

Hands-On Unity 2022 Game
Development
Third Edition

Learn to use the latest Unity 2022 features to create your
first video game in the simplest way possible

Nicolas Alejandro Borromeo

BIRMINGHAM—MUMBAI

Hands-On Unity 2022 Game Development
Third Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Manish Nainani

Acquisition Editor – Peer Reviews: Gaurav Gavas

Project Editor: Amisha Vathare

Content Development Editor: Grey Murtagh

Copy Editor: Safis Editing

Technical Editor: Srishty Bhardwaj

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Pranit Padwal

First published: July 2020

Second edition: August 2021

Third edition: October 2022

Production reference: 1211022

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-691-9

www.packt.com

www.packt.com

Contributors

About the author
Nicolas Alejandro Borromeo is a Game Developer currently working for Unity Technologies

as a Senior Software Development Consultant and Unity Certified Instructor in London, helping

Unity clients with their projects all around the globe. He started using Unity in 2008 and teaching

it in 2012 at several universities and educational institutions.

I want to say thanks to my father who always encouraged my love for computers and games; I miss you. Also

to my wife Edith, for always reminding me what I’m capable of, and supporting me in my career.

About the reviewer
Rafael J. M. Ocariz is currently an Expert Software Engineer living in Quebec City, Canada.

With 11 years of experience in software development, 8 of those developing games in Unity, he

has developed products for mobile, PC, and VR platforms. His portfolio includes big titles from

the Call of Duty franchise, Crash Bandicoot, Tony Hawk’s, and WWE. He also has solid skills in

several other technologies, such as distributed systems, modern C++, Unreal Engine, Lua, Python,

and native app development for Android and iOS.

I’d like to thank God and my wife, Giovanna N. Barbero, for all the support they gave me during this project.

Table of Contents

Preface xv

Chapter 1: Creating a Unity Project 1

Installing Unity ... 1

Unity’s technical requirements • 2

Unity versioning • 2

Installing Unity with Unity Hub • 3

Creating projects .. 11

Creating a project • 12

Project structure • 14

Summary .. 16

Chapter 2: Editing Scenes and Game Objects 17

Manipulating scenes .. 17

The purpose of a scene • 18

The Scene View • 18

Adding our first GameObject to the scene • 20

Navigating the Scene View • 21

Manipulating GameObjects • 22

GameObjects and components .. 27

Understanding components • 27

Manipulating components • 29

Table of Contentsvi

Object Hierarchies ... 34

Parenting of objects • 34

Possible uses • 36

Prefabs .. 37

Creating Prefabs • 38

Prefab-instance relationship • 39

Prefab variants • 43

Saving scenes and projects .. 44

Summary .. 45

Chapter 3: Grayboxing with Terrain and ProBuilder 47

Defining our game concept ... 47

Creating a landscape with Terrain .. 48

Discussing Height Maps • 49

Creating and configuring Height Maps • 50

Authoring Height Maps • 53

Adding Height Map details • 57

Creating shapes with ProBuilder .. 60

Installing ProBuilder • 61

Creating a shape • 64

Manipulating the mesh • 65

Adding details • 72

Summary .. 76

Chapter 4: Importing and Integrating Assets 79

Importing assets ... 79

Importing assets from the internet • 80

Importing assets from the Asset Store • 82

Importing assets from Unity Packages • 90

Integrating assets .. 91

Integrating terrain textures • 91

Table of Contents vii

Integrating meshes • 94

Integrating textures • 95

Configuring assets .. 99

Configuring meshes • 99

Configuring textures • 101

Assembling the scene • 103

Summary .. 106

Chapter 5: Introduction to C# and Visual Scripting 107

Creating scripts ... 108

Initial setup • 109

Creating a C# script • 112

Adding fields • 116

Creating a Visual Script • 118

Using events and instructions .. 121

Events and instructions in C# • 122

Events and instructions in Visual Scripting • 126

Using fields in instructions • 129

Common beginner C# script errors • 132

Summary ... 135

Chapter 6: Implementing Movement and Spawning 137

Implementing movement .. 137

Moving objects through Transform • 138

Using Input • 141

Understanding Delta Time • 148

Implementing spawning ... 150

Spawning objects • 151

Timing actions • 161

Destroying objects • 166

Table of Contentsviii

Using the new Input System ... 168

Installing the new Input System • 168

Creating Input Mappings • 170

Using Mappings in our scripts • 174

Summary ... 179

Chapter 7: Physics Collisions and Health System 181

Configuring physics .. 182

Setting shapes • 182

Physics object types • 186

Filtering collisions • 190

Detecting collisions ... 193

Detecting Trigger events • 193

Modifying the other object • 196

Moving with physics .. 200

Applying forces • 200

Tweaking physics • 203

Summary .. 206

Chapter 8: Win and Lose Conditions 207

Creating object managers ... 207

Sharing variables with the Singleton design pattern • 208

Sharing variables with Visual Scripting • 213

Creating managers • 216

Creating Game Modes ... 224

Improving our code with events .. 231

Summary ... 241

Chapter 9: Implementing Game AI for Building Enemies 243

Gathering information with sensors ... 243

Creating three-filter sensors with C# • 244

Table of Contents ix

Creating Three-Filters sensors with Visual Scripting • 251

Debugging with Gizmos • 255

Making decisions with FSMs .. 264

Creating the FSM in C# • 264

Creating transitions • 267

Creating the FSM in Visual Scripting • 272

Executing FSM actions .. 283

Calculating our scene’s NavMesh • 283

Using Pathfinding • 286

Adding the final details .. 291

Summary .. 298

Chapter 10: Materials and Effects with URP and Shader Graph 299

Introducing shaders and URP ... 299

Shader Pipeline • 300

Render Pipeline and URP • 303

URP built-in shaders • 305

Creating shaders with Shader Graph .. 310

Creating our first Shader Graph • 310

Using Textures ... 316

Combining Textures .. 325

Applying transparency .. 328

Creating Vertex Effects ... 331

Summary .. 334

Chapter 11: Visual Effects with Particle Systems and Visual Effect Graph 335

Introduction to Shuriken particle systems .. 335

Creating a basic particle system with Shuriken • 336

Using advanced modules • 342

Creating fluid simulations .. 344

Creating a waterfall effect • 344

Table of Contentsx

Creating a bonfire effect • 346

Creating complex simulations with Visual Effect Graph ... 349

Installing Visual Effect Graph • 350

Creating and analyzing a Visual Effect Graph • 352

Creating a rain effect • 356

Scripting Visual Effects ... 363

Summary .. 370

Chapter 12: Lighting Using the Universal Render Pipeline 371

Applying lighting ... 371

Discussing lighting methods • 372

Configuring ambient lighting with skyboxes • 377

Configuring lighting in URP • 382

Applying shadows ... 386

Understanding shadow calculations • 386

Configuring performant shadows • 391

Optimizing lighting .. 395

Understanding static lighting • 395

Baking lightmaps • 396

Applying static lighting to static objects • 404

Summary ... 408

Chapter 13: Full-Screen Effects with Post-Processing 411

Using post-processing ... 411

Setting up a profile • 412

Using basic effects • 414

Using advanced effects .. 418

High Dynamic Range (HDR) and Depth Map • 418

Applying advanced effects • 421

Summary .. 428

Table of Contents xi

Chapter 14: Sound and Music Integration 429

Importing audio .. 429

Audio types • 430

Configuring import settings • 432

Integrating and mixing audio ... 436

Using 2D and 3D AudioSources • 436

Using an Audio Mixer • 441

Scripting audio feedback .. 446

Summary .. 449

Chapter 15: User Interface Design 451

Understanding the Canvas and RectTransform ... 452

Creating a UI with the Canvas • 452

Positioning elements with RectTransform • 453

Canvas object types ... 456

Integrating assets for the UI • 456

Creating UI controls • 465

Creating a responsive UI ... 473

Adapting object positions • 474

Adapting object sizes • 477

Scripting the UI .. 480

Showing information in the UI • 480

Programming the Pause menu • 495

Summary .. 504

Chapter 16: Creating a UI with the UI Toolkit 507

Why learn UI Toolkit? ... 507

Creating a UI with UI Toolkit .. 508

Creating UI Documents • 508

Editing UI Documents • 510

Creating UI Stylesheets • 519

Table of Contentsxii

Making a responsive UI ... 524

Dynamic positioning and sizing • 524

Dynamic scaling • 528

Using relative positions • 530

Summary .. 536

Chapter 17: Creating Animations with Animator, Cinemachine,
and Timeline 537

Using Skinning Animation with Animator ... 537

Understanding skinning • 538

Importing skeletal animations • 541

Integration using Animation Controllers • 545

Using Avatar Masks • 552

Scripting animations ... 557

Scripting player shooting animations • 557

Scripting movement animations • 567

Creating dynamic cameras with Cinemachine .. 570

Creating camera behaviors • 571

Creating dolly tracks • 575

Creating cutscenes with Timeline ... 578

Creating animation clips • 578

Sequencing our intro cutscene • 581

Summary .. 587

Chapter 18: Optimization with Profiler, Frame Debugger, and
Memory Profiler 589

Optimizing graphics ... 590

Introduction to graphics engines • 590

Using Frame Debugger • 591

Using batching • 593

Other optimizations • 598

Table of Contents xiii

Optimizing processing .. 602

Detecting CPU- and GPU-bound • 603

Using the CPU Usage Profiler • 605

General CPU optimization techniques • 609

Optimizing memory ... 613

Memory allocation and the garbage collector • 613

Using the Memory Profiler • 619

Summary .. 624

Chapter 19: Generating and Debugging an Executable 627

Building a project .. 627

Debugging the build ... 632

Debugging code • 633

Profiling performance • 635

Summary .. 638

Chapter 20: Augmented Reality in Unity 639

Using AR Foundation .. 640

Creating an AR Foundation project • 640

Using tracking features • 644

Building for mobile devices .. 651

Building for Android • 651

Building for iOS • 659

Creating a simple AR game .. 663

Spawning the player and enemies • 663

Coding the player and enemy behavior • 666

Summary .. 672

Other Books You May Enjoy 675

Index 679

Preface

I still remember that moment of my life when I was afraid of telling my parents that I was going

to study game development. At that time, in my region, that was considered a childish desire by

most parents, and a career with no future, but I was stubborn enough not to care and to follow

my dream. Today, game development is one of the biggest industries, generating more revenue

than film.

Of course, following my dream was more difficult than I thought. Anyone with the same dream

as me sooner or later faces the fact that developing games is a difficult task that requires a deep

level of knowledge in different areas. Sadly, most people give up due to this difficulty level, but I

strongly believe that with the proper guidance and tools, you can make your career path easier.

In my case, what helped me to flatten the learning curve was learning to use Unity.

Welcome to this book about Unity 2022. Here, you will learn how to use the most recent Unity

features to create your first videogame in the simplest way possible nowadays. Unity is a tool

that provides you with powerful but simple-to-use features to solve the most common problems

in game development, such as rendering, animation, physics, sound, and effects. We will be

using all these features to create a simple but complete game, learning all the nuances needed

to handle Unity.

If you have read the 2021 edition of this book, you will find that not only have the contents been

updated to the latest Unity and Packages versions, but also new content has been introduced in

2022, such as coverage of the new Input System.

By the end of this book, you will be able to use Unity in a way that will allow you to start studying

in depth the areas of game development that you are interested in to build your career or simply

create hobby games just for the joy of doing it. Unity is a versatile tool that can be used in both

professional and amateur projects, and is being used every day by more and more people.

Prefacexvi

It is worth mentioning that Unity can be used not only for creating games but for any kind of

interactive apps, from simple mobile apps to complex training or educative applications (known

as Serious Gaming), using the latest technologies such as Augmented or Virtual Reality. So, even

if we are creating a game here, you are starting a learning path that can end in lots of possible

specializations.

Who this book is for
People with different backgrounds can take advantage of the whole book or parts of it thanks to

the way it is structured. If you have basic OOP knowledge but have never created a game before, or

have never created one in Unity, you will find the book a nice introduction to game development

and Unity basic to advanced concepts. You could also find most parts of this book useful even if

you are a seasoned Unity developer who wants to learn how to use its latest features.

On the other side, if you don’t have any programming knowledge, you can also take advantage

of the book, as most of the chapters don’t require programming experience to learn from them.

Those chapters will give you a robust skillset to start learning coding in Unity, making the process

easier than before reading them, and once you learn the basics of coding, you can take advantage

of the scripting chapters of this book. Also, with the introduction of Visual Scripting, you will have

an alternative language if you are more comfortable with node-based scripting.

What this book covers
Chapter 1, Creating a Unity Project, teaches you how to install and set up Unity on your computer,

and also how to create your first project.

Chapter 2, Editing Scenes and GameObjects, teaches you the concepts of Scenes and GameObjects,

the Unity way to describe what your game world is composed of.

Chapter 3, Grayboxing with Terrain and ProBuilder, is where we will be creating our first level layout,

prototyping it with the Terrain and ProBuilder Unity features.

Chapter 4, Importing and Integrating Assets, is where we will be creating our first level layout, pro-

totyping it with the Terrain and ProBuilder Unity features.

Chapter 5, Introduction to C# and Visual Scripting, is the first programming chapter of the book. We

will learn how to create our first script using C# in the Unity way, and then we will explore how

to do the same with Visual Scripting, the new node-based coding language of Unity. The rest of

the programming chapters will show how to code the game in both languages.

Preface xvii

Chapter 6, Implementing Movement and Spawning, teaches you how to program the movement

of your objects and how to spawn them. This chapter introduces the new Unity Input System.

General programming knowledge is assumed from now on.

Chapter 7, Physics Collisions and Health System, teaches you how to configure the Physics settings

of objects to detect when two of them collide and react to the collision, creating a health system,

in this case.

Chapter 8, Win and Lose Condition, covers how to detect when the game should end, both when

the player wins and loses.

Chapter 9, Implementing Game AI for Building Enemies, covers creating a basic AI using several

Unity features for creating challenging enemies in our game.

Chapter 10, Materials and Effects with URP and Shader Graph, shows how to use one of the latest

Unity render systems (Universal Render Pipeline, or URP) and how to create effects with the

Shader Graph feature.

Chapter 11, Visual Effects with Particle Systems and Visual Effect Graph, teaches you how to create visual

effects such as water and fire using the two main Unity tools for doing so, Particle Systems and

VFX Graph, and how to make scripts that control them according to what’s happening in the game.

Chapter 12, Lighting Using the Univeral Render Pipeline, looks at lighting, which is a concept big

enough to have its own chapter. Here, we will deepen our knowledge of the Universal Render

Pipeline, specifically its lighting capabilities.

Chapter 13, Fullscreen Effects with Postprocessing, teaches you how to add a layer of effects on top

of your scene graphics using the postprocessing feature of the Universal Render Pipeline to get

that film effect most modern games have today.

Chapter 14, Sound and Music Integration, covers a topic that is underestimated by most beginner

developers; here we will learn how to properly add sound and music to our game, taking into

consideration its impact on performance. This also covers how to script the sound.

Chapter 15, User Interface Design, looks at the User Interface (UI). Of all the graphical ways to

communicate information to the user, the UI is the most direct one. We will learn how to display

information in the form of text, images, and life bars using the Unity UI system, and also how to

script the UI.

Prefacexviii

Chapter 16, Creating a UI with the UI Toolkit, looks at UI Toolkit, which is the successor of Canvas,

the UI system we learned about in Chapter 15, User Interface Design. We will explore it to get ahead

and be prepared for Unity’s use of this HTML-based toolkit in the future.

Chapter 17, Creating Animations with Animator, Cinemachine, and Timeline, takes us further than

the static scene we have created so far. In this chapter, we will start moving our characters and

creating cutscenes with the latest Unity features to do so, and how to script them.

Chapter 18, Optimization with Profiler, Frame Debugger, and Memory Profiler, discusses how mak-

ing our game perform well is no easy task, but is certainly needed to release it. Here, we will be

learning how to profile our game’s performance and tackle the most common performance issues.

Chapter 19, Generating and Debugging an Executable, teaches you how to convert your Unity proj-

ect into an executable format to distribute it to other people and run it without Unity installed.

Chapter 20, Augmented Reality in Unity, teaches you how to create an AR application with Unity’s

AR Foundation package, one of the most recent ways to create AR applications with Unity.

To get the most out of this book
You will be developing a full project through the chapters of this book, and while you can just

read the chapters, I highly recommend you practice all the steps in this project as you advance

through the book, to get the experience needed to properly learn the concepts demonstrated here.

The chapters are designed so you can customize the game and not create the exact game shown

in the book. However, consider not deviating too much from the main idea.

The project files are split into a folder per chapter and are designed in a cumulative way, each

folder having just the new files introduced by the chapter or the changed ones. This means, for

example, that if a file hasn’t change since Chapter 1, you won’t find it in Chapter 2 onward; those

chapters will just use the file introduced in Chapter 1. This allows you to see just what we changed

in each chapter, easily identifying the needed changes, and if for some reason you can’t finish, for

example, Chapter 3, you can just continue with Chapter 4’s steps on top of Chapter 3. Also note

that Chapters 15 to 19 will have two versions of the files, the C# ones and the Visual Scripting ones.

Software/hardware covered in the book OS requirements

Unity 2022.1 Windows, macOS X or Linux (any)

Visual Studio 2022 Community Windows or macOS X (any)

XCode 13 macOS X

Preface xix

While we will see how to use XCode 13, is not required for most of the chapters. Also, there are

alternatives to Visual Studio in Linux, like Visual Studio Code.

If you are using the digital version of this book, we advise you to type the code yourself or access

the code via the GitHub repository (link available in the next section). Doing so will help you

avoid any potential errors related to the copying and pasting of code.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Hands-On-Unity-2022-Game-Development-Third-Edition. We also have other code bundles

from our rich catalog of books and videos available at https://github.com/PacktPublishing/.

Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://static.packt-cdn.com/downloads/9781803236919_

ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Set its

shader to Universal Render Pipeline/Particles/Unlit.”

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Create a new empty

GameObject (GameObject | Create Empty).”

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/Hands-On-Unity-2022-Game-Development-Third-Edition
https://github.com/PacktPublishing/Hands-On-Unity-2022-Game-Development-Third-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803236919_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803236919_ColorImages.pdf

Prefacexx

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Hands-On Unity 2022 Game Development, Third Edition, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for this book and

share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803236914

Preface xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803236919

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803236919

1
Creating a Unity Project

In this chapter, we will learn how to install Unity and create a project with Unity Hub, a tool that

manages different Unity installations and projects, among other tasks. Unity Hub gives easy ac-

cess to community blogs, forums, resources, and learning portals; it also manages your licenses,

and allows you to change the building platform before opening the project on top of managing

different installs and projects.

Specifically, we will examine the following concepts in this chapter:

• Installing Unity

• Creating projects

Let’s start by talking about how to get Unity up and running.

Installing Unity
We’ll begin with a simple but necessary first step: installing Unity. It seems like a straightforward

first step, but we can discuss the proper ways to do this. In this section, we will be looking at the

following concepts:

• Unity’s technical requirements

• Unity versioning

• Installing Unity with Unity Hub

First, we will discuss what is necessary to run Unity on our computers.

Creating a Unity Project2

Unity’s technical requirements
To run Unity 2022, your computer will need to meet the following operating system requirements:

• If you use Windows, you need Windows 7 Service Pack 1 or greater, Windows 10, or Win-

dows 11. Unity will run only on 64-bit versions of those systems; there is no 32-bit support

unless you are willing to work with Unity versions before 2017.x, but that’s outside the

scope of this book.

• For Mac, you need Big Sur 11.0 to run Apple silicon versions of the editor. In any other case,

you can run Intel versions of the editor from High Sierra 10.13 or superior.

• For Linux, you need exactly Ubuntu 20.04, 18.04, or CentOS 7.

Regarding the CPU, these are the requirements:

• Your CPU needs to support 64 bits

• Your CPU needs to support SSE2 (most CPUs support it)

• In the case of Macs with Apple silicon, M1 or above is needed

Finally, regarding graphics cards, these are the supported ones:

• On Windows, we need a graphics card with DirectX 10, 11, or 12 support (most modern

GPUs support it)

• On Mac, any Metal-capable Intel or AMD GPU will be enough

• On Linux, OpenGL 3.2 or any superior version, or a Vulkan-compatible card from Nvidia

and AMD is supported

Now that we know the requirements, let’s discuss the Unity installation management system.

Unity versioning
Unity releases a new major version each year—at the time of writing, 2022.1—and during that

year it receives an update with new features, which is planned to be 2022.2 at the time of writing

this book. Near the end of the year or during the beginning of the next one, an LTS (long-term

support) version is released, which will be 2022.3 for this edition of the book, marking the end of

new features being added to that year’s version of the engine. After that, the next year’s edition

of the engine is released, and the cycle repeats.

Chapter 1 3

LTS versions have the benefit that they are planned to be updated bi-weekly with bug fixes for 2

years, while new major versions of Unity release. That’s the reason most companies stick to LTS

versions of the engine: because of its stability and long-term support. In this book we will be

using 2022.1 just to explore the new features of the engine, but consider sticking to LTS versions

when developing commercial game titles.

Considering this, you may need to have several versions of Unity installed in case you work on

different projects made with different versions. You may be wondering why you can’t just use the

latest version of Unity for every project, but there are some problems with that.

In newer versions of Unity, there are usually lots of changes to how the engine works, so you may

need to rework lots of pieces of the game to upgrade it, including third-party plugins. It can take

lots of time to upgrade the whole project, and that can push the release date back. Maybe you

need a specific feature that comes with an update that will help you. In such a case, the cost of

upgrading may be worthwhile. For projects that are maintained and updated for several years,

developers are used to updates only to the latest LTS versions of the editor, although this policy

may vary from case to case.

Managing different projects made with different Unity versions, and installing and updating new

Unity releases, all used to be a huge hassle. Thus, Unity Hub was created to help us with this, and

it has become the default way to install Unity. Despite this, it is not necessary for installing Unity,

but we will keep things simple for now and use it. Let’s look closer into it.

Installing Unity with Unity Hub
Unity Hub is a small piece of software that we will install before installing Unity. It centralizes

the management of all your Unity projects and installations. You can get it from the official Unity

website. The steps to download it change frequently, but at the time of writing this book, you

need to do the following:

1. Go to unity.com.

2. Click on the Get started button, as shown in the following screenshot:

Figure 1.1: The Get started button on Unity’s website

unity.com

Creating a Unity Project4

3. Click on the Student and hobbyist tab; then, under the Personal section, click on the Get

started button, as illustrated in the following screenshot:

Figure 1.2: Choosing an individual/free license

4. Scroll down to the section saying 1. Download the Unity Hub and click on the Download

button according to your operating system. For Windows, click Download for Windows,

and for Mac, click on Download for Mac. For Linux, there is an Instructions for Linux

button with further info about how to install on that platform, but we won’t be covering

Unity in Linux in this book:

Figure 1.3: Starting the download

Chapter 1 5

5. Execute the downloaded installer.

6. Follow the instructions of the installer, which will mostly be clicking Next all the way

to the end.

Now that we have Unity Hub installed, we must use it to install a specific Unity version. You can

do this with the following steps:

1. Start Unity Hub.

2. If prompted to install a Unity version and/or create a license, please skip these steps with

the corresponding Skip buttons (which may vary according to the Unity Hub version).

This way to install Unity and licenses is only available the first time you run Unity Hub,

but we are going to learn the way to do this that works after the first time.

3. Log in to your account by clicking on the “person” icon at the top-left part of the window

and selecting Sign in:

Figure 1.4: Signing into Unity Hub

Creating a Unity Project6

4. Here, you also have the option to create a Unity account if you haven’t already, as illustrat-

ed in the link labeled create one that appears in the Unity login prompt in the following

screenshot:

Figure 1.5: Logging into Unity Hub

5. Follow the steps on the installer and then you should see a screen like the one in the next

image. If it is not the same, try clicking the Learn button at the top-left part of the screen:

Figure 1.6: The Unity Hub window

Chapter 1 7

6. Click on the Installs button and check if you have Unity 2022 listed there.

7. If not, press the Install Editor button at the top-right corner. This will show a list of Unity

versions that can be installed from here:

Figure 1.7: Unity versions available to install

8. You will see three tabs here. Official releases contains the latest versions of each major

release already released. Pre-releases contains alpha and beta releases of Unity, so you

can participate in these programs and test new features before they are officially released.

Archive contains a link to the Unity Download Archive that contains every single Unity

version released. For example, the official release at the moment of writing this is 2022.1.20,

but the project is being developed in 2022.1.14, so you can install the correct version from

the archive.

9. Locate Unity 2022.1 in the Official releases tab.

10. Click on the Install button at the right of Unity 2022.1.XXf1, where XX will vary according

to the latest available version. At the moment of writing this book we are using 2022.1.14f1.

You might need to scroll down to find this version. If not present, install the latest 2022

version available (for example, 2022.2.XX or 2022.3.XX). Newer versions might vary of

what is seen in the book, if you find the images of the book being too different consider

looking for Unity 2022.1.14 in the archive.

11. A modules selection window will show up. Make sure the Visual Studio feature is checked.

While this program is not needed to work in Unity, we will be using it later in the book. If

you already have a C# IDE installed, feel free to skip it.

Creating a Unity Project8

12. Now, click the Continue button:

Figure 1.8: Selecting Visual Studio

13. Accept Visual Studio’s terms and conditions and then click Install:

Figure 1.9: Accepting Visual Studio’s terms and conditions

It is important to note that Visual Studio is the program we will use in Chapter

5, Introduction to Scripting with C# and Visual Scripting, to create our code. We

do not need the other Unity features right now, but you can go back later

and install them if you need them.

Chapter 1 9

14. You will see the selected Unity version downloading and installing. Wait for this to finish.

If you don’t see it, click the Downloads button to reopen it:

Figure 1.10: Currently active Unity Hub downloads

15. If you decided to install Visual Studio, after Unity has finished installing, the Visual Studio

Installer will automatically execute. It will download an installer that will download and

install Visual Studio Community:

Figure 1.11: Installing Visual Studio

Creating a Unity Project10

16. To confirm everything worked, you must see the selected Unity version in the list of In-

stalls of Unity Hub:

Figure 1.12: Available Unity versions

Now, before using Unity, we need to acquire and install a free license to make it work by doing

the following:

1. Click the Manage licenses button at the top-right corner of the Unity Hub. If you don’t

see it, click your account icon at the top-left corner and click Manage licenses there:

Figure 1.13: The Manage licenses button to press in order to acquire a free license

2. Click the Add button in the Licenses list window:

Figure 1.14: The Licenses list window’s Add button

Chapter 1 11

3. Click the Get a free personal license button:

Figure 1.15: Option to get a free personal license

4. Read and accept the terms and conditions if you agree with them by clicking the Agree

and get personal edition license button:

Figure 1.16: The button to accept the terms and conditions

Remember that the preceding steps may be different in new Unity Hub versions, so just try to

follow the flow that Unity designed—most of the time, it is intuitive.

Now it is time to create a project using Unity.

Creating projects
Now that we have Unity installed, we can start creating our game. To do so, we first need to cre-

ate a project, which is basically a folder containing all the files that your game will be composed

of. These files are called assets and there are different types of them, such as images, audio, 3D

models, script files, and so on. In this section, we will see how to manage a project, addressing

the following concepts:

• Creating a project

• Project structure

Let’s learn first how to create a blank project to start developing our project.

Creating a Unity Project12

Creating a project
As with Unity installations, we will use the Unity Hub to manage projects. We need to follow

these next steps to create one:

1. Open the Unity Hub and click on the Projects button, and then click on New project:

Figure 1.17: Creating a new project in Unity Hub

2. Pick the 3D (URP) template as we will be creating a 3D game with simple graphics, pre-

pared to run on every device Unity can be executed on, so the Universal Render Pipeline

(or URP) is the better choice for that. In Chapter 10, Materials and Effects with URP and

Shader Graph, we will be discussing exactly why.

3. If you see a Download template button, click it; if not, that means you already have the

template:

Figure 1.18: Downloading the 3D URP template

4. Choose a Project name and a Location, and click Create project:

Figure 1.19: Selecting the Universal Render Pipeline template

Chapter 1 13

5. Unity will create and automatically open the project. This can take a while, but after that

you will see a window similar to the one in the following image. You might see the dark-

themed editor instead, but for better clarity we will use the light theme throughout the

book. Feel free to keep the dark theme:

Figure 1.20: The Unity Editor window

6. Close the window, then go back to Unity Hub and pick the project from the list to open

it again:

Figure 1.21: Reopening the project

Now that we have created the project, let’s explore its structure.

Creating a Unity Project14

Project structure
We have just opened Unity, but we won’t start using it until the next chapter. Now, it’s time to

see how the project folder structure is composed. To do so, we need to open the folder in which

we created the project. If you don’t remember where this is, you can do the following:

1. Right-click the Assets folder in the Project panel, located at the bottom part of the editor.

2. Click the Show in Explorer option (if you are using a Mac, the option is called Reveal in

Finder). The following screenshot illustrates this:

Figure 1.22: Opening the project folder in Explorer

3. Then, you will see a folder structure similar to this one (some files or folders may vary):

Chapter 1 15

Figure 1.23: Unity project folder structure

If you want to move this project to another PC or send it to a colleague, you can just compress

all those files and send it to them as a ZIP file, but not all the folders are necessary all of the time.

The important folders are Assets, Packages, and ProjectSettings. Assets will hold all the files we

will create and use for our game, so this is a must. We will also configure different Unity systems

to tailor the engine to our game; all the settings related to this are in the ProjectSettings and

UserSettings folders. Finally, we will install different Unity modules or packages to expand its

functionality, so the Packages folder will hold which ones we are using.

It’s not necessary to copy the rest of the folders if you need to move the project elsewhere or add

it to any versioning system, but let’s at least discuss what the Library folder is, especially con-

sidering it’s usually a huge size. Unity needs to convert the files we will use to its own format in

order to operate, and an example would be audio and graphics. Unity supports MPEG Audio Layer

3 (MP3), Waveform Audio File Format (WAV), Portable Network Graphics (PNG), and Joint

Photographic Experts Group (JPG) files (and much more), but prior to using them, they need

to be converted to Unity’s internal formats, a process called Importing Assets. Those converted

files will be in the Library folder. If you copy the project without that folder, Unity will simply

take the original files in the Assets folder and recreate the Library folder entirely. This process

can take time, and the bigger the project, the more time involved.

Keep in mind that you want to have all the folders Unity created while you are working on the

project, so don’t delete any of them while you work on it, but if you need to move an entire project,

you now know exactly what you need to take with you.

Creating a Unity Project16

Summary
In this chapter, we reviewed how the Unity versioning system works. We also saw how to install

and manage different Unity versions using Unity Hub. Finally, we created and managed multiple

projects with the same tool. We will use Unity Hub a lot, so it is important to know how to use it

initially. Now, we are prepared to dive into the Unity Editor.

In the next chapter, we will start learning the basic Unity tools to author our first level prototype.

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

2
Editing Scenes and Game
Objects

In this chapter, we will develop some base knowledge of Unity in order to edit a project, and learn

how to use several Unity editor windows to manipulate our first scene and its objects. We will

also learn how an object, or GameObject, is created and composed, and how to manage complex

scenes with multiple objects using Hierarchies and Prefabs. Finally, we will review how we can

properly save all our work to continue working on it later.

Specifically, we will examine the following concepts in this chapter:

• Manipulating scenes

• GameObjects and components

• Object Hierarchies

• Prefabs

• Saving scenes and projects

Manipulating scenes
A scene is one of the several types of files (also known as assets) in our project. A “scene” can be

used for different things according to the type of project, but the most common use case is to

separate your game into whole sections, the most common ones being the following:

• Main menu

• Level 1, Level 2, Level 3, etc.

Editing Scenes and Game Objects18

• Victory screen and lose screen

• Splash screen and loading screen

In this section, we will cover the following concepts related to scenes:

• The purpose of a scene

• The Scene View

• Adding our first GameObject to the scene

• Navigating the Scene View

• Manipulating GameObjects

So, let’s take a look at each of these concepts.

The purpose of a scene
The idea of separating your game into scenes is so that Unity can process and load just the data

needed for the scene. Let’s say you are in the main menu; in such a case, you will have only the

textures, music, and objects that the main menu needs loaded in random-access memory (RAM),

the device’s main memory. In that case, there’s no need for your game to have loaded the Level 10

boss if you don’t need it right now. That’s why loading screens exist, just to fill the time between

unloading the assets needed in one scene and loading the assets needed in another. Maybe you

are thinking that open-world games such as Grand Theft Auto don’t have loading screens while

you roam around in the world, but they are actually loading and unloading chunks of the world

in the background as you move, and those chunks are different scenes that are designed to be

connected to each other.

The difference between the Main Menu and a regular level scene is the objects (also known as

GameObjects in the Unity lingo) they have. In a menu, you will find objects such as backgrounds,

music, buttons, and logos, and in a level, you will have the player, enemies, platforms, health

boxes, and so on. So, the meaning of your scene depends on what GameObjects are put into it.

But how can we create a scene? Let’s start with the Scene View.

The Scene View
When you open a Unity project, you will see the Unity editor. It will be composed of several win-

dows or panels, each one helping you to change different aspects of your game. In this chapter,

we will be looking at the windows that help you create scenes. The Unity editor is shown in the

following screenshot:

Chapter 2 19

Figure 2.1: The Unity editor

If you have ever programmed any kind of application before, you are probably used to having a

starting function such as Main, where you start writing code to create several objects needed for

your app. If we are talking about games, you probably create all the objects for the scene there.

The problem with this approach is that in order to ensure all objects are created properly, you

will need to run the program to see the results, and if something is misplaced, you will need to

manually change the coordinates of the object, which is a slow and painful process. Luckily, in

Unity, we have the Scene View, an example of which is shown in the following screenshot:

Figure 2.2: The Scene View

Editing Scenes and Game Objects20

This window is an implementation of the classic WYSIWYG (What You See Is What You Get)

concept. Here, you can create objects and place them all over the scene, all through a scene pre-

visualization where you can see how the scene will look when you hit Play. But before learning

how to use this scene, we need to have an object in the scene, so let’s create our first object.

Adding our first GameObject to the scene
The project template we chose when creating the project comes with a blank scene ready to

work with, but let’s create our own empty scene to see how to do it ourselves. To do that, you

can simply use the File | New Scene menu to create an empty new scene, as illustrated in the

following screenshot:

Figure 2.3: Creating a new scene

After clicking New Scene, you will see a window to pick a scene template; here, select the Basic

(URP) template. A template defines which objects the new scene will have, and in this case, our

template will come with a basic light and a camera, which will be useful for the scene we want

to create. Once selected, just click the Create button:

Figure 2.4: Selecting the scene template

Chapter 2 21

Now that we have our empty scene, let’s add GameObjects to it. We will learn several ways of

creating GameObjects throughout the book, but for now, let’s start using some basic templates

Unity provides us. In order to create them, we will need to open the GameObject menu at the

top of the Unity window, and it will show us several template categories, such as 3D Object, 2D

Object, Effects, and so on, as illustrated in the following screenshot:

Figure 2.5: Creating a cube

Under the 3D Object category, we will see several 3D primitives such as Cube, Sphere, Cylinder,

and so on, and while using them is not as exciting as using beautiful, downloaded 3D models,

remember that we are only prototyping our level at the moment. This is called gray-boxing,

which means that we will use lots of prototyping primitive shapes to model our level so that we

can quickly test it and see if our idea is good enough to start the complex work of converting it

to a final version.

I recommend you pick the Cube object to start because it is a versatile shape that can represent

lots of objects. So, now that we have a scene with an object to edit, the first thing we need to learn

to do with the Scene View is to navigate through the scene.

Navigating the Scene View
In order to manipulate a scene, we need to learn how to move through it to view the results from

different perspectives. There are several ways to navigate the scene, so let’s start with the most

common one, the first-person view. This view allows you to move through the scene using a first-

person-shooter-like navigation, using the mouse and the WASD keys. To navigate like this, you

will need to press and hold the right mouse button, and while doing so, you can:

• Move the mouse to rotate the camera around its current position

• Press the WASD keys to move the position of the camera, always holding the right click

• You can also press Shift to move faster

• Press the Q and E keys to move up and down

Editing Scenes and Game Objects22

Another common way of moving is to click an object to select it (the selected object will have an

orange outline), and then press the F key to focus on it, making the Scene View camera imme-

diately move into a position where we can look at that object more closely. After that, we can

press and hold the left Alt key on Windows, or Option on Mac, along with the left mouse click,

to finally start moving the mouse and “orbit” around the object. This will allow you to see the

focused object from different angles to check every part of it is properly placed, as demonstrated

in the following screenshot:

Figure 2.6: Selecting an object

Now that we can move freely through the scene, we can start using the Scene View to manipulate

GameObjects.

Manipulating GameObjects
Another use of the Scene view is to manipulate the locations of the objects. In order to do so, we

first need to select an object, and then press the Transform tool in the top-left corner of the Scene

View. You can also press the Y key on the keyboard once an object is selected to do the same:

Figure 2.7: The transformation tool

Chapter 2 23

This will show what is called the Transform gizmo over the selected object. A gizmo is a visual

tool overlaid on top of the selected object, used to modify different aspects of it. In the case of the

Transform Gizmo, it allows us to change the position, rotation, and scale of the object, as illus-

trated in Figure 2.8. Don’t worry if you don’t see the cube-shaped arrows outside the sphere—we

will be enabling them in a moment:

Figure 2.8: The Transform gizmo

Let’s start translating the object, which is accomplished by dragging the red, green, and blue

arrows inside the gizmo’s sphere. While you do this, the object will be moving along the selected

axis. An interesting concept to explore here is the meaning of the colors of these arrows. If you

pay attention to the top-right area of the Scene View, you will see an axis gizmo that serves as a

reminder of those colors’ meaning, as illustrated in the following screenshot:

Figure 2.9: The axis gizmo

Computer graphics use the classic 3D Cartesian coordinate system to represent objects’ locations.

The red color is associated with the x axis of the object, green with the y axis, and blue with the

z axis.

Editing Scenes and Game Objects24

But what does each axis mean? If you are used to another 3D authoring program, this can be

different, but in Unity, the z axis represents the Forward Vector, which means that the arrow

is pointing along the front of the object; the x axis is the Right Vector, and the y axis represents

the Up Vector.

These directions are known as local coordinates, and that’s because every object can be rotated

differently, meaning each object can be pointing its forward, up, and right vectors elsewhere

according to its orientation. The local coordinates will make more sense when used later in

the Object Hierarchies section of the chapter, so bear with me on that, but it’s worth discussing

global coordinates now. The idea is to have a single origin point (the zero point) with a single

set of forward, right, and up axes that are common across the scene. This way, when we say the

object has a global position of 5,0,0, we know that we are referring to a position 5 meters along

the global x-axis, starting from the global zero position. The global axes are the ones you see in

the top-right axis gizmos previously mentioned.

In order to be sure that we are working with local coordinates, meaning we will move the object

along its local axes, make sure the Local mode is activated in the Scene View, as shown in the

following screenshot:

Figure 2.10: Switching pivot and local coordinates

If the right button says Global instead of Local, just click it and select Local from the dropdown

options. By the way, try to keep the left button as Pivot. If it says Center, click and select Pivot. The

pivot of the object is not necessarily its center, and that depends entirely on the 3D model we are

using, where the author of it will specify where the object rotation center is located. For example,

a car could have its pivot in the middle of its back wheels, so when we rotate, it will respect the

real car’s rotation center. Editing based on the object’s pivot will simplify our understanding of

how rotating via C# scripts will work later in Chapter 6, Implementing Movement and Spawning.

Also, now that we have enabled Local coordinates, you should see the cube-shaped arrows seen

in Figure 2.8; we will use them in a moment to scale the cube.

Chapter 2 25

I know—we are editing a cube, so there is no clear front or right side, but when you work with

real 3D models such as cars and characters, they will certainly have those sides, and they must be

properly aligned with those axes. If by any chance in the future you import a car into Unity and

the front of the car is pointing along the x axis, you will need to make that model aligned along

the z axis because the code that we will create to move our object will rely on that convention

(but let’s keep that for later).

Now, let’s use this Transform gizmo to rotate the object using the three colored circles around

it. If you click and drag, for example, the red circle, you will rotate the object along the x axis. If

you want to rotate the object horizontally, based on the color-coding we previously discussed,

you will probably pick the x axis—the one that is used to move horizontally—but, sadly, that’s

wrong. A good way to look at the rotation is like the accelerator of a motorcycle: you need to take

it and roll it. If you rotate the x axis like this, you will rotate the object up and down. So, in order to

rotate horizontally, you would need to use the green circle or the y axis. The process is illustrated

in the following screenshot:

Figure 2.11: Rotating an object

Finally, we have scaling, and we have two ways to accomplish that, one of them being through

the gray cube at the center of the Transform gizmo shown in Figure 2.8. This allows us to change

the size of the object by clicking and dragging that cube. Now, as we want to prototype a simple

level, sometimes we want to stretch the cube to create, for example, a column, or a flat floor, and

here’s where the second way comes in.

If you click and drag the colored cubes in front of the translation arrows instead of the gray one

in the center, you will see how our cube is stretched over those axes, allowing you to change the

shape of the object. If you don’t see those cube-shaped arrows, remember to enable Local coor-

dinates as stated earlier in this section.

Editing Scenes and Game Objects26

The process to stretch is illustrated in the following screenshot:

Figure 2.12: Scaling an object

Remember you can also use the gray cube in the middle to scale all axes at the same time if desired,

also known as uniform scaling, the same gray cube we had in the Transform gizmo.

Finally, something to consider here is that several objects can have the same scale values but

have different sizes, given how they were originally designed. Scale is a multiplier we can apply

to the original size of the object, so a building and a car both with scale 1 makes perfect sense;

the relative size of one against the other seems correct. The main takeaway here is that scale is

not size, but a way to multiply it.

Consider that scaling objects is usually a bad practice in many cases. In the final versions of your

scene, you will use models with the proper size and scale, and they will be designed in a modular

way so that you can plug them one next to the other. If you scale them, several bad things can

happen, such as textures being stretched and becoming pixelated, and modules that no longer plug

properly. There are some exceptions to this rule, such as placing lots of instances of the same tree

in a forest and changing its scale slightly to simulate variation. Also, in the case of gray-boxing, it

is perfectly fine to take cubes and change the scale to create floors, walls, ceilings, columns, and

so on, because in the end, those cubes will be replaced with real 3D models.

Here’s a challenge! Create a room composed of a floor, three regular walls, and the fourth wall

with a hole for a door (three cubes), and no need for a roof. In the next image you can see how

it should look:

Chapter 2 27

Figure 2.13: Room task finished

Now that we can edit an object’s location, let’s see how we can edit all its other aspects.

GameObjects and components
We talked about our project being composed of assets (the project’s files), and that a scene (which

is a specific type of asset) is composed of GameObjects; so, how can we create an object? Through

a composition of components.

In this section, we will cover the following concepts related to components:

• Understanding components

• Manipulating components

Let’s start by discussing what a component is.

Understanding components
A component is one of several pieces that make up a GameObject; each one is in charge of differ-

ent features of the object. There are several components that Unity already includes that solve

different tasks, such as playing a sound, rendering a mesh, applying physics, and so on; however,

even though Unity has a large number of components, we will eventually need to create custom

components sooner or later.

Editing Scenes and Game Objects28

In the next image you can see what Unity shows us when we select a GameObject:

Figure 2.14: The Inspector panel

In the previous screenshot, we can see the Inspector panel. If we needed to guess what it does

right now, we could say it shows all the properties of objects selected either via the Hierarchy or

the Scene View, and allows us to configure those options to change the behavior of the object (i.e.

the position and rotation, if it will project shadows or not, and so on). That is true, but we are

missing a key element: those properties don’t belong to the object; they belong to the components

of the object. We can see some titles in bold before a group of properties, such as Transform and

Box Collider, and so on. Those are the components of the object.

In this case, our object has a Transform, a Mesh Filter, a Mesh Renderer, and a Box Collider

component, so let’s review each one of those.

Transform just holds the position, rotation, and scale of the object, and by itself it does noth-

ing—it’s just a point in our game—but as we add components to the object, that position starts

to have more meaning. That’s because some components will interact with Transform and other

components, each one affecting the other.

Chapter 2 29

An example of that would be the case of Mesh Filter and Mesh Renderer, both of those being in

charge of rendering a 3D model. Mesh Renderer will render the 3D model, also known as mesh,

specified by the Mesh Filter in the position specified in the Transform component, so Mesh

Renderer needs to get data from those other components and can’t work without them.

Another example would be the Box Collider. This represents the physics shape of the object, so

when the physics calculates collisions between objects, it checks if that shape is colliding with

other shapes based on the position specified in the Transform component.

We will explore rendering and physics later in the book, but the takeaway from this section is

that a GameObject is a collection of components, each component adding a specific behavior to

our object, and each one interacting with the others to accomplish the desired task. To further

reinforce this, let’s see how we can convert a cube into a sphere that will fall due to gravity ap-

plied via physics.

Manipulating components
The tool to edit an object’s components is the Inspector. It not only allows us to change the prop-

erties of our components but also lets us add and remove components. In this case, we want to

convert a cube to a sphere, so we need to change several aspects of those components.

We can start by changing the visual shape of the object, so we need to change the rendered model

or mesh. The component that specifies the mesh to be rendered is the Mesh Filter component. If

we look at it, we can see a Mesh property that says Cube, with a little circle and a dot on its right:

Figure 2.15: The Mesh filter component

If we click the button with a circle and a dot inside, the one at the right of the Mesh property, the

Select Mesh window will pop up, allowing us to pick several mesh options. In this case, select

the Sphere mesh. In the future, we will add more 3D models to our project so that the window

will have more options.

If you don’t see a particular property, such as the Mesh we just mentioned, try to

click the triangle at the left of the component’s name. Doing this will expand and

collapse all the component’s properties.

Editing Scenes and Game Objects30

The mesh selector is shown in the following screenshot:

Figure 2.16: The Mesh selector

Okay—the object now looks like a sphere, but will it behave like a sphere? Let’s find out. In order

to do so, we can add a component named Rigidbody to our sphere, which will add physics to

it. We will talk more about Rigidbody and physics later in Chapter 7, Physics Collisions and Health

System, but for now, let’s stick to the basics.

In order to do so, we need to click the Add Component button at the bottom of the Inspector. It

will show a Component Selector window with lots of categories; in this case, we need to click

on the Physics category. The window will show all the Physics components, and there we can

find the Rigidbody. Another option would be to type Rigidbody in the search box at the top of

the window. The following screenshot illustrates how to add a component:

Figure 2.17: Adding components

Chapter 2 31

If you hit the Play button in the top-middle part of the editor, you can test your sphere physics

using the Game panel. That panel will be automatically focused when you hit Play and will show

you how the player will see the game. The playback controls are shown in the following screenshot:

Figure 2.18: Playback controls

Here, you can just use the Transform gizmo to rotate and position your camera in such a way that

it looks at our sphere. This is important as one problem that can happen is that maybe you won’t

see anything during Play mode, and that can happen if the game camera is not pointing to where

our sphere is located. While you are moving, you can check the little preview in the bottom-right

part of the scene window to check out the new camera perspective. Another alternative would

be to select the camera in the Hierarchy and use the shortcut Ctrl + Shift + F (or Command + Shift

+ F on a Mac). The camera preview is shown in the following screenshot:

Figure 2.19: The camera preview

Editing Scenes and Game Objects32

Now, to test if physics collisions are executing properly, let’s create a cube, scale it until it has the

shape of a ramp, and put that ramp below our sphere, as shown here:

Figure 2.20: Ball and ramp objects

If you hit Play now, you will see the sphere colliding with our ramp, but in a strange way. It looks

like it’s bouncing, but that’s not the case. If you expand the Box Collider component of our sphere,

you will see that even if our object looks like a sphere, the green box gizmo is showing us that our

sphere is actually a box in the physics world, as illustrated in the following screenshot:

Figure 2.21: Object with sphere graphic and box collider

Nowadays, video cards (GPUs) can handle rendering highly detailed models (models with a high

polygon count), but the physics system is executed in the central processing unit (CPU) and it

needs to do complex calculations in order to detect collisions. To get a decent performance in our

game, it needs to run at least 30 frames per second (FPS), the minimum accepted by the industry

to provide a smooth experience. The physics system considers that, and hence it works using

simplified collision shapes that may differ from the actual shape the player sees on the screen.

Chapter 2 33

That’s why we have Mesh Filter and the different types of Collider components separated—one

handles the visual shape and the other the physics shape.

Again, the idea of this section is not to deep-dive into those Unity systems, so let’s just move on for

now. How can we solve our sphere actually being a box? Simple: by modifying our components!

In this case, the Box Collider component already present in our cube GameObject can just rep-

resent a box physics shape, unlike Mesh Filter, which supports any rendering shape. So, first, we

need to remove it by right-clicking the component’s title and selecting the Remove Component

option, as illustrated in the following screenshot:

Figure 2.22: Removing components

Now, we can again use the Add Component menu to select a Physics component, this time

selecting the Sphere Collider component. If you look at the Physics components, you will see

other types of colliders that can be used to represent other shapes, but we will look at them later

in Chapter 7, Physics Collisions and Health System. The Sphere Collider component can be seen in

the following screenshot:

Figure 2.23: Adding a Sphere Collider component

Editing Scenes and Game Objects34

So, if you hit Play now, you will see that our sphere not only looks like a sphere but also behaves

like one. Remember: the main idea of this section of the book is understanding that in Unity you

can create whatever object you want just by adding, removing, and modifying components, and

we will be doing a lot of this throughout the book.

Now, components are not the only thing needed in order to create objects. Complex objects may

be composed of several sub-objects, so let’s see how that works.

Object Hierarchies
Some complex objects may need to be separated into sub-objects, each one with its own compo-

nents. Those sub-objects need to be somehow attached to the main object and work together to

create the necessary object behavior.

In this section, we will cover the following concepts related to objects:

• Parenting of objects

• Possible uses

Let’s start by discovering how to create a parent-child relationship between objects.

Parenting of objects
Parenting consists of making an object the child of another, meaning that those objects will be

related to each other. One type of relationship that happens is a Transform relationship, meaning

that a child object will be affected by the parent’s Transform. In simple terms, the child object will

follow the parent, as if it is attached to it. For example, imagine a player with a hat on their head.

The hat can be a child of the player’s head, making the hat follow the head while they are attached.

In order to try this, let’s create a capsule that represents an enemy and a cube that represents the

weapon of the enemy. Remember that in order to do so, you can use the GameObject | 3D Object

| Capsule and Cube options and then use the Transform tool to modify them. An example of a

capsule and a cube can be seen in the following screenshot:

Chapter 2 35

Figure 2.24: A capsule and a cube representing an enemy and a weapon

If you move the enemy object (the capsule), the weapon (the cube) will keep its position, not

following our enemy. So, to prevent that, we can simply drag the weapon to the enemy object in

the Hierarchy window, as illustrated in the following screenshot:

Figure 2.25: Parenting the cube weapon to the capsule character

Now, if you move the enemy, you will see the gun moving, rotating, and being scaled along with

it. So, basically, the gun Transform also has the effects of the enemy Transform component.

Now that we have done some basic parenting, let’s explore other possible uses.

Editing Scenes and Game Objects36

Possible uses
There are some other uses of parenting aside from creating complex objects. Another common

usage for it is to organize the project Hierarchy. Right now, our scene is simple, but in time it will

grow, so keeping track of all the objects will become difficult. To prevent this, we can create empty

GameObjects (in GameObject | Create Empty) that only have the Transform component to act

as containers, putting objects into them just to organize our scene. Try to use this with caution

because this has a performance cost if you abuse it. Generally, having one or two levels of par-

enting when organizing a scene is fine, but more than that can have a performance hit. Consider

that you can—and will—have deeper parenting for the creation of complex objects; the proposed

limit is just for scene organization.

To keep improving on our previous example, duplicate the enemy a couple of times all around

the scene, create an empty GameObject and name it Enemies, and drag all the enemies into it so

that it will act as a container. This is illustrated in the following screenshot:

Figure 2.26: Grouping enemies in a parent object

Another common usage of parenting is to change the pivot (or center) of an object. Right now, if

we try to rotate our gun with the Transform gizmo, it will rotate around its center because the

creator of that cube decided to put the center there. Normally, that’s okay, but let’s consider the

case where we need to make the weapon aim at the point where our enemy is looking. In this case,

we need to rotate the weapon around the weapon handle; so, in the case of this cube weapon, it

would be the closest end to the enemy. The problem here is that we cannot change the center of

an object, so one solution would be to create another “weapon” 3D model or mesh with another

center, which will lead to lots of duplicated versions of the weapon if we consider other possible

gameplay requirements such as a rotating weapon pickup. We can fix this easily using parenting.

The idea is to create an empty GameObject and place it where we want the new pivot of our object

to be. After that, we can simply drag our weapon inside this empty GameObject, and, from now

on, consider the empty object as the actual weapon.

Chapter 2 37

If you rotate or scale this weapon container, you will see that the weapon mesh will apply those

transformations around this container, so we can say the pivot of the weapon has changed (actu-

ally, it hasn’t, but our container simulates the change). The process is illustrated in the following

screenshot:

Figure 2.27: Changing the weapon pivot

Now, let’s continue seeing different ways of managing GameObjects, using Prefabs this time.

Prefabs
In the previous example, we created lots of copies of our enemy around the scene, but in doing so,

we have created a new problem. Let’s imagine we need to change our enemy and add a Rigidbody

component to it, but because we have several copies of the same object, we need to take them

one by one and add the same component to all of them. Maybe later, we will need to change the

mass of each enemy, so again, we need to go over each one of the enemies and make the change,

and here we can start to see a pattern. One solution could be to select all the enemies using the

Ctrl key (Command on a Mac) and modify all of them at once, but that solution won’t be of any

use if we have enemy copies in other scenes. So, here is where Prefabs come in.

In this section, we will cover the following concepts related to Prefabs:

• Creating Prefabs

• Prefab-instance relationship

• Prefab variants

Let’s start by discussing how to create and use Prefabs.

Editing Scenes and Game Objects38

Creating Prefabs
Prefabs are a Unity tool that allows us to convert custom-made objects, such as our enemy, into

an asset that defines how they can be created. We can use them to create new copies of our custom

object easily, without needing to create its components and sub-objects all over again.

In order to create a Prefab, we can simply drag our custom object from the Hierarchy window to

the project window, and after doing that you will see a new asset in your project files. The project

window is where you can navigate and explore all your project files; so, in this case, our Prefab

is the first Asset we ever created. Now, you can simply drag the Prefab from the project window

into the scene to easily create new Prefab copies, as illustrated in the following screenshot:

Figure 2.28: Creating a Prefab

Now, we have a little problem here. If you pay attention to the Hierarchy window, you will see

the original Prefab objects and all the new copies with their names in the color blue, while the

enemies created before the Prefab will have their names in black. The blue color in a name means

that the object is an instance of a prefab, meaning that the object was created based on a Prefab.

We can select those blue-named objects and click the Select button in the Inspector to select the

original Prefab that created that object. This is illustrated in the following screenshot:

Chapter 2 39

Figure 2.29: Detecting prefabs in the Hierarchy

So, the problem here is that the previous copies of the Prefab are not instances of the Prefab we

just created, and sadly there’s no way to connect them to it. So, in order to make that happen, we

need to simply destroy the old copies and replace them with copies created with the Prefab. At first,

not having all copies as instances doesn’t seem to be a problem, but it will be in the next section

of this chapter, where we will explore the relationship between the Prefabs and their instances.

Prefab-instance relationship
An instance of a Prefab, the GameObject created when dragging the Prefab to the scene, has a

binding to it that helps to revert and apply changes easily between the prefab and the instance. If

you take a Prefab and make some modifications to it, those changes will be automatically applied

to all instances across all the scenes in the project, so we can easily create a first version of the

Prefab, use it all around the project, and then experiment with changes.

To practice this, let’s say we want to add a Rigidbody component to the enemies so that they

can fall. In order to do so, we can simply double-click the Prefab file in the Project panel and we

will enter the Prefab Edit Mode, where we can edit the Prefab isolated from the rest of the scene.

Editing Scenes and Game Objects40

Here, we can simply take the Prefab root object (Enemy in our case) and add the Rigidbody

component to it. After that, we can simply click on the Scenes button in the top-left part of the

scene window to get back to the scene we were editing, and now, we can see that all the Prefab

instances of the enemy have a Rigidbody component, as illustrated in the following screenshot:

Figure 2.30: Prefab edit mode

Now, what happens if we change a Prefab instance (the one in the scene) instead? Let’s say we

want one specific enemy to fly, so they won’t suffer the effect of gravity. We can do that by simply

selecting the specific Prefab and unchecking the Use Gravity checkbox in the Rigidbody compo-

nent. After doing that, if we play the game, we will see that only that specific instance will float.

That’s because changes to an instance of a Prefab become an override, a set of differences the

instance has compared to the original prefab. We can see how the Use Gravity property is bold in

the Inspector, and also has a blue bar displayed to its left, meaning it’s an override of the original

Prefab value. Let’s take another object and change its Scale property to make it bigger. Again, we

will see how the Scale property becomes bold and the blue bar at its left will appear. The Use

Gravity checkbox can be seen in the following screenshot:

Figure 2.31: Use Gravity being highlighted as an override

Chapter 2 41

The overrides have precedence over the Prefab, so if we change the scale of the original Prefab,

the one that has a scale override won’t change, keeping its own version of the scale, as illustrated

in the following screenshot:

Figure 2.32: One Prefab instance with a scale override

We can easily locate all overrides of an instance using the Overrides dropdown in the Inspector

after selecting the Prefab instance (the one in the scene, outside Prefab Edit Mode) in the Hierarchy,

locating all changes our object has. It not only allows us to see all the overrides but also reverts

any override we don’t want and applies the ones we do want. Let’s say we regretted the lack of

gravity of that specific Prefab—no problem! We can just locate the override and revert it using

the Revert button after clicking on the component with the override. The process is illustrated

in the following screenshot:

Figure 2.33: Reverting a single override

Editing Scenes and Game Objects42

Also, let’s imagine that we really liked the new scale of that instance, so we want all instances

to have that scale—great! We can simply select the specific override, hit the Apply button, and

then the Apply to Prefab option; now, all instances will have that scale (except the ones with an

override), as illustrated in the following screenshot:

Figure 2.34: The Apply button

Also, we have the Revert All and Apply All buttons, but use them with caution, because you can

easily revert and apply changes that you are not aware of.

So, as you can see, Prefabs are a really useful Unity tool to keep track of all similar objects and

apply changes to all of them, and also have specific instances with few variations. Talking about

variations, there are other cases where you will want to have several instances of a Prefab with

the same set of variations—for example, flying enemies and grounded enemies—but if you think

about that, we will have the same problem we had when we didn’t use Prefabs, so we need to

manually update those varied versions one by one.

Here, we have two options: one is to create a brand new Prefab just to have another version with

that variation. This leads to the problem that if we want all types of enemies to undergo changes,

we need to manually apply the changes to each possible Prefab. The second option is to create a

Prefab variant. Let’s review the latter.

Chapter 2 43

Prefab variants
A Prefab variant is a new Prefab created based on an existing one, so the new one inherits the

features of the base Prefab. This means that our new Prefab can have differences from the base

one, but the features that they have in common are still connected.

To illustrate this, let’s create a variation of the enemy Prefab that can fly: the flying enemy Prefab.

In order to do that, we can select an existing enemy Prefab instance in the Hierarchy window,

name it Flying Enemy, and drag it again to the project window, and this time we will see a prompt,

asking which kind of Prefab we want to create. This time, we need to choose Prefab Variant, as

illustrated in the following screenshot:

Figure 2.35: Creating Prefab Variants

Now, we can enter the Prefab Edit Mode of the variant by double-clicking the new Prefab file cre-

ated in the project panel, and then add a cube as the jetpack of our enemy, and also uncheck the

Use Gravity property for the enemy. If we get back to the scene, we will see the variant instance

being changed, and the base enemies aren’t changed. You can see this in the following screenshot:

Figure 2.36: A Prefab variant instance

Editing Scenes and Game Objects44

Now, imagine you want to add a hat to all our types of enemies. We can simply enter the Prefab

Edit Mode of the base enemy Prefab by double-clicking it and adding a cube as a hat. Now, we

will see that change applied to all the enemies, because remember: the Flying Enemy Prefab is a

variant of the base enemy Prefab, meaning that it will inherit all the changes of that one.

We have created lots of content so far, but if our PC turns off for some reason, we will certainly

lose it all, so let’s see how we can save our progress.

Saving scenes and projects
As in any other program, we need to save our progress. The difference here is that we don’t have

just one giant file with all the project assets, but several files for each asset.

Let’s start saving our progress by saving the scene, which is pretty straightforward. We can sim-

ply go to File | Save or press Ctrl + S (Command + S on a Mac). The first time we save our scene, a

window will ask us where we want to save our file, and you can save it wherever you want inside

the Assets folder of our project, but never outside that folder; otherwise, Unity will not be capa-

ble of finding it as an asset in the project. That will generate a new asset in the project window:

a scene file. In the following screenshot you can see how I saved the scene, naming it test, and

now it shows up in the Project panel:

Figure 2.37: Scene files

We can create a folder to save our scene in the save dialog, or, if you already saved the scene, you

can create a folder using the plus (+) icon in the project window and then click the Folder option.

Finally, drag the created scene to that folder. Now, if you create another scene with the File | New

Scene menu option, you can get back to the previous scene just by double-clicking the scene asset

in the project window. Try it!

Chapter 2 45

This only saved the scene, but any change in Prefabs and other kinds of assets are not saved

with that option. Instead, if you want to save every change of the assets except scenes, you can

use the File | Save Project option. It can be a little bit confusing, but if you want to save all your

changes, you need to both save the scenes and the project, as saving just the project won’t save

the changes to scenes. Sometimes, the best way to be sure everything is saved is just by closing

Unity, which is recommended when you try to move your project between computers or folders.

This will show you a prompt to save the changes on the scene, and will automatically save any

change made to other assets, like Prefabs.

Summary
In this chapter, we saw a quick introduction to essential Unity concepts. We reviewed the basic

Unity windows and how we can use all of them to edit a full scene, from navigating it, then cre-

ating premade objects (Prefabs), to manipulating them to create our own types of objects using

GameObjects and components. We also discussed how to use the Hierarchy window to parent

GameObjects to create complex object Hierarchies, as well as creating Prefabs to reutilize and

manipulate large amounts of the same type of objects. Finally, we discussed how we can save

our progress.

In the next chapter, we will learn different tools like the Terrain system and ProBuilder to create

the first prototype of our game’s level. This prototype will serve as a preview of where our scene

will be headed, testing some ideas before going into full production.

3
Grayboxing with Terrain and
ProBuilder

Now that we’ve grasped all the necessary concepts to use Unity, let’s start designing our first level.

The idea in this chapter is to learn how to use Terrain Tools to create the landscape of our game

and then use ProBuilder to create the 3D mesh of the base with greater detail than using cubes.

At the end of the chapter, you will be able to create a prototype of any kind of scene and try out

your idea before actually implementing it with final graphics.

Specifically, we will examine the following concepts in this chapter:

• Defining our game concept

• Creating a landscape with Terrain

• Creating shapes with ProBuilder

Let’s start by talking about our game concept, which will help us draft the first level environment.

Defining our game concept
Before even adding the first cube to our scene, it is good to have an idea of what we are going to

create, as we will need a basic concept of our game to start designing the first level. Throughout

this book, we will be creating a shooter game, in which the player will be fighting against waves

of enemies trying to destroy the player’s base.

Grayboxing with Terrain and ProBuilder48

This base will be a complex in a (not so) secret location bordered by mountains:

Figure 3.1: Our finished game

We will be defining the mechanics of our game as we progress through the book, but with this

basic high-level concept of the game we can start thinking about how to create a mountainous

landscape and a placeholder player’s base to start.

With that in mind, in the next section of this chapter we will learn how to use Unity’s Terrain

Tools to create our scene’s landscape.

Creating a landscape with Terrain
So far, we have used cubes to generate our level prototype, but we also learned that those shapes

sometimes cannot represent all possible objects we could need. Imagine something irregular, such

as a full terrain with hills, canyons, and rivers. This would be a nightmare to create using cubes

given the irregular shapes you find in the terrain. Another option would be to use 3D modeling

software, but the problem with that is that the generated model will be so big and so detailed

that it won’t perform well, even on high-end PCs. In this scenario, we need to learn how to use

Unity’s Terrain system, which we will do in this first section of the chapter.

Chapter 3 49

In this section, we will cover the following concepts related to terrains:

• Discussing Height Maps

• Creating and configuring Height Maps

• Authoring Height Maps

• Adding Height Map details

Let’s start by talking about Height Maps, whose textures help us define the heights of our terrain.

Discussing Height Maps
If we create a giant area of the game with hills, canyons, craters, valleys, and rivers using regular 3D

modeling tools, we will have a problem in that we will use fully detailed models for objects at all

possible distances, thus wasting resources on rendering details that we won’t see when the object

is far away. We will see lots of parts of the terrain from a great distance, so this is a serious issue.

Unity Terrain Tools uses a technique called Height Maps to generate the terrain in a performant

and dynamic way. Instead of generating large 3D models for the whole terrain, it uses an image

called a Height Map, which looks like a top-down black and white photo of the terrain.

In the following image, you can see a black and white top-down view of a region of Scotland, with

white being higher and black being lower:

Figure 3.2: Scotland’s Height Map

In the preceding image, you can easily spot the peaks of the mountains by looking for the whitest

areas of the image. Everything below sea level becomes black, while anything in the middle uses

gradients of gray, representing different heights between the minimum and maximum heights.

The idea is that each pixel of the image determines the height of that specific area of the terrain.

Grayboxing with Terrain and ProBuilder50

Unity Terrain Tools can automatically generate a 3D mesh from that image, saving us the hard

drive space of having full 3D models of that terrain. Also, Unity will create the terrain as we move,

generating high-detail models for nearby areas and low-detail models for faraway areas, making

it a performant solution.

In the following image, you can see the mesh that was generated for the terrain. You can appreciate

that the nearer parts of the terrain have more polygons than further away parts:

Figure 3.3: Height Map generated mesh

Take into account that this technology has its cons, such as the time it takes for Unity to gen-

erate those 3D models while we play and the inability to create caves, but for now, that’s not a

problem for us.

Now that we know what a Height Map is, let’s see how we can use Unity Terrain Tools to create

our own Height Maps.

Creating and configuring Height Maps
If you click on GameObject | 3D Object | Terrain, you will see a giant plane appear on your scene,

and a Terrain object appears on your Hierarchy window. That’s our terrain, and it is plain because

its Height Map starts all black, so no height whatsoever is in its initial state.

Chapter 3 51

In the following image, you can see what a brand-new Terrain object looks like:

Figure 3.4: Terrain with no heights painted yet

Before you start editing this Terrain, you must configure different settings such as the size and

resolution of the Terrain’s Height Map, and that depends on what you are going to do with it.

This is not the same as generating a whole world. Our game will feature the player’s base, which

they will defend, so the terrain will be small. In this case, an area that’s 200 x 200 meters in size

surrounded by mountains will be enough.

In order to configure our terrain for those requirements, we need to do the following:

1. Select Terrain from the Hierarchy or Scene window.

2. Look at the Inspector for the Terrain component and expand it if it is collapsed.

3. Click on the mountain and gear icon (the furthest right option) to switch to configuration

mode. In the following screenshot, you can see where that button is located:

Figure 3.5: Terrain Settings button

Grayboxing with Terrain and ProBuilder52

4. Look for the Mesh Resolution (On Terrain Data) section.

5. Change Terrain Width and Terrain Length to 200 in both settings. This will say that the

size of our terrain is going to be 200 x 200 meters.

6. Terrain Height determines the maximum height possible. The white areas of our Height

Map are going to be that size. We can reduce it to 500 just to limit the maximum peak of

our mountains:

Figure 3.6: Terrain resolution settings

7. Look for the Texture Resolutions (On Terrain Data) section.

8. Change Heightmap Resolution to 257 x 257:

Figure 3.7: Height Map resolution settings

Another initial setting you will want to set is the initial terrain height. By default, this is 0, so you

can start painting heights from the bottom part, but this way, you can’t make holes in the terrain

because it’s already at its lowest point. Setting up a little initial height allows you to paint river

paths and pits in case you need them.

Heightmap Resolution is the size of the Height Map image that will hold the heights

of the different parts of the terrain. Using a resolution of 257 x 257 in our 200 x

200-meter terrain means that each square meter in the terrain will be covered by a

little bit more than 1 pixel of the Height Map. The higher the resolution per square me-

ter, the greater detail you can draw in that area size. Usually, terrain features are big,

so having more than 1 pixel per square meter is generally a waste of resources. Find

the smallest resolution you can have that allows you to create the details you need.

Chapter 3 53

In order to do so, do the following:

1. Select our Terrain in the Hierarchy panel.

2. Click on the Paint Terrain button (the second button).

3. Set the dropdown to Set Height if it’s not already there.

4. Set the Height property to 50. This will state we want all the terrain to start at 50 meters

in height, allowing us to make holes with a maximum depth of 50 meters:

Figure 3.8: Set Height Terrain tool location

5. Click the Flatten All button. You will see all the terrain has been raised to the 50 meters

we specified. This leaves us with 450 more meters to go up, based on the maximum of

500 meters we specified earlier.

Now that we have properly configured our Height Map, let’s start editing it.

Authoring Height Maps
Remember that the Height Map is just an image of the heights, so in order to edit it, we need to

paint the heights in that image. Luckily, Unity has tools that allow us to edit the terrain directly

in the editor and see the results of the modified heights directly. In order to do this, we must

follow these steps:

1. Select our Terrain in the Hierarchy panel.

2. Click the Paint Terrain button (the second button, the same as in the previous section).

Grayboxing with Terrain and ProBuilder54

3. Set the dropdown to Raise or Lower Terrain:

Figure 3.9: Raise or Lower Terrain tool location

4. Select the second brush in the Brushes selector. This brush has blurred borders to allow

us to create softer heights.

5. Set Brush Size to 30 so that we can create heights that span 30-meter areas. If you want

to create subtler details, you can reduce this number.

6. Set Opacity to 10 to reduce the amount of height we paint per second or click:

Figure 3.10: Smooth edges brush

7. Now, if you move the mouse in the Scene view, you will see a little preview of the height

you will paint if you click on that area. Maybe you will need to navigate closer to the

terrain to see it in detail:

Chapter 3 55

Figure 3.11: Previsualization of the area to raise the terrain

8. Hold, left-click, and drag the cursor over the terrain to start painting your terrain heights.

Remember that you can press Ctrl + Z (Command + Z on Mac) to reverse any undesired

change.

That checked pattern you can see allows you to see the actual size of the

objects you are editing. Each cell represents a square meter. Remember that

having a reference to see the actual size of the objects you are editing helps

to prevent you from creating terrain features that are too big or too small.

Maybe you can put in other kinds of references, such as a big cube with accu-

rate sizes representing a building to get a notion of the size of the mountain

or lake you are creating. Remember that the cube has a default size of 1 x 1

x 1 meters, so scaling to 10,10,10 will give you a cube of 10 x 10 x 10 meters.

Grayboxing with Terrain and ProBuilder56

9. Try to paint the mountains all around the borders of our area, which will represent the

background hills of our base:

Figure 3.12: Painted mountains around the edges of the terrain

We now have decent starter hills around our future base. We can also draw a moat around our

future base. To do so, follow these steps:

1. Place a cube with a scale of 50,10,50 in the middle of the terrain. This will act as a place-

holder for the base we are going to create:

Figure 3.13: Placeholder cube for the base area

2. Select Terrain and the Brush button once more.

3. Reduce Brush Size to 10.

Chapter 3 57

4. Holding the Shift key, left-click and drag the mouse over the terrain to paint the basin

around our base placeholder. Doing this will lower the terrain instead of raising it:

Figure 3.14: Moat around our placeholder base

Now, we have a simple but good starter terrain that gives us a basic idea of how our base and its

surroundings will look. Before moving on, we will apply some finer details to make our terrain

look a little bit better. In the next section, we will discuss how to simulate terrain erosion with

different tools.

Adding Height Map details
In the previous section, we created a rough outline of the terrain. If you want to make it look a

little bit more realistic, then you need to start painting lots of tiny details here and there. Usual-

ly, this is done later in the level design process, but let’s take a look now since we are exploring

Terrain Tools. Right now, our mountains look very smooth. In real life, they are generally sharper,

so let’s improve that:

1. Select the Terrain and click the Brush button as in the previous sections.

2. Set the dropdown to Raise or Lower Terrain if it’s not already set.

3. Pick the fifth brush, as shown in Figure 3.15. This brush has an irregular shape so that we

can paint a little bit of noise here and there.

Grayboxing with Terrain and ProBuilder58

4. Set Brush Size to 50 so that we can cover a greater area:

Figure 3.15: Cloud pattern brush for randomness

5. Hold Shift and do small clicks over the hills of the terrain without dragging the mouse.

Remember to zoom in to the areas you are applying finer details to because they can’t be

seen at great distances:

Figure 3.16: Erosion generated with the aforementioned brush

This has added some irregularity to our hills. Now, let’s imagine we want to have a flat area on

the hills to put a decorative observatory or antenna. Follow these steps to do so:

1. Select Terrain, Brush Tool, and Set Height from the dropdown.

2. Set Height to 60.

3. Select the full circle brush (the first one).

Chapter 3 59

4. Paint an area over the hills. You will see that the terrain will rise if it’s lower than 60 meters

or drop in areas higher than 60 meters:

Figure 3.17: Flattened hill

5. You can see that the borders have some rough corners that need to be smoothed:

Figure 3.18: Non-smoothed terrain edges

6. Change the dropdown to Smooth Height.

Grayboxing with Terrain and ProBuilder60

7. Select the second brush, as shown in Figure 3.19, with a size of 5 and an opacity of 10:

Figure 3.19: Smooth Height brush selected

8. Click and drag over the borders of our flat area to make them smoother:

Figure 3.20: Smoothed terrain edges

We could keep adding details here and there, but we can settle with this for now. The next step

is to create our player’s base, but first, let’s explore ProBuilder in order to generate our geometry.

Creating shapes with ProBuilder
So far, we have created simple scenes using cubes and primitive shapes, and that’s enough for

most of the prototypes you will create, but sometimes, you will have tricky areas of the game that

would be difficult to model with regular cubes, or maybe you want to have some deeper details

in certain parts of your game to get an idea of how the player will experience that area.

Chapter 3 61

In this case, we can use any 3D modeling tool for this, such as 3D Studio Max, Maya, or Blender,

but they can be difficult to learn and you probably won’t need all their power at this stage in your

development. Luckily, Unity has a simple 3D model creator called ProBuilder, so let’s explore it.

In this section, we will cover the following concepts related to ProBuilder:

• Installing ProBuilder

• Creating a shape

• Manipulating the mesh

• Adding details

ProBuilder is not included by default in our Unity project, so let’s start by learning how to install it.

Installing ProBuilder
Unity is a powerful engine full of features, but adding all those tools to our project if we are not

using all of them can make the engine run more slowly, so we need to manually specify which

Unity tools we are using. To do so, we will use Package Manager, a tool that we can use to se-

lect which Unity Packages we are going to need. As you may recall, earlier, we talked about the

Packages folder. This is basically what Package Manager is modifying.

In order to install ProBuilder in our project with this tool, we need to do the following:

1. Click the Window | Package Manager option:

Figure 3.21: Package Manager option

Grayboxing with Terrain and ProBuilder62

2. In the window that just opened, ensure the Packages mode is in Unity Registry mode by

clicking on the button saying Packages in the top-left part of the window and selecting

Unity Registry. Unlike the In Project option, which will show only the packages our proj-

ect already has, Unity Registry will show all the official Unity packages you can install:

Figure 3.22: Showing all packages

3. Wait a moment for the left list of packages to fill. Make sure you are connected to the

internet to download and install the packages.

4. Look at the ProBuilder package in that list and select it. You can also use the search box

in the top-right corner of the Package Manager window:

Figure 3.23: ProBuilder in the packages list

I’m using ProBuilder version 5.0.6, the newest version available at the time

of writing this book. While you can use a newer version, the process of us-

ing it may differ. You can look at older versions using the arrow to the left

of the title.

Chapter 3 63

5. Click on the Install button in the bottom-right-hand corner of the Package Manager:

Figure 3.24: Install button

6. Wait for the package to install; this can take a while. You can tell that the process has

ended when the Install button has been replaced with the Remove label, after the Im-

porting popup finishes. If for some reason Unity freezes or takes more than 10 minutes,

feel free to restart it.

7. Go to Edit | Preferences on Windows (Unity | Preferences on Mac).

8. Select the ProBuilder option from the left list.

9. Set Vertex Size to 2 and Line Size to 1. This will help you to better visualize the 3D model

we are going to create while editing its different parts:

Figure 3.25: Configuring ProBuilder

Although this is all we need to know about Package Manager to install ProBuilder, if you want

to know more about it, you can review its documentation here: https://docs.unity3d.com/

Manual/upm-ui.html. Now that we have installed ProBuilder in our project, let’s use it!

The Vertex Size and Line Size values are big (2 and 1 meters respectively) due to

the fact we are not going to edit little details of a model, but big features like walls.

Consider you might want to modify it later depending on what you are editing.

https://docs.unity3d.com/Manual/upm-ui.html
https://docs.unity3d.com/Manual/upm-ui.html

Grayboxing with Terrain and ProBuilder64

Creating a shape
We will start the player’s base by creating a plane for our floor. We will do this by doing the

following:

1. Delete the cube we placed as the base placeholder. You can do that by right-clicking on

the cube in the Hierarchy and then pressing Delete.

2. Open ProBuilder and go to Tools | ProBuilder | ProBuilder Window:

Figure 3.26: ProBuilder Window option

3. In the window that has opened, click the New Shape button:

Figure 3.27: New Shape option

4. In the Create Shape panel that appears in the bottom-right corner of the Scene View,

select the Plane icon (the first icon on the second row).

5. Expand Shape Properties and Plane Settings.

6. Set Width Cuts and Height Cuts to 2. We will need those subdivisions later.

7. Click and drag over the terrain to draw the plane. While you do that, check how the

Size value in the Create Shape panel changes, and try to make it have x and z values of

approximately 50.

8. Release the mouse button and see the resulting plane:

Chapter 3 65

Figure 3.28: New shape created

9. Select the newly-created Plane object in the Hierarchy and drag it a little bit upwards

using the Transform tool.

Now that we have created the floor, let’s learn how we can manipulate its vertices to change its

shape.

Manipulating the mesh
If you select the plane, you will see that it is subdivided into a 3 x 3 grid because we set up the

width and height cuts to 2. We did that because we will use the outer cells to create our walls,

thus raising them. The idea is to modify the size of those cells to outline the wall length and width

before creating the walls. In order to do so, we will do the following:

1. Select the plane in the Hierarchy.

2. Open ProBuilder if it’s not already open, and go to the Tools | ProBuilder | ProBuilder

Window option.

We needed to move the plane upwards because it was created at exactly the same

height as the terrain. That caused an effect called Z-Fighting, where the pixels that

are positioned in the same position are fighting to determine which one will be

rendered and which won’t.

Grayboxing with Terrain and ProBuilder66

3. Select the second button (vertex) from the four new buttons that appear in the Scene View:

Figure 3.29: Select vertices tool

4. Click the Select Hidden option until it says On, as shown in the following image. This

will make selecting vertices easier:

Figure 3.30: Enabling Select Hidden

5. Click and drag the mouse to create a selection box that picks the four vertices on the

second row of vertices:

Figure 3.31: Vertex selection

Chapter 3 67

6. Click on the second button in the top-left of the buttons of the Unity Editor to enable the

Move Tool, which will allow us to move vertices. Like the Transform Tool, this can be

used to move any object, but to move vertices, this is our only option. Remember to do this

once you have selected the vertices. You can also press the W key to enable the Move Tool.

Figure 3.32: Move Tool

7. Move the row of vertices to make the subdivision of the plane thinner. You can use the

checker pattern on the terrain to get a notion of the size of the wall in meters (remember,

each square is one square meter):

Figure 3.33: Moved vertices

Grayboxing with Terrain and ProBuilder68

8. Repeat steps 3 to 5 for each row of vertices until you get wall outlines with similar sizes:

Figure 3.34: Moved vertices to reduce edges cell width

Now that we have created the outline for our walls, let’s add new faces to our mesh to create them.

In order to use the subdivisions, or faces, we have created to make our walls; we must pick and

extrude them. Follow these steps to do so:

1. Select the plane.

2. Select the fourth button of the ProBuilder buttons in the Scene View:

Figure 3.35: Select Face tool

3. While holding Ctrl (Command on Mac), click on each of the faces of the wall outlines:

Figure 3.36: Edge faces being selected

Chapter 3 69

4. In the ProBuilder window, look for the plus (+) icon to the right of the Extrude Faces

button. It is located in the red section of the window:

Figure 3.37: Extrude Faces option

5. Set Distance to 5 in the window that appears after we click the plus button.

6. Click the Extrude Faces button in that window:

Figure 3.38: Extrude distance option

7. Now, you should see that the outline of the walls has just raised from the ground:

Figure 3.39: Extruded grid edges

Grayboxing with Terrain and ProBuilder70

Now, if you pay attention to how the base floor and walls touch the terrain, there’s a little gap.

We can try to move the base downward, but the floor will probably disappear because it will be

buried under the terrain. A little trick we can do here is to push the walls downward, without

moving the floor, so that the walls will be buried in the terrain but our floor will stay a little dis-

tance from it. You can see an example of how it would look in the following image:

Figure 3.40: Slice of the expected result

In order to do this, we need to do the following:

1. Select the third ProBuilder button in the Scene View to enable edge selection:

Figure 3.41: Select edges tool

2. While holding Ctrl (Command on Mac), select all the bottom edges of the walls.

3. If you selected undesired edges, just click them again while holding Ctrl (Command on

Mac) to deselect them, while keeping the current selection:

Figure 3.42: Selecting floor edges

Chapter 3 71

Figure 3.43: Enabling Wireframe mode

4. Enable the Move tool by pressing the second button (or the W key on the keyboard) in

the top-left corner of the Scene panel:

Figure 3.44: Object Move tool

If you want to use Wireframe mode in the sphere icon, go to the left of the

2D button in the top-right corner of the Scene View and select the Wireframe

option from the drop-down menu, as shown in the following image. You can

get back to normal by selecting Shaded.

Grayboxing with Terrain and ProBuilder72

5. Move the edges down until they are fully buried in the terrain:

Figure 3.45: Overlapping faces

Now that we have a base mesh, we can start adding details to it using several other ProBuilder tools.

Adding details
Let’s start adding details to the base by applying a little bevel to the walls, a little cut in the corners

so they are not so sharp. To do so, follow these steps:

1. Using the edge selection tool (the third of the ProBuilder buttons), select the top edges

of our model:

Figure 3.46: Top wall edges being selected

Chapter 3 73

2. In the ProBuilder window, press the plus (+) icon to the right of the Bevel button.

3. Set a distance of 0.5:

Figure 3.47: Bevel distance to generate

4. Click on Bevel Edges. Now you can see the top parts of our walls have a little bevel:

Figure 3.48: Result of the bevel process

Grayboxing with Terrain and ProBuilder74

5. Optionally, you can do that with the bottom part of the inner walls:

Figure 3.49: Bevel being applied to floor-wall edges

Another detail to add could be a pit in the middle of the ground as a hazard we need to avoid

falling into and to make the enemies avoid it using AI. In order to do that, follow these steps:

1. Enable the Face selection mode by clicking the fourth ProBuilder Scene view button.

2. Select the floor.

3. Click the Subdivide Faces option in the ProBuilder window. You will end up with the

floor split into four.

4. Click that button again to end up with a 4 x 4 grid:

Figure 3.50: Subdividing the floor

Chapter 3 75

5. Select the four inner floor tiles while holding Ctrl (Command on Mac) using the Select

Face tool (the third of the ProBuilder buttons in the top part of the Scene View).

6. Enable the Scale tool by clicking the fourth button in the top-left part of the Scene View,

or pressing the R key on the keyboard. As with the Move tool, this can be used to scale

any object, not only vertices:

Figure 3.51: Scale tool

7. Using the gray cube at the center of the gizmo, scale down the center tiles:

Figure 3.52: Inner cells being scaled down

8. Click the Extrude Faces button in the ProBuilder window.

9. Push the extruded faces downward with the Move Tool.

Grayboxing with Terrain and ProBuilder76

10. Right-click on the ProBuilder window tab and select Close Tab. We need to get back to

terrain editing and having ProBuilder open won’t allow us to do that comfortably:

Figure 3.53: Close Tab option

11. Select the terrain and lower it so that we can see the pit:

Figure 3.54: Terrain being lowered for the pit to be visible

Summary
In this chapter, we learned how to create large terrain meshes using Height Maps and Unity

Terrain Tools such as Paint Height and Set Height to create hills and rivers. Also, we saw how

to create our own 3D meshes using ProBuilder, as well as how to manipulate the vertices, edges,

and faces of a model to create a prototype base model for our game. We didn’t discuss any per-

formance optimizations we can apply to our meshes or advanced 3D modeling concepts as that

would require entire chapters and is beyond the scope of this book. Right now, our main focus is

prototyping, so we are fine with our level’s current status.

In the next chapter, we will learn how to download and replace these prototyping models with

final art by integrating assets (files) we have created with external tools. This is the first step to

improving the graphics quality of our game, which we will finish by the end of Part 3, Improving

Graphics.

Chapter 3 77

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

4
Importing and Integrating
Assets

In the previous chapter, we created the prototype of our level. Now, let’s suppose that we have

coded the game and tested it, confirming the game idea is fun. With that, it’s time to replace

the prototype art with the real finished art. We are going to actually code the game in the next

chapter, Chapter 5, Introduction to C# and Visual Scripting, but for learning purposes, let’s just skip

that part for now. In order to use the final assets, we need to learn how to get them (images, 3D

models, and so on), how to import them into Unity, and how to integrate them into our scene.

In this chapter, we will examine the following topics:

• Importing assets

• Integrating assets

• Configuring assets

Let’s start by learning how to get assets in Unity, such as 3D models and textures.

Importing assets
We have different sources of assets we can use in our project. We can simply receive a file from

our artist, download them from different free and paid assets sites, or we can use the Asset Store,

Unity’s official asset virtual store, where we can get free and paid assets ready to use with Unity.

We will use a mix of downloading assets from the internet and from the Asset Store, just to use

all possible resources.

Importing and Integrating Assets80

In this section, we will cover the following concepts related to importing assets:

• Importing assets from the internet

• Importing assets from the Asset Store

• Importing assets from Unity Packages

• Let’s start by exploring the first source of assets, the internet.

Importing assets from the internet
In terms of getting art assets for our project, let’s start with our terrain textures. Remember that

we have our terrain painted with a grid pattern, so the idea is to replace that with grass, mud,

rock, and other kinds of textures. To do that, we need images. In this case, these kinds of images

are usually top-down views of different terrain patterns, and they have the requirement of being

“tileable,” meaning you can repeat them with no noticeable pattern in their connections. You can

see an example of this in the following image:

Figure 4.1: Left – grass patch; Right – the same grass patch separated to highlight the texture
tiling

The grass on the left seems to be one single big image, but if you pay attention, you should be able

to see some patterns repeating themselves. In this case, this grass is just a single image repeated

four times in a grid, like the one on the right. This way, you can cover large areas by repeating a

single small image, saving lots of RAM on the user’s computer.

The idea is to get these kinds of images to paint our terrain. You can get them from several places,

but the easiest way is to use Google Images or any image search engine. Always check for copyright

permissions before using something from these sources. To do this, follow these steps:

Chapter 4 81

1. Open your browser (Chrome, Safari, Edge, etc.).

2. Go to your preferred search engine. In this case, I will use Google.

3. Use the keywords PATTERN tileable texture, replacing PATTERN with the kind of terrain

you are looking for, such as grass tileable texture or mud tileable texture. In this

case, I am going to type grass tileable texture and then press Enter to search.

4. Switch to image search mode:

Figure 4.2: Google search for images

5. Choose any texture you find suitable for the kind of grass you need and click it. Remember

that the texture must be a top-down view of the grass and must repeat.

6. Right-click the opened image and select Save image as…:

Figure 4.3 Save image as… option

Try to check the image’s resolution before picking it. Try to select squared

images that have a resolution less than 1024 x 1024 for now.

Importing and Integrating Assets82

7. Save the image in any folder you will remember.

Now that you have downloaded the image, you can add it to your project in several ways. The

simplest one would be by doing the following:

1. Locate your image using File Explorer (Finder on Mac).

2. Locate or create the Textures folder in the Project window in Unity.

3. Put both the File Explorer and the Unity Project Window next to each other.

4. Drag the file from File Explorer to the Textures folder in the Unity Project Window:

Figure 4.4: Texture being dragged from Windows File Explorer to Unity’s Project view

For simple textures like these ones, any search engine can be helpful, but if you want to replace

the player’s base geometry with detailed walls and doors or place enemies in your scene, you

need to get 3D models. If you search for those in any search engine using keywords such as “free

zombie 3D model,” you will find endless free and paid 3D models sites such as TurboSquid and

Mixamo, but those sites can be problematic because those meshes are usually not prepared for

being used in Unity, or even games. You will find models with very high polygon counts, incorrect

sizes or orientations, unoptimized textures, and so on. To prevent those problems, we’ll want to

use a better source, and in this case, we will use Unity’s Asset Store, so let’s explore it.

Importing assets from the Asset Store
The Asset Store is Unity’s official asset marketplace where you can find lots of models, textures,

sounds, and even entire Unity plugins to extend the capabilities of the engine. In this case, we

will limit ourselves to downloading 3D models to replace the player’s base prototype. You will

want to get 3D models with a modular design, meaning that you will get several pieces, such as

walls, floors, corners, and so on. You can connect them to create any kind of scenario.

Chapter 4 83

In order to do that, you must follow these steps:

1. Click on Window | Asset Store in Unity, which will open a new window saying the Asset

Store has moved. In previous versions of Unity, you could see the Asset Store directly inside

the editor, but now, it is recommended to open it in a regular web browser, so just click

the Search Online button, which will open the site https://assetstore.unity.com/ in

your preferred browser. Also, you can check the Always open in browser from menu to

directly open the page whenever you click on Window | Asset Store:

Figure 4.5: Asset Store moved message

2. In the top menu, click on the 3D category to browse 3D assets:

Figure 4.6: 3D assets menu

https://assetstore.unity.com/

Importing and Integrating Assets84

3. In the recently opened page, click the arrow to the right of the 3D category in the All

Categories panel on the right, and then open Environments and check the Sci-Fi mark,

as we will make a future-themed game:

Figure 4.7: 3D assets menu

4. If you need to, you can pay for an asset, but let’s hide the paid ones for now. You can do

that by clicking the Sort by Price option in the top-left section and selecting the Free

Assets option:

Figure 4.8: Free Assets option

As you can see, there are several categories for finding different types of

assets, and you can pick another one if you want to. In Environments, you

will find 3D models that can be used to generate the scenery for your game.

Chapter 4 85

5. In the search area, find any asset that seems to have the aesthetic you are looking for and

click it. Remember to look out for outdoor assets, because most environment packs are

usually interiors only. In my case, I have picked one called Sci-Fi Styled Modular Pack,

which serves for both interiors and exteriors. Take into account that that package might

not exist by the time you are reading this, so you might need to choose another one. If

you don’t find a suitable package, you can download and pick the asset files we used in

the GitHub repository:

Figure 4.9: Preview of Asset Store searched packages

Importing and Integrating Assets86

6. Now, you will see the package details in the Asset Store window. Here, you can find in-

formation regarding the package’s description, videos/images, the package’s contents,

and the most important part, the reviews, where you can see whether the package is

worth getting:

Figure 4.10: Asset Store package details

7. If you are OK with this package, click the Add To My Assets button, log in to Unity if re-

quested, and then click the Open In Unity button. You might be prompted to accept the

browser to open Unity; if so, just accept:

Chapter 4 87

Figure 4.11: Switching apps

8. This will open the Package Manager again, but this time in the My Assets mode, showing

a list of all assets you have ever downloaded from the Asset Store, and the one you just

selected highlighted in the list:

Figure 4.12: Package Manager showing assets

Importing and Integrating Assets88

9. Click on Download on the bottom-right part of the window and wait for it to finish. Then

hit Import.

10. After a while, the Package Contents window will show up, allowing you to select exactly

which assets of the package you want in your project. For now, leave it as-is and click

Import:

Figure 4.13: Assets to import selection

11. After some importing time, you will see all the package files in your Project window.

Take into account that importing lots of full packages will increase your project’s size consider-

ably, and that, later, you will probably want to remove the assets that you didn’t use. Also, if you

import assets that generate errors that prevent you from playing the scene, just delete all the .cs

files that come with the package. They are usually in folders called Scripts. Those are code files

that might not be compatible with your Unity version:

Chapter 4 89

Figure 4.14: Code error warning when hitting play

Before you continue with this chapter, try to download a character 3D model using the Asset

Store, following the previous steps. In order to do this, you must complete the same steps as we

did with the level environment pack but look in the 3D | Characters | Humanoid category of the

Asset Store. In my case, I picked the Robot Hero: PBR HP Polyart package:

Figure 4.15: Character package used in our game

Now, let’s explore yet another source of Unity Assets: Unity Packages.

Importing and Integrating Assets90

Importing assets from Unity Packages
The Asset Store is not the only source of asset packages; you can get .unitypackage files from the

internet, or maybe from a coworker who wants to share assets with you.

In order to import a .unitypackage file, you need to do the following:

1. Go to the Assets | Import Package | Custom Package option:

Figure 4.16: Importing custom packages

2. Search for the .unitypackage file in the displayed dialog.

3. Click the Import option in the Import Unity Package window that appeared, the same

that we saw earlier in the Asset Store section.

Now that we have imported lots of art assets, let’s learn how to use them in our scene.

Chapter 4 91

Integrating assets
We have just imported lots of files that can be used in several ways, so the idea of this section is

to see how Unity integrates those assets with the GameObjects and components that need them.

In this section, we will cover the following concepts related to importing assets:

• Integrating terrain textures

• Integrating meshes

• Integrating materials

Let’s start by using the tileable textures to cover the terrain.

Integrating terrain textures
In order to apply textures to our terrain, do the following:

1. Select the Terrain object.

2. In the Inspector, click the brush icon of the Terrain component (second button).

3. From the drop-down menu, select Paint Texture:

Figure 4.17: Terrain Paint Texture option

4. Click the Edit Terrain Layers… | Create Layer option.

Importing and Integrating Assets92

5. Find and double-click the terrain texture you downloaded previously in the Texture Picker

window that appears:

Figure 4.18: Texture to paint picker

6. You will see how the texture will be immediately applied to the whole terrain.

7. Repeat steps 4 and 5 to add other textures. This time, you will see that that texture is not

immediately applied.

8. In the Terrain Layers section, select the new texture you have created to start painting

with that. I used a mud texture in my case.

9. As when you edited the terrain, in the Brushes section, you can select and configure a

brush to paint the terrain.

10. In the Scene view, paint the areas you want to have that texture applied to.

11. If your texture patterns are too obvious, open the New Layer N section on top of the

Brushes section, where N is a number that depends on the layer you have created.

12. Open the section using the triangle to its left and increase the Size property in the Tiling

Settings section until you find a suitable size where the pattern is not that obvious:

Each time you add a texture to the terrain, you will see that a new asset called

New Layer N is created in the Project view. It holds data of the terrain layer

you have created, and you can use that one on other terrains if you need to.

You can also rename that asset to give it a meaningful name. Also, you can

reorganize those assets in their own folder for organization purposes.

Chapter 4 93

Figure 4.19: Painting texture options

13. Repeat steps 4 to 12 until you have applied all the textures you wanted to add to your terrain.

In my case, I applied the mud texture to the river basin and used a rock texture for the hills.

For the texture of the rocks, I reduced the opacity property of the brush to blend it better

with the grass in the mountains. You can try to add a layer of snow at the top just for fun:

Figure 4.20: Results of painting our terrain with three different textures

Importing and Integrating Assets94

Of course, we can improve this a lot using lots of the advanced tools of the system, but let’s just

keep things simple for now. Now, let’s see how we can integrate the 3D models into our game.

Integrating meshes
If you select one of the 3D assets we have downloaded previously and click the arrow to its right,

one or more sub-assets will appear in the Project window. This means that the 3D model files we

downloaded from the Asset Store (the FBX files) are containers of assets that define the 3D model:

Figure 4.21: Mesh picker

Some of those sub-assets are meshes, which are a collection of triangles that define the geometry

of your model. You can find at least one of these mesh sub-assets inside the file, but you can also

find several, and that can happen if your model is composed of lots of pieces. For example, a car

can be a single rigid mesh, but that won’t allow you to rotate its wheels or open its doors; it will

be just a static car, and that can be enough if the car is just a prop in the scene, but if the player

will be able to control it, you will probably need to modify it. The idea is that all pieces of your

car are different GameObjects parented to one another in such a way that if you move one, all of

them will move, but you can still rotate its pieces independently.

When you drag the 3D model file to the scene (not the sub-asset), Unity will automatically create

all the objects for each piece and its proper parenting based on how the artist created those. You

can select the object in the Hierarchy and explore all its children to see this:

Chapter 4 95

Figure 4.22: Sub-object selection

Also, you will find that each of those objects may have its own Mesh Filter and Mesh Renderer

components, each one rendering just that piece of the model. Remember that the Mesh Filter

is a component that has a reference to the mesh asset to render, so the Mesh Filter is the one

using those mesh sub-assets we talked about previously. In the case of animated characters, you

will find the Skinned Mesh Renderer component instead, but we will discuss that component

later, in Part 3, Improving Graphics.

Now, when you drag the 3D model file into the scene, you will get a similar result as if the model

were a Prefab and you were instancing it. But 3D model files are more limited than Prefabs because

you can’t apply changes to the model. If you’ve dragged the object onto the scene and edited it to

have the behavior you want, I suggest that you create a Prefab to get all the benefits we discussed

in Chapter 2, Editing Scenes and GameObjects, such as applying changes to all the instances of the

Prefab and so on. Never create lots of instances of a model from its model file—always create them

from the Prefab you created based on that file to allow you to add extra behavior to it.

That’s the basic usage of 3D meshes. Now, let’s explore the texture integration process, which

will give our 3D models more detail.

Integrating textures
Maybe your model already has the texture applied but has a magenta color applied to all of it. If

this is the case, that means the asset wasn’t prepared to work with the Universal Render Pipeline

(URP) template you selected when creating the project.

Importing and Integrating Assets96

Some assets in the Asset Store are created by third-party editors and could be meant to be used

in older versions of Unity:

Figure 4.23: Mesh being rendered with erroneous or no material at all

One option to fix magenta assets is using the Render Pipeline Converter, a tool that will find

them and reconfigure them (if possible) to work with URP. To do so, perform the following steps

every time you import an asset that looks magenta:

1. Go to Window | Rendering | Render Pipeline Converter.

2. Select the Built-in to URP option from the dropdown:

Figure 4.24: Upgrading older assets to URP

Chapter 4 97

3. Scroll until you see the Material Upgrade checkbox and check it.

4. Click the Initialize Converters button in the bottom-left corner. This will display a list of

all the materials that need to be upgraded. We will discuss materials more later:

Figure 4.25: Fixing Material to work with URP

5. Click the Convert Assets button and see if the model was fixed.

You will need to close the window for it to detect new magenta assets that weren’t there before

opening it. The con of this method is that, sometimes, it won’t upgrade the material properly.

Luckily, we can fix this by reapplying the textures of the objects manually. Even if your assets

work just fine, I suggest that you reapply your textures anyway, just to learn more about the

concept of materials.

A texture is not applied directly to the object. That’s because the texture is just one single config-

uration of all the ones that control the aspect of your model. In order to change the appearance of

a model, you must create a Material. A material is a separate asset that contains lots of settings

about how Unity should render your object. You can apply that asset to several objects that share

the same graphics settings, and if you change the settings of the material, it will affect all the

objects that are using it. It works like a graphics profile.

In order to create a material to apply the textures of your object, you need to follow these steps:

1. In the Project Window, click the plus (+) button in the top-left part of the window.

2. Click the Material option in that menu.

Importing and Integrating Assets98

3. Name your material. This is usually the name of the asset we will be applying the material

to (for example, Car, Ship, Character, and so on).

4. Drag the created material to the model instance on your scene. If you move the mouse

with the dragged asset over the object, you will be able to see a preview of how it will look

with that material, which would be white in the case of a new material. We will change

that in the following steps.

5. Apply the material by releasing the mouse.

6. If your object has several parts, you will need to drag the material to each part.

7. Select the material and click the circle to the left of the Base Map property (see Figure 4.23).

8. In the Texture Selector, click on the texture of your model. It can be complicated to locate

the texture just by looking at it. Usually, the name of the texture will match the model’s

name. If not, you will need to try different textures until you see one that fits your object.

Also, you may find several textures with the same name as your model. Just pick the one

that seems to have the proper colors instead of the ones that look black and white or light

blue; we will use those later:

Figure 4.26: Base Map property of URP materials

With this, you have successfully applied the texture to the object through a material. For each

object that uses the same texture, just drag the same material. Now that we have a basic under-

standing of how to apply the model textures, let’s learn how to properly configure the import

settings before spreading models all over the scene.

Dragging the material will change the material’s property of the

MeshRenderer component of the object you have dragged.

Chapter 4 99

Configuring assets
As we mentioned earlier, artists are used to creating art assets outside Unity, and that can cause

differences between how the asset is seen from that tool and how Unity will import it. As an ex-

ample, 3D Studio Max can work in centimeters, inches, and so on, while Unity works in meters.

We have just downloaded and used lots of assets, but we have skipped the configuration step to

solve those discrepancies, so let’s take a look at this now.

In this section, we will cover the following concepts related to importing assets:

• Configuring meshes

• Configuring textures

Let’s start by discussing how to configure 3D meshes.

Configuring meshes
In order to change the model’s import settings, you need to locate the model file you have down-

loaded. There are several file extensions that contain 3D models, with the most common one being

the .fbx file, but you can encounter others such as .obj,.3ds, .blender, .mb, and so on. You can

identify whether the file is a 3D mesh via its extension:

Figure 4.27: Selected asset path extension

Also, you can click the asset and check in the Inspector for the tabs you can see in the following

screenshot:

Figure 4.28: Mesh materials settings

Importing and Integrating Assets100

Now that you have located the 3D mesh files, you can configure them properly. Right now, the only

thing we should take into account is the proper scale of the model. Artists are used to working

with different software with different setups; maybe one artist created the model using meters as

its metric unit, while other artists used inches, feet, and so on. When importing assets that have

been created in different units, they will probably be unproportioned, which means we will get

results such as humans being bigger than buildings and so on.

The best solution is to just ask the artist to fix that. If all the assets were authored in your company,

or if you used an external asset, you could ask the artist to fix it to the way your company works,

but right now, you are probably a single developer learning Unity by yourself. Luckily, Unity has

a setting that allows you to rescale the original asset before using it in Unity. In order to change

the “Scale Factor” of an object, you must do the following:

1. Locate the 3D mesh in your Project Window.

2. Drag it to the scene. You will see that an object will appear in your scene.

3. Create a capsule using the GameObject | 3D Object | Capsule option.

4. Put the capsule next to the model you dragged into the editor. See if the scale has sense.

The idea is that the capsule is representing a human being (2 meters tall) so that you have

a reference for the scale:

Figure 4.29: Using a capsule as reference for scale

Chapter 4 101

5. If the model is bigger or smaller than expected, select the mesh again in the Project window

(not the GameObject instance you dragged to the editor) and you will see some import

settings in the Inspector. In the image, we can say the model has good relative size, but

just for learning purposes, do the next steps.

6. Look for the Scale Factor property and modify it, increasing it if your model is smaller

than expected, or reducing it in the opposite case:

Figure 4.30: Model mesh options

7. Click the Apply button at the bottom of the Inspector.

8. Repeat steps 6 and 7 until you get the desired result.

There are plenty of other options to configure, but let’s stop here for now. Now, let’s discuss how

to properly configure the textures of our models.

Configuring textures
Again, there are several settings to configure here, but let’s focus on the Texture Size for now. The

idea is to use the size that best fits the usage of that texture, and that depends on lots of factors.

The first factor to take into account is the distance from which the object will be seen. If you are

creating a first-person game, you will probably see lots of objects near enough to justify a big

texture, but maybe you have lots of distant objects, such as billboards at the top of buildings,

which you will never be near enough to see the details of, so you can use smaller textures for that.

Another thing to take into account is the importance of the object. If you are creating a racing game,

you will probably have lots of 3D models that will be on screen for a few seconds and the player

will never focus on them; they will be paying attention to the road and other cars. In this case,

an object such as a trash can on the street can have a little texture and a low polygon model and

the user will never notice that (unless they stop to appreciate the scenery, but that’s acceptable).

Importing and Integrating Assets102

Finally, you can have a game with a top-down view that will never zoom-in on the scene, so the

same object that has a big texture in first-person games will have a less detailed texture here. In

the following images, you can see that the smaller ship could use a smaller texture:

Figure 4.31: The same model seen at different distances

The ideal size of the texture is relative. The usual way to find it is by changing its size until you find

the smallest possible size with a decent quality when the object is seen from the nearest position

possible in the game. This is a trial-and-error method. In order to do that, you can do the following:

1. Locate the 3D model and put it into the scene.

2. Put the Scene view camera in a position that shows the object at its biggest possible in-

game size. As an example, in a first-person-shooter (FPS) game, the camera can be almost

right next to the object, while in a top-down game, it would be a few meters above the

object. Again, that depends on your game. Remember our game is a third-person shooter.

3. Find and select the texture that the object is using in the folders that were imported with

the package or from the material you created previously. They usually have the .png, .jpg,

or .tif extensions.

4. In the Inspector, look at the Max Size property and reduce it, trying the next smaller value.

For example, if the texture is 2048, try 1024.

5. Click Apply and check the Scene view to see if the quality has decreased dramatically or

if the change isn’t noticeable. You will be surprised.

6. Repeat steps 4 to 5 until you get a bad-quality result. In that case, just increase the previous

resolution to get an acceptable quality. Of course, if you are targeting PC games, you can

expect higher resolutions than mobile games.

Now that you have imported, integrated, and configured your objects, let’s create our player’s

base with those assets.

Chapter 4 103

Assembling the scene
Let’s start replacing our prototype base using the environment pack we have downloaded. To do

that, you must do the following:

1. In the Environment pack we imported before, locate the folder that contains all the models

for the different pieces of the scene and try to find a corner. You can use the search bar in

the Project Window to search for the corner keyword:

Figure 4.32: Mesh picker

2. In my specific case, I have the outer and inner sides of the corner as separate models, so

I need to put them together.

3. Position it in the same position as any corner of your prototype base:

Figure 4.33: Positioning the mesh on a placeholder for replacement

Importing and Integrating Assets104

4. Find the proper model that will connect with that corner to create walls. Again, you can

try searching for the wall keyword in the Project Window.

5. Instance it and position it so that it’s connected to the corner. Don’t worry if it doesn’t fit

perfectly; you will go over the scene when necessary later.

Figure 4.34: Connecting two modules

6. Repeat the walls until you reach the other end of the player base and position another

corner. You might get a wall that’s a little bit larger or smaller than the original prototype,

but that’s fine:

Figure 4.35: Chain of connected modules

You can select an object and press the V key to select a vertex of the select-

ed object. Then you can drag it, click on the rectangle in the middle of the

translate gizmo, and direct it to a vertex of another object. This is called

Vertex Snapping. It allows you to connect two pieces of the scene exactly

as intended.

Chapter 4 105

7. Complete the rest of the walls and destroy the prototype cube we made in ProBuilder.

Remember that this process is slow and you will need to be patient.

8. Add floors by looking for floor tiles and repeating them all over the surface:

Figure 4.36: Floor modules with a hole for the pit

9. Add whatever details you want to add with other modular pieces in the package.

10. Put all those pieces in a container object called Base. Remember to create an empty object

and drag the base pieces into it:

Figure 4.37: Mesh sub-assets

You can move an object while pressing the Ctrl key (Command on Mac) to

snap the object’s position so that the clones of the wall can be easily located

right next to the others. Another option is to manually set the Position

property of the Transform component in the Inspector.

Importing and Integrating Assets106

After a lot of practice doing this, you will slowly gain experience with the common pitfalls and

good practices of modular scene design. All the packages have a different modular design in mind,

so you will need to adapt to them.

Summary
In this chapter, we learned how to import models and textures and integrate them into our scene.

We discussed how to apply textures to the terrain, how to replace our prototype mesh with mod-

ular models, how to apply textures to those, and how to properly configure the assets, all while

taking several criteria into account according to the usage of the object.

With this, we have finished Part 1 of this book and discussed several basic Unity concepts we will

use throughout the book. In Part 2, we will start coding the gameplay of our game, like the player’s

movement and the health system. We will start learning how to create our own components to

add behavior to our objects and the basic anatomy of a script.

5
Introduction to C# and Visual
Scripting

Unity has a lot of great built-in tools to solve the most common problems in game development,

such as the ones we have seen so far. Even two games of the same genre have their own little

differences that make the game unique, and Unity cannot foresee that, so that’s why we have

scripting. Through coding, we can extend Unity’s capabilities in several ways to achieve the exact

behavior we need, all through a well-known language—C#. But aside from C#, Unity also has Visu-

al Scripting, a way to generate code through a node graph tool. This means you can create scripts

without writing code but by dragging nodes, boxes that represent actions that can be chained:

Figure 5.1: Example of a Visual Scripting graph

Introduction to C# and Visual Scripting108

While essentially both ways can achieve the same result, we can use them for different things.

Usually, the core logic of the game is written in C# due to it being usually huge and very per-

formance sensitive. But sometimes using visual scripts instead allows non-programmer team

members, like artists or game designers, to have more freedom to edit minor changes in the game,

especially regarding balancing or visual effects.

Another example would be game designers prototyping ideas through visual scripts that later

programmers will convert to C# scripts when the idea is approved. Also, C# programmers can

create nodes for Visual Script programmers to use.

The way to mix these tools varies widely between teams, so while in the next chapters we are

going to focus mainly on C#, we are going to also see the Visual Scripting equivalent version of

the scripts we are going to create. This way you will have the opportunity to experiment when

convenient to use one or the other according to your team structure.

In this chapter, we will examine the following scripting concepts:

• Creating scripts

• Using events and instructions

We are going to create our own Unity components, learning the basic structure of a script and

the way that we can execute actions and expose properties to be configured, both with C# and

Visual Scripting. We are not going to create any of our actual game codes here, just some exam-

ple scripts to set the ground to start doing that in the next chapter. Let’s start by discussing the

basics of script creation.

Creating scripts
The first step to creating behavior is to create script assets; these are files that will contain the

logic behind the behavior of our components. Both C# and Visual Scripting have their own type

of asset to achieve that, so let’s explore how to do that in both tools.

Having some programming knowledge is required in this book. However, in this first section, we

are going to discuss a basic script structure to make sure you have a strong foundation to follow

when we code the behaviors of our game in the following chapters. Even if you are familiar with

C#, try not to skip this section because we will cover Unity-specific structures of the code.

In this section, we will examine the following script creation concepts:

• Initial setup

• Creating a C# script

Chapter 5 109

• Adding fields

• Creating a Visual Script graph

We are going to create our first script, which will serve to create our component, discussing the

tools needed to do so and exploring how to expose our class fields to the editor. Let’s start with

the basics of script creation.

Initial setup
Support for Visual Scripting is added by installing the Visual Scripting package in the Package

Manager as we did with other packages in previous chapters, but as Unity does that automatically

for us when we create the project, we don’t need any further setup. That means the rest of this

section will take care of setting up the tools needed to work with C#.

One thing to consider before creating our first C# script is how Unity compiles the code. While

coding, we are used to having an Integrated Development Environment (IDE), which is a pro-

gram to create our code and compile or execute it. In Unity, we will just use an IDE as a tool to

create the scripts easily with coloring and auto-completion because Unity doesn’t have a custom

code editor (if you have never coded before, these are valuable tools for beginners). The scripts

will be created inside the Unity project and Unity will detect and compile them if any changes

are made, so you won’t compile them in the IDE. Don’t worry, even if not compiling and running

the code in the IDE, it is possible to debug, add breakpoints, and check the data on the variables

and structures using the IDE and Unity together.

We can use Visual Studio, Visual Studio Code, Rider, or whatever C# IDE you’d like to use, but

when you install Unity, you will probably see an option to install Visual Studio automatically,

which allows you to have a default IDE. This installs the free version of Visual Studio, so don’t

worry about the licenses here. If you don’t have an IDE on your computer and didn’t check the

Visual Studio option while installing Unity, you can do the following:

1. Open Unity Hub.

2. Go to the Installs section.

3. Click on the wheel button in the top-right area of the Unity version you are using and

click on Add Modules:

Figure 5.2: Adding a module to the Unity installation

Introduction to C# and Visual Scripting110

4. Check the option that says Visual Studio; the description of the option will vary depending

on the version of Unity and the platform you are using.

5. Hit the Continue button at the bottom-right:

Figure 5.3: Installing Visual Studio

6. Check that you accept the terms and conditions and click Install:

Figure 5.4: Accepting the terms and conditions

7. Wait for the operation to end. This might take a few minutes. There may be additional

Visual Studio steps that vary between platform and version; if so, just follow them.

If you have a preferred IDE, you can install it yourself and configure Unity to use it. If you can

afford it or you are a teacher or a student (as it is free in these cases), I recommend Rider. It is

a great IDE with lots of C# and Unity features that you will love; however, it is not vital for this

book. In order to set up Unity to use a custom IDE, do the following:

1. Open the project.

2. Go to Edit | Preferences in the top menu of the editor (Unity | Preferences on Mac).

3. Select the External Tools menu from the left panel.

Chapter 5 111

4. From the external script editor, select your preferred IDE; Unity will automatically detect

the supported IDEs:

Figure 5.5: Selecting a custom IDE

5. If you don’t find your IDE in the list, you can use the Browse… option. Note that usually,

IDEs that require you to use this option are not very well supported—but it’s worth a shot.

Finally, some IDEs, such as Visual Studio, Visual Studio Code, and Rider, have Unity integration

tools that you need to install in your project, which is optional but can be useful. Usually, Unity

installs these automatically, but if you want to be sure that they are installed, follow these steps:

1. Open Package Manager (Window | Package Manager).

2. Set the Packages dropdown to Unity Registry mode:

Figure 5.6: Enabling Unity Registry mode

3. Search the list for your IDE or filter the list by using the search bar. In my case, I used Rider,

and I can find a package called JetBrains Rider Editor:

Figure 5.7: Custom IDE editor extension installation—in this case, the Rider one

Introduction to C# and Visual Scripting112

4. Check whether your IDE integration package is installed by looking at the buttons at the

bottom-right part of the package manager. If you see an Install or Update button, click

on it, but if it says Installed, everything is set up.

Now that we have an IDE configured, let’s create our first script.

Creating a C# script
C# is an object-oriented language, and this is no different in Unity. Any time we want to extend

Unity, we need to create our own class—a script with the instructions we want to add to Unity. If

we want to create custom components, we need to create a class that inherits from MonoBehaviour,

the base class of every custom component.

We can create C# script files directly within the Unity project using the editor, and you can ar-

range them in folders right next to other assets folders. The easiest way to create a script is by

following these steps:

1. Select any GameObject that you want to have the component we are going to create. As

we are just testing this out, select any object.

2. Click on the Add Component button at the bottom of the Inspector and look for the New

script option at the bottom of the list, displayed after clicking on Add Component:

Figure 5.8: The New script option

3. In the Name field, enter the desired script name, and then click Create and Add. In my

case, I will call it MyFirstScript, but for the scripts that you will use for your game, try

to enter descriptive names, regardless of the length:

Chapter 5 113

Figure 5.9: Naming the script

4. You can check how a new asset with the same name as your script is created in Project

View. Remember that each component has its own asset, and I suggest you put each

component in a Scripts folder:

Figure 5.10: Script asset

5. Now, you will also see that your GameObject has a new component in the Inspector

window, which has the same name as your script. So, you have now created your first

component class:

Figure 5.11: Our script added to a GameObject

It is recommended that you use Pascal case for script naming. In Pascal case,

a script for the player’s shooting functionality would be called PlayerShoot.

The first letter of each word of the name is in uppercase and you can’t use

spaces.

Introduction to C# and Visual Scripting114

Now that we have created a component class, remember that a class is not the component itself.

It is a description of what the component should be—a blueprint of how a component should

work. To actually use the component, we need to instantiate it by creating a component based

on the class. Each time we add a component to an object using the editor, Unity is instantiating

it for us. Generally, we don’t instantiate components using the new C# keyword, but by using

the editor or specialized functions.

Now, you can add your new empty component to other objects as you would any other compo-

nent by using the Add Component button in the Inspector window. Then you can look for the

component in the Scripts category or search it by name:

Figure 5.12: Adding a custom component in the Scripts category

Something that you need to consider here is that we can add the same component to several Ga-

meObjects. We don’t need to create a class for each GameObject that uses the component. I know

this is basic programmers’ knowledge but remember that we are trying to recap the basics here.

Now that we have our component, let’s explore how it looks and carry out a class structure recap

by following these steps:

1. Locate the script asset in Project View and double-click on it. Remember that it should

be in the Scripts folder you created previously.

2. Wait for the IDE to open; this can take a while. You will know that the IDE has finished

the initialization when you see your script code and its keywords properly colored, which

varies according to the desired IDE. In Rider, it looks like what is shown in Figure 5.13. In

my case, I knew that Rider had finished initializing because the MonoBehaviour type and

the script name are colored the same:

Chapter 5 115

Figure 5.13: A new script opened in the Rider IDE

3. The first three lines—the ones that start with the using keyword—include common

namespaces. Namespaces are like code containers, which is, in this case, code created by

others (such as Unity, C# creators, and so on). We will be using namespaces quite often

to simplify our tasks; they already contain solved algorithms that we will use. We will be

adding and removing the using component as we need; in my case, Rider is suggesting

that the first two using components are not necessary because I am not using any code

inside them, and so they are grayed out. But for now, keep them as you will use them in

later chapters of this book. Remember, they should always be at the beginning of the file:

Figure 5.14: The using sections

4. The next line, the one that starts with public class, is where we declare that we are

creating a new class that inherits from MonoBehaviour, the base class of every custom

component. We know this because it ends with : MonoBehaviour. You can see how the

rest of the code is located inside brackets right below that line, meaning that the code

inside them belongs to the component:

Figure 5.15: The MyFirstScript class definition inherits from MonoBehaviour

Introduction to C# and Visual Scripting116

Now that we have our C# script, let’s add fields to configure it.

Adding fields
In previous chapters, when we added components as Rigidbody or as different kinds of colliders,

adding the components wasn’t enough. We needed to properly configure them to achieve the

exact behavior that we need. For example, Rigidbody has the Mass property to control the object’s

weight, and the colliders have the Size property to control their shape. This way, we can reuse the

same component for different scenarios, preventing the duplication of similar components. With

a Box collider, we can represent a cube or rectangular box just by changing the size properties. Our

components are no exception; if we have a component that moves an object and if we want two

objects to move at different speeds, we can use the same component with different configurations.

Each configuration is a field or variable where we can hold the parameter’s value. We can create

class fields that can be edited in the editor in two ways:

• By marking the field as public, but breaking the encapsulation principle

• By making a private field and exposing it with an attribute

Now, we are going to cover both methods, but if you are not familiar with Object-Oriented

Programming (OOP) concepts, such as encapsulation, I recommend you use the first method.

Suppose we are creating a movement script. We will add an editable number field representing

the velocity using the first method—that is, by adding the public field. We will do this by fol-

lowing these steps:

1. Open the script by double-clicking it as we did before.

2. Inside the class brackets, but outside any brackets within them, add the following code:

Figure 5.16: Creating a speed field in our component

Chapter 5 117

3. To apply the changes, just save the file in the IDE (usually by pressing Ctrl + S or Command

+ S) and return to Unity. When you do this, you will notice a little loading wheel at the

bottom-right part of the editor, indicating that Unity is compiling the code. You can’t test

the changes until the wheel finishes:

Figure 5.17: The loading wheel

4. After the compilation is finished, you can see your component in the Inspector window

and the Speed variable should be there, allowing you to set the speed you want. Of course,

right now, the variables do nothing. Unity doesn’t recognize your intention by the name

of the variable; we need to set it for use in some way, but we will do that later:

Figure 5.18: A public field to edit data that the component will use later

The public keyword specifies that the variable can be seen and edited be-

yond the scope of the class. The float part of the code says that the variable

is using the decimal number type, and speed is the name we chose for our

field—this can be whatever you want. You can use other value types to rep-

resent other kinds of data, such as bool to represent checkboxes or Booleans

and string to represent text.

Remember that Unity will compile the code; don’t compile it in the IDE.

Introduction to C# and Visual Scripting118

5. Try adding the same component to other objects and set a different speed. This will show

you how components in different GameObjects are independent, allowing you to change

some of their behaviors via different settings.

6. The second way to define properties is similar, but instead of creating a public field, we cre-

ate a private field, encouraging encapsulation and exposing it using the SerializeField

attribute, as shown in the following screenshot.

Figure 5.19: Exposing private attributes in the Inspector window

If you are not familiar with the OOP concept of encapsulation, just use the first method, which

is more flexible for beginners. If you create a private field, it won’t be accessible to other scripts

because the SerializeField attribute only exposes the variable to the editor. Remember that

Unity won’t allow you to use constructors, so the only way to set initial data and inject depen-

dencies is via serialized private fields or public fields and setting them in the editor (or using a

dependency injection framework, but that is beyond the scope of this book). For simplicity, we

will use the first method in most of the exercises in this book.

Now that we have our C# script, let’s see how to do the same in Visual Scripting.

Creating a Visual Script
As we need to create a Script Asset for C# scripts, we need to create the Visual Scripting equivalent

called Script Graph and also attach it to our GameObject, although using a different approach

this time. Before continuing, it is worth noticing that our objects must only have C# or the Visual

Scripting version, but not both, or the behavior will be applied twice, once per version.

In case you don’t see the speed variable, please check the section at the end

of this chapter called Common beginner C# script errors, which will give you

tips about how to troubleshoot compilation errors.

If you want, try to create other types of variables and check how they look in the

Inspector. Try replacing float for bool or string, as previously suggested. Consider

that not every possible C# type is recognized by Unity; through this book, we will

learn the most commonly supported ones. Now that we know how to configure our

components through data, let’s use that data to create some behavior.

Chapter 5 119

Essentially, only do the steps for the version you want to try or do both steps in different objects

if you want to experiment.

Let’s create a Visual Script doing the following:

1. Create a new GameObject to which we will add the Visual Script.

2. Add the Script Machine component to it. This component will execute the Visual Script

Graph we will be creating shortly:

Figure 5.20: Adding a Script Machine component

3. In the Script Machine component, click the New button and select a folder and a name to

save the Visual Script Graph asset. This asset will contain the instructions of our script,

and the Script Machine component will execute those:

Figure 5.21: Using the New button to create a Visual Scripting Graph asset

4. If a warning appears, click the Change now option. This will prevent those changes on

the script from affecting the game while its running, because as the warning says, it can

cause instability of the code. Always stop the game, change the code, and then play again.

Introduction to C# and Visual Scripting120

5. Click the Edit Graph Button to open the Visual Script editor window. You can drag the

Script Graph tab to any part of the editor to merge that window:

Figure 5.22: Visual Scripting asset editor

6. Put the mouse in an empty area in the grid of the Visual Script editor, and while holding

the middle mouse button, move the mouse to scroll through the graph. On MacBooks and

Apple Magic Mouses you can scroll using two fingers on the trackpad.

What we did is create the Visual Graph asset that will contain the code of our script, and attached

it to a GameObject through the Script Machine component. Unlike C# scripts, we can’t attach

the Graph Asset directly; that’s why we need the Script Machine to run the component for us.

Regarding fields, the ones we created in the C# scripts are contained in the script itself, but for

Visual Graph they work a little bit differently. When we added the Script Machine component,

another one was added: the Variables component. This will hold all the variables for all the Visual

Script Graph that a GameObject can contain. That means that all graphs we add to our object

will share those variables. You can create graph-specific variables if you want, but they won’t be

exposed in the Inspector, and this way also simplifies the access of variables from other objects’

scripts. Also remember you will want to add several graphs to the object, given that each graph

will take care of different behaviors, in a way in which we can mix and match them according

to our needs.

In order to add a variable to our GameObject that can be used by our graph, let’s do the following:

1. Select a GameObject with a Visual Script added (with the Script Machine component)

and look at the Variables component.

2. Click the input field that says (New Variable Name) and type the name of the variable.

In my case, this is speed. If you don’t see that option, click the triangle at the left of the

Variables component name.

Chapter 5 121

3. Click the Plus (+) button of the Variables component.

4. In the Type dropdown, select Float.

5. Optionally you can set an initial value in the Value field:

Figure 5.23: Creating variables for the Visual Graph

We created a speed variable that we can configure in the GameObject to alter the way all Visual

Scripts Graphs attached to our GameObject will work, or at least the ones that use that Variable

value. Consider that maybe you will have different kinds of speed, like movement and rotational

speed, so in real cases you might want to be a little bit more specific with the variable name.

The Variables component used in Visual Scripting is also called Blackboard, a common program-

ming technique. This Blackboard is a container of several values of our object, like a memory or

database, that several other components of our object will then query and use. C# scripts usually

contain their own variables inside instead. With our scripts created and ready to be configured,

let’s see how to make both of them do something.

Using events and instructions
Now that we have a script, we are ready to do something with it. We won’t implement anything

useful in this chapter, but we will settle the base concepts to add interesting behavior to the

scripts we are going to create in the next chapters.

In this section, we are going to cover the following concepts:

• Events and instructions in C#

• Events and instructions in Visual Scripting

• Using fields in instructions

• Common beginner C# script errors

We are going to explore the Unity event system, which will allow us to respond to different

situations by executing instructions. These instructions will also be affected by the value of the

editor. Finally, we are going to discuss common scripting errors and how to solve them. Let’s start

by introducing the concept of Unity events in C#.

Introduction to C# and Visual Scripting122

Events and instructions in C#
Unity allows us to create behavior in a cause-effect fashion, which is usually called an event sys-

tem. An event is a situation that Unity is monitoring—for example, when two objects collide or

are destroyed, Unity tells us about this situation, allowing us to react according to our needs. As

an example, we can reduce the life of a player when it collides with a bullet. Here, we will explore

how to listen to these events and test them by using some simple actions.

If you are used to event systems, you will know that they usually require us to subscribe to some

kind of listener or delegate, but in Unity, there is a simpler method available. For C# scripts we

just need to write a function with the exact same name as the event we want to use—and I mean

exactly. If a letter of the name doesn’t have the correct casing, it won’t execute, and no warning

will be raised. This is the most common beginner’s error that is made, so pay attention. For Vi-

sual Scripting we will be adding a special kind of node, but will discuss that after the C# version.

There are lots of events or messages to listen to in Unity, so let’s start with the most common

one—Update. This event will tell you when Unity wants you to update your object, depending

on the purpose of your behavior; some don’t need them. The Update logic is usually something

that needs to be executed constantly—to be more precise, in every frame. Remember that every

game is like a movie—a sequence of images that your screen switches through fast enough to look

like we have continuous motion. A common action to do in the Update event is to move objects

a little bit, and by doing this, every frame will make your object constantly move.

We will learn about the sorts of things we can do with Update and other events or messages later.

Now, let’s focus on how to make our component at least listen to this event. Actually, the base

script already comes with two event functions that are ready to use, one being Update and the

other one Start. If you are not familiar with the concept of methods in C#, we are referring to

the snippet of code in the following screenshot, which is already included in our script. Try to

find it in yours:

Figure 5.24: A function called Update, which will be executed with every frame

Chapter 5 123

You will notice a (usually) green line of text (depending on the IDE) above the void Update()

line—this is called a comment. These are basically ignored by the compiler. They are just notes

that you can leave to yourself and must always begin with // to prevent Unity from trying to

execute them and failing. We will use this to temporarily disable lines of code later.

Now, to test whether this actually works, let’s add an instruction to be executed all the time.

There’s no better test function than print. This is a simple instruction that tells Unity to print

a message to the console, where all kinds of messages can be seen by the developers to check

whether everything is properly working. The user will never see these messages. They are similar

to the classic log files that developers sometimes ask you for when something goes wrong in the

game and you are reporting an issue.

In order to test events in C# using functions, follow these steps:

1. Open the script by double-clicking on it.

2. To test, add print("test"); within the event function. In the following screenshot, you

can see an example of how to do that in the Update event. Remember to write the instruc-

tion exactly, including the correct casing, spaces, and quote symbols:

Figure 5.25: Printing a message in all the frames

3. Save the file, go to Unity, and play the game.

4. Look for the Console tab and select it. This is usually found next to the Project View tab.

If you can’t find it, go to Window | General | Console, or press Ctrl + Shift + C (Command

+ Shift + C on macOS).

Remember to save the file before switching back to Unity from the IDE. This

is the only way that Unity knows your file has changed. Some IDEs, such as

Rider, save the file automatically for you, but I don’t recommend you use

auto-save, at least in big projects (you don’t want accidental recompilations

of unfinished work—that takes too long in projects with lots of scripts).

Introduction to C# and Visual Scripting124

5. You will see a new printed message saying "test" every frame on the Console tab. If you

don’t see this, remember to save the script file before playing the game.

6. You might see a single message but with a number increasing to its right; that means the

same message is appearing several times. Try clicking the Collapse button of the Console

to change that behavior.

7. Let’s also test the Start function. Add print("test Start"); to it, save the file, and play

the game. The full script should look as follows:

Figure 5.26: The script that tests the Start and Update functions

If you check the console now and scroll all the way up, you will see a single "test Start" mes-

sage and lots of "test" messages following it. As you can guess, the Start event tells you that

the GameObject is created and allows you to execute the code that needs to happen just once at

the beginning of its lifetime.

Chapter 5 125

For the void Update() syntax, we will say to Unity that whatever is contained within the brackets

below this line is a function that will be executed in all the frames. It is important to put the print

instruction inside the Update brackets (the ones inside the brackets of the class). Also, the print

function expects to receive a value to print inside its parenthesis, called an argument or param-

eter. In our example we want to print simple text, and in C# it must be enclosed with quotation

marks. Finally, all instructions inside functions such as Update or Start must end with a semicolon.

Here, I challenge you to try to add another event called OnDestroy using a print to discover

when it executes. A small suggestion is to play and stop the game and look at the bottom of the

console to test this one.

For advanced users, you can also use breakpoints if your IDE allows you to do that. Breakpoints

allow you to freeze Unity completely before executing a specific code line to see how our field’s

data changes over time and to detect errors. Here, I will show you the steps to use breakpoints in

Rider, but the Visual Studio version should be similar:

1. Install the Unity package belonging to your IDE if not already installed. Check the Package

Manage for the JetBrains Rider Editor package. In the case of Visual Studio, install the

Visual Studio Editor package.

2. Click on the vertical bar at the left of the line where you want to add the breakpoint:

Figure 5.27: A breakpoint in the print instruction

3. Go to Run | Attach to Unity Process. If you are using Visual Studio, go to Debug | Attach

Unity Debugger:

Figure 5.28: Attacking our IDE with a Unity process

Introduction to C# and Visual Scripting126

4. From the list, look for the specific Unity instance you want to test. The list will show other

opened editors or executing debugging builds if any.

5. If this doesn’t work, check if the editor is in debug mode, looking at the bug icon at the

bottom-right part of the editor. If the bug looks blue with a checkbox, then it is ok, but if

it looks gray and crossed out, click it and click Switch to debug mode:

Figure 5.29: Changing from release mode to debug mode

Stopping the debugging process won’t close Unity. It will just detach the IDE from the editor.

Now let’s explore the Visual Scripting equivalent of using events and instructions.

Events and instructions in Visual Scripting
The same concept of events and instructions remains in Visual Scripting, but of course this will

be done with nodes in the graph. Remember a node represents an instruction of the graph, and

we can connect them to chain the effects of each instruction. In order to add events and the print

instruction on our graph, do the following:

1. Open the Visual Script Graph (double-click the Visual Script asset).

2. Right-click the On Start and On Update nodes that are created by default and then click

Delete. Even if those events are the ones we need, I want you to see how to create them

from scratch:

Chapter 5 127

Figure 5.30: Deleting nodes

3. Right-click in any empty space of the Graph and type start inside the Search box. It can

take a while the first time.

4. Select the On Start element in the list with the green checkbox to its left. In this case I

knew this was an event because I was aware of it, but usually you will recognize it as an

event because it won’t have input pins (more on that in the next steps):

Figure 5.31: Searching the On Start event node

5. Drag the white arrow at the right of the event node, also known as the Output Flow Pin,

and release the mouse button in any empty space.

Introduction to C# and Visual Scripting128

6. In the Search box search for the print node, select the one that says Mono Behaviour:Print.

This means that when the On Start event happens, the connected node will be executed,

in this case print. This is how we start to chain instructions to events:

Figure 5.32: Creating a print node connected to the event

7. Drag the empty circle at the left of the Message input pin of the Print node and release it

in any empty space. This pin has a circle indicating that is a parameter pin, data that will

be used when executing the pin. The flow pins, the ones with a green arrow, represent

the order in which the nodes will be executed.

8. Select the String Literal option, which will create a node to allow us to specify the mes-

sage to print:

Figure 5.33: Creating a string literal node

Chapter 5 129

9. In the empty white box write the message to be printed:

Figure 5.34: Specifying the message to print

10. Play the game and see the message printed in the console. Be sure you have only the Visual

Scripting version in the scene to avoid confusing the message in the console with the C#

version. You can also use different message texts in the Visual Scripts to be sure which

ones are really executing.

You can chain more actions to the On Start by dragging the pin at the right (Flow Output Pin) of

the Print node, and chaining new nodes, but we will do that later. Now that we have our scripts

doing something, let’s make the instructions use the fields we created so the scripts use their

configurations.

Using fields in instructions
We have created fields to configure our components’ behavior, but we have not used them so far.

We will create meaningful components in the next chapter, but one thing we will often need is

to use the fields we have created to change the behavior of the object. So far, we have no real use

of the speed field that we created. However, following the idea of testing whether our code is

working (also known as debugging), we can learn how to use the data inside a field with a func-

tion to test whether the value is the expected one, changing the output of print in the console

according to the field’s value.

In our current C# script, our speed value doesn’t change during runtime. However, as an example,

if you are creating a life system with shield damage absorption and you want to test whether the

reduced damage calculation is working properly, you might want to print the calculation values

to the console and check whether they are correct.

Introduction to C# and Visual Scripting130

The idea here is to replace the fixed message inside the print functions with a field. When you

do that, print will show the field’s value in the console. So, if you set a value of 5 in speed and

you print it, you will see lots of messages saying 5 in the console, and the output of the print

function is governed by the field. To test this, your print message within the Update function

should look as follows:

Figure 5.35: Using a field as a print function parameter

As you can see, we just put the name of the field without quotation marks. If you use quotation

marks, you will print a "speed" message. In other scenarios, you can use this speed value within

some moving functions to control how fast the movement will be, or you can perhaps create a

field called "fireRate" (fields use camel case instead of Pascal case, with the first letter being in

lowercase) to control the cooldown time between one bullet and the next:

Figure 5.36: Printing the current speed

Now, to make the Visual Script graph print the value of the speed variable we created in the

Variables component, let’s do the following.

1. Open the Visual Scripting graph asset (double-click it).

2. In the panel at the left, select the Object tab to display all the variables our object has—

essentially the ones we defined in the Variables component previously.

Chapter 5 131

3. Drag the speed variable using the two lines to the left of the variable box to any empty area

of the graph. This will create a GetVariable node in the graph to represent the variable.

Consider the drag has a bug at the moment, so you might need to try a couple of times,

trying to drag from the left part:

Figure 5.37: Dragging variables to the graph to be used in the nodes

4. Drag the empty circle at the right of the Get Variable node to the circle to the left of the

Message input pin of the Print node. This will replace the previous connection to the

String Literal node. This node doesn’t have Input or Output flow nodes (the green arrow

ones), as they are data-only nodes that provide data to other nodes. In this case, when

Print needs to execute, it will execute Get Variable to get the text to read:

Figure 5.38: Connecting the speed variable to the print node

Introduction to C# and Visual Scripting132

5. Right-click on the String Literal node and delete it.

6. Play the game and observe.

With all this, we now have the necessary tools to start creating actual components. Before moving

on, let’s recap some of the common errors that you will likely encounter if this is your first time

creating scripts in C#.

Common beginner C# script errors
The Visual Scripting scripts are prepared in a way in which you make fewer errors, not allowing

you to write incorrect syntax like C# script does. If you are an experienced programmer, I bet you

are quite familiar with them, but let’s recap the common errors that will make you lose lots of time

when you are starting with C# scripting. Most of them are caused by not copying the shown code

exactly. If you have an error in the code, Unity will show a red message in the console and won’t

allow you to run the game, even if you are not using the script. So, never leave anything unfinished.

Let’s start with a classic error, a missing semicolon, which has resulted in many programmer

memes and jokes. All fields and most instructions inside functions (such as print), when called,

need to have a semicolon at the end. If you don’t add a semicolon, Unity will show an error, such

as the one in the screenshot on the left in Figure 5.39, in the console. You will also notice that this

also has an example of bad code, where the IDE is showing a red icon suggesting something is

wrong in that place:

Figure 5.39: An error in the print line hinted by the IDE and the Unity console

You will notice that the error shows the exact script (MyFirstScript.cs), the exact line of code

(14, in this case), and usually, a descriptive message—in this case, ; expected—as a way to specify

the instruction ends there, so the compiler can process the next instruction as a separate one. You

can simply double-click the error and Unity will open the IDE highlighting the problematic line.

You can even click on the links in the stack to jump to the line of the stack that you want.

I already mentioned why it is important to use the exact case for every letter of the instruction.

However, based on my experience of teaching beginners, I need to stress this particular aspect more.

Chapter 5 133

The first scenario where this can happen is in instructions. In the following screenshots, you can

see how a badly written print function looks—that is, the error that the console will display and

how the IDE will suggest that there is something wrong. First, in the case of Rider, the instruction

is colored red, saying that the instruction is not recognized (in Visual Studio, it will show a red line

instead). Then, the error message says that Print does not exist in the current context, meaning

that Unity (or C#, actually) does not recognize any instruction named Print. In another type of

script, Print in uppercase may be valid, but not in regular components, which is why the “in the

current context” clarification exists:

Figure 5.40: Error hints when writing an instruction wrong

Now, if you write an event with the wrong casing, the situation is worse. You can create functions

such as Start and Update with whatever name you want for other purposes. Writing update or

start is perfectly valid as C# will think that you are going to use those functions not as events

but as regular functions. So, no error will be shown, and your code will just not work. Try to write

update instead of Update and see what happens:

Figure 5.41: The wrong casing in the Update function will compile the function but won’t
execute it

Another error is to put instructions outside the function brackets, such as inside the brackets of the

class or outside them. Doing this will give no hint to the function as to when it needs to execute.

So, a print function outside an Event function makes no sense, and it will show an error such as

the ones in the following Figures 5.42 and 5.43.

Introduction to C# and Visual Scripting134

This time, the error is not super descriptive. C# is expecting you to create a function or a field—the

kind of structures that can be put directly inside a class:

Figure 5.42: Misplaced instruction or function call

Finally, another classic mistake is to forget to close open brackets. If you don’t close a bracket, C#

won’t know where a function finishes and another starts or where the class function ends. This

may sound redundant, but C# needs that to be perfectly defined. In the following screenshots,

you can see how this would look:

Figure 5.43: Missing closed brackets

This one is a little bit difficult to catch because the error in the code is shown way after the actual

error. This is caused by the fact that C# allows you to put functions inside functions (not used

often) and so C# will detect the error later, asking you to add a closing bracket. However, as we

don’t want to put Update inside Start, we need to fix the error before, at the end of Start. The

error message will be descriptive in the console, but again, don’t put the close bracket where the

message suggests you do so unless you are 100% sure that position is correct.

You will likely face lots of errors aside from these ones, but they all work the same. The IDE will

show you a hint and the console will display a message; you will learn them with time. Just have

patience as every programmer experiences this. There are other kinds of errors, such as runtime

errors, code that compiles but will fail when being executed due to some misconfiguration, or

the worst: logic errors, where your code compiles and executes with no error but doesn’t do what

you intended.

Chapter 5 135

Summary
In this chapter, we explored the basic concepts that you will use while creating scripts. We dis-

cussed the concept of a script’s assets and how the C# ones must inherit from MonoBehaviour to

be accepted by Unity to create our own scripts. We also saw how to mix events and instructions

to add behavior to an object and how to use fields in instructions to customize what they do. All

of this was done using both C# and Visual Scripting.

We just explored the basics of scripting to ensure that everyone is on the same page. However, from

now on, we will assume that you have basic coding experience in some programming language,

and you know how to use structures such as if, for, array, and so on. If not, you can still read

through this book and try to complement the areas you don’t understand with a C# introduction

book as you need.

In the next chapter, we are going to start seeing how we can use what we have learned to create

movement and spawning scripts.

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

6
Implementing Movement and
Spawning

In the previous chapter, we learned about the basics of scripting, so now let’s create the first

script for our game. We will see the basics of how to move objects through scripting using the

Transform component, which will be applied to the movement of our player with the keyboard

keys, the constant movement of bullets, and other object movements. Also, we will see how to

create and destroy objects during the game, such as the bullets our player and enemy shoot and

the enemy wave spawners. These actions can be used in several other scenarios, so we will explore

a few to reinforce the idea.

In this chapter, we will examine the following scripting concepts:

• Implementing movement

• Implementing spawning

• Using the new Input System

We will start by scripting components to move our character through the keyboard, and then we

will make our player shoot bullets. Something to consider is that we are going to first see the C#

version and then show the Visual Scripting equivalent in each section.

Implementing movement
Almost every object in the game moves one way or another: the player character with the keyboard;

the enemies through AI; the bullets that simply move forward; and so on. There are several ways

of moving objects in Unity, so we will start with the simplest one, that is, through the Transform

component.

Implementing Movement and Spawning138

In this section, we will examine the following movement concepts:

• Moving objects through Transform

• Using input

• Understanding Delta Time

First, we will explore how to access the Transform component in our script to drive the player

movement, to later apply movement based on the player’s keyboard input. Finally, we are going

to explore the concept of Delta Time to make sure the movement speeds are consistent on every

computer. We are going to start learning about the Transform API to make a simple movement

script.

Moving objects through Transform
Transform is the component that holds the translation, rotation, and scale of the object, so every

movement system such as physics or pathfinding will affect this component. Sometimes, we want

to move the object in a specific way according to our game by creating our own script, which will

handle the movement calculations we need and modify Transform to apply them.

One concept implied here is that components alter other components. The main way of coding

in Unity is to create components that interact with other components. Here, the idea is to create

one that accesses another and tells it to do something: in this case, to move. To create a script

that tells Transform to move, do the following:

1. Create and add a script called PlayerMovement to our character, like we did in the previ-

ous chapter. In this case, it would be the animated 3D model we downloaded previously

(drag the 3D asset from the Project view to the scene). Remember to move the script to

the Scripts folder after creation:

Figure 6.1: Creating a Player Movement script in the character

Chapter 6 139

2. Double-click the created script asset to open an IDE to edit the code.

3. We are moving, and the movement is applied to every frame. So this script will use only

the Update function or method, and we can remove Start (it is a good practice to remove

the unused functions):

Figure 6.2: A component with just the Update event function

4. To move our object along its local forward axis (z axis), add the transform.

Translate(0,0,1); line to the Update function, as shown in Figure 6.3:

Figure 6.3: A simple Move Forward script

Every component inherits a Transform field (to be specific, a getter) that is

a reference to the Transform of the GameObject the component is placed

in; it represents the sibling Transform of our component. Through this field,

we can access the Translate function of the Transform, which will receive

the offset to apply to the x, y, and z local coordinates.

Implementing Movement and Spawning140

5. Save the file and play the game to see the movement. Ensure the camera is pointing at

the character to properly see the effect of the script.

You will notice that the player is moving too fast. That’s because we are using a fixed speed of 1

meter, and because Update is executing all frames, we are moving 1 meter per frame. In a standard

30 FPS game, the player will move 30 meters per second, which is too much, but probably our

computer is running the game with way more FPS than that. We can control the player’s speed

by adding a speed field and using the value set in the editor instead of the fixed value of 1. You can

see one way to do this in the Figure 6.4, but remember the other options we discussed in Chapter

5, Introduction to C# and Visual Scripting:

Figure 6.4: Creating a speed field and using it as the z speed of the movement script

Now if you save the script to apply the changes and set the Speed of the player in the Editor, you

can play the game and see the results. In my case, I used 0.1, but you might need another value

(more on this in the Understanding Delta Time section):

Figure 6.5: Setting speed of 0.1 meters per frame

Now, for the Visual Scripting version, first remember to not mix the C# and Visual Scripting

versions of our scripts, not because it is not possible, but because we want to keep things simple

for now. So, you can either delete the script from the player object and add the Visual Scripting

version, or you can create two player objects and enable and disable them to try both versions.

I recommend creating one project for the C# version of the scripts and then creating a second

project to experiment with the Visual Script version.

Chapter 6 141

The Visual Scripting Graph of this script will look like the following image:

Figure 6.6: Setting a speed of 0.1 meters per frame

As you can see, we added a Script Machine component to our Player GameObject. Then, we pressed

the New button in the Script Machine component to create a new Graph called PlayerMovement.

We also created a Float variable called speed with the value of 0.1. In the Graph, we added the

On Update event node and attached it to the Translate (X,Y,Z) node of the Transform, which,

similarly to the C# version, will move along the local axes of the object. Finally, we connected the

Z parameter pin of Translate to the GetVariable node representing the speed we created in the

GameObject. If you compare this Graph with the code we used in the C# version, they are essen-

tially the same Update method and Translate function. If you don’t remember how to create this

Graph, you can go back to Chapter 5, Introduction to C# and Visual Scripting, to recap the process.

You will notice that the player will move automatically. Now let’s see how to execute the move-

ment based on player input such as the keyboard and mouse.

Using Input
Unlike NPCs, we want the player’s movement to be driven by the player’s input, based on which

keys they press, the mouse movement, and so on. To know whether a certain key has been pressed,

such as the Up arrow, we can use the Input.GetKey(KeyCode.W) line, which will return a Boolean,

indicating whether the key specified in the KeyCode enum is pressed, which is W in this case. We

can combine the GetKey function with an If statement to make the translation execute when

the key is pressed.

Implementing Movement and Spawning142

Let’s start by implementing the keyboard movement by following these steps:

1. Make the forward movement execute only when the W key is pressed with the code, as

shown in the next screenshot:

Figure 6.7: Conditioning the movement until the W key is pressed

2. We can add other movement directions with more If statements to move backward and

A and D to move left and right, as shown in the following screenshot. Notice how we used

the minus sign to inverse the speed when we needed to move in the opposite axis direction:

Figure 6.8: Checking the W, A, S, and D key pressure

3. In case you also want to consider the arrow keys, you can use an OR inside if, as shown

in the following screenshot:

Figure 6.9: Checking the W, A, S, D, and arrow key pressure

4. Save the changes and test the movement in Play mode.

Something to take into account is that, first, we have another way to map several keys to a single

action by configuring the Input Manager—a place where action mappings can be created. Sec-

ond, at the time of writing this, Unity has released a new Input System that is more extensible

than this one.

Chapter 6 143

For now, we will use this one because it is simple enough to make our introduction to scripting with

Unity easier, but in games with complex input, it is recommended to look for more advanced tools.

Now, for the Visual Scripting version, the graph will look like this:

Figure 6.10: Input movement in Visual Scripting

As you can see, the graph has grown in size considerably compared to the C# version, which serves

as an example of why developers prefer to code instead of using visual tools. Of course, we have

several ways to split this graph into smaller chunks and make it more readable, and also consider

I needed to squeeze the nodes together to be in the same image. Also, in the graph, we only see

the example graph to move forward and backward, but you can easily extrapolate the necessary

steps for lateral movement based on this one. As usual, you can also check the GitHub repository

of the project to see the completed files.

Looking at the graph, you can quickly observe all the similarities to the C# version; we chained

If nodes to the On Update event node in a way that if the first If node condition is true, it will

execute the Translate in the player’s forward direction. If that condition is false, we chained the

False output node to another If that checks the pressure of the other keys, and in that case, we

moved backward using the Multiply (Scalar) node to inverse the speed.

Implementing Movement and Spawning144

You can notice nodes like If that have more than one Flow Output pin to branch the execution

of the code.

You can also notice the usage of the GetKey (Key) node, the Visual Scripting version of the same

GetKey function we used previously. When looking at this node in the Search box, you will see

all the versions of the function, and in this case, we selected the GetKey(Key) version; the one

that receives a name (string) works differently, and we are not covering that one:

Figure 6.11: All versions of Input GetKey

We also used the Or node to combine the two GetKey (Key) functions into one condition to give

to the If. These conditional operators can be found in the Logic category of the Search box:

Figure 6.12: The Boolean Logic operators

One thing to highlight is the usage of the Multiply node to multiply the value of the speed vari-

able by –1. We needed to create a Float Literal node to represent the –1 value. Next, surely all

programmers will notice some limitations regarding how we used the If node’s True and False

output pins, but we will address that in a moment. Finally, consider that this implementation

has the problem of blocking the second input read if the first is successful; we will discuss a way

to fix this when we add rotation to our character later in this section.

Chapter 6 145

Now, let’s implement the mouse controls. In this section, we will only cover rotation with mouse

movement; we will shoot bullets in the next section: Implementing spawning. In the case of mouse

movement, we can get a value saying how much the mouse has moved both horizontally and

vertically. This value isn’t a Boolean but a number: a type of input usually known as an axis. The

value of an axis will indicate the intensity of the movement, and the sign of that number will

indicate the direction. For example, if Unity’s "Mouse X" axis says 0.5, it means that the mouse

moved to the right with a moderate speed, but if it says -1, it moved quickly to the left, and if there

is no movement, it will say 0. The same goes for sticks in gamepads; the axis named Horizontal

represents the horizontal movement of the left stick in common joysticks, so if the player pulls

the stick fully to the left, it will say -1.

We can create our own axes to map other common joystick pressure-based controls, but for our

game, the default ones are enough. To detect mouse movement, follow these steps:

1. Use the Input.GetAxis function inside Update, next to the movement if statements, as

shown in the following screenshot, to store the value of this frame’s mouse movement

into a variable:

Figure 6.13: Getting the horizontal movement of the mouse

2. Use the transform.Rotate function to rotate the character. This function receives the

degrees to rotate in the x, y, and z axes. In this case, we need to rotate horizontally, so we

will use the mouse movement value as the y-axis rotation, as shown in the next screenshot:

Figure 6.14: Rotating the object horizontally based on mouse movement

3. If you save and test this, you will notice that the character will rotate but very quickly or

slowly, depending on your computer. Remember, this kind of value needs to be configu-

rable, so let’s create a rotationSpeed field to configure the speed of the player in the editor:

Figure 6.15: The speed and rotation speed fields

Implementing Movement and Spawning146

4. Now we need to multiply the mouse movement value by the speed, so, depending on the

rotationSpeed, we can increase or reduce the rotation amount. As an example, if we set

a value of 0.5 in the rotation speed, multiplying that value by the mouse movement will

make the object rotate at half the previous speed, as shown in the following screenshot:

Figure 6.16: Multiplying the mouse movement by the rotation speed

5. Save the code and go back to the editor to set the rotation speed value. If you don’t do this,

the object won’t rotate because the default value of the float type fields is 0:

Figure 6.17: Setting the rotation speed

The Visual Scripting additions to achieve rotation will look like this:

Figure 6.18: Rotating in Visual Scripting

Chapter 6 147

The first thing to notice here is the usage of the Sequence node. An output pin can only be at-

tached to one other node, but in this case, On Update needs to do two different things, to rotate

and to move, each one being independent of the other. Sequence is a node that will execute all its

output pins one after the other, regardless of the results of each one. You can specify the number

of output pins in the Steps input box; in this example, two is enough.

In the output pin 0, the first one, we added the rotation code, which is pretty self-explanatory

given it is essentially the same as the movement code with slightly different nodes (Rotate (X, Y,

Z) and GetAxis). Then, to Output Pin 1, we attached the If that checks the movement input—the

one we did at the beginning of this section. This will cause the rotation to be executed first and

the movement second.

Regarding the limitation we mentioned before, it’s basically the fact we cannot execute both

Forward and Backward rotations, given that if the forward movement keys are pressed, the first

If will be true. Because the backward key rotation is checked in the false output pin, they won’t

be checked in such cases. Of course, as our first movement script it might be enough but consider

the lateral movement. If we continue the If chaining using True and False output pins, we will

have a scenario where we can only move in one direction. So we cannot combine, for example,

Forward and Right to move diagonally.

A simple solution to this issue is to put the If nodes in the sequence instead of chaining them, so all

the If nodes are checked, as the original C# did. You can see an example of this in the next image:

Figure 6.19: Sequencing Ifs

Implementing Movement and Spawning148

Something to consider here is that the chaining of the Ifs and any kind of node can be removed

by right-clicking the circle pins on both ends of the line that connects them. Now that we have

completed our movement script, we need to refine it to work in every machine by exploring the

concept of Delta Time.

Understanding Delta Time
Unity’s Update loop executes as fast as the computer can. You can specify in Unity the desired

frame rate, but achieving that depends exclusively on whether your computer can reach that,

which depends on lots of factors, not only hardware, so you cannot expect to always have con-

sistent FPS. You must code your scripts to handle every possible scenario. Our current script is

moving at a certain speed per frame, and the per frame part is important here.

We have set the movement speed to 0.1, so if my computer runs the game at 120 FPS, the player

will move 12 meters per second. Now, what happens on a computer where the game runs at 60

FPS? As you may guess, it will move only 6 meters per second, making our game have inconsistent

behavior across different computers. This is where Delta Time saves the day.

Delta Time is a value that tells us how much time has passed since the previous frame. This time

depends a lot on our game’s graphics, number of entities, physics bodies, audio, and countless

aspects that will dictate how fast your computer can process a frame. As an example, if your game

runs at 10 FPS, it means that, in a second, your computer can process the Update loop 10 times,

meaning that each loop takes approximately 0.1 seconds; in the frame, Delta Time will provide

that value. In the next diagram, you can see an example of 4 frames taking different times to

process, which can happen in real-life cases:

Figure 6.20: Delta Time values varying in different frames of the game

Here, we need to code in such a way as to change the per frame part of the movement to per second;

we need to have consistent movement per second across different computers. A way to do that is

to move proportionally to the Delta Time: the higher the Delta Time value, the longer that frame

is, and the further the movement should be to match the real time that has passed since the last

update. We can think about our speed field’s current value in terms of 0.1 meters per second; our

Delta Time saying 0.5 means that half a second has passed, so we should move half the speed, 0.05.

Chapter 6 149

After two frames a second have passed, the sum of the movements of the frames (2 x 0.05) matches

the target speed, 0.1. Delta Time can be interpreted as the percentage of a second that has passed.

To make the Delta Time affect our movement, we should simply multiply our speed by Delta Time

every frame because the Delta Time can be different every frame, so let’s do that:

1. We access Delta Time using Time.deltaTime. We can start affecting the movement by

multiplying the Delta Time in every Translate:

Figure 6.21: Multiplying speed by Delta Time

2. We can do the same with the rotation speed, by chaining the mouse and speed multipli-

cations:

Figure 6.22: Applying Delta Time to the rotation code

3. If you save and play the game, you will notice that the movement will be slower than

before. That’s because now 0.1 is the movement per second, meaning 10 centimeters per

second, which is pretty slow; try raising those values. In my case, 10 for speed and 180

for rotation speed was enough, but the rotation speed depends on the player’s preferred

sensibility, which can be configurable, but let’s keep that for another time.

Implementing Movement and Spawning150

The Visual Scripting change for rotation will look like this:

Figure 6.23: Applying Delta Time to Rotate Visual Script

For movement, you can easily extrapolate from this example or remember to check the project

on GitHub. We simply chained another Multiply node with Get Delta Time.

We just learned how to mix the Input System of Unity, which tells us about the state of the key-

board, mouse, and other input devices, with the basic Transform movement functions. This way,

we can start making our game feel more dynamic.

Now that we have finished the player’s movement, let’s discuss how to make the player shoot

bullets using Instantiate functions.

Implementing spawning
We have created lots of objects in the editor that define our level, but once the game begins, and

according to the player’s actions, new objects must be created to better fit the scenarios generat-

ed by player interaction. Enemies might need to appear after a while, or bullets must be created

according to the player’s input; even when enemies die, there’s a chance of spawning a power-up.

This means that we cannot create all the necessary objects beforehand but should create them

dynamically, and that’s done through scripting.

Chapter 6 151

In this section, we will examine the following spawning concepts:

• Spawning objects

• Timing actions

• Destroying objects

We will start seeing the Unity Instantiate function, which allows us to create instances of Prefabs

at runtime, such as when pressing a key, or in a time-based fashion, such as making our enemy

spawn bullets once every certain amount of time. Also, we will learn how to destroy these objects

to prevent our scene from starting to perform badly due to too many objects being processed.

Let’s start with how to shoot bullets according to the player’s input.

Spawning objects
To spawn an object in runtime or Play mode, we need a description of the object, which compo-

nents it has, and its settings and possible sub-objects. You might be thinking about Prefabs here,

and you are right; we will use an instruction that will tell Unity to create an instance of a Prefab

via scripting. Remember that an instance of a Prefab is an object created based on the Prefab—

basically a clone of the original one.

We will start with shooting player’s bullets, so first let’s create the bullet Prefab by following

these steps:

1. Create a sphere in GameObject | 3D Object | Sphere. You can replace the sphere mesh with

another bullet model if you want, but we will keep the sphere in this example for now.

2. Rename the sphere Bullet.

3. Create a material by clicking on the + button of the Project window, choosing the option

Material, and calling it Bullet. Remember to place it inside the Materials folder.

Implementing Movement and Spawning152

4. Check the Emission checkbox in the material and set the Emission Map and Base Map

colors to red. Remember, the emission color will make the bullet shine, especially with

the bloom effect in our post-processing volume:

Figure 6.24: Creating a red bullet material with emission color

5. Apply the Material to the Sphere by dragging the material to it.

6. Set the Scale to a smaller value—0.3, 0.3, 0.3 worked in my case.

7. Create a script called ForwardMovement to make the bullet constantly move forward at

a fixed speed. You can create it both with C# and Visual Scripting, but for simplicity, we

are only going to use C# in this case.

I suggest you try to solve this by yourself first and look at the screenshot in

the next step with the solution later as a little challenge to recap the move-

ment concepts we saw previously. If you don’t recall how to create a script,

please look at Chapter 5, Introduction to C# and Visual Scripting, and check

the previous section to see how to move objects.

Chapter 6 153

8. The next screenshot shows you what the script should look like:

Figure 6.25: A simple ForwardMovement script

9. Add the script (if not already there) to the bullet and set the speed to a value you see fit.

Usually, bullets are faster than the player but that depends on the game experience you

want to get. In my case, 20 worked fine. Test it by placing the bullet near the player and

playing the game:

Figure 6.26: A ForwardMovement script in the bullet

Implementing Movement and Spawning154

10. Drag the bullet GameObject instance to the Prefabs folder to create a Bullet Prefab. Re-

member that the Prefab is an asset that has a description of the created bullet, like a

blueprint of how to create a bullet:

Figure 6.27: Creating a Prefab

11. Remove the original bullet from the scene; we will use the Prefab to create bullets when

the player presses a key (if ever).

Now that we have our bullet Prefab, it is time to instantiate it (clone it) when the player presses

a key. To do that, follow these steps:

1. Create and add a script to the player’s GameObject called PlayerShooting and open it.

2. We need a way for the script to have access to the Prefab to know which Prefab to use from

probably the dozens we will have in our project. All of the data our script needs, which

depends on the desired game experience, is in the form of a field, such as the speed field

used so far. So in this case, we need a field of the GameObject type—a field that can refer-

ence or point to a specific Prefab, which can be set using the editor.

3. Adding the field code would look like this:

Figure 6.28: The Prefab reference field

Chapter 6 155

4. In the editor, click on the circle toward the right of the property and select the Bullet

Prefab. Another option is to just drag the Bullet Prefab to the property. This way, we tell

our script that the bullet to shoot will be that one. Remember to drag the Prefab and not

the bullet in the scene (that one should be deleted by now):

Figure 6.29: Setting the Prefab reference to point the bullet

5. We will shoot the bullet when the player presses the left mouse button, so place the

proper if statement to handle that in the Update event function, like the one shown in

the next screenshot:

Figure 6.30: Detecting the pressure of the left mouse button

6. You will notice that this time, we used GetKeyDown instead of GetKey, the former being a

way to detect the exact frame the pressure of the key started; this if statement will execute

its code only in that frame, and until the key is released and re-pressed, it won’t enter

again. This is one way to prevent bullets from spawning in every frame, but just for fun,

you can try using GetKey instead to check how it would behave. Also, KeyCode.Mouse0

is the mouse button number that belongs to left-click, KeyCode.Mouse1 is the right-click,

and KeyCode.Mouse2 is the middle click.

As you might have guessed, we can use the GameObject type to not only

reference Prefabs but also other objects. Imagine an enemy AI needing a

reference to the player object to get its position, using GameObject to link

the two objects. The trick here is considering that Prefabs are just regular

GameObjects that live outside the scene; you cannot see them, but they

are in memory, ready to be copied or instantiated. You will only see them

through copies or instances that are placed in the scene with scripting or

via the editor, as we have done so far.

Implementing Movement and Spawning156

7. Use the Instantiate function to clone the Prefab, passing the reference to it as the first

parameter. This will create a clone of the previously mentioned Prefab that will be placed

in the scene:

Figure 6.31: Instantiating the Prefab

If you save the script and play the game, you will notice that when you press the mouse, a bullet

will be spawning, but probably not in the place you are expecting. If you don’t see it, try to check

the Hierarchy for new objects; it will be there. The problem here is that we didn’t specify the de-

sired spawn position, and we have two ways of setting that, which we will see in the next steps:

1. The first way is to use the transform.position and transform.rotation inherited fields

from MonoBehaviour, which will tell us our current position and rotation. We can pass

them as the second and third parameters of the Instantiate function, which will under-

stand that this is the place we want our bullet to appear. Remember that it is important

to set the rotation to make the bullet face the same direction as the player, so it will move

that way:

Figure 6.32: Instantiating the Prefab in our position and rotation

2. The second way is by using the previous version of Instantiate, but saving the reference

returned by the function, which will be pointing to the clone of the Prefab. This allows us

to change whatever we want from it. In this case, we will need the following three lines;

the first will instantiate and capture the clone reference, the second will set the position,

and the third the rotation. We will also use the transform.position field of the clone,

but this time to change its value by using the = (assignment) operator:

Figure 6.33: The longer version of instantiating a Prefab in a specific position

Remember that you can check the project’s GitHub repository linked in the Preface to see the full

script finished. Now you can save the file with one of the versions and try to shoot.

Chapter 6 157

If you try the script so far, you should see the bullet spawn in the player’s position, but in our case,

it will probably be the floor. The problem here is that the player’s character pivot is there, and

usually, every humanoid character has the pivot in their feet. We have several ways to fix that.

The most flexible one is to create a Shoot Point, an empty GameObject child of the player, placed

in the position we want the bullet to spawn. We can use the position of that object instead of the

player’s position by following these steps:

1. Create an empty GameObject in GameObject | Create Empty. Rename it ShootPoint.

2. Make it a child of the player’s GameObject and place it where you want the bullet to appear,

probably a little higher and further forward:

Figure 6.34: An empty ShootPoint object placed inside the character

3. As usual, to access the data of another object, we need a reference to it, such as the Pre-

fab reference, but this time it needs to point to our shoot point. We can create another

GameObject type field, but this time drag ShootPoint instead of the Prefab. The script and

the object set would look as follows:

Figure 6.35: The Prefab and ShootPoint fields and how they are set in the editor

Implementing Movement and Spawning158

4. We can access the position of the ShootPoint by using the transform.position field of

it again, as shown in the following screenshot:

Figure 6.36: The Prefab and ShootPoint fields and how they are set in the editor

The Visual Scripting version of ForwardMovement will look like this:

Figure 6.37: ForwardMovement with Visual Scripting

And PlayerShooting will look like this:

Chapter 6 159

Figure 6.38: Instantiating in the PlayerShooting Visual Script

As you can see, we added a second Script Machine component with a new graph called Player

Shooting. We also added a new variable, bulletPrefab, of type GameObject and dragged the

Bullet Prefab to it, and a second GameObject typed variable called shootPoint, to have the ref-

erence to the bullet’s spawn position. The rest of the script is essentially the counterpart of the

C# version without any major differences. Something to highlight here is how we connected the

Transform GetPosition and Transform GetRotation nodes to the GetVariable node belonging

to the shootPoint; in this way, we are accessing the position and rotation of the shooting point.

If you don’t specify that, it will use the player’s position and rotation, which in the case of our

model is in the player’s character’s feet.

Implementing Movement and Spawning160

You will notice that now shooting and rotating with the mouse has a problem; when moving the

mouse to rotate, the pointer will fall outside the Game View, and when clicking, you will acci-

dentally click the editor, losing the focus on the Game View, so you will need to click the Game

View again to regain focus and use input again. A way to prevent this is to disable the cursor while

playing. To do this, follow these steps:

1. Add a Start event function to our Player Movement Script.

2. Add the two lines you can see in the following screenshot to your script. The first one will

make the cursor visible, and the second one will lock it in the middle of the screen, so

it will never abandon the Game View. Consider the latter; you will need to reenable the

cursor when you switch back to the main menu or the pause menu, to allow the mouse

to click the UI buttons:

Figure 6.39: Disabling the mouse cursor

3. Save and test this. If you want to stop the game, you could either press Ctrl + Shift + P

(Command + Shift + P on Mac) or press the Esc key to reenable the mouse. Both options

only work in the editor; in the real game, you will need to reset Cursor.visible to true

and Cursor.lockState to CursorLockMode.None.

4. The Visual Scripting equivalent will look like this:

 Figure 6.40: Disabling the mouse cursor in Visual Scripting

Now that we have covered the basics of object spawning, let’s see an advanced example by com-

bining it with timers.

Chapter 6 161

Timing actions
Not entirely related to spawning, but usually used together, timing actions is a common task in

video games. The idea is to schedule something to happen later; maybe we want the bullet to

be destroyed after a while to prevent memory overflow, or we want to control the spawn rate

of enemies or when they should spawn. That’s exactly what we are going to do in this section,

starting with the second, the enemy waves.

The idea is that we want to spawn enemies at a certain rate in different moments of the game;

maybe we want to spawn enemies from second 1 to 5 at a rate of 2 per second, getting 10 enemies,

and giving the player up to 20 seconds to finish them, programming another wave starting at 25

seconds. Of course, this depends a lot on the exact game you want, and you can start with an idea

like this one and modify it after some testing to find the exact way you want the wave system to

work. In our case, we will apply timing by implementing a simple wave system.

First of all, we need an enemy, and for now, we will simply use the same 3D model we used for

the player, but add a Forward Movement script to simply make it move forward; later in this book,

we will add AI behavior to our enemies. I suggest you try to create this Prefab by yourself and look

at the following steps once you have tried it, to check the correct answer:

Drag the downloaded Character FBX model to the scene to create another instance of it, but

rename it to Enemy this time:

1. Add the ForwardMovement script created for the bullets but this time to Enemy, and set it

at a speed of 10 for now.

2. Drag the Enemy GameObject to the Project to create a Prefab based on that one; we will

need to spawn it later. Remember to choose Prefab Variant, which will keep the Prefab

linked with the original model to make the changes applied to the model automatically

apply to the Prefab.

3. Remember also to destroy the original Enemy from the scene.

Now, to schedule actions, we will use the Invoke functions to create timers. They are basic but

enough for our requirements. Let’s use them by following these steps:

1. Create an empty GameObject at one end of the base and call it Wave1a.

2. Create and add a script called WaveSpawner to it.

Implementing Movement and Spawning162

3. Our spawner will need four fields: the Enemy Prefab to spawn, the startTime of the wave,

the endTime, and the spawn rate of the enemies (how much time should be between each

spawn). The script and the settings will look like the following screenshot:

Figure 6.41: The fields of the wave spawner script

We will use the InvokeRepeating function to schedule a custom function to repeat periodically.

You will need to schedule the repetition just once; Unity will remember that, so don’t do it every

frame. This is a good reason to use the Start event function instead. The first argument of the

function is a string (text between the quotation marks) with the name of the other function to

execute periodically, and unlike Start or Update, you can name the function whatever you want.

The second argument is the time to start repeating, our startTime field, in this case. Finally, the

third argument is the repetition rate of the function—how much time needs to happen between

each repetition—this being the spawnRate field. You can find how to call that function in the next

screenshot, along with the custom Spawn function:

Figure 6.42: Scheduling a Spawn function to repeat

1. Inside the Spawn function, we can put the spawning code as we know, using the Instantiate

function. The idea is to call this function at a certain rate to spawn one enemy per call. This

time, the spawn position will be in the same position as the spawner, so place it carefully:

Figure 6.43: Instantiating in the Spawn function

Chapter 6 163

If you test this script by setting the Prefab startTime and spawnRate fields to some values

greater than 0, you will notice that the enemies will start spawning but never stop, and

you can see that we didn’t use the endTime field so far. The idea is to call the CancelInvoke

function, the one function that will cancel all the InvokeRepeating calls we made, but after

a while. We will delay the execution of CancelInvoke using the Invoke function, which

works similarly to InvokeRepeating, but this one executes just once. In the next screenshot,

you can see how we added an Invoke call to the CancelInvoke function in Start, using

the endTime field as the time to execute CancelInvoke. This will execute CancelInvoke

after a while, canceling the first InvokeRepeating call that spawns the Prefab:

Figure 6.44: Scheduling a Spawn repetition but canceling after a while with Can-
celInvoke

2. Now you can save and set some real values to our spawner. In my case, I used the ones

shown in the following screenshot:

Figure 6.45: Spawning enemies from second 1 to 5 of the gameplay every 0.5 seconds,
2 per second

This time, we used Invoke to delay the call to CancelInvoke. We didn’t

create a custom function because CancelInvoke doesn’t receive arguments.

If you need to schedule a function with arguments, you will need to create a

wrapper function without parameters that calls the desired one and sched-

ules it, as we did with Spawn, where the only intention is to call Instantiate

with specific arguments.

Implementing Movement and Spawning164

You should see the enemies being spawned one next to the other, and because they move forward,

they will form a row of enemies. This behavior will change later with AI. Now, the Visual Scripting

version will look like this:

Figure 6.46: Spawning enemies in Visual Scripting

While we could use the InvokeRepeating approach in Visual Scripting, here we can see some

benefits of the Visual approach, given it sometimes has more flexibility than coding. In this case,

we used the Wait For Seconds node at the beginning of the Start, a node that basically will

hold the execution of the flow for a couple of seconds. This will create the initial delay we had in

the original script; that’s why we used the startTime as the amount of Delay.

Now, after the wait, we used a For loop; for this example, we changed the concept of the script,

as we want to spawn a specific number of enemies instead of spawning during a time. The For

loop is essentially a classic For that will repeat whatever is connected to the Body output pin the

number of times specified by the Last input pin.

Chapter 6 165

We connected that pin to a variable to control the number of enemies we want to spawn. Then,

we connected an Instantiate to the Body output pin of the For loop to instantiate our enemies,

and then a Wait For Seconds, to stop the flow for a time before the loop can continue spawning

enemies.

Something interesting is that if you play the game now, you will receive an error in the console

that will look like this:

Figure 6.47: Error when using Wait nodes

You can even go back to the graph editor and see that the conflicting node will be highlighted in red:

Figure 6.48: Node causing the error

The issue here is that in order for the Wait For Seconds nodes to work, you need to mark the

Start event as a Coroutine. This will basically allow the event to be paused for an amount of

time and be resumed later. The same concept exists in C#, but as it is simpler to implement here

in Visual Scripting than in C#, we decided to go with this approach here.

To solve this error, just select the On Start event node and check the Coroutine checkbox in the

Graph Inspector pane on the left of the Script Graph editor. If you don’t see it, consider clicking

the Info button (circle with i) in the top-left part of the editor.

Implementing Movement and Spawning166

A coroutine is a function that can be paused and resumed later, and that’s exactly what the Wait

node does. Coroutines also exist in MonoBehaviours, but let’s keep things simple for now.

Figure 6.49: Marking Start as a coroutine

Now that we have discussed timing and spawn, let’s discuss timing and Destroy to prevent our

bullets from living forever in the memory.

Destroying objects
We can use the Destroy function to destroy object instances. The idea is to make the bullets have a

script that schedules their own auto-destruction after a while to prevent them from living forever.

We will create the script by following these steps:

1. Select the Prefab of Bullet and add a script called Autodestroy to it, as you did with other

objects using the Add Component > New Script option. This time, the script will be added

to the Prefab, and each instance of the Prefab you spawn will have it.

2. You can use the Destroy function, as shown in the next screenshot, to destroy the object

just once in Start:

Figure 6.50: Destroying an object when it starts

The Destroy function expects the object to destroy as the first argument, and here, we are using

the gameObject reference; a way to point to the GameObject our script is placed into to destroy

it. If you use the this pointer instead of GameObject, we will be destroying only the Autodestroy

component we are creating.

Chapter 6 167

Of course, we don’t want the bullet to be destroyed as soon as it is spawned, so we need to delay

the destruction. You may be thinking about using Invoke, but unlike most functions in Unity,

Destroy can receive a second argument, which is the time to wait until destruction.

1. Create a delay field to use as the second argument of Destroy, as shown in the next screen-

shot:

Figure 6.51: Using a field to configure the delay to destroy the object

2. Set the delay field to a proper value; in my case, 5 was enough. Now check how the bullets

despawn after a while by looking at them being removed from the Hierarchy.

3. The Visual Scripting equivalent will look like this:

Figure 6.52: Destroying in Visual Scripting

Implementing Movement and Spawning168

Regarding this version, notice how we use the Component Destroy (Obj, T) version of the Destroy

node, which includes the delay time.

Now, we can create and destroy objects at will, which is something very common in Unity script-

ing. In the next section, we will discuss how to modify the scripts we have done so far to support

the new Unity Input System.

Using the new Input System
We have been using the Input class to detect the buttons and axes being pressed, and for our

simple usage that is more than enough. But the default Unity input system has its limitations

regarding extensibility to support new input hardware and mappings.

In this section, we will explore the following concepts:

• Installing the new Input System

• Creating Input Mappings

• Using Mappings in scripts

Let’s start exploring how to install the new Input System.

Installing the new Input System
To start using the new Input System, it needs to be installed like any other package we have in-

stalled so far, using the Package Manager. The package is just called Input System, so go ahead

and install it as usual. In this case we are using version 1.4.2, but a newer one may be available

when you read this chapter.

Figure 6.53: Installing the new Input System package

Look for the Object Pool concept, which is a way to recycle objects instead of

creating them constantly; you will learn that sometimes creating and destroying

objects is not that performant.

Chapter 6 169

By default, when you install the Input System, it will prompt you to enable the new Input System

with a window like the one in the following image. If that appears, just click Yes and wait for

Unity to restart:

Figure 6.54: Switching the active Input System

If for some reason that didn’t appear, the other alternative is going to Edit | Project Settings and

then going to Player | Other Settings | Configuration to set the Active Input Handling property

to Input System Package (New).

Implementing Movement and Spawning170

There’s an option called Both to keep both enabled, but let’s stick with just one.

Figure 6.55: Switching the active Input System

Now that we have the system installed and set up, let’s explore how to create the Input Mappings

needed.

Creating Input Mappings
The new system has a way to directly request the current state of a button or thumbstick to the

gamepad, mouse, keyboard, or whatever other device we have, like what we did so far with the

previous Input System. But doing so would prevent us from using one of the best features of the

system, the Input Mappings.

The idea of an Input Mapping is to abstract the Input Actions from the Physical Input. Instead of

thinking about the space bar, the left thumbstick of a gamepad, or the right click of a mouse, you

think in terms of actions, like move, shoot, or jump. In code, you will ask if the Shoot button has

been pressed, or the current value of the Move axes, like we did with the mouse axes rotatation.

While the previous system supported a certain degree of Input Mapping, the one in the new Input

System is way more powerful and easier to configure.

Action Mappings

Shoot Left Mouse Button, Left Control, X button of the gamepad

Jump Space, Y button of gamepad

Horizontal Movement A and D keys, Left and Right arrows, gamepad Left Stick

Figure 6.56: Example of the Input Mapping table

The power of this idea is that the actual keys or buttons that will trigger these actions are con-

figurable in the Unity editor, allowing any game designed to alter the exact keys to control the

entire game without changing the code.

Chapter 6 171

We can even map more than one button to the same action, even from different devices, so we

can make the mouse, keyboard, and gamepad trigger the same action, greatly simplifying our

code. Another benefit is that the user can also rebind the keys with some custom UI we can add

to our game, which is very common in PC games.

The easiest way to start creating an Input Mapping is through the Player Input component. This

component, as the name suggests, represents the input of a particular player, allowing us to have

one of those on each player in our game to support split-screen multiplayer, but let’s focus on

single-player. Adding this script to our player will allow us to use the Create Actions... button to

create a default Input Mapping asset. This asset, as a material, can be used by several players, so

we modify it and it will affect all of them (for example, adding the Jump Input Mapping):

Figure 6.57: Creating Input Action assets using the Player Input component

After clicking that button and saving the asset location in the save prompt, you will see the fol-

lowing screen:

Figure 6.58: The default Input Mapping file

Implementing Movement and Spawning172

The first part to understand from this asset is the Action Maps section (left panel). This allows

us to create separate Action Maps for different situations, for example, for driving and on-foot

controls in games like GTA. By default, Player and UI mappings are created, to separate the

mappings for the player controlling and navigating through the UI. If you check the Player Input

component again, you will see that the Default Map property is set to Player, which means that

we will only care for the player controlling the Input Mappings in this GameObject; any UI action

pressed won’t be considered. We can switch the active map in runtime at will, for example, to

disable the character controller input when we are in the pause menu, or switch to the driving

mappings while in a car, using the same buttons but for other purposes.

If you select an Action Map in the left panel, you will see all the actions it contains in the Actions

list in the middle panel. In the case of the Player, we have the Move, Look, and Fire mappings,

which are exactly the inputs we will use in our game. Bear in mind you can add more if you need

to use the + button, but for now, let’s stick with the default ones. When you select any action

from the list, you will see their configurations in the Action Properties panel, the one on the right:

Figure 6.59: The Move (left) and Fire (right) action configurations

As you can see, there’s a property called Action Type that will dictate which kind of input we are

talking about. If you select Move in the middle panel, you can see it’s a Value action type with

Control Type being Vector2, meaning it will return the x and y axis values, the horizontal and

vertical values—the kind we expect from any thumbstick in a gamepad. In the previous system,

we got those values from separated 1D axes, like the Mouse X and Mouse Y axes, but here they

are combined into a single variable for convenience. On the other hand, the Fire action is of type

Button, which has the capacity not only to check its current state (pressed or released) but also

do checks like if it has just been pressed or just released, the equivalents to GetKey, GetKeyDown,

and GetKeyUp from the previous system.

Now that we understand which actions we have and of which type each one is, let’s discuss how

the Physical Input will trigger them. You can click the arrow on the left of each action in the middle

panel to see its physical mappings. Let’s start exploring the Move Action Mappings.

Chapter 6 173

In this case, we have 4 mappings:

• Left Stick [Gamepad]: The left stick of the gamepad

• Primary 2D Axis [XR Controller]: The main stick of the VR controllers

• Stick [Joystick]: Main stick for arcade-like joysticks or even flight sticks

• WASD: A composite input simulating a stick through the W, A, S, and D keys

If you select any of them, you can check their configurations; let’s compare the left stick and

WASD as an example:

Figure 6.60: The left stick mapping (left) and the WASD key mapping (right)

In the case of the Left Stick, you can see the Path property that allows you to pick all the possi-

ble hardware physical controls that provide Vector2 values (the x and y axes). In the case of the

WASD key mapping, you can see it is a composite binding of type 2D Vector, which, as stated

previously, allows us to simulate a 2D Axis with other inputs—keys in this case. If you expand

the WASD Input Mappings in the middle panel, you can see all inputs that are being composited

for this 2D axis, and see their configurations by selecting them:

Figure 6.61: The inputs considered for the WASD composite 2D axis

Implementing Movement and Spawning174

In this case, it maps not only the W, A, S, and D buttons but also the 4 keyboard arrows. Each one

of those mappings has a path to select the physical button, but also the Composite Part setting,

allowing us to specify which direction this input will pull the simulated stick.

And with this, we have just scratched the surface of what this system is capable of, but for now,

let’s keep things simple and use these settings as they are. Remember a new asset was created

with the same name as our game (SuperShooter in our case) in the root of the project. You can

reopen this Action Mapping window by double-clicking it whenever you want. Now let’s see how

we can use these inputs in our code.

Using Mappings in our scripts
This system provides several ways to detect the input state. The Player Input component has a

Behavior property to switch between some of the available modes. The simplest one is the one

called Send Messages, the one that we will use, which will execute methods in our code when

the keys are pressed. In this mode, each action in the mappings will have its own event, and you

can see all of them in the tooltip at the bottom of the component. As you add mappings, more

will appear.

Figure 6.62: All the input events for the default mapping

From the list, we will need three, OnMove, OnLook, and OnFire. We can modify our PlayerMovement

script like in the following screenshot to use them:

Chapter 6 175

Figure 6.63: Player movement with the new Input System

Implementing Movement and Spawning176

The first difference you will notice is that we don’t request the status of the input in the Update

method like we did before. Instead, we listen to the OnMove and OnLook events, which provide us

with an InputValue parameter containing the current state of those axes. The idea is that every

time these axes change value, these events will execute, and if the values didn’t change, like when

the player keeps pushing the stick all the way to the right, they won’t be executed. That’s why we

need to store the current value in the movementValue and lookValue variables, to use the latest

value of the axis later in the Update and apply the movement in every frame. Consider those are

private, meaning they won’t appear in the editor, but that’s fine for our purposes. Also, observe

that we added the using UnityEngine.InputSystem line at the top of the file to enable the usage

of the new Input System in our script.

In this version of the PlayerMovement script, we used the axis input type like we did with the

mouse before but also for movement, unlike the previous version that used buttons. This is the

preferred option most of the time, so we will stick with that version. Observe how we use a single

transform.Translate to move; we need to use the x axis of movementValue to move the x axis of

our player but use the y axis of movementValue to move the z axis of our player. We don’t want to

move our player vertically, so that’s why we needed to split the axis this way.

The InputValue parameter has the Get<Vector2>() method, which will give us the current value

of both axes, given Vector2 is a variable that contains the x and y properties. Then, we multiply

the vector by the movement or rotation speed according to the case. You will notice that we

don’t multiply by Time.deltaTime in the axis events, but we do that in the Update. That’s be-

cause Time.deltaTime can change between frames, so storing the movement value considering

the Time.deltaTime of the last time we moved the stick won’t be useful for us. Also, notice how

movementValue is a Vector2, just a combination of the x and y axes, while lookValue is a simple

float. We did it this way because we will rotate our character only following the lateral movement

of the mouse; we don’t want to rotate it up and down. Check that we do value.Get<Vector2>().x,

with emphasis on the .x part, where we extract just the horizontal part of the axis for our cal-

culations.

Chapter 6 177

Regarding the PlayerShooting component, we need to change it to this:

Figure 6.64: PlayerShooting script using the new Input System

This case is simpler, as we don’t need to execute the shooting behavior each frame, we only need

to execute something at the very same moment the input is pressed, which is exactly when the

OnFire event will be executed. If you need to also detect when the key was released, you can add

the InputValue parameter as we did with OnMove and OnLook, and consult the isPressed property:

Figure 6.65: Getting the state of the button

Implementing Movement and Spawning178

Regarding the Visual Script Machine version of our scripts, first, you will need to refresh the

Visual Script Node Library by going to Edit | Project Settings | Visual Scripting and clicking

the Regenerate Nodes button. If you don’t do this, you won’t see the new Input System nodes:

Figure 6.66: Regenerating Visual Scripting nodes to support the new Input System

Now, the PlayerShooting visual script would look like this:

Figure 6.67: Instantiating bullets with the new input system

The new On Input System Event Button node allows us to detect when an action button has been

pressed and react accordingly. You can pick the specific action in the Input Action parameter, and

you can even make the node react to the pressure, release, or hold states of the button with the

option right below the node’s title. There is a bug where the Input Action property might not

show any option; in such cases, try removing and adding the node again in the graph, and check

that you added the ScriptMachine component to the same GameObject that has the PlayerInput

component. Also check you have selected the Player GameObject in the hierarchy.

Chapter 6 179

Regarding movement, it can be achieved this way:

Figure 6.68: Moving with the new Input System

In this case, we used the On Input System Event Vector2 node. This time, we used the OnHold

mode, which means that, unlike the C# version, it won’t execute just when the axis changes, but

all the frames when the axis is pressed act like an Update; that, however, will only execute when

the user is pressing the stick. The output pin of the node is the Vector2 value, so we multiply it

by the speed variable (declared in the Variables component of our player) and by DeltaTime.

Finally, we use the Vector2 GetX and Vector2 GetY nodes to translate over the x and z axes. You

may have trouble when rewiring the Multiply nodes with the new Input System node, given

the return type is different compared to the previously used node (a Vector2 instead of a single

float). I recommend just deleting all nodes in this graph and redoing it to be sure everything is fine.

Summary
We created our first real scripts, which provide useful behavior. We discussed how to move a Ga-

meObject based on input and instantiate Prefabs via scripting to create objects at will according

to the game situation. Also, we saw how to schedule actions, in this case, spawning, but this can

be used to schedule anything. We saw how to destroy the created objects, to prevent increasing

the number of objects to an unmanageable level. Finally, we explored the new Input System to

provide maximum flexibility to customize our game’s input. We will be using these actions to

create other kinds of objects, such as sounds and effects, later in this book.

Implementing Movement and Spawning180

Now you are able to create any type of movement or spawning logic your objects will need and

make sure those objects are destroyed when needed. You might think that all games move and

create shooting systems the same way, and while they are similar, being able to create your own

movement and shooting scripts allows you to customize those aspects of the game to behave as

intended and create the exact experience you are looking for.

In the next chapter, we will be discussing how to detect collisions to prevent the player and bullets

from passing through walls and much more.

7
Physics Collisions and Health
System

As games try to simulate real-world behaviors, one important aspect to simulate is physics, which

dictates how objects move and how they collide with each other, such as in the collision of players

and walls, or bullets and enemies. Physics can be difficult to control due to the myriad of reactions

that can happen after a collision, so we will learn how to properly configure our game to create

physics as accurately as we can. This will generate the desired arcade movement feeling but get

realistic collisions working—after all, sometimes, real life is not as interesting as video games!

In this chapter, we will examine the following collision concepts:

• Configuring physics

• Detecting collisions

• Moving with physics

First, we will learn how to properly configure physics, a step needed for the collisions between

objects to be detected by our scripts, using new Unity events that we are also going to learn. All

of this is needed in order to detect when our bullets touch our enemies and damage them. Then,

we are going to discuss the difference between moving with Transform, as we have done so far,

as well as moving with Rigidbody and the pros and cons of each version. This will be used to ex-

periment with different ways of moving our player and let you decide which one you will want

to use. Let’s start by discussing physics settings.

Physics Collisions and Health System182

Configuring physics
Unity’s physics system is prepared to cover a great range of possible gameplay applications, so

properly configuring it is important to get the desired result.

In this section, we will examine the following physics settings concepts:

• Setting shapes

• Physics object types

• Filtering collisions

We are going to start by learning about the different kinds of colliders that Unity offers, and then

learn about different ways to configure those to detect different kinds of physics reactions (colli-

sions and triggers). Finally, we will discuss how to ignore collisions between specific objects to

prevent situations such as the player’s bullets damaging the player.

Setting shapes
At the beginning of this book, we learned that objects usually have two shapes, the visual shape—

which is basically the 3D mesh—and the physical one, the collider—the one that the physics

system will use to calculate collisions. Remember that the idea of this is to allow you to have a

highly detailed visual model while having a simplified physics shape to increase the performance.

Unity has several types of colliders, so here we will recap the common ones, starting with the

primitive types, that is, Box, Sphere, and Capsule. These shapes are the cheapest ones (in terms

of performance) to detect collisions due to the fact that the collisions between them are done via

mathematical formulae, unlike other colliders such as the Mesh Collider, which allows you to use

any mesh as the physics body of the object, but with a higher performance cost and some limita-

tions. The idea is that you should use a primitive type to represent your objects or a combination

of them, for example, an airplane could be done with two Box colliders, one for the body and the

other one for the wings. You can see an example of this in the following screenshot, where you

can see a weapons collider made from primitives:

Chapter 7 183

Figure 7.1: Compound colliders

Anyway, this is not always necessary; if we want the weapon to just fall to the ground, maybe

a Box collider covering the entire weapon can be enough, considering those kinds of collisions

don’t need to be accurate, thereby increasing performance. Also, some shapes cannot be repre-

sented even with a combination of primitive shapes, such as ramps or pyramids, where your only

solution is to use a Mesh collider, which asks for a 3D mesh to use for collisions, but we won’t use

them in this book given their high-performance impact; we will solve all of our physics colliders

with primitives.

Now, let’s add the necessary colliders to our scene to prepare it to calculate collisions properly.

Consider that if you used an Asset Store environment package other than mine, you may already

have the scene modules with colliders; I will be showing the work I needed to do in my case, but

try to extrapolate the main ideas here to your scene. To add the colliders, follow these steps:

1. Select a wall in the base and check the object and possible child objects for collider com-

ponents; in my case, I have no colliders. If you detect any Mesh collider, you can leave it

if you want, but I would suggest you remove it and replace it with another option in the

next step. The idea is to add the collider to it, but the problem I detected here is that, due

to the fact my wall is not an instance of a Prefab, I need to add a collider to every wall in

the scene.

Physics Collisions and Health System184

2. One option is to create a Prefab and replace all of the walls with instances of the Prefab (the

recommended solution) or to just select all walls in the Hierarchy (by clicking them while

pressing Ctrl or Cmd on Mac) and, with them selected, use the Add Component button to

add a collider to all of them. In my case, I will use the Box Collider component, which

will adapt the size of the collider to the mesh. If it doesn’t adapt, you can just change the

Size and Center properties of the Box Collider to cover the entire wall:

Figure 7.2: A Box Collider added to a wall

3. Repeat steps 1 and 2 for the corners, floor tiles, and any other obstacle that will block player

and enemy movement.

Now that we have added the needed colliders to the walls and floor, we can continue with the

player and enemy. We will be adding the Capsule Collider to them, the usual collider to use in

movable characters due to the fact that the rounded bottom will allow the object to smoothly

climb ramps. Being horizontally rounded allows the object to easily rotate in corners without

getting stuck, along with other conveniences of that shape. You might want to create an enemy

Prefab based on one of the characters we downloaded before, so you can add the collider to that

Prefab. Our player is a simple GameObject in the scene, so you will need to add the collider to

that one, but consider also creating a Prefab for the player for convenience.

Chapter 7 185

Also, sometimes the collider won’t adapt well to the visual shape of the object, and in my case, the

Capsule collider didn’t fit the character very well. I needed to fix its shape to match the character

by setting its values as shown in the following screenshot: Center to 0,1,0, Radius to 0.5, and

Height to 2:

Figure 7.3: Character collider

The bullet we created with the Sphere already had a Sphere collider, but if you replaced the mesh

of the bullet with another one, you might want to change the collider. For now, we don’t need

other objects in our game, so now that everything has its proper collider, let’s see how to set the

different physics settings to each object to enable proper collision detection.

You may be tempted to add several Box colliders to the bones of the character to

create a realistic shape of the object, and while we can do that to apply different

damage according to the part of the body where the enemies were shot, we are just

creating movement colliders; the capsule is enough. In advanced damage systems,

both capsule and Bone colliders will coexist, one for the movement and the other

for damage detection; but we will simplify this in our game.

If you check the Terrain’s components, you will see that it has its own kind of collider,

the Terrain Collider. For Terrains, that’s the only collider to use.

Physics Collisions and Health System186

Physics object types
Now that we have added colliders to every object by making the objects have a presence in the

physics simulation, it is time to configure them to have the exact physics behavior we want. We

have a myriad of possible combinations of settings, but we will discuss a set of common profiles

that cover most situations. Remember, besides colliders, we saw the Rigidbody component at the

beginning of this book, which is the one that applies physics to the object. The following profiles

are done with a combination of colliders and Rigidbody settings:

• Static Collider: As the name suggests, this kind of collider is not supposed to move, aside

from some specific exceptions. Most of the environment objects fall into this category,

such as walls, floors, obstacles, and the terrain. These kinds of colliders are just colliders

with no Rigidbody component, so they have a presence in the physics simulation but

don’t have any physics applied to them; they cannot be moved by other objects’ collisions,

they won’t have physics, and they will be fixed in their position no matter what. Take into

account that this has nothing to do with the Static checkbox at the top-right part of the

editor; those are for systems we will explore later in several chapters (such as Chapter 12,

Lighting Using the Universal Render Pipeline), so you can have a Static Collider with that

checkbox unchecked if needed.

• Physics Collider: These are colliders with a Rigidbody component, like the example of

the falling ball we did in the first part of this book. These are fully physics-driven objects

that have gravity and can be moved through forces; other objects can push them and

they perform every other physics reaction you can expect. You can use this for the player,

grenade movement, falling crates, or in all objects in heavily physics-based games such

as The Incredible Machine.

• Kinematic Collider: These are colliders that have a Rigidbody component but have the

Is Kinematic checkbox checked. These don’t have physics reactions to collisions and

forces like Static Colliders, but they are expected to move, allowing Physics Colliders to

properly handle collisions against them when moving. These can be used in objects that

need to move using animations or custom scripting movements such as moving platforms.

• Trigger Static Collider: This is a regular Static Collider but with the Is Trigger checkbox

of the collider checked. The difference is that kinematic and physics objects pass through

it but by generating a Trigger event, an event that can be captured via scripting, which

tells us that something is inside the collider.

Chapter 7 187

This can be used to create buttons or trigger objects, in areas of the game when the player

passes through something happening, such as a wave of enemies being spawned, a door

being opened, or winning the game in case that area is the goal of the player. Note that

regular Static Colliders won’t generate a trigger event when passing through this type

because those aren’t supposed to move.

• Trigger Kinematic Collider: Kinematic Colliders don’t generate collisions, so they will

pass through any other object, but they will generate Trigger events, so we can react via

scripting. This can be used to create moveable power-ups that, when touched, disappear

and give us points, or bullets that move with custom scripting movements and no physics,

just straight like our bullets, but damage other objects when they touch them.

Of course, other profiles can exist aside from the specified ones to use in some games with spe-

cific gameplay requirements, but it’s down to you to experiment with all possible combinations

of physics settings to see whether they are useful for your case; the described profiles will cover

99% of cases.

To recap the previous scenarios, I leave you with the following table showing the reaction of

contact between all of the types of colliders. You will find a row per each profile that can move;

remember that static profiles aren’t supposed to move. Each column represents the reaction when

they collide with the other types, Nothing meaning the object will pass through with no effect,

Trigger meaning the object will pass through but raise Trigger events, and Collision meaning

that the object won’t be able to pass through the object:

Collides

with Static

Collides with

Dynamic

Collides with

Kinematic

Collides

with Trigger

Static

Collides

with Trigger

Kinematic

Dynamic Collision Collision Collision Trigger Trigger

Kinematic Nothing Collision Nothing Trigger Trigger

Trigger

Kinematic

Trigger Trigger Trigger Trigger Trigger

Figure 7.4: Collision Reaction Matrix

Considering this, let’s start configuring the physics of our scene’s objects.

Physics Collisions and Health System188

The walls, corners, floor tiles, and obstacles should use the Static Collider profile, so no Rigidbody

component on them, and their colliders will have the Is Trigger checkbox unchecked:

Figure 7.5: Configuration for floor tiles; remember the Static checkbox is for lighting only

The player should move and generate collisions against objects, so we need it to have a Dynamic

profile. This profile will generate a funny behavior with our current movement script (which I

encourage you to test), especially when colliding against walls, so it won’t behave as you expected.

We will deal with this later in this chapter:

Figure 7.6: Dynamic settings on the player

The Enemy Prefab we suggested you create previously will be using the Kinematic profile because

we will be moving this object with Unity’s AI systems later, so we don’t need physics here, and

as we want the player to collide against them, we need a collision reaction there, so there’s no

Trigger here:

Chapter 7 189

Figure 7.7: Kinematic setting for the enemy

For the Bullet Prefab, it moves with simplistic movement via scripting (it just moves forward),

and not physics. We don’t need collisions; we will code the bullet to destroy itself as soon as it

touches something and will damage the collided object (if possible), so a Kinematic Trigger profile

is enough for this one. We will use the Trigger event to script the contact reactions:

Figure 7.8: The Kinematic Trigger setting for our bullet; Is Trigger and Is Kinematic are checked

Physics Collisions and Health System190

Now that we have properly configured the objects, let’s check how to filter undesired collisions

between certain object types.

Filtering collisions
Sometimes we want certain objects to ignore each other, like the bullets shot by the player, which

shouldn’t collide with the player itself. We can always filter that with an if statement in the C#

script, checking whether the hit object is from the opposite team or whatever filtering logic you

want, but by then, it is too late; the physics system wasted resources by checking a collision be-

tween objects that were never meant to collide. Here is where the Layer Collision Matrix can help us.

The Layer Collision Matrix sounds scary, but it is a simple setting of the physics system that

allows us to specify which groups of objects should collide with other groups. For example, the

player’s bullets should collide with enemies, and enemy bullets should collide with the player.

In this case the enemies’ bullets will pass through enemies, but this is desired in our case. The

idea is to create those groups and put our objects inside them, and in Unity, those groups are

called layers. We can create layers and set the layer property of the GameObject (the top part of

the Inspector) to assign the object to that group or layer. Note that you have a limited number of

layers, so try to use them wisely.

We can achieve this by doing the following:

1. Go to Edit | Project Settings and, inside it, look for the Tags and Layers option from the

left pane:

Figure 7.9: The Tags and Layers settings

2. From the Layers section, fill the empty spaces to create layers. We will use this for the

bullet scenario, so we need four layers: Player, Enemy, PlayerBullet, and EnemyBullet:

Chapter 7 191

Figure 7.10: Creating layers

3. Select the Player GameObject in the Hierarchy and, from the top part of the Inspector,

change the Layer property to Player. Also, change the Enemy Prefab to have the Enemy

layer. A window will show, asking you whether you want to also change the child objects;

select Yes:

Figure 7.11: Changing the layers of the player and the enemy Prefab

4. In the case of the bullet, we have a problem; we have one Prefab but two layers, and a

Prefab can only have one layer. We have two options: changing the layer according to the

shooter via scripting, or having two bullet Prefabs with different layers. For simplicity,

I will choose the latter, also taking the chance to apply another material to the enemy

bullet to make it look different.

5. We will be creating a Prefab Variant of the player bullet. Remember that a Variant is a

Prefab that is based on an original one like class inheritance. When the original Prefab

changes, the Variant will change, but the Variant can have differences, which will make

it unique.

6. Drop a bullet Prefab into the scene to create an instance.

7. Drag the instance again to the Prefabs folder, this time selecting the Prefab Variant

option in the window that will appear.

8. Rename it Enemy Bullet.

9. Destroy the Prefab instance in the scene.

10. Create a second material similar to the player bullet with a different color and put it on

the enemy bullet Prefab Variant.

Physics Collisions and Health System192

11. Select the enemy bullet Prefab, set its layer to EnemyBullet, and do the same for the orig-

inal Prefab (PlayerBullet). Even if you changed the original Prefab layer, as the Variant

modified it, the modified version (or override) will prevail, allowing each Prefab to have

its own layer.

Now that we have configured the layers, let’s configure the physics system to use them:

1. Go to Edit | Project Settings and look for the Physics settings (not Physics 2D).

2. Scroll down until you see the Layer Collision Matrix, a half grid of checkboxes. You will

notice that each column and row is labeled with the names of the layers, so each check-

box in the cross of a row and column will allow us to specify whether these two should

collide. In our case, we configured it as shown in the following screenshot so that player

bullets do not hit the player or other player bullets, and enemy bullets do not hit enemies

or other enemy bullets:

Figure 7.12: Making player bullets collide with enemies and enemy bullets with the player

It is worth noticing that sometimes filtering logic won’t be that fixed or predictable, for example,

only hit objects that have a certain amount of life, objects that don’t have an invisibility temporal

buff, or conditions that can change during the game and are difficult to generate for all possible

layers for all possible groups. So, in these cases, we should rely on manual filtering after the

Trigger or Collision event.

Now that we have filtered collisions, let’s check whether our settings are working properly by

reacting to collisions in the next section.

Chapter 7 193

Detecting collisions
As you can see, proper physics settings can be complicated and very important, but now that we

have tackled that, let’s do something with those settings by reacting to the contact in different

ways and creating a health system in the process.

In this section, we will examine the following collision concepts:

• Detecting Trigger events

• Modifying the other object

First, we are going to explore the different collision and trigger events Unity offers to react to

contact between two objects through the Unity collision events. This allows us to execute any

reaction code we want to place, but we are going to explore how to modify the contacted object

components using the GetComponent function.

Detecting Trigger events
If objects are properly configured, as previously discussed, we can get two reactions: collisions or

triggers. The Collision reaction has a default effect that blocks the movement of the objects, but

we can add custom behavior on top of that using scripting; but with a Trigger, unless we add

custom behavior, it won’t produce any noticeable effect. Either way, we can script reactions to

both possible scenarios such as adding a score, reducing health, and losing the game. To do so,

we can use the suite of Physics events.

These events are split into two groups, Collision events and Trigger events, so according to your

object setting, you will need to pick the proper group. Both groups have three main events, Enter,

Stay, and Exit, telling us when a collision or trigger began (Enter), whether they are still happening

or are still in contact (Stay), and when they stopped contacting (Exit). For example, we can script

a behavior such as playing a sound when two objects first make contact in the Enter event, such

as a friction sound, and stop it when the contact ends, in the Exit event.

Let’s test this by creating our first contact behavior: the bullet being destroyed when coming

into contact with something. Remember that the bullets are configured to be triggers, so they

will generate Trigger events on contact with anything. You can do this with the following steps:

1. Create and add a script called ContactDestroyer on the Player Bullet Prefab; as the Enemy

Bullet Prefab is a Variant of it, it will also have the same script.

2. To detect when a trigger happens, such as with Start and Update, create an event function

named OnTriggerEnter.

Physics Collisions and Health System194

3. Inside the event, use the Destroy(gameObject); line to make the bullet destroy itself

when touching something:

Figure 7.13: Auto-destroying on contact with something

4. Save the script and shoot the bullets against the walls to see how they disappear instead

of passing through them. Here we don’t have a collision, but a trigger that destroys the

bullet on contact. So, this way, we are sure that the bullet will never pass through anything,

but we are still not using physics movement.

For now, we won’t need the other Collision events, but if you need them, they will work similarly;

just create a function called OnCollisionEnter instead.

Now, let’s explore another version of the same function. It not only tells us that we hit something

but also what we came into contact with. We will use this to make our Contact Destroyer also

destroy the other object. To do this, follow these steps:

1. Replace the OnTriggerEnter method signature with the one in the following screenshot.

This one receives a parameter of the Collider type, indicating the exact collider that hit us:

Figure 7.14: Version of the trigger event that tells us which object we collided with

2. We can access the GameObject of that collider using the gameObject property. We can

use this to destroy the other one as well, as shown in the following screenshot. If we just

use the Destroy function by passing the other variable, it will only destroy the Collider

component:

Chapter 7 195

Figure 7.15: Destroying both objects

3. Save and test the script. You will notice that the bullet will destroy everything it touches.

Remember to verify that your enemy has a Capsule collider for the bullet to detect colli-

sions against it.

The equivalent version in Visual Scripting would be like the following figure:

Figure 7.16: Destroying both objects with Visual Scripting

As you can see, we created an On Trigger Enter node and chained it to two Destroy nodes. To

specify which object each Destroy node will destroy, we used the Component: Get GameObject

node twice. The right one was created with no node connected to its left input pin, which means

it will return the GameObject that is currently executing this script (hence, the This label in the

node left pin), in this case, the bullet. For the second one we needed to connect the Collider output

pin at the right of the OnTriggerEnter node to the Get GameObject node; this way we specify we

want to obtain the GameObject that contains the collider our bullet collided with.

Physics Collisions and Health System196

Now, in our game we don’t want the bullet to destroy everything on contact; instead, we will

make the enemies and the player have a life amount; the bullets will reduce that life amount until

it reaches 0, so let’s check how to do that.

Modifying the other object
For the bullet to damage the collided object, we will need to access a Life component to change

its amount, so we will need to create this Life component to hold a float field with the amount

of life. Every object with this component will be considered a damageable object. To access the

Life component from our bullet scripts we will need the GetComponent function to help us.

If you have a reference to a GameObject or component, you can use GetComponent to access a

specific component if the object contains it (if not, it will return null). Let’s see how to use that

function to make the bullet lower the amount of life of the other object:

1. Create and add a Life component with a public float field called amount to both the

player and enemy Prefabs. Remember to set the value 100 (or whatever life amount you

want to give them) in the Amount field for both in the Inspector:

Figure 7.17: The Life component

2. Remove the ContactDestroyer component from the player bullet, which will also remove

it from the Enemy Bullet Variant.

3. Add a new script called ContactDamager to both the enemy and player.

4. Add an OnTriggerEnter event that receives the other collider as a parameter and just add

the Destroy function call that auto-destroys itself, not the one that destroys the other

object; our script won’t be responsible for destroying it, just reducing its life.

5. Add a float field called damage, so we can configure the amount of damage to inflict on the

other object. Remember to save the file and set a value before continuing.

6. Use GetComponent on the reference to the other collider to get a reference to its Life

component and save it in a variable:

Figure 7.18: Accessing the collided object’s Life component

Chapter 7 197

7. Before reducing the life of the object, we must check that the Life reference isn’t null,

which would happen if the other object doesn’t have the Life component, as in the case

of walls and obstacles. The idea is that the bullet will destroy itself when anything collides

with it and reduce the life of the other object if it is a damageable object that contains

the Life component.

In the following screenshot, you will find the full script:

Figure 7.19: Reducing the life of the collided object

8. Place an enemy in the scene and set its speed to 0 to prevent it from moving.

9. Select it in the Hierarchy before hitting Play and start shooting at it.

You can see how the life value reduces in the Inspector. You can also press the Esc key to regain

control of the mouse and select the object while in Play mode to see the life field change during

the runtime in the editor.

Now, you will notice that life is decreasing, but it will become negative; we want the object to

destroy itself when life is below 0 instead. We can do this in two ways: one is to add an Update to

the Life component, which will check all of the frames to see whether life is below 0, destroying

itself when that happens. The second way is by encapsulating the life field and checking that

inside the setter to prevent all frames from being checked. I would prefer the second way, but we

will implement the first one to make our scripts as simple as possible for beginners.

Physics Collisions and Health System198

To do this, follow these steps:

1. Add Update to the Life component.

2. Add If to check whether the amount field is below or equals 0.

3. Add Destroy in case the if condition is true.

4. The full Life script will look like the following screenshot:

Figure 7.20: The Life component

5. Save and see how the object is destroyed once Life becomes 0.

The Visual Scripting version for the Life component would look like this:

Figure 7.21: The Life component in Visual Scripting

Chapter 7 199

The script is pretty straightforward—we check if our Life variable is less than 0 and then destroy

ourselves as we did previously. Now, let’s check the Damager script:

Figure 7.22: The Damager component in Visual Scripting

This version is a little bit different from our C# counterpart. At first glance it looks the same: we

use Get Variable as before to read the life, then we use the Subtract node to subtract damage

from life, and the result of that calculation becomes the new value of life, with the Set Variable

node used to alter the current value of that variable.

The first difference we can see here is the absence of any GetComponent node. In C# we used that

instruction to get the Life component on the collided object in order to read and alter its amount

variable, reducing the remaining life. But as in Visual Scripting our node graphs don’t have vari-

ables, so we don’t need to access the component to read them. Instead, knowing that the enemy

has a Life variable in its Variables component, we use the Get Variable node, connecting it to

the collider we hit (the Collider output pin of On Trigger Enter), so essentially we are reading

the value of the Life variable of the collided object.

The same goes for changing its value: we use the Set Value node, connecting it to the collider,

specifying we want to alter the value of the Life variable of the collider object, not ours (as bullets,

we even don’t have a Life variable). Note that this can raise an error if the collided object doesn’t

have the Life variable, and that is why we added the Object Has Variable node, which checks if

the object has a variable called Life. If it doesn’t, we just do nothing, which is useful when we

collide with walls or other non-destructible objects. Finally, we make the Damager (the bullet

in this case) auto-destroy itself.

Physics Collisions and Health System200

Optionally, you can instantiate an object when this happens such as a sound, a particle, or maybe

a power-up. I will leave this as a challenge for you. By using a similar script, you can make a life

power-up that increases the life value or a speed power-up that accesses the PlayerMovement

script and increases the Speed field; from now on, use your imagination to create exciting be-

haviors using this.

Now that we have explored how to detect collisions and react to them, let’s explore how to fix

the player falling when hitting a wall.

Moving with physics
So far, the player, the only object that moves with the Dynamic Collider Profile and the one

that will move with physics, is actually moving through custom scripting using the Transform

API. Every dynamic object should instead move using the Rigidbody API functions in a way the

physics system understands better. As such, here we will explore how to move objects, this time

through the Rigidbody component.

In this section, we will examine the following physics movement concepts:

• Applying forces

• Tweaking physics

We will start by seeing how to move objects the correct physical way, through forces, and we

will apply this concept to the movement of our player. Then, we will explore why real physics

is not always fun, and how we can tweak the physics properties of our objects to have a more

responsive and appealing behavior.

Applying forces
The physically accurate way of moving an object is through forces, which affect the object’s veloc-

ity. To apply force, we need to access Rigidbody instead of Transform and use the AddForce and

AddTorque functions to move and rotate respectively. These are functions where you can specify

the amount of force to apply to each axis of position and rotation. This method of movement will

have full physics reactions; the forces will accumulate on the velocity to start moving and will

suffer drag effects that will make the speed slowly decrease, and the most important aspect here

is that they will collide against walls, blocking the object’s way.

Chapter 7 201

To get this kind of movement, we can do the following:

1. Create a Rigidbody field in the PlayerMovement script, but this time, make it private,

meaning, do not write the public keyword in the field, which will make it disappear in

the editor; we will get the reference another way:

Figure 7.23: The private Rigidbody reference field

2. Note that we named this variable rb just to prevent our scripts from being too wide, making

the screenshots of the code in the book too small. It’s recommended to call the variable

properly in your scripts—in this case, it would be named rigidbody.

3. Using GetComponent in the Start event function, get our Rigidbody and save it in the

field. We will use this field to cache the result of the GetComponent function; calling that

function every frame to access the Rigidbody is not performant. Also, you can notice here

that the GetComponent function can be used to retrieve not only components from other

objects (like the collision example) but also your own:

Figure 7.24: Caching the Rigidbody reference for future usage

4. Replace the transform.Translate calls with rb.AddRelativeForce. This will call the add

force functions of the Rigidbody, specifically the relative ones, which will consider the

current rotation of the object. For example, if you specify a force in the z-axis (the third

parameter), the object will apply its force along with its forward vector.

Physics Collisions and Health System202

5. Replace the transform.Rotate calls with rb.AddRelativeTorque, which will apply ro-

tation forces:

Figure 7.25: Using the Rigidbody forces API

6. Check that the player GameObject capsule collider is not intersecting with the floor, but

just a little bit over it. If the player is intersecting, the movement won’t work properly. If

this is the case, move it upward.

In the Visual Scripting version, the change is the same; replace the Transform and Rotate nodes

with Add Relative Force and Add Relative Torque nodes. An example of Add Relative Force

would be the following one:

Figure 7.26: Using the Rigidbody forces API

Chapter 7 203

And for rotation like this:

Figure 7.27: Using the Rigidbody torque API

You can see that we don’t need to use GetComponent nodes here either, given that just using

the Add Relative Force or Torque nodes makes Visual Scripting understand that we want to ap-

ply those actions on our own Rigidbody component (explaining again the This label). If in any

other case we need to call those functions on a Rigidbody other than ours, we would need the

GetComponent node there, but let’s explore that later.

Now, if you save and test the results, you will probably find the player falling and that’s because

now we are using real physics, which contains floor friction, and due to the force being applied

at the center of gravity, it will make the object fall. Remember that, in terms of physics, you are a

capsule; you don’t have legs to move, and here is where standard physics is not suitable for our

game. The solution is to tweak physics to emulate the kind of behavior we need.

Tweaking physics
To make our player move like in a regular platformer game, we will need to freeze certain axes

to prevent the object from falling. Remove the friction to the ground and increase the air friction

(drag) to make the player reduce its speed automatically when releasing the keys.

Physics Collisions and Health System204

To do this, follow these steps:

1. In the Rigidbody component, look at the Constraints section at the bottom and check

the X and Z axes of the Freeze Rotation property:

Figure 7.28: Freezing rotation axes

2. This will prevent the object from falling sideways but will allow the object to rotate hor-

izontally. You might also freeze the y-axis of the Freeze Position property if you don’t

want the player to jump, preventing some undesired vertical movement on collisions.

3. You will probably need to change the speed values because you changed from a me-

ters-per-second value to newtons-per-second, the expected value of the Add Force and

Add Torque functions. Using 1,000 in speed and 160 in rotation speed was enough for me.

4. Now, you will probably notice that the speed will increase a lot over time, as will the ro-

tation. Remember that you are using forces, which affects your velocity. When you stop

applying forces, the velocity is preserved, and that’s why the player kill keeps rotating

even if you are not moving the mouse. The fix to this is to increase the Drag and Angular

Drag, which emulates air friction, and will reduce the movement and rotation respec-

tively when no force is applied. Experiment with values that you see suitable; in my case,

I used 2 for Drag and 10 for Angular Drag, needing to increase Rotation Speed to 150 to

compensate for the drag increase:

Figure 7.29: Setting air friction for rotation and movement

5. Now, if you move while touching the wall, instead of sliding, like in most games, your

Player will stick to the obstacles due to contact friction. We can remove this by creating

a Physics Material, an asset that can be assigned to the colliders to control how they

react in those scenarios.

Chapter 7 205

6. Start creating one by clicking on the + button from the Project window and selecting

Physics Material (not the 2D version). Call it Player and remember to put it in a folder

for those kinds of assets.

7. Select it and set Static Friction and Dynamic Friction to 0, and Friction Combine to

Minimum, which will make the Physics system pick the minimum friction of the two col-

liding objects, which is always the minimum—in our case, zero:

Figure 7.30: Creating a physics material

8. Select the player and drag this asset to the Material property of the Capsule Collider:

Figure 7.31: Setting the physics material of the player

9. If you play the game now, you may notice that the player will move faster than before

because now we don’t have any kind of friction on the floor, so you may need to reduce

the movement force.

As you can see, we needed to bend the physics rules to allow a responsive player movement. You

can get more responsiveness by increasing drags and forces, so the speeds are applied faster and

reduced faster, but that depends, again, on the experience you want your game to have.

Physics Collisions and Health System206

Some games want an immediate response with no velocity interpolation, going from 0 to full

speed and vice versa from one frame to the other, and in these cases, you can override the velocity

and rotation vectors of the player directly at your will or even use other systems instead of phys-

ics, such as the Character Controller component, which have special physics for platformer

characters; but let’s keep things simple for now.

Summary
Every game has physics in some way or another, for movement, collision detection, or both. In

this chapter, we learned how to use the physics system for both, being aware of proper settings

to make the system work properly, reacting to collisions to generate gameplay systems, and

moving the player in such a way that it collides with obstacles, keeping its physically inaccurate

movement. We used these concepts to create our player and bullet movement and make our

bullets damage the enemies, but we can reuse the knowledge to create a myriad of other possible

gameplay requirements, so I suggest you play a little bit with the physics concepts seen here; you

can discover a lot of interesting use cases.

In the next chapter, we will be discussing how to program the visual aspects of the game, such

as effects, and make the UI react to the input.

8
Win and Lose Conditions

Now that we have a basic gameplay experience, it’s time to make the game end with the outcomes

of winning or losing. One common way to implement this is through separated components with

the responsibility of overseeing a set of objects to detect certain situations that need to happen,

such as the player life becoming 0 or all of the waves being cleared. We will implement this

through the concept of managers, components that will manage and monitor several objects.

In this chapter, we will examine the following manager concepts:

• Creating object managers

• Creating game modes

• Improving our code with events

With this knowledge, you will be able to not only create the victory and lose conditions of the

game, but also do this in a properly structured way using design patterns such as Singleton and

Event Listeners. These skills are not only useful for creating the winning and losing code of the

game but any code in general. First, let’s begin by creating managers to represent concepts such

as score or game rules.

Creating object managers
Not every object in your Scene should be something that can be seen, heard, or collided with.

Some objects can also exist with a conceptual meaning, not something tangible. For example,

imagine you need to keep a count of the number of enemies: where do you save that? You also

need someplace to save the current score of the player, and you may be thinking it could be on

the player itself, but what happens if the player dies and respawns?

Win and Lose Conditions208

The data would be lost! In such scenarios, the concept of a manager can be a useful way of solving

this in our first games, so let’s explore it.

In this section, we are going to see the following object manager concepts:

• Sharing variables with the Singleton design pattern

• Sharing variables in Visual Scripting

• Creating managers

We will start by discussing what the Singleton design pattern is and how it helps us simplify the

communication of objects. With it, we will create manager objects that allow us to centralize

information about a group of objects, among other things. Let’s start by discussing the Singleton

design pattern.

Sharing variables with the Singleton design pattern
Design patterns are usually described as common solutions to common problems. There are

several coding design decisions you will have to make while you code your game, but luckily, the

ways to tackle the most common situations are well known and documented. In this section, we

are going to discuss one of the most common design patterns, the Singleton, a convenient one

to implement in simple projects.

A Singleton pattern is used when we need a single instance of an object, meaning that there

shouldn’t be more than one instance of a class and that we want to be easily accessible (not

necessarily, but useful in our scenario). We have plenty of cases in our game where this can be

applied, for example, ScoreManager, a component that will hold the current score. In this case,

we will never have more than one score, so we can take advantage of the benefits of the Singleton

manager here.

One benefit is being sure that we won’t have duplicated scores, which makes our code less error

prone. Also, so far, we have needed to create public references and drag objects via the editor to

connect two objects, or look for them using GetComponent; with this pattern, however, we will

have global access to our Singleton component, meaning you can just write the name of the com-

ponent in your script and you will access it. In the end, there’s just one ScoreManager component,

so specifying which one via the editor is redundant. This is similar to Time.deltaTime, the class

responsible for managing time—we have just one time.

Chapter 8 209

Let’s create a Score Manager object, responsible for handling the score, to show an example of

a Singleton by doing the following:

1. Create an empty GameObject (GameObject | Create Empty) and call it ScoreManager;

usually, managers are put in empty objects, separated from the rest of the scene’s objects.

2. Add a script called ScoreManager to this object with an int field called amount that will

hold the current score.

3. Add a field of the ScoreManager type called instance, but add the static keyword to it;

this will make the variable global, meaning it can be accessed anywhere by just writing

its name:

Figure 8.1: A static field that can be accessed anywhere in the code

4. In Awake, check whether the instance field is not null, and in that case, set this

ScoreManager instance as the instance reference using the this reference.

If you are an advanced programmer, you may be thinking about code testing and

dependency injection now, and you are right, but remember, we are trying to write

simple code so far, so we will stick to this simple solution.

Win and Lose Conditions210

5. In the else clause of the null checking if statement, print a message indicating that

there’s a second ScoreManager instance that must be destroyed:

Figure 8.2: Checking whether there’s only one Singleton instance

The idea is to save the reference to the only ScoreManager instance in the instance static field, but

if by mistake the user creates two objects with the ScoreManager component, this if statement

will detect it and inform the user of the error, asking them to take action. In this scenario, the first

ScoreManager instance to execute Awake will find that there’s no instance set (the field is null)

so it will set itself as the current instance, while the second ScoreManager instance will find the

instance is already set and will print the message.

To improve the example a little bit, it would be ideal to have a simple way to find the second

ScoreManager in the game. It will be hidden somewhere in the Hierarchy and it may be difficult

to find, but we fix this by doing the following:

1. Replace print with Debug.Log. Debug.Log is similar to print but has a second argument

that expects an object to be highlighted when the message is clicked in the console. In

this case, we will pass the gameObject reference to allow the console to highlight the

duplicated object:

Remember that instance is a static field, shared between all classes, unlike regular

reference fields, where each component will have its own reference, so in this case,

we have two ScoreManager instances added to the scene, and they will share the

same instance field.

Chapter 8 211

Figure 8.3: Printing messages in the console with Debug.Log

After clicking the log message, the GameObject containing the duplicated ScoreManager

will be highlighted in the Hierarchy:

Figure 8.4: The highlighted object after clicking the message

2. Finally, a little improvement can be made here by replacing Debug.Log with Debug.

LogError, which will also print the message but with an error icon. In a real game, you

will have lots of messages in the console, and highlighting the errors over the information

messages will help us to identify them quickly:

Figure 8.5: Using LogError to print an error message

3. Try the code and observe the error message in the console:

Figure 8.6: An error message in the console

The next step would be to use this Singleton somewhere, so in this case, we will make the enemies

give points when they are killed by doing the following:

1. Add a script to the Enemy Prefab called ScoreOnDeath with an int field called amount,

which will indicate the number of points the enemy will give when killed. Remember to

set the value to something other than 0 in the editor for the Prefab.

Win and Lose Conditions212

2. Create the OnDestroy event function, which will be automatically called by Unity when

this object is destroyed, in our case, the enemy:

Figure 8.7: The OnDestroy event function

3. Access the Singleton reference in the OnDestroy function by writing ScoreManager.

instance, and add the amount field of our script to the amount field of the Singleton to

increase the score when an enemy is killed:

Figure 8.8: Full ScoreOnDeath component class contents

4. Select the ScoreManager in the Hierarchy, hit Play, and kill some enemies to see the score

rise with every kill. Remember to set the amount field of the ScoreOnDeath component

of the Prefab.

As you can see, the Singleton simplified a lot the way to access ScoreManager and have security

measures to prevent duplicates of itself, which will help us to reduce errors in our code. Something

to take into account is that now you will be tempted to just make everything a Singleton, such

as the player’s life or player’s bullets and just to make your life easier when creating gameplay

mechanics such as power-ups.

Consider that the OnDestroy function is also called when we change scenes

or the game is quitting, so in this scenario, we might get points when chang-

ing scenes, which is not correct. So far, this is not a problem in our case, but

later in this chapter, we will see a way to prevent this.

Chapter 8 213

While that will totally work, remember that your game will change, and I mean change a lot; any

real project will experience constant change. Maybe today, the game has just one player, but maybe

in the future, you want to add a second player or an AI companion, and you want the power-ups

to affect them too, so if you abuse the Singleton pattern, you will have trouble handling those

scenarios and many more. Maybe a future player companion will try to get the health pickup but

the main player will be healed instead!

The point here is to try to use the pattern as few times as you can, in case you don’t have any

other way to solve the problem. To be honest, there are always ways to solve problems without

Singleton, but they are a little bit more difficult to implement for beginners, so I prefer to simplify

your life a little bit to keep you motivated. With enough practice, you will reach a point where

you will be ready to improve your coding standards.

Now, let’s discuss how to achieve this in Visual Scripting, which deserves its own section given

that it will be a little bit different. You may consider skipping the following section if you are not

interested in the Visual Scripting side of these scripts.

Sharing variables with Visual Scripting
Visual Scripting has a mechanism that replaces Singleton as a holder of variables to be shared

between objects: the scene variables. If you check the left panel in the Script Graph editor (the

window where we edit the nodes of a script) under the Blackboard panel (the panel that shows

the variables of our object), you will notice it will have many tabs: Graph, Object, Scene, App and

Saved. If you don’t see Blackboard panel, click the third button from left to right at the top-left

part of the window, the button at the right of the i (information) button:

Figure 8.9: Blackboard (variables) editor in Script Graph

Win and Lose Conditions214

So far, when we created a variable in the Variables component of any object, we were actually

creating Object Variables: variables that belongs to an object and are shared between all Visual

Scripts in that one, but that’s not the only scope a variable can have. Here’s a list of the remaining

scopes:

• Graph: Variables that can only be accessed by our current graph. No other script can read

or write that variable. This is useful to save internal state, like private variables in C#.

• Scene: Variables that can be accessed by all objects in the current scene. When we change

the scene, those variables are lost.

• App: Variables that can be accessed in any part of the game at any time. This is useful to

move values from one scene to the other. For example, you can increase the score in one

level and keep increasing it in the next, instead of restarting the score from 0.

• Saved: Variables whose values are kept between game runs. You can save persistent data

such as the Player Level or Inventory to continue the quest, or simpler things such as the

sound volume as set by the user in the Options menu (if you created one).

In this case, the Scene scope is the one we want, as the score we intend to increase will be accessed

by several objects in the scene (more on that later) and we don’t want it to persist if we reset the

level to play again; it will need to be set again to 0 in each run of the level and game.

To create scene variables, you can simply select the Scene tab in the Blackboard pane of the Script

Graph editor, while you are editing any Script Graph, or you can also use the Scene Variables

GameObject that was created automatically when you started editing any graph. That object

is the one that really holds the variables and must not be deleted. You will notice it will have a

Variables component as we have used before, but it will also have the Scene Variables component,

indicating those variables are scene variables.

In the following screenshot, you can see how we have simply added the Score variable to the

Scene Variables tab to make it accessible in any of our Script Graphs.

Chapter 8 215

Figure 8.10: Adding scene variables to our game

Finally, for the score-increasing behavior, we can add the following graph to our enemy. Remember,

as usual, to have the C# or the Visual Scripting version of the scripts, not both.

Figure 8.11: Adding score when this object is destroyed

Win and Lose Conditions216

At first, this script seems pretty similar to our C# version; we add our scoreToAdd variable of our

object (Object scope) and then we add it to the whole scene’s score variable, as specified in the

node. The main difference you can see is that here we are using the OnDisable event instead of

OnDestroy. Actually, OnDestroy is the correct one, but in the current version of Visual Scripting

there is a bug that prevents it from working properly, so I replaced it for now. The problem with

OnDisable is that it executes whenever the object is disabled, and while the object is disabled

before it is destroyed, it can also be disabled in other circumstances (for example, using Object

Pooling, a way to recycle objects instead of destroying and instancing them constantly), but so

far it is enough for us. Please consider trying first with OnDestroy when you try this graph to see

if it runs properly in your Unity or Visual Scripting package version.

Something to highlight is the usage of the Has Variable node to check if the score variable exists.

This is done because OnDisable can be executed either at the moment of the enemy being de-

stroyed, or when the scene changes, which we will do later this chapter with the lose/win screens.

If we try to get a scene variable at that moment, we risk getting an error ourselves if the Scene

Variables object is destroyed before the GameMode object, given the change of scene involves

destroying every object in the scene first.

As you may noticed by now, even if Visual Scripting is mostly extremely similar to C#, one has

concepts to solve certain scenarios that the other doesn’t. Now that we know how to share vari-

ables, let’s finish some other managers that we will need later in the game.

Creating managers
Sometimes, we need a place to put together information about a group of similar objects, for

example, EnemyManager, to check the number of enemies and potentially access an array of them

to iterate over them and do something, or maybe MissionManager, to have access to all of the

active missions in our game. Again, these cases can be considered Singletons, single objects that

won’t be repeated (in our current game design), so let’s create the ones we will need in our game,

that is, EnemyManager and WaveManager.

In our game, EnemyManager and WaveManager will just be used as places to save an array of refer-

ences to the existing enemies and waves in our game, just as a way to know their current amount.

There are ways to search all objects of a certain type to calculate their count, but those functions

are expensive and not recommended for use unless you really know what you are doing. So, having

a Singleton with a separate updated list of references to the target object type will require more

code but will perform better. Also, as the game features increase, these managers will have more

functionality and helper functions to interact with those objects.

Chapter 8 217

Let’s start with the enemies manager by doing the following:

1. Add a script called Enemy to the Enemy Prefab; this will be the script that will connect this

object with EnemyManager in a moment.

2. Create an empty GameObject called EnemyManager and add a script to it called

EnemiesManager.

3. Create a public static field of the EnemiesManager type called instance inside the script

and add the Singleton repetition check in Awake as we did in ScoreManager.

4. Create a public field of the List<Enemy> type called enemies:

Figure 8.12: List of Enemy components

A list in C# represents a dynamic array, an array capable of adding and removing objects.

You will see that you can add and remove elements to this list in the editor, but keep the

list empty; we will add enemies another way. Take into account that List is in the System.

Collections.Generic namespace; you will find the using sentence at the beginning of

our script. Also, consider that you can make the list private and expose it to the code via

a getter instead of making it a public field; but as usual, we will make our code as simple

as possible for now:

Figure 8.13: Using needed to use the List class

Consider that List is a class type, so it must be instantiated, but as this

type has exposing support in the editor, Unity will automatically instan-

tiate it. You must use the new keyword to instantiate it in cases where you

want a non-editor-exposed list, such as a private one or a list in a regular

non-component C# class.

The C# list internally is implemented as an array. If you need a linked list,

use the LinkedList collection type instead.

Win and Lose Conditions218

5. In the Start function of the Enemy script, access the EnemyManager Singleton and using

the Add function of the enemies list, add this object to the list. This will “register” this

enemy as active in the manager, so other objects can access the manager and check for

the current enemies. The Start function is called after all of the Awake function calls, and

this is important because we need to be sure that the Awake function of the manager is

executed prior to the Start function of the enemy to ensure that there is a manager set

as the instance.

6. In the OnDestroy function, remove the enemy from the list to keep the list updated with

just the active ones:

Figure 8.14: The enemy script to register ourselves as an active enemy

The problem we solved with the Start function is called a race condition,

that is, when two pieces of code are not guaranteed to be executed in the

same order, whereas Awake execution order can change due to different

reasons. There are plenty of situations in code that this will happen, so pay

attention to the possible race conditions in your code. Also, you might con-

sider using more advanced solutions such as lazy initialization here,

which can give you better stability, but again, for the sake of simplicity and

exploring the Unity API, we will use the Start function approach for now.

Chapter 8 219

With this, now we have a centralized place to access all of the active enemies in a simple but ef-

ficient way. I challenge you to do the same with the waves, using WaveManager, which will have

the collection of all active waves to later check whether all waves finished their work to consider

the game as won. Take some time to solve this; you will find the solution in the following screen-

shots, starting with WavesManager:

Figure 8.15: The full WavesManager script

Win and Lose Conditions220

You will also need the WaveSpawner script:

Figure 8.16: The modified WaveSpawner script to support WavesManager

As you can see, WaveManager is created the same way EnemyManager was, just a Singleton with

a list of WaveSpawner references, but WaveSpawner is different. We execute the Add function of

the list in the Start event of WaveSpawner to register the wave as an active one, but the Remove

function needs more work.

The idea is to deregister the wave from the active waves list when the spawner finishes its work.

Before this modification, we used Invoke to call the CancelInvoke function after a while to stop

the spawning, but now we need to do more after the end time.

Chapter 8 221

Instead of calling CancelInvoke after the specified wave end time, we will call a custom function

called EndSpawner, which will call CancelInvoke to stop the spawner, Invoke Repeating, but also

will call the remove-from-WavesManager-list function to make sure the removing-from-the-list

function is called exactly when WaveSpawner finishes its work.

Regarding the Visual Scripting version, we can add two lists of GameObject type to the scene

variables to hold the references to the existing waves and enemies so we can keep track of them.

Just search "List of GameObject" in the search bar of the variable type selector and you will

find it. In this case, the lists contain only GameObjects given that the Visual Scripting versions

of WaveSpawner and enemy scripts are not types we can reference like C# ones. If you did both

C# and Visual Scripting versions of these you will see you can reference the C# versions, but we

are not going to mix C# and Visual Scripting as it is out of the scope of the book, so ignore them.

Anyway, given how the Variables system of Visual Scripting works, we can still access variables

inside if needed using the GetVariable node—remember the variables are not in the Visual Scripts

but in the Variables node:

Figure 8.17: Adding lists to the Scene variables

Win and Lose Conditions222

Then, we can add the following to the WaveSpawner graph:

Figure 8.18: Adding elements to List

We used the Add List Item node to add our GameObject to the waves variable. We did this as the

first thing to do in the On Start event node before anything. And to remove that wave from the

active ones you will need to make the following change:

Figure 8.19: Removing elements from the List

Chapter 8 223

We remove this spawner from the list using the Exit flow output pin of the For Loop, which is

executed when the for loop finishes iterating.

Finally, regarding Enemy, you will need to create a new Enemy Script graph that will look similar:

Figure 8.20: Enemy Adding and removing itself from the Lists

As you can see, we simply add the enemy on OnStart and remove it in OnDisable. Remember to

try first using OnDestroy instead of OnDisable due to the bug we mentioned previously. You can

check these changes by playing the game while having the Scene Variables GameObject selected

and seeing how its value changes. Also remember the need to use the Has Variable node in case

we are changing scenes.

Win and Lose Conditions224

Using Object managers, we now have centralized information about a group of objects, and

we can add all sorts of object group logic here. We created the EnemiesManager, WavesManager,

and ScoreManager as centralized places to store several game systems’ information, such as the

enemies and waves present in the scene, and the score as well. We also saw the Visual Scripting

version, centralizing that data in the Scene Variables object, so all Visual Scripts can read that

data. But aside from having this information for updating the UI (which we will do in the next

chapter), we can use this information to detect whether the victory and lose conditions of our

game are met, creating a Game Mode object to detect that.

Creating Game Modes
We have created objects to simulate lots of gameplay aspects of our game, but the game needs

to end sometime, whether we win or lose. As always, the question is where to put this logic, and

that leads us to further questions. The main questions would be, will we always win or lose

the game the same way? Will we have a special level with different criteria than “kill all of the

waves,” such as a timed survival? Only you know the answer to those questions, but if right now

the answer is no, it doesn’t mean that it won’t change later, so it is advisable to prepare our code

to adapt seamlessly to changes.

To do this, we will separate the Victory and Lose conditions’ logic in its own object, which I like

to call the “Game Mode” (not necessarily an industry standard). This will be a component that

will oversee the game, checking conditions that need to be met in order to consider the game over.

It will be like the referee of our game. The Game Mode will constantly check the information in

the object managers and maybe other sources of information to detect the needed conditions.

Having this object separated from other objects allows us to create different levels with different

Game Modes; just use another Game Mode script in that level and that’s all.

To be honest, preparing code to adapt seamlessly to changes is almost impossible;

there’s no way to have code that takes into account every possible case, and we will

always need to rewrite some code sooner or later. We will try to make the code as

adaptable as possible to changes; always doing that doesn’t consume lots of devel-

oping time and it’s sometimes preferable to write simple code fast than complex

code slow that might not be necessary, and so we suggest you balance your time

budget wisely.

Chapter 8 225

In our case, we will have a single Game Mode for now, which will check whether the number of

waves and enemies becomes 0, meaning that we have killed all of the possible enemies and the

game is won. Also, it will check whether the life of the player reaches 0, considering the game as

lost in that situation. Let’s create it by doing the following:

1. Create an empty GameMode object and add a WavesGameMode script to it. As you can see,

we gave the script a descriptive name considering that we can add other Game Modes.

2. In its Update function, check whether the number of enemies and waves has reached 0 by

using the Enemy and Wave managers; in that case, just print a message in the console for

now. All lists have a Count property, which will tell you the number of elements stored

inside.

3. Add a public field of the Life type called PlayerLife and drag the player to that one; the

idea is to also detect the lose condition here.

4. In Update, add another check to detect whether the life amount of the playerLife refer-

ence reached 0, and in that case, print a lose message in the console:

Figure 8.21: Win and lose condition checks in WavesGameMode

5. Play the game and test both cases, whether the player life reaches 0 or whether you have

killed all enemies and waves.

Win and Lose Conditions226

Now, it is time to replace the messages with something more interesting. For now, we will just

change the current scene to a Win Scene or Lose Scene, which will only have a UI with a win or

lose message and a button to play again. In the future, you can add a Main Menu scene and have

an option to get back to it. Let’s implement this by doing the following:

1. Create a new scene (File | New Scene) and save it, calling it WinScreen.

2. Add something to indicate that this is the win screen, such as simply a sphere with the

camera pointing to it. This way we know when we changed to the win screen.

3. Select the scene in the Project View and press Ctrl + D (Cmd + D on Mac) to duplicate the

scene. Rename it LoseScreen.

4. Double-click the LoseScreen scene to open it and change the sphere to something dif-

ferent, maybe a cube.

5. Go to File | Build Settings to open the Scenes in Build list inside this window.

The idea is that Unity needs you to explicitly declare all scenes that must be included in

the game. You might have test scenes or scenes that you don’t want to release yet, so that’s

why we need to do this. In our case, our game will have WinScreen, LoseScreen, and the

scene we have created so far with the game scenario, which I called Game, so just drag

those scenes from the Project View to the list of the Build Settings window; we will need

this to make the Game Mode script change between scenes properly. Also, consider that

the first scene in this list will be the first scene to be opened when we play the game in its

final version (known as the build), so you may want to rearrange the list according to that:

Figure 8.22: Registering the scenes to be included in the build of the game

6. In WavesGameMode, add a using statement for the UnityEngine.SceneManagement name-

space to enable the scene changing functions in this script.

7. Replace the console print messages with calls to the SceneManager.LoadScene function,

which will receive a string with the name of the scene to load; in this case, it would be

WinScreen and LoseScreen. You just need the scene name, not the entire path to the file.

Chapter 8 227

If you want to chain different levels, you can create a public string field to allow you to

specify via editor which scenes to load. Remember to have the scenes added to the Build

Settings, if not, you will receive an error message in the console when you try to change

the scenes:

Figure 8.23: Changing scenes with SceneManager

8. Play the game and check whether the scenes change properly.

Win and Lose Conditions228

Regarding the Visual Scripting version, we added a new Script Graph to a separated object. Let’s

examine it piece by piece to see it clearly. Let’s start with the win condition:

Figure 8.24: Win condition in Visual Scripting

Right now, we picked the simplest way to show whether we lost or won, but in the

future, you may want something gentler than a sudden change of scene, such as

maybe waiting a few moments with Invoke to delay that change or directly show

the winning message inside the game without changing scenes. Bear this in mind

when testing the game with people and checking whether they understood what

happened when they were playing—game feedback is important to keep the player

aware of what is happening and is not an easy task to tackle.

Chapter 8 229

Here, we are getting the Enemies list from the scene context (GetVariable node), and knowing

that it contains a List, we are using the Count Items node to check how many enemies remain

in this list. Remember we have a script that adds the enemy to the list when it’s spawned and

removes it when it is destroyed. We do the same for the waves, so combine the conditions with

an And node and connect it with an If to then do something (more on that in a moment).

Now let’s examine the Lose condition:

Figure 8.25: Lose condition in Visual Scripting

As the player’s life is not in the scene context (and shouldn’t be), and the player is a different

GameObject from the one called GameMode (the one we created specifically for this script), we

need a variable of type GameObject called player to reference it.

Win and Lose Conditions230

As you can see, we dragged our player to it in the Variables component. Finally, we used a Get-

Variable to access our player reference in the graph, and then another GetVariable to extract the

life from it. We accomplished that by connecting the player reference to the GetVariable node of

the life variable. Then we repeated this for the player’s base.

Finally, we load the scenes by doing the following:

Figure 8.26: Loading scenes in Visual Scripting

As you can see, we use the SceneManager LoadScene (SceneName) node to load the scenes.

Notice how we load scenes with the postfix _VisualScripting given we have two versions of

the scenes in our GitHub, the C# version and the Visual Scripting version.

Chapter 8 231

Now we have a fully functional simple game, with mechanics and win and lose conditions, and

while this is enough to start developing other aspects of our game, I want to discuss some issues

with our current manager approach and how to solve them with events.

Improving our code with events
So far, we used Unity event functions to detect situations that can happen in the game such as

Awake and Update. There are other similar functions that Unity uses to allow components to

communicate with each other, as in the case of OnTriggerEnter, which is a way for the Rigidbody

to inform other components in the GameObject that a collision has happened. In our case, we

are using if statements inside the Update method to detect changes on other components, such

as GameMode checking whether the number of enemies has reached 0. But we can improve this

if we are informed by the Enemy manager when something has changed, and just do the check

at that moment, such as with the Rigidbody telling us when collisions occur instead of checking

for collisions every frame.

Also, sometimes, we rely on Unity events to execute logic, such as the score being given in the

OnDestroy event, which informs us when the object is destroyed, but due to the nature of the

event, it can be called in situations we don’t want to add to the score, such as when the scene is

changed, or the game is closed. Objects are destroyed in those cases, but not because the player

killed the enemy, leading to the score increasing when it shouldn’t. In this case, it would be great

to have an event that tells us that life reached 0 to execute this logic, instead of relying on the

general-purpose OnDestroy event.

The idea of events is to improve the model of communication between our objects, with the

assurance that at the exact moment something happens, the relevant parts in that situation

are notified to react accordingly. Unity has lots of events, but we can create ones specific to our

gameplay logic. Let’s start by applying this in the score scenario we discussed earlier; the idea is

to make the Life component have an event to communicate to the other components that the

object was destroyed because life reached 0.

There are several ways to implement this, and we will use a little bit of a different approach than

the Awake and Update methods; we will use the UnityEvent field type. This is a field type capable

of holding references to functions to be executed when we want to, like C# delegates, but with

other benefits, such as better Unity editor integration.

Win and Lose Conditions232

To implement this, do the following:

1. In the Life component, create a public field of the UnityEvent type called onDeath. This

field will represent an event where other classes can subscribe to it to be made aware

when Life reaches 0:

Figure 8.27: Creating a custom event field

2. If you save the script and go to the editor, you can see the event in the Inspector. Unity

events support being subscribed to methods in the editor so we can connect two objects

together. We will use this in the UI scripting chapter, so let’s just ignore this for now:

Figure 8.28: UnityEvents showing up in the Inspector

3. When life reaches 0, call the Invoke function of the event. This way, we will be telling any

script interested in the event that it has happened:

You can use the generic delegate action or a custom delegate to create events

instead of using UnityEvent, and aside from certain performance aspects,

the only noticeable difference is that UnityEvent will show up in the editor,

as demonstrated in step 2.

Chapter 8 233

Figure 8.29: Executing the event

4. In ScoreOnDeath, rename the OnDestroy function to GivePoints or whatever name you

prefer; the idea here is to stop giving points in the OnDestroy event.

5. In the Awake function of the ScoreOnDeath script, get the Life component using

GetComponent and save it in a local variable.

6. Call the AddListener function of the onDeath field of the Life reference and pass the

GivePoints function as the first argument. This is known as subscribing our listener

method GivePoints to the event onDeath. The idea is to tell Life to execute GivePoints

when the onDeath event is invoked. This way, Life informs us about that situation. Re-

member that you don’t need to call GivePoints, but just pass the function as a field:

Figure 8.30: Subscribing to the OnDeath event to give points in that scenario

Win and Lose Conditions234

7. Save, select ScoreManager in the editor, and hit Play to test this. Try deleting an enemy

from the Hierarchy while in Play mode to check that the score doesn’t rise because the

enemy was destroyed for a reason other than their life becoming 0; you must destroy an

enemy by shooting at them to see the score increase.

Now that Life has an onDeath event, we can also replace the player’s Life check from the

WavesGameMode to use the event by doing the following:

1. Create an OnPlayerDied function on the WavesGameMode script and move the loading of the

LoseScreen scene from Update to this function. You will be removing the if that checks

the life from the Update method, given that the event version will replace it.

2. In Awake, add this new function to the onDeath event of the player’s Life component

reference, called playerLife in our script:

Figure 8.31: Checking the lose condition with events

As you can see, creating custom events allows you to detect more specific situations other than

the defaults in Unity, and keeps your code clean, without needing to constantly ask conditions in

the Update function, which is not necessarily bad, but the event approach generates clearer code.

Consider calling RemoveListener in OnDestroy; as usual, it is convenient to

unsubscribe listeners when possible to prevent any memory leak (reference

preventing the GC to deallocate memory). In this scenario, it is not entirely

necessary because both the Life and ScoreOnDeath components will be

destroyed at the same time, but try to get used to this as a good practice.

Chapter 8 235

Remember that we can lose our game also by the player’s base Life reaching 0, so let’s create a

cube that represents the object that enemies will attack to reduce the base Life. Taking this into

account, I challenge you to add this second lose condition (player’s base life reaching 0) to our

script. When you finish, you can check the solution in the following screenshot:

Figure 8.32: Complete WavesGameMode lose condition

As you can see, we just repeated the life event subscription, remember to create an object to

represent the player’s base damage point, add a Life script to it, and drag that one as the player

base Life reference of the Waves Game Mode. Something interesting here is that we subscribed

the same function called OnPlayerOrBaseDied to both player Life and base Life onDeath events,

given that we want the same result in both situations.

Now, let’s keep illustrating this concept by applying it to the managers to prevent the Game Mode

from checking conditions every frame:

1. Add a UnityEvent field to EnemyManager called onChanged. This event will be executed

whenever an enemy is added or removed from the list.

2. Create two functions, AddEnemy and RemoveEnemy, both receiving a parameter of the Enemy

type. The idea is that instead of Enemy adding and removing itself from the list directly, it

should use these functions.

Win and Lose Conditions236

3. Inside these two functions, invoke the onChanged event to inform others that the enemies

list has been updated. The idea is that anyone who wants to add or remove enemies from

the list needs to use these functions:

Figure 8.33: Calling events when enemies are added or removed

4. Change the Enemy script to use these functions:

Figure 8.34: Making the Enemy use the add and remove functions

Here, we have the problem that nothing stops us from bypassing those two

functions and using the list directly. You can solve that by making the list

private and exposing it using the IReadOnlyList interface. Remember that

this way, the list won’t be visible in the editor for debugging purposes.

Chapter 8 237

5. Repeat the same process for WaveManager and WaveSpawner, create an onChanged event,

and create the AddWave and RemoveWave functions and call them in WaveSpawner instead

of directly accessing the list. This way, we are sure the event is called when necessary as

we did with EnemyManager. Try to solve this step by yourself and then check the solution

in the following screenshot, starting with WavesManager:

Figure 8.35: WaveManager OnChanged event implementation

Win and Lose Conditions238

6. Also, WavesSpawner needed the following changes:

Figure 8.36: Implementing the AddWave and RemoveWave functions

7. In WavesGameMode, rename Update to CheckWinCondition and subscribe this function

to the onChanged event of EnemyManager and the onChanged event of WavesManager. The

idea is to check for the number of enemies and waves being changed only when necessary.

Remember to do the subscription to the events in the Start function due to the Singletons

being initialized in Awake:

Chapter 8 239

Figure 8.37: Checking the win condition when the enemies or waves amount is
changed

Regarding the Visual Scripting version, let’s start checking the lose condition with events, checking

first some changes needed in the Life Script Graph:

Figure 8.38: Triggering a Custom Event in our Life graph

Win and Lose Conditions240

First, after destroying the object when life reaches 0, we use the Trigger Custom Event node,

specifying the name of our event is OnDeath. This will tell anyone waiting for the execution of the

OnDeath event that we did. Remember, this is our Life Script Graph. Be sure to call destroy after

triggering the event—while most of the time the order doesn’t matter, given that the destroy

action doesn’t actually happen until the end of the frame, sometimes it can cause issues, so better

be safe here. In this case, Game Mode should listen to the player’s OnDeath event, so let’s make

the following change in our Game Mode Graph:

Figure 8.39: Listening to the OnDeath event of Player in Visual Scripting

We used the CustomEvent node connecting it to the player reference of our GameMode. This

way we are specifying that if that player executes that event, we will execute the Load Scene

node. Remember that the player reference is crucial to specify from whom we want to execute

the OnDeath event, and remember that the Life Visual Graph will also be present in the enemies

and we are not interested in them here. Also, remember to remove the If node and the condition

nodes we used previously to detect this – the only If our Game Mode will have is the one for the

win condition.

Essentially, we made any object with the Life script have an OnDeath event, and we made the

GameMode listen to the OnDeath event of the player specifically.

We could also do events for enemies and waves, but that would complicate our graphs somewhat,

given that we don’t have WaveManager or EnemyManager in the Visual Scripting versions. We could

certainly create those to accomplish this, but sometimes the point of using Visual Scripting is to

create simple logic, and these kinds of changes tend to make a graph grow quite a bit.

Chapter 8 241

Another possible solution is to make the enemy and wave directly inform the Game Mode. We

could use Trigger Custom Event in the enemies and waves, connecting that node to the Game

Mode, to finally let the Game Mode have a Custom Event node from which to listen. The issue is

that that would violate the correct dependencies between our objects; lower-level objects such

as enemies and waves shouldn’t communicate with higher-level objects such as Game Mode.

Essentially, Game Mode was supposed to be an overseer. If we apply the solution described in this

paragraph, we won’t be able to have an enemy in another scene or game without having a Game

Mode. So, for simplicity and code decoupling purposes, let’s keep the other conditions as they

are—the more complex logic such as this will be probably handled in C# in full production projects.

Yes, using events means that we have to write more code than before, and in terms of functional-

ity, we didn’t obtain anything new, but in bigger projects, managing conditions through Update

checks will lead to different kinds of problems as previously discussed, such as race conditions

and performance issues. Having a scalable code base sometimes requires more code, and this is

one of those cases.

Before we finish, something to consider is that Unity events are not the only way to create this kind

of event communication in Unity; you will find a similar approach called Action, the native C#

version of events, which I recommend you look into if you want to see all of the options out there.

Summary
In this chapter, we finished an important part of the game: the ending, both by victory and by

defeat. We discussed a simple but powerful way to separate the different layers of responsibili-

ties by using managers created through Singletons, to guarantee that there isn’t more than one

instance of every kind of manager and simplifying the connections between them through static

access. Also, we visited the concept of events to streamline communication between objects to

prevent problems and create more meaningful communication between objects.

With this knowledge, you are now able not only to detect the victory and lose conditions of the

game but can also do it in a better-structured way. These patterns can be useful to improve our

game code in general, and I recommend you try to apply them in other relevant scenarios.

In the next chapter, we are going to start Part 3 of the book, where we are going to see different

Unity systems to improve the graphics and audio aspects of our game, starting by seeing how

we can create materials to modify aspects of our objects, and create shaders with Shader Graph.

Win and Lose Conditions242

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

9
Implementing Game AI for
Building Enemies

What is a game if not a great challenge to the player, who needs to use their character’s abilities

to tackle different scenarios? Each game imposes different kinds of obstacles on the player, and

the main one in our game is the enemies. Creating challenging and believable enemies can be

complex; they need to behave like real characters and be smart enough so as not to be easy to kill,

but also easy enough that they are not impossible to kill. We are going to use basic but sufficient

AI techniques to make an AI capable of sensing its surroundings and, based on that information,

make decisions on what to do, using FSMs or Finite State Machines, along with other techniques.

Those decisions will be executed using intelligent pathfinding.

In this chapter, we will examine the following AI concepts:

• Gathering information with sensors

• Making decisions with FSMs

• Executing FSM actions

By the end of the chapter, you will have a fully functional enemy capable of detecting the player

and attacking them, so let’s start by seeing first how to make the sensor systems.

Gathering information with sensors
An AI works by first taking in information about its surroundings. Then, that data is analyzed in

order to choose an action, and finally, the chosen action is executed. As you can see, we cannot

do anything without information, so let’s start with that part.

Implementing Game AI for Building Enemies244

There are several sources of information our AI can use, such as data about itself (life and bul-

lets) or maybe some game state (winning condition or remaining enemies), which can easily be

found with the code we’ve seen so far. One important source of information, however, is also the

AI senses. According to the needs of our game, we might need different senses such as sight and

hearing, but in our case, sight will be enough, so let’s learn how to code that.

In this section, we will examine the following sensor concepts:

• Creating three-filter sensors with C#

• Creating three-filter sensors with Visual Scripting

• Debugging with gizmos

Let’s start by seeing how to create a sensor with the three-filters approach.

Creating three-filter sensors with C#
The common way to code senses is through a three-filters approach to discard enemies out of

sight. The first filter is a distance filter, which will discard enemies too far away to be seen, then

the second filter would be the angle check, which will check enemies inside our viewing cone,

and finally, the third filter is a raycast check, which will discard enemies that are being occluded

by obstacles such as walls.

Let’s code sensors in the following way:

1. Create an empty GameObject called AI as a child of the Enemy Prefab. You need to first

open the Prefab to modify its children (double-click the Prefab). Remember to set the

transform of this GameObject to Position 0,1.75,0, Rotation 0,0,0, and Scale 1,1,1 so it

will be aligned to the enemy’s eyes. This is done this way for the future sight sensors we

will do. Consider your enemy prefab might have a different height for the eyes. While we

can certainly just put all AI scripts directly in the Enemy Prefab root GameObject, we did

this just for separation and organization:

Before starting, a word of advice: we will be using vector mathematics here, and cov-

ering those topics in-depth is outside the scope of this book. If you don’t understand

something, feel free to just search online for the code in the screenshots.

Chapter 9 245

Figure 9.1: AI scripts container

2. Create a script called Sight and add it to the AI child object.

3. Create two fields of the float type called distance and angle, and another two of the

LayerMask type called obstaclesLayers and objectsLayers. distance will be used as

the vision distance, angle will determine the amplitude of the view cone, obstacleLayers

will be used by our obstacle check to determine which objects are considered obstacles,

and objectsLayers will be used to determine what types of objects we want the Sight

component to detect.

We just want the sight to see enemies; we are not interested in objects such as walls or

power-ups. LayerMask is a property type that allows us to select one or more layers to use

inside code, so we will be filtering objects by layer. In a moment, you will see how we use it:

Figure 9.2: Fields to parametrize our sight check

4. In Update, call Physics.OverlapSphere as in the Figure 9.3.

Implementing Game AI for Building Enemies246

This function creates an imaginary sphere in the place specified by the first parameter (in our

case, our position) and with a radius specified in the second parameter (the distance property)

to detect objects with the layers specified in the third parameter (ObjectsLayers). It will return

an array with all the colliders found inside the sphere; these functions use physics to carry out

the check, so the objects must have at least one collider.

This is the method we will be using to find all enemies inside our view distance, and we will be

further filtering them in the next steps. Note that we are passing our position to the first parameter,

which is not actually the position of the enemy but the position of the AI child object, given our

script is located there. This highlights the importance of the position of the AI object.

1. Iterate over the array of objects returned by the function using a for loop:

Figure 9.3: Getting all GameObjects at a certain distance

2. To detect whether the object falls inside the vision cone, we need to calculate the angle

between our viewing direction and the direction from ourselves towards the object itself.

If the angle between those two directions is less than our cone angle, we consider that

the object falls inside our vision. We will do that in the following steps:

Another way of accomplishing the first check is to just check the distance from the

objects we want to see to the player, or if looking for other kinds of objects, to a

Manager component containing a list of them. However, the method we chose is

more versatile and can be used for any kind of object.

Also, you might want to check the Physics.OverlapSphereNonAlloc version of

this function, which does the same but is more performant by not allocating an

array to return the results.

Chapter 9 247

Start calculating the direction toward the object, which can be done by normalizing the

difference between the object’s position and ours, like in Figure 9.4. You might notice we

used bounds.center instead of transform.position; this way, we check the direction

to the center of the object instead of its pivot. Remember that the player’s pivot is in the

ground and the ray check might collide against it before the player:

Figure 9.4: Calculating direction from our position toward the collider

3. We can use the Vector3.Angle function to calculate the angle between two directions.

In our case, we can calculate the angle between the direction toward the enemy and our

forward vector to see the angle:

Figure 9.5: Calculating the angle between two directions

4. Now check whether the calculated angle is less than the one specified in the angle field.

Note that if we set an angle of 90, it will actually be 180, because if the Vector3.Angle func-

tion returns, as an example, 30, it could be 30 to the left or to the right. If our angle says 90,

it could be both 90 to the left and to the right, so it will detect objects in a 180-degree arc.

If you want, you can instead use Vector3.Dot, which will execute a dot

product, a mathematics function to calculate the length of a vector projected

to another (search online for more info). Vector3.Angle actually uses that

one, but converts the result of the dot product into an angle, which needs

to use trigonometry, and that can be time expensive to calculate. But our

Vector3.Angle approach is simpler and faster to code, and given that we

don’t require many sensors because we won’t have many enemies, optimiz-

ing the sensor using dot products is not necessary now, but consider that

for games with larger scale.

Implementing Game AI for Building Enemies248

5. Use the Physics.Linecast function to create an imaginary line between the first and

the second parameter (our position and the collider position) to detect objects with the

layers specified in the third parameter (the obstacle layers) and return boolean indicating

whether that ray hit something or not.

The idea is to use the line to detect whether there are any obstacles between ourselves and

the detected collider, and if there is no obstacle, this means that we have a direct line of

sight toward the object. Observe how we use the ! or not operator in Figure 9.6 to check

if Physics.Linecast didn’t detect any objects. Again, note that this function depends on

the obstacle objects having colliders, which in our case, we have (walls, floor, and so on):

Figure 9.6: Using a Linecast to check obstacles between the sensor and the target
object

6. If the object passes the three checks, that means that this is the object we are currently

seeing, so we can save it inside a field of the Collider type called detectedObject, to

save that information for later usage by the rest of the AI scripts.

Consider using break to stop the for loop that is iterating the colliders to prevent wasting

resources by checking the other objects, and to set detectedObject to null before for to

clear the result from the previous frame. So if in this frame, we don’t detect anything, it

will keep the null value so we notice that there is nothing in the sensor:

Chapter 9 249

Figure 9.7: Full sensor script

Implementing Game AI for Building Enemies250

7. In the editor, configure the sensor at your will. In this case, we will set ObjectsLayer to

Player so our sensor will focus its search on objects with that layer, and obstaclesLayer

to Default, the layer we used for walls and floors. Remember the Sight script is in the AI

GameObject, which is a child of the Enemy prefab:

Figure 9.8: Sensor settings

8. To test this, just place an enemy with a movement speed of 0 in front of the player, select

its AI child object and then play the game to see how the property is set in the Inspector.

Also, try putting an obstacle between the two and check that the property says None

(null). If you don’t get the expected result, double-check your script, its configuration,

and whether the player has the Player layer, and the obstacles have the Default layer.

Also, you might need to raise the AI object a little bit to prevent the ray from starting

below the ground and hitting it.

Given the size of the script, let’s dedicate an entire section to the Visual Scripting version, given

it also introduces some new Visual Scripting concepts needed here.

In our case, we are using the sensor just to look for the player, the only object

the sensor is in charge of looking for, but if you want to make the sensor more

advanced, you can just keep a list of detected objects, placing inside it every

object that passes the three tests instead of just the first one. In our case, it’s

not necessary given we have only one player in the game.

Chapter 9 251

Creating Three-Filters sensors with Visual Scripting
Regarding the Visual Scripting version, let’s check it part by part, starting with the Overlap Sphere:

Figure 9.9: Overlap Sphere in Visual Scripting

So far, we just called Overlap Sphere after setting the sensedObject variable to null. Something

to consider is how the sensedObject variable in the Variables component in the Inspector doesn’t

have a type (a Null type is no type in Visual Scripting). This can’t be possible in C#—all variables

must have a type—and while we could set the sensedObject variable to the proper type (Collid-

er), we will keep the variable type to be set later via a script. Even if we set the type now, Visual

Scripting tends to forget the type if no value is set, and we cannot set it until we detect something.

Implementing Game AI for Building Enemies252

Don’t worry about that for the moment; when we set the variable through our script it will acquire

the proper type. Actually, all variables in Visual Scripting can switch types at runtime according

to what we set them to, given how the Variables component works. I don’t recommend doing

that, though: try to stick with the intended variable type.

Another thing to observe is how we set the sensedObject variable to null at the beginning using

the Null node, which effectively represents the null value.

Now, let’s explore the Foreach part:

Figure 9.10: Iterating collections in Visual Scripting

We can see that one of the output pins of Overlap Sphere is a little list, which essentially rep-

resents the collider array returned by Overlap Sphere. We connect that pin to the For Each Loop

node, which as you might imagine iterates over the elements of the provided collection (array,

list, dictionary, etc.). The Body pin represents the nodes to execute in each iteration of the loop,

and the Item output pin represents the item currently being iterated—in our case, one of the

colliders detected in Overlap Sphere. Finally, we save that item in a Flow potentialDetection

variable, Flow variables being the equivalent to local variables in C# functions.

We just said that all variables in C# must have a type, but that’s not entirely true.

There are ways to create dynamically-typed variables, but it’s not a good practice

that I’d recommend using unless no other option is present.

Chapter 9 253

The idea here is that, given the size of the graph and the number of times we will be needing to

query the currently iterated item, we don’t want the line connecting the output Item pin to the

other nodes to cross the entire graph. Instead, we save that item in the Flow variable to reference

it later, essentially naming that value to be referenced later in the graph, which you will see in

the next parts of it.

Now let’s explore the Angle check:

Figure 9.11: Angle check in Visual Scripting

Here, you can see a direct translation of what we did in C# to detect the angle, so it should be

pretty self-explanatory. The only thing here is given the proximity of the Item output pin to the

Get Position node where we query its position, we directly connected the node, but we will use

the potentialDetection flow variable later.

Implementing Game AI for Building Enemies254

Now, let’s explore the Linecast part:

Figure 9.12: Linecast check in Visual Scripting

Again, essentially the same as we did before in C#. The only thing to highlight here is the fact we

used the Flow variable potentialDetection to again get the position of the current item being

iterated, instead of connecting the Get Position node all the way to the Foreach Item output pin.

Chapter 9 255

Now, let’s explore the final part:

Figure 9.13: Setting the sensedObject

Again, pretty much self-explanatory; if the Linecast returns false, we set the potentialDetection

variable (the currently iterated item) as the sensedObject variable (the one that will be accessed

by other scripts later to query which is the object our AI can see right now). Something to con-

sider here is the usage of the Break Loop node, which is the equivalent to the C# break keyword;

essentially, we are stopping the Foreach loop we are currently in.

Now, even if we have our sensor working, sometimes checking whether it’s working or configured

properly requires some visual aids we can create using gizmos.

Debugging with gizmos
As we create our AI, we will start to detect certain errors in edge cases, usually related to miscon-

figurations. You may think that the player falls within the sight range of the enemy but maybe

you cannot see that the line of sight is occluded by an object, especially as the enemies move

constantly. A good way to debug those scenarios is through editor-only visual aids known as

Gizmos, which allow you to visualize invisible data such as the sight distance or the Linecasts

executed to detect obstacles.

Implementing Game AI for Building Enemies256

Let’s start seeing how to create Gizmos drawing a sphere representing the sight distance by doing

the following:

1. In the Sight script, create an event function called OnDrawGizmos. This event is only exe-

cuted in the editor (not in builds) and is the place Unity asks us to draw Gizmos.

2. Use the Gizmos.DrawWireSphere function, passing our position as the first parameter and

the distance as the second parameter to draw a sphere in our position with the radius of our

distance. You can check how the size of the Gizmo changes as you change the distance field:

Figure 9.14: Sphere Gizmo

Chapter 9 257

3. Optionally, you can change the color of the gizmo, setting Gizmos.color prior to calling

the drawing functions:

Figure 9.15: Gizmos drawing code

4. We can draw the lines representing the cone using Gizmos.DrawRay, which receives the

origin of the line to draw and the direction of the line, which can be multiplied by a certain

value to specify the length of the line, as in the following screenshot:

Figure 9.16: Drawing rotated lines

5. In the screenshot, we used Quaternion.Euler to generate a quaternion based on the angles

we want to rotate. A quaternion is a mathematical construct to represent rotations; please

search for this term for more info on it. If you multiply this quaternion by a direction, we

will get the rotated direction. We are taking our forward vector and rotating it according

to the angle field to generate our cone vision lines.

Now you are drawing Gizmos constantly, and if you have lots of enemies,

they can pollute the scene view with too many Gizmos. In that case, try the

OnDrawGizmosSelected event function instead, which draws Gizmos only

if the object is selected.

Implementing Game AI for Building Enemies258

Also, we multiply this direction by the sight distance to draw the line as far as our sight

can see; you will see how the line matches the end of the sphere this way:

Figure 9.17: Vision angle lines

We can also draw the Linecasts, which check the obstacles, but as those depend on the current

situation of the game, such as the objects that pass the first two checks and their positions, we

can use Debug.DrawLine instead, which can be executed in the Update method. This version of

DrawLine is designed to be used in runtime only. The Gizmos we saw also execute in the editor.

Let’s try them the following way:

1. First, let’s debug the scenario where Linecast didn’t detect any obstacles, so we need

to draw a line between our sensor and the object. We can call Debug.DrawLine in the if

statement that calls Linecast, as in the following screenshot:

Chapter 9 259

Figure 9.18: Drawing a line in Update

2. In the next screenshot, you can see DrawLine in action:

Figure 9.19: Line toward the detected Object

Implementing Game AI for Building Enemies260

3. We also want to draw a line in red when the sight is occluded by an object. In this case, we

need to know where the Linecast hit, so we can use an overload of the function, which

provides an out parameter that gives us more information about what the line collided

with, such as the position of the hit and the normal and the collided object, as in the

following screenshot:

Figure 9.20: Getting information about Linecast

4. We can use that information to draw the line from our position to the hit point in else of

the if sentence when the line collides with something:

Figure 9.21: Drawing a line if we have an obstacle

Note that Linecast doesn’t always collide with the nearest obstacle but

with the first object it detects in the line, which can vary in order. If you

need to detect the nearest obstacle, look for the Physics.Raycast version

of the function.

Chapter 9 261

5. In the next screenshot, you can see the results:

Figure 9.22: Line when an obstacle occludes vision

Regarding the Visual Scripting version, the first part will look like this:

Figure 9.23: Drawing Gizmos with Visual Scripting

Implementing Game AI for Building Enemies262

Then, the angle lines would look like this:

Figure 9.24: Drawing Angle lines of sight in Visual Scripting

Note that, here, we are showing just one, but the other is essentially the same but multiplying

the angle by -1. Finally, the red lines towards the detected object and obstacles will look like this:

Chapter 9 263

Figure 9.25: Drawing lines towards obstacles or detected objects in Visual Scripting

Note that, to accomplish this last one, we needed to change the previous Linecast node for the

version that returns Raycast Hit info at the end.

With all of that, in this section, we created the sensors system that will give sight to our AI and

plenty of info about what to do next. Now that we have our sensors completed, let’s use the in-

formation provided by them to make decisions with FSMs.

Implementing Game AI for Building Enemies264

Making decisions with FSMs
We explored the concept of Finite State Machines (FSMs) in the past when we used them in the

Animator component. We learned that an FSM is a collection of states, each one representing an

action that an object can be executing at a time, and a set of transitions that dictates how the

states are switched. This concept is not only used in animation but in a myriad of programming

scenarios, and one of the common ones is AI. We can just replace the animations with AI code in

the states and we have an AI FSM.

In this section, we will examine the following AI FSM concepts:

• Creating the FSM in C#

• Creating transitions

• Creating the FSM in Visual Scripting

Let’s start by creating our FSM skeleton.

Creating the FSM in C#
To create our own FSM, we need to recap some basic concepts. Remember that an FSM can have

a state for each possible action it can execute and that only one can be executed at a time.

In terms of AI, for example, we can be patrolling, attacking, fleeing, and so on. Also, remember

that there are transitions between states that determine conditions to be met to change from one

state to another, and in terms of AI, this can be the user being near the enemy to start attacking

or life being low to start fleeing. In the next figure, you can find a simple reminder example of

the two possible states of a door:

Chapter 9 265

Figure 9.26: FSM example

1. There are several ways to implement FSMs for AI; you can even use the Animator compo-

nent if you want to or download some FSM system from the Asset Store. In our case, we

are going to take the simplest approach possible, a single script with a set of If sentences,

which can be basic but is still a good start to understanding the concept. Let’s implement

it by doing the following:

2. Create a script called EnemyFSM in the AI child object of the enemy.

3. Create an enum called EnemyState with the GoToBase, AttackBase, ChasePlayer, and

AttackPlayer values. We are going to have those states in our AI.

Implementing Game AI for Building Enemies266

4. Create a field of the EnemyState type called currentState, which will hold the current

state of our enemy:

Figure 9.27: EnemyFSM state definition

5. Create three functions named after the states we defined.

6. Call those functions in Update depending on the current state:

Figure 9.28: If-based FSM

Yes, you can totally use a switch here, but I just prefer the regular if syntax

for this example.

Chapter 9 267

7. Test in the editor how changing the currentState field will change which state is active,

seeing the messages being printed in the console:

Figure 9.29: State testing

As you can see, it is a pretty simple but totally functional approach. In the future, you could face

having to code enemies with many more states, and this approach will start to scale badly. In

such a case, you could use any FSM plugin of the Asset Store you prefer to have more powerful

and scalable tools, or even consider advanced techniques like Behavior Trees, but that’s outside

the scope of this book. Now let’s continue with this FSM, creating its transitions.

Creating transitions
If you remember the transitions created in the Animator Controller, those were basically a col-

lection of conditions that are checked if the state the transition belongs to is active. In our FSM

approach, this translates simply as If sentences that detect conditions inside the states. Let’s

create the transitions between our proposed states as follows:

1. Add a field of the Sight type called sightSensor in our FSM script, and drag the AI

GameObject to that field to connect it to the Sight component there. As the FSM compo-

nent is in the same object as Sight, we can also use GetComponent instead, but in advanced

AIs, you might have different sensors that detect different objects, so I prefer to prepare

my script for that scenario. You should pick the approach you like the most.

2. In the GoToBase function, check whether the detected object of the Sight component is

not null, meaning that something is inside our line of vision. If our AI is going toward

the base but detects an object in the way, we must switch to the Chase state to pursue

the player, so we change the state, as in the following screenshot:

Implementing Game AI for Building Enemies268

Figure 9.30: Creating transitions

3. Also, we must change to AttackBase if we are near enough to the object that must be

damaged to decrease the base life. We can create a field of the Transform type called

baseTransform and drag the player’s base life object we created previously there so we

can check the distance. Remember to add a float field called baseAttackDistance to make

that distance configurable:

Figure 9.31: GoToBase transitions

Chapter 9 269

4. In the case of ChasePlayer, we need to check whether the player is out of sight to switch

back to the GoToBase state or whether we are near enough to the player to start attacking

it. We will need another distance field called PlayerAttackDistance, which determines

the distance to attack the player, and we might want different attack distances for those

two targets. Consider an early return in the transition to prevent getting null reference

exceptions if we try to access the position of the sensor detected object when there are

not any:

Figure 9.32: ChasePlayer transitions

5. For AttackPlayer, we need to check whether the player is out of sight to get back to

GoToBase or whether it is far enough to go back to chasing it. You will notice how we

multiplied playerAttackDistance to make the stop-attacking distance a little bit great-

er than the start-attacking distance; this will prevent switching back and forth rapidly

between attacking and chasing when the player is near that distance.

Implementing Game AI for Building Enemies270

You can make it configurable instead of hardcoding 1.1:

Figure 9.33: AttackPlayer transitions

6. In our case, AttackBase won’t have any transition. Once the enemy is near enough to

the base to attack it, it will stay like that, even if the player starts shooting at it. Its only

objective once there is to destroy the base.

7. Remember you can use Gizmos to draw the distances:

Figure 9.34: FSM Gizmos

Chapter 9 271

8. Test the script by selecting the AI Object prior to clicking play and then move the player

around, checking how the states change in the inspector. You can also keep the original

print messages in each state to see them changing in the console. Remember to set the

attack distances and the references to the objects. In the screenshot, you can see the

settings we use:

Figure 9.35: Enemy FSM settings

A little problem that we will have now is that the spawned enemies won’t have the needed refer-

ences to make the distance calculations to the player’s base transform. You will notice that if you

try to apply the changes on the enemy of the scene to the Prefab (Overrides -> Apply All), the Base

Transform variable will say None. Remember that Prefabs cannot contain references to objects in

the scene, which complicates our work here. One alternative would be to create BaseManager, a

Singleton that holds the reference to the damage position, so our EnemyFSM can access it. Another

one could be to make use of functions such as GameObject.Find to find our object.

In this case, we will see the latter. Even though it can be less performant than the Manager ver-

sion, I want to show you how to use it to expand your Unity toolset. In this case, just set the

baseTransform field in Awake to the return of GameObject.Find, using BaseDamagePoint as the

first parameter, which will look for an object with the same name, as in the following screenshot.

Implementing Game AI for Building Enemies272

You will see that now our wave-spawned enemies will change states:

Figure 9.36: Searching for an object in the scene by name

Now that our FSM states are coded and execute transitions properly, let’s see how to do the same in

Visual Scripting. Feel free to skip the following section if you are only interested in the C# version.

Creating the FSM in Visual Scripting
So far, most scripts in Visual Scripting were almost a mirror of the C# version with some differences

in some nodes. While regarding state machines we could do the same, instead, we are going to

use the State Machine system of Visual Scripting. The concept is the same, you have states and

can switch them, but how the states are organized and when the transitions trigger is managed

visually, in a similar way as the Animator system does. So, let’s see how we can use the system

by creating our first State Machine Graph and some states. Follow these steps:

1. Add the State Machine component to our enemy. Remember it is called State Machine

and not Script Machine, the latter being the component for regular Visual Scripts.

2. Click the New button in the component and select a place to save the fixed asset in a

similar way to what we have done so far for regular Visual Scripts. In my case, I called it

EnemyFSM.

Figure 9.37: Creating a Visual State Machine

Chapter 9 273

3. Double-click State Machine Graph to edit it as usual.

4. Right-click in any empty area of the Graph editor and select Create Script State in order

to create a new state:

Figure 9.38: Creating our first Visual State Machine State

5. Repeat step 4 until you end up having 4 states:

Figure 9.39: Visual states

Implementing Game AI for Building Enemies274

6. Select any of them and in the Info panel on the left, fill the Title field (the first one) with

the name of any of the states we created before (GoToBase, AttackBase, ChasePlayer, and

AttackPlayer). If you don’t see the Info panel, click the button with the i in the middle

to display it:

Figure 9.40: Renaming a Visual State

7. Repeat that for the rest of the state nodes until you have each node named after each state

created in the Creating the FSM in C# section of this chapter:

Figure 9.41: All needed states

8. You can see one of the states has a green bar at the top, which represents which node

is supposed to be the first one. I renamed that initial state GoToBase as that’s the one I

prefer to be first. If you don’t have that one as the starting one, right-click the node that

currently has the green bar in your state machine, select Toggle Start to remove the green

bar from it, and then repeat for the node that you want to be the first one (GoToBase in

our scenario), adding the green bar to that one.

Chapter 9 275

9. Double-click GoToBase to enter the edit mode for these states. Connect a String node to the

print Message input pin in the OnUpdate event node to print a message saying GoToBase:

Figure 9.42: Our first state machine logic

10. In the top bar, click the EnemyFSM label at the left of GoToBase in order to return to the

whole State Machine view. If you don’t see it, click any text label at the right of the third

button (the one that looks like <x>):

Figure 9.43: Returning to the State Machine editor mode

11. Feel free to delete the other event nodes if you are not planning to use them.

12. Repeat steps 9-11 for each state until all of them print their names.

With this, we have created the nodes representing the possible states of our AI. In the next section,

we will be adding logic for them to something meaningful, but before that, we need to create the

transitions between the states and the conditions that need to be met to trigger them by doing

the following:

Something to consider is that you can have more than one start state in Visual

Scripting, meaning you can have multiple states running at the same time

and transitioning. If possible, I recommend avoiding having more than one

state active at a time to make things simple.

Implementing Game AI for Building Enemies276

1. Create variables in the Variables component of the enemy called baseTransform,

baseAttackDistance, and playerAttackDistance as we are going to need them to do

the transitions.

2. Don’t set any type to baseTransform as we will fill it later via code, but regarding

baseAttackDistance, make it using the Float type and put a value of 2, and finally for

playerAttackDistance, also use Float and a value of 3. Feel free to change those values

if you prefer:

Figure 9.44: Variables needed for our transitions

3. Right-click the GoToBase node and select the Make Transition option, and then click the

ChasePlayer node. This will create a transition between the two states:

Figure 9.45: A transition between two states

Chapter 9 277

4. Repeat step 3 for each transition we created in the C# version. The State Machine Graph

will need to look like the following screenshot:

Figure 9.46: All the needed transitions

5. Double-click the yellow shape in the middle of the transition between GoToBase and

ChasePlayer to enter the Transition mode. Here, you will be able to specify the condition

that will trigger that transition (instead of using an If node during the state logic). Re-

member you have two yellow shapes, one for each transition direction, so check you are

double-clicking the correct one based on the white arrows connecting them.

Implementing Game AI for Building Enemies278

6. Modify the graph in order to check if the sensedObject variable is not null. It should

look like this:

Figure 9.47: Adding a transition condition

7. The transition between GoToBase and AttackBase should look like this:

Figure 9.48: GoToBase to AttackBase transition condition

Chapter 9 279

8. Now, ChasePlayer to GoToBase should be as follows:

Figure 9.49: ChasePlayer to GoToBase transition condition

9. For the ChasePlayer to AttackPlayer transition, do as in Figure 9.50. This is essentially the

same as GoToBase and AttackBase, a distance check, but with different targets:

Figure 9.50: ChasePlayer to AttackPlayer transition condition

Implementing Game AI for Building Enemies280

10. For the AttackPlayer to ChasePlayer transition, do as in Figure 9.51. This is another dis-

tance check but is now checking if the distance is greater and multiplying the distance by

1.1 (to prevent transition jittering as we explained in the C# version):

Figure 9.51: AttackPlayer to ChasePlayer transition condition

Chapter 9 281

11. Finally, for AttackPlayer to GoToBase this is the expected graph:

Figure 9.52: AttackPlayer to GoToBase transition condition

A little detail we need to tackle before moving on is the fact that we still don’t have any value

set in the baseTransform variable. The idea is to fill it via code as we did in the C# version. But

something to consider here is that we cannot add an Awake event node to the whole state machine,

but just to the states.

In this scenario, we could use the OnEnterState event, which is an exclusive event node for state

machines. It will execute as soon as the state becomes active, which is useful for state initializa-

tions. We could add the logic to initialize the baseTransform variable in the OnEnterState event

node of the GoToBase state, given it is the first state we execute.

Implementing Game AI for Building Enemies282

This way, GoToBase logic will look as in Figure 9.53. Remember to double-click the state node

to edit it:

Figure 9.53: GoToBase initialization logic

Notice how, here, we set the result of the Find node into the variable only on the Null pin of Null

Check. What Null Check does is check if our baseTransform variable is set, going through the Not

Null pin if it is, and Null if it isn’t. This way we avoid executing GameObject.Find every time we

enter the GoToBase state, but only the first time. Also, note that in this case, we will be executing

the Set Variable node not only when the object initializes, but also each time GoToBase becomes

the current state. If, in any case, that results in unexpected behavior, other options could be to

create a new initial state that initializes everything and then transitions to the rest of the states, or

maybe do a classic Visual Script graph that initializes those variables in the On Start event node.

With all this, we learned how to create a decision-making system for our AI through FSMs. It

will make decisions based on the info gathered via sensors and other systems. Now that our FSM

states are coded and transition properly, let’s make them do something.

Chapter 9 283

Executing FSM actions
Now we need to complete the last step—make the FSM do something interesting. Here, we can

do a lot of things such as shoot the base or the player and move the enemy toward its target (the

base or the player). We will be handling movement with the Unity Pathfinding system called

NavMesh, a tool that allows our AI to calculate and traverse paths between two points while

avoiding obstacles, which needs some preparation to work properly.

In this section, we will examine the following FSM action concepts:

• Calculating our scene’s NavMesh

• Using Pathfinding

• Adding final details

Let’s start by preparing our scene for movement with Pathfinding.

Calculating our scene’s NavMesh
Pathfinding algorithms rely on simplified versions of the scene. Analyzing the full geometry of a

complex scene is almost impossible to do in real time. There are several ways to represent Path-

finding information extracted from a scene, such as Graphs and NavMesh geometries. Unity uses

the latter—a simplified mesh similar to a 3D model that spans all areas that Unity determines

are walkable. In the next screenshot, you can find an example of NavMesh generated in a scene,

that is, the light blue geometry:

Figure 9.54: NavMesh of walkable areas in the scene

Implementing Game AI for Building Enemies284

Generating NavMesh can take from seconds to minutes depending on the size of the scene. That’s

why Unity’s Pathfinding system calculates the NavMesh once in the editor, so when we distribute

our game, the user will use the pre-generated NavMesh. Just like Lightmapping, NavMesh is baked

into a file for later usage. Like Lightmapping, the main caveat here is that NavMesh objects cannot

change during runtime. If you destroy or move a floor tile, the AI will still walk over that area. The

NavMesh on top of that didn’t notice the floor isn’t there anymore, so you are not able to move

or modify those objects in any way. Luckily, in our case, we won’t suffer any modification of the

scene during runtime, but note that there are components such as NavMeshObstacle that can

help us in those scenarios.

To generate NavMesh for our scene, do the following:

1. Select any walkable object and the obstacles on top of it, such as floors, walls, and other

obstacles, and mark them as Static. You might remember that the Static checkbox also

affects Lightmapping, so if you want an Object not to be part of Lightmapping but to

contribute to the NavMesh generation, you can click the arrow at the left of the static

check and select Navigation Static only. Try to limit Navigation Static GameObjects

to only the ones that the enemies will actually traverse to increase NavMesh generation

speed. Making the terrain navigable, in our case, will increase the generation time a lot

and we will never play in that area.

2. Open the NavMesh panel in Window | AI | Navigation.

3. Select the Bake tab, click on the Bake button at the bottom of the window, and check the

generated NavMesh:

Chapter 9 285

Figure 9.55: Generating a NavMesh

And that’s pretty much everything you need to do. Of course, there are lots of settings you can

fiddle around with, such as Max Slope, which indicates the maximum angle of slopes the AI will

be able to climb, or Step Height, which will determine whether the AI can climb stairs, connect-

ing the floors between the steps in NavMesh, but as we have a plain and simple scene, the default

settings will suffice.

Now, let’s make our AI move around NavMesh.

Implementing Game AI for Building Enemies286

Using Pathfinding
For making an AI object that moves with NavMesh, Unity provides the NavMeshAgent component,

which will make our AI stick to NavMesh, preventing the object from going outside it. It will not

only calculate the path to a specified destination automatically but also will move the object

through the path with the use of Steering behavior algorithms that mimic the way a human

would move through the path, slowing down on corners and turning with interpolations instead

of instantaneously. Also, this component is capable of evading other NavMeshAgent GameObjects

running in the scene, preventing all of the enemies from collapsing in the same position.

Let’s use this powerful component by doing the following:

1. Select the Enemy Prefab and add the NavMeshAgent component to it. Add it to the root

object, the one called Enemy, not the AI child—we want the whole object to move. You will

see a cylinder around the object representing the area the object will occupy in NavMesh.

Note that this isn’t a collider, so it won’t be used for physical collisions:

Figure 9.56: The NavMeshAgent component

2. Remove the ForwardMovement component; from now on, we will drive the movement of

our enemy with NavMeshAgent.

Chapter 9 287

3. In the Awake event function of the EnemyFSM script, use the GetComponentInParent function

to cache the reference of NavMeshAgent. This will work similarly to GetComponent—it will

look for a component in our GameObject, but if the component is not there, this version will

try to look for that component in all parents. Remember to add the using UnityEngine.

AI line to use the NavMeshAgent class in this script:

Figure 9.57: Caching a parent component reference

4. In the GoToBase state function, call the SetDestination function of the NavMeshAgent

reference, passing the position of the base object as the target:

Figure 9.58: Setting a destination for our AI

5. Save the script and test this with a few enemies in the scene or with the enemies spawned

by the waves. You will see the problem where the enemies will never stop going toward

the target position, entering inside the object, if necessary, even if the current state of their

FSMs changes when they are near enough. That’s because we never tell NavMeshAgent to

stop, which we can do by setting the isStopped field of the agent to true.

As you can imagine, there is also the GetComponentInChildren method,

which searches components in GameObject first and then in all its children

if necessary.

Implementing Game AI for Building Enemies288

You might want to tweak the base attack distance to make the enemy stop a little bit

closer or further away:

Figure 9.59: Stopping agent movement

6. We can do the same for ChasePlayer and AttackPlayer. In ChasePlayer, we can set the

destination of the agent to the player’s position, and in AttackPlayer, we can stop the

movement. In this scenario, Attack Player can go back again to GoToBase or ChasePlayer,

so you need to set the isStopped agent field to false in those states or before doing the

transition. We will pick the former, as that version will cover other states that also stop

the agent without extra code. We will start with the GoToBase state:

Figure 9.60: Reactivating the agent

7. Then, continue with ChasePlayer:

Figure 9.61: Reactivating the agent and chasing the player

Chapter 9 289

8. And finally, continue with AttackPlayer:

Figure 9.62: Stopping the movement

9. You can tweak the Acceleration, Speed, and Angular Speed properties of NavMeshAgent to

control how fast the enemy will move. Also, remember to apply the changes to the Prefab

for the spawned enemies to be affected.

10. Regarding the Visual Scripting versions, GoToBase will look like the following screenshot:

Figure 9.63: Making our agent move

11. We deleted the OnUpdate event node printing a message as we don’t need it anymore.

Also, we called the Set Destination node after setting the variable if if was null, and also

when the variable wasn’t null (Not Null pin of Null Check). Note that all of this happens

in the On Enter State event, so we just need to do it once. We do it every frame in the C#

version for simplicity but that’s actually not necessary, so we will take advantage of the

OnEnterState event. We can emulate that behavior in the C# version if we want, executing

these actions at the moment we change the state (inside the If statements that check

the transition conditions), instead of using the Update function. Finally, notice how we

needed to use the GetParent node in order to access the NavMeshAgent component in the

enemy’s root object? This is needed because we are currently in the AI child object instead.

Implementing Game AI for Building Enemies290

12. Now, the AttackBase state will look like this:

Figure 9.64: Making our agent stop

13. The ChasePlayer state will look like this:

Figure 9.65: ChasePlayer logic

Chapter 9 291

14. And finally, AttackPlayer like this:

Figure 9.66: AttackPlayer logic

Now that we have movement in our enemy, let’s finish the final details of our AI.

Adding the final details
We have two things missing here: the enemy is not shooting any bullets, and it doesn’t have

animations. Let’s start with fixing the shooting by doing the following:

1. Add a bulletPrefab field of the GameObject type to our EnemyFSM script and a float field

called fireRate.

Implementing Game AI for Building Enemies292

2. Create a function called Shoot and call it inside AttackBase and AttackPlayer:

Figure 9.67: Shooting function calls

Chapter 9 293

3. In the Shoot function, put similar code as that used in the PlayerShooting script to shoot

bullets at a specific fire rate, as in Figure 9.68. Remember to set the Enemy layer in your

Enemy Prefab, if you didn’t before, to prevent the bullet from damaging the enemy itself.

You might also want to raise the AI GameObject position a little bit to shoot bullets from

a position other than the ground or, better, add a shootPoint transform field and create

an empty object in the enemy to use as a spawn position. If you do that, consider making

the empty object not be rotated so the enemy rotation affects the direction of the bullet

properly:

Figure 9.68: Shoot function code

Implementing Game AI for Building Enemies294

4. When the agent is stopped, not only does the movement stop but also the rotation. If

the player moves while the enemy is being attacked, we still need the enemy to face the

player to shoot bullets in its direction. We can create a LookTo function that receives the

target position to look at and call it in AttackPlayer and AttackBase, passing the target

to shoot at:

Figure 9.69: LookTo function calls

Here, you find some duplicated shooting behavior between PlayerShooting

and EnemyFSM. You can fix that by creating a Weapon behavior with a func-

tion called Shoot that instantiates bullets and takes into account the fire

rate and call it inside both components to re-utilize it.

Chapter 9 295

5. Complete the LookTo function by calculating the direction of our parent to the target

position. We access our parent with transform.parent because, remember, we are the

child AI object—the object that will move is our parent. Then, we set the Y component

of the direction to 0 to prevent the direction from pointing upward or downward—we

don’t want our enemy to rotate vertically. Finally, we set the forward vector of our parent

to that direction so it will face the target position immediately. You can replace that with

interpolation through quaternions to have a smoother rotation if you want to, but let’s

keep things as simple as possible for now:

Figure 9.70: Looking toward a target

Implementing Game AI for Building Enemies296

6. Regarding the Visual Scripting version, AttackBase actions look like this:

Figure 9.71: AttackBase state

In this state, we have some things to highlight. First, we are using the LookAt node in the OnEn-

terState event node after the SetStopped node. As you might imagine, this does the same as we

did with math in C#. We specify a target to look at (our base transform) and then we specify that

the World Up parameter is a vector pointing upwards 0,1,0. This will make our object look at the

base but maintain its up vector pointing to the sky, meaning our object will not look at the floor

if the target is lower than him. We can use this exact function in C# if we want to (transform.

LookAt); the idea was just to show you all the options. Also note that we execute LookAt only

when the state becomes active—as the base doesn’t move, we don’t need to constantly update

our orientation.

The second thing to highlight is that we used coroutines to shoot, the same idea we used in the

Enemy Spawner to constantly spawn enemies. Essentially, we make an infinite loop between

Wait For Seconds and Instantiate. We took this approach here because it was convenient given

it takes fewer nodes in Visual Scripting.

Chapter 9 297

Remember to select the OnEnterState node and check the Coroutine checkbox as we did before.

Also, we need a new Float type variable called fireRate in the Enemy’s AI child object:

Figure 9.72: Coroutines

Then, AttackPlayer will look like this:

Figure 9.73: AttackPlayer state

Implementing Game AI for Building Enemies298

Essentially it is the same as AttackBase, but that looks towards the sensedObject instead toward

the player’s base, and we also made the LookAt node part of the infinite loop, to correct the en-

emy’s heading before shooting to target the player.

With that, we have finished all AI behaviors. Of course, these scripts/graphs are big enough to

deserve some rework and splitting in the future, but with this, we have prototyped our AI, and

we can test it until we are happy with it, and then we can improve this code.

Summary
I’m pretty sure AI is not what you imagined; you are not creating Skynet here, but we have ac-

complished a simple but interesting AI to challenge our players, which we can iterate and tweak

to tailor to our game’s expected behavior. We saw how to gather our surrounding information

through sensors to make decisions on what action to execute using FSMs and using different

Unity systems such as Pathfinding to make the AI execute those actions. We used those systems

to diagram a State Machine capable of detecting the player, running to them, and attacking them,

and if the player is not there, just going to the base to accomplish its task to destroy it.

In the next chapter, we are going to start Part 3 of this book, where we will learn about different

Unity systems to improve the graphics and audio aspects of our game, starting by seeing how we

can create materials to modify the aspect of our objects and create Shaders with Shader Graph.

10
Materials and Effects with URP
and Shader Graph

Welcome to the first chapter of Part 3. Here, we will dive deep into the different graphics and

audio systems of Unity to dramatically improve the look and feel of the game. We will start by

discussing what a shader is and how to create our own to achieve several custom effects that

couldn’t be accomplished using the default Unity Shaders. We will be creating a simple water

animation effect using Shader Graph, a visual shader editor included in the Universal Render

Pipeline. Also known as URP, this is one of the different rendering pipelines available in Unity,

which provides rendering features oriented toward performance. We will be discussing some of

its capabilities in this chapter.

In this chapter, we will examine the following shader concepts:

• Introducing shaders and URP

• Creating shaders with Shader Graph

Introducing shaders and URP
We created Materials in Part 1 of the book, but we never discussed how they internally work and

why their Shader property is important. In this first section of this chapter, we will be exploring

the concept of a shader as a way to program the video card to achieve custom visual effects. We

will also be discussing how URP works with those shaders, and the default shaders it provides.

Materials and Effects with URP and Shader Graph300

In this section, we will cover the following concepts related to shaders:

• Shader Pipeline

• Render Pipeline and URP

• URP built-in shaders

Let’s start by discussing how a shader modifies the Shader Pipeline to achieve effects.

Shader Pipeline
Whenever a video card renders a 3D model, it needs different information to process, such as a

Mesh, Textures, the transform of the object (position, rotation, and scale), and lights that affect

that object. With that data, the video card must output the pixels of the object into the back-buffer,

an image where the video card will be drawing our objects, but the user won’t see this yet. This

is done to prevent the user from seeing unfinished results, given we can still be drawing at the

time the monitor refreshes. That image will be shown when Unity finishes rendering all objects

(and some effects) to display the finished scene, swapping the Back-buffer with the front-buffer,

the image that the user actually sees. You can imagine this as having a page with an image that

is being shown to the user while you draw a new image, and when you finish the new drawing,

you just swap the pages and start drawing again on the page the user is not seeing, repeating

this with every frame.

That’s the usual way to render an object, but what happens between the input of the data and

the output of the pixels can be handled in a myriad of different ways and techniques that depend

on how you want your object to look; maybe you want it to be realistic or look like a hologram,

maybe the object needs a disintegration effect or a toon effect—there are endless possibilities.

The way to specify how our video card will handle the render of the object is through a shader.

A shader is a program coded in specific video card languages, such as:

• HLSL: The DirectX shading language, DirectX being a graphics library.

• GLSL: The OpenGL shading language, OpenGL also being a graphics library.

• CG: A language that can output either HLSL or GLSL, depending on which graphics library

we use in our game.

• Shader Graph: A visual language that will be automatically converted into one of the

previously mentioned languages according to our needs. This is the one we will be using

given its simplicity (more on that later).

Chapter 10 301

Any of those languages can be used to configure different stages of the render process necessary

to render a given object, sometimes not only configuring them but also replacing them with

completely custom code to achieve the exact effect we want. All of the stages to render an object

make up what we call the Shader Pipeline, a chain of modifications applied to the input data

until it is transformed into pixels.

Each stage of the pipeline is in charge of different modifications and depending on the video card

shader model, this pipeline can vary a lot. In the next diagram, you can find a simplified Render

Pipeline, skipping advanced/optional stages that are not important right now:

Figure 10.1: Common Shader Pipeline

Let’s discuss each of the stages:

• Input Assembler: Here is where all of the mesh data, such as vertex position, UVs, and

normals, is assembled to be prepared for the next stage.

• Vertex Shader: This stage used to be limited to applying the transformation of the object,

the position and perspective of the camera, and simple lighting calculations. In modern

GPUs, you are in charge of doing whatever you want. This stage receives each one of the

vertexes of the object to render and outputs a modified one. You have the chance to modify

the geometry of the object here. The usual code here is applying the transform of the object,

but you can also apply several effects such as inflating the object along its normals to apply

the old toon effect technique or apply distortion adding random offsets to each vertex

to recreate a hologram. There’s also the opportunity to calculate data for the next stages.

• Culling: Most of the models you are going to render have the particularity that you will

never see the back side of a model face. In a cube, there’s no way to look at its inner sides.

Given that, rendering both sides of each face of the cube makes no sense, and this stage

takes care of that. Culling will determine whether the face needs to be rendered based

on the orientation of the face, saving lots of pixel calculation of occluded faces. You can

change this to behave differently for specific cases; as an example, we can create a glass

box that needs to be transparent to see all sides of the box.

Materials and Effects with URP and Shader Graph302

• Rasterizer: Now that we have the modified and visible geometry of our model calculated,

it’s time to convert it into pixels. The rasterizer creates all pixels for the triangles of our

mesh. Lots of things happen here but again, we have very little control of that; the usual

way to rasterize is just to create all pixels inside the edges of the mesh triangles. We have

other modes that just render the pixels on the edges to see a wireframe effect, but this is

usually used for debugging purposes:

Figure 10.2: Example of figures being rasterized

• Fragment Shader: This is one of the most customizable stages of all. Its purpose is simple:

just determine the color of each one of the fragments (pixels) that the rasterizer has gen-

erated. Here, lots of things can happen, from simply outputting a plain color or sampling a

texture to applying complex lighting calculations such as normal mapping and PBR. Also,

you can use this stage to create special effects such as water animations, holograms, dis-

tortions, disintegrations, and any special effects that require you to modify what the pixels

look like. We will explore how we can use this stage in the next sections of this chapter.

• Depth Testing: Before showing a pixel on the screen, we need to check whether it can

be seen. This stage checks whether the pixel’s depth is behind or in front of the previous

pixel rendered in the same position, guaranteeing that regardless of the rendering order

of the objects, the nearest pixels to the camera are always being drawn on top of others.

Again, usually, this stage is left in its default state, prioritizing pixels that are nearer to

the camera, but some effects require different behavior. Also, nowadays we have Early-Z

testing, which does this same test but before the Fragment shader, but let’s keep things

simple for now. As an example, in the next screenshot, you can see an effect that allows

you to see objects that are behind other objects, like the one used in Age of Empires when

a unit is behind a building:

Chapter 10 303

Figure 10.3: Rendering the occluded parts of the character

• Blending: Once the color of the pixel is determined and we are sure the pixel is not oc-

cluded by a previous pixel, the final step is to put it in the back-buffer (the frame or image

you are drawing). Usually, we just override whatever pixel was in that position (because

our pixel is nearer to the camera), but if you think about transparent objects, we need to

combine our pixel with the previous one to make the transparent effect. Transparencies

have other things to take into account aside from the blending, but the main idea is that

blending controls exactly how the pixel will be combined with the previously rendered

pixel in the back-buffer.

Shader Pipelines is a subject that would require an entire book, but for the scope of this book,

the previous description will give you a good idea of what a shader does, and the possible effects

that it can achieve. Now that we have discussed how a shader renders a single object, it is worth

discussing how Unity renders all of the objects using Render Pipelines.

Render Pipeline and URP
We have covered how the video card renders an object, but Unity is in charge of asking the video

card to execute its Shader Pipeline per object. To do so, Unity needs to do lots of preparations

and calculations to determine exactly how and when each shader needs to be executed. The

responsibility of doing this is with what Unity calls the Render Pipeline.

A Render Pipeline is a way to draw the objects of the scene. At first, it sounds like there should

be just one simple way of doing this, for example, iterating over all objects in the scene and exe-

cuting the Shader Pipeline with the shader specified in each object’s Material, but it can be more

complex than that.

Materials and Effects with URP and Shader Graph304

Usually, the main difference between one Render Pipeline and another is the way in which lighting

and some advanced effects are calculated, but they can differ in other ways.

In previous Unity versions, there was just one single Render Pipeline, which is now called the

Built-in Renderer Pipeline (also known as BIRP). It was a pipeline that had all of the possible

features you would need for all kinds of projects, from mobile 2D graphics and simple 3D to

cutting-edge 3D like the ones you can find in consoles or high-end PCs. This sounds ideal, but

actually, it isn’t. Having one single giant renderer that needs to be highly customizable to adapt

to all possible scenarios generates lots of overhead and limitations that cause more headaches

than creating a custom Render Pipeline. Luckily, the last versions of Unity introduced Scriptable

Render Pipeline (SRP), a way to create Render Pipeline adapted for your project.

Luckily, Unity doesn’t want you to create your own Render Pipeline for each project (which is a

complex task), so it has created two custom pipelines for you that are ready to use: URP (formerly

called LWRP), which stands for Universal Render Pipeline, and HDRP, which stands for High

Definition Render Pipeline. The idea is that you must choose one or the other based on your

project’s requirements (unless you really need to create your own).

URP, the one we selected when creating the project for our game, is a Render Pipeline suitable

for most games that don’t require lots of advanced graphics features, such as mobile games or

simple PC games, while HDRP is packed with lots of advanced rendering features for high-quality

games. The latter requires high-end hardware to run, while URP runs in almost every relevant

target device. It is worth mentioning that you can swap between Built-in Renderer, HDRP, and

URP whenever you want, including after creating the project (but this is not recommended):

Figure 10.4: Project wizard showing HDRP and URP templates

Chapter 10 305

We can discuss how each one is implemented and the differences between each, but again, this

could fill entire chapters; right now, the idea of this section is for you to know why we picked

URP when we created our project because it has some restrictions we will encounter throughout

this book that we will need to take into account, so it is good to know why we accepted those

limitations (to run our game on every relevant hardware).

Also, we need to know that we have chosen URP because it has support for Shader Graph, the

Unity tool that we will be using in this chapter to create custom effects. Previous Unity built-in

pipelines didn’t provide us with such a tool (aside from third-party plugins). Finally, another

reason to introduce the concept of URP is that it comes with lots of built-in shaders that we will

need to know about before creating our own to prevent reinventing the wheel. This will allow

us to get used to those shaders, because if you came from previous versions of Unity, the shaders

you already know won’t work here; actually, this is exactly what we are going to discuss in the

next section of this chapter: the difference between the different URP built-in shaders.

URP built-in shaders
Now that we know the difference between URP and other pipelines, let’s discuss which shaders

come integrated into URP. Let’s briefly describe the three most important shaders in this pipeline:

• Lit: This is the replacement of the old Standard Shader. This shader is useful for creating

all kinds of realistic physics materials such as wood, rubber, metal, skin, and combina-

tions of them (such as a character with skin and metal armor). It supports features like

Normal Mapping, Occlusion, different lighting workflows like Metallic and Specular, and

transparencies.

• Simple Lit: This is the replacement of the old Mobile/Diffuse Shader. As the name suggests,

this shader is a simpler version of Lit, meaning that its lighting calculations are simpler

approximations of how light works, getting fewer features than its counterpart. Basically,

when you have simple graphics without realistic lighting effects, this is the best choice.

• Unlit: This is the replacement of the old Unlit/Texture Shader. Sometimes, you need ob-

jects with no lighting whatsoever, and in that case, this is the shader for you. No lighting

doesn’t mean an absence of light or complete darkness; it actually means that the object

has no shadows at all, and it’s fully visible without any shade. Some simplistic graphics

can work with this, relying on shadowing being baked in the texture, meaning that the

texture comes with the shadow.

Materials and Effects with URP and Shader Graph306

This is extremely performant, especially for low-end devices such as mobile phones. Also,

you have other cases such as light tubes or screens, objects that can’t receive shadows

because they emit light, so they will be seen at their full color even in complete darkness.

In the following screenshot, you can see a 3D model using an Unlit Shader. It looks like

it’s being lit, but it’s just the texture of the model that applied lighter and darker colors

in different parts of the object:

Figure 10.5: Pod using an Unlit effect to simulate cheap lighting

Let’s do an interesting disintegration effect with the Simple Lit Shader to demonstrate its capa-

bilities. You must do the following:

1. Download and import a Cloud Noise texture from any search engine:

Figure 10.6: Noise texture

Chapter 10 307

2. Select the recently imported texture in the Project panel.

3. In the Inspector, set the Alpha Source property to From Gray Scale. This will make the

alpha channel of the texture be calculated based on the grayscale of the image:

Figure 10.7: Generate Alpha From Gray Scale texture setting

4. Click the + icon in the Project view and select Material:

Figure 10.8: Material creation button

5. Create a cube by going to GameObject | 3D Object | Cube:

Figure 10.9: Cube primitive creation

6. Drag the Material from the Project window to the cube in the Scene window.

The Alpha channel of a color is often associated with transparency, but you

will notice that our object won’t be transparent. The Alpha channel is extra

color data that can be used for several purposes when creating effects. In this

case, we will use it to determine which pixels are being disintegrated first.

Materials and Effects with URP and Shader Graph308

7. Click in the drop-down menu at the right of the Shader property in the Inspector and

look for the Universal Render Pipeline | Simple Lit option. We could also work with the

default shader (Lit), but Simple Lit is going to be easier on performance and we won’t

use the advanced features of Lit:

Figure 10.10: Simple Lit Shader selection

8. Select the Material and drag the downloaded cloud Texture to the rectangle at the left

of Base Map.

9. Check the Alpha Clipping checkbox and set the Threshold slider to 0.5:

Figure 10.11: Alpha Clipping Threshold Material slider

Chapter 10 309

10. As you move the Threshold slider, the object will start to disintegrate. Alpha Clipping

discards pixels that have less Alpha intensity than the Threshold value:

Figure 10.12: Disintegration effect with Alpha Clipping

11. Finally, set Render Face to Both to see both sides of the cube’s faces:

Figure 10.13: Double-sided render face

12. Take into account that the artist that creates the texture can configure the Alpha channel

manually instead of calculating it from the grayscale, just to control exactly how the dis-

integration effect must look regardless of the texture’s color distribution:

Figure 10.14: Double-sided Alpha Clipping

Materials and Effects with URP and Shader Graph310

The idea of this section is not to give a comprehensive guide of all of the properties of all URP

shaders, but to give you an idea of what a shader can do when properly configured and when to

use each one of the integrated shaders. Sometimes, you can achieve the effect you need just by

using existing shaders, probably in 99% of cases in simple games, so try to stick to them as much

as you can. But if you really need to create a custom shader to create a very specific effect, the next

section will teach you how to use the URP tool called Shader Graph.

Creating shaders with Shader Graph
Now that we know how shaders work and the existing shaders in URP, we have a basic notion

of when it is necessary to create a custom shader and when it is not necessary. In case you really

need to create one, this section will cover the basics of effects creation with Shader Graph, a tool

to create effects using a visual node-based editor. This is an easy tool to use when you are not

used to coding.

In this section, we will discuss the following concepts of the Shader Graph:

• Creating our first Shader Graph

• Using textures

• Combining textures

• Applying transparency

• Creating Vertex effects

Let’s start by seeing how we can create and use a Shader Graph.

Creating our first Shader Graph
Shader Graph is a tool that allows us to create custom effects using a node-based system. An

effect in the Shader Graph can look like in the following screenshot:

Chapter 10 311

Figure 10.15: Shader Graph with nodes to create a custom effect

We will discuss later what those nodes do and we will be creating an example effect step by step,

but in the screenshot, you can see how the author created and connected several nodes—the

interconnected boxes—with each one executing a specific process to achieve the effect. The idea

of creating effects with Shader Graph is to learn which specific nodes you need and how to con-

nect them properly. This is similar to the way we code the gameplay of the game, but this Shader

Graph is adapted and simplified just for effect purposes.

To create and edit our first Shader Graph, do the following:

1. In the Project window, click the + icon and find the Shader Graph | URP | Lit Shader Graph

option. This will create a Shader Graph using the PBR mode, meaning that this shader

will support lighting effects (unlike Unlit Graphs):

Figure 10.16: PBR Shader Graph creation

Materials and Effects with URP and Shader Graph312

2. Name it Water. If you want the opportunity to rename the asset, remember that you can

select the asset, right-click, and select Rename:

Figure 10.17: Shader Graph Asset

3. Create a new Material called WaterMaterial and set Shader to Shader Graphs/Water.

If for some reason Unity doesn’t allow you to do that, try right-clicking on the Water

Graph and clicking Reimport. As you can see, the created Shader Graph now appears as

a shader in the Material:

Figure 10.18: Setting a Shader Graph as a Material Shader

4. Create a plane with the GameObject | 3D Object | Plane option.

5. Drag the Material to the Plane to apply it.

Now, you have created your first custom shader and applied it to a Material. So far, it doesn’t

look interesting at all—it’s just a gray effect—but now it’s time to edit the graph to unlock its

full potential. As the name of the graph suggests, we will be creating a water effect in this chapter

to illustrate several nodes of the Shader Graph toolset and how to connect them, so let’s start by

discussing the Master node.

Chapter 10 313

When you open the graph by double-clicking the shader asset, you will see the following:

Figure 10.19: Master node with all of the properties needed to calculate object appearance

Materials and Effects with URP and Shader Graph314

All nodes will have input pins, the data needed to work, and output pins, the results of its process.

As an example, in a sum operation, we will have two input numbers and an output number, the

result of the sum. In this case, you can see that the Master node only contains inputs, and that’s

because all data that enters the Master node will be used by Unity to calculate the rendering and

lighting of the object, things such as the desired object color or texture (Base Color input pin),

how smooth it is (Smoothness input pin), or how much metal it contains (Metallic input pin),

properties that will affect how the lighting will be applied to the object.

You can see that the Master node is split between a Vertex section and a Fragment section. The

first is capable of changing the mesh of the object we are modifying to deform it, animate it, etc.,

while the latter will change how it will look, which textures to use, how it will be illuminated, etc.

Let’s start exploring how we can change that data in the Fragment section by doing the following:

1. Double-click the Shader Graph asset in Project View to open its editor.

2. Click in the gray rectangle at the left of the Base Color input pin:

Figure 10.20: Base Color node input pin

3. In the color picker, select a light blue color, like water. Select the bluish part of the circle

and then a shade of that color in the middle rectangle:

Figure 10.21: Color picker

Chapter 10 315

4. Set Smoothness to 0.9, which will make the object almost completely smooth (90% of the

total smoothness possible). This will make our water reflect the sky almost completely:

Figure 10.22: Smoothness PBR Master node input pin

5. Click the Save Asset button at the top left of the window:

Figure 10.23: Shader Graph saving options

6. Go back to the Scene View and check the plane is light blue with the sun reflected on it:

Figure 10.24: Initial Shader Graph results

As you can see, the behavior of the shader varies according to the properties you set in the Mas-

ter node, but so far, doing this is no different than creating an Unlit Shader and setting up its

properties; the real power of Shader Graph is when you use nodes that do specific calculations as

inputs of the Master node. We will start looking at the texturing nodes, which allow us to apply

Textures to our model.

Materials and Effects with URP and Shader Graph316

Using Textures
The idea of using Textures is to have an image applied to the model in a way that we can paint

different parts of the models with different colors. Remember that the model has a UV map,

which allows Unity to know which part of the Texture will be applied to which part of the model:

Figure 10.25: On the left, a face Texture; on the right, the same texture applied to a face mesh

We have several nodes to do this task, one of them being Sample Texture 2D, a node that has two

main inputs. First, it asks us for the texture to sample or apply to the model, and then for the UV.

You can see it in the following screenshot:

Figure 10.26: Sample Texture 2D node

Chapter 10 317

As you can see, the default value of the Texture input node is None, so there’s no texture by default,

and we need to manually specify that. For UV, the default value is UV0, meaning that, by default,

the node will use the main UV channel of the model, and yes, a model can have several UVs set.

For now, we will stick with the main one. If you are not sure what that means, UV0 is the safest

option. Let’s try this node, doing the following:

1. Download and import a tileable water texture from the internet:

Figure 10.27: Water tileable Texture

2. Select the Texture and be sure that the Wrap Mode property of the Texture is set to Repeat,

which will allow us to repeat the Texture as we did in the terrain because the idea is to

use this shader to cover large water areas:

Figure 10.28: Texture Repeat mode

3. In the Water Shader Graph, right-click in an empty area of the Shader Graph and select

Create Node:

Figure 10.29: Shader Graph Create Node option

Materials and Effects with URP and Shader Graph318

4. In the Search box, write Sample texture and all of the sampler nodes will show up.

Double-click Sample Texture 2D. If for some reason you can’t double-click the option,

right-click on it first and then try again. There is a known bug on this tool and this is the

workaround:

Figure 10.30: Sample texture node search

5. Click in the circle to the left of the Texture input pin of the Sample Texture 2D node. It

will allow us to pick a Texture to sample—just select the water one. You can see that the

Texture can be previewed in the bottom part of the node:

Figure 10.31: Sample Texture node with a Texture in its input pin

Chapter 10 319

6. Drag the output pin RGBA from the Sample Texture 2D node to the Base Color input pin

of the Master node:

Figure 10.32: Connecting the results of a Texture sampling with the Base Color pin
of the Master node

7. Click the Save Asset button at the top-left part of the Shader Graph editor and see the

changes in the Scene view:

Figure 10.33: Results of applying a Texture in our Shader Graph

As you can see, the Texture is properly applied to the model, but if you take into account that the

default plane has a size of 10x10 meters, the ripples of the water seem too big. So, let’s tile the

Texture!

To do this, we need to change the UVs of the model, making them bigger. You may imagine that

bigger UVs mean the Texture should also get bigger, but take into account that we are not making

the object bigger; we are just modifying the UV.

Materials and Effects with URP and Shader Graph320

In the same object area, we will display more of the texture area, meaning that in the bigger

texture sample area (achieved by bigger UVs), repetitions of the texture may appear. To do so,

follow the next steps:

1. Right-click in any empty space and click New Node to search for the UV node:

Figure 10.34: Searching for the UV node

2. Using the same method, create a Multiply node.

3. Drag the Out pin of the UV node to the A pin of the Multiply node to connect them.

4. Set the B pin input value of Multiply to 4,4,4,4:

Figure 10.35: Multiplying the UVs by 4

Chapter 10 321

5. Drag the Out pin of the Multiply node to the UV of the Sample Texture 2D node to con-

nect them:

Figure 10.36: Using the multiplied UVs to sample the Texture

6. If you save the graph and go back to the Scene view, you can see that now the ripples are

smaller, because we have tiled the UVs of our model. You can also see that in the preview

of the Sampler Texture 2D node:

Figure 10.37: Results of the model’s UV multiplication

Materials and Effects with URP and Shader Graph322

Another interesting effect we can do now is to apply an offset to the Texture to move it. The idea

is that even if the plane is not actually moving, we will simulate the flow of the water through it,

moving just the Texture. Remember, the responsibility of determining the part of the Texture to

apply to each part of the model belongs to the UV, so if we add values to the UV coordinates, we

will be moving them, generating a Texture sliding effect. To do so, let’s do the following:

1. Create an Add node to the right of the UV node.

2. Connect the Out pin of the UV to the A pin of the Add node:

Figure 10.38: Adding values to the UVs

3. Create a Time node at the left of the Add node.

4. Connect the Time node to the B pin of the Add node:

Figure 10.39: Adding time to the UVs

Chapter 10 323

5. Connect the Out pin of the Add node to the A input pin of the Multiply node:

Figure 10.40: Added and multiplied UVs as an input of the sample Texture

6. Save and see the water moving in the Scene view. If you don’t see it moving, click the

layers icon in the top bar of the scene and check Always Refresh:

Figure 10.41: Enabling Always Refresh to preview the effect

Materials and Effects with URP and Shader Graph324

7. If you feel the water is moving too fast, try using the multiplication node to make the time

a smaller value. I recommend you try it by yourself before looking at the next screenshot,

which has the answer:

Figure 10.42: Multiplication of time to move the texture slower

8. If you feel the graph is too big, try to hide some of the node previews by clicking on the up

(^) arrow that appears on the preview when you move the mouse over it:

Figure 10.43: Hiding the preview from the graph nodes

9. Also, you can hide unused pins by selecting the node and clicking the arrow at its top right:

Figure 10.44: Hiding unused pins from the graph nodes

Chapter 10 325

So, to recap, first we added the time to the UV to move it and then multiplied the result of the

moved UV to make it bigger to tile the Texture. It is worth mentioning that there’s a Tiling and

Offset node that does all of this process for us, but I wanted to show you how a simple multipli-

cation to scale the UV and an add operation to move it generates a nice effect; you can’t imagine

all of the possible effects you can achieve with other simple mathematical nodes! Actually, let’s

explore other usages of mathematical nodes to combine Textures in the next section.

Combining Textures
Even though we have used nodes, we haven’t created anything that can’t be created using regular

shaders, but that’s about to change. So far, we can see the water moving but it stills look static,

and that’s because the ripples are always the same. We have several techniques to generate ripples,

and the simplest one would be to combine two water Textures moving in different directions

to mix their ripples, and actually, we can simply use the same Texture just flipped to save some

memory. To combine the Textures, we will sum them and then divide them by 2, so basically, we

are calculating the average of the textures! Let’s do that by doing the following:

1. Select all of the nodes between Time and Sampler 2D (including them) creating a selection

rectangle by clicking in any empty space in the graph, holding and dragging the click, and

then releasing when all target nodes are covered:

Figure 10.45: Selecting several nodes

2. Right-click and select Copy, and then again right-click and select Paste, or use the classic

Ctrl + C, Ctrl + V commands (Command + C, Command + V on Mac).

Materials and Effects with URP and Shader Graph326

3. Move the copied nodes below the original ones:

Figure 10.46: Duplication of nodes

4. For the copied nodes, set the B pin of the Multiply node connected to Sample Texture

2D to -4,-4,-4,-4. You can see that that flipped the texture.

5. Also, set the B pin of the Multiply node connected to the Time node to -0.1:

Figure 10.47: Multiplication of values

Chapter 10 327

6. Create an Add node at the right of both Sampler Texture 2D nodes and connect the out-

puts of those nodes to the A and B input pins of the Add node:

Figure 10.48: Adding two Textures

7. You can see that the resulting combination is too bright because we have summed up

the intensity of both textures, so let’s fix that by multiplying the Out of the Add node by

0.5,0.5,0.5,0.5, which will divide each resulting color channel by 2, averaging the color.

You can also experiment with what happens when you set different values to each channel

if you want, but for our purposes, 0.5 is the proper value for each channel:

Figure 10.49: Dividing the sum of two Textures to get the average

Materials and Effects with URP and Shader Graph328

8. Connect the Out pin of the Multiply node to the Base Color pin of the Master node to

apply all of those calculations to the color of the object.

9. Save the Asset and see the results in the Scene view:

Figure 10.50: Results of texture blending

You can keep adding nodes to make the effect more diverse, such as using Sine nodes (which will

execute the trigonometry sine operation) to apply non-linear movements and so on, but I will

let you learn that by experimenting with this by yourself. For now, we will stop here. As always,

this topic deserves a full book, and the intention of this chapter is to give you a small taste of this

powerful Unity tool. I recommend you look for other Shader Graph examples on the internet to

learn other usages of the same nodes and, of course, new nodes. One thing to consider here is that

everything we just did is basically applied to the Fragment Shader stage of the Shader Pipeline we

discussed earlier. Now, let’s use the Blending Shader stage to apply some transparency to the water.

Applying transparency
Before declaring our effect finished, a little addition we can do is to make the water a little bit

transparent. Remember that the Shader Pipeline has a blending stage, which has the responsi-

bility of blending each pixel of our model into the image being rendered in this frame. The idea

is to make our Shader Graph modify that stage to apply Alpha Blending, a blending mode that

combines our model and the previously rendered models based on the Alpha value of our model.

Chapter 10 329

To get that effect, take the following steps:

1. Look for the Graph Inspector window floating around. If you don’t see it, click the Graph

Inspector button at the top-right part of the Shader Graph editor.

2. Click the Graph Settings tab.

3. Set the Surface Type property to Transparent.

4. Set the Blending Mode property to Alpha if it isn’t already at that value:

Figure 10.51: Graph Inspector Transparency settings

5. Set the Alpha input pin of the Master to 0.5.

Figure 10.52: Setting Alpha of the Master node

Materials and Effects with URP and Shader Graph330

6. Save the Shader Graph and see the transparency being applied in the Scene view. If you

can’t see the effect, just put a cube into the water to make the effect more evident:

Figure 10.53: Shadows from the water being applied to a cube

7. You can see the shadows that the water is casting on our cube because Unity doesn’t know

the object is transparent and hence casts shadows. Click on the water plane and look for

the Mesh Renderer component in the Inspector. If you don’t see the shadow, click the

lightbulb at the top of the Scene view.

Figure 10.54: Enabling lights in the Scene View

8. In the Lighting section, set Cast Shadows to Off; this will disable shadow casting from

the plane on the parts of the cube that are underwater:

Figure 10.55: Disabling shadow casting

Chapter 10 331

Adding transparency is a simple process but it has its caveats, like the shadow problem, and in

more complex scenarios, it can have other problems, like increasing overdraw, meaning the same

pixel needs to be drawn several times (the pixel belonging to the transparent object, and one of

the objects behind). I would suggest you avoid using transparency unless it is necessary. Actually,

our water can live without transparency, especially when we apply this water to the river basin

around the base because we don’t need to see the part under the water, but the idea is for you to

know all of your options. In the next screenshot, you can see how we have put a giant plane with

this effect below our base, big enough to cover the entire basin:

Figure 10.56: Using our water in the main scene

Now that we have modified how the object looks through the Fragment node section, let’s discuss

how to use the Vertex section to apply a mesh animation to our water.

Creating Vertex Effects
So far, we have applied water textures to our water, but it’s still a flat plane. We can go further

than that and make the ripples not only via textures but also by animating the mesh. To do so,

we will apply the noise texture we used at the beginning of the chapter in the shader, but instead

of using it as another color to add to the Base Color of the shader, we will instead use it to offset

the Y position of the vertexes of our plane.

Materials and Effects with URP and Shader Graph332

Due to the chaotic nature of the noise texture, the idea is that we will apply a vertical offset to

different parts of the model, so we can emulate the ripples:

Figure 10.57: Default plane mesh subdivided into a grid of 10x10 with no offset

To accomplish something like this, you can modify the Vertex section of your shader to look like

the following:

Figure 10.58: Ripples vertex effect

Chapter 10 333

In the graph, you can see how we are creating a Vector whose y axis depends on the noise Tex-

ture we downloaded at the beginning of the chapter. The idea behind that is to create a Vector

pointing upward whose length is proportional to the grayscale factor of the texture; the whiter

the pixel of the texture, the longer the offset. This texture has an irregular yet smooth pattern so

it can emulate the behavior of the tide.

Then we multiply the result by 0.3 to reduce the height of the offset to add, and then we add the

result to the Position node.See that the Space property of the Position node is set to Object mode.

We need that mode to work with the Vertex section of the Shader Graph (we discussed World and

Local spaces before in Chapter 2, Editing Scenes and GameObjects but you can also search Object

vs World Space on the internet for more info about this). Finally, the result is connected to the

Position node of the Vertex section.

If you save, you will see something like the following image:

Figure 10.59: Ripples vertex effect applied

Please notice that here we used Sample Texture 2D LOD instead of Sample Texture

2D; the latter does not work in the Vertex section, so keep that in mind.

Materials and Effects with URP and Shader Graph334

Of course, in this case, the ripples are static because we didn’t add any time offset to the UV as

we did before. In the following screenshot, you can see how to add that, but before looking at it

I recommend you try to resolve it first by yourself as a personal challenge:

Figure 10.60: Animated ripples vertex effect graph

As you can see, we are again taking the original UV and adding the time multiplied by any factor

so it will slowly move, the same as we did previously with our water texture. You can keep play-

ing around with this, changing how this looks with different textures, multiplying the offset to

increase or reduce the height of the ripples, applying interesting math functions like sine, and

so much more, but for now, let’s finish with this.

Summary
In this chapter, we discussed how a shader works in the GPU and how to create our first simple

shader to achieve a nice water effect. Working with shaders is a complex and interesting job, and

in a team, there is usually one or more people in charge of creating all of these effects, in a position

called Technical Artist; so, as you can see, this topic can expand up to a whole career. Remember,

the intention of this book is to give you a small taste of all the possible roles you can take in the

industry, so if you really liked this role, I suggest you start reading shader-exclusive books. You

have a long but super interesting road in front of you.

Enough shaders for now! In the next chapter, we will look at how to improve our graphics and

create visual effects with particle systems!

11
Visual Effects with Particle
Systems and Visual Effect
Graph

In this chapter, we will continue learning about visual effects for our game. We will be discussing

particle systems, a way to simulate fire, waterfalls, smoke, and all kinds of fluids. Also, we will

see the two Unity particle systems to create these kinds of effects, Shuriken, and Visual Effect

Graph, the latter being more powerful than the first but requiring more hardware.

In this chapter, we will cover the following particle system topics:

• Introduction to Shuriken particle systems

• Creating fluid simulations

• Creating complex simulations with Visual Effect Graph

Introduction to Shuriken particle systems
All graphics and effects we have created so far use static meshes—3D models that can’t be skewed,

bent, or deformed in any way. Fluids such as fire and smoke clearly can’t be represented using

this kind of mesh, but actually, we can simulate these effects with a combination of static meshes,

and this is where particle systems are useful.

Particle systems are objects that emit and animate lots of particles or billboards, which are simple

quad meshes that face the camera. Each particle is a static mesh, but rendering, animating, and

combining lots of them can generate the illusion of a fluid.

Visual Effects with Particle Systems and Visual Effect Graph336

In Figure 11.1 you can see a smoke effect using particle systems on the left, and on the right, the

Wireframe view of the same particles. There you can see the quads that create the illusion of

smoke, which is done by applying a smoke texture to each of the particles and animating them,

so they spawn at the bottom and move up in random directions:

Figure 11.1: On the left side, a smoke particle system; on the right side, the wireframe of the
same system

In this section, we will cover the following topics related to particles:

• Creating a basic particle system with Shuriken

• Using advanced modules

Let’s start by discussing how to create our very first particle system using Shuriken.

Creating a basic particle system with Shuriken
To illustrate the creation of a particle system, let’s create an explosion effect. The idea is to spawn

lots of particles at once and spread them in all directions. Let’s start with creating the Shuriken

particle system and configuring the basic settings it provides to change its default behavior. To

do so, follow these steps:

1. Select the GameObject | Effects | Particle System option:

Chapter 11 337

Figure 11.2: Particle System button

2. You should see the effect in the following screenshot. The default behavior is a column of

particles going up, like the smoke effect shown previously. Let’s change that:

Figure 11.3: Default particle system appearance

3. Click the created object in the scene and look at the Inspector.

4. Open the Shape section by clicking on the title. Here you will be able to specify the particle

emitter shape from where the particles are going to be spawned.

5. Change the Shape property to Sphere. Now the particles should move in all possible

directions instead of following the default cone:

Figure 11.4: Shape properties

Visual Effects with Particle Systems and Visual Effect Graph338

6. In the particle system module (usually known as Main) set Start Speed to 10. This will

make the particles move faster.

7. In the same module, set Start Lifetime to 0.5. This specifies how long a particle will live.

In this case, we have given a lifetime of half a second. In combination with the speed (10

meters per second), this makes the particles disappear after moving 5 meters:

Figure 11.5: Main Particle System module

8. Open the Emission module and set Rate over Time to 0. This property specifies how

many particles will be emitted per second, but for an explosion, we actually need a burst

of particles, so we won’t emit particles constantly over time in this case.

9. In the Bursts list, click the + button at the bottom, and in the created item in the list, set

the count column to 100:

Figure 11.6: Emission module

Chapter 11 339

10. In the Main module (the one titled Particle System) set Duration to 1 and uncheck Loop-

ing. In our case, the explosion won’t repeat constantly; we just need one explosion:

Figure 11.7: Looping checkbox

11. Now that the particle isn’t looping, you need to manually hit the Play button that is

shown in the Particle Effect window in the bottom-right part of the Scene view to see

the system. If you don’t see that window, remember to first select the GameObject with

the Particle System in the Hierarchy.

Figure 11.8: Particle system playback controls

12. Set Stop Action to Destroy. This will destroy the object when the Duration time has

passed. This will just work when you are running the game, so you can safely use this

configuration while editing your scene:

Figure 11.9: Stop Action set to Destroy

13. Set the Start Size of the Main module to 3. This will make the particles bigger so they

seem denser:

Figure 11.10: Particle system Start Size

Visual Effects with Particle Systems and Visual Effect Graph340

14. Click on the down-pointing arrow at the right of the Start Rotation property of the Main

module and select Random Between Two Constants.

15. Set the Start Rotation to 0 and 360 in the two input values that appeared after step 14.

This allows us to give the particles a random rotation when they spawn to make them

look slightly different from each other:

Figure 11.11: Random Start Rotation

16. Now the particles behave as expected, but they don’t look as expected. Let’s change that.

Create a new material by clicking on the + icon in the Project view and selecting Material.

Call it Explosion.

17. Set its shader to Universal Render Pipeline/Particles/Unlit. This is a special shader that

is used to apply a texture to the Shuriken particle system:

Figure 11.12: Particle system material shader

18. Download a smoke particle texture from the internet or the Asset Store. In this case, it is

important to download one with a black background; ignore the others:

Figure 11.13: Smoke particle texture

Chapter 11 341

19. Set this texture as the Base Map of the material.

20. Set the Surface Type to Transparent and the Blending Mode to Additive. Doing this

will make the particles blend with each other, instead of being drawn on each other, to

simulate a big mass of smoke instead of individual smoke puffs. We use Additive mode

because our texture has a black background and because we want to create a lighting

effect (the explosion will brighten the scene):

Figure 11.14: Surface options for particles

21. Drag your material to the Material property of the Renderer module:

Figure 11.15: Particle material settings

22. Now your system should look like the following figure:

Figure 11.16: Result of the previous settings

Visual Effects with Particle Systems and Visual Effect Graph342

With those steps, we have changed how the particles or billboards will spawn (using the Emis-

sion module), in which direction they will move (using the Shape module), how fast they will

move, how long they will last, how big they will be (using the Main module), and what they will

look like (using the Renderer module). Creating particle systems is a simple case of properly

configuring their different settings. Of course, doing it properly is an art on its own; it requires

creativity and knowledge of how to use all the settings and configurations they provide. So, to

increase our skillset, let’s discuss some advanced modules.

Using advanced modules
Our system looks nice, but we can improve it a lot, so let’s enable some new modules to increase

its quality:

1. Check the checkbox on the left of Color over Lifetime to enable it:

Figure 11.17: Enabling the Color over Lifetime module

2. Open the module by clicking on the title, and click the white bar on the right of the Color

property. This will open the gradient editor.

3. Click slightly to the right of the top-left white marker in the bar to create a new marker.

Also, click slightly to the left of the top-right white marker to create the fourth marker.

These markers will allow us to specify the transparency of the particles during their life:

Figure 11.18: Color over Lifetime gradient editor

4. If you created unwanted markers, just drag them outside the window to remove them.

5. Click on the top-left marker (not the one we created, the one that was already there) and

set the Alpha slider at the bottom to 0. Do the same with the top-right marker, as shown

in the following screenshot. Now you should see the particles fading away instead of

popping out of existence when the explosion is finishing:

Chapter 11 343

Figure 11.19: Fade-in and fade-out gradient

6. Enable the Limit Velocity over Lifetime module by clicking on its checkbox.

7. Set the Dampen setting to 0.1. This will make the particles slowly stop instead of con-

tinuing to move:

Figure 11.20: Dampen the velocity to make the particles stop

8. Enable Rotation over Lifetime and set the Angular Velocity between -90 and 90. Remem-

ber that you should set the value in Random Between Two Constants by clicking on the

down-pointing arrow to the right of the property. Now the particles should rotate during

their lives to simulate more motion:

Figure 11.21: Random rotation velocity

Some of these effects will be very subtle given the short Lifetime we set in the Main Module

when we just created the particle. Feel free to increase the Lifetime value to see those effects in

more detail, but consider that this could lead to an excessive number of particles if you spawn

them frequently, reducing performance. Just be wary about how they impact your performance

when tweaking those values.

Visual Effects with Particle Systems and Visual Effect Graph344

As you can see, there are lots of extra modules that can be enabled and disabled to add layers of

behavior on top of the existing ones, so again, use them creatively to create all kinds of effects.

Remember that you can create Prefabs of these systems to replicate them all over your scene. I

also recommend searching for and downloading particle effects from the Asset Store to see how

other people have used the same system to create amazing effects. Seeing a variety of different

systems is the best way to learn how to create them, and that is what we are going to do in the

next section: create more systems!

Creating fluid simulations
As we said, the best way to learn how to create particle systems is to keep looking for already-cre-

ated particle systems and explore how people have used the various system settings to create

completely different simulations.

In this section, we will learn how to create the following effects using particle systems:

• A waterfall effect

• A bonfire effect

Let’s start with the simplest one, the waterfall effect.

Creating a waterfall effect
In order to do this, follow these steps:

1. Create a new particle system (GameObject | Effects | Particle System).

2. Set Shape to Edge and its Radius to 5 in the Shape module. This will make the particles

spawn along a line of emission:

Figure 11.22: Edge shape

3. Set the Rate over Lifetime of the Emission module to 50.

Chapter 11 345

4. Set the Start Size of the Main module to 3 and the Start Lifetime to 3:

Figure 11.23: Main module settings

5. Set the Gravity Modifier of the Main module to 0.5. This will make the particles fall down:

Figure 11.24: Gravity Modifier in the Main module

6. Use the same Explosion material we created previously for this system:

Figure 11.25: Explosion particle material

7. Enable Color Over Lifetime and open the Gradient editor.

8. Click the bottom-right marker, and this time you should see a color picker instead of an

alpha slider. The top markers allow you to change the transparency over time, while the

bottom ones change the color of the particles over time. Set a light blue color in this marker:

Figure 11.26: White to light blue gradient

Visual Effects with Particle Systems and Visual Effect Graph346

As a challenge, I suggest you add a little particle system where this one ends to create some

water splashes, simulating the water colliding with a lake at the bottom. Now we can add this

particle system to one of the hills of our scene to decorate it, like in the following screenshot. I

have adjusted the system a little bit to look better in this scenario. I challenge you to tweak it by

yourself to make it look like this:

Figure 11.27: The waterfall particle system being applied to our current scene

Now, let’s create another effect: a bonfire.

Creating a bonfire effect
In order to create a bonfire, do the following:

1. Create a particle system like we did in the section Creating a basic particle system with

Shuriken, in GameObject | Effects | Particle System.

2. Look for a Fire Particle Texture Sheet texture on the internet or the Asset Store. This kind

of texture should look like a grid of different flame textures. The idea is to apply a flame

animation to our particles swapping all those mini textures:

Chapter 11 347

Figure 11.28: Particles texture sprite sheet

3. Create a particle material that uses the Universal Render Pipeline/Particles/Unlit shader.

4. Set the flames sprite sheet texture as the Base Map.

5. Set the color at the right of the Base Map to white.

6. Set this material as the particle material. Remember to set Surface Type to Transparent

and Blending Mode to Additive:

Figure 11.29: A material with a particle sprite sheet

Visual Effects with Particle Systems and Visual Effect Graph348

7. Enable the Texture Sheet Animation module and set the Tiles property according to your

fire sheet. In my case, I have a grid of 4x4 sprites, so I put 4 in X and 4 in Y. After this, you

should see the particles swapping textures:

Figure 11.30: Enabling Texture Sheet Animation

8. Set Start Speed to 0 and Start Size to 1.5 in the Main module.

9. Set Radius to 0.5 in Shape.

10. Create a second particle system and make it a child of the fire system:

Figure 11.31: Parenting particle systems

11. Apply the Explosion material from the explosion example.

12. Set Angle to 0 and Radius to 0.5 in the Shape module.

The system should look like this:

Figure 11.32: Result of combining fire and smoke particle systems

Chapter 11 349

As you can see, you can combine several particle systems to create a single effect. Take care when

doing this because it’s easy to emit too many particles and affect the game’s performance. Parti-

cles are not cheap and may cause a reduction in the game’s FPS (Frames Per Second) if you are

not cautious with them.

So far, we have explored one of the Unity systems that you can use to create these kinds of effects,

and while this system is enough for most situations, Unity recently released a new one that can

generate more complex effects, called Visual Effect Graph. Let’s see how to use it and see how

it differs from Shuriken.

Creating complex simulations with Visual Effect
Graph
The particle system we have used so far is called Shuriken, and it handles all calculations in the

CPU. This has both pros and cons. A pro is that it can run on all possible devices that Unity supports,

regardless of their capabilities (all of them have CPUs), but a con is that we can exceed CPU capa-

bilities easily if we are not cautious with the number of particles we emit. Modern games require

more complex particle systems to generate believable effects, and this kind of CPU-based particle

system solution has started to reach its limit. This is where the Visual Effect Graph comes in:

Figure 11.33: On the left, a massive particle system, and on the right, an example of a Visual
Effect Graph

Visual Effects with Particle Systems and Visual Effect Graph350

Visual Effect Graph is a GPU-based particle system solution, meaning that the system is executed

in the video card instead of the CPU. That’s because video cards are far more efficient at executing

lots and lots of little simulations, like the ones each particle of a system needs, so we can reach

far higher orders of magnitude in the number of particles with the GPU than we can with the

CPU. The con here is that we need a fairly modern GPU that has compute shader capabilities to

support this system, so we will exclude certain target platforms using this system (forget about

most mobile phones), so use it if your target platform supports it (mid- to high-end PCs, consoles,

and some high-end phones).

In this section, we will discuss the following topics of Visual Effect Graph:

• Installing Visual Effect Graph

• Creating and analyzing a Visual Effect Graph

• Creating a rain effect

Let’s start by seeing how we can add support for Visual Effect Graph in our project.

Installing Visual Effect Graph
So far, we have used lots of Unity features that were already installed in our project, but Unity

can be extended with a myriad of plugins, both official and third-party. Visual Effect Graph is

one of those features that needs to be independently installed if you are using Universal Render

Pipeline (URP). We can do that using the Package Manager, a Unity window dedicated to man-

aging official Unity plugins.

Something to think about when you are installing those packages is that each package or plugin

has its own version, independent of the Unity version. That means that you can have Unity 2022.1

installed, but Visual Effect Graph 13.1.8 or whatever version you want, and you can actually update

the package to a newer version without upgrading Unity. This is important because some versions

of these packages require a minimum version of Unity—for example, Visual Effect Graph 13.1.8

requires Unity 2022.1 as a minimum. Moreover, some packages depend on other packages and

specific versions of those packages, so we need to ensure we have the correct versions of every

package to ensure compatibility. To be clear, the dependencies of a package are installed auto-

matically, but sometimes we can have them installed separately, so in that scenario, we need to

check the required version. It sounds complicated, but it is simpler than it sounds.

Chapter 11 351

At the time of writing this book, in order to get Visual Effect Graph working properly we need

version 13.1.8, and also we need the same version of Universal RP. Yes, Universal RP is another

feature you can install using the Package Manager, but as we created the project using the Uni-

versal RP template, it was already installed for us with the proper version. With that in mind, let’s

install the Visual Effect Graph as follows:

1. In the top menu of Unity, go to Window | Package Manager:

Figure 11.34: Package Manager location

2. Remember to be sure the Packages dropdown is in Unity Registry mode, to see the Unity

official packages list:

Figure 11.35: Package Manager Unity Registry mode

3. In the left column, locate Universal RP and check whether it says 13.1.8 or higher to the

right. If it does, jump to step 6. Remember, though, that a higher version may look different

or have different steps for use than the ones displayed in this chapter.

4. If you don’t have version 13.1.8 or higher, click on the right-pointing arrow at the left to

display a list of all possible versions to install. Locate 13.1.8 and click it. In my case it says

Currently installed as I have that version already installed in the project, and there’s no

other one available for Unity 2022:

Figure 11.36: Package version selector

Visual Effects with Particle Systems and Visual Effect Graph352

5. Click on the Update to 13.1.8 button in the bottom-right part of the window and wait for

the package to update.

6. Look for the Visual Effect Graph package on the left side of the window. As you did with

Universal RP, make sure you select version 11.0.0 or the closest higher available:

Figure 11.37: Visual Effect Graph package

7. Click the Install button at the bottom-right of the window and wait for the package to

install. Sometimes it is recommended to restart Unity after installing packages, so save

your changes and restart Unity.

Now that we have installed Visual Effect Graph, let’s create our first particle system using it.

Creating and analyzing a Visual Effect Graph
The method to create a particle system using Visual Effect Graph is similar to a regular Particle

System. We will chain and configure modules as parts of the behavior of the particles, each module

adding some specific behavior, but the way we do it is very different than with Shuriken. First,

we need to create a Visual Effect Graph, an asset that will contain all the modules and configu-

rations, and then make a GameObject that will execute the Graph asset to spawn particles. Let’s

do that with the following steps:

1. In the Project window, click on the + button and look for Visual Effects | Visual Effect

Graph:

Figure 11.38: Visual Effect Graph

2. Create an Empty GameObject using the GameObject | Create Empty option:

Figure 11.39: Empty GameObject creation

Chapter 11 353

3. Select the created object and look at the Inspector.

4. Using the Add Component search bar, look for the Visual Effect component and click on

it to add it to the object:

Figure 11.40: Adding a component to the Visual Effect Graph

5. Drag the Visual Effect asset we created to the Asset Template property of the Visual

Effect component in our GameObject:

Figure 11.41: Visual Effect using the previously created Visual Effect asset

6. You should see clock particles being emitted from our object, which is the default behavior

included in a new Visual Effect asset, meaning it’s being executed correctly:

Figure 11.42: Default Visual Effect asset results

Visual Effects with Particle Systems and Visual Effect Graph354

Now that we have a base effect, let’s create something that requires a lot of particles, such as

dense rain. Before doing so, we will explore some core concepts of Visual Effect Graph. If you

double-click the Visual Effect asset, you will see the following editor:

Figure 11.43: Visual Effect Graph editor window

This window is composed of several interconnected nodes, generating a flow of actions to be

executed. As with the Shader Graph, you can navigate this window by keeping the Alt key (Option

on Mac) pressed and dragging with the mouse the empty areas of the graph. At first, it seems

similar to the Shader Graph, but it works a little bit differently, so let’s study each section of the

default graph.

Chapter 11 355

The first area to explore is the dotted one that contains three nodes. This is what Unity calls a

System. A System is a set of nodes that defines how a particle will behave, and you can have as

many as you want, which is the equivalent of having several particle system objects. Each System

is composed of Contexts, the nodes inside the dotted area, and in this case, we have Initialize

Particle, Update Particle, and Output Particle Quad. Each Context represents a different stage

of the particle system logic flow, so let’s define what each Context in our graph does:

• Initialize Particle: This defines the initial data of each emitted particle, such as position,

color, speed, and size. It is similar to the Start properties in the Main module of the particle

system we saw at the beginning of this chapter. The logic in this node will only execute

when a new particle is emitted.

• Update Particle: Here, we can apply modifications to the data of the living particles. We

can change particle data such as the current velocity or particle size of all the frames. This

is similar to the Overtime nodes of the Shuriken particle systems.

• Output Particle Quad: This Context will be executed when the particle needs to be ren-

dered. It will read the particle data to see where to render, how to render, which texture

and color to use, and the different visual settings. This is similar to the renderer module

of the previous particle system.

Inside each Context, apart from some base configurations, we can add Blocks. Each Block is an

action that will be executed in the Context. We have actions that can be executed in any Context

and then some specific Context actions. As an example, we can use an Add Position Block in the

Initialize Particle Context to move the initial particle position, but if we use the same Block in

the Update Particle Context, it will move the particle constantly. So basically, Contexts are dif-

ferent situations that happen in the life of the particle, and Blocks are actions that are executed

in those situations:

Figure 11.44: A Set Velocity Random Block inside the Initialize Particle Context. This sets the
initial velocity of a particle

Visual Effects with Particle Systems and Visual Effect Graph356

Also, we can have Standalone Contexts, Contexts outside Systems, such as Spawn. This Context

is responsible for telling the System that a new particle needs to be created. We can add Blocks

to specify when the context will tell the system to create the particle, such as at a fixed rate over

time, bursts, and so on. The idea is that Spawn will create particles according to its Blocks, while

a System is responsible for initializing, updating, and rendering each of them, again, according

to the blocks we set up inside each one of those Contexts.

So, we can see that there are lots of similarities with Shuriken, but the way to create a system here

is quite different. Let’s reinforce this by creating a rain effect, which will require lots of particles—a

nice use case for Visual Effect Graph.

Creating a rain effect
In order to create this effect, do the following:

1. Set the Capacity property of the Initialize Particle Context to 10000:

Figure 11.45: Initialize Particle Context

2. Set the Rate of the Constant Spawn Rate of the Spawn context to 10000:

Figure 11.46: Constant Spawn Rate Block

Chapter 11 357

3. Set the A and B properties to 0, -50, and 0 and 0, -75, and 0 respectively in the Set Velocity

Random block in the Initialize Particle Context. This will set a random velocity pointing

downward for our particles:

Figure 11.47: Set Velocity Random Block

4. Right-click the Initialize Particle title, and select Create Block.

5. Search for the Set Position Random block and click on it:

Figure 11.48: Adding blocks

6. Set the A and B properties of the Set Position Random Block to -50, 0, and -50 and 50, 0,

and 50 respectively. This will define an initial area in which to randomly spawn the particle.

7. Click the arrow at the left of the Bounds property of the Initialize Particle Block to display

its properties, and set Center and Size to 0, -12.5, and 0 and 100, 25, and 100 respective-

ly. This will define the area where the particles should be visible. Particles can actually

move outside this area, but it is important to render the particles only in the areas we are

interested in them being visible.

Visual Effects with Particle Systems and Visual Effect Graph358

Figure 11.49: Configuring blocks

8. Select the GameObject that is executing the system, and in the bottom-right window in

the Scene view check the Show Bounds checkbox to see the previously defined bounds:

Search Frustum culling on the internet for more information about bounds.

Chapter 11 359

Figure 11.50: Visual Effect playback controls

9. If you don’t see the window at the bottom right, click the VE (Visual Effect) button at the

top-left side of the screen to display it. This button will be shown only if you have selected

the Rain visual effect GameObject in the Hierarchy:

Figure 11.51: Another way to display the Visual Effect playback controls

10. If you can’t see the changes being applied, click the Compile button in the top left of the

window, the one that looks like a paper bin beneath a downward-pointing arrow. Also,

you can save your changes using Ctrl + S (Command + S on Mac):

Figure 11.52: VFX asset saving controls

11. Set the object position to cover the whole base area. In my case, the position is 100, 37, and

100. Remember that you need to change the Position of the Transform component for this:

Figure 11.53: Setting a Transform position

Visual Effects with Particle Systems and Visual Effect Graph360

12. Set the A and B properties of the Set Lifetime Random Block in the Initialize Particle to

0.5. This will make the particles have a shorter life, ensuring that they are always inside

the bounds:

Figure 11.54: Set Lifetime Random Block

13. Change the Main Texture property of the Output Particle Quad Context to another tex-

ture. In this case, the previously downloaded smoke texture can work here, even though

it’s not water, because we will modify its appearance in a moment. Also, you can try to

download a water droplet texture if you want to:

Figure 11.55: VFX Graph Main Texture

14. Set Blend Mode of the Output Particle Quad Context to Additive:

Figure 11.56: Additive mode of VFX Graph

15. We need to stretch our particles a little bit to look like actual raindrops instead of falling

balls. Before accomplishing that, first we need to change the orientation of our particles,

so they don’t point at the camera all the time. In order to do this, right-click on the Orient

Block in the Output Particle Quad Context and select Delete (or press Delete on PC or

Command + Backspace on Mac):

Chapter 11 361

Figure 11.57: Deleting a block

16. We want to stretch our particles according to their velocity direction. Another preparation

step before actually doing that is to select the title of the Output Particle Quad context

and hit the space bar to look for a block to add. In this case, we need to search and add

the Orient Along Velocity block.

17. Add a Set Scale Block to the Initialize Particle Context and set the Scale property to 0.25,

1.5, and 0.25. This will stretch the particles to look like falling drops:

Figure 11.58: Set Scale Block

18. Click the Compile button in the top-left window again to see the changes. Your system

should look like this:

Visual Effects with Particle Systems and Visual Effect Graph362

Figure 11.59: Rain results

We have just modified lots of different properties of the Visual Effect Graph, but if you want to

have two instances of the same Visual Effect Graph, but with slight differences, I recommend you

look at the Blackboard feature, which will allow you to expose properties in the Inspector. For

example, you can make less dense rain on another scene, making the spawn rate lower, or change

the particle color to make acid rain, all using the same graph, but let’s keep things simple for now.

The Blackboard feature is also present in Shader Graph.

From here, you can experiment by adding and removing Blocks from the Contexts

as you wish, and again, I recommend you look for already-created Visual Effect

Graphs to find ideas for other systems. Actually, you can get ideas for Visual Effect

Graph by looking at effects made in Shuriken and using the analogous blocks. Also,

I recommend you search for the Visual Effect Graph documentation online or at:
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@13.1/

manual/index.html to learn more about this system. You can also access the doc-

umentation of any Unity Package by clicking the View Documentation button in

the Package Manager while the package is selected.

https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@13.1/
manual/index.html
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@13.1/
manual/index.html

Chapter 11 363

Figure 11.60: Package Manager documentation link

Now that we have learnt how to create different visual effects, let’s see how to use them via

scripting to achieve effects that react to what’s happening in the game.

Scripting Visual Effects
Visual feedback is the concept of using different VFX, such as particles and a VFX graph, to rein-

force what is happening. For example, say right now we are shooting our weapon, and we know

that this is happening because we can see the bullets. However, it doesn’t feel like a real shooting

effect, because a proper shooting effect should have a muzzle effect on the tip of our gun. Another

example would be the enemy dying—it just disappears with no animation! That doesn’t feel as

satisfying as it could be. We can instead add a little explosion (considering they are robots).

Let’s start making our enemies spawn an explosion when they die by doing the following:

1. Create an explosion effect or download one from the Asset Store. It shouldn’t loop and

it needs to be destroyed automatically when the explosion is over (ensure Looping is

unchecked and Stop Action is set to Destroy in the main module).

2. Some explosions in the Asset Store might use non-URP-compatible shaders. You can fix

them by using Window | Rendering | Render Pipeline Converter, as we saw in Chapter

4, Importing and Integrating Assets.

3. Manually upgrade the materials that didn’t upgrade automatically.

4. Add a script to the Enemy prefab called ExplosionOnDeath. This will be responsible for

spawning the particles Prefab when the enemy dies.

5. Add a field of the GameObject type called particlePrefab and drag the explosion Prefab

to it.

Visual Effects with Particle Systems and Visual Effect Graph364

6. Make the script access the Life component and subscribe to its onDeath event.

7. In the listener function, spawn the particle system in the same location:

Figure 11.61: The explosion spawner script

You may be expecting to add the explosion spawning to the Life component.

In that case, you are assuming that anything to do with life will spawn a

particle when dying, but consider scenarios where characters die with a

falling animation instead, or maybe an object that just despawns with no

effect whatsoever. If a certain behavior is not used in most scenarios, it is

better to code it in a separate optional script to allow us to mix and match

different components and get the exact behavior we want.

Chapter 11 365

The Visual Scripting version would look like this:

Figure 11.62: The explosion spawner visual script

As you can see, we are just using the same concepts we learned about in previous chapters but

combining them in new ways. This is what programming is all about.

Let’s continue with the muzzle effect, which will also be a particle system, but we will take an-

other approach this time:

1. If you don’t have one already, download a weapon model from the Asset Store. The char-

acter in the package we used in the book already comes with one, so we will use that one.

2. If it’s not already in your character, instantiate the weapon so that it is the parent of the

hand of the player. Remember that our character is rigged and has a hand bone, so you

should put the weapon there.

3. The weapon that comes with the character we downloaded in this book is a special sce-

nario where the weapon has a SkinnedMeshRenderer. This component uses the Skinning

Animation system that we will learn to use in Chapter 17, Create Animations with Animator,

Cinemachine, and Timeline. In this case, the movement of the weapon will be affected by

the animations we will use in that chapter, so for now let’s keep the weapon where it is

located now, even if it looks odd.

Visual Effects with Particle Systems and Visual Effect Graph366

4. Create or get a muzzle particle system. In this case, my muzzle particle system was created

as a short particle system that has a burst of particles and then automatically stops. Try

to get one with that behavior because there are others out there that will loop instead,

and the script to handle that scenario would be different.

5. Create an instance of the particle system prefab in the editor and parent it inside the

weapon, locating it in front of the weapon, aligned with the cannon of the gun. Make sure

the Play On Awake property of the main module of the particle system is unchecked; we

don’t want the muzzle to fire until we press the fire key:

Figure 11.63: The muzzle parented to the weapon

6. Create a field of the ParticleSystem type called muzzleEffect in PlayerShooting.

7. Drag the muzzle effect GameObject that is parented in the gun to it in the Inspector. Now,

we have a reference to the ParticleSystem component of the muzzle to manage it.

8. Inside the if statement that checks whether we are shooting, execute muzzleEffect.

Play(); to play the particle system. It will automatically stop and is short enough to

finish between key presses:

Chapter 11 367

Figure 11.64: The muzzle parented to the weapon

The Visual Scripting version’s additional nodes and variables would be the following:

Figure 11.65: The muzzle playing visual script

Visual Effects with Particle Systems and Visual Effect Graph368

Finally, we need to play the muzzle effect also on the AI while shooting by doing the following:

1. As we did with PlayerShooting, create a field of the ParticleSystem type called

muzzleEffect in EnemyFSM.

2. Inside the Shoot method, add the line muzzleEffect.Play(); at the end of the method

to play the particle system:

Figure 11.66: The muzzle playing C# script

Chapter 11 369

The Visual Scripting version’s additional nodes for the Attack State and Attack Base will be:

Figure 11.67: The muzzle playing script for the Attack State

Remember to add those nodes to both attack states and to add the muzzleEffect variable to the

AI Variables component.

Visual Effects with Particle Systems and Visual Effect Graph370

Summary
In this chapter, we discussed two different ways to create particle systems: using Shuriken and

VFX Graph. We used them to simulate different fluid phenomena, such as fire, a waterfall, smoke,

and rain. The idea is to combine particle systems with meshes to generate all the possible props

needed for your scene. Also, as you can imagine, creating these kinds of effects professionally

requires you to go deeper. If you want to dedicate yourself to this (another part of the job of a

technical artist), you will need to learn how to create your own particle textures to get the exact

look and feel you want, code scripts that control certain aspects of the systems, and several other

aspects of particle creation. However, that is outside the scope of the book.

Now that we have some rain in our scene, we can see that the sky and the lighting in the scene

don’t really reflect a rainy day, so let’s fix that in the next chapter!

12
Lighting Using the Universal
Render Pipeline

Lighting is a complex topic and there are several possible ways to handle it, with each one having

its pros and cons. In order to get the best possible quality and performance, you need to know

exactly how your renderer handles lighting, and that is exactly what we are going to do in this

chapter. We will discuss how lighting is handled in Unity’s Universal Render Pipeline (URP),

as well as how to properly configure it to adapt our scene’s mood with proper lighting effects.

In this chapter, we will examine the following lighting concepts:

• Applying lighting

• Applying shadows

• Optimizing lighting

At the end of the chapter, we will have properly used the different Unity Illumination systems

like Direct Lights and Lightmapping to reflect a cloudy and rainy night.

Applying lighting
When discussing ways to process lighting in a game, there are two main ways we can do so, known

as Forward Rendering and Deferred Rendering. Both handle lighting in a different order, with

different techniques, requirements, pros, and cons. Forward Rendering is usually recommended

for performance, while Deferred Rendering is usually recommended for quality. The latter is used

by the High Definition Render Pipeline of Unity, the renderer used for high-quality graphics in

high-end devices.

Lighting Using the Universal Render Pipeline372

At the time of writing this book, Unity is developing a performant version for URP. Also, in Unity,

the Forward Renderer comes with two modes: Multi-Pass Forward, which is used in the Built-In

Renderer (the old Unity Renderer), and Single Pass Forward, which is used in URP. Again, both

have their pros and cons.

Choosing between them depends on the kind of game you are creating and the platform you need

to run the game on. Your chosen option will change a lot due to the way you apply lighting to

your scene, so it’s crucial you understand which system you are dealing with.

In the next section, we will discuss the following real-time lighting concepts:

• Discussing lighting methods

• Configuring ambient lighting with skyboxes

• Configuring lighting in URP

Let’s start by comparing the previously mentioned lighting methods.

Discussing lighting methods
To recap, we mentioned three main ways of processing lighting at the beginning of this chapter:

• Forward Rendering (Single Pass)

• Forward Rendering (Multi-Pass)

• Deferred Rendering

Before we look at the differences between each, let’s talk about the things they have in common.

Those three renderers start drawing the scene by determining which objects can be seen by the

camera—that is, the ones that fall inside the camera’s frustum, and provide a giant pyramid that

can be seen when you select the camera:

Chapter 12 373

Figure 12.1: Camera’s frustum showing only the objects that can be seen by it

After that, Unity will order them from the nearest to the camera to the farthest (transparent ob-

jects are handled a little bit differently, but let’s ignore that for now). It’s done like this because

it’s more probable that objects nearer to the camera will cover most of the camera, so they will

occlude others (will block other objects from being seen), preventing us from wasting resources

calculating pixels for the occluded ones.

Finally, Unity will try to render the objects in that order. This is where differences start to arise

between lighting methods, so let’s start comparing the two Forward Rendering variants. For each

object, Single Pass Forward Rendering will calculate the object’s appearance, including all the

lights that are affecting the object, in one shot, or what we call a draw call.

Lighting Using the Universal Render Pipeline374

A draw call is the exact moment when Unity asks the video card to actually render the specified

object. All the previous work was just preparation for this moment. In the case of the Multi-Pass

Forward Renderer, by simplifying a little bit of the actual logic, Unity will render the object once

per light that affects the object; so, if the object is being lit by three lights, Unity will render the

object three times, meaning that three draw calls will be issued, and three calls to the GPU will

be made to execute the rendering process:

Figure 12.2: Left image, first draw call of a sphere affected by two lights in Multi-Pass; middle
image, second draw call of the sphere; and right image, the combination of both draw calls

Now is when you are probably thinking, “Why should I use Multi-Pass? Single Pass is more perfor-

mant!” And yes, you are right! Single Pass is much more performant than Multi-Pass, meaning

our game will run at higher frames per second, and here comes the great but. A draw call in a GPU

has a limited amount of operations that can be executed, so you have a limit to the complexity

of the draw call. Calculating the appearance of an object and all the lights that affect it is very

complex, and in order to make it fit in just one draw call, Single Pass executes simplified versions

of lighting calculations, meaning less lighting quality and fewer features. They also have a limit

on how many lights can be handled in one shot, which, at the time of writing this book, is eight

per object, although you can configure fewer if you want, but the default value is good for us. This

sounds like a small number, but it’s usually just enough.

On the other side, Multi-Pass can apply any number of lights you want and can execute differ-

ent logic for each light. Let’s say our object has four lights that are affecting it, but there are two

lights that are affecting it drastically because they are nearer or have higher intensity, while the

remaining ones affecting the object are just enough to be noticeable. In this scenario, we can ren-

der the first two lights with higher quality and the remaining ones with cheap calculations—no

one will be able to tell the difference.

Chapter 12 375

In this case, Multi-Pass can calculate the first two lights using Pixel Lighting and the remaining

ones using Vertex Lighting. The difference is in their names; Pixel calculates light per object’s

pixel, while Vertex calculates lighting per object vertex and fills the pixels between these vertex-

es, thereby interpolating information between vertexes. You can clearly see the difference in the

following images:

Figure 12.3: Left image, a sphere being rendered with Vertex Lighting; right image, a sphere
being rendered with Pixel Lighting

In Single Pass, calculating everything in a single draw call forces you to use Vertex Lighting or

Pixel Lighting; you cannot combine them.

So, to summarize the differences between Single and Multi-Pass, in Single, you have better per-

formance because each object is just drawn once, but you are limited to the number of lights

that can be applied, while in Multi-Pass, you need to render the object several times, but with

no limits on the number of lights, and you can specify the exact quality you want for each light.

There are other things to consider, such as the actual cost of a draw call (one draw call can be

more expensive than two simple ones), and special lighting effects such as toon shading, but

let’s keep things simple.

Finally, let’s briefly discuss Deferred. Even though we are not going to use it, it’s interesting to

know why we are not doing that. After determining which objects fall inside the frustum and

ordering them, Deferred will render the objects without any lighting, generating what is called

a G-Buffer. A G-Buffer is a set of several images that contain different information about the ob-

jects of the scene, such as the colors of their pixels (without lighting), the direction of each pixel

(known as Normals), and how far from the camera the pixels are.

Lighting Using the Universal Render Pipeline376

You can see a typical example of a G-Buffer in the following image:

Figure 12.4: Left image, plain colors of the object; middle image, depths of each pixel; and
right image, normals of the pixels

After rendering all the objects in the scene, Unity will iterate over all lights that can be seen in the

camera, thus applying a layer of lighting over the G-Buffer, taking information from it to calcu-

late that specific light. After all the lights have been processed, you will get the following result:

Figure 12.5: Combination of the three lights that were applied to the G-Buffer shown in the
previous image

Normals are directions, and the x, y, and z components of the directions are encoded

in the RGB components of the colors.

Chapter 12 377

As you can see, the Deferred part of this method comes from the idea of calculating lighting as the

last stage of the rendering process. This is better because you won’t waste resources calculating

lighting from objects that can potentially be occluded. If the floor of the image is being rendered

first in Forward mode, the pixels that the rest of the objects are going to occlude were calculated

in vain. Also, there’s the pro that Deferred just calculates lighting in the exact pixels that the light

can reach. As an example, if you are using a flashlight, Unity will calculate lighting only in the

pixels that fall inside the cone of the flashlight. The con here is that Deferred is not supported by

some relatively old video cards and that you can’t calculate lighting with Vertex Lighting quality,

so you will need to pay the price of Pixel Lighting, which is not recommended on low-end devices

(or even necessary in simple graphics games).

So, why are we using URP with Single Pass Forward? Because it offers the best balance between

performance, quality, and simplicity. In this game, we won’t be using too many lights, so we

won’t worry about the light number limitations of Single Pass. If you need more lights, you can

use Deferred, but consider the extra hardware requirements and the performance cost of not

having per-vertex lighting options. Now that we have a very basic notion of how URP handles

lighting, let’s start using it!

Configuring ambient lighting with skyboxes
There are different light sources that can affect a scene, such as the sun, flashlights, light bulbs,

and more. Those are known as Direct Lights—that is, objects that emit light rays. Then, we

have Indirect Light, which represents how the Direct Light bounces on other objects, like walls.

However, calculating all the bounces of all the rays emitted by all the lights is extremely costly

in terms of performance and requires special hardware that supports ray tracing. The problem

is that not having Indirect Light will generate unrealistic results, where you can observe places

where the sunlight doesn’t reach being completely dark because no light is bouncing from other

places where light hits.

Lighting Using the Universal Render Pipeline378

In the next image you can see an example of how this could look in a wrongly configured scene:

Figure 12.6: Shadows projected on a mountain without ambient lighting

If you ever experience this problem, the way to solve it performantly is using approximations of

those bounces. These are what we call Ambient Light. This represents a base layer of lighting

that usually applies a little bit of light based on the color of the sky, but you can choose whatever

color you want. As an example, on a clear night, we can pick a dark blue color to represent the

tint from the moonlight.

If you create a new scene in Unity 2022, usually this is done automatically, but in cases where it

isn’t, or the scene was created through other methods, it is convenient to know how to manually

trigger this process by doing the following:

1. Click on Window | Rendering | Lighting. This will open the Scene Lighting Settings

window:

Figure 12.7: Lighting Settings location

2. Click the Generate Lighting button at the bottom of the window. If you haven’t saved

the scene so far, a prompt will ask you to save it, which is necessary:

Figure 12.8: Generate Lighting button

Chapter 12 379

3. See the bottom-right part of the Unity window to check the progress calculation bar to

check when the process has finished:

Figure 12.9: Lighting generation progress bar

4. You can now see how completely dark areas are now lit by the light being emitted by the

sky:

Figure 12.10: Shadows with ambient lighting

Now, by doing this, we have better lighting, but it still looks like a sunny day. Remember, we

want to have rainy weather. In order to do that, we need to change the default sky too so that it’s

cloudy. You can do that by downloading a skybox. The current sky you can see around the scene

is just a big cube containing textures on each side, and those textures have a special projection

to prevent us from detecting the edges of the cube. We can download six images for each side of

the cube and apply them to have whatever sky you want, so let’s do that:

1. You can download skybox textures from wherever you want, but here, I will choose the

Asset Store. Open it by going to Window | Asset Store and going to the Asset Store website.

Lighting Using the Universal Render Pipeline380

2. Look for Categories | 2D | Textures & Materials | Sky in the category list on the right.

Remember that you need to make that window wider if you can’t see the category list:

Figure 12.11: Textures & Materials

3. Remember to check the Free Assets checkbox in the Price options.

4. Pick any skybox you like for a rainy day. Take into account that there are different formats

for skyboxes. We are using the six-image format, so check that before downloading one.

There’s another format called Cubemap, which is essentially the same, but we will stick

with the six-image format as it is the simplest one to use and modify. In my case, I have

chosen the skybox pack shown in Figure 12.12. Download and import it, as we did in Chapter

5, Introduction to C# and Visual Scripting:

Chapter 12 381

Figure 12.12: Selected skybox set for this book

5. Create a new material by using the + icon in the Project window and selecting Material.

6. Set the Shader option of that material to Skybox/6 sided. Remember that the skybox

is just a cube, so we can apply a material to change how it looks. The skybox shader is

prepared to apply the six textures.

7. Drag the six textures to the Front, Back, Left, Right, Up, and Down properties of the

material. The six downloaded textures will have descriptive names so that you know

which textures go where:

Figure 12.13: Skybox material settings

Lighting Using the Universal Render Pipeline382

8. Drag the material directly into the sky in the Scene view. Be sure you don’t drag the ma-

terial into an object because the material will be applied to it.

9. Repeat steps 1 to 4 of the ambient light calculation steps (Lighting Settings | Generate

Lighting) to recalculate it based on the new skybox. In the following image, you can see

the result of my project so far:

Figure 12.14: Applied skybox

Now that we have a good base layer of lighting, we can start adding light objects.

Configuring lighting in URP
We have three main types of Direct Lights we can add to our scene:

• Directional Light: This is a light that represents the sun. This object emits light rays

in the direction it is facing, regardless of its position; the sun moving 100 meters to the

right won’t make a big difference. As an example, if you slowly rotate this object, you can

generate a day/night cycle:

Figure 12.15: Directional Light results

Chapter 12 383

• Point Light: This light represents a light bulb, which emits rays in an omnidirectional way.

The difference it has compared to Directional Lights is that its position matters because

it’s closer to our objects. Also, because it’s a weaker light, the intensity of this light varies

according to the distance, so its effect has a range—the further the object from the light,

the weaker the received intensity:

Figure 12.16: Point Light results

• Spotlight: This kind of light represents a light cone, such as the one emitted by a flashlight.

It behaves similarly to point lights in that its position matters and the light intensity de-

cays over a certain distance. But here the direction it points to (hence its rotation) is also

important, given it will specify where to project the light:

Figure 12.17: Spotlight results

So far, we have nice, rainy, ambient lighting, but the only Direct Light we have in the scene, the

Directional Light, won’t look like this, so let’s change that:

1. Select the Directional Light object in the Hierarchy window and then look at the In-

spector window.

2. Click the Color property in the Emission section to open the Color Picker.

Lighting Using the Universal Render Pipeline384

3. Select a dark gray color to achieve sun rays partially occluded by clouds.

4. Set Shadow Type to No Shadows. Now that we have a cloudy day, the sun does not project

clear shadows, but we will talk more about shadows in a moment:

Figure 12.18: Soft directional light with no shadows

Now that the scene is darker, we can add some lights to light up the scene, as follows:

1. Create a Spotlight by going to GameObject | Light | Spotlight.

2. Select it. Then, in the Inspector window, set Inner/Output Spot Angle of the Shape section

to 90 and 120, which will increase the angle of the cone.

3. Set Range in the Emission section to 50, meaning that the light can reach up to 50 meters,

decaying along the way.

4. Set Intensity in the Emission section to 1000:

Figure 12.19: Spotlight settings

Chapter 12 385

5. Position the light at one corner of your game’s base, pointing it at the center:

Figure 12.20: Spotlight placement

6. Duplicate that light by selecting it and pressing Ctrl+D (Command+D on a Mac).

7. Put it in the opposite corner of the base:

Figure 12.21: Two Spotlight results

You can keep adding lights to the scene but take care that you don’t go too far—remember the

light’s limits. Also, you can download some light posts to put in where the lights are located to

visually justify the origin of the light. Now that we have achieved proper lighting, we can talk

about shadows.

Lighting Using the Universal Render Pipeline386

Applying shadows
Maybe you are thinking that we already have shadows in the scene, but actually, we don’t. The

darker areas of the object, the ones that are not facing the lights, don’t have shadows—they are

not being lit, and that’s quite different from a shadow. In this case, we are referring to the shad-

ows that are projected from one object to another—for example, the shadow of the player being

projected on the floor, or from the mountains to other objects. Shadows can increase the quality

of our scene, but they also cost a lot to calculate, so we have two options: not using shadows

(recommended for low-end devices such as mobiles) or finding a balance between performance

and quality according to our game and the target device.

In this section, we are going to discuss the following topics about shadows:

• Understanding shadow calculations

• Configuring performant shadows

Let’s start by discussing how Unity calculates shadows.

Understanding shadow calculations
In game development, it is well-known that shadows are costly in terms of performance, but why?

An object has a shadow when a light ray hits another object before reaching it. In that case, no

lighting is applied to that pixel from that light. The problem here is the same problem we have

with the light that ambient lighting simulates—it would be too costly to calculate all possible rays

and its collisions. So, again, we need an approximation, and here is where Shadow Maps kick in.

A Shadow Map is an image that’s rendered from the point of view of the light, but instead of

drawing the full scene with all the color and lighting calculations, it will render all the objects in

grayscale, where black means that the pixel is very far from the camera and whiter means that

the pixel is nearer to the camera. If you think about it, each pixel contains information about

where a ray of light hits. By knowing the position and orientation of the light, you can calculate

the position where each “ray” hit using the Shadow Map.

Chapter 12 387

In the following image, you can see the shadow map of our Directional Light:

Figure 12.22: Shadow Map generated by the Directional Light of our scene

Each type of light calculates shadow maps slightly differently, especially the Point Light. Since

it’s omnidirectional, it needs to render the scene several times in all its directions (Front, Back,

Left, Right, Up, and Down) in order to gather information about all the rays it emits. We won’t

talk about this in detail here, though, as we could talk about it all day.

Now, something important to highlight here is that shadow maps are textures, and as such, they

have a resolution. The higher the resolution, the more “rays” our shadow map calculates. You are

probably wondering what a low-resolution shadow map looks like when it has only a few rays

in it. Take a look at the following image to see one:

Figure 12.23: Hard Shadows rendered with a low-resolution Shadow Map

Lighting Using the Universal Render Pipeline388

The problem here is that having fewer rays generates bigger shadow pixels, resulting in a pix-

elated shadow. Here, we have our first configuration to consider: what is the ideal resolution

for our shadows? You will be tempted to just increase it until the shadows look smooth, but of

course, that will increase how long it will take to calculate it, so it will impact the performance

considerably unless your target platform can handle it (mobiles definitely can’t). Here, we can

use the Soft Shadows trick, where we can apply a blurring effect over the shadows to hide the

pixelated edges, as shown in the following image:

Figure 12.24: Soft Shadows rendered with a low-resolution Shadow Map

Of course, the blurry effect is not free, but combining it with low-resolution shadow maps, if you

accept its blurry result, can generate a nice balance between quality and performance.

Now, low-resolution shadow maps have another problem, which is called Shadow Acne. This is

the lighting error you can see in the following image:

Figure 12.25: Shadow Acne from a low-resolution Shadow Map

Chapter 12 389

A low-resolution shadow map generates false positives because it has fewer “rays” calculated.

The pixels to be shaded between the rays need to interpolate information from the nearest ones.

The lower the Shadow Map’s resolution, the larger the gap between the rays, which means less

precision and more false positives. One solution would be to increase the resolution, but again,

there will be performance issues (as always). We have some clever solutions to this, such as using

depth bias. An example of this can be seen in the following image:

Figure 12.26: A false positive between two far “rays.” The highlighted area thinks the ray hit
an object before reaching it.

The concept of depth bias is simple—so simple that it seems like a big cheat, and actually, it is,

but game development is full of them! To prevent false positives, we “push” the rays a little bit

further, just enough to make the interpolated rays reach the surface being lit:

Figure 12.27: Rays with a depth bias to eliminate false positives

Lighting Using the Universal Render Pipeline390

Of course, as you are probably expecting, they don’t solve this problem easily without having a

caveat. Pushing depth generates false negatives in other areas, as shown in the following image.

It looks like the cube is floating, but actually, it is touching the ground—the false negatives gen-

erate the illusion that it is floating:

Figure 12.28: False negatives due to a high depth bias

Of course, we have a counter trick to this situation known as normal bias. This pushes the object’s

mesh along the direction they are facing, not the rays. This one is a little bit tricky, so we won’t go

into too much detail here, but the idea is that combining a little bit of depth bias and another bit of

normal bias will reduce the false positives, but not completely eliminate them. Therefore, we need

to learn how to live with that and hide these shadow discrepancies by cleverly positioning objects:

Figure 12.29: Reduced false positives, which is the result of combining depth and normal bias

Chapter 12 391

There are several other aspects that affect how shadow maps work, with one of them being the

light range. The smaller the light range, the less area the shadows will cover. The same shadow

map resolution can add more detail to that area, so try to reduce the light ranges as much as you

can, as we will do in the next section.

I can imagine your face right now, and yes, lighting is complicated, and we’ve only just scratched

the surface! But keep your spirits up! After a little trial and error fiddling with the settings, you

will understand it better. We’ll do that in the next section.

Configuring performant shadows
Because we are targeting mid-end devices, we will try to achieve a good balance of quality and

performance here, so let’s start enabling shadows just for the spotlights. The Directional Light

shadow won’t be that noticeable, and actually, a rainy sky doesn’t generate clear shadows, so we

will use that as an excuse to not calculate those shadows. In order to do this, do the following:

1. Select both spotlights by clicking them in the Hierarchy while pressing Ctrl (Command on

Mac). This will ensure that any changes made in the Inspector window will be applied

to both:

Figure 12.30: Selecting multiple objects

If you are really interested in learning more about the internals of the shadow system,

I recommend that you look at the concept of Shadow Cascades, an advanced topic

about Directional Lights and shadow map generation.

Lighting Using the Universal Render Pipeline392

2. In the Inspector window, set Shadow Type in the Shadows section to Soft Shadows. We

will be using low-resolution shadow maps here and the soft mode can help to hide the

pixelated resolution:

Figure 12.31: Soft Shadows setting

3. Select Directional light and set Shadow Type to No Shadows to prevent it from casting

shadows:

Figure 12.32: No Shadows setting

4. Create a cube (GameObject | 3D Object | Cube) and place it near one of the lights, just to

have an object that we can cast shadows on for testing purposes.

Now that we have a base test scenario, let’s fiddle with the shadow maps resolution settings,

preventing shadow acne in the process:

1. Go to Edit | Project Settings.

2. In the left-hand side list, look for Graphics and click it:

Figure 12.33: Graphics settings

Chapter 12 393

3. In the properties that appear after selecting this option, click in the box below Scriptable

Render Pipeline Settings—the one that contains a name. In my case, this is URP-High-

Fidelity, but yours may be different if you have a different version of Unity:

Figure 12.34: Current Render Pipeline setting

4. Doing that will highlight an asset in the Project window, so be sure that the window is

visible before selecting it. Select the highlighted asset:

Figure 12.35: Current pipeline highlighted

5. This asset has several graphics settings related to how URP will handle its rendering, in-

cluding lighting and shadows. Expand the Lighting section to reveal its settings:

Figure 12.36: Pipeline lighting settings

6. The Shadow Resolution setting under the Additional Lights subsection represents the

shadow map resolution for all the lights that aren’t the Directional Light (since it’s the

Main Light). Set it to 1024 if it’s not already at that value.

Lighting Using the Universal Render Pipeline394

7. Under the Shadows section, you can see the Depth and Normal Bias settings, but those

will affect all lights. Even if right now our Directional Light doesn’t have shadows, we

want only to affect Additional Lights bias values as they have a different Atlas Resolution

compared to the Main one (Directional Light), so instead, select out spotlights and set

Bias to Custom and Depth and Normal Bias to 0.25 in order to reduce them as much as

we can before we remove the shadow acne:

Figure 12.37: Bias settings

8. This isn’t entirely related to shadows, but in the Univeral RP settings asset, you can change

the Per Object Light limit to increase or reduce the number of lights that can affect the

object (no more than eight). For now, the default is good as is.

9. In case you followed the shadow cascades tip presented earlier, you can play with the

Cascades value a little bit to enable shadows for Directional Light to note the effect. Re-

member that those shadow settings only work for Directional Light.

10. We don’t have shadows in Directional Light, but in any other case, consider reducing

the Max Distance value in the Shadows section, which will affect the Directional Light

shadows range.

11. Select both lights in the Hierarchy and set them so that they have a 40-meter Range. See

how the shadows improve in quality before and after this change.

Remember that those values only work in my case, so try to fiddle with the values a little bit to

see how that changes the result—you may find a better setup for your scene if it was designed

differently from mine. Also, remember that not having shadows is always an option, so consider

that if your game is running low on frames per second, also known as FPS (and there isn’t another

performance problem lurking).

You probably think that that is all we can do about performance in terms of lighting, but luckily,

that’s not the case! We have another resource we can use to improve it further known as static

lighting.

Chapter 12 395

Optimizing lighting
We mentioned previously that not calculating lighting is good for performance, but what about

not calculating lights, but still having them? Yes, it sounds too good to be true, but it is actually

possible (and, of course, tricky). We can use a technique called static lighting or baking, which

allows us to calculate lighting once and use the cached result.

In this section, we will cover the following concepts related to static lighting:

• Understanding static lighting

• Baking lightmaps

• Applying static lighting to dynamic objects

Understanding static lighting
The idea is pretty simple: just do the lighting calculations once, save the results, and then use

those instead of calculating lighting all the time.

You may be wondering why this isn’t the default technique to use. This is because it has some

limitations, with the big one being dynamic objects. Precalculating shadows means that they

can’t change once they’ve been calculated, but if an object that is casting a shadow is moved, the

shadow will still be there, so the main thing to take into account here is that you can’t use this

technique with moving objects. Instead, you will need to mix static or baked lighting for static

objects and real-time lighting for dynamic (moving) objects. Also, consider that aside from this

technique being only valid for static objects, it is also only valid for static lights. Again, if a light

moves, the precalculated data becomes invalid.

Another limitation you need to take into account is that precalculated data can have a huge impact

on memory. That data occupies space in RAM, maybe hundreds of MB, so you need to consider

if your target platform has enough space. Of course, you can reduce the precalculated lighting

quality to reduce the size of that data, but you need to consider if the loss of quality deteriorates

the look and feel of your game too much. As with all options regarding optimization, you need

to balance two factors: performance and quality.

We have several kinds of precalculated data in our process, but the most important one is what

we call lightmaps. A lightmap is a texture that contains all the shadows and lighting for all the

objects in the scene, so when Unity applies the precalculated or baked data, it will look at this

texture to know which parts of the static objects are lit and which aren’t.

Lighting Using the Universal Render Pipeline396

You can see an example of a lightmap in the following image:

Figure 12.38: Left, a scene with no lighting; middle, a lightmap holding precalculated data
from that scene; and right, the lightmap being applied to the scene

Having lightmaps has its own benefits. The baking process is executed in Unity, before the game

is shipped to users, so you can spend plenty of time calculating stuff that you can’t do in runtime,

such as improved accuracy, light bounces, light occlusion in corners, and light from emissive

objects. However, that can also be a problem. Remember, dynamic objects still need to rely on

real-time lighting, and that lighting will look very different compared to static lighting, so we

need to tweak them a lot for the user to not notice the difference.

Now that we have a basic notion of what static lighting is, let’s dive into how to use it.

Baking lightmaps
To use lightmaps, we need to make some preparations regarding the 3D models. Remember that

meshes have UVs, which contain information about which part of the texture needs to be applied

to each part of the model. Sometimes, to save texture memory you can apply the same piece of

texture to different parts. For example, in a car’s texture, you wouldn’t have four wheels; you’d

just have one, and you can apply that same piece of texture to all the wheels. The problem here

is that static lighting uses textures the same way, but here, it will apply the lightmaps to light

the object. In the wheel scenario, the problem would be that if one wheel receives shadows, all of

them will have it, because all the wheels are sharing the same texture space. The usual solution

is to have a second set of UVs in the model with no texture space being shared, just for use with

lightmapping.

Chapter 12 397

Sometimes, downloaded models are already prepared for lightmapping, and sometimes, they

aren’t, but luckily, Unity has us covered in those scenarios. To be sure a model will calculate

lightmapping properly, let’s make Unity automatically generate the Lightmapping UVs by doing

the following:

1. Select the mesh asset (FBX) in the Project window.

2. In the Model tab, look for the Generate Lightmap UVs checkbox at the bottom and check it.

3. Click the Apply button at the bottom:

Figure 12.39: Generate Lightmap setting

4. Repeat this process for every model. Technically, you can only do this in the models where

you get artifacts and weird results after baking lightmaps, but for now, let’s do this in all

the models just in case.

After preparing the models for being lightmapped, the next step is to tell Unity which objects are

not going to move. To do so, do the following:

1. Select the object that won’t move.

2. Check the Static checkbox in the top-right of the Inspector window:

Figure 12.40: Static checkbox

3. Repeat this for every static object (this isn’t necessary for lights; we will deal with those

later).

4. You can also select a container of several objects, check the Static checkbox, and click the

Yes, All Children button in the prompt to apply the checkbox to all child objects.

Lighting Using the Universal Render Pipeline398

Consider that you may not want every object, even if it’s static, to be lightmapped, because the

more objects you lightmap, the more texture size you will require. As an example, the terrain could

be too large and would consume most of the lightmapping’s size. Usually, this is necessary, but

in our case, the spotlights are barely touching the terrain. Here, we have two options: leave the

terrain as dynamic, or better, directly tell the spotlights to not affect the terrain since one is only

lit by ambient lighting and the Directional Light (which is not casting shadows). Remember that

this is something we can do because of our type of scene; however, you may need to use other

settings in other scenarios. You can exclude an object from both real-time and static lighting

calculations by doing the following:

1. Select the object to exclude.

2. In the Inspector window, click the Layer dropdown and click on Add Layer…:

Figure 12.41: Layer creation button

3. Here, you can create a layer, which is a group of objects that are used to identify which

objects are not going to be affected by lighting. In the Layers list, look for an empty space

and type in any name for those kinds of objects. In my case, I will only exclude the terrain,

so I have just named it Terrain:

Chapter 12 399

Figure 12.42: Layers list

4. Once again, select the terrain, go to the Layer dropdown, and select the layer you created in

the previous step. This way, you can specify that this object belongs to that group of objects:

Figure 12.43: Changing a GameObject’s layer

Lighting Using the Universal Render Pipeline400

5. Select all the spotlights lights, look for the Culling Mask in the Rendering section in the

Inspector window, click it, and uncheck the layer you created previously. This way, you

can specify that those lights won’t affect that group of objects:

Figure 12.44: Light Culling Mask

6. Now, you can see how those selected lights are not illuminating or applying shadows to

the terrain.

Now, it’s time for the lights since the Static checkbox won’t work for them. For them, we have

the following three modes:

• Realtime: A light in Realtime mode will affect all objects, both static and dynamic, using

real-time lighting, meaning there’s no pre-calculation. This is useful for lights that are

not static, such as the player’s flashlight, a lamp that is moving due to the wind, and so on.

• Baked: The opposite of Realtime, this kind of light will only affect static objects with

lightmaps. This means that if the player (dynamic) moves under a baked light on the

street (static), the street will look lit, but the player will still be dark and won’t cast any

shadows on the street. The idea is to use this on lights that won’t affect any dynamic ob-

ject, or on lights that are barely noticeable on them, so that we can increase performance

by not calculating them.

• Mixed: This is the preferred mode in case you are not sure which one to use. This kind

of light will calculate lightmaps for static objects, but will also affect dynamic objects,

combining its Realtime lighting with the baked one (like Realtime lights also do).

In our case, our Directional Light will only affect the terrain, and because we don’t have shadows,

applying lighting to it is relatively cheap in URP, so we can leave the Directional Light in Realtime

so that it won’t take up any lightmap texture area.

Chapter 12 401

Our spotlights are affecting the base, but actually, they are only applying lighting to them—we

have no shadows because our base is empty. In this case, it is preferable to not calculate light-

mapping whatsoever, but for learning purposes, I will add a few objects as obstacles to the base

to cast some shadows and justify the use of lightmapping, as shown in the following image:

Figure 12.45: Adding objects to project light

Here, you can see how the original design of our level changes constantly during the development

of the game, and that’s something you can’t avoid—bigger parts of the game will change over

time. Now, we are ready to set up the Light Modes and execute the baking process, as follows:

1. Select the Directional Light in the Hierarchy.

2. Set the Mode property of the General section in the Inspector window to Realtime (if it’s

not already in that mode).

3. Select both Spotlights.

4. Set their Render Mode to Mixed:

Figure 12.46: Mixed lighting setting for Spotlights, the mode will be Realtime for the
Directional Light

5. Open the Lighting Settings window (Window | Rendering | Lighting).

Lighting Using the Universal Render Pipeline402

6. We want to change some of the settings of the baking process. In order to enable the

controls for this, click the New Lighting Settings button. This will create an asset with

lightmapping settings that can be applied to several scenes in case we want to share the

same settings multiple times:

Figure 12.47: Creating lighting settings

7. Reduce the quality of lightmapping, just to make the process go faster. Just to iterate, the

lighting can easily be reduced by using settings such as Lightmap Resolution, Direct

Samples, Indirect Samples, and Environment Samples, all of them located under the

Lightmapping Settings category. In my case, I have those settings applied, as shown in

the following image. Note that even reducing those will take time; we have too many

objects in the scene due to the modular level design:

Figure 12.48: Scene lighting settings

8. Click Generate Lighting, which is the same button we used previously to generate am-

bient lighting.

Chapter 12 403

9. Wait for the process to complete. You can do this by checking the progress bar at the

bottom-right of the Unity editor. Note that this process could take even hours in large

scenes, so be patient:

Figure 12.49: Baking progress bar

10. After the process has completed, you can check the bottom part of the Lighting settings

window, where you can see how many lightmaps need to be generated. We have a maxi-

mum lightmap resolution, so we probably need several of them to cover the entire scene.

Also, it informs us of their size so that we can consider their impact in terms of RAM.

Finally, you can check out the Baked Lightmaps section to see them:

Figure 12.50: Generated lightmaps

Lighting Using the Universal Render Pipeline404

11. Now, based on the results, you can move objects, modify light intensities, or make what-

ever correction you would need in order to make the scene look the way you want and

recalculate the lighting every time you need to. In my case, those settings gave me good

enough results, which you can see in the following image:

Figure 12.51: Lightmap result

We still have plenty of small settings to touch on, but I will leave you to discover those through

trial and error or by reading the Unity documentation about lightmapping over at: https://

docs.unity3d.com/Manual/Lightmappers.html. Reading the Unity manual is a good source of

knowledge and I recommend that you start using it—any good developer, no matter how expe-

rienced, should read the manual.

Applying static lighting to static objects
When marking objects as static in your scene, you probably figured out that all the objects in

the scene won’t move, so you probably checked the static checkbox for everyone. That’s ok, but

you should always put a dynamic object into the scene to really be sure that everything works

ok—no games have totally static scenes. Try adding a capsule and moving it around to simulate

our player, as shown in the following image. If you pay attention to it, you will notice something

odd—the shadows being generated by the lightmapping process are not being applied to our

dynamic object:

https://docs.unity3d.com/Manual/Lightmappers.html
https://docs.unity3d.com/Manual/Lightmappers.html

Chapter 12 405

Figure 12.52: Dynamic object under a lightmap’s precalculated shadow

You may be thinking that Mixed Light Mode was supposed to affect both dynamic and static

objects, and that is exactly what it’s doing. The problem here is that everything related to static

objects is pre-calculated into those lightmap textures, including the shadows they cast, and

because our capsule is dynamic, it wasn’t there when the pre-calculation process was executed.

So, in this case, because the object that cast the shadow was static, its shadow won’t affect any

dynamic object.

Here, we have several solutions. The first would be to change the Static and Realtime mixing al-

gorithm to make everything near the camera use Realtime lighting and prevent this problem (at

least near the focus of attention of the player), which will have a big impact on performance. The

alternative is to use Light Probes. When we baked information, we only did that on lightmaps,

meaning that we have information on lighting just over surfaces, not in empty spaces. Because

our player is traversing the empty spaces between those surfaces, we don’t know exactly how

the lighting would look in those spaces, such as the middle of a corridor. Light Probes are a set of

points in those empty spaces where Unity also pre-calculates information, so when some dynamic

object passes through the Light Probes, it will sample information from them. In the following

image, you can see some Light Probes that have been applied to our scene. You will notice that

the ones that are inside shadows are going to be dark, while the ones exposed to light will have

a greater intensity.

Lighting Using the Universal Render Pipeline406

This effect will be applied to our dynamic objects:

Figure 12.53: Spheres representing Light Probes

If you move your object through the scene now, it will react to the shadows, as shown in the

following two images, where you can see a dynamic object being lit outside a baked shadow and

being dark inside:

Figure 12.54: Dynamic object receiving baked lighting from Light Probes

In order to create Light Probes, do the following:

1. Create a group of Light Probes by going to GameObject | Light | Light Probe Group.

Chapter 12 407

2. Fortunately, we have some guidelines on how to locate them. It is recommended to place

them where the lighting changes, such as inside and outside shadow borders. However,

that is complicated. The simplest and recommended approach is to just drop a grid of

Light Probes all over your playable area. To do that, you can simply copy and paste the

Light Grid Group several times to cover the entire base:

Figure 12.55: Light Probe grid

3. Another approach would be to select one group and click the Edit Light Probes button

to enter Light Probe edit mode:

Figure 12.56: Light Probe Group edit button

Lighting Using the Universal Render Pipeline408

4. Click the Select All button and then Duplicate Selected to duplicate all the previously

existing probes.

5. Using the translate gizmo, move them next to the previous ones, extending the grid in

the process. Consider that the nearer the probes are, you more you will need to cover the

terrain, which will generate more data. However, Light Probes data is relatively cheap in

terms of performance, so you can have lots of them, as seen in Figure 12.55.

6. Repeat steps 4 and 5 until you’ve covered the entire area.

7. Regenerate lighting with the Generate Lighting button in Lighting Settings.

With that, you have pre-calculated lighting on the Light Probes affecting our dynamic objects,

combining both worlds to get cohesive lighting.

Summary
In this chapter, we discussed several lighting topics, such as how Unity calculates lights and

shadows, how to deal with different light sources such as direct and indirect lighting, how to

configure shadows, how to bake lighting to optimize performance, and how to combine dynamic

and static lighting so that the lights aren’t disconnected from the world they affect. This was a

long chapter, but lighting deserves that. It is a complex subject that can improve the look and

feel of your scene drastically, as well as reduce your performance dramatically. It requires a lot

of practice and here, we tried to summarize all the important knowledge you will need to start

experimenting with it. Be patient with this topic; it is easy to get incorrect results, but you are

probably just one checkbox away from solving it.

Now that we have improved all we can in the scene settings, in the next chapter, we will apply a

final layer of graphic effects using the Unity Post-Processing Stack, which will apply full-screen

image effects—the ones that will give us that cinematic look and feel that all games have nowadays.

Chapter 12 409

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

13
Full-Screen Effects with Post-
Processing

So far, we have created different objects to alter the visuals of our scene, such as meshes, particles,

and lights. We can tweak the settings of those objects here and there to improve our scene quality,

but you will always feel that something is missing when comparing it with modern game scenes,

and that is post-processing effects. In this chapter, you will learn how to apply effects to the final

rendered frame, which will alter the look of the overall scene.

In this chapter, we will examine the following image effect concepts:

• Using post-processing

• Using advanced effects

Let’s start by seeing how we can apply post-processing to our scene.

Using post-processing
Post-processing is a Unity feature that allows us to apply a stack of effects (several effects) one on

top of the other that will alter the final look of an image. Each one will affect the finished frame,

changing the colors in it based on different criteria. In Figure 13.1, you can see a scene before and

after applying image effects. You will notice a dramatic difference, but that scene doesn’t have

any change in its objects, including lights, particles, or meshes.

Full-Screen Effects with Post-Processing412

The effects applied are based on a per-pixel level. Have a look at both scenes here:

Figure 13.1: A scene without image effects (left) and the same scene with effects (right)

Something to take into account is that the previous post-processing solution, Post Process-

ing Stack version 2 (PPv2) won’t work on the Universal Render Pipeline (URP); it has its own

post-processing implementation, so we will see that one in this chapter. They are very similar,

so even if you are using PPv2, you can still learn something from this chapter.

In this section, we will discuss the following URP Post-Processing concepts:

• Setting up a profile

• Using basic effects

Let’s start preparing our scene to apply effects.

Setting up a profile
To start applying effects, we need to create a profile, which is an asset containing all the effects

and settings we want to apply. This is a separate asset for the same reason the Material is: be-

cause we can share the same post-processing profile across different scenes and parts of scenes.

When we refer to parts of the scenes, we are referring to volumes or areas of the game that have

certain effects applied. We can define a global area that applies effects regardless of the position

of the player, or we can apply different effects—for example, when we are outdoors or indoors.

In this case, we will use a global volume, one that we will use to apply a profile with our first

effect, by doing the following:

1. Create a new empty GameObject (GameObject | Create Empty) named PP Volume

(Post-Processing Volume).

2. Add the Volume component to it and make sure the Mode is set to Global.

Chapter 13 413

3. Click on the New button at the right of the Profile setting, which will generate a new

Profile asset with the same name as the GameObject that was selected when clicking

the button (PPVolume Profile). Move that asset to its own folder, which is recommended

for asset organization purposes. The process is illustrated in the following figure:

Figure 13.2: Volume component

4. To test if the volume is working, let’s add an effect. Click the Add Override button and

select the Post-Processing | Chromatic Aberration option.

5. Check the Intensity checkbox in the Chromatic Aberration effect and set the intensity

to 0.25, as illustrated in the following figure:

Figure 13.3: Chromatic aberration effect

6. Now, you will see an aberration effect being applied in the corners of the image. Remember

to look at this in the Scene panel; we will make the effect applied to the Game view in the

next step. This is illustrated in the following figure:

Figure 13.4: Chromatic aberration applied to the scene

Full-Screen Effects with Post-Processing414

7. Now, if you hit Play and see the game from the view of the Main Camera, you will see that

the effect is not being applied, and that’s because we need to check the Post Processing

checkbox in the Rendering section of our Main Camera, as illustrated in the following

figure:

Figure 13.5: Enabling post-processing

So, we have created a global volume, which will apply the effects specified as overrides to the

entire scene regardless of the player’s position.

Now that we have prepared our scene to use post-processing, we can start experimenting with

different effects. Let’s start with the simplest ones in the next section.

Using basic effects
Now that we have post-processing in our scene, the only thing needed is to start adding effects

and set them up until we have the desired look and feel. In order to do that, let’s explore several

simple effects included in the system.

Let’s start with Chromatic Aberration, the one we just used, which, as with most image effects,

tries to replicate a particular real-life effect. All game-engine rendering systems use a simple

mathematical approximation of how eye vision really works, and because of that, we don’t have

some effects that occur in the human eyes or camera lenses. A real camera lens works by bend-

ing light rays to point them toward the camera sensors, but that bending is not perfect in some

lenses (sometimes intentionally), and, hence, you can see a distortion, as shown in the following

screenshot:

Chapter 13 415

Figure 13.6: Image without chromatic aberration (left) and the same image with chromatic
aberration (right)

This effect will be one of several that we will add to generate a cinematic feeling in our game,

simulating the usage of real-life cameras. Of course, this effect won’t look nice in every kind of

game; maybe a simplistic cartoonish style won’t benefit from this one, but you never know: art

is subjective, so it’s a matter of trial and error.

Also, we have exaggerated the intensity a little bit in the previous example to make the effect

more noticeable, but I would recommend using an intensity of 0.25 in this scenario. It is usually

recommended to be gentle with the intensity of the effects; it’s tempting to have intense effects,

but as you will be adding lots of them, after a while, the image will be bloated, with too many

distortions. So, try to add several subtle effects instead of a few intense ones. But, again, this

depends on the target style you are looking for; there are no absolute truths here (but common

sense still applies).

Finally, before moving on to discuss other effects, if you are used to using other kinds of post-pro-

cessing effects frameworks, you will notice that this version of Chromatic Aberration has fewer

settings, and that’s because the URP version seeks performance, so it will be as simple as possible.

The next effect we are going to discuss is Vignette. This is another camera-lens imperfection

where the image intensity is lost at the edges of the lens. This can be applied not only to simulate

older cameras but also to draw the attention of the user toward the center of the camera—for

example, during cinematics.

Full-Screen Effects with Post-Processing416

Also, if you are developing virtual reality (VR) applications, this can be used to reduce motion

sickness by reducing the peripheral vision of the player. In the following screenshot, you can see

an example of vignetting on an old camera:

Figure 13.7: Photo taken with an old camera, with vignetting over the edges

Just to try it, let’s apply some vignetting to our scene by doing the following:

1. Select the PP Volume GameObject.

2. Add the Postprocessing | Vignette effect by clicking on the Add Override button.

3. Check the Intensity checkbox and set it to 0.3, increasing the effect.

4. Check the Smoothness checkbox and set it to 0.5; this will increase the spread of the

effect. You can see the result in the following figure:

Figure 13.8: Vignette effect

Chapter 13 417

If you want, you can change the color by checking the Color checkbox and setting it to another

value; in our case, black is okay to reinforce the rainy-day environment. Here, I invite you to check

other properties, such as Center and Rounded. You can create nice effects just by playing with

the values.

Another effect we are going to see is Motion Blur, and again, it simulates the way the cameras

work. A real camera has an exposure time: the time it needs to capture photons into an image.

When an object moves fast enough, the same object is placed in different positions during that

brief exposure time, so it will appear blurred. In the following screenshot, you can see the effect

applied to our scene. In the case of this image, we are rotating the camera up and down fast, with

the following result:

Figure 13.9: Motion Blur being applied to our scene

One thing to consider is that this blur will only be applied to the camera movement and not the

movement of the objects (still camera, moving objects), due to the fact that this URP doesn’t

support motion vectors yet.

In order to use this effect, follow these next steps:

1. Add the Post-processing | Motion Blur override with the Add override button.

2. Check the Intensity checkbox and set it to 0.25.

Full-Screen Effects with Post-Processing418

3. Rotate the camera while looking at the Game view (not the Scene view). You can click

and drag the X property of the Transform of the camera (not the value—the X label), as

illustrated in the following screenshot:

Figure 13.10: Changing rotation

As you can see, this effect cannot be seen in the Scene view, as well as other effects, so take that

into account before concluding the effect is not working. Unity does this because it would be very

annoying to have that effect while working in the scene.

Finally, we are going to briefly discuss two final simple effects, Film Grain and White Balance.

The first is pretty simple: add it, set the intensity to 1, and you will get the famous grain effect

from the old movies. You can set the Type with a different number of sizes to make it more subtle

or harsh. White Balance allows you to change the color temperature, making colors warmer or

cooler depending on how you configure it. In our case, we are working in a cold, dark scene, so

you can add it and set the temperature to -20 to adjust the appearance just slightly and improve

the look and feel in this kind of scene.

Now that we have seen a few of the simple effects, let’s check out a few of the remaining ones

that are affected by some advanced rendering features.

Using advanced effects
The effects we are going to see in this section don’t differ a lot from the previous ones; they are

just a little bit trickier and need some background to properly use them. So, let’s dive into them!

In this section, we are going to see the following advanced effect concepts:

• High Dynamic Range (HDR) and Depth Map

• Applying advanced effects

Let’s start by discussing some requirements for some of these effects to work properly.

High Dynamic Range (HDR) and Depth Map
Some effects not only work with the rendered image but also need additional data. We can first

discuss the Depth Map, a concept we discussed in the previous chapter.

Chapter 13 419

To recap, a Depth Map is an image rendered from the point of view of the camera, but instead of

generating a final image of the scene, it renders the scene objects’ depth, rendering the objects

in shades of gray. The darker the color, the farthest from the camera the pixel is, and vice versa.

In the following screenshot, you can see an example of a Depth Map:

Figure 13.11: Depth map of a few primitive shapes

We will see some effects such as Depth of Field, which will blur some parts of the image based

on the distance of the camera, but it can be used for several purposes on custom effects (not in

the base URP package).

Another concept to discuss here that will alter how colors are treated and, hence, how some effects

work is High Dynamic Range (HDR). In older hardware, color channels (Red, Green, and Blue)

were encoded in a 0 to 1 range, 0 being no intensity and 1 being full intensity (per channel), so all

lighting and color calculations were done in that range. That seems okay but doesn’t reflect how

light actually works. You can see full white (all channels set to 1) in a piece of paper being lit by

sunlight, and you can see full white when you look directly at a light bulb, but even if both light

and paper are of the same color, the latter will, firstly, irritate the eye after a while, and secondly,

will have some overglow due to an excess of light. The problem here is that the maximum value

(1) is not enough to represent the most intense color, so if you have a high-intensity light and

another with even more intensity, both will generate the same color (1 in each channel) because

calculations cannot go further than 1. So, that’s why HDR Rendering was created.

HDR is a way for colors to exceed the 0 to 1 range, so lighting and effects that work based on color

intensity have better accuracy in this mode. It is the same idea as the new televisions models’

HDR feature, although in this case, Unity will do the calculations in HDR but the final image will

still work using the previous color space (0 to 1, or Low Dynamic Range (LDR), so don’t confuse

Unity’s HDR Rendering with the Display’s HDR.

Full-Screen Effects with Post-Processing420

To convert the HDR calculations back to LDR, Unity (and also TVs) uses a concept called tone-

mapping. You can see an example of an LDR-rendered scene and tonemapping being used in an

HDR scene in the following screenshots:

Figure 13.12: An LDR-rendered scene (left) and an HDR scene with corrected overbrights using
tonemapping (right)

Tonemapping is a way to bring colors outside the 0-1 range back in to it. It basically uses curves

to determine how each color channel should be mapped back.

You can clearly see this in the typical darker-to-lighter scene transition, such as when you exit a

building without windows to go out into a bright day. For a time, you will see everything lighter

until everything goes back to normal. The idea here is that calculations are not different when

you are inside or outside the building; a white wall inside the building will have a color near the

1 intensity, while the same white wall outside will have a higher value (due to sunlight). The

difference is that tonemapping will take the higher-than-1 color back to 1 when you are outside

the building, and maybe it will increase the lighting of the wall inside if all the scene is darker,

depending on how you set it. That feature is called auto-exposure.

Even if HDR is enabled by default, let’s just see how we can check that, by doing the following:

1. Go to Edit | Project Settings.

2. Click on the Graphics section in the left panel.

3. Click the asset referenced under the Scriptable Render Pipeline Settings property.

4. Click on the highlighted asset in the Project panel. Ensure that this panel is visible before

clicking the property in the Graphics settings. Alternatively, you can double-click the

asset reference in the Graphics settings to select it.

Chapter 13 421

5. Under the Quality section, ensure that HDR is checked, as illustrated in the following

screenshot:

Figure 13.13: Enabling HDR

6. Ensure that the HDR property of the Camera component in the Main Camera GameO-

bject is set to Use settings from Render Pipeline to ensure the change in the previous

steps is respected.

Of course, the fact that HDR is togglable means that there are scenarios where you don’t want to

use it. As you can guess, not all hardware supports HDR, and using it incurs a performance over-

head, so take that into account. Luckily, most effects work with both HDR and LDR color ranges,

so if you have HDR enabled but the user device doesn’t support it, you won’t get any errors, just

different results depending on the effect, such as brighter or darker images, or exaggerated effects,

as we will see in the next section, Applying advanced effects.

Now that we are sure we have HDR enabled, let’s explore some advanced effects that use this

and Depth Mapping.

Applying advanced effects
Let’s see certain effects that use the previously described techniques, starting with the common-

ly used Bloom. This effect emulates the overglow that happens around a heavily lit object on a

camera lens or even the human eye. In Figure 13.14, you can see the difference between the default

version of our scene and an exaggerated Bloom version.

Full-Screen Effects with Post-Processing422

You can observe how the effect is only applied to the brightest areas of our scene. Have a look at

both effects here:

Figure 13.14: The default scene (left) and the same scene with a high-intensity Bloom (right)

This effect is actually very common and simple, but I considered it advanced because the results

are drastically affected by HDR. This effect relies on calculating the intensity of each pixel’s color

to detect areas where it can be applied. In LDR, we can have a white object that isn’t overbright,

but due to the limitations in this color range, Bloom may cause an overglow over it. In HDR, due

to its increased color range, we can detect if an object is white or if the object is maybe light blue

but just overbright, generating the illusion that it is white (such as objects near a high-intensity

lamp). In Figure 13.15 screenshot, you can see the difference between our scene with HDR and

without it. You will notice that the LDR version will have overglow in areas that are not necessarily

overbright. The difference may be very subtle, but pay attention to the little details to note the

difference. And remember, I exaggerated the effect here. Have a look at both scenes here:

Figure 13.15: Bloom in an LDR scene (left) and Bloom in an HDR scene (right). Notice that the
Bloom settings were changed to try to approximate them as much as possible

Chapter 13 423

For now, let’s stick with the HDR version of the scene. In order to enable Bloom, do the following:

1. Add the Bloom override to the profile, as usual.

2. Enable the Intensity checkbox by checking it, and set the value to 0.2. This controls how

much overglow will be applied.

3. Enable Threshold and set it to 0.7. This value indicates the minimum intensity a color

needs to have to be considered for overglow. In our case, our scene is somewhat dark, so

we need to reduce this value in the Bloom effect settings to have more pixels included. As

usual, those values need to be adjusted to your specific scenario.

4. You will notice that the difference is very subtle, but again, remember that you will have

several effects, so all those little differences will sum up. You can see both effects in the

following screenshots:

Figure 13.16: Bloom effect

As usual, it is recommended that you fiddle with the other values. Some interesting settings I

recommend you test are the Dirt Texture and Dirt Intensity values, which will simulate dirty

lenses in the overglow area.

Now, let’s move to another common effect, Depth of Field. This one relies on the depth map we

discussed earlier. It is not that obvious to the naked eye, but when you focus on an object within

your sight, the surrounding objects became blurred because they are out of focus. We can use

this to focus the attention of the player in key moments of the gameplay. This effect will sample

the Depth Map to see if the object is within the focus range; if it is, no blur will be applied, and

vice versa.

Full-Screen Effects with Post-Processing424

In order to use it, do the following:

1. This effect depends on the camera positioning of your game. To test it, in this case, we

will put the camera near a column to try to focus on that specific object, as illustrated in

the following screenshot:

Figure 13.17: Camera positioning

2. Add the Depth of Field override.

3. Enable and set the Mode setting to Gaussian: the cheapest one in terms of performance

to use.

4. In my case, I have set Start to 10 and End to 20, which will make the effect start at a dis-

tance behind the target object. The End setting will control how the blur’s intensity will

increase, reaching its maximum at a distance of 20 meters. Remember to tweak these

values to your case.

Chapter 13 425

5. If you want to exaggerate the effect a little bit, set Max Radius to 1.5. The result is shown

in the following screenshot:

Figure 13.18: Exaggerated effect

Something to consider here is that our game will have a top-down perspective, and unlike the

first-person camera where you can see distant objects, here, we will have objects near enough

to not notice the effect, so we can limit the use of this effect just for cutscenes in our scenario.

Now, most of the remaining effects are different ways to alter the actual colors of the scene. The

idea is that the real color sometimes doesn’t give you the exact look and feel you are seeking.

Maybe you need the dark zones to be darker to reinforce the sensation of a horror ambiance, or

maybe you want to do the opposite: increase the dark areas to represent an open scene. Maybe

you want to tint the highlights a little bit to get a neon effect if you are creating a futuristic game,

or perhaps you want a sepia effect temporarily to do a flashback. We have a myriad of ways to do

this, and in this case, I will use a simple but powerful effect called Shadow, Midtones, Highlights.

This effect will apply different color corrections to—well —Shadows, Midtones, and Highlights,

meaning that we can modify darker, lighter, and medium areas separately. Let’s try it by doing

the following:

1. Add the Shadow Midtones Highlights override.

2. Let’s start doing some testing. Check the three Shadows, Midtones, and Highlights

checkboxes.

Full-Screen Effects with Post-Processing426

3. Move the Shadow and Midtones sliders all the way to the left and the one for Highlights

to the right. This will reduce the intensity of Shadows and Midtones and increase the in-

tensity of Highlights. We did this so that you can see the areas that Highlights will alter,

based on their intensity. You can do the same with the rest of the sliders to check the other

two areas. You can see the result in the following screenshot:

Figure 13.19: Isolating highlights

4. Also, you can test moving the white circle at the center of the colored circle to apply a

little bit of tinting to those areas. Reduce the intensity of the highlights by moving the

slider a little bit to the left to make the tinting more noticeable. You can see the result in

the following screenshot:

Figure 13.20: Tinting highlights

5. By doing this, you can explore how those controls work, but of course, those extreme val-

ues are useful for some edge cases. In our scene, the settings you can see in the following

screenshot worked best for me. As always, it is better to use subtler values to not distort

too much the original result, as illustrated here:

Chapter 13 427

Figure 13.21: Subtle changes

6. You can see the before-and-after effects in the following screenshots:

Figure 13.22: Before-and-after effects

You have other simpler options such as Split Toning, which does something similar but just with

Shadows and Highlights, or Color Curves, which give you advanced control of how each color

channel of the scene will be mapped, but the idea is the same—that is, to alter the actual color of

the resulting scene to apply a specific color ambiance to your scene. If you remember the movie

series The Matrix when the characters were in the Matrix, everything had subtle green tinting,

and while outside it, the tinting was blue.

Remember that the results of using HDR and not using it regarding these effects are important,

so it is better to decide sooner rather than later whether to use HDR, excluding certain target

platforms (which may not be important to your target audience), or not to use it (using LDR)

and have less control over your scene lighting levels.

Full-Screen Effects with Post-Processing428

Also, take into account that maybe you will need to tweak some objects’ settings, such as light

intensities and material properties, because sometimes we use post-processing to fix graphics

errors that may be caused by wrongly set objects, and that’s not okay. For example, increasing

the Ambient Lighting in our scene will drastically change the output of the effects, and we can

use that to increase the overall brightness instead of using an effect if we find the scene too dark.

This has covered the main image effects to use. Remember that the idea is not to use every single

one but to use the ones that you feel are contributing to your scene; they are not free in terms of

performance (although not that resource intensive), so use them wisely. Also, you can check for

the already created profiles to apply them to your game and see how little changes can make a

huge difference.

Summary
In this chapter, we discussed basic and advanced full-screen effects to apply in our scene, making

it look more realistic in terms of camera-lens effects and more stylish in terms of color distortions.

We also discussed the internals of HDR and Depth Maps and how they are important when using

those effects, which can immediately increase your game’s graphic quality with minimal effort.

Now that we have covered most of the common graphics found in Unity systems, let’s start looking

at how to increase the immersion of our scene by using sounds.

14
Sound and Music Integration

We have now achieved good enough graphics quality, but we are missing an important part of the

game aesthetics: the sound. Often relegated to being the last step in game development, sound

is one of those things that if it’s there, you won’t notice its presence, but if you don’t have it, you

will feel that something is missing. It will help you to reinforce the ambience you want in your

game and must match the graphical setting.

In this chapter, we will examine the following sound concepts:

• Importing audio

• Integrating and mixing audio

We will apply those concepts in our game to import the audio to play in different scenarios—such

as when the player shoots—and the music. Later in the programming chapters, we will play

sounds, but for now, let’s focus on how to import them into our project.

Importing audio
As with graphic assets, it is important to properly set up the import settings for your audio assets,

as the import can be resource-intensive if not done properly.

In this section, we will examine the following audio importing concepts:

• Audio types

• Configuring import settings

Let’s start by discussing the different kinds of audio we can use.

Sound and Music Integration430

Audio types
There are different types of audio present in video games, which are the following:

• Music: Music used to enhance the player’s experience according to the situation.

• Sound effects (SFX): Sounds that happen as a reaction to player or NPC actions, such as

clicking a button, walking, opening a door, shooting a gun, and so on.

• Ambient sound: A game that uses sounds only in response to events would feel empty. If

you are recreating an apartment in the middle of the city, even if the player is just idle in

the middle of the room doing nothing, lots of sounds should be heard, and the sources of

most of them will be outside the room, such as an airplane flying overhead, a construction

site two blocks away, cars in the street, and so on. Creating objects that won’t be seen is a

waste of resources. Instead, we can place individual sounds all over the scene to recreate

the desired ambience, but that would be resource-intensive, requiring lots of CPU and

RAM to achieve believable results. Considering that these sounds usually occupy the

second plane of the user’s attention, we can just combine them all into a single looping

track and just play one audio file, and that’s exactly what ambient sound is. If you want

to create a café scene, you can simply go to a real café and record a few minutes of audio,

using that as your ambient sound.

For almost all games, we will need at least one music track, one ambient track, and several SFX

to start the production of the audio. As always, we have different sources of audio assets, but we

will use the Asset Store. It has three audio categories to search for the assets we need:

Figure 14.1: Audio categories in the Asset Store

Chapter 14 431

In my case, I also used the search bar to further filter the categories, searching for weather to

find a rain effect. Sometimes, you can’t find the exact audio separately; in such cases, you will

need to dig into Packs and Libraries, so have patience here. In my case, I picked the three pack-

ages you can see in Figure 14.2, but imported just some of the sounds included, as all of them

would weigh a lot in the project in terms of size. For ambience, I picked a rain sound file called

Ambience_Rain_Moderate_01_LOOP in the case of this package, but the name of the rain sound we

are looking for can be different if you downloaded another package. Then, I picked Music – Sad

Hope for music, and for SFX, I picked one gun sound effect package for our future player’s hero

character. Of course, you can pick other packages to better suit your game’s needs:

Figure 14.2: The packages for our game

Now that we have the necessary audio packages, let’s discuss how to import them.

Sound and Music Integration432

Configuring import settings
We have several import settings we can tweak, but the problem is that we need to consider the

usage of the audio to properly set it up, so let’s see the ideal settings for each case. In order to

see the import settings, as always, you can select the asset and see it in the Inspector panel, as

in the following figure:

Figure 14.3: Audio Import Settings

Let’s discuss the most important ones, starting with Force To Mono. Some audio may come with

stereo channels, meaning that we have one sound playing in the left ear and another one for the

right ear. This means that one piece of audio can actually contain two different audio tracks. Ste-

reo sound is useful for different effects and instrument spatialization in the case of music, so we

want that in those scenarios, but there are other scenarios where stereo is not useful. Consider

3D sound effects such as a shooting gun or some walking-pace steps. In those cases, we need the

sound to be heard in the direction of the source—if the shooting of a gun happened to my left, I

need to hear it coming from my left. In these cases, we can convert stereo audio to mono audio

checking the Force To Mono checkbox in the audio import settings. This will make Unity combine

the two channels into a single one, reducing the audio usually to almost half its size (sometimes

more, sometimes less, depending on various aspects).

Chapter 14 433

You can verify the impact of that and other settings at the bottom of the Audio Asset Inspector,

where you can see the imported audio size:

Figure 14.4: Left: audio imported without Force To Mono. Right: same audio with Force To Mono

The next setting to discuss, and an important one at that, is Load Type. In order to play some audio,

Unity needs to read the audio from disk, decompress it, and then play it. Load Type changes the

way those three processes are handled. We have the following three options here:

• Decompress on Load: The most memory-intensive option. This mode will make Unity

load the audio uncompressed in memory when the scene is loaded. That means that the

audio will take lots of space in RAM because we have the uncompressed version loaded.

The advantage of using this mode is that playing the audio is easier because we have the

raw audio data ready to play in RAM.

• Streaming: The total opposite of Decompress on Load. This mode never loads audio in

RAM. Instead, while the audio is playing, Unity reads a piece of the audio asset from disk,

decompresses it, plays it, and repeats, running this process once for each piece of audio

playing in Streaming. This means that this mode will be CPU intensive, but will consume

almost zero bytes of RAM.

• Compressed in Memory: The middle ground. This mode will load the audio from disk

when the scene is loaded but will keep it compressed in memory. When Unity needs to play

the audio, it will just take a piece from the RAM, decompress it, and play it. Remember that

reading pieces of the audio asset from RAM is considerably faster than reading from disk.

Sound and Music Integration434

Maybe if you are an experienced developer, you can easily determine which mode is better suited

for which kind of audio, but if this is your first encounter with video games, it may sound con-

fusing. So, let’s discuss the best modes for different cases:

• Frequent short audio: This could be a shooting gun or the sound of footsteps, which

are sounds that last less than one second but can occur in several instances and play at

the same time. In such cases, we can use Decompress On Load. Uncompressed short

audio won’t have a huge size difference from its compressed version. Also, since this is

the most performant CPU option, having several instances won’t have a huge impact on

performance.

• Infrequent large audio: This includes music, ambient sound, and dialog. These kinds of

audio usually have just one instance playing, and they are usually big. Those cases are

better suited for Streaming mode because having them compressed or decompressed in

RAM can have a huge impact on RAM consumption in low-end devices such as mobile

devices (on PCs, we can use Compressed in Memory sometimes). A CPU can handle having

two or three bits of audio playing in Streaming mode, but try to have no more than that.

• Frequent medium audio: This includes pre-made voice chat dialog in multiplayer games,

character emotes, long explosions, or any audio that is more than 500 KB (that is not a

strict rule—this number depends a lot on the target device). Having this kind of audio

decompressed in RAM can have a noticeable impact on performance, but due to the fact

that this audio is fairly frequently used, we can have it compressed in memory. Their rel-

atively small size means they usually won’t make a huge difference in our game’s overall

size, and we will avoid wasting CPU resources on reading from disk.

There are other cases to consider, but those can be extrapolated based on the previous ones.

Remember that the previous analysis was made by taking into account the requirements of the

standard game, but this can vary a lot according to your game and your target device. Maybe

you are making a game that won’t consume lots of RAM but is pretty intensive in terms of CPU

resources, in which case you can just put everything in Decompress on Load. It’s important to

consider all aspects of your game and to balance your resources accordingly.

Finally, another thing to consider is the compression format, which will change the way Unity

will encode the audio in the published game. Different compression formats will give different

compression ratios in exchange for less fidelity with the original audio, or higher decompression

times, and all this varies a lot based on the audio patterns and length. We have three compression

formats:

Chapter 14 435

• PCM: The uncompressed format will give you the highest audio quality, with no noise

artifacts, but will result in a bigger asset file size.

• ADPCM: Compressing audio this way reduces file size and yields a fast, uncompressing pro-

cess, but this can introduce noise artifacts that can be noticeable in certain types of audio.

• Vorbis: A high-quality compression format that will yield almost zero artifacts but takes

longer to decompress, so playing Vorbis audio will be slightly more intensive than for

other formats. It also provides a quality slider to select the exact amount of compression

aggressiveness.

Which one should you use? Again, that depends on the features of your audio. Short smooth audio

can use PCM, while long noisy audio can use ADPCM; the artifacts introduced by this format will

be hidden in the audio itself. Maybe long smooth audio where compression artifacts are notice-

able could benefit from using Vorbis. Sometimes, it’s just a matter of trial and error. Maybe use

Vorbis by default and when performance is reduced, try to switch to ADPCM, and if that causes

glitches, just switch to PCM. Of course, the problem here is being sure that the audio processing

is really what’s responsible for the performance issues—maybe switching all audio to ADPCM

and checking whether that made a difference is a good way to detect that, but a better approach

would be to use the Profiler, a performance measurement tool that we will see later in this book.

We have other settings, such as Sample Rate Setting, that again, with a little trial and error, you

can use to detect the best setting.

I have set up the audio that I downloaded from the Asset Store as you can see in Figures 14.5 and

14.6. The first one shows how I set up the music and ambient audio files (large files):

Figure 14.5: Music and ambient settings

Sound and Music Integration436

The music should be configured as stereo (Force To Mono unchecked), use Streaming Load Type

because they are large and will have just one instance playing, and ADPCM Compression Format

because Vorbis didn’t result in a huge size difference.

This second screenshot shows how I set up the SFX files (small files):

Figure 14.6: Shooting SFX settings

The sounds we downloaded will be 3D, so Force To Mono should be checked. They will also be

short, so the Load Type named Decompress On Load works better. Finally, choosing the Vorbis

Compression Format reduced ADPCM size by more than a half, which is why we picked it.

Now that we have our pieces of audio properly configured, we can start to use them in our scene.

Integrating and mixing audio
We can just drag our bits of audio into our scene to start using it, but we can dig a little bit further

to explore the best ways to configure them to each possible scenario.

In this section, we will examine the following audio integration concepts:

• Using 2D and 3D AudioSources

• Using audio mixers

Let’s start exploring AudioSources, objects that are in charge of audio playback.

Using 2D and 3D AudioSources
AudioSources are components that can be attached to GameObjects. They are responsible for

emitting sound in our game based on AudioClips, which are the audio assets we downloaded

previously.

Chapter 14 437

It’s important to differentiate an AudioClip from an AudioSource; we can have a single explosion

AudioClip, but lots of AudioSources playing it, simulating several explosions. An AudioSource can

be seen as a CD player that can play AudioClips (our CDs in this analogy), only with the exception

that we can have several CD players or AudioSources playing the same CD at the same time (for

example, two explosions sounds playing at the same time).

The simplest way to create an AudioSource is to pick an AudioClip (an audio asset) and drag it

to the Hierarchy window. Try to avoid dragging the audio into an existing object; instead, drag

it between objects, so Unity will create a new object with the AudioSource instead of adding it

to an existing object (sometimes, you want an existing object to have the AudioSource, but let’s

keep things simple for now):

Figure 14.7: Dragging an AudioClip to the Hierarchy window between objects

The following screenshot shows the AudioSource generated by dragging the music asset to the

scene. You can see that the AudioClip field has a reference to the dragged audio:

Figure 14.8: AudioSource configured to play our music asset

Sound and Music Integration438

As you can see, the AudioSource has several settings, so let’s review the common ones in the

following list:

• Play on Awake: Determines whether the audio starts playing automatically when the

game starts. We can uncheck that and play the audio via scripting, perhaps when the

player shoots or jumps (more on that in Part 3 of the book).

• Loop: Will make the audio repeat automatically when it finishes playing. Remember to

always check this setting on the music and ambient audio clips. It is easy to forget this

because those tracks are long, and we may never reach the end of them in our tests.

• Volume: Controls the audio intensity.

• Pitch: Controls the audio velocity. This is useful for simulating effects such as slow motion

or the increasing revolutions of an engine.

• Spatial Blend: Controls whether our audio is 2D or 3D. In 2D mode, the audio will be

heard at the same volume at all distances, while 3D will make the audio volume decrease

as the distance from the camera increases.

In the case of our music track, I have configured it as shown in the following screenshot. You can

drag the ambient rain sound to add it to the scene and use the same settings as these because

we want the same ambient effect in all our scenes. In complex scenes, though, you can have

different 3D ambient sounds scattered all over the scene to change the sound according to the

current environment:

Figure 14.9: Music and ambient settings. This will loop, is set to Play on Awake, and is 2D

Chapter 14 439

Now, you can drag the shooting effect and configure it as shown in Figure 14.10. As you can see,

the audio, in this case, won’t loop because we want the shooting effect to play once per bullet.

Remember that, for our game, the bullet will be a Prefab that will spawn each time we press the

shoot key, so each bullet will have its own AudioSource that will play when the bullet is created.

Also, the bullet is set to a 3D Spatial Blend, meaning that the effect will be transmitted through

different speakers based on the position of the AudioSource against the camera position:

Figure 14.10: Sound effect setting. This won’t loop and is a 3D sound

Something to consider in the case of 3D sounds is the Volume Rolloff setting, which is inside

the 3D sound settings section. This setting controls how the volume decays as distance from the

camera increases. By default, you can see that this setting is set to Logarithmic Rolloff, the way

real-life sound works, but sometimes you don’t want real-life sound decay, because sounds in

real life are usually heard slightly even if the source is very far away.

Sound and Music Integration440

One option is to switch to Linear Rolloff and configure the exact maximum distance with the

Max Distance setting:

Figure 14.11: A 3D sound with a maximum distance of 10 metres, using Linear Rolloff

Considering we just discussed 3D sounds, it is worth mentioning the AudioListener component,

one that is created by default in the MainCamera, and 99% of the time, this component will be

placed in the MainCamera. It serves as a way to identify which object represents the ears of the

player in the world, with which we can calculate audio directionality. The camera is the logical

place to put it given it represents the eyes of the user, and having the eyes and the ears of the player

in different places would be confusing. There are no properties to configure in the AudioListener

component, but it is important to mention that in order for audio to work, we need one, and no

more than one; we have just one pair of ears:

Figure 14.12: Audio Listener component in the Main Camera

Now that we can configure individual pieces of audio, let’s see how to apply effects to groups of

audio instances using an Audio Mixer.

Chapter 14 441

Using an Audio Mixer
We will have several audio instances playing all over our game: the footsteps of characters, shoot-

ing, bonfires, explosions, rain, and so on. Controlling exactly which sounds are supposed to sound

louder or quieter depending on the context, and applying effects to reinforce certain situations,

such as being stunned due to a nearby explosion, is called audio mixing—the process of mixing

several sounds together in a cohesive and controlled way.

In Unity, we can create an Audio Mixer, an asset that we can use to define groups of sounds. All

changes to a group will affect all sounds inside it by raising or lowering the volume, perhaps, or

by applying an effect. You can have SFX and music groups to control sounds separately—as an

example, you could lower the SFX volume while in the Pause menu but not the music volume.

Also, groups are organized in a hierarchy, where a group can also contain other groups, so a change

in a group will also apply changes to its sub-groups. As a matter of fact, every group you create

will always be a child group of the master group, the group that controls every single sound in

the game (that uses that mixer).

Let’s create a mixer with SFX and music groups:

1. In the Project window, using the + button, select the Audio Mixer option. Name the asset

as you wish; in my case, I chose Main Mixer.

2. Double-click the created asset to open the Audio Mixer window:

Figure 14.13: Audio Mixer window

Sound and Music Integration442

3. Click the + button at the right of the Groups label to create a child group of the master

node. Name it SFX:

Figure 14.14: Group creation

4. Click on the Master group and click again on the + button to create another master node

child group called Music. Remember to select the Master group before clicking the + button,

because if another group is selected, the new group will be a child of that one. Anyway,

you can rearrange a group child-parent relationship by dragging the group in the Groups

panel in the AudioMixer window:

Figure 14.15: The Master, SFX, and Music groups

5. Select the Music GameObject of our scene back in the Hierarchy window and look for the

AudioSource component in the Inspector window.

6. Click the circle to the right of the Output property to open the AudioMixerGroup selector

window and select the Music group. This will make that AudioSource affected by the

settings on the specified Mixer group:

Figure 14.16: Making an AudioSource belong to an Audio Mixer group

Chapter 14 443

7. If you play the game now, you can see how the volume meters in the Audio Mixer window

start to move, indicating that the music is going through the Music group. You will also

see that the Master group volume meter is also moving, indicating that the sound that is

passing through the Music group is also passing through the Master group (the parent

of the Music group) before going to the sound card of your computer:

Figure 14.17: Group volumes levels

8. Repeat steps 5 and 6 for the ambient and shooting sounds to make them belong to the

SFX group.

Now that we have separated our sounds into groups, we can start adjusting the groups’ settings.

But, before doing that, we need to take into account the fact that we won’t want the same settings

all the time, as in the previously mentioned pause menu case, where the SFX volume should be

lower. To handle those scenarios, we can create snapshots, which are presets of our mixer that

can be activated via scripting during our game. We will deal with the scripting steps in Part 3 of

this book, but we can create a normal snapshot for the in-game settings and a pause snapshot

for the pause menu settings.

If you check the Snapshots list, you will see that a single snapshot has already been created—that

can be our normal snapshot. So, let’s create a pause snapshot by doing the following:

1. Click on the + button to the right of the Snapshots label and call the snapshot Pause. Re-

member to stop the game to edit the mixer or click the Edit in Playmode option to allow

Unity to change the mixer during play. If you do the latter, remember that the changes

will persist when you stop the game, unlike changes to GameObjects. Actually, if you

change other assets during Play mode, those changes will also persist—only GameObject

changes are reverted.

Sound and Music Integration444

There are some other cases, like Materials and Animations, changes to which are not

reverted after pausing given that they are assets, but we won’t discuss them right now:

Figure 14.18: Snapshot creation

2. Select the Pause snapshot and lower the volume slider of the SFX group:

Figure 14.19: Lowering the volume of the Pause snapshot

3. Play the game and hear how the sound is still at its normal volume. That’s because the

original snapshot is the default one—you can see that by checking for the star to its

right. You can right-click any snapshot and make it the default one using the Set as Start

Snapshot option.

4. Click on Edit in Playmode to enable Audio Mixer modification during runtime.

5. Click on the Pause snapshot to enable it and hear how the Shooting and Ambient sound

volumes have decreased.

As you can see, one of the main uses of the mixer is to control group volume, especially when you

see that the intensity of a group’s volume is going higher than the 0 mark, indicating that the

group is too loud. Anyway, there are other uses for the mixer, such as applying effects. If you’ve

played any war game, you will have noticed that whenever a bomb explodes nearby, you hear

the sound differently for a moment, as if the sound were located in another room. That can be

accomplished using an effect called Low Pass, which blocks high-frequency sounds, and that’s

exactly what happens with our ears in those scenarios: the stress of the high-volume sound gener-

ated by an explosion irritates our ears, making them less sensitive to high frequencies for a while.

Chapter 14 445

We can add effects to any channel and configure them according to the current snapshot, just as

we did for the volume, by doing the following:

1. Click on the Add… button at the bottom of the Master group and select Lowpass Simple:

Figure 14.20: The effects list of a channel

2. Select the normal snapshot (the one called Snapshot) to modify it.

3. Select the Master group and look at the Inspector panel, where you will see settings for

the group and its effects.

4. Set the Cutoff freq property of the Lowpass Simple settings to the highest value (22000),

this will disable the effect.

5. Repeat steps 3 and 4 for the Pause snapshot; we don’t want this effect in that snapshot.

6. Create a new snapshot called Bomb Stun and select it to edit it.

7. Set Cutoff freq to 1000:

Figure 14.21: Setting the cutoff frequency of the Lowpass Simple effect

8. Play the game and change between snapshots to check the difference.

Sound and Music Integration446

Now that we have integrated the audio, let’s see how we can script our audio.

Scripting audio feedback
As with the VFX, audio also needs to react to what is happening to the game to give a better sense

of immersion. Let’s start adding sound to the explosion effect that enemies spawn when they

die, which doesn’t necessarily need scripting itself, but is a result of the script that spawned the

explosion in the first place:

1. Download an explosion sound effect from the internet or the Asset Store.

2. Select the Explosion prefab we spawn when the enemies die and add Audio Source to it.

3. Set the downloaded explosion’s audio clip as the AudioClip property of the audio source.

4. Make sure Play On Awake is checked and Loop is unchecked under Audio Source:

Figure 14.22: Adding sounds to our explosion effect

Aside from the Low Pass filter, you can apply several other filters, such as Echo, to

create an almost dreamy effect, or a combination of Send, Receive, and Duck to

make a group lower its volume based on the intensity of another group (for instance,

you may want to lower SFX volume when dialog is happening). I invite you to try

those and other effects and check the results to identify potential uses by read-

ing the following documentation: https://docs.unity3d.com/Manual/class-

AudioEffectMixer.html.

https://docs.unity3d.com/Manual/class-AudioEffectMixer.html
https://docs.unity3d.com/Manual/class-AudioEffectMixer.html

Chapter 14 447

As you can see here, we didn’t need to use any script. As the sound is added to the Prefab, it will

be played automatically at the very moment the Prefab is instantiated. Now, let’s integrate the

shooting sound by doing the following:

1. Download a shooting sound and add it through an audio source to the player’s weapon

muzzle effect (not the weapon), this time unchecking the Play On Awake checkbox.

2. In the PlayerShooting script, create a field of the AudioSource type called shootSound.

3. Select the Player in the Hierarchy and drag the weapon muzzle effect GameObject to

the Shoot Sound property in the Inspector to connect the script with the AudioSource

variable in the weapon muzzle effect.

4. In the if statement that checks whether we can shoot, add the shootSound.Play(); line

to execute the sound when shooting:

Figure 14.23: Adding sound when shooting

Sound and Music Integration448

The Visual Scripting additional nodes would look like this:

Figure 14.24: Adding sound when shooting in Visual Scripting

As we did with the muzzle effect, we added a GameObject variable called shootSound to reference

the weapon GameObject that contains the AudioSource, and then we called the Play method of

the shootSound variable.

I challenge you to try adding shooting sounds to the enemy AI in both C# and Visual Scripting

versions of the scripts. Take as a guide what we did in Chapter 11, Visual Effects with Particle Sys-

tems and Visual Effect Graph, for the muzzle effect, and in any case, you can always check the Git

repository of the book (link can be found in the Preface) for the solution.

Another approach to this would be the same as the one we did with the explosion; just add the

shooting sound to the bullet, but if the bullet collides with a wall, soon enough the sound will be

cut off. Or, if in the future we want an automatic weapon sound, it will need to be implemented

as a single looping sound that starts when we press the relevant key and stops when we release it.

This way, we prevent too many sound instances from overlapping when we shoot too many bullets.

Take into account those kinds of scenarios when choosing the approach to script your feedback.

Chapter 14 449

Summary
In this chapter, we discussed how to import and integrate sounds, considering their impact on

memory usage, and we considered how to apply effects to generate different scenarios. Sound is a

big part of achieving the desired game experience, so take the proper amount of time to get it right.

Now that we have covered almost all of the vital aesthetic aspects of our game, let’s create another

form of visual communication, the user interface or UI. We will create the necessary UI to display

the player’s current score, bullets, life, and lots more info in the next chapter.

15
User Interface Design

Everything that is shown on the screen and transmitted through the speakers of a computer is a

form of communication. In previous chapters, we used 3D models to let the user know that they

are in a base in the middle of the mountains, and we reinforced that idea with the appropriate

sound and music. But for our game, we need to communicate other information, such as the

amount of life the player has left and the current score, and sometimes, it is difficult to express

these things using the in-game graphics (there are some successful cases that manage to do this,

such as Dead Space, but let’s keep things simple).

In order to transmit this information, we need to add another layer of graphics on top of our scene,

which is usually called the User Interface (UI). This will contain different visual elements, such

as text fields, bars, and buttons, to prepare the user to make an informed decision based on things

such as fleeing to a safe place when their life is low.

In this chapter, we will visit the following topics:

• Understanding the Canvas and RectTransform

• Canvas object types

• Creating a responsive UI

By the end of this chapter, you will be able to use the Unity UI system to create interfaces capable

of informing the user about the state of the game and allowing them to take action by pressing

buttons. Let’s start by discussing the basic concepts of the Unity UI system—the Canvas and

RectTransform.

User Interface Design452

Understanding the Canvas and RectTransform
We are only going to focus on the in-game UI to communicate different information to the player

using the Unity GUI system (or uGUI). At the time of writing this book, a new GUI system called

UI Toolkit has been released, but uGUI will still be here for a while, given UI Toolkit will be used

mostly in new projects, and is still perfectly capable of handling all types of UI. We will explore

UI Toolkit in the next chapter.

If you are going to work with Unity UI, you first need to understand its two main concepts—the

Canvas and RectTransform. The Canvas is the master object that will contain and render our

UI, and RectTransform is the feature in charge of positioning and adapting each UI element on

our screen.

In this section, we will be:

• Creating a UI with the Canvas

• Positioning elements with RectTransform

Let’s start by using the Canvas component to create our UI.

Creating a UI with the Canvas
In Unity UI, each image, text, and element you see in the UI is a GameObject with a set of proper

components, but in order for them to work, they must be a child of a master GameObject with the

Canvas component. This component is responsible for triggering the UI generation and drawing

iterations over each child object. We can configure this component to specify exactly how that

process works and adapt it to different possible requirements.

To start, you can simply create a canvas with the GameObject | UI | Canvas option. After doing that,

you will see a rectangle in the scene, which represents the user screen, so you can put elements

inside it and preview where they will be located relative to the user’s monitor.

You are probably wondering two things here. First, “Why is the rectangle in the middle of the scene?

I want it to always be on the screen!” Don’t worry because that will be exactly the case. When you

edit the UI, you will see it as part of the level, as an object inside it, but when you play the game, it

will be always projected over the screen, on top of every object. Also, you may be wondering why

the rectangle is huge, and that’s because one pixel of the screen map corresponds to one meter on

the scene when using the default Canvas Render Mode, the one called Screen Space - Overlay.

There are other modes, but discussing them is outside of the scope of this chapter.

Chapter 15 453

Again, don’t worry about that; you will see all your UI elements in their proper size and position on

the user’s screen when you see the game in the Game view. Consider setting the Game view size

prior to editing it in the Scene view given that the Scene view will follow the Game view dimen-

sions. You can do that by clicking the dropdown saying Free Aspect at the top part of the Game

panel and selecting the desired resolution or aspect ratio, 16:9 Aspect being the most used option:

Figure 15.1: A default image UI element—a white box

Before adding elements to our UI, it’s worth noting that when you created the UI, a second object

was created alongside the Canvas, called EventSystem. This object is not necessary to render a

UI but is necessary if you want the UI to be interactable, which means including actions such as

clicking buttons, introducing text in fields, or navigating the UI with the joystick. The EventSys-

tem component is responsible for sampling the user input, such as with a keyboard, mouse, or

joystick, and sending that data to the UI to react accordingly. We can change the exact buttons

to interact with the UI, but the defaults are OK for now, so just know that you need this object

if you want to interact with the UI. If for some reason you delete the object, you can recreate it

again in GameObject | UI | Event System.

Now that we have the base objects to create our UI, let’s add elements to it.

Positioning elements with RectTransform
In Unity UI, each image, text, and element you see in the UI is a GameObject with a set of proper

components according to its usage, but you will see that most of them have one component in

common—RectTransform. Each piece of the UI is essentially a rectangle filled with text or images

and has different behavior, so it is important to understand how the RectTransform component

works and how to edit it.

User Interface Design454

In order to experiment with this component, let’s create and edit the position of a simple white

box element for the UI as follows:

1. Go to GameObject | UI | Image. After that, you will see that a new GameObject is created

within the Canvas element. Unity will take care of setting any new UI element as a child

of the Canvas; outside it, the element will not be visible:

Figure 15.2: A default image UI element—a white box

2. Click on the 2D button in the top bar of the Scene view. This will just change the per-

spective of the Scene view to one that is better suited to edit the UI (and also 2D games):

Figure 15.3: The 2D button location

3. Double-click on the Canvas in the Hierarchy window to make the UI fit entirely in the

Scene view. This will allow us to edit the UI clearly. You can also navigate the UI using

the mouse scroll wheel to zoom, and click and drag the scroll wheel to pan the camera.

4. Enable the RectTransform tool, which is the fifth button in the top-left part of the Unity

Editor (or press the T key). This will enable the rectangle gizmo, which allows you to

move, rotate, and scale 2D elements without the issues the regular 3D transform gizmos

can cause:

Chapter 15 455

Figure 15.4: The rectangle gizmo button

5. Using the rectangle gizmo, drag the object to move it, use the blue dots to change its size,

or locate the mouse in a position near the blue dots until the cursor becomes a curved

arrow to rotate it. Consider that resizing the object using this gizmo is not the same as

scaling the object, but more on that in a moment:

Figure 15.5: The rectangle gizmo for editing 2D elements

User Interface Design456

6. In the Inspector window, notice that after changing the size of the UI element, the Rect

Transform setting’s Scale property is still at 1, 1, 1, but you can see how the Width and

Height properties changed. RectTransform is essentially a classic transform but with

Width and Height added (among other properties to explore later). You can set the exact

values you want here expressed in pixels:

Figure 15.6: The Rect Transform properties

Now that we know the very basics of how to position any UI object, let’s explore the different

types of elements you can add to the Canvas.

Canvas object types
So far, we have used the simplest Canvas object type—a white box—but there are plenty of other

object types we can use, such as images, buttons, and text. All of them use RectTransform to

define their display area, but each one has its own concepts and configurations to understand.

In this section, we will explore the following Canvas object concepts:

• Integrating assets for the UI

• Creating UI controls

Let’s first start exploring how we can integrate images and fonts to use in our Canvas so that we

can integrate them in our UI using the Images and Text UI object types.

Integrating assets for the UI
Before making our UI use nice graphics assets, we need to integrate them properly into Unity. In

the following screenshot, you will find the UI design we propose for our game:

Chapter 15 457

Figure 15.7: UI design

On top of that, we will add a Pause menu, which will be activated when the user presses Esc. It

will look like the following screenshot:

Figure 15.8: The Pause menu design

User Interface Design458

Based on these designs, we can determine that we will need the following assets:

• The hero’s avatar image

• A health bar image

• A Pause menu background image

• A Pause menu button image

• Font for the text

As always, we can find the required assets on the internet or in the Asset Store. In my case, I will

use a mixture of both. Let’s start with the simplest one—the avatar. Take the following steps:

1. Download the avatar you want from the internet, like an image with a face of a character.

2. Add it to your project, either by dragging it to the Project window or by using the Assets

| Import New Asset option. Add it to a Sprites folder.

3. Select the texture, and in the Inspector window, set the Texture Type setting to Sprite

(2D and UI). All textures are prepared to be used in 3D by default. This option prepares

our texture to be used in 2D contexts, like the UI and also 2D games.

For the bars, buttons, and the window background, I will use Asset Store to look for a UI pack.

In my case, I found the package in the following screenshot a good one to start my UI. As usual,

remember that this exact package might not be available right now. In that case, remember to

look for another similar package, or pick the sprites from the GitHub repo:

Figure 15.9: Selected UI pack

Chapter 15 459

At first, the package contains lots of images configured the same way, as sprites, but we can further

modify the import settings to achieve advanced behavior, which we will need for the buttons. The

button asset comes with a fixed size, but what happens if you need a bigger button? One option

is to use other button assets with different sizes, but this will lead to a lot of repetitions of the

buttons and other assets, such as different-sized backgrounds for different windows, which will

unnecessarily consume RAM.

Another option is to use the 9-slices method, which consists of splitting an image so that the

corners are separated from the other parts. This allows Unity to stretch the middle parts of the

image to fit different sizes, keeping the corners at their original size, which, when combined with

an image prepared for the 9-slices technique, can be used to create almost any size you need.

In Figure 15.10, you can see a shape with nine slices in the bottom-left corner, and at the bot-

tom-right corner of the same diagram, you can see the shape is stretched but keeps its corners

at their original size. The top-right corner shows the shape stretched without slices. You can see

how the non-sliced version is distorted:

Figure 15.10: Sliced versus non-sliced image stretching

User Interface Design460

In this case, we can apply the nine slices to the button and the panel background images to use

them in different parts of our game. In order to do this, do the following:

1. Open Package Manager using the Window | Package Manager option.

2. Verify that Package Manager is showing all the packages by setting the dropdown to the

right of the + button in the top-left part of the window to Unity Registry as usual.

3. Install the 2D Sprite package to enable the sprite editing tools (if it is not already installed).

4. Select the button sprite in the Project window and click on the Sprite Editor button in

the Inspector window:

Figure 15.11: The Sprite Editor button in the Inspector window

5. In the Sprite Editor window, locate and drag the green dots at the edges of the image

to move the slice rulers. Try to ensure that the slices are not located in the middle of the

edges of the button. One thing to notice is that in our case, we will work with three slices

instead of nine because our button won’t be stretched vertically. If you don’t see the dots,

try clicking the image to make them appear.

Chapter 15 461

6. Notice that after dragging the green dots, the Border properties (L, T, R, and B, which

are left, top, right, and bottom, respectively) in the bottom-right corner changed. Those

are the exact values you set by moving the green dots. Feel free to change them to more

round numbers to allow the 9 slices to work evenly. In our case, Left and Right became a

round 60, and top and bottom 50.

7. Click on the Apply button in the top-right corner of the window and close it:

Figure 15.12: Nine slices in the Sprite Editor window

8. Repeat steps 4 to 6 for the Background panel image. In my case, you can see in Figure 15.13

that this background is not completely prepared with nine slices in mind because all the

middle areas of the image can be made smaller to save memory.

User Interface Design462

When displaying this image with a smaller width, the 9-slicing method will stretch the

middle part and will look the same, so essentially is wasted memory:

Figure 15.13: Nine slices in the Sprite Editor window

Now that we have prepared our sprites, we can find a font to customize the text of our UI. Before

discussing how to import fonts, it is worth mentioning that we will be using TextMesh Pro, a

Unity package (already included in the project) that provides a text rendering solution much

better than the old text component. If you never used that component before, you shouldn’t

worry about this detail.

You must get fonts in the .ttf or .otf formats and import them to Unity. You can find lots of

good, free font websites on the internet. I am used to working with the classic DaFont.com site,

but there are plenty of other sites that you can use. In my case, I will work with the Militech font:

DaFont.com

Chapter 15 463

Figure 15.14: My chosen font from DaFont.com to use in the project

If the font download comes with more than one file, you can just drag them all into Unity and

then use the one that you like the most. Also, as usual, try to put the font inside a folder called

Fonts. Now, these files’ format is not compatible with TextMesh Pro, our text rendering solution,

so we must convert it using the Font Asset Creator window, as depicted in the following steps:

1. Go to Window | Text Mesh Pro | Font Asset Creator.

2. If this is the first time you have used Text Mesh Pro in your project, a window will appear.

You must click the option Import TMP Essentials and wait for the import process to finish:

Figure 15.15: TextMesh Pro first run initialization

3. Close the TMP Importer window.

4. In Font Asset Creator, drag your font from the Project view to the Source Font File, or

select it by clicking the Target button at the right (the circle with the point at the center).

User Interface Design464

5. Click the Generate Font Atlas button and wait a moment:

Figure 15.16: Converting font assets to TextMesh Pro

Chapter 15 465

6. Click the Save button and save the converted font in the TextMesh Pro | Resources | Fonts

& Materials folder. Saving here is important so don’t forget to pick the proper folder:

Figure 15.17: Saving the converted font in the proper folder (Mac)

Now that we have all the required assets to create our UI, let’s explore the different types of com-

ponents to create all the required UI elements.

Creating UI controls
Almost every single part of the UI will be a combination of images and texts configured cleverly.

In this section, we will explore how to create images, text, and buttons, starting with images. We

have already an image in our UI—the white rectangle we created previously. If you select it and

look at the Inspector window, you will notice that it has an Image component, like the one in

the following screenshot:

Figure 15.18: The Image component’s Inspector window

User Interface Design466

Let’s start exploring the settings of this component, starting with our hero’s avatar:

1. Using the rectangle gizmo, move the white rectangle to the top-left part of the UI:

Figure 15.19: The white rectangle located at the top-left part of the UI

2. In the Inspector window, click on the circle to the right of the Source Image property and

pick the downloaded hero avatar sprite:

Figure 15.20: Setting the sprite of our Image component

3. We need to correct the aspect ratio of the image to prevent distortion. One way to do this

is to click the Set Native Size button at the bottom of the Image component to make the

image use the same size as the original sprite. However, by doing this, the image can be-

come too big, so you can reduce the image size by pressing Shift to modify both the Width

and Height values. Another option is to check the Preserve Aspect checkbox to make sure

the image fits the rectangle without stretching. In my case, I will use both:

Figure 15.21: The Preserve Aspect and Set Native Size image options

Chapter 15 467

Now, let’s create the life bars by doing the following:

1. Create another Image component using the GameObject | UI | Image option.

2. Set the Source Image property to the life bar image you downloaded:

Figure 15.22: The avatar and life bar

3. Set the Image Type property to Filled.

4. Set the Fill Method property to Horizontal.

5. Drag the Fill Amount slider to see how the bar is cut according to the value of the slider.

We will change that value via scripting later in Chapter 18, Optimization with Profiler, Frame

Debugger, and Memory Profiler:

Figure 15.23: The Fill Amount slider, cutting the image width by 73% of its size

6. In my case, the bar image also comes with a bar frame, creating another image, setting

the sprite, and positioning it on top of the life bar to frame it. Bear in mind that the order

the objects appear in the Hierarchy window determines the order in which they will be

drawn. So, in my case, I need to be sure the frame GameObject is below the health bar

image. Also, consider the bar frame image is not sliced, so there’s no need to use the Sliced

Image Type in this case. Feel free to try slicing it and see the results:

Figure 15.24: Putting one image on top of the other to create a frame effect

User Interface Design468

7. Repeat steps 1 to 6 to create the base bar at the bottom, or just copy and paste the bar and

the frame and locate it at the bottom of the screen:

Figure 15.25: The Player’s and Player’s Base health bars

8. Click on the + button in the Project window and select the Sprites | Square option. This

will create a simple squared sprite with a 4x4 resolution.

9. Set the sprite as the base bar of the Player’s Base health bar instead of the downloaded bar

sprite. This time, we will be using a plain-white image for the bar because in my case, the

original one is red, and tinting the color of a red image to green is not possible. However,

a white image can be easily tinted. Take into account the detail of the original bar—for

example, the little shadow in my original bar won’t be present here.

10. Select the base health bar and set the Color property to green:

Figure 15.26: A bar with a squared sprite and green tint

11. One optional step would be to convert the bar frame image into a nine-slices image to

allow us to change the original width to fit the screen.

Chapter 15 469

Now, let’s add the text fields for the Score, Bullets, Remaining Waves, and Remaining Enemies

labels by doing the following:

1. Create a text label using the GameObject | UI | Text - Text Mesh Pro option (avoid the

one that only says Text). This will be the Score label.

2. Position the label at the top-right part of the screen.

3. In the Inspector window, set the Text Input property to Score: 0.

4. Set the Font Size property to 20.

5. Apply the converted font by clicking on the circle to the right of the Font Asset property

and selecting the desired font.

6. In the Alignment property, select the Horizontal Right Align icon (third button from

the first row) and the Vertical Center Align icon (second button from the second row):

Figure 15.27: The settings for a text label

User Interface Design470

7. Repeat steps 1 to 6 to create the other three labels (or just copy and paste the score three

times). For the Remaining Waves label, you can use the left alignment option to better

match the original design:

Figure 15.28: All the labels for our UI

8. Set the color of all the labels to white as our scene will be mainly dark.

Now that we have completed the original UI design, we can create the Pause menu:

1. Create an Image component for the menu’s background (GameObject | UI | Image).

2. Set the Background panel sprite with the nine slices we made earlier.

3. Set the Image Type property to Sliced if it is not already. This mode will apply the 9-slice

scaling method to prevent the corners from stretching.

Chapter 15 471

4. There’s a chance that the image will stretch the corners anyway, which happens because

sometimes the corners are quite big compared to the RectTransform setting’s Size prop-

erty that you are using, so Unity has no option other than to do that. In this scenario, the

correct solution is to have an artist that creates assets tailored to your game, but sometimes

we don’t have that option. This time, we can just increase the Pixels Per Unit value of the

sprite file, which will reduce the scale of the original image while preserving its resolu-

tion. In the following two screenshots, you can see the background image with a Pixels

Per Unit value of 100 and again with 700. Remember to only do this for the nine-slices or

tiled-image types, or if you don’t have an artist to adjust it for you:

Figure 15.29: On top, a large nine-slices image in a small RectTransform component,
small enough to shrink the corners, and on the bottom, the same image with Pixels

Per Unit set to 700

5. Create a TextMesh Pro text field, position it where you want the Pause label to be in your

diagram, set it to display the Pause text, and set the font. Remember that you can change

the text color with the Color property.

User Interface Design472

6. Drag the text field onto the background image. The parenting system in Canvas works

the same—if you move the parent, the children will move with it. The idea is that if we

disable the panel, it will also disable the buttons and all its content:

Figure 15.30: The Pause label

7. Create two buttons by going to GameObject | UI | Button - Text Mesh Pro (avoid using the

one that only says Button). Position them where you want them on the background image.

8. Set them as children of the Pause background image by dragging them in the Hierarchy

window.

9. Select the buttons and set the Source Image property of their Image components to use

the button sprite that we downloaded earlier. Remember our Pixels Per Unit fix from step

4 in this list if you have the same problem as before.

10. You will notice that the button is essentially an image with a child TextMesh Pro text

object. Change the font of each button and the text in each button to Resume and Quit:

Chapter 15 473

Figure 15.31: The Pause menu implementation

11. Remember that you can hide the panel by unchecking the checkbox to the right of the

name of the object in the top part of the Inspector window:

Figure 15.32: Disabling a GameObject

In this section, we discussed how to import images and fonts to be integrated through the Image,

Text, and Button components to create a rich and informative UI. Having done that, let’s discuss

how to make them adapt to different devices.

Creating a responsive UI
Nowadays, it is almost impossible to design a UI in a single resolution, and our target audience

display devices can vary a lot. A PC has a variety of different kinds of monitors with different res-

olutions (such as 1080p and 4k) and aspect ratios (such as 16:9, 16:10, and ultra-wide), and the

same goes for mobile devices. We need to prepare our UI to adapt to the most common displays,

and Unity UI has the tools needed to do so.

User Interface Design474

In this section, we will explore the following UI responsiveness concepts:

• Adapting object positions

• Adapting object sizes

We are going to explore how the UI elements can adapt their position and size to different screen

sizes using advanced features of the Canvas and RectTransform components, such as Anchors

and Scalers.

Adapting object positions
Right now, if we play our game, we will see how the UI fits nicely onto our screen. But if for some

reason we change the Game view size, we will see how objects start to disappear from the screen.

In the following screenshots, you can see different-sized game windows and how the UI looks

nice in one but bad in the others:

Figure 15.33: The same UI but on different screen sizes

Chapter 15 475

The problem is that we created the UI using whatever resolution we had in the editor, but as

soon as we change it slightly, the UI keeps its design for the previous resolution. Also, if you look

closely, you will notice that the UI is always centered, such as in the second image, where the UI

is cropped at its sides, or in the third image, where extra space is visible along the borders of the

screen. This happens because every single element in the UI has its own Anchor, a little cross you

can see when you select an object, such as the one in the following screenshot:

Figure 15.34: An Anchor cross in the bottom-right part of the screen belonging to the hero
avatar in the top-left part of the screen

The x and y position of the object is measured as a distance to that Anchor, and the Anchor has

a position relative to the screen, with its default position being at the center of the screen. This

means that on an 800 x 600 screen, the Anchor will be placed at the 400 x 300 position, and on

a 1920 x 1080 screen, the Anchor will be located at the 960 x 540 position. If the x and y position

of the element (the one in RectTransform) is 0, the object will always be at a distance of 0 from

the center. In the middle screenshot of the previous three examples, the hero avatar falls outside

of the screen because its distance from the center is greater than half the screen, and the current

distance was calculated based on the previous bigger screen size. So, what we can do about that?

Move the Anchor!

By setting a relative position, we can position the Anchor at different parts of our screen and

make that part of the screen our reference position. In the case of our hero avatar, we can place

the Anchor in the top-left corner of the screen to guarantee that our avatar will be at a fixed

distance from that corner.

User Interface Design476

We can do that by following these steps:

1. Select your player avatar.

2. Expand the RectTranform component in the Inspector, if not expanded yet, in a way that

you can see its properties. This will reveal the Anchors in the Scene view.

3. Drag the Anchor cross with your mouse to the top-left part of the screen. If for some

reason the Anchor breaks into pieces when you drag it, undo the change (press Ctrl + Z,

or Command + Z on Mac) and try to drag it by clicking in the center. We will break the An-

chor later. Check the avatar image RectTransform component to verify that the Anchors

property Min and Max sub-properties have the same values as in Figure 15.35, meaning

the object has correctly configured the Anchors to be in the top-left part of the screen:

Figure 15.35: An image with an Anchor in the top-left part of the screen

4. Put the Anchor of the Health Bar object and its frame in the same position. We want the

bar to always be at the same distance from that corner so that it will move alongside the

hero avatar if the screen size changes.

5. Place the Anchor in the bottom-center part of the screen for the Boss Bar object so that

it will always be centered. Later, we will deal with adjusting its size.

6. Put the Remaining Waves label in the bottom-left corner, and Remaining Enemies in

the bottom-right corner:

Figure 15.36: The Anchors for the life bar and the labels

Chapter 15 477

7. Put the Score and Bullets Anchors in the top-right corner:

Figure 15.37: The Anchors for the Score and Bullets labels

8. Select any element and drag the sides of the Canvas rectangle with your mouse to preview

how the elements will adapt to their positions. Take into account that you must select

any object that is a direct child of the Canvas; the text within the buttons won’t have

that option:

Figure 15.38: Previewing the Canvas resizing

Now that our UI elements have adapted to their positions, let’s consider scenarios where the

object size must adapt as well.

Adapting object sizes
The first thing to consider when dealing with different aspect ratios is that our screen elements

may not only move from their original design position (which we fixed in the previous section)

but also, they may not fit into the original design. In our UI, we have the case of the health bar,

where the bar clearly doesn’t adapt to the screen width when we previewed it on a wider screen.

We can fix this by breaking our Anchors.

User Interface Design478

When we break our Anchors, the position and size of our object are calculated as a distance rela-

tive to the different Anchor parts. If we split the Anchor horizontally, instead of having an X and

Width property, we will have a Left and Right property, representing the distance to the left and

right Anchor. We can use this in the following way:

1. Select the health bar and drag the left part of the Anchor all the way to the left part of the

screen, and the right part to the right part of the screen.

2. Do the same for the health bar frame:

Figure 15.39: The splitter Anchor in the health bar

3. Check the Rect Transform setting’s Left and Right properties in the Inspector window,

which represent the current distance to their respective Anchors. If you want, you can add

a specific value, especially if your health bars are displaying outside the screen:

Figure 15.40: The Left and Right properties of a split anchor

This way, the object will always be at a fixed distance of a relative position to the screen—in this

case, the sides of the screen. If you are working with a child object, as is the case with the Text

and Image components of the buttons, the Anchors are relative to the parent. If you pay atten-

tion to the Anchors of the text, they are not only split horizontally but also vertically. This allows

the text to adapt its position to the size of the button, so you won’t have to change it manually:

Figure 15.41: The split Anchors of the text of the button

Chapter 15 479

Now, this solution is not suitable for all scenarios. Let’s consider a case where the hero avatar is

displayed in higher resolution than what it was designed for. Even if the avatar is correctly placed,

it will be displayed smaller because the screen has more pixels per inch than screens with lower

resolutions and the same physical size. You consider using split Anchors, but the width and

height Anchors could be scaled differently in different aspect ratio screens, so the original image

becomes distorted. Instead, we can use the Canvas Scaler component.

The Canvas Scaler component defines what one pixel means in our scenario. If our UI design

resolution is 1080p, but we see it in a 4k display (which is twice the resolution of 1080p), we can

scale the UI so that a pixel becomes 2, adapting its size to keep the same proportional size as the

original design. Basically, the idea is that if the screen is bigger, our elements should also be bigger.

We can use this component by doing the following:

1. Select the Canvas object and locate the Canvas Scaler component in the Inspector window.

2. Set the UI Scale Mode property to Scale with Screen Size.

3. If working with an artist, set the reference resolution to the resolution in which the artist

created the UI, keeping in mind that it must be the highest target device resolution (this

isn’t the case for us). In our case, we are not sure which resolution the artist of the down-

loaded assets had in mind, so we can put 1920 x 1080, which is the full HD resolution size

and is very common nowadays.

4. Set the Match property to Height. The idea of this property is that it sets which side of the

resolution will be considered when carrying out the scaling calculation. In our case, if we

are playing the game in 1080p resolution, 1 UI pixel equals 1 real screen pixel. However, if

we are playing in 720p resolution, 1 UI pixel will be 0.6 real pixels, so the elements will be

smaller on smaller resolution screens, keeping the correct size. We didn’t choose a Width

value in this case because we can have extreme widths in screens, such as ultra-wide, and

if we picked that option, those screens would scale the UI unnecessarily. Another option

is to set this value to 0.5 to consider the two values, but on a PC, this doesn’t make too

much sense. On a mobile device, you should choose this based on the orientation of the

game, setting the height for landscape mode and the width for portrait mode.

User Interface Design480

5. Try previewing a wider and higher screen and see how this setting works:

Figure 15.42: Canvas Scaler with the correct settings for standard PC games

You will find that your UI will be smaller than your original design, which is because we should

have set these properties before. Right now, the only fix is to resize everything again. Take this

into account the next time you try this exercise; we only followed this order for learning purposes.

With this knowledge, you are now ready to start scripting the UI to reflect what’s happening in

the game.

Scripting the UI
We previously created a UI layout with elements such as bars, text, and buttons, but so far, they

are static. We need to make them adapt to the game’s actual state. In this section, we are going

to discuss the following UI scripting concepts:

• Showing information in the UI

• Programming the Pause menu

We will start by seeing how to display information on our UI using scripts that modify the text

and images that are displayed with Canvas elements. After that, we will create the Pause func-

tionality, which will be used throughout the UI.

Showing information in the UI
As discussed earlier, we will use the UI to display information to the user to allow them to make

informed decisions, so let’s start by seeing how we can make the player’s health bar react to the

amount of life they have left in the Life script we created earlier:

Chapter 15 481

1. Add a new script called Life Bar to the HealthBar Canvas child object, which is the UI

Image component we created earlier to represent the life bar:

Figure 15.43: The Life Bar component in the player’s HealthBar Canvas

2. In the LifeBar, the script adds a Life type field. This way, our script will ask the editor

which Life component we will be monitoring. Save the script:

Figure 15.44: Editor-configurable reference to a Life component

3. In the editor, drag the Player GameObject from the Hierarchy window to the targetLife

property to make the life bar reference the player’s life, and remember to have the

HealthBar object selected before dragging Player. This way, we are telling our LifeBar

script which Life component to check to see how much life the player has remaining. Some-

thing interesting here is that the enemies have the same Life component, so we can easily

use this component to create life bars for every other object that has a life in our game:

Figure 15.45: Dragging Player to reference its Life component

User Interface Design482

4. Add the using UnityEngine.UI; line right after the using statements in the first few lines

of the script. This will tell C# that we will be interacting with the UI scripts:

Figure 15.46: All the using statements in our script. We are not going to use them all
but let’s keep them for now

5. Create a private field (without the public keyword) of the Image type. We will save the

reference to the component here in a moment:

Figure 15.47: Private reference to an image

6. Using GetComponent in Awake, access the reference to the Image component in our GameO-

bject (HealthBar) and save it in the image field. As usual, the idea is to get this reference just

once and save it for later use in the Update function. Of course, this will always work when

you put this component in an object with an Image component. If not, the other option

would be to create a public field of the Image type and drag the image component into it:

Figure 15.48: Saving the reference to the Image component in this object

7. Create an Update event function in the LifeBar script. We will use this to constantly

update the life bar according to the player’s life.

8. In the Update event, divide the amount of life by 100 to have our current life percentage

expressed in the 0 to 1 range (assuming our maximum life is 100), and set the result in

the fillAmount field of the Image component as in the following screenshot. Remember

that fillAmount expects a value between 0 and 1, with 0 signaling that the bar is empty

and 1 signaling that the bar is at its full capacity:

Chapter 15 483

Figure 15.49: Updating the fill amount of the LifeBar script’s Image component ac-
cording to the Life component

9. Save the script and in the editor, select the player and play the game. During Play mode,

press Esc to regain access to the mouse and change the player’s health in the Inspector

window to see how the life bar updates accordingly. You can also test this by making the

player receive damage somehow, such as by making enemies spawn bullets (more on

enemies later):

Figure 15.50: Full LifeBar script

Remember that putting 100 within the code is considered hardcoding (it is

also known as a magic number), meaning later changes on that value would

require us to look through the code for that value, which is a complicated

task in big projects. That’s why it is considered bad practice. It would be

better to have a Maximum Life field in the Life component or at least have

a constant with this value.

User Interface Design484

You may be thinking that this UI behavior could be directly coded within the Life component,

and that’s completely possible, but the idea here is to create simple scripts with little pressure

to keep our code separated. Each script should have just one reason to be modified, and mixing

UI behavior and gameplay behavior in a single script would give the script two responsibilities,

which results in two possible reasons to change our script. With this approach, we can also set

the player’s base life bar at the bottom by just adding the same script to its life bar but dragging

the Base Damage object, which we created in the previous chapter, as the target life this time.

Regarding the Visual Scripting version, here is what you need to add to your health bar image

GameObject:

Figure 15.51: Full LifeBar Visual Graph

In the previous chapter, we explored the concept of events to detect changes in the

state of other objects. The life bar is another example of using an event as we can

change the fill amount of the image when the life actually changes. I challenge you

to try to create an event when the life changes and implement this script using the

one we looked at in the previous chapter.

Chapter 15 485

First, we added a targetLife variable of type GameObject to the Variables component of our life

bar image. Then we dragged our Player GameObject (called Robot so far) to this variable, in a

way the life bar now has a reference to the object from which we want to display its life. Then we

added a LifeBar visual graph; in the Update node, it calls the Set Fill Amount node in order to

update the fill amount of the Image. Remember that in this case, just calling the Set Fill Amount

node will understand we are referring to the image component where this visual graph is located,

so no need to use GetComponent here. In order to calculate the fill amount, we get the targetLife

GameObject reference, and, using a second Get Variable node, we extract the life variable of

that object. Finally, we divide that by 100 (we needed to create a Float Literal node in order to

represent the value 100) and pass that to the Set Fill Amount node. As usual, you can check the

complete version on the GitHub repository.

Now that we have sorted out the player’s life bar, let’s make the Bullets label update according

to the player’s remaining bullets. Something to consider here is that our current PlayerShooting

script has unlimited bullets, so let’s change that by following these steps:

1. Add a public int type field to the PlayerShooting script called bulletsAmount.

2. In the if statement that checks the pressure of the left mouse button, add a condition to

check whether the number of bullets is greater than 0.

The single object responsibility principle we just mentioned is one of the five ob-

ject-oriented programming principles known as SOLID. If you don’t know what

SOLID is, I strongly recommend you search for SOLID programming principles

on the internet to improve your programming best practices.

User Interface Design486

3. Inside the if statement, reduce the number of bullets by 1:

Figure 15.52: Limiting the number of bullets to shoot

Chapter 15 487

In the Visual Scripting version, the modified shooting condition of the PlayerShooting visual

graph will look like this:

Figure 15.53: Shooting only if bullets are available and reducing the number of bullets after
shooting

User Interface Design488

As you can see, we simply check if the new bullets variable we added is greater than zero and

then use an If node condition for the execution of the Instantiate node. Regarding the bullets

decrement, it will look like this:

Figure 15.54: Decrementing bullet count in the Visual Graph

We simply subtract one from the bullets variable and set bullets again with this value.

Now that we have a field indicating the number of remaining bullets, we can create a script to

display that number in the UI by doing the following:

1. Add a PlayerBulletsUI script to the bullet’s Text GameObject. In my case, I called it

Bullets Label.

2. Add the using TMPro; statement at the beginning of the file, given that we will modify

the Text Mesh Pro component of our label.

Chapter 15 489

3. Add a private field of the TMP_Text type, saving it in the reference to our own Text com-

ponent in Awake:

Figure 15.55: Caching the reference to our own Text component

4. Create a public field of the PlayerShooting type called targetShooting and drag Player

to this property in the Editor. As was the case for the LifeBar component, the idea is that

our UI script will access the script that has the remaining bullets to update the text, bridg-

ing the two scripts (Text and PlayerShooting) to keep their responsibilities separated.

5. Create an Update statement and inside it, set the text field of the text reference (I know,

confusing) with a concatenation of "Bullets: " and the bulletsAmount field of the

targetShooting reference. This way, we will replace the text of the label according to

the current amount of bullets:

Figure 15.56: Updating the bullet’s text label

User Interface Design490

Regarding Visual Scripting, before actually setting the text, we need to add support for Text-

MeshPro in Visual Scripting. Visual Scripting requires manually specifying which Unity systems

and packages we are going to use, and as TextMeshPro is not strictly a core Unity feature, so it

might not be included by default. We can add support for TextMeshPro in Visual Scripting by

doing the following:

1. Go to Edit | Project Settings and select the Visual Scripting category.

2. Expand the Node Library option using the arrow to its left.

3. Check if you have Unity.TextMeshPro in that list. If you do, feel free to skip these steps.

4. Use the + button at the bottom of the list to add a new library.

5. Click where it says (No Assembly) and search for Unity.TextMeshPro.

6. Click the Regenerate Nodes button and wait until the regeneration process is done:

Figure 15.57: Adding TextMeshPro support to Visual Scripting

Remember that concatenating strings allocates memory, so again, I recommend you

to only do this when necessary, using events. Also consider having two separated

labels, one for the "Bullets: " part, and another for just the number of bullets,

so you can only change the number label and avoid concatenation and UI text re-

generation costs.

Chapter 15 491

After setting that, this is what the visual graph to add to the Bullets text GameObject will look like:

Figure 15.58: Updating the Bullets’ text label in Visual Scripting

As usual, we need a reference to the Player to check its bullets, so we created a targetBullets

variable of type GameObject and dragged the player there. Then we use a Get Variable node to

extract the bullets amount from that reference and concatenate the string "Bullets: ", using

the String Literal node, with the amount of bullets using the Concat node. That node will do the

same as when we added two strings together using the + operator in C#. Finally, we use the Set

Text (Source Text, Sync Text InputBox) node to update the text of our text field.

User Interface Design492

If you look at the two scripts, you will find a pattern. You can access the UI and Gameplay compo-

nents and update the UI component accordingly, and most UI scripts will behave in the same way.

Keeping this in mind, I challenge you to create the necessary scripts to make the Score, Enemies,

and Waves counters work. Remember to add using TMPro; to use the TMP_Text component. After

finishing this, you can compare your solution with the one in the following screenshot, starting

with ScoreUI:

Figure 15.59: The ScoreUI script

Chapter 15 493

Also, we need the WavesUI component:

Figure 15.60: The WavesUI script

Finally, we need EnemiesUI:

Figure 15.61: The EnemiesUI script

User Interface Design494

Notice how we took advantage of the existence of the onChanged events in the WavesManager

and EnemyManager scripts to only update the text fields when needed. Observe how we didn’t

need to drag a reference to get the values to display, as all these scripts use managers to get that info.

Regarding Visual Scripting, we have the ScoreUI script:

Figure 15.62: The ScoreUI visual script

Then the WavesUI script:

Figure 15.63: The Waves UI visual script

Chapter 15 495

And finally, the EnemiesUI script:

Figure 15.64: The Enemies UI visual script

As you can see, we have used the events already coded in the managers to change the UI only

when necessary. Also, observe how we used Scene variables to get the info to display. Now that

we have coded the UI labels and bars, let’s code the Pause menu.

Programming the Pause menu
Recall how we created a Pause menu in a previous section. It is currently disabled, so let’s make it

work. First, we need to code the Pause feature, which can be quite complicated. So again, we will

use a simple approach for pausing most behaviors, which is stopping the time! Remember that

most of our movement scripts use time functionality, such as Delta Time (the one we discussed

in Chapter 2, Editing Scenes and Game Objects), as a way to calculate the amount of movement to

apply. There is also a way to simulate time going slower or faster, which is by setting timeScale.

This field will affect Unity’s time system’s speed, and we can set it to 0 to simulate that time has

stopped, which will pause animations, stop particles, and reduce Delta Time to 0, making our

movements stop. So, let’s do it:

1. Create a script called Pause and add it to a new GameObject called Pause.

2. Add the using UnityEngine.InputSystem; statement at the beginning of the script file

to be able to read input.

User Interface Design496

3. In Update, detect when the Esc key is pressed. We can add a mapping to our Player Input

asset file and read the input as we did in Chapter 2, Editing Scenes and Game Objects, but

to learn a new way of using the input system, we will use the Keyboard.current variable

to read directly the state of a key in the Update method instead of using mapping. Con-

sider that it is always recommended to use input mapping, but let’s do this for learning

purposes. You can set the Time.timeScale variable to 0 when the Esc key is pressed, as

you can see in the following image:

Figure 15.65: Stopping time to simulate a pause

4. Save and test this by playing the game and pressing the Esc key. You will notice that al-

most everything will stop, but you can see how the shoot functionality still works. That’s

because the PlayerShooting script is not time-dependent. One solution here could be to

simply check whether Time.timeScale is greater than 0 to prevent this:

Figure 15.66: Checking Pause in the player shooting script

5. The same needs to be done in our EnemyFSM Shoot method, changing it for this:

Chapter 15 497

Now that we have a simple but effective way to pause the game, let’s make the Pause menu visible

to resume the game by doing the following:

1. Add a field of the GameObject type called pauseMenu in the Pause script. The idea is to drag

the Pause menu here so that we have a reference to enable and disable it

2. In Awake, add pauseMenu.SetActive(false); to disable the Pause menu at the beginning

of the game. Even if we disabled the Pause menu in the editor, we add this just in case we

re-enable it by mistake. It must always start disabled.

3. Using the same function but passing true as the first parameter, enable the Pause menu

in the Esc key pressure check:

Figure 15.67: Enabling the Pause menu when pressing the Esc key

As usual, we have pursued the simplest way here, but there is a better approach. I

challenge you to try to create PauseManager with a Boolean indicating whether the

game is paused or not, changing timeScale in the process.

User Interface Design498

Now, we need to make the Pause menu buttons work. If you recall, we explored the concept

of events, implementing them with UnityEvents in the different Managers. Our Pause menu

buttons use the same class to implement the onClick event, which is an event that informs us

that a specific button has been pressed. Let’s resume the game when pressing those buttons by

doing the following:

1. Create a field of the Button type in our Pause script called resumeButton, and drag

resumeButton to it; this way, our Pause script has a reference to the button.

2. In Awake, add a listener function called OnResumePressed to the onClick event of

resumeButton.

3. Make the OnResumePressed function set timeScale to 1 and disable the Pause menu, as

we did in Awake:

Figure 15.68: Unpausing the game

Chapter 15 499

If you save and test this, you will notice that you cannot click the Resume button because we

disabled the cursor at the beginning of the game, so make sure you re-enable it while in Pause

and disable it when you resume:

Figure 15.69: Showing and hiding the cursor while in Pause

One final thing to consider is that we want to set the time scale to 1 again on the OnDestroy meth-

od. This method gets executed when the Pause object is destroyed, which will happen when we

manually destroy the object via scripting, or most importantly in this case, if we change scenes.

The idea is to make sure to resume the time system if we change scenes while being in the Pause

menu, so the next scene can play the game properly:

Figure 15.70: Resetting the time scale when leaving the scene

User Interface Design500

Regarding the Visual Scripting version of the Pause script, consider that we don’t have an equiv-

alent to Keyboard.current, so we will need to do it using the input mappings. In order to add an

input mapping for the Esc key, do the following:

1. Double-click the Player Input asset to edit it. You can find it by selecting the Player Ga-

meObject, and clicking the box at the right of the Actions property of the PlayerInput

component in the Inspector.

2. Using the + button in the top-right corner of the Actions list (the middle list), create a

new Action called Pause:

Figure 15.71: Creating a new input mapping

3. Click the <No Binding> item inside the Pause action we just created (below it).

4. In the Path property in the Binding Properties section (at the right side of the screen),

click the empty rectangle at its left, and search and select the Escape [Keyboard] button:

Figure 15.72: Adding a key to the mapping

5. Click the Save Asset button in the top-middle part of the screen.

Chapter 15 501

Now, you can add the following graph, this time to the Player GameObject, as we need to read

input from it:

Figure 15.73: Pausing when Esc is pressed

So far nothing new; we detect that Esc is pressed and, in such a moment, we call Set Time Scale

and specify the 0 value. Then we activate the Pause menu (having a reference through a variable

pauseMenu in the Variables component), and we enable the cursor. Finally, we set the time scale

to 1 when the object is destroyed.

User Interface Design502

Regarding the Resume behavior, the nodes to add to the same Pause graph will look like this:

Figure 15.74: Unpausing when the Resume button is pressed

The only new element on this graph is the usage of the On Button Click node. As you might

expect, that node is an event, and anything connected to it will execute under the pressure of a

button. The way to specify which button we are referring to is through connecting the Button

reference variable to the input pin of On Button Click. You can see how we created a variable of

type Button called resumeButton in the Variables component to do this.

Now that you know how to code buttons, I challenge you to code the Exit button’s behavior. Again,

remember to add using UnityEngine.UI. Also, you will need to call Application.Quit(); to

exit the game but take into account that this will do nothing in the editor; we don’t want to close

the editor while creating the game. This function only works when you build the game.

Chapter 15 503

So, for now, just call it, and if you want to print a message to be sure that the button is working

properly, you can; a solution is provided in the following screenshot:

Figure 15.75: The Quit button script

This solution proposes that you add this script directly to the Quit button GameObject itself so

that the script listens to the onClick event on its Button sibling component, and in that case,

executes the Quit function. You could also add this behavior to the Pause script, and while that

will work, remember that if a script can be split into two because it does two unrelated tasks, it

is always best to split it so that separate behavior is unrelated. Here, the Pause behavior is not

related to the Quit behavior.

User Interface Design504

Regarding the Visual Scripting version, the graph to add to the Quit button would look like this:

Figure 15.76: The Quit button visual script

Simple, right? As we put this in the Button itself, we don’t even need to specify which button, as

it automatically detects that we are referring to ourselves.

Now that we have our Pause system set up using the UI and buttons, let’s continue looking at

other visual and auditive ways to make our player aware of what has happened.

Summary
In this chapter, we introduced the basics of UI, understanding the Canvas and RectTransform

components to locate objects onscreen and create a UI layout. We also covered different kinds

of UI elements, mainly Image and Text, to give life to our UI layout and make it appealing to the

user. Finally, we discussed how to adapt UI objects to different resolutions and aspect ratios to

make our UI adapt to different screen sizes, even though we cannot predict the exact monitor

our user will be playing the game on. All of this allows us to create any UI we will need in our

game using the Canvas.

In the next chapter, we will explore how to create UIs using UI Toolkit instead, another Unity

system to create UIs, and compare both the Canvas and UI Toolkit to see where to use which.

Chapter 15 505

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

16
Creating a UI with the UI Toolkit

In the previous chapter, we discussed how to create user interfaces using uGUI (also known as

Canvas), one of the most common Unity UI systems, but as we already mentioned, this is not

the only one. While so far, uGUI is the most preferred option, Unity is working on a replacement

called UI Toolkit, and even if it doesn’t have feature parity with uGUI yet, we thought it is worth

covering it in this book.

The idea of this chapter is to create the same UI we created previously but with UI Toolkit, so you

can get an idea of how creating a UI in Unity will look soon.

In this chapter, we will examine the following UI concepts:

• Why learn UI Toolkit?

• Creating a UI with UI Toolkit

• Making a responsive UI with UI Toolkit

By the end of the chapter, you will know how to use UI Toolkit to create basic UIs for our game,

redoing the UI we did in the last chapter as a point of reference. So, let’s start by discussing the

following question first: why are we using UI Toolkit?

Why learn UI Toolkit?
I know the topic of this chapter might sound a little bit confusing; we just learned how to use a

whole Unity system to create our UI, and now we are learning another one! Why didn’t we just

learn this new one?

Creating a UI with the UI Toolkit508

Well, the first part of the answer is that UI Toolkit doesn’t have feature parity with uGUI yet,

meaning that it doesn’t have all the features necessary to use it in real production environments.

Another thing to take into account is that even if UI Toolkit is stable enough, it’s still a relatively

new system, and there are still lots of games in development that were created on older Unity

versions that don’t support it. This means that in order to land a job in this industry, we need to get

a decent amount of exposure to uGUI due to most games being created with this technology. This

happens because it’s not safe or practical to update an already-tested and working game with new

technologies; such changes could lead to a major rework of the game to make it compatible with

the new versions. Also, this could potentially introduce tons of bugs that could delay the release

of new versions—not to mention the time it will take to remake a full app with a new system.

That being said, we believe it’s still worth learning the basic concepts of UI Toolkit to be prepared

to use it in newer Unity versions, so let’s dive into it now.

Creating a UI with UI Toolkit
In this section, we are going to learn how to create UI Documents, an asset that will define the

elements our UI has. To do this, we are going to discuss the following concepts:

• Creating UI Documents

• Editing UI Documents

• Creating UI Stylesheets

Let’s start by seeing how we can create our first UI Document.

Creating UI Documents
When creating a UI with uGUI, we need to create GameObjects and attach components like But-

ton, Image, or Text, but with UI Toolkit, we need to create a UI Document instead. UI Document

is a special kind of asset that will contain the definition of the elements our UI will have and its

hierarchy. We will have a GameObject with a UI Document component (yes, it’s called the same,

so pay attention here) that will reference this UI document asset and render its contents. It’s

like a mesh asset that contains information about the Mesh, and the MeshRenderer component

that will render it. In this case, the elements to render are contained in an asset and we have a

component that reads the asset and renders its content (UI in this case).

Chapter 16 509

UI Documents are actually plain text files. You can open one with a text editor and easily see its

contents. If you do that and you are familiar with HTML, you will recognize the XML-like format

used to define the elements our UI will be composed of; Unity calls this format UXML. With UI

Toolkit, Unity is attempting to make it easy for web developers to jump into Unity and create UIs.

In the following code, you can see the typical look of an UXML document’s file contents:

<ui:UXML

 xmlns:ui="UnityEngine.UIElements"

 xsi="http://www.w3.org/2001/XMLSchema-instance"

 engine="UnityEngine.UIElements"

 editor="UnityEditor.UIElements"

 noNamespaceSchemaLocation="../../UIElementsSchema/UIElements.xsd"

 editor-extension-mode="False">

 <ui:Button tabindex="-1" text="Button"

 display-tooltip-when-elided="true" />

 <ui:Scroller high-value="100"

 direction="Horizontal"

 value="42" />

 <ui:VisualElement>

 <ui:Label tabindex="-1"

 text="Label"

 display-tooltip-when-elided="true" />

 <ui:Label tabindex="-1"

 text="Label"

 display-tooltip-when-elided="true" />

 </ui:VisualElement>

</ui:UXML>

 Don’t worry if you don’t know XML; we will explain the core concepts in this chapter.

Also, don’t worry about the UXML format; later in this chapter, we will be using a

visual editor called UI Builder to edit our UI without writing UXML at all, but it is

worth knowing how it actually works.

Creating a UI with the UI Toolkit510

In order to create a UI Document and add it to the scene, we need to do the following:

1. Click the + | UI Toolkit | UI Document option in the Project view to create a UI Document

asset and name it GameHUD:

Figure 16.1: Creating the UI Document asset

2. Click the Game Object | UI Tookit | UI Document option to create a GameObject in your

scene with the UI Document component, which is capable of rendering the UI Document.

3. Select it and drag the GameHUD UI Document asset (the one created in step 1) to the

Source Asset property of the UI Document GameObject (the one created in step 2):

Figure 16.2: Making the UI Document component to render our UI Document asset

And that’s it! Of course, we won’t see anything yet on our screen as the UI Document is blank, so

let’s start adding elements to it.

Editing UI Documents
As our goal is to recreate the same UI we created in the last chapter, let’s start with the simplest

part: adding the player avatar to the top-left corner. One option would be to open the UI Document

asset with any text editor and start writing the UXML code, but luckily, we have an easier way,

which is using the UI Builder editor. This editor allows us to generate the UXML code visually,

by dragging and dropping elements.

Chapter 16 511

In order to do that, let’s first see how the UI Builder window works:

1. Double-click the GameHUD asset in the Project view to make UI Builder open it:

Figure 16.3: The UI Builder editor

2. In the Hierarchy panel inside the UI Builder (not the Hierarchy panel we’ve used so far in

previous chapters), select GameHUD.uxml, which is the container element of the UI.

Figure 16.4: Selecting the asset name in Hierarchy to edit the general UI settings

3. Look at the Inspector panel at the right of the UI Builder window (not the Inspector

we’ve used so far to modify GameObjects). Set the Size property to a Width of 1920 and

a Height of 1080. This will allow us to view how our UI will look in this resolution. You

can later change this value to see how it adapts to different sizes, but more on that later:

Figure 16.5: Setting the preview UI resolution

Creating a UI with the UI Toolkit512

4. You can pan the viewport to navigate the UI by pressing the Mouse Wheel Button (also

known as Middle Button) and moving the mouse. On Mac, you can also press Option +

Command and click and drag any free area of the viewport (places without our UI) to do

the same.

5. You can also use the Mouse Scroll Wheel to zoom in and out. Finally, you can use the zoom

percentage selection at the top-left part of the viewport and the Fit Canvas button to

automatically fit the entire UI in your viewport:

Figure 16.6: Setting the preview zoom

Now that we know the basics of UI Builder, let’s add our image to the UI:

1. Drag the VisualElement icon from the Library at the bottom left to the Hierarchy section

on the left. This will create a basic UI element capable of rendering an image and much

more:

Figure 16.7: Creating a Visual Element

Chapter 16 513

2. Select the VisualElement in the Hierarchy (under GameHUD.uxml) and look at the Inspector

at the right part of the UI Builder window (again, not the regular Unity Inspector panel)

for the Position section. Expand it if not already expanded (using the arrow on the left).

3. Set Position to Absolute in order to allow us to move our element freely around the UI.

Later in this chapter, in the Using relative positions section, we will explain how Relative

mode works:

Figure 16.8: Setting our UI Element to be freely moved around

4. Open the Size section and set Width and Height to 100 to make our UI element have a

non-zero size. This way, we can see its area in the Viewport:

Figure 16.9: Setting our UI Element size

5. In the Viewport pane, you can drag your element around and use the blue rectangles in

the corners to change its size. Position your element at the top-left corner of the UI. If you

don’t see your element in the Viewport, select it in the Hierarchy (the one of UI Builder):

Figure 16.10: Moving VisualElements

Creating a UI with the UI Toolkit514

6. In order to set an exact position, you can set the Left and Top values of the Position section

in the Inspector to specify the exact x and y coordinates respectively, expressed in pixels:

Figure 16.11: Setting the Position

7. In the Background section of the Inspector, set the Image mode to Sprite using the combo

box at the right of the Image property. This allows us to apply a sprite as the background

of our element.

8. Drag the sprite asset (the image) of our player avatar we imported in Chapter 15, User

Interface Design, from the Project panel to the Image property in order to set it. Also, you

can use the target button (circle button with the dot in the middle) to select the sprite

asset from the picker window:

 Figure 16.12: Setting the Background image of the element

9. Return to the regular Game panel to see the results. If you don’t see a change, you can turn

off and on the GameObject that renders our UI (the one we created with the UI Document).

Now that we have created the player avatar, we can create the player health bar by doing the

following:

1. Repeat the previous steps 1 to 6 to create a new element that will serve as the player health

bar container. It won’t have any image as it will just be the container of the rest of the

elements that will compose the health bar.

Chapter 16 515

2. Position it right next to the player avatar and set a width and height to resemble a classic

health bar. Remember you can do this by dragging the image and the squares at the cor-

ners, or through the Size and Position properties as we did before.

3. Drag a new VisualElement to the Hierarchy, as we did in step 1, but this time drop it over

the element created in step 1. This will make this new element a child of it, which will

make that element’s position and size depend on its parent, the same as what happened

when we parented Canvas objects in Chapter 15, User Interface Design.

4. Select the parent Visual Element and in the Inspector, set the Name property to

PlayerHealth to easily identify it. Do the same with the child element, calling it Filling:

Figure 16.13: Parenting and naming Visual Elements

5. Select the Filling element in the Hierarchy and look at the Inspector.

6. In the Background section, set the Color property to red, clicking on the color box and

using the Color Picker. This will fill our UI Element background with plain red instead

of using an image:

Figure 16.14: Setting a pure red background for our element

7. As usual, set the Position to Absolute, and also the Left and Top properties to 0. As this

is a child of another element, the position will be relative to its parent position, so by

specifying a Left and Top value of 0, we are saying that we will be at 0 pixels from the

left and top sides of our parent. This means that if our parent moves, this child element

will move along with it.

Creating a UI with the UI Toolkit516

8. Set Size’s Width and Height to 100 and change the unit of measurement from px (pixels)

to % (percentage) by clicking on the px button and selecting %. This will make the Filling

element size the same as its parent (100 percent the parent size):

Figure 16.15: Setting our size as the same size as our parent element

9. Add a new VisualElement as a child of PlayerHealth (a sibling of Filling) and call it Border.

10. Set the Position and Size as we did in steps 7 and 8 for the Filling element, but don’t set

the background color.

11. Set the Background section’s Image property to be the same border image we used in the

previous chapter. Remember to set the Image mode to Sprite instead of Texture.

12. Set the Slice property in the Background section to 15. This applies the nine-slices tech-

nique we used in Chapter 15, User Interface Design, to expand an object without stretching it:

Figure 16.16: Setting the nine-slices sizes in the element directly

Chapter 16 517

13. Select the Filling visual element in the Hierarchy and set its Size section’s Width property

to simulate the Fill Amount property of the images we used in Chapter 11, User Interface

Design. Later, we will change this Size to be directly proportional to the player’s health

number via code:

Figure 16.17: Health bar result

14. Repeat steps 1 to 12 to create the bottom of the Base Health bar. Remember the filling must

be green this time. Alternatively, you can just copy and paste the PlayerHealth container,

but I recommend you repeat the steps for learning purposes.

In previous steps, we basically saw how to compose several UI Elements to create a complex

object. We needed a parent container element to drive the size of our child’s so that the inner

elements adapt to it, especially the filling, which requires a percentage value to represent the

current player health.

Now we have our Life Bar! Well, not quite yet; those red corners from the filling that our border

doesn’t cover are pretty rough! We will improve that later in this chapter when discussing how

to make our UI responsive, so for now, let’s keep it as is.

Finally, let’s add text elements to the UI by doing the following, but first, we will need to think

about fonts. If you download a TTF font, you will need to create a Font Asset as we did in Chapter

15, User Interface Design, for it to be used in UI Toolkit. But with the current release of UI Toolkit,

the Font Asset we created in the last chapter is not compatible. We will need to create a Font Asset

using the UI Toolkit Font Asset Creator, instead of the Text Mesh Pro one. The reason behind the

existence of duplicated tools is that Unity is integrating the Text Mesh Pro package into a new,

improved one called Text Core, one of those improvements being compatibility with UI Toolkit

and other Unity systems.

Considering this, in order to convert the TTF to a Font Asset compatible with UI Toolkit, you can

just right-click the TTF asset in the Project panel and select Create | Text | Font Asset. This will

create a new asset that will be the one we will be using to define the font of our UI Toolkit text.

Creating a UI with the UI Toolkit518

Having solved this, let’s create the UI Element for text, that is, Label:

1. Drag the Label icon from the Library pane of the UI Builder window to its Hierarchy panel.

This will add a UI element capable of rendering not only an image in its background but

also text (yes, you can add a background to the text if you want to).

2. As usual, set its Position and Size, this time putting it in the top-right corner of the screen.

Remember you can simply drag the element; you don’t need to set the specific coordinates

by hand (although you can if you want to).

3. Change the Text property in the Label section of the Inspector to the needed text; in our

case, this will be Score: 0:

Figure 16.18: Setting the text to display

4. Drag the Font asset created just before these steps to the Font Asset property in the Text

section of the Inspector. Don’t confuse it with the Font property (the one above Font

Asset). That one allows you to drag TTF assets directly, but that will be deprecated soon,

so let’s stick with the Unity-recommended approach.

5. If you notice your Font asset doesn’t work, try putting it in the UI Toolkit | Resources |

Fonts & Materials folder in the Project panel. While this shouldn’t be necessary in the

latest Unity versions, I’ve noticed that this solves these sorts of issues in the past. Also,

there’s a bug that makes the font not recognized sometimes, which can be fixed by de-

leting and recreating the Label.

6. Set the Size property of the Text section to any size that seems fit:

Chapter 16 519

Figure 16.19: Setting the Text Font and Size of a Label

7. Repeat steps 1 to 6 to add all the remaining labels to the UI.

8. One last thing we need to do is save, which can be simply done by pressing Ctrl + S (Com-

mand + S on Mac) or using the File | Save menu in the top-left part of the Viewport section

in the UI Builder window. Note that previous versions of UI Toolkit had a bug where this

could make the Viewport become corrupt. Please close it and reopen UI Builder again if

this happens.

Now that we have created our UI, you probably noticed the need to repeat several settings to

make several objects look the same, like our health bars and labels. While this is perfectly viable,

we could improve our workflow greatly by reusing styles, and Stylesheets are the exact feature

we need to accomplish that, so let’s see them.

Creating UI Stylesheets
When creating UIs, you will find scenarios where several elements throughout the whole game

will share the same style, for example, buttons with the same background, font, size, borders, etc.

When creating the UI with uGUI, one way to not repeat configurations for each element would

be to create a Prefab for the button and create instances (and Prefab variants where necessary).

The problem is that here, we don’t have GameObjects, hence there are no Prefabs, but luckily, we

have Stylesheets.

Stylesheets are separated assets that contain a series of styling presets for our UI elements. We

can define a set of styles (for example, background, borders, font, size, etc.) and apply those to

several elements across different UI Elements. This way, if we change a style in a Stylesheet asset,

all UI Elements using that style will change, in a similar way to how materials work.

Creating a UI with the UI Toolkit520

There are several ways to create styles in a Stylesheet. One example is the selector system. This

system allows you to apply a series of rules to pick which elements should have a style applied

(if you are thinking this is like CSS, then you are right), but for now, let’s stick with the basics,

creating Stylesheet Classes. A Class is basically a style we can apply to any element via its name.

For example, we can create a Class called Button and add that class to every button in the UI that

we want to have that style. Please consider that the concept of Class here is something completely

different from what a Class means in coding.

So, in this case, let’s create a Class for all the labels in our UI so that the appearance of all of them

can be modified by simply changing the style:

1. In the StyleSheets panel of the UI Builder, click the Add (+) button and click Create New

USS (Unity StyleSheet). If that doesn’t work, try restarting Unity; there’s a bug in the

current version of UI Toolkit that could cause this:

Figure 16.20: Creating a Unity StyleSheet

2. Name the USS as you like (GameUSS in my case) and save the file.

3. Select one of the label elements we have in our UI Document and look at the Inspector.

4. In the StyleSheet pane of the Inspector, type HUDText in the Style Class List input field,

but don’t press Enter yet.

5. Click the Extract Inlined Styles to New Class button. This will take all style modifications

we did to our Label (position, size, font, etc.) and save them into a new style class called

HUDText. You can observe that it was added to the list of classes applied to the element

(those labels at the bottom of the StyleSheet section in the Inspector):

Chapter 16 521

Figure 16.21: Extracting settings into a Style Class

With these steps, we have taken a Label with the style we need to apply to others and extract it

into a class named HUDText. This way, we can simply add the class HUDText to other elements

in our UI, and we can even add the same USS asset to other UI Documents (click the + button on

the StyleSheets pane | Add Existing USS) to add this class to the elements in it.

Also, if you select the label again, you can notice how properties that previously were in bold

now became normal again; that’s because properties in bold represent changed properties, and

we have extracted them, so the default values became whatever the style classes define. Luckily,

not everything is extracted to the new USS Class; for example, the Text field still has our specific

desired text, as it is highly unlikely you would want to put the same text in other objects.

Figure 16.22: The Text property is bold, indicating it is different from the default values. On
the other end, Enable Rich Text is not bold, meaning it follows the default values and the

Classes ones

If you forgot some change in the style when extracting the class, you can easily modify it by se-

lecting it in the StyleSheets section at the top-left part of the UI Builder. Then, select the class

HUDText in the list. If you don’t see it, try expanding the GameUSS.uss section.

Creating a UI with the UI Toolkit522

Once selected, you can change it in the Inspector panel, similarly to when we change the prop-

erties of a UI Element:

Figure 16.23: Selecting a Style Class for modification

This way, we have edited our HUDText class. If other elements had this class applied, they would

have these changes applied also. Consider that another option would be to create the Class first,

typing the name in the StyleSheets input field and pressing Enter, and then applying it to UI

elements. This way, you will avoid needing to revert unwanted changes, but if you created the

element first, it’s convenient to have the option to revert:

Figure 16.24: Creating a Style Class from scratch

Now that we have our Style Class, let’s apply it to other elements by doing the following:

1. Select another label of our UI.

2. Drag the HUDText style from the Stylesheet pane at the top-left part of the UI Builder

window all the way to our element on the Viewport. You can also drag it to the Hierarchy

element if you prefer:

Chapter 16 523

Figure 16.25: Applying a Class to an element

3. Select the Label and check how the HUDText class has been added to the StyleSheet

section on the Inspector.

Now, consider that even if the element now has the class applied, the element itself has changes

to the text we did in previous steps, overriding the style in our class. You can easily check this by

selecting the class again (in the StyleSheets section at the top-left part of the UI Builder window)

and changing any setting, like the size, and seeing how not all elements have changed. This shows

how the override system works; the changes on the element take precedence over the ones in

the classes it has applied.

If you want to remove these overrides, you can simply select the element (not the class), right-

click on the overridden properties, and unset the changes by right-clicking and then selecting

Unset. In the case of our Label, we can unset the entire Text section and probably the Absolute

position (as the desired values are already contained in the class).

Figure 16.26: Reverting an override to use the default values of the Classes applied to the
element

Creating a UI with the UI Toolkit524

So, with these steps, we created a new StyleSheet asset and added it to the UI Document for it to

use it. We have created a new Style Class in it, extracting the changes of an existing UI Element

into it, and then adjusted which changes we wanted to keep. Finally, we applied that style to an-

other element. With this, we just scratched the surface of the real power of StyleSheets. We can

start doing things like combining different classes from different StyleSheets or using selectors

to dynamically set styles, but that’s outside the scope of this chapter.

Something interesting is that even if the documentation of UI Toolkit is pretty basic at the mo-

ment, all these advanced concepts can be learned by reading about CSS, the web technology that

Unity based the stylesheet system on. It won’t be exactly the same, but the basic idea and best

practices still apply.

Now, the UI looks almost exactly the same as it does in Chapter 15, User Interface Design, but it

won’t behave in the same way. If you try changing the size of the viewport (selecting GameHUD.

uxml in the Hierarchy and changing Width and Height as we did at the beginning of the chapter),

you will see the UI won’t adapt properly, so let’s fix this.

Making a responsive UI
In this section, we are going to learn how to make the UI we created previously adapt to different

screen sizes. We are going to discuss the following concepts:

• Dynamic positioning and sizing

• Dynamic scaling

• Using relative positions

Let’s start by discussing how we can make the Position and Size of our objects adapt to the

screen size.

Dynamic positioning and sizing
So far, we have used the Left and Top position attributes in order to specify the x and y positions

of our elements with respect to the top-left corner of the screen, and then Width and Height to

define the Size. While essentially that’s all that’s needed to define an object’s position and size,

it is not very useful in all cases, especially when we need to adapt to different screen sizes.

For example, if you need to place an object in the top-right corner of the screen, knowing its size

is 100x100 pixels and the screen size is 1920x1080 pixels, we can put the Left and Right position

attributes as 1820x980 pixels, and this will work, but only for that specific resolution.

Chapter 16 525

So, what happens if the user runs the game at 1280x720 pixels? The object will be outside the

screen! In uGUI, we used Anchors to solve this issue, but we don’t have them here. Luckily, we

have Right and Bottom to help.

As Left and Top attributes, Right and Bottom define distances from the parent element’s sides (if

there is no parent, then just from the entire screen). Right now, we have both set to auto, meaning

that the position will be driven by Left and Right exclusively, but interesting things can happen

by changing those values, so let’s use them to make our Score and Bullet labels stick to the top-

right corner of the screen instead, by doing the following:

1. Put the cursor in the bottom part of the UI in the Viewport until a white bar appears.

2. Drag that bar to resize the screen and see how our adapts (or not) to the different size.

3. Do the same on the laterals to also see how it adapts to different screen widths:

Figure 16.27: UI not adapting to different screen sizes

4. Select the score label on the Viewport and look at the Inspector.

5. Set the Top and Right values in the Position section to 30.

Creating a UI with the UI Toolkit526

6. Set the Left and Bottom values to auto by clicking the px button at the right of each

attribute and selecting auto:

Figure 16.28: Changing the unit type of the Position attributes to auto mode

7. Notice the right and top golden-colored squares at the sides of the label became filled,

while the left and bottom are hollow. This means that the left and bottom are in auto

mode. You can also toggle auto mode by clicking those boxes if needed:

Figure 16.29: Toggling auto mode of our element position attributes

8. Try changing the size of the UI container again as we did in steps 1 and 2 to see how our

Score label is always aligned to the top-right corner.

9. Repeat steps 4 to 6 for the Bullets label, this time setting the Top property to 140.

What we did with these steps was essentially make the position of the object expressed as a dis-

tance in pixels against the Top and Right sides of the UI, or the top-right corner of the screen. We

needed to set the other sides to auto mode, so they won’t participate in the position calculations.

Chapter 16 527

Now, we can use the Position attribute in other ways as well. As you might imagine by now, we

can start combining Left and Right and Top and Bottom if we wish. In such cases, Left and Top

will take precedence in defining the position, but then, what do Right and Bottom do? They

define the size of the element.

For example, if we have an element with Left and Right attributes set to 100px each and we are

seeing our UI on a screen with a width of 1920 pixels, the final width of our element will be 1720

(1920 minus 100 from Left minus 100 from Right). This way, the Position attributes represent

the distances of the sides of our element from the sides of the screen (or the parent element).

Let’s see this in action by making the bottom health bar adapt to the screen width while preserving

its position relative to the bottom of the screen by doing the following:

1. Select the bottom health bar parent in the Hierarchy. Don’t select it in the Viewport as

you will only be selecting its filling or border.

2. Set Left, Right, and Bottom to 50px.

3. Set Top to auto (click on the px button at the right and select auto).

4. In the Size section, set Width to auto also.

5. Set Height to 35px:

Figure 16.30: Making the player’s base health bar adapt to the screen width

6. Change the size of the UI to see how it adapts.

With these steps, we defined the bar distance from the sides of the screen as 50 pixels for it to

adapt to any screen width, while keeping the distance from the border and height fixed. We

basically achieved the same behavior as split anchors in uGUI! Consider that we needed to set

Size’s Width attributes to auto to let the Left and Right attributes drive the position; if you don’t

do that, the Width attributes take precedence and Right won’t have any effect. I invite you to

experiment with other combinations of px/auto.

Creating a UI with the UI Toolkit528

One last trick we can do here is to use negative values in the Left, Top, Right, and Bottom Position

attributes of the health bar borders to make the borders slightly bigger than the container and

cover the filling borders. Just set Left, Top, Right, and Bottom to -15px in this case and remember

to set both the Size Width and Height attributes to auto. You might want to reduce the Height

of the bar container (not the border) a little bit, as now it will look thicker due to this change:

Figure 16.31: Using negative Position attributes to cover the filling

Another mode aside from px (pixels) or auto mode is the percentual (%) mode, which allows us

to represent values as percentages relative to the screen (or parent element if present) size. For

example, if we set Top and Bottom to 25%, this means that our element will be vertically centered

with a size of 50% of the Screen height (remember to set Height mode to auto here). We could

achieve the same result if we set Top to 25%, Bottom to Auto, and Height to 50%; as you can see,

we can achieve a clever combination of those values.

In our case, we will use percentual values in our Life Bar fillings so that we can express its size in

percentages. We need this as later in the code, we can specify the width of the bar as a percentage

of the player’s life (for example, a player with 25 life points and a max of 100 points has 25% life).

Now, while we solved the positioning adaption to the screen size with the usage of the Left, Top,

Right, and Bottom properties, we still didn’t solve the dynamic sizing of the elements. With siz-

ing this time, we are referring to screens with a different number of DPI (dots per inch), so let’s

discuss how we can achieve that with the Panel Settings asset.

Dynamic scaling
We used 1920x1080 as the UI base resolution to position and size our elements so that they look

nice in that resolution. We also changed the UI size to see how the elements adapt their position

with different screen sizes, and while that worked nicely, you can notice how the elements looked

bigger or smaller while doing that.

Chapter 16 529

While having a base reference resolution is good to design our UI, we should consider the sizing of

elements on different resolutions, especially on screens with high DPI. Sometimes, you can have

screens with higher resolution but the same physical size in centimeters. This means pixels are

smaller in the ones with higher resolution, hence they have a larger DPI, so elements can seem

smaller if not scaled properly.

In the past, we used the Canvas Scaler component of the Canvas to make the UI scale the size of

its elements according to the screen resolution. We have the exact same settings here as in the

Panel Settings asset referenced in our UI Document component, so let’s configure it by doing

the following:

1. Look for the Panel Settings asset in the Project panel and select it. Another option would

be to select the UI Document GameObject in the Main Editor Hierarchy and click the asset

referenced in the Panel Settings property:

Figure 16.32: Panel Settings being referenced in the UI Document component

2. Set Scale Mode to Scale With Screen Size.

3. Set Screen Match Mode to Match Width Or Height.

4. Set the Reference Resolution X value to 1920 and Y to 1080.

5. Move the Match slider all the way to the right, toward the end labeled Height:

Figure 16.33: Setting the scaling of our UI

Creating a UI with the UI Toolkit530

6. Observe how changing the height of the Game panel of the Unity editor will make the

UI adapt its element sizes accordingly (change the whole Unity editor window height).

What we did with those changes was first set Reference Resolution to whatever resolution we

designed our UI, in our case, 1920x1080. Then, we set Screen Match Mode to allow us to scale our

elements according to one of the sides, Width, Height, or a combination of the two if we prefer.

In our case, we chose Height, mainly because our game is targeted at PC, where the screens are

wide rather than tall. This means that on different screen widths, the elements will look the same

size, but on different heights, the elements will be bigger or smaller.

With these settings, we can do some math to understand the values. If our screen is the same as

the reference resolution (1920x1080), the element sizes will be the same as we specified in the size

of our elements in pixels, so for the case of our player avatar, it will be 150x150 pixels. Remember

that the physical size in centimeters depends on the DPI of the screen.

Now, imagine that we have a 4k screen, meaning a resolution of 3840x2160. As we specified that

our UI matches via Height, we can determine that our elements will double in size because our

screen has a height that is double the reference resolution (2160 divided 1080). Our player ava-

tar will be 300x300, making the element have the same physical size in a 4k screen, double size

but double pixel density achieves that. Finally, consider an ultra-wide standard resolution of

2560×1080 (yes, very wide screens), in which case the elements will be the same size as the only

change is the width; the only difference is that the elements will have more horizontal separation

due to the screen size. I know these calculations can be confusing but keep experimenting with

the values of the Panel Settings and Game View sizes to understand them better.

Great, now we really have the same HUD. We could start applying the concepts seen so far to the

Options menu, but let’s take the opportunity to do it in a different way, using relative positions,

a way to create a flow of elements where the elements’ positions depend on each other.

Using relative positions
In the HUD of our game, each element requires its own Position and Size, and the different ele-

ments’ positions can be resized and repositioned without affecting others. We might observe the

case of the player health bar and the avatar, but the changes would be trivial in this case. There

are other cases where this is not that trivial, as in the case of a List of elements (for example, a

list of matches to join in a multiplayer game) that needs to adapt vertically or horizontally, and

here is where relative positions help us.

Chapter 16 531

Relative positions allow us to make the positions of the elements relative to each other; in a way,

the position of one element will depend on the position of the previous one, and that one to its

previous, and so on, forming a chain or flow. This works like Vertical and Horizontal Layouts on

uGUI. In our case, we will make the Pause label and the Options and Exit buttons of our options

menu be vertically aligned and centered along its parent using those.

Let’s start creating the menu by doing the following:

1. Create a new UI Document (click the + button after going to Project View | UI Tookit |

UI Document) and call it OptionsMenu. We can work on the previous UI Document but

let’s keep those pieces of UI separated for easy activation and deactivation, and general

assets organization.

2. Double-click the asset to set it as the current UI being edited by the UI Builder.

3. Select the root object (OptionsMenu.uxml in the Hierarchy) and set the Width and

Height Inspector properties to 1920x1080 pixels.

4. Create a new GameObject with the UI Document component (GameObject | UI Toolkit

| UI Document) and drag the asset for this object to render it (as we did with the HUD

created earlier in the chapter).

5. Double-click the UI Document asset to open the UI Builder window to edit it, and in that

window, drag a new Visual Element to the Hierarchy or Viewport and call it Container

(the Name property in the Inspector in UI Builder).

6. Set the Left, Right, Top, and Right Position attributes to 0px.

7. Set Position to Absolute.

8. Set Width and Height in the Size section to auto. This will make the container fit the

entire screen.

9. Drag a new Visual Element to be a child of the Container and call it Background.

10. Leave Position as Relative this time.

11. Set Size’s Width and Height to 500px.

12. Set the Background Image of the Background object to use the same background sprite

used in the previous chapter.

13. Select the Container parent object (not the Background).

14. In the Inspector, set the Align Items property of the Align section to center, which is the

third button. If you hover the mouse over the icons, they will show their names in a tooltip.

Creating a UI with the UI Toolkit532

15. Set Justify Content to Center (second button):

Figure 16.34: Preparing the UI background to host elements inside

16. Change the size of the UI using the white bars at the sides to see how the background is

always centered.

Even if we have only one element, we can start seeing how the relative positions work. First, we

created an empty object that will always adapt to the screen size, allowing us to make the chil-

dren’s elements depend on the full screen size. Then, we created an image element with a fixed

size, but with relative position, meaning its position will be calculated by the parent container.

Finally, we told the Container to make its child objects aligned to its horizontal and vertical cen-

ter, so the background immediately became centered whatever the screen size is. When working

with absolute positions, the Align properties didn’t work, so this is one of the first benefits of

relative positioning.

Chapter 16 533

But relative positioning becomes more powerful with multiple elements, so let’s add the Label

and Buttons to our Background element to explore this concept further by doing the following:

1. From the Library pane at the bottom left of UI Builder, drag a Label and two Button ele-

ments inside the Background in the Hierarchy. Note that there’s a bug where sometimes,

even if you drag and drop a new element inside the desired object, it won’t be its child.

Just drag the one created in the Hierarchy this time:

Figure 16.35: Adding elements inside the menu background

2. Observe how by default, the elements became vertically aligned one on top of the other

due to the relative position’s default settings:

Figure 16.36: Automatic relative vertical positioning

3. Select the Background element and set Justify Content to space-around (fifth button).

This will spread the elements along the background.

Creating a UI with the UI Toolkit534

4. Set Align Items to center (third option) to center elements horizontally:

Figure 16.37: Automatic relative vertical positioning

There is a similar mode for Justify Content called “space-between” (the

fourth button in Justify Content) that will also spread the elements along the

vertical axis but won’t leave space on top of the first element or the bottom of

the last one. Also, Align Items has an option called stretch (the fifth option)

that, like center, will center elements horizontally, but also stretch them

instead of respecting each element’s width. I recommend experimenting

with the different aligning modes to discover all opportunities.

Chapter 16 535

5. Set the Label Text’s Font and Size attributes to whatever seems fit. In my case, I used the

imported font and a size of 60px. Remember to also set the Text to Pause.

6. Set the Buttons Background Image to use the same used for the button in the last chapter.

7. Set the Color property of the Background section to a color with no alpha. You can achieve

this by clicking the color rectangle and reducing the A channel in the color picker to 0.

The idea of this color is to act as a background for our image, but we don’t need it, so we

made it completely transparent.

8. Set the Buttons Text’s Font, Size, and Color to whatever seems fit to you. In my case, I’m

using 50 and gray color.

9. In the Margin and Padding section, set Padding to have some spacing between the text

and the borders of the button. In my case, 30px did the trick:

Figure 16.38: Adding inner padding to the button contents (the text in this case)

10. Also, set the Top and Bottom Padding of the Background to allow some space between

the borders of the window and its elements. In my case, it is 40px each.

As you can see, we changed different settings to set the size of the elements dynamically, like font

sizes and paddings, and the relative system along with the align settings took the role of deter-

mining the position of the elements automatically. We can rearrange the order of the elements

by dragging them in the Hierarchy and they will be accommodated automatically. We could

have also set the size of the elements with the Size property, and we can also apply some offsets

if desired using the Position properties, but I encourage you to see how these properties behave

in Relative mode on your own.

One last setting I want you to explore is the Direction attribute of the Flex section, which, as you

can imagine, will determine the orientation the elements will follow, vertically from top to bot-

tom or bottom to top, and horizontally from left to right or right to left. For example, you could

set Direction to distribute the elements from left to right using the row mode (third button) and

make the background wider to have a horizontal options menu if you wish.

Creating a UI with the UI Toolkit536

Figure 16.39: Changing to a vertical orientation of elements

As a side note, you might notice that the images for the background and buttons will look bigger

than the options menu done in the last chapter. That’s because the Pixels per Unit setting that

we changed on the Texture assets to control the scaling of the textures won’t take effect in UI

Toolkit; you will need to manually change the texture file size in any image editor to give it its

proper size. The best practice here would be to always create the images with a size that will

look fine in our maximum supported resolution. Usually, this is 1920x1080 on PC but note that

4k resolutions are becoming more popular every day.

Summary
In this chapter, we had an introduction to the key concepts of UI Toolkit and how to create UI

Documents and Stylesheets. Regarding UI Documents, we learned how to create different ele-

ments like images, text, and buttons and how to position and size them using different methods,

like absolute and relative positioning, and pixel or percentual units. Also, we saw how to make

the UI adapt to different sizes using different combinations of Position attributes. Finally, we

learned how to use USS Stylesheets to share styles between different elements to easily manage

our whole UI skinning.

Essentially, we learned again how to make UIs with a different system. Again, please note that

this system is still in the experimental phase and is not recommended for real production projects.

We used all these concepts to recreate the same UI created in Chapter 15, User Interface Design.

In the next chapter, we are going to see how to add animations to our game to make our character

move. We will also see how to create cut-scenes and dynamic cameras.

17
Creating Animations with
Animator, Cinemachine, and
Timeline

Sometimes, we need to move objects in a predetermined way, such as with cutscenes, or specific

character animations, such as jumping, running, and so on. In this chapter, we will go over sev-

eral Unity animation systems to create all the possible movements of objects we can get without

scripting.

In this chapter, we will examine the following animation concepts:

• Using Skinning Animation with Animator

• Scripting animations

• Creating dynamic cameras with Cinemachine

• Creating cutscenes with Timeline

By the end of this chapter, you will be able to create cutscenes to tell the history of your game or

highlight specific areas of your level, as well as create dynamic cameras that are capable of giving

an accurate look to your game, regardless of the situation.

Using Skinning Animation with Animator
So far, we have used what are called static meshes, which are solid three-dimensional models

that are not supposed to bend or animate in any way (aside from moving separately, like the

doors of a car).

Creating Animations with Animator, Cinemachine, and Timeline538

We also have another kind of mesh, called skinned meshes, which are meshes that have the ability

to bend based on a skeleton, so they can emulate the muscle movements of the human body. We

are going to explore how to integrate animated humanoid characters into our project to create

enemy and player movements.

In this section, we will examine the following skeletal mesh concepts:

• Understanding skinning

• Importing skinned meshes

• Integration using Animator Controllers

• Using Avatar Masks

We are going to explore the concept of skinning and how it allows you to animate characters. Then,

we are going to bring animated meshes into our project to finally apply animations to them. Let’s

start by discussing how to bring skeletal animations into our project.

Understanding skinning
In order to get an animated mesh, we need to have four pieces, starting with the mesh that will

be animated, which is created the same way as any other mesh. Then, we need the skeleton,

which is a set of bones that will match the desired mesh topology, such as the arms, fingers, feet,

and so on. In Figure 17.1, you can see an example of a set of bones aligned with our target mesh:

Figure 17.1: A ninja mesh with a skeleton matching its default pose

Chapter 17 539

Once the artist has created the model and its bones, the next step is to do skinning, which is the

act of associating every vertex of the model to one or more bones. This way, when you move a

bone, the associated vertices will move with it. In Figure 17.2, you can see the triangles of a mesh

being painted according to the color of the bone that affects it as a way to visualize the influence

of the bones. You will notice blending between colors, meaning that those vertexes are affected

differently by different bones to allow the vertexes near an articulation to bend nicely. Also, Figure

17.2 illustrates an example of a two-dimensional mesh used for two-dimensional games, but the

concept is the same:

Figure 17.2: Mesh skinning weights visually represented as colors

Finally, the last piece you need is the actual animation, which will simply consist of a blending of

different poses of the mesh bones. The artist will create keyframes in an animation, determining

which pose the model needs to have at different moments, and then the animation system will

simply interpolate between them. Basically, the artist will animate the bones, and the skinning

system will apply this animation to the whole mesh.

In order to get the four parts, we need to get the proper assets containing them. The usual format

in this scenario is Filmbox (FBX), which we used previously to import 3D models. This format can

contain every piece we need—the model, the skeleton with the skinning, and the animations—but

usually those pieces will come split into several files to be re-utilized.

Creating Animations with Animator, Cinemachine, and Timeline540

Imagine a city simulator game where we have several citizen meshes with different aspects and all

of them must be animated. If we have a single FBX per citizen containing the mesh, the skinning,

and the animation, it will cause each model to have its own animation, or at least a clone of the

same one, repeating them. When we need to change that animation, we will need to update all

the mesh citizens, which is a time-consuming process. Instead of this, we can have one FBX per

citizen, containing the mesh and the bones with the proper skinning based on that mesh, as well

as a separate FBX for each animation, containing the same bones that all the citizens have with

the proper animation, but without the mesh. This will allow us to mix and match the citizen

FBX with the animation’s FBX files. You may be wondering why both the model FBX and the

animation FBX must have the mesh. This is because they need to match in order to make both

files compatible. In Figure 17.3, you can see how the files should look:

Figure 17.3: The animation and model FBX files of the package we will use in our project

Also, it is worth mentioning a concept called retargeting. As we said before, in order to mix a

model and an animation file, we need them to have the same bone structure, which means the

same number of bones, hierarchy, and names.

Sometimes, this is not possible, especially when we mix custom models created by our artist with

external animation files that you can record from an actor using motion-capture techniques, or

just by buying a mocap (motion-capture) library, a set of animations captured on real humans

using specific mocap hardware. In such cases, it is highly likely that you will encounter different

bone structures between the one in the mocap library and your character model, so here is where

retargeting kicks in. This technique allows Unity to create a generic mapping between two dif-

ferent humanoid-only bone structures to make them compatible. In the next section, Importing

skeletal animations, we will see how to enable this feature.

Chapter 17 541

Now that we understand the basics behind skinned meshes, let’s see how we can get the model’s

assets with bones and animations.

Importing skeletal animations
We can download a character model by searching for it in the Asset Store, under the 3D | Char-

acters | Humanoids section. You can also use external sites, such as the website called Mixamo,

to download them. Note that sometimes you will need to download several packages because

sometimes packages come only with the skinned model, and others with animation only. Luckily

the one we downloaded already contains the skinned meshes and the animations.

In my package content, I can find the animation’s FBX files in the Animations folder and the FBX

file of my model called Polyart_Mesh in the Mesh folder. Remember that sometimes you won’t

have them separated like this, and the animations may be located in the same FBX as the model,

if any animations are present at all. Now that we have the required files, let’s discuss how to

properly configure them.

Let’s start selecting the Model file and checking the Rig tab. Within this tab, you will find a setting

called Animation Type, as shown in Figure 17.4:

Figure 17.4: The Rig properties

This property contains the following options:

• None: Mode for non-animated models; every static mesh in your game will use this mode.

• Legacy: The mode to be used in old Unity Projects and models; do not use this in new

projects.

Creating Animations with Animator, Cinemachine, and Timeline542

• Generic: A new animation system that can be used in all kinds of models but is common-

ly used in non-humanoid models, such as horses, octopuses, and so on. If you use this

mode, both the model and animation FBX files must have the exact same bone names and

structure, thereby reducing the possibility of combining animation from external sources.

• Humanoid: New animation systems designed to be used in humanoid models. It enables

features such as retargeting and Inverse Kinematics (IK). This allows you to combine

models with different bones than the animation because Unity will create a mapping

between those structures and a generic one, called the avatar. Take into account that

sometimes the automatic mapping can fail, and you will need to correct it manually; so,

if your generic model has everything you need, I recommend you stick to Generic if that’s

the default configuration of the FBX.

In my case, the FBX files in my package have the modes set to Humanoid, so that’s good, but

remember, only switch to other modes if it is absolutely necessary (for example, if you need to

combine different models and animations). Now that we have discussed the Rig settings, let’s

talk about the Animation settings.

In order to do this, select any animation FBX file and look for the Animation tab in the Inspector

window. You will find several settings, such as the Import Animation checkbox, which must be

marked if the file has an animation (not the model files), and the Clips list, where you will find

all the animations in the file. In the following screenshot, you can see the Clips list for one of our

animation files:

Figure 17.5: A Clips list in the Animation settings

An FBX file with animations usually contains a single large animation track, which can contain

one or several animations. Either way, by default, Unity will create a single animation based on

that track, but if that track contains several animations, you will need to split them manually. In

our case, our FBX contains a single animation, but in order to learn how to split it in other cases,

do the following:

1. From the Clips list, select any animation that you want to recreate; in my case, I will

choose Run_guard_AR.

Chapter 17 543

2. Take a look at the Start and End values below the animation timeline and remember

them; we will use them to recreate this clip:

Figure 17.6: The clip settings

3. Use the + button to create a new clip and select it.

4. Rename it to something similar to the original using the input field that currently says

something like Take 001. In my case, I will name it Run.

5. Set the End and Start properties with the values we needed to remember in step 2. In my

case, I have 20 for End and 0 for Start. This information usually comes from the artist that

made the animation, but you can just try the number that works best or simply drag the

blue markers in the timeline on top of these properties.

6. If an animation needs to loop, check the Loop Time checkbox to guarantee that. This will

make the animation repeat constantly, which is required in most animations like Walk

or Run. If not, the animation will play once and never repeat:

Figure 17.7: Looping the animation

Creating Animations with Animator, Cinemachine, and Timeline544

7. Preview the clip by clicking on the bar titled for your animation (Run, in my case) at the

very bottom of the Inspector window and click on the Play button. You can see the de-

fault Unity model in some cases, but you can see your own by dragging the model file to

the preview window because it is important to check whether our models are properly

configured. If the animation does not play, you will need to check whether the Animation

Type setting matches the animation file:

Figure 17.8: Animation preview

8. Open the animation asset (the FBX) by clicking the arrow on its left, and check the sub-as-

sets. You will see that there is an asset with the same title as your animation:

Figure 17.9: Generated animation clips

Chapter 17 545

9. Remember that there are plenty of other settings aside from the Init frame, End frame,

and Loop Time. The character I downloaded required other settings like Root Transform

Rotation, Root Transform Position, and Mask to make it work, and the mileage may vary

between character packages. If you are recreating an existing animation, consider copying

all settings as they were, or just use the default one. These mentioned settings are beyond

the scope of the book, but you can always consult them in the Unity documentation at

https://docs.unity3d.com/Manual/class-AnimationClip.html.

Now that we have covered the basic configuration, let’s learn how to integrate animations.

Integration using Animation Controllers
When adding animations to our characters, we need to think about the flow of the animations,

which means thinking about which animations must be played, when each animation must be

active, and how transitions between animations should happen. In previous Unity versions, you

needed to code that manually, generating complicated scripts of C# code to handle complex

scenarios; but now, we have Animation Controllers.

Animation Controllers are a state machine-based asset where we can diagram the transition logic

between animations with a visual editor called Animator. The idea is that each animation is a

state and our model will have several of them. Only one state can be active at a time, so we need

to create transitions in order to change them, which will have conditions that must be met in

order to trigger the transition process. Conditions are comparisons of data about the character

to be animated, such as its velocity, whether it’s shooting or crouched, and so on.

So, basically, an Animation Controller or state machine is a set of animations with transition

rules that will dictate which animation should be active. Let’s start creating a simple Animation

Controller by doing the following:

1. Click the + button under the Project view, click on Animator Controller, and call it Player.

Remember to locate your asset within a folder for proper organization; I will call mine

Animations.

2. Double-click on the asset to open the Animator window. Don’t confuse this window with

the Animation window; the Animation window serves to create new Animations, but for

now, we will stick with the downloaded ones.

https://docs.unity3d.com/Manual/class-AnimationClip.html

Creating Animations with Animator, Cinemachine, and Timeline546

3. Search for the Idle animation clip of your character in the Animations folder of your

characters package and drag it into the Animator window. In my case it was called Idle_

guard_ar. Remember to drag the sub-asset, not the entire file. This will create a box in

the Controller representing the animation that will be connected to the entry point of

the Controller, indicating that the animation will be the default one because it is the first

one that we dragged. If you don’t have an Idle animation, I encourage you to download

one from the Asset Store, maybe searching in other characters’ packages. We will need at

least one Idle and one walking/running animation clip:

Figure 17.10: Dragging an animation clip from an FBX asset into an Animator Con-
troller

4. Drag the running animation in the same way, which is Run_guard_AR in my case.

5. Right-click on the Idle animation box in the Animator window, select Make Transition,

and left-click on the Run animation. This will create a transition between Idle and Run.

6. Create another transition from Run to Idle in the same way:

Figure 17.11: Transitions between two animations

Chapter 17 547

Transitions must have conditions in order to prevent animations from swapping constantly, but

in order to create conditions, we need data to make comparisons. We will add properties to our

Controller, which will represent data used by the transitions. Later, in the Scripting Animations

section of this chapter, we will set that data to match the current state of our object. But for now,

let’s create the data and test how the Controller reacts to different values. In order to create con-

ditions based on properties, do the following:

1. Click on the Parameters tab in the top-left part of the Animator window. If you don’t see

it, click on the button that looks like an eye crossed by a line to display the tabs. The icon

will change to an uncrossed eye.

2. Click on the + button and select Float to create a number that will represent the velocity

of our character, naming it Velocity. If you missed the renaming part, just left-click on

the variable and rename it:

Figure 17.12: The Parameters tab with a float Velocity property

3. Click on the Idle to Run transition (the white line with an arrow in the middle) and look

at the Conditions property in the Inspector window.

4. Click on the + button at the bottom of the list, which will create a condition that will

rule the transition. The default setting will take the first parameter of our animator (in

this case, it is Velocity) and will set the default comparer, in this case, Greater, to a value

of 0. This tells us that the transition will execute from Idle to Run if Idle is the current

animation and the velocity of the Player is greater than 0. I recommend you set a slightly

higher value, such as 0.01, to prevent any float rounding errors (a common CPU issue).

Also, remember that the actual value of Velocity needs to be set manually via scripting,

which we will do in this chapter’s Scripting animations section:

Figure 17.13: Condition to check whether the velocity is greater than 0.01

Creating Animations with Animator, Cinemachine, and Timeline548

5. Do the same to the Run to Idle transition, but this time, change Greater to Less and again

set the value to 0.01:

Figure 17.14: Condition to check whether a value is less than 0.01

Now that we have our first Animator Controller set up, it’s time to apply it to an object. In order to

do that, we will need a series of components. First, when we have an animated character, rather

than a regular Mesh Renderer, we use the Skinned Mesh Renderer. If you select your player or

enemy characters and view their children, GameObjects, you will see the Skinned Mesh Renderer

in one or more of them:

Figure 17.15: A Skinned Mesh Renderer component

This component will be in charge of applying the bones’ movements to the mesh. If you search the

children of the model, you will find some bones; you can try rotating, moving, and scaling them

to see the effect, as shown in the following screenshot. Bear in mind that your bone hierarchy

might be different from mine if you downloaded another package from the Asset Store:

Chapter 17 549

Figure 17.16: Rotating the neckbone

The other component that we need is Animator, which is automatically added to the skinned

meshes at its root GameObject. This component will be in charge of applying the state machine

that we created in the Animator Controller if the animation FBX files are properly configured, as

we mentioned earlier. In order to apply the Animator Controller, do the following:

1. Select the player in the Hierarchy and locate the Animator component in the root Ga-

meObject.

2. Click on the circle to the right of the Controller property and select the Player controller

we created earlier. You can also just drag it from the Project window.

3. Make sure that the Avatar property is set to the avatar inside the FBX model of the character

(Polyart_Mesh being the FBX model in our example project); this will tell the animator

that we will use that skeleton. You can identify the avatar asset by its icon of a person, as

shown in the following screenshot. Usually, this property is correctly set automatically

when you drag the FBX model to the scene:

Figure 17.17: Animator using the Player controller and the robot avatar

Creating Animations with Animator, Cinemachine, and Timeline550

4. Without stopping the game, open the Animator Controller asset again by double-clicking

it and selecting the character in the Hierarchy pane. By doing this, you should see the

current state of the animation being played by that character, using a bar to represent

the current part of the animation:

Figure 17.18: The Animator Controller in Play mode while an object is selected, show-
ing the current animation and its progress

5. Using the Animator window, change the value of Velocity to 1.0 and see how the transition

will execute. Feel free to disable the WaveSpawners to test this, given they will probably

kill the player before we can safely do so:

Figure 17.19: Setting the velocity of the Controller to trigger a transition

6. Depending on how the Run animation was set, your character might start to move in-

stead of executing the animation in place. This is caused by root motion, a feature that

will move the character based on the animation movement. Sometimes, this is useful, but

due to the fact that we will fully move our character using scripting, we want that feature

to be turned off. You can do that by unchecking the Apply Root Motion checkbox in the

Animator component of the Character object, as seen in Figure 17.17.

Chapter 17 551

7. You will also notice a delay between changing the Velocity value and the start of the an-

imation transition. That’s because, by default, Unity will wait for the original animation

to end before executing a transition, but in this scenario, we don’t want that. We need the

transition to start immediately. In order to do this, select each transition of the Controller,

and in the Inspector window, uncheck the Has Exit Time checkbox. When this property

is checked, a hidden condition for the transition to execute is waiting for the animation

to end. But with this unchecked, the transition can execute at any moment during the

animation, which we want, given that we don’t want any delay between the player being

idle and running:

Figure 17.20: Disabling the Has Exit Time checkbox to execute the transition imme-
diately

You can start dragging other animations into the Controller and create complex animation logic,

such as adding jump, fall, or crouched animations. I invite you to try other parameter types, such

as a Boolean, that use checkboxes instead of numbers. Also, as you develop your game further, your

Controller will grow in its number of animations. To manage that, there are other features worth

researching, such as Blend Trees and sub-state machines, but that’s beyond the scope of this book.

In this section, we learned how to integrate animation clips into our character through Animator

Controllers. We added all needed animations and created the necessary transitions between them

to react to the game circumstances, like the character velocity changes.

Creating Animations with Animator, Cinemachine, and Timeline552

Now that we have integrated the idle and run animations, let’s integrate the shoot animation,

which requires us to use Avatar Masks.

Using Avatar Masks
At first, this case seems as simple as dragging a shoot animation and making transitions that

use the Shooting Boolean parameter as a condition. Consider, however, that we can shoot while

walking and while running, so that leads to two shooting animations, Walking Shooting and

Idle Shooting. If you follow this logic, you can think of shooting while falling, jumping, etc.,

which leads to a greater number of animation combinations. Imagine having different shooting

animations for different weapons! Luckily, we have a better solution: a way to combine several

animations, using Avatar Masks.

The animations state machine we created in the Animator Controller is what is called a layer,

and an Animator Controller can have several layers. This means that we can have more than one

state machine in an Animator Controller. There are several reasons to use this, but the common

one is to combine layers with Avatar Masks, an asset that allows us to make a specific Animator

Controller layer or state machine to affect certain bones, so we can set different state machines

for different parts of the body.

We can use this to solve the shooting scenario we discussed previously, splitting our player an-

imation logic into two parts, the upper part of the body, and the lower part. The idea is that the

lower part will switch between idle and running animations, while the upper part can switch

between idle, running, and shooting. This allows us to have scenarios where the lower part is

running while the upper part is shooting, or the lower part is idle and the upper part also, or any

combination we can imagine.

Let’s start by creating the second layer by doing the following:

1. Download a shooting animation from the internet or the Asset Store if you don’t have

one already. In our case we already have several shooting animations, and we are going

to pick the one called Idle_Shoot_ar.

2. In the Animator Controller, do a single click in Base Layer and rename it LowerBody. If

you don’t see the layers list, click the Layers button at the top-left part of the Animator

window:

Chapter 17 553

Figure 17.21: Renaming the base layer

3. Add a second layer to the Controller using the + button and rename it UpperBody.

4. Select the layer and add the Idle, Runs, and Shoot animations to it, connecting the states

with transitions. Remember to uncheck Has Exit Time in each transition:

Figure 17.22: UpperBody state machine

5. Add the same transition logic between Idle and Run used before, using Velocity as the

parameter for the conditions, as before.

6. For the shooting transitions, create a Boolean parameter called Shooting:

Figure 17.23: Shooting Boolean

7. Make both transitions to shooting (Idle to Shoot and Run to Shoot) execute when the

Shooting Boolean is true.

Creating Animations with Animator, Cinemachine, and Timeline554

8. Make the return transition from Shoot to Idle when the Shooting Boolean is false and

Velocity is less than 0.01, and the return from Shoot to Run when Shooting is true and

Velocity is greater than 0.01:

Figure 17.24: The Shoot to Idle transition at the top, the Shoot to Run transition in
the middle, and both the Idle to Shoot and Run to Shoot transitions at the bottom

Now that we have the layers created, let’s apply the Avatar Masks to them:

1. Create an Avatar Mask using the + button in the Project View, and name the first one

UpperBodyMask.

2. Select the UpperBodyMask asset in the Inspector and click the arrow on the left where it

says Humanoid to expand this section.

3. Click the lower parts of the body displayed in the Inspector until they become red:

Chapter 17 555

Figure 17.25: UpperBodyMask asset configs

4. In the Animator Controller, select the UpperBody layer and click on the wheel to its right

to display some options.

5. Click at the circle at the right of the Mask property and select the UpperBodyMask asset

in the window that appears.

6. Click again at the wheel of the UpperBody layer and set its Weight to 1. Since the two

layers are affecting different parts of the body, both of them have the same priority. In

scenarios where two layers affect the same bones, the weight is used to calculate which

one has more influence:

Figure 17.26: Setting the Weight and the Mask of a layer

Creating Animations with Animator, Cinemachine, and Timeline556

7. Click again on the wheel and observe how the Blending parameter is set to Override,

meaning that the bones that this layer affects (driven by the Avatar Mask) will override

whatever animation the base layer has—the base layer, in this case, being LowerBody.

That’s how this layer takes ownership of the upper part of the body.

8. Test this again, changing the values of the parameters while in Play mode. For example, try

checking Shooting and then set Velocity to 1, and then to 0, to finally uncheck Shooting,

and see how the transitions execute.

9. You might notice that our character might not be pointing in the right direction when

shooting. This is because the orientation of the character is modified for this Shoot ani-

mation compared to Idle and Run, but the Base Layer still has ownership of that. We can

make the UpperBodyMask control the orientation by clicking the circle at the bottom

of the human figure in the Humanoid section of the Avatar Mask until it becomes green:

Figure 17.27: Giving the mask authority over the player orientation

The issue here is that you will now see the character moving the feet sideways when

running and shooting. There’s no easy solution here other than to modify the original

animations. In this case, this character has Idle, Idle Shooting, Run and Run Shooting

animations, so it clearly has been created without having Avatar Masks in mind, instead

just having all possible animation combinations. An alternative is to find another package

that works better with Avatar Masks. For learning purposes, we will stick with this, but

note that Avatar Masks are not a must; you might be good to go just using all possible

animation permutations in a single Animator Controller state machine with all the needed

transitions.

Another issue you might notice when firing when the Shoot animation is playing is that

the muzzle effect will stay in the original position of the weapon. Since the weapon mesh

is affected by the skinning animation but not its Transform position, the muzzle cannot

follow it. In order to solve this, you can reparent the Muzzle Effect to one of the bones of

the weapons—in this case, the GameObject called Trigger_Right, one of the children of

the Hips GameObject. Not all animations will have bones for the weapons, so this is one

of the possible scenarios you could face:

Chapter 17 557

Figure 17.28: Reparenting the Muzzle Effect to one of the weapon’s bones

10. Remember to apply the same changes we made to our player to the enemy, which means

adding and setting the Player Animator Controller to its Animator component and chang-

ing the Muzzle effect parent.

Now that we have a fully functional Animator Controller, let’s make it reflect the player move-

ment through scripting.

Scripting animations
With our player’s Animator ready, it is time to do some scripting to make these parameters be

affected by the actual behavior of the player and match the player’s. In this section we will do

the following to achieve this:

• Script shooting animations

• Script movement animations

Let’s start making our characters execute the Shoot animation when necessary.

Scripting player shooting animations
So far, we have created a behavior to shoot each time we press a key, but the animation is pre-

pared for sustained fire. We can make our PlayerShooting script shoot a bullet every X number

of seconds while we keep the Fire key pressed to match the animation, instead of having to press

the key repeatedly.

Creating Animations with Animator, Cinemachine, and Timeline558

Let’s see how to do this:

1. In the PlayerShooting script, add a public float field called fireRate, which will measure the

seconds between bullet spawns. Remember to set this value in the Inspector of the player.

2. Change the OnFire method to the code seen in Figure 17.29. The idea is to start a repeating

action when we press the key and stop it when we release the key. We are using InvokeRe-

peating to repeatedly execute a function called Shoot, which we will be creating in the

next step. The rate of execution will be controlled by the fireRate field we created in step 1:

Figure 17.29: OnFire changes needed for sustained fire

3. Add the Shoot method as seen in Figure 17.30 to our PlayerShooting script. This is essen-

tially the same code we had before in the OnFire method but separated in a function, so

we can execute it several times with the InvokeRepeating function:

Chapter 17 559

Figure 17.30: OnFire changes needed for sustained fire

If you try these changes now, you will notice the bullets will never stop shooting once we click

the Fire button. Even worse, as we press repeatedly, more and more bullets will be shot. With

some debugging or educated guessing, you might figure out that the CancelInvoke method is

not being executed. The reason behind this is that the Fire input mapping is not configured by

default to inform us about the release of keys, just when they were pressed. Luckily the solution

is pretty simple:

1. Double-click the SuperShooter inputs asset, the one we created in Chapter 6, Implementing

Movement and Spawning, that contains all the inputs our game supports.

2. Select the Fire action in the Actions list (the middle column).

3. Click the + button at the right of the Interactions section and click Press.

Creating Animations with Animator, Cinemachine, and Timeline560

4. Set the Trigger Behavior of the Press section to Press And Release:

Figure 17.31: OnFire changes needed for sustained fire

5. With this we have configured the Input to not only tell us when the key was pressed but

also when it was released, making our CancelInvoke method execute now.

Now that we have our constant fire behavior, we can do the following to make the animation

reflect this:

1. Add a reference to Animator using GetComponent in Awake and cache it in a field, as

seen in Figure 17.32:

Figure 17.32: Caching the Animator reference

Chapter 17 561

2. Add the line animator.SetBool("Shooting", value.isPressed); at the beginning of

the OnFire method:

Figure 17.33: Setting the Shooting animation parameter to reflect input

3. The idea behind this change is to make sure the Shooting animation parameter reflects

the state of the fire key, meaning that the Shoot animation will play as long as the Fire

button is pressed, and will stop when we release it.

One thing you will notice is that the bullets are still being shot from the player’s chest because our

ShootPoint GameObject, the one that defines the shooting position, is not positioned in front of

the weapon. Just re-parent the ShootPoint to the weapon bone (Trigger_Right in our case) and

position it to be in front of the weapon. Remember to make the forward vector (the blue arrow

in the Scene view) point along the weapon:

Figure 17.34: Adapting the ShootPoint to follow the animation

Creating Animations with Animator, Cinemachine, and Timeline562

For the Visual Scripting version, in order to make the bullet get shot constantly, you should change

the Input nodes of PlayerShooting like in Figure 17.35:

Figure 17.35: Creating a shoot loop

As you can see, we used a new node called Timer. The idea of Timer is similar to the Wait For

Seconds node we used before, because it allows us to delay the execution of one action. One of

the main differences is that it allows us to cancel the timer before it executes again, meaning we

can start the timer when we press the Fire key, and stop it when we release it. We did that by

connecting the InputSystemEventButton node that has the OnPressed mode to the Start pin

of the Timer, and the one with the OnReleased mode to the Pause pin. Also, we created a new

variable called fireRate and connected it to the Duration pin of the Timer, so we need to specify

how much time the Timer will wait before instantiating our bullets. See how we connected the

Completed pin of the Timer to the If node that checks if we have enough bullets to instantiate;

we used to connect to the input node here before.

Chapter 17 563

One little missing detail here is that when we press a key, time will pass (fireRate) and then a

bullet will be instantiated, but then nothing else. We need to connect the end of the Bullet shoot

sequence (the AudioSource: Play node in this case) of nodes again to the Start pin of the Timer

to create a spawn loop. That loop will be interrupted when we release the key, to prevent it from

being executed forever:

Figure 17.36: Completing the shoot loop

Finally, we need to add the proper Animator: SetBool(Name, Value) node to the Input nodes

to turn on and off the Boolean and trigger the animation:

Figure 17.37: Executing the Shoot animation

Creating Animations with Animator, Cinemachine, and Timeline564

Now that we have handled the Shoot animations of the player, let’s handle the one of the enemy

by doing the following:

1. Cache a reference to the parent animator in the EnemyFSM script using GetCompo-

nentInParent as we did with the NavMeshAgent:

Figure 17.38: Accessing the parent’s Animator reference

2. Turn on the Shooting animator parameter inside the Shoot function to make sure that

every time we shoot, that parameter is set to true (checked):

Figure 17.39: Turning on the shooting animation

3. Turn off the Shooting parameter in all non-shooting states, such as GoToBase and Chase-

Player:

Chapter 17 565

Figure 17.40: Turning off the shooting animation

Creating Animations with Animator, Cinemachine, and Timeline566

4. Regarding the Visual Scripting version, the GoToBase state in the EnemyFSM will look

like this:

Figure 17.41: GoToBase state

5. Note that we needed again the GetParent node to access the enemy’s parent Transform

(the root), which we connected to the Animator: SetBool node in order to access the

Animator in the enemy’s root. Then the ChasePlayer state actions will look like this:

Figure 17.42: ChasePlayer state

Chapter 17 567

6. Then both the AttackBase and AttackPlayer initial actions will look like this:

Figure 17.43: Attack Base state

With this, both our player and enemies have a constant shooting behavior and a Shoot animation

to reflect this. Now let’s handle the movement animations for both.

Scripting movement animations
For the animator controller’s Velocity parameter, we can detect the magnitude of the velocity

vector of Rigidbody, the velocity in meters per second, and set that as the current value. This

can be perfectly separated from the PlayerMovement script, so we can reuse this if necessary, in

other scenarios. So, we need to create a script such as the one in the following image, which just

connects the Rigidbody component’s velocity with the animator Velocity parameter, and adds

it to the Player GameObject:

Creating Animations with Animator, Cinemachine, and Timeline568

Figure 17.44: Setting VelocityAnimator variables

And regarding the Visual Scripting version, this is what it would look like:

Figure 17.45: Setting Velocity Animator variables in Visual Scripting

Chapter 17 569

You may need to increase the 0.01 transitions threshold used so far in the conditions of the tran-

sitions of the animator controller because Rigidbody keeps moving after releasing the keys. Using

1 worked perfectly for me. Another option would be to increase the drag and the velocity of the

player to make the character stop faster. Pick whatever method works best for you. Remember

the transitions of both layers (UpperBody and LowerBody).

Now we can add the movement animations to the enemy. Create and add a script to the Enemy

prefab called NavMeshAnimator, which will take the current velocity of its NavMeshAgent and

will set it to the Animator Controller. This will work similarly to the VelocityAnimator script

but this time checking the velocity of the NavMeshAgent. We didn’t use VelocityAnimator here

because our AI doesn’t use Rigidbody to move, so it won’t work:

Figure 17.46: Connecting the NavMeshAgent to our Animator Controller

Creating Animations with Animator, Cinemachine, and Timeline570

The Visual Scripting version will look like this:

Figure 17.47: Setting the animator velocity parameter the same as our NavMeshAgent

Notice here we don’t need the GetParent node, given that this graph is located at the Enemy’s root

object alongside the Animator and the NavMeshAgent. With that, we have scripted our Player

and Enemies animations. We are ready to keep learning about animations using Cinemachine

to create cutscene cameras and much more.

Creating dynamic cameras with Cinemachine
Cameras are a very important subject in video games. They allow the player to see their surround-

ings to make decisions based on what they see. The game designer usually defines how it behaves

to get the exact gameplay experience they want, and that’s no easy task. A lot of behaviors must

be layered to get the exact feeling. Also, for cutscenes, it is important to control the path that the

camera will be traversing during it and where the camera is looking to focus the action during

those constantly moving scenes.

In this chapter, we will use the Cinemachine package to create both the dynamic cameras that

will follow the player’s movements, which we will code in Part 3, and also, the cameras to be

used during cutscenes.

In this section, we will examine the following Cinemachine concepts:

• Creating camera behaviors

• Creating dolly tracks

Chapter 17 571

Let’s start by discussing how to create a Cinemachine-controlled camera and configure behaviors

in it.

Creating camera behaviors
Cinemachine is a tech library containing a collection of different behaviors that can be used in a

camera, which when properly combined can generate all kinds of common camera types in video

games, including following the player from behind, first-person cameras, top-down cameras, and

so on. In order to use these behaviors, we need to understand the concept of brains and virtual

cameras.

In Cinemachine, we will only keep one main camera, as we have done so far, and that camera

will be controlled by virtual cameras, separated GameObjects that have the aforementioned

behaviors. We can have several virtual cameras and swap between them at will, but the active

virtual camera will be the only one that will control our main camera. This is useful for switching

cameras at different points of the game, such as switching between our player’s third-person

camera and a cutscene camera. In order to control the main camera with the virtual cameras, it

must have a Brain component, which will monitor all active virtual cameras and pick the proper

position to use them.

To start using Cinemachine, first, we need to check if it is installed in the Package Manager, as we

did previously with other packages. If you don’t remember how to do this, just do the following:

1. Go to Window | Package Manager.

2. Ensure that the Packages option in the top-left part of the window is set to Unity Registry:

Figure 17.48: The Packages filter mode

3. Wait a moment for the left panel to populate all packages from the servers (the internet

is required).

Creating Animations with Animator, Cinemachine, and Timeline572

4. Look for the Cinemachine package from the list and select it. At the moment of writing

this book the latest available version is 2.8.6, but you can use newer versions if you prefer,

always ensuring that the following steps work as expected; if not, you can always install

the closest version to ours.

5. If you see the Install button in the bottom-right corner of the screen it means it is not

installed. Just click that button.

Now that we have it installed, we can start creating a virtual camera to follow the player. So far,

we just simply parented the camera to the player for it to follow them, but now we will unparent

the camera and let Cinemachine handle it to learn how to use this tool:

1. Select the MainCamera inside the player and unparent it (drag it outside the player) in

such a way that it becomes a root object of our scene, having no parent at all.

2. Click GameObject | Cinemachine | Virtual Camera. This will create a new object called

CM vcam1:

Figure 17.49: Virtual camera creation

3. If you select the main camera from the Hierarchy pane, you will also notice that a

CinemachineBrain component has been automatically added to it, making our main

camera follow the virtual camera. Try to move the created virtual camera, and you will

see how the main camera follows it:

Chapter 17 573

Figure 17.50: The CinemachineBrain component

4. Select the virtual camera (CM vcam1) and drag the character to the Follow and Look At

properties of the CinemachineVirtualCamera component. This will make the movement

and looking behaviors use that object to do their jobs:

Figure 17.51: Setting the target of our camera

5. You can see how the Body property of the virtual camera is set to Transposer, which

will move the camera relative to the target set at the Follow property—in our case, the

character. You can open the Body options (the arrow to its left), change the Follow Offset

property, and set it to the desired distance you want the camera to have from the target.

In my case, I used the 0, 3, and -3 values:

Figure 17.52: The camera following the character from behind

Creating Animations with Animator, Cinemachine, and Timeline574

6. Figure 17.50 shows the Game view; you can see a small, yellow rectangle indicating the

target position to look at the character, and it’s currently pointing at the pivot of the

character—its feet. If you don’t see it open the Aim section of the virtual camera in the

Inspector by clicking the arrow to its left.

7. We can apply an offset in the Tracked Object Offset property of the Aim section of the

virtual camera. In my case, a value of 0, 1.8, and 0 worked well to make the camera look

at the head instead:

Figure 17.53: Changing the Aim offset

As you can see, using Cinemachine is pretty simple, and in our case, the default settings were

mostly enough for the kind of behavior we needed. However, if you explore the other Body and

Aim modes, you will find that you can create any type of camera for any type of game. We won’t

cover the other modes in this book, but I strongly recommend you look at the documentation for

Cinemachine to check what the other modes do. To open the documentation, follow these steps:

1. Open the Package Manager by going to Window | Package Manager.

2. Find Cinemachine in the left-hand side list. Wait a moment if it doesn’t show up. Re-

member that you need an internet connection for it to work.

3. Once Cinemachine is selected, scroll down in the right panel until you see the View doc-

umentation link in blue. Click on it:

Figure 17.54: The Cinemachine documentation link

Chapter 17 575

4. You can explore the documentation using the navigation menu on the left:

Figure 17.55: The Cinemachine documentation

As you did with Cinemachine, you can find other packages’ documentation in the same way.

Now that we have achieved the basic camera behavior that we need, let’s explore how we can

use Cinemachine to create a camera for our intro cutscene.

Creating dolly tracks
When the player starts the level, we want a little cutscene with a pan over our scene and the base

before entering the battle. This will require the camera to follow a fixed path, and that’s exactly

what Cinemachine’s dolly camera does. It creates a path where we can attach a virtual camera so

that it will follow it. We can set Cinemachine to move automatically through the track or follow

a target to the closest point to the track; in our case, we will use the first option.

In order to create a dolly camera, follow these steps:

1. Let’s start creating the track with a cart, which is a little object that will move along the

track, which will be the target to follow the camera. To do this, click on GameObject |

Cinemachine | Dolly Track with Cart:

Figure 17.56: A dolly camera with a default straight path

Creating Animations with Animator, Cinemachine, and Timeline576

2. If you select the DollyTrack1 object, you can see two circles with the numbers 0 and 1 in

the Scene view. These are the control points of the track. Select one of them and move

it as you move other objects, using the arrows of the translation gizmo. If you don’t see

them press the W key to enable the Translation gizmo.

3. You can create more control points by clicking the + button at the bottom of the Waypoints

list of the CinemachineSmoothPath component of the DollyTrack1 object:

Figure 17.57: Adding a path control point

4. Create as many waypoints as you need to create a path that will traverse the areas you

want the camera to oversee in the intro cutscene. Remember, you can move the waypoints

by clicking on them and using the translation gizmo:

Figure 17.58: A dolly track for our scene. It ends right behind the character

Chapter 17 577

5. Create a new virtual camera. If you go to the Game view after creating it, you will notice

that the character camera will be active. In order to test how the new camera looks, select

the previous one (CM vcam1) and temporarily disable it by clicking the checkbox to the

left of the GameObject’s name in the Inspector.

6. Set the Follow target this time to the DollyCart1 object that we previously created with

the track.

7. Set Follow Offset of the Body section to 0, 0, and 0 to keep the camera in the same posi-

tion as the cart.

8. Set Aim to Same As Follow Target to make the camera look in the same direction as the

cart, which will follow the track curves:

Figure 17.59: Configuration to make the virtual camera follow the dolly track

9. Select the DollyCart1 object and change the Position value to see how the cart moves

along the track. Do this while the game window is focused and CM vcam2 is in solo mode

to see how the camera will look:

Figure 17.60: The dolly cart component

Creating Animations with Animator, Cinemachine, and Timeline578

10. Re-enable CM vcam1.

With the dolly track properly set, we can create our cutscene using Timeline to sequence it.

Creating cutscenes with Timeline
We have our intro camera, but that’s not enough to create a cutscene. A proper cutscene is a se-

quence of actions happening at the exact moment that they should happen, coordinating several

objects to act as intended. We can have actions such as enabling and disabling objects, switching

cameras, playing sounds, moving objects, and so on. To do this, Unity offers Timeline, which is

a sequencer of actions to coordinate those kinds of cutscenes. We will use Timeline to create an

intro cutscene for our scene, showing the level before starting the game.

In this section, we will examine the following Timeline concepts:

• Creating animation clips

• Sequencing our intro cutscene

We are going to see how to create our own animation clips in Unity to animate our GameObjects

and then place them inside a cutscene to coordinate their activation, using the Timeline sequencer

tool. Let’s start by creating a camera animation to use later in Timeline.

Creating animation clips
This is actually not a Timeline-specific feature but rather a Unity feature that works great with

Timeline. When we downloaded the character, it came with animation clips that were created

using external software, but you can create custom animation clips using Unity’s Animation

window. Don’t confuse it with the Animator window, which allows us to create animation tran-

sitions that react to the game situation. This is useful to create small object-specific animations

that you will coordinate later in Timeline with other objects’ animations.

These animations can control any value of an object’s component properties, such as the positions,

colors, and so on. In our case, we want to animate the dolly track’s Position property to make it

go from start to finish in a given time. In order to do this, do the following:

1. Select the DollyCart1 object.

2. Open the Animation (not Animator) window by going to Window | Animation | Ani-

mation.

Chapter 17 579

3. Click on the Create button at the center of the Animation window. Remember to do this

while the dolly cart (not track) is selected:

Figure 17.61: Creating a custom animation clip

4. After doing this, you will be prompted to save the animation clip somewhere. I recom-

mend you create an Animations folder in the project (inside the Assets folder) and call

it IntroDollyTrack.

If you pay attention, the dolly cart now has an Animator component with an Animator Controller

created, which contains the animation we just created. As with any animation clip, you need to

apply it to your object with an Animator Controller; custom animations are no exception. So, the

Animation window created them for you.

Animating in this window consists of specifying the value of its properties at given moments. In

our case, we want Position to have a value of 0 at the beginning of the animation, at 0 seconds

on the timeline, and have a value of 254 at the end of the animation, at 5 seconds. I chose 254

because that’s the last possible position in my cart, but that depends on the length of your dolly

track. Just test which is the last possible position in yours. Also, I chose 5 seconds because that’s

what I feel is the correct length for the animation, but feel free to change it as you wish. Now,

whatever happens between the animation’s 0 and 5 seconds is an interpolation of the 0 and 254

values, meaning that in 2.5 seconds, the value of Position will be 127. Animating always consists

of interpolating different states of our object at different moments.

In order to do this, follow these steps:

1. In the Animation window, click on the record button (the red circle in the top-left section).

This will make Unity detect any changes in our object and save them to the animation.

Remember to do this while you have selected the dolly cart.

2. Set the Position setting of the dolly cart to 1 and then 0. Changing this to any value and

then to 0 again will create a keyframe, which is a point in the animation that says that at

0 seconds, we want the Position value to be 0. We need to set it first to any other value if

the value is already at 0.

Creating Animations with Animator, Cinemachine, and Timeline580

You will notice that the Position property has been added to the animation:

Figure 17.62: The animation in Record mode after changing the Position value to 0

3. Using the mouse scroll wheel, zoom out the timeline to the right of the Animation window

until you see 5:00 seconds in the top bar:

Figure 17.63: The timeline of the Animation window seeing 5 seconds

4. Click on the 5:00-second label in the top bar of the timeline to position the playback

header at that moment. This will locate the next change we do at that moment.

5. Set the Position value of the dolly track to the highest value you can get; in my case, this

is 240. Remember to have the Animation window in Record mode:

Figure 17.64: Creating a keyframe with the 240 value 5 seconds into the animation

6. Hit the play button in the top-left section of the Animation window to see the animation

playing. Remember to view it in the Game view while CM vcam1 is disabled.

Now, if we hit Play, the animation will start playing, but that’s something we don’t want. In this

scenario, the idea is to give control of the cutscene to the cutscene system, Timeline, because this

animation won’t be the only thing that needs to be sequenced in our cutscene. One way to prevent

the Animator component from automatically playing the animation we created is to create an

empty animation state in the Controller and set it as the default state by following these steps:

Chapter 17 581

1. Search the Animator Controller that we created at the same time as the animation and

open it. If you can’t find it, just select the dolly cart and double-click on the Controller

property of the Animator component on our GameObject to open the asset.

2. Right-click on an empty state in the Controller and select Create State | Empty. This will

create a new state in the state machine as if we created a new animation, but it is empty

this time:

Figure 17.65: Creating an empty state in the Animator Controller

3. Right-click on New State and click on Set as Layer Default State. The state should be-

come orange:

Figure 17.66: Changing the default animation of the Controller to an empty state

4. Now, if you hit Play, no animation will play as the default state of our dolly cart is empty.

No transition will be required in this case.

Now that we have created our camera animation, let’s start creating a cutscene that switches

from the intro cutscene camera to the player camera by using Timeline.

Sequencing our intro cutscene
Timeline is already installed in your project, but if you go to the Package Manager of Timeline, you

may see an Update button to get the latest version if you need some of the new features. In our

case, we will keep the default version included in our project (1.5.2, at the time of writing this book).

Creating Animations with Animator, Cinemachine, and Timeline582

The first thing we will do is create a cutscene asset and an object in the scene responsible for

playing it. To do this, follow these steps:

1. Create an empty GameObject using the GameObject | Create Empty option.

2. Select the empty object and call it Director.

3. Go to Window | Sequencing | Timeline to open the Timeline editor.

4. Click the Create button in the middle of the Timeline window while the Director object

is selected to convert that object into the cutscene player (or director).

5. After doing this, a window will pop up asking you to save a file. This file will be the cutscene

or timeline; each cutscene will be saved in its own file. Save it in a Cutscenes folder in

your project (the Assets folder).

6. Now, you can see that the Director object has a Playable Director component with the

Intro cutscene asset saved in the previous step set for the Playable property, meaning

this cutscene will be played by the Director:

Figure 17.67: Playable Director prepared to play the Intro Timeline asset

Now that we have the Timeline asset ready to work with, let’s make it sequence actions. To start,

we need to sequence two things—first, the cart position animation we did in the last step and then

the camera swap between the dolly track camera (CM vcam2) and the player cameras (CM vcam1).

As we said before, a cutscene is a sequence of actions executing at given moments, and in order

to schedule actions, you will need tracks. In Timeline, we have different kinds of tracks, each one

allowing you to execute certain actions on certain objects. We will start with the animation track.

The animation track will control which animation a specific object will play; we need one track

per object to animate. In our case, we want the dolly track to play the Intro animation that we

created, so let’s do that by following these steps:

1. Add an Animation track by clicking the plus button (+) and then Animation Track:

Chapter 17 583

Figure 17.68: Creating an animation track

2. Select the Director object and check the Bindings list of the Playable Director component

in the Inspector window.

3. Drag the Cart object to specify that we want the animation track to control its animation:

Figure 17.69: Making the animation track control the dolly cart animation in this
Director

4. Drag the Intro animation asset that we created to the animation track in the Timeline

window. This will create a clip in the track showing when and for how long the anima-

tion will play. You can drag as many animations as possible that the cart can play into

the track to sequence different animations at different moments, but right now, we want

just that one:

Figure 17.70: Making the animator track play the intro clip

Timeline is a generic asset that can be applied to any scene, but as the tracks

control specific objects, you need to manually bind them in every scene. In

our case, we have an animation track that expects to control a single ani-

mator, so in every scene, if we want to apply this cutscene, we need to drag

the specific animator to control it in the Bindings list.

Creating Animations with Animator, Cinemachine, and Timeline584

5. You can drag the animation to change the exact moment you want it to play. Drag it to

the beginning of the track.

6. Hit the Play button in the top-left part of the Timeline window to see it in action. You

can also manually drag the white arrow in the Timeline window to view the cutscene at

different moments. If that doesn’t work try playing the game and then stopping:

Figure 17.71: Playing a timeline and dragging the playback header

7. Now, we will make our Intro timeline asset tell the CinemachineBrain component (the

main camera) which camera will be active during each part of the cutscene, switching to

the player camera once the camera animation is over. We will create a second track—a

Cinemachine track—which is specialized in making a specific CinemachineBrain com-

ponent to switch between different virtual cameras. To do this, follow these steps:

8. Click the + button again and click on Cinemachine Track. Note that you can install Time-

line without Cinemachine, but this kind of track won’t show up in that case:

Figure 17.72: Creating a new Cinemachine track

Chapter 17 585

9. In the Playable Director component’s Bindings list, drag the main camera to Cinemachine

Track to make that track control which virtual camera will control the main camera at

different moments of the cutscene:

Figure 17.73: Binding the main camera to the Cinemachine track

10. The next step indicates which virtual camera will be active during specific moments of the

timeline. To do so, our Cinemachine track allows us to drag virtual cameras to it, which

will create virtual camera clips. Drag both CM vcam2 and CM vcam1, in that order, to

the Cinemachine track:

Figure 17.74: Dragging virtual cameras to the Cinemachine track

11. If you hit the Play button or just drag the Timeline Playback header, you can see how

the active virtual camera changes when the playback header reaches the second virtual

camera clip. Remember to view this in the Game view.

12. If you place the mouse near the ends of the clips, a resize cursor will show up. If you drag

them, you can resize the clips to specify their duration. In our case, we will need to match

the length of the CM vcam2 clip to the Cart animation clip and then put CM vcam1 at the

end of it by dragging it so that the camera will be active when the dolly cart animation

ends. In my case, they were already the same length, but just try to change it anyway to

practice. Also, you can make the CM vcam1 clip shorter; we just need to play it for a few

moments to execute the camera swap.

Creating Animations with Animator, Cinemachine, and Timeline586

13. You can also overlap the clips a little bit to make a smooth transition between the two

cameras, instead of a hard switch, which will look odd:

Figure 17.75: Resizing and overlapping clips to interpolate them

14. Increase the Start Time property of the WaveSpawners to prevent the enemies from being

spawned before the cutscene begins.

If you wait for the full cutscene to end, you will notice how at the very end, CM vcam2 becomes

active again. You can configure how Timeline will deal with the end of the cutscene, as by de-

fault, it does nothing. This can cause different behavior according to the type of track–in our case,

again giving control to pick the virtual camera to the CinemachineBrain component, which will

pick the virtual camera with the highest Priority value. We can change the Priority property of

the virtual cameras to be sure that CM vcam1 (the player camera) is always the more important

one, or set Wrap Mode of the Playable Director component to Hold, which will keep everything

as the last frame of the timeline specifies. In our case, we will use the latter option to test the

Timeline-specific features:

Figure 17.76: Wrap Mode set to Hold mode

Most of the different kinds of tracks work under the same logic; each one will control a specific

aspect of a specific object using clips that will execute during a set time. I encourage you to test

different tracks to see what they do, such as Activation, which enables and disables objects

during the cutscene. Remember, you can check out the documentation of the Timeline package

in the Package Manager.

Chapter 17 587

Summary
In this chapter, we introduced the different animation systems that Unity provides for different

requirements. We discussed importing character animations and controlling them with Animation

Controllers. We also saw how to make cameras that can react to the game’s current situation, such

as the player’s position, or that can be used during cutscenes. Finally, we looked at Timeline and

the animation system to create an intro cutscene for our game. These tools are useful for making

the animators in our team work directly in Unity without the hassle of integrating external assets

(except for character animations) and also preventing the programmer from creating repetitive

scripts to create animations, wasting time in the process.

Now, you are able to import and create animation clips in Unity, as well as apply them to Ga-

meObjects to make them move according to the clips. Also, you can place them in the Timeline

sequencer to coordinate them and create cutscenes for your game. Finally, you can create dynamic

cameras to use in-game or in cutscenes.

With this, we end Part 2, where we learned about different Unity Systems to improve several

artistic aspects of our game. In the next chapter, the first chapter of Part 3, we will wrap up the

development of our game, seeing how to build and optimize our game, and also provide a quick

intro to augmented reality applications.

18
Optimization with Profiler,
Frame Debugger, and Memory
Profiler

Welcome to the fourth part of this book—I am glad you have reached this part as it means that

you have almost completed a full game! In this chapter, we are going to discuss optimization

techniques to review your game’s performance and improve it, as having a good and constant

framerate is vital to any game.

Performance is a broad topic that requires a deep understanding of several Unity systems and

could span several books. We are going to look at how to measure performance and explore the

effects of our changes to systems to learn how they work through testing.

In this chapter, we will examine the following performance concepts:

• Optimizing graphics

• Optimizing processing

• Optimizing memory

By the end of this chapter, you will be able to gather performance data of the three main pieces

of hardware that run your game—the GPU, CPU, and RAM. You will be able to analyze that data

to detect possible performance issues and understand how to solve the most common ones.

We will start by learning how to optimize the graphics side of our game.

Optimization with Profiler, Frame Debugger, and Memory Profiler590

Optimizing graphics
The most common cause of performance issues is related to the misuse of assets, especially on

the graphics side, due to not having enough knowledge of how Unity’s graphics engines work.

We are going to explore how a GPU works at a high level and how to improve its usage.

In this section, we will examine the following graphics optimization concepts:

• Introduction to graphics engines

• Using Frame Debugger

• Using batching

• Other optimizations

We will start by looking at a high-level overview of how graphics are rendered to better under-

stand the performance data that we will gather later in Frame Debugger. Based on the debugger’s

results, we are going to identify the areas where we can apply batching (which is a technique to

combine the rendering process of several objects, reducing its cost), along with other common

optimizations to keep in mind.

Introduction to graphics engines
Nowadays, every gaming device, whether it is a computer, a mobile device, or a console, has a

video card—a set of hardware that specializes in graphics processing. It differs from a CPU in a

subtle but important way. Graphics processing involves the processing of thousands of mesh

vertices and the rendering of millions of pixels, so the GPU is designed to run short programs a

massive number of times, while the CPU can handle programs of any length but with limited

parallelization capabilities. The reason for having those processing units (CPU and GPU) is so

that our program can use each one when needed.

The problem here is that graphics don’t just rely on the GPU. The CPU is also involved in the

process, making calculations and issuing commands to the GPU, so they must work together.

For that to happen, both processing units need to communicate, and because they are (usually)

physically separated, they need another piece of hardware to allow this: a bus, the most common

type being the Peripheral Component Interconnect Express (PCI Express) bus.

PCI Express is a type of connection that allows massive amounts of data to be moved between the

GPU and CPU, but the problem is that even if it’s very fast, the communication time can be notice-

able if you issue a lot of commands between both units. So, the key concept here is that graphics

performance is improved mainly by reducing the communications between the GPU and CPU:

Chapter 18 591

Figure 18.1: CPU/GPU communication through a PCI Express bus

The basic algorithm of a graphics engine is to determine which objects are visible using culling

algorithms, sorting and grouping them according to their similarities, and then issuing drawing

commands to the GPU to render those groups of objects, sometimes more than once. The main

form of communication between the CPU and GPU are the drawing commands, usually called

draw calls, and our main task when optimizing graphics is to reduce them as much as we can.

The problem is that there are several sources of draw calls that need to be considered, such as the

lighting or certain special effects. Studying every single one of them will take a long time, and

even so, new versions of Unity can introduce new graphics features with their own draw calls.

Instead, we will explore a way to discover these draw calls using Frame Debugger.

Using Frame Debugger
Frame Debugger is a tool that allows us to see a list of all the draw calls that the Unity rendering

engine sends to the GPU. It not only lists them but also provides information about each draw

call, including the data needed to detect optimization opportunities. By using Frame Debugger,

we can see how our changes modify the number of draw calls, giving us immediate feedback on

our efforts.

Nowadays, new hardware architecture allows the CPU and GPU to coexist in the same

chipset, reducing communication time and even sharing memory. Sadly, that archi-

tecture doesn’t allow the processing power needed for video games, as having those

two pieces separated allows them to have enough space for a large number of cores.

Note that reducing draw calls is sometimes not enough to improve performance,

as each draw call can have different processing times; but usually, that difference

is not big enough to consider. Also, in certain special rendering techniques, such as

ray tracing or ray marching, a single draw call can drain all of our GPU power. This

won’t be the case in our game, so we won’t take that into account right now.

Optimization with Profiler, Frame Debugger, and Memory Profiler592

Let’s use Frame Debugger to analyze the rendering process of our game by doing the following:

1. Open Frame Debugger (Window | Analysis | Frame Debugger).

2. Play the game and when you want to analyze the performance, click the Enable button

in the top-left corner of Frame Debugger (press Esc to regain control of the mouse while

playing):

Figure 18.2: Enabling Frame Debugger

3. Click on the Game tab to open the Game view.

4. Drag the slider to the right of the Disable button slowly from left to right to see how the

scene is rendered. Each step is a draw call that is being executed in the CPU for that given

game frame. You can also observe how the list in the left part of the window highlights

the name of the executed draw call at that moment:

Figure 18.3: Analyzing our frame’s draw calls

5. If some of the draw calls in the list output a gray image in the Game panel, alongside a

warning in the console, a temporary fix for this is selecting your scene’s Main Camera

and setting the MSAA property in the Output section of its Camera component to Off.

Remember to revert this change afterward using Frame Debugger.

Chapter 18 593

6. Click on any draw call from the list and observe the details in the right part of the window.

Most of them can be confusing to you if you are not used to code engines or shaders, but

you can see that some of them have a human-readable part that says Why this draw call

can’t be batched with the previous one, which tells you why two objects weren’t drawn

together in a single draw call. We will examine those reasons later:

Figure 18.4: The batching break reasons in Frame Debugger

7. With the window open in Play mode, disable the terrain and see how the amount of draw

calls changes immediately. Sometimes, just turning objects on and off can be enough to

detect what is causing performance issues. Also, try disabling postprocessing and other

graphics-related objects, such as particles.

Even if we are not fully aware of where each one of these draw calls came from, we can at least

start by modifying the settings throughout Unity to see the impact of those changes. There’s no

better way of discovering how something as massive as Unity works than going through every

toggle and seeing the impact of those changes through a measuring tool. Of course, sometimes

we just need to pay the price of certain draw calls to achieve certain effects, like in the case of the

terrain, although you can always wonder if it’s worth it or not, but that would require a case-

by-case analysis.

Even if Frame Debugger gives us lots of info, sometimes you can take an extra step and use more

advanced tools, like RenderDoc or Nvidia Nsight to mention some of them, which work similarly

to Frame Debugger in the sense that they show all the draw calls, but also show info like the tim-

ings of each draw call, meshes, shaders, textures being used by each one of them, and much more.

Now, let’s discuss the basic techniques for reducing draw calls and see their effects in Frame

Debugger.

Using batching
We discussed several optimization techniques in previous chapters, with lighting being the most

important one. If you measure the draw calls as you implement the techniques, you will notice the

impact of those actions on the draw call count. However, in this section, we will focus on another

graphics optimization technique known as batching. Batching is the process of grouping several

objects to draw them together in a single draw call.

Optimization with Profiler, Frame Debugger, and Memory Profiler594

You may be wondering why we can’t just draw everything in a single draw call, and while that

is technically possible, there is a set of conditions that need to be met in order to combine two

objects, the usual case being combining materials.

Remember that materials are assets that act as graphics profiles, specifying a Material mode or

shader and a set of parameters to customize the aspect of our objects, and remember that we can

use the same material in several objects. If Unity has to draw an object with a different material

than the previous one, a SetPass call needs to be called before issuing its draw call, which is

another form of CPU/GPU communication used to set the Material properties in the GPU, such

as its textures and colors. If two objects use the same materials, this step can be skipped. The

SetPass call from the first object is reused by the second, and that opens the opportunity to batch

the objects. If they share the same settings, Unity can combine the meshes into a single one in

the CPU, and then send the combined mesh in a single draw call to the GPU.

There are several ways to reduce the number of materials, such as removing duplicates, but the

most effective way is through a concept called texture atlasing. This means merging textures

from different objects into a single one. This way, several objects can use the same material due

to the fact that the texture used there can be applied to several objects and an object that has its

own texture requires its own material. Sadly, there’s no automatic system in Unity to combine

the textures of three-dimensional objects, such as the Texture Atlas object we used in 2D. There

are probably some systems in the Asset Store, but automatic systems can have several side effects.

This work is usually done by an artist, so just keep this technique in mind when working with a

dedicated 3D artist (or if you are your own artist):

Figure 18.5: Pieces of different metallic objects

Chapter 18 595

Let’s explore batching with Frame Debugger by doing the following:

1. Go to Edit | Preferences | Core Render Pipeline and set Visibility to All Visible. This will

allow us to see both basic and advanced graphics settings:

Figure 18.6: Enable the display of all available graphics settings

2. Search for the Scriptable Render Pipeline Settings asset that we currently want to use

(Edit | Project Settings | Graphics | Scriptable Render Pipeline Settings):

Figure 18.7: Scriptable Render Pipeline Settings

Optimization with Profiler, Frame Debugger, and Memory Profiler596

3. Uncheck SRP Batcher in the Rendering section and check Dynamic Batching. We will

discuss SRP Batcher later in this chapter:

Figure 18.8: Disabling SRP Batcher

4. Create a new empty scene for testing (File | New Scene).

5. Create two materials of different colors.

6. Create two cubes and put one material into the first and the other into the second.

7. Open Frame Debugger and click Enable to see the call list for the draw calls of our cubes:

Figure 18.9: The draw calls for the cubes

8. Select the second Draw Mesh Cube call and look at the batch-breaking reason. It should

say that the objects have different materials.

9. Use one of the materials on both cubes and look at the list again. You will notice that now

we just have one Draw Mesh Cube call. You might need to disable and enable Frame

Debugger again for it to refresh properly if you are not playing the game.

Now, I challenge you to try the same steps but create spheres instead of cubes. If you do that,

you will probably notice that even with the same materials, the spheres are not batched! Here is

where we need to introduce the concept of dynamic batching.

Chapter 18 597

Remember that GameObjects have a Static checkbox, which serves to notify several Unity sys-

tems that the object won’t move so that they can apply several optimizations. Objects that don’t

have this checkbox checked are considered dynamic. So far, the cubes and spheres we used for

our tests have been dynamic, so Unity needed to combine them in every frame because they can

move and combining is not “free.” Its cost is associated directly with the number of vertices in

the model. You can get the exact numbers and all the required considerations from the Unity

manual, which will appear if you search Unity Batching on the internet or can be accessed with

this link: https://docs.unity3d.com/Manual/DrawCallBatching.html. However, it is enough

to say that if the number of vertices of an object is big enough, that object won’t be batched, and

doing so would require more than issuing two draw calls. That’s why our spheres weren’t batched;

a sphere has too many vertices.

Now, things are different if we have static objects because they use a second batching system—the

static batcher. The concept of this is the same. Merge objects to render them in one draw call,

and again these objects need to share the same material. The main difference is that this batcher

will batch more objects than the dynamic batcher because the merging is done once at the time

that the scene loads and is then saved in memory to use in the next frames, costing memory but

saving lots of processing time with each frame. You can use the same approach we used to test

the dynamic batcher to test the static version just by checking the Static checkbox of the spheres

this time and seeing the result in Play mode; in Edition mode (when it is not playing), the static

batcher won’t work:

Figure 18.10: A static sphere and its static batch

Before moving on, let’s discuss why we disabled SRP Batcher and how that changes what we

just discussed. In its 2020 edition, Unity introduced Universal Render Pipeline (URP), a new

Render Pipeline.

https://docs.unity3d.com/Manual/DrawCallBatching.html

Optimization with Profiler, Frame Debugger, and Memory Profiler598

Along with several improvements, one that is relevant right now is SRP Batcher, a new batcher

that works on dynamic objects with no vertex or material limits (but with other limits). Instead of

relying on sharing the same material with batch objects, SRP Batcher can have a batch of objects

with materials that use the same shader, meaning we can have, for example, 100 objects with 100

different materials for each one, and they will be batched regardless of the number of vertices, as

long as the material uses the same shader and Variant:

Figure 18.11: GPU data persistence for materials, which allows SRP Batcher to exist

One shader can have several versions or Variants, and the selected Variant is chosen based on

the settings. We can have a shader that doesn’t use normal mapping, and a Variant that doesn’t

calculate normals will be used, so that can affect SRP Batcher. So, there’s basically no drawback

to using SRP Batcher, so go ahead and turn it on again. Try creating lots of spheres with as many

materials as you can and check the number of batches it will generate in Frame Debugger. Just

consider that if you need to work on a project done in a pre-URP era, this won’t be available, so

you will need to know the proper batching strategy to use.

Other optimizations
As mentioned before, there are lots of possible graphics optimizations, so let’s discuss briefly the

basic ones, starting with Level of Detail (LOD). LOD is the process of changing the mesh of an

object based on its distance to the camera. This can reduce draw calls if you replace, for example,

a house with several parts and pieces with a single combined mesh with reduced detail when

the house is far. Another benefit of using LOD is that you reduce the cost of a draw call because

of the reduction in the vertex count.

Chapter 18 599

To use this feature, do the following:

1. Create an empty object and parent the two versions of the model. You need to use models

that have several versions with different levels of detail, but for now, we are just going to

test this feature using a cube and a sphere:

Figure 18.12: A single object with two LOD meshes

2. Add a LOD group component to the parent.

3. The default LOD group is prepared to support three LOD meshes groups, but as we only

have two, right-click on one and click Delete. You can also select Insert Before to add

more LOD groups:

Figure 18.13: Removing a LOD group

4. Select LOD 0, the highest-detail LOD group, and click on the Add button in the Renderers

list below this to add the sphere to that group. You can add as many mesh renderers as

you want.

5. Select LOD 1 and add the cube:

Figure 18.14: Adding renderers to LOD groups

Optimization with Profiler, Frame Debugger, and Memory Profiler600

6. Drag the line between the two groups to control the distance range that each group will

occupy. As you drag it, you will see a preview of how far the camera needs to be to switch

groups. Also, you have the Culled group, which is the distance from where the camera

will not render any group.

7. Just move around the scene in the Scene panel to see how the meshes are swapped.

8. Something to consider here is that the colliders of the objects won’t be disabled, so just

have the renderers in the LOD sub-objects. Put the collider with the shape of LOD 0 in

the parent object, or just remove the colliders from the LOD group objects, except group 0.

Another optimization to consider is frustum culling. By default, Unity will render any object that

falls into the view area or frustum of the camera, skipping the ones that don’t. The algorithm is

cheap enough to always use, and there’s no way to disable it. However, it does have a flaw. If we

have a wall hiding all the objects behind it, even if they are occluded, they fall inside the frustum,

so they will be rendered anyway. Detecting whether every pixel of a mesh occludes every pixel

of the other mesh is almost impossible to do in real time, but luckily, we have a workaround:

occlusion culling.

Occlusion culling is a process that analyzes a scene and determines which objects can be seen

in different parts of the scene, dividing them into sectors and analyzing each one. As this process

can take quite long, it is done in the editor, similarly to lightmapping. As you can imagine, it only

works on static objects given its calculated in editor time. To use it, do the following:

1. Mark the objects that shouldn’t move as static, or if you only want this object to be con-

sidered static for the occlusion culling system, check the Occluder Static and Ocludee

Static checkboxes of the arrow to the right of the Static checkbox.

2. Open the Occlusion Culling window (Window | Rendering | Occlusion Culling).

3. Save the scene and hit the Bake button at the bottom of the window, and then wait for the

baking process. If you don’t save the scene before the baking process, it won’t be executed.

4. Select the Visualization tab in the Occlusion Culling window.

5. With the Occlusion Culling window visible, select the camera (or Virtual Camera in the

case of a Cinemachine controlled camera) and drag it around, seeing how objects are

occluded as the camera moves:

Chapter 18 601

Figure 18.15: On the left is the normal scene and on the right is the scene with oc-
clusion culling

Take into account that if you move the camera outside the calculated area, the process won’t take

place, and Unity will only calculate areas near the static objects. You can extend the calculation

area by creating an empty object and adding an Occlusion Area component, setting its position

and size to cover the area that the camera will reach, and, finally, rebaking the culling. Try to be

sensible with the size of the cube. The larger the area to calculate, the larger the space needed in

your disk to store the generated data.

Optimization with Profiler, Frame Debugger, and Memory Profiler602

You can use several of these areas to be more precise—for example, in an L-shaped scene, you

can use two of them:

Figure 18.16: Occlusion Area

If you see that the objects are not being occluded, it can be that the occluder object (the wall in

this case) is not big enough to be considered. You can increase the size of the object or reduce the

Smallest Occluder setting in the Bake tab of the window. Doing that will subdivide the scene

further to detect small occluders, but that will take more space in the disk to store more data. So

again, be sensible with this setting.

There are still some more techniques that we can apply to our game, but the ones we have discussed

are enough for our game. So, in this section, we learned about the process of rendering graphics

in a video card, the concept of batches, how to profile them to know exactly how many of them

we have and what they are doing, and finally, how to reduce them as much as we can. Now, let’s

start discussing other optimization areas, such as the processing area.

Optimizing processing
While graphics usually take up most of the time that a frame needs to be generated, we should

never underestimate the cost of badly optimized code and scenes. There are several parts of the

game that are still calculated in the CPU, including part of the graphics process (such as the

batching calculations), physics, audio, and our code. Here, we have a lot more causes of perfor-

mance issues than on the graphics side, so again, instead of discussing every optimization, let’s

learn how to discover them.

In this section, we will examine the following CPU optimization concepts:

• Detecting CPU- and GPU-bound

• Using the CPU Usage Profiler

• General CPU optimization techniques

Chapter 18 603

We will start by discussing the concepts of CPU- and GPU-bound, which focus on the optimiza-

tion process, determining whether the problem is GPU- or CPU-related. Later, as with the GPU

optimization process, we will look at how to gather the performance data of the CPU and interpret

it to detect possible optimization techniques to be applied.

Detecting CPU- and GPU-bound
As with Frame Debugger, the Unity Profiler allows us to gather data about the performance of our

game through a series of Profiler modules, each one designed to gather data about different Unity

systems per frame, such as physics, audio, and, most importantly, CPU usage. This last module

allows us to see the most important operations that Unity executed to process the frame—which

range from our scripts to systems such as physics and graphics (the CPU part).

Before exploring the CPU usage, one important bit of data that we can gather in this module is

whether we are CPU or GPU bound. As explained before, a frame is processed using both the CPU

and GPU, and those pieces of hardware can work in parallel. While the GPU is executing drawing

commands, the CPU can execute physics and our scripts in a very efficient way. But now, let’s say

that the CPU finishes its work while the GPU is still working. Can the CPU start to work on the

next frame? The answer is no. This would lead to a de-synchronization, so in this scenario, the

CPU will need to wait. This is known as CPU-bound, and we also have the opposite case, GPU-

bound, when the GPU finishes earlier than the CPU.

It is important to concentrate our optimization efforts, so if we detect that our game is GPU-bound,

we will focus on GPU graphics optimization (like reduction of mesh and shader complexity), and

if it is CPU-bound, then we will focus on the rest of the systems and the CPU side of graphics

processing. To detect whether our game is one or the other, do the following:

1. Open Profiler (Window | Analysis | Profiler).

2. In the Profiler Modules dropdown in the top-left corner, tick GPU to enable the GPU

profiler:

Figure 18.17: Enabling the GPU profiler

Optimization with Profiler, Frame Debugger, and Memory Profiler604

3. Play the game and select the CPU Usage profiler, clicking on its name in the left part of

the Profiler window.

4. Click the Last Frame button, the one with the double arrow pointing to the right, to always

display info of the last frame being rendered:

Figure 18.18: Last frame button (double arrow to the right)

5. Also click the Live button to enable Live mode, which allows you to see the results of

profiling in real time. This can have an impact on performance, so you can disable it later:

Figure 18.19: Enabling Live mode

6. Observe the bar with the CPU and GPU labels in the middle of the window. It should

say how many milliseconds are being consumed by the CPU and GPU. The one with the

higher number will be the one that is limiting our framerate and will determine whether

we are GPU- or CPU-bound:

Figure 18.20: Determining whether we are CPU- or GPU-bound

7. There is a chance that when you try to open the GPU profiler, you will see a not support-

ed message, and this can happen in certain cases (such as on Mac devices that use the

Metal graphics API). In that scenario, another way to see whether we are GPU-bound is

by searching waitforpresent in the search bar right next to the CPU/GPU labels while

selecting the CPU Usage profiler. If you don’t see the search bar, click the drop-down

menu at the left of Live (which should say Timeline) and select Hierarchy:

Chapter 18 605

Figure 18.21: Searching waitforpresent

8. Here, you can see how long the CPU has been waiting for the GPU. Check the Time ms

column to get the number. If you see 0.00, it is because the CPU is not waiting for the

GPU, meaning we are CPU-bound. In the preceding screenshot, you can see that my screen

displays 0.00 while the CPU is taking 9.41ms and the GPU is taking 6.73ms. So, my device

is CPU-bound, but consider your device and project can bring different results.

Now that we can detect whether we are CPU- or GPU-bound, we can focus our optimization ef-

forts. So far, we discussed how to profile and optimize part of the GPU process in the Optimizing

graphics section. Now, if we detect that we are CPU-bound, let’s see how to profile the CPU.

Using the CPU Usage Profiler
Profiling the CPU is done in a similar way to profiling the GPU. We need to get a list of actions the

CPU executes and try to reduce the number of them, or at least reduce their cost. Here is where

the CPU Usage Profiler module comes in—a tool that allows us to see all the instructions that

the CPU executed in one frame. The main difference is that the GPU mostly executes draw calls,

and we have a few types of them, while the CPU can have hundreds of different instructions to

execute, and sometimes some of them cannot be deleted, such as physics or audio processing. In

these scenarios, we are looking to reduce the cost of these functions in case they are consuming

too much time. So, again, an important note here is to detect which function is taking too much

time and then reduce its cost or remove it, which requires a deeper understanding of the under-

lying system. Let’s start detecting the function first.

When you play the game with the Profiler tab opened, you will see a series of graphics showing

the performance of your game, and in the CPU Usage profiler, you will see that the graphic is

split into different colors, each one referring to different parts of frame processing. You can check

the information to the left of the Profiler to see what each color means, but let’s discuss the most

important ones.

Optimization with Profiler, Frame Debugger, and Memory Profiler606

In the following screenshot, you can see how the graphic should look:

Figure 18.22: Analyzing the CPU Usage graph

If you see the graphic, you will probably assume that the dark-green part of the graph is taking

up most of the performance time, and while that is true, you can also see from the legend that

dark green means Others, and that’s because we are profiling the game in the editor. The editor

won’t behave exactly like the final game. In order for it to run, it has to do lots of extra processing

that won’t be executed in the game, so the best you can do is profile directly in the build of the

game. There, you will gather more accurate data. We are going to discuss how to do builds in

the next chapter, so for now, we can ignore that area. What we can do now is simply click on the

colored square to the left of the Others label to disable that measurement from the graph in order

to clean it up a little bit. If you also see a large section of yellow, it is referring to VSync, which is

basically the time spent waiting for our processing to match the monitor’s refresh rate. This is

also something that we can ignore, so you should also disable it. In the next screenshot, you can

check the graphic color categories and how to disable them:

Figure 18.23: Disabling VSync and Others from the Profiler

Now that we have cleaned up the graph, we can get a good idea of our game’s potential framerate

by looking at the line with the ms label (in our case, 5ms (200FPS)), which indicates that frames

below that line have more than 200 FPS, and frames above that line have less.

Chapter 18 607

In my case, I have excellent performance, but remember, I am testing this on a powerful machine.

The best way to profile is not only in the build of the game (as an executable) but also in the target

device, which should be the lowest-spec hardware we intend our game to run on. Our target device

depends a lot on the target audience of the game. If we are making a casual game, we are probably

targeting mobile devices, so we should test the game on the lowest-spec phone we can, but if we

are targeting hardcore gamers, they will probably have a powerful machine to run our game on.

Looking at the graphics colors, you can observe the cost on the CPU side of rendering in light green,

which the graph shows is taking up a significant portion of the processing time, which is actually

normal. Then, in blue, we can see the cost of our scripts’ and others systems’ execution, which is

also taking up a significant portion, but again, this is quite normal. Also, we can observe a little

bit of orange, which is physics, and also a little bit of light blue, which is animations. Remember

to check the colored labels in the Profiler to remember which color refers to what.

Now, those colored bars represent a group of operations, so if we consider the Rendering bar to

be representing 10 operations, how do we know which operations that includes? Also, how do

we know which of these operations is taking up the most performance time? Out of those 10 op-

erations, a single one could be causing these issues. Here is where the bottom part of the profiler

is useful. It shows a list of all the functions being called in the frame. To use it, do the following:

1. Click any part of the CPU Usage section in the Profiler and check that the button at the

top-left part of the bottom bar of the Profiler says Hierarchy. If not (for example, if it says

Timeline), click it and select Hierarchy.

2. Clear the search bar we used earlier. It will filter function calls by name, and we want to

see them all.

3. Click on the Time ms column until you see an arrow pointing downward. This will order

the calls by cost in descending order.

4. Click on a frame that catches your attention in the graph—probably one of the ones with

the biggest height that consume more processing time. This will make the Profiler stop

the game straight away and show you information about that frame.

If you are targeting hardcore gamers, of course, this doesn’t mean that we can just

make a very unoptimized game because of that, but it will give us enough process-

ing space to add more detail. Anyway, I strongly recommend you avoid those kinds

of games if you are a beginner as they are more difficult to develop, which you will

probably realize. Stick to simple games to begin with.

Optimization with Profiler, Frame Debugger, and Memory Profiler608

5. PlayerLoop will probably appear as the most time-consuming frame, but that’s not very

informative. You can explore it further by expanding it by clicking on the arrow to its left.

6. Click on each function to highlight it in the graph. Functions with higher processing times

will be highlighted with thicker bars, and those are the ones we will focus on:

Figure 18.24: The Render Camera function highlighted in the graph

7. You can keep clicking on the arrows to further explore the functions until you hit a limit.

If you want to go deeper, enable the Deep Profile mode in the top bar of the Profiler. This

will give you more details, but take into account that this process is expensive and will

make the game go slower, altering the time shown in the graph, making it appear much

higher than the real time. Here, ignore the numbers and look at how much of the process

a function is taking up based on the graph. You will need to stop, enable Deep Profile, and

play it again to make it work:

There are two things to consider when looking at the graph. If you see peaks

that are significantly higher than the rest of the frames, that can cause a hic-

cup in your game—a very brief moment where the game is frozen—which

can break the performance. Also, you can look for a long series of frames with

higher time consumption. Try to reduce them as well. Even if this is only

temporary, the impact of it will be easily perceived by the player, especially

in VR games, as that could induce nausea.

Chapter 18 609

Figure 18.25: Enabling Deep Profile

With this knowledge, we can start improving our game performance (if it’s below the target fram-

erate), but each function is called by the CPU and is improved in its own unique way, which requires

greater knowledge about Unity’s internal workings. That could span several books, and anyway,

the internals change on a version-to-version basis. Instead, you could study how each function

works by looking up data about that specific system on the internet and official documentation,

or again, by just disabling and enabling objects or parts of our code to explore the impact of our

actions, as we did with Frame Debugger. Profiling requires creativity and inference to interpret

and react accordingly to the data obtained, so you will need some patience here.

Now that we have discussed how to get the profiling data relating to the CPU, let’s discuss some

common ways to reduce CPU usage.

General CPU optimization techniques
In terms of CPU optimizations, there are lots of possible causes of high performance, including

the abuse of Unity’s features, a large number of physics or audio objects, improper asset/object

configurations, and so on. Our scripts can also be coded in an unoptimized way, abusing or mis-

using expensive Unity API functions. So far, we have discussed several good practices of using

Unity systems, such as audio configurations, texture sizes, batching, and finding functions such

as GameObject.Find and replacing them with managers. So, let’s discuss some specific details

about common cases.

Let’s start by seeing how a large amount of objects impacts our performance. Here, you can just

create lots of objects with Rigidbody (at least 200) configured in Dynamic Profile, and observe

the results in the Profiler.

Optimization with Profiler, Frame Debugger, and Memory Profiler610

You will notice, in the following screenshot, how the orange part of the profiler just got bigger

and that the Physics.Processing function is responsible for this increase:

Figure 18.26: The Physics processing of several objects

Remember that the Profiler has other modules that you can activate by clicking the Profiler Mod-

ules button, and there’s one for physics. Consider enabling it and checking the info it gives you.

Also check the official documentation for the profiler for more info on those modules.

Another test to see the impact of several objects could be creating lots of audio sources. In the

following screenshot, you can see that we needed to re-enable Others because part of the audio

processing comes under that category. We mentioned earlier that Others belongs to the editor,

but it can encompass other processes as well, so keep that in mind:

Chapter 18 611

Figure 18.27: The Physics processing of several objects

So, to discover these kinds of problems, you can just start disabling and enabling objects and see

whether they increase the time or not. A final test is on particles. Create a system that spawns a

big enough number of particles to affect our framerate and check the Profiler.

Optimization with Profiler, Frame Debugger, and Memory Profiler612

In the following screenshot, you can check how the particle processing function is highlighted

in the graph, showing that it takes a large amount of time:

Figure 18.28: Particle processing

Then, on the scripting side, we have other kinds of things to consider, some of which are common

to all programming languages and platforms, such as iterating long lists of objects, the misuse

of data structures, and deep recursion. However, in this section, I will mainly be discussing Uni-

ty-specific APIs, starting with print or Debug.Log.

This function is useful to get debugging information in the console, but it can also be costly be-

cause all logs are written onto the disk immediately to avoid losing valuable information if our

game crashes. Of course, we want to keep those valuable logs in the game, but we don’t want it

to affect the performance, so what can we do?

One possible approach is to keep those messages but disable the non-essential ones in the final

build, such as informative messages, keeping the error-reporting function active. One way to do

this is through compiler directives, such as the ones used in the following screenshot. Remember

that this kind of if statement is executed by the compiler and can exclude entire portions of code

when compiling if its conditions are not met:

Figure 18.29: Disabling code

Chapter 18 613

In the preceding screenshot, you can see how we are asking whether this code is being compiled

by the editor or for a development build, which is a special kind of build intended to be used for

testing (more on that in the next chapter). You can also create your own kind of logging system

with functions with the compiler directives, so you don’t need to use them in every log that you

want to exclude.

In this section, we learned about the tasks a CPU faces when processing a video game, how to

profile them to see which ones are not necessary, and how to reduce the impact of those processes.

There are a few other script aspects that can affect performance not only on the processing side

but also on the memory side, so let’s discuss them in the next section.

Optimizing memory
We discussed how to profile and optimize two pieces of hardware—the CPU and GPU—but there

is another piece of hardware that plays a key role in our game—RAM. This is the place where we

put all of our game’s data. Games can be memory-intensive applications, and unlike several other

applications, they are constantly executing code, so we need to be especially careful about that.

In this section, we will examine the following memory optimization concepts:

• Memory allocation and the garbage collector

• Using the Memory Profiler

Let’s start discussing how memory allocation works and what role garbage collection plays here.

Memory allocation and the garbage collector
Each time we instantiate an object, we are allocating memory in RAM, and in a game, we will be

allocating memory constantly. In other programming languages, aside from allocating the mem-

ory, you need to manually deallocate it, but C# has a garbage collector, which is a system that

tracks unused memory and cleans it. This system works with a reference counter, which tracks

how many references to an object exist, and when that counter reaches 0, it means all references

have become null and the object can be deallocated. This deallocation process can be triggered

in several situations, the most common situation being when we reach the maximum assigned

memory and we want to allocate a new object. In that scenario, we can release enough memory

to allocate our object, and if that is not possible, the memory is expanded.

Optimization with Profiler, Frame Debugger, and Memory Profiler614

In any game, you will probably be allocating and deallocating memory constantly, which can lead

to memory fragmentation, meaning there are small spaces between alive object memory blocks

that are mostly useless because they aren’t big enough to allocate an object, or maybe the sum

of the spaces is big enough, but we need continuous memory space to allocate our objects. In the

following diagram, you can see a classic example of trying to fit a big chunk of memory into the

little gaps generated by fragmentation:

Figure 18.30: Trying to instantiate an object in a fragmented memory space

Some types of garbage collection systems, such as the one in regular C#, are generational, meaning

memory is split into generation buckets according to the “age” of its memory. Newer memory will

be placed in the first bucket, and this memory tends to be allocated and deallocated frequently.

Because this bucket is small, working within it is fast. The second bucket has the memory that

survived a previous deallocation sweep process in the first bucket. That memory is moved to

the second bucket to prevent it from being checked constantly if it survived the process, and it

is possible that that memory will last the length of our program’s lifetime. The third bucket is

just another layer of bucket 2. The idea is that most of the time, the allocation and deallocation

system will be working in bucket 1, and as it is small enough, it is quick to allocate, deallocate,

and compact memory in a continuous fashion.

The problem here is that Unity uses its own version of the garbage collection system, and that

version is non-generational and non-compacting, meaning memory is not split into buckets and

memory won’t be moved to fill the gaps. This suggests that allocating and deallocating memory

in Unity will still result in the fragmentation problem, and if you don’t regulate your memory

allocation, you might end up with an expensive garbage collection system being executed very

often, producing hiccups in our game, which you can see in the Profiler CPU Usage module as

a pale-yellow color.

Chapter 18 615

One way to deal with this is by preventing memory allocation as much as you can, avoiding it

when it is not necessary. There are a few tweaks here and there that you can make to prevent

memory allocation, but before looking at those, again, it is important to first get data about the

problem before you start fixing things that may not be an issue. This advice applies to any type

of optimization process. Here, we can still use the CPU Usage profiler to see how much memory

is allocated to each function call that the CPU executes in each frame, and that is simply done

by looking at the GC Alloc column, which indicates the amount of memory that the function

allocated:

Figure 18.31: The memory allocation of the Update event function of Sight

In the preceding screenshot, we can see how our function is allocating too much memory, which

is produced because there are many enemies in the scene. But that’s no excuse; we are allocating

that much RAM at every frame, so we need to improve this. There are several things that can

contribute to our memory being claimed by allocations, so let’s discuss the basic ones, starting

with array-returning functions.

If we review the Sight script code, we can see that the only moment where we are allocating

memory is in the call to Physics.OverlapSphere, and that is evident because it is an array-re-

turning function, which is a function that returns a varying amount of data. To do this, it needs

to allocate an array and return that array to us. This needs to be done on the side that created the

function, Unity, but in this case, Unity gives us two versions of the function—the one that we are

using and the NonAlloc version. It is usually recommended to use the second version, but Unity

uses the other one to make coding simpler for beginners.

Optimization with Profiler, Frame Debugger, and Memory Profiler616

The NonAlloc version looks as in the following screenshot:

Figure 18.32: Memory allocation of the Update event function of Sight

This version requires us to allocate an array with enough space to save the largest amount of

colliders our OverlapSphere variable can find and pass it as the third parameter. This allows us

to allocate the array just once and reuse it on every occasion that we need it. In the preceding

screenshot, you can see how the array is static, which means it is shared between all the Sight

variables as they won’t execute in parallel (no Update function will). This will work fine. Keep in

mind that the function will return the number of objects that were detected, so we just iterate

on that count. The array can have previous results stored within it.

Now, check your Profiler and notice how the amount of memory allocated has been reduced greatly.

There might be some remaining memory allocation within our function, but sometimes there is

no way to keep it at 0. However, you can try to look at the reasons for this using deep profiling or

by commenting some code and seeing which comment removes the allocation. I challenge you

to try this. Also, OverlapSphere is not the only case where this could occur. You have others, such

as the GetComponents functions family, which, unlike GetComponent, finds all the components of

a given type, not just the first one, so pay attention to any array-returning function of Unity and

try to replace it with a non-allocating version, if there is one.

Chapter 18 617

Another common source of memory allocation is string concatenation. Remember that strings

are immutable, meaning they cannot change if you concatenate two strings. A third one needs to

be generated with enough space to hold the first ones. If you need to concatenate a large number

of times, consider using string.Format if you are just replacing placeholders in a template string,

such as putting the name of the player and the score they got in a message or using StringBuilder,

a class that just holds all the strings to be concatenated in a list and, when necessary, concat-

enates them together, instead of concatenating them one by one as the + operator does. Also,

consider using the new string interpolation functionality of C#. You can see some examples in

the following screenshot:

Figure 18.33: String management in C#

Finally, a classic technique to consider is object pooling, which is suitable in cases where you need

to instantiate and destroy objects constantly, such as with bullets or effects. In that scenario, the

use of regular Instantiate and Destroy functions will lead to memory fragmentation, but object

pooling fixes that by allocating the maximum amount of required objects possible. It replaces

Instantiate by taking one of the preallocated functions and it replaces Destroy by returning

the object to the pool.

Optimization with Profiler, Frame Debugger, and Memory Profiler618

A simple pool can be seen in the following screenshot:

Figure 18.34: A simple object pool

Chapter 18 619

There are several ways to improve this pool, but it is fine as it is for now. Note that objects need to

be reinitialized when they are taken out of the pool, and you can do that with the OnEnable event

function or by creating a custom function to inform the object to do so. Also, note that Unity has

recently added an Object Pool class that you can investigate at the following link: https://docs.

unity3d.com/2022.1/Documentation/ScriptReference/Pool.ObjectPool_1.html, but I still

recommend making your own first to grasp the idea of pools.

Now that we have explored some basic memory allocation reduction techniques, let’s look at

the new Memory Profiler tool, introduced in the latest version of Unity, to explore memory in

greater detail.

Using the Memory Profiler
With this Profiler, we can detect memory allocated on a frame-per-frame basis, but it won’t show

the total memory allocated so far, which would be useful to study how we are using our memory.

This is where the Memory Profiler can help us. This relatively new Unity package allows us to

take memory snapshots of every single object allocated both on the native and managed side—

native meaning the internal C++ Unity code and managed meaning anything that belongs to

the C# side (that is, both our code and Unity’s C# engine code). We can explore snapshots with

a visual tool and rapidly see which type of object is consuming the most RAM and how they are

referenced by other objects.

To start using the Memory Profiler, do the following:

1. Open the Package Manager (Window | Package Manager) and enable preview packages

(Wheel Icon | Project Settings | Enable Pre-release Packages):

Figure 18.35: Enabling preview packages

https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://docs.unity3d.com/2022.1/Documentation/ScriptReference/Pool.ObjectPool_1.html

Optimization with Profiler, Frame Debugger, and Memory Profiler620

2. Click the + button and select Add package by name…:

Figure 18.36: Installing packages from Git URLs

3. In the dialog box, write com.unity.memoryprofiler and click Add. We need to add the

package this way as it’s still an experimental one:

Figure 18.37: Installing the Memory Profiler

4. Once installed, open the Memory Profiler in Window | Analysis | Memory Profiler.

5. Play the game and click on the Capture button in the Memory Profiler window:

Chapter 18 621

Figure 18.38: Capturing a snapshot

Optimization with Profiler, Frame Debugger, and Memory Profiler622

6. Click on the snapshot that appeared in the list (the one below the Session 1 label) to see

a summary of the memory consumption at the moment of taking a snapshot:

Figure 18.39: Memory summary

7. In our case, we can see that we are consuming 4.79 GB of memory, split between Man-

aged Heap (C# code variables), Other Native Memory (Unity’s C++ memory), Graphics

& Graphics Driver, Audio, and much more. There are different things that are accounted

for in these categories, but for now, we are good. Open the package documentation in the

Package Manager to get more info about them.

8. Click the Tree Map button at the top part of the middle section of the Memory Profiler

window. This will open the Tree View, which allows you to visually see which types of

assets are the more demanding in terms of memory:

Chapter 18 623

Figure 18.40: Memory tree view

9. In our case, we can see that RenderTexture uses up the most memory, which belongs to the

image that is displayed in the scene, as well as some textures used by postprocessing effects.

Try to disable the PPVolume object and take another snapshot to detect the difference.

10. In my case, that dropped off 130 MB. There are other textures needed for other effects,

such as HDR. If you want to explore where those remaining MB came from, click on the

RenderTexture block to subdivide it into its objects and take your own guesses based on

the names of the textures:

Figure 18.41: Memory blocks in detail

11. You can repeat the same process in the Texture2D block type, which belongs to the tex-

tures used in the materials of our models. You can look at the biggest one and detect its

usage—maybe it is a big texture that is never seen close enough to justify its size. Then,

we can reduce its size using the Max Size of the Texture import settings.

Optimization with Profiler, Frame Debugger, and Memory Profiler624

Take into account that due to the Memory Profiler being a package, its UI can change often, but

its basic idea will remain. You can use this tool to detect whether you are using the memory in

unexpected ways. Something useful to consider here is how Unity loads assets when loading a

scene, which consists of loading all assets referenced in the scene at load time. This means that

you can have, as an example, an array of prefabs that have references to materials that have

references to textures, and even if you don’t instantiate a single instance of them, the prefabs

must be loaded in memory, causing them to occupy space. In this scenario, I recommend that

you explore the use of Addressables, which provide a way to load assets dynamically. But let’s

keep things simple for now.

Summary
Optimizing a game is not an easy task, especially if you are not familiar with the internals of

how each Unity system works. Sadly, this is a titanic task, and no one knows every single system

down to its finest details, but with the tools learned in this chapter, we have a way to explore

how changes affect systems through exploration. We learned how to profile the CPU, GPU, and

RAM and what the key hardware in any game is, as well as covered some common good practices

to avoid abusing them.

Now, you are able to diagnose performance issues in your game, gathering data about the perfor-

mance of the three main pieces of hardware—the CPU, GPU, and RAM—and then using that data

to focus your optimization efforts on applying the correct optimization technique. Performance

is important as your game needs to run smoothly to give your users a pleasant experience.

In the next chapter, we are going to see how to create a build of our game to share with other

people, without needing to install Unity. This is also very useful for profiling, given profiling builds

are going to give us more accurate data than profiling in the editor.

As with any profiler, it is always useful to carry out the profiling directly in the build

(more on that in the next chapter) because taking snapshots in the editor will cap-

ture lots of memory that is used by the editor and will not be used in the build. An

example of this is the loading of unnecessary textures because the editor probably

loaded them when you clicked them to see their previews in the Inspector window.

Chapter 18 625

Join us on Discord!
Read this book alongside other users, Unity game development experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything

sessions, and much more.

Scan the QR code or visit the link to join the community.

https://packt.link/handsonunity22

https://packt.link/handsonunity22

19
Generating and Debugging an
Executable

So, we have reached a point where the game is in good enough shape to test it with real people.

The problem is that we can’t pretend people will install Unity, open a project, and hit Play. They

want to receive a nice executable file to double-click and play right away. In this chapter, we are

going to discuss how we can convert our project into an easy-to-share executable format, seeing

how to do that in the first section, and then in the second section, we will see how to apply the

profiling and debugging techniques learned in Chapter 18, Scene Performance Optimization, but this

time on the build. After reading this chapter, you will be able to detect potential performance bot-

tlenecks and how to tackle the most common ones, leading to an increase in your game’s framerate.

In this chapter, we will examine the following build concepts:

• Building a project

• Debugging the build

Let’s start by seeing how we can build the project to get a shareable executable.

Building a project
In software development (including video games), the process of taking the source files of our

project and converting them into an executable format is called a build. The generated executable

files are optimized to achieve the maximum performance possible given the configuration of the

project. We can’t judge performance while editing the game due to the changing nature of a proj-

ect. It would be time-consuming to prepare the assets in their final form while editing the game.

Generating and Debugging an Executable628

Also, the generated files are in a difficult-to-read format. They won’t have the textures, audio, and

source code files just there for the user to look at. They will be formatted in custom file structures,

so in a way, they’re protected from users stealing them.

The build process is pretty simple when you target desktop platforms such as PC, Mac, or Linux,

but there are a few settings we need to keep in mind before building. The first configuration we

are going to see is the scenes list. We have already discussed this, but it’s a good moment to re-

member that it is important to set the first element of this list to the scene that will be loaded first.

Remember, you can do this by going to File | Build Settings and dragging your desired starter

scene to the top of the list. In our case, we defined the game scene as the first scene, but in a real

game, it would be ideal to create a Main Menu scene using UI and some graphics:

Figure 19.1: The Scenes in Build list order

Another setting you can change here is the target platform, the target operating system that the

build will be created for. Usually, this is set as the same operating system you are developing on,

but in case you are, as an example, developing on a Mac, and you want to build for Windows, just

set the Target Platform setting to Windows. That way, the result will be an .exe file (a Windows

executable file) instead of an .app file (the Mac executable file). You may see Android and iOS as

other target platforms, but making mobile games requires other considerations that we are not

going to discuss in this book:

Actually, there are several tools to extract source files from video games, especially

from a widely used engine such as Unity. You can extract assets such as textures and

3D models, and there are even programs that extract those assets directly from the

VRAM, so we cannot guarantee that the assets won’t be used outside the game. In

the end, users have the data of those assets on their disks.

Chapter 19 629

Figure 19.2: Target Platform

In the same window, you can click the Player Settings button at the bottom left, or just open the

Edit | Project Settings window and click on the Player category to access the rest of the Build

Settings. Unity calls the generated executable the Player. Here, we have a set of configurations

that will affect how the build or player behaves, and here is a list of the basic ones:

• Company Name: This is the name of the company that developed the game, which is used

by Unity to create certain file paths and will be included in the executable information.

• Product Name: This is the name of the game in the window title bar and executable file.

• Default Icon: Here, you can select a texture to act as the executable icon.

• Default Cursor: You can set a texture to replace the regular system cursor. In case you do

that, remember to set the Cursor Hotspot property to the pixel of the image you want

the cursor to click on.

• Resolution and Presentation: These are settings for how our game’s resolution is going

to be handled.

• Resolution and Presentation | Fullscreen Mode: You can select if your game will start

Windowed or in different modes of Fullscreen. You can change that later via scripting

if necessary.

• Resolution and Presentation | Default is Native Resolution: When this option is checked

and Fullscreen Mode is set to use any Fullscreen option, the resolution currently used

by the system will be the one used by Unity. You can uncheck this and set your desired

resolution.

• Splash Image: These are settings for the splash image the game will show after loading

for the first time.

Generating and Debugging an Executable630

• Splash Image | Show Splash Screen: This will enable a Unity splash screen that will dis-

play logos as an introduction to the game. If you have the Unity Plus or Pro license, you

can uncheck this to create your custom splash screen, if you want.

• Splash Image | Logos List: Here, you can add a set of images that Unity will display when

launching the game. If you are using a free version of Unity, you are forced to have the

Unity logo displayed in this list.

• Splash Image | Draw Mode: You can set this to All Sequential to show each logo, one

after the other, or to Unity Logo Below to show your custom introductory logos with the

Unity logo always present below yours:

Figure 19.3: Player settings

After configuring these settings as you wish, the next step is to do the actual build, which can be

accomplished by hitting the Build button in the File | Build Settings window. This will ask you to

set where you want the build files to be created. I recommend you create an empty folder on your

desktop to have easy access to the result. Be patient—this process can take a while depending

on the size of the project:

Chapter 19 631

Figure 19.4: Building the game

Something that can fail here is having non-build-compatible scripts—scripts that are intended

to be executed only in the Editor, mostly Editor extensions. We haven’t created any of those, so

if you have an error message in the console after building, similar to the following screenshot,

that can happen because of some script in an Asset Store package. In that case, just delete the

files that are shown in the console before the Build Error message. If, by any chance, there is one

of your scripts there, be sure you don’t have any using UnityEditor; lines in any of your scripts.

Generating and Debugging an Executable632

That would try to use the Editor namespace, the one that is not included in the build compilation

to save space on the disk:

Figure 19.5: Build errors

And that’s the minimum you need to know in order to configure the build. You have generated

your game! Something to take into account is that every file that was created in the folder that you

specified when building must be shared, not only the executable file. The data folder contains all

assets and is important to include when sharing the game in the case of Windows builds. For Linux

and Mac builds, there is just one file generated (x86/x86_64 for Linux and app packages for Mac):

Figure 19.6: A Windows-generated folder

Now that we have the build, you can test it by double-clicking the executable file. We can now

discuss how we use the same debug and profiling tools we used in the Editor to debug our build.

Debugging the build
In an ideal world, the Editor and the build would behave the same, but sadly that isn’t true. The

Editor is prepared to work in a fast-iteration mode. Code and assets have minimum processing

prior to being used to make changes often and fast, so we can test our game easily. When the

game is built, a series of optimizations and differences from the Editor project will be applied to

ensure the best performance we can get, but those differences can cause certain parts of the game

to behave differently, making the profiling data of the player differ from the Editor. That’s why

we are going to explore how we can debug and profile the game we have built.

Chapter 19 633

In this section, we will examine the following build debugging concepts:

• Debugging code

• Profiling performance

Let’s start discussing how to debug the code of a build.

Debugging code
As player code is compiled differently, we can get errors in the build that didn’t happen in the Ed-

itor, and we need to debug it somehow. We have two main ways to debug—by printing messages

and through breakpoints. So, let’s start with the first one, messages. If you ran your executable

file, you may have noticed that there’s no console available. It’s just the Game View in fullscreen,

which makes sense; we don’t want to distract the user with annoying testing messages. Luckily,

the messages are still being printed, but in a file, so we can just go to that file and look for them.

The location varies according to the operating system. In this list, you can find the possible lo-

cations:

• Linux: ~/.config/unity3d/CompanyName/ProductName/Player.log

• Mac: ~/Library/Logs/Company Name/Product Name/Player.log

• Windows: C:\Users\username\AppData\LocalLow\CompanyName\ProductName\Player.

log

In these paths, you must change CompanyName and ProductName to the values of the properties

in the Player settings we set before, which are called the same, Company Name and Product

Name. In Windows, you must replace username with the name of the Windows account you are

executing the game in. Consider that the folders might be hidden, so enable the option to show

hidden files in your operating system. Inside that folder, you will find a file called Player; you

can open it with any text editor and look at the messages.

Aside from downloading any custom package from the Asset Store, there is a way to see the messag-

es of the console directly in the game, at least the error messages: by creating a development build.

This is a special build that allows extended debugging and profiling capabilities in exchange for

not fully optimizing the code as the final build does, but it will be enough for general debugging.

Generating and Debugging an Executable634

You can create this kind of build just by checking the Development Build checkbox in the File |

Build Settings window:

Figure 19.7: The Development Build checkbox

Remember that just the error messages will be displayed here, so a little trick you can do is replace

print and Debug.Log function calls with Debug.LogError, which will also print the message in

the console but with a red icon. Consider that using Debug.LogError to show non-error messages

is not a good practice, so limit the usage of this kind of message for temporal debugging. For per-

manent logging, use the log file or find a custom debugging console for runtime in the Asset Store.

Figure 19.8: Debugging error messages

Something interesting regarding development builds is that, unlike regular builds, the error

messages are displayed directly in the build, allowing you to properly debug your project. In the

next screenshot, you can see the error displayed in the runtime:

Figure 19.9: Error messages in a development build

Chapter 19 635

You will notice that, aside from showing the error message, there’s an Open Log File button on

the right, allowing you to see the log file. This is a text file containing detailed info regarding all

the messages and logs that happened in this run of the game to pinpoint the issue. Essentially, it

is the same info the Console panel shows in the editor.

Remember that for development builds to work, you need to build the game again; luckily, the

first build is the one that takes the most time, and the next will be faster. This time, you can just

click the Build and Run button to do the build in the folder in which you did the previous build.

Also, you can use regular breakpoints the same way as we explained in Chapter 5, Introduction to

C# and Visual Scripting. Attaching the IDE to the player, it will show up in the list of targets. But for

that to work, you must not only check Development Build in the Build window but also Script

Debugging. Here, you have an additional option shown when that is checked that allows you to

pause the entire game until a debugger is attached, the one called Wait For Managed Debugger.

This is useful in case you want to test something that happens immediately at the beginning and

doesn’t allow you enough time to attach the debugger:

Figure 19.10: Enabling script debugging

We have another way to see the messages, but that will require the Profiler to work, so let’s use

this as an excuse to also discuss how to profile the editor.

Profiling performance
We are going to use the same tools as we saw in the previous chapter, but to profile the player this

time. Luckily, the difference is minimal. As we did in the previous section, you need to build the

player in Development mode, checking the Development Build checkbox in the Build window,

and then the Profilers should automatically detect it.

Let’s start using the Profiler on the build by doing the following:

1. Play the game through the build.

2. Switch to Unity using Alt + Tab (Cmd + Tab on Mac).

3. Open the Profiler.

Generating and Debugging an Executable636

4. Click the menu that says Play Mode and select the item that contains Player in it. Because

I have used Mac, it says OSXPlayer, and the name will vary according to the build platform

(for example, a Windows build will say WindowsPlayer):

Figure 19.11: Profiling the player

Notice that when you click a frame, the game won’t stop like in the Editor. If you want to focus

your attention on the frames at a specific moment, you can click the record button (the red circle)

to make the Profiler stop capturing data, so you can analyze the frames captured so far.

Also, you can see that when the Profiler is attached to the player, the console will also be attached,

so you can see the logs directly in Unity. Consider that this version requires Unity to be opened,

and we cannot expect our friends who are testing our game to have it. You might need to click

on the Player button that appears on the Console and check Player Logging for this to work:

Figure 19.12: Enabling Player Logging after attaching the Profiler

Chapter 19 637

The Frame Debugger is also enabled to work with the player. You need to click the Editor but-

ton in the Frame Debugger and again, you will see the player in the list of possible debugging

targets; after selecting it, hit Enable as usual. Consider that the preview of the Draw Calls won’t

be seen in the Game View but in the build itself. If you are running the game in fullscreen mode,

you might need to switch back and forth between Unity and the build:

Figure 19.13: Debugging the frames of our game’s Player

You may also run the game in Windowed mode, setting the Fullscreen Mode property in the

player settings to Windowed, and establishing a default resolution that is smaller than your

desktop resolution, to have both Unity and the player visible:

Figure 19.14: Enabling Windowed mode

Generating and Debugging an Executable638

Finally, the Memory Profiler also supports profiling the player, and as you might guess, you can

just select the player in the list that is displayed when you click the Editor button on the top bar

of the window and then click Capture:

Figure 19.15: Taking memory snapshots of the player

And that is it. As you can see, Unity Profilers are designed to be easily integrated with the player.

If you start to take data from them, you will see the difference compared to editor profiling, es-

pecially in the Memory Profiler.

Summary
In this chapter, we learned how to create an executable version of the game and properly configure

it so you can share it with not only your friends but potentially the world! We also discussed how

to profile our build; remember that doing that will give us more accurate data than profiling the

editor, so we can better improve the performance of our game.

Now that we have finished our game, let’s see a glimpse of how your next project could easily be

an augmented reality application in Unity, exploring the AR Foundation package.

20
Augmented Reality in Unity

Nowadays, new technologies expand the fields of the application of Unity, from gaming to all

kinds of software, such as simulations, training, apps, and so on. In the latest versions of Unity,

we saw lots of improvements in the field of augmented reality, which allows us to add a layer

of virtuality on top of our reality, thereby augmenting what our device can perceive to create

games that rely on real-world data, such as the camera’s image, our real-world position, and

the current weather. This can also be applied to work environments, such as when viewing the

building map or checking the electrical ducts inside a wall. Welcome to the extra section of this

book, where we are going to discuss how to create Augmented Reality (AR) applications using

Unity’s AR Foundation package.

In this chapter, we will examine the following AR Foundation concepts:

• Using AR Foundation

• Building for mobile devices

• Creating a simple AR game

By the end of this chapter, you will be able to create AR apps using AR Foundation and will have

a fully functional game that uses its framework so that you can test the framework’s capabilities.

Let’s start by exploring the AR Foundation framework.

Augmented Reality in Unity640

Using AR Foundation
When it comes to AR, Unity has two main tools to create applications: Vuforia and AR Foundation.

Vuforia is an AR framework that can work in almost any mobile device and contains all the needed

features for basic AR apps, but with a paid subscription, we get more advanced features. On the

other hand, the completely free AR Foundation framework supports the latest AR native features

of our devices but is supported only in newer ones. Picking between one or the other depends a

lot on the type of project you’re going to build and the target audience. However, since this book

aims to discuss the latest Unity features, we are going to explore how to use AR Foundation to

create our first AR app for detecting the positions of images and surfaces in the real world. So,

we’ll start by exploring its API.

In this section, we will examine the following AR Foundation concepts:

• Creating an AR Foundation project

• Using tracking features

Let’s start by discussing how to prepare our project so that it can run AR Foundation apps.

Creating an AR Foundation project
Something to consider when creating AR projects is that we will not only change the way we code

our game, but also the game design aspect. AR apps have differences, especially in the way the

user interacts, and also limitations, such as the user being in control of the camera all the time.

We cannot simply port an existing game to AR without changing the very core experience of the

game. That’s why, in this chapter, we are going to work on a brand-new project; it would be too

difficult to change the game we’ve created so far so that it works well in AR.

In our case, we are going to create a game where the user controls a player moving a “marker,” a

physical image you can print that will allow our app to recognize where the player is in the real

world. We will be able to move the player while moving that image, and this virtual player will

automatically shoot at the nearest enemy. Those enemies will spawn from certain spawn points

that the user will need to place in different parts of the home. As an example, we can put two

spawn points on the walls and place our player marker on a table in the middle of the room so

that the enemies will go toward them. In the following image, you can see a preview of what the

game will look like:

Chapter 20 641

Figure 20.1: Finished game. The Cylinder is an enemy spawner, the Capsule is the enemy, and
the Cube is the player. These are positioned in a marker image displayed by the cellphone

We’ll start creating a new URP-based project in the same manner we created our first game. Some-

thing to consider is that AR Foundation works with other pipelines, including built-in ones, in

case you want to use it in already existing projects. If you don’t remember how to create a project,

please refer to Chapter 1, Creating a Unity Project.

Once you’re in your new blank project, install the AR Foundation package from the Package

Manager, just like we’ve installed other packages previously—that is, from Window | Package

Manager. Remember to set the Package Manager so that it shows all packages, not only the ones

in the project (the Packages button at the top-left part of the window needs to be set to Unity

Registry) and also the preview versions (click on the wheel icon, then Project Settings, and check

Enable Pre-release Packages on the window that appears).

At the time of writing this book, the latest stable release is 4.2.3, but we are going to explore the

5.0.0 preview 13 version. Remember to open the package version list by clicking the triangle button

at the left to see the preview versions. If you find a newer version than mine, you can try using

that one, but as usual, if something works differently from what we want, please install 5.0.0-

pre.13. As usual, if a warning prompting you to enable the new input system appears, click Yes:

Figure 20.2: Installing AR Foundation

Augmented Reality in Unity642

Before we install any other needed packages, now is a good moment to discuss some core ideas

of the AR Foundation framework. This package, by itself, does nothing; it defines a series of AR

features that mobile devices offer, such as image tracking, cloud points, and object tracking, but

the actual implementation of how to do that is contained in the Provider packages, such as Ap-

ple ARKit XR Plugin and Google ARCore XR plugin packages. This is designed like this because,

depending on the target device you want to work with, the way those features are implemented

changes. As an example, in iOS, Unity implements those features using AR Kit, while in Android,

it uses AR Core; they are platform-specific frameworks. Remember to install the same version of

these platform packages as the AR Foundation one (5.0.0 preview 13 in this case).

Something to consider here is that not all iOS or Android devices support AR Foundation apps.

You might find an updated list of supported devices when searching for AR Core- and AR Kit-sup-

ported devices on the internet. At the time of writing, the following links provide the supported

devices lists:

• iOS: https://www.apple.com/lae/augmented-reality (at the bottom of the page)

• Android: https://developers.google.com/ar/devices

Also, there isn’t a PC Provider package, so the only way to test AR Foundation apps so far is di-

rectly on the device, but testing tools are going to be released soon. In my case, I will be creating

an app for iOS, so aside from the AR Foundation package, I need to install the ARKit XR plugin.

However, if you want to develop for Android, install the ARCore XR plugin instead (or both if

you’re targeting both platforms). Also, I will be using the 4.1.7 version of these packages. Usually,

the versions of the AR Foundation and Provider packages match but apply the same logic as

when you picked the AR Foundation version. In the following screenshot, you can see the ARKit

package in the Package Manager:

Now that we have the needed plugins, we need to prepare a scene for AR, as follows:

1. Create a new Scene in File | New Scene and select the Basic (URP) template.

2. Delete Main Camera; we are going to use a different one.

3. In the GameObject | XR menu, create an AR Session GameObject.

4. In the same menu, create an XR Origin (Mobile AR) object that has a Camera inside it.

5. Select the Main Camera inside XR Origin.

6. Set the Render Mode property of the AR Camera Manager component to After Opaques.

This is a workaround for a bug that prevents the camera from being rendered properly in

another mode in the current versions.

https://www.apple.com/lae/augmented-reality
https://developers.google.com/ar/devices

Chapter 20 643

7. Your hierarchy should look as follows:

Figure 20.3: Starter AR Scene

The AR Session object will be responsible for initializing AR Framework and will handle all the

update logic for the AR systems. The XR Origin object will allow the framework to locate tracked

objects such as images and point clouds in a relative position to the scene. The devices inform

the positions of tracked objects relative to what the device considers “the origin.” This is usu-

ally the first area of your house you were pointing at when the app started detecting objects, so

the XR Origin object will represent that point in your physical space. Finally, you can check the

camera inside the origin, which contains some extra components, with the most important being

Tracked Pose Driver, which will make your Camera object move along with your device. Since

the device’s position is relative to the Session Origin object’s point, the camera needs to be inside

the origin object.

One extra step in case you are working on a URP project (our case) is that you need to set up the

render pipeline so that it supports rendering the camera image in the app. To do that, go to the

Settings folder that was generated when we created the project, look for the URP-HighFidelity-

Renderer file, and select it. In the Renderer Features list, click the Add Renderer Feature button

and select AR Background Renderer Feature. In the following screenshot, you can see what the

Forward Renderer asset should look like:

Figure 20.4: Adding support for URP

Augmented Reality in Unity644

And that’s all! We are ready to start exploring the AR Foundation components so that we can

implement tracking features.

Using tracking features
For our project, we are going to need two of the most common tracking features in AR (but not

the only ones): image recognition and plane detection. The first one consists of detecting the

position in the real world of a specific image so that we can place digital objects on top of it, such

as the player. The second one, plane detection, consists of recognizing real-life surfaces, such as

floors, tables, and walls, so that we have a reference of where we can put objects, such as the en-

emy’s spawn points. Only horizontal and vertical surfaces are recognized (just vertical surfaces

on some devices).

The first thing we need to do is tell our app which images it needs to detect, as follows:

1. Add an image to the project that you can print or display on a mobile device. Having a

way to display the image in the real world is necessary to test this. In this case, I will use

the following image:

Figure 20.5: Image to track

Try to get an image that contains as many features as you can. This means an

image with lots of little details, such as contrasts, sharp corners, and so on.

Those are what our AR systems use to detect it; the more detail, the better

the recognition. If your device has trouble detecting our current image, try

other images (the classic QR code might help).

Chapter 20 645

2. Consider that some devices might have trouble with certain images, such as the image

suggested in this book. If this generates issues when testing, please try using another

one. You will be testing this on your device in the upcoming sections of this chapter, so

just keep this in mind.

3. Create a Reference Image Library, an asset containing all the images we wish our app to

recognize, by clicking the + button in Project Panel and selecting XR | Reference Image

Library:

Figure 20.6: Creating a Reference Image Library

4. Select the Reference Image Library asset we created and click the Add Image button to

add a new image to the library.

5. Drag the texture to the texture slot (the one that says None).

6. Turn Specify Size on and set Physical Size to the size that your image will be printed in

real life, in meters. Try to be accurate here; on some devices not having this value right

might result in the image not being tracked:

Figure 20.7: Adding an image to be recognized

Now that we’ve specified the images to be detected, let’s test this by placing a cube on top of the

real-life image:

1. Create a Prefab of a cube and add the AR Tracked Image component to it.

2. Remember to set a small scale, like 0.1, on each axis, given that the default cube will be 1

meter by 1 meter, which will be huge in AR.

Augmented Reality in Unity646

3. Add the AR Tracked Image Manager component to the XR Origin object. This will be

responsible for detecting images and creating objects in its position.

4. Drag the Image Library asset created in the previous steps to the Serialized Library prop-

erty of the component to specify the images to recognize.

5. Drag the Cube Prefab to the Tracked Image Prefab property of the component:

Figure 20.8: Setting up the Tracked Image Manager

And that’s all! Later in the Building for mobile section in this chapter, when we will create an iOS

or Android build, we will see a cube spawning in the same position that the image is located in

the real world. Remember that you need to test this in the device, which we will do in the next

section, so for now, let’s keep coding our test app:

Figure 20.9: Cube located on top of the image being displayed by the cellphone

Let’s also prepare our app so that it can detect and display the plane surfaces the camera has rec-

ognized. This is simply done by adding the AR Plane Manager component to the XR Origin object.

Chapter 20 647

Figure 20.10: Adding the AR Plane Manager component

This component will detect surface planes over our house as we move the camera over it. It can

take a while to detect them, so it’s important to visualize the detected areas to get feedback about

this to ensure it’s working properly. We can manually get information about the plane from a

component reference to the AR Plane Manager, but luckily, Unity allows us to visualize planes

easily. Let’s take a look:

1. Create a Prefab of a plane, first by creating the plane in GameObject | 3D Object | Plane.

2. Add a Line Renderer to it. This will allow us to draw a line over the edges of the detected

areas.

3. Set the Width property of Line Renderer to a small value such as 0.01, the Color gradient

property to black, and uncheck Use World Space:

Figure 20.11: Setting the Line Renderer

Augmented Reality in Unity648

4. Remember to create a material with the proper shader (Universal Render Pipeline/Un-

lit) and set it as the material of the Line Renderer component under the Materials list

property:

Figure 20.12: Creating the Line Renderer material

5. Also, create a transparent material and use it in the MeshRenderer plane. We want to see

through it so that we can easily see the real surface beneath:

Figure 20.13: Material for the detected plane

6. Add the AR Plane and AR Plane Mesh Visualizer components to the Plane Prefab.

Chapter 20 649

7. Drag the Prefab to the Plane Prefab property of the AR Plane Manager component of the

XR Origin object:

Figure 20.14: Setting the plane visualization Prefab

Now, we have a way to see the planes, but seeing them is not the only thing we can do (sometimes,

we don’t even want them to be visible). The real power of planes resides in placing virtual objects

on top of real-life surfaces, tapping into a specific plane area, and getting its real-life position. We

can access the plane data using the AR Plane Manager or by accessing the AR Plane component

of our visualization planes, but something easier is to use the AR Raycast Manager component.

The AR Raycast Manager component provides us with the equivalent to the Physics.Raycast

function of the Unity Physics system, which, as you may recall, is used to create imaginary rays

that start from one position and go toward a specified direction in order to make them hit surfaces

and detect the exact hit point. The version provided by AR Raycast Manager, instead of colliding

with physics colliders, collides with tracked objects, mostly Point Clouds (we are not using them)

and the “planes” we are tracking. We can test this feature by following these steps:

1. Add the AR Raycast Manager component to the XR Origin object.

2. Create a custom script called SpawnerPlacer in the XR Origin object.

3. In the Awake cache, add the reference to ARRaycastManager. You will need to add the

using UnityEngine.XR.ARFoundation; line to the top of the script for this class to be

usable in our script.

4. Create a private field of the List<ARRaycastHit> type and instantiate it; the Raycast

function is going to detect every plane our ray hit, not just the first one:

Figure 20.15: List to store hits

5. Under Update, check if the touch screen is pressed (Touchscreen.current.primaryTouch.

press.isPressed). You will need the using UnityEngine.InputSystem; using at the top

of the file to use the new input system.

Augmented Reality in Unity650

6. Inside the if statement from the previous step, add another condition for calling the

Raycast function of AR Raycast Manager, passing the position of the touch as the first pa-

rameter and the list of hits as the second (Touchscreen.current.primaryTouch.position.

ReadValue()).

7. This will throw a Raycast toward the direction the player touches the screen and store

the hits inside the list we provided. This will return true if something has been hit, and

false if not.

8. Add a public field to specify the Prefab to instantiate in the place we touched. You can just

create a Sphere Prefab and assign it to this field to test this; there’s no need to add any

special component to the Prefab here. Remember to set a small scale.

9. Instantiate the Prefab in the Position and Rotation fields of the Pose property of the first

hit stored in the list. The hits are sorted by distance, so the first hit is the closest one. Your

final script should look as follows:

Figure 20.16: Raycaster component

Chapter 20 651

In this section, we learned how to create a new AR project using AR Foundation. We discussed

how to install and set up the framework, as well as how to detect real-life image positions and

surfaces, and then how to place objects on top of them.

As you may have noticed, we never hit Play to test this, and sadly at the time of writing this book,

we cannot test this in the Editor. Instead, we need to test this directly on the device. Due to this, in

the next section, we are going to learn how to do builds for mobile devices such as Android and iOS.

Building for mobile devices
Unity is a very powerful tool that solves the most common problems in game development very

easily, and one of them is building the game for several target platforms. Now, the Unity part

of building our project for such devices is easy to do, but each device has its non-Unity-related

nuances when installing development builds. In order to test our AR app, we need to test it di-

rectly on the device. So, let’s explore how we can make our app run on Android and iOS, the most

common mobile platforms.

Before diving into this topic, it is worth mentioning that the following procedures change a lot

over time, so you will need to find the latest instructions on the internet. The Unity Learn portal

site (https://learn.unity.com/tutorial/how-to-publish-to-android-2) may be a good al-

ternative in case the instructions in this book fail but try the steps here first.

In this section, we will examine the following mobile building concepts:

• Building for Android

• Building for iOS

Let’s start by discussing how to build our app so that it runs on Android phones.

Building for Android
Creating Android builds is relatively easy compared to other platforms, so we’ll start with Android.

Remember that you will need an Android device capable of running AR Foundation apps, so please

refer to the link regarding Android-supported devices we mentioned in the Using AR Foundation

section of this chapter. The first thing we need to do is check if we have installed Unity’s Android

support and configured our project to use that platform. To do that, follow these steps:

1. Close Unity and open Unity Hub.

2. Go to the Installs section and locate the Unity version you are working on.

https://learn.unity.com/tutorial/how-to-publish-to-android-2

Augmented Reality in Unity652

3. Click the wheel icon button at the top-right corner of the Unity version you are using and

click Add Modules:

Figure 20.17: Adding modules to the Unity version

4. Make sure Android Build Support and the sub-options that are displayed when you click

the arrow on its left are checked. If not, check them and click the Continue button at the

bottom-right to install them:

Figure 20.18: Adding Android support to Unity

5. Accept all the terms and conditions prompts by checking the Accept Terms checkbox and

clicking the Continue button.

6. Open the AR project we created in this chapter.

7. Go to Build Settings (File | Build Settings).

8. Select the Android platform from the list and click the Switch Platform button at the

bottom-right part of the window:

Chapter 20 653

Figure 20.19: Switching to Android builds

To build an app on Android, there are some requirements we need to meet, such as having the

Java SDK (not the regular Java runtime) and Android SDK installed, but luckily, the new versions

of Unity take care of that. Just to double-check that we have installed the needed dependencies,

follow these steps:

1. Go to Unity Preferences (Edit | Preferences on Windows or Unity | Preferences on Mac).

2. Click External Tools.

Augmented Reality in Unity654

3. Check that all the options that say …Installed with Unity on the Android section are

checked. This means we will be using all the dependencies installed by Unity:

Figure 20.20: Using installed dependencies

There are some additional Android ARCore-specific related settings to check that you can find

at https://developers.google.com/ar/develop/unity-arf/quickstart-android. These can

change if you are using newer versions of AR Core. You can apply them by following these steps:

1. Go to Player Settings (Edit | Project Settings | Player).

2. Uncheck Multithreaded Rendering and Auto Graphics API from the Other Settings

section.

3. Remove Vulkan from the Graphics APIs list if it’s there.

https://developers.google.com/ar/develop/unity-arf/quickstart-android

Chapter 20 655

4. Set Minimum API Level to Android 7.0:

Figure 20.21: AR Core settings

Augmented Reality in Unity656

5. Set the Scripting Backend to IL2CPP.

6. Check the ARM64 checkbox to give support to Android 64-bit devices.

7. Check Override Default Bundle Identifier and set something custom, like com.MyCompany.

MyARApp.

8. Go to Edit | Project Settings and select the XR Plug-in Management option.

9. Check Google ARCore under Plug-in Providers to make sure it will be enabled in our

build; if not we won’t see anything:

Figure 20.22: ARCore plugin enabled

Now, you can finally build the app from File | Build Settings like usual, by using the Build button.

This time, the output will be a single APK file that you can install by copying the file to your device

and opening it. Remember that in order to install APKs that weren’t downloaded from the Play

Store, you need to set your device to allow Install Unknown Apps. The location for that option

varies a lot, depending on the Android version and the device you are using, but this option is

usually located in the Security settings. Some Android versions prompt you to view these settings

when installing the APK.

Now, we can copy and install the generated APK build file every time we want to create a build.

However, we can let Unity do that for us using the Build and Run button. This option, after build-

ing the app, will look for the first Android device connected to your computer via USB and will

automatically install the app. For this to work, we need to prepare our device and PC, as follows:

1. On your device, find the build number in the Settings section of the device, whose loca-

tion, again, can change depending on the device. On my device, it is located in the About

Phone | Software Information section:

Chapter 20 657

Figure 20.23: Locating the build number

Augmented Reality in Unity658

2. Tap it a few times until the device says you are now a programmer. This procedure enables

the hidden developer option in the device, which you can now find in the settings.

3. Open the developer options and turn on USB Debugging, which allows your PC to have

special permissions on your device. In this case, it allows you to install apps.

4. Install the USB drivers from your phone manufacturer’s site onto your computer if using

Windows. For example, if you have a Samsung device, search for Samsung USB Driver.

Also, if you can’t find that, you can look for Android USB Driver to get the generic drivers,

but that might not work if your device manufacturer has their own. On Mac, this step is

usually not necessary.

5. Connect your device (or reconnect it if it’s already connected). The option to Allow USB

Debugging for your computer will appear on the device. Check Always Allow and click OK:

Figure 20.24: Allowing USB debugging

6. Accept the Allow Data prompt that appears.

7. If these options don’t appear, check that the USB Mode of your device is set to Debugging

and not any other.

8. In Unity, build with the Build and Run button, and save the apk into a folder. Be patient

because this will take a while the first time.

Please remember to try another image if you have trouble detecting the image where

we instantiate the player (the Unity logo, in my case). This might vary a lot, according

to your device’s capabilities.

Chapter 20 659

And that’s all! Now that you have your app running on your device, let’s learn how to do the same

for the iOS platform.

Building for iOS
When developing on iOS, you will need to spend some money. You will need to run XCode, a piece

of software you can only run on macOS X. Due to this, you’ll need a device that can run it, such as

a MacBook, a Mac mini, and so on. There may be ways to run macOS X on PCs, but you will need

to find this out and try it for yourself. Besides spending on a Mac and an iOS device (iPhone, iPad,

iPod, and so on), you’ll need to pay for an Apple Developer account, which costs 99 USD per year,

but only if you are planning to release the game; for testing purposes, you can continue without it.

To create an AR Foundation iOS build, you should do the following:

1. Get a Mac computer and an iOS device.

2. Create an Apple Developer account (at the time of writing this book, you can create one

at https://developer.apple.com/).

3. Install the latest XCode from the App Store onto your Mac.

4. Check if you have iOS build support in Unity Install on the Unity Hub. Please refer to the

Building for Android section for more information about this step.

5. Switch to the iOS platform under Build Settings, by selecting iOS and clicking the Switch

Platform button:

Figure 20.25: Switching to iOS build

6. Go to Edit | Project Settings and select the Player option.

https://developer.apple.com/

Augmented Reality in Unity660

7. In Other Settings, set the Camera Usage Description property if not already. This will be

a message shown to the user to tell them why we need access to their camera:

Figure 20.26: Message regarding camera usage

8. Go to Edit | Project Settings and select the XR Plug-in Management option.

9. Check Apple ARKit under Plug-in Providers to make sure it will be enabled in our build;

if not, we won’t see anything:

Figure 20.27: ARKit plugin enabled

10. Click the Build button in the Build Settings window, create a folder for the build, and wait

for the build to finish. A folder containing the generated files should open when finished.

You will notice that the result of the build process will be a folder containing an XCode project.

Unity cannot create the build directly, so it generates a project you can open with the XCode

software we mentioned previously. The step you need to follow to create a build with the XCode

version being used in this book (13.4.1) are as follows:

1. Double-click the .xcodeproj file inside the generated folder:

Figure 20.28: XCode project file

Chapter 20 661

2. Go to XCode | Preferences.

3. In the Accounts tab, hit the + button at the bottom-left part of the window and log in

with the Apple account you registered as an Apple developer:

Figure 20.29: Account settings

4. Connect your device and select it from the top-left part of the window, which should

now say Any iOS device. You might need to unblock your device first, click on the Trust

button, and wait for XCode to finish setting up your device to see your device in the list:

Figure 20.30: Selecting the device

5. XCode might ask you to install certain updates to support your device; please install them

if needed.

6. In the left panel, click the folder icon and then the Unity-iPhone settings to display the

project settings.

7. From the TARGETS list, select Unity-iPhone and click on the Signing & Capabilities tab.

8. Check Automatically manage signing and click on the Enable Automatic button on the

prompt.

9. In the Team settings, select the option that says Personal Team.

10. If you see a Failed to register bundle identifier error, just change the Bundle Identifier

setting for another one, always respecting the format (com.XXXX.XXXX), and then click

on Try Again until it is solved.

Augmented Reality in Unity662

Once you find one that works, set it in Unity (Bundle Identifier under Player Settings)

to avoid needing to change it in every build:

Figure 20.31: Setting up your iOS project

11. Hit the Play button at the top-left part of the window and wait for the build to complete.

You might be prompted to enter your password a couple of times in the process, so please

do so.

12. When the build completes, remember to unlock the device. A prompt will ask you to do

that. Note that the process won’t continue unless you unlock the phone. If that fails click

Cancel Running and try again, this time with the device unlocked; remember to select

your device in the list again. Also, try to use the latest XCode available to support the latest

iOS versions installed on your device.

13. If you see a Fetching Debug Symbols prompt that never ends, restart your device.

14. After completion, you may see an error saying that the app couldn’t be launched but that

it was installed anyway. If you try to open it, it will say you need to trust the developer of

the app, which you can do by going to the settings of your device.

15. From there, go to General | VPN & Device Management and select the first developer

in the list.

16. Click the blue Trust… button and then Trust.

17. Try to open the app again.

18. Please remember to try another image if you’re having trouble detecting the image where

we instantiate the player (the pebbles image, in my case). This might vary a lot, depending

on your device’s capabilities.

Chapter 20 663

In this section, we discussed how to build a Unity project that can run on iOS and Android, thus

allowing us to create mobile apps—AR mobile apps, specifically. Like any build, there are methods

we can follow to profile and debug, as we saw when we looked at PC builds, but we are not going

to discuss that here. Now that we have created our first test project, we will convert it into a real

game by adding some mechanics to it.

Creating a simple AR game
As we discussed previously, the idea is to create a simple game where we can move our player

while moving a real-life image, and also put in some enemy spawners by just tapping where we

want them to be, such as a wall, the floor, a table, and so on. Our player will automatically shoot

at the nearest enemy, and the enemies will shoot directly at the player, so our only task will be

to move the player so that they avoid bullets. We are going to implement these game mechanics

using scripts very similar to the ones we used in this book’s main project.

In this section, we will develop the following AR game features:

• Spawning the player and enemies

• Coding the player and enemy behavior

First, we are going to discuss how to make our player and enemies appear on the app, specifically

in real-world positions, and then we will make them move and shoot each other to create the

specified gameplay mechanics. Let’s start with spawning.

Spawning the player and enemies
The first thing we need to do in order to implement our game’s gameplay is to spawn objects to

interact with. Let’s start with the player, since that’s the easiest one to deal with: we will create

a Prefab with the graphics we want the player to have (in my case, just a cube), a Rigidbody with

Is Kinematic checked (the player will move), and an AR Tracked Image script. We will set that

Prefab as them Tracked Image Prefab of the AR Tracked Image Manager component in the XR

Origin object. This will put the player on the tracked image. Remember to set the size of the player

in terms of real-life sizes. In my case, I scaled the player to 0.05, 0.05, 0.05. Since the original

cube is 1 meter in size, this means that my player will be 5x5x5 centimeters.

Augmented Reality in Unity664

Your Player Prefab should look as follows:

Figure 20.32: The starting “Player” Prefab

The enemies will require a little bit more work, as shown here:

1. Create a Prefab called Spawner with the graphic you want your spawner to have (in my

case, a cylinder) and its real-life size (small scale).

2. Add a custom script that spawns a Prefab every few seconds, such as the one shown in

the following screenshot.

3. You will notice the usage of Physics.IgnoreCollision to prevent the Spawner GameO-

bject from colliding with the spawned GameObject, getting the colliders of both objects,

and passing them to the function. You can also use the Layer Collision Matrix to prevent

collisions, just like we did in this book’s main project, if you prefer to:

Chapter 20 665

Figure 20.33: Spawner script

Augmented Reality in Unity666

4. Create an Enemy Prefab with the desired graphic (a capsule, in my case) and a Rigidbody

component with the Is Kinematic checkbox checked. This way, the enemy will move but

not with physics. Remember to consider the real-life size of the enemy.

5. Set the Prefab property of the Spawner so that it spawns our enemy at our desired time

frequency:

Figure 20.34: Configuring the Spawner

6. Set the Prefab of SpawnerPlacer in the XR Origin object so that it spawns the Spawner

Prefab we created earlier.

And that’s all for the first part. If you test the game now, you will be able to tap on the detected

planes in the app and see how the Spawner starts creating enemies. You can also look at the target

image and see our cube player appear.

Now that we have the objects in the scene, let’s make them do something more interesting, start-

ing with the enemies.

Coding the player and enemy behavior
The Enemy must move toward the player in order to shoot at them, so it will need to have access

to the player’s position. Since the enemy is instantiated, we cannot drag the player reference to

the Prefab. However, the player has also been instantiated, so we can add a PlayerManager script

to the player that uses the Singleton pattern (as we did in Chapter 8, Win and Lose Conditions).

Chapter 20 667

To do that, follow these steps:

1. Create a PlayerManager script similar to the one shown in the following screenshot and

add it to the player:

Figure 20.35: Creating the PlayerManager script

2. Now that the enemy has a reference to the player, let’s make them look at the player by

adding a LookAtPlayer script, as shown here:

Figure 20.36: Creating the LookAtPlayer script

Augmented Reality in Unity668

3. Also, add a simple MoveForward script like the one shown in the following screenshot

to make the enemy not only look at the player but also move toward them. Since the

LookAtPlayer script is making the enemy face the player, this script moving along the Z

axis is just enough:

Figure 20.37: Creating the MoveForward script

Now, we will take care of the player movement. Remember that our player is controlled by moving

the image, so here, we are actually referring to the rotation, since the player will need to auto-

matically look and shoot at the nearest enemy. To do this, follow these steps:

1. Create an Enemy script and add it to the Enemy Prefab.

2. Create an EnemyManager script like the one shown in the following screenshot and add it

to an empty EnemyManager object in the scene:

Chapter 20 669

Figure 20.38: Creating the EnemyManager script

3. In the Enemy script, make sure to register the object in the all list of EnemyManager, as we

did previously with WavesManager in this book’s main project:

Figure 20.39: Creating the Enemy script

Augmented Reality in Unity670

4. Create a LookAtNearestEnemy script like the one shown in the following screenshot and

add it to the Player Prefab to make it look at the nearest enemy:

Figure 20.40: Looking at the nearest Enemy

Now that our objects are rotating and moving as expected, the only thing missing is shooting

and damaging:

1. Create a Life script like the one shown in the following screenshot and add it to both the

Player and Enemy components. Remember to set a value for the amount of life field. You

will see this version of Life instead of needing to check if the life reached zero every frame.

We have created a Damage function to check that damage is dealt (the Damage function is

executed), but the other version of this book’s project also works:

Chapter 20 671

Figure 20.41: Creating a Life component

2. Create a Bullet Prefab with the desired graphics, the collider with the Is Trigger checkbox

on the collider checked, a Rigidbody component with Is Kinematic checked (a kinematic

trigger collider), and the proper real-life size.

3. Add the MoveForward script to the Bullet Prefab to make it move. Remember to set the

speed.

4. Add a Spawner script to both the Player and the Enemy components and set the Bullet

Prefab as the Prefab to spawn, as well as the desired spawn frequency.

5. Add a Damager script like the one shown in the following screenshot to the Bullet Prefab

to make bullets inflict damage on the objects they touch. Remember to set the damage:

Figure 20.42: Creating a Damager script – part 1

Augmented Reality in Unity672

6. Add an AutoDestroy script like the one shown in the following screenshot to the Bullet

Prefab to make it despawn after a while. Remember to set the destroy time:

Figure 20.43: Creating a Damager script – part 2

And that’s all! As you can see, we basically created a new game using almost the same scripts we

used in the main game, mostly because we designed them to be generic (and the game genres are

almost the same). Of course, this project can be improved a lot, but we have a nice base project

to create amazing AR apps.

Summary
In this chapter, we introduced the AR Foundation Unity framework, explored how to set it up,

and how to implement several tracking features so that we can position virtual objects on top of

real-life objects. We also discussed how to build our project so that it can run on both iOS and

Android platforms, which is the only way we can test our AR apps at the time of writing. Finally,

we created a simple AR game based on the game we created in the main project but modified it

so that it’s suitable for use in AR scenarios.

With this new knowledge, you will be able to start your path as an AR app developer, creating

apps that augment real objects with virtual objects by detecting the positions of the real objects.

This can be applied to games, training apps, and simulations. You may even be able to find new

fields of usage, so take advantage of this new technology and its new possibilities!

Well, this is the end of this journey through Unity 2022. I’m really glad you reached this point

in the book. I hope this knowledge will help you to improve or start your game development

career with one of the most versatile and powerful tools on the market: Unity. I hope to see your

creations someday! See you on the road!

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com
www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Coding Roblox Games Made Easy, Second Edition

Zander Brumbaugh

ISBN: 9781803234670

• Use Roblox Studio and other free resources

• Learn coding in Luau: basics, game systems, physics manipulation, etc

• Test, evaluate, and redesign to create bug-free and engaging games

• Use Roblox programming and rewards to make your first game

• Move from lobby to battleground, build avatars, locate weapons to fight

• Character selection, countdown timers, locate escape items, assign rewards

• Master the 3 Ms: Mechanics, Monetization, Marketing (and Metaverse)

• 50 cool things to do in Roblox

https://www.packtpub.com/product/coding-roblox-games-made-easy-second-edition/9781803234670

Other Books You May Enjoy676

Django 4 By Example – Fourth Edition

Antonio Melé

ISBN: 9781801813051

• Learn Django essentials, including models, ORM, views, templates, URLs, forms, authen-

tication, signals and middleware

• Implement different modules of the Django framework to solve specific problems

• Integrate third-party Django applications into your project

• Build asynchronous (ASGI) applications with Django

• Set up a production environment for your projects

• Easily create complex web applications to solve real use cases

https://www.packtpub.com/product/django-4-by-example-fourth-edition/9781801813051

Other Books You May Enjoy 677

101 UX Principles, Second Edition

Will Grant

ISBN: 9781803234885

• Work with user expectations, not against them

• Make interactive elements obvious and discoverable

• Optimize your interface for mobile

• Streamline creating and entering passwords

• Use animation with care in user interfaces

• How to handle destructive user actions

https://www.packtpub.com/product/101-ux-principles-second-edition/9781803234885

Other Books You May Enjoy678

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Hands-On Unity 2022 Game Development, Third Edition, we’d love to hear

your thoughts! If you purchased the book from Amazon, please click here to go straight

to the Amazon review page for this book and share your feedback or leave a review on the site

that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1803236914
https://packt.link/r/1803236914

Index

Symbols
3D Cartesian coordinate system 23
3D Spatial Blend 439

A
Action 241
advanced effects

applying 421-428
Depth Map 419
High Dynamic Range (HDR) 419
using 418

AI techniques
bulletPrefab field, adding 291-298

AI techniques, with sensors 244
debugging, with Gizmos 255-263
three-filter sensors, creating

with C# 244-250
three-filter sensors, creating with Visual

Scripting 251-255

ambient lighting
configuring, with skyboxes 377-382

Android
building 651-659
reference link 642

Animation Controllers 545
integrating 545-551

Animator 545
Skinning Animation, using 537, 538

AR Foundation
project, creating 640-644
tracking features, using 644-651
using 640

AR game
creating 663
player and enemies, spawning 663-666
player and enemy behavior, coding 666-672

assets 11, 17
configuring 99
importing 79
importing, from Asset Store 82-89
importing, from internet 80-82
importing, from Unity Packages 90
integrating 91
meshes, configuring 99-101
meshes, integrating 94, 95
prototype base, replacing 103-106
terrain textures, integrating 91-94
textures, configuring 101, 102
textures, integrating 95-98

Asset Store 79
used, for importing assets 82-89

audio
importing 429

Index680

importing, concepts 429
import settings, configuring 432-436
integrating 436
mixing 436
types 430, 431

AudioClips 436
audio feedback

scripting 446-448
Audio Mixer

using 441-446
audio mixing 441
AudioSources 436

2D mode 438-440
3D mode 438-440
settings 438

audio types
ambient sound 430
music 430
sound effects (SFX) 430

Avatar Masks 552
using 552-557

axis gizmo 23

B
baked lighting 395
Baked mode 400
batching 590, 593

using 593-598
Blackboard 121
Bloom effect 421

enabling 423
Box Collider 29
breakpoints

using 125, 126

build 627, 628
code, debugging 633-635
debugging 632
performance, profiling 635-638

Built-in Renderer Pipeline (BIRP) 304

C
C# 112

Finite State Machines (FSMs),
creating 264-267

used, for creating three-filter
sensors 244-250

Canvas 452
used, for creating User

Interface (UI) 452, 453
Canvas object types 456

graphics assets, integrating for UI 456-465
UI controls, creating 465-473

Canvas Scaler component 479
central processing unit (CPU) 32
Chromatic Aberration effect 414, 415
Cinemachine

camera behaviors, creating 571-575
dolly tracks, creating 575-578
used, for creating dynamic cameras 570

Collision reaction 193
collisions

detecting 193
filtering 190, 191, 192

Color Curves 427

complex simulations
creating, with Visual Effect Graph 349, 350

components 27-29
manipulating 29-34

Index 681

compression formats
ADPCM 435
PCM 435

Context 355
initialize particle 355
output particle quad 355
update particle 355

C# Script
common beginner errors 132-134
creating 112-115

Cubemap 380
cutscenes

creating, with Timeline 578

D
Deferred Rendering 371, 375-377
Delta Time 148, 495
depth bias 389
Depth Map 419
Depth of Field 419, 423, 424
Development Builds 634
Direct Lights 377, 382
dots per inch (DPI) 528
draw call 374
draw calls 591
dynamic batching 596
dynamic cameras

creating, with Cinemachine 570

E
events

Collision events 193
in C# 122-124
in Visual Scripting 126-129

Trigger events 193
event system 122
executable format

building 627-632

F
fields

using, in instructions 129-132
Filmbox (FBX) 539
Film Grain 418
Finite State Machines (FSMs) 243, 264

creating, in C# 264-267
creating, in Visual Scripting 272-282
decision making 264
transitions, creating 267-272

first-person-shooter (FPS) 102
fluid simulations

bonfire effect, creating 346-349
creating 344
waterfall effect, creating 344-346

Forward Rendering 371
Forward Vector 24
Frame Debugger 591, 637

using 591-593
frames per second (FPS) 32, 349, 394
frustum culling 600
FSM actions

executing 283
NavMesh, calculating 283-285
Pathfinding, using 286-291

G
game concept

defining 47, 48

Index682

Game Mode Object
creating 224-231

GameObjects 18
adding, to scene 20, 21
manipulating 22-27

garbage collector 613-619
G-Buffer 375
Gizmos 255

used, for debugging AI techniques with
sensors 255-263

GLSL 300
graphics engines 590, 591
graphics optimization 590, 598-602

CPU-bound, detecting 603, 604
CPU optimization techniques 609-613
CPU Usage Profiler, using 605-609
feature 599, 600
GPU-bound, detecting 603, 604
processing 602, 603

gray-boxing 21

H
HDR Rendering 419
Height Maps 49, 50

authoring 53-57
configuring 50-53
creating 50-53
details, adding 57-60

High Definition Render Pipeline
(HDRP) 304, 371

High Dynamic Range (HDR) 419
enabling 420, 421

Highlights effect 425

I
Importing Assets process 16
import setting configuration

compressed in memory 433
decompress on load 433
streaming 433

Indirect Light 377
Input System

input mapping, creating 170-173
installing 168-170
mapping, using in scripts 174-179
using 168

Inspector tool 29
instructions

fields, using in 129-132
in C# 123
in Visual Scripting 126-129

Integrated Development
Environment (IDE) 109

intelligent pathfinding 243
Inverse Kinematics (IK) 542
iOS

building 659-663
reference link 642

J
JetBrains Rider Editor package 125
Joint Photographic Experts Group (JPG) 16

K
Kinematic Collider 186

Index 683

L
layer 190, 552
Layer Collision Matrix 190
Level of Detail (LOD) 598
lighting 371

ambient lighting, configuring with
skyboxes 377-382

applying 371, 372
configuring in URP 382-385
methods 372-377
optimizing 395

Lightmapping UVs 397
lightmaps 395

baking 396-404
reference link 404

Light Probes 405
long-term support (LTS) 2
Low Dynamic Range (LDR) 419

M
managers

creating 216-224
memory allocation 613-619
memory optimization 613
Memory Profiler 638

using 619-624
Mesh Collider 182
MeshFilter component 29
Midtones effect 425
Mixed mode 400
mobile devices

Android, building 651-659
building 651
iOS, building 659-663

modes
for frequent medium audio 434
for frequent short audio 434
for infrequent large audio 434

Motion Blur effect 417
movement

Delta Time 148-150
implementing 137, 138
objects, moving through Transform 138-141
Player Input, using 141-148

Movement Animations
scripting 567-570

MPEG Audio Layer 3 (MP3) 16
Multi-Pass Forward Renderer 372-374

versus Single Pass Forward Renderer 375

N
normal bias 390
Normals 375, 376

O
object hierarchies 34

uses 36
object managers

creating 207, 208
Object Pool class

reference link 619
Object Pooling 216
objects

modifying 196-200
parenting 34, 35

Object Variables 214
occlusion culling 600
OnDrawGizmos function 256
Overlap Sphere 251

Index684

P
panels 18
Panel Settings asset 529
parenting

of objects 34, 35
particle systems 335
performant shadows

configuring 391-394
Peripheral Component Interconnect Express

(PCI Express) 590
physics

forces, applying 200-203
tweaking 203-205
used, for producing movements 200

Physics Collider 186
physics configuration 182

collisions, filtering 190-192
object types 186-190
shapes, setting 182-185

Physics events 193
Pixel Lighting 374
PlayerMovement script 138
Player Shooting Animations

scripting 557-567
Point Light 383
Portable Network Graphics (PNG) 16
Post-processing

using 411, 412
Post Processing Stack version 2 (PPv2) 412
precalculating shadows 395
Prefab-instance relationship 39-42
Prefabs 37, 38

creating 38, 39

Prefab variant 43, 44
primitive types

Box 182
Capsule 182
Sphere 182

ProBuilder 60
details, adding 72-76
installing 61-63
mesh, manipulating 65-72
shape, creating 64, 65
used, for creating shapes 60

Profiler
using, on Build 635-637

R
real-time lighting 395
Realtime mode 400
RectTransform 452

used, for positioning elements 453-456
relative positions

using 530-536
Render Pipeline 303-305
Responsive UI

creating 524
dynamic positioning and sizing 524-528
Dynamic Scaling 528-530
relative positions, using 530-536

Right Vector 24
Rigidbody 30

S
scene 17

GameObjects, adding to 20, 21
purpose 18
saving 44

Index 685

scene files
saving 45

scene template 20
Scene variables 213
Scene View 18-20

navigating 21, 22
ScoreOnDeath 211
Scriptable Render Pipeline (SRP) 304
Script Asset 118
Script Graph 118
scripting animations 557

Movement Animations, scripting 567-570
Player Shooting Animations,

scripting 557-567
scripts

creating 108
fields, adding 116-118
initial setup 109-112

shader 299, 300
Shader Graph 300, 301, 310

creating 310-315
Textures, combining 325-328
Textures, using 316-325
transparency, applying 328-331
used, for creating shaders 310
Vertex Effects, creating 331-334

Shader Pipeline 300-303
Shader Pipeline, stages

blending 303
culling 301
Depth Testing 302
Fragment Shader 302
Input Assembler 301
rasterizer 302
Vertex Shader 301

Shadow Acne 388

Shadow Cascades 391
Shadow effect 425
Shadow Map 386
shadows

applying 386
calculations 386-391
performant shadows, configuring 39-394

shapes
setting 182-185

Shuriken particle systems 335, 336
advanced module, using 342-344
creating 336-341

Single Pass Forward Renderer 372
versus Multi-Pass Forward Renderer 375

Singleton design pattern
used, for sharing variables 208-213

skeletal animations
importing 541-545

skinned meshes 538
Skinned Mesh Renderer 548
skinning 538-540
Skinning Animation

using, with Animator 537, 538
skyboxes

used, for configuring ambient
lighting 377-382

Soft Shadows 388
spawning 663

implementing 150, 151
object, destroying 166-168
object, spawning 151-160
timing actions 161-165

Split Toning 427
Spotlight 383
static batcher 597

Index686

Static Collider 186
static lighting 395, 396

applying, to static objects 404-408
static meshes 537
Streaming 433
Stylesheet Classes 520
subscribing 233, 238
System 355

T
Terrain tool

Height Maps 49, 50
Height Maps, authoring 53-57
Height Maps, configuring 50-53
Height Maps, creating 50-53
Height Maps, details adding 57-60
used, for creating landscape 48

TextMesh Pro 462
Textures

combining 325-328
using 316-325

three-filter sensors
creating, with C# 244-250
creating, with Visual Scripting 251-255

Timeline
animation clips, creating 57-581
intro cutscene, sequencing 581-586
used, for creating cutscenes 578

tonemapping 420

Transform 28, 138
Transform Gizmo 23
Transform relationship 34
transparency

applying 328-331

Trigger events
detecting 193-196

Trigger Kinematic Collider 187
Trigger Static Collider 186, 187

U
UI Builder 509
UI Documents

creating 508-510
editing 510-519

UI responsive
creating 473
object positions, adapting 474-477
object sizes, adapting 477-480

UI scripting 480
information, displaying 480-485, 488-495
Pause menu, programming 495-504

UI Stylesheets
creating 519-524

UI Toolkit 452, 507, 508
used, for creating UI 508

Uniform Scaling 26
Unity

installing 1
installing, with Unity Hub 3-11
technical requirements 2
versioning 2, 3

Unity Download Archive 7
Unity Editor 18, 19

Unity event functions
used, for improving code 231-241

Unity Hub
folder structure, exploring 14-16
Unity, installing with 3-11
used, for creating project 11-14

Index 687

Unity Packages
used, for importing assets 90

Unity Profilers 638
Universal Render Pipeline (URP) 12, 95,

299, 300, 303-305, 350, 412, 597
built-in shaders 305-310
lighting, configuring 382-385

Up Vector 24
URP Post-processing

basic effects, using 414-418
profile, setting up 412-414

User Interface (UI) 451
creating, with Canvas 452, 453
creating, with UI Toolkit 508

V
variables

scopes 214
sharing, with Singleton design

pattern 208-213
sharing, with Visual Scripting 213-216

Vertex Effects
creating 331-334

Vertex Lighting 375
Vertex Snapping 104
Vignette effect 415-417
Visual Effect

scripting 363-369
Visual Effect Graph 349, 350

analyzing 352-356
creating 352-356
installing 350-352
rain effect, creating 356-362
reference link 362
used, for creating complex

simulations 349, 350

Visual Script
creating 119-121

Visual Scripting graph 107
Finite State Machines (FSMs),

creating 272-282
used, for creating three-filter

sensors 251-255
used, for sharing variables 213-216

Visual Scripting package 109
Visual Studio Editor package 125
VSync 606

W
Waveform Audio File Format (WAV) 16
White Balance 418
WYSIWYG (What You See Is What You Get) 20

Z
Z-Fighting 65

Index688

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803236919

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Creating a Unity Project
	Installing Unity
	Unity’s technical requirements
	Unity versioning
	Installing Unity with Unity Hub

	Creating projects
	Creating a project
	Project structure

	Summary

	Chapter 2: Editing Scenes and Game Objects
	Manipulating scenes
	The purpose of a scene
	The Scene View
	Adding our first GameObject to the scene
	Navigating the Scene View
	Manipulating GameObjects

	GameObjects and components
	Understanding components
	Manipulating components

	Object Hierarchies
	Parenting of objects
	Possible uses

	Prefabs
	Creating Prefabs
	Prefab-instance relationship
	Prefab variants

	Saving scenes and projects
	Summary

	Chapter 3: Grayboxing with Terrain and ProBuilder
	Defining our game concept
	Creating a landscape with Terrain
	Discussing Height Maps
	Creating and configuring Height Maps
	Authoring Height Maps
	Adding Height Map details

	Creating shapes with ProBuilder
	Installing ProBuilder
	Creating a shape
	Manipulating the mesh
	Adding details

	Summary

	Chapter 4: Importing and Integrating Assets
	Importing assets
	Importing assets from the internet
	Importing assets from the Asset Store
	Importing assets from Unity Packages

	Integrating assets
	Integrating terrain textures
	Integrating meshes
	Integrating textures

	Configuring assets
	Configuring meshes
	Configuring textures
	Assembling the scene

	Summary

	Chapter 5: Introduction to C# and Visual Scripting
	Creating scripts
	Initial setup
	Creating a C# script
	Adding fields
	Creating a Visual Script

	Using events and instructions
	Events and instructions in C#
	Events and instructions in Visual Scripting
	Using fields in instructions
	Common beginner C# script errors

	Summary

	Chapter 6: Implementing Movement and Spawning
	Implementing movement
	Moving objects through Transform
	Using Input
	Understanding Delta Time

	Implementing spawning
	Spawning objects
	Timing actions
	Destroying objects

	Using the new Input System
	Installing the new Input System
	Creating Input Mappings
	Using Mappings in our scripts

	Summary

	Chapter 7: Physics Collisions and Health System
	Configuring physics
	Setting shapes
	Physics object types
	Filtering collisions

	Detecting collisions
	Detecting Trigger events
	Modifying the other object

	Moving with physics
	Applying forces
	Tweaking physics

	Summary

	Chapter 8: Win and Lose Conditions
	Creating object managers
	Sharing variables with the Singleton design pattern
	Sharing variables with Visual Scripting
	Creating managers

	Creating Game Modes
	Improving our code with events
	Summary

	Chapter 9: Implementing Game AI for Building Enemies
	Gathering information with sensors
	Creating three-filter sensors with C#
	Creating Three-Filters sensors with Visual Scripting
	Debugging with gizmos

	Making decisions with FSMs
	Creating the FSM in C#
	Creating transitions
	Creating the FSM in Visual Scripting

	Executing FSM actions
	Calculating our scene’s NavMesh
	Using Pathfinding

	Adding the final details
	Summary

	Chapter 10: Materials and Effects with URP and Shader Graph
	Introducing shaders and URP
	Shader Pipeline
	Render Pipeline and URP
	URP built-in shaders

	Creating shaders with Shader Graph
	Creating our first Shader Graph

	Using Textures
	Combining Textures
	Applying transparency
	Creating Vertex Effects
	Summary

	Chapter 11: Visual Effects with Particle Systems and Visual Effect Graph
	Introduction to Shuriken particle systems
	Creating a basic particle system with Shuriken
	Using advanced modules

	Creating fluid simulations
	Creating a waterfall effect
	Creating a bonfire effect

	Creating complex simulations with Visual Effect Graph
	Installing Visual Effect Graph
	Creating and analyzing a Visual Effect Graph
	Creating a rain effect

	Scripting Visual Effects
	Summary

	Chapter 12: Lighting Using the Universal Render Pipeline
	Applying lighting
	Discussing lighting methods
	Configuring ambient lighting with skyboxes
	Configuring lighting in URP

	Applying shadows
	Understanding shadow calculations
	Configuring performant shadows

	Optimizing lighting
	Understanding static lighting
	Baking lightmaps
	Applying static lighting to static objects

	Summary

	Chapter 13: Full-Screen Effects with Post-Processing
	Using post-processing
	Setting up a profile
	Using basic effects

	Using advanced effects
	High Dynamic Range (HDR) and Depth Map
	Applying advanced effects

	Summary

	Chapter 14: Sound and Music Integration
	Importing audio
	Audio types
	Configuring import settings

	Integrating and mixing audio
	Using 2D and 3D AudioSources
	Using an Audio Mixer

	Scripting audio feedback
	Summary

	Chapter 15: User Interface Design
	Understanding the Canvas and RectTransform
	Creating a UI with the Canvas
	Positioning elements with RectTransform

	Canvas object types
	Integrating assets for the UI
	Creating UI controls

	Creating a responsive UI
	Adapting object positions
	Adapting object sizes

	Scripting the UI
	Showing information in the UI
	Programming the Pause menu

	Summary

	Chapter 16: Creating a UI with the UI Toolkit
	Why learn UI Toolkit?
	Creating a UI with UI Toolkit
	Creating UI Documents
	Editing UI Documents
	Creating UI Stylesheets

	Making a responsive UI
	Dynamic positioning and sizing
	Dynamic scaling
	Using relative positions

	Summary

	Chapter 17: Creating Animations with Animator, Cinemachine, and Timeline
	Using Skinning Animation with Animator
	Understanding skinning
	Importing skeletal animations
	Integration using Animation Controllers
	Using Avatar Masks

	Scripting animations
	Scripting player shooting animations
	Scripting movement animations

	Creating dynamic cameras with Cinemachine
	Creating camera behaviors
	Creating dolly tracks

	Creating cutscenes with Timeline
	Creating animation clips
	Sequencing our intro cutscene

	Summary

	Chapter 18: Optimization with Profiler, Frame Debugger, and Memory Profiler
	Optimizing graphics
	Introduction to graphics engines
	Using Frame Debugger
	Using batching
	Other optimizations

	Optimizing processing
	Detecting CPU- and GPU-bound
	Using the CPU Usage Profiler
	General CPU optimization techniques

	Optimizing memory
	Memory allocation and the garbage collector
	Using the Memory Profiler

	Summary

	Chapter 19: Generating and Debugging an Executable
	Building a project
	Debugging the build
	Debugging code
	Profiling performance

	Summary

	Chapter 20: Augmented Reality in Unity
	Using AR Foundation
	Creating an AR Foundation project
	Using tracking features

	Building for mobile devices
	Building for Android
	Building for iOS

	Creating a simple AR game
	Spawning the player and enemies
	Coding the player and enemy behavior

	Summary

	Other Books You May Enjoy
	Index

