource and then calls Play(). As I explained earlier, sound

Listing 11.9 Playing music in AudioManager

Write music names in these strings.

Load intro music from Resources.

Load main music from Resources.

Play music by setting AudioSource.clip.

275Adding background music

effects are better implemented using PlayOneShot(), but setting the clip in the
AudioSource is a more robust approach for music, allowing you to stop or pause the
playing music.

STEP 4: ADDING MUSIC CONTROLS TO THE UI
The new music playback methods in AudioManager won’t do anything unless they’re
called from elsewhere. Let’s add more buttons to the audio UI that will play different
music when clicked. Here are the steps again, enumerated with little explanation
(refer to chapter 7 if needed):

1. Change the pop-up’s width to 350 (to fit more buttons).
2. Create a new UI button and attach it to the pop-up.
3. Set the button’s width to 100 and position to 0, –20.
4. Expand the button’s hierarchy to select the text label and set that to Level

Music.
5. Repeat these steps twice more to create two additional buttons.
6. Position one at –105, –20 and the other at 105, –20 (so they appear on either

side).
7. Change the first text label to Intro Music and the last text label to No Music.

Now the pop-up has three buttons for playing different music. Write a method in
SettingsPopup that will be linked to each button.

...
public void OnPlayMusic(int selector) {
 Managers.Audio.PlaySound(sound);

 switch (selector) {
 case 1:
 Managers.Audio.PlayIntroMusic();
 break;
 case 2:
 Managers.Audio.PlayLevelMusic();
 break;
 default:
 Managers.Audio.StopMusic();
 break;
 }
}
...

Note that the function takes an int parameter this time; normally, button methods
don’t have a parameter and are simply triggered by the button. In this case, we need
to distinguish between the three buttons, so each button will send a different number.

 Go through the typical steps to connect a button to this code: add an entry to the
On Click panel in the Inspector, drag the pop-up to the object slot, and choose the

Listing 11.10 Adding music controls to SettingsPopup

This method gets a number
parameter from the button.

Call a different music function in
AudioManager for each button.

276 CHAPTER 11 Playing audio: Sound effects and music

appropriate function from the menu. This time, a text box for typing in a number is
displayed, because OnPlayMusic() takes a number for a parameter. Type 1 for Intro
Music, 2 for Level Music, and anything else for No Music (I went with 0). The switch
statement in OnMusic() plays intro music or level music, depending on the number,
or stops the music as a default if the number isn’t 1 or 2.

 When you click the music buttons while the game is playing, you’ll hear the music.
Great! The code is loading the audio clips from the Resources folder. Music plays effi-
ciently, although we still have two bits of polish to add: separate music volume control
and cross-fading when changing the music.

11.4.2 Controlling music volume separately

The game already has volume control, and currently that affects the music too. Most
games have separate volume controls for sound effects and music, though, so let’s
tackle that now.

 The first step is to tell the music AudioSource to ignore the settings on Audio-
Listener. We want volume and mute on the global AudioListener to continue to affect
all sound effects, but we don’t want this volume to apply to music. Listing 11.10 includes
code to tell the music source to ignore the volume on AudioListener. The following list-
ing also adds volume control and mute for music, so add it to AudioManager.

...
private float _musicVolume;
public float musicVolume {
 get {
 return _musicVolume;
 }
 set {
 _musicVolume = value;

 if (music1Source != null) {
 music1Source.volume = _musicVolume;
 }
 }
}
...
public bool musicMute {
 get {
 if (music1Source != null) {
 return music1Source.mute;
 }
 return false;
 }
 set {
 if (music1Source != null) {
 music1Source.mute = value;
 }
 }

Listing 11.11 Controlling music volume separately in AudioManager

Private variable that won’t be
accessed directly, only through
the property’s getter

Adjust volume of the
AudioSource directly.

Default value in case the
AudioSource is missing

277Adding background music

}

public void Startup(NetworkService service) {
 Debug.Log("Audio manager starting...");

 network = service;

 music1Source.ignoreListenerVolume = true;
 music1Source.ignoreListenerPause = true;

 soundVolume = 1f;
 musicVolume = 1f;

 status = ManagerStatus.Started;
}
...

The key to this code is realizing you can adjust the volume of an AudioSource directly,
even though that audio source is ignoring the global volume defined in AudioListener.
Properties for both volume and mute manipulate the individual music source.

 The Startup() method initializes the music source with both ignoreListener-
Volume and ignoreListenerPause turned on. As the names suggest, those properties
cause the audio source to ignore the global volume setting on AudioListener.

 You can click Play now to verify that the music is no longer affected by the existing
volume control. Let’s add a second UI control for the music volume; start by adjusting
SettingsPopup.

...
public void OnMusicToggle() {
 Managers.Audio.musicMute = !Managers.Audio.musicMute;
 Managers.Audio.PlaySound(sound);
}

public void OnMusicValue(float volume) {
 Managers.Audio.musicVolume = volume;
}
...

This code doesn’t need a lot of explaining—it’s mostly repeating the sound volume
controls. Obviously, the AudioManager properties used have changed from soundMute/
soundVolume to musicMute/musicVolume.

 In the editor, create a button and slider, as you did before. Here are those steps
again:

1. Change the pop-up’s height to 225 (to fit more controls).
2. Create a UI button.
3. Parent the button to the pop-up.

Listing 11.12 Music volume controls in SettingsPopup

Italicized code was already in
script, shown here for reference.

These properties tell the
AudioSource to ignore the

AudioListener volume.

Repeat the mute
control, but use
musicMute instead.

Repeat the volume control, but
use musicVolume instead.

278 CHAPTER 11 Playing audio: Sound effects and music

4. Position the button at 0, –60.
5. Expand the button’s hierarchy to select its text label.
6. Change the text to Toggle Music.
7. Create a slider (from the same UI menu).
8. Parent the slider to the pop-up and position it at 0, –85.
9. Set the slider’s Value (at the bottom of the Inspector) to 1.

Link these UI controls to the code in SettingsPopup. Find the On Click/OnValue-
Changed panel in the UI element’s settings, click the + button to add an entry, drag
the pop-up object to the object slot, and select the function from the menu. The func-
tions you need to pick are OnMusicToggle() and OnMusicValue() from the Dynamic
Float section of the menu.

 Run this code and you’ll see that the controls affect sound effects and music sepa-
rately. This is getting pretty sophisticated, but one more bit of polish remains: cross-
fade between music tracks.

11.4.3 Fading between songs

As a final bit of polish, let’s make AudioManager fade in and out between different
background tunes. Currently, the switch between music tracks is pretty jarring, with
the sound suddenly cutting off and changing to the new track. We can smooth out
that transition by having the volume of the previous track quickly dwindle away while
the volume quickly rises from 0 on the new track. This is a simple but clever bit of
code that combines both the volume control methods you just saw, along with a corou-
tine to change the volume incrementally over time.

 Listing 11.13 adds a lot of bits to AudioManager, but most revolve around a simple
concept: now that we have two separate audio sources, we’ll play separate music tracks
on separate audio sources, and incrementally increase the volume of one source while
simultaneously decreasing the volume of the other. (As usual, italicized code was
already in the script and is shown here for reference.)

...
[SerializeField] AudioSource music2Source;

private AudioSource activeMusic;
private AudioSource inactiveMusic;

public float crossFadeRate = 1.5f;
private bool crossFading;
...
public float musicVolume {
 ...
 set {
 _musicVolume = value;

Listing 11.13 Cross-fading between music in AudioManager

Second AudioSource
(keep the first, too)

Keep track of which source
is active vs. inactive.

A toggle to avoid bugs while
a cross-fade is happening

279Adding background music

 if (music1Source != null && !crossFading) {
 music1Source.volume = _musicVolume;
 music2Source.volume = _musicVolume;
 }
 }
}
...
public bool musicMute {
 ...
 set {
 if (music1Source != null) {
 music1Source.mute = value;
 music2Source.mute = value;
 }
 }
}

public void Startup(NetworkService service) {
 Debug.Log("Audio manager starting...");

 network = service;

 music1Source.ignoreListenerVolume = true;
 music2Source.ignoreListenerVolume = true;
 music1Source.ignoreListenerPause = true;
 music2Source.ignoreListenerPause = true;

 soundVolume = 1f;
 musicVolume = 1f;

 activeMusic = music1Source;
 inactiveMusic = music2Source;

 status = ManagerStatus.Started;
}
...
private void PlayMusic(AudioClip clip) {
 if (crossFading) {return;}
 StartCoroutine(CrossFadeMusic(clip));
}
private IEnumerator CrossFadeMusic(AudioClip clip) {
 crossFading = true;

 inactiveMusic.clip = clip;
 inactiveMusic.volume = 0;
 inactiveMusic.Play();

 float scaledRate = crossFadeRate * musicVolume;
 while (activeMusic.volume > 0) {
 activeMusic.volume -= scaledRate * Time.deltaTime;
 inactiveMusic.volume += scaledRate * Time.deltaTime;

 yield return null;
 }

Adjust the volume on
both music sources.

Initialize one as the
active AudioSource.

Call a coroutine when
changing music.

Yield statement pauses
for one frame.

280 CHAPTER 11 Playing audio: Sound effects and music

 AudioSource temp = activeMusic;

 activeMusic = inactiveMusic;
 activeMusic.volume = musicVolume;

 inactiveMusic = temp;
 inactiveMusic.Stop();

 crossFading = false;
}

public void StopMusic() {
 activeMusic.Stop();
 inactiveMusic.Stop();
}
...

The first addition is a variable for the second music source. While keeping the first
AudioSource object, duplicate that object (make sure the settings are the same—
select Loop) and then drag the new object into this Inspector slot. The code also
defines the AudioSource variables activeMusic and inactiveMusic, but those are pri-
vate variables used within the code and not exposed in the Inspector. Specifically,
those variables define which of the two audio sources is considered active or inactive
at any given time.

 The code now calls a coroutine when playing new music. This coroutine sets the
new music playing on one AudioSource while the old music keeps playing on the old
AudioSource. Then, the coroutine incrementally increases the volume of the new
music while incrementally decreasing the volume of the old music. Once the cross-
fading is complete (that is, the volumes have completely exchanged places), the func-
tion swaps which audio source is considered active and inactive.

 Great! We’ve completed the background music for our game’s audio system.

Temporary variable to use
while swapping active and
inactive

Advanced game audio plugins for FMOD and Wwise
The audio system in Unity is powered by FMOD, a popular audio programming library.
Unity has integrated many features of FMOD, but more advanced audio features are
accessible through FMOD Studio, with a plugin offered at www.fmod.com/unity/.
Alternatively, Wwise is a different audio system that also offers a Unity plugin:
http://mng.bz/6mvD.

The examples in this chapter stick to the functionality built into Unity, because that
core functionality comprises the most important features for a game’s audio system.
Most game developers have their audio needs served quite well by this core function-
ality, but these plugins are useful for those wishing to get even more intricate with
their game’s audio.

https://www.fmod.com/unity/
http://mng.bz/6mvD

281Summary

Summary
 Sound effects should be uncompressed audio, and music should be com-

pressed, but use the WAV format for both because Unity applies compression to
imported audio.

 Audio clips can be 2D sounds that always play the same, or 3D sounds that react
to the listener’s position.

 The volume of sound effects is easily adjusted globally using Unity’s
AudioListener.

 You can set the volume on individual audio sources that play music.
 You can fade background music in and out by setting the volume on individual

audio sources.

282

Putting the parts together
 into a complete game

The project in this chapter will tie together everything from previous chapters.
Most chapters have been pretty self-contained, and we haven’t taken an end-to-end
look at the entire game. I’ll walk you through pulling together pieces that have
been introduced separately so that you know how to build a complete game from
all of those pieces.

 I’ll also discuss the encompassing structure of the game, including switching lev-
els and ending the game (displaying Game Over when you die, and Success when
you reach the exit). And I’ll show you how to save the game, because saving the
player’s progress becomes increasingly important as the game grows in size.

This chapter covers
 Assembling objects and code from other projects

 Programming point-and-click controls

 Upgrading the UI from the old to a new system

 Loading new levels in response to objectives

 Setting up win/loss conditions

 Saving and loading the player’s progress

283Building an action RPG by repurposing projects

WARNING Much of this chapter uses tasks that were explained in detail in pre-
vious chapters, so I’ll move through the steps quickly. If certain steps confuse
you, refer to the relevant chapter (for example, chapter 7 about the UI) for a
more detailed explanation.

This chapter’s project is a demo of an action role-playing game (RPG). In this sort of
game, the camera is placed high and looks down sharply (see figure 12.1), and the
character is controlled by clicking the mouse where you want to go. You may be famil-
iar with the game Diablo, which is an action RPG like this. I’m switching to yet another
game genre so that we can squeeze in one more genre before the end of the book!

In full, the project in this chapter will be the biggest game yet. It’ll have these features:

 A top-down view with point-and-click movement
 The ability to click devices to operate them
 Scattered items you can collect
 Inventory that’s displayed in a UI window
 Enemies wandering around the level
 The ability to save the game and restore your progress
 Three levels that must be completed in sequence

Whew, that’s a lot to pack in; good thing this is almost the last chapter!

12.1 Building an action RPG by repurposing projects
We’ll develop the action RPG demo by building on the project from chapter 9. Copy
that project’s folder and open the copy in Unity to start working. Or, if you skipped
directly to this chapter, download the sample project for chapter 9 to build on that.

 The reason we’re building on the chapter 9 project is that it’s the closest to our
goal for this chapter and thus will require the least modification (compared to other
projects). Ultimately, we’ll pull together assets from several chapters, so technically it’s
not that different than if we started with one of those projects and pulled in assets
from chapter 9.

Figure 12.1 Screenshot of
the top-down viewpoint

284 CHAPTER 12 Putting the parts together into a complete game

 Here’s a recap of what’s in the project from chapter 9:

 A character with an animation controller already set up
 A third-person camera that follows the character around
 A level with floors, walls, and ramps
 Lights and shadows all placed
 Operable devices, including a color-changing monitor
 Collectible inventory items
 Backend managers code framework

This hefty list of features covers quite a bit of the action in the RPG demo already, but
we’ll either need to modify or add a bit more.

12.1.1 Assembling assets and code from multiple projects

The first two modifications will be to update the managers framework and to bring in
computer-controlled enemies. For the former task, recall that updates to the frame-
work were made in chapter 10, which means those updates aren’t in the project from
chapter 9. For the latter task, recall that you programmed an enemy in chapter 3.

UPDATING THE MANAGERS FRAMEWORK

Updating the managers is a fairly simple task, so let’s get that out of the way first. The
IGameManager interface was modified in chapter 10.

public interface IGameManager {
 ManagerStatus status {get;}

 void Startup(NetworkService service);
}

The code in this listing adds a reference to NetworkService, so also be sure to copy
over that additional script; drag the file from its location in the chapter 10 project
(remember, a Unity project is a folder on your disc, so get the file from there), and
drop it in the new project. Now modify Managers to work with the changed interface.

...
private IEnumerator StartupManagers() {
 NetworkService network = new NetworkService();

 foreach (IGameManager manager in startSequence) {
 manager.Startup(network);
 }
 ...

Listing 12.1 Adjusted IGameManager

Listing 12.2 Changing a bit of code in the Managers script

The adjustments are at the
beginning of this method.

285Building an action RPG by repurposing projects

Finally, adjust both InventoryManager and PlayerManager to reflect the changed
interface. The next listing shows the modified code from InventoryManager; Player-
Manager needs the same code modifications but with different names.

...
private NetworkService network;

public void Startup(NetworkService service) {
 Debug.Log("Inventory manager starting...");

 network = service;

 items = new Dictionary<string, int>();
 ...

Once all the minor code changes are in, everything should still act as before. This
update should work invisibly, and the game will still work the same. That adjustment
was easy, but the next one will be harder.

BRINGING OVER THE AI ENEMY

Besides the NetworkServices adjustments from chapter 10, you also need the AI
enemy from chapter 3. Implementing enemy characters involved a bunch of scripts
and art assets, so you need to import all those assets.

 First, copy over these scripts (remember, WanderingAI and ReactiveTarget were
behaviors for the AI enemy, Fireball was the projectile fired, the enemy attacks the
PlayerCharacter component, and SceneController handles spawning enemies):

 PlayerCharacter

 SceneController

 WanderingAI

 ReactiveTarget

 Fireball

Similarly, get the Flame material, Fireball prefab, and Enemy prefab by dragging in
those files. If you got the enemy from chapter 11 instead of 3, you may also need the
added fire particle material.

 After copying over all the required assets, the links between assets will probably be
broken, so you’ll need to relink the referenced objects in broken assets to get them to
work. In particular, check the scripts on all prefabs because they probably disconnected.
For example, the Enemy prefab has two missing scripts in the Inspector, so click the cir-
cle button (indicated in figure 12.2) to choose WanderingAI and ReactiveTarget from
the list of scripts. Similarly, check the Fireball prefab and relink that script if needed.
Once you’re through with the scripts, check the links to materials and textures.

 Now add SceneController to the controller object and drag the Enemy prefab
onto that component’s Enemy slot in the Inspector. You may need to drag the Fireball

Listing 12.3 Adjusting InventoryManager to reflect IGameManager

Same adjustments in both
managers, but change names

286 CHAPTER 12 Putting the parts together into a complete game

prefab onto the Enemy’s script component (select the Enemy prefab and look at
WanderingAI in the Inspector). Also attach PlayerCharacter to the player object so
that enemies will attack the player.

 Play the game and you’ll see the enemy wandering around. The enemy shoots fire-
balls at the player, although they won’t do much damage; select the Fireball prefab
and set its Damage value to 10.

NOTE Currently, the enemy isn’t particularly good at tracking down and hit-
ting the player. In this case, I’d start by giving the enemy a wider field of
vision (using the dot product approach from chapter 9). Ultimately, you’ll
spend a lot of time polishing a game, and that includes iterating on the
behavior of enemies. Polishing a game to make it more fun, though crucial
for a game to be released, isn’t something you’ll do in this book.

The other issue is that when you wrote this code in chapter 3, the player’s health was
an ad hoc addition, written for testing. Now the game has a PlayerManager, so modify
PlayerCharacter according to the next listing in order to work with health in that
manager.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PlayerCharacter : MonoBehaviour {
 public void Hurt(int damage) {
 Managers.Player.ChangeHealth(-damage);
 }
}

At this point, you have a game demo with pieces assembled from multiple previous
projects. An enemy character has been added to the scene, making the game more
threatening. But the controls and viewpoint are still from the third-person movement
demo, so let’s implement point-and-click controls for an action RPG.

12.1.2 Programming point-and-click controls: Movement and devices

This demo needs a top-down view and mouse control of the player’s movement (refer
to figure 12.1). Currently, the camera responds to the mouse, whereas the player
responds to the keyboard (as programmed in chapter 8), which is the reverse of what

Listing 12.4 Adjusting PlayerCharacter to use health in PlayerManager

Click the circle button that’s just
to the right of the script slot.

Figure 12.2 Linking a script to a component

Use the value in PlayerManager
instead of the variable in
PlayerCharacter.

287Building an action RPG by repurposing projects

you want in this chapter. In addition, you’ll modify the color-changing monitor so that
devices are operated by clicking them. In both cases, the existing code isn’t terribly far
from what you need; you’ll make adjustments to both the movement and device
scripts.

SETTING UP THE TOP-DOWN VIEW OF THE SCENE

First, you’ll raise the camera to 8 Y to position it for an overhead view. You’ll also adjust
OrbitCamera to remove mouse controls from the camera and use only arrow keys.

...
void LateUpdate() {
 rotY -= Input.GetAxis("Horizontal") * rotSpeed;
 Quaternion rotation = Quaternion.Euler(0, rotY, 0);
 transform.position = target.position - (rotation * offset);
 transform.LookAt(target);
}
...

With the camera raised even higher, the view when you play the game will be top-
down. At the moment, though, the movement controls still use the keyboard, so let’s
write a script for point-and-click movement.

WRITING THE MOVEMENT CODE

The general idea for this code will be to automatically move the player toward its tar-
get position (as illustrated in figure 12.3). This position is set by clicking in the scene.
In this way, the code that moves the player isn’t directly reacting to the mouse, but the
player’s movement is being controlled indirectly by clicking.

Listing 12.5 Adjusting OrbitCamera to remove mouse controls

Reverse the direction
from before.

The camera’s Near/Far clipping planes
While you’re adjusting the camera, I want to point out the Near/Far clipping planes.
These settings never came up before because the defaults are fine, but you may
need to adjust these in a future project.

If you need to adjust these values, select the camera in the scene and look for the
Clipping Planes section in the Inspector; both Near and Far are numbers you’ll type
here. These values define near and far boundaries within which meshes are ren-
dered. Polygons closer than the Near clipping plane or farther than the Far clipping
plane aren’t drawn.

You want the Near/Far clipping planes as close together as possible, while still being
far enough apart to render everything in your scene. When those planes are too far
apart (Near is too close, or Far is too far), the rendering algorithm can no longer tell
which polygons are closer. This results in a characteristic rendering error called
z-fighting (as in the z-axis for depth), where polygons flicker on top of each other.

288 CHAPTER 12 Putting the parts together into a complete game

NOTE This movement algorithm is useful for AI characters as well. Rather
than using mouse clicks, the target position could be on a path that the char-
acter follows.

To implement this, create a new script called PointClickMovement and replace the
RelativeMovement component on the player. Start coding PointClickMovement by
pasting in the entirety of RelativeMovement (because you still want most of that
script for handling falling and animations). Then, adjust the code according to this
listing.

...
public class PointClickMovement : MonoBehaviour {
...
public float deceleration = 25.0f;
public float targetBuffer = 1.5f;

private float curSpeed = 0f;
private Vector3? targetPos;
...
void Update() {
 Vector3 movement = Vector3.zero;

 if (Input.GetMouseButton(0)) {
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit mouseHit;
 if (Physics.Raycast(ray, out mouseHit)) {
 targetPos = mouseHit.point;
 curSpeed = moveSpeed;
 }
 }

 if (targetPos != null) {
 if (curSpeed > moveSpeed * .5f) {
 Vector3 adjustedPos = new Vector3(targetPos.Value.x,
 transform.position.y, targetPos.Value.z);
 Quaternion targetRot = Quaternion.LookRotation(
 adjustedPos - transform.position);

Listing 12.6 New movement code in PointClickMovement script

Every frame, the following sequence of steps is run:

1. Check for mouse
clicks; set target position.

2. Always rotate to face
the target position.

3. Move forward (which
will be toward the target).

Figure 12.3 How point-and-click controls work

Correct the name
after pasting scripts.

Define this value as “nullable”
with the ? symbol.

Set the target position
when the mouse clicks.

Raycast at
the mouse

position. Set target to the
position that was hit.

Move if the target
position is set. Rotate toward the target

only while moving quickly.

289Building an action RPG by repurposing projects

 transform.rotation = Quaternion.Slerp(transform.rotation,
 targetRot, rotSpeed * Time.deltaTime);
 }

 movement = curSpeed * Vector3.forward;
 movement = transform.TransformDirection(movement);

 if (Vector3.Distance(targetPos.Value, transform.position) <
 ➥ targetBuffer) {
 curSpeed -= deceleration * Time.deltaTime;
 if (curSpeed <= 0) {
 targetPos = null;
 }
 }
 }
 animator.SetFloat("Speed", movement.sqrMagnitude);
 ...

Almost everything at the beginning of the Update() method was gutted, because that
code was handling keyboard movement. Notice that this new code has two main if state-
ments: one that runs when the mouse clicks, and one that runs when a target is set.

TIP Nullable values are a handy programming trick used in this script. Notice
that the target position value is defined as Vector3? instead of just Vector3;
this is C# syntax for declaring a nullable value. Some value types (such as
Vector3) cannot normally be set to null, but you may encounter a situation
where it is useful to have a null state that means “no value is set.” In that case,
you can make it a nullable value, allowing you to set the value to null, and then
access the underlying Vector3 (or whatever) by typing targetPos.Value.

When the mouse clicks, set the target according to where the mouse clicked. Here’s
yet another great use for raycasting: to determine which point in the scene is under
the mouse cursor. The target position is set to where the mouse hits.

 As for the second conditional, first rotate to face the target. Quaternion.Slerp()
rotates smoothly to face the target, rather than immediately snapping to that rotation;
also lock rotation while slowing down (otherwise, the player can rotate oddly when at
the target) by rotating only when over half-speed. Then, transform the forward direc-
tion from the player’s local coordinates to global coordinates (to move forward).
Finally, check the distance between the player and the target: if the player has almost
reached the target, decrement the movement speed and eventually end the move-
ment by removing the target position.

Decelerate to 0 when
close to the target.

Everything stays the
same from here down.

Exercise: Turn off jump control
Currently, this script still has the jump control from RelativeMovement. The player
still jumps when the spacebar is pressed, but there shouldn’t be a jump button with
point-and-click movement. Here’s a hint: adjust the code inside the 'if (hitGround)'
conditional branch.

290 CHAPTER 12 Putting the parts together into a complete game

This takes care of moving the player by using mouse controls. Play the game to test it
out. Next, let’s make devices operate when clicked.

OPERATING DEVICES BY USING THE MOUSE

In chapter 9 (and here, until we adjust the code), devices were operated by pressing a
key. Instead, they should operate when clicked. To do this, you’ll first create a base
script that all devices will inherit from; the base script will have the mouse control, and
devices will inherit that. Create a new script called BaseDevice and write the code
shown in the following listing.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BaseDevice : MonoBehaviour {
 public float radius = 3.5f;

 void OnMouseUp() {
 Transform player = GameObject.FindWithTag("Player").transform;
 Vector3 playerPosition = player.position;

 playerPosition.y = transform.position.y;
 if (Vector3.Distance(transform.position, playerPosition) < radius) {
 Vector3 direction = transform.position - playerPosition;
 if (Vector3.Dot(player.forward, direction) > .5f) {
 Operate();
 }
 }
 }

 public virtual void Operate() {
 // behavior of the specific device
 }
}

Listing 12.7 BaseDevice script that operates when clicked

Pathfinding with A* and NavMesh
The movement code we just wrote directs the player straight toward the target. How-
ever, characters in a game often must find their way around obstacles, rather than
moving in a straight line. Navigating characters around obstacles is referred to as
pathfinding. Because this is such a common situation in games, Unity provides a
built-in pathfinding solution, called NavMesh. Learn more at the following links:

 http://mng.bz/o8Mr
 http://mng.bz/nryg

Meanwhile, although NavMesh is free and works well, many developers prefer A*
Pathfinding Project, available from https://arongranberg.com/astar/.

Function that runs
when clicked

Correction to
vertical position

Call Operate() if the player
is nearby and facing.

virtual marks a method that
inheritance can override.

http://mng.bz/o8Mr
https://shortener.manning.com/nryg
https://arongranberg.com/astar/

291Building an action RPG by repurposing projects

Most of this code happens inside OnMouseDown because MonoBehaviour calls that
method when the object is clicked. First, it checks the distance to the player (with a
vertical position correction, just as in chapter 9) and then it uses the dot product to
see whether the player is facing the device. Operate() is an empty shell to be filled in
by devices that inherit this script.

NOTE This code looks in the scene for an object with the Player tag, so
assign this tag to the player object. Tag is a drop-down menu at the top of the
Inspector; you can define custom tags as well, but several tags are defined by
default, including Player. Select the player object to edit it and then select
the Player tag.

Now that BaseDevice is programmed, you can modify ColorChangeDevice to inherit
from that script. This is the new code.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ColorChangeDevice : BaseDevice {
 public override void Operate() {
 Color random = new Color(Random.Range(0f,1f),
 Random.Range(0f,1f), Random.Range(0f,1f));
 GetComponent<Renderer>().material.color = random;
 }
}

Because this script inherits from BaseDevice instead of MonoBehaviour, it gets the
mouse control functionality. Then it overrides the empty Operate() method to pro-
gram the color-changing behavior.

 Make the same changes (inherit from BaseDevice instead of MonoBehaviour, and
add override to the Operate method) to DoorOpenDevice. Now these devices will
operate when you click them. Also remove the player’s DeviceOperator script compo-
nent, because that script operates devices by pressing the key.

 This new device input brings up an issue with the movement controls: currently,
the movement target is set anytime the mouse clicks, but you don’t want to set the
movement target when clicking devices. You can fix this issue by using layers; similar
to the way a tag was set on the player, objects can be set to different layers, and the
code can check for that. Adjust PointClickMovement to check for the object’s layer.

...
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit mouseHit;

Listing 12.8 Adjusting ColorChangeDevice to inherit from BaseDevice

Listing 12.9 Adjusting mouse-click code in PointClickMovement

Inherit BaseDevice instead
of MonoBehaviour.

Override this method
from the base class.

292 CHAPTER 12 Putting the parts together into a complete game

if (Physics.Raycast(ray, out mouseHit)) {
 GameObject hitObject = mouseHit.transform.gameObject;
 if (hitObject.layer == LayerMask.NameToLayer("Ground")) {
 targetPos = mouseHit.point;
 curSpeed = moveSpeed;
 }
}
...

This listing adds a conditional inside the mouse-click code to see whether the clicked
object is on the Ground layer. Layers (like Tags) is a drop-down menu at the top of the
Inspector; click it to see the options. Also, like tags, several layers are already defined
by default. You want to create a new layer, so choose Edit Layers in the menu. Type
Ground in an empty layer slot (probably slot 8; NameToLayer() in the code converts
names into layer numbers so that you can use the name instead of the number).

 Now that the Ground layer has been added to the menu, set ground objects to the
Ground layer—that means the floor of the building, along with the ramps and plat-
forms that the player can walk on. Select those objects, and then select Ground in the
Layers menu.

 Play the game and you won’t move when clicking the color-changing monitor.
Great, the point-and-click controls are complete! One more thing to bring into this
project from previous projects is the UI.

12.1.3 Replacing the old GUI with a new interface

Chapter 9 used Unity’s old immediate-mode GUI because that approach was simpler
to code. But the UI from chapter 9 doesn’t look as nice as the one from chapter 7, so
let’s bring over that interface system. The newer UI is more visually polished than the
old GUI; figure 12.4 shows the interface you’re going to create.

Added code; the
rest is reference.

Four sets of text labels and icons are set up in the
editor—but during play, they can change appearance
or be hidden, depending on your inventory.

UI as viewed in the editor UI while playing the game

Figure 12.4 The UI for this chapter’s project

293Building an action RPG by repurposing projects

First, you’ll set up the UI graphics. Once the UI images are all in the scene, you can
attach scripts to the UI objects. I’ll list the steps involved without going into detail; if
you need a refresher, refer to chapter 7. If needed, install the TextMeshPro and 2D
Sprite packages (refer back to chapters 5 and 6 for these) before starting:

1. Import popup.png as a sprite (choose Texture Type).
2. In the Sprite Editor, set a 12-pixel border on all sides (remember to apply

changes).
3. Create a canvas in the scene (GameObject > UI > Canvas).
4. Choose the Pixel Perfect setting of the canvas.
5. (Optional) Name the object HUD Canvas and switch to 2D view mode.
6. Create a Text object connected to that canvas (GameObject > UI > Text - Text-

MeshPro).
7. Set the Text object’s anchor to top left and the object’s position to 120, -50.
8. Set the label’s Vertex Color to black, set Font Size to 16, and type Health: as the

text.
9. Create an image connected to that canvas (GameObject > UI > Image).

10. Name the new object Inventory Popup.
11. Assign the pop-up sprite to the image’s Source Image.
12. Set Image Type to Sliced and select Fill Center.
13. Position the pop-up image at 0, 0 and scale the pop-up to 250 for width and 150

for height.

NOTE Recall how to switch between viewing the 3D scene and the 2D inter-
face: toggle 2D view mode and double-click either the Canvas or the Building
to zoom in on that object.

Now you have the Health label in the corner and the large blue pop-up window in the
center. Let’s program these parts first before getting deeper into the UI functionality.
The interface code will use the same Messenger system from chapter 7, so copy over
the Messenger script. Then create a GameEvent script.

public static class GameEvent {
 public const string HEALTH_UPDATED = "HEALTH_UPDATED";
}

For now, only one event is defined; over the course of this chapter, you’ll add a few
more events. Broadcast this event from PlayerManager.

...
public void ChangeHealth(int value) {
 health += value;

Listing 12.10 GameEvent script to use with this Messenger system

Listing 12.11 Broadcasting the health event from PlayerManager

294 CHAPTER 12 Putting the parts together into a complete game

 if (health > maxHealth) {
 health = maxHealth;
 } else if (health < 0) {
 health = 0;
 }

 Messenger.Broadcast(GameEvent.HEALTH_UPDATED);
}
...

The event is broadcast every time ChangeHealth() finishes to tell the rest of the pro-
gram that the health has changed. You want to adjust the health label in response to
this event, so create a UIController script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using TMPro;

public class UIController : MonoBehaviour {
 [SerializeField] TMP_Text healthLabel;
 [SerializeField] InventoryPopup popup;

 void OnEnable() {
 Messenger.AddListener(GameEvent.HEALTH_UPDATED, OnHealthUpdated);
 }
 void OnDisable() {
 Messenger.RemoveListener(GameEvent.HEALTH_UPDATED, OnHealthUpdated);
 }

 void Start() {
 OnHealthUpdated();

 popup.gameObject.SetActive(false);
 }

 void Update() {
 if (Input.GetKeyDown(KeyCode.M)) {
 bool isShowing = popup.gameObject.activeSelf;
 popup.gameObject.SetActive(!isShowing);
 popup.Refresh();
 }
 }

 private void OnHealthUpdated() {
 string message = $"Health:

{Managers.Player.health}/{Managers.Player.maxHealth}";
 healthLabel.text = message;
 }
}

Listing 12.12 The script UIController, which handles the interface

Add a line to the end
of this function.

Reference the UI object in the scene.

Set the listener for the
health update event.

Call the function
manually at startup.

Initialize the pop-up
to be hidden.

Toggle the pop-up
with the M key.

Event listener calls the function
to update the health label.

295Building an action RPG by repurposing projects

Remove BasicUI from the Controller object, and attach this new script to the Canvas
(notably not the Controller object, which should have only SceneController now).
Also, create an InventoryPopup script (add an empty public Refresh() method for
now; the rest will be filled in later) and attach it to the Inventory Popup object. Now
you can drag the pop-up to the reference slot in the Canvas object’s UIController
component (and then do the same for the health label).

 The health label changes when you get hurt or use health packs, and pressing the
M key toggles the pop-up window. One last detail to adjust is that clicking the pop-up win-
dow currently causes the player to move; as with devices, you don’t want to set the target
position when the UI has been clicked. Make the adjustment to PointClickMovement.

using UnityEngine.EventSystems;
...
void Update() {
 Vector3 movement = Vector3.zero;
 if (Input.GetMouseButton(0) &&

!EventSystem.current.IsPointerOverGameObject()) {
 ...

Note that the conditional checks whether or not the mouse is on the UI. That com-
pletes the overall structure of the interface, so now let’s deal with the inventory pop-
up specifically.

IMPLEMENTING THE INVENTORY POP-UP

The pop-up window is currently blank, but it should display the player’s inventory
(depicted in figure 12.5). These steps will create the UI objects:

1. Create four images and parent them to the pop-up (that is, drag objects in the
Hierarchy).

2. Create four text labels and parent them to the pop-up.
3. Position all the images at 0 Y and set X values to -75, -25, 25, and 75.

4. Position the text labels at 45 Y and set X values to -75, -25, 25, and 75.

Listing 12.13 Checking the UI in PointClickMovement

Four text objects

Two button objects

One text object

Four image
objects

Figure 12.5 Diagram of the inventory UI

296 CHAPTER 12 Putting the parts together into a complete game

5. Set the text (not the anchor!) to Center alignment, Bottom vertical align, and
Height 60.

6. Enter x2 for all the text labels, set Vertex Color black, and Font Size to 16.
7. In Resources, set all inventory icons as Sprite (instead of Textures).
8. Drag these sprites to the Source Image slot of the Image objects (also set Native

Size).
9. Add another text label and two buttons, all parented to the pop-up.

10. Position this text label at -140, -45 with Right alignment and Middle vertical
align.

11. Type Energy: for the text on this label, set Vertex Color to black, and set Font
Size to 14.

12. Set both buttons to Width 60. For Position, set Y to -50 and X to 0 or 70.
13. Expand the two buttons in the Hierarchy and type Equip on one button and

Use on the other.

These are the visual elements for the inventory pop-up; next is the code. Write the
contents of the following into the InventoryPopup script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;
using TMPro;

public class InventoryPopup : MonoBehaviour {
 [SerializeField] Image[] itemIcons;
 [SerializeField] TMP_Text[] itemLabels;

 [SerializeField] TMP_Text curItemLabel;
 [SerializeField] Button equipButton;
 [SerializeField] Button useButton;

 private string curItem;

 public void Refresh() {
 List<string> itemList = Managers.Inventory.GetItemList();

 int len = itemIcons.Length;
 for (int i = 0; i < len; i++) {
 if (i < itemList.Count) {
 itemIcons[i].gameObject.SetActive(true);
 itemLabels[i].gameObject.SetActive(true);

 string item = itemList[i];

 Sprite sprite = Resources.Load<Sprite>($"Icons/{item}");

Listing 12.14 Full script for InventoryPopup

Arrays to reference four
images and text labels

Check the inventory list while
looping through all UI images.

Load the sprite from
Resources.

297Building an action RPG by repurposing projects

 itemIcons[i].sprite = sprite;
 itemIcons[i].SetNativeSize();

 int count = Managers.Inventory.GetItemCount(item);
 string message = $"x{count}";
 if (item == Managers.Inventory.equippedItem) {
 message = "Equipped\n" + message;
 }
 itemLabels[i].text = message;

 EventTrigger.Entry entry = new EventTrigger.Entry();
 entry.eventID = EventTriggerType.PointerClick;
 entry.callback.AddListener((BaseEventData data) => {
 OnItem(item);
 });

 EventTrigger trigger = itemIcons[i].GetComponent<EventTrigger>();
 trigger.triggers.Clear();
 trigger.triggers.Add(entry);
 }
 else {
 itemIcons[i].gameObject.SetActive(false);
 itemLabels[i].gameObject.SetActive(false);
 }
 }

 if (!itemList.Contains(curItem)) {
 curItem = null;
 }
 if (curItem == null) {
 curItemLabel.gameObject.SetActive(false);
 equipButton.gameObject.SetActive(false);
 useButton.gameObject.SetActive(false);
 }
 else {
 curItemLabel.gameObject.SetActive(true);
 equipButton.gameObject.SetActive(true);
 if (curItem == "health") {
 useButton.gameObject.SetActive(true);
 } else {
 useButton.gameObject.SetActive(false);
 }

 curItemLabel.text = $"{curItem}:";
 }
 }

 public void OnItem(string item) {
 curItem = item;
 Refresh();
 }

 public void OnEquip() {
 Managers.Inventory.EquipItem(curItem);
 Refresh();

Resize the
image to the
native size of

the sprite.
Label may say
“Equipped” in
addition to
item count.

Enable
clicking icons.

Lambda function to trigger
differently for each item

Clear the listener to refresh
from the clean slate.

Add this listener
function to

EventTrigger.

Hide this image/text if
there’s no item to display.

Hide buttons if no
item is selected.

Display
currently
selected

item.

Use button only
for health item.

Function called by
mouse click listener

Refresh the inventory display
after making changes.

298 CHAPTER 12 Putting the parts together into a complete game

 }

 public void OnUse() {
 Managers.Inventory.ConsumeItem(curItem);
 if (curItem == "health") {
 Managers.Player.ChangeHealth(25);
 }
 Refresh();
 }
}

Whew, that was a long script! With this programmed, it’s time to link everything in the
interface. The script component on the pop-up object now has the various object ref-
erences, including the two arrays; expand both arrays and set to a length of 4 (see fig-
ure 12.6). Drag the four images to the icons array, and drag the four text labels to the
labels array.

NOTE If you aren’t sure which object was dragged where (they all look the
same), click the slot in the Inspector to see that object highlighted in the
Hierarchy view.

Similarly, slots in the component reference the text label and buttons at the bottom of
the pop-up. After linking those objects, you’ll add OnClick listeners for both buttons.
Link these events to the pop-up object, and choose either OnEquip() or OnUse() as
appropriate.

 Finally, add an EventTrigger component to all four of the item images. The
InventoryPopup script modifies this component on each icon, so they better have this
component! You’ll find EventTrigger under Add Component > Event. (It may be
more convenient to copy/paste the component by clicking the little gear button in
the top corner of the component, select Copy Component from one object, and then
Paste As New on the other.) Add this component but don’t assign event listeners,
because that’s done in the InventoryPopup code.

 That completes the inventory UI! Play the game to watch the inventory pop-up
respond when you collect items and click buttons. We’re now finished assembling
parts from previous projects; next I’ll explain how to build a more expansive game
from this beginning.

An array defined by
the script component.
Expand the array by
clicking the arrow.

Set the length of the array.

Drag image objects to these
slots.

Figure 12.6 Arrays displayed in the Inspector

299Developing the overarching game structure

12.2 Developing the overarching game structure
Now that you have a functioning action RPG demo, we’re going to build the overarch-
ing structure of this game. By that, I mean the overall flow of the game through multi-
ple levels and progressing through the game by beating levels. What we got from
chapter 9’s project was a single level, but the road map for this chapter specified three
levels.

 Doing this will involve decoupling the scene even further from the Managers back-
end, so you’ll broadcast messages about the managers (just as PlayerManager broad-
casts health updates). Create a new script called StartupEvent (listing 12.15); define
these events in a separate script because these events go with the reusable Managers
system, whereas GameEvent is specific to the game.

public static class StartupEvent {
 public const string MANAGERS_STARTED = "MANAGERS_STARTED";
 public const string MANAGERS_PROGRESS = "MANAGERS_PROGRESS";
}

Now it’s time to start adjusting Managers, including broadcasting these new events!

12.2.1 Controlling mission flow and multiple levels

Currently, the project has only one scene, and the Game Managers object is in that
scene. The problem with that is that every scene will have its own set of game manag-
ers, whereas you want a single set of game managers shared by all scenes. To do that,
you’ll create a separate Startup scene that initializes the managers and then shares
that object with the other scenes of the game.

 We’re also going to need a new manager to handle progress through the game.
Create a new script called MissionManager.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;

public class MissionManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 public int curLevel {get; private set;}
 public int maxLevel {get; private set;}

 private NetworkService network;

 public void Startup(NetworkService service) {
 Debug.Log("Mission manager starting...");

Listing 12.15 The StartupEvent script

Listing 12.16 Creating MissionManager

300 CHAPTER 12 Putting the parts together into a complete game

 network = service;

 curLevel = 0;
 maxLevel = 1;

 status = ManagerStatus.Started;
 }

 public void GoToNext() {
 if (curLevel < maxLevel) {
 curLevel++;
 string name = $"Level{curLevel}";
 Debug.Log($"Loading {name}");
 SceneManager.LoadScene(name);
 } else {
 Debug.Log("Last level");
 }
 }
}

For the most part, nothing unusual is going on in this listing, but note the Load-
Scene() method near the end. Although I mentioned this method before (in chapter
5), it’s more important now. That’s Unity’s method for loading a scene file; in chapter
5, you used it to reload the one scene in the game, but you can load any scene by pass-
ing in the name of the scene file.

 Attach this script to the Game Managers object in the scene. Also add the new
component to the Managers script.

...
[RequireComponent(typeof(MissionManager))]

public class Managers : MonoBehaviour {
 public static PlayerManager Player {get; private set;}
 public static InventoryManager Inventory {get; private set;}
 public static MissionManager Mission {get; private set;}
 ...
 void Awake() {
 DontDestroyOnLoad(gameObject);

 Player = GetComponent<PlayerManager>();
 Inventory = GetComponent<InventoryManager>();
 Mission = GetComponent<MissionManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Player);
 startSequence.Add(Inventory);
 startSequence.Add(Mission);

Listing 12.17 Adding a new component to the Managers script

Check if last level reached.

Unity’s command
to load a scene

Unity’s command to persist
an object between scenes

301Developing the overarching game structure

 StartCoroutine(StartupManagers());
 }

 private IEnumerator StartupManagers() {
 ...
 if (numReady > lastReady) {
 Debug.Log($"Progress: {numReady}/{numModules}");
 Messenger<int, int>.Broadcast(
 StartupEvent.MANAGERS_PROGRESS, numReady, numModules);
 }

 yield return null;
 }

 Debug.Log("All managers started up");
 Messenger.Broadcast(StartupEvent.MANAGERS_STARTED);
 }
 ...

Most of this code should already be familiar to you (adding MissionManager is like
adding other managers), but there are two new parts. One is the event that sends two
integer values; you saw both generic valueless events and messages with a single num-
ber before, but you can send an arbitrary number of values with the same syntax.

 The other new bit of code is the DontDestroyOnLoad() method. It’s a method pro-
vided by Unity for persisting an object between scenes. Normally, all objects in a scene
are purged when a new scene loads, but by using DontDestroyOnLoad() on an object,
you ensure that object will still be there in the new scene.

SEPARATE SCENES FOR STARTUP AND LEVEL

Because the Game Managers object will persist in all scenes, you must separate the
managers from individual levels of the game. In Project view, duplicate the scene file
(Edit > Duplicate) and then rename the two files appropriately: one Startup and the
other Level1. Open Level1 and delete the Game Managers object (it’ll be provided by
Startup). Open Startup and delete everything other than Game Managers, Controller,
Main Camera, HUD Canvas, and EventSystem. Adjust the camera by removing the
OrbitCamera component, and changing the Clear Flags menu from Skybox to Solid
Color. Remove the script components on Controller, and delete the UI objects
(health label and Inventory Popup) parented to the Canvas.

 The UI is currently empty, so create a new slider (see figure 12.7) and then turn off
its Interactable setting. The Controller object no longer has any script components, so
create a new StartupController script (listing 12.18) and attach that to the Control-
ler object.

Startup event
broadcast with
data related to

the event.

Startup event
broadcast without
parameters.

302 CHAPTER 12 Putting the parts together into a complete game

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class StartupController : MonoBehaviour {
 [SerializeField] Slider progressBar;

 void OnEnable() {
 Messenger<int, int>.AddListener(StartupEvent.MANAGERS_PROGRESS,
 OnManagersProgress);
 Messenger.AddListener(StartupEvent.MANAGERS_STARTED,
 OnManagersStarted);
 }
 void OnDisable() {
 Messenger<int, int>.RemoveListener(StartupEvent.MANAGERS_PROGRESS,
 OnManagersProgress);
 Messenger.RemoveListener(StartupEvent.MANAGERS_STARTED,
 OnManagersStarted);
 }

 private void OnManagersProgress(int numReady, int numModules) {
 float progress = (float)numReady / numModules;
 progressBar.value = progress;
 }

 private void OnManagersStarted() {
 Managers.Mission.GoToNext();
 }
}

Next, link the Slider object to the slot in the Inspector. One last thing to do in prepa-
ration is add the two scenes to Build Settings. Building the app will be the topic of the
next chapter, so for now choose File > Build Settings to see and adjust the list of
scenes. Click the Add Open Scenes button to add a scene to the list (load both scenes
and do this for each).

Listing 12.18 The new StartupController script

Remaining objects:
Game Managers
Controller
HUD Canvas
EventSystem
Main Camera

Replace everything on
Canvas with a Slider.

Set the slider to
noninteractive

Figure 12.7 The Startup scene with everything unnecessary removed

Update the slider to
show loading progress.

Load the next scene after
managers have started.

303Developing the overarching game structure

NOTE You need to add the scenes to Build Settings so that they can be
loaded. If you don’t, Unity won’t know what scenes are available. You didn’t
need to do this in chapter 5 because you weren’t actually switching levels—
you were just reloading the current scene.

Now you can launch the game by clicking Play from the Startup scene. The Game
Managers object will be shared in both scenes.

WARNING Because the managers are loaded in the Startup scene, you always
need to launch the game from that scene. You could remember to always
open that scene before clicking Play, but this editor script will automatically
switch to a set scene when you click Play: https://github.com/jhocking/from-
unity-wiki/blob/main/SceneAutoLoader.cs.

TIP By default, the lighting system regenerates the lightmaps when the level
is loaded. But this works only while you are editing the level; lightmaps won’t
be generated when loading levels while the game is running. As you did in
chapter 10, you can turn off Auto lighting in the lighting window (Window >
Rendering > Lighting) and then click the button to manually bake lightmaps
(remember, don’t touch the lighting data that’s created).

This structural change handles the sharing of game managers between different
scenes, but you still don’t have any success or failure conditions within the level.

12.2.2 Completing a level by reaching the exit

To handle level completion, you’ll put an object in the scene for the player to touch,
and that object will inform MissionManager when the player reaches the objective.
This will involve the UI responding to a message about level completion, so add
another entry to GameEvent.

public static class GameEvent {
 public const string HEALTH_UPDATED = "HEALTH_UPDATED";
 public const string LEVEL_COMPLETE = "LEVEL_COMPLETE";
}

Now add a new method to MissionManager to keep track of mission objectives and
broadcast the new event message.

...
public void ReachObjective() {
 // could have logic to handle multiple objectives
 Messenger.Broadcast(GameEvent.LEVEL_COMPLETE);
}
...

Listing 12.19 Level Complete added to GameEvent

Listing 12.20 Objective method in MissionManager

https://github.com/jhocking/from-unity-wiki/blob/main/SceneAutoLoader.cs
https://github.com/jhocking/from-unity-wiki/blob/main/SceneAutoLoader.cs

304 CHAPTER 12 Putting the parts together into a complete game

Adjust the UIController script to respond to that event.

...
[SerializeField] TMP_Text levelEnding;
...
void OnEnable() {
 Messenger.AddListener(GameEvent.HEALTH_UPDATED, OnHealthUpdated);
 Messenger.AddListener(GameEvent.LEVEL_COMPLETE, OnLevelComplete);
}
void OnDisable() {
 Messenger.RemoveListener(GameEvent.HEALTH_UPDATED, OnHealthUpdated);
 Messenger.RemoveListener(GameEvent.LEVEL_COMPLETE, OnLevelComplete);
}
...
void Start() {
 OnHealthUpdated();

 levelEnding.gameObject.SetActive(false);
 popup.gameObject.SetActive(false);
}
...
private void OnLevelComplete() {
 StartCoroutine(CompleteLevel());
}
private IEnumerator CompleteLevel() {
 levelEnding.gameObject.SetActive(true);
 levelEnding.text = "Level Complete!";

 yield return new WaitForSeconds(2);

 Managers.Mission.GoToNext();
}
...

You’ll notice that this listing has a reference to a text label. Open the Level1 scene to
edit it, and create a new UI text object. This label will be a level completion message
that appears in the middle of the screen. Set this text to Width 240, Height 60, Center
for both Align and Vertical-align, Vertex Color black, and Font Size 22. Type Level
Complete! in the text area and then link this text object to the levelEnding reference
of UIController.

 Finally, we’ll create an object that the player touches to complete the level (figure
12.8 shows what the objective looks like). This will be similar to collectible items: it
needs a material and a script, and you’ll make the entire thing a prefab.

 Create a cube object at Position 18, 1, 0. Select the Is Trigger option of the Box
Collider, turn off both Cast and Receive Shadows in Mesh Renderer, and set the object
to the Ignore Raycast layer. Create a new material called objective; make it bright

Listing 12.21 New event listener in UIController

Show the message for two seconds
and then go to next level.

305Developing the overarching game structure

green and set the shader to Unlit > Color for a flat, bright look. Next, create the
ObjectiveTrigger script and attach that script to the cube object.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ObjectiveTrigger : MonoBehaviour {
 void OnTriggerEnter(Collider other) {
 Managers.Mission.ReachObjective();
 }
}

Drag this object from the Hierarchy into Project view to turn it into a prefab; in future
levels, you could put the prefab in the scene. Now play the game and go reach the
objective. The completion message shows when you beat the level. Next, let’s have a
failure message to show when you lose.

12.2.3 Losing the level when caught by enemies

The failure condition will be when the player runs out of health (because of the
enemy attacking). First, add another entry in GameEvent:

public const string LEVEL_FAILED = "LEVEL_FAILED";

Now adjust PlayerManager to broadcast this message when the player’s health drops
to 0.

...
public void Startup(NetworkService service) {
 Debug.Log("Player manager starting...");

Listing 12.22 Code for ObjectiveTrigger to put on objective objects

Listing 12.23 Broadcast level failed from PlayerManager

The objective object

The code triggers
when the player
touches this.

Figure 12.8 Objective object that the player touches to complete the level

Call the new objective
method in MissionManager.

306 CHAPTER 12 Putting the parts together into a complete game

 network = service;

 UpdateData(50, 100);

 status = ManagerStatus.Started;
}

public void UpdateData(int health, int maxHealth) {
 this.health = health;
 this.maxHealth = maxHealth;
}

public void ChangeHealth(int value) {
 health += value;
 if (health > maxHealth) {
 health = maxHealth;
 } else if (health < 0) {
 health = 0;
 }

 if (health == 0) {
 Messenger.Broadcast(GameEvent.LEVEL_FAILED);
 }
 Messenger.Broadcast(GameEvent.HEALTH_UPDATED);
}

public void Respawn() {
 UpdateData(50, 100);
}
...

Add a method to MissionManager for restarting the level.

...
public void RestartCurrent() {
 string name = $"Level{curLevel}";
 Debug.Log($"Loading {name}");
 SceneManager.LoadScene(name);
}
...

With that in place, add another event listener to UIController.

...
Messenger.AddListener(GameEvent.LEVEL_FAILED, OnLevelFailed);
...
Messenger.RemoveListener(GameEvent.LEVEL_FAILED, OnLevelFailed);
...

Listing 12.24 MissionManager, which can restart the current level

Listing 12.25 Responding to failed level in UIController

Call the update method instead
of setting variables directly.

Reset the player to
the initial state.

307Handling the player’s progression through the game

private void OnLevelFailed() {
 StartCoroutine(FailLevel());
}
private IEnumerator FailLevel() {
 levelEnding.gameObject.SetActive(true);
 levelEnding.text = "Level Failed";

 yield return new WaitForSeconds(2);

 Managers.Player.Respawn();
 Managers.Mission.RestartCurrent();
}
...

Play the game and let the enemy shoot you several times; the level failure message will
appear. Great job—the player can now complete and fail levels! Building off that, the
game must keep track of the player’s progress.

12.3 Handling the player’s progression through the game
Right now, the individual level operates independently, without any relation to the
overall game. You’ll add two things that will make progress through the game feel
more complete: saving the player’s progress and detecting when the game (not just
the level) is complete.

12.3.1 Saving and loading the player’s progress

Saving and loading the game is an important part of most games. Unity and Mono
provide I/O functionality that you can use for this purpose. Before you can start using
that, though, you must add UpdateData() for both MissionManager and Inventory-
Manager. That method will work as it does in PlayerManager and will enable code out-
side the manager to update data within the manager. Listing 12.26 and listing 12.27
show the changed managers.

...
public void Startup(NetworkService service) {
 Debug.Log("Mission manager starting...");

 network = service;

 UpdateData(0, 1);

 status = ManagerStatus.Started;
}

public void UpdateData(int curLevel, int maxLevel) {
 this.curLevel = curLevel;
 this.maxLevel = maxLevel;
}
...

Listing 12.26 UpdateData() method in MissionManager

Reuse the same text label,
but set a different message.

Restart the current level
after a two-second pause.

Modify this line by using
the new method.

308 CHAPTER 12 Putting the parts together into a complete game

...
public void Startup(NetworkService service) {
 Debug.Log("Inventory manager starting...");

 network = service;

 UpdateData(new Dictionary<string, int>());

 status = ManagerStatus.Started;
}

public void UpdateData(Dictionary<string, int> items) {
 this.items = items;
}

public Dictionary<string, int> GetData() {
 return items;
}
...

Now that the various managers all have UpdateData() methods, the data can be saved
from a new code module. Saving the data will involve a procedure referred to as serial-
izing the data.

DEFINITION Serialize means to encode a batch of data into a form that can be
stored.

You’ll save the game as binary data, but note that C# is also fully capable of saving text
files. For example, the JSON strings you worked with in chapter 10 were data serial-
ized as text. Previous chapters used PlayerPrefs, but in this project, you’re going to
save a local file; PlayerPrefs is intended to save only a handful of values, like settings,
not an entire game. Create the DataManager script (listing 12.28).

WARNING You can’t directly access the filesystem in a web game. This is a
security feature of web browsers. To save data for web games, you may need to
write a plugin as described in the next chapter, or post the data to your server.

using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;
using UnityEngine;

public class DataManager : MonoBehaviour, IGameManager {
 public ManagerStatus status {get; private set;}

 private string filename;

Listing 12.27 UpdateData() method in InventoryManager

Listing 12.28 New script for DataManager

Initialize an empty list.

Need getter for save game
code to access the data.

309Handling the player’s progression through the game

 private NetworkService network;

 public void Startup(NetworkService service) {
 Debug.Log("Data manager starting...");

 network = service;

 filename = Path.Combine(
 Application.persistentDataPath, "game.dat");

 status = ManagerStatus.Started;
 }

 public void SaveGameState() {
 Dictionary<string, object> gamestate =
 new Dictionary<string, object>();
 gamestate.Add("inventory", Managers.Inventory.GetData());
 gamestate.Add("health", Managers.Player.health);
 gamestate.Add("maxHealth", Managers.Player.maxHealth);
 gamestate.Add("curLevel", Managers.Mission.curLevel);
 gamestate.Add("maxLevel", Managers.Mission.maxLevel);

 using (FileStream stream = File.Create(filename)) {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, gamestate);
 }
 }

 public void LoadGameState() {
 if (!File.Exists(filename)) {
 Debug.Log("No saved game");
 return;
 }

 Dictionary<string, object> gamestate;

 using (FileStream stream = File.Open(filename, FileMode.Open)) {
 BinaryFormatter formatter = new BinaryFormatter();
 gamestate = formatter.Deserialize(stream) as Dictionary<string,
 ➥ object>;
 }

 Managers.Inventory.UpdateData((Dictionary<string,
 ➥ int>)gamestate["inventory"]);
 Managers.Player.UpdateData((int)gamestate["health"],
 ➥ (int)gamestate["maxHealth"]);
 Managers.Mission.UpdateData((int)gamestate["curLevel"],
 ➥ (int)gamestate["maxLevel"]);
 Managers.Mission.RestartCurrent();
 }
}

During Startup(), the full file path is constructed using Application.persistent-
DataPath, a location Unity provides to store data in. The exact file path differs on

Construct full path
to the game.dat file.

Dictionary that
will be serialized

Create a file at
the file path.

Serialize the Dictionary as
contents of the created file.

Continue to load only
if the file exists.

Dictionary to put
loaded data in

Update managers
with deserialized
data.

310 CHAPTER 12 Putting the parts together into a complete game

different platforms, but Unity abstracts it behind this static variable. The File.Create()
method will create a binary file; call File.CreateText() if you want a text file.

WARNING When constructing file paths, the path separator is different on dif-
ferent computer platforms. C# has Path.DirectorySeparatorChar to
account for this.

Open the Startup scene to find Game Managers. Add the DataManager script component
to the Game Managers object, and then add the new manager to the Managers script.

...
[RequireComponent(typeof(DataManager))]
...
public static DataManager Data {get; private set;}
...
void Awake() {
 DontDestroyOnLoad(gameObject);

 Data = GetComponent<DataManager>();
 Player = GetComponent<PlayerManager>();
 Inventory = GetComponent<InventoryManager>();
 Mission = GetComponent<MissionManager>();

 startSequence = new List<IGameManager>();
 startSequence.Add(Player);
 startSequence.Add(Inventory);
 startSequence.Add(Mission);
 startSequence.Add(Data);

 StartCoroutine(StartupManagers());
}
...

WARNING Because DataManager uses other managers (to update them), you
should make sure that the other managers appear earlier in the startup
sequence.

Finally, in Level1, add buttons to use functions
in DataManager (figure 12.9 shows the but-
tons). Create two buttons parented to the
HUD Canvas (not in the Inventory pop-up).
Call them (set the attached text objects) Save
Game and Load Game, set the Anchor button to
bottom right, and position them at -100,65,
and -100,30.

 These buttons will link to functions in
UIController, so write those methods.

Listing 12.29 Adding DataManager to Managers

Managers start
in this order.

Figure 12.9 Save and Load buttons on the
bottom right of the screen

311Handling the player’s progression through the game

...
public void SaveGame() {
 Managers.Data.SaveGameState();
}

public void LoadGame() {
 Managers.Data.LoadGameState();
}
...

Link these functions to OnClick listeners in the buttons (add a listing in the OnClick
setting, drag in the UIController object, and select functions from the menu). Now
play the game, pick up a few items, use a health pack to increase your health, and then
save the game. Restart the game and check your inventory to verify that it’s empty.
Click Load; you now have the health and items you had when you saved the game!

12.3.2 Beating the game by completing three levels

As implied by our saving of the player’s progress, this game can have multiple levels,
not just the one level you’ve been testing. To properly handle multiple levels, the
game must detect the completion of not only a single level, but also the entire game.
First, add yet another GameEvent:

public const string GAME_COMPLETE = "GAME_COMPLETE";

Now modify MissionManager to broadcast that message after the last level.

...
public void GoToNext() {
 ...
 } else {
 Debug.Log("Last level");
 Messenger.Broadcast(GameEvent.GAME_COMPLETE);
 }
}

Respond to that message in UIController.

...
Messenger.AddListener(GameEvent.GAME_COMPLETE, OnGameComplete);
...
Messenger.RemoveListener(GameEvent.GAME_COMPLETE, OnGameComplete);
...
private void OnGameComplete() {

Listing 12.30 Save and load methods in UIController

Listing 12.31 Broadcasting Game Complete from MissionManager

Listing 12.32 Adding an event listener to UIController

312 CHAPTER 12 Putting the parts together into a complete game

 levelEnding.gameObject.SetActive(true);
 levelEnding.text = "You Finished the Game!";
}
...

Try completing the level to see what happens: move the player to the level objective to
complete the level as before. You’ll first see the Level Complete message, but after a
couple of seconds, it’ll change to a message about completing the game.

ADDING MORE LEVELS

At this point, you can add an arbitrary number of additional levels, and MissionManager
will watch for the last level. The final thing you’ll do in this chapter is add a few more
levels to the project to demonstrate the game progressing through multiple levels.

 Duplicate the Level1 scene file twice, make sure the names are Level2 and Level3,
and add the new levels to Build Settings (so that they can be loaded during gameplay;
remember to generate the lighting). Modify each scene so that you can tell the differ-
ence between levels; feel free to rearrange most of the scene, but you must keep several
essential game elements: the player object that’s tagged Player, the floor object set to the
Ground layer, and the objective object, Controller, HUD Canvas, and EventSystem.

You also need to adjust MissionManager to load the new levels. Change maxLevel to 3
by changing the UpdateData(0, 1) call to UpdateData(0, 3). Now play the game and
you’ll start on Level1 initially; reach the level objective and you’ll move on to the next
level! Incidentally, you can also save on a later level to see that the game will restore
that progress.

Architecting a shared HUD
The UI was duplicated along with the rest of the level, resulting in three identical UI
setups. That’s fine for this small learning project but would be unwieldy for a polished
game with many levels. Instead, you should move the UI to a central place that’s
shared among the levels.

Much as you did with the Startup scene, you could put the UI (both HUD Canvas and
EventSystem) in a separate scene to load in addition to the levels. Unlike the Startup
scene, however, you will probably want to control the loading of the UI more deliberately
than simply using the DontDestroyOnLoad() function. That function causes objects
to persist in all scenes, but the UI is not identical in every scene of a game. For example,
a game’s starting menu scene usually has a different UI than all the levels.

Unity solves this problem with the Additive scene loading mode. Scenes loaded in this
mode are added on to what’s already loaded, rather than replacing it. For example, mod-
ifying this project’s code to use a shared UI scene would simply entail adding a line of
code like SceneManager.LoadScene("HUDScene", LoadSceneMode.Additive);
immediately after every standard LoadScene() call in MissionManager. Read the doc-
umentation about this optional scene loading mode at http://mng.bz/v4GJ.

http://mng.bz/v4GJ

313Summary

 You now know how to create a full game with multiple levels. The obvious next task
is the final chapter: getting your game into the hands of players.

Summary
 Unity makes it easy to repurpose assets and code from a project in a different

game genre.
 Another great use for raycasting is to determine where in the scene the player is

clicking.
 Unity has simple methods for both loading levels and persisting certain objects

between levels.
 You progress through levels in response to various events within the game.
 You can use the I/O methods that come with C# to store data at Application

.persistentDataPath.

Exercise: Integrating audio into the full game
Chapter 11 was all about implementing audio in Unity. I didn’t explain how to inte-
grate that into this chapter’s project, but at this point you should understand how. I
encourage you to practice your skills by integrating the audio functionality from the
previous chapter into this chapter’s project. Here’s a hint: change the key to toggle
the audio settings pop-up so that it doesn’t interfere with the inventory pop-up.

314

Deploying your game
 to players’ devices

Throughout this book, you’ve learned how to program various games within Unity,
but the crucial last step has been missing so far: deploying those games to players.
Until a game is playable outside the Unity editor, it’s of little interest to anyone
other than the developer. Unity shines at this last step, with the ability to build
applications for a huge variety of gaming platforms. This final chapter covers how
to build games for these various platforms.

 When I speak of “building” for a platform, I’m referring to generating an appli-
cation package that will run on that platform. On each platform (Windows, iOS,
and so on), the exact form of a built application differs, but once the executable

This chapter covers
 Building an application package for various

platforms

 Assigning build settings, such as the app icon or
name

 Interacting with the web page for web games

 Developing plugins for apps on mobile platforms

315Deploying your game to players’ devices

has been generated, that app package can be played without Unity and can be distrib-
uted to players. A single Unity project can be deployed to any platform without need-
ing to be redone for each one.

 This “build once, deploy anywhere” capability applies to the vast majority of features
in your games, but not to everything. I would estimate that 95% of the code written in
Unity (for example, almost everything we’ve done so far in this book) is platform-
agnostic and will work just as well across all platforms. But a few specific tasks differ for
different platforms, so we’ll go over those platform-specific areas of development.

 Unity is capable of building apps for the following platforms:

 Windows PC
 macOS
 Linux
 WebGL
 Android
 iOS
 tvOS
 Oculus VR
 VIVE VR
 Windows Mixed Reality
 Microsoft HoloLens
 Magic Leap

In addition, by contacting the platform owners for access, Unity can even build for
game consoles like these:

 Xbox One
 Xbox Series X
 PlayStation 4
 PlayStation 5
 Nintendo Switch

Whew, that full list is really long! Frankly, that’s almost comically long, and way more
than the supported platforms of most other game development tools out there. This
chapter focuses especially on the first six platforms listed, because those platforms are
of primary interest to the majority of people exploring Unity, but keep in mind how
many options are available to you.

 To see all these platforms, open the Build Settings window. That’s the window you
used in the previous chapter to add scenes to be loaded; to access it, choose File >
Build Settings. In chapter 12, you cared only about the list at the top, but now you
want to pay attention to the buttons at the bottom (see figure 13.1). You’ll notice a lot
of space taken up by the list of platforms; the currently active platform is indicated
with the Unity icon.

316 CHAPTER 13 Deploying your game to players’ devices

NOTE When installing Unity, Unity Hub asks which export modules you
want, and you can build only the selected modules. If you later want to install
a module you hadn’t selected initially, go to Installs in Unity Hub, click the
three dots for the Unity version you want to modify, and then select Add Mod-
ules in the menu.

Also across the bottom of this window are the Player Settings and Build/Switch Plat-
form buttons. Click Player Settings to view settings for the app in the Inspector, such
as the name and icon for the app. The other button changes its label depending on
which platform you select in the list of platforms. If you have the active platform
selected, clicking Build launches the build process. For any other platform, clicking
Switch Platform makes that the active platform that Unity is currently dealing with.

WARNING When in a big project, switching platforms often takes quite a bit of
time to complete; make sure you’re ready to wait. This is because Unity
recompresses all assets (such as textures) in an optimal way for each platform.

TIP Build And Run does the same thing as Build, plus it automatically runs
the built application. I usually want to do that part manually, so I rarely use
Build And Run.

Scenes listed for loading (this
is the list from chapter 12).

The list of all platforms that
Unity can build an app for.
The currently active platform
has the Unity icon next to it.

Build the currently active
platform or select a different
platform to switch to.

Open settings for the app. These
settings include the app’s name.

Click this button to either
build an app (if the selected
platform is the active one)
or switch to the selected
platform (and the button’s
label will change).

Warning!
Switching platforms could
take a lot of time.

Figure 13.1 The Build Settings window

317Start by building for the desktop: Windows, Mac, and Linux

When you click Build, the first thing that comes up is a file selector so that you can tell
Unity where to generate the app package. Once you select a file location, the build
process starts. Unity creates an executable app package for the currently active plat-
form. Let’s go over the build process for the most popular platforms: desktop, web,
and mobile.

13.1 Start by building for the desktop: Windows, Mac, and Linux
The simplest place to start when first learning to build Unity games is by deploying to
desktop computers—Windows PC, macOS, or Linux. Because Unity runs on desktop
computers, that means you’ll build an app for the computer you’re already using.

NOTE Open up any project to work with in this section. Seriously, any Unity
project will work. In fact, I strongly suggest using a different project in every
section to drive home the fact that Unity can build any project to any
platform!

13.1.1 Building the application

First choose File > Build Settings to open the Build Settings window. By default, the
current platform will be set to PC, Mac, and Linux, but if that isn’t current, select the
correct platform from the list and click Switch Platform.

 On the right-hand side of the window, you’ll notice the Target Platform menu.
This menu lets you choose between Windows PC, macOS, and Linux. All three are
treated as one platform in the list on the left-hand side, but these are very different
platforms, so choose the correct one.

 Once you’ve chosen your desktop platform, click Build. As explained previously, a
file dialog pops up, allowing you to choose where the built application will go. Then
the build process starts; this could take a while for a big project, but the build process
should be fast for the tiny demos you’ve been making.

Custom post-build script
Although the basic build process works fine in most situations, you may want a series
of steps to be taken (such as moving help files into the same directory as the appli-
cation) every time you build your game. You can easily automate such tasks by pro-
gramming them in a script that will execute after the build process completes.

First, create a new folder in the Project view and name that folder Editor; any scripts
that affect Unity’s editor (and that includes the build process) must go in a folder
named Editor. Create a new script named TestPostBuild in that folder and write the
following code in it:

318 CHAPTER 13 Deploying your game to players’ devices

The application will appear in the location you chose; double-click it to run it, like any
other program. Congrats, that was easy! Building applications is a snap, but the pro-
cess can be customized in various ways; let’s look at how to adjust the build.

TIP Quit full-screen games with Alt-F4 on Windows or Cmd-Q on Mac. Fin-
ished games should have a button that calls Application.Quit().

13.1.2 Adjusting player settings: Setting the game’s name and icon

Go back to the Build Settings window, but this time click Player Settings instead of
Build. A huge list of settings will appear in the Inspector (see figure 13.2); these set-
tings control multiple aspects of the built application.

(continued)
using UnityEngine;
using UnityEditor;
using UnityEditor.Callbacks;

public static class TestPostBuild {

 [PostProcessBuild]
 public static void OnPostprocessBuild(BuildTarget target, string
 ➥ pathToBuiltProject) {
 Debug.Log($"build location: {pathToBuiltProject}");
 }
}

The [PostProcessBuild] directive tells the script to run the function that’s immedi-
ately after it. That function will receive the location of the built app; you could then
use that location with the various filesystem commands provided by C#.

Names for the development
company and the application
itself

These names appear in the
menu of the game and are
used to keep files organized
behind the scenes.

Set the image used as the
application’s icon by dragging
an image from the Project view.

You can even provide a new
image for the mouse cursor!

Tabs to switch
platform

Settings continue
below; look in
Unity’s manual
for explanations.

Figure 13.2 Player settings displayed in the Inspector

319Start by building for the desktop: Windows, Mac, and Linux

Because of the large number of settings, you’ll probably want to look them up in
Unity’s manual. The relevant doc page is http://mng.bz/4Koa.

 The first several settings at the top are easiest to understand: Company Name,
Product Name, Version, and Default Icon. Type in values for the first three: Company
Name is the name for your development studio, Product Name is the name of this spe-
cific game, and Version is a number designation to increase as you update the game.
Then drag an image from the Project view (import an image into the project if
needed) to set that image as the icon; when the app is built, this image will appear as
the application’s icon.

 Customizing the icon and name of the application is important for giving it a fin-
ished appearance. Another useful way of customizing the behavior of built applica-
tions is with platform-dependent code.

13.1.3 Platform-dependent compilation

By default, all the code you write will run the same way on all platforms. But Unity pro-
vides compiler directives (known as platform defines) that cause different code to run
on different platforms. You’ll find the full list of platform defines in the manual at
http://mng.bz/Qq4w.

 As that page indicates, directives are available for every platform that Unity sup-
ports, allowing you to run separate code on every platform. Usually, the majority of
your code doesn’t have to be inside platform directives, but occasionally small bits of
the code need to run differently on different platforms. For example, some code
assemblies exist on only one platform, so you need to have platform compiler direc-
tives around those commands. The following listing shows how to write such code.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PlatformTest : MonoBehaviour {
 void OnGUI() {
#if UNITY_EDITOR
 GUI.Label(new Rect(10, 10, 200, 20), "Running in Editor");
#elif UNITY_STANDALONE
 GUI.Label(new Rect(10, 10, 200, 20), "Running on Desktop");
#else
 GUI.Label(new Rect(10, 10, 200, 20), "Running on other platform");
#endif
 }
}

Create a script called PlatformTest and write the code from this listing in it. Attach
that script to an object in the scene (any object will do for testing), and a small mes-
sage will appear in the top-left of the screen. When you play the game within Unity’s

Listing 13.1 PlatformTest script showing how to write platform-dependent code

This section runs only
within the editor.

Only in desktop/standalone
applications

https://shortener.manning.com/4Koa
https://shortener.manning.com/Qq4w

320 CHAPTER 13 Deploying your game to players’ devices

editor, the message will say Running in Editor, but if you build the game and run the
built application, the message will say Running on Desktop. Different code is being
run in each case!

 For this test, you used the platform define that treats all desktop platforms as one,
but as indicated on that doc page, separate platform defines are available for Win-
dows, Mac, and Linux. In fact, there are platform defines for all the platforms sup-
ported by Unity so that you can run different code on each. Let’s move on to the next
important platform: the web.

Quality settings
The built application is also affected by project settings located under the Edit menu.
In particular, the visual quality of the final app can be tuned there. Go to Project Set-
tings in the Edit menu to open that window, and then choose Quality from the menu
along the left side.

Quality settings appear in the right side of the window, and the most important settings
are the grid of check marks at the top. The different platforms that Unity can target
are listed as icons across the top, and the possible quality settings are listed along
the side. The boxes are checked for quality settings available for that platform, and
the check box is highlighted green for the setting being used. Most of the time, these
settings default to Very Low, but you can change to Ultra quality if things look bad; if
you click the down arrow underneath a platform’s column, a pop-up menu will appear.

It seems a bit redundant that this UI has both check boxes and the Default menu,
but there you have it. Different platforms often have different graphical capabilities,
so Unity allows you to set different quality levels for different build targets (such as
highest quality on desktop and lower quality on mobile).

Grid of quality settings in the Inspector

The green highlights
indicate the current
quality setting for
each platform.

Click the down arrow in the
Default row to change the
quality setting. Select from
the menu that appears.

321Building for the web

13.2 Building for the web
 Although desktop platforms are the most basic targets to build for, another import-

ant platform for Unity games is the web. Games deployed to the web run within a web
browser and can thus be played over the internet.

13.2.1 Building the game embedded in a web page

Open a different project (again, this is to emphasize that any project will work) and
open the Build Settings window. Switch the platform to WebGL and then click the Build
button. A file selector will come up; type in the name WebTest for this application, and
change to a safe location (a location not within the Unity project) if necessary.

 The build process will now create a folder containing an index.html web page, as
well as subfolders with all the game’s code and other assets. Open this web page, and
the game should be embedded in the middle of the otherwise blank page. You will
need to run the game from a web server, rather than simply opening index.html as a
local file. Just as in chapter 10, you could use an existing web server if you already have
a website, or you could test on http://localhost/ with something like XAMPP.

NOTE You may need to adjust the settings of your web server for correct han-
dling of compressed archives in the WebGL build. Unity’s manual
(http://mng.bz/XreG) explains these server settings, but if you can’t adjust
these for some reason (for example, the game will be on a third-party site that
you cannot configure), you can also tell Unity to include a decompressor in
the build. Turn on Decompressor Fallback in the Publishing Settings section
of the WebGL player settings. This setting is off by default, because the
browser’s decompression is better. Be warned though, because with this set-
ting on, you won’t notice an improperly configured server.

There’s nothing particularly special about this web page; it’s just an example to test
your game with. It’s possible to customize the code on that page or even provide your

Unity Web Player vs. HTML5/WebGL
Initially, Unity had to deploy web builds in a form that played within a custom browser
plugin. This had long been necessary because 3D graphics weren’t built into web
browsers. Eventually, however, most browsers adopted WebGL, a standard for 3D
graphics on the web. Technically, WebGL is separate from HTML5, but the two terms
are related and are often used interchangeably when talking about 3D on the web.

For version 5, Unity added WebGL to the build platforms list, and a few versions later
the browser plugin was dropped, making WebGL the sole avenue for web builds. In
part, these changes in Unity’s web build were being driven by strategic decisions made
within Unity (the company). But these changes were also being driven by pushes from
browser makers, who are moving away from custom plugins and embracing
HTML5/WebGL as the way to develop interactive web applications, including games.

https://shortener.manning.com/XreG

322 CHAPTER 13 Deploying your game to players’ devices

own web page (discussed later). One of the most important customizations to make is
enabling communication between Unity and the browser, so let’s go over that next.

13.2.2 Communicating with JavaScript in the browser

A Unity web game can communicate with the browser (or rather with JavaScript run-
ning in the browser), and these messages can go in both directions: from Unity to the
browser, and from the browser to Unity. To send messages to the browser, you write
JavaScript code into a code library, and then Unity has special commands to use func-
tions in that library.

 Meanwhile, for messages from the browser, JavaScript in the browser identifies an
object by name, and then Unity passes the message to the named object in the scene.
Thus, you must have an object in the scene that will receive communications from the
browser.

 To demonstrate these tasks, create a new script in Unity called WebTestObject.
Also create an empty object in the active scene called JSListener (the object in the
scene must have that exact name, because that’s the name used by the JavaScript code
in listing 13.4). Attach the new script to that object and then write in the code from
this listing.

using System.Runtime.InteropServices;
using UnityEngine;

public class WebTestObject : MonoBehaviour {
 private string message;

 [DllImport("__Internal")]
 private static extern void ShowAlert(string msg);

 void Start() {
 message = "No message yet";
 }

 void Update() {
 if (Input.GetMouseButtonDown(0)) {
 ShowAlert("Hello out there!");
 }
 }

 void OnGUI() {
 GUI.Label(new Rect(10, 10, 200, 20), message);
 }

 public void RespondToBrowser(string message) {
 this.message = message;
 }
}

Listing 13.2 WebTestObject script for testing communication with the browser

Import the function
from the JS library.

On mouse click, call the
imported function.

Display the message in
top left of the screen.

Function for the
browser to call

323Building for the web

The main new bit is the DllImport command. That imports a function from the Java-
Script library to use in C# code. That obviously implies you have a JavaScript library, so
write that next.

 First create the special folder to contain it: create a folder called Plugins, and
within that create a folder called WebGL. Now put a file called WebTest that has the
extension jslib (so WebTest.jslib) in the WebGL folder; the simplest way is to create a
text file outside Unity, rename it, and then drag the file in. Unity will recognize that
file as a JavaScript library, so write this code in it.

mergeInto(LibraryManager.library, {

 ShowAlert: function(msg) {
 window.alert(Pointer_stringify(msg));
 },

});

The jslib file contains both a JavaScript object containing functions and the command
to merge the custom object into Unity’s library manager. Note that the function writ-
ten includes Pointer_stringify() besides standard JavaScript commands; when
passing a string from Unity, it’s turned into a numeric identifier, so Unity provides that
function to look up the string pointed to.

 Now build for the web again to see the new code in action. The WebTestObject in
Unity calls a function in the JavaScript code when you click within the Unity game
part of the web page; try clicking a few times, and you’ll see an alert box appear in the
browser!

NOTE Unity also has Application.ExternalEval() for running code in the
browser; ExternalEval runs arbitrary snippets of JavaScript, rather than
calling defined functions. This method is deprecated and should be avoided,
but sometimes its simplicity is useful, like reloading the page with just
Application.ExternalEval("location.reload();").

All right, you have tested communication from the Unity game to JavaScript in the
web page, but the web page can also send a message back to Unity, so let’s do that too.
This will involve new code and buttons on the page; fortunately, Unity provides an
easy way to customize the web page. Specifically, Unity fills in a web page template when
it builds to WebGL, and you can choose a custom template instead of the default one.

 The default templates can be found in the Unity installation folder (usually C:\Pro-
gram Files\Unity\Editor\Data on Windows, or /Applications/Unity/Editor on Mac)
under /WebGLSupport/BuildTools/WebGLTemplates. Open a template page in a
text editor and you’ll see that a template is largely standard HTML and JavaScript,
plus some special tags that Unity replaces with generated information. Although it’s

Listing 13.3 WebTest JavaScript library

The function imported
and called from C#

324 CHAPTER 13 Deploying your game to players’ devices

best for you to leave Unity’s built-in templates alone, they (especially the minimal one)
make a good base on which to build your own. You’ll copy the minimal template web
page into the custom template you make.

 In Unity’s Project view, create a folder called WebGLTemplates (no space) directly
under Assets; that’s where custom templates go. Now create a subfolder within it
named WebTest; that folder is for your new template. Put an index.html file in here
(you can copy in the web page from the minimal template), open that in a text editor,
and write this code in it.

<!DOCTYPE html>
<html lang="en-us">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Unity WebGL Player | {{{ PRODUCT_NAME }}}</title>
 <style>body { background-color: #333; }</style>
 </head>
 <body style="text-align: center">
 <canvas id="unity-canvas" width={{{ WIDTH }}} height={{{ HEIGHT }}}

style="width: {{{ WIDTH }}}px; height: {{{ HEIGHT }}}px; background: {{{
BACKGROUND_FILENAME ? 'url(\'Build/' + BACKGROUND_FILENAME.replace(/'/g,
'%27') + '\') center / cover' : BACKGROUND_COLOR }}}"></canvas>

<input type="button" value="Send to Unity" onclick="SendToUnity();" />

 <script src="Build/{{{ LOADER_FILENAME }}}"></script>
 <script>
 var unityInstance = null;

 createUnityInstance(document.querySelector("#unity-canvas"), {
 dataUrl: "Build/{{{ DATA_FILENAME }}}",
 frameworkUrl: "Build/{{{ FRAMEWORK_FILENAME }}}",
 codeUrl: "Build/{{{ CODE_FILENAME }}}",
#if MEMORY_FILENAME
 memoryUrl: "Build/{{{ MEMORY_FILENAME }}}",
#endif
#if SYMBOLS_FILENAME
 symbolsUrl: "Build/{{{ SYMBOLS_FILENAME }}}",
#endif
 streamingAssetsUrl: "StreamingAssets",
 companyName: "{{{ COMPANY_NAME }}}",
 productName: "{{{ PRODUCT_NAME }}}",
 productVersion: "{{{ PRODUCT_VERSION }}}",
 }).then((createdInstance) => {
 unityInstance = createdInstance;
 });

 function SendToUnity() {
 unityInstance.SendMessage("JSListener",
 "RespondToBrowser", "Hello from the browser!");
 }

Listing 13.4 WebGL template to enable browser–Unity communication

Making the page dark
instead of white

Button that calls
the JavaScript

function

SendMessage() points to
the named object in Unity.

325Building for mobile: iOS and Android

 </script>
 </body>
</html>

If you copied the minimal template, you’ll see that listing 13.4 simply adds a few lines
there. The two important additions are a function in the script tag and an input but-
ton on the page; the added style changes the color of the page to make it easier to see
the embedded game. The button’s HTML tag links to a JavaScript function, and that
function calls SendMessage() on the Unity instance. This method calls a function on a
named object within Unity; the first parameter is the name of the object, the second
parameter is the name of the method, and the third parameter is a string to pass in
while calling the method.

 You’ve made your custom template, but you still have to tell Unity to use this tem-
plate instead of the default. Open the Player Settings again (remember, click Player
Settings in the Build Settings window) and find WebGL Template in the web settings
(shown in figure 13.3). You’ll see that Default is currently selected, but WebTest (the
template folder you created) is also on the list; click that one instead.

With the custom template selected, build to WebGL again. Open the generated web
page, and this time a button is at the bottom of the page. Click the button and you’ll
see the changed message displayed in Unity!

 That wraps up browser communication for web builds. On to the next important
platform (or rather, set of platforms) for building apps: mobile.

13.3 Building for mobile: iOS and Android
Mobile apps are another important build target for Unity. My gut impression (totally
unscientific) is that most commercial games created using Unity are mobile games.

DEFINITION Mobile is a category of handheld computing devices. The designa-
tion started with smartphones but now includes tablets. The two most widely
used mobile computing platforms are iOS (from Apple) and Android (from
Google).

Figure 13.3 WebGL Template setting

326 CHAPTER 13 Deploying your game to players’ devices

Setting up the build process for mobile apps is more complicated than either desktop
or web builds, so this is another optional section—optional as in only read through it,
without actually following the steps. I’ll still write as if you’re working along, but you’d
have to buy a developer license for iOS and install all the developer tools for Android.

WARNING Mobile devices undergo so much rapid change that the exact build
process is likely to be slightly different by the time you read this. The high-level
concepts are probably still true, but you should look at up-to-date documenta-
tion online for an exact rundown of the commands to execute and buttons to
push. For starters, here are the doc pages from Apple (https://developer
.apple.com/documentation/xcode) and Google (https://developer.android
.com/studio/build).

All right, with those caveats out of the way, I’ll explain the overall build process for
both iOS and Android. Keep in mind that these platforms occasionally change the
details of the build process.

13.3.1 Setting up the build tools

Mobile devices are all separate from the computer you’re developing on, and that sep-
arateness makes the process of building and deploying to devices slightly more com-
plex. You’ll need to set up a variety of specialized tools before you can click Build.

SETTING UP IOS BUILD TOOLS

At a high level, the process of deploying a Unity game on iOS requires first building
an Xcode project from Unity and then building the Xcode project into an iOS appli-
cation package (IPA) using Xcode. Unity can’t build the final IPA directly because all
iOS apps have to go through Apple’s build tools. That means you need to install
Xcode (Apple’s programming IDE), including the iOS SDK.

WARNING You have to be working on a Mac when deploying an iOS game—
Xcode runs only on macOS. Developing a game within Unity can be done on
either Windows or Mac, but building the iOS app must be done on a Mac.

Touch input
Input on mobile devices works differently than on desktop or the web. Mobile input
is done by touching the screen, rather than with the mouse and keyboard. Unity has
input functionality for handling touches, including code like Input.touchCount and
Input.GetTouch().

You may want to use these commands to write platform-specific code on mobile
devices. Handling input that way can be a hassle, though, so code frameworks are
available to streamline the use of touch input. For example, search on Unity’s Asset
Store for Fingers or Lean Touch.

https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation/xcode
https://developer.android.com/studio/build
https://developer.android.com/studio/build
https://developer.android.com/studio/build

327Building for mobile: iOS and Android

Get Xcode from Apple’s website, in the developer section: https://developer.apple
.com/xcode/.

NOTE You need membership in the Apple Developer Program in order to
sell your iOS game on the App Store. Apple’s developer program costs
$99/year; enroll at https://developer.apple.com/programs/.

Once Xcode is installed, launch it and open Preferences to add your developer account.
You need to be logged in when Xcode accesses your account while building an app.

 Now go back to Unity and switch to iOS. You need to adjust the Player settings for
the iOS app (remember, open Build Settings and click Player Settings). You should
already be on the iOS tab of the Player settings, but click the tab with an iOS icon if
needed. Scroll down to Other Settings and then look for Identification. Bundle Iden-
tifier needs to be adjusted so that Apple will correctly identify the app.

NOTE iOS calls it Bundle Identifier, and Android calls it Package Name, but
naming otherwise works the same way on both platforms. The identifier
should follow the same convention as that for any code package: all lowercase
in the form com.companyname.productname.

Another important setting that applies to both iOS and Android is Version (this is the
version number of the app). Most of the settings beyond that are platform-specific; for
example, iOS added an additional build number, separate from the main version
number. There’s also a setting for Scripting Backend; Mono was always used in the
past, but the newer IL2CPP backend supports iOS updates, like 64-bit binaries.

NOTE iOS builds from Unity don’t work with both real devices (iPhones and
iPads) and iOS simulators. By default, iOS builds from Unity work only on
real devices, but you can switch to building for simulators by scrolling down to
Target SDK in Player settings. In practice, I’ve never had to do this, because
all my “testing outside real device” work is done within Unity itself, and if I’m
doing an iOS build, then I want to run it on an actual phone.

Now click Build in the Build Settings window. Select the location for the built files,
and that’ll generate an Xcode project in that location; you probably want to click the
button to create a new folder and then choose that newly created folder.

 The Xcode project that results can be modified directly if you want (simple modifi-
cations could be part of the post-build script). Regardless, open the Xcode project;
the built folder has many files, but double-click the .xcodeproj file (it has an icon of a
blueprint). Xcode will open with this project loaded. Unity already took care of most
of the settings needed in the project, but you do need to adjust the provisioning pro-
files being used.

 Xcode will attempt to set up the signing profiles automatically, so this is why you
added your account in Preferences earlier. Select your app in the project list on the
left-hand side of Xcode, and several tabs relevant to the selected project will appear.
Click the tab for Signing & Capabilities and click the Team menu to select the team

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/programs/

328 CHAPTER 13 Deploying your game to players’ devices

registered with Apple’s developer program (see figure 13.4). If for some reason you
don’t want Xcode to automatically manage signing, provisioning profiles can be
adjusted manually by scrolling down to Signing in the Build Settings tab.

iOS provisioning profiles
Of all the aspects of iOS development, provisioning profiles are the most unusual. In
short, these are files used for identification and authorization. Apple tightly controls
what apps can run on what devices; apps submitted to Apple for approval use special
provisioning profiles that allow them to work through the App Store, whereas apps in
development use provisioning profiles that are specific to registered devices.

You’ll need to add both your iPhone’s UDID (an ID specific to your device) and the
app’s ID (the Bundle Identifier in Unity) to your account on Apple’s website for iOS
developers. For a complete explanation of this process, visit https://developer
.apple.com/support/code-signing/.

Where to manage provisioning
profiles in the iOS Dev Center

Click here to add devices and
app IDs, and to generate
provisioning profiles.

To enable automatic signing, select
the Signing & Capabilities tab.

Automatic signing is usually recommended,
but provisioning profiles can be set manually
in the Build Settings tab, by scrolling down
to Signing.

Select a Team associated
with your account. Make
sure to add it to Accounts
in Xcode’s Preferences. Select your

app here.

Figure 13.4 Provisioning/signing settings in Xcode

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/

329Building for mobile: iOS and Android

Once the provisioning profiles are set, you’re ready to build the app. From the Prod-
uct menu, choose either Run or Archive. The Product menu has a lot of options,
including the tantalizingly named Build, but for our purposes, the two options that
are useful are Run and Archive. Build generates executable files but doesn’t bundle
them for iOS, whereas this is what Run and Archive do:

 Run will test the application on an iPhone connected to the computer with a
USB cable.

 Archive will create an application package that can be sent to other registered
devices (either for release, or testing via what Apple refers to as ad hoc distribution).

Archive doesn’t create the app package directly but rather creates a bundle in an
intermediate stage between the raw code files and an IPA. The created archive will be
listed in Xcode’s Organizer window; in that window, select the generated archive and
click Distribute App on the right-hand side. After you click that, you’ll be asked if you
want to distribute the app on the store or ad hoc.

 If you choose ad hoc distribution, you’ll end up with an IPA file that can be sent to
testers. You could send the file directly for them to install through iTunes, but it’s
more convenient to set up a website to handle distributing and installing test builds.
Alternatively, use TestFlight (https://developer.apple.com/testflight/) on builds that
have been uploaded to the store but not submitted yet.

SETTING UP ANDROID BUILD TOOLS

Unlike iOS apps, Unity can generate the final Android application (either an APK, for
Android application package, or AAB, for Android app bundle) directly. This requires
pointing Unity to the Android SDK, which includes the necessary compiler. You could
install the Android SDK along with the Android build module for Unity, or you could
install it from within Android Studio and point to that file location in Unity’s prefer-
ences (see figure 13.5). You can download the Android build tools from https://
developer.android.com/studio.

Figure 13.5 Unity preference setting to point to Android SDK

You can add the Android SDK
(and associated build tools) along
with the Android module when
managing installs in Unity Hub.

Uncheck this setting if
you downloaded the
Android SDK yourself,
not through Unity Hub.

This button’s label will
change to Browse if the
check box is turned off,
so click it to find where
the SDK is located.

https://developer.apple.com/testflight/
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio

330 CHAPTER 13 Deploying your game to players’ devices

After setting the Android SDK in Unity’s preferences, you need to specify the app’s
identifier just as you did for iOS. You’ll find Package Name in Player Settings; set it to
com.companyname.productname (as explained previously when setting the Bundle
Identifier for iOS). Then click Build to start the process. As with all builds, Unity will
first ask where to save the file. Then it’ll create an APK file in that location.

 Now that you have the app package, you must install it on a device. You can get the
APK file onto an Android phone by downloading the file from the web (cloud storage
like Google Drive is useful for this purpose) or by transferring the file via a USB cable
connected to your computer (an approach referred to as sideloading). The details of
how to transfer files via USB vary for every device, but once there, the files can be
installed using a file manager app. I don’t know why file managers aren’t built into
Android, but you can install one for free from the Google Play Store. Navigate to your
APK file within the file manager and then install the app.

APK vs. AAB for Android builds
Since the inception of Android, applications have been distributed as APK (Android
application package) files. However, Google has supported AAB (Android app bundle,
an alternative kind of application file) for a little while now, and has started requiring
that format for apps submitted to the Play Store. Instead of having support for every
device baked into the single application package, app bundles allow the Play Store
to instead generate a smaller application package designed just for the specific user
to download, resulting in smaller files.

Unity supports both formats in the Build Settings window. When you have the Android
platform selected, look for the Build App Bundle check box; leave that off for APK, or
turn that on for AAB. It’s generally better to build APK files while testing (since those
are easier to install on testing devices) and then build AAB for the final version to
submit to the Play Store.

Where to switch Android builds between APK and AAB

Click here to switch between
building an APK and an AAB.

331Building for mobile: iOS and Android

As you can see, the basic build process for Android is a lot simpler than the build pro-
cess for iOS. Unfortunately, the process of customizing the build and implementing
plugins is more complicated than with iOS; you’ll learn how in a bit. But before that,
let’s talk about texture compression.

13.3.2 Texture compression

Assets can eat up a lot of memory, and this especially includes textures. To reduce
their file size, you can compress assets in various ways, with pros and cons to each
method. Because of these pros and cons, you may need to adjust how Unity com-
presses textures.

 Managing texture compression on mobile devices is essential, though technically,
textures are often compressed on other platforms too. But you don’t have to pay as
much attention to compression on other platforms for various reasons—the chief one
being that the platform is more technologically mature. On mobile devices, you need
to pay closer attention to texture compression because the devices are touchier about
this detail.

 Unity automatically compresses textures for you. In most development tools, you
need to compress images yourself, but in Unity, you generally import uncompressed
images, and then it applies image compression in the import settings for the image
(see figure 13.6).

The compression settings are different on different platforms, so Unity recompresses
images when you switch platforms. Initially, the settings are default values, and you
may need to adjust them for specific images and specific platforms. In particular,
image compression is trickier on Android. This is mostly due to the fragmentation of
Android devices: because all iOS devices use pretty much the same video hardware,
iOS apps can have texture compression optimized for their graphics chips (the GPU).
Android apps don’t enjoy the same uniformity of hardware, so their texture compres-
sion has to aim for the lowest common denominator.

Click the Android
icon to see settings
for this platform.

Override default
settings to change
compression on
this image.

Select compression
formats from the
Format menu.

Click Alpha Is Transparency to
see alpha transparency within
Unity.

Android’s default compression
format changes from ETC to
ETC2 if the image has an alpha
channel.

Figure 13.6 Texture compression settings in the Inspector

332 CHAPTER 13 Deploying your game to players’ devices

 To be more specific, all iOS devices use (or rather used to use, and still maintain
compatibility with) PowerVR GPUs. Thus, iOS apps can use optimized PowerVR Tex-
ture Compression (PVRTC) on all iOS devices, or even the newer ASTC format that is
supported on all iPhones since version 6. Some Android devices also use PowerVR
chips, but they just as frequently use Adreno chips from Qualcomm, Mali GPUs from
ARM, or other options. As a result, Android apps generally rely on Ericsson Texture
Compression (ETC), a more generic compression algorithm supported by all Android
devices. Unity defaults to ETC2 (the more advanced second version) for textures with
an alpha channel, since the original ETC compression format doesn’t have an alpha
channel, but note that older Android devices may not support ETC2.

 This default works fairly well most of the time, but if you need to adjust compres-
sion on a texture, adjust the settings shown in figure 13.6. Click the Android icon tab
to override the default settings for that platform, and then use the Format menu to
pick specific compression formats. In particular, you may find that certain key images
need to be uncompressed; although their file size will be much larger, the image qual-
ity will be better. As long as you compress the majority of textures and choose uncom-
pressed only on a case-by-case basis, the increased file size probably won’t be too bad.
With that discussion out of the way, the final topic for mobile development is develop-
ing native plugins.

13.3.3 Developing plugins

Unity has a huge amount of functionality built in, but that functionality is mostly lim-
ited to features common across all platforms. Taking advantage of platform-specific
toolkits (such as Play Game Services on Android) often requires add-on plugins for
Unity.

TIP A variety of premade mobile plugins are available for iOS- and Android-
specific features; appendix D lists a few places to get mobile plugins. These
plugins operate in the manner described here, except that the plugin code is
already written for you.

The process of communicating with mobile plugins is similar to the process of com-
municating with the browser. On the Unity side of things, special commands call func-
tions within the plugin. On the plugin’s side, the plugin can use SendMessage()to
send a message to an object in Unity’s scene. The exact code looks different on differ-
ent platforms, but the general idea is always the same.

WARNING Just as with the initial build process, the process for native develop-
ment on mobile tends to change frequently—not so much the Unity end of
the process, but the native code part. I’ll cover things at a high level, but you
should look for up-to-date documentation online.

Plugins for both platforms are put in the same place within Unity. If needed, create a
folder in the Project view called Plugins; then, inside Plugins create a folder each for

333Building for mobile: iOS and Android

Android and iOS. Once they’re put into Unity, plugin files also have settings for the
platforms they apply to. Normally, Unity figures this out automatically (iOS plugins
are set to iOS, Android plugins are set to Android, and so on), but if necessary, look
for these settings in the Inspector.

IOS PLUGINS

The plugin is really just some native code that gets called by Unity. First, create a script
in Unity to handle the native code; call this script TestPlugin (see the next listing).

using System;
using System.Collections;
using System.Runtime.InteropServices;
using UnityEngine;

public class TestPlugin : MonoBehaviour {
 private static TestPlugin _instance;

 public static void Initialize() {
 if (_instance != null) {
 Debug.Log("TestPlugin instance was found. Already initialized");
 return;
 }
 Debug.Log("TestPlugin instance not found. Initializing...");

 GameObject owner = new GameObject("TestPlugin_instance");
 _instance = owner.AddComponent<TestPlugin>();
 DontDestroyOnLoad(_instance);
 }

 #region iOS
 [DllImport("__Internal")]
 private static extern float _TestNumber();

 [DllImport("__Internal")]
 private static extern string _TestString(string test);
 #endregion iOS

 public static float TestNumber() {
 float val = 0f;
 if (Application.platform == RuntimePlatform.IPhonePlayer)
 val = _TestNumber();
 return val;
 }

 public static string TestString(string test) {
 string val = "";
 if (Application.platform == RuntimePlatform.IPhonePlayer)
 val = _TestString(test);
 return val;
 }
}

Listing 13.5 TestPlugin script that calls iOS native code from Unity

The object is created in this
static function, so you don’t
have to create it in the editor.

Tag that identifies section of code;
the tag doesn’t do anything by itself.

Refer to the function
in the iOS code.

Call this if the platform
is IPhonePlayer.

334 CHAPTER 13 Deploying your game to players’ devices

First, note that the static Initialize() function creates a permanent object in the
scene so that you don’t have to do it manually in the editor. You haven’t previously
seen code to create an object from scratch because using a prefab is a lot simpler in
most cases, but in this case, it’s cleaner to create the object in code (so that you can
use the plugin script without editing the scene).

 The main wizardry going on here involves the DllImport and static extern com-
mands. Those commands tell Unity to link up to functions in the native code you pro-
vide. Then you can use those referenced functions in this script’s methods (with a
check to make sure the code is running on iPhone/iOS).

 Next, you’ll use these plugin functions to test them. Create a new script called
MobileTestObject, create an empty object in the scene, and then attach the script to
the object.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MobileTestObject : MonoBehaviour {
 private string message;

 void Awake() {
 TestPlugin.Initialize();
 }

 // Use this for initialization
 void Start() {
 message = "START: " + TestPlugin.TestString("ThIs Is A tEsT");
 }

 // Update is called once per frame
 void Update() {

 // Make sure the user touched the screen
 if (Input.touchCount==0){return;}

 Touch touch = Input.GetTouch(0);
 if (touch.phase == TouchPhase.Began) {
 message = "TOUCH: " + TestPlugin.TestNumber();
 }
 }

 void OnGUI() {
 GUI.Label(new Rect(10, 10, 200, 20), message);
 }
}

Listing 13.6 Using the plugin from MobileTestObject

Initialize the plugin
at the beginning.

Respond to touch input.

Display a message in the
corner of the screen.

335Building for mobile: iOS and Android

The script in this listing initializes the plugin object and then calls plugin methods in
response to touch input. Once this is running on the device, you’ll see the test mes-
sage in the corner change whenever you tap the screen.

 The final thing left to do is to write the native code that TestPlugin references.
Code on iOS devices is written using Objective C and/or C (or Swift, but we won’t be
using that language), so you need both a .h header file and a .mm implementation
file. As described earlier, they need to go in the Plugins/iOS/ folder in the Project
view. Create TestPlugin.h and TestPlugin.mm there; in the .h file, write this code.

#import <Foundation/Foundation.h>

@interface TestObject : NSObject {
NSString* status;
}

@end

Look for an explanation about iOS programming to understand what this header is
doing; explaining iOS programming is beyond the scope of this book. Write the code
from this listing in the .mm file.

#import "TestPlugin.h"

@implementation TestObject
@end

NSString* CreateNSString (const char* string)
{
if (string)
return [NSString stringWithUTF8String: string];
else
return [NSString stringWithUTF8String: ""];
}

char* MakeStringCopy (const char* string)
{
if (string == NULL)
return NULL;

char* res = (char*)malloc(strlen(string) + 1);
strcpy(res, string);
return res;
}

Listing 13.7 TestPlugin.h header for iOS code

Listing 13.8 TestPlugin.mm implementation

336 CHAPTER 13 Deploying your game to players’ devices

extern "C" {
 const char* _TestString(const char* string) {
 NSString* oldString = CreateNSString(string);
 NSString* newString = [oldString lowercaseString];
 return MakeStringCopy([newString UTF8String]);
 }

 float _TestNumber() {
 return (arc4random() % 100)/100.0f;
 }
}

Again, a detailed explanation of this code is a bit beyond this book’s scope. Note that
many of the string functions are there to convert Unity’s representation of string
data into the native code.

TIP This sample communicates in only one direction, from Unity to the
plugin. But the native code could also communicate to Unity by using the
UnitySendMessage() method. You can send a message to a named object in
the scene; during initialization, the plugin created TestPlugin_instance to
send messages to.

With the native code in place, you can build the iOS app and test it on a device. The
message in the corner will initially be all lowercase; then tap the screen to watch the
numbers displayed. Very cool!

 For more information, visit https://docs.unity3d.com/Manual/PluginsForIOS.html.
That’s how to make an iOS plugin, so let’s look at Android too.

ANDROID PLUGINS

To create an Android plugin, the Unity side of things is almost exactly the same. You
don’t need to change MobileTestObject at all. Make the additions shown here in
TestPlugin.

...
 #region iOS
 [DllImport("__Internal")]
 private static extern float _TestNumber();

 [DllImport("__Internal")]
 private static extern string _TestString(string test);
 #endregion iOS

#if UNITY_ANDROID
 private static Exception _pluginError;
 private static AndroidJavaClass _pluginClass;
 private static AndroidJavaClass GetPluginClass() {
 if (_pluginClass == null && _pluginError == null) {
 AndroidJNI.AttachCurrentThread();

Listing 13.9 Modifying TestPlugin to use the Android plugin

AndroidJNI functionality
provided by Unity

https://docs.unity3d.com/Manual/PluginsForIOS.html

337Building for mobile: iOS and Android

 try {
 _pluginClass = new

AndroidJavaClass("com.testcompany.testplugin.TestPlugin");
 } catch (Exception e) {
 _pluginError = e;
 }
 }
 return _pluginClass;
 }

 private static AndroidJavaObject _unityActivity;
 private static AndroidJavaObject GetUnityActivity() {
 if (_unityActivity == null) {
 AndroidJavaClass unityPlayer = new

AndroidJavaClass("com.unity3d.player.UnityPlayer");
 _unityActivity =

unityPlayer.GetStatic<AndroidJavaObject>("currentActivity");
 }
 return _unityActivity;
 }
#endif

 public static float TestNumber() {
 float val = 0f;
 if (Application.platform == RuntimePlatform.IPhonePlayer)
 val = _TestNumber();
#if UNITY_ANDROID
 if (!Application.isEditor && _pluginError == null)
 val = GetPluginClass().CallStatic<int>("getNumber");
#endif
 return val;
 }

 public static string TestString(string test) {
 string val = "";
 if (Application.platform == RuntimePlatform.IPhonePlayer)
 val = _TestString(test);
#if UNITY_ANDROID
 if (!Application.isEditor && _pluginError == null)
 val = GetPluginClass().CallStatic<string>("getString", test);
#endif
 return val;
 }
}

You’ll notice that most of the additions happen inside UNITY_ANDROID platform
defines. As explained earlier in the chapter, these compiler directives cause code to
apply only to certain platforms and are omitted on other platforms. Whereas the iOS
code wasn’t doing anything that would break on other platforms (it won’t do any-
thing, but it won’t cause errors, either), the code for Android plugins will compile
only when Unity is set to the Android platform.

Name of the class you programmed;
change this name as needed.

Unity creates an
activity for the
Android app.

Call to
functions in
plugin .jar

338 CHAPTER 13 Deploying your game to players’ devices

 In particular, note the calls to AndroidJNI. That’s the system within Unity for con-
necting to native Android. The other possibly confusing word that appears is Activity;
in Android apps, an activity is an app process. The Unity game is an activity of the
Android app, so the plugin code needs access to that activity to pass it around when
needed.

 Finally, you need the native Android code. Whereas iOS code is written in lan-
guages like Objective C and C, Android is programmed in Java (or Kotlin, but we’ll
use Java). But you can’t simply provide the raw Java code for the plugin; the plugin
must be a JAR packaged from the Java code. Here, again, the details of Android pro-
gramming are out of scope for an introduction to Unity, but we’ll go over the basics
briefly. First off, you should install Android Studio if you didn’t do so as part of down-
loading the Android SDK.

 Figure 13.7 illustrates the steps to set up a plugin project in Android Studio (with
screenshots from version 4.2.1):

1. Create a New Project by either selecting that in the startup window or going to
File > New > New Project.

2. In the New Project window that appears, select the No Activity template (since
this is a plugin, not a standalone Android app) and click Next.

3. Now name it TestPluginProj; for this test, it doesn’t matter what the Min SDK
is, but leave Language as Java and take note of the project location because
you’ll need to find it later. Click Finish to create the new project, and if there is
a brief wait for loading, then click Finish again to dismiss the window.

4. Once the editor view appears, choose File > New > New Module to add a library.
5. Select Android Library, name it testplugin, change Package Name to

com.testcompany.testplugin, and then click Finish.
6. With that module added, choose Build > Select Build Variant; in the panel that

opens, click the Active Build Variant for TestPluginProj.testplugin and select
Release.

7. Now expand testplugin > java in the upper Project panel, right-click com.test-
company.testplugin, and choose New > Java Class.

8. A tiny window opens to configure the new class, so type the name TestPlugin
and press Enter.

339Building for mobile: iOS and Android

TestPlugin is currently empty, so write the plugin functions in it. Listing 13.10 shows
the Java code for the plugin.

package com.testcompany.testplugin;

public class TestPlugin {

Listing 13.10 TestPlugin.java that compiles into a JAR

3. Name it TestPluginProj;
 other settings don’t
 matter for now.

1. Start Android Studio and
 then Create New Project.

2. Select No Activity because
 this is just a library, not a
 full app.

5. Choose Android Library,
 name it testplugin, and input
 com.testcompany.testplugin
 for Package Name.

8. Finally, type the name TestPlugin
 and press Enter. Now write code in
 the new class.

7. Expand testplugin > java, right-click
 com.testcompany.testplugin, and
 choose New > Java Class.

6. Choose
 Build > Select
 Build Variant to
 open that panel;
 then set Active
 Build Variant for
 testplugin to
 Release.

4. Choose
 File > New >
 New Module to
 add the library
 to the project.

Figure 13.7 Setting up Android Studio to build a plugin

340 CHAPTER 13 Deploying your game to players’ devices

 private static int number = 0;

 public static int getNumber() {
 number++;
 return number;
 }

 public static String getString(String message) {
 return message.toLowerCase();
 }
}

All right, now you can package this code into a JAR (or rather an Android Archive file,
which contains the JAR). In the top menu, choose Build > Make Project. Once the
build is complete, go to the project on your computer and find testplugin-release.aar
in <project location>/testplugin/build/outputs/aar/. Drag the archive file into Unity’s
Android plugins folder to import it.

With the archive file in Plugins/Android, build the game and install it on a device,
and the message will change whenever you tap the screen. Also, like the iOS plugin,
an Android plugin could use UnityPlayer.UnitySendMessage()to communicate with
the object in the scene. The Java code would need to import Unity’s Android Player
library, which is contained in the Unity installation folder (again, usually C:\Program
Files\ Unity\Editor\Data on Windows or /Applications/Unity/Editor on Mac) as
/PlaybackEngines/AndroidPlayer/Variations/mono/Release/Classes/classes.jar.

 I know I glossed over a lot in developing Android libraries, but that’s because the
process is both complicated and changes frequently. If you become advanced enough
to develop plugins for your Android games, you’re going to have to look up documen-
tation on Android’s developer website, as well as refer to Unity’s documentation at
http://mng.bz/yJKG.

Android’s manifest and resources folder
It wasn’t required for this simple test plugin, but Android plugins often must edit the
manifest file. All Android apps are controlled by a main configuration file called
AndroidManifest.xml; Unity creates a basic manifest file if you don’t provide one, but
you could provide one manually by putting it in Plugins/Android/ alongside the plugin.

Unity adds a Temp folder to the project while it runs, and Unity puts the generated
manifest file in there (StagingArea/UnityManifest.xml) when an Android app is built.
Copy that file to manually edit it; this chapter’s code download includes a sample
manifest file.

Similarly, there’s a folder called res where you can put resources like custom icons.
To replace this generated folder with your own resources, you could create a res
folder in the Android plug-ins folder.

http://mng.bz/yJKG

341Developing XR (both VR and AR)

13.4 Developing XR (both VR and AR)

NOTE The initials XR stand for extended reality, a term that encompasses both
virtual reality (VR) and augmented reality (AR). VR refers to immersing the user
in a completely synthetic environment, while AR refers to adding computer
graphics to the natural environment, but both fall under the umbrella of
technologies that mediate the environment surrounding the user.

XR is the last “platform” covered in this chapter. “Platform” is in quotes because XR
isn’t technically considered a separate platform when building the application.
Instead, XR support comes from plugin packages that can be added to the relevant
build platforms, such as desktop VR or mobile AR. Let’s go over how this works, first
for VR and then AR.

13.4.1 Supporting virtual reality headsets

The major VR devices on the market right now are Oculus Quest, HTC VIVE, Valve
Index, and PlayStation VR. Ignoring PlayStation VR (since this book doesn’t cover
console development), all the other devices are supported by adding a VR SDK to
either Unity’s PC build target, or (in the case of Oculus Quest) to Android.

 A variety of such SDKs are available, distributed through Unity’s Package Manager.
For example, browse the Unity Registry to find options like Oculus XR or Windows
XR. Meanwhile, another attractive option offered to Unity developers is XR Interac-
tion Toolkit, but that package is slightly harder to find. Because that package is still
not considered complete (mostly incomplete in AR support, though; the VR support
is pretty solid), it is considered a preview package. Packages designated as preview
aren’t shown by default, but you can adjust the settings of the Package Manager win-
dow to show preview packages (see figure 13.8).

Adjust Package Manager’s settings
to show preview packages ...

... and now preview packages
are listed as well.

By default, Package
Manager doesn’t show
preview packages (like
XR Interaction Toolkit).

Figure 13.8 How to see preview packages in Package Manager

342 CHAPTER 13 Deploying your game to players’ devices

Once an XR package is installed, you must enable it in Project Settings (remember,
that’s Edit > Project Settings) under XR Plug-in Management (shown in figure 13.9).

NOTE XR Plug-in Management is itself a package, although that should have
been installed along with whatever other XR package you chose. If those set-
tings aren’t appearing, though, you may need to install the package manually.

We’re not going to go over code for any specific VR device, because there are just too
many options to cover. Instead, I encourage you visit the documentation for the rele-
vant XR plugin:

 XR Interaction Toolkit: http://mng.bz/Mv67
 Oculus XR: http://mng.bz/aZjz
 Windows XR: http://mng.bz/g16l
 OpenXR: http://mng.bz/ePNz

 We are, however, going to implement a simple example to help explain AR.

13.4.2 AR Foundation for mobile Augmented Reality

Unlike VR, augmented reality doesn’t necessarily imply a head-mounted display
(HMD). It certainly can involve an HMD, and Unity supports devices like the Holo-
Lens and Magic Leap. However, AR also is provided through mobile phones, what’s
sometimes referred to as handheld AR.

 Both Apple and Google provide SDKs for handheld AR on iOS and Android, respec-
tively. Apple’s SDK is called ARKit, while Google provides ARCore. These libraries are
specific to those platforms however, so Unity provides a cross-platform wrapper called
AR Foundation. As a developer, it’s important to understand that you are working with
ARKit or ARCore under the hood, but you code against the API of AR Foundation.

Select different platforms / build
targets with these tabs.

Enable the XR plugin you wish to
use. Different platforms have
different options to choose from.

Figure 13.9 XR Plugin Management in Project Settings

http://mng.bz/Mv67
http://mng.bz/aZjz
http://mng.bz/ePNz
http://mng.bz/g16l

343Developing XR (both VR and AR)

 To start with, create a new Unity project. In this new project, go to Package Man-
ager and install AR Foundation, along with either ARKit XR or ARCore XR (or
both!), depending on which mobile platform you are developing for. Then enable
ARKit or ARCore in XR Plug-in Management (shown back in figure 13.9).

NOTE The face-tracking bit of ARKit has a separate package from the rest of
ARKit. That’s because Apple will reject submitted apps that have code for
face-tracking but aren’t actually doing facial AR. Thus, install only the main
ARKit XR plug-in package if you aren’t doing facial AR, and install both pack-
ages if you are.

ARKit and ARCore have requirements that must be met in the Player settings for the
iOS and Android platforms (see figure 13.10a and b). On Android, first remove Vulkan
from the list of Graphics APIs (select Vulkan and then click the minus button), then
scroll down and change the Minimum API Level to 24. On iOS, set the Minimum iOS
Version to 11, make sure Architecture is set to ARM64, turn on the Requires ARKit set-
ting, and enter a camera usage description (something like Camera required for AR).

Under the Player settings for
Android, remove Vulkan from
the list of Graphics APIs. To
remove, select Vulcan and
then click the minus button.

Now scroll down ...

... and set the Minimum API
Level to 24 or higher.

Figure 13.10a Adjust Android settings to support AR

344 CHAPTER 13 Deploying your game to players’ devices

ARKit requires those iOS settings to function, and ARCore requires those Android set-
tings. Having made all the necessary adjustments in Player settings, next set up the
various objects needed in the scene. As depicted in figure 13.11, the steps to take are
as follows:

1. From the GameObject menu, choose XR > AR Session.
2. Choose GameObject > XR > AR Session Origin.
3. Choose GameObject > XR > AR Default Plane.
4. Delete Main Camera (since Session Origin includes a camera set up for AR).
5. Create an empty GameObject and name it Controllers.

Next, create a new C# script called PlaneTrackingController, and write listing 13.11
into it.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR.ARFoundation;
using UnityEngine.XR.ARSubsystems;

public class PlaneTrackingController : MonoBehaviour {
 [SerializeField] ARSessionOrigin arOrigin = null;
 [SerializeField] GameObject planePrefab = null;

Listing 13.11 PlaneTrackingController script that uses AR Foundation

Figure 13.10b Adjust iOS settings to support AR

For iOS, set the Minimum iOS Version
to 11, set the Architecture to 64-bit,
enter a Camera Usage Description,
and Require ARKit Support.

(Architecture menu may be grayed
out but showing the 64-bit
architecture. You don’t have to do
anything in that case.)

This should be the
plane prefab from
XR objects, not just
any game object.

345Developing XR (both VR and AR)

 private ARPlaneManager planeManager;

 void Start() {
 planeManager = arOrigin.gameObject.AddComponent<ARPlaneManager>();
 planeManager.detectionMode = PlaneDetectionMode.Horizontal;
 planeManager.planePrefab = planePrefab;
 }
}

This script adds a component called ARPlaneManager to the session origin and then
assigns a couple of settings to the plane manager, including which object to use for
visualizing the detected plane. This component could have been added in the editor,
but adding it in code affords more flexibility in controlling the AR.

 Drag this script onto the Controllers object to link it as a component. Now (as fig-
ure 13.11 shows), drag AR Session Origin and AR Default Plane onto their compo-
nent slots in the Inspector.

With everything in place, build the mobile app in order to see plane tracking func-
tioning. Because PlaneTrackingController uses AR Foundation (rather than either
ARKit or ARCore directly), the project should work on both iOS and Android. Once
the app is running on your device, you should see something like figure 13.12 when
moving the camera around.

It would also work to add this
component in the editor, but

we’ll add it in code.

Starting with a default scene:

Use the menu GameObject > XR > AR Session.
Also create an AR Session Origin.
Also create an AR Default Plane.
Delete the Main Camera.
Create an empty GameObject named Controllers.

Then attach PlaneTicketingController.cs to the
Controllers object, and drag in AR Session Origin
and AR Default Plane to the script component’s slots.

Figure 13.11 Setting up objects in the scene for simple AR

346 CHAPTER 13 Deploying your game to players’ devices

Great, planar surfaces are being detected in the environment! However, right now
nothing is going on other than that the computer detects surfaces. That is, nothing is
being placed on the detected surface. AR Foundation provides several useful bits of
functionality, not just plane tracking, and another useful feature is raycasting against
detected AR surfaces. Follow listing 13.12 to add code for doing AR raycasting.

...
 private ARPlaneManager planeManager;
 private ARRaycastManager raycastManager;
 private GameObject prim;
...
 void Start() {
 prim = GameObject.CreatePrimitive(PrimitiveType.Cube);
 prim.SetActive(false);

 raycastManager =

arOrigin.gameObject.AddComponent<ARRaycastManager>();

 planeManager = arOrigin.gameObject.AddComponent<ARPlaneManager>();
 ...
 }

 void Update() {
 if (Input.GetMouseButtonDown(0)) {
 var hits = new List<ARRaycastHit>();
 if (raycastManager.Raycast(Input.mousePosition, hits,
 TrackableType.PlaneWithinPolygon)) {
 prim.SetActive(true);
 prim.transform.localScale = new Vector3(.1f, .1f, .1f);

 var pose = hits[0].pose;
 prim.transform.localPosition = pose.position;
 prim.transform.localRotation = pose.rotation;
 }

Listing 13.12 Adding raycasting to PlaneTrackingController

Figure 13.12 AR plane detection in action

Add the new fields just under
the existing manager.

Create an
object to
place on
detected
surfaces.

Call the Raycast method in
response to user input.

347Developing XR (both VR and AR)

 }
 }
...

Deploy the app again onto your mobile device. This time, tap the detected plane, and
a cube should appear, just like figure 13.13. In this way, you are placing virtual objects
around your real environment.

This example touches on only the very basics of AR Foundation. For more in-depth
uses, refer to Unity’s manual (http://mng.bz/p9aG) as well as the sample projects
Unity has on GitHub (http://mng.bz/YwpN).

CONGRATULATIONS, YOU’VE REACHED THE END!
Congratulations, you now know the steps for deploying a Unity game on most major
platforms. The basic build process for all platforms is simple (just a single button), but
customizing the app on various platforms can get complicated. Now you’re ready to
get out there and build your own games!

Figure 13.13 A cube placed on the tracked plane

Unity as a Library
Ordinarily, Unity projects are deployed as self-contained apps, a configuration that
makes perfect sense for games. However, Unity is increasingly being used for non-
game XR development, and those users may want to integrate their Unity projects
with an external app.

For that reason, Unity now has the ability to deploy projects as a library to use in a
larger app. The Unity as a Library capability supports both iOS and Android, enabling
mobile developers to add augmented reality content (powered by AR Foundation) to
their apps. For more information, follow these links:

 https://unity.com/features/unity-as-a-library
 http://mng.bz/OQnn

https://unity.com/features/unity-as-a-library
https://shortener.manning.com/OQnn
http://mng.bz/YwpN
http://mng.bz/p9aG

348 CHAPTER 13 Deploying your game to players’ devices

Summary
 Unity can build executable applications for a huge variety of platforms, includ-

ing desktop computers, mobile devices, and websites.
 A host of settings can be applied to builds, including details like the icon for the

app and the name that appears.
 Web games can interact with the web page they’re embedded in, allowing for all

kinds of interesting web apps.
 Unity supports custom plugins in order to extend its functionality.

349

afterword

At this point, you know everything you need to know to build a complete game
using Unity—everything from a programming standpoint, that is; a top-notch game
needs fantastic art and sound too. But success as a game developer involves a lot
more than technical skills. Let’s face it—learning Unity isn’t your end goal. Your
goal is to create successful games, and Unity is just a tool (granted, a very good
tool) to get you to that goal.

 Beyond the technical skills to implement everything in the game, you need an
additional intangible attribute: grit. I’m talking about the doggedness and confi-
dence to keep working on a challenging project and see it through to the end—
what I sometimes refer to as “finishing ability.” There’s only one way to build up
your finishing ability, and that’s to complete lots of projects. That seems like a
catch-22 (to gain the ability to complete projects, you first need to complete a lot of
projects), but the key point to recognize is that small projects are way easier to com-
plete than large ones.

 Therefore, the path forward is to first build a lot of small projects—because
those are easy to complete—and work up to larger projects. Many new game devel-
opers make the mistake of tackling a project that’s too large for two main reasons:
they want to copy their favorite (big) game, and everyone underestimates how
much work it takes to make a game. The project seemingly starts off fine but
quickly gets bogged down in too many challenges, and eventually the developer
gets dejected and quits.

 Instead, someone new to game development should start small. Start with proj-
ects so small that they seem trivial. The projects in this book are the sort of “small,
almost to the point of trivial” projects that you should start with. If you’ve done all
the projects in this book, you’ve already gotten a lot of these starter projects out of
the way. Try something bigger for your next project, but be wary of making too big
a jump. You’ll build up your skills and confidence, so you can get a little more
ambitious each time.

 You’ll hear this same advice almost anytime you ask how to start developing
games. For example, Unity asked the web series Extra Credits (a great series about

350 AFTERWORD

game development) to make some videos about starting in game dev, and you’ll find
them at http://mng.bz/GOjq.

Game design
The entire Extra Credits series goes way beyond this handful of videos sponsored by
Unity. It covers a lot of ground but mostly focuses on the discipline of game design.

DEFINITION Game design is the process of defining a game by creating its goals,
rules, and challenges. It is not to be confused with visual design, which is design-
ing appearance, not function. This is a common mistake because the average
person is most familiar with “design” in the context of “graphic design.”

DEFINITION One of the most central parts of game design is crafting game
mechanics—the individual actions (or systems of actions) within a game. The
mechanics in a game are often set up by its rules, whereas the challenges in a
game generally come from applying the mechanics to specific situations. For
example, walking around the game is a mechanic; a maze is a kind of chal-
lenge based on that mechanic.

Thinking about game design can be tricky for newcomers to game development. The
most successful (and satisfying to create!) games are built with interesting and innova-
tive game mechanics. Conversely, worrying too much about the design of your first game
can distract you from other aspects of game development, like learning how to program
it. You’re better off starting out by aping the design of existing games. (Remember, I’m
only talking about starting out; cloning existing games is great for initial practice, but
eventually you’ll have enough skills and experience to branch out further.)

 That said, any successful game developer should be curious about game design.
There are lots of ways to learn more about game design—you already know about the
Extra Credits videos, but here are some other websites:

 www.gamedeveloper.com—Offers jobs, games updates, good news/bad news
about games; everything you want/need to know about the art and business of
making games.

 https://lostgarden.home.blog/worth-reading/—Readable, thoughtful essays
on game design theory, art, and the business of design.

 http://sloperama.com—Click School-a-rama for the game biz advice page.

Great books on the subject are also available, such as the following:

 The Art of Game Design, Third Edition, by Jesse Schell (A K Peters/CRC Press,
2019)

 Game Design Workshop, Fourth Edition, by Tracy Fullerton (A K Peters/CRC
Press, 2018)

 A Theory of Fun for Game Design, Second Edition, by Raph Koster (O’Reilly
Media, 2013)

http://mng.bz/GOjq
https://www.gamedeveloper.com/
https://lostgarden.home.blog/worth-reading/
http://sloperama.com

351AFTERWORD

Marketing your game
In the Extra Credits videos, the fourth video is about marketing your game. Sometimes
game developers put off thinking about marketing. They want to think only about
building the game and not marketing it, but that attitude will probably result in a
failed game. The best game in the world still won’t be successful if nobody knows
about it!

 The word marketing often evokes thoughts of ads, and if you have the budget, then
running ads for your game is certainly one way to market it. But you can get the word
out about your game in lots of low cost or even free ways. Specifics tend to change
over time, but overall strategies mentioned in that video include tweeting about your
game (or posting on social media in general, not just Twitter) and creating a trailer
video to share on YouTube with reviewers, bloggers, and so on. Be persistent and get
creative!

 Now go and create some great games. Unity is an excellent tool for doing just that,
and you’ve learned how to use it. Good luck on your journey!

353

appendix A
Scene navigation

 and keyboard shortcuts

Operating Unity is done through the mouse and keyboard, but it isn’t obvious to a
newcomer how the mouse and keyboard are used in Unity. In particular, the most
basic sort of mouse and keyboard input is navigating around the scene and looking
around the 3D objects. Unity also has keyboard commands for commonly used
operations.

 I’ll explain the input controls here, but you also can refer to a couple of web
pages (these are the relevant pages in Unity’s online manual):

 http://mng.bz/01Ex
 http://mng.bz/KoNK

A.1 Scene navigation using the mouse
Scene navigation is primarily done with three main navigation maneuvers: Move,
Orbit, and Zoom. The three movements involve clicking and dragging while hold-
ing down a combination of Alt (or Option on the Mac) and Ctrl (Command on a
Mac). The exact controls vary for one-, two-, and three-button mice; table A.1 lists
all the controls.

Table A.1 Scene navigation controls for various kinds of mice

Navigation
action

Three-button mouse Two-button mouse One-button mouse

Move Middle-button click/drag Alt-Command + left-click/drag Alt-Command + click/drag

Orbit Hold Alt + left-click/drag Alt + left-click/drag Alt + click/drag

Zoom Hold Alt + right-click/drag Alt + right-click/drag Alt-Ctrl + click/drag

http://mng.bz/01Ex
http://mng.bz/KoNK

354 APPENDIX A Scene navigation and keyboard shortcuts

NOTE Although Unity can be used with one- or two-button mice, I highly rec-
ommend getting a three-button mouse (and yes, a three-button mouse works
fine on a Mac).

Besides the navigation maneuvers done using the mouse, some view controls are
based on the keyboard. If you hold down the right button on the mouse, the W, A, S,
D keys on the keyboard can be used to walk around in the manner common to most
first-person games. Hold Shift during any other control to move faster.

 But most important, if you press F while an object is selected, the Scene view will
pan and zoom to focus on that object. If you get lost while navigating your scene, a
common “escape hatch” is to select an object listed in the Hierarchy, move the mouse
over the Scene view (this shortcut works only while in that view), and then press F.

A.2 Commonly used keyboard shortcuts
Unity has keyboard commands to quickly access important functions. The most
important keyboard shortcuts are W, E, R, and T: those keys activate the transform
tools Translate, Rotate, and Scale (refer to chapter 1 if you don’t recall what the trans-
form tools do), as well as the 2D Rect tool. Because those keys are right next to each
other, it’s common to leave your left hand on those keys while your right hand oper-
ates the mouse.

 In addition to the transform tools, you can use keyboard shortcuts. Table A.2 lists
many useful keyboard shortcuts in Unity.

Table A.2 Useful keyboard shortcuts

Keystroke Function

W Translate (move the selected object)

E Rotate (rotate the selected object)

R Scale (resize the selected object)

T Rect tool (manipulate 2D objects)

F Focus view on the selected object

V Snap to vertices

Ctrl/Command-Shift-N New GameObject

Ctrl/Command-P Play game

Ctrl/Command-R Refresh project

Ctrl/ Command-1 Set current window to Scene view

Ctrl/Command-2 Set to Game view

Ctrl/Command-3 Set to Inspector view

Ctrl/Command-4 Set to Hierarchy view

355APPENDIX A Scene navigation and keyboard shortcuts

Unity responds to other keyboard shortcuts as well, but they get increasingly obscure
the further down the list we get.

Ctrl/Command-5 Set to Project view

Ctrl/Command-6 Set to Animation view

Table A.2 Useful keyboard shortcuts

Keystroke Function

356

appendix B
External tools

 used alongside Unity

Developing a game using Unity relies on a variety of external software tools for tak-
ing care of various tasks. In chapter 1, we discussed one external tool: Visual Studio,
which is technically a separate application, even though it’s bundled along with
Unity. In a similar manner, developers rely on an array of external tools to do work
not internal to Unity.

 This isn’t to say that Unity is lacking capabilities that it ought to have. Rather, the
game development process is so complex and multifaceted that any well-designed
piece of software with a clear focus and clean separation of concerns will inevitably
limit itself to being good at a limited subset of the process. In this case, Unity con-
centrates on being the glue and the engine that brings together all the content of a
game and makes it function. Creating all that content is done with other tools; let’s
take a look at several categories of software that could be useful to you.

B.1 Programming tools
We’ve already looked at Visual Studio, the most significant programming tool used
alongside Unity. But you should be aware of other programming tools, as you’ll see
in this section.

B.1.1 Rider
As mentioned in chapter 1, although Unity comes with one flavor of Visual Studio,
you could choose to use a different IDE instead. The most common alternatives are
either Visual Studio Code or JetBrains Rider. Rider (www.jetbrains.com/lp/dotnet-
unity/) is a powerful C# programming environment with Unity integration.

https://www.jetbrains.com/lp/dotnet-unity/
https://www.jetbrains.com/lp/dotnet-unity/

357APPENDIX B External tools used alongside Unity

B.1.2 Xcode
Xcode is the programming environment provided by Apple (in particular, an IDE, but
also including SDKs for Apple platforms). Although you’d still be doing the vast
majority of the work within Unity, you need to use Xcode (https://developer.apple
.com/xcode/) to deploy a game to iOS. That work often involves debugging or profil-
ing your app by using the tools in Xcode.

B.1.3 Android SDK
Just as you need to install Xcode to deploy to iOS, you need to download the Android
SDK to deploy to Android. Usually, you’ll want to download the SDK along with the
Android module in Unity Hub. Alternatively, the Android SDK is provided along with
Android Studio at https://developer.android.com/studio. Unlike when building an
iOS game, you don’t need to fire up any development tools outside of Unity—you sim-
ply have to set preferences in Unity that point to the Android SDK.

B.1.4 Version control (Git, SVN)
Any decent-sized software development project will involve a lot of complex revisions to
code files, so programmers have developed a class of software called a version-control sys-
tem (VCS) to handle this problem. A couple of the most popular free systems are Git
(https://git-scm.com) and Apache Subversion (also known as SVN, https://subversion
.apache.org).

 If you don’t already use a VCS, I highly recommend starting to use one. Unity fills
the project folder with temp files and workspace settings, but the only folders that
need to be in version control are Assets (make sure your version control is picking up
the meta files generated by Unity), Packages, and ProjectSettings.

B.2 3D art applications
Although Unity is perfectly capable of handling 2D graphics (chapters 5 and 6 focus
on 2D graphics), it originated as a 3D game engine and continues to have strong 3D
graphics features. Many 3D artists work with at least one of the software packages
described in this section.

B.2.1 Maya
Autodesk Maya (www.autodesk.com/products/maya/overview) is a 3D art and anima-
tion package with deep roots in moviemaking. Maya’s feature set covers almost every
task that comes up for 3D artists, from crafting beautiful cinematic animations to mak-
ing efficient game-ready models. 3D animation done in Maya (such as a character
walking) can be exported over to Unity.

B.2.2 3ds Max
Another widely used 3D art and animation package, Autodesk 3ds Max (www.autodesk
.com/products/3ds-max/overview) offers an almost identical feature set and is quite
comparable in workflow to Maya. 3ds Max runs only on Windows (whereas other

https://git-scm.com/
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/maya/overview
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://developer.android.com/studio
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

358 APPENDIX B External tools used alongside Unity

tools, including Maya, are cross-platform), but it’s used just as often in the game
industry.

B.2.3 Blender
Though not as commonly used in the game industry as either 3ds Max or Maya,
Blender (www.blender.org) is comparable to those other applications. Blender also
covers almost all 3D art tasks and, best of all, Blender is open source! Given that it’s
available for free on all platforms, Blender is the only 3D art application that’s
assumed to be available by this book.

B.2.4 SketchUp
This simple-to-use modeling tool is especially well-suited for buildings and architec-
tural elements. Unlike the previous tools, SketchUp (www.sketchup.com) does not
cover all or even most 3D art tasks; instead, it focuses on making it easy to model
buildings and other simple shapes. This tool is useful in game development for white-
boxing and level editing.

B.3 2D image editors
2D images are crucial to all games, whether they’re displayed directly for 2D games or
as textures on the surface of 3D models. Several 2D graphics tools come up often in
game development, as you’ll see in this section.

B.3.1 Photoshop
Adobe Photoshop (www.adobe.com/products/photoshop.html) is easily the most
widely used 2D image application there is. The tools in Photoshop can be used to
touch up existing images, apply image filters, or even paint pictures from scratch.
Photoshop supports dozens of file formats, including all image formats used in Unity.

B.3.2 GIMP
An acronym for GNU Image Manipulation Program, GIMP (www.gimp.org) is the best-
known open source 2D graphics application. GIMP trails Photoshop in both features
and usability, but it’s still a useful image editor, and you can’t beat the price!

B.3.3 TexturePacker
Whereas the previously mentioned tools are all used beyond the field of game devel-
opment, TexturePacker is useful only for game development. But it’s very good at the
task it was designed for: assembling sprite sheets to use in 2D games. If you’re develop-
ing a 2D game, you probably want to try out TexturePacker (www.codeandweb.com/
texturepacker).

B.3.4 Aseprite, Pyxel Edit
Pixel art is one of the most recognizable 2D gaming art styles, and Aseprite (www.ase
prite.org) and Pyxel Edit (www.pyxeledit.com) are good pixel art tools. Photoshop

http://www.aseprite.org
http://www.aseprite.org
http://www.aseprite.org
http://www.pyxeledit.com
https://www.gimp.org
https://www.codeandweb.com/texturepacker
https://www.codeandweb.com/texturepacker
https://www.adobe.com/products/photoshop.html
https://www.sketchup.com
https://www.blender.org

359APPENDIX B External tools used alongside Unity

can technically be used for pixel art as well, but it’s not focused on that task. Further-
more, the animation features are more front-and-center at Aseprite and Pyxel Edit.

B.4 Audio software
A dizzying array of audio production tools is available, including both sound editors
(which work with raw waveforms) and sequencers (which compose music using a
sequence of notes). To give a taste of the audio software available, this section looks at
two major sound-editing tools. Other examples beyond this list include Logic, Able-
ton, and Reason.

B.4.1 Pro Tools
Pro Tools audio software (www.avid.com/en/pro-tools) boasts many useful features
and is considered the industry standard by countless music producers and audio engi-
neers. It’s frequently used for all sorts of professional audio work, including game
development.

B.4.2 Audacity
Although it is nowhere near as useful for professional audio work, Audacity
(www.audacityteam.org) is a handy sound editor for small-scale audio work, like pre-
paring short sound files to use as sound effects in a game. This is a popular choice for
those looking for open source sound-editing software.

https://www.avid.com/en/pro-tools
https://www.audacityteam.org

360

appendix C
Modeling

 a bench in Blender

In chapters 2 and 4, we looked at creating levels with large flat walls and floors. But
what about more detailed objects? What if you want, say, interesting furniture in the
room? You can accomplish that by building 3D models in external 3D art apps.
Recall the definition from the introduction to chapter 4: 3D models are the mesh
objects in the game (the 3D shapes). In this appendix, I’ll show you how to create a
mesh object of a simple bench (figure C.1).

Although appendix B lists several 3D art tools, we’ll use Blender for this exercise
because it’s open source and thus accessible to all readers. You’ll create a mesh
object in Blender and export that to an art asset that works with Unity.

TIP Modeling is a huge topic, but we’ll cover only a handful of modeling
functions that will allow you to create the bench. If you want to keep learn-
ing more about modeling after this chapter, look at some of the many
books and tutorials on the subject (to start with, look at the learning
resources at www.blender.org).

Figure C.1 Diagram of the simple
bench you’re going to model.

https://www.blender.org/

361APPENDIX C Modeling a bench in Blender

WARNING I used Blender 2.91, so the explanations and screenshots come
from that version of the software. Newer versions of Blender are released fre-
quently, and changes may occur to the placement of buttons or names of
commands.

C.1 Building the mesh geometry
Launch Blender and click outside the splash screen to dismiss it; the initial default
screen looks like figure C.2, with a cube in the middle of the scene. Use the middle
mouse button to manipulate the camera view: click and drag to tumble, Shift with
click-drag to pan, and Ctrl with click-drag to zoom. Left-click the camera to select it,
hold Shift while clicking the light to select it too, and then press X to delete both.

Blender starts out in Object mode, which, as the name implies, enables you to manip-
ulate entire objects, moving them around the scene. To edit a single mesh object in
detail, you must select it and switch to Edit mode; figure C.3 shows the menu you use.

WARNING Many parts of Blender’s interface are context sensitive, and this
menu is one. The menu items listed vary depending on which object is
selected, be it a mesh, a camera, or something else.

When you first switch to Edit mode, Blender is set to Vertex Selection mode, but but-
tons let you switch between Vertex, Edge, and Face Selection modes (refer to figure
C.4). The various selection modes allow you to select different mesh elements.

The controls for
manipulating the
mesh: interaction
mode menu,
command menus,
and tool buttons

Workspace tabs (stay on the
default workspace for now)

These buttons are viewport
settings, like wireframe or
shaded view.

The default camera
(delete this)

The default
cube

The default light
(delete this)

This properties
panel has tabs
for all kinds of
properties of the
selected object.

Figure C.2 The initial default screen in Blender

362 APPENDIX C Modeling a bench in Blender

DEFINITION Mesh elements are the vertices, edges, and faces that make up the
geometry of the mesh—in other words, the individual corner points, the lines
connecting the points, and the shapes filled in between connected lines.

The interaction mode menu is
located in the top-left corner
of the viewport.

Switch to Edit mode instead
of Object mode.

Figure C.3 Menu for switching from Object to Edit mode

Transform tools:
Move, Rotate, Scale

Click the colored circles for preset
viewpoints. Tumble the view (click
and drag the middle mouse button)
to view in perspective again.

Toggle X-ray to select back
of object (normally you
select only the front)

Show Gizmo: toggle the
colorful arrow guides

These are the controls in Edit
mode. The display differs in
different interaction modes.

Selection mode: Vertex,
Edge, or Face

Figure C.4 Controls along the sides of the viewport

Fundamental mouse and keyboard shortcuts in Blender
Also depicted in figure C.4 are the transform tools. As in Unity, the transforms are
Move, Rotate, and Scale. Toward the top right of the viewport is a button to toggle
Show Gizmo (the arrows in the scene) on and off; I recommend leaving that gizmo on,
because otherwise you can access the transform tools only via keyboard shortcuts.
The keyboard shortcuts in Blender are difficult to use, and the main reason Blender’s
UI has a bad reputation.

363APPENDIX C Modeling a bench in Blender

These are the basic controls for using Blender, so now we’ll see some functions for
editing the model. To start, scale the cube into a long, thin plank. Select every vertex
of the model (be sure to also select vertices on the side of the object facing away; press
A to select all) and then switch to the Scale tool. Click-drag the blue arm to scale down
vertically, and then click-drag the green arrow to scale out sideways (see figure C.5).

Switch to Face Selection mode (use the button indicated in figure C.4) and select
both small ends of the plank. You can click faces individually, and remember to hold
Shift when adding to the selection. Now click the Mesh menu at the top of the view-
port and choose Extrude > Extrude Individual Faces (see figure C.6). As you move the

Blender also used to force rather nonstandard mouse functionality. Though the use
of the middle mouse button to manipulate the camera always made sense, selecting
elements in the scene was done with the right mouse button (in most applications,
the left mouse button selects things). Left-click is now the default for selecting, but
the old functionality is why the splash screen shows this setting (accessible in Edit
> Preferences after the first launch) when you first launch Blender:

Similarly, both box selection and deselecting used to be pretty odd, although now you
simply click and drag or click empty space, respectively. Incidentally, you can hold
Shift while something is already selected to add to the selection, and simply press A
(for All) to select everything.

Blender mouse settings

Blue arrow of the
Transform gizmo

Long, thin plank that
will be the top of
the bench

Figure C.5 Mesh scaled
into a long, thin plank

364 APPENDIX C Modeling a bench in Blender

mouse, you’ll see additional sections added to the ends of the plank; move them out
slightly and then left-click to confirm. Make this additional section only the width of
the bench legs, giving yourself a little additional geometry to work with.

DEFINITION Extrude pushes out new geometry with a cross section in the shape
of the selected faces. The different extrude commands define what to do
when multiple elements are selected: Extrude Individual Faces treats each
face as a separate piece to extrude, whereas the standard Extrude Faces com-
mand treats the entire selection as a single piece.

Now look at the bottom of the plank and select the two thin faces on each end. Use
the Extrude Individual Faces command again to pull down legs for the bench (refer
to figure C.7).

The shape is complete! But before you export the model over to Unity, you want to
take care of texturing the model.

Move the mouse out only slightly
to extrude small end sections.

Select the thin polygons on either end
of the bench; then choose Extrude
Individual Faces in the Mesh menu.

Figure C.6 In the Mesh menu, use Extrude Individual Faces to pull out extra sections.

Select thin faces underneath and
Extrude them down to make legs.

Figure C.7 Select the thin faces underneath the bench and pull down legs.

365APPENDIX C Modeling a bench in Blender

C.2 Texture-mapping the model
3D models can have 2D images (referred to as textures) displayed on their surface.
How exactly the 2D images relate to the 3D surface is straightforward for a large, flat
surface like a wall: simply stretch the image across the flat surface. But what about an
oddly shaped surface, like the sides of the bench? This is where it becomes important
to understand the concept of texture coordinates.

 Texture coordinates define how parts of the texture relate to parts of the mesh. These
coordinates assign mesh elements to areas of the texture. Think about it like wrapping
paper (see figure C.8); the 3D model is the box being wrapped, the texture is the
wrapping paper, and the texture coordinates represent the points on the box where
the wrapping paper will go. The texture coordinates define points and shapes on the
2D image; those shapes correlate to polygons on the mesh, and that part of the image
appears on that part of the mesh.

TIP Another name for texture coordinates is UV coordinates. This is because
texture coordinates are defined using the letters U and V, just as coordinates
on the 3D model are defined using X, Y, and Z.

The technical term for correlating part of one thing to part of another is mapping—
hence the term texture mapping for the process of creating texture coordinates. Com-
ing from the wrapping paper analogy, another name for the process is unwrapping.
And still more terms are created by mashing up the other terminology, like UV

Texture coordinates define
points and shapes on
the wrapping paper that
correlate to sides of the box.
(Numbers in the coordinates
are labeled UV instead of XY.)

Blank box
Wrapping paper

Box covered in wrapping paper

Figure C.8 Wrapping paper makes a good analogy for how texture coordinates work.

366 APPENDIX C Modeling a bench in Blender

unwrapping; a lot of essentially synonymous terms surrounding texture mapping exist,
so try not to get confused.

 Traditionally, the process of texture mapping has been wickedly complicated, but
fortunately, Blender provides tools to make the process fairly simple. First you define
seams on the model; if you think further about wrapping around a box (or better yet,
think about the other direction, unfolding a box), you’ll realize that not every part of
a 3D shape can remain seamless when unfolded into two dimensions. There will have
to be seams in the 3D form where the sides come apart. Blender enables you to select
edges and declare them as seams.

 Switch to Edge Selection mode (see the buttons in figure C.4) and select the edges
along the outside of the bottom of the bench. Now choose Edge > Mark Seam (see fig-
ure C.9). This tells Blender to separate the bottom of the bench for the purposes of
texture mapping. Do the same thing for the sides of the bench, but don’t separate the
sides entirely. Instead, seam only the edges running up the legs of the bench; this way,
the sides will remain connected to the bench while spreading out like wings.

Once all the seams are marked, run the texture unwrap command. First, select the
entire mesh (just press A to select everything, or box select and don’t forget the side
of the object facing away). Next, choose UV > Unwrap to create the texture coordi-
nates. But you can’t see the texture coordinates in this view; Blender defaults to a 3D
view of the scene. Switch to the UV Editing workspace to see the texture coordinates,
using the workspace tabs at the top of the screen (see figure C.10).

 Now you can see the texture coordinates. You can see the polygons of the bench laid
out flat, separated, and unfolded according to the seams you marked. To paint a tex-
ture, you have to see these UV coordinates in your image-editing program. Referring

Select the bottom edges.

Select the outside edges of the legs.

Choose Mark Seam.

Now the unfolded shape will
split at the selected edges.

Figure C.9 Seam edges along the bottom of the bench and along the legs

367APPENDIX C Modeling a bench in Blender

again to figure C.10, choose Export UV Layout under the UV menu in the texture coor-
dinates viewport; save the image as bench.png (this name will also be used later when
importing into Unity) with a size of 256.

 Open this image in your image editor and paint colors for the various parts of your
texture. Painting different colors for different UVs will put different colors on those
faces. For example, figure C.11 shows darker blue where the bottom of the bench was
unfolded on the top of the UV layout, and red was painted on the sides of the bench. Now
the image can be brought back into Blender to texture the model; choose Image > Open.

Select the UV Editing
workspace at the top.

Texture coordinates
displayed as points of
the flattened-out bench

Export UV Layout menu

On the right side of the
export window, set the
size to 256 × 256.

Figure C.10 Switch to UV Editing, then Export UV Layout.

Exported UV layout
Texture image painted

UV Editor after choosing
Open in the Image menu

Figure C.11 Paint colors over the exported UVs and then bring the texture into Blender.

368 APPENDIX C Modeling a bench in Blender

Even though the texture image is open in the UV editing view, you still can’t see the
texture on the model in the 3D view. That requires a couple more steps: assign the
image to the object’s material and then turn on textures in the viewport (see figure
C.12). Now you can see the finished bench, with texture applied!

Save the model now. Blender will save the file with the .blend extension, using the
native file format for Blender. Work in the native file format so that all the features of
Blender will be preserved correctly, but later you’ll have to export the model to a dif-
ferent file format (FBX is recommended in chapter 4) to import it into Unity. Note
that the texture image isn’t saved in the model file; what’s saved is a reference to the
image, but you still need the image file that’s being referenced.

1. Select the bottom
 property tab to see
 the object’s material.

2. Click the circle button next
 to Base Color to get a list of
 options. Select Image Texture.

3. Click the folder
 button to Open
 the texture image.

4. Look at the buttons along the top
 of the main viewport and find the
 down arrow all the way to the right.
 Click this button to open shading
 settings, and select Texture for the
 Color setting.

Figure C.12 Set the image on the object’s material to view the texture on the model.

369

appendix D
Online learning resources

This book is a complete introduction to game development in Unity, but there’s
much more to learn beyond this introduction. You’ll find lots of great resources
online that you can use to go further after finishing this book.

D.1 Additional tutorials
Many sites provide directed information on a variety of topics within Unity. Several
of these are even provided officially by the company behind Unity.

UNITY MANUAL

Unity provides a comprehensive user manual. Not only is it useful for looking up
information, but the list of topics is useful by itself for providing a full idea of what
Unity is capable of. You can find the manual at http://docs.unity3d.com/Manual/
index.html.

SCRIPTING REFERENCE

Unity programmers end up reading the scripting reference more than any other
resource (at least, I do!). The user manual covers the capabilities of the engine and use
of the editor, but the scripting reference is a thorough reference to Unity’s program-
ming API. Every command is listed at http://docs.unity3d.com/ScriptReference/
index.html.

UNITY LEARN TUTORIALS

Unity’s official website includes several comprehensive tutorials, found in the
Learn section. Most importantly, the tutorials are all videos. This may be good or
bad, depending on your perspective; if you are someone who likes to watch video
tutorials, https://learn.unity.com is a good site to check out.

CATLIKE CODING

Rather than walking learners through a complete game, Catlike Coding offers a
grab bag of useful and interesting topics. The topics aren’t even necessarily about

http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/ScriptReference/index.html
http://docs.unity3d.com/ScriptReference/index.html
http://docs.unity3d.com/ScriptReference/index.html
https://learn.unity.com

370 APPENDIX D Online learning resources

game development specifically, but are a great way to build up programming skills in
Unity. The tutorials can be found at catlikecoding.com/unity/tutorials/.

GAME DEVELOPMENT AT STACK EXCHANGE

Stack Exchange is another great information site with a different format from the pre-
vious ones listed. Rather than a series of self-contained tutorials, Stack Exchange pres-
ents a mostly text QA that encourages searching. It has sections about a huge array of
topics, and https://gamedev.stackexchange.com is the area of the site focused on
game development. For what it’s worth, I look for Unity information there almost as
often as I use the script reference.

MAYA LT GUIDE

As described in appendix B, external art applications are a crucial part of creating visually
stunning games. Many resources that teach about Maya, 3ds Max, Blender, or any of the
other 3D art applications are available. Appendix C offers a tutorial about Blender.
One online guide about using Maya LT (a game development–oriented and less expen-
sive version of Maya) is at https://steamcommunity.com/sharedfiles/filedetails/
?id=242847724.

D.2 Code libraries
Although the previously listed resources provide tutorials and/or learning informa-
tion about Unity, the sites in this section provide code that can be used in your proj-
ects. Libraries and plugins are another kind of resource that can be useful for new
developers, not only for using directly but also for learning from (by reading their
code).

UNITY COMMUNITY LIBRARY

The Unity Library is a central database of code contributions from many developers,
and the scripts hosted there cover a wide range of functionality. The Resources sec-
tion of that page links to additional script collections. You can browse the content at
https://github.com/UnityCommunity/UnityLibrary.

DOTWEEN AND LEANTWEEN

As mentioned briefly in chapter 3, a kind of motion effect commonly used in games is
referred to as a tween. In this type of movement, a single code command can set an
object moving to a target over a certain amount of time. Tweening functionality can
be added using libraries like DOTween (http://dotween.demigiant.com) or Lean-
Tween (https://github.com/dentedpixel/LeanTween).

POST-PROCESSING STACK

The Post-Processing Stack is an easy way to add a bunch of visual effects like depth of
field and motion blur to your games. Many of these effects have been integrated into
one über component. This package is described at http://mng.bz/9aXl.

https://github.com/UnityCommunity/UnityLibrary
http://dotween.demigiant.com
https://shortener.manning.com/9aXl
https://catlikecoding.com/unity/tutorials/
https://gamedev.stackexchange.com
https://steamcommunity.com/sharedfiles/filedetails/?id=242847724
https://steamcommunity.com/sharedfiles/filedetails/?id=242847724
https://steamcommunity.com/sharedfiles/filedetails/?id=242847724
https://github.com/dentedpixel/LeanTween

371APPENDIX D Online learning resources

MOBILE NOTIFICATIONS PACKAGE

While the core of Unity already covers all sorts of features across all gaming platforms,
for mobile games you may want to install packages with additional features. The Unity
Mobile Notifications package (http://mng.bz/jjvx) focuses on notifications, the little
alerts generated by apps on your phone.

FIREBASE CLOUD MESSAGING

While the Unity package just mentioned handles local notifications for both Android
and iOS, it supports remote notifications (also called push notifications) on iOS only.
Push notifications on Android work through a service called Firebase Cloud Messaging,
and the developer pages for Firebase (http://mng.bz/WBg0) explain how to use its
Unity SDK.

PLAY GAMES SERVICES FROM GOOGLE

On iOS, Unity has GameCenter integration built in so that your games can have
platform-native leaderboards and achievements. The equivalent system on Android is
called Google Play Games; although it isn’t built into Unity, Google maintains a plugin
at http://mng.bz/80QP.

FMOD STUDIO

The audio functionality built into Unity works well for playing back recordings, but
can be limited for advanced sound design work. FMOD Studio is an advanced sound
design tool that has a Unity plugin. Find it at www.fmod.com/studio.

https://shortener.manning.com/jjvx
https://shortener.manning.com/WBg0
http://mng.bz/80QP
https://www.fmod.com/studio

373

index

Numerics

2D game demo 127
building card object and making it react to

clicks 110–112
building object out of sprites 110
mouse input code 111–112
revealing card on click 112

displaying various card images 113–119
instantiating grid of cards 116–117
loading images programmatically 113–114
setting image from invisible

SceneController 114–116
shuffling cards 118–119

making and scoring matches 119–123
hiding mismatched cards 120–121
storing and comparing revealed cards 120
text display for score 121–123

restart button 123–127
calling LoadScene from

SceneController 126–127
programming UIButton component using

SendMessage 124–126
setting up for 2D graphics 104–110

displaying 2D images 107–108
preparing project 105
switching camera to 2D mode 108–110

2D image editors 358–359
2D images, texturing scene with 82–87

applying image 85–87
choosing file format 83–84
importing image file 84–85

2D interface, advanced 149–150
2D platformer 146

additional features 140–146
camera control 145–146

moving platforms 142–144
slopes and one-way platforms 140–141

jump ability, adding 137–140
applying upward impulse 138–139
detecting ground 139–140
falling from gravity 137–138

moving player left and right 132–134
collision detection 134
writing keyboard controls 133

playing sprite's animation 134–137
Mecanim animation system 134–136
triggering animations from code 136–137

setting up graphics 129–132
importing sprite sheets 130–132
placing scenery 129–130

3D art applications 357–358
3D demo 49, 74

basic wandering AI 60–63
diagramming how basic AI works 60–61
tracking character's state 62–63

keyboard input component 44–49
adjusting components for walking 47–49
moving CharacterController for collision

detection 46–47
responding to keypresses 44–45
setting rate of movement independent of

computer speed 45–46
movement scripts 33–36

local vs. global coordinate space 35–36
visualizing how movement is programmed 33
writing code to implement diagram 34–35

placing objects in scene 27–33
lights and cameras 30–32
player's collider and viewpoint 32–33
scenery 28–30

planning project 24–25

INDEX374

3D demo (continued)
script component for looking around 37–43

horizontal and vertical rotation at same
time 41–43

horizontal rotation tracking mouse
movement 38–39

vertical rotation with limits 39–41
scripting reactive targets 57–60

alerting target that it was hit 58–60
determining what was hit 57–58

shooting by instantiating prefabs 68–74
creating projectile prefab 68–69
damaging player 73–74
shooting projectile and colliding with

target 70–72
shooting via raycasts 51–57

adding visual indicators for aiming and
hits 54–57

raycasting, defined 51–52
ScreenPointToRay command 52–54

spawning enemy prefabs 64–68
creating enemy prefab 65
instantiating from invisible

SceneController 65–68
prefabs, defined 64

understanding 3D coordinate space 25–27
3D models, custom 90–94

exporting and importing 92–94
file formats 91–92

3D objects, attaching particle effects to 99–100
3ds Max 357–358

A

acceleration, in third-person 3D game 185–186
Action keyword 240
action role-playing game (RPG) demo 313

building by repurposing projects 283–298
assembling assets and code from multiple

projects 284–286
bringing over AI enemy 285–286
implementing inventory pop-up 295–298
operating devices by using mouse 290–292
programming point-and-click controls

286–292
replacing old GUI with new interface

292–298
setting up top-down view of scene 287
updating managers framework 284–285
writing movement code 287–290

developing overarching game structure
299–307

completing level by reaching exit 303–305

controlling mission flow and multiple
levels 299–303

losing level when caught by enemies 305–307
separate scenes for Startup and Level

301–303
handling player progression through

game 307–313
adding more levels 312–313
beating game by completing three levels

311–313
saving and loading progress 307–311

Action type 239
Activate() function 209
Activate() method 210
AddComponentMenu attribute 48
AddForce() command 139
AddItem() method 218
additive 98
advanced 2D interface 149–150
AI (artificial intelligence)

basic wandering 60–63
diagramming how basic AI works 60–61
tracking character's state 62–63

bringing enemies to action RPG demo 285–286
aiming, visual indicators for 54–57
alpha channel 83
anchors 156
Android

plugins 336–340
setting up build tools 329–331

Android SDK 357
animations

on player character, in third-person 3D
game 190–198

creating animator controller 194–197
defining animation clips in imported

model 192–194
writing code that operates animator 197–198

sprite, in 2D platformer 134–137
Mecanim animation system 134–136
triggering animations from code 136–137

AR Foundation for mobile augmented
reality 342–348

art assets 76–78
as keyword 274
Aseprite 358–359
assets 64
atmosphere controlled by code, setting up

232–235
Audacity 359
audio 281

audio control interface 265–272
playing UI sounds 271–272
setting up central AudioManager 265–267
volume control UI 267–271

INDEX 375

audio (continued)
background music, adding 272–280

controlling music volume separately
276–278

fading between songs 278–280
playing music loops 272–276

importing sound effects 258–261
importing audio files 260–261
supported file formats 258–260

playing sound effects 261–265
assigning looping sound 263–264
audio system parts 261–263
triggering sound effects from code 264–265

audio listener 263
Audio object 271
audio software 359
audio source 262
AudioListener class 269
AudioListener component 263
AudioManager

setting up 265–267
setting up AudioSource for 273–274
writing code to play audio clips in 274–275

AudioManager property 277
AudioSource 273–274
AudioSource component 263
AudioSource object 280
AudioSource variable 280
augmented reality (AR), mobile 342–348
Awake() method 217

B

background music 272–280
controlling music volume separately 276–278
fading between songs 278–280
playing music loops 272–276

adding music controls to UI 275–276
importing audio clips 273
setting up AudioSource 273–274
writing code to play audio clips in

AudioManager 274–275
baking shadows 176
billboard, networked 247–253

caching downloaded image for reuse 251–253
displaying images on billboard 250–251
loading images from internet 247–250

Blender
general discussion 358
modeling bench in 360–368

building mesh geometry 361–364
texture-mapping model 365–368

broadcast messenger system 166–170

broadcasting and listening for events from
HUD 168–170

broadcasting and listening for events from
scene 167–168

integrating event system 166–167
browser, communicating with JavaScript in

322–325
build tools, for mobile games 326–331
buttons, in GUI 153–155

C

cache 251
caching downloaded image for reuse 251–253
callback 240
callback parameter 240
callback, understanding 240
Camera component 53
Camera object 30
camera-relative movement controls 180–184

moving forward in that direction 183–184
rotating character to face movement

direction 180–183
cameras

adjusting view for third-person 173–179
adding shadows to scene 175–177
importing character to look at 174–175
orbiting camera around player

character 177–179
controlling in 2D platformer 145–146
in 3D demo 30–32
switching to 2D mode 108–110

Canvas object 295
canvas, creating for GUI 151–153
card_back sprite 110
CardRevealed() method 119
cards, Memory game demo

building card object and making it react to
clicks 110–112

building object out of sprites 110
mouse input code 111–112
revealing card on click 112

displaying various images 113–119
instantiating grid of cards 116–117
loading images programmatically 113–114
setting image from invisible

SceneController 114–116
shuffling cards 118–119

hiding mismatched cards 120–121
storing and comparing revealed cards 120

Cartesian coordinate system 25
Catlike Coding 369–370
ChangeHealth() method 225
CharacterController 46–47

INDEX376

characters
animations on, in third-person 3D game

190–198
creating animator controller 194–197
defining animation clips in imported

model 192–194
writing code that operates animator 197–198

importing for third-person game 174–175
orbiting camera around 177–179
rotating to face movement direction 180–183
tracking state of 62–63

Clamp() method 40
click, revealing card on in Memory game 112
code libraries 370–371
CollectibleItem script 218
collecting items scattered around level 210–212
collection object, storing inventory in 217–220
collider, player, in 3D demo 32–33
colliding with target, in 3D demo 70–72
collision detection

in 2D platformer 134
moving CharacterController for 46–47

collision responses 206–212
collecting items scattered around level 210–212
colliding with physics-enabled obstacles

206–207
operating door with trigger object 207–210

Color object 206
color-changing monitor 205–206
components 5
computer speed, setting rate of movement

independent of 45–46
console games developed in Unity 7–8
Console tab 16
console, printing to 19–21
ConsumeItem() method 225
ContainsKey() method 220
controller 212
Controller object 295
coordinates, 3D 25–27
coroutines, HTTP requests using 238–242

callback 240
coroutine methods cascading through each

other 239–240
making use of networking code 241–242
writing code for 238–239

cross product 182
CSG (constructive solid geometry) 80
Cube object 30
culling mask 177
Cursor settings 157
custom 3D models 90–94

exporting and importing 92–94
file formats 91–92

D

damaging player, in first-person shooter game
73–74

DataManager script 308
Deactivate() function 209
Deactivate() method 210
Debug statement 120
Debug.Log() command 21
dependencies block 244
deploying games to players 348

building for desktop 317–320
adjusting player settings 318–319
building application 317–318
platform-dependent compilation 319–320

building for mobile 325–340
developing plugins 332–340
setting up build tools 326–331
texture compression 331–332

building for web 321–325
communicating with JavaScript in

browser 322–325
game embedded in web page 321–322

developing extended reality 341–348
AR Foundation for mobile augmented

reality 342–348
supporting virtual reality headsets 341–342

deserialization 245
desktop games

building for desktop 317–320
adjusting player settings 318–319
building application 317–318
platform-dependent compilation 319–320

built with Unity, examples of 7–8
Destroy()method 68
developer 4
DeviceOperator script 204, 250, 291
DeviceTrigger script 210
Dictionary, storing inventory in 217–220
directional lights 30
directive 318
distance property 62
DllImport command 323
DontDestroyOnLoad() function 312
DontDestroyOnLoad() method 127, 301
DoorOpenDevice script 209
doors

checking distance and facing before
opening 203–205

equipping key to use on locked 223–224
operating with trigger object 207–210
that open and close on keypress, creating 201–

203
dot product 190
DOTween 370

INDEX 377

downloading weather data 235–247
changing scene based on weather data 246–247
parsing JSON 243–246
parsing XML 242–243
requesting HTTP data using coroutines

238–242
DrawLine() command 143
DrawRay() command 143
dynamic string 165

E

edges, handling in third-person 3D game
186–190

effects, creating using particle systems 95–100
adjusting parameters on default effect 96
applying new texture for fire 98–99
attaching particle effects to 3D objects 99–100

enemies, adding to 3D game
basic wandering AI 60–63

diagramming how basic AI works 60–61
tracking character's state 62–63

scripting reactive targets 57–60
alerting target that it was hit 58–60
determining what was hit 57–58

shooting by instantiating prefabs 68–74
creating projectile prefab 68–69
damaging player 73–74
shooting projectile and colliding with

target 70–72
spawning enemy prefabs 64–68

creating enemy prefab 65
instantiating from invisible

SceneController 65–68
prefabs, defined 64

enemies, in action RPG demo
bringing from 3D game 285–286
losing level when caught by 305–307

EquipItem() method 223
equippedItem property 223
ETC (Ericsson Texture Compression) 332
events, updating game by responding to 166–170

broadcasting and listening for events from
HUD 168–170

broadcasting and listening for events from
scene 167–168

integrating event system 166–167
EventTrigger component 298
exit, completing level by reaching 303–305
exporting custom 3D models 92–94
extended reality (XR), developing 341–348

AR Foundation for mobile augmented
reality 342–348

supporting virtual reality headsets 341–342

external software tools 356–359
2D image editors 358–359
3D art applications 357–358
audio software 359
programming tools 356–357

extrude 364

F

fading between songs 278–280
file formats

2D images 83–84
custom 3D models 91–92
supported for sound effects 258–260

File.Create() method 310
fire effect, creating using particle systems 95–100

adjusting parameters on default effect 96
applying new texture for fire 98–99
attaching particle effects to 3D objects 99–100

Fireball object 69
Firebase Cloud Messaging 371
first-person controls, in 3D demo 44–49

adjusting components for walking 47–49
moving CharacterController for collision

detection 46–47
responding to keypresses 44–45
setting rate of movement independent of

computer speed 45–46
first-person shooter (FPS) game demo 74

basic wandering AI 60–63
diagramming how basic AI works 60–61
tracking character's state 62–63

scripting reactive targets 57–60
alerting target that it was hit 58–60
determining what was hit 57–58

shooting by instantiating prefabs 68–74
creating projectile prefab 68–69
damaging player 73–74
shooting projectile and colliding with

target 70–72
shooting via raycasts 51–57

adding visual indicators for aiming and
hits 54–57

raycasting, defined 51–52
ScreenPointToRay command 52–54

spawning enemy prefabs 64–68
creating enemy prefab 65
instantiating from invisible

SceneController 65–68
prefabs, defined 64

Floor object 30
floor plan for level

drawing 79–80
laying out primitives according to 80–81

FMOD Studio 371

INDEX378

FPS (first-person shooter) 24
frame 17
frame-rate dependent 45
frame-rate independent 45
freezeRotation property 42
FSM (finite-state machine) 63

G

game state, managing 212–220
programming game managers 214–217
setting up player and inventory managers

212–213
storing inventory in collection object 217–220

Game view 12–14
GameEvent script 167, 293
GameObject type 67
get command 165
get function 269
GetAxis() method 39
GetButtonDown() function 186
GetComponent() method 58, 113
GetItemCount() method 221
GetItemList() method 221
GIMP 358
global coordinates 35–36
Google Play Games 371
graphics 100

art assets 76–78
custom 3D models 90–94

exporting and importing 92–94
file formats 91–92

generating sky visuals by using texture
images 87–90

creating new skybox material 88–90
skybox, defined 87–88

importing UI images 151
particle systems, creating effects using 95–100

adjusting parameters on default effect 96
applying new texture for fire 98–99
attaching particle effects to 3D objects

99–100
texturing scene with 2D images 82–87

applying image 85–87
choosing file format 83–84
importing image file 84–85

whiteboxing 78–81
drawing floor plan for level 79–80
explained 79
laying out primitives according to plan

80–81
gravity variable 47
gravity, in 2D platformer 137–138
grid of cards, Memory game demo 116–117

ground detection
in 2D platformer 139–140
modifying in third-person 3D game 186–190

grounded variable 140
GUI (graphical user interface) 170

action RPG demo 292–298
adding music controls to 275–276
defined 121
immediate mode GUI vs. advanced 2D

interface 149–150
importing UI images 151
planning layout 150
playing UI sounds 271–272
programming interactivity in 157–166

creating pop-up window 160–163
invisible UIController 158–160
setting values using sliders and input

fields 163–166
setting up display 151–157

buttons, images, and text labels 153–155
controlling position of elements 156–157
creating canvas for interface 151–153

updating game by responding to events
166–170

broadcasting and listening for events from
HUD 168–170

broadcasting and listening for events from
scene 167–168

integrating event system 166–167
volume control 267–271

H

health, restoring player 224–225
Hello World! script 19–21
hiding mismatched cards, Memory game

demo 120–121
Hierarchy tab 15
hits

alerting target that it was hit 58–60
determining what was hit 57–58
visual indicators for 54–57

HMD (head-mounted display) 342
horizontal movement, in 2D platformer 132–134

collision detection 134
writing keyboard controls 133

horizontal rotation
and vertical rotation at same time 41–43
tracking mouse movement 38–39

HTTP (Hypertext Transfer Protocol) 230
HUD (heads-up display) 148
Hurt() method 73
Hypertext Transfer Protocol (HTTP) requests

using coroutines 238–242
callback 240

INDEX 379

Hypertext Transfer Protocol (HTTP) requests
(continued)

coroutine methods cascading through each
other 239–240

making use of networking code 241–242
writing code for 238–239

I

icons array 298
IDE (integrated development environment) 5
if statement 67, 186, 224, 289
IGameManager interface 215, 284
image variable 113
images

2D, displaying 107–108
card, displaying various in Memory game

113–119
instantiating grid of cards 116–117
loading images programmatically 113–114
setting image from invisible

SceneController 114–116
shuffling cards 118–119

in GUI 153–155
networked billboard

caching downloaded image for reuse
251–253

displaying images on billboard 250–251
loading images from internet 247–250

immediate mode GUI 149–150
importing

audio clips 273
custom 3D models 92–94
sound effects 258–261

importing audio files 260–261
supported file formats 258–260

sprite sheets 130–132
UI images 151

impulse 139
Initialize() function 334
Input class 39
input fields, pop-up window 163–166
Input.GetMouseButtonDown() method 53
Inspector tab 15
instantiate 65
Instantiate() method 67, 116
instantiating grid of cards, Memory game

demo 116–117
instantiating prefabs

from invisible SceneController 65–68
shooting by 68–74

creating projectile prefab 68–69
damaging player 73–74

shooting projectile and colliding with
target 70–72

int parameter 275
interactive devices and items 226

collision responses 206–212
collecting items scattered around level

210–212
colliding with physics-enabled obstacles

206–207
operating door with trigger object 207–210

creating doors and other devices 201–206
checking distance and facing before opening

door 203–205
doors that open and close on keypress

201–203
operating color-changing monitor 205–206

inventory UI 220–225
displaying inventory items in UI 220–222
equipping key to use on locked doors

223–224
restoring player health 224–225

managing inventory data and game state
212–220

programming game managers 214–217
setting up player and inventory

managers 212–213
storing inventory in collection object

217–220
operating devices by using mouse 290–292

interactivity in GUI, programming 157–166
creating pop-up window 160–163
invisible UIController 158–160
setting values using sliders and input fields

163–166
internet, connecting game to 256

downloading weather data 235–247
changing scene based on weather data

246–247
HTTP requests using coroutines 238–242
parsing JSON 243–246
parsing XML 242–243

networked billboard, adding 247–253
caching downloaded image for reuse

251–253
displaying images on billboard 250–251
loading images from internet 247–250

outdoor scene, creating 231–235
generating sky visuals by using skybox

231–232
setting up atmosphere controlled by

code 232–235
posting data to web server 253–256

server-side code in PHP 255–256
tracking current weather 254–255

INDEX380

inventory data, managing 212–220
programming game managers 214–217
setting up player and inventory managers

212–213
storing inventory in collection object 217–220

inventory manager
programming 214–217
setting up 212–213

inventory pop-up, action RPG demo 295–298
Inventory Popup object 295
inventory UI 220–225

displaying inventory items in 220–222
equipping key to use on locked doors 223–224
restoring player health 224–225

InventoryManager script 217
InventoryPopup script 295
iOS

plugins 333–336
setting up build tools 326–329

IPA (iOS application package) 326
isGrounded property 186

J

JavaScript, communicating with in browser 322–325
JSON (JavaScript Object Notation), parsing when

downloading weather data 243–246
JSON Linq 245
JsonConvert.DeserializeObject command 245
JsonUtility class 244
jump ability, adding to 2D platformer 137–140

applying upward impulse 138–139
detecting ground 139–140
falling from gravity 137–138

jump action, third-person 3D game 184–190
applying vertical speed and acceleration

185–186
modifying ground detection to handle edges

and slopes 186–190

K

key, to use on locked doors 223–224
keyboard controls, 2D platformer 133
keyboard input component, 3D demo 44–49

adjusting components for walking 47–49
moving CharacterController for collision

detection 46–47
responding to keypresses 44–45
setting rate of movement independent of

computer speed 45–46
keyboard shortcuts 354–355
keyboard use with Unity 14–15
Knuth shuffle algorithm 118

L

labels array 298
lambda function 252
LateUpdate() function 178
LateUpdate() method 145
layout, planning GUI 150
lazy loading 272
LeanTween 370
level design 79
level designer 79
levels

action RPG demo
adding more 312–313
beating game by completing three 311–313
completing by reaching exit 303–305
controlling mission flow and 299–303
losing when caught by enemies 305–307
separate scenes for 301–303

collecting items scattered around 210–212
level design 79–80

lightmaps 176
lights, in 3D demo 30–32
linear interpolation 182
List object, storing inventory in 217–220
loading images programmatically 113–114
loading player progress 307–311
LoadScene method, calling from

SceneController 126–127
LoadScene() method 300
local coordinates 35–36
locked doors, equipping key to use on 223–224
LookAt() method 179
looking around, script component for 37–43

horizontal and vertical rotation at same
time 41–43

horizontal rotation tracking mouse
movement 38–39

vertical rotation with limits 39–41
LookRotation() value 182
looping sound, assigning 263–264
loops, defined 193
loops, playing music 272–276

adding music controls to UI 275–276
importing audio clips 273
setting up AudioSource 273–274
writing code to play audio clips in

AudioManager 274–275
losing level when caught by enemies, action RPG

demo 305–307

M

manager of managers 212
managers framework, updating for action RPG

demo 284–285

INDEX 381

Managers object 213, 265
Managers script 217, 266, 300
ManagerStatus script 214
material 69, 77
material, skybox 88–90
Maya 357, 370
Mecanim animation system 134–136
Memory game demo 127

building card object and making it react to
clicks 110–112

building object out of sprites 110
mouse input code 111–112
revealing card on click 112

displaying various card images 113–119
instantiating grid of cards 116–117
loading images programmatically 113–114
setting image from invisible

SceneController 114–116
shuffling cards 118–119

making and scoring matches 119–123
hiding mismatched cards 120–121
storing and comparing revealed cards 120
text display for score 121–123

restart button 123–127
calling LoadScene from

SceneController 126–127
programming UIButton component using

SendMessage 124–126
setting up for 2D graphics 104–110

displaying 2D images 107–108
preparing project 105
switching camera to 2D mode 108–110

MemoryCard script 113
mesh elements 362
mesh object 13
mesh object, creating in Blender 360–368

building mesh geometry 361–364
texture-mapping model 365–368

Messenger script 167, 293
mismatched cards, Memory game demo 120–121
mission flow, action RPG demo 299–303
MMO (massively multiplayer online) 229
MMORPGs (MMO role-playing games) 229
mobile 325
mobile augmented reality 342–348
mobile games

building for mobile 325–340
developing plugins 332–340
setting up build tools 326–331
texture compression 331–332

built with Unity, examples of 8–9
Mobile Notifications package 371
model 76
modeling bench in Blender 360–368

building mesh geometry 361–364

texture-mapping model 365–368
MonoBehaviour class 30
mouse

operating devices by using 290–292
scene navigation using 353–354
use with Unity 14–15

mouse input code, Memory game demo 111–112
mouse picking 52
MouseLook script 37–43

horizontal and vertical rotation at same
time 41–43

horizontal rotation tracking mouse
movement 38–39

vertical rotation with limits 39–41
Move() method 47
movement 33–36

action RPG demo 287–290
adjusting components for walking 47–49
local vs. global coordinate space 35–36
moving CharacterController for collision

detection 46–47
programming camera-relative controls 180–184

moving forward in that direction 183–184
rotating character to face movement

direction 180–183
responding to keypresses 44–45
setting rate of, independent of computer

speed 45–46
visualizing how movement is programmed 33
writing code to implement diagram 34–35

movement script 134
moving platforms, in 2D platformers 142–144
MovingPlatform script 143

N

navigation using mouse 353–354
networked billboard 247–253

caching downloaded image for reuse 251–253
displaying images on billboard 250–251
loading images from internet 247–250

networking code, making use of 241–242
NetworkService class 236
NetworkService object 235
NetworkService script 238
normal property 189
normalized vectors 204
normals 175
nullable values 289

O

Object type 67
ObjectiveTrigger script 305

INDEX382

objects, placing in scene 27–33
lights and cameras 30–32
player's collider and viewpoint 32–33
scenery 28–30

OnControllerColliderHit() function 190
OnDisable() method 168
OnDrawGizmos() method 143
one-way platforms, in 2D platformers 140–141
OnEnable() method 168
OnGUI() method 57, 149, 222
online learning resources 369–371

additional tutorials 369–370
code libraries 370–371

OnMouseDown() function 112
OnMouseSomething function 125
OnSpeedValue() method 165
OnSubmitName() function 165
OnTriggerEnter() method 72, 209
OnTriggerExit() method 209
Operate function 206
Operate() method 202, 291
OrbitCamera component 301
orbiting camera around player character 177–179
orthographic, defined 109
outdoor scene, creating 231–235

changing scene based on weather data 246–247
generating sky visuals by using skybox 231–232
setting up atmosphere controlled by code

232–235
OverlapSphere() method 204

P

parameters 136
parsing 242

JSON when downloading weather data 243–246
XML when downloading weather data 242–243

particle systems, creating effects using 95–100
adjusting parameters on default effect 96
applying new texture for fire 98–99
attaching particle effects to 3D objects 99–100

PCM (pulse code modulation) 261
Photoshop 358
PHP, server-side code in 255–256
physics-enabled obstacles, colliding with 206–207
Physics.Raycast() method 52
Physics.SphereCast() method 62
pixel-perfect 109
platform-dependent compilation 319–320
PlatformerPlayer script 136
player manager

programming 214–217
setting up 212–213

Player object 30
Player Settings, Build Settings window 318–319

Player tag 291
PlayerCharacter script 73
PlayerManager script 217
players

collider and viewpoint, in 3D demo 32–33
damaging in first-person shooter game 73–74
handling progression through action RPG

307–313
adding more levels 312–313
beating game by completing three levels

311–313
saving and loading progress 307–311

moving left and right in 2D platformer 132–134
collision detection 134
writing keyboard controls 133

playing music loops 272–276
adding music controls to UI 275–276
importing audio clips 273
setting up AudioSource 273–274
writing code to play audio clips in

AudioManager 274–275
playing sound effects 261–265

assigning looping sound 263–264
audio system parts 261–263
triggering sound effects from code 264–265

playing UI sounds 271–272
PlayMusic() method 274
PlayOneShot() method 265
plugins for mobile games 332–340
point lights 30
point-and-click controls for action RPG

demo 286–292
pop-up window

creating 160–163
inventory, action RPG demo 295–298
setting values using sliders and input fields

163–166
positioning objects on GUI 156–157
Post-Processing Stack 370
posting data to web server 253–256

server-side code in PHP 255–256
tracking current weather 254–255

318
prefabs

shooting by instantiating 68–74
creating projectile prefab 68–69
damaging player 73–74
shooting projectile and colliding with

target 70–72
spawning enemy 64–68

creating enemy prefab 65
instantiating from invisible

SceneController 65–68
prefabs, defined 64

INDEX 383

primitives, laying out according to floor plan
80–81

printing to console 19–21
Pro Tools 359
programmer 4
programming 16–21

external software tools 356–357
of movement, visualizing 33
printing to console 19–21
script components 17–18
using Visual Studio 18–19

Project tab 16
projectile prefab, creating 68–69
PVRTC (PowerVR Texture Compression) 332
Pyxel Edit 358–359

Q

Quaternion.Lerp() method 182

R

radius variable 204
Random.Range() method 62, 115
ray 52
Ray object 54
Raycast() method 54
raycasts 61–62

shooting via 51–57
adding visual indicators for aiming and

hits 54–57
raycasting, defined 51–52
ScreenPointToRay command 52–54

RayShooter class 56
reactive targets, scripting 57–60

alerting target that it was hit 58–60
determining what was hit 57–58

ReactiveTarget script 59
ReactToHit()method 59
Rect tool 14
RelativeMovement component 288
RelativeMovement script 183, 203
rendering, defined 57
RequireComponent attribute 48, 184
requireKey Boolean 223
requireKey option 224
Resources.Load() command 272
Resources.Load() method 221
restart button, Memory game demo 123–127

calling LoadScene from SceneController
126–127

programming UIButton component using
SendMessage 124–126

Restart() method 126

retained mode 149
revealed cards, Memory game demo 120
Rider 356
Rigidbody component 42, 133
root object 29
Rotate command 39
Rotate() method 35
rotating character to face movement

direction 180–183
rotation, responding to mouse input 37–43

horizontal and vertical rotation at same
time 41–43

horizontal rotation tracking mouse
movement 38–39

vertical rotation with limits 39–41
RPG (role-playing game) 283
running code in Unity 17–18

S

saving player progress 307–311
scene

broadcasting and listening for events from
167–168

for startup and levels in action RPG demo
301–303

navigation using mouse 353–354
top-down view in action RPG demo 287

Scene view 12–14
SceneController

calling LoadScene from 126–127
instantiating enemy prefab from 65–68
setting card image from 114–116

SceneController component 113
SceneController object 126
SceneController script 67
scenery

in 3D demo 28–30
placing in 2D platformer 129–130

score variable 123
score, Memory game demo 121–123
scoreLabel variable 123
Screen Space—Camera setting 152
Screen Space—Overlay setting 152
ScreenPointToRay command 52–54
ScreenPointToRay() method 52
script components

for looking around 37–43
horizontal and vertical rotation at same

time 41–43
horizontal rotation tracking mouse

movement 38–39
vertical rotation with limits 39–41

general discussion 17–18
scripting reference 369

INDEX384

scripts
movement 33–36

adjusting components for walking 47–49
local vs. global coordinate space 35–36
moving CharacterController for collision

detection 46–47
responding to keypresses 44–45
setting rate of movement independent of

computer speed 45–46
visualizing how movement is programmed 33
writing code to implement diagram 34–35

reactive targets 57–60
alerting target that it was hit 58–60
determining what was hit 57–58

SendMessage, programming UIButton component
using 124–126

SendMessage() method 126
serialization 245, 308
SerializeField attribute 66
server, posting data to 253–256

server-side code in PHP 255–256
tracking current weather 254–255

set function 269
SetActive() method 112
SetFloat() method 233
SetOvercast() method 246
SettingsPopup script 162, 270
shader 88
shadows, adding to third-person scene 175–177
shooting

by instantiating prefabs 68–74
creating projectile prefab 68–69
damaging player 73–74
shooting projectile and colliding with

target 70–72
via raycasts 51–57

adding visual indicators for aiming and
hits 54–57

raycasting, defined 51–52
ScreenPointToRay command 52–54

shortcuts, keyboard 354–355
shuffling cards, Memory game demo 118–119
skeletal animation 191
SketchUp 358
sky visuals

generating by using texture images 87–90
creating new skybox material 88–90
skybox, defined 87–88

generating using skybox 231–232
skyboxes

creating new skybox material 88–90
defined 87–88
generating sky visuals using 231–232

slerp (spherical linear interpolation) 182
sliced image 160

sliders, pop-up window 163–166
slopes

handling, in third-person 3D game 186–190
in 2D platformers 140–141

SmoothDamp() function 146
software tools, external 356–359

2D image editors 358–359
3D art applications 357–358
audio software 359
programming tools 356–357

sound effects
importing 258–261

importing audio files 260–261
supported file formats 258–260

playing 261–265
assigning looping sound 263–264
audio system parts 261–263
triggering sound effects from code 264–265

soundMute property 270
soundVolume property 269
spawning enemy prefabs 64–68

creating enemy prefab 65
instantiating from invisible

SceneController 65–68
prefabs, defined 64

speed parameter 136
Sphere object 30
SphereCast() method 61
Spin script 36
spot lights 30
sprite property 113
sprite sheets, importing 130–132
Sprite variable 113
SpriteRenderer component 113
SpriteRenderer object 113
sprites

building card object out of 110
displaying 107–108
playing animation in 2D platformer 134–137

Mecanim animation system 134–136
triggering animations from code 136–137

SSAO (screen space ambient occlusion) 4
Stack Exchange 370
Start() method 17, 42, 57, 157
StartCoroutine() method 238
Startup() function 236
Startup() method 217, 277
StartupController script 301
state machine 134
state, tracking character's 62–63
states 135
static extern command 334
status property 214, 236
storing inventory in collection object 217–220
string function 336

INDEX 385

string interpolation 73
switch statement 276
System namespace 239

T

T-pose 175
table_top sprite 107
target property 180
targets property 210
targets, reactive 57–60

alerting target that it was hit 58–60
determining what was hit 57–58

text display for score, Memory game demo
121–123

text labels, in GUI 153–155
texture 82
texture coordinates 93, 365
texture-mapping model in Blender 365–368
TexturePacker 358
textures

compression for mobile games 331–332
for fire effect 98–99
generating sky visuals by using 87–90

creating new skybox material 88–90
skybox, defined 87–88

texturing scene with 2D images 82–87
applying image 85–87
choosing file format 83–84
importing image file 84–85

TGA file format 83
third-person 3D game 199

adjusting camera view for third-person 173–179
adding shadows to scene 175–177
importing character to look at 174–175
orbiting camera around player

character 177–179
implementing jump action 184–190

applying vertical speed and acceleration
185–186

modifying ground detection to handle edges
and slopes 186–190

programming camera-relative movement
controls 180–184

moving forward in that direction 183–184
rotating character to face movement

direction 180–183
setting up animations on player character

190–198
creating animator controller 194–197
defining animation clips in imported

model 192–194
writing code that operates animator 197–198

tileable images 84
Time class 46

Toolbar 12–14
top-down view of scene, action RPG demo 287
tracking character's state 62–63
tracking current weather 254–255
transform 47
Transform class 35
Transform component 58, 113
TransformDirection() method 47
transforms, script applying 33–36

local vs. global coordinate space 35–36
visualizing how movement is programmed 33
writing code to implement diagram 34–35

Translate() method 45, 62
trigger object, operating door with 207–210
triggering animations from code 136–137
triggering sound effects from code 264–265
triggers 209
tutorials, Unity 369–370

U

UI (user interface) 7–170
action RPG demo 292–298
adding music controls to 275–276
immediate mode GUI vs. advanced 2D

interface 149–150
importing UI images 151
inventory UI 220–225

displaying inventory items in 220–222
equipping key to use on locked doors

223–224
restoring player health 224–225

planning layout 150
playing UI sounds 271–272
programming interactivity in 157–166

creating pop-up window 160–163
invisible UIController 158–160
setting values using sliders and input

fields 163–166
setting up display 151–157

buttons, images, and text labels 153–155
controlling position of elements 156–157
creating canvas for interface 151–153

updating game by responding to events
166–170

broadcasting and listening for events from
HUD 168–170

broadcasting and listening for events from
scene 167–168

integrating event system 166–167
volume control 267–271

UIButton component, programming using
SendMessage 124–126

UIController component 295
UIController script 158–160, 294

INDEX386

Unity 22
downsides of 6–7
example games built with 7–10
programming in 16–21

printing to console 19–21
script components 17–18
using Visual Studio 18–19

scripting reference 369
strengths and advantages of 4–6
tutorials 369
use of 10–16

Hierarchy and Inspector tabs 15
mouse and keyboard use 14–15
Project and Console tabs 16
Scene view, Game view, and Toolbar 12–14

user manual 369
Unity Library 370
UNITY_ANDROID platform 337
UnitySendMessage() method 336
UnityWebRequest class 238
UnityWebRequest object 247
unusual floors, in 2D platformers 140–141
unwrapping 365
Update() function 112, 181, 203
Update() method 17, 33, 55, 167, 190, 289
UpdateData() method 308
updating game by responding to events 166–170

broadcasting and listening for events from
HUD 168–170

broadcasting and listening for events from
scene 167–168

integrating event system 166–167
UPM (Unity Package Manager) 244
user manual 369
using statement 239
UV unwrapping 366

V

VCS (version-control system) 357
Vector3 value 203
vertical movement

in 2D platformer 137–140
applying upward impulse 138–139
detecting ground 139–140
falling from gravity 137–138

in third-person 3D game 185–186
vertical rotation

and horizontal rotation at same time 41–43
for MouseLook 39–41

viewpoint, player's, in 3D demo 32–33
visual indicators for aiming and hits 54–57
Visual Studio 18–19
volume control UI 267–271
volume, music, controlling separately 276–278

VR (virtual reality) games 9–10
VR (virtual reality) headsets 341–342

W

walking, adjusting components for 47–49
wandering AI, basic 60–63

diagramming how basic AI works 60–61
tracking character's state 62–63

WanderingAI script 63
weather data

downloading 235–247
changing scene based on weather data

246–247
parsing JSON 243–246
parsing XML 242–243
requesting HTTP data using coroutines

238–242
posting to web server 253–256

server-side code in PHP 255–256
tracking current weather 254–255

WeatherController script 246
WeatherManager class 235
web API 235
web server, posting data to 253–256

server-side code in PHP 255–256
tracking current weather 254–255

web service 235
web, building for 321–325

communicating with JavaScript in browser
322–325

game embedded in web page 321–322
whiteboxing 78–81

drawing floor plan for level 79–80
explained 79
laying out primitives according to plan 80–81

World Space setting 152
WWWForm object 254

X

Xcode 357
XML (Extensible Markup Language) 242
XR (extended reality) 5

Y

yield command 56, 121
yield keyword 56, 238
yield statement 239

Z

z-fighting 287

First-person shooter on PC

3D camera Raycasting

GUI Audio Deploy

Tile-matching puzzle game on a website

GUI Audio Deploy

Side-scrolling platformer for desktop computers

2D graphics

2D graphics

2D physics

HTTP requests

GUI Audio Deploy

Mobile adventure game about exploring castles

3D camera Manage inventoryGUI

Audio Deploy

These building blocks assemble into practically
any video game you can imagine!

HTTP requests

Insert Your Game!

Joseph Hocking
Foreword by Jesse Schell

ISBN: 978-1-61729-933-9

W
riting games is rewarding and fun--and with Unity, it’s
easy to get started! Unity handles the heavy lifting, so
you can focus on game play, graphics, and user experi-

ence. C# support and a huge ecosystem of prebuilt compo-
nents help even fi rst-time developers go from the drawing
board to the screen fast.

Unity in Action, Third Edition teaches you to create games with
the Unity game platform. It’s many 2D, 3D, and AR/VR
game examples give you hands-on experience with Unity’s
workfl ow tools and state-of-the-art rendering engine. Th is
fully updated third edition presents new coverage of Unity’s
XR toolkit and shows you how you can start building with
virtual and augmented reality.

What’s Inside
● Create characters that run, jump, and bump into things
● Script enemies with AI
● Play music and spatially-aware sound eff ects
● Deploy your games to desktop, mobile, and the web

For programmers who know any object-oriented program-
ming language. Examples are in C#.

Joe Hocking is a software engineer and Unity expert specializ-
ing in interactive media development.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

Unity IN ACTION Third Edition

GAME DEVELOPMENT/UNITY

M A N N I N G

“What I love most about
Unity in Action is the ‘action’

part. Joe Hocking wastes
none of your time and
gets you coding fast!”

—From the Foreword by Jesse Schell
CEO of Shell Games

“Th e book you should buy
if you want to get a

thorough understanding
of how to use Unity.

Highly recommended!”
—Nick Keers, cinch

“A practical and didactic
book that will take you by

the hand and teach you how
to create amazing games.”
—Alain Lompo, ISO-Gruppe

“An all-around
comprehensive resource to

get you started with Unity.”—Krishna Chaitanya Anipindi
Hexagon

See first page

	Unity in Action, Third Edition
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1: First steps
	Chapter 1: Getting to know Unity
	1.1 Why is Unity so great?
	1.1.1 Unity’s strengths and advantages
	1.1.2 Downsides to be aware of
	1.1.3 Example games built with Unity

	1.2 How to use Unity
	1.2.1 Scene view, Game view, and the Toolbar
	1.2.2 The mouse and keyboard
	1.2.3 The Hierarchy view and the Inspector panel
	1.2.4 The Project and Console tabs

	1.3 Getting up and running with Unity programming
	1.3.1 Running code in Unity: Script components
	1.3.2 Using Visual Studio, the included IDE
	1.3.3 Printing to the console: Hello World!

	Chapter 2: Building a demo that puts you in 3D space
	2.1 Before you start . . .
	2.1.1 Planning the project
	2.1.2 Understanding 3D coordinate space

	2.2 Begin the project: Place objects in the scene
	2.2.1 The scenery: Floor, outer walls, and inner walls
	2.2.2 Lights and cameras
	2.2.3 The player’s collider and viewpoint

	2.3 Make things move: A script that applies transforms
	2.3.1 Visualizing how movement is programmed
	2.3.2 Writing code to implement the diagram
	2.3.3 Understanding local vs. global coordinate space

	2.4 Script component for looking around: MouseLook
	2.4.1 Horizontal rotation that tracks mouse movement
	2.4.2 Vertical rotation with limits
	2.4.3 Horizontal and vertical rotation at the same time

	2.5 Keyboard input component: First-person controls
	2.5.1 Responding to keypresses
	2.5.2 Setting a rate of movement independent of the computer’s speed
	2.5.3 Moving the CharacterController for collision detection
	2.5.4 Adjusting components for walking instead of flying

	Chapter 3: Adding enemies and projectiles to the 3D game
	3.1 Shooting via raycasts
	3.1.1 What is raycasting?
	3.1.2 Using the ScreenPointToRay command for shooting
	3.1.3 Adding visual indicators for aiming and hits

	3.2 Scripting reactive targets
	3.2.1 Determining what was hit
	3.2.2 Alerting the target that it was hit

	3.3 Basic wandering AI
	3.3.1 Diagramming how basic AI works
	3.3.2 “Seeing” obstacles with a raycast
	3.3.3 Tracking the character’s state

	3.4 Spawning enemy prefabs
	3.4.1 What is a prefab?
	3.4.2 Creating the enemy prefab
	3.4.3 Instantiating from an invisible SceneController

	3.5 Shooting by instantiating objects
	3.5.1 Creating the projectile prefab
	3.5.2 Shooting the projectile and colliding with a target
	3.5.3 Damaging the player

	Chapter 4: Developing graphics for your game
	4.1 Understanding art assets
	4.2 Building basic 3D scenery: Whiteboxing
	4.2.1 Whiteboxing explained
	4.2.2 Drawing a floor plan for the level
	4.2.3 Laying out primitives according to the plan

	4.3 Texturing the scene with 2D images
	4.3.1 Choosing a file format
	4.3.2 Importing an image file
	4.3.3 Applying the image

	4.4 Generating sky visuals by using texture images
	4.4.1 What is a skybox?
	4.4.2 Creating a new skybox material

	4.5 Working with custom 3D models
	4.5.1 Which file format to choose?
	4.5.2 Exporting and importing the model

	4.6 Creating effects by using particle systems
	4.6.1 Adjusting parameters on the default effect
	4.6.2 Applying a new texture for fire
	4.6.3 Attaching particle effects to 3D objects

	Part 2: Getting comfortable
	Chapter 5: Building a Memory game using Unity’s 2D functionality
	5.1 Setting up everything for 2D graphics
	5.1.1 Preparing the project
	5.1.2 Displaying 2D images (aka sprites)
	5.1.3 Switching the camera to 2D mode

	5.2 Building a card object and making it react to clicks
	5.2.1 Building the object out of sprites
	5.2.2 Mouse input code
	5.2.3 Revealing the card on a click

	5.3 Displaying the various card images
	5.3.1 Loading images programmatically
	5.3.2 Setting the image from an invisible SceneController
	5.3.3 Instantiating a grid of cards
	5.3.4 Shuffling the cards

	5.4 Making and scoring matches
	5.4.1 Storing and comparing revealed cards
	5.4.2 Hiding mismatched cards
	5.4.3 Text display for the score

	5.5 Restart button
	5.5.1 Programming a UIButton component by using SendMessage
	5.5.2 Calling LoadScene from SceneController

	Chapter 6: Creating a basic 2D platformer
	6.1 Setting up the graphics
	6.1.1 Placing the scenery
	6.1.2 Importing sprite sheets

	6.2 Moving the player left and right
	6.2.1 Writing keyboard controls
	6.2.2 Colliding with the block

	6.3 Playing the sprite’s animation
	6.3.1 Explaining the Mecanim animation system
	6.3.2 Triggering animations from code

	6.4 Adding the ability to jump
	6.4.1 Falling from gravity
	6.4.2 Applying an upward impulse
	6.4.3 Detecting the ground

	6.5 Additional features for a platform game
	6.5.1 Unusual floors: Slopes and one-way platforms
	6.5.2 Implementing moving platforms
	6.5.3 Camera control

	Chapter 7: Putting a GUI onto a game
	7.1 Before you start writing code . . .
	7.1.1 Immediate mode GUI or advanced 2D interface?
	7.1.2 Planning the layout
	7.1.3 Importing UI images

	7.2 Setting up the GUI display
	7.2.1 Creating a canvas for the interface
	7.2.2 Buttons, images, and text labels
	7.2.3 Controlling the position of UI elements

	7.3 Programming interactivity in the UI
	7.3.1 Programming an invisible UIController
	7.3.2 Creating a pop-up window
	7.3.3 Setting values using sliders and input fields

	7.4 Updating the game by responding to events
	7.4.1 Integrating an event system
	7.4.2 Broadcasting and listening for events from the scene
	7.4.3 Broadcasting and listening for events from the HUD

	Chapter 8: Creating a third- person 3D game: Player movement and animation
	8.1 Adjusting the camera view for third-person
	8.1.1 Importing a character to look at
	8.1.2 Adding shadows to the scene
	8.1.3 Orbiting the camera around the player character

	8.2 Programming camera-relative movement controls
	8.2.1 Rotating the character to face movement direction
	8.2.2 Moving forward in that direction

	8.3 Implementing the jump action
	8.3.1 Applying vertical speed and acceleration
	8.3.2 Modifying the ground detection to handle edges and slopes

	8.4 Setting up animations on the player character
	8.4.1 Defining animation clips in the imported model
	8.4.2 Creating the animator controller for these animations
	8.4.3 Writing code that operates the animator

	Chapter 9: Adding interactive devices and items within the game
	9.1 Creating doors and other devices
	9.1.1 Doors that open and close on a keypress
	9.1.2 Checking distance and facing before opening the door
	9.1.3 Operating a color-changing monitor

	9.2 Interacting with objects by bumping into them
	9.2.1 Colliding with physics-enabled obstacles
	9.2.2 Operating the door with a trigger object
	9.2.3 Collecting items scattered around the level

	9.3 Managing inventory data and game state
	9.3.1 Setting up player and inventory managers
	9.3.2 Programming the game managers
	9.3.3 Storing inventory in a collection object: List vs. Dictionary

	9.4 Inventory UI for using and equipping items
	9.4.1 Displaying inventory items in the UI
	9.4.2 Equipping a key to use on locked doors
	9.4.3 Restoring the player’s health by consuming health packs

	Part 3: Strong finish
	Chapter 10: Connecting your game to the internet
	10.1 Creating an outdoor scene
	10.1.1 Generating sky visuals by using a skybox
	10.1.2 Setting up an atmosphere that’s controlled by code

	10.2 Downloading weather data from an internet service
	10.2.1 Requesting HTTP data using coroutines
	10.2.2 Parsing XML
	10.2.3 Parsing JSON
	10.2.4 Affecting the scene based on weather data

	10.3 Adding a networked billboard
	10.3.1 Loading images from the internet
	10.3.2 Displaying images on the billboard
	10.3.3 Caching the downloaded image for reuse

	10.4 Posting data to a web server
	10.4.1 Tracking current weather: Sending post requests
	10.4.2 Server-side code in PHP

	Chapter 11: Playing audio: Sound effects and music
	11.1 Importing sound effects
	11.1.1 Supported file formats
	11.1.2 Importing audio files

	11.2 Playing sound effects
	11.2.1 Explaining what’s involved: Audio clip vs. source vs. listener
	11.2.2 Assigning a looping sound
	11.2.3 Triggering sound effects from code

	11.3 Using the audio control interface
	11.3.1 Setting up the central AudioManager
	11.3.2 Volume control UI
	11.3.3 Playing UI sounds

	11.4 Adding background music
	11.4.1 Playing music loops
	11.4.2 Controlling music volume separately
	11.4.3 Fading between songs

	Chapter 12: Putting the parts together into a complete game
	12.1 Building an action RPG by repurposing projects
	12.1.1 Assembling assets and code from multiple projects
	12.1.2 Programming point-and-click controls: Movement and devices
	12.1.3 Replacing the old GUI with a new interface

	12.2 Developing the overarching game structure
	12.2.1 Controlling mission flow and multiple levels
	12.2.2 Completing a level by reaching the exit
	12.2.3 Losing the level when caught by enemies

	12.3 Handling the player’s progression through the game
	12.3.1 Saving and loading the player’s progress
	12.3.2 Beating the game by completing three levels

	Chapter 12: Deploying your game to players’ devices
	13.1 Start by building for the desktop: Windows, Mac, and Linux
	13.1.1 Building the application
	13.1.2 Adjusting player settings: Setting the game’s name and icon
	13.1.3 Platform-dependent compilation

	13.2 Building for the web
	13.2.1 Building the game embedded in a web page
	13.2.2 Communicating with JavaScript in the browser

	13.3 Building for mobile: iOS and Android
	13.3.1 Setting up the build tools
	13.3.2 Texture compression
	13.3.3 Developing plugins

	13.4 Developing XR (both VR and AR)
	13.4.1 Supporting virtual reality headsets
	13.4.2 AR Foundation for mobile Augmented Reality

	after word
	Game design
	Marketing your game

	appendix A: Scene navigation and keyboard shortcuts
	A.1 Scene navigation using the mouse
	A.2 Commonly used keyboard shortcuts

	appendix B: External tools used alongside Unity
	B.1 Programming tools
	B.1.1 Rider
	B.1.2 Xcode
	B.1.3 Android SDK
	B.1.4 Version control (Git, SVN)

	B.2 3D art applications
	B.2.1 Maya
	B.2.2 3ds Max
	B.2.3 Blender
	B.2.4 SketchUp

	B.3 2D image editors
	B.3.1 Photoshop
	B.3.2 GIMP
	B.3.3 TexturePacker
	B.3.4 Aseprite, Pyxel Edit

	B.4 Audio software
	B.4.1 Pro Tools
	B.4.2 Audacity

	appendix C: Modeling a bench in Blender
	C.1 Building the mesh geometry
	C.2 Texture-mapping the model

	appendix D: Online learning resources
	D.1 Additional tutorials
	D.2 Code libraries

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

