

Hands-On Unity 2021
Game Development
Second Edition

Create, customize, and optimize your own
professional games from scratch with Unity 2021

Nicolas Alejandro Borromeo

BIRMINGHAM—MUMBAI

Hands-On Unity 2021 Game Development
Second Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Associate Group Product Manager: Rohit Rajkumar
Associate Publishing Product Manager: Ashitosh Gupta
Senior Editor: Hayden Edwards
Content Development Editor: Aamir Ahmed
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Ajesh Devavaram
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: July 2020
Second edition: August 2021

Production reference: 1190821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-148-2
www.packt.com

https://www.packt.com

To Dad, who spoiled me with computers to keep learning. I miss you.
Also, to my wife, for reminding me of what I am capable of.

– Nicolas Alejandro Borromeo

Contributors

About the author
Nicolas Alejandro Borromeo works as a senior Unity developer at Product Madness,
London. He was a game development career coordinator at Universidad Argentina
de la Empresa (UADE) and has taught game development at many other Argentine
universities, such as UTN, UAI, and USAL, and institutions such as Image Campus and
DaVinci, since 2012. Nicolas has been a Unity Certified Instructor since 2019, teaching
high-profile Unity clients all around the globe. He was an MMO client-side developer at
Band of Coders in Argentina and has been a Unity freelance developer since 2012.

About the reviewers
Levent Alpsal is a senior software and game developer. In 2008, he started working on
web-based projects, developing for the backend using PHP and SQL.

He started his focus on Unity and C# in 2015, working on many exciting simulation
projects using Unity, VR, motion platforms, and other technologies at Sanlab Simulation.
He has also developed many indie games and attended global game jams.

In 2020, he started his own company in the UK, Reenim Software LTD, providing software
and Unity development services globally.

Levent likes to develop creative DIY solutions to daily real-life problems using 3D
printing, thermoplastics, and K'Nex. He is the proud designer of a remote-controlled
model tank. Currently, he lives in London with his lovely wife and wonderful son.

Sungkuk Park is a Berlin-based game developer. He majored in art studies at Hongik
University in Seoul, Korea, but later became a software engineer in the gaming industry.
He is interested in almost everything about gaming. He is now on his way to becoming
a technical artist!

Here is a list of his publications:

• Authored Seamless Society, 21 July 2020, in collaboration with an online exhibition
platform DDDD

• Authored Wallpeckers: Breaking down the barriers between media, an article for the
Korean art magazine Misulsegye, in March 2019

• Authored The Possibility of the Impossibility of the "Art Games", an article for the
Korean art magazine Misulsegye, in February 2017

• Translated and edited Game Level Generation Using Neural Networks, a featured
post of Gamasutra

Table of Contents
Preface

Section 1 – Our First Level

1
Designing a Game from Scratch

Game concept 4
Game idea 5
Input controls 5
Winning and losing 7

Game characters 8
Hero 8
Enemies 8

Gameplay 9
Game-world layout 9
Starting condition 10
Ending condition 11
Point system 12

HUD 12

The difficulty balance 13
Difficulty balance questions 14
Implementation plan 15

Documentation 16
Game Design Document (GDD) 16
GDD formats 17
GDD creation tools 17
Elevator pitch 19
High concept 20
Tips for creating GDDs 21

Summary 24

2
Setting Up Unity

Why use a game engine such as
Unity? 26
Past and present industry insight 26
Game engines 27
Benefits of using Unity 27

Installing Unity 28
Unity Technical Requirements 29
Unity installs 29
Installing Unity with Unity Hub 30

viii Table of Contents

Creating projects 36
Creating a project 36

Project structure 38

Summary 40

3
Working with Scenes and Game Objects

Manipulating scenes 42
The purpose of a scene 42
The Scene View 43
Creating our first GameObject 44
Navigating the Scene View 46
Manipulating GameObjects 47

GameObjects and components 51
Understanding components 52
Manipulating components 53

Object hierarchies 58
Parenting objects 59

Possible uses 60

Prefabs 61
Creating Prefabs 62
Prefab-instance relationship 63
Prefab variants 66

Saving scenes and projects 67
Saving our changes 68
Project structure 69

Summary 71

4
Grayboxing with Terrain and ProBuilder

Creating a Landscape with
Terrain 74
Discussing Height Maps 74
Creating and configuring Height Maps 76
Authoring Height Maps 79
Adding Height Map details 82

Creating Shapes with ProBuilder 85

Installing ProBuilder 85
Creating a Shape 87
Manipulating the mesh 88
Adding details 94

Summary 97

5
Importing and Integrating Assets

Importing assets 99
Importing assets from the internet 100
Importing assets from the Asset Store 102

Integrating assets 109
Integrating terrain textures 109
Integrating meshes 112

Table of Contents ix

Integrating textures 114

Configuring assets 116
Configuring meshes 117

Configuring textures 119
Assembling the scene 120

Summary 124

Section 2 – Improving Graphics and Sound

6
Materials and Effects with URP and Shader Graph

Introducing shaders 128
Shader pipeline 128
The Render Pipeline and URP 132
URP's Built-in Shaders 134

Creating Shaders with Shader
Graph 138

Creating our first Shader Graph 139
Using textures 144
Combining Textures 153
Applying transparency 157
Creating Vertex Effects 160

Summary 162

7
Visual Effects with Particle Systems and Visual Effect Graph

Introduction to particle
systems 164
Creating a basic particle system 165
Using advanced modules 170

Creating fluid simulations 172
Creating a waterfall effect 172
Creating a bonfire effect 174

Creating complex simulations
with Visual Effect Graph 177
Installing Visual Effect Graph 178
Creating and analyzing a Visual Effect
Graph 180
Creating a rain effect 184

Summary 189

8
Lighting Using the Universal Render Pipeline

Applying lighting 192
Discussing lighting methods 192
Configuring ambient lighting with
skyboxes 198
Configuring lighting in URP 203

Applying shadows 207
Understanding shadow calculations 207
Configuring performant shadows 213

Optimizing lighting 216

x Table of Contents

Understanding static lighting 216
Baking lightmaps 218

Applying static lighting to static objects 226

Summary 230

9
Fullscreen Effects with Postprocessing

Using PostProcessing 232
Setting up a profile 232
Using basic effects 235

Using advanced effects 238

Advanced effects 239

Summary 247

10
Sound and Music Integration

Importing audio 250
Audio types 250
Configuring the import settings 252

Integrating and mixing audio 256

Using 2D and 3D AudioSources 257
Using an Audio Mixer 262

Summary 267

11
User Interface Design

Understanding Canvas and
RectTransform 270
Creating a UI with Canvas 271
Positioning elements with
RectTransform 272

Canvas object types 275
Integrating assets for the UI 276

Creating UI controls 284

Creating a responsive UI 293
Adapting object positions 294
Adapting object sizes 298

Summary 301

Table of Contents xi

12
Creating a UI with the UI Toolkit

Why learn UI Toolkit? 304
Creating UIs with UI Toolkit 305
Installing UI Toolkit 305
Creating UI Documents 306
Editing UI Documents 308
Creating UI Stylesheets 315

Making a Responsive UI with UI
Toolkit 320
Dynamic positioning and sizing 320
Dynamic Scaling 324
Using relative positions 326

Summary 332

13
Creating Animations with Animator, Cinemachine,
and Timeline

Using Skinning Animations with
Animator 334
Understanding skinning 335
Importing skeletal animations 338
Integration using Animation
Controllers 342

Creating dynamic cameras with
Cinemachine 349

Creating camera behaviors 349
Creating dolly tracks 353

Creating cutscenes with
Timeline 356
Creating animation clips 357
Sequencing our intro cutscene 360

Summary 365

Section 3 – Scripting Level Interactivity
with C#

14
Introduction to C# and Visual Scripting

Creating Scripts 370
Initial setup 371
Creating a C# Script 374
Adding fields 378
Creating a Visual Script 380

Using events and instructions 383

Events and instructions in C# 383
Events and instructions in Visual
Scripting 388
Using fields in instructions 390
Common beginner C# script errors 393

Summary 396

xii Table of Contents

15
Implementing Movement and Spawning

Implementing movement 398
Moving objects through Transform 398
Using Input 402
Understanding Delta Time 410

Implementing spawning 413

Spawning Objects 413
Timing actions 423
Destroying Objects 429

Summary 431

16
Physics Collisions and Health System

Configuring Physics 434
Setting shapes 434
Physics Object types 438
Filtering collisions 442

Detecting collisions 445
Detecting Trigger events 446

Modifying the other Object 448

Moving with Physics 453
Applying forces 453
Tweaking Physics 457

Summary 460

17
Win and Lose Condition

Creating Object Managers 462
Sharing Variables with the Singleton
design pattern 462
Sharing Variables with Visual Scripting 467
Creating Managers 470

Creating Game Modes 477
Improving our code with events
 483
Summary 493

18
Scripting the UI, Sounds, and Graphics

Scripting the UI 496
Showing information in the UI 496
Programming the Pause menu 509

Scripting feedback 515

Scripting visual feedback 516
Scripting audio feedback 520
Scripting animations 523

Summary 528

Table of Contents xiii

19
Implementing Game AI for Building Enemies

Gathering information with
sensors 530
Creating Three-Filters sensors with C# 530
Creating Three-Filters sensors with
Visual Scripting 537
Debugging with Gizmos 541

Making decisions with FSMs 547
Creating the FSM in C# 548

Creating transitions 550
Creating the FSM in Visual Scripting 554

Executing FSM actions 564
Calculating our scene's Pathfinding 564
Using pathfinding 566

Adding the final details 572
Summary 580

20
Scene Performance Optimization

Optimizing graphics 582
Introduction to graphic engines 582
Using the Frame Debugger 584
Using batching 586
Other optimizations 590

Optimizing processing 593
Detecting CPU- and GPU-bound 594

Using the CPU Usage Profiler 597
General CPU optimization techniques 601

Optimizing memory 603
Memory allocation and the garbage
collector 604
Using the Memory Profiler 609

Summary 613

Section 4 – Releasing Your Game

21
Building the Project

Building a project 618
Debugging the Build 622
Debugging Code 623

Profiling performance 626

Summary 628

xiv Table of Contents

22
Finishing Touches

Iterating your game 629
Testing and feedback 630
Interpreting feedback 632

Releasing your game 634
Pre-release 634

Release 636
Post-release 637

Summary 638

23
Augmented Reality in Unity

Using AR Foundation 640
Creating an AR Foundation project 640
Using tracking features 644

Building for mobile devices 652
Building for Android 652
Building for iOS 659

Creating a simple AR game 663
Spawning the Player and Enemies 664
Coding the Player and Enemy behavior 667

Summary 672

Other Books You May Enjoy
Index

Preface
I still remember that moment of my life when I was afraid of telling my parents that I
was going to study Game Development. At that time, in my region, that was considered
a childish desire by most parents, and a career with no future, but I was stubborn enough
not to care and to follow my dream. Today, Game Development is one of the biggest
industries, generating more revenue than Film.

Of course, following my dream was more difficult than I thought. Anyone with the same
dream as me sooner or later faces the fact that developing games is a difficult task that
requires a deep level of knowledge in different areas. Sadly, most people give up due to
this difficulty level, but I strongly believe that with the proper guidance and tools, you can
make your career path easier. In my case, what helped me to flatten the learning curve was
learning to use Unity.

Welcome to this book about Unity 2021. Here, you will learn how to use the most recent
Unity features to create your first videogame in the simplest way possible nowadays.
Unity is a tool that provides you with powerful but simple-to-use features to solve the
most common problems in Game Development, such as Rendering, Animation, Physics,
Sound, and Effects. We will be using all these features to create a simple but complete
game, learning all the nuances needed to handle Unity.

If you have read the 2020 edition of this book, you will find that not only have the contents
been updated to the latest Unity and Packages versions, but also new content has been
introduced in 2021, such as coverage of UI Toolkit and Visual Scripting.

By the end of this book, you will be able to use Unity in a way that will allow you to start
studying in depth the areas of Game Development that you are interested in to build
your career or simply create hobby games just for the joy of doing it. Unity is a versatile
tool that can be used in both Professional and Amateur projects, and is being used
every day by more and more people. It is worth mentioning that Unity can be used not
only for creating games but for any kind of interactive apps, from simple mobile apps to
complex training or educative applications (known as Serious Gaming), using the latest
technologies such as Augmented or Virtual Reality. So, even if we are creating a game
here, you are starting a learning path that can end in lots of possible specializations.

xvi Preface

Who this book is for
People with different backgrounds can take advantage of the whole book or parts of it
thanks to the way it is structured. If you have basic OOP programming knowledge but
have never created a game before, or have never created one in Unity, you will find the
book a nice introduction to Game Development and Unity basic to advanced concepts.
You can also find most parts of this book useful even if you are a seasoned Unity
Developer who wants to learn how to use its latest features.

On the other side, if you don't have any programming knowledge, you can also take
advantage of the book, as most of the chapters don't require programming experience to
learn from them. Those chapters will give you a robust skillset to start learning coding in
Unity, making the process easier than before reading them, and once you learn the basics
of coding, you can take advantage of the scripting chapters of this book. Also, with the
introduction of Visual Scripting, you will have an alternative language if you are more
comfortable with node-based scripting.

What this book covers
Chapter 1, Designing a Game from Scratch, discusses the details of the game we are going
to create in the book before even opening Unity for the first time, outlining the Unity
features to use.

Chapter 2, Setting Up Unity, teaches you how to install and set up Unity on your computer,
and also how to create your first project.

Chapter 3, Working with Scenes and Game Objects, teaches you the concepts of Scenes and
GameObjects, the Unity way to describe what your game world is composed of.

Chapter 4, Grayboxing with Terrain and ProBuilder, is where we will be creating our first
level layout, prototyping it with the Terrain and ProBuilder Unity features.

Chapter 5, Importing and Integrating Assets, teaches you how to improve your scene art
by importing graphics into Unity, as Unity is not a tool for creating graphics but for
displaying them.

Chapter 6, Materials and Effects with URP and Shader Graph, shows how to use one of the
latest Unity Render Systems (Universal Render Pipeline) and how to create effects with the
Shader Graph feature.

Chapter 7, Visual Effects with Particle Systems and Visual Effect Graph, teaches you how
to create visual effects such as water and fire using the two main Unity tools for doing so,
Particle Systems and VFX Graph.

Preface xvii

Chapter 8, Lighting Using the Univeral Render Pipeline, looks at lighting, which is a concept
big enough to have its own chapter. Here, we will deepen our knowledge of the Universal
Render Pipeline, specifically its lighting capabilities.

Chapter 9, Fullscreen Effects with Postprocessing, teaches you how to add a layer of effects
on top of your scene graphics using the Postprocessing feature of the Universal Render
Pipeline to get that film effect most modern games have today.

Chapter 10, Sound and Music Integration, covers a topic that is underestimated by most
beginner developers; here we will learn how to properly add sound and music to our
game, taking into consideration its impact on performance.

Chapter 11, User Interface Design, looks at the User Interface (UI). Of all the graphical
ways to communicate information to the user, the UI is the most direct one. We will
learn how to display information in the form of text, images, and life bars using the
Unity UI system.

Chapter 12, Creating a UI with the UI Toolkit, looks at UI Tookit, which, since Unity 2021,
is a soon-to-be successor of Canvas, the UI system we learned about in Chapter 11, User
Interface Design. We will explore it to get ahead and be prepared for Unity's use of this
HTML-based toolkit in the future.

Chapter 13, Creating Animations with Animator, Cinemachine, and Timeline, takes us
further than the static scene we have created so far. In this chapter, we will start moving
our characters and creating cutscenes with the latest Unity features to do so.

Chapter 14, Introduction to C# and Visual Scripting, is the first programming chapter of
the book. We will learn how to create our first script using C# in the Unity way, and then
we will explore how to do the same with Visual Scripting, the new node-based coding
language of Unity. The rest of the programming chapters will show how to code the game
in both languages.

Chapter 15, Implementing Movement and Spawning, teaches you how to program the
movement of your objects and how to spawn them. General programming knowledge
is assumed from now on.

Chapter 16, Physics Collisions and Health System, teaches you how to configure the Physics
settings of objects to detect when two of them collide and react to the collision, creating a
Health System, in this case.

Chapter 17, Win and Lose Condition, covers how to detect when the game should end,
both when the player wins and loses.

xviii Preface

Chapter 18, Scripting the UI, Sounds, and Graphics, covers how to make the UI show the
current information of the game, such as the Player's Health and Score. Also, sounds will
be played when necessary, and visual effects will reflect the actions of the Player.

Chapter 19, Implementing Game AI for Building Enemies, covers creating a basic AI using
several Unity features for creating challenging enemies in our game.

Chapter 20, Scene Performance Optimization, discusses how making our game perform
well is no easy task, but is certainly needed to release it. Here, we will be learning how to
profile our game's performance and tackle the most common performance issues.

Chapter 21, Building the Project, teaches you how to convert your Unity project into an
executable format to distribute it to other people and run it without Unity installed.

Chapter 22, Finishing Touches, briefly discusses how to move forward with the
development of our game after finishing this book, discussing topics such as how to iterate
and release the game.

Chapter 23, Augmented Reality in Unity, teaches you how to create an AR application with
Unity's AR Foundation package, one of the most recent ways to create AR applications
with Unity.

To get the most out of this book
You will be developing a full project through the chapters of this book, and while you can
just read the chapters, I highly recommend you practice all the steps in this project as you
advance through the book, to get the experience needed to properly learn the concepts
demonstrated here. The chapters are designed so you can customize the game and not
create the exact game shown in the book. However, consider not deviating too much from
the main idea.

The project files are split into a folder per chapter and are designed in a cumulative
way, each folder having just the new files introduced by the chapter or the changed ones.
This means, for example, that if a file hasn't change since Chapter 1, you won't find it in
Chapter 2 onward; those chapters will just use the file introduced in Chapter 1. This allows
you to see just what we changed in each chapter, easily identifying the needed changes,
and if for some reason you can't finish, for example, Chapter 3, you can just continue
with Chapter 4's steps on top of Chapter 3. Also note that Chapters 15 to 19 will have two
versions of the files, the C# ones and the Visual Scripting ones.

Preface xix

While we will see how to use XCode 12, is not required for most of the chapters. Also,
there are alternatives to Visual Studio in Linux, like Visual Studio Code.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/-Hands-On-Unity-2021-Game-
Development-Second-Edition. If there's an update to the code, it will be updated in
the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071482_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Set its shader to Universal Render Pipeline/Particles/
Unlit."

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Create a new empty GameObject (GameObject | Create Empty)."

https://github.com/PacktPublishing/-Hands-On-Unity-2021-Game-Development-Second-Edition
https://github.com/PacktPublishing/-Hands-On-Unity-2021-Game-Development-Second-Edition
https://github.com/PacktPublishing/-Hands-On-Unity-2021-Game-Development-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071482_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071482_ColorImages.pdf

xx Preface

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Hands-On Unity 2021 Game Development Second Edition, we'd love to
hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1-801-07148-9

Section 1 –
Our First Level

In this section, you will learn about the fundamental concepts of Unity, such as scene
creation and asset management, to create your first playable prototype game level.

This section comprises the following chapters:

• Chapter 1, Designing a Game from Scratch

• Chapter 2, Setting Up Unity

• Chapter 3, Working with Scenes and Game Objects

• Chapter 4, Grayboxing with Terrain and ProBuilder

• Chapter 5, Importing and Integrating Assets

1
Designing a Game

from Scratch
Welcome to the first chapter of the book! I am sure you are as super excited as I am to start
this amazing journey into game development with Unity. We will be approaching game
development in four parts. First, we will be talking about the basics of game development,
looking at topics such as how to design your game before you start coding, and then we
will prototype a simple first level using Unity. Then, we will dive into graphics to explore
the look and feel of a good game. Later, we will learn how to get everything moving
through the use of scripting. Finally, we will see how you can finish and publish your
game. As you go through the chapters, you will apply every concept to a full game project,
so you will end the book with a fully functional shooter game.

In this chapter, we will design our game, Super Shooter. This phase is known as
pre-production, where we will create a development plan. Our game design will include
all the functionality we want in our game: the player character, the non-player characters,
game assets, animations, and more. We will also use screen mock-ups to document our
game's design. We will look at related concepts regarding the use of Unity for our game
along the way. We will be discussing which pieces of documentation are necessary for all
design work we will be doing throughout this chapter.

4 Designing a Game from Scratch

Specifically, we will examine the following concepts in this chapter:

• Game concept

• Game characters

• Gameplay

• The difficulty balance

• Documentation

Game concept
Why not just start developing our game instead of designing it? This question is spawned
from the excitement of developing games, especially with the Unity game engine. All
games start with an idea. That idea is translated into a design, and that design is the basis
for development and, eventually, the final game.

A game's design is like a blueprint for a house. You would not consider building a house
without a blueprint, and it is an equally bad idea to develop a game without designing it
first. The reason for this is to save time and frustration. For larger projects, time wasted
also means unnecessary funds are expended.

Imagine that you employed a project team of 12 developers, animators, and artists. If you
shared your game idea, would they have enough information to go on? Would they create
a great game, but not the game you had in mind? All we are doing with our game design
is documenting as much as we can in the beginning so that the development process is
purposeful. Without question, you will continually modify your game's design during
development, so having a strong base from which to start is critical to your success.

Our game design will serve as the foundation for the look of our game, what the player's
objectives are, what the gameplay will be, supporting user actions, animations, audio,
Artificial Intelligence (AI), and victory conditions. That is a lot to think about and
underscores the importance of translating the game idea into the game design.

Throughout the book, we will be covering a range of components. However, in this
section, we will cover those that appear in the following list:

• Game idea

• Input controls

• Winning and losing

So, let's look at each component in more detail.

Game concept 5

Game idea
The basic concept of our Super Shooter game is that it will be a 3D game featuring
a Futuristic Hero Soldier as the player character. The character must fight against Enemy
Soldiers, who are intent on destroying our Hero's base and anyone that gets in their way,
including our Hero.

Here is an image of what our game will look like:

Figure 1.1 – Our hero shooting bullets at enemies

Now that we have a general idea of what the game is going to be, let's talk about how the
player will control the character.

Input controls
It is important to consider how players will interact with our game. Players have an
expectation that the industry norms for user controls will be implemented in games,
which is why, for our example, the player will control our Hero using the standard set
of controls.

6 Designing a Game from Scratch

Our default set of user input controls, as shown in the following figure, will consist of the
keyboard and mouse:

Figure 1.2 – Controls scheme

We will configure and program our game so that user input from the keyboard matches
the key and action pairings shown in the following table:

Figure 1.3 – Key mapping

Game concept 7

The mouse will also be a significant source of user input. We will implement two
components using the mouse, as indicated in the following table:

Figure 1.4 – Mouse mapping

The left mouse button will be our action button to shoot bullets, while the horizontal
mouse motion will allow us to rotate our character and face the enemies. As all enemies
and the player are going to be moving across a flat surface, it is not necessary to move the
camera up and down.

That's how we handle input, but we also need to end the game session at some point! Let's
talk about how the player will win and lose.

Winning and losing
Our winning condition will be when all the Enemy waves have been eliminated.

There will be two different ways the player can lose the game:

• The first losing condition is when the base life becomes 0.

• The second losing condition is if the Hero's life becomes 0.

From this short description, you can tell that there will be several things to keep track of,
including the following:

• The number of remaining Waves

• The health of the Player's Base

• The health of our Hero

Now that we have defined what is called the game's core loop (start a level, play it,
win/lose it, repeat), let's dive deeper into the specific details, starting with our characters.

8 Designing a Game from Scratch

Game characters
Our game will feature several objects, but only two game characters. The first game
character is our Hero and will be controlled by the player. The second type of game
character is the Enemies. They are non-player characters that are controlled by AI. Let's
look more closely at both of these characters.

Hero
The player will play our game as the Hero, our game's protagonist. So, what can our Hero
player character do? We already know we will be able to move them throughout our game
environment using a combination of keyboard and mouse inputs. We also know that the
left mouse button—our action button—will cause them to shoot bullets.

Important note
Because the Hero is controlled by a human player, it is referred to as the Player
Character.

We will implement the following animations for the Hero:

• Idle: This animation will play when the character is not being moved by the player.

• Run: This animation will play when the character is being moved by the player.

• Shoot: This is an animation that will cause the Hero to shoot a bullet.

That's our player. Now, let's discuss our enemy character.

Enemies
Our game's antagonists will be Enemy Soldiers. We will control how many of them we
want in our game and where they are placed. We will also control their behavior through
AI. The Enemies will go straight to the base and, once there, they will start damaging it.
We will determine how long it takes for our base to be completely destroyed. If during
their journey to the base, the enemy encounters the player, they will prioritize shooting
at them.

Important note:
Because the Enemy is controlled by AI and not a human player, it is referred to
as a Non-Player Character (NPC).

Gameplay 9

The soldiers will share the following two animations, which the Player Character also uses,
but they will be executed in different scenarios:

• Run: This animation will play when the Enemy's AI is moving the enemy toward
the base.

• Shoot: This is an animation that will be played when the AI decides to shoot at the
Player's Base or the Player's Character.

Careful planning and scripting will be required to create the desired Enemy behaviors;
this will include decisions regarding the number and placement of the Enemies, and we
will be tackling this during the designing phase and also during the development.

Now that we have defined our characters, let's discuss how the game will be played,
looking at the specific details.

Gameplay
The game will start with the player in the center of the game world. The Hero, controlled
by the player, will need to defend the Base from the Enemies. To fend off the Enemies, the
Hero can shoot bullets. The goal is to defeat all the Enemies before the Base is completely
destroyed by them.

Let's look at how we will make all this happen. The following gameplay components are
covered in this section:

• Game-world layout

• Starting condition

• Ending condition

• Point system

• Heads-Up Display (HUD)

We will cover each of the preceding components and discuss how they change the game
experience. Let's start by talking about how the game world will be designed.

Game-world layout
We will create a base environment that consists of large metallic floor tiles, walls, and
doors where the enemies will spawn. The base building will be located at the opposite end
of the Enemies' Spawn positions (the Doors in the following figure), where the enemies
need to reach to start attacking it.

10 Designing a Game from Scratch

Here is a mock-up of the shape our game world will take:

Figure 1.5 – Base layout

There are four basic things illustrated in the preceding mock-up, listed as follows:

• Wall: Impenetrable barriers that prevent the player from going outside the play area.

• Door: Impenetrable, like the walls, but will also serve as the Spawn Position of the
Enemies. The Enemies will spawn behind them and can penetrate them to enter our
Base Area.

• Player Start: This is the Hero's start position.

• Base Building: Our Base. The enemies must be close enough to attack it.

With our base-level design finished, let's discuss how the player will enter that world.

Starting condition
When our game is first launched, we will have several starting conditions set. Here is a list
of those conditions:

• The number and placement of Enemies' Spawn Points: As you saw in our earlier
mock-up, there will be several possible spawn points in the game (the doors).

Gameplay 11

• The number of Waves, the number of Enemies in each Wave, and how often the
enemies will spawn: We will write a script to spawn waves of enemies, which will be
used for each wave.

• Our final starting condition is the base placement: As you can see from the
preceding figure, this is placed on the opposite side of the doors—so, the enemy
must traverse the whole empty space between them, giving the player a chance to
attack them.

We have defined the enemy spawning rules and how the player can play the game. Now,
let's talk about how the game will end, looking at the exact implementation of this.

Ending condition
So far, we have established that we will track several components in the game. They are
as follows:

• Remaining Waves: A wave is considered finished when all enemies in it die.

• Base Health: Damaged by the enemies.

• Player Health: Also damaged by the enemies.

Based on what we decided earlier regarding the end-of-game condition, we can apply the
following mathematical checks to determine whether the game has ended and what the
outcome is. Each end-of-game condition is listed in the following table, along with the
outcome:

Figure 1.6 – End-of-game conditions

In order to implement these three end-of-game conditions, we know we must track the
number of waves, player health, and base health.

Now that we have a full game, let's think about how we can make it more rewarding,
by implementing a classic point system.

12 Designing a Game from Scratch

Point system
Since we are tracking key information that involves numbers, it makes it easy for us to
implement a point system. We could, for example, give the player 50 points each time an
Enemy is exterminated, and we could also take away points each time an Enemy causes
damage to the base. In our case, we will settle with just giving points when Enemies are
killed, but you can feel free to expand this area if you want to.

Now, we have several systems that the player needs to be aware of, but right now, the
player hasn't got any way to make informed decisions about those systems. So, let's see
how we can improve that, using an HUD.

HUD
We have decided to keep track of information during gameplay that has value beyond
calculating points at the end of the game. The player will want to see this information as
it tends to provide motivation and adds to the fun of the game. So, we will create an HUD
for the player, and dynamically update the data in the game.

Important note:
An HUD is a visual layer of information that is always present on the screen.

Here is a mock-up of what our HUD will look like in our Super Shooter game:

Figure 1.7 – UI layout

The difficulty balance 13

As you can see, there are several components to our HUD, as follows:

• Hero Health: A classic health bar that allows us to see the amount of life left. We
choose a bar instead of a number because it is easier to see in the middle of an
intense fight, instead of reading a number.

• Hero Avatar: An image next to the health bar just to show our Hero's face.

• Score: The number of points we have gathered.

• Bullets: The number of bullets remaining. The player must check this number
frequently to avoid running out of bullets, as they are limited. Anyway, at the
end of the book, you will be more than capable of creating a bullet-drop system
if you want to.

• Remaining Waves / Remaining Enemies: Information about the current state
of the wave and game, just to let the player know when the game is going to end,
putting some pressure on them in the process.

• Base Health: Another important piece of information so the player can see the
health of the Base. It's of a sufficient size to let the player notice when the base is
being attacked and take action in that case.

Finally, we have a simple, yet fully fledged starter game design with lots of rules and
specifications about how it will behave, and we can start creating our game right now.
However, there's a good practice that is never too soon to implement: balancing the
game's difficulty.

The difficulty balance
There are a lot of considerations to make when determining how difficult your game
should be. If it is too difficult, players will lose interest, and if the game is too easy, it
might not appeal to your intended audience. Some games include difficulty options for
users to select from. Other games have multiple levels, each with increasing difficulty.
There are several questions that we must contend with in order to achieve our desired
difficulty balance.

In this section, we will first look at some questions relating to difficulty balance, followed
by our implementation plan.

14 Designing a Game from Scratch

Difficulty balance questions
There are a lot of questions about our game that we need to consider in our game design.
A review of the questions in this section will help us gain an appreciation of the issues
that even a simple game such as ours must contend with, in order to achieve the desired
difficulty balance.

The first set of questions, listed here, relates to the overall implementation of difficulty in
our game:

• Should we have different levels of difficulty, selectable by the player?

• What specifically will be different with each difficulty level?

• Should we have multiple game levels, each with an increased amount of difficulty?

• What specifically will be different with each game level?

Consider the following questions regarding the Enemies in our game:

• How many Enemies should be spawned in each Wave?

• At what distance should an Enemy become aware of the Hero?

• How much damage should an Enemy inflict on the Player with each attack?

• How much damage can an Enemy endure before it dies?

The next set of questions listed here refers to our playable character, the Hero:

• How much life should the character have?

• How much damage will the character take from a single enemy attack?

• Should the character be able to outrun Enemies?

We also have the base and bullets to account for in our game. Here are a couple of
questions for each of those game assets that we will implement in our game. In the
case of the base, the questions are as follows:

• How many attacks should it take for an enemy to destroy a base?

• What is the ideal max number of enemies spawned in a Wave?

• Where should Doors and the Base be located in the game environment?

The difficulty balance 15

And now, let's talk about questions in the case of Bullets, as follows:

• At what pace should the player shoot bullets?

• At what pace should the enemy shoot bullets?

• How much damage will the bullets inflict on the Enemies?

• How much damage will the bullets inflict on the Player?

As you can see, there are several questions that we need to answer as part of our design.
Some of the questions may seem redundant as they relate to more than one component in
the game. Now, let's answer some of those.

Implementation plan
Based on the questions posed in the last section, we must come up with some answers.
Here is a list of some of those decisions:

• We will spawn five enemies in the first wave and add two new enemies per
consecutive wave.

• We will establish a pretty small vision area for the Enemies, making it easy for the
Hero to sneak past them and, perhaps more importantly, outrun them.

• We will configure the Player's bullets to damage enemies so that two bullets are
needed to kill them.

• We will configure the Enemies bullets to damage the player so that 10 bullets are
needed to kill them.

• The Player will shoot bullets at a frequency of 2 per second.

• The Enemy will shoot 1 per second.

It's important to take into account that this is the first balance pass, and we will surely
change this based on the testing we will carry out when the game is implemented. The
idea is to consider this first version of the game as a Prototype, which will be tested on
a small group of players to validate our ideas and iterate them. The invaluable feedback
of the early players of the game could convert it completely. Usually, a Prototype is a quick
version of the game, made with the most minimal features possible to quickly test and
discard ideas. After a fair amount of iterations and testing sessions on the prototype, we
will have solid ground to start the real development of the game (or discard it completely
if we can't create a fun game).

16 Designing a Game from Scratch

In this book, we will skip the Prototype phase and jump directly to the development of
the game due to the scope of the book, but consider doing Prototypes before starting any
real project. Just remember, a prototype is a quick, cheaply done version of the project
with the sole purpose of testing ideas. We will probably discard the prototype project
entirely before starting the real development, so don't spend too much time doing it
with clean and proper practices. Now, we can say the game design is completed… or can
we? Actually, the game design never ends, even after prototyping!. It will keep evolving
as the game is developed, but let's keep that for later. Now, let's talk about how we can
communicate our great ideas with everyone in our team, using documentation.

Documentation
Now that we have covered all the main aspects of our game, it is important to prepare
them to be shared with others. Throughout this book, you will probably work alone,
but in real-life production, you will likely work with others, so sharing your vision is a
crucial skill you need to learn in order to create successful games. You will not only be
sharing your vision with your teammates, but also with potential investors that want to
put money into your game project (if you convince them to do so). In this section, we
will give recommendations about how to properly format your game information into
comprehensible documents.

Game Design Document (GDD)
This document is basically the Encyclopedia of your game. It contains a breakdown of
all the aspects of it, each one with detailed explanations about how the different game
systems should work. Here, you will put the questions and answers we previously looked
at in the Implementation Plan, and you will deep dive into those. Remember that you have
an idea in your head, and making sure that others grasp that idea is complicated, so don't
underestimate this important task.

Maybe you are making a game all by yourself and you think you don't need a GDD
because all the ideas can fit in your head. This might be true for very small games, but any
size of game and team can benefit from a GDD. It will serve as your notebook to put down
your own ideas and read them. This is important because in your head everything makes
sense, but once you read your own ideas and review them, you will find lots of blind spots
that can easily be fixed before discovering them when coding the entire game.

Let's start by talking about how a GDD can be structured.

Documentation 17

GDD formats
Sadly, there's no standard way of creating a GDD. Every company and team has its own
way of doing this, not only in terms of which tool to use to create it but also the content
of the document. This varies a lot according to the size of the team (or teams), the type of
game, and the general culture of the company behind the game. As a matter of fact, some
companies actually believe that there's no need to create a GDD.

A good idea when starting to create GDDs is to check out existing published GDDs
of several games. There are lots of them out there, including big, well-known games
(such as Doom). Most of them are, generally, Word documents with sections explaining
the game systems (such as weapons, inventory, and so on) and the list of all characters,
while some can be just a list of bullets explaining certain facts about the different pieces
of the game. After that, you can start experimenting with different GDD formats that fit
well with your project and your team.

Once you have decided on a good format, you must decide how you will actually write
that format, and besides using pen and paper, a better idea is to use all those great digital
tools out there. Let's look at some of them.

GDD creation tools
After reviewing existing GDDs, the next step is to pick a proper tool to write your GDD.
The first matter you need to take into account is that the GDD will change… a lot… very
often… all the time. In the process of creating the game, you will validate or discard ideas
you wrote in the GDD, so using a dynamic tool is a good idea. This can be accomplished
with any text processor you are familiar with, but there are other problems you need to
tackle, so maybe text processors won't be enough.

18 Designing a Game from Scratch

Your GDD will be big… I mean, BIG, even for simple games. It will have lots of sections,
and you will find cases where whole sections will refer to other sections, generating a big
net of links between several parts of the document. A good tool for managing this instead
of a text processor is using any kind of wiki, which I strongly recommend in cases like
this. They allow you to break down the whole GDD into articles that can be easily edited
and linked to others, and also, lots of wikis allow you to edit articles collaboratively. There
are other additional features, such as comments that allow a whole conversation about
a feature inside the GDD, with these recorded for future reference. The Wikipedia page
relating to GDDs can be seen in the following screenshot:

Figure 1.8 – Wikipedia site

Moreover, you can also use other tools such as Google Drive, which allows you to mix
different types of documents—from regular text documents to dynamic slides—to create
presentations, communicating complex aspects in a simple yet powerful medium. Also,
Google Drive has lots of great collaborative tools that improve the way several people
work on the GDD.

Documentation 19

All the tools we described are generic solutions to writing documents in general, and
they can work like a charm, but there are other tools specifically crafted for games
(for example, Articy Draft).

Now, let's start writing our GDD. I know I said there's no standard format, but let's at least
see what every GDD should have, starting with the elevator pitch.

Elevator pitch
Imagine you are riding in an elevator, and on the next floor, an important game investor
gets in. They push the tenth-floor button, so you have eight floors' worth of time to
convince them to throw money into your pocket to help you create a game. I know this is
an improbable case, but in real life, when you are in front of an investor at a round table,
you won't have lots of time to convince them. Remember that behind you there's a queue
of maybe thousands of developers wanting to do the same, so you must be quick and
visceral, and that's why having a good elevator pitch is so important.

An elevator pitch is probably the first sentence you will find in your GDD, and the most
important one. It needs to describe your game in no more than two lines and convince the
person reading the GDD that your game is a great idea—you need to make them want to
play your game right now. Yes, it sounds super ambitious, and it is, but this can separate
you from the whole crowd of developers wanting to get some funding for their game.

Again, there's no standard formula to create a successful elevator pitch (we would all be
rich if such a thing existed), but here are some tips to take into account:

• You must make your pitch in no more than 10 seconds. Any longer, and you will
lose the interest of the person you are trying to convince.

• You must sound like you believe in your own idea; nobody is going to invest in
a game you are not sure is the next big release.

• Don't use any technical words (I'm looking at you, programmers).

• Include what differentiates your game from all the other games out there.

• Convince any person close to you to play the game, trying to test it with the most
honest person you can find—a person that won't be bothered about shattering your
idea into pieces (if your idea really deserves that).

• Practice your pitch over and over again, in front of a mirror, until you can say it
nicely, clearly, and in one shot.

20 Designing a Game from Scratch

Here are some examples of an elevator pitch:

• Imagine yourself slaughtering giant Greek gods with just your arms and your
strength until you become the king of Olympus. You will feel that power in
[INSERT NAME OF TOTALLY NON-EXISTENT GAME HERE].

• Civilization has fallen. A horrendous infection turns people into zombies. You have
the only cure, and must traverse the whole country to deliver it, or humankind will
collapse.

Okay—nowadays, those pitches are not super original, but a few years ago they were.
Imagine the power that those pitches had at that time; you must find something similar.
I'm not saying it's easy but look how just two lines can be the start of amazing experiences,
so focus first on writing those two lines, and then the rest of the game.

Now you have gained the attention of an investor, it's time to show them all the gameplay
systems and the little details to hype them up further… well, no, not right now. You have
just gained their attention; you haven't convinced them yet. It's time to start talking a little
bit about your game, and a high concept is a good way of doing so.

High concept
A high concept is a series of statements that further describe your game, but again,
in a simple and concise way. Even if you are not trying to convince an investor, those
statements will outline the way your game will be defined.

A good high concept can include sections such as the following ones:

• Elevator pitch: As we explained in the previous section.

• Genre: Maybe you are creating something new that has never been seen before, but
it will probably be inspired by several other games. Here, you will specify the type of
games on which you are basing your idea, so the reader of this document can start
imagining how the game will be played. Later, you will specify the differences, but it
is better to put a well-known idea forward first to start constructing the concept in
the mind of the reader. Also, you can specify here the point of view the player will
have in the game and the setting—for example, a Top-Down, Medieval Roguelike
Role-Playing Game (RPG).

Documentation 21

• Platform and Demographics: You need to be very clear about who will play your
game. Creating a game for adults in North America is not the same as creating a
game for Chinese teenagers, or games for business people who want to distract
themselves for a few minutes on their way back home from work. Those profiles
will want different experiences, with different levels of challenge and game session
length. They will even use different devices to play games. Taking this into account
will help you find the game mechanics and balance that best fits your target
audience. It's very common to say that you are creating a game for yourself, but
remember that you won't be buying that game, so also think about your wallet when
creating the game—for example, casual players of mobile platforms.

• Features: Create a shortlist of no more than three or five features that your game
will have. Select features according to the genre you have chosen—for example, you
will shoot waves of enemies with a giant array of weapons, or you will level up your
ship to improve its stats.

• Unique Selling Points (USPs): This is similar to the features list, but here, you will
include the features that differentiate your game from the others out there (no more
than three or five)—for example, you can traverse the scene using parkour-style
moves, or you can craft brand new weapons using looted materials. Think about
how unique those features were years ago.

Again, there's no ideal high concept. Maybe you will find some other aspects of your game
that can be highlighted here and add them to the document, but try to keep this all on just
one page.

Now that we have discussed what every GDD should have, let's talk about what a GDD
may have.

Tips for creating GDDs
Now, it's time to define what the whole game is. We said there's no standard format for
GDDs, but at least we can take into account several good practices when creating them.
The following list highlights a few of them:

• Readability: Your GDD must be prepared to be read by anyone, including people
without game development knowledge. Don't use any technical words (guess
who I'm still looking at) and try to keep things simple. A good test of your GDD
readability is to give it to your granny or anyone that you see as being as far from
gaming as possible, and that person must be able to read it.

22 Designing a Game from Scratch

• Setting and introduction: Before you start describing the game mechanics, put the
reader inside the game. Describe the world, the player character, their backstory,
their motivations, and what the main problem is that the player needs to struggle
with. Make the reader of the GDD interested in the setting of the game and want to
keep reading, to see how they will be able to play the game and tackle all the quests
the player will face in the game.

• Gameplay sections: These are sections that break the game into several systems and
subsystems linked to each other. Some examples can be Inventory, Quests, Crafting,
Battle, Movement, Shops, and so on. You will want to be super specific about every
aspect of how those systems work because—remember—this document will be
used by the team to craft the code and assets of your game. All the analysis we did
in the previous sections of the chapter will be part of the GDD and will be further
explained and analyzed.

• Content sections: You will also want to create content sections, such as the ones
we previously designed. These can be—but are not limited to—Characters, Story,
World, Levels, Aesthetics, Art Assets, Sound and Music Assets, Economics, and
Input.

• Share your idea: Before immortalizing your ideas in the GDD and making
everyone start crafting them, discuss the different GDD sections before marking
them as finished. Discuss with your team, people on the internet, friends—anyone
and everyone can give you valuable feedback about your idea. I'm pretty sure you
are thinking that your idea will be stolen by some random person on the internet
who will release the same game before you—and that can happen—but I'm not
saying share the whole GDD, just some details about certain implementations you
are not sure about.

• Keep control: Everyone in the team is a game designer—some more than others.
Everyone will have ideas and things they will do differently. Listen to them—doing
so will be useful, but remember you are in charge and you will have the final say.
You need to be open, but set some limits and don't deviate from your original
idea and concept. Prevent the famous feature creep, which consists on lots and
lots of game systems unnecessarily, and know when enough is enough, especially
considering the limited amount of resources we will have when beginning to create
games. Again, not an easy task—you will learn this the hard way, believe me, but
remember this when that happens (I told you!).

Documentation 23

• The game will change: I already said that, but I like to stress this as much as I can.
The game will change a lot due to many reasons you will find in the process of
creating it. You may find that X mechanic is not that fun, you could have created
a better way of handling Y system, or maybe test sessions with players prove that
Z level needs to be completely redesigned. Be open to change and pivot your game
idea when needed. If you do this the right way, your game won't be as you originally
imagined but will be a better version of it.

• Graphics: Use graphics, diagrams, charts, and so on. Try to prevent huge text walls.
Remember that a picture is worth a thousand words. You are communicating, and
nobody wants to spend valuable minutes trying to understand what you want to say.
Improve your visual communication skills, and you will have a focused team.

• Paper prototypes: You can test some ideas in your head on paper before putting
them in the GDD. Even if your game is a frenetic "beat 'em up," you can have little
paper characters moving around a table, seeing how they can attack the player, and
which movement pattern they will have. Do some math to look at how to perfect
timing, damage, health values, and so on.

• Regular prototypes: While your game is being developed, the GDD will constantly
change based on player feedback. You must test your game, even if it's not finished,
and get feedback from players as early as you can. Of course, they will tell you lots
of things that you already know, but they will see lots of problems you don't see
because you are creating and playing your game every day. They have the advantage
of playing the game for the first time, and that is a real change.

After this, we can start creating our GDD, and remember: you will need to find out what
format works best for you.

Game design and GDD creation is a complex topic that could be explored in several
chapters, but there are lots of books out there that do exactly that, and game design is not
the main topic of this book.

24 Designing a Game from Scratch

Summary
In this chapter, we fully designed our Super Shooter game, and we plan to use our
design to drive our development efforts. Our game design includes gameplay, the player
character, the non-player characters, game assets, animations, and more. We used screen
mock-ups to help document our game's design. In addition, we planned our game's
difficulty balance to help ensure the game is appropriately difficult based on user selection.
We talked about what a GDD is, how we can create one, and how it and the game design
will change during game production.

Remember that this is important because you want to answer all the questions you can
before coding your game. If you don't do this, you will pay for it by having to recode parts
of your game over and over for each unforeseen problem. You cannot prevent all possible
complications, but at least a good amount will be sorted out with this analysis.

In the next chapter, you will learn how to start using Unity. You will gain knowledge of
why Unity is a great option to start creating games. You will also create your first game
project and analyze how it is composed.

2
Setting Up Unity

In this chapter, we will learn why Unity is a good game engine to start out with. There are
lots of ways to begin a game development career, so choosing the proper tool to do so is
a huge first step. Then, we will learn how to install Unity and create a project with Unity
Hub, a tool that manages different Unity installations and projects.

Specifically, we will cover the following topics in this chapter:

• Why use a game engine such as Unity?

• Installing Unity

• Creating projects

Let's start by talking about why you should choose Unity to start your game development
career.

26 Setting Up Unity

Why use a game engine such as Unity?
When you want to create a game, you have several ways to do this, each with its pros and
cons. So, why choose Unity? In this section, we will discuss the reasons for this while
providing an overview of the previous and current industry state, and specifically look at
the following concepts:

• Past and present industry insight

• Game engines

• Benefits of using Unity

Let's take a look at these concepts.

Past and present industry insight
At the beginning of the gaming industry, developers struggled with devices with limited
resources but created simple game designs. As the industry evolved, the hardware became
more powerful and the games became more complex than ever before. A big AAA game
title requires almost 200 developers working on different areas of the game. Each role
that's undertaken requires years of experience, making creating games an expensive and
risky task; you never know if a game is going to be a success or a big waste of money. For
these reasons, it was very difficult for a single person to make an entire game.

Important Note
AAA games are created by lots of people working in big companies, and this
usually costs millions of dollars. There are also AA games, which differ from
AAA games in terms of team size and budget.

In the past, a programmer needed to learn how to use lots of tools to solve different game
development problems. Some tools stopped receiving support from their creators, leaving
them with unresolved bugs and features. Because of that, big companies started to hire
highly skilled developers to create all those tools, resulting in what is called a game engine.
Let's review what this is.

Why use a game engine such as Unity? 27

Game engines
A game engine is a set of different pieces of software that solve game development
problems such as audio, graphics, and physics issues, but are designed to work together,
all operating on the same philosophy. This is important because every team and company
has its own way of working. Creating a game engine from scratch is a great task, and only
a few big companies can do this. The game engines that companies create are usually
private, so only the company is allowed to use them. Some companies sell their engine,
but the cost is very high.

But another way of getting game engines became available a couple of decades ago. You
have probably heard about indie games, which are created by teams of 1 to 10 developers,
but how can such a small team create games? The answer is general-purpose game
engines. These are game engines just like the ones that companies create, but they are
designed to be a good foundation for every game and provide a toolset ready to be used
by anyone, for any game. These kinds of engines created a whole generation of enthusiast
developers who are now able to develop their own games more easily than before. There
were lots of game engine companies in the past but only a few have survived, with Unity
being one of the most influential ones. But why is that? Let's discuss this further.

Important Note
Other examples of general-purpose engines are Unreal Engine, Godot, Torque,
and CryEngine.

Benefits of using Unity
Well, there are lots of potential reasons why Unity is so popular. Let's discuss a few of
them, as follows:

• Unity was designed with simplicity in mind, featuring a very simple and polished
interface, and tools with few – but powerful – settings. This helps newcomers not
immediately feel lost the very second they start the engine.

• The programming language of Unity, C#, is very well-known to both beginner and
advanced programmers, and the Unity way of coding with C# is sleek and easy to
understand. Unity and C# handle most of the programming problems you may
encounter in other languages, decreasing your production time greatly.

• Unity was there when the mobile gaming market era started, and its creators
just put all their efforts into creating all the features any mobile engine needed.
In my opinion, this is one of the most important reasons why Unity became what
it is today.

28 Setting Up Unity

• With other new technologies such as Augmented Reality (AR) and Virtual Reality
(VR), Unity has expanded its use not only for gaming, but also for applications,
training simulations, architecture visualization, the automotive industry, films, and
so on. Using Unity, you can create applications for a wide spectrum of industries,
and their use out there is increasing year by year.

• Unity has a big community of developers using it, creating bibliographies and
tutorials, asking and answering questions, and creating plugins for the engine. All
this helps a lot when you start using Unity because the answer to your problem is
just a Google search away.

• Because of its growth, there are lots of Unity jobs worldwide, more than there are
for other game engines, and some of those jobs are looking for junior developers,
so there are chances for newcomers to enter the industry.

Unity is not all good, though – it has its cons, and there are other engines out there
(such as Unreal Engine 4 and Godot) that compete with Unity in several of those
limitations, since some have better features than Unity but also their own caveats. In my
opinion, picking Unity or another engine depends on what you are intending to do, and
what the technologies are that you are used to using, but at the end of the day, you can do
everything you need just with Unity and deal with any weaknesses with the help of their
big community. Now that we know about Unity, let's learn how to install the engine.

Installing Unity
Okay; after all of that, you've decided to go with Unity – great decision! Now, where do
we start? Let's start with a simple but necessary first step: installing Unity. This seems like
a straightforward first step, but let's discuss the proper way to install it. In this section, we
will be looking at the following concepts:

• Unity technical requirements

• Unity installs

• Installing Unity with Unity Hub

Let's start by discussing what we need to run Unity on our computers.

Installing Unity 29

Unity Technical Requirements
To run Unity 2021, your computer will need to meet the following requirements:

• If you use Windows, you will need Windows 7 SP1 or higher, 8 or 10. Unity will
only run on 64-bit versions of those systems; there is no 32-bit support unless you
are willing to work with older versions of Unity such as 5.6, but that's outside the
scope of this book.

• For Mac, you need macOS 10.13 or higher.

• For Linux, you need Ubuntu 20.04, 18.04, or CentOS 7.

• Your CPU needs to support SSE2 (most CPUs support it).

• On Windows, we need a graphics card with DirectX 10 support (most modern
GPUs support it).

• On Mac, any metal-capable Intel or AMD GPU will be enough.

• On Linux, any OpenGL 3.2 or higher, or Vulkan-compatible card.

Now that we know the requirements, let's discuss the Unity installs management system.

Unity installs
In previous versions of Unity, we used to simply download the installer of a specific Unity
version and hit Next until it was installed. But when you use Unity professionally, you
need to have several versions of Unity installed because you will be working on different
projects made with different versions. You may be wondering why you can't just use the
latest Unity version for every project, but there are some problems with that.

In new versions of Unity, there are usually lots of changes regarding how the engine works,
so you may need to rework lots of pieces of the game to upgrade it. Also, you may be using
plugins that just haven't adapted to updates yet, so those will stop working. In my projects,
I am used to doing project upgrades; however, for learning purposes, with a project that
has a specific release date, it can take lots of time to upgrade the whole project, and that
can push the release date back a lot. Maybe you need a specific feature that comes with an
update that will help you a lot. In such a case, the cost of upgrading may be worthwhile,
but take into account that most of the time, this doesn't happen.

Managing different projects made with different Unity versions, installing, and updating
new Unity releases, and so on, used to be a huge hassle, but Unity Hub was created just
to help us with this, and it has become the default way to install Unity. Let's learn more
about it.

30 Setting Up Unity

Installing Unity with Unity Hub
Unity Hub is a small piece of software you install before installing Unity. It centralizes
the management of all your Unity projects and installations. You can get it from Unity's
official site. The steps for downloading it change frequently, but at the time of writing this
book, you need to do the following:

1. Go to unity.com.
2. Click on the Get started button, as shown in the following screenshot:

Figure 2.1 – Get started button on Unity site

3. Click on the Individual tab. Then, under the Personal section, click on the Get
started button, as illustrated in the following screenshot:

Figure 2.2 – Choosing an Individual/Free license

https://unity.com

Installing Unity 31

4. Click on the Start here button in the First-time Users section, as illustrated in the
following screenshot:

Figure 2.3 – Starting the download

5. Accept the terms and conditions, as illustrated in the following screenshot:

Figure 2.4 – Agreeing to the privacy policy

6. Execute the downloaded installer.

Now that we have Unity Hub installed, we must use it to install a specific Unity version.
You can do this with the following steps:

1. Start Unity Hub.

32 Setting Up Unity

2. Log into your account by clicking on the person icon at the top-right corner of the
window and selecting Sign in:

Figure 2.5 – Signing into Unity Hub – part I

Here, you also have the option to create a Unity account if you haven't already, as
illustrated in the link labeled create one, which appears in the Unity login prompt, as
shown in the following screenshot:

Figure 2.6 – Signing into Unity Hub – part II

3. Follow the steps provided by the installer. You should see the following screen:

Installing Unity 33

Figure 2.7 – Unity Hub window

4. Click on the Installs button and check if you have Unity 2021 listed there. If not,
press the ADD button. Make sure the latest Unity 2021.1 release (in my case, Unity
2021.1.13f1) is selected, and then click on the NEXT button. Your screen may show
a newer version than mine, so don't worry about that. This process is illustrated in
the following screenshot:

Figure 2.8 – Picking the Unity version to install

34 Setting Up Unity

5. A feature selection window will show up. Make sure Microsoft Visual Studio
Community is checked. At the time of writing this book, the latest version is 2019,
but a newer one could work just as well. Now, click the NEXT button. This process
is illustrated in the following screenshot:

Figure 2.9 – Selecting Visual Studio

6. Accept Visual Studio's terms and conditions, as illustrated in the following
screenshot:

Figure 2.10 – Accepting Visual Studio's terms and conditions

Important Note
Visual Studio is the program we will use in Chapter 14, Introduction to C# and
Visual Scripting, to create our code. We do not need the other Unity features
right now, but you can go back later and install them if you need them.

7. You will see the selected Unity version downloading and installing in the list. Wait
for this to finish. In the following screenshot, you can see that I have other Unity
versions installed. However, you will only see one version, which is fine:

Installing Unity 35

Figure 2.11 – All Unity installations I currently have on my machine

8. Once Unity has finished installing, Visual Studio Installer will automatically
execute. It will download an installer that will download and install Visual Studio
Community 2019, as illustrated in the following screenshot:

Figure 2.12 – Installing Visual Studio

Remember that the preceding steps may be different in new Unity versions, so just try to
follow the flow that Unity designed – most of the time, it is intuitive. Now, it is time to
create a project using Unity.

36 Setting Up Unity

Creating projects
Now that we have Unity installed, we can start creating our game. To do so, we need to
create a project, which is a folder containing all the files that your game will comprise.
These files are called assets and there are different types, such as images, audio, 3D models,
script files, and so on. In this section, we will learn how to manage a project by addressing
the following concepts:

• Creating a project

• Project structure

First, let's learn how to create a blank project so that we can start developing our project.

Creating a project
As with Unity installations, we will use the Unity Hub to manage projects. We need to
follow these steps to create one:

1. Open Unity Hub and click on the Projects button. Then, click on NEW, as
illustrated in the following screenshot:

Figure 2.13 – Creating a new project in Unity Hub

2. Pick the Universal Render Pipeline template. We will be creating a 3D game
with simple graphics, prepared to be run on every device Unity can execute, so
the Universal Render Pipeline (URP) is the better choice for this. In Chapter 6,
Materials and Effects with URP and Shader Graph, we will be discussing exactly why.
Then, choose a Project Name and a Location, and hit Create. This process can be
seen in the following screenshot:

Creating projects 37

Figure 2.14 – Selecting the Universal Render Pipeline template

3. Unity will create and automatically open the project. This can take a while, but after
that, you will see a screen similar to following:

Figure 2.15 – The Unity Editor window

38 Setting Up Unity

4. Try closing the window and opening it again, then going back to Unity Hub and
picking the project from the list, as follows:

Figure 2.16 – Reopening the project

Now that we have created the project, let's explore its structure.

Project structure
We have just opened Unity, but we won't start using it until the next chapter. Now, it's
time to learn how the project folder structure is composed. To do so, we need to open the
folder where we created the project. If you don't remember where this is, you can do the
following:

1. Right-click the Assets folder in the Project panel, which is located at the bottom
part of the editor.

Creating projects 39

2. Click the Show in Explorer option (if you are using a Mac, this option is called
Reveal in Finder). The following screenshot illustrates this:

Figure 2.17 – Opening the project folder in the Explorer window

Then, you will see the following folder structure:

Figure 2.18 – Unity project folder's structure

40 Setting Up Unity

If you want to move this project to another PC or send it to a colleague, you can just
compress all those files and send it to them as a ZIP file. However, not all the folders are
necessary all of the time. The important folders are Assets, Packages, and ProjectSettings.
Assets will hold all the files we will create and use for our game, so this is a must. We will
also configure different Unity systems to tailor the engine to our game; all the settings
related to this can be found in the ProjectSettings folder. Finally, we will install different
Unity modules or packages to expand its functionality, so the Packages folder will hold
the ones we are using, for Unity to be aware of that.

It's not necessary to copy the rest of the folders if you need to move the project elsewhere,
but let's at least discuss what the Library folder is, especially considering its usually huge
size. Unity needs to convert the files we will use into its own format to operate, and an
example would be audio and graphics. Unity supports MPEG Audio Layer 3 (MP3),
Waveform Audio File Format (WAV), Portable Network Graphics (PNG), and Joint
Photographic Experts Group (JPG) files (and much more), but before using them, they
need to be converted into Unity's internal formats. Those converted files will be in the
Library folder. If you copy the project without that folder, Unity will simply take the
original files in the Assets folder and recreate the Library folder entirely. This process can
take time, and the bigger the project, the more time will be involved.

Take into account that you want to have all the folders Unity created while you are
working on the project, so don't delete any of them while doing so. However, if you need
to move an entire project, you now know exactly what you need to take with you.

Summary
In this chapter, we discussed why Unity is a great tool for creating games while comparing
it to other engines on the market. This analysis was provided to help you see why you
should use Unity as your first game development tool. After that, we reviewed how to
install and manage different Unity versions using Unity Hub, before learning how to
create and manage multiple projects with the same tool. We will use Unity Hub a lot,
so it is important to know how to use it initially. Now, we are prepared to dive into the
Unity Editor.

In the next chapter, we will start learning about the basic Unity tools so that we can author
our first-level prototype.

3
Working with Scenes

and Game Objects
Welcome to the third chapter of the book—here is where the hard work starts! In this
chapter, we will develop some base knowledge of Unity in order to edit a project, and how
to use several Unity Editor windows to manipulate our first scene and its objects. Also, we
will learn how an object or Game Object is created and composed, and how to manage
complex scenes with multiple objects using Hierarchies and Prefabs. Finally, we will
review how we can properly save all our work to continue working on it later.

Specifically, we will examine the following concepts in this chapter:

• Manipulating scenes

• GameObjects and components

• Object hierarchies

• Prefabs

• Saving scenes and projects

42 Working with Scenes and Game Objects

Manipulating scenes
A scene is one of several kinds of files (also known as assets) in our project. A scene can
mean different things according to the type of project or the way a company is used to
working, but the most common use case is to separate your game into whole sections,
the most common ones being the following:

• Main Menu

• Level 1, Level 2, Level 3, …, Level N

• Victory Screen and Lose Screen

• Splash Screen and Loading Screen

In this section, we will cover the following concepts related to scenes:

• The purpose of a scene

• The Scene View

• Creating our first GameObject

• Navigating the Scene View

• Manipulating GameObjects

So, let's take a look at each of these concepts.

The purpose of a scene
The idea of separating your game into scenes is so that you will process and load just
the data needed for the scene. Let's say you are in the Main Menu; in such cases, you
will have only the textures, music, and objects that the main menu needs loaded in
Random-Access Memory (RAM). In that case, there's no need to have loaded the Level
10 Boss if you don't need it right now. That's why loading screens exist, just to fill the
time between unloading the assets needed in one scene and loading the assets needed in
another. Maybe you are thinking that open-world games such as Grand Theft Auto don't
have loading screens while you roam around in the world, but they are actually loading
and unloading chunks of the world in the background as you move, and those chunks are
different scenes that are designed to be connected to each other.

Manipulating scenes 43

The difference between the Main Menu and a regular level scene is the objects
(also known as GameObjects) they have. In a menu, you will find objects such as
backgrounds, music, buttons, and logos, and in a Level, you will have the player, enemies,
platforms, health boxes, and so on. So, it is up to you and the GameObjects you put in the
scene to decide what that scene means for your game.

But how can we create a scene? Let's start with the Scene View.

The Scene View
When you open a Unity project, you will see the Unity Editor. It will be composed of
several windows or panels, each one helping you to change different aspects of your game.
In this chapter, we will be looking at the windows that help you author scenes. The Unity
Editor is shown in the following screenshot:

Figure 3.1 – Unity Editor

44 Working with Scenes and Game Objects

If you have ever programmed any kind of application before, you are probably used to
having a starting function such as Main, where you start writing code to create several
objects needed for your app, and if we are talking about games, you probably create all
the objects for the scene there. The problem with this approach is that in order to ensure
all objects are created properly, you will need to run the program to see the results, and if
something is misplaced, you will need to manually change the coordinates of the object,
which is a slow and painful process. Luckily, in Unity, we have the Scene View, an example
of which is shown in the following screenshot:

Figure 3.2 – Scene View

This window is an implementation of the classic WYSIWYG (What You See Is What
You Get) concept. Here, you can create objects and place them all over the scene, all
through a scene previsualization where you can see how the scene will look when you
hit Play. But before learning how to use this scene, we need to have an object in the scene,
so let's create our first object.

Creating our first GameObject
The Unity Universal Render Pipeline (URP) template comes with a construction site test
scene, but let's create our own empty scene to start exploring this new concept. To do that,
you can simply use the File | New Scene menu to create an empty new scene, as illustrated
in the following screenshot:

Manipulating scenes 45

Figure 3.3 – Creating a new scene

After clicking New Scene, you will see a window to pick a scene template; here, select the
Basic (Built-in) template. A template defines which objects the new scene will have, and
in this case, our template came with a basic light and a camera, which will be useful for
the scene we want to create. Once selected, just click the Create button:

Figure 3.4 – Selecting the scene template

We will learn several ways of creating GameObjects throughout the book, but now, let's
start using some basic templates that Unity provides. In order to create them, we will need
to open the GameObject menu at the top of the Unity window, and it will show us several
template categories, such as 3D Object, 2D Object, Effects, and so on, as illustrated in the
following screenshot:

Figure 3.5 – Creating a cube

46 Working with Scenes and Game Objects

Under the 3D Object category, we will see several 3D primitives such as Cube, Sphere,
Cylinder, and so on, and while using them is not as exciting as using beautiful,
downloaded 3D models, remember that we are only prototyping our level at the moment.
This is called gray-boxing and means that we will use lots of prototyping primitive shapes
to model our level so that we can quickly test it and see if our idea is good enough to start
the complex work of converting it to a final version.

I recommend you pick the Cube object to start because is a versatile shape that can
represent lots of objects. So, now that we have a scene with an object to edit, the first thing
we need to learn to do with the Scene View is to navigate through the scene.

Navigating the Scene View
In order to manipulate a scene, we need to learn how to move through it to view the
results from different perspectives. There are several ways to navigate the scene, so let's
start with the most common one, the first-person view. This view allows you to move
through the scene using a first-person-shooter-like navigation, using the mouse and the
W, A, S, D keys. To navigate like this, you will need to press and hold the right mouse
button, and while doing so, you can do the following:

• Move the mouse to rotate the camera around its current position.

• Press the W, A, S, and D keys to move the position of the camera, always holding the
right mouse button.

• You can also press Shift to move faster.

• Press the Q and E keys to move up and down.

Another common way of moving is to click an object to select it (the selected object will
have an orange outline), and then press the F key to focus on it, making the Scene View
camera immediately move into a position where we can look at that object more closely.
After that, we can press and hold the left Alt key on Windows, or Option on Mac, along
with the left mouse click, to finally start moving the mouse and "orbit" around the object.
This will allow you to see the focused object from different angles to check every part of it
is properly placed, as demonstrated in the following screenshot:

Manipulating scenes 47

Figure 3.6 – Selecting an object

Now that we can move freely through the scene, we can start using the Scene View to
manipulate GameObjects.

Manipulating GameObjects
Another use of the Scene View is to manipulate the locations of objects. In order to do
so, we first need to select an object, and then click the Transform Tool in in the top-left
corner of the Unity Editor (or press the Y key on the keyboard):

Figure 3.7 – The transformation tool

This will show what is called the Transform Gizmo over the selected object, which allows
us to change the position, rotation, and scale of the object, as illustrated in the following
screenshot:

Figure 3.8 – Transform Gizmo

48 Working with Scenes and Game Objects

Let's start translating the object, which is accomplished by dragging the red, green, and
blue arrows inside the Gizmo´s sphere. While you do this, you will see the object moving
along the selected axis. An interesting concept to explore here is the meaning of the colors
of these arrows. If you pay attention to the top-right area of the Scene View, you will see
an axis gizmo that serves as a reminder of those colors' meaning, as illustrated in the
following screenshot:

Figure 3.9 – Axis Gizmo

Computer graphics use the classic 3D Cartesian coordinate system to represent objects'
locations. The color red is associated with the x axis of the object, green with the y axis,
and blue with the z axis. But what does each axis mean? If you come from another 3D
authoring program, this could be different, but in Unity, the z axis (blue) represents the
Forward Vector, which means that the arrow is pointing along the front of the object; the
x axis is the Right Vector, and the y axis represents the Up Vector. Consider that those
axes are Local, meaning that if you rotate the object, they will change the direction they
face because the orientation of the object changes where the object is facing. Unity can
show those axes in Global Coordinates if necessary, but for now, let's stick with local
coordinates.

In order to be sure that we are working with local coordinates, make sure the Local mode
is activated, as shown in the following screenshot:

Figure 3.10 – Switching Pivot and Local coordinates

Manipulating scenes 49

If the right button says Global instead of Local, just click it and it will change. By the way,
try to keep the left button as Pivot. If it says Center, just click it to change it.

I know—we are editing a cube, so there is no clear front or right side, but when you work
with real 3D models such as cars and characters, they will certainly have those sides, and
they must be properly aligned with those axes. If by any chance in the future you import
a car into Unity and the front of the car is pointing along the red axis (x), you will need to
make that model aligned along the z axis because the code that we will create to move our
object will rely on that convention (but let's keep that for later).

Now, let's use this Transform Gizmo to rotate the object using the three colored circles
around it. If you click and drag, for example, the red circle, you will rotate the object
along the x rotation axis. If you want to rotate the object horizontally, based on the
color-coding we previously discussed, you will probably pick the x axis—the one that
is used to move horizontally—but, sadly, that's wrong. A good way to look at the rotation
is like the accelerator of a bike: you need to take it and roll it. If you rotate the x axis
like this, you will rotate the object up and down. So, in order to rotate horizontally,
you would need to use the green circle or the y axis. The process is illustrated in the
following screenshot:

Figure 3.11 – Rotating an object

Finally, we have scaling, and we have two ways to accomplish that, one of them being
through the gray cube at the center. This allows us to change the size of the object by
clicking and dragging that cube. Now, as we want to prototype a simple level, sometimes
we want to stretch the cube to create, for example, a column, or a flat floor, and here's
where the second way comes in.

50 Working with Scenes and Game Objects

If you click and drag the colored cubes in front of the translation arrows instead of the
gray one at the center, you will see how our cube is stretched over those axes, allowing you
to change the shape of the object. The process is illustrated in the following screenshot:

Figure 3.12 – Scaling an object

There's a slight chance that you won't see the cubes in front of the translation arrows.
In such cases, you can accomplish it by using the Scale Tool, a separate tool specialized
only in scaling the object along its axes. To enable the tool, click the fourth button in the
top-left button bar (or press the R key):

Figure 3.13 Enabling the Scale Tool

You will notice that this gizmo looks very similar to the previous gizmo, but simpler; it has
only the three arrows, one stretched along each axis, and we have only the cube-shaped
arrows:

Figure 3.14 – The Scale Tool gizmo

GameObjects and components 51

You can also use the gray cube at the middle to scale all axes at the same time if desired,
also known as Uniform Scaling, the same gray cube we had in the Transform Gizmo.
Finally, something to consider here is that several objects can have the same scale values
but have different sizes, given how they were originally designed. Scale is a multiplier we
can apply over the original size of the object, so a building and a car with scale 1 can make
perfect sense, as long as the relative size of one against the other seems correct. The main
takeaway here is that scale is not size, but a way to multiply it.

Anyway, consider that scaling objects is usually a bad practice in many cases. In the final
versions of your scene, you will use models with the proper size and scale, and they will
be designed in a modular way so that you can plug them one next to the other. If you
scale them, several bad things can happen, such as textures being stretched and becoming
pixelated, and modules that no longer plug properly. There are some exceptions to this
rule, such as placing lots of instances of the same tree in a forest and changing its scale
slightly to simulate variation. Also, in the case of gray-boxing, it is perfectly fine to take
cubes and change the scale to create floors, walls, ceilings, columns, and so on, because in
the end, those cubes will be replaced with real 3D models.

Here's a challenge! Create a room composed of a floor, three regular walls, and the fourth
wall with a hole for a door (three cubes). In the next screenshot, you can see what it
should look like:

Figure 3.15 – Room task finished

Now that we can edit an object's location, let's see how we can edit all its other aspects.

GameObjects and components
We talked about our project being composed of Assets, and that a Scene (which is a
specific type of Asset) is composed of GameObjects; so, how can we create an object?
Through a composition of components.

52 Working with Scenes and Game Objects

In this section, we will cover the following concepts related to components:

• Understanding components

• Manipulating components

Let's start by discussing what a component is.

Understanding components
A component is one of several pieces a GameObject can be made of; each one is in
charge of different features of the object. There are several components that Unity already
includes that solve different tasks, such as playing a sound, rendering a mesh, applying
physics, and so on; however, even though Unity has a large number of components, we
will eventually need to create custom components, sooner or later.

In the next screenshot, you can see what Unity shows us when we select a GameObject.

Figure 3.16 – Inspector panel

GameObjects and components 53

In the previous screenshot, we can see the Inspector panel. If we needed to guess what it
does right now, we could say it shows all the properties of the selected object and allows
us to configure those options to change the behavior of the object (that is, the position
and rotation, whether it will project shadows or not, and so on). That is true, but we are
missing a key element: those properties don't belong to the object; they belong to the
components of the object. We can see some titles in bold before a group of properties,
such as Transform and Box Collider, and so on. Those are the components of the object.

In this case, our object has a Transform, a Mesh Filter, a Mesh Renderer, and a Box
Collider component, so let's review each one of those.

Transform just has location information, such as the position, rotation, and scale of
the object, and by itself it does nothing—it's just a point in our game—but as we add
components to the object, that position starts to have more meaning. That's because some
components will interact with Transform and other components, each one affecting the
other. An example of that would be the case of Mesh Filter and Mesh Renderer, both
of those being in charge of rendering a 3D model. Mesh Renderer will render the mesh
specified in the Mesh Filter in the position specified in the Transform component,
so Mesh Renderer needs to get data from those other components and can't work
without them.

Another example would be the Box Collider. This represents the physical shape of the
object, so when the physics calculates collisions between objects, it checks whether that
shape is colliding with other shapes based on the position specified in the Transform
component.

We don't want to explore physics and rendering right now. The takeaway from this section
is that a GameObject is a collection of components, each component adding a specific
behavior to our object, and each one interacting with the others to accomplish the desired
task. To further reinforce this, let's see how we can convert a cube into a sphere, and which
falls, using physics.

Manipulating components
The tool to edit an object's components is the Inspector. It not only allows us to change
the properties of our components but also lets us add and remove components. In this
case, we want to convert a cube to a sphere, so we need to change several aspects of those
components.

54 Working with Scenes and Game Objects

We can start by changing the visual shape of the object, so we need to change the rendered
model or Mesh. The component that specifies the Mesh to be rendered is the Mesh Filter
component. If we look at it, we can see a Mesh property that says Cube, with a little circle
and a dot:

Figure 3.17 – The Mesh Filter component

Information box
If you don't see a particular property, such as the Mesh property we just
mentioned, try to click the triangle to the left of the component's name. Doing
this will expand and collapse all the component's properties.

If we click the button with a circle and a dot inside, the one on the right of the Mesh
property, the Select Mesh window will pop up, allowing us to pick several Mesh options;
so, in this case, select the Sphere component. In the future, we will add more 3D models
to our project so that the window will have more options. The mesh selector is shown in
the following screenshot:

Figure 3.18 – Mesh selector

GameObjects and components 55

Okay—it looks like a sphere, but will it behave like a sphere? Let's find out. In order to
do so, we can add a Rigidbody component to our sphere, which will add physics to it.
In order to do so, we need to click the Add Component button at the bottom of the
Inspector. It will show a Component Selector window with lots of categories; in this
case, we need to click on the Physics category. The window will show all the Physics
components, and there we can find the Rigidbody component. Another option would be
to type Rigidbody in the search box at the top of the window. The following screenshot
illustrates how to add a component:

Figure 3.19 – Adding components

If you click the Play button in the top-middle part of the editor, you can test your sphere
physics using the Game panel. That panel will be automatically focused on when you click
Play and will show you how the player will see the game. The playback controls are shown
in the following screenshot:

Figure 3.20 – Playback controls

56 Working with Scenes and Game Objects

Here, you can just use the Transform Gizmo to rotate and position your camera in such
a way that it looks at our sphere. This is important as one problem that can happen is
that maybe you won't see anything playing, and that can happen if the game camera is
not pointing to where our sphere is located. While you are moving, you can check the
little preview in the bottom-right part of the scene window to check out the new camera
perspective. Another alternative would be to select the camera in the Hierarchy and use
the shortcut Ctrl + Shift + F (or Command + Shift + F on a Mac). The Camera Preview is
shown in the following screenshot:

Figure 3.21 – Camera Preview

Now, to test whether Physics collisions are executing properly, let's create a cube, scale it
until it has the shape of a ramp, and put that ramp below our sphere, as shown here:

Figure 3.22 – Ball and ramp objects

GameObjects and components 57

If you click Play now, you will see the sphere colliding with our ramp, but in a strange
way. It looks like it's bouncing, but that's not the case. If you expand the Box Collider
component of our sphere, you will see that even though our object looks like a sphere,
the green box gizmo is showing us that our sphere is actually a box in the Physics world,
as illustrated in the following screenshot:

Figure 3.23 – Object with a sphere graphic and box collider

Nowadays, video cards can handle rendering highly detailed models (a high polygon
count), but the Physics system is executed in the Central Processing Unit (CPU) and it
needs to do complex calculations in order to detect collisions. To get decent performance
in our game (at least 30 Frames Per Second (FPS)), the Physics system works using
simplified collision shapes that may differ from the actual shape the player sees on the
screen. That's why we have Mesh Filter and the different types of Collider components
separated—one handles the visual shape and the other the physics shape.

Again, the idea of this section is not to deep dive into those Unity systems, so let's just
move on for now. How can we solve this? Simple: by modifying our components! In this
case, BoxCollider can just represent a box shape, unlike MeshFilter, which supports any
shape. So, first, we need to remove it by right-clicking the component's title and selecting
the Remove Component option, as illustrated in the following screenshot:

Figure 3.24 – Removing components

58 Working with Scenes and Game Objects

Now, we can again use the Add Component menu to select a Physics component, this
time selecting the Sphere Collider component. If you look at the Physics components,
you will see other types of colliders that can be used to represent other shapes, but we
will look at them later in Chapter 16, Physics Collisions and Health System. The Sphere
Collider component can be seen in the following screenshot:

Figure 3.25 – Adding a Sphere Collider component

So, if you click Play now, you will see that our sphere not only looks like a sphere but also
behaves like one. Remember: the main idea of this section of the book is understanding
that in Unity you can create whatever object you want just by adding, removing, and
modifying components, and we will be doing a lot of this throughout the book.

Now, components are not the only thing needed in order to create objects. Complex
objects may be composed of several sub-objects, so let's see how that works.

Object hierarchies
Some complex objects may need to be separated in sub-objects, each one with its own
components. Those sub-objects need to be somehow attached to the main object and
work together to create the necessary object behavior.

Object hierarchies 59

In this section, we will cover the following concepts related to components:

• Parenting objects

• Possible uses

Let's start discovering how to create a parent-child relationship between objects.

Parenting objects
Parenting consists of making an object the child of another, meaning that those objects
will be related to each other. One type of relationship that happens is a Transform
relationship, meaning that a child object will be affected by the parent's Transform.
In simple terms, the child object will follow the parent, as if it is attached to it. As an
example, imagine a player with a hat on their head. The hat can be a child of the player's
head, making the hat follow the head while they are attached.

In order to try this, let's create a capsule that represents an enemy and a cube that
represents the weapon of the enemy. Remember that in order to do so, you can use the
GameObject | 3D Object | Capsule and Cube options. An example of a capsule and
a cube can be seen in the following screenshot:

Figure 3.26 – A capsule and cube representing a human and a box representing a weapon

If you move the enemy object (the capsule), the weapon (the box) will keep its position,
not following our enemy. So, in order to prevent that, we can simply drag the weapon to
the enemy object in the Hierarchy window, as illustrated in the following screenshot:

Figure 3.27 – Parenting the cube weapon to the capsule character

60 Working with Scenes and Game Objects

Now, if you move the enemy, you will see the gun moving, rotating, and being scaled
along with it. So, basically, the gun transform also has the effects of the enemy transform
component.

Now that we have done some basic parenting, let's explore other possible uses.

Possible uses
There are some other uses of parenting aside from creating complex objects. Another
common usage for it is to organize the project hierarchy. Right now, our scene is simple,
but in time it will grow, so keeping track of all the objects will become difficult. So, to
prevent this, we can create empty GameObjects (in GameObject | Create Empty) to act
as containers, putting objects into them just to organize our scene. Try to use this with
caution because this has a performance cost if you abuse it. Generally, having one or two
levels of parenting when organizing a scene is fine, but more than that can have
a performance hit. Consider that you can—and will—have deeper parenting for the
creation of complex objects; the proposed limit is just for scene organization.

To keep improving on our previous example, duplicate the enemy a couple of times all
around the scene, create an empty Game Object called Enemies, and drag all the enemies
into it so that it will act as a container. This is illustrated in the following screenshot:

Figure 3.28 – Grouping enemies in a parent object

Another common usage of parenting is to change the pivot (or center) of an object. Right
now, if we try to rotate our gun with the Transform Gizmo, it will rotate around its center
because the creator of that cube decided to put the center there. Normally, that's okay,
but let's consider the case where we need to make the weapon aim at the point where
our enemy is looking. In this case, we need to rotate the weapon around the weapon
handle; so, in the case of this "box" weapon, it would be the closest end to the enemy. The
problem here is that we cannot change the center of an object, so one solution would be
to create another "weapon" 3D model or mesh with another center, which will lead to lots
of duplicated versions of the weapon if we consider other possible gameplay requirements
such as a rotating weapon pickup. We can fix this easily using parenting.

Prefabs 61

The idea is to create an empty GameObject and locate it where we want the new
pivot of our object to be. After that, we can simply drag our weapon inside this empty
GameObject, and, from now on, consider the empty object as the actual weapon. If you
rotate or scale this weapon container, you will see that the weapon mesh will apply those
transformations around this container, so we can say the pivot of the weapon has changed
(actually, it hasn't, but our container simulates the change). The process is illustrated in
the following screenshot:

Figure 3.29 – Changing the weapon pivot

Now, let's continue seeing different ways of managing GameObjects, using Prefabs this
time.

Prefabs
In the previous example, we created lots of copies of our enemy around the scene, but in
doing so, we have created a new problem. Let's imagine we need to change our enemy and
add a Rigidbody component to it, but because we have several copies of the same object,
we need to take them one by one and add the same component to all of them. Maybe later
we will need to change the mass of each enemy, so again, we will need to go over each one
of the enemies and make the change, and here we can start to see a pattern. One solution
could be to select all the enemies using the Ctrl key (Command on a Mac) and modify all
of them at once, but that solution won't be of any use if we have enemy copies in other
scenes. So, here is where Prefabs come in.

62 Working with Scenes and Game Objects

In this section, we will cover the following concepts related to prefabs:

• Creating Prefabs

• Prefab-instance relationships

• Prefab variants

Let's start by discussing how to create and use prefabs.

Creating Prefabs
A prefab is a Unity tool that allows us to convert custom-made objects, such as our
enemy, into an Asset that defines how they can be created. We can use them to create
new copies of our custom object easily, without needing to create its components and
sub-objects all over again.

In order to create a Prefab, we can simply drag our custom object from the Hierarchy
window to the Project window, and after doing that you will see a new Asset in your
project files. The Project window is where you can navigate and explore all your project
files; so, in this case, our Prefab is the first Asset we ever created. Now, you can simply
drag the Prefab from the Project window into the Scene to easily create new Prefab copies,
as illustrated in the following screenshot:

Figure 3.30 – Creating a prefab

Prefabs 63

Now, we have a little problem here. If you pay attention to the Hierarchy window, you
will see the original prefab objects and all the new copies with their names in the color
blue, while the enemies created before the prefab will have their names in black. The color
blue in a name means that the object is an instance of a prefab, meaning that the object
was created based on a Prefab. We can select those blue-named objects and click the
Select button in the Inspector to select the original prefab that created that object. This is
illustrated in the following screenshot:

Figure 3.31 – Detecting prefabs in the hierarchy

So, the problem here is that the previous copies of the prefab are not instances of the
original prefab, and sadly there's no way to make them be connected to the prefab. So, in
order to make that happen, we need to simply destroy the old copies and replace them
with copies created with the prefab. At first, not having all copies as instances doesn't seem
to be a problem, but it will be in the next section of this chapter, where we will explore the
relationship between Prefabs and their instances.

Prefab-instance relationship
An instance of a Prefab has a binding to it that helps to revert and apply changes easily
between the prefab and the instance. If you take a Prefab and make some modifications to
it, those changes will be automatically applied to all instances across all the scenes in the
project, so we can easily create a first version of the prefab, use it all around the project,
and then experiment with changes.

64 Working with Scenes and Game Objects

To practice this, let's say we want to add a Rigidbody component to the enemies so that
they can fall. In order to do so, we can simply double-click the Prefab file and we will
enter Prefab Edit Mode, where we can edit the Prefab isolated from the rest of the scene.
Here, we can simply take the Prefab root object and add the Rigidbody component to
it. After that, we can simply click on the Scenes button in the top-left part of the Scene
window to get back to the scene we were editing, and now, we can see that all the prefab
instances of the enemy have a Rigidbody component, as illustrated in the following
screenshot:

Figure 3.32 – Prefab edit mode

Now, what happens if we change a Prefab instance (the one in the scene) instead? Let's
say we want one specific enemy to fly, so they won't suffer the effect of gravity. We can
do that by simply selecting the specific prefab and unchecking the Use Gravity checkbox
in the Rigidbody component. After doing that, if we play the game, we will see that only
that specific instance will float. That's because changes of an instance of a Prefab become
an override, and we can see that clearly if you see how the Use Gravity property of that
instance becomes bold in the Inspector and a blue bar will be displayed on its left. Let's
take another object and change its Scale property to make it bigger. Again, we will see how
the Scale property becomes bold and the blue bar on its left will appear. The Use Gravity
checkbox can be seen in the following screenshot:

Figure 3.33 – Use Gravity being highlighted as an override

Prefabs 65

The overrides have precedence over the Prefab, so if we change the scale of the original
Prefab, the one that has a scale override won't change, keeping its own version of the scale,
as illustrated in the following screenshot:

Figure 3.34 – One prefab instance with a scale override

We can easily locate all overrides of an instance using the Override dropdown in the
Inspector, locating all the changes our object has. It not only allows us to see all the
overrides but also reverts any override we don't want and applies the ones we want. Let's
say we regretted the lack of gravity of that specific prefab—no problem! We can just locate
the override and revert it. The process is illustrated in the following screenshot:

Figure 3.35 – Reverting a single override

66 Working with Scenes and Game Objects

Also, let's imagine that we really liked the new scale of that instance, so we want all
instances to have that scale—great! We can simply select the specific change, click the
Apply button, and then the Apply to Prefab option. Now all instances will have that
scale (except the ones with an override), as illustrated in the following screenshot:

Figure 3.36 – The Apply button

Also, we have the Revert All and Apply All buttons, but use them with caution, because
you can easily revert and apply changes that you are not aware of.

So, as you can see, the Prefab is a really useful Unity tool to keep track of all similar
objects and apply changes to all of them, and also have specific instances with few
variations. Talking about variations, there are other cases where you will want to have
several instances of a Prefab with the same set of variations—for example, flying enemies
and grounded enemies—but if you think about that, we will have the same problem we
had when we didn't use prefabs, so we need to manually update those variated versions
one by one.

Here, we have two options: one is to create a brand new prefab just to have another
version with that variation. This leads to the problem that if we want all types of enemies
to suffer changes, we need to manually apply the changes to each possible prefab. The
second option is to create a Prefab variant. Let's review the latter.

Prefab variants
A Prefab variant is the result of creating a new Prefab but based on an existing one, so
the new one inherits the features of the base Prefab. This means that our new Prefab can
have differences from the base one, but the features that they have in common are still
connected.

To illustrate this, let's create a variation of the enemy Prefab that can fly: the flying
enemy Prefab. In order to do that, we can select an existing enemy Prefab instance in the
Hierarchy window, name it Flying Enemy, and drag it again to the Project window, and
this time we will see a prompt, asking which kind of prefab we want to create. This time,
we need to choose Prefab Variant, as illustrated in the following screenshot:

Saving scenes and projects 67

Figure 3.37 – Creating a prefab variant

Now, we can enter the Prefab Edit Mode of the variant by double-clicking it, and then add
a cube as the jet pack of our enemy, and also uncheck the Use Gravity property for the
enemy. If we go back to the Scene, we will see the variant instance has changed, and the
base enemies haven't changed. You can see this in the following screenshot:

Figure 3.38 – Prefab variant instance

Now, imagine you want to add a hat to all our types of enemies. We can simply enter
Prefab Edit Mode of the base enemy Prefab by double-clicking it and add a cube as a hat.
Now, we will see that change applied to all the enemies because, remember: the Flying
Enemy Prefab is a variant of the base enemy Prefab, meaning that it will inherit all the
changes of that one.

We have created lots of content so far, but if our PC turns off for some reason, we will
certainly lose it all, so let's see how we can save our progress.

Saving scenes and projects
As in any other program, we need to save our progress. The difference here is that we don't
have just one giant file with all the project Assets, but several files for each Asset.

68 Working with Scenes and Game Objects

In this section, we will cover the following concepts related to saving:

• Saving our changes

• Project structure

Let's start by discussing how to save our scene.

Saving our changes
Let's start saving our progress by saving the scene, which is pretty straightforward. We can
simply go to File | Save or press Ctrl + S (Command + S on a Mac). The first time we save
our scene, a window will just ask us where we want to save our file, and you can save it
wherever you want inside the Assets folder of our project, but never outside that folder.
That will generate a new Asset in the Project window: a scene file, as illustrated in the
following screenshot:

Figure 3.39 – Scene files

We can create a folder to save our scene in that dialog, or, if you already saved the scene,
you can create a folder using the Plus Icon in the Project window and then click the
Folder option. Finally, drag the created scene to that folder. Now, if you create another
Scene with the File | New Scene menu option, you can get back to the previous scene just
by double-clicking the asset in the Project window.

This only saved the Scene, but any changes to Prefabs and other kinds of Assets are not
saved with that option. Instead, if you want to save every change to Assets other than
Scenes, you can use the File | Save Project option. It can be a little bit confusing, but if
you want to save all your changes, you need to both save the scenes and the project, as
saving just the project won't save the changes to Scenes. Sometimes, the best way to be
sure everything is saved is just by closing Unity, which is recommended when you try to
move your project between computers or folders. Let's talk about that in the next section.

Saving scenes and projects 69

Project structure
Now that we have saved all our changes, we are ready to move the project between
computers or to another folder (if you someday need to). You can close Unity to make
sure everything is saved and temporary files are deleted, so you can just copy the
entire project folder. If you don't remember where you saved your project, you can
just right-click the Assets folder in the Project window and select Show in Explorer
(Reveal in Finder on a Mac), as illustrated in the following screenshot:

Figure 3.40 – Locating the project folder

70 Working with Scenes and Game Objects

Let's take the opportunity, now that we are in the project folder, to explore a little bit
about the project folders. We will find several folders and files in a full project, but it's not
necessary to copy all the files in order to move the project elsewhere. The most important
folders are Assets, ProjectSettings, and Packages. These folders can be seen in the
following screenshot:

Figure 3.41 – Project folder structure

Assets is where all our scenes, prefabs, and other asset files will live, so that folder and all
its content are indispensable, including those metafiles automatically created per asset.
The ProjectSettings folder contains several configurations of different Unity systems
we will fiddle with later in this book, but even if we don't change any settings, it's always
a good idea to bring that folder with us. Packages is a Unity feature that allows you to
install official and custom Unity packages or plugins that extend the engine's capabilities,
this being a new, different version of what the .unitypackage files used to be, but
let's discuss that later. So far, it's important to notice that that folder will have settings for
which packages our project is using, so remember to also bring that one with you.

No other folders/files are necessary because some are them are temporary and others can
be regenerated, such as Library, where all the converted versions of our Assets will live.
By converted, we mean externally generated files, such as 3D models, images, sounds, and
so on. Unity needs to convert those files to a Unity-compatible format. The original will
live in Assets and the converted ones in Library so that they can be easily regenerated if
necessary. Later, in Chapter 5, Importing and Integrating Assets, we will discuss integrating
externally generated content.

Summary 71

Now, let's imagine you have compressed those three folders, copied them to a flash drive,
and then decompressed the folders onto another computer. How can we open the project
again? As you can see, a project doesn't have a project file or anything like that—it's just
a bunch of folders. In order to open a project, the easiest way would be to find a scene
file in the Assets folder and double-click it so that Unity will open the project in that
scene. Another option would be to use the Add button in Unity Hub and find the project
folder (the one that contains the Assets folder). So, we will add that project to the list
of our computer projects, and later, we can just click the name in that list to open it. The
following screenshot illustrates this:

Figure 3.42 – Reopening a project

Now, we have all the base Unity knowledge we need in order to start diving into how to
use the different Unity systems so that we can start creating a real game! Let's do that in
the next chapter!

Summary
In this chapter, we had a quick introduction to essential Unity concepts. We reviewed the
basic Unity windows and how we can use all of them to edit a full scene, from navigating
it then creating premade objects, to manipulating them to create our own types of objects
using GameObjects and Components. We also discussed how to use the Hierarchy
window to parent GameObjects to create complex object hierarchies, as well as creating
Prefabs to reutilize and manipulate large amounts of the same type of objects. Finally, we
discussed how we can save our progress and move the project, reviewing the structure of
it and which folders are the essential ones.

In the next chapter, we will learn about different tools such as the Terrain System and
ProBuilder, to create the first prototype of our game's level. This prototype will serve as
a preview of where our scene will be headed – the early testing of some ideas.

4
Grayboxing with

Terrain and
ProBuilder

Now that we have grasped all the necessary concepts to use Unity, let's start designing
our first level. The idea in this chapter is to learn how to use the Terrain tool to create
the Landscape of our game and then use ProBuilder to create the 3D mesh of the base
with greater detail than using cubes. At the end of the chapter, you will be able to create
a prototype of any kind of scene and try out your idea before actually implementing it
with final graphics.

Specifically, we will examine the following concepts in this chapter:

• Creating a Landscape with Terrain

• Creating Shapes with ProBuilder

74 Grayboxing with Terrain and ProBuilder

Creating a Landscape with Terrain
So far, we have used Cubes to generate our level prototype, but we also learned that
those Shapes sometimes cannot represent all possible objects we might need. Imagine
something irregular, such as a full terrain with hills, canyons, and rivers. This would be
a nightmare to create using cubes. Another option would be to use 3D modeling software,
but the problem with that is that the generated model would be so big and so detailed that
it wouldn't perform well, even on high-end PCs. In this scenario, we need to learn how to
use Terrain, which we will do in this first section of this chapter.

In this section, we will cover the following concepts related to terrains:

• Discussing Height Maps

• Creating and configuring Height Maps

• Authoring Height Maps

• Adding Height Map details

Let's start by talking about Height Maps, whose textures help us define the heights of
our terrain.

Discussing Height Maps
If we create a giant area of the game with Hills, canyons, craters, valleys, and rivers using
regular 3D modeling tools, we will have the problem that we will use full detailed models
for objects at all possible distances, thus wasting resources on details we won't see when
the object is far away. We will see lots of Terrain parts from a great distance, such as
mountains and rivers, so this is a serious issue.

Unity Terrain Tools uses a technique called Height Maps to generate terrain in a
performant and dynamic way. Instead of generating large 3D models for the whole terrain,
it uses an image called a Height Map, which looks like a top-down black and white photo
of the terrain.

In the following screenshot, you can see a black and white top-down view of the heights of
Scottish terrain, with white being a higher height and black being a lower height:

Creating a Landscape with Terrain 75

Figure 4.1 – Scottish terrain Height Map

In the preceding screenshot, you can easily spot the peaks of the mountains while looking
for the whitest areas of the image. Everything below sea level is black, while anything in
the middle uses gradients of gray and represents different heights between the minimum
and maximum heights. The idea is that each pixel of the image determines the height of
that specific area of the terrain.

Unity Terrain Tools can automatically generate a Terrain 3D mesh from that image, saving
us the hard drive space of having full 3D models of that terrain. Also, Unity will create
the terrain as we move, generating high-detail models for nearby areas and lower-detail
models for faraway areas, making it a performant solution.

In the following screenshot, you can see the mesh that was generated for the terrain. You can
appreciate that the nearer parts of the terrain have more polygons than further away parts:

Figure 4.2 – Height Map generated mesh

76 Grayboxing with Terrain and ProBuilder

Take into account that this technology also has its cons, such as the time it takes for Unity
to generate those 3D models while we play and the inability to create caves, but for now,
that's not a problem for us.

Now that we know what a Height Map is, let's see how we can use Unity Terrain Tools to
create our own Height Maps.

Creating and configuring Height Maps
If you click on GameObject | 3D Object | Terrain, you will see how a giant plane appears on
your scene and that a Terrain object appears in your Hierarchy window. That's our terrain,
and it is plain because its Height Map starts all black, so no height whatsoever is in its initial
state. In the following screenshot, you can see what a brand-new Terrain looks like:

Figure 4.3 – Terrain with no heights painted yet

Before you start editing your terrain, you must configure different settings such as the
size and resolution of the Terrain's Height Map, and that depends on what you are going
to do with it. This is not the same as generating a whole world. Remember that our game
will happen in the Player's Base, so the terrain will be small. In this case, an area that's
200 x 200 meters in size surrounded by mountains will be enough.

In order to configure our terrain for those requirements, we need to do the following:

1. Select Terrain from the Hierarchy or Scene window.
2. Look at the Inspector for the Terrain component and expand it if it is collapsed.
3. Click on the Wheel Icon to switch to configuration mode. In the following

screenshot, you can see where that button is located:

Creating a Landscape with Terrain 77

Figure 4.4 – Terrain Settings button

4. Look for the Mesh Resolution section.
5. Change Terrain Width and Terrain Length to 200 in both settings. This will say

that the size of our terrain is going to be 200 x 200 meters.
6. Terrain Height determines the maximum height possible. The white areas of our

Height Map are going to be that size. We can reduce it to 500 just to limit the
maximum peak of our mountains:

Figure 4.5 – Terrain Resolution settings

7. Look for the Texture Resolutions section.
8. Change Heightmap Resolution to 257 x 257:

Figure 4.6 – Heightmap Resolution settings

78 Grayboxing with Terrain and ProBuilder

Important note
Heightmap Resolution is the size of the Heightmap image that will hold the
heights of the different parts of the terrain. Using a resolution of 257 x 257 in
our 200 x 200-meter terrain means that each square meter in the terrain will
be covered by a little bit more than 1 pixel of the Heightmap. The higher the
resolution per square meter, the greater detail you can draw in that area size.
Usually, terrain features are big, so having more than 1 pixel per square meter
is generally a waste of resources. Find the smallest resolution you can have that
allows you to create the details you need.

Another initial setting you will want to set is the initial terrain height. By default, this is 0,
so you can start painting heights from the bottom part, but this way, you can't make holes
in the terrain because it's already at its lowest point. Setting up a little initial height allows
you to paint river paths and pits if you need them. In order to do so, do the following:

1. Select Terrain.
2. Click on the Brush button (the second button).
3. Set the dropdown to Set Height.
4. Set the Height property to 50.This will state we want all the terrain to start at 50

meters in height, allowing us to make holes with a maximum depth of 50 meters:

Figure 4.7 – Set Height Terrain tool location

5. Click the Flatten All button. You will see all the terrain has raised to the 50 meters
we specified. This leaves us with 450 more meters to go up, based on the maximum
of 500 meters we specified earlier.

Now that we have properly configured our Height Map, let's start editing it.

Creating a Landscape with Terrain 79

Authoring Height Maps
Remember that the Height Map is just an image with the heights, so in order to edit it, we
would need to paint the heights in that image. Luckily, Unity has tools that allow us to edit
the Terrain directly in the Editor and see the results of the modified heights directly. In
order to do this, we must follow these steps:

1. Select Terrain.
2. Click the Brush button.
3. Set the dropdown to the Raise or Lower Terrain mode:

Figure 4.8 – Raise or Lower Terrain tool location

4. Select the second brush in the Brushes selector. This brush has blurred borders to
allow us to create softer heights.

5. Set Brush Size to 30 so that we can create heights that span 30-meter areas. If you
want to create subtler details, you can reduce this number.

6. Set Opacity to 10 to reduce the amount of height we paint per second or click:

Figure 4.9 – Smooth edges brush

80 Grayboxing with Terrain and ProBuilder

7. Now, if you move the mouse in the Scene view, you will see a little preview of the
height you will paint if you click on that area. Maybe you will need to navigate
closer to the terrain to see it in detail:

Figure 4.10 – Previsualization of the area to raise the terrain

Important note
That checker pattern you can see near the terrain allows you to see the actual
size of the objects you are editing. Each cell represents a square meter area.
Remember that having a reference to see the actual size of the objects you are
editing is useful to prevent creating too big or too small terrain features. Maybe
you can put in other kinds of references, such as a big cube with accurate sizes
representing a building to get a notion of the size of the mountain or lake you
are creating. Remember that the cube has a default size of 1 x 1 x 1 meter so
scaling to (10,10,10) will give you a cube of 10 x 10 x 10 meters.

8. Hold, left-click, and drag the cursor over the terrain to start painting your terrain
heights. Remember that you can press Ctrl + Z (Command + Z on Mac) to revert
any undesired changes.

9. Try to paint the mountains all around the borders of our area, which will represent
the background hills of our base:

Figure 4.11 – Painted mountains around the edges of the terrain

Creating a Landscape with Terrain 81

Now, we have decent starter hills around our future base. We can also draw a river basin
around our future base area. To do so, follow these steps:

1. Place a cube with a scale of (50,10,50) in the middle of the terrain. This will act
as a placeholder for the base we are going to create:

Figure 4.12 – Placeholder cube for the base area

2. Select Terrain and the Brush button once more.
3. Reduce Brush Size to 10.
4. Holding the Shift key, left-click and drag the mouse over the terrain to paint the basin

around our base placeholder. Doing this will lower the terrain instead of raising it:

Figure 4.13 – River basin around our placeholder base

82 Grayboxing with Terrain and ProBuilder

Now, we have a simple but good starter terrain that gives us a basic idea of how it will look
from our base perspective. Before moving on, we will apply some finer details to make our
terrain look a little bit better. In the next section, we will discuss how to simulate terrain
erosion with different tools.

Adding Height Map details
In the previous section, we created a rough outline of the terrain. If you want to make it
look a little bit realistic, then you need to start painting lots of tiny details here and there.
Usually, this is done later in the level design process, but let's take a look now since we are
exploring the Terrain Tools. Right now, our mountains look very smooth. In real life, they
are sharper, so let's improve that:

1. Select Terrain and enable the Brush button.
2. Set the dropdown to the Raise or Lower Terrain mode.
3. Pick the fifth brush. This one has an irregular layout so that we can paint a little bit

of noise here and there.

4. Set Brush Size to 50 so that we can cover a greater area:

Figure 4.14 – Cloud pattern brush for randomness

5. Hold Shift and do small clicks over the hills of the terrain without dragging the
mouse. Remember to zoom in to the areas you are applying finer details to because
those can't be seen at great distances:

Creating a Landscape with Terrain 83

Figure 4.15 – Erosion generated with the previous brush

This has added some irregularity to our hills. Now, let's imagine we want to have a flat area
on the hills to put a decorative observatory or antenna. Follow these steps to do so:

1. Select Terrain, Brush Tool, and Set Height from the dropdown.
2. Set Height to 60.
3. Select the full circle brush (the first one).
4. Paint an area over the hills. You will see how the terrain will raise if it's lower than

60 meters or become lower in areas higher than 60 meters:

Figure 4.16 – Flattened hill

5. You can see that the borders have some rough corners that need to be smoothed:

Figure 4.17 – Non-smoothed terrain edges

84 Grayboxing with Terrain and ProBuilder

6. Change the dropdown to the Smooth Height mode.
7. Select the second brush with a size of 5 and an opacity of 10:

Figure 4.18 – Smooth Height brush selected

8. Click and drag over the borders of our flat area to make them smoother:

Figure 4.19 – Smoothed terrain edges

We can keep adding details here and there, but we can settle with this for now. The next
step is to create our Player's Base, but this time, let's explore ProBuilder in order to
generate our geometry.

Creating Shapes with ProBuilder 85

Creating Shapes with ProBuilder
So far, we have created simple scenes using Cubes and primitive Shapes, and that's enough
for most of the prototypes you will create, but sometimes, you will have tricky areas of
the game that would be difficult to model with regular cubes, or maybe you want to have
some greater detail in certain parts of your game to get a visual of how the player will feel
in that area. In this case, we can use any 3D modeling tools for this, such as 3D Studio,
Maya, or Blender, but those can be difficult to learn and you probably won't need all their
power at this stage of your development. Luckily, Unity has a simple 3D model creator
called ProBuilder, so let's explore it.

In this section, we will cover the following concepts related to ProBuilder:

• Installing ProBuilder

• Creating a shape

• Manipulating the mesh

• Adding details

Probuilder is not included by default in our Unity project, so let's start by learning how we
can install it.

Installing ProBuilder
Unity is a powerful engine full of features, but having all those tools added to our project
if we are not using all of them can make the engine run slower, so we need to manually
specify which Unity tools we are using. To do so, we will use the Package Manager, a
tool that we can use to see and select which Unity Packages we are going to need. As you
may recall, earlier, we talked about the Packages folder. This is basically what the Package
Manager modifies.

In order to install ProBuilder with this tool, we need to do the following:

1. Click the Window | Package Manager option:

Figure 4.20 – Package Manager option

86 Grayboxing with Terrain and ProBuilder

2. In the window that just opened, be sure that the Packages mode is set to Unity
Registry mode, by clicking on the button saying Packages in the top-left part of the
window and selecting Unity Registry:

Figure 4.21 – Showing all packages

3. Wait a moment for the left list of packages to fill. Make sure you are connected to
the internet to download and install the packages.

4. Look at the ProBuilder package in that list and select it:

Figure 4.22 – ProBuilder in the Packages list

Important note
I'm using ProBuilder version 5.0.3, the newest version available at the time of
writing this book. While you can use a newer version if available, consider that
the steps to use it may differ. You can look at older versions using the arrow at
the left of the title shown in the preceding screenshot.

5. Click on the Install button on the bottom right-hand side of the Package Manager:

Figure 4.23 – Install button

6. Wait a moment for the package to install. You will notice the process has ended
when the Install button has been replaced with the Remove label.

7. Go to Edit | Preferences on Windows (Unity | Preferences on Mac).
8. Select the Pro Builder option from the left list.

Creating Shapes with ProBuilder 87

9. Set Vertex Size to 2 and Line Size to 1. This will help you to better visualize the
3D model we are going to create while editing its different parts.

Important note
The Vertex Size and Line Size values are big (2 meters and 1 meter
respectively) due to the fact we are not going to edit little details of a model,
but big features like walls. Consider that you might want to modify it later
depending on what you are editing.

Now that we have installed ProBuilder in our project, let's use it!

Creating a Shape
We will start our base by creating a plane for our floor. We will do this by doing
the following:

1. Delete the cube we placed as the base placeholder (Right-Click | Delete in the
Hierarchy).

2. Open ProBuilder and go to Tools | ProBuilder | ProBuilder Window:

Figure 4.24 – ProBuilder Window option

3. In the window that has opened, click the New Shape button:

Figure 4.25 – New Shape option

4. In the Create Shape panel that appears in the bottom-right area of the Scene view,
select the Plane icon (the first icon of the second row).

5. Expand Shape Properties and Plane Settings.
6. Set Width Cuts and Height Cuts to 2. We will need those subdivisions later.
7. Click and drag over the terrain to draw the plane. While you do that, check how the

Size value in the Create Shape panel changes. Try to make it have X and Z sizes of
approximately 50.

88 Grayboxing with Terrain and ProBuilder

8. Release the mouse button and set the X and Z values of Size to 50:

Figure 4.26 – New shape created

9. Select it in the Hierarchy and drag it a little bit upward using the Transform tool.

Important note
We needed to move the plane upward because it was created at the exact same
height as the Terrain. That caused an effect called Z-Fighting, where the pixels
that are positioned in the same position fight to determine which one will be
drawn and which one will be occluded.

Now that we have created the floor, let's learn how we can manipulate its vertexes to
change its shape.

Manipulating the mesh
If you select the plane, you will see that it is subdivided into a 3 x 3 grid because we set
up the width and height segments to 2 (2 cuts). We did that because we will use the outer
cells to create our walls, thus raising them up. The idea is to modify the size of those cells
to outline the wall length and width before creating the walls. In order to do so, we will do
the following:

1. Select the plane in the Hierarchy.
2. Click the second button (Vertex) of the four new buttons that appeared in the

Scene View:

Creating Shapes with ProBuilder 89

Figure 4.27 – Select the vertices tool

3. Click and drag the mouse to create a selection box that picks the four vertexes of the
second row of vertexes:

Figure 4.28 – Vertices selection

4. Click on the second button from the buttons at the top left of the Unity Editor to
enable the Move Tool:

Figure 4.29 – Object Move Tool

5. Move the row of vertexes to make that subdivision of the plane thinner. You can
use the checker pattern on the terrain to get a notion of the size of the wall in meters
(1 meter per square in the checker):

Figure 4.30 – Moved vertexes

90 Grayboxing with Terrain and ProBuilder

6. Repeat steps 3 to 5 for each row of vertexes until you get wall outlines with
similar sizes:

Figure 4.31 – Moved vertexes to reduce edges cell width

Important note
If you want the vertexes to have exact positions, I recommend that you install
and explore the ProGrids Package. It is a position snapping system that works
with regular Unity and ProBuilder.

Now that we have created the outline for our walls, let's add new faces to our mesh to
create them. In order to use the subdivisions or "Faces" we have created to make our walls,
we must pick and extrude them. Follow these steps to do so:

1. Select the plane.
2. Select the fourth button of the ProBuilder buttons in the Scene view:

Figure 4.32 – Select Face tool

3. While holding Ctrl (Command on Mac), click over each of the faces of the
wall outlines:

Figure 4.33 – Edge faces being selected

Creating Shapes with ProBuilder 91

4. In the ProBuilder window, look for the plus icon (+) to the right of the Extrude
Faces button. It will be located in the red section of the window:

Figure 4.34 – Extrude Faces option

5. Set Distance to 5 in the window that appeared after we clicked the plus icon.
6. Click the Extrude Faces button in that window:

Figure 4.35 – Extrude distance option

7. Now, you should see that the outline of the walls has just raised up from the ground:

Figure 4.36 – Extruded grid edges

92 Grayboxing with Terrain and ProBuilder

Now, if you pay attention to how the base floor and walls touch the Terrain, there's a little
gap. We can try to move the base downward, but the floor will probably disappear because
it will be buried under the terrain. A little trick we can do here is to just push the walls
downward, without moving the floor, so that the walls will be buried in the Terrain but
our floor will stay a little distance from it. You can see an example of how it will look in
the following diagram:

Figure 4.37 – Slice of the expected result

In order to do this, we need to do the following:

1. Select the third ProBuilder button in the Scene view to enable edge selection:

Figure 4.38 – Select edges tool

2. While holding Ctrl (Command on Mac), select all the bottom edges of the walls.
3. If you select undesired edges, just click them again while holding Ctrl (Command

on Mac) to deselect them, all while keeping the current selection:

Figure 4.39 – Selecting floor edges

Creating Shapes with ProBuilder 93

Information box
If you want to use the Wireframe mode in the previous screenshot, click on the
Shaded button in the top-left part of the Scene view and select the Wireframe
option from the drop-down menu.

4. Enable the Move tool by pressing the second button in the top-left part of the
Unity Editor:

Figure 4.40 – Object Move Tool

5. Move the edges downward until they are fully buried under the terrain:

Figure 4.41 – Overlapping faces

Now that we have a base mesh, we can start adding details to it using several other
ProBuilder tools.

94 Grayboxing with Terrain and ProBuilder

Adding details
Let's start adding details to the base by applying a little bevel to the walls. Follow these steps:

1. Using the edge selection mode (the third button of the ProBuilder buttons), select
the top edges of the model:

Figure 4.42 – Top wall edges being selected

2. In the ProBuilder window, look at the plus icon to the right of the Bevel button.
3. Set a distance of 0.5:

Figure 4.43 – Bevel distance to generate

4. Click on Bevel Edges. Now, you can see the top part of our walls with a little bevel:

Figure 4.44 – Result of the bevel process

Creating Shapes with ProBuilder 95

5. Optionally, you can do that with the bottom part of the inner walls:

Figure 4.45 – Bevel being applied to floor-wall edges

Another detail to add could be a pit in the middle of the ground as a hazard we need to
avoid falling into and to make the enemies avoid it using AI. In order to do that, follow
these steps:

1. Enable the Face selection mode by clicking the fourth ProBuilder Scene view button.
2. Select the floor.
3. Click the Subdivide faces option in the ProBuilder window. You will end up with

the floor split into four.
4. Click that button again to end up with a 4 x 4 grid floor:

Figure 4.46 – Subidiving the floor

96 Grayboxing with Terrain and ProBuilder

5. Select the four inner floor tiles using the Select Face tool (the third button of the
ProBuilder four in the top part of the Scene view).

6. Enable the Scale Tool by clicking the fourth button in the top-left part of the
Unity Editor:

Figure 4.47 – Scale tool

7. Using the gray cube at the center of the gizmo, scale down the center tiles:

Figure 4.48 – Inner cells being scaled down

8. Click the Extrude Faces button in the ProBuilder window.
9. Push the extruded faces downward with the Move Tool.
10. Right-click on the ProBuilder window tab and select Close Tab. We need to get back

to terrain editing and having ProBuilder open won't allow us to do that comfortably:

Figure 4.49 – Close Tab option

Summary 97

11. Select Terrain and lower that area of the terrain so that we can see the pit:

Figure 4.50 – Terrain being lowered for the pit to be visible

I know we didn't plan the pit in the original level layout but remember that the GDD is a
document that will constantly change in the middle of game development, so sometimes,
we can be bold and change it in order to improve the game. Just take care to not go too far
with never-ending changes, which is a difficult-to-master art.

Summary
In this chapter, we learned how to create large Terrain meshes using Height Maps and
Unity Terrain Tools such as Paint Height and Set Height to create hills and river basins.
Also, we saw how to create our own 3D meshes using ProBuilder, as well as how to
manipulate the vertexes, edges, and faces of a model to create a prototype base model for
our game. We didn't discuss some performance optimizations we can apply to our meshes
and some advanced 3D modeling concepts as that would require entire chapters and that's
outside the scope of this book. Right now, our main focus is prototyping, so we are fine
with our level's current status.

In the next chapter, we will learn how to download and replace these prototyping models
with the final art by integrating assets (files) we created with external tools. This is the first
step to improving the graphics quality of our game so that it reaches the final look, which
we will finish by the end of Part 2.

5
Importing and

Integrating Assets
In the previous chapter, we created the prototype of our level. Now, let's suppose that we
have coded the game and tested it, validating the idea. With that, it's time to change the
prototype art and use the real, finished art. We are going to code the game in Part 3, but
for learning purposes, we'll skip that part for now. To use our final assets, we need to learn
how to get them (images, 3D models, and so on), how to import them into Unity, and how
to use them in our scene.

In this chapter, we will cover the following topics:

• Importing assets

• Integrating assets

• Configuring assets

Importing assets
We have different sources of assets that we can use in our project. We can simply get a file
from our artist, download them from different free and paid assets sites, or we can use the
Asset Store, Unity's official virtual asset store, where we can get free and paid assets ready
to use within Unity. We will use a mix of downloading an asset from the internet and the
Asset Store, just to get all the possible resources.

100 Importing and Integrating Assets

In this section, we will cover the following concepts related to importing assets:

• Importing assets from the internet

• Importing assets from the Asset Store

• Downloading and importing assets into our project from the internet

Let's get started!

Importing assets from the internet
In terms of getting art assets for our project, let's start with our terrain textures.
Remember that we have our terrain painted with a grid pattern, so the idea is to replace
that with grass, mud, rock, and other kinds of textures. To do that, we must get images. In
this case, these kinds of images are usually top-down views of different terrain patterns,
and they have the requirement of being "tileable." You can see an example of this in the
following figure:

Figure 5.1 – Left – grass patch; right – the same grass patch separated to highlight the texture tiling

The grass on the left seems to be one single big image, but if you pay attention, you should
be able to see some patterns repeating themselves. In this case, this grass is just a single
image repeated four times in a grid, like the one on the right. This way, you can cover large
areas by repeating a single small image, saving lots of RAM on your computer.

The idea is to get these kinds of images to paint our terrain. You can get them from several
places, but the easiest way is to use Google Images or any image search engine. To do this,
follow these steps:

1. Open your browser (Chrome, Safari, Edge, and so on).
2. Go to your preferred search engine. In this case, I will use Google.

Importing assets 101

3. Use the PATTERN, tileable, and texture keywords, replacing PATTERN with
the kind of terrain you are looking for, such as grass tileable texture or
mud tileable texture. In this case, I am going to type grass tileable
texture and then press Enter to search.

4. Switch to the Images search mode:

Figure 5.2 – Google search for images

5. Choose any texture you find suitable for the kind of grass you need and click it.
Remember that the texture must be a top-down view of the grass and must repeat.

Important Note
Try to check the image's resolution before picking it. Try to select squared
images that have a resolution less than 1,024 x 1,024 for now.

6. Right-click on the opened image and select Save image as…:

Figure 5.3 – Save image as… option

7. Save the image in any folder you will remember.

102 Importing and Integrating Assets

Now that you have downloaded the image, you can add it to your project in several ways.
The simplest way would be to do the following:

1. Locate your image using File Explorer (Finder on Mac).
2. Locate or create the Textures folder in the Project Window in Unity.
3. Put both the File Explorer and Unity Project Window next to each other.
4. Drag the file from File Explorer to the Textures folder in the Unity Project

Window:

Figure 5.4 – Texture being dragged from Windows Explorer to Unity's Project Window

For simple textures like these, any search engine can be helpful, but if you want to replace
the player's base geometry with detailed walls and doors or place enemies in your scene,
you need to get 3D models. If you search for those in any search engine using keywords
such as free, zombie, and 3D model, you will find endless free and paid 3D models sites
such as TurboSquid and Mixamo. However, those sites can be problematic because those
meshes are usually not prepared for being used in Unity, or even games. You will find
models with very high polygons counts, incorrect sizes or orientations, unoptimized
textures, and so on. To prevent those problems, we'll want to use a better source, and in
this case, we will use Unity's Asset Store. So, let's explore it.

Importing assets from the Asset Store
The Asset Store is Unity's official asset marketplace where you can find lots of models,
textures, sounds, and even entire Unity plugins to extend the capabilities of the engine. In
this case, we will limit ourselves to downloading 3D models to replace the player's base
prototype. You will want to get 3D models with a modular design, meaning that you will
get several pieces, such as walls, floors, corners, and so on. You can connect them to create
any kind of scenario.

Importing assets 103

To do that, you must follow these steps:

1. Click on Window | Asset Store in Unity, which will open a new window saying
that the Asset Store has moved. In previous versions of Unity, you could see the
Asset Store directly inside the editor, but now, it is recommended to open it in
a regular web browser, so just click the Search online button, which will open
https://assetstore.unity.com/ in your preferred browser.

Figure 5.5 – The Asset Store has moved message

2. In the top menu, click on the Assets | 3D category to browse 3D assets:

Figure 5.6 – 3D Assets menu

https://assetstore.unity.com/

104 Importing and Integrating Assets

3. On the recently opened page, click the arrow to the right of the 3D category
in the All Categories panel on the right. Then, open Environments and check
the Sci-Fi mark:

Figure 5.7 – 3D Assets menu

Important Note
As you can see, there are several categories for finding different types of assets,
and you can pick another one if you want to. In Environments, you will find
3D models that can be used to generate the scenery for your game.

4. If you need to, you can pay for an asset, but let's hide the paid ones for now. You can
do that by searching through the Pricing section on the sidebar, opening it using
the plus (+) symbol on its right, and then checking the Free Assets checkbox:

Figure 5.8 – Free Assets option

Importing assets 105

5. In the search area, find any asset that seems to have the aesthetic you are looking for
and click it. Remember to look out for outdoor assets, because most environment
packs are usually interiors only. In my case, I have picked one called Sci-Fi Styled
Modular Pack that serves both interiors and exteriors. Take into account that this
package might not exist by the time you are reading this, so you might need to
choose another one. If you don't find a suitable package, you can download the asset
files we have provided in this book's GitHub repository:

Figure 5.9 – Preview of Asset Store searched packages

Important Note
Unity offers the "Snaps" packages, which are a set of official Unity 3D models
that can be used for modularly designing different kinds of environments.
Some of them must be paid for, while others are free – I recommend that you
try them out.

106 Importing and Integrating Assets

6. Now, you will see the package details in the Asset Store window. Here, you can
find information regarding the package's description, videos/images, the package's
contents, and the most important part, the reviews, where you can check if the
package is worth buying if it's a paid one:

Figure 5.10 – Asset Store package details

7. If you are okay with this package, click the Add To My Assets button, log into Unity
if requested, and click the Open In Unity button. You might be asked whether you
meant to switch apps to open Unity; click Yes:

Figure 5.11 – Switching apps

8. This will open Package Manager again, but this time, in My Assets, showing a list
of all the assets you have ever downloaded from the Asset Store, as well as the one
you just selected, highlighted in the list:

Importing assets 107

Figure 5.12 – Package Manager showing assets

9. Click on Download at the bottom-right corner of the window and wait for it to end.
Then, hit Import.

10. After a while, the Package Contents window will appear, where you can select
exactly which assets of the package you want in your project. For now, leave it as is
and click Import:

Figure 5.13 – Selecting assets to import

11. After a while, you will see all the package files in your Project window.

108 Importing and Integrating Assets

Take into account that importing lots of full packages will increase your project's size
considerably, and that, later, you will probably want to remove the assets that you didn't
use. Also, if you import assets that generate errors that prevent you from playing the
scene, just delete all the .cs files that come with the package. They are usually in a folder
called Scripts. These are code files that might not be compatible with your version of
Unity:

Figure 5.14 – Code error warning when hitting the play button

Important Note
The Asset Store is prone to changes, even if you are using the same Unity
version I am using, so the previous steps may be changed by Unity without
notice. Also, its contents change often, and you may not find the same packages
that have been used in this book. If that happens, you can find another similar
package, or take the files I used in the book's GitHub repository (links and
instructions in the Preface).

Before you continue with this chapter, try to download an enemy character using the
Asset Store while following the previous steps. To solve this exercise, you must complete
the same steps you did previously but look in the 3D | Characters | Humanoid category
of the Asset Store.

Now that we have imported lots of art assets, let's learn how to use them in our scene.

Integrating assets 109

Integrating assets
We have just imported lots of files that can be used in several ways, so the idea of this
section is to see how Unity integrates those assets with the GameObjects and components
that need them.

In this section, we will cover the following concepts related to importing assets:

• Integrating terrain textures

• Integrating meshes

• Integrating materials

Let's start by using the tileable textures to cover the terrain.

Integrating terrain textures
To apply textures to our terrain, do the following:

1. Select the Terrain object.
2. In the Inspector window, click the brush icon of the Terrain component

(second button).
3. From the drop-down menu, select Paint Texture:

Figure 5.15 – Terrain Paint Texture option

4. Click the Edit Terrain Layers… | Create Layer option.

110 Importing and Integrating Assets

5. Find and double-click the terrain texture you downloaded previously in the texture
picker window that appears:

Figure 5.16 – Texture to paint picker

6. You will see that the texture is immediately applied to the whole terrain.
7. Repeat steps 4 and 5 to add another texture. This time, you will see that that texture

is not immediately applied.
8. In the Terrain Layers section, select the new texture you have created to start

painting with that. I used a mud texture.
9. Just like when you edited the terrain, in the Brushes section, you can select and

configure a brush to paint the terrain.
10. In the Scene view, paint the areas you want to have that texture applied to.
11. If your texture patterns are too obvious, open the New Layer N section at the top

of the Brushes section, where N is a number that depends on the layer you have
created.

Important Note
Each time you add a texture to the terrain, you will see that a new asset called
New Layer N is created in the Project view. It holds data about the terrain
layer you have created, and you can use it in other terrains if you need to. You
can also rename that asset and give it a meaningful name. Finally, you can
reorganize those assets in their own folder.

12. Open the section using the triangle to its left and increase the Size property in the
Tiling Settings section until you find a suitable size, where the pattern is not that
obvious:

Integrating assets 111

Figure 5.17 – Painting texture options

13. Repeat steps 4 to 12 until you have applied all the textures you wanted to add to your
terrain. In my case, I applied the mud texture to the river basin and used a rock
texture for the hills. For the texture of the rocks, I reduced the Opacity property of
the brush to blend it better with the grass in the mountains. You can also try to add
a layer of snow at the top, just for fun:

Figure 5.18 – Results of painting our terrain with three different textures

112 Importing and Integrating Assets

Of course, we can improve this a lot using lots of the advanced tools provided by the
system, but just let's keep things simple for now. Now, let's learn how to integrate the
3D models.

Integrating meshes
If you select one of the 3D assets we have configured previously and click the arrow to its
right, one or more sub-assets will appear in the Project window. This means that FBX is
not a 3D model, but a container of assets that defines the 3D model:

Figure 5.19 – Mesh picker

Some of those sub-assets are meshes, which are collections of triangles that define the
geometry of your model. You can find at least one of those inside the file, but you can also
find several, and that can happen if your model is composed of lots of pieces. For example,
a car can be a single rigid mesh, but that won't allow you to rotate its wheels or open its
doors; it will be just a static car, and that can be enough if the car is just a prop in the
scene. However, if the player will be able to control it, you will probably need to modify it.
The idea is that all the pieces of your car are different GameObjects parented to the others,
in such a way that you move one and all of them will move, but you can still rotate its
pieces independently.

When you drag the 3D model file to the scene, Unity will automatically create all the
objects for each piece and its proper parenting based on how the artist created them. You
can select the object in the Hierarchy window and explore all its children to see this:

Integrating assets 113

Figure 5.20 – Subobject selection

Also, you will find that each of those objects will have its own MeshFilter and
MeshRenderer components, each one rendering just that piece of the car. Remember
that the mesh filter is a component that provides a reference to the mesh asset to render,
so the mesh filter is the one using those mesh sub-assets we talked about previously:

Figure 5.21 – Mesh filter – current mesh selection

Now, if you drag the 3D model file into the scene, you will get a similar result as if the
model were a prefab and you were instancing it. But 3D model files are more limited than
prefabs, because you can't apply changes to the model. If you've dragged the object onto
the scene and edited it to have the behavior you want, I suggest that you create a prefab
to get all the benefits we discussed in Chapter 3, Working with Scenes and Game Objects,
such as applying changes to all the instances of the prefab and so on. Never create lots of
instances of a model from its model file – always create them from the prefab you created
based on that file.

114 Importing and Integrating Assets

That's the basic usage of 3D meshes. Now, let's explore the texture integration process,
which will make our 3D models have more detail.

Integrating textures
Maybe your model already has the texture applied, but has a magenta color applied to
all of it. In the latter case, this means the asset wasn't prepared to work with the URP
template you selected when creating the project. Some assets in the Asset Store are meant
to be used in older versions of Unity:

Figure 5.22 – Mesh being rendered with erroneous or no material at all

One way to fix this is by using the option in Edit | Render Pipeline | Universal Render
Pipeline | Upgrade Project Materials to UniveralRP Materials. This will try to upgrade
all your materials to the current version of Unity:

Figure 5.23 – Upgrade Project Materials to UniversalRP Materials option

The con of this method is that, sometimes, it won't upgrade the material properly. Luckily,
we can fix this by reapplying the textures of the objects in this new way. Even if your assets
work just fine, I suggest that you reapply your textures anyway, just to learn more about
the concept of materials.

Integrating assets 115

A texture is not applied directly to an object. This is because the texture is just one
single configuration of all the ones that control the aspects of your model. To change
the appearance of a model, you must create a material. Materials are separate assets that
contain lots of settings about how Unity should render your object. You can apply such an
asset to several objects that share the same graphics settings, and if you change the settings
of that material, it will affect all the objects that are using it. It works like a graphics profile.

To create a material to apply the textures of your object, you need to follow these steps:

1. In the Project window, click the plus (+) button at the top-left part of the window.
2. Look at the Material option in that menu and click it.
3. Name your material. This is usually the name of the asset you are creating (for

example, Car, Ship, Character, and so on).
4. Drag the material asset you created to the model instance on your scene. At the

moment, if you move the mouse with the dragged asset over the object, you will be
able to see a preview of how it will look with that material. You can confirm this by
releasing the mouse.

5. Maybe your object has several parts. In that case, you will need to drag the material
to each part of the object.

Important Note
Dragging the material will just change the materials property of the
MeshRenderer component of the object you have dragged.

6. Select the material and click the circle to the left of the Base Map property
(see Figure 5.23).

116 Importing and Integrating Assets

7. In the Texture Selector window, click on the texture of your model. It can be
complicated to locate the texture just by looking at it. Usually, the name of the
texture will match the model's name. If not, you will need to try different textures
until you see one that fits your object. Also, you may find several textures with the
same name as your model. Just pick the one that seems to have the proper colors
instead of the ones that look black and white or light blue; we will use those later:

Figure 5.24 – Base Map property of the URP materials

With this, you have successfully applied the texture to the object using a material. For each
object that uses the same texture, just drag the same material. Now that we have a basic
understanding of how to apply the model textures, let's learn how to configure the import
settings before spreading models all over the scene.

Configuring assets
As we mentioned earlier, artists are used to creating art assets outside Unity, and that can
cause differences between how the asset is seen from that tool and how Unity will import
it. As an example, 3D Studio can work in centimeters, inches, and so on, while Unity
works in meters. We have just downloaded and used lots of assets, but we have skipped
the configuration steps for solving those discrepancies, so let's take a look at this now.

In this section, we will cover the following concepts related to importing assets:

• Configuring meshes

• Configuring textures

Let's start by discussing how to configure 3D meshes.

Configuring assets 117

Configuring meshes
To change the model's import settings, you need to locate the model file you have
downloaded. Several file extensions contain 3D models, with the most common one being
the .fbx file, but you can encounter others such as .obj,.3ds, .blender, .mb, and so
on. You can identify whether the file is a 3D mesh via its extension:

Figure 5.25 – Selected asset path extension

Also, you can click Asset, go to the Inspector window, and check the tabs, as shown in the
following screenshot:

Figure 5.26– Mesh materials settings

Now that you have located the 3D mesh files, you can configure them properly. Right now,
the only thing we should take into account is the proper scale of the model. Artists are
used to working with different software with different setups; maybe one artist created
the model using meters as its metric unit, while the other artists used inches, feet, and so
on. When importing assets that have been created in different units, they will probably
be unproportioned, which means we will get results such as humans being bigger than
buildings.

118 Importing and Integrating Assets

The best solution is to just ask the artist to fix that. If all the assets were authored in your
company, or if you used an external asset, you could ask the artist to fix it so that it works
the way your company works, but right now, you are probably a single developer learning
Unity by yourself. Luckily, Unity has a setting that allows you to rescale the original asset
before using it in Unity. To change the scale factor of an object, you must do the following:

1. Locate the 3D mesh in your Project window.
2. Drag it onto the scene. You will see that an object will appear in your scene.
3. Create a capsule using the GameObject | 3D Object | Capsule option.
4. Put the capsule next to the model you dragged into the editor. See if the scale has

sense. The idea is that the capsule is representing a human being (2 meters tall) so
that you have a reference of its scale:

Figure 5.28 – Unproportioned asset

5. If the model is bigger or smaller than expected, select the mesh again in the Project
window (not the GameObject instance you dragged to the editor). You will see some
import settings in the Inspector window.

6. Look for the Scale Factor property and modify it, increasing it if your model is
smaller than expected or reducing it in the opposite case:

Figure 5.29 – Model mesh options

Configuring assets 119

7. Click the Apply button at the bottom part of the Inspector window.
8. Repeat steps 6 and 7 until you get the desired result.

There are plenty of other options to configure, but let's stop here for now. Now, let's
discuss how to properly configure the textures of our models.

Configuring textures
Again, there are several settings to configure here, but let's focus on the texture size for
now. The idea is to use the size that best fits the usage of that texture, and that depends on
lots of factors. The first factor to take into account is the distance from which the object
will be seen. If you are creating a first-person game, you will probably see lots of objects
near enough to justify a big texture, but maybe you have lots of distant objects such as
billboards at the top of buildings, which you will never be near enough to see the details
of, so you can use smaller textures for that. Another thing to take into account is the
importance of the object. If you are creating a racing game, you will probably have lots of
3D models that will be on the screen for a few seconds and the player will never focus on
them; they will be paying attention to the road and other cars. In this case, an object such
as a trash can on the street can have a smaller texture and a low polygon model and the
user will never notice (unless they stop to appreciate the scenery, but that's acceptable).
Finally, you can have a game with a top-down view that will never zoom in on the scene,
so the same object that has a big texture in first-person games will have a less detailed
texture here. In the following images, you can see that the smaller ship can use a smaller
texture:

Figure 5.30 – The same model at different distances

120 Importing and Integrating Assets

The ideal size of the texture is relative. The usual way to find this is by changing its size,
until you find the smallest possible size with a decent quality when the object is seen from
the nearest position possible in the game. This is a trial-and-error method. To do this, you
can do the following:

1. Locate the 3D model and put it into the scene.
2. Put the Scene view camera in a position that shows the object at its biggest possible

in-game size. As an example, in an FPS game, it would be almost right next to the
object, while in a top-down game, it would be a few meters above the object. Again,
that depends on your game.

3. Find and select the texture that the object is using in the folders that were imported
with the package or from the material you created previously. They usually have the
.png, .jpg, or .tif extensions.

4. In the Inspector window, look at the Max Size property and reduce it, trying the
next smaller value. For example, if the texture is at 2,048, try 1,024.

5. Click Apply and check the Scene view to see if the quality has decreased
dramatically or if the change isn't noticeable. You will be surprised.

6. Repeat steps 4 to 5 until you get a bad-quality result. In that case, just increase the
previous resolution until you get acceptable quality. Of course, if you are targeting
PC games, you can expect higher resolutions than mobile games.

Now that you have imported, integrated, and configured your objects, let's just create our
player's base with those assets.

Assembling the scene
Let's start by replacing our prototype base using the environment pack we have
downloaded. To do that, you must do the following:

1. In the Environment pack we imported previously, locate the folder that contains all
the models for the different pieces of the scene and try to find a corner. You can use
the search bar in the Project window to search for the corner keyword:

Configuring assets 121

Figure 5.31 – Mesh picker

2. In my case, I have the outer and inner sides of the corner as separate models, so I
need to put them together.

3. Put it in the same position as you would any corner of your prototype base:

Figure 5.32– Positioning the mesh on a placeholder for replacement

4. Find the proper model that will connect with that corner to create walls. Again, you
can try searching for the wall keyword in the Project window.

122 Importing and Integrating Assets

5. Instance it and position it so that it's connected to the corner. Don't worry if it
doesn't fit perfectly; you will go over the scene when necessary later:

Important Note
Press the V key to select a vertex of the selected object so that you can drag it
to the vertex of another object. This is called vertex snapping. It allows you to
connect two pieces of the scene, exactly as intended:

Figure 5.33 – Connecting two modules

6. Repeat the walls until you reach the other end of the player base and position
another corner. You might get a wall that's a little bit larger or smaller than the
original prototype, but that's fine:

Figure 5.34 – Chain of connected modules

Important Note
Remember that you can move an object while pressing the Ctrl key (Control
on Mac) to snap the object's position so that the clones of the wall can be easily
located, right next to the others.

7. Complete the rest of the walls and destroy the prototype. Remember that this
process is slow, so you will need to be patient.

Configuring assets 123

8. Add floors by looking for floor tiles and repeating them all over the surface:

Figure 5.35 – Floor modules with a hole for the pit

9. Add whatever details you want to add with other modular pieces in the package.
10. Put all those pieces in a container object called Base. Remember to create an empty

object and drag the base pieces into it:

Figure 5.36 – Mesh sub-assets

After a lot of practice doing this, you will slowly gain experience with the common pitfalls
and good practices of modular scene design. All the packages have different modular
designs in mind, so you will need to adapt to them.

124 Importing and Integrating Assets

Summary
In this chapter, we learned how to import models and textures and integrate them into
our scene. We discussed how to apply textures to the terrain, how to replace our prototype
mesh with modular models, how to apply textures to those, and how to configure the
assets, all while taking several criteria into account according to the usage of the object.

With this, we have finished Part 1 of this book and discussed several basic Unity concepts.
In Part 2, we will start to deep dive into several Unity systems that allow us to improve the
graphics and sound quality of our game. We will start by learning how to create custom
material types so that we can create interesting visual effects and animations.

Section 2 –
Improving Graphics

and Sound

After finishing a basic prototype, we start the production phase of the game. In this
section, we will be improving the graphics quality of the game dramatically.

This section comprises the following chapters:

• Chapter 6, Materials and Effects with URP and Shader Graph

• Chapter 7, Visual Effects with Particle Systems and Visual Effect Graph

• Chapter 8, Lighting Using the Universal Render Pipeline

• Chapter 9, Fullscreen Effects with Postprocessing

• Chapter 10, Sound and Music Integration

• Chapter 11, User Interface Design

• Chapter 12, Creating a UI with the UI Toolkit

• Chapter 13, Creating Animations with Animator, Cinemachine, and Timeline

6
Materials and

Effects with URP
and Shader Graph

Welcome to the first chapter of Part 2! I am super excited that you have reached this
part of this book because here, we will deep dive into the different graphics and audio
systems of Unity to dramatically improve the look and feel of the game. We will start this
part with this chapter, where we will discuss what the Shader of a material is and how to
create our own shaders to achieve several custom effects that couldn't be accomplished
using default Unity shaders. We will be creating a simple water animation effect to learn
about this new concept.

In this chapter, we will cover the following topics:

• Introduction to shaders

• Creating shaders with Shader Graph

128 Materials and Effects with URP and Shader Graph

Introducing shaders
We created materials in the previous chapter, but we never discussed how they internally
work and why their Shader properties are super important. In this section, we will explore
the concept of a shader as a way to program a video card to achieve custom visual effects.

In this section, we will cover the following concepts related to shaders:

• Shader pipeline

• The render pipeline and URP

• URP's built-in shaders

Let's start by discussing how a shader modifies the shader pipeline to achieve effects.

Shader pipeline
Whenever a video card renders a 3D model, it needs several pieces of input data to
process, such as meshes, textures, the transform of the object (position, rotation, and
scale), and the lights that affect that object. With that data, the video card must output the
pixels of the object into the back buffer, the image where the video card will be drawing
our objects. That image will be shown when Unity finishes rendering all the objects
(and some effects) to display the finished scene. The back buffer is the image the video
card renders step by step, showing it when the drawing has finished (at that moment, it
becomes the front buffer, swapping with the previous one).

That's the usual way to render an object, but what happens between the input of the data
and the output of the pixels can be handled in a myriad of different ways and techniques,
depending on how you want your object to look; maybe you want it to be realistic or look
like a hologram, or maybe the object needs a disintegration effect or a toon effect – there
are endless possibilities. The way we specify how our video card will handle rendering the
object is by using a shader.

A shader is a program that's coded in specific video card languages, such as CG, HLSL,
and GLSL, which configure different stages of the render process, sometimes not only
configuring them but also replacing them with completely custom code to achieve the
effect we want. All of the stages of rendering are what we call the shader pipeline, a chain
of modifications that's applied to the input data until it's transformed into pixels.

Introducing shaders 129

Important Note
Sometimes, what we called the shader pipeline in this book can be also found
in another bibliography as the render pipeline, and whereas the latter is also
correct, in Unity, the term "render pipeline" refers to something different, so
let's stick with this name.

Each stage of the pipeline is in charge of different modifications and depending on the
video card's shader model, this pipeline can vary a lot. In the following diagram, you can
find a simplified render pipeline, skipping advanced/optional stages that are not important
right now:

Figure 6.1 – Common Shader Pipeline

Let's discuss each of the stages:

• Input Assembler: Here is where all the mesh data, such as vertex position, UVs,
and normals, is assembled to be prepared for the next stage. You can't do much
here; this process is almost always the same.

• Vertex Shader: In the past, this stage was limited to applying the transformation of
the object, the position and perspective of the camera, and some simple but limited
lighting calculations. In modern GPUs, you are in charge of doing whatever you
want. This stage receives each one of the vertexes of the object to render and outputs
a modified one. So, basically, you can modify the geometry of the object here. The
usual code here is the same as what old video cards had, applying the transform
of the object, but you can make several effects, such as inflating the object along
its normals to apply an old toon effect technique or apply some distortions such
as a hologram (look at the hologram effect in Death Stranding). There's also the
opportunity to calculate data for the next stages, but we won't be going that deep
for now.

130 Materials and Effects with URP and Shader Graph

• Culling: Most of the models you are going to render are interesting in that you will
never see the backside of a model's face. Let's take a cube as an example; there's
no way to look at the back or inner side of any of its sides because they will be
automatically occluded by the other sides. Knowing that, rendering both sides of
each face of the cube, even if the backside can't be seen, makes no sense, and luckily,
this stage takes care of that. Culling will determine whether the face needs to be
rendered based on the orientation of the face, saving you lots of time calculating
the pixels of occluded faces. You can change this so that it behaves differently for
specific cases; as an example, we can create a glass box that needs to be transparent
to see all the sides of the box.

• Rasterizer: Now that we have the modified and visible geometry of our model
calculated, it's time to convert it into pixels. The rasterizer creates all the pixels
for the triangles of our mesh. Lots of things happen here, but again, we have very
little control over that; the usual way to rasterize is just to create all the pixels
inside the edges of the mesh triangles. We have other modes that just render the
pixels on the edges so that we can see a wireframe effect, but this is usually used for
debugging purposes:

Figure 6.2 – Example of figures being rasterized

• Fragment Shader: This is one of the most customizable stages of all. Its purpose is
simple: just determine the color of each of the fragments (pixels) that the rasterizer
has generated. Here, lots of things can happen, from simply outputting a plain
color, sampling a texture, to applying complex lighting calculations such as normal
mapping and PBR. Also, you can use this stage to create special effects such as water
animations, holograms, distortions, disintegrations, and whatever special effect that
requires you to modify what the pixels look like. We will explore how we can use
this stage later in this chapter.

Introducing shaders 131

• Depth Testing: Before we can say that the pixel is complete, we need to check
whether the pixel can be seen. This stage checks whether the pixel's depth is behind
or in front of the previously rendered pixel, guaranteeing that, regardless of the
rendering order of the objects, the nearest pixels to the camera are always being
drawn on top of the others. Again, usually, this stage is left in its default state,
prioritizing pixels that are nearer to the camera, but some effects require different
behavior. As an example, in the following screenshot, you can see an effect that
allows you to see objects that are behind other objects, such as units and buildings
in Age of Empires:

Figure 6.3 – Rendering the occluded parts of the character

• Blending: Once the color of the pixel has been determined and we are sure that
the pixel has not been occluded by a previous pixel, the final step is to put it in the
back buffer (the frame or image you are drawing). We usually do this to override
whatever pixel was in that position (because our pixel is nearer to the camera),
but if you think about transparent objects, we need to combine our pixel with the
previous one to make the transparency effect. Transparencies have other things to
take into account aside from blending, but the main idea is that blending controls
exactly how the pixel will be combined with the previously rendered pixel in the
back buffer.

132 Materials and Effects with URP and Shader Graph

Shader pipelines is a subject that would require an entire book, but for the scope of this
book, the previous description will give you a good idea of what a shader does, as well as
the possible effects that it can achieve. Now that we have discussed how a shader renders
a single object, it is worth discussing how Unity renders all of the objects using render
pipelines.

The Render Pipeline and URP
So far, we have covered how the video card renders an object, but Unity is in charge
of asking the video card to execute its shader pipeline per object. To do so, Unity needs
to do lots of preparations and calculations to determine exactly how and when each
shader needs to be executed. The responsibility of doing this is what Unity calls the
render pipeline.

The Render Pipeline is used to draw the objects of the scene. At first, it sounds like there
should be just one simple way of doing this, such as iterating over all the objects in the
scene and executing the shader pipeline with the shader specified in each object's material,
but it can be more complex than that. Usually, the main difference between one render
pipeline and another is how lighting and some advanced effects are calculated, but they
can differ in other ways.

In previous Unity versions, there was just one single render pipeline, which is now called
the built-in renderer. It was a pipeline that has all of the possible features you would need
for all kinds of projects, from mobile 2D graphics and simple 3D to cutting-edge 3D, just
like the ones you can find in consoles or high-end PCs. This sounds ideal, but actually, it
isn't – having one single, giant renderer that needs to be highly customizable to adapt to
all possible scenarios generates lots of overhead and limitations that cause more headaches
than creating a custom render pipeline. Luckily, the lasts versions of Unity introduced
the Scriptable Render Pipeline (SRP), a way to create render pipelines adapted for your
project.

Luckily, Unity doesn't want you to create your own render pipeline per project (a complex
task), so it created two custom pipelines for you that are ready to use: URP (formerly
called LWRP), which stands for universal render pipeline, and HDRP, which stands for
high-definition render pipeline. The idea is that you must choose one or the other based
on your project's requirements (unless you really need to create your own). URP, the one
we selected when creating the project for our game, is a render pipeline that's suitable for
most games that don't require lots of advanced graphics features, such as mobile games
or simple PC games, while HDRP is packed with lots of advanced rendering features for
high-quality games.

Introducing shaders 133

The latter requires high-end hardware to run, while URP runs on almost every
relevant target device. It is worth mentioning that you can swap between using a built-in
renderer, HDRP, and URP whenever you want, including after creating the project
(not recommended):

Figure 6.4 – Project wizard showing HDRP and URP templates

We could discuss how each is implemented and their differences, but again, this would fill
entire chapters; right now, the idea of this section is for you to know why we picked URP
when we created our project, since it has some restrictions we will encounter throughout
this book that we will need to take into account. So, it is good to know why we accepted
those limitations (to run our game on every relevant hardware). Also, we need to know
that we have chosen URP because it provides support for Shader Graph, the Unity tool
that we will be using in this chapter to create custom effects. Previous, Unity's built-in
pipelines didn't provide us with such a tool (aside from third-party plugins). Finally,
another reason to introduce the concept of URP is that it comes with lots of built-in
shaders that we will need to know about before creating our own to prevent reinventing
the wheel, as well as to adapt ourselves to those shaders. This is because if you came from
previous versions of Unity, the ones you know won't work here. This is exactly what we
are going to discuss in the next section of this book: the difference between URP's built-in
shaders.

134 Materials and Effects with URP and Shader Graph

URP's Built-in Shaders
Now that we know the difference between URP and other pipelines, let's discuss which
shaders come integrated with URP. Let's briefly describe the three most important shaders
in this pipeline:

• Lit: This is the replacement for the old standard shader. This shader is useful
for creating all kinds of realistic physics materials such as wood, rubber, metal,
skin, and combinations of them (such as a character with skin and metal armor).
It supports normal mapping, occlusion, metallic and specular workflows, and
transparencies.

• Simple Lit: This is the replacement for the old mobile/diffuse shader. As its
name suggests, this shader is a simpler version than Lit, meaning that its lighting
calculations are simpler approximations of how light works, getting fewer features
than its counterpart. When you have simple graphics without realistic lighting
effects, this is the best choice.

• Unlit: This is the replacement for the old unlit/texture shader. Sometimes, you
need objects without lighting whatsoever, and in that case, this is the shader for
you. No lighting doesn't mean an absence of light or complete darkness; it means
that the object has no shadows at all, and that it's fully visible without any shade.
Some simplistic graphics can work with this, relying on shadowing being baked
in the texture, meaning that the texture comes with the shadow. This is extremely
performant, especially for low-end devices such as mobile phones. Also, you have
other cases such as light tubes or screens, which are objects that can't receive
shadows because they emit light, so they will be seen at their full color even in
complete darkness. In the following screenshot, you can see a 3D model using an
unlit shader. It looks like it's being lit, but it's just the texture of the model that has
applied lighter and darker colors to different parts of the object:

Figure 6.5 – A Pod using an Unlit shader to simulate cheap lighting

Introducing shaders 135

Let's create an interesting disintegration effect with the simple Lit shader to demonstrate
its capabilities. You must do the following:

1. Download and import a Cloud Noise texture from any search engine:

Figure 6.6 – Cloud Noise Texture

2. Select the recently imported texture in the Project panel.
3. In the Inspector window, set the Alpha Source property to From Gray Scale. This

will calculate the alpha channel of the texture based on the grayscale of the image:

Figure 6.7 – Setting the Alpha Source property to From Gray Scale

Important Note
The alpha channel of a color is often associated with transparency, but you will
notice that our object won't be transparent. The alpha channel is extra color
data that can be used for several purposes when creating effects. In this case,
we will use it to determine which pixels are being de-integrated first.

136 Materials and Effects with URP and Shader Graph

4. Create a material by clicking the + icon in the Project view and selecting Material:

Figure 6.8 – Material creation button

5. Create a cube with the GameObject | 3D Object | Cube option using the top menu
of Unity:

Figure 6.9 – Cube creation

6. Drag the created material from the Project window to the cube to apply it.
7. Click the drop-down menu to the right of the Shader property in the Inspector

window and look for the Universal Render Pipeline | Simple Lit option. We could
also work with the default shader (Lit), but Simple Lit is going to be easier on
performance; besides, we won't be using the advanced features of Lit:

Figure 6.10 – Simple Lit Shader selection

Introducing shaders 137

8. Select the material. Then, in Base Map, select the recently downloaded cloud
texture.

9. Check the Alpha Clipping checkbox and set the Threshold slider to 0.5:

Figure 6.11 – Alpha Clipping – Threshold Material slider

10. You will see how, as you move the Alpha Clipping slider, the object starts to
disintegrate. Alpha Clipping discards pixels that have less alpha intensity than the
Threshold value:

Figure 6.12 – Disintegration effect with Alpha Clipping

11. Finally, set Render Face to Both to turn off Culling Shader Stage and see both
sides of the cube's faces:

Figure 6.13 – Double-sided render face

138 Materials and Effects with URP and Shader Graph

12. Take into account that the artist that creates the texture can configure the alpha
channel manually instead of calculating it from the grayscale, just to control what
the disintegration effect must look like, regardless of the texture's color distribution:

Figure 6.14 – Double-sided alpha clipping

The idea of this section is not to provide a comprehensive guide to all the properties of all
URP shaders, but to give you an idea of what a shader can do when configured properly
and when to use each of the integrated shaders. Sometimes, you can achieve the effect you
need just by using existing shaders, which happens 99% of the time for simple games, so
try to stick to them as much as you can. But if you really need to create a custom shader to
create a very specific effect, the next section will teach you how to use the URP tool called
Shader Graph.

Creating Shaders with Shader Graph
Now that we know how shaders work and about the existing shaders in URP, we have
a basic notion of when it is necessary to create a custom shader and when it is not. If you
really need to create one, then don't worry – this section will cover the basics of creating
effects with Shader Graph, a tool that creates effects using a visual node-based editor. It is
an easy tool to use when you are not used to coding.

In this section, we will discuss the following concepts of Shader Graph:

• Creating our first Shader Graph

• Using textures

• Combining textures

• Applying transparency

• Creating vertex effects

Creating Shaders with Shader Graph 139

Let's start by learning how to create and use a Shader Graph.

Creating our first Shader Graph
Shader Graph is a tool that allows us to create custom effects using a node-based system.
An effect in Shader Graph may look as follows, where you can see the nodes that are
required to create a hologram effect:

Figure 6.15 – Shader Graph with nodes to create a custom effect

We will discuss what those nodes do later while going through a step-by-step effect
example, but in the preceding screenshot, you can see how the author created and
connected several nodes, along with the interconnected boxes, each one going through
a specific process to achieve the desired effect. The idea of creating effects with Shader
Graph is to learn which specific nodes you need and how to connect them properly,
to create an "algorithm" or a series of ordered steps to achieve a specific result. This is
similar to the way we code the gameplay of the game, but this graph has been adapted and
simplified just for effect purposes.

140 Materials and Effects with URP and Shader Graph

To create and edit our first Shader Graph, do the following:

1. In the Project window, click the + icon and find the Shader | Univeral Render
Pipeline | Lit Shader Graph option. This will create a Shader Graph using PBR
mode, meaning that this shader will support lighting effects (unlike unlit graphs):

Figure 6.16 – Creating a PBR Shader Graph

2. Name it Water. If you don't rename the asset, remember that you can select the
asset, right-click it, and select Rename:

Figure 6.17 – Shader Graph Asset

3. Create a new material called WaterMaterial and set Shader to Shader Graphs/
Water. If, for some reason, Unity doesn't allow you to do that, try right-clicking on
Water Graph and clicking Reimport. As you can see, the Shader Graph we have
created now appears as a shader in the material, meaning that we have already
created a custom shader:

Figure 6.18 – Setting a Shader Graph as a Material Shader

Creating Shaders with Shader Graph 141

4. Create a plane with the GameObject | 3d Object | Plane option.
5. Drag the material to the plane to apply it.

With that, you have created your first custom shader and applied it to a material. So far,
it doesn't look interesting at all – it's just a gray effect. But now, it's time to edit the graph
to unlock its full potential. As the name of the graph suggests, we will be creating a water
effect in this chapter to illustrate several nodes of the Shader Graph toolset and how to
connect them, so let's start by discussing the master node. When you open the graph by
double-clicking the shader asset, you will see the following:

Figure 6.19 – Master node with all the properties needed to calculate the object's appearance

142 Materials and Effects with URP and Shader Graph

All nodes have input pins, which contain the data needed to work, and output pins,
which are the results of its process. As an example, in a sum operation, we will have
two input numbers and an output number, which is the result of the sum. In this case,
you can see that the master node just has inputs, and that's because all the data that
enters the master node will be used by Unity to calculate the rendering and lighting of the
object – things such as the desired object color or texture (Base Color input pin), how
smooth it is (Smoothness input pin), or how much metal it contains (Metallic input pin).
There are properties that will affect how the lighting will be applied to the object. In a
sense, the input of this node is the output data of the entire graph and the ones we need to
fill, although this is not necessary for all of them.

Here, you can see that the master node is split between a Vertex section and a Fragment
section. The first is capable of changing the mesh of the object we are modifying to deform
it, animate it, and so on, while the latter will change what it will look like, which textures
to use, how will be illuminated, and so on. Let's start by exploring how we can change that
data of the Fragment section:

1. Double-click Shader Graph to open its editor window.
2. Click inside the gray rectangle to the left of the Base Color input pin:

Figure 6.20 – Base Color node input pin

3. In the color picker, select a light blue color so that it resembles water. Select the
bluish part of the circle around the picker and then a shade of that color in the
middle rectangle:

Figure 6.21 – Color picker

Creating Shaders with Shader Graph 143

4. Set Smoothness to 0.9:

Figure 6.22 – Smoothness PBR Master node input pin

5. Click the Save Asset button at the top-left of the window:

Figure 6.23 – Shader Graph saving options

6. Go back to the Scene view and check that the plane is light blue and with the sun
reflected on it:

Figure 6.24 – Initial Shader Graph results

As you can see, the behavior of the shader varies based on the properties you set in the
master node, but so far, doing this is no different than creating an unlit shader and setting
up its properties; the real power of Shader Graph is when you use nodes that perform
specific calculations as inputs of the master node. We will start by looking at the texturing
nodes, which allow us to apply textures to our model.

144 Materials and Effects with URP and Shader Graph

Using textures
The idea of using textures is to have an image applied to the model so that we can paint
different parts of the models with different colors. Remember that the model has a UV
map, which allows Unity to know which part of the texture will be applied to which part
of the model:

Figure 6.25 – On the left, a face texture; on the right, the same texture applied to a face mesh

We have several nodes to perform this task, with one of them being Sample Texture 2D,
a node that has two main inputs. First, it asks us for the texture to sample or apply to the
model, and then the UV. You can see this in the following screenshot:

Figure 6.26 – Sample Texture node

Creating Shaders with Shader Graph 145

As you can see, the default value of the Texture input node is None, so there's no texture
by default, which means we need to manually specify that. For UV, the default value is
UV0, meaning that, by default, the node will use the main UV channel of the model, and
yes, a model can have several UVs set. For now, we will stick with the main one, since if
you are not sure what that means, UV0 is the safest option. Let's try this node by doing the
following:

1. Download and import a tileable water texture from the internet:

Figure 6.27 – Tileable water texture

2. Select the texture and be sure that the Wrap Mode property of the texture is set to
Repeat. This will allow us to repeat the texture as we did in the terrain because the
idea is to use this shader to cover large water areas:

Figure 6.28 – Texture Repeat mode

3. In Water Shader Graph, right-click in an empty area of Shader Graph and select
Create Node:

Figure 6.29 – Shader Graph – Create Node option

146 Materials and Effects with URP and Shader Graph

4. In the search box, write Sample texture; all the sampler nodes will show up.
Double-click Sample Texture 2D. If, for some reason, you can't double-click the
option, right-click on it first and then try again. There is a known bug regarding this
tool, and this is the workaround:

Figure 6.30 – Sample Texture node search

5. Click in the circle to the left of the Texture input pin of the Sample Texture 2D
node. This will allow us to pick a texture to sample – just select the water one. You
will see that the texture can be previewed in the bottom part of the node:

Figure 6.31 - Sample Texture node with a texture in its input pin

Creating Shaders with Shader Graph 147

6. Drag the output pin, RGBA, from the Sample Texture 2D node to the Base Color
input pin of the master node:

Figure 6.32 – Connecting the results of a Texture sampling with the Base Color pin of the master node

7. Click the Save Asset button at the top-left part of the Shader Graph editor and look
at the changes in the Scene view:

Figure 6.33 – Results of applying a Texture in our Shader Graph

148 Materials and Effects with URP and Shader Graph

As you can see, the texture has been applied to the model, but if you take into account
that the default plane has a size of 10x10 meters, then the ripples of the water seem too
big, so let's tile the texture! To do that, we need to change the UVs of the model, making
them bigger. Having bigger UVs sounds like the texture should also get bigger. However,
take into account that we are not making the object bigger; we are just modifying the UV,
so the same object size will read more of the texture. This means that the bigger texture
sample area will make repetitions of the texture and put them in the same object size,
which will then be compressed inside the model area. To do so, follow these steps:

1. Right-click in any empty space and click New Node to search for the UV node:

Figure 6.34 – Searching for the UV node

2. Using the same method, create a Multiply node.
3. Drag the Out pin of the UV node to the A pin of the Multiply node to connect

them.
4. Set the B pin's input value of Multiply to (4,4,4,4):

Figure 6.35 – Multiplying the UVs by 4

5. Drag the Out pin of the Multiply node to the UV of the Sample Texture 2D node
to connect them:

Creating Shaders with Shader Graph 149

Figure 6.36 – Using the multiplied UVs to sample the Texture

6. If you save the graph and go back to the Scene view, you will see that the ripples are
now smaller, since we have tiled the UVs of our model. You can also see this in the
preview of the Sampler Texture 2D node:

Figure 6.37 – Results of mulitplying the model's UV

150 Materials and Effects with URP and Shader Graph

Another interesting thing we can do now is apply an offset to the texture to move it. The
idea is that even if the plane is not moving, we will simulate the flow of the water through
it, by moving just the texture. Remember, the responsibility of determining the part of the
texture to apply to each part of the model belongs to the UV, so if we add values to the UV
coordinates, we will be moving them, generating a texture sliding effect. To do so, follow
these steps:

1. Create an Add node to the right of the UV node.
2. Connect the Out pin of UV to the A pin of the Add node:

Figure 6.38 – Adding values to the UVs

3. Create a Time node to the left of the Add node.
4. Connect the Time node to the B pin of the Add node:

Figure 6.39 – Adding times to the UVs

Creating Shaders with Shader Graph 151

5. Connect the Out pin of the Add node to the A pin of the Multiply node:

Figure 6.40 – Added and multiplied UVs as an input of our Sample Texture

6. Save and view the water moving in the Scene view. If you don't see it moving, click
the layers icon from the top bar of the scene and check Always Refresh:

Figure 6.41 – Enabling Always Refresh to preview the effect

152 Materials and Effects with URP and Shader Graph

7. If you feel like the water is moving too fast, try to use the Multiply node to make
the time a smaller value. I recommend that you try it by yourself before looking at
the following screenshot, which provides the answer to this:

Figure 6.42 – Multiplying time to make the texture slower

8. If you feel like the graph is starting to get bigger, try to hide some of the node
previews by clicking the up arrow that appears on the preview when you move the
mouse over it:

Figure 6.43 – Hiding the preview from the graph nodes

Also, you can hide unused node pins by selecting the node and clicking the arrow at the
top right:

Figure 6.44 – Hiding unused pins from the graph nodes

Creating Shaders with Shader Graph 153

So, to recap, first, we added the time to the UV to move it and then multiplied the result
of the moved UV to make it bigger to tile the texture. It is worth mentioning that there's
a tiling and offset node that does this process for us, but I wanted to show you how
performing a simple multiplication to scale the UV and an add operation to move it
generated a nice effect; you can't begin imagine all of the possible effects you can achieve
with other simple mathematical nodes! Now, let's explore other usages of mathematical
nodes so that we can combine textures.

Combining Textures
Even though we have used nodes, we haven't created anything that can't be created using
regular shaders, but that's about to change. So far, we can see the water moving, but it stills
look static, and that's because the ripples are always the same. We have several techniques
to generate ripples, and the simplest one would be to combine two water textures moving
in different directions to mix their ripples, and actually, we can simply use the same
texture, just flipped, to save some memory. To combine these textures, we will sum them
and then divide them by 2, so basically, we are calculating the average of the textures! Let's
do that by performing the following steps:

1. Select all the nodes between Time and Sampler 2D (including them), create
a selection rectangle by clicking in any empty space in the graph, hold and drag
while clicking, and then release when all the target nodes have been covered:

Figure 6.45 – Selecting several nodes

154 Materials and Effects with URP and Shader Graph

2. Right-click and select Copy, and then right-click again and select Paste.
Alternatively, use the classic Ctrl + C, Ctrl + V commands (Command + C,
Command + V on Mac), or just Ctrl + D (Command + D).

3. Move the copied nodes below the original ones:

Figure 6.46 – Duplicating nodes

4. For the copied nodes, set the B pin of the Multiply node connected to Sample
Texture 2D to (-4,-4,-4,-4). You will see that this flipped the texture.

Creating Shaders with Shader Graph 155

5. Also, set the B pin of the Multiply node, which is connected to the Time node
at -0.1:

Figure 6.47 – Multiplying values

6. Create an Add node to the right of both Sampler Texture 2D nodes and connect
the outputs of those nodes to the A and B input pins of the Add node:

Figure 6.48 – Adding two Textures

156 Materials and Effects with URP and Shader Graph

7. Here, you can see that the resulting combination is too bright because we have
summed up the intensity of both textures. So, let's fix that by multiplying the Out
pin of the Add node by (0.5,0.5,0.5,0.5), which will divide each resulting
color channel by 2, averaging the color:

Figure 6.49 – Dividing the sum of two textures to get the average

8. Connect the Out pin of the Multiply node to the Base Color pin of the master node
to apply all of those calculations as the color of the object.

9. Save the asset and check the results in the Scene view:

Figure 6.50 – Results of texture blending

You can keep adding nodes to make the effect more diverse, such as by using Sinus nodes
to apply non-linear movements and so on, but I will let you learn that by experimenting
with this by yourself. For now, we will stop here. As always, this topic deserves a full book,
and this chapter intends to give you a small taste of this powerful Unity tool. I recommend
that you look for other Shader Graph examples on the internet to learn about other
usages for the same nodes and, of course, new nodes. One thing to consider here is that
everything we just did is applied to the fragment shader stage of the shader pipeline we
discussed earlier. Now, let's use the blending shader stage to apply some transparency to
the water.

Creating Shaders with Shader Graph 157

Applying transparency
Before declaring our effect finished, we can make the water a little bit transparent.
Remember that the shader pipeline has a blending stage, which has the responsibility of
blending each pixel of our model into the image being rendered on this frame. The idea is
to make our Shader Graph modify that stage to apply an alpha blending, a blending that
combines our model and the previous rendered models based on the alpha value of our
model. To get that effect, perform the following steps:

1. Look for the Graph Inspector window floating around the Shader Graph editor.
2. Click the Graph Settings tab.
3. Set the Surface property to Transparent.
4. Set the Blend property to Alpha, if it isn't already at that value:

Figure 6.51 – Graph Inspector transparency settings

5. Set the Alpha input pin of the master node to 0.5:

Figure 6.52 – Setting the Alpha input pin of the Master node

158 Materials and Effects with URP and Shader Graph

6. Save the graph and check out the transparency that's being applied in the Scene
view. If you can't see the effect, just put a cube in the water to make the effect
more evident:

Figure 6.53 – Shadows from the water being applied to a cube

7. Here, you can see the shadows that the water is casting on our cube. That's because
Unity doesn't detect that the object is transparent, so it thinks that it must cast
shadows. So, let's disable them. Click on the water plane and look for the Mesh
Renderer component in the Inspector window. If you don't see the shadow, click
the light bulb icon at the top of the Scene view:

Figure 6.54 – Enabling lights in the Scene view

8. In the Lighting section, set Cast Shadows to Off; this will disable shadow casting
from the plane on the underwater parts of the cube:

Creating Shaders with Shader Graph 159

Figure 6.55 – Disabling shadow casting

Adding transparencies is a simple process but has its caveats, such as the shadow problem,
and in more complex scenarios, it can have other problems, so I would suggest that you
avoid using transparencies unless it is necessary. Actually, our water can live without
transparencies, especially when we apply this water to the river basin around the base
since we don't need to see the part under the water, but the idea is for you to know what
options you have. In the following screenshot, you can see how we have put a giant plane
with this effect below our base, big enough to cover the entire basin:

Figure 6.56 – Using our water in the main scene

Now that we modified how the object looks through the Fragment Master Node section,
let's discuss how to use the Vertex section to apply a mesh animation to our water.

160 Materials and Effects with URP and Shader Graph

Creating Vertex Effects
So far, we have applied water textures to our water, but it's still a flat plane with nice
textures. We can go further than this and make ripples not only via textures, but also by
animating the mesh. To do so, we will apply the noise texture we used at the beginning of
this chapter in the shader. However, instead of using it as another color to add to the base
color of the shader, we will use it to offset the Y position of the vertexes of our plane. Due
to the chaotic nature of the noise texture, the idea is that we will apply a different amount
of offset to different parts of the model, so that we can emulate ripples:

Figure 6.57 – Default plane mesh subdivided in a grid of 10x10 with no offset

To accomplish something like this, you can modify the Vertex section of your shader so
that it looks like this:

Figure 6.58 – Ripples vertex effect

Creating Shaders with Shader Graph 161

In the graph, you can see how we are creating a Vector whose Y axis contains the result of
the texture sampling the noise texture we downloaded from the internet at the beginning
of this chapter. The idea behind this is to create a Vector pointing upward whose length
depends on the texture. Basically, we created a Y offset based on the texture. This texture
has an irregular yet smooth pattern, so it can emulate the behavior of the tide. Please
notice that here, we used Sample Texture 2D LOD instead of Sample Texture 2D; the
latter doesn't work in the Vertex section, so keep that in mind. Then, we multiplied the
result by 0.3 to reduce the height of the offset to add, and then we added the result to
the Position node, which the Space property has configured in Object with the needed
position space to work with the Vertex section (search for object versus world
space for more information about this). Finally, the result is connected to the Position
node of the Vertex section.

If you save this, you will see something similar to the following:

Figure 6.59 – Ripples vertex effect applied

Of course, in this case, the ripples are static because we didn't add any time offset to the
UV, as we did previously. The following screenshot shows how to add that, but before
looking at it, I recommend that you try to resolve this by yourself first, as a personal
challenge:

Figure 6.60 – Animated ripples vertex effect graph

162 Materials and Effects with URP and Shader Graph

As you can see, we are taking the original UV and adding the time, multiplied by any
factor, so that it will slowly move, the same as we did previously with our water texture.
You can keep changing what this looks like with different textures by multiplying the
offset to increase or reduce the height of the ripples, applying interesting math functions
such as Sine, and so much more, but for now, let's wrap this up.

Summary
In this chapter, we discussed how shaders work in GPUs and how to create our first
simple shader to achieve a nice water effect. Creating shaders is a complex and interesting
job, and in a team, there are usually one or more people in charge of creating all of these
effects, known as technical artists. So, as you can see, this topic can expand to a whole
career. Remember, this book intends to give you a small taste of all the possible roles
you can take on in the industry, so if you liked this role, I suggest that you start reading
shader-exclusive books. You have a long but super interesting road ahead of you.

That's enough about shaders for now! In the next chapter, we will look at how to improve
our graphics and create visual effects with particle systems.

7
Visual Effects with

Particle Systems and
Visual Effect Graph

In this chapter, we will continue learning about visual effects we can use for our game.
We will be discussing particle systems, which we can use to simulate fire, waterfalls,
smoke, and all kinds of fluids. Also, we will look at the two Unity particle systems for
creating these kinds of effects, Shuriken and Visual Effect Graph, with the latter being
more powerful than the first, but requiring more hardware.

In this chapter, we will cover the following topics:

• Introduction to particle systems

• Creating fluid simulations

• Creating complex simulations with Visual Effect Graph

164 Visual Effects with Particle Systems and Visual Effect Graph

Introduction to particle systems
All the graphics and effects we have created so far use static meshes, 3D models that
can't be skewed, bent, or deformed in any way. Fluids such as fire and smoke clearly
can't be represented using this kind of mesh. However, we can simulate these effects
with a combination of static meshes, and this is where particle systems are useful.

Particle systems are objects that emit and animate lots of particles or billboards, which
are simple quad meshes that face the camera. Each particle is a static mesh, but rendering,
animating, and combining lots of them can generate the illusion of a fluid. In the
following figure, on the left, you can see a smoke effect using particle systems, while on the
right, you can see the Wireframe view of the same particles. There, you can see the quads
that create the illusion of smoke, which is done by applying a smoke texture to each of
the particles and animating them so that they spawn at the bottom and move up in
random directions:

Figure 7.1 – Left, a smoke particle system; right, the wireframe of the same system

In this section, we will cover the following concepts related to particles:

• Creating a basic particle system

• Using advanced modules

Let's start by discussing how to create our very first particle system.

Introduction to particle systems 165

Creating a basic particle system
To illustrate how to create a particle system, let's create an explosion effect. The idea is to
spawn lots of particles at once and spread them in all directions. Let's start by creating
a particle system and configuring the basic settings it provides to change its default
behavior. To do so, follow these steps:

1. Select the GameObject | Effects | Particle System option:

Figure 7.2 – Particle System option

2. You can see the effect in the following screenshot. The default behavior is a column
of particles going up, similar to the smoke effect shown previously. Let's change that:

Figure 7.3 – Default appearance of the particle system

166 Visual Effects with Particle Systems and Visual Effect Graph

3. Click the created object in the scene and look at the Inspector window.
4. Open the Shape section by clicking on the title. Here, you can specify the particle

emitter shape where the particles are going to be spawned.
5. Change the Shape property to Sphere. Now, the particles should move in all

possible directions instead of following the default cone:

Figure 7.4 – Shape properties

6. In the particle system module (usually known as Main), set Start Speed to 10. This
will make the particles move faster.

7. In the same module, set Start Lifetime to 0.5. This specifies how long a particle
will live. In this case, we have given a lifetime of half a second. In combination with
the speed (10 meters per second), this makes the particles disappear after moving
5 meters:

Figure 7.5 – Main Particle System module

8. Open the Emission module and set Rate over Time to 0. This property specifies
how many particles will be emitted per second, but for an explosion, we need
a burst of particles, so we won't emit particles constantly over time in this case.

9. In the Bursts list, click the + button at the bottom. Then, in the created item in the
list, set the count column to 100:

Introduction to particle systems 167

Figure 7.6 – Emission module

10. In the Main module (the one titled Particle System), set Duration to 1 and
uncheck Looping. In our case, the explosion won't repeat constantly; we just need
one explosion:

Figure 7.7 – Looping checkbox

11. Now that the particle isn't looping, you need to manually hit the Play button in the
Particle Effect window, in the bottom-right part of the Scene view, to see
the system:

Figure 7.8 – Particle system playback controls

12. Set Stop Action to Destroy. This will destroy the object when the Duration time
has passed. This will work when you are running the game, so you can safely use
this configuration while editing your scene:

Figure 7.9 – Stop Action set to Destroy

168 Visual Effects with Particle Systems and Visual Effect Graph

13. Set Start Size of the Main module to 3. This will make the particles bigger so that
they seem denser:

Figure 7.10 – Particle system Start Size

14. Click on the down-pointing arrow to the right of the Start Rotation property of the
Main module and select Random Between Two Constants.

15. Set Start Rotation to 0 and 360 for the two input values that appeared after the
previous step. This allows us to give the particles a random rotation when they
spawn to make them look slightly different from each other:

Figure 7.11 – Random Start Rotation

16. Now, the particles behave as expected, but they don't look as expected. Let's change
that. Create a new Material by clicking on the + icon in the Project view and
selecting Material. Call it Explosion.

17. Set its shader to Universal Render Pipeline/Particles/Unlit. This is a special shader
that is used to apply a texture to the Shuriken particle system:

Figure 7.12 – Particle system material shader

18. Download a smoke particle texture from the internet or Unity's Asset Store. In this
case, it is important to download one with a black background; ignore the others:

Figure 7.13 – Smoke particle texture

Introduction to particle systems 169

19. Set this texture as the Base Map of the material.
20. Set Surface Type to Transparent and Blending Mode to Additive. Doing this will

make the particles blend with each other, instead of being drawn over each other,
to simulate a big mass of smoke instead of individual smoke puffs. We are using
Additive mode because our texture has a black background and because we want to
create a lighting effect (the explosion will brighten the scene):

Figure 7.14 – Surface Options for particles

21. Drag your material to the Material property of the Renderer module:

Figure 7.15 – Particle material settings

22. Now, your system should look like this:

Figure 7.16 – The result of the previous settings

170 Visual Effects with Particle Systems and Visual Effect Graph

In the previous steps, we have changed how the particles or billboards will spawn (using
the Emission module), in which direction they will move (using the Shape module), how
fast they will move, how long they will last, how big they will be (using the Main module),
and what they will look like (using the Renderer module). Creating particle systems
is a simple case of configuring their different settings. Of course, doing this properly is
an art on its own; it requires creativity and knowledge of how to use all the settings and
configurations they provide. So, to increase our configuration toolbox, let's discuss some
advanced modules.

Using advanced modules
Our system looks nice, but we can improve it a lot, so let's enable some new modules
to increase its quality:

1. Check the checkbox on the left of the Color over Lifetime module to enable it:

Figure 7.17 – Enabling the Color over Lifetime module

2. Open the module by clicking on the title. Then, click the white bar on the right
of the Color property. This will open the gradient editor.

3. Click slightly to the right of the top-left white marker in the bar to create a new
marker. Also, click slightly to the left of the top-right white marker to create the
fourth marker. These markers will allow us to specify the transparency of the
particles during its lifetime:

Figure 7.18 – Color over Lifetime in gradient editor

4. If you have created any unwanted markers, just drag them outside the window
to remove them.

5. Click on the top-left marker (not the one we created – the one that was already
there) and set the Alpha slider at the bottom to 0. Do the same with the top-right
marker, as shown in the following screenshot. Now, you should see the particles
fading away instead of popping out of existence when the explosion is finishing:

Introduction to particle systems 171

Figure 7.19 – Fading in and fading out the gradient

6. Enable the Limit Velocity over Lifetime module by clicking on its checkbox.
7. Set the Dampen setting to 0.1. This will make the particles slowly stop instead

of continuing to move:

Figure 7.20 – Dampening the velocity to make the particles stop

8. Enable Rotation over Lifetime and set Angular Velocity between -90 and 90.
Remember that you should set the value in Random Between Two Constants by
clicking on the down-pointing arrow to the right of the property. Now, the particles
should rotate slightly during their lifetimes to simulate more motion:

Figure 7.21 – Random rotation velocity

Some of these effects will be very subtle, given the short lifetime we set in the Main
Module when we just created the particle. Feel free to increase the lifetime value to
see those effects in more detail, but note that this could lead to an excessive number
of particles if you spawn them frequently, thereby reducing performance. Just be wary
about how they impact your performance when tweaking those values.

172 Visual Effects with Particle Systems and Visual Effect Graph

As you can see, there are lots of extra modules that can be enabled and disabled to add
layers of behavior on top of the existing ones, so again, use them creatively to create all
kinds of effects. Remember that you can create Prefabs of these systems to replicate them
all over your scene. I also recommend searching for and downloading particle effects
from the Asset Store to see how other people have used the same system to create amazing
effects. That is the best way to learn how to create them – viewing a variety of different
systems – and that is actually what we are going to do in the next section: create
more systems!

Creating fluid simulations
As we mentioned previously, the best way to learn how to create particle systems is to
keep looking for already-created particle systems, and then explore how people have used
various system settings to create completely different simulations.

In this section, we will learn how to create the following effects using particle systems:

• A waterfall effect

• A bonfire effect

Let's start with the simplest one: the waterfall effect.

Creating a waterfall effect
In order to do this, follow these steps:

1. Create a new particle system (GameObject | Effects | Particle System).
2. Set Shape to Edge and its Radius to 5 in the Shape module. This will make the

particles spawn along a line of emission:

Figure 7.22 – Edge shape

3. Set Rate over Lifetime of the Emission module to 50.

Creating fluid simulations 173

4. Set Start Size of the Main module to 3 and Start Lifetime to 3:

Figure 7.23 – Main module settings

5. Set Gravity Modifier of the Main module to 0.5. This will make the particles fall:

Figure 7.24 – Gravity Modifier in the Main module

6. Use the same Explosion material we created previously for this system:

Figure 7.25 – Explosion particle material

7. Enable Color Over Lifetime and open the Gradient editor.
8. Click the bottom-right marker. This time, you should see a Color picker instead of

an alpha slider. The top markers allow you to change the transparency over time,
while the bottom ones change the color of the particles over time. Set a light blue
color in this marker:

Figure 7.26 – White to light blue gradient

174 Visual Effects with Particle Systems and Visual Effect Graph

As a challenge, I suggest that you add a little particle system where this one ends to create
some water splashes, simulating the water colliding with a lake at the bottom. Now, we
can add this particle system to one of the hills of our scene to decorate it, as shown in the
following screenshot. I have adjusted the system a little bit so that it looks better in this
scenario. I challenge you to tweak it by yourself to make it look like this:

Figure 7.27 – The waterfall particle system being applied to our current scene

Now, let's create another effect: a bonfire.

Creating a bonfire effect
In order to create this, do the following:

1. Create a particle system (GameObject | Effects | Particle System).
2. Look for a Fire Particle Texture Sheet texture on the internet or the Asset Store.

This kind of texture should look like a grid of different flame textures. The idea is to
apply a flame animation to our particles, which swaps all those mini textures:

Figure 7.28 – Particles texture sprite sheet

Creating fluid simulations 175

3. Create a particle material that uses the Univeral Render Pipeline/Particles/Unlit
shader.

4. Set the flame's sprite sheet texture as the Base Map.
5. Set the color to the right of the Base Map to white.
6. Set this material as the particle material. Remember to set Surface Type to

Transparent and Blending Mode to Additive:

Figure 7.29 – A material with a particle sprite sheet

7. Enable the Texture Sheet Animation module and set the Tiles property according
to your fire sheet. In my case, I have a grid of 4x4 sprites, so I put 4 in X and 4 in Y.
After this, you should see the particles swapping textures:

Figure 7.30 – Enabling Texture Sheet Animation

8. Set Start Speed to 0 and Start Size to 1.5 in the Main module.
9. Set Radius to 0.5 in Shape.
10. Create a second particle system and make it a child of the fire system:

Figure 7.31 – Parenting particle systems

176 Visual Effects with Particle Systems and Visual Effect Graph

11. Apply the Explosion material from the explosion example.
12. Set Angle to 0 and Radius to 0.5 in the Shape module.

The system should look like this:

Figure 7.32 – Result of combining the fire and smoke particle systems

As you can see, you can combine several particle systems to create a single effect. Take
care when doing this because it's easy to emit too many particles and affect the game's
performance. Particles are not cheap and may cause a reduction in the game's Frames Per
Second (FPS) if you are not cautious when using them.

So far, we have explored one of the Unity systems that you can use to create these kinds of
effects, and while this system is enough for most situations, Unity recently released a new
one that can generate more complex effects, called Visual Effect Graph. Let's learn how to
use it and see how it differs from Shuriken.

Creating complex simulations with Visual Effect Graph 177

Creating complex simulations with Visual
Effect Graph
The particle system we have used so far is called Shuriken, and it handles all calculations
in the CPU. This has pros and cons. A pro is that it can run on all possible devices that
Unity supports, regardless of their capabilities (all of them have CPUs), but a con is that
we can exceed CPU capabilities easily if we are not cautious regarding the number of
particles we emit. Modern games require more complex particle systems to generate
believable effects, and this kind of CPU-based particle system solution has started to reach
its limit. This is where Visual Effect Graph comes in:

Figure 7.33 – Left, a massive particle system; right, an example of a Visual Effect Graph

Visual Effect Graph is a GPU-based particle system solution, meaning that the system
is executed in the video card instead of the CPU. That's because video cards are far more
efficient at executing lots and lots of little simulations, like the ones each particle of a system
needs, so we can reach far higher orders of magnitude in the number of particles with the
GPU than we can with the CPU. The con here is that we need a fairly modern GPU that
has compute shader capabilities to support this system, so we will exclude certain target
platforms using this system (forget about most mobile phones), so use it if your target
platform supports it (mid- to high-end PCs, consoles, and some high-end phones).

In this section, we will discuss the following concepts of Visual Effect Graph:

• Installing Visual Effect Graph

• Creating and analyzing a Visual Effect Graph

• Creating a rain effect

Let's start by learning how we can add support for Visual Effect Graph in our project.

178 Visual Effects with Particle Systems and Visual Effect Graph

Installing Visual Effect Graph
So far, we have used lots of Unity features that were already installed in our project, but
Unity can be extended with a myriad of plugins, both official and third-party ones. Visual
Effect Graph is one of those features that needs to be independently installed if you are
using Universal Render Pipeline (URP). We can do that using Package Manager, a Unity
window dedicated to managing official Unity plugins.

Something to think about when you are installing those packages is that each package
or plugin has its own version, independent of the Unity version. This means that you
can have Unity 2021.1 installed, but Visual Effect Graph 11.0.0 or 11.1.0, or whatever
version you want, and you can update the package to a newer version without upgrading
Unity. This is important because some versions of these packages require a minimum
version of Unity. Moreover, some packages depend on other packages – specific versions
of those packages – so we need to ensure we have the correct versions of every package
to ensure we have compatibility. To be clear, the dependencies of a package are installed
automatically, but sometimes, we can install them separately. So, in that scenario, we need
to check the required version. It sounds complicated, but it is simpler than it sounds.

At the time of writing this book, to get Visual Effect Graph working properly, we need
version 11.0.0, and also we need to have Universal RP version 11.0.0. Yes, Universal RP is
another feature you can install using Package Manager, but since we created the project
using the Universal RP template, it was already installed for us with the proper version.
However, this may not always be true, so we must check that. With that in mind, let's
install Visual Effect Graph, as follows:

1. In the top menu of Unity, go to Window | Package Manager:

Figure 7.34 – Package Manager location

2. Remember to ensure Package Manager is in Unity Registry mode so that you can
see Unity's official packages list:

Creating complex simulations with Visual Effect Graph 179

Figure 7.35 Package Manager – Unity Registry mode

3. From the left column, locate Universal RP and check whether it says 11.0.0 or
higher to the right. If it does, jump to step 6. Remember, though, that a higher
version may look different or have different steps you must follow to use it than the
ones displayed in this chapter:

Figure 7.36 – Universal RP package

4. If you don't have version 11.0.0 or higher, click on the right-pointing arrow to the
left to display a list of all possible versions to install. Locate 11.0.0 and click it. In my
case, it says currently installed as I have the proper version and there are no others
available for Unity 2021:

Figure 7.37 – Package version selector

5. Click on the Update to 11.0.0 button in the bottom-right corner of the window and
wait for the package to update.

6. Look for the Visual Effect Graph package on the left-hand side of the window.
As you did with Universal RP, make sure you select version 11.0.0 or higher
(whichever is closest):

Figure 7.38 – Visual Effect Graph package

7. Click the Install button on the bottom right of the window and wait for the package
to install:

Figure 7.39 – Install button

180 Visual Effects with Particle Systems and Visual Effect Graph

8. Sometimes, it is recommended to restart Unity after installing these packages, so
save your changes and restart Unity.

Now that we have installed Visual Effect Graph, let's create our first particle system using it.

Creating and analyzing a Visual Effect Graph
The philosophy behind creating a particle system using Visual Effect Graph is similar to
the regular Particle System. We will chain and configure modules as part of the behavior
of the particles, each module adding some specific behavior. However, the way we do this
is very different than what we usually do with Shuriken. First, we need to create a Visual
Effect Graph, an asset that will contain all the modules and configurations, and then
make a GameObject play the graph. Let's do that by performing the following steps:

1. In the Project window, click on the + button and look for Visual Effects | Visual
Effect Graph:

Figure 7.40 – Visual Effect Graph

2. Create an empty GameObject using the Game Object | Create Empty option:

Figure 7.41 – Empty GameObject creation

3. Select the created object and look at the Inspector window.
4. Using the Add Component search bar, look for the Visual Effect component and

click on it to add it to the object:

Figure 7.42 – Adding a component to Visual Effect Graph

Creating complex simulations with Visual Effect Graph 181

5. Drag the Visual Effect asset we created to the Asset Template property of the
Visual Effect component in our GameObject:

Figure 7.43 – Visual Effect using the previously created Visual Effect asset

6. You should see clock particles being emitted from our object:

Figure 7.44 – Default Visual Effect Asset results

182 Visual Effects with Particle Systems and Visual Effect Graph

Now that we have a base effect, let's create something that requires a lot of particles, such
as dense rain. Before doing so, we will explore some core concepts of Visual Effect Graph.
If you double-click the Visual Effect asset, you will see the following editor:

Figure 7.45 – Visual Effect Graph editor window

This window is composed of several interconnected nodes, generating a flow of actions to
be executed. As with Shader Graph, you can navigate this window by holding down the
Alt key (Option on Mac) and dragging over the empty areas of the graph with the mouse.
At first, it seems similar to Shader Graph, but it works a little bit differently, so let's study
each section of the default graph.

The first area to explore is the dotted one that contains three nodes. This is what Unity
calls a System. A System is a set of nodes that defines how a particle will behave, and you
can have as many as you want, which is the equivalent of having several particle system
objects. Each System is composed of Contexts, the nodes inside the dotted area, and in
this case, we have Initialize Particle, Update Particle, and Output Particle Quad. Each
Context represents a different stage of the particle system's logic flow, so let's define what
each context in our graph does:

Creating complex simulations with Visual Effect Graph 183

• Initialize Particle: This defines the initial data of each emitted particle, such as
position, color, speed, and size. It is similar to the Start properties in the Main
module of the particle system we saw at the beginning of this chapter. The logic in
this node will only execute when a new particle is emitted.

• Update Particle: Here, we can apply modifications to the data of the living particles.
We can change particle data such as the current velocity or size of all the frames.
This is similar to the Over Time nodes of the previous particle system.

• Output Particle Quad: This Context will be executed when the particle needs to be
rendered. It will read the particle data to see where to render, how to render, which
texture and color to use, and different visual settings. This is similar to the Renderer
module of the previous particle system.

Inside each Context, apart from some base configurations, we can add Blocks. Each Block
is an action that will be executed in the context. We have actions that can be executed in
any Context and then some specific Context actions. As an example, we can use an Add
Position Block in the Initialize Particle Context to move the initial particle position,
but if we use the same Block in the Update Particle Context, it will move the particle
constantly. So, basically, Contexts are different situations that occur in the life of the
particle, and Blocks are actions that are executed in those situations:

Figure 7.46 – A Set Velocity Random block inside the Initialize Particle context. This sets the initial
velocity of a particle

Also, we can have Standalone Contexts, which are Contexts outside systems, such as
Spawn. This Context is responsible for telling the System that a new particle needs to be
created. We can add Blocks to specify when the context will tell the system to create the
particle, such as at a fixed rate over time and bursts. The idea is that Spawn will create
particles according to its blocks, while a System is responsible for initializing, updating,
and rendering each of them, again, according to the blocks we set up inside each of those
Contexts.

So, we can see that there are lots of similarities with Shuriken, but the way we create
a system here is quite different. Let's reinforce this by creating a rain effect, which will
require lots of particles. This is a nice use case for Visual Effect Graph.

184 Visual Effects with Particle Systems and Visual Effect Graph

Creating a rain effect
To create this effect, do the following:

1. Set the Capacity property of the Initialize Particle Context to 10000:

Figure 7.47 – Initialize Particle context

2. Set Rate of Constant Spawn Rate of the Spawn context to 10000:

Figure 7.48 – Constant Spawn Rate block

3. Set the A and B properties to (0, -50, 0) and (0, -75, 0) in the Set Velocity
Random Block in Initialize Particle Contexts, respectively. This will set a random
velocity pointing downward for our particles:

Figure 7.49 – Set Velocity Random block

4. Right-click the Initialize Particle title and select Create Block.
5. Search for the Set Position Random block and click on it:

Creating complex simulations with Visual Effect Graph 185

Figure 7.50 – Adding blocks

6. Set the A and B properties of the Set Position Random block to (-50 , 0, -50)
and (50, 0, 50), respectively. This will define an initial area where we will randomly
spawn the particle.

7. Click the arrow to the left of the Bounds property of the Initialize Particle Block
to display its properties. Then, set Center and Size to (0, -12.5, 0) and (100, 25,
100), respectively. This will define the area where the particles should live. Particles
can move outside this area, but this is important for the system to work properly
(search for Frustum Culling on the internet for more information):

Figure 7.51 – Configuring blocks

186 Visual Effects with Particle Systems and Visual Effect Graph

8. Select the GameObject that is executing the system. Then, in the bottom-right
window in the Scene view, check the Show Bounds checkbox to see the previously
defined Bounds:

Figure 7.52 – Visual Effect Playback controls

9. Set the object's position so that it covers the whole base area. In my case, the
position is (100, 37, 100). Remember that you need to change Position of the
Transform component for this:

Figure 7.53 – Setting a transform position

10. Set the A and B properties of the Set Lifetime Random Block in Initialize Particle
to 0.5. This will make the particles have a shorter lifetime, ensuring that they are
always inside the bounds:

Figure 7.54 – Set Lifetime Random block

11. Change the Main Texture property of the Output Particle Quad Context to
another texture. In this case, the previously downloaded smoke texture can
work here, even though it's not water, because we will modify its appearance in
a moment. Also, you can try to download a water droplet texture if you so wish:

Figure 7.55 – VFX Graph Main Texture

Creating complex simulations with Visual Effect Graph 187

12. Set Blend Mode of the Output Particle Quad Context to Additive:

Figure 7.56 – Additive mode of the VFX Graph

13. If you can't see the changes being applied, click the Compile button in the
top-left corner of the window. Also, you can save your changes using Ctrl + S
(Command + S on Mac):

Figure 7.57 – VFX Asset Saving controls

14. We need to stretch our particles a little bit so that they look like actual raindrops
instead of falling balls. Before accomplishing that, first, we need to change the
orientation of our particles so that they don't point at the camera all the time. To do
this, right-click on Orient Block in the Output Particle Quad Context and select
Delete (or press Del on Windows or Command + Backspace on Mac):

Figure 7.58 – Deleting a block

15. We want to stretch our particles according to their velocity direction. Another
thing we must do before actually doing that is select the title of the Output Particle
Quad context and hit the space bar to look for a block to add. In this case, we need
to search for and add the Orient Along Velocity block (right-click on the Output
Particle Quad title and then click on Create Block).

188 Visual Effects with Particle Systems and Visual Effect Graph

16. Add a Set Scale Block to the Initialize Particle Context and set the Scale property to
(0.25, 1.5, 0.25). This will stretch the particles so that they look like falling drops:

Figure 7.59 – Set Scale block

17. Click the Compile button in the top-left window again to see the changes. Your
system should look like this:

Figure 7.60 – Rain results

Summary 189

From here, you can experiment by adding and removing Blocks from the Contexts as you
wish. Again, I recommend that you look for already-created Visual Effect Graphs to find
ideas for other systems. Actually, you can get ideas for Visual Effect Graph by looking at
effects made in Shuriken and using the analogous blocks. Also, I recommend that you
look at the Visual Effect Graph documentation (https://docs.unity3d.com/
Packages/com.unity.visualeffectgraph@11.0/manual/index.html)
to learn more about this system. You can also access the documentation of any Unity
package by clicking the View documentation link in Package Manager while the package
is selected:

Figure 7.61 – Package Manager documentation link

Now, let's summarize this chapter.

Summary
In this chapter, we discussed two different ways of creating particle systems; that is, using
Shuriken and Visual Effect Graph. We used them to simulate different fluid phenomena,
such as fire, a waterfall, smoke, and rain. The idea is to combine particle systems with
meshes to generate all the props that are needed for your scene. Also, as you can imagine,
creating these kinds of effects professionally requires you to go deeper. If you want to
dedicate yourself to this (another part of the job of a Technical Artist), you will need to
learn how to create your own particle textures to get the exact look and feel you want,
code scripts that control certain aspects of the systems, and several other aspects of
particle creation. Again, that is outside the scope of this book.

Now that we have some rain in our scene, we can see that the sky and the lighting in the
scene don't reflect a rainy day. We'll fix this in the next chapter!

https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@11.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@11.0/manual/index.html

8
Lighting Using the
Universal Render

Pipeline
Lighting is a complex topic and there are several possible ways to handle it, with each
one having its pros and cons. In order to get the best possible quality with the best
performance, you need to know exactly how your renderer handles it, and that is exactly
what we are going to learn in this chapter. We will discuss how lighting is handled in
Unity's Universal Render Pipeline (URP), as well as how to properly configure it to adapt
our scene's mood with proper lighting effects.

In this chapter, we will examine the following lighting concepts:

• Applying lighting

• Applying shadows

• Optimizing lighting

At the end of the chapter, we will have properly used the different Unity Illumination
systems, such as Direct Lights and Lightmapping to reflect a cloudy and rainy night.

192 Lighting Using the Universal Render Pipeline

Applying lighting
When discussing ways to process lighting in a game, there are two main ways we can
do so, known as Forward Rendering and Deferred Rendering. Both handle lighting
in a different order, with different techniques, requirements, pros, and cons. Forward
Rendering is usually recommended for performance, while Deferred Rendering is usually
recommended for quality. The latter is used by the High Definition Render Pipeline
of Unity, the Renderer used for high-quality graphics in high-end devices. At the time
of writing this book, Unity is developing a performant version for URP. Also, in Unity,
Forward Renderer comes in two flavors: Multi-Pass Forward, which is used in the
built-in Renderer (the old Unity Renderer), and Single-Pass Forward, which is used
in URP. Again, each has its pros and cons.

Important information
Actually, there are other options available, both official and third-party, such
as Vertex Lit, but for now, we will focus on the three main ones – the ones you
use 95% of the time.

Choosing between one or another depends on the kind of game you are creating and the
target platform you need to run the game on. Your chosen option will change a lot due
to the way you apply lighting to your scene, so it's crucial you understand which system
you are dealing with.

In this section, we will discuss the following Realtime lighting concepts:

• Discussing lighting methods

• Configuring ambient lighting with skyboxes

• Configuring lighting in URP

Let's start by comparing the previously mentioned lighting methods.

Discussing lighting methods
To recap, we mentioned three main ways of processing lighting:

• Forward Rendering (Single-Pass)

• Forward Rendering (Multi-Pass)

• Deferred Rendering

Applying lighting 193

Before we look at the differences between each, let's talk about the things they have in
common. Those three renderers start drawing the scene by determining which objects can
be seen by the camera; that is, the ones that fall inside the camera's frustum, and provide
a giant pyramid that can be seen when you select the camera:

Figure 8.1 – The camera's frustum showing only the objects that can be seen by it

After that, Unity will order them from the nearest to the camera to the farthest
(transparent objects are handled a little bit differently, but let's ignore that for now).
It's done like this because it's more probable that objects nearer to the camera will cover
most of the camera, so they will occlude others, preventing us from wasting resources
calculating pixels for the occluded ones.

194 Lighting Using the Universal Render Pipeline

Finally, Unity will try to render the objects in that order. This is where differences start
to arise between lighting methods, so let's start comparing the two Forward Rendering
variants. For each object, Single-Pass Forward Rendering will calculate the object's
appearance, including all the lights that are affecting the object, in one shot, or what we
call a Draw Call. A Draw Call is the exact moment when Unity asks the video card to
actually render the specified object. All the previous work was just preparation for this
moment. In the case of the Multi-Pass Forward Renderer, by simplifying a little bit of the
actual logic, Unity will render the object once for every light that affects the object. So,
if the object is being lit by three lights, Unity will render the object three times, meaning
that three Draw Calls will be issued, and three calls to the GPU will be made to execute
the rendering process:

Figure 8.2 – Left image – first draw call of a sphere affected by two lights in Multi-Pass;
middle image – second draw call of the sphere; right image – the combination of both Draw Calls

Applying lighting 195

Now is when you are probably thinking, "Why should I use Multi-Pass? Single-Pass is more
performant!" And yes, you are right! Single-Pass is way more performant than Multi-Pass,
and here comes the great but. A Draw Call in a GPU has a limited amount of operations
that can be executed, so you have a limit to the complexity of the Draw Call. Calculating
the appearance of an object and all the lights that affect it is very complex, and in order
to make it fit in just one Draw Call, Single-Pass executes simplified versions of lighting
calculations, meaning lower lighting quality and fewer features. They also have a limit
on how many lights can be handled in one shot, which, at the time of writing this book,
is eight per object (four for low-end devices). This sounds like a small number, but
it's usually just enough.

On the other side, Multi-Pass can apply any number of lights you want and can execute
different logic for each light. Let's say our object has four lights that are affecting it, but
there are two lights that are affecting it drastically because they are nearer or have higher
intensity, while the remaining ones affecting the object are just enough to be noticeable.
In this scenario, we can render the first two lights with higher quality and the remaining
ones with cheap calculations – no one will be able to tell the difference. In this case,
Multi-Pass can calculate the first two lights using Pixel Lighting and the remaining ones
using Vertex Lighting. The difference is in their names: Pixel calculates light per object
pixel, while Vertex calculates lighting per object vertex and fills the pixels between these
vertexes, thereby interpolating information between vertexes. You can clearly see the
difference in the following screenshots:

Figure 8.3 – Left image – a sphere being rendered with Vertex Lighting; right image – a sphere being
rendered with Pixel Lighting

196 Lighting Using the Universal Render Pipeline

In Single-Pass, calculating everything in a single draw call forces you to use Vertex
Lighting or Pixel Lighting; you cannot combine them.

So, to summarize the differences between Single- and Multi-Pass, in Single-Pass, you have
better performance because each object is just drawn once, but you are limited to the
number of lights that can be applied, while in Multi-Pass, you need to render the object
several times, but with no limits on the number of lights, and you can specify the exact
quality you want for each light. There are other things to consider, such as the actual cost
of a Draw Call (one Draw Call can be more expensive than two simple ones), and special
lighting effects such as toon shading, but let's keep things simple.

Finally, let's briefly discuss Deferred Rendering. Even though we are not going to use
it, it's interesting to know why we are not doing that. After determining which objects
fall inside the frustum and ordering them, Deferred will render the objects without any
lighting, generating what is called a G-Buffer. A G-Buffer is a set of several images that
contain different information about the objects of the scene, such as the colors of its pixels
(without lighting), the direction of each pixel (known as Normals), and how far from the
camera the pixels are. You can see a typical example of a G-Buffer in the following figure:

Figure 8.4 – Left image – plain colors of the object; middle image – depths of each pixel;
right image – normals of the pixels

Applying lighting 197

Important information
Normals are directions, and the (X,Y,Z) components of the directions are
encoded in the RGB components of the colors.

After rendering all the objects in the scene, Unity will iterate over all lights that can be
seen in the camera, thus applying a layer of lighting over the G-Buffer, taking information
from it to calculate that specific light. After all the lights have been processed, you will get
the following result:

Figure 8.5 – Combination of the three lights that were applied to the G-Buffer
shown in the previous figure

As you can see, the Deferred part of this method comes from the idea of calculating
lighting as the last stage of the rendering process. This is better because you won't waste
resources calculating lighting from objects that could potentially be occluded. If the floor
of the image is being rendered first in Forward Rendering, the pixels that the rest of the
objects are going to occlude will have been calculated in vain. Also, there's the detail that
Deferred just calculates lighting in the exact pixels that the light can reach. As an example,
if you are using a flashlight, Unity will calculate lighting only in the pixels that fall inside
the cone of the flashlight. The con here is that Deferred is not supported by some relatively
old video cards and that you can't calculate lighting with Vertex Lighting quality, so
you will need to pay the price of Pixel Lighting, which is not recommended on low-end
devices (or even necessary in simple graphics games).

So, why are we using URP with Single-Pass Forward? Because it offers the best balance
between performance, quality, and simplicity. In this game, we won't be using too many
lights, so we won't worry about the light number limitations of Single-Pass, and we won't
take advantage of the Deferred benefits too much, so it makes no sense to use more
hardware to run the game.

Now that we have a very basic notion of how URP handles lighting, let's start using it!

198 Lighting Using the Universal Render Pipeline

Configuring ambient lighting with skyboxes
There are different light sources that can affect the scene, such as the sun, torches, light
bulbs, and more. Those are known as Direct Lights; that is, objects that emit light rays.
Then, we have Indirect Light, light that usually represents bounces of Direct Lights.
However, calculating all the bounces of all the rays emitted by all the lights is impossible
if you want to get a game running at at least 30 FPS (or simply running). The problem
is that not having Indirect Light will generate unrealistic results where you can observe
places where the sunlight doesn't reach being completely dark because no light is
bouncing from other places where light hits. In the next screenshot, you can see an
example of how this could look in a wrongly configured scene:

Figure 8.6 – Shadows projected onto a mountain without ambient lighting

If you ever experience this problem, the way to solve it is using approximations of those
bounces. These are what we call Ambient Light. This represents a base layer of lighting
that usually applies a little bit of light based on the color of the sky, but you can choose
whatever color you want. As an example, on a clear night, we can pick a dark blue color
to represent the tint from the moonlight.

If you create a new scene in Unity 2021, usually this is done automatically, but in cases
where it isn't, or the scene was created through other methods, it is convenient to know
how to manually trigger this process by doing the following:

1. Click on Window | Rendering | Lighting. This will open the Scene Lighting
Settings window:

Applying lighting 199

Figure 8.7 – Lighting settings location

2. Click the Generate Lighting button at the bottom of the window. If you haven't
saved the scene so far, a prompt will ask you to save it, which is necessary:

Figure 8.8 – Generate Lighting button

3. See the bottom-right part of the Unity window to find the progress calculation bar
to check when the process has finished:

Figure 8.9 – Lighting generation progress bar

4. You can now see how completely dark areas now have a little effect shown on them
from the light being emitted by the sky:

Figure 8.10 – Shadows with ambient lighting

200 Lighting Using the Universal Render Pipeline

Now, by doing this, we have better lighting, but it still looks like a sunny day. Remember,
we want to have rainy weather. In order to do that, we need to change the default sky too
so that it's cloudy. You can do that by downloading a skybox. The current sky you can
see around the scene is just a big cube containing textures on each side, and those have
a special projection to prevent us from detecting the edges of the cube. You can download
six images for each side of the cube and apply them to have whatever sky you want, so let's
do that:

1. You can download skybox textures from wherever you want, but here, I will choose
the Asset Store. Open it by going to Window | Asset Store and going to the Asset
Store website.

2. Look for 2D | Textures & Materials | Sky in the category list on the right.
Remember that you need to make that window wider if you can't see the
category list:

Figure 8.11 – Skybox category

3. Remember to check the Free Assets checkbox in the Pricing section:

Figure 8.12 – Free Assets filtering

4. Pick any skybox you like for a rainy day. Take into account that there are different
formats for skyboxes. We are using the six-image format, so check that before
downloading one. In my case, I have chosen the skybox pack shown in the following
screenshot. Download and import it, as we did in Chapter 5, Importing and
Integrating Assets:

Applying lighting 201

Figure 8.13 – Selected skybox set for this book

5. Create a new material by using the + icon in the Project window and
selecting Material.

6. Set the Shader option of that material to Skybox/6 Sided. Remember that the
skybox is just a cube, so we can apply a material to change how it looks. The skybox
shader is prepared to apply the six textures.

7. Drag the six textures to the Front, Back, Left, Right, Up, and Down properties of
the material. The six downloaded textures will have descriptive names so that you
know which textures go where:

Figure 8.14 – Skybox material settings

202 Lighting Using the Universal Render Pipeline

8. Drag the material directly into the sky in the Scene View. Be sure you don't drag the
material into an object because the material will be applied to it.

9. Repeat steps 1 to 4 of the ambient light calculation steps (Lighting Settings |
Generate Lighting) to recalculate it based on the new skybox. In the following
screenshot, you can see the result of my project so far:

Figure 8.15 – Applied skybox

Important note
These lighting recalculations can take a while to complete. This is due to the
fact that the Generate Lighting button does more than calculate the light from
the sky. One trick to speed up the process is to uncheck the Static checkbox in
the Inspector of every object in the scene. Later, in the Optimizing Lighting
section of this chapter, we will talk more about that checkbox and what
it means.

Now that we have a good base layer of lighting, we can start adding light objects.

Applying lighting 203

Configuring lighting in URP
We have three main types of Direct Lights we can add to our scene:

• Directional Light: This is a light that represents the sun. This object emits light rays
in the direction it is facing, regardless of its position; the sun moving 100 meters to
the right won't make a big difference. As an example, if you slowly rotate this object,
you can generate a day/night cycle:

Figure 8.16 – Directional Light results

• Point Light: This light represents a light bulb, which emits rays in an
omnidirectional way. The difference from the Directional Light is that its position
matters because it's closer to our objects. Also, because it's a weaker light, the
intensity of this light varies according to the distance, so its effect has a range – the
further the object from the light, the weaker the received intensity:

Figure 8.17 – Point Light results

204 Lighting Using the Universal Render Pipeline

• Spotlight: This kind of light represents a light cone, such as the one emitted by
a flashlight. It behaves similarly to point lights in that its position matters and the
light intensity decays over a certain distance. But here the direction it points to
(hence its rotation) is also important given it will specify where to project the light:

Figure 8.18 – Spotlight results

So far, we have nice, rainy, ambient lighting, but the only Direct Light we have in the
scene, the Directional Light, won't look like this, so let's change that:

1. Select the Directional Light object in the Hierarchy window and then look at the
Inspector window.

2. Click the Color property to open the Color Picker.
3. Select a dark gray color to achieve sun rays partially occluded by clouds.
4. Set Shadow Type to No Shadows. Now that we have a cloudy day, the sun does not

project clear shadows, but we will talk more about shadows in a moment:

Figure 8.19 – Soft directional light with no shadows

Applying lighting 205

Now that the scene is darker, we can add some lights to light up the scene,
as follows:

5. Create a Spotlight by going to GameObject | Light | Spotlight:

Figure 8.20 – Creating a Spotlight

6. Select it. Then, in the Inspector window, set Inner / Output Spot Angle to 90 and
120, which will increase the angle of the cone.

7. Set Range to 50, meaning that the light can reach up to 50 meters, decaying along
the way.

8. Set Intensity to 1000:

Figure 8.21 – Spotlight settings

206 Lighting Using the Universal Render Pipeline

9. Position the light at one corner of the Base, pointing it at the center:

Figure 8.22 – Spotlight placement

10. Duplicate that light by selecting it and pressing Ctrl + D (Command + D on Mac).
11. Put it in the opposite corner of the Base:

Figure 8.23 – Two Spotlight results

Applying shadows 207

You can keep adding lights to the scene but take care that you don't go too far – remember
the light limits. Also, you can download some light posts to put in where the lights are
located to visually justify the origin of the light. Now that we have achieved proper
lighting, we can talk about shadows.

Applying shadows
Maybe you are thinking that we already have shadows in the scene, but actually, we don't.
The darker areas of the object, the ones that are not facing the lights, don't have shadows
– they are not being lit, and that's quite different from a shadow. In this case, we are
referring to the shadows that are projected from one object to another; for example, the
shadow of the player being projected on the floor, or from the mountains to other objects.
Shadows can increase the quality of our scene, but they also cost a lot to calculate, so
we have two options: not using shadows (recommended for low-end devices such as
mobiles) or finding a balance between performance and quality according to our game
and the target device. In the first case, you can skip this whole section, but if you want to
achieve performant shadows (as much as possible), keep reading.

In this section, we are going to discuss the following topics about shadows:

• Understanding shadow calculations

• Configuring performant shadows

Let's start by discussing how Unity calculates shadows.

Understanding shadow calculations
In game development, it is well known that shadows are costly in terms of performance,
but why? An object has a shadow when a light ray hits another object before reaching it.
In that case, no lighting is applied to that pixel from that light. The problem here is
the same problem we have with the light that ambient lighting simulates – it would
be too costly to calculate all possible rays and their collisions. So, again, we need an
approximation, and here is where Shadow Maps kick in.

208 Lighting Using the Universal Render Pipeline

A Shadow Map is an image that's rendered from the point of view of the light, but instead
of drawing the full scene with all the color and lighting calculations, it will render all the
objects in grayscale, where black means that the pixel is very far from the camera and
whiter pixels means that the pixel is nearer to the camera. If you think about it, each
pixel contains information about where a ray of light hits. By knowing the position
and orientation of the light, you can calculate the position where each "ray" hit using
the Shadow Map. In the following screenshot, you can see the Shadow Map of our
Directional Light:

Figure 8.24 – Shadow Map generated by the Directional Light of our scene

Each type of light calculates Shadow Maps slightly differently, especially the Point Light.
Since it's omnidirectional, it needs to render the scene several times in all its directions
(front, back, up, down, right, and left) in order to gather information about all the rays it
emits. We won't talk about this in detail here, though, as we could talk about it all day.

Now, something important to highlight here is that Shadow Maps are textures, hence they
have a resolution. The higher the resolution, the more "rays" our Shadow Map calculates.
You are probably wondering what a low-resolution shadow map looks like when it has
only a few rays in it. Take a look at the following screenshot to see one:

Applying shadows 209

Figure 8.25 – Hard Shadow rendered with a low-resolution Shadow Map

The problem here is that having fewer rays generates bigger shadow pixels, resulting in
a pixelated shadow. Here, we have our first configuration to consider: what is the ideal
resolution for our shadows? You will be tempted to just increase it until the shadows
look smooth, but of course, that will increase how long it will take to calculate it, so it
will impact the performance considerably unless your target platform can handle it
(mobiles definitely can't). Here, we can use the Soft Shadows trick, where we can apply
a blurring effect over the shadows to hide the pixelated edges, as shown in the following
screenshot:

Figure 8.26 – Soft Shadows rendered with a low-resolution Shadow Map

210 Lighting Using the Universal Render Pipeline

Of course, the blurry effect is not free, but combining it with low-resolution shadow
maps, if you accept its blurry result, can generate a nice balance between quality
and performance.

Now, low-resolution Shadow Maps have another problem, which is called Shadow Acne.
This is the lighting error you can see in the following screenshot:

Figure 8.27 – Shadow Acne from a low-resolution Shadow Map

A low-resolution shadow map generates false positives because it has fewer "rays"
calculated. The pixels to be shaded between the rays need to interpolate information from
the nearest ones. The lower the Shadow Map's resolution, the larger the gap between
the rays, which means less precision and more false positives. One solution would be to
increase the resolution, but again, there will be performance issues (as always). We have
some clever solutions to this, such as using depth bias. An example of this can be seen in
the following figure:

Figure 8.28 – A false positive between two far "rays." The highlighted area thinks
the ray hit an object before reaching it

Applying shadows 211

The concept of depth bias is simple – so simple that it seems like a big cheat, and actually,
it is, but game development is full of them! To prevent false positives, we "push" the rays
a little bit further, just enough to make the interpolated rays reach the hitting surface:

Figure 8.29 – Rays with a depth bias to eliminate false positives

Of course, as you are probably expecting, you can't solve this problem easily without
having a caveat. Pushing depth generates false negatives in other areas, as shown in the
following screenshot. It looks like the cube is floating, but actually, it is touching the
ground – the false negatives generate the illusion that it is floating:

Figure 8.30 – False negatives due to a high depth bias

212 Lighting Using the Universal Render Pipeline

Of course, we have a counter trick to this situation known as normal bias. This pushes the
object's mesh along the direction they are facing, not the rays. This one is a little bit tricky,
so we won't go into too much detail here, but the idea is that combining a little bit of depth
bias and another bit of normal bias will reduce the false positives, but not completely
eliminate them. Therefore, we need to learn how to live with that and hide it by cleverly
positioning objects:

Figure 8.31 – Reduced false negatives, which is the result of combining depth and normal bias

There are several other aspects that affect how a Shadow Map works, with one of them
being the light range. The smaller the light range, the less area the shadows will cover.
The same Shadow Map resolution can add more detail to that area, so try to reduce light
ranges as much as you can.

I can imagine your face right now, and yes, lighting is complicated, and we've only just
scratched the surface! But keep your spirits up! After a little trial and error fiddling with
the settings, you will understand it better. We'll do that in the next section.

Important information
If you are really interested in learning more about the internals of the shadow
system, I recommend that you look at the concept of Shadow Cascades, an
advanced topic in Directional Light and Shadow Map generation.

Applying shadows 213

Configuring performant shadows
Because we are targeting mid-end devices, we will try to achieve a good balance of
quality and performance here, so let's start enabling shadows just for the spotlights.
The Directional Light shadow won't be that noticeable, and actually, a rainy sky doesn't
generate clear shadows, so we will use that as an excuse to not calculate those shadows.
In order to do this, do the following:

1. Select both Spot Lights by clicking them in the Hierarchy while pressing Ctrl
(Command on Mac). This will ensure that any changes made in the Inspector
window will be applied to both:

Figure 8.32 – Selecting multiple objects

2. In the Inspector window, set Shadow Type to Soft Shadows. We will be using
low-resolution shadow maps here and the soft mode can help to hide the
pixelated resolution:

Figure 8.33 – Soft Shadows setting

3. Select Directional light and set Shadow Type to No Shadows to prevent it from
casting shadows:

Figure 8.34 – No Shadows setting

4. Create a cube (GameObject | 3D Object | Cube) and place it near one of the lights,
just to have an object that we can cast shadows on for testing purposes.

214 Lighting Using the Universal Render Pipeline

Now that we have a base test scenario, let's fiddle with the Shadow Maps resolution
settings, preventing Shadow Acne in the process:

1. Go to Edit | Project Settings.
2. In the left-hand side list, look for Graphics and click it:

Figure 8.35 – Graphics settings
In the properties that appear after selecting this option, click in the box below
Scriptable Render Pipeline Settings – the one that contains a name. In my case,
this is UniveralRP-HighQuality, but yours may be different due to you having
a different version of Unity:

Figure 8.36 – Current render pipeline setting

3. Doing that will highlight an asset in the Project Window, so be sure that window
is visible before selecting it. Select the highlighted asset:

Figure 8.37 – Current pipeline highlighted

4. This asset has several graphics settings related to how URP will handle its rendering,
including lighting and shadows. Expand the Lighting section to reveal its settings:

Applying shadows 215

Figure 8.38 – Pipeline Lighting settings

5. The Shadow Atlas Resolution setting under the Additional Lights subsection
represents the Shadow Map resolution for all the lights that aren't Directional Light
(since it's the Main Light). Set it to 1024 if it's not already at that value.

6. Under the Shadows section, you can see the Depth and Normal Bias settings,
but those will affect all Lights. Even if right now our Directional Light doesn't
have shadows, we want only to affect Additional Lights bias values as they have
a different Atlas Resolution compared to the Main one (Directional Light), so
instead, select spotlights and set Bias to Custom and Depth and Normal Bias
to 0.25 in order to reduce them as much as we can before we remove the
Shadow Acne:

Figure 8.39 – Bias settings

7. This isn't entirely related to shadows, but in the Univeral RP settings asset, you can
change the Per Object Light limit to increase or reduce the number of lights that
can affect the object (no more than eight). For now, the default is good as is.

8. If you followed the shadow cascades tip presented earlier, you can play with the
Cascades value a little bit to enable shadows for Directional Light to notice the
effect. Remember that those shadow settings only work for the Directional Light.

9. Set both lights so that they have a 40-meter Range. See how the shadows improve in
quality before and after this change.

216 Lighting Using the Universal Render Pipeline

Remember that those values only work in my case, so try to fiddle with the values a little
bit to see how that changes the result – you may find a better setup for your scene if it
was designed differently from mine. Also, remember that not having shadows is always
an option, so always consider that if your game is running low on FPS (and there isn't
another performance problem lurking).

You probably think that that is all we can do about performance in terms of lighting, but
luckily, that's not the case! We have another resource we can use to improve it further,
known as static lighting.

Optimizing lighting
We mentioned previously that not calculating lighting is good for performance, but what
about not calculating lights, but still having them? Yes, it sounds too good to be true, but
it is actually possible (and, of course, tricky). We can use a technique called static lighting
or baking, which allows us to calculate lighting once and use the cached result.

In this section, we will cover the following concepts related to Static Lighting:

• Understanding static lighting

• Baking lightmaps

• Applying static lighting to dynamic objects

Understanding static lighting
The idea is pretty simple: just do the lighting calculations once, save the results, and then
use those instead of calculating lighting all the time. You may be wondering why this
isn't the default technique to use. This is because it has some limitations, with the big one
being dynamic objects. Precalculating shadows means that they can't change once they've
been calculated, but if an object that is casting a shadow is moved, the shadow will still be
there, so the main thing to take into account here is that you can't use this technique with
moving objects. Instead, you will need to mix static or baked lighting for static objects
and Realtime lighting for dynamic (moving) objects. Also, consider that aside from this
technique being only valid for static objects, it is also only valid for static lights. Again,
if a light moves, the precalculated data becomes invalid.

Optimizing lighting 217

Another limitation you need to take into account is that that precalculated data can have
a huge impact on memory. That data occupies space in RAM, maybe hundreds of MBs,
so you need to consider whether your target platform has enough space. Of course, you
can reduce the precalculated lighting quality to reduce the size of that data, but you
need to consider whether the loss of quality deteriorates the look and feel of your game
too much. As with all options regarding optimization, you need to balance two factors:
performance and quality.

We have several kinds of precalculated data in our process, but the most important one is
what we call lightmaps. A lightmap is a texture that contains all the shadows and lighting
for all the objects in the scene, so when Unity applies the precalculated or baked data, it
will look at this texture to know which parts of the statics objects are lit and which aren't.
You can see an example of a lightmap in the following figure:

Figure 8.40 – Left – a scene with no lighting; middle – a lightmap holding precalculated data from that
scene; right – the lightmap being applied to the scene

Anyway, having lightmaps has its own benefits. The baking process is executed in Unity,
before the game is shipped to users, so you can spend plenty of time calculating stuff
that you can't do at runtime, such as improved accuracy, light bounces, light occlusion in
corners, and light from emissive objects. However, that can also be a problem. Remember,
dynamic objects still need to rely on Realtime lighting, and that lighting will look very
different compared to static lighting, so we need to tweak them a lot for the user to not
notice the difference.

Now that we have a basic notion of what static lighting is, let's dive into how to use it.

218 Lighting Using the Universal Render Pipeline

Baking lightmaps
To use lightmaps, we need to make some preparations regarding the 3D models.
Remember that meshes have UVs, which contain information about which part of the
texture needs to be applied to each part of the model. Sometimes, to save texture memory,
you can apply the same piece of texture to different parts. For example, in a car's texture,
you wouldn't have four wheels, you'd just have one, and you can apply that same piece of
texture to all the wheels. The problem here is that static lighting uses textures the same
way, but here, it will apply the lightmaps to light the object. In the wheel scenario, the
problem would be that if one wheel receives shadows, all of them will have it, because all
the wheels are sharing the same texture space. The usual solution is to have a second set of
UVs in the model with no texture space being shared, just to use them for lightmapping.

Sometimes, downloaded models are already prepared for lightmapping, and sometimes,
they aren't, but luckily, Unity has us covered in those scenarios. To be sure a model
will calculate lightmapping properly, let's make Unity automatically generate the
Lightmapping UV set by doing the following:

1. Select the mesh asset (FBX) in the Project window.
2. In the Model tab, look for the Generate Lightmap UVs checkbox at the bottom

and check it.
3. Click the Apply button at the bottom:

Figure 8.41 – Generate Lightmap setting

4. Repeat this process for every model. Technically, you can only do this in the models
where you get artifacts and weird results after baking lightmaps, but for now, let's do
this in all models, just in case.

After preparing the models for being lightmapped, the next step is to tell Unity which
objects are not going to move. To do so, do the following:

1. Select the object that won't move.
2. Check the Static checkbox in the top-right of the Inspector window:

Optimizing lighting 219

Figure 8.42 – Static checkbox

3. Repeat this for every static object (this isn't necessary for lights; we will deal with
those later).

4. You can also select a container of several objects, check the Static checkbox and
click the Yes, All Children button in the prompt to apply the checkbox to all
child objects.

Consider that you may not want every object, even if it's static, to be lightmapped, because
the more objects you lightmap, the greater texture size you will require. As an example,
the terrain is too large and will consume most of the lightmapping's size. Usually, this is
necessary, but in our case, the Spotlights are barely touching the terrain. Here, we have
two options: leave the terrain as dynamic, or better, directly tell the Spotlights to not affect
the terrain since one is only lit by ambient lighting and the Directional Light (which is
not casting shadows). Remember that this is something we can do because of our type of
scene; however, you may need to use other settings in other scenarios. You can exclude an
object from both Realtime and Static lighting calculations by doing the following:

1. Select the object to exclude.
2. In the Inspector window, click the Layer dropdown and click on Add Layer…:

Figure 8.43 – Layer creation button

220 Lighting Using the Universal Render Pipeline

3. Here, you can create a layer, which is a group of objects that's used to identify
which objects are not going to be affected by lighting. In the Layers list, look for an
empty space and type in any name for those kinds of objects. In my case, I will only
exclude the terrain, so I have just named it Terrain:

Figure 8.44 – Layers list

4. Once again, select the terrain, go to the Layer dropdown, and select the layer you
created in the previous step. This way, you can specify that this object belongs to
that group of objects:

Figure 8.45 – Changing a GameObject's layer

5. Select all the Spotlights lights, look for the Culling Mask in the Inspector window,
click it, and uncheck the layer you created previously. This way, you can specify that
those lights won't affect that group of objects:

Optimizing lighting 221

Figure 8.47 – Light Culling Mask

6. Now, you can see how those selected lights are not illuminating or applying shadows
to the terrain.

Now, it's time for the lights since the Static checkbox won't work for them. For them,
we have the following three modes:

• Realtime: A light in Realtime mode will affect all objects, both static and dynamic,
using Realtime lighting, meaning there's no precalculation. This is useful for lights
that are not static, such as the player's flashlight, a lamp that is moving due to the
wind, and so on.

• Baked: The opposite of Realtime, this kind of light will only affect static objects with
lightmaps. This means that if the player (dynamic) moves under a baked light on
the street (static), the street will look lit, but the player will still be dark and won't
cast any shadows on the street. The idea is to use this on lights that won't affect any
dynamic objects, or on lights that are barely noticeable on them, so that we can
increase performance by not calculating them.

• Mixed: This is the preferred mode if you are not sure which one to use. This kind of
light will calculate lightmaps for static objects, but will also affect dynamic objects,
combining Realtime lighting with the baked one (like Realtime lights also do).

222 Lighting Using the Universal Render Pipeline

In our case, our Directional Light will only affect the terrain, and because we don't
have shadows, applying lighting to it is relatively cheap in URP, so we can leave the
Directional Light in Realtime so that it won't take up any lightmap texture area.
Our spotlights are affecting the Base, but actually, they are only applying lighting to
them – we have no shadows because our Base is empty. In this case, it is preferable to not
calculate lightmapping whatsoever, but for learning purposes, I will add a few objects as
obstacles to the Base to cast some shadows and justify the use of lightmapping, as shown
in the following screenshot:

Figure 8.47 – Adding objects to project light

Here, you can see how the original design of our level changes constantly during the
development of the game, and that's something you can't avoid – bigger parts of the game
will change in time. Now, we are ready to set up the Light Modes and execute the baking
process, as follows:

1. Select Directional Light.
2. Set Mode in the Inspector window to Realtime (if it's not already in that mode).
3. Select both Spotlights.
4. Set their Render Mode to Mixed:

Optimizing lighting 223

Figure 8.48 – Mixed lighting setting

5. Open the Lighting Settings window (Window | Rendering | Lighting).
6. We want to change some of the settings of the baking process. In order to enable the

controls for this, click the New Lighting Settings button. This will create an asset
with lightmapping settings that can be applied to several scenes if we want to share
the same settings multiple times:

Figure 8.49 – Creating lighting settings

7. Reduce the quality of lightmapping, just to make the process go faster. Just to
reiterate, the lighting can easily be reduced by using settings such as Lightmap
Resolution, Direct, Indirect, and Environment Samples, all of them located under
the Lightmap Settings category. In my case, I have those settings applied, as shown
in the following screenshot. Note that even reducing those will take time; we have
too many objects in the scene due to the modular level design:

Figure 8.50 – Scene lighting settings

224 Lighting Using the Universal Render Pipeline

8. Click Generate Lighting, which is the same button we used previously to generate
ambient lighting.

9. Wait for the process to complete. You can do this by checking the progress bar at
the bottom right of the Unity Editor. Note that this process could take hours in large
scenes, so be patient:

Figure 8.51 – Baking progress bar

10. After the process has completed, you can check the bottom part of the Lighting
Settings window, where you can see how many lightmaps need to be generated.
We have a maximum lightmap resolution, so we probably need several of them to
cover the entire scene. Also, it informs us of their size so that we can consider their
impact in terms of RAM. Finally, you can check out the Baked Lightmaps section
to see them:

Figure 8.52 – Generated lightmaps

Optimizing lighting 225

11. Now, based on the results, you can move objects, modify light intensities, or do
whatever corrections you need in order to make the scene look the way you want
and recalculate the lighting every time you need to. In my case, those settings gave
me good enough results, which you can see in the following screenshot:

Figure 8.53 – Lightmap result

We still have plenty of small settings to touch on, but I will leave you to discover those
through trial and error or by reading the Unity documentation about lightmapping
at this link: https://docs.unity3d.com/Manual/Lightmappers.html.
Reading the Unity manual is a good source of knowledge and I recommend that you
start using it – any good developer, no matter how experienced, should read the manual.

https://docs.unity3d.com/Manual/Lightmappers.html

226 Lighting Using the Universal Render Pipeline

Applying static lighting to static objects
When marking objects as static in your scene, you probably figured out that all the objects
in the scene won't move, so you probably checked the static checkbox for everyone. That's
okay, but you should always put a dynamic object into the scene to really be sure that
everything works okay – no games have totally static scenes. Try adding a capsule and
moving it around to simulate our player, as shown in the following screenshot. If you
pay attention to it, you will notice something odd – the shadows being generated by the
lightmapping process are not being applied to our dynamic object:

Figure 8.54 – Dynamic object under a lightmap's precalculated shadow

You may be thinking that Mixed Light Mode was supposed to affect both dynamic and
static objects, and that is exactly what it's doing. The problem here is that everything
related to Static objects is precalculated in those lightmap textures, including the shadows
they cast, and because our capsule is dynamic, it wasn't there when the precalculation
process was executed. So, in this case, because the object that cast the shadow was static,
its shadow won't affect any dynamic objects.

Optimizing lighting 227

Here, we have several solutions. The first would be to change the Static and Realtime
mixing algorithm to make everything near the camera use Realtime lighting and prevent
this problem (at least near the focus of attention of the player), which would have
a big impact on performance. The alternative is to use Light Probes. When we baked
information, we only did that on lightmaps, meaning that we have information on lighting
just over surfaces, not in empty spaces. Because our player is traversing the empty spaces
between those surfaces, we don't know exactly how the lighting would look in those
spaces, such as the middle of a corridor. Light Probes are a set of points in those empty
spaces where Unity also pre-calculates information, so when some dynamic object passes
through it, it will sample information from them. In the following screenshot, you can see
some Light Probes that have been applied to our scene. You will notice that the ones that
are inside shadows are going to be dark, while the ones exposed to light will have a greater
intensity. This effect will be applied to our dynamic objects:

Figure 8.55 – Spheres representing Light Probes

228 Lighting Using the Universal Render Pipeline

If you move your object through the scene now, it will react to the shadows, as shown
in the following two screenshots, where you can see a dynamic object being lit outside
a baked shadow and being dark within the shadow:

Figure 8.56 – Dynamic object receiving baked lighting from Light Probes

In order to create Light Probes, do the following:

1. Create a group of Light Probes by going to GameObject | Light |
Light Probe Group:

Figure 8.57 – Creating a Light Probe Group

2. Fortunately, we have some guidelines on how to locate them. It is recommended to
place them where the lighting changes, such as inside and outside shadow borders.
However, that is complicated. The simplest and recommended approach is to just
drop a grid of Light Probes all over your playable area. To do that, you can simply
copy and paste the Light Grid Group several times to cover the entire Base:

Optimizing lighting 229

Figure 8.59 – Light Probe grid

3. Another approach would be to select one group and click the Edit Light Probes
button to enter Light Probe edit mode:

Figure 8.60 – Light Probe Group edit button

4. Click the Select All button and then Duplicate Selected to duplicate all the
previously existing probes.

5. Using the translate gizmo, move them next to the previous ones, extending the grid
in the process. Consider that the nearer the probes are, you will need more to cover
the terrain, which will generate more data. However, Light Probes data is relatively
cheap, so you can have lots of them.

6. Repeat steps 4 to 5 until you've covered the entire area.
7. Regenerate lighting with the Generate Lighting button in Lighting Settings.

With that, you have precalculated lighting on the Light Probes affecting our dynamic
objects, combining both worlds to get cohesive lighting.

230 Lighting Using the Universal Render Pipeline

Summary
In this chapter, we discussed several lighting topics, such as how Unity calculates lights
and shadows, how to deal with different light sources such as direct and indirect lighting,
how to configure shadows, how to bake lighting to optimize performance, and how to
combine dynamic and static lighting so that the lights aren't disconnected from the world
they affect. This was a long chapter, but lighting deserves that. It is a complex subject that
can improve the look and feel of your scene drastically, as well as reduce your performance
dramatically. It requires a lot of practice and here, we tried to summarize all the important
knowledge you will need to start experimenting with it. Be patient with this topic; it is
easy to get incorrect results, but you are probably just one checkbox away from solving it.

Now that we have improved all we can in the scene settings, in the next chapter, we will
apply a final layer of graphic effects using the Unity Post-processing Stack, which will
apply full-screen image effects – the ones that will give us that cinematic look and feel all
games have nowadays.

9
Fullscreen Effects

with Postprocessing
So far, we have created different objects to alter the visuals of our scene, such as meshes,
particles, and lights. We can tweak the settings of those objects here and there to improve
our scene's quality, but you will always feel that something is missing when you compare it
with modern game scenes, and that is fullscreen or post-processing effects. In this chapter,
you will learn how to apply effects to the final rendered frame, which will alter the look of
the overall scene.

In this chapter, we will cover the following image effect topics:

• Using PostProcessing

• Using advanced effects

232 Fullscreen Effects with Postprocessing

Using PostProcessing
Post Processing is a Unity feature that allows us to apply several effects (a stack of effects)
one on top of the other, which will alter the final look of an image. Each one will affect
the finished frame, changing the colors in it based on different criteria. In the following
screenshots, you can see a scene before and after applying image effects. You will notice
a dramatic difference. However, the scene hasn't changed in terms of its objects, including
lights, particles, or meshes. The effects that have been applied are based on pixel analysis.
Have a look at both scenes here:

Figure 9.1 – A scene without image effects (left) and the same scene with effects (right)

Something to take into account is that the previous postprocessing solution, Post
Processing Stack version 2 (PPv2), won't work on the Universal Render Pipeline
(URP); it has its own postprocessing implementation, which is the one we will cover in
this chapter. Anyway, they are very similar, so even if you are using PPv2, you can still get
something from this chapter.

In this section, we will discuss the following URP postprocessing concepts:

• Setting up a profile

• Using basic effects

Let's start preparing our scene to apply effects.

Setting up a profile
To start applying effects, we need to create a profile, an asset containing all the effects and
settings we want to apply. This is a separated asset, for the same reason the material also
is: because we can share the same postprocessing profile across different scenes and parts
of scenes. When we refer to parts of the scenes, we are referring to volumes or areas of
the game that have certain effects applied. We can define a global area that applies effects,
regardless of the position of the player, or we can apply different effects – for example,
when we are outdoors or indoors.

Using PostProcessing 233

In this case, we will use a global volume, one that we will use to apply our first effect to
a profile, by doing the following:

1. Create a new empty GameObject (GameObject | Create Empty).
2. Name it PP Volume (this stands for postprocessing volume).
3. Add the Volume component to it.
4. Make sure Mode is set to Global.
5. Click on the New button to the right of the Profile setting, which will generate

a new profile asset with the name of our object (PPVolume profile). You can move
this to its own folder later, which is recommended for asset organization purposes.
This process is illustrated in the following screenshot:

Figure 9.2 – Volume component

6. To test if the volume is working, let's add an effect. Click the Add Override button
and select the Post-Processing | Chromatic Aberration option.

7. Check the Intensity checkbox in the Chromatic Aberration effect and set its
intensity to 0.25, as illustrated in the following screenshot:

Figure 9.3 – Chromatic Aberration effect

234 Fullscreen Effects with Postprocessing

8. Now, you will see an aberration effect being applied to the corners of the image.
Remember to look at this in the Scene view; we will apply the effect to the Game
view in the next step. This is illustrated in the following screenshot:

Figure 9.4 – Chromatic Aberration effect applied to the scene

9. Now, if you hit Play and see the game from the view of Main Camera, you will
see that the effect is not being applied. This is because we need to check the Post
Processing checkbox in the Rendering section of our Main Camera, as illustrated
in the following screenshot:

Figure 9.5 – Enabling postprocessing

Here, we have created a global volume, which will apply the effects specified as overrides
to the entire scene, regardless of the player's position.

Now that we have prepared our scene to use postprocessing, we can start experimenting
with different effects. We'll start with the simplest ones in the next section.

Using PostProcessing 235

Using basic effects
Now that we have postprocessing in our scene, the only thing we need to do is to start
adding effects and set them up until we have the desired look and feel. To do this, we'll
explore several simple effects included in the system.

Let's start with chromatic aberration, the one we just used, which, as with most image
effects, tries to replicate a particular real-life effect. All game engine rendering systems
use a simple mathematical approximation of how eye vision works, and because of that,
we don't have some effects that occur in human eyes or camera lenses. A real camera lens
works by bending light rays to point them toward the camera sensors, but that bending is
not perfect in some lenses (sometimes intentionally), and, hence, you can see a distortion,
as shown in the following screenshot:

Figure 9.6 – Image without chromatic aberration (left) and
the same image with chromatic aberration (right)

This effect will be one of several that we will add to generate a cinematic feeling in our
game, simulating the usage of real-life cameras. Of course, this effect won't look nice in
every kind of game; maybe a simplistic cartoonish style won't benefit from this one, but
you never know: art is subjective, so it's a matter of trial and error.

Also, we have exaggerated the intensity a little bit in the previous example to make the
effect more noticeable, but I would recommend using an intensity of 0.25 in this scenario.
It is usually recommended to be gentle with the intensity of the effects; it's tempting to
have intense effects, but as you will be adding lots of them, after a while, the image will be
bloated due to containing too many distortions. So, try to add several subtle effects instead
of a few intense ones. But, again, this depends on the target style you are looking for; there
are no absolute truths here (but common sense still applies).

236 Fullscreen Effects with Postprocessing

Finally, before moving on and discussing other effects, if you are used to using other
kinds of postprocessing effect frameworks, you will notice that this version of chromatic
aberration has fewer settings, and that's because the URP version seeks performance, so it
will be as simple as possible.

The next effect we are going to discuss is vignette. This is another camera lens
imperfection where the image's intensity is lost at the edges of the lens. This can be applied
not only to simulate older cameras but also to draw the attention of the user toward the
center of the camera – for example, during cinematics. Also, if you are developing virtual
reality (VR) applications, this can be used to reduce motion sickness by reducing the
peripheral vision of the player. In the following screenshot, you can see an example of
vignetting on an old camera:

Figure 9.7 – Photo taken with an old camera, with vignetting over the edges

Just to try it out, let's apply some vignetting to our scene by doing the following:

1. Select the PP Volume GameObject.
2. Add the Postprocessing | Vignette effect by clicking on the Add Override button.
3. Check the Intensity checkbox and set it to 0.3, increasing the effect.
4. Check the Smoothness checkbox and set it to 0.5; this will increase the spread of

the effect. You can see the result in the following screenshot:

Using PostProcessing 237

Figure 9.8 – Vignette effect

If you want, you can change the color by checking the Color checkbox and setting it to
another value; in our case, black is okay to reinforce the rainy-day environment. Here, I
invite you to check how other properties, such as Center and Rounded, work as particles.
You can create nice effects just by playing with the values.

Another effect we are going to review in this basic section is motion blur, and again, it
simulates the way the cameras work. A camera has an exposure time; that is, the time
it needs to capture photons to produce each frame. When an object moves fast enough,
the same object is placed in different positions during that brief exposure time, so it will
appear blurred. In the following screenshot, you can see the effect being applied to our
scene. In this case, we are rotating the camera up and down fast, which results in the
following output:

Figure 9.9 – Motion blur being applied to our scene

238 Fullscreen Effects with Postprocessing

One thing to consider is that this blur will only be applied to the camera movement and
not the movement of the objects (that is, a still camera with moving objects), since this
URP doesn't support motion vectors yet.

To use this effect, follow these steps:

1. Add the Post-processing | Motion Blur override using the Add override button.
2. Check the Intensity checkbox and set it to 0.25.
3. Rotate the camera while in the Game view (not the Scene view). You can click and

drag the X property of Transform for the camera (not the value – the X label), as
illustrated in the following screenshot:

Figure 9.10 – Changing the rotation

As you can see, this effect cannot be seen in the Scene view, as well as other effects, so take
that into account before concluding the effect is not working. Unity does this because it
would be very annoying to have that effect on while you're working in the scene.

Finally, we are going to briefly discuss two final simple effects: film grain and white
balance. The first is pretty simple: add it, set its intensity to 1, and you will get the
famous grain effect from the old movies. You can set its Type with a different number
of sizes to make it more subtle or obvious. White balance allows you to change the color
temperature, making colors warmer or cooler depending on how you configure it. In our
case, we are working in a cold, dark scene, so you can add it and set the temperature to -20
to adjust its appearance slightly and improve the look and feel of this kind of scene.

Now that we have seen a few simple effects, let's check out a few of the remaining ones
that are affected by some advanced rendering features.

Using advanced effects
The effects we are going to look at in this section don't differ a lot from the previous ones;
they are just a little bit trickier and you will need some background knowledge to use
them. So, let's dive into them!

In this section, we are going to look at the high dynamic range (HDR) and depth map
advanced effect concepts.

Using advanced effects 239

Advanced effects
Let's start by discussing some requirements for some of these effects to work properly.

HDR and Depth maps
Some effects don't just work with the rendered image – they also need additional data.
First, we will discuss depth maps, a concept we discussed in the previous chapter. To
recap, a depth map is an image that's rendered from the point of view of the camera,
but instead of generating a final image of the scene, it renders the scene objects' depth,
rendering the objects in shades of gray. The darker the color, the farther from the
camera the pixel is, and vice versa. In the following screenshot, you can see an example
of a depth map:

Figure 9.11 – Depth map of a few primitive shapes

We will see some effects such as depth of field, which will blur some parts of the image
based on the distance of the camera, but it can be used for several purposes on custom
effects (not in the base URP package).

Another concept we will discuss here that will alter how colors are treated and, hence,
how some effects work is HDR. In older hardware, color channels (Red, Green, and Blue)
were encoded in a 0 to 1 range, with 0 being no intensity and 1 being full intensity
(per channel), so all lighting and color calculations were done in that range. That seems
okay, but it doesn't reflect how light actually works. You can see full white (all channels
set to 1) on a piece of paper being lit by sunlight, and you can see full white when you
look directly at a light bulb, but even if both the light and paper are of the same color, the
latter will, first, irritate the eye after a while, and, secondly, will have some overglow due to
excess light. The problem here is that the maximum value (1) is not enough to represent
the most intense color, so if you have a high-intensity light and another with even more
intensity, both will generate the same color (1 in each channel) because calculations
cannot go further than 1. So, that's why HDR rendering was created.

240 Fullscreen Effects with Postprocessing

HDR is a way for colors to exceed the 0 to 1 range so that lighting and effects that work
based on color intensity have better accuracy in this mode. It is the same idea as the new
TV feature named the same, although in this case, Unity will do the calculations in HDR.
However, the final image will still work using the previous color space (0 to 1, or low
dynamic range (LDR)), so don't confuse Unity's HDR rendering with the display's HDR.
To convert the HDR calculations back into LDR, Unity (and also TVs) use a concept
called tonemapping. You can see an example of an LDR-rendered scene and tonemapping
being used in an HDR scene in the following screenshots:

Figure 9.12 – An LDR-rendered scene (left) and an HDR scene with corrected overbrights using
tonemapping (right)

Tonemapping is a way to bring colors outside the 0.1 range back to it. It uses some
formulas and curves to determine how each color channel should be mapped back.
You can see this in a typical darker-to-lighter scene transition, such as when you exit a
building without windows to go out into a bright day. For a time, you will see everything
lighter until everything goes back to normal. The idea here is that the calculations are not
different when you are inside or outside the building; a white wall inside the building will
have a color near the 1 intensity, while the same white wall outside will have a higher value
(due to sunlight). The difference is that tonemapping will take the higher-than-1 color
back to 1 when you are outside the building, and maybe it will increase the lighting of the
wall inside if the scene is darker, depending on how you set it.

Even if HDR is enabled by default, let's learn how we can check this by doing the
following:

1. Go to Edit | Project Settings.
2. Click on the Graphics section in the left panel.
3. Click the asset referenced under the Scriptable Render Pipeline Settings property.
4. Click on the highlighted asset in the Project panel. Ensure that this panel is

visible before clicking the property in the Graphics settings. Alternatively,
you can double-click the asset reference in the Graphics settings to select it.

Using advanced effects 241

5. Under the Quality section, ensure that HDR is checked, as illustrated in the
following screenshot:

Figure 9.13 – Enabling HDR

6. Ensure that the HDR property of the Camera component in the Main Camera
GameObject is set to Use Pipeline Settings, to ensure the changes that were made
in the previous steps are respected.

Of course, the fact that HDR is togglable means that there are scenarios where you don't
want to use it. As you can guess, not all hardware supports HDR, and using it incurs a
performance overhead, so take that into account. Luckily, most effects work with both
the HDR and LDR color ranges, so if you have HDR enabled but the user device doesn't
support it, you won't get any errors, just different results.

Now that we are sure we have HDR enabled, let's explore some advanced effects that use
this and depth mapping.

Let's look at certain effects that use the previously described techniques, starting with
the commonly used: bloom. This effect, as usual, emulates the overglow that happens
around a heavily lit object through a camera lens or even the human eye. In the following
screenshots, you can see the difference between the default version of our scene and an
exaggerated bloom version. You can observe how the effect is only applied to the brightest
areas of our scene. Have a look at both effects here:

Figure 9.14 – The default scene (left) and the same scene with a high-intensity bloom (right)

242 Fullscreen Effects with Postprocessing

This effect is very common and simple, but I consider it advanced because the results are
drastically affected by HDR. This effect relies on calculating the intensity of each pixel's
color to detect areas where it can be applied. In LDR, we can have a white object that isn't
actually overbright, but due to the limitations in this color range, bloom may cause an
overglow over it. In HDR, due to its increased color range, we can detect if an object is
white or if the object is maybe light blue but just overbright, generating the illusion that
it is white (such as objects near a high-intensity lamp). In the following screenshot, you
can see the difference between our scene with HDR and without it. You will notice that
the LDR version will have overglow in areas that are not necessarily overlit. The difference
may be very subtle, but pay attention to the little details to note the difference. And
remember, I exaggerated the effect here. Have a look at both scenes here:

Figure 9.15 – Bloom in an LDR scene (left) and bloom in an HDR scene (right). Notice that the bloom
settings were changed to try to approximate them as much as possible

For now, let's stick with the HDR version of the scene. To enable bloom, do the following:

1. Add the Bloom override to the profile, as usual.
2. Enable the Intensity checkbox by checking it and setting the value to 0.2. This

controls how much overglow will be applied.
3. Enable Threshold and set it to 0.7. This value indicates the minimum intensity

a color needs to have to be considered for overglow. In our case, our scene is
somewhat dark, so we need to reduce this value in the Bloom effect's settings
to have more pixels included. As usual, those values need to be adjusted to your
specific scenario.

4. You will notice that the difference is very subtle, but again, remember that you
will have several effects, so all those little differences will add up. You can see both
effects in the following screenshots:

Using advanced effects 243

Figure 9.16 – Bloom effect

As usual, it is recommended for you to fiddle with the other values. Some interesting
settings I recommend that you test are the Dirt Texture and Dirt Intensity values.

Now, let's move on and look at another common effect: depth of field. This one relies on
the depth map we discussed earlier. It is not that obvious to the naked eye, but when you
focus on an object within your sight, the surrounding objects become blurred because
they are out of focus. We can use this to focus the attention of the player in key moments
of the gameplay. This effect will sample the depth map to see if the object is within the
focus range; if it is, no blur will be applied, and vice versa. To use it, do the following:

This effect depends on the camera positioning in your game. To test it, in this case, we will
put the camera near a column to try to focus on that specific object, as illustrated in the
following screenshot:

Figure 9.17 – Camera positioning

244 Fullscreen Effects with Postprocessing

5. Add the Depth of Field override.
6. Enable and set the Mode setting to Gaussian. This is the simplest one to use.
7. In my case, I have set Start to 10 and End to 20, which will make the effect start

at a distance behind the target object. The End setting will control how the blur's
intensity will increase, reaching its maximum at a distance of 20 meters. Remember
to tweak these values to your case.

8. If you want to exaggerate the effect a little bit, set Max Radius to 1.5. The result is
shown in the following screenshot:

Figure 9.18 – Exaggerated effect

Something to consider here is that our particular game will have a top-down perspective,
and unlike the first-person camera, where you can see distant objects, here, we will have
objects near enough to not notice the effect. So, we can limit the use of this effect just to
cutscenes in our scenario.

Now, most of the remaining effects provide different ways of altering the actual colors of
the scene. The idea is that the real color sometimes doesn't give you the exact look and feel
you are seeking. Maybe you need the dark zones to be darker to reinforce the sensation of
horror ambiance, or maybe you want to do the opposite; that is, increase the dark areas
to represent an open scene. Maybe you want to tint the highlights a little bit to get a neon
effect if you are creating a futuristic game, or perhaps you want a sepia effect temporarily,
to do a flashback. We have a myriad of ways to do this, and in this case, I will use a simple
but powerful effect called Shadow, Midtones, Highlights.

Using advanced effects 245

This effect will apply different color corrections to – well – shadows, midtones, and
highlights, meaning that we can modify darker, lighter, and medium areas separately. Let's
try it out by doing the following:

1. Add the Shadow, Midtones, Highlights override.
2. Let's start by doing some testing. Check the three Shadows, Midtones, and

Highlights checkboxes.
3. Move the Shadow and Midtones sliders all the way to the left and the one for

Highlights to the right. This will reduce the intensity of shadows and midtones and
increase the intensity of highlights. We did this so that you can see the areas that
Highlights will alter, based on their intensity (this can also be an interesting effect
in a horror game). You can do the same with the rest of the sliders to check the
other two areas. You can see the result in the following screenshot:

Figure 9.19 – Isolating highlights

4. Also, you can test moving the white circle at the center of the colored circle to apply
a little bit of tinting to those areas. Reduce the intensity of the highlights by moving
the slider a little bit to the left to make the tinting more noticeable. You can see the
result in the following screenshot:

Figure 9.20 – Tinting highlights

246 Fullscreen Effects with Postprocessing

5. By doing this, you can explore how those controls work, but of course, those
extreme values are useful for some edge cases. In our scene, the settings you can see
in the following screenshot worked best for me. As always, it is better to use subtler
values to not distort the original result too much, as illustrated here:

Figure 9.21 – Subtle changes

6. You can see the before and after effects in the following screenshots:

Figure 9.22 – Before and after effects

You have other simpler options as well, such as Split Toning, which does something
similar but just with shadows and highlights, and Color Curves, which give you advanced
control over how each color channel of the scene will be mapped, but the idea is the same
– that is, to alter the actual color of the resulting scene to apply a specific color ambiance
to your scene. If you remember the movie series The Matrix, when the characters were in
the Matrix, everything had subtle green tinting and, while outside it, the tinting was blue.

Summary 247

Remember that the results of using HDR and not using it with these effects are important,
so it is better to decide sooner rather than later whether you wish to use HDR by
excluding certain target platforms (which may not be important to your target audience),
or not to use it (using LDR) and have less control over your scene's lighting levels.

Also, take into account that you may need to tweak some object's settings, such as their
light intensities and material properties, because sometimes, we use postprocessing to fix
graphics errors that may be caused by objects that have been set incorrectly, and that's not
okay. For example, increasing the ambient lighting in our scene will drastically change the
output of the effects, and we can use that to increase the overall brightness instead of using
an effect if we find the scene too dark.

With that, we have covered the main image effects we should use. Remember that the idea
is not to use every single one but to use the ones that you feel are contributing to your
scene; they are not free in terms of performance (although not that resource-intensive),
so use them wisely. Also, you can check the profiles that have already been created and
apply them to your game to see how little changes can make a huge difference.

Summary
In this chapter, we discussed basic and advanced fullscreen effects that we can apply to
our scene, making it look more realistic in terms of camera lens effects and more stylish
in terms of color distortions. We also discussed the internals of HDR and depth maps and
how they are important when using those effects, which can immediately increase your
game's graphics quality with minimal effort.

Now that we have covered most of the common graphics that can be found in Unity
systems, in this next chapter, we will start looking at how to increase immersion in our
scene by using sound.

10
Sound and Music

Integration
In the previous chapter, we achieved good graphics quality, but we are missing an
important part of the game's aesthetics: sound. Often relegated to being the last step in
game development, sound is one of those things that if it's there, you won't notice its
presence, but if you don't have it, you will feel that something is missing. It will help you
reinforce the ambiance you want in your game, and it must match the graphics settings
you have.

In this chapter, we will cover the following sound concepts:

• Importing audio

• Integrating and mixing audio

We will apply these concepts to our game so that we can import audio and play it in
different scenarios, such as when the Player shoots. This also includes the background
music. Later in this book, we will play the sounds, but for now, we will focus on how to
import them into our project.

250 Sound and Music Integration

Importing audio
As with graphic assets, it is important to set up the import settings of audio assets, which
can be resource-intensive if not done properly.

In this section, we will examine the following audio importing concepts:

• Audio types

• Configuring the import settings

Let's start by discussing the different kinds of audio we can use.

Audio types
There are different types of audio present in video games, as follows:

• Music: Music is used to enhance the player's experience according to the situation.

• Sound effects – SFX: These are sounds that occur as a reaction to player or
NPC actions, such as clicking a button, walking, opening a door, shooting a gun,
and so on.

• Ambient sound: A game that only has sound as reactions to events would feel
empty. If you are recreating an apartment in the middle of the city, even if the
player is just idle in the middle of the room doing nothing, lots of sounds should
be heard, and the sources of most of them will be outside the room, such as an
airplane flying overhead, a construction site two blocks away, cars in the street, and
so on. Creating objects that won't be seen is a waste of resources. Instead, we can
place individual sounds all over the scene to recreate the desired ambiance, but that
would be resource-intensive, requiring lots of CPU and RAM to achieve believable
results. Considering that these sounds are usually in the second plane of the user's
attention, we can just combine them all into a single looping track and play one
piece of audio. That's exactly what ambient sound is. If you want to create a café
scene, you can simply go to a real café and record a few minutes of audio, and then
use that as your ambient sound.

For almost all games, we will need at least one music track, one ambient track, and several
SFX to start producing the audio. As always, we have different sources of audio assets, but
we will be using the Asset Store here. It has three audio categories for searching for the
assets we need:

Importing audio 251

Figure 10.1 – Audio categories in the Asset Store

In my case, I also used the search bar to filter the categories even further, searching for
weather to find a rain effect. Sometimes, you can't find the exact audio separately;
in such cases, you will need to dig into Packs and Libraries, so have patience here.
In my case, I picked the three packages you can see in the following figure. However,
I only imported some of the included sounds as using all of them would weigh a lot
in the project. For ambiance, I picked a rain sound file called Ambience_Rain_
Moderate_01_LOOP in the case of this package, but it will named something different
in other packages. Then, I picked Music – Sad Hope for music; for SFX, I picked a gun
sound effect package for our future Player's Hero Character. Of course, you can pick other
packages to suit your game's needs:

Figure 10.2 – The packages for our game

252 Sound and Music Integration

Now that we have the necessary audio packages, let's discuss how to import them.

Configuring the import settings
We have several import settings we can tweak, but the problem is that we need to consider
the usage of the audio to set it up properly. So, let's look at the ideal settings for each case.
To view the import settings, as always, you can select the asset and view it in the Inspector
window, as shown in the following screenshot:

Figure 10.3 – Audio Import Settings

Let's discuss the most important ones, starting with Force To Mono. Some audio may
come with stereo channels, meaning that we have one sound for the left ear and another
one for the right ear. This means that one piece of audio can contain two different audio
tracks. Stereo sound is useful for different effects and instrument spatialization in the case
of music, so we want that in those scenarios, but there are other scenarios where stereo
is not useful. Consider 3D sound effects such as a shooting gun or some walking-pace
steps. In those cases, we need the sound to be heard in the direction of the source. So, if
a gun was fired to my left, I need to hear it coming from my left. In these cases, we can
convert stereo audio into mono audio by checking the Force To Mono checkbox in the
audio import settings. This will make Unity combine the two channels into a single one,
reducing the size of the audio, usually to almost half its size (sometimes more, sometimes
less, depending on various aspects).

You can verify the impact of that and other settings at the bottom of the Audio Asset
inspector, where you can see the imported audio size:

Importing audio 253

Figure 10.4 – Left: audio imported without Force To Mono; Right: same audio with Force To Mono

The next setting to discuss, and an important one at that, is Load Type. To play some
audio, Unity needs to read the audio from disk, decompress, and then play it. Load
Type changes the way those three processes are handled. We have the following three
options here:

• Decompress on Load: This is the most memory-intensive option. This mode will
make Unity load the audio uncompressed in memory when the scene is loaded.
This means that the audio will take lots of space in RAM because we have the
uncompressed version loaded. The advantage of using this mode is that playing the
audio is easier because we have the raw audio data ready to play in RAM.

• Steaming: This is the opposite of Decompress on Load. This mode never loads
audio in RAM. Instead, while the audio is playing, Unity reads a piece of the audio
asset from disk, decompresses it, plays it, and repeats this, running this process once
for each piece of audio playing in Streaming. This means that this mode will be
CPU-intensive, but will consume almost zero bytes of RAM.

• Compressed in Memory: This is the middle ground. This mode will load the audio
from disk when the scene is loaded but will keep it compressed in memory. When
Unity needs to play the audio, it will just take a piece from RAM, decompress it, and
play it. Remember that reading pieces of the audio asset from RAM is considerably
faster than reading from disk.

If you are an experienced developer, you can easily determine which mode is better suited
for which kind of audio, but if this is your first encounter with video games, this may
sound confusing, so let's discuss the best modes for different cases:

• Frequent Short Audio: This could be a gun being fired or the sound of footsteps,
which are sounds that last less than 1 second but can occur in several instances
and play at the same time. In such cases, we can use Decompress On Load.
Uncompressed short audio won't have a huge size difference from its compressed
version. Also, since this is the most performant CPU option, having several
instances won't have a huge impact on performance.

254 Sound and Music Integration

• Infrequent Large Audio: This includes music, ambient sound, and dialog. These
kinds of audio usually have just one instance playing, and they are usually big. Those
cases are better suited for the Streaming mode because having them compressed or
decompressed in RAM can have a huge impact on low-end devices such as mobile
devices (on PCs, we can sometimes use Compressed in Memory). A CPU can
handle having two or three bits of audio playing in Streaming mode, but try to have
no more than that.

• Frequent Medium Audio: This includes pre-made voice chat dialog in multiplayer
games, character emotes, long explosions, or any audio that is more than 500
KB (this is not a strict rule – this number depends a lot on the target device).
Having this kind of audio decompressed in RAM can have a noticeable impact on
performance, but since this audio is frequently used, we can have it compressed
in memory. Their relatively smaller size means they usually won't make a huge
difference to our game and we will avoid wasting CPU resources when reading
from disk.

There are other cases to consider, but those can be extrapolated based on the previous
ones. Remember that the previous analysis was made by taking into account the
requirements of a standard game, but this can vary a lot based on your game and target
device. Maybe you are making a game that won't consume lots of RAM, but it is pretty
intensive in terms of CPU resources, in which case you can just put everything in
Decompress on Load. It's important to consider all aspects of your game and to balance
your resources accordingly.

Finally, another thing to consider is the compression format, which will change the way
Unity will encode the audio in the published game. Different compression formats will
give different compression ratios in exchange for less fidelity with the original audio, or
higher decompression times, and all this varies a lot based on the audio patterns and their
length. We have three compression formats:

• PCM: This uncompressed format will give you the highest audio quality, with no
noise artifacts, but will result in a bigger asset file size.

• ADPCM: Compressing audio this way reduces file size and yields a fast
uncompressing process, but this can introduce noise artifacts that can be noticeable
in certain types of audio.

• Vorbis: A high-quality compression format that will yield almost zero artifacts but
takes longer to decompress, so playing Vorbis audio will be slightly more intensive
than for other formats. It also provides a quality slider for selecting the exact
amount of compression aggressiveness.

Importing audio 255

So, which one should you use? Again, that depends on the features of your audio. Short,
smooth audio can use PCM, while long, noisy audio can use ADPCM; the artifacts that
are introduced by this format will be hidden in the audio itself. Maybe long, smooth audio
where compression artifacts are noticeable could benefit from using Vorbis. Sometimes,
it's just a matter of trial and error. Maybe use Vorbis by default and when performance
is reduced, try to switch to ADPCM, and if that causes glitches, just switch to PCM. Of
course, the problem here is being sure that audio processing is really what's responsible
for the performance issues – maybe switching all audio to ADPCM and checking whether
that made a difference is a good way to detect that, but a better approach would be to use
the Profiler, a performance measurement tool that we will look at later in this book.

We have other settings, such as Sample Rate Setting, that, again, with a little trial and
error, you can use to detect the best setting.

I have set up the audio that I downloaded from the Asset Store, as shown in the
following screenshots. The first one shows how I set up the music and ambient audio
files (large files):

Figure 10.5 – Music and ambient settings

For stereo (Force To Mono unchecked), use Streaming Load Type because these files
are large and will have just one instance playing, and ADPCM for Compression Format
because Vorbis didn't result in a huge size difference.

256 Sound and Music Integration

This second screenshot shows how I set up the SFX files (small files):

Figure 10.6 – Shooting SFX settings

This will be a 3D sound, so Force To Mono should be checked. It will be also short,
so Decompress on Load works better for Load Type. Using Vorbis for Compression
Format reduces the ADPCM size by more than a half.

Now that we have our pieces of audio configured, we can start using them in our scene.

Integrating and mixing audio
We can just drag our bits of audio into our scene to start using them, but we can dig a little
bit further to explore the best ways to configure them for each possible scenario.

In this section, we will examine the following audio integration concepts:

• Using 2D and 3D AudioSources

• Using audio mixers

Let's start by exploring AudioSources, objects that are in charge of audio playback.

Integrating and mixing audio 257

Using 2D and 3D AudioSources
AudioSources are components that can be attached to GameObjects. They are
responsible for emitting sound in our game based on AudioClips, which are the audio
assets we downloaded previously. It's important to differentiate an AudioClip from
an AudioSource: we can have a single explosion AudioClip, but lots of AudioSources
playing it, simulating several explosions. An AudioSource can be seen as a CD Player
that can play AudioClips (our CDs, in this analogy), with the only exception that we can
have several CD Players or AudioSources playing the same CD at the same time (in this
example, two explosion sounds playing at the same time).

The simplest way to create an AudioSource is to pick an AudioClip (an audio asset) and
drag it to the Hierarchy window. Try to avoid dragging the audio into an existing object;
instead, drag it between objects so that Unity will create a new object with AudioSource
instead of adding it to an existing object (sometimes, you want an existing object to have
this AudioSource, but let's keep things simple for now):

Figure 10.7 – Dragging an AudioClip to the Hierarchy window between objects

258 Sound and Music Integration

The following screenshot shows the AudioSource that was generated by dragging the
music asset to the scene. You can see that the AudioClip field has a reference to the
dragged audio:

Figure 10.8 – AudioSource configured to play our music asset

As you can see, AudioSource has several settings, so let's review the most common ones:

• Play on Awake: This determines whether the audio starts playing automatically
when the game starts. We can uncheck this option and play the audio via scripting,
perhaps when the player shoots or jumps (more on that in Part 3 of this book).

• Loop: This will make the audio repeat automatically when it finishes playing.
Remember to always check this setting for the music and ambient audio clips. It is
easy to forget this because those tracks are long and we may never reach the end of
them in our tests.

• Volume: This controls the audio's intensity.

• Pitch: This controls the audio's velocity. This is useful for simulating effects such as
slow motion or the increasing revolutions of an engine.

• Spatial Blend: This controls whether our audio is 2D or 3D. In 2D mode, the audio
will be heard at the same volume at all distances, while 3D will make the audio's
volume decrease as the distance from the camera increases.

Integrating and mixing audio 259

In the case of our music track, I have configured it as shown in the following screenshot.
You can drag the ambient rain sound to add it to the scene and use the same settings
as these because we want the same ambient effect in all our scenes. In complex scenes,
though, you can have different 3D ambient sounds scattered all over the scene to change
the sound according to the current environment:

Figure 10.9 – Music and ambient settings. This will loop, is set to Play On Awake, and is 2D

260 Sound and Music Integration

Now, you can drag the shooting effect and configure it as shown in the following
screenshot. As you can see, the audio, in this case, won't loop because we want the
shooting effect to play once per bullet. Remember that, in our case, the bullet will be a
prefab that will spawn each time we press the shoot key, so each bullet will have its own
AudioSource that will play when the bullet is created. Also, the bullet is set to a 3D
Spatial Blend, meaning that the effect will be transmitted through different speakers
based on the position of the Audio Source and the Camera's position:

Figure 10.10 – Sound effect settings. This won't loop and is a 3D sound

Something to consider in the case of 3D sounds is the Volume Rolloff setting, which
is inside the 3D Sound Settings section. This setting controls how the volume decays
based on its distance from the camera. By default, you can see that this setting is set
to Logarithmic Rolloff, the way real-life sound works, but sometimes, you don't want
real-life sound decay, because sounds in real life are usually heard slightly, even if the
source is very far away. One option is to switch to Linear Rolloff and configure the exact
maximum distance with the Max Distance setting:

Integrating and mixing audio 261

Figure 10.11– A 3D sound with a maximum distance of 10 meters, using Linear Rolloff

Considering we just discussed 3D sounds, it's worth mentioning the AudioListener
component, which is created by default in MainCamera. 99% of the time, it will be there,
given its usage. It serves as a way to identify which object represents the ears of the player
in the world, in a way we can calculate the audio's directionality. The camera is the logical
place to put it, given that it represents the eyes of the user; having the eyes and the ears of
the player in different places could be confusing. There's no setting we can use regarding
this, but it is important to mention that for the audio to work, we need one, and no more
than one – we only have one pair of ears, after all:

Figure 10.12 – Audio Listener component in the Main Camera

Now that we know how to configure individual pieces of audio, let's learn how to apply
effects to groups of audio instances using an Audio Mixer.

262 Sound and Music Integration

Using an Audio Mixer
We will have several audio instances playing all over our game: the footsteps of characters,
shooting, bonfires, explosions, rain, and so on. Controlling exactly which sounds are
supposed to sound louder or lower, depending on the use case, and applying effects to
reinforce certain situations, such as being stunned due to a nearby explosion, is called
audio mixing – the process of mixing several sounds in a cohesive and controlled way.

In Unity, we can create an Audio Mixer, an asset that we can use to define groups of
sounds. All changes that are made to a group will affect all the sounds inside it, by raising
or lowering the volume, perhaps, or by applying an effect. You can have SFX and music
groups to control sounds separately – as an example, you could lower the SFX volume
while in the Pause menu but not the music volume. Also, groups are organized in a
hierarchy, where a group can also contain other groups, so changing something in a group
will also apply changes to its sub-groups. In fact, every group you create will always be
a child group of the master group; that is, the group that will affect every single sound
in the game (that uses that mixer).

Let's create a mixer with SFX and music groups:

1. In the Project window, using the + button, select the Audio Mixer option. Name
the asset as you wish; in my case, I chose the name Main Mixer.

2. Double-click the created asset to open the Audio Mixer window:

Figure 10.13 – Audio Mixer window

Integrating and mixing audio 263

3. Click the + button to the right of the Groups label to create a child group of the
master node. Name it SFX:

Figure 10.14 – Group creation

4. Click on the Master group and click again on the + button to create another master
node child group called Music. Remember to select the Master group before
clicking the + button, because if another group is selected, the new group will be a
child of that one. You can rearrange a group's child-parent relationship by dragging
it into the Hierarchy window:

Figure 10.15 – The Master, SFX, and Music groups

5. Select the Music GameObject in the Hierarchy window and look for the
AudioSource component in the Inspector window.

6. Click the circle to the right of the Output property and select the Music group in
the Audio Mixer group selector. This will make AudioSource be affected by the
settings on the specified Mixer group:

Figure 10.16 – Making an AudioSource belong to an AudioMixerGroup

264 Sound and Music Integration

7. If you play the game now, you will see how the volume meters in the Audio Mixer
start to move, indicating that the music is going through the Music group. You will
also see that the Master group's volume meter is also moving, indicating that the
sound that is passing through the Music group is also passing through the Master
group (the parent of the Music group) before going to the sound card of your
computer:

Figure 10.17 – Group volume levels

8. Repeat steps 5 and 6 for the ambient and shooting sounds to make them belong to
the SFX group.

Now that we have separated our sounds into groups, we can start adjusting the groups'
settings. But before we do that, we need to take into account that we won't want the same
settings all the time, as in the previously mentioned pause menu case, where the SFX
volume should be lower. To handle those scenarios, we can create snapshots, which are
presets of our mixer that can be activated via scripting during our game. We will deal with
the scripting steps in Part 3 of this book, but for now, we will create a normal snapshot for
the in-game settings and a pause snapshot for the pause menu settings.

If you check the Snapshots list, you will see that a single snapshot has already been
created – this will be our normal snapshot. So, let's create a pause snapshot by doing
the following:

1. Click on the + button to the right of the Snapshots label and call the snapshot
Pause. Remember to stop the game to edit the mixer or click the Edit in Playmode
option to allow Unity to change the mixer during play. If you do the latter, remember
that the changes will persist when you stop the game, unlike changes that are made
to GameObjects. Actually, if you change other assets during play mode, those
changes will also persist – only GameObject changes are reverted. There are some
other cases, such as Materials and Animations, where changes are not reverted after
being paused, given they are assets, but we won't discuss them right now:

Integrating and mixing audio 265

Figure 10.18 – Snapshot creation

2. Select the Pause snapshot and lower the volume slider of the SFX group:

Figure 10.19 – Lowering the volume of the Pause snapshot

3. Play the game and hear how the sound is still at its normal volume. That's because
the original snapshot is the default one – you can see this by looking for the star
to its right. You can right-click any snapshot and make it the default one using the
Set as Start Snapshot option.

4. Click on Edit in Playmode to enable Audio Mixer modification during runtime.
5. Click on the Pause snapshot to enable it and hear how the Shooting and Ambient

sound volumes have decreased.

As you can see, one of the main uses of the mixer is to control group volume, especially
when you can see that the intensity of a group's volume is going higher than the 0 mark,
indicating that the group is too loud. However, there are other uses for the mixer, such
as applying effects. If you've played any war games, you will have noticed that whenever
a bomb explodes nearby, you hear the sound differently for a moment, as if the sound
were located in another room. This can be accomplished by using an effect called Low
Pass, which blocks high-frequency sounds, and that's exactly what happens with our ears
in those scenarios: the stress of the high-volume sound that's generated by an explosion
irritates our ears, making them less sensitive to high frequencies for a while.

266 Sound and Music Integration

We can add effects to any channel and configure them according to the current snapshot,
just as we did for the volume, by doing the following:

1. Click on the Add… button at the bottom of the Master group and select Lowpass
Simple:

Figure 10.20 – The effects list of a channel

2. Select the normal snapshot (the one called Snapshot) to modify it.
3. Select the Master group and look at the Inspector window, where you will see

settings for the group and its effects.
4. Set the Cutoff freq property of the Lowpass Simple setting to the possible highest

value (22000). This will disable the effect.
5. Repeat steps 3 and 4 for the Pause snapshot; we don't want this effect in that

snapshot.
6. Create a new snapshot called Bomb Stun and select it to edit it.
7. Set Cutoff freq to 1000:

Figure 10.21 – Setting the cutoff frequency of the Lowpass Simple effect

8. Play the game and change snapshots to check out the difference.

Summary 267

Aside from the Low Pass filter, you can apply several other filters, such as Echo, to create
an almost dreamy effect, or a combination of Send, Receive, and Duck to make a group
lower its volume based on the intensity of another group (for instance, you may want to
lower the SFX volume when there's dialog). I invite you to try those and other effects and
check the results to identify potential uses.

Summary
In this chapter, we discussed how to import and integrate sounds while considering their
memory impact and applied effects to generate different scenarios. Sound is a big part of
achieving the desired game experience, so you should take the time to get it right.

Now that we have covered almost all the vital aesthetic aspects of our game, in the next
chapter, we will create another form of visual communication: the user interface (UI).
We will create a UI that will display the player's current score, bullets, life, and lots more.

11
User Interface

Design
Everything that is shown on the screen and is transmitted through the speakers of
a computer is a form of communication. In previous chapters, we used 3D models
to let the user know that they are in a base in the middle of the mountains, and we
reinforced that idea with the appropriate sound and music. But for our game, we need
to communicate other information, such as the amount of life the user has left and the
current score, and sometimes, it is difficult to express these things using the in-game
graphics (some successful cases manage to do this, such as Dead Space, but let's keep
things simple). To transmit this information, we need to add another layer of graphics on
top of our scene, which is usually called the User Interface (UI) or Heads-Up Display
(HUD). This will contain different visual elements, such as text fields, bars, and buttons,
to prepare the user to take an informed decision based on things such as fleeing to a safe
place when their life is low:

Figure 11.1 – Character creation UI displays info about the character stats with numbers

270 User Interface Design

In this chapter, we will visit the following topics:

• Understanding Canvas and RectTransform

• Canvas object types

• Creating a responsive UI

By the end of this chapter, you will be able to use the Unity UI system to create interfaces
capable of informing the user about the state of the game and allowing them to take
action by pressing buttons. Let's start by discussing the basic concepts of the Unity UI
system—Canvas and RectTransform.

Understanding Canvas and RectTransform
Currently, there are three UI systems available in Unity for different purposes:

• UI Toolkit: A system to extend the Unity Editor with custom windows and tools.
This uses several web concepts, such as stylesheets and XML-based language, to lay
out your UI. In the future, it will be available to use in-game.

• Unity UI: A GameObject-based UI only applicable for in-game UIs (not editor
extensions). You create it using GameObjects and components like any other object
we have edited so far.

• IMGUI: A legacy code-based UI created entirely by using scripting. A long time
ago, this was the only UI system used in both the editor and the in-game UI.
Nowadays, it is only used to extend the editor and will soon be completely replaced
by UI Elements.

In this chapter, we are only going to focus on in-game UI to communicate different
information to the player regarding the state of the game, so we are going to use Unity UI.
At the time of writing this book, there are plans to replace Unity UI with UI Elements,
but there's no estimated date as to when this will happen. Anyway, even if Unity releases
UI Elements as an in-game UI system soon, Unity UI will still be there for a while and is
perfectly capable of handling all types of UI that you need to create.

If you are going to work with Unity UI, you first need to understand its two main
concepts—Canvas and RectTransform. Canvas is the master object that will contain and
render our UI and RectTransform is the feature in charge of positioning and adapting
each UI element on our screen.

Understanding Canvas and RectTransform 271

In this section, we will be performing the following tasks:

• Creating a UI with Canvas

• Positioning elements with RectTransform

Let's start by using the Canvas component to create our UI.

Creating a UI with Canvas
In Unity UI, each image, text, and element you see in the UI is a GameObject with a set
of proper components, but in order for them to work, they must be a child of a master
GameObject with the Canvas component. This component is responsible for triggering
the UI generation and drawing iterations over each child object. We can configure this
component to specify exactly how that process works and adapt it to different possible
requirements.

To start, you can simply create a canvas with the GameObject | UI | Canvas option. After
doing that, you will see a rectangle in the scene, which represents the user screen, so you
can put elements inside it and preview where they will be located relative to the user's
monitor. You can see an example of this rectangle in the following screenshot:

Figure 11.2 – Canvas screen rectangle

You are probably wondering two things here. First, "why is the rectangle in the middle of
the scene? I want it to always be on the screen!". Don't worry because that will exactly be
the case. When you edit the UI, you will see it as part of the level, as an object inside it, but
when you play the game, it will always be projected over the screen, on top of every object.
Also, you may be wondering why the rectangle is huge, and that's because one pixel of the
screen maps to one meter on the scene. Again, don't worry about that; you will see all your
UI elements in their proper size and position on the user's screen when you see the game
in Game view.

272 User Interface Design

Before adding elements to our UI, it's worth noting that when you created the UI, a
second object is created alongside the canvas, called EventSystem. This object is not
necessary to render a UI but is necessary if you want the UI to be interactable, which
means including actions such as clicking buttons, introducing text in fields, or navigating
the UI with the joystick. The EventSystem component is responsible for sampling the user
input, such as with a keyboard, mouse, or joystick, and sending that data to the UI to react
accordingly. We can change the exact buttons to interact with the UI, but the defaults are
OK for now, so just know that you need this object if you want to interact with the UI.
If, for some reason, you delete the object, you can recreate it again in GameObject | UI |
Event System.

Now that we have the base objects to create our UI, let's add elements to it.

Positioning elements with RectTransform
In Unity UI, each image, text, and element you see in the UI is a GameObject with a set
of proper components according to its usage, but you will see that most of them have one
component in common—RectTransform. Each piece of the UI is essentially a rectangle
filled with text or images and has different behavior, so it is important to understand how
the RectTransform component works and how to edit it.

To experiment with this component, let's create and edit the position of a simple white
box element for the UI as follows:

1. Go to GameObject | UI | Image. After that, you will see that a new GameObject
is created within the Canvas element. Unity will take care of setting any new UI
element as a child of Canvas; outside it, the element will not be visible:

Figure 11.3 – A default image UI element—a white box

2. Click on the 2D button in the top bar of the Scene view. This will just change
the perspective of the Scene view to one that is better suited to edit the UI
(and also 2D games):

Understanding Canvas and RectTransform 273

Figure 11.4 – The 2D button location

3. Double-click on the canvas in the Hierarchy window to make the UI fit entirely
in the Scene view. This will allow us to edit the UI clearly. You can also navigate
the UI using the mouse scroll wheel to zoom, and click and drag the scroll wheel
to pan the camera:

Figure 11.5 – The Scene view in 2D edit mode

274 User Interface Design

4. Disable the PPVolume object to disable post-processing. The final UI won't have
postprocessing, but the editor view still applies it. Remember to re-enable it later:

Figure 11.6 – Disabling a game object—in this case, the postprocessing volume

5. Enable (if it is not already enabled) the RectTrasform tool, which is the fifth button
in the top-left part of the Unity Editor (or press the T key). That will enable the
rectangle gizmo, which allows you to move, rotate, and scale 2D elements. You can
use the usual transform, rotate, and scale gizmos, which were the ones we used in
3D mode, but the rectangle gizmo causes less trouble, especially with scaling:

Figure 11.7 – The rectangle gizmo button

6. Using the rectangle gizmo, drag the object to move it, use the blue dots to change its
size, or locate the mouse in a tricky position near the blue dots to rotate it. Consider
that resizing the object using this gizmo is not the same as scaling the object, but
more on that in a moment:

Figure 11.8 – The rectangle gizmo for editing 2D elements

Canvas object types 275

7. In the Inspector window, notice that after changing the size of the UI element, the
Rect Transform setting's Scale property is still at (1, 1, 1), but you can see how
the Width and Height properties changed. Rect Transform is essentially a classic
transform, but with Width and Height added (among other properties to explore
later). You can set the exact values you want here, expressed in pixels:

Figure 11.9 – The Rect Transform properties

Now that we know the very basics of how to position any UI object, let's explore the
different types of elements you can add to Canvas.

Canvas object types
So far, we have used the simplest Canvas object type—a white box—but there are
plenty of other object types we can use, such as images, buttons, and text. All of them
use RectTransform to define their display area, but each one has its own concepts and
configurations to understand.

In this section, we will explore the following Canvas object concepts:

• Integrating assets for the UI

• Creating UI controls

Let's first start exploring how we can integrate images and fonts to use in our canvas so
that we can integrate them in our UI using the Images and Text UI object types.

276 User Interface Design

Integrating assets for the UI
Before making our UI use nice graphics assets, we need, as always, to integrate them
properly into Unity. In the following screenshot, you will find the UI design we proposed
in Chapter 1, Designing a Game from Scratch:

Figure 11.10 – Chapter 1's UI design

On top of that, we will add a Pause menu, which will be activated when the user presses
Esc. It will look as in the following screenshot:

Figure 11.11 – The Pause menu design

Based on these designs, we can determine that we will need the following assets:

• The hero's avatar image

• A health bar image

• A Pause menu background image

• A Pause menu button image

• Font for the text

Canvas object types 277

As always, we can find the required assets on the internet or on the Asset Store. In my
case, I will use a mixture of both. Let's start with the simplest one—the avatar. Perform the
following steps:

1. Download the avatar you want from the internet:

Figure 11.12 – Downloaded avatar asset

2. Add it into your project, either by dragging it to the Project window or by using the
Assets | Import New Asset option. Add it to a Sprites folder.

3. Select the texture and, in the Inspector window, set the Texture Type setting to
Sprite (2D and UI). All textures are prepared to be used in 3D by default. This
option prepares everything to be used in 2D.

For the bars, buttons, and window background, I will use Asset Store to look for a UI
pack. In my case, I found the package in the following screenshot a good one for starting
my UI. As usual, remember that this exact package might not be available right now.
In that case, remember to look for another similar package, or pick the sprites from the
GitHub repo:

Figure 11.13 – Selected UI pack

278 User Interface Design

At first, the Package contains lots of images configured the same way as sprites, but we can
further modify the import settings to achieve advanced behavior, as we will need for the
buttons. The button asset comes with a fixed size, but what happens if you need a bigger
button? One option is to use other button assets with different sizes, but this will lead to
a lot of repetitions of the buttons and other assets, such as different-sized backgrounds for
different windows, which will unnecessarily consume RAM. Another option is to use the
9 slices method, which consists of splitting an image so that the corners are separated
from the other parts. This allows Unity to stretch the middle parts of the image to fit
different sizes, keeping the corners at their original size, which, when combined with an
image prepared for the 9 slices technique, can be used to create almost any size you need.
In the following diagram, you can see a shape with nine slices in the bottom-left corner,
and in the bottom-right corner of the same diagram, you can see the shape is stretched
but keeps its corners at their original size. The top-right corner shows the shape stretched
without slices. You can see that the non-sliced version is distorted, while the sliced version
is not:

Figure 11.14 – Sliced versus non-sliced image stretching

In this case, we can apply the nine slices to the button and the panel background images
to use them in different parts of our game. In order to do this, perform the following steps:

1. Open Package Manager using the Window | Package Manager option.
2. Verify that Package Manager is showing all the packages by setting the dropdown

to the right of the + button in the top-left part of the window to Unity Registry:

Canvas object types 279

Figure 11.15 – Showing all packages in Package Manager

3. Install the 2D Sprite package to enable the sprite editing tools (if it is not already
installed):

Figure 11.16 – The 2D Sprite package in Package Manager

4. Select the button sprite in the Project window and click on the Sprite Editor button
in the Inspector window:

Figure 11.17 – The Sprite Editor button in the Inspector window

280 User Interface Design

5. In the Sprite Editor window, locate and drag the green dots at the edges of the
image to move the slice rulers. Try to ensure that the slices are not located in
the middle of the edges of the button. One thing to notice is that in our case, we
will work with three slices instead of nine because our button won't be stretched
vertically.

Notice that after dragging the green dots, the Border properties (L, T, R, and B,
which are Left, Top, Right, and Bottom, respectively) in the bottom-right corner
changed. Those are the exact values you set moving the green dots. Feel free to
change them to more round numbers to allow the 9 slices to work even. In our case,
Left and Right can become a round 60, and Top and Bottom 50.

6. Click on the Apply button in the top-right corner of the window and close it:

Figure 11.18 – Nine slices in the Sprite Editor window

7. Repeat steps 4-6 for the Background panel image. In my case, you can see in the
following screenshot that this background is not completely prepared with nine
slices in mind because all the middle areas of the image can be made smaller to save
memory. When displaying this image with a smaller width, the 9-slicing method
will stretch the middle part and will look the same, so essentially it wasted memory.
So, we can edit it with any image editing tool or just work with it as it is for now:

Canvas object types 281

Figure 11.19 – Nine slices in the Sprite Editor window

Now that we have prepared our sprites, we can find a font to customize the text of our
UI. Before discussing how to import fonts, it is worth mentioning that we will be using
TextMesh Pro, a Unity Package (already included in the project) that provides a text
rendering solution way better than the old text component. If you have never used that
component before, you shouldn't worry about this detail.

You must get fonts in the .ttf or .otf formats and import them into Unity. You can
find lots of good, free font websites on the internet. I am used to working with the classic
DaFont.com site, but there are plenty of other sites that you can use. In my case, I will
work with the following font:

Figure 11.20 – My chosen font from DaFont.com to use in the project

https://DaFont.com

282 User Interface Design

If the font download comes with more than one file, you can just drag them all into
Unity and then use the one that you like the most. Also, as usual, try to put the font
inside a folder called Fonts. Now, these file formats are not compatible with TextMesh
Pro, our text rendering solution, so we must convert it using the Font Asset Creator
window, as depicted in the following steps:

1. Go to Window | Text Mesh Pro | Font Asset Creator.
2. If this is the first time you are using Text Mesh Pro in your project, a window will

appear. You must click the Import TMP Essentials option and wait for the import
process to finish:

Figure 11.21 – TextMesh Pro first run initialization

3. Close the TMP Importer window.
4. In the Font Asset Creator window, drag your font from the Project view to Source

Font File, or select it by clicking the Target button at the right (the circle with the
point at the center).

Canvas object types 283

5. Click the Generate Font Atlas button and wait a moment:

Figure 11.22 – Converting font assets to TextMesh Pro

284 User Interface Design

6. Click the Save button and save the converted asset into the TextMesh Pro |
Resources | Fonts & Materials folder. Saving the asset here is important, so don't
forget to pick the proper folder:

Figure 11.23 – Saving the converted font in the proper folder (Mac)

Now that we have all the required assets to create our UI, let's explore the different types
of components to create all the required UI elements.

Creating UI controls
Almost every single part of the UI will be a combination of images and texts configured
cleverly. In this section, we will explore the following components:

• Image

• Text

• Button

Let's start exploring Image. Actually, we already have an image in our UI—the white
rectangle we created previously in this chapter. If you select it and look at the Inspector
window, you will notice that it has an Image component, like the one in the following
screenshot:

Canvas object types 285

Figure 11.24 – The Image component's Inspector window

Let's start exploring the different settings of this component, starting with our hero's
avatar. Perform the following steps:

1. Using the rectangle gizmo, locate the white rectangle in the top-left part of the UI:

Figure 11.25 – The white rectangle located in the top-left part of the UI

2. In the Inspector window, click on the circle to the right of the Source Image
property and pick the downloaded hero avatar sprite:

Figure 11.26 – Setting the sprite of our Image component

286 User Interface Design

3. We need to correct the aspect ratio of the image to prevent distortion. One way to
do this is to click the Set Native Size button at the bottom of the Image component
to make the image use the same size as the original sprite. However, by doing this,
the image can become too big, so you can reduce the image size by pressing Shift to
modify both the Width and Height values. Another option is to check the Preserve
Aspect checkbox to make sure the image fits the rectangle without stretching. In my
case, I will use both:

Figure 11.27 – The Preserve Aspect and Set Native Size image options

Now, let's create the life bars by doing the following:

1. Create another Image component using the GameObject | UI | Image option.
2. Set the Source Image property to the life bar image you downloaded:

Figure 11.28 – The avatar and life bar

3. Set the Image Type property to Filled.
4. Set the Fill Method property to Horizontal.
5. Drag the Fill Amount slider to see how the bar is cut according to the value

of the slider. We will change that value via scripting when we code the life system
in Chapter 16, Physics Collisions and Health System, where we will be coding our
own scripts:

Canvas object types 287

Figure 11.29 – The Fill Amount slider, cutting the image width by 73% of its size

6. In my case, the bar image also comes with a bar frame, thereby creating another
image, setting the sprite, and positioning it on top of the life bar to frame it. Bear
in mind that the order the objects are in in the Hierarchy window determines
the order in which they will be drawn. So, in my case, I need to be sure the frame
GameObject is below the health bar image:

Figure 11.30 – Putting one image on top of the other to create a frame effect

7. Repeat steps 1-6 to create the base bar at the bottom, or just copy and paste the bar
and the frame and locate it at the bottom of the screen:

Figure 11.31 – The Player's and Player's Base health bars

288 User Interface Design

8. Click on the + button in the Project window and select the Sprites | Square option.
This will create a simple squared sprite. This is the same as downloading a 4 x 4
resolution full-white image and importing it into Unity.

9. Set the sprite as the base bar instead of the downloaded bar sprite. This time, we
will be using a plain-white image for the bar because in my case, the original one is
red, and changing the color of a red image to green is not possible. However, a white
image can be easily tinted. Take into account the detail of the original bar—for
example, the little shadow in my original bar won't be present here, but if you want
to preserve it, you should get a white bar with that detail.

10. Select the base health bar and set the Color property to green:

Figure 11.32 – A bar with a squared sprite and green tint

One optional step would be to convert the bar frame image into a nine-slices image
to allow us to change the original width to fit the screen.

Now, let's add the text fields for the Score, Bullets, Remaining Waves, and Remaining
Enemies labels by doing the following:

1. Create a text label using the GameObject | UI | Text - Text Mesh Pro option
(avoid the one that only says Text). This will be the Score label.

2. Position the label in the top-right part of the screen.
3. In the Inspector window, set the Text Input property to Score: 0.
4. Set the Font Size property to 20.
5. Apply the converted font by clicking on the circle to the right of the Font Asset

property and select the desired font.

Canvas object types 289

6. In the Alignment property, select the Horizontal Right Align icon (third button
from the first row) and the Vertical Center Align icon (second button from the
second row):

Figure 11.33 – The settings for a text label

290 User Interface Design

7. Repeat steps 1-6 to create the other three labels (or just copy and paste the score
three times). For the Remaining Waves label, you can use the left alignment option
to better match the original design:

Figure 11.34 – All the labels for our UI

8. Set the color of all the labels to white as our scene will be mainly dark.

Now that we have completed the original UI design, we can create the Pause menu:

1. Create an Image component for the menu's background (GameObject | UI |
Image).

2. Set the Background panel sprite with the nine slices we made earlier.
3. Set the Image Type property to Sliced if it is not already. This mode will apply the

9-slice scaling method to prevent the corners from stretching.

Canvas object types 291

4. There's a chance that the image will stretch the corners anyway, which happens
because sometimes the corners are quite big compared to the RectTransform
setting's Size property that you are using, so Unity has no option other than to do
that. In this scenario, the correct solution is to have an artist who creates assets
tailored to your game, but sometimes we don't have that option. This time, we can
just increase the Pixels Per Unit value of the sprite, which will reduce the scale of
the original image while preserving its resolution. In the following two screenshots,
you can see the background image with a Pixels Per Unit value of 100 and again
with 700. Remember to only do this for the nine-slices or tiled-image types, or if
you don't have an artist to adjust it for you:

Figure 11.35 – On top, a large nine-slices image in a small RectTransform component, small enough to
shrink the corners; on the bottom, the same image with Pixels Per Unit set to 700

5. Create a TextMesh Pro Text field, position it where you want the Pause label to be in
your diagram, set it to display the Pause text, and set the font. Remember that you
can change the text color with the Color property.

292 User Interface Design

6. Drag the text field onto the background image. The parenting system in Canvas
works the same—if you move the parent, the children will move with it. The idea is
that if we disable the panel, it will also disable the buttons and all its content:

Figure 11.36 – The Pause label

7. Create two buttons by going to GameObject | UI | Button - Text Mesh Pro
(avoid using the one that only says Button). Position them where you want them
on the background image.

8. Set them as children of the Pause background image by dragging them to the
Hierarchy window.

9. Select the buttons and set the Source Image property of their Image components to
use the button sprite that we downloaded earlier. Remember our Pixels Per Unit fix
from earlier if you have the same problem as before.

10. You will notice that the button is essentially an image with a child TextMesh Pro
Text object. Change the font of each button and the text in each button to Resume
and Quit:

Figure 11.37 – The Pause menu implementation

Creating a responsive UI 293

11. Remember that you can hide the panel by unchecking the checkbox to the right of
the name of the object in the top part of the Inspector window:

Figure 11.38 – Disabling a GameObject

As you can see, you can create almost any kind of UI just by using Image and Text
components. Of course, there are more advanced components that enable you to create
buttons, text fields, checkboxes, lists, and so on, but let's stick to the basic ones. One thing
to notice is that we have created buttons, but they do nothing so far. Later, in Part 3 of the
book, we will see how to script them to have a function.

In this section, we discussed how to import images and fonts to be integrated through the
Image, Text, and Button components to create a rich and informative UI. Having done
that, let's discuss how to make them adapt to different devices.

Creating a responsive UI
Nowadays, it is almost impossible to design a UI in a single resolution, and our target
audience display devices can vary a lot. A PC has a variety of different kinds of monitors
with different resolutions (such as 1080p and 4k) and aspect ratios (such as 16:9, 16:10,
and ultra-wide), and the same goes for mobile devices. We need to prepare our UI to
adapt to the most common displays, and Unity UI has the tools needed to do so.

In this section, we will explore the following UI responsiveness concepts:

• Adapting object positions

• Adapting object sizes

We are going to explore how the UI elements can adapt their position and size to different
screen sizes using advanced features of the Canvas and RectTransform components, such
as Anchors and Scalers.

294 User Interface Design

Adapting object positions
Right now, if we play our game, we will see how the UI fits nicely onto our screen. But if,
for some reason, we change the Game view size, we will see how objects start to disappear
from the screen. In the following screenshots, you can see different sized game windows
and how the UI looks nice in one but bad in the others:

Figure 11.39 – The same UI but on different screen sizes

The problem is that we created the UI using whatever resolution we had in the editor, but
as soon as we change it slightly, the UI keeps its design for the previous resolution. Also,
if you look closely, you will notice that the UI is always centered, such as in the middle
image, where the UI is cropped at its sides, or the third image, where extra space is visible
along the borders of the screen. This happens because every single element in the UI has
its own Anchor, a little cross you can see when you select an object, such as the one in the
following screenshot:

Creating a responsive UI 295

Figure 11.40 – An Anchor cross at the bottom-right part of the screen belonging to the hero avatar in
the top-left part of the screen

The X and Y position of the object is measured as a distance to that Anchor, and the
Anchor has a position relative to the screen, with its default position being at the center
of the screen. This means that on an 800 x 600 screen, the Anchor will be placed at the
400 x 300 position, and on a 1920 x 1080 screen, the Anchor will be located at the
960 x 540 position. If the X and Y position of the element (the one in RectTransform)
is 0, the object will always be at a distance of 0 from the center. In the middle screenshot
of the previous three examples, the hero avatar falls outside of the screen because its
distance from the center is greater than half the screen, and the current distance was
calculated based on the previous, bigger screen size. So, what we can do about that?
Move the Anchor!

By setting a relative position, we can position the Anchor at different parts of our screen
and make that part of the screen our reference position. In the case of our hero avatar, we
can place the Anchor at the top-left corner of the screen to guarantee that our avatar will
be at a fixed distance from that corner. We can do that by following these steps:

1. Select your hero avatar.
2. Expand the RectTranform component in the Inspector window if not expanded

yet in a way that you can see its properties. This will reveal Anchors in the
Scene view.

296 User Interface Design

3. Drag the Anchor cross with your mouse to the top-left part of the screen. If, for
some reason, the Anchor breaks into pieces when you drag it, undo the change
(press Ctrl + Z or Command + Z on macOS) and try to drag it by clicking in the
center. We will break the Anchor later:

Figure 11.41 – An image with an Anchor at the top-left part of the screen

4. Put the Anchor of the Health Bar object and its frame in the same position. We
want the bar to always be at the same distance from that corner so that it will move
alongside the hero avatar if the screen size changes.

5. Place the Anchor at the bottom-center part of the screen for the Boss Bar object
so that it will always be centered. Later, we will deal with adjusting its size.

6. Put the Remaining Waves label at the bottom-left corner and Remaining Enemies
in the bottom-right corner:

Figure 11.42 – The Anchors for the life bar and the labels

Creating a responsive UI 297

7. Put the Score and Bullets Anchors in the top-right corner:

Figure 11.43 – The Anchors for the Score and Bullets labels

8. Select any element and drag the sides of the canvas rectangle with your mouse to
preview how the elements will adapt to their positions. Take into account that you
must select any object that is a direct child of Canvas; the text within the buttons
won't have that option:

Figure 11.44 – Previewing canvas resizing

Now that our UI elements have adapted to their positions, let's consider scenarios where
the object size must adapt as well.

298 User Interface Design

Adapting object sizes
The first thing to consider when dealing with different aspect ratios is that our screen
elements may not only move from their original design position (which we fixed in the
previous section) but also, they may not fit into the original design. In our UI, we have
the case of the health bar, where the bar clearly doesn't adapt to the screen width when
we previewed it on a wider screen. We can fix this by breaking our Anchors.

When we break our Anchors, the position and size of our object are calculated as a
distance relative to the different Anchor parts. If we split the Anchor horizontally, instead
of having an X and Width property, we will have a Left and Right property, representing
the distance to the left and right Anchor. We can use this in the following way:

1. Select the health bar and drag the left part of the anchor all the way to the left part
of the screen, and the right part to the right part of the screen.

2. Do the same for the health bar frame:

Figure 11.45 – The splitter Anchor in the health bar

3. Check the Rect Transform setting's Left and Right properties in the Inspector
window, which represent the current distance to their respective Anchors. If you
want, you can add a specific value, especially if your health bars are displaying
outside the screen:

Figure 11.46 – The Left and Right properties of a split anchor

Creating a responsive UI 299

This way, the object will always be at a fixed distance of a relative position on the
screen—in this case, the sides of the screen. If you are working with a child object,
as is the case with the Text and Image components of the buttons, the Anchors are
relative to the parent. If you pay attention to the Anchors of the text, they are not only
split horizontally but also vertically. This allows the text to adapt its position to the size
of the button, so you won't have to change it manually:

Figure 11.47 – The split Anchors of the text of the button

Now, this solution is not suitable for all scenarios. Let's consider a case where the hero
avatar is displayed in higher resolution than what it was designed for. Even if the avatar is
correctly placed, it will be displayed smaller because the screen has more pixels per inch
than screens with lower resolutions and the same physical size. You could consider using
split Anchors, but the width and height Anchors could be scaled differently in different
aspect ratio screens, so the original image becomes distorted. Instead, we can use the
Canvas Scaler component.

The Canvas Scaler component defines what 1 pixel means in our scenario. If our UI
design resolution is 1080p, but we see it in a 4k display (which is twice the resolution of
1080p), we can scale the UI so that a pixel becomes 2, adapting its size to keep the same
proportional size as the original design. Basically, the idea is that if the screen is bigger,
our elements should also be bigger.

We can use this component by doing the following:

1. Select the Canvas object and locate the Canvas Scaler component in the
Inspector window.

2. Set the UI Scale Mode property to Scale with Screen Size.
3. If working with an artist, set the reference resolution to the resolution in which

the artist created the UI, keeping in mind that it must be the highest target device
resolution (this isn't the case for us). In our case, we are not sure which resolution
the artist of the downloaded assets had in mind, so we can put 1920 x 1080, which
is the full HD resolution size and is very common nowadays.

300 User Interface Design

4. Set the Match property to Height. The idea of this property is that it sets which
side of the resolution will be considered when carrying out the scaling calculation.
In our case, if we are playing the game in 1080p resolution, 1 UI pixel equals 1 real
screen pixel. However, if we are playing in 720p resolution, 1 UI pixel will be 0.6
real pixels, so the elements will be smaller on smaller resolution screens, keeping
their correct size. We didn't choose a Width value in this case because we can have
extreme widths in screens, such as ultra-wide, and if we picked that option, those
screens would scale the UI unnecessarily. Another option is to set this value to 0.5
to consider the two values, but on a PC, this doesn't make too much sense. On a
mobile device, you should choose this based on the orientation of the game, setting
the height for landscape mode and the width for portrait mode. Try previewing a
wider and higher screen and see how this setting works:

Figure 11.48 – Canvas Scaler with the correct settings for standard PC games

You will find that your UI will be smaller than your original design, which is because we
should have set these properties before. Right now, the only fix is to resize everything
again. Take this into account the next time you try this exercise; we only followed this
order for learning purposes.

Before moving on, remember to reactivate the postprocessing volume object to show
those effects again. You will notice that the UI is not affected by them in the Game view.

Note, if you want your UI to be affected by postprocessing effects, you can set Canvas
Render Mode to Screen Space – Camera. Drag the main camera to the Render Camera
property and set Plane Distance to 5. This will put the UI in the world with the rest of the
objects, aligned to the camera view with a distance of 5 meters:

Summary 301

Figure 11.49 – Canvas Render Mode set to Camera mode to receive postprocessing effects

With this knowledge, you are now ready to start creating your first UIs by yourself.

Summary
In this chapter, we introduced the basics of UI design, understanding the Canvas and
RectTransform components to locate objects on screen and create a UI layout. We also
covered different kinds of UI elements, mainly Image and Text, to give life to our UI
layout and make it appealing to the user. Finally, we discussed how to adapt UI objects to
different resolutions and aspect ratios to make our UI adapt to different screen sizes, even
though we cannot predict the exact monitor our user will be playing the game on. All of
this allows us to create any UI we will need in our game using Canvas.

In the next chapter, we will explore how to create UIs using UI Toolkit instead, another
Unity system for creating UIs, and compare both Canvas and UI Toolkit to see where it's
best to use each one.

12
Creating a UI with

the UI Toolkit
In the previous chapter, we discussed how to create user interfaces using GUI
(also known as Canvas), one of the most common UI systems in Unity, but as we have
already mentioned, this is not the only option. While, so far, UGUI has been the preferred
option, Unity is working on a replacement called UI Toolkit, and even if it's not finished
yet, we thought it would be worthwhile to cover it in this book so that you are prepared
for its release.

The idea of this chapter is to create the same UI we created previously, but with UI Toolkit,
so you can get a sneak peek into what creating UIs in Unity will look like soon:

Figure 12.1 – The UI created in the previous chapter

304 Creating a UI with the UI Toolkit

In this chapter, we will examine the following UI concepts:

• Why learn UI Toolkit?

• Creating UIs with UI Toolkit

• Making a Responsive UI with UI Toolkit

By the end of the chapter, you will know how to use UI Tookit to create basic UIs for our
game, redoing the UI we did in the last chapter as a point of reference. So, let's kick off the
discussion by asking, why are we using UI Tookit?

Why learn UI Toolkit?
I know this chapter might sound a little bit confusing; we just learned how to use a whole
Unity system to create our UI, and now we are learning another one! Why don't we just
learn this new one directly?

Well, the first part of the answer is that UI Toolkit is not ready yet, meaning that it doesn't
have all the features and stability necessary to use it in real production. Even if we can
create our UI without issues in this new system, it is not tested enough to guarantee that
it will work well across all the different devices our game can run on (for example, several
PC setups and mobile devices).

Another thing to take into account is that, even if the systems were stable enough, it's
still a relatively new system, and there are still lots of games under development that
were created on older Unity versions that don't support it. This means that in order to
land a job in this industry, you need to get a decent amount of exposure to uGUI due to
most games being created with this technology. This happens because it's neither safe
nor practical to update an already tested and working game with new technologies; such
changes could lead to a major rework of the game to be compatible with the new versions.
Also, this could potentially introduce tons of bugs that could delay the release of new
versions, not to even mention the time it will take to remake a full app in a new system.

That being said, even if the system is not yet finished, meaning that it could change
radically in subsequent versions, we believe it's still worth learning its basic concepts
to be prepared to use it in newer Unity versions, so let's dive into it now.

Creating UIs with UI Toolkit 305

Creating UIs with UI Toolkit
In this section, we are going to learn how to create UI Documents, an asset that will define
the elements our UI has. To do this, we are going to discuss the following concepts:

• Installing UI Toolkit

• Creating UI Documents

• Editing UI Documents

• Creating UI Stylesheets

Let's start by seeing how we can install UI Toolkit, as currently, it is not as straightforward
as other packages.

Installing UI Toolkit
UI Toolkit can be used to create both Editor UI (custom editor windows) and In-Game
UI. The tools to create Editor UI are already installed in Unity, but as we will use
UI Toolkit to create In-Game UI, we need to install the Runtime Extension. This is
essentially a package; however, the problem is that it will not appear in the Package
Manager like other packages. Instead, we need to explicitly add it to the Package Manager
via its URL. This is done this way due to the experimental nature of the package but,
probably when it is fully released, the installation process will be easier.

In order to manually add UI Toolkit to our Package Manager, you need to do the following:

1. Open the Package Manager (Window | Package Manager).
2. Click the Add button (the plus (+) symbol at the top left).
3. Select Add Package from git URL:

Figure 12.2 – Adding a Package to the Package Manager

306 Creating a UI with the UI Toolkit

4. In the URL input box, write com.unity.ui without quotation marks:

Figure 12.3 – Adding UI Toolkit to the Package Manager

5. Click the Add button and wait for the package to download and install.
6. As usual, just in case, it's recommended to restart Unity after installing packages.

Now that we have installed the Runtime Extension for using UI Toolkit to create In-Game
UI, let's start using it.

Creating UI Documents
When creating a UI with uGUI, we need to create GameObjects and attach components
such as Button, Image, or Text, but with UI Toolkit, we need to create a UI Document
instead. UI Document is a special kind of asset that will contain the definition of the
elements our UI will have and its hierarchy. We will have a GameObject with a UI
Document component (yes, it's called the same, so pay attention here) that will reference
this UI document asset and render its contents. It's like a Mesh asset that contains
information pertaining to the Mesh, and the MeshRenderer component that will render
it. In this case, the elements to render are contained in an asset and we have a component
that reads the asset and renders its content (UI in this case).

UI Documents are actually plain text files. You can open one with a text editor and easily
see its contents. If you do that and you are familiar with HTML, you will recognize the
XML-like format used to define the elements our UI will be composed of; Unity calls this
format UXML. The aim of Unity with UI Toolkit is for web developers to jump easily into
Unity and create UIs. In the following screenshot, you can see the typical look of a UXML
document's contents:

Figure 12.4 – Example of UI Document's internal format (UXML)

Creating UIs with UI Toolkit 307

Don't worry if you don't know HTML; we will explain the core concepts in this chapter.
Also, don't worry about the UXML format; later in this chapter, we will be using a Visual
Editor called UI Builder to edit our UI without writing UXML at all, but it is worth
knowing how it actually works inside.

In order to create a UI Document and add it to the scene, we need to do the following:

1. Click the Add (+) | UI Toolkit | UI Document option in the Project view to create
a UI Document asset and name it GameHUD:

Figure 12.5 – Creating the UI Document Asset

2. Click the Game Object | UI Tookit | UI Document option to create a GameObject
in your scene with the UI Document component, which is capable of rendering the
UI Document.

3. Select and drag the GameHUD UI Document asset to the Source Asset property
of the GameObject:

Figure 12.6 – Making the UI Document component render our UI Document asset

And that's it! Of course, we won't see anything yet on our screen as the UI Document is
blank, so let's start adding elements to it.

308 Creating a UI with the UI Toolkit

Editing UI Documents
As our goal is to recreate the same UI we created in the last chapter, let's start with the
simplest part: adding the Player Avatar to the top-left corner. One option would be to
open the UI Document asset with any text editor and start writing the UXML code, but
luckily, we have an easier way, which is using the UI Builder editor. This editor allows us
to generate the UXML code visually, by dragging and dropping elements. To do that, let's
first see how the UI Builder window works:

1. Click Window | UI Toolkit | UI Builder to open the tool to visually edit the UI
Document asset.

2. Double-click the GameHUD asset in the Project view to make UI Builder open it:

Figure 12.7 – The UI Builder editor

3. In the Hierarchy panel (the left part of the window) select GameHUD.uxml, which
is the container element of the UI:

Figure 12.8 – Selecting the Asset name in Hierarchy to edit general UI settings
Look at the Inspector panel at the right of the UI Builder window (this is not the
Inspector we used so far to modify GameObjects, which is anchored to the main
Unity Editor window). Set the Size property to a Width of 1920 and a Height of
1080. This will allow us to view how our UI will look in such a resolution. You can
later change this value to see how it adapts to different sizes, but more on that later:

Creating UIs with UI Toolkit 309

Figure 12.9 – Setting the Preview UI resolution

4. You can pan the viewport to navigate the UI by pressing the Mouse Wheel Button
and moving the mouse. In Mac, you can press Option + Command and click and
drag any free area of the viewport (places without our UI).

5. You can also use the Mouse Scroll Wheel to zoom in and out. Another option is to
press Option on Mac (Alt on Windows) and click and drag horizontally. Finally, you
can use the zoom percentage selection at the top-left part of the Viewport pane:

Figure 12.10 – Setting the Preview Zoom

Now that we know the basics of UI Builder, let's add our image to the UI:

1. Drag the VisualElement icon from the Library at the bottom left to the Hierarchy
section on the left. This will create a basic UI Element capable of rendering an image
and much more:

Figure 12.11 – Creating a Visual Element

310 Creating a UI with the UI Toolkit

2. Select VisualElement in Hierarchy (under GameHUD.uxml) and look at the
Inspector at the right part of the UI Builder window (again, not the regular
Unity Inspector panel) for the Position section. Expand it if not already expanded
(using the arrow on the left).

3. Set Position to Absolute to allow us to move our element freely around the UI.
Later in this chapter, in the Using relative positions section, we will explain how
Relative mode works:

Figure 12.12 – Setting our UI Element to be freely moved around

4. In the Viewport pane, you can drag your element around and use the blue
rectangles in the corners to change its size. Position your element at the top-left
corner of the UI:

Figure 12.13 – Moving VisualElements

5. To set an exact position, you can set the Left and Top values of the Position
section in Inspector to specify the exact X and Y coordinates, respectively,
expressed in pixels:

Figure 12.14 – Setting the position

6. You can also specify the exact size by changing the Width and Height of the
Size section:

Creating UIs with UI Toolkit 311

Figure 12.15 – Setting the size

7. In the Background section of Inspector, set the Image mode to Sprite using the
combo box at its right. This allows us to apply a Sprite as the background of
our element.

Important info
You can also use a regular Texture instead of a Sprite, but Sprite has better
default import settings, allowing users to use Sprite Atlases and support 9
slices, among other features.

8. Drag the Sprite asset (the image) of our Player avatar we imported in Chapter 11,
User Interface Design, from the Project panel to the Image property in order to set
it. Also, you can use the target button (circle button with the dot at the middle) to
select the Sprite asset from the picker window:

 Figure 12.16 – Setting the Background image of the element

9. Get back to the regular Unity Editor to see the results. If you don't see any change,
you can turn off and on the GameObject that renders our UI (the one we created
with the UI Document).

Now that we have created the Player Avatar, we can create the Player Health bar by doing
the following:

1. Repeat the previous steps to 1 to 6 to create a new element that will serve as the
Player Health Bar container. It won't have any image.

2. Position it right next to the Player Avatar and set its size to be similar to the one
used when we designed this UI in the previous chapter. Remember that you can do
this by dragging the image and the squares at the corners, or through the Size and
Position properties, as we did before.

312 Creating a UI with the UI Toolkit

3. Drag a new VisualElement over this element created in step 1 to make it a child of
it. This will make that element position and size dependent on its parent,
the same that happened when we parented Canvas objects in Chapter 11,
User Interface Design.

4. Select the parent Visual Element and, in the Inspector, set the Name property to
PlayerHealth to easily identify it. Do the same with the child element, calling
it Filling:

Figure 12.17 – Parenting and Naming Visual Elements

5. Select the Filling element in the Hierarchy and look at Inspector.
6. In the Background section, set the Color property to red, clicking on the color box

and using the Color Picker. This will fill our UI Element background with plain red
instead of using an image:

Figure 12.18 – Setting a pure red background for our element

7. As usual, set Position to Absolute, and also the Left and Top properties to 0 to
make the filling to be placed in the same position as its parent.

8. Set the Width and Height of Size to 100 and change the unit of measurement from
px (pixels) to % (percentage) by clicking on the px button and selecting %. This will
make the Filling element size to be the same as its parent (100 percent of the
parent size):

Figure 12.19 – Setting our size as the same size as our parent element

9. Add a new VisualElement as a child of PlayerHealth and call it Border.
10. Set Position and Size, as we did in steps 7 and 8 for the Filling element, but don't

set the background color.

Creating UIs with UI Toolkit 313

11. Set the Border background image to be the same border image we used in the
previous chapter. Remember to set the Image mode to Sprite instead of texture.

12. Set the Slice property in the Background section to 15. This applies the 9 slices
technique we used in Chapter 11, User Interface Design, to expand an object without
stretching it:

Figure 12.20 – Setting the 9 slices sizes in the element directly

Important info
Consider that if your image already contains the 9 slices technique (using the
Sprite Editor as we did in Chapter 11, User Interface Design), you don't need
to set the Slice values as we did in the previous step. We just did it here for
you to be aware that the option exists. Remember that the 9 slices technique
allows you to preserve the corner sizes of our image to allow resizing without
distortions.

13. Now you can change the Filling Size's Width to simulate the Fill Amount property
of images we used in Chapter 11, User Interface Design. Later, we will change Size to
be directly proportional to the Player Health number via code:

Figure 12.21 – Health Bar result

14. Repeat steps 1 to 12 to create the bottom of the Base Health bar. Remember that the
filling must be green this time. Alternatively, you can just copy and paste the Health
Bar container, but I recommend that you repeat the steps for learning purposes.

314 Creating a UI with the UI Toolkit

In previous steps, we saw how to compose several UI Elements to create a complex object.
We needed a parent container element to drive the size of our child's container in a way
that the inner elements adapt to it, especially the filling, which requires a percentage value
to represent the current player health.

Now we have our Life Bar! Well, not quite yet. Those red corners from the Filling that our
border doesn't cover are pretty rough! We will improve that later in this chapter when
discussing how to make our UI responsive, so for now, let's keep it as is.

Finally, let's add text elements to the UI by doing the following:

1. Drag the Label icon from the Library pane to Hierarchy. This will add a UI
element capable of not only rendering an image in its background but also text
(yes, you can add a background to the text if you want to).

2. As usual, set its Position and Size, this time putting it in the top-right corner of the
screen. Remember you can simply drag the element; you don't need to put specific
coordinates.

3. Change the Text property in the Label section of Inspector to the required text. In
our case, this will be Score: 0:

Figure 12.22 – Setting the text to display

4. Drag the Font asset we imported in Chapter 11, User Interface Design (the TTF or
OTF file), to the Font property in the Text section of Inspector.

5. You will notice that your font might not work. In such a case, put the font asset in
the UI Toolkit | Resources | Fonts & Materials folder in the Project panel. This will
enable the font to be recognized by the system:

Creating UIs with UI Toolkit 315

Figure 12.23 – Putting the font in the correct folder

6. Set the Size property of the Text section to any size that appears to fit:

Figure 12.24 – Setting the Font and Text size of a Label

7. Repeat steps 1- 6 to add all the remaining Labels to the UI.

One last thing we need to do is save, which can be simply done by pressing Ctrl + S
(Command + S on Mac) or by using the File | Save menu in UI Builder. Consider when
doing this in the current state of UI Toolkit can make the Viewport to not function
properly. Please close it and reopen UI Builder again. This will surely be fixed when
the final version is released.

Now that we have created our UI, you probably noticed the need to repeat several settings
to make several objects look the same, such as our Health Bars and Labels. While this is
perfectly viable, we could improve our workflow greatly by reusing styles, and Stylesheets
assets are the exact feature we need to accomplish that, so let's see them.

Creating UI Stylesheets
When creating UIs, you will find scenarios where several elements throughout the whole
game will share the same style, for example, buttons with the same background, font, size,
and borders. When creating the UI with uGUI, one way to not repeat configurations for
each element would be to create a prefab for the button and create instances (and Prefab
Variants where necessary). The problem is that here, we don't have GameObjects, hence
there are no prefabs, but luckily, we have Stylesheets.

316 Creating a UI with the UI Toolkit

Stylesheets are separated assets that contains a series of styling presets for our UI
elements. We can define a set of styles (for example, background, borders, font, and size)
and apply them to several elements across different UI Elements. This way, if we change
a style in a Stylesheet Asset, all UI Elements using that style will change, in a similar way
to how Materials work.

There are several ways to create styles in a Stylesheet, with one example being the selector
system. This system allows you to apply a series of rules to pick which elements should
have a style applied (you guessed correctly, like CSS), but for now, let's stick with the basics,
creating Stylesheet Classes. A Class is basically a style we can apply to any element via its
name. For example, we can create a Class called Button and add that class to every button
in the UI that we want to have that style. Please consider that the concept of Class here is
something completely different from what a Class means in coding.

So, in this case, let's create a Class for all the labels in our UI in such a way that the
appearance of all of them can be modified simply by changing the style:

1. In the StyleSheets pane of UI Builder, click the plus (+) button and click Create
New USS (Unity Style Sheet). If that doesn't work, try restarting Unity. There is
a bug in the current version of UI Toolkit that could cause this:

Figure 12.25 – Creating a Unity Style Sheet

2. Name the USS as you wish (GameUSS in my case) and save the file.
3. Select one of the Label elements we have in our UI Document and look at Inspector.
4. In the StyleSheet pane of Inspector, type HUDText in the Style Class List

input field.
5. Click the Extract Inlined Styles to New Class button. This will take all the style

modifications we did to our Label (position, size, font, and so on) and save it to
a new style class called HUDText. You can observe that it was added to the list
of classes applied to the element (those labels at the bottom of the StyleSheet
section in Inspector):

Creating UIs with UI Toolkit 317

Figure 12.26 – Extracting settings into a Style Class

With these steps, we have taken a Label with the style we need to repeat and extracted
its settings into a class named HUDText. This way, we can simply add the HUDText
class to other elements in our UI, and we can even add the same USS Asset to other UI
Documents (Plus (+) button of StyleSheets pane | Add Existing USS) to add this class
to the elements in it.

Also, if you select the label again, you will notice how properties that previously were
in bold now became normal again; that's because properties in bold represent changed
properties, and we have extracted them, so the default values became whatever the style
classes define:

Figure 12.27 – Position is in bold, meaning it has changed. Left isn't, meaning it has the default value

Now we can start applying our style to the rest of the Labels, but before doing that, we must
consider something. We have just copied every single change applied to Label, including
Position and Size, and surely not all Labels will have the same value on those properties.
We need to clean our class to have only the common changes doing the following:

1. In the StyleSheets section at the top-left part of UI Builder, select the HUDText
class in the list. If you don't see it, try expanding the GameUSS.uss section:

Figure 12.28 – Selecting a Style Class for modification

318 Creating a UI with the UI Toolkit

2. In the Inspector on the right, right-click on the Left property of the Position
section and click Unset:

Figure 12.29 – Reverting per element changes to use the defaults in its style classes

3. Do the same for Width.
4. Notice that the Position values in Style are set to Absolute. We want to keep this in

our case as all text elements in our UI are going to use this mode, but consider this
is not always the case (more on that later).

5. Right-click on the Size section (not the property) and click Unset, this time to reset
the entire Size section settings and not just specific settings thereof.

6. You will notice that our element has lost its position; you will need to relocate the
element to its intended position by dragging it.

This way, we have edited our HUDText class. If other elements had this class applied,
they would have these changes applied also. Consider that another option would be to
create the Class first by typing the name in the StyleSheets input field and pressing enter
and then applying it to elements. This way, you will avoid needing to reverse unwanted
changes, but if you created the element first, it's convenient to have the option to revert:

Figure 12.30 – Creating a Style Class from scratch

Now that we have our Style Class, let's apply it to other elements by doing the following:

1. Select another label of our UI.
2. Drag the HUDText style from the Stylesheet pane at the top-left part of the UI

Builder window all the way to our element on the Viewport pane. You can also
drag it to the Hierarchy element if you prefer:

Creating UIs with UI Toolkit 319

Figure 12.31 – Applying a Class to an element

3. Select the Label and check how the HUDText class has been added to the
StyleSheet section on the Inspector.

Now, consider that even if the element now has the class applied, the element itself has
changes to the text we did in previous steps, overriding the style in our class. You can
easily check this by selecting the class again (in the StyleSheets section in the top-left
corner) and changing any setting, such as the size, and seeing how not all elements
have changed. This shows how the override system works; the changes in the element
take precedence over the ones in the classes it has applied. If you want to remove these
overrides, you can simply select the element and right-click on the overridden properties
you want to take from Class, and unset the changes (Right Click | Unset). In the case
of our Label, we can revert the entire Text section and probably the Absolute Position
(as the desired values are already contained in the class).

So, with these steps, we have created a new StyleSheet asset and added it to the UI
Document for it to use it. We have created a new Style Class in it, extracting the changes
of an existing UI Element into it, and then adjusting which changes we wanted to keep.
Finally, we applied that style to another element. With this, we have just scratched the
surface of the real power of Style Sheets. We can start doing things such as combining
different classes from different Style Sheets, or use selectors to dynamically set styles,
but that's outside the scope of this chapter. Something interesting is that even if the
documentation of UI Toolkit is pretty rough at the moment, all these advanced concepts
can be learned by reading about CSS, the web technology that Unity based the stylesheet
system on. It won't be exactly the same, but the base idea and best practices still apply.

Now, the UI looks almost exactly as in Chapter 11, User Interface Design, but it won't
behave the same. If you try changing the size of the viewport (selecting GameHUD.
uxml in the hierarchy and changing Width and Height, as we did at the beginning of the
chapter), you will see that the UI won't adapt properly, so let's fix this.

320 Creating a UI with the UI Toolkit

Making a Responsive UI with UI Toolkit
In this section, we are going to learn how to make the UI we created previously adapt to
different screen sizes. We are going to discuss the following concepts:

• Dynamic positioning

• Dynamic scaling

• Using relative positions

Let's start by discussing how we can make the position and size of our objects to adapt the
screen size.

Dynamic positioning and sizing
So far, we have used the Left and Top Position attributes to specify the X and Y position of
our elements with respect to the top-left corner of the screen, and then Width and Height
to define the Size. While essentially, that is all that's needed to define an object position
and size, it is not very useful in all cases, especially when we need to adapt to different
screen sizes.

In the example, if you need to place an object in the top-right corner of the screen,
knowing its size is 100x100 pixels, and the screen size is 1920x1080 pixels, we can put Left
and Right position attributes as 1820x980 pixels, and this will work... only for that specific
resolution, but what happens if the user runs the game at 1280x720 pixels? The object will
be outside the screen! In uGUI, we used Anchors to solve this issue, but we don't have
them here. Luckily, we have Right and Bottom to help.

As Left and Top attributes, Right and Bottom define distances to the parent element sides
(if no parent, just the entire screen. Right now, we have both in auto, meaning that the
position will be driven by Left and Right exclusively, but interesting things can happen by
changing those values, so let's use them to make our Score and Bullet labels stick to the
top-right corner of the screen instead by doing the following):

1. Put the cursor in the bottom part of the UI in the Viewport until a white bar appears.
2. Drag that bar to resize the screen and see how it adapts (or not) to the different size.
3. Do the same on the laterals to also see how it adapts to different screen widths:

Making a Responsive UI with UI Toolkit 321

Figure 12.32 – Testing our UI under different screen sizes

4. Select the score label on the Viewport pane and look at Inspector.
5. Set the Top and Right values to 30.
6. Set the Left and Bottom values to auto by clicking the px button at the right of each

attribute and selecting auto:

Figure 12.33 – Changing the unit type of the Position attributes to auto mode

7. Notice how the right and top golden-colored squares at the sides of the label have
become filled, while the left and bottom are hollow. This means that left and bottom
are in auto mode. You can also toggle auto mode by clicking those boxes if needed:

Figure 12.34 – Toggling auto mode of our element position attributes

8. Try changing again the size of the UI container, as we did in steps 1 and 2, to see
how our labels are always aligned to the top-right corner.

322 Creating a UI with the UI Toolkit

What we did with these steps was essentially make the position of the object be expressed
as a distance in pixels against the Top and Right sides of the UI, or the top-right corner of
the screen. We needed to set the other sides in auto mode, so they won't participate in the
position calculations.

Now luckily, they aren't the only options we have to use the Position attributes. As you
might imagine by now, we can start combining Left and Right and Top and Bottom if we
wish. In such cases, Left and Top will take precedence in terms of defining the position,
but then, what do Right and Bottom do? They define the size of the element.

For example, if we have an element with Left and Right attributes set to 100 px each and
we are seeing our UI in a screen with a width of 1920 pixels, the end width of our element
will be 1720 (1920 minus 100 from Left minus 100 from Right). This way, the Position
attributes represent the distances of our element sides against the sides of the screen (or
the parent element).

Let's see this in action by making the bottom health bar adapt to the screen width while
preserving its position relative to the bottom of the screen by doing the following:

1. Select the Bottom Health Bar parent in Hierarchy. Don't select it in the Viewport
pane as you will only be selecting the filling or the border of it.

2. Set Left, Right, and Bottom to 50 px.
3. Set Top to auto (click on the px button at the right and select auto).
4. In the Size section, set Width to auto also.
5. Set Height to 35px:

Figure 12.35 – Making the Player's Base health bar adapt to the screen width

6. Change the size of the UI to see how it adapts.

With these steps, we have defined the bar distance to the sides of the screen as 50 pixels
for it to adapt to any screen width, while keeping the distance to the border and height
fixed. We basically achieved the same behavior as split anchors in uGUI! Consider that we
needed to set the Width attributes of Size to auto to let the Left and Right attributes drive
the position; if you don't do that, the Width attributes take precedence and Right won't
have any effect. I invite you to experiment with other combinations of px/auto.

Making a Responsive UI with UI Toolkit 323

Important info
Please consider the fact that the UI Builder UI preview has a bug where bottom
elements are shown outside the screen, but they are actually inside. Check how
the Game view in the main Unity Editor shows it correctly. If you don't see
your UI in the Scene view, you can disable and enable the GameObject that
renders it. It is just another bug.

One last trick we can do here is to use negative values in the Left, Top, Right, and Bottom
Position attributes of the Health bar borders to make the borders slightly bigger than the
container and cover the filling borders. Just set Left, Top, Right, and Bottom to -15px in
this case, and remember to set both the Size attributes of Width and Height to auto. You
might want to reduce the Height of the Bar container a little bit as it will now look thicker
due to this change:

Figure 12.36 – Using negative Position attributes to cover the filling

Another mode aside from px (pixels) or auto mode is the percentage (%) mode, which
allows us to represent values as percentages relative to the screen (or parent element
if present) size. For example, if we set Top and Bottom to 25%, this means that our
element will be vertically centered with a size of 50% of the Screen height (remember to
set Height mode to auto here). We could achieve the same result if we set Top to 25%,
Bottom to Auto, and Height to 50%. As you can see, we can achieve a clever combination
of those values.

In our case, we will use percentage values in our Life Bars fillings in a way that we can
express its size in percentages. We need this as later in code, we can specify the width of
the bar as a percentage of the player's life (for example, a player with 25 life points and a
maximum of 100 points has 25% of life). Let's try this by doing the following:

1. Select the Red filling of the Player's Health bar.
2. Set Width to 50% (click on px and select %).

324 Creating a UI with the UI Toolkit

3. You can also set Height to 100% to make it adapt to the Bar container height, or
also Height to auto instead, and set Top and Bottom to 0:

Figure 12.37 – Using percentage Sizes

4. Try changing the Width of the Player Health Bar Container to see how the filling
changes its size proportionally to its container.

5. Do the same with the Green Filling of the Base Health Bar at the bottom.
6. Change the screen size to see how the Green Bar adapts its filling:

Figure 12.38 – Percentage health bars

Now, while we solved the positioning adaption to the screen size through the use of the
Left, Top, Right, and Bottom properties, we still didn't solve the dynamic sizing of the
elements. With sizing this time, we are referring to screens with a different number of DPI
(dots per inch), so let's discuss how we can achieve that with the Panel Settings asset.

Dynamic Scaling
We used 1920x1080 as the UI base resolution to position and size our elements in a way
that looks nice in that resolution. We also changed the UI size to see how the elements
adapt their position to different screen sizes, and while that worked nicely, you can notice
how the elements looked bigger or smaller while doing that.

While having a base reference resolution is good for designing our UI, we should consider
the sizing on elements on different resolutions, especially in screens with high DPIs.
Sometimes, you can have screens with a higher resolution, but the same physical size in
centimeters. This means pixels are smaller in the ones with higher resolution, hence they
have more DPIs, and so elements can be viewed smaller if not scaled properly.

Making a Responsive UI with UI Toolkit 325

In the past, we used the Canvas Scaler component of the Canvas to make the UI scale the
size of its elements according to the screen resolution. We have the exact same settings
here in the Panel Settings asset referenced in our UI Document component, so let's
configure it by doing the following:

1. Look for the Panel Settings asset in the Project panel and select it. Another option
would be to select the UI Document GameObject in the Main Editor hierarchy and
click the asset referenced in the Panel Settings property:

Figure 12.39 – Panel settings being referenced in the UI Document component

2. Set Screen Match Mode to Match Width Or Height.
3. Set the Reference Resolution X value to 1920 and Y to 1080.
4. Set Match all the way to the right, labeled Height:

Figure 12.40 – Setting the scaling of our UI

5. Observe how changing the height of the Game panel of the Unity Editor will
make the UI adapt its elements sizes accordingly (change the entire Unity Editor
window height).

What we did with those changes was first to set Reference Resolution to whatever
resolution we designed for our UI, in our case 1920x1080. Then we set Screen Match
Mode to allow us to scale our elements according to one of the sides, Width, Height, or
a combination of the two if we prefer. In our case, we chose Height, mainly because our
game is targeted for PC where the screens are wide rather than tall. This means that on
different screen widths, the elements will look the same size, but on different heights, the
elements will be bigger or smaller.

326 Creating a UI with the UI Toolkit

With these settings, we can do some math to understand the values. If our screen is the
same as the reference resolution (1920x1080), the element sizes will be the same as we
specified in the Size of our elements in pixels, so in the case of our Player Avatar, this will
be 150x150 pixels. Remember that the physical size in centimeters depends on the DPIs of
the screen.

Now, imagine that we have a 4k screen, meaning a resolution of 3840x2160. As we
specified that our UI matches via Height, we can determine that our elements will
have a double size because our screen has a height that is double the reference resolution
(2160 divided by 1080). Our Player Avatar will be 300x300, making the element have the
same physical size on a 4k screen, double size which is achieved by double pixel density.
Finally, consider an ultra-wide standard resolution of 2560×1080 (yes, very wide screens),
in which case the elements will be the same size as the only change is the width, the only
difference being that the elements will have more horizontal separation due to the screen
size. I know these calculations can be confusing but keep experimenting with the values
of the Panel Settings and Game View sizes to understand them better.

Great, now we really have the same HUD. We could start applying the concepts seen so
far to do the Options menu, but let's take the opportunity to do it in a different way, using
Relative positions, a way to create a flow of elements where the positions of elements
depend on each other.

Using relative positions
In the HUD of our game, each element requires its own Position and Size, and the
different element positions can be resized and repositioned without affecting others. We
might observe the case of the Player Health Bar and the Avatar, but the changes would be
trivial in this case. There are other cases where this is not that trivial, as in the cases of a
List of elements (for example, a list of matches to join in a multiplayer game) that needs to
adapt vertically or horizontally, and here is where Relative Positions helps us.

Relative Positions allow us to make the positions of the elements relative to each other, in
such a way that the position of one element will depend on the position of the previous
one, and that one to its previous, and so on, forming a chain or Flow. This works like
Vertical and Horizontal Layouts on uGUI. In our case, we will make the Pause label and
the Options and Exit buttons of our options menu vertically aligned and centered along
its parent using those:

Making a Responsive UI with UI Toolkit 327

Figure 12.41 – Recap of what the options menu looks like

Let's start creating the menu by doing the following:

1. Create a new UI Document (Plus button of Project View | UI Tookit | UI
Document) and call it Options Menu. We can work on the previous UI
Document, but let's keep those pieces of UI separate for the purpose of easy
activation and deactivation, and general asset organizing.

2. Select the root object (OptionsMenu.uxml in Hierarchy) and set the Width and
Height Inspector properties to 1920x1080 pixels.

3. Create a new GameObject with the UI Document component (GameObject | UI
Toolkit | UI Document) and drag the asset for this object to render it (as we did
with the HUD created earlier in the chapter).

4. Drag a new Visual Element to Hierarchy or Viewport and call it Container
(the name property in the Inspector in UI Builder).

5. Set the Left, Right, Top, and Right Position attributes to 0px.
6. Set Position to Absolute.
7. Set Width and Height to auto. This will make the container fit the entire screen.
8. Drag a new Visual Element as a child of the container and call it Background.
9. Leave Position set to Relative this time.
10. Set the Width and Height of Size to 500px.

328 Creating a UI with the UI Toolkit

11. Set Background Image of the Background object to use the same background
Sprite used in the previous chapter.

12. Select the container.
13. In the Inspector, set Align Items to center (third button).
14. Set Justify Content to Center (second button):

Figure 12.42 – Preparing the UI background to host elements inside

15. Change the size of the UI using the white bars at the sides to see how the
background is always centered.

Even if we have only one element, we can start seeing how the relative positions work.
First, we created an empty object that will always adapt to the screen size, allowing
us to make the children's elements depend on the full screen size. Then we created an
image element with a fixed size, but with Relative position, meaning its position will be
calculated by the parent container. Finally, we told the container to make its child objects
be aligned with its horizontal and vertical center, so the background immediately became
centered irrespective of the screen size. When working with Absolute positions, the Align
properties didn't work, so this is one of the first benefits of Absolute positioning.

But Absolute positioning becomes more powerful with multiple elements, so let's add the
Label and Buttons to our Background element to explore this concept further by doing
the following:

1. From the Library pane at the bottom-left of UI Builder, drag a Label and two
Button elements inside the Background in Hierarchy:

Making a Responsive UI with UI Toolkit 329

Figure 12.43 – Adding elements inside the menu background

2. Observe how, by default, the elements became vertically aligned one on top of the
other due to the Relative position default settings:

Figure 12.44 – Automatic relative vertical positioning

3. Select the Background element and set Justify Content to space-around
(fifth button). This will spread the elements along the background.

4. Set Align Items to center (third option) to center the elements horizontally:

Figure 12.45 – Automatic relative vertical positioning

330 Creating a UI with the UI Toolkit

Important info
There is a similar mode for Justify Content called "space-between"
(fourth button in Justify Content) that will also spread the elements along
the vertical axis but won't leave space on top of the first element nor the bottom
of the last one. Also, Align Items have an option called "stretch" (fifth option)
that, like center, will center elements horizontally, but also stretch them instead
of respecting each element's width. I recommend experimenting with the
different aligning modes to discover all opportunities.

5. Set the Font and Size attributes of the Text label to whatever seems to fit. In my case,
I used the imported font and a size of 60px. Remember to also set Text to Pause.

6. Set the Buttons Background Image to use the same used for the button in the
previous chapter.

7. Set Font, Size, and Color of the Text buttons to whatever seems appropriate to
you; in my case, 50 and a gray color.

8. In the Margin and Padding section, set Padding to have some spacing between
the text and the borders of the button. In my case, 30px did the trick:

Figure 12.46 – Adding inner padding to the button contents (the text in this case)

9. Also set Top and Bottom Padding of the Background to allow some space between
the borders of the window and its elements. In my case, the value is 40px each:

Figure 12.47 – Automatic padding to the whole menu

Making a Responsive UI with UI Toolkit 331

As you can see, we changed different settings to set the size of the elements dynamically,
such as font sizes and paddings, and the Relative system, along with the Align settings,
took the role of determining the position of the elements automatically. We could
rearrange the order of the elements, dragging them to the Hierarchy, and they will be
accommodated automatically. We could have also set the size of the elements with the Size
property, and we can also apply some offsets if desired using the Position properties, but I
will encourage you to try how these properties behave in Relative mode on your own.

One last setting I want you to explore is the Direction attribute of the Flex section. As
you can imagine, this will determine the orientation that the elements will follow, vertical
from top to bottom or bottom to top, and horizontally from left to right or right to left.
For example, we could set Direction from left to right (third button) and make the
background wider to have a horizontal options menu if you so wish:

Figure 12.48 – Changing to a vertical orientation of elements

As a side note, you might notice that the images for the background and buttons will look
bigger than the options menu done in the previous chapter. That's because the Pixels per
Unit setting, which we changed on the Texture assets to control the scaling of the textures,
won't take effect in UI Toolkit. You will need to manually change the texture file size in
any Image Editor to have its proper size. The best practice here would be to always create
the images with a size that will look fine in our maximum supported resolution. Usually,
this is 1920x1080 on a PC, but consider the fact that 4k resolutions are becoming more
popular by the day.

332 Creating a UI with the UI Toolkit

Summary
In this chapter, we had an introduction to the key concepts of UI Toolkit, and how to
create UI Documents and Stylesheets. Regarding UI Documents, we learned how to
create different elements such as images, text, and buttons, and how to position and size
them using different methods, such as Absolute and Relative positioning, and pixel or
percentage units. Also, we saw how to make the UI adapt to different sizes using different
combinations of Position attributes. Finally, we learned how to use USS Stylesheets to
share styles between different elements to easily manage our whole UI skinning.

Essentially, we learned again how to make UIs with a different system. Again, please
consider the fact that this system is still in the experimental phase, and so presently, it is
not recommended for real production projects. We used all these concepts to recreate the
same UI created in Chapter 11, User Interface Design.

In the next chapter, we are going to see how to add Animations to our game to make our
character move. We will also see how to create cut-scenes and dynamic cameras.

13
Creating Animations

with Animator,
Cinemachine, and

Timeline
Regarding our game's current status, we mostly have a static Scene, but that's without
considering the Shader and particle animations. In the next chapter, when we add
scripting to our game, everything will start to move according to the behavior we want.
But sometimes, we need to move objects in a predetermined way, such as with cutscenes,
or specific characters animations, such as jumping, running, and so on. The idea of this
chapter is to go over several Unity animation systems and create all the possible object
movements we can get without scripting.

334 Creating Animations with Animator, Cinemachine, and Timeline

In this chapter, we will cover the following topics:

• Using Skinning Animations with Animator

• Creating dynamic cameras with Cinemachine

• Creating cutscenes with Timeline

By the end of this chapter, you will be able to create cutscenes to tell the history of your
game or highlight specific areas of your level, as well as create dynamic cameras that are
capable of giving us an accurate look at your game, regardless of the situation.

Using Skinning Animations with Animator
So far, we have used what are called static meshes, which are solid three-dimensional
models that are not supposed to bend or animate in any way (aside from moving
separately, like the doors of a car). We also have another kind of mesh, called skinned
meshes, which are meshes that can be bent based on a skeleton, which means they can
emulate the muscle movements of the human body. We are going to explore how to
integrate animated humanoid characters into our project to create the enemy and
player movements.

In this section, we will examine the following skeletal mesh concepts:

• Understanding skinning

• Importing skinned meshes

• Integration using Animator Controllers

First, we are going to explore the concept of skinning and how it allows you to animate
characters. Then, we are going to bring animated meshes into our project so that we can
apply animations to them. Let's start by discussing how to bring skeletal animations into
our project.

Using Skinning Animations with Animator 335

Understanding skinning
To get an animated mesh, we need to have four pieces, starting with the mesh itself and
the model that will be animated, which is created in the same way as any other mesh.
Then, we need the skeleton, which is a set of bones that will match the desired mesh
topology, such as the arms, fingers, feet, and so on. In Figure 13.1, you can see an example
of a set of bones aligned with our target mesh. You will notice that these kinds of meshes
are usually modeled with the T pose, which will facilitate the animation process:

Figure 13.1 – A ninja mesh with a skeleton matching its default pose

336 Creating Animations with Animator, Cinemachine, and Timeline

Once the artist has created the model and its bones, the next step is to do the skinning,
which is the act of associating every vertex of the model with one or more bones. In this
way, when you move a bone, the associated vertexes will move with it. This is done in
this way because it is easier to animate a reduced number of bones instead of every single
vertex of the model. In the following screenshot, you can see the triangles of a mesh being
painted according to the color of the bone that affects it, as a way to visualize the influence
of the bones. You will notice blending between colors, which means that those vertexes
are affected differently by different bones to allow the vertexes near an articulation point
to bend nicely. The following screenshot illustrates an example of a two-dimensional mesh
being used for two-dimensional games, but the concept is the same:

Figure 13.2 – A visual of Mesh skinning weights, represented as colors

Finally, the last piece you need is the actual animation, which will simply consist of
a blend of the different poses of the meshes. The artist will create keyframes in an
animation, determining which pose the model needs to have at different moments, and
then the animation system will simply interpolate between them. Basically, the artist will
animate the bones, and the skinning system will apply this animation to the whole mesh.
You can have one or several animations, which you will later switch between based on the
animation that you want to match the character's motion (such as idle, walking, falling,
and so on).

Using Skinning Animations with Animator 337

To get the four parts, we need to get the proper assets containing them. The usual format in
this scenario is Filmbox (FBX), which is what we have used so far to import 3D models. This
format can contain every piece we need – the model, the skeleton with the skinning, and the
animations – but usually, we will split the parts into several files to reutilize the pieces.

Imagine a city simulator game where we have several citizen's meshes with different
aspects and all of them must be animated. If we have a single FBX per citizen containing
the mesh, the skinning, and the animation, it will cause each model to have its own
animation, or at least a clone of the same one, repeating them. When we need to change
that animation, we will need to update all the citizen's meshes, which is a time-consuming
process. Instead of this, we can have one FBX per citizen, containing the mesh and
the bones with the proper skinning based on that mesh, as well as a separate FBX for
each animation, containing the same bones that all the citizens have with the proper
animation, but without the mesh. This will allow us to mix and match the citizen FBX
with the animation's FBX files. You may be wondering why both the model FBX and the
animation FBX must have this mesh. This is because they need to match to make both files
compatible. In the following screenshot, you can see how the files should look:

Figure 13.3 – The Animations and Model FBX files of the package we will use in our project

Also, it is worth mentioning a concept called retargeting. As we mentioned previously, to
mix a model and an animation file, we need them to have the same bone structure, which
means the same number of bones, hierarchy, and names. Sometimes, this is not possible,
especially when we mix custom models that have been created by our artist with external
animation files that you can record from an actor using motion capture techniques, or
just by buying a Mocap library. In such cases, you will likely encounter different bone
structures between the one in the Mocap library and your character model, so here is
where retargeting kicks in. This technique allows Unity to create a generic mapping
between two different humanoid-only bones structures to make them compatible. We will
learn how to enable this feature shortly.

338 Creating Animations with Animator, Cinemachine, and Timeline

Now that we understand the basics behind skinned meshes, let's learn how to get the
model's assets with bones and animations.

Importing skeletal animations
Let's start with how to import some animated models from the Asset Store, under the
3D | Characters | Humanoids section. You can also use external sites, such as Mixamo,
to download them. But for now, I will stick with the Asset Store as you will have less
trouble making the assets work. In my case, I have downloaded a package, as shown in the
following screenshot, that contains both Models and Animations:

Figure 13.4 – Soldier models for our game

Note that sometimes, you will need to download them separately because some assets will
be model- or animation-only. Also, note that the packages used in this book might not
be available at the time you're reading this; in that case, you can either look for another
package with similar assets (characters and animations, in this case) or download the
project files from this book's GitHub repository and copy the required files from there.

In my package, I can find the animation's FBX files in the Animations folder and
the single model FBX file in Model. Remember that sometimes, you won't have them
separated like this, and the animations may be located in the same FBX as the model, if
any animations are present at all. Now that we have the required files, let's discuss how to
configure them properly.

Let's start by selecting the Model file and checking the Rig tab. Within this tab, you will
find a setting called Animation Type, as shown in the following screenshot:

Using Skinning Animations with Animator 339

Figure 13.5 – The Rig properties

This property contains the following options:

• None: A mode for non-animated models; every static mesh in your game will use
this mode.

• Legacy: The mode to be used in old Unity Projects and models; do not use this in
new projects.

• Generic: A new animation system that can be used in all kinds of models but
is commonly used in non-humanoid models, such as horses, octopuses, and so
on. If you use this mode, both the model and animation FBX files must have the
same bone names and structure, thereby reducing the possibility of combining
animations from external sources.

• Humanoid: These are new animation systems designed to be used in humanoid
models. It enables features such as retargeting and Inverse Kinematics (IK). This
allows you to combine models with different bones than the animation because
Unity will create a mapping between those structures and a generic one, called
the avatar. Take into account that sometimes, automatic mapping can fail, which
means you will need to correct it manually; so, if your generic model has everything
you need, I recommend that you stick with the Generic model if that's the default
configuration of the FBX.

In my case, the FBX files in my package have the modes set to Humanoid, so that's good,
but remember, only switch to other modes if it is absolutely necessary (for example, if you
need to combine different models and animations). Now that we have discussed the Rig
settings, let's talk about the Animation settings.

340 Creating Animations with Animator, Cinemachine, and Timeline

To do this, select any animation FBX file and look for the Animation section of the
Inspector window. You will find several settings, such as the Import Animation
checkbox, which must be marked if the file contains an animation (not the model files),
and the Clips list, where you will find all the animations in the file. In the following
screenshot, you can see the Clips list for one of our animation files:

Figure 13.6 – A Clips list in the Animation section

An FBX file with animations usually contains a single large animation track, which
can contain one or several animations. Either way, by default, Unity will create a single
animation based on that track, but if that track contains several animations, you will need
to split them manually. In our case, our FBX contains several animations already split by the
package creator, but to learn how to do a manual split, you must perform the following steps:

1. From the Clips list, select any animation that you want to recreate; in my case, I will
choose HumanoidCrouchIdle.

2. Take a look at the Start and End values below the animation timeline and
remember them; we will use them to recreate this clip:

Figure 13.7 – The Clip's settings

3. Click on the minus button (-) on the bottom-right part of the Clips list to delete the
selected clip.

Using Skinning Animations with Animator 341

4. Use the plus (+) button to create a new clip and select it.
5. Rename it to something similar to the original using the Take 001 input field. In

my case, I will name it Idle.
6. Set the End and Start properties with the values we needed to remember in step 2.

In my case, I have 319 for End and 264 for Start. This information usually comes
from the artist, but you can just try the number that works best for you or simply
drag the blue markers in the timeline on top of these properties.

7. Preview the clip by clicking on the bar that specifies the title of your animation
(HumanoidIdle, in my case) at the very bottom of the Inspector window and click
on the Play button. You will see the default Unity model, but you can view your own
by dragging the model file to the preview window; it is important to check whether
our models have been configured properly. If the animation does not play, you will
need to check whether the Animation Type setting matches the animation file:

Figure 13.8 – Animation preview

342 Creating Animations with Animator, Cinemachine, and Timeline

8. Open the animation file, click on the down arrow, and check the sub-assets. You
will see that here, there is a file for your animation, alongside the other animations
in the clip list, which contains the cut clips. In a moment, we will play them. In the
following screenshot, you can see the animations in our .fbx file:

Figure 13.9 – Generated animation clips

Now that we have covered the basic configuration, let's learn how to integrate them.

Integration using Animation Controllers
When adding animations to our characters, we need to think about the flow of the
animations, which means thinking about which animations must be played, when each
animation must be active, and how transitions between animations should happen. In
previous Unity versions, you needed to code that manually, generating complicated scripts
of C# code to handle complex scenarios; but now, we have Animation Controllers.

Animation Controllers are state machine-based assets where we can diagram the
transition logic between animations with a visual editor called Animator. The idea is that
each animation is a state and that our model will have several of them. Only one state
can be active at a time, so we need to create transitions to change them, which will have
conditions that must be met to trigger the transition process. Conditions are comparisons
of data about the character to be animated, such as its velocity, whether it's shooting or
crouched, and so on.

Using Skinning Animations with Animator 343

So, basically, an Animation Controller or state machine is a set of animations with
transition rules that will dictate which animation should be active. Let's create a simple
Animation Controller by doing the following:

1. Click the + button under the Project view, click on Animator Controller, and
call it Player. Remember to locate your asset within a folder for organization
purposes; I will call mine Animators.

2. Double-click on the asset to open the Animator window. Don't confuse this window
with the Animation window; the Animation window does something different.

3. Drag the Idle animation clip of your character into the Animator window. This will
create a box in the Controller representing the animation that will be connected to
the entry point of the Controller, indicating that the animation will be the default
one because it is the first one that we dragged. If you don't have an Idle animation,
I encourage you to find one. We will need at least one Idle animation and one
walking/running animation clip:

Figure 13.10 – Dragging an animation clip from an FBX asset into an Animator Controller

4. Drag the running animation in the same way.
5. Right-click on the Idle animation, select Make Transition, and left-click on the Run

animation. This will create a transition between Idle and Run.

344 Creating Animations with Animator, Cinemachine, and Timeline

6. Create another transition from Run to Idle in the same way:

Figure 13.11 – Transitions between two animations

Transitions must have conditions to prevent animations from swapping constantly, but
to create conditions, we need data to make comparisons. We will add properties to our
Controller, which will represent the data that's used by the transitions. Later, in Part 3,
we will set that data so that it matches the current state of our object. But for now, let's
create the data and test how the Controller reacts with different values. In order to create
conditions based on properties, do the following:

1. Click on the Parameters tab in the top-left part of the Animator window. If you
don't see it, click on the crossed-eye button to display the tabs.

2. Click on the + button and select Float to create a number that will represent the
velocity of our character, naming it Velocity. If you missed the renaming part,
just left-click on the variable and rename it:

Figure 13.12 – The Parameters tab with a float Velocity property

3. Click on the Idle to Run transition (the white line with an arrow) and look at the
Conditions property in the Inspector window.

4. Click on the + button at the bottom of the list, which will create a condition that will
rule the transition. The default setting will take the first parameter of our animator
(in this case, it is Velocity) and will set the default comparer, in this case, Greater, to
a value of 0. This tells us that the transition will execute from Idle to Run if Idle is
the current animation and the velocity of the Player is greater than 0. I recommend
that you set a slightly higher value, such as 0.01, to prevent any float rounding
errors (a common CPU issue). Also, remember that the actual value of Velocity
needs to be set manually via scripting, which we will do in Part 3:

Using Skinning Animations with Animator 345

Figure 13.13 – Condition to check whether Velocity is greater than 0.01

5. Do the same to the Run to Idle transition, but this time, change Greater to Less and
set the value to 0.01:

Figure 13.14 – Condition to check whether a value is less than 0.01

Now that we have our first Animator Controller set up, it's time to apply it to an object. To
do that, we will need a series of components. First, when we have an animated character,
rather than using a regular Mesh Renderer, we should use Skinned Mesh Renderer. If
you drag the model of the character to the scene and explore its children, you will see a
component, as shown here:

Figure 13.15 – The Skinned Mesh Renderer component

346 Creating Animations with Animator, Cinemachine, and Timeline

This component will be in charge of applying the bones' movements to the mesh. If you
search the children of the model, you will find some bones; you can try rotating, moving,
and scaling them to see their effects, as shown in the following screenshot. Consider the
fact that your bone hierarchy might be different from mine if you downloaded another
package from the Asset Store:

Figure 13.16 – Rotating the neckbone

The other component that we need is Animator, which is automatically added to skinned
meshes as a root GameObject. This component will be in charge of applying the state
machine that we created in the Animation Controller if the animation FBX files have
been configured properly, as we mentioned earlier. To apply the Animator Controller, do
the following:

1. Drag the model of the character into the Scene, if it's not already there.
2. Select it and locate the Animator component in the root GameObject.
3. Click on the circle to the right of the Controller property and select the Player

controller we created earlier. You can also just drag it from the Project window.
4. Make sure that the Avatar property is set to the avatar inside the FBX model; this

will tell the animator that we will be using that skeleton. You can identify the avatar
asset by its icon of a person, as shown in the following screenshot. Usually, this
property is set automatically when you drag the FBX model into the Scene:

Figure 13.17 – Animator using the Player controller and RobotAvatar

Using Skinning Animations with Animator 347

5. Set the Camera GameObject's position so that it's looking at the player and play
the game; you will see the character executing its Idle animation.

6. Without stopping the game, open the Animator Controller asset again by
double-clicking it and selecting the character in the Hierarchy window. By
doing this, you should see the current state of the animation being played by that
character, using a bar to represent the current part of the animation:

Figure 13.18 – The Animator Controller in Play mode while an object is selected, showing the current
animation and its progress

7. Using the Animator window, change the value of Velocity to 1.0 and see how the
transition is executed:

Figure 13.19 – Setting the velocity of the Controller to trigger a transition

348 Creating Animations with Animator, Cinemachine, and Timeline

Depending on how the Run animation was set, your character might start to move.
This is caused by the root motion, a feature that will move the character based on
the animation movement. Sometimes, this is useful, but since we will fully move our
character using scripting, we want that feature to be turned off. You can do that by
unchecking the Apply Root Motion checkbox in the Animator component of the
Character object:

Figure 13.20 – Disabling the Apply Root Motion checkbox

8. You will also notice a delay between changing the Velocity value and the start of
the animation's transition. That's because, by default, Unity will wait for the original
animation to end before executing a transition, but in this scenario, we don't want
that. We need the transition to start immediately. To do this, select each transition of
the Controller and, in the Inspector window, uncheck the Has Exit Time checkbox:

Figure 13.21 – Disabling the Has Exit Time checkbox to execute the transition immediately

You can start dragging other animations into the Controller and create complex animation
logic, such as adding jump, fall, or crouched animations. I invite you to try other
parameter types, such as Booleans, that use checkboxes instead of numbers. Also, as you
develop your game further, your Controller will grow in terms of how many animations it
has. To manage this, there are other features worth researching, such as Blend Trees and
sub-state machines, but that's beyond the scope of this book.

In this section, we learned how to integrate animation clips into our character through
Animator Controllers. We added all the necessary animations and created the necessary
transitions between them to react to the game's circumstances, such as the character
velocity changes. Now that we understand the basics of character animations in Unity, let's
discuss how to create dynamic camera animations that will follow our player.

Creating dynamic cameras with Cinemachine 349

Creating dynamic cameras with Cinemachine
Cameras are a very important topic in video games. They allow the player to see their
surroundings to make decisions based on what they see. The game designer usually
defines how they behave to get the exact gameplay experience they want, and that's no
easy task. A lot of behaviors must be layered to get the exact feeling. Also, for cutscenes, it
is important to control the path that the camera will be traversing throughout, as well as
where the camera is looking, to focus the action during those constantly moving scenes.

In this chapter, we will use the Cinemachine package to create both of the dynamic
cameras that will follow the player's movements, which we will code in Part 3, as well as
the cameras to be used during cutscenes.

In this section, we will examine the following Cinemachine concepts:

• Creating camera behaviors

• Creating dolly tracks

Let's start by discussing how to create a Cinemachine controlled camera and configure
behaviors in it.

Creating camera behaviors
Cinemachine is a collection of different behaviors that can be used in the camera that,
when properly combined, can generate all kinds of common camera types in video games,
including following the player from behind, first-person cameras, top-down cameras, and
so on. To use these behaviors, we need to understand the concept of brain and
virtual cameras.

In Cinemachine, we will only keep one main camera, as we have done so far, and that
camera will be controlled by virtual cameras, separated GameObjects that have the
previously mentioned behaviors. We can have several virtual cameras and swap between
them at will, but the active virtual camera will be the only one that will control our main
camera. This is useful for switching cameras at different points of the game, such as
switching between our player's first-person camera. To control the main camera with the
virtual cameras, it must have a Brain component.

To start using Cinemachine, first, we need to install it from Package Manager, as we
did previously with our other packages. If you don't remember how to do this, just do
the following:

1. Go to Window | Package Manager.

350 Creating Animations with Animator, Cinemachine, and Timeline

2. Ensure that the Packages option in the top-left part of the window is set to
Unity Registry:

Figure 13.22 – The Packages filter mode

3. Wait a moment for the left panel to populate all the packages from the servers
(an internet connection is required).

4. Look for the Cinemachine package from the list and select it. At the time of writing
this book, the latest available version is 2.7.4, but you can use newer versions if you
prefer. Ensure that the steps work as expected; if not, you can always install the
closest version to ours.

5. Click the Install button in the bottom-right corner of the screen.

Let's start by creating a virtual camera to follow the character we animated previously,
which will be our player hero. Follow these steps:

1. Click GameObject | Cinemachine | Virtual Camera. This will create a new object
called CM vcam1:

Figure 13.23 – Virtual Camera creation

Creating dynamic cameras with Cinemachine 351

2. If you select the main camera from the Hierarchy window, you will also notice that
a CinemachineBrain component has been automatically added to it, making our
main camera follow the virtual camera. Try to move the created virtual camera, and
you will see how the main camera follows it:

Figure 13.24 – The CinemachineBrain component

3. Select the virtual camera and drag the character to the Follow and Look At
properties of the Cinemachine virtual camera component. This will make the
movement and looking behaviors use that object to do their jobs:

Figure 13.25 – Setting the target of our camera

4. You can see how the Body property of the virtual camera is set to Transposer,
which will move the camera relative to the target that was set with the Follow
property – in our case, the character. You can open the Body options (arrow to its
left) and change the Follow Offset property and set it to the desired distance you
want the camera to be from the target. In my case, I used the 0, 3, and -3 values:

Figure 13.26 – The camera following the character from behind

352 Creating Animations with Animator, Cinemachine, and Timeline

5. The preceding screenshot shows the Game view; you can see a small, yellow
rectangle indicating the target position to look at the character, and it's currently
pointing at the pivot of the character – its feet. Here, we can apply an offset to the
Tracked Object Offset property of the Aim section of the virtual camera. In my case,
values of 0, 1.5, and 0 worked well to make the camera look at the chest instead:

Figure 13.27 – Changing the Aim offset

As you can see, using Cinemachine is pretty simple, and in our case, the default settings
were mostly enough for the kind of behavior we needed. However, if you explore the other
Body and Aim modes, you will find that you can create any type of camera for any type of
game. We won't cover the other modes in this book, but I strongly recommend that you
look at the documentation for Cinemachine to check what the other modes do. To open
the documentation, follow these steps:

1. Open Package Manager by going to Window | Package Manger.
2. Find Cinemachine in the left-hand side list. Wait a moment if it doesn't show up.

Remember that you need an internet connection for it to work.
3. Once Cinemachine is selected, scroll down the right panel until you see the View

documentation link in blue. Click on it:

Figure 13.28 – The Cinemachine documentation link

4. You can explore the documentation using the navigation menu on the left:

Creating dynamic cameras with Cinemachine 353

Figure 13.29 – The Cinemachine documentation

As you did with Cinemachine, you can find other packages' documentation in the same
way. Now that we have achieved the basic camera behavior that we need, let's explore how
we can use Cinemachine to create a camera for our introduction cutscene.

Creating dolly tracks
When the player starts the level, we want a little cutscene to play, with the camera panning
over our scene and the base before the player enters the battle. This will require the
camera to follow a fixed path, and that's exactly what Cinemachine's dolly camera does.
It creates a path where we can attach a virtual camera so that it will follow it. We can set
Cinemachine to move automatically through the track or follow a target to the closest
point of the track; in our case, we will use the first option.

To create a dolly camera, follow these steps:

1. Let's start by creating the Track with a Cart, which is a little object that will move
along the track. This will be the target that will follow the camera. To do this, click
on GameObject | Cinemachine | Dolly Track with Cart:

Figure 13.30 – A dolly camera with a default straight path

354 Creating Animations with Animator, Cinemachine, and Timeline

2. If you select the DollyTrack1 object, you will see two circles with the numbers 0 and
1 in the Scene view. These are the control points of the track. Select one of them and
move it as you move other objects; that is, using the arrows of the translation gizmo.

3. You can create more control points by clicking the + button at the bottom of
the Waypoints list of the CinemachineSmoothPath component of the
DollyTrack1 object:

Figure 13.31 – Adding a path control point

4. Create as many waypoints as you need to create a path that will traverse the areas
you want the camera to oversee in the introduction cutscene. Remember, you can
move the waypoints by clicking on them and using the translation gizmo:

Figure 13.32 – A dolly track for our scene. It ends right behind the character

Creating dynamic cameras with Cinemachine 355

5. Create a new virtual camera. If you go to the Game view after creating it, you will
notice that the character camera will be active. To test how the new camera looks,
select it and click on the Solo button in the Inspector window:

Figure 13.33 – The Solo button, for temporarily enabling this virtual camera while editing

6. This time, set the Follow target to the DollyCart1 object that we previously
created with the track.

7. Set Follow Offset to 0, 0, and 0 to keep the camera in the same position as the cart.
8. Set Aim to Same As Follow Target to make the camera look in the same direction

as the cart, which will follow the track's curves:

Figure 13.34 – Configuration to make the virtual camera follow the dolly track

356 Creating Animations with Animator, Cinemachine, and Timeline

9. Select the DollyCart1 object and change its Position value to see how the cart
moves along the track. Do this while the Game window is focused and CM vcam2
is in solo mode to see how the camera will look:

Figure 13.35 – The Cinemachine Dolly Cart component

With the dolly track set, we can create our cutscene using Timeline to sequence it.

Creating cutscenes with Timeline
We have our intro camera, but that's not enough to create a cutscene. A proper cutscene
is a sequence of actions happening at the exact moment that they should happen,
coordinating several objects to act as intended. We can have actions such as enabling and
disabling objects, switching cameras, playing sounds, moving objects, and so on. To do
this, Unity offers Timeline, which is an action sequencer that coordinates those kinds of
cutscenes. We will use Timeline to create an intro cutscene for our scene, showing the
level before starting the game.

In this section, we will examine the following Timeline concepts:

• Creating animation clips

• Sequencing our intro cutscene

We are going to learn how to create our own animation clips in Unity to animate our
GameObjects, and then place them inside a cutscene to coordinate their activation using
the Timeline sequencer tool. Let's start by creating a camera animation to use later in
Timeline.

Creating cutscenes with Timeline 357

Creating animation clips
This is not a Timeline-specific feature, but rather a Unity feature that works great with
Timeline. When we downloaded the character, it came with animation clips that were
created using external software, but you can create custom animation clips using Unity's
Animation window. Don't confuse it with the Animator window, which allows us to
create animation transitions that react to the game situation. This is useful for creating
small object-specific animations that you will coordinate later in Timeline with other
objects' animations.

These animations can control any value of an object's component properties, such as its
positions, colors, and so on. In our case, we want to animate the dolly track's Position
property to make it go from start to finish in a given time. To do this, do the following:

1. Select the DollyCart1 object.
2. Open the Animation (not Animator) window by going to Window | Animation |

Animation.
3. Click on the Create button at the center of the Animation window. Remember to

do this while the dolly cart (not track) is selected:

Figure 13.36 – Creating a custom animation clip

4. After doing this, you will be prompted to save the animation clip somewhere.
I recommend that you create an Animations folder in the project (inside the
Assets folder) and call it IntroDollyTrack.

If you pay attention, you will see that the dolly cart now has an Animator component
with an Animator Controller inside it, which contains the animation we just created. As
with any animation clip, you need to apply it to your object with an Animator Controller;
custom animations are no exception. So, the Animation window created them for you.

358 Creating Animations with Animator, Cinemachine, and Timeline

Animating in this window consists of specifying the value of its properties at given
moments. In our case, we want Position to have a value of 0 at the beginning of the
animation, in the second 0 at the timeline, and have a value of 240 at the end of the
animation, in second 5. I chose 240 because that's the last possible position in my cart,
but that depends on the length of your dolly track. Just test which is the last possible
position in yours. Also, I chose second 5 because that's what I feel is the correct length
for the animation, but feel free to change it as you wish. Now, whatever happens between
the animation's 0 and 5 seconds is an interpolation of the 0 and 240 values, meaning
that in 2.5 seconds, the value of Position will be 120. Animating always consists of
interpolating different states of our object at different moments.

To do this, follow these steps:

1. In the Animation window, click on the record button (the red circle in the top-left
section). This will make Unity detect any changes in our object and save them to the
animation. Remember to do this while you have selected the dolly cart.

2. Set the Position setting of the dolly cart to 1 and then 0. Changing this to any value
and then to 0 again will create a keyframe, which is a point in the animation that
says that at 0 seconds, we want the Position value to be 0. However, we need to set
it to any other value first if the value is already at 0. You will notice that the Position
property has been added to the animation:

Figure 13.37 – The animation in Record mode after changing the Position value to 0

3. Using the mouse scroll wheel, zoom out the timeline to the right of the Animation
window until you see 5 seconds in the top bar:

Figure 13.38 – The timeline of the Animation window showing 5 seconds

Creating cutscenes with Timeline 359

4. Click on the 5 seconds label in the top bar of the timeline to position the playback
header at that moment. This will locate the next change we make at that moment.

5. Set the Position value of the dolly track to the highest value you can get; in my case,
this is 240. Remember to have the Animation window in Record mode:

Figure 13.39 – Creating a keyframe with a value of 240, 5 seconds into the animation

6. Hit the play button in the top-left section of the Animation window to see the
animation playing. Remember to view it in the Game view and while CM vcam2 is
in solo mode.

Now, if we hit play, the animation will start playing, but that's something we don't want. In
this scenario, the idea is to give control of the cutscene to the cutscene system, Timeline,
because this animation won't be the only thing that needs to be sequenced in our
cutscene. One way to prevent the Animator component from automatically playing the
animation we created is to create an empty animation state in the Controller, and then set
it as the default state. To do this, follow these steps:

1. Search for the Animator Controller that we created when we created the animation
and open it. If you can't find it, just select the dolly cart and double-click on the
Controller property of the Animator component of our GameObject to open the
asset.

2. Right-click on an empty state in the Controller and select Create State | Empty.
This will create a new state in the state machine as if we had created a new
animation, but it is empty this time:

Figure 13.40 – Creating an empty state in the Animator Controller

360 Creating Animations with Animator, Cinemachine, and Timeline

3. Right-click on New State and click on Set as Layer Default State. The state should
become orange:

Figure 13.41 – Changing the default animation of the Controller to an empty state

4. Now, if you hit play, no animation will play as the default state of our dolly
cart is empty.

Now that we have created our camera animation, let's start creating a cutscene that
switches from the intro cutscene camera to the player camera by using Timeline.

Sequencing our intro cutscene
Timeline is already installed in your project, but if you go to the Package Manager window
of Timeline, you may see an Update button so that you can get the latest version if you
need some of the new features. In our case, we will keep the default version that's included
in our project (1.5.2, at the time of writing this book).

The first thing we will do is create a cutscene asset and an object in the scene that's
responsible for playing it. To do this, follow these steps:

1. Create an empty GameObject using the GameObject | Create Empty option.
2. Select the empty object and call it Director.
3. Go to Window | Sequencing | Timeline to open the Timeline editor.
4. Click the Create button in the middle of the Timeline window while the Director

object is selected to convert that object into the cutscene player (or director).
5. After doing this, a window will appear, asking you to save a file. This file will be the

cutscene or timeline; each cutscene will be saved in its own file. Save it in a folder
called Cutscenes in your project (the Assets folder).

6. Now, you can see that the Director object has a Playable Director component with
the Intro cutscene asset that was saved in the previous step set for the Playable
property, meaning this cutscene will be played by the director:

Figure 13.42 – Playable Director prepared to play Intro (Timeline Asset)

Creating cutscenes with Timeline 361

Now that we have the Timeline asset ready to work with, let's make it sequence actions.
To start, we need to sequence two things – first, the cart position animation we created
previously and then the camera swap between the dolly track camera (CM vcam2) and
the player camera (CM vcam1). As we mentioned previously, a cutscene is a sequence
of actions executing at given moments, and to schedule actions, you will need tracks.
In Timeline, we have different kinds of tracks, each one allowing you to execute certain
actions on certain objects. We will start with the animation track.

The animation track will control which animation a specific object will play; we need
one track per object to animate. In our case, we want the dolly track to play the Intro
animation that we created, so let's do that by following these steps:

1. Add an animation track by clicking the plus button (+) and then Animation Track:

Figure 13.43 – Creating an animation track

2. Select the Director object and check the Bindings list of the Playable Director
component in the Inspector window.

3. Drag the Cart object to specify that we want the animation track to control its
animation:

Figure 13.44 – Making Animation Track control the dolly cart's animation in this director

Important Note
Timeline is a generic asset that can be applied to any scene, but since the tracks
control specific objects, you need to manually bind them in every scene. In our
case, we have an animation track that expects to control a single animator, so
in every scene, if we want to apply this cutscene, we need to drag the specific
animator to the control in the Bindings list.

362 Creating Animations with Animator, Cinemachine, and Timeline

4. Drag the Intro animation asset that we created in the animation track into the
Timeline window. This will create a clip in the track showing when and for how
long the animation will play. You can drag as many animations as possible that the
cart can play into the track to sequence different animations at different moments;
however, right now, we want just that one:

Figure 13.45 – Making the animator track play the Intro clip

5. You can drag the animation to change the exact moment you want it to play. Drag it
to the beginning of the track.

6. Hit the Play button in the top-left part of the Timeline window to see it in action.
You can also manually drag the white arrow in the Timeline window to view the
cutscene at different moments:

Figure 13.46 – Playing a timeline and dragging the playback header

Important Note
Remember that you don't need to use Timeline to play animations. In this case,
we did it this way to control at exactly which moment we want the animation
to play. You can control animators using scripting as well.

Now, we will make our Intro timeline asset tell the CinemachineBrain component
(the main camera) which camera will be active during each part of the cutscene, switching
to the player camera once the camera animation is over. We will create a second track
– a Cinemachine track – that specializes in making a specific CinemachineBrain
component to switch between different virtual cameras. To do this, follow these steps:

1. Click the plus (+) button again and click on Cinemachine Track. Note that you
can install Timeline without Cinemachine, but this kind of track won't show up in
that case:

Creating cutscenes with Timeline 363

Figure 13.47 – Creating a new Cinemachine Track

2. In the Playable Director component's Bindings list, drag the main camera to
Cinemachine Track to make that track control which virtual camera will be the
one that controls the main camera at different moments of the cutscene:

Figure 13.48 – Making Cinemachine Track control our scene's main camera

3. The next step indicates which virtual camera will be active during specific moments
of the timeline. To do so, our Cinemachine track allows us to drag virtual cameras
onto it, which will create virtual camera clips. Drag both CM vcam2 and CM
vcam1, in that order, onto the Cinemachine track:

Figure 13.49 – Dragging virtual cameras to the Cinemachine track

4. If you hit the Play button or just drag the Timeline Playback header, you will see
how the active virtual camera changes when the playback header reaches the second
virtual camera clip. Remember to view this in the Game view.

364 Creating Animations with Animator, Cinemachine, and Timeline

5. If you place the mouse near the ends of the clips, a resize cursor will appear. If you
drag them, you can resize the clips to specify their duration. In our case, we will
need to match the length of the CM vcam2 clip with the Cart animation clip and
then put CM vcam1 at the end of it by dragging it, so that the camera will be active
when the dolly cart's animation ends. In my case, they were already the same length,
but just try to change it anyway to practice. Also, you can make the CM vcam1 clip
shorter; we just need that to play it for a few moments to execute the camera swap.

6. You can also overlap the clips a little bit to make a smooth transition between the
two cameras, instead of a hard switch, which will look odd:

Figure 13.50 – Resizing and overlapping clips to interpolate them

If you wait for the full cutscene to end, you will notice how, at the very end, CM vcam2
becomes active again. You can configure how Timeline will deal with the end of the
cutscene since, by default, it does nothing. This can cause different behaviors based on the
type of track; in our case, again, giving us the control to pick the virtual camera for the
CinemachineBrain component, which will pick the virtual camera with the highest
Priority value. We can change the Priority property of the virtual cameras to be sure that
CM vcam1 (the player camera) is always the more important one, or set Wrap Mode of
the Playable Director component to Hold, which will keep everything as the last frame of
the timeline specifies. In our case, we will use the latter option to test the Timeline-specific
features:

Figure 13.51 – Wrap Mode set to Hold

Most of the tracks work under the same logic; each will control a specific aspect of
a specific object using clips that will execute during a set time. I encourage you to test
different tracks to see what they do, such as Activation, which enables and disables
objects during the cutscene. Remember, you can check out the documentation of the
Timeline package in Package Manager.

Summary 365

Summary
In this chapter, we introduced the different animation systems that Unity provides for
different requirements. We discussed importing character animations and controlling
them with Animation Controllers. We also saw how to make cameras that can react to
the game's current situation, such as the player's position, or that can be used during
cutscenes. Finally, we looked at Timeline and the animation system to create an
introduction cutscene for our game. These tools are useful for allowing the animators
in our team work directly in Unity, without the hassle of integrating external assets
(except for character animations). It also alleviates the programmer from creating
repetitive scripts to create animations, wasting time in the process.

Now, you can import and create animation clips in Unity, as well as apply them to
GameObjects to make them move according to the clips. Also, you can place them in the
Timeline sequencer to coordinate them and create cutscenes for your game. Finally, you
can create dynamic cameras to use in game or in cutscenes.

So far, we have discussed lots of Unity systems that allow us to develop different aspects
of our game without coding, but sooner or later, scripting will be needed. Unity provides
generic tools for generic situations, but our game's unique gameplay must usually be
coded manually. In the next chapter, the first chapter of Part 3, we will start learning how
to code in Unity using C#.

Section 3 –
Scripting Level

Interactivity with C#

Now that we have a fully graphically implemented prototype level, its time to add more
interactivity to it by scripting with simple C# code.

This section comprises the following chapters:

• Chapter 14, Introduction to C# and Visual Scripting

• Chapter 15, Implementing Movement and Spawning

• Chapter 16, Physics Collisions and Health System

• Chapter 17, Win and Lose Condition

• Chapter 18, Scripting the UI, Sounds, and Graphics

• Chapter 19, Implementing Game AI for Building Enemies

• Chapter 20, Scene Performance Optimization

14
Introduction to C#

and Visual Scripting
Unity has a lot of great built-in tools to solve the most common problems in game
development, such as the ones we have seen so far. Even two games of the same genre have
their own little differences that make the game unique, and Unity cannot foresee that, so
that's why we have scripting. Through coding, we can extend Unity's capabilities in several
ways to achieve the exact behavior we need, all through a well-known language—C#. But
aside from C#, Unity recently introduced Visual Scripting, a way to generate the scripts
through a node graph tool, similar to the Shader Graphs we created in previous chapters.
This means that you can create scripts without writing code but dragging Nodes, boxes
that represent actions that can be chained:

Figure 14.1 – Example of a Visual Scripting graph

370 Introduction to C# and Visual Scripting

While essentially both ways can achieve the same result, we can use them for different
things. Usually, the core logic code of the game is written in C# due to it being usually
huge and very performance-sensitive. But sometimes, using visual scripts instead allows
non-programmer team members, such as Artists or Game Designers, to have more
freedom to edit minor changes on the game, especially regarding balancing or visual
effects. Another example would be Game Designers prototyping ideas through visual
scripts that later programmers will convert to C# scripts when the idea is approved (or
discarded if not). Also, C# programmers can create nodes for Visual Script programmers
to use.

The ways of mixing these tools vary widely between teams, so while in the next chapters
we are going to focus mainly on C#, we are going to also see the Visual Scripting
equivalent version of the scripts we are going to create. This way, you will have the
opportunity to experiment when is convenient to use one or the other according to your
team structure.

In this chapter, we will examine the following scripting concepts:

• Creating Scripts

• Using events and instructions

We are going to create our own Unity components, learning the basic structure of a script
and the way that we can execute actions and expose properties to be configured, both with
C# and Visual Scripting. We are not going to create any of our actual game codes here, but
just some example scripts to set the ground to start doing that in the next chapter. Let's
start by discussing the basics of script creation.

Creating Scripts
The first step to creating behavior is to create Script assets. These are files that will contain
the logic that our components will do. Both C# and Visual Scripting have their own type
of asset to achieve that, so let's explore how to do that in both tools.

Consider that this book is intended for readers with some programming knowledge, but
in this first section, we are going to discuss a basic script's structure to make sure you
have a strong foundation for the behaviors that we will code in the following chapters.
One thing I should point out is that even if we are going to discuss basic C# concepts,
experienced programmers will learn the Unity-specific parts of the process, so even if you
are familiar with C#, try to not skip this section.

Creating Scripts 371

In this section, we will examine the following script creation concepts:

• Initial setup

• Creating a C# script

• Adding fields

• Creating a Visual Script Graph

We are going to create our first script, which will serve to create our component,
discussing the tools needed to do so and exploring how to expose our class fields to the
editor. Let's start with the basics of script creation.

Initial setup
Support for Visual Scripting is added by installing the Visual Scripting package in the
Package Manager, as we did with other packages in previous chapters, but as Unity does
that automatically for us when we create the project, we don't require any further setup.
That means the rest of this section will take care of setting up the tools required to work
with C#.

One thing to consider before creating our first C# script is how Unity compiles the code.
While coding, we are used to having an Integrated Development Environment (IDE),
which is a program to create our code and compile or execute it. In Unity, we will just
use an IDE as a tool to create the scripts easily with coloring and autocompletion because
Unity doesn't have a custom code editor (if you have never coded before, these are
valuable tools for beginners). The scripts will be created inside the Unity project and Unity
will detect and compile them if any changes are made, so you won't compile in the IDE.
Don't worry—you can still use breakpoints in this method.

We can use Visual Studio, Visual Studio Code, Rider, or whatever C# IDE you'd like to
use, but when you install Unity, you will probably see an option to install Visual Studio
automatically, which allows you to have a default IDE. This installs the free version of
Visual Studio, so don't worry about the licenses here. If you don't have an IDE on your
computer and didn't check the Visual Studio option while installing Unity, you can do the
following:

1. Open Unity Hub.
2. Go to the Installs section.

372 Introduction to C# and Visual Scripting

3. Click on the three dots in the top-right area of the Unity version you are using and
click on Add Modules:

Figure 14.2 – Adding a module to the Unity installation

4. Check the option that says Visual Studio; the description of the option will vary
depending on the version of Unity you are using.

5. Hit the Next button at the bottom right:

Figure 14.3 – Installing Visual Studio

6. Wait for the operation to end. This might take a few minutes.

Creating Scripts 373

If you have a preferred IDE, you can install it yourself and configure Unity to use it. If you
can afford it or you are a teacher or a student (as it is free in these cases), I recommend
Rider. It is a great IDE with lots of C# and Unity features that you will love; however, it
is not vital for this exercise. To set up Unity to use a custom IDE, perform the following
steps:

1. Open the project.
2. Go to Edit | Preferences in the top menu of the editor.
3. Select the External Tools menu from the left panel.
4. From the external script editor, select your preferred IDE; Unity will automatically

detect the supported IDEs:

Figure 14.4 – Selecting a custom IDE

5. If you don't find your IDE in the list, you can use the Browse… option,

Note that usually, IDEs that require you to use this option are not very well
supported—but it's worth a shot.

Finally, some IDEs, such as Visual Studio, Visual Studio Code, and Rider, have Unity
integration tools that you need to install in your project, which is optional but can be
useful. Usually, Unity installs these automatically, but if you want to be sure that they are
installed, follow these steps:

1. Open Package Manager (Window | Package Manager).
2. Search the list for your IDE or filter the list by using the search bar. In my case, I

used Rider, and I can find a package called JetBrains Rider Editor:

Figure 14.5 – Custom IDE editor extension installation—in this case, the Rider one

374 Introduction to C# and Visual Scripting

3. Check whether your IDE integration package is installed by looking at the buttons
on the bottom-right part of the package manager. If you see an Install or Update
button, click on it, but if it says Installed, everything is set up.

Now that we have an IDE configured, let's create our first script.

Creating a C# Script
C# is a heavily object-oriented language, and this is no different in Unity. Any time we
want to extend Unity, we need to create our own class—a script with the instructions we
want to add to Unity. If we want to create custom components, we need to create a class
that inherits from MonoBehaviour, the base class of every custom component.

We can create C# script files directly within the Unity project using the editor, and you can
arrange them in folders right next to other assets folders. The easiest way to create a script
is by following these steps:

1. Select any game object that you want to have the component we are going to create.
As we are just testing this out, select any object.

2. Click on the Add Component button at the bottom of the Inspector and look for
the New Script option at the bottom of the list, displayed after clicking on Add
Component:

Figure 14.6 – The New script option

3. In the Name field, enter the desired script name. In my case, I will call it
MyFirstScript, but for the scripts that you will use for your game, try to enter
descriptive names, regardless of the length:

Creating Scripts 375

Figure 14.7 – Naming the script

Important note
It is recommended that you use Pascal case for script naming. In Pascal case, a
script for the player's shooting functionality would be called PlayerShoot.
The first letter of each word of the name is in uppercase and you can't use
spaces.

4. You can check how a new asset, called the same way the script was, is created in
Project View. Remember that each component has its own asset, and I suggest you
put each component in a Scripts folder:

Figure 14.8 – Script asset

5. Now, you will also see that your Game Object has a new component in the Inspector
window, which is named the same as your script. So, you have now created your
first component class:

Figure 14.9 – Our script added to a game object

376 Introduction to C# and Visual Scripting

Now that we have created a component class, remember that a class is not the
component itself. It is a description of what the component should be—a blueprint of
how a component should work. To actually use the component, we need to instantiate
it by creating a component based on the class. Each time we add a component to an
object using the editor, we are instantiating it. Generally, we don't instantiate using new
functions, but by using the editor or specialized functions.

Now, you can add your component as you would any other component by using the Add
Component button in the Inspector window. Then you can look for the component in the
Scripts category or search for it by name:

Figure 14.10 – Adding a custom component to the Scripts category

Something that you need to consider here is that we can add the same component to
several game objects. We don't need to create a class for each game object that uses the
component. I know this is basic programmers' knowledge, but remember that we are
trying to recap the basics here.

Now that we have our component, let's explore how it looks and carry out a class structure
recap by following these steps:

1. Locate the script asset in Project View and double-click on it. Remember that it
should be located in the Scripts folder you created previously.

2. Wait for the IDE to open; this can take a while. You will know that the IDE has
completed initialization when you see your script code and its keywords properly
colored, which varies according to the IDE. In Rider, it looks like what is shown
in the following screenshot. In my case, I knew that Rider had finished initializing
because the MonoBehaviour type and the script name are colored the same:

Creating Scripts 377

Figure 14.11 – A new script opened in the Rider IDE

The first three lines—the ones that start with the using keyword—include common
namespaces. Namespaces are like code containers, which is, in this case, code created
by others (such as Unity and C# creators). We will be using namespaces quite often to
simplify our tasks; they already contain solved algorithms that we will use. We will be
adding and removing the using component as we need; in my case, Rider is suggesting
that the first two using components are not necessary because I am not using any code
inside them, and so they are grayed out. But for now, keep them as you will use them in
later chapters of this book. Remember, they should always be at the beginning of the class:

Figure 14.12 – The using sections

The next line, the one that starts with public class, is where we declare that we are
creating a new class that inherits from MonoBehaviour, the base class of every custom
component. We know this because it ends with : MonoBehaviour. You can see how
the rest of the code is located inside brackets right below that line, meaning that the code
inside them belongs to the component:

Figure 14.13 – The MyFirstScript class definition inherits from MonoBehaviour

Now that we have our C# script, let's add fields to configure it.

378 Introduction to C# and Visual Scripting

Adding fields
In previous chapters, when we added components as Rigidbody or as different kinds
of colliders, adding the components wasn't enough. We needed to properly configure
them to achieve the exact behavior that we need. For example, Rigidbody has the
Mass property to control the object's weight, and the colliders have the Size property to
control their shape. This way, we can reuse the same component for different scenarios,
preventing the duplication of similar components. With a Box collider, we can represent
a square or rectangular box just by changing the size properties. Our components are no
exception; if we have a component that moves an object and if we want two objects to
move at different speeds, we can use the same component with different configurations.

Each configuration is a Field or Variable, a specific type variable where we can hold the
parameter's value. We can create class fields that can be edited in the editor in two ways:

• By marking the field as public, but breaking the encapsulation principle

• By making a private field and exposing it with an attribute

Now, we are going to cover both methods, but if you are not familiar with Object-
Oriented Programming (OOP) concepts, such as encapsulation, I recommend you use
the first method.

Suppose we are creating a movement script. We will add an editable number field
representing the velocity using the first method—that is, by adding the public field. We
will do this by following these steps:

1. Open the script by double-clicking it as we did before.
2. Inside the class brackets, but outside any brackets within them, add the following

code:

Figure 14.14 – Creating a speed field in our component

Important note
The public keyword specifies that the variable can be seen and edited
beyond the scope of the class. The float part of the code says that the
variable is using the decimal number type, and speed is the name we chose
for our field—this can be whatever you want. You can use other value types
to represent other kinds of data, such as bool to represent checkboxes, or
Booleans and strings to represent text.

Creating Scripts 379

3. To apply the changes, just save the file in the IDE (usually by pressing Ctrl + S
or Command + S) and return to Unity. When you do this, you will notice a little
loading wheel at the bottom-right part of the editor, indicating that Unity is
compiling the code. You can't test the changes until the wheel finishes:

Figure 14.15 – The loading wheel
Remember that Unity will compile the code; don't compile it in the IDE.

4. After the compilation is finished, you can see your component in the Inspector
window and the Speed variable should be there, allowing you to set the speed you
want. Of course, right now, the variables do nothing. Unity doesn't recognize your
intention according to the name of the variable; we need to set it for use in some
way, but we will do that later:

Figure 14.16 – A public field to edit data that the component will use later

5. If you don't see the Speed variable, please check the section at the end of this
chapter called Common beginner C# script errors, which will give you tips about how
to troubleshoot compilation errors.

6. Try adding the same component to other objects and set a different speed. This will
show you how components in different game objects are independent, allowing you
to change some of their behaviors via different settings.

The second way to define properties is similar, but instead of creating a public field,
we create a private field, encouraging encapsulation and exposing it using the
SerializeField attribute, as shown in the following screenshots. These screenshots
show two ways of doing this—both will produce the same results; the only difference is the
styling. Use the one that best fits your coding standards:

Figure 14.17 – Two ways to expose private attributes in the Inspector window

380 Introduction to C# and Visual Scripting

If you are not familiar with the OOP concept of encapsulation, just use the first method,
which is more flexible for beginners. If you create a private field, it won't be accessible
to other scripts because the SerializeField attribute only exposes the variable to
the editor. Remember that Unity won't allow you to use constructors, so the only way to
set initial data and inject dependencies is via serialized private fields or public fields and
setting them in the editor (or using a dependency injection framework, but that is beyond
the scope of this book). For simplicity, we will use the first method in most of the exercises
in this book.

If you want, try to create other types of variables and check how they look in the inspector.
Try replacing float for bool or string, as suggested previously. Now that we know how to
configure our components through data, let's use that data to create some behavior.

Now that we have our C# script, let's see how to do the same in Visual Scripting.

Creating a Visual Script
As we need to create a Script Asset for C# scripts, we need to create the Visual Scripting
equivalent called Script Graph and also attach it to our GameObject, although using a
different approach this time. Before continuing, it is worth noticing that our objects must
only have C# or the Visual Scripting version, but not both, or the behavior will be applied
twice, once per version. Essentially, only perform the steps for the version you want to try
or do both steps in different objects if you want to experiment.

Let's create a Visual Script by performing the following steps:

1. Select an object to add the Visual Script. You might create a new one just to test this.
2. Add the Script Machine component to it. This component will execute the Visual

Script Graph we will be creating shortly:

Figure 14.18 – Adding a Script Machine component

3. In the Script Machine component, click the New button and select a folder and a
name to save the Visual Script Graph asset. This asset will contain the instructions
of our Script, and the Script Machine component will execute them:

Creating Scripts 381

Figure 14.19 – Using the New button to create a Visual Scripting Graph asset

4. Click the Edit Graph button to open the Visual Script editor:

Figure 14.20 – Visual Scripting asset editor

Put the mouse in an empty area in the grid of the Visual Script editor, and while holding
the middle mouse button, move the mouse to scroll through the graph. On MacBooks and
Apple Magic Mouses, you can scroll using two fingers in the trackpad.

What we did is create the Visual Graph Asset that will contain the code of our script, and
attached it to a GameObject through the Script Machine component. Unlike C# scripts,
we can't attach the Graph Asset directly; that's why we need the Script Machine to run the
component for us.

Regarding Fields, the ones we created in the C# scripts are contained in the script itself,
but for Visual Graph, they work slightly differently. When we added the Script Machine
component, another one was added, the Variables component. This will hold all the
variables for all the Visual Script Graphs that a GameObject can contain. That means that
all graphs we add to our object will share those variables, so consider this when modifying
their values. Also remember that you will want to add several graphs to the object, given
that each graph will take care of different behaviors, in a way we can mix and match them
according to our needs.

382 Introduction to C# and Visual Scripting

In order to add a variable to our GameObject that can be used by our graph, let's do the
following:

1. Select the GameObject to add the variable and look at the Variables component.
2. Click the input field that says (New Variable Name) and type the name of the

variable. In my case, this is speed.
3. Click the plus (+) button of the Variables component.
4. In the Type dropdown, select Float.
5. Optionally, you can set an initial value in the Value field:

Figure 14.21 – Creating variables for the Visual Graph

We created a speed variable that we can configure in the GameObject to alter the way all
Visual Scripts Graphs attached to our GameObject will work, or at least the ones that use
that Variable value. Consider that maybe you will have different kinds of speed, such as
movement and rotational speed, so in actual cases, you might want to be a little bit more
specific with the variable name.

Important info
The Variables component used in Visual Scripting is also called Blackboard,
a common programming technique. This Blackboard is a container of
several values of our object, such as a memory or database, that several other
components of our object will then query and use. C# scripts usually contain
their own variables inside, but remember that here they are shared through the
Blackboard.

With our scripts created and ready to be configured, let's see how to make both of them
do something.

Using events and instructions 383

Using events and instructions
Now that we have a script, we are ready to do something with it. We won't implement
anything useful in this chapter, but we will settle the base concepts to add interesting
behavior in the scripts we are going to create in the next chapters.

In this section, we are going to cover the following concepts:

• Events and instructions in C#

• Events and instructions in Visual Scripting

• Using fields in instructions

• Common beginner C# script errors

We are going to explore the Unity event system, which will allow us to respond to different
situations by executing instructions. These instructions will also be affected by the value
of the editor. Finally, we are going to discuss common scripting errors and how to solve
them. Let's start by introducing the concept of Unity events in C#.

Events and instructions in C#
Unity allows us to create behavior in a cause-effect fashion, which is usually called an
event system. An event is a situation that Unity is monitoring—for example, when two
objects collide or are destroyed, Unity tells us about this situation, allowing us to react
according to our needs. As an example, we can reduce the life of a player when it collides
with a bullet. Here, we will explore how to listen to these events and test them by using
some simple actions.

If you are used to event systems, you will know that they usually require us to subscribe
to some kind of listener or delegate, but in Unity, there is a simpler method available. For
C# scripts, we just need to write a function with the exact same name as the event we want
to use—and I mean exact. If a letter of the name doesn't have the correct casing, it won't
execute, and no warning will be raised. This is the most common beginner's error that is
made, so pay attention. For Visual Scripting, we will be adding a special kind of node, but
will discuss that after the C# version.

384 Introduction to C# and Visual Scripting

There are lots of events or messages to listen to in Unity, so let's start with the most
common one—Update. This event will tell you when Unity wants you to update your
object, depending on the purpose of your behavior; some don't need them. The Update
logic is usually something that needs to be executed constantly; to be more precise, in
every frame. Remember that every game is like a movie—a sequence of images that your
screen switches through fast enough to look like we have continuous motion. A common
action to do in the Update event is to move objects a little bit, and by doing this, every
frame will make your object constantly move.

We will learn about the sorts of things we can do with Update and other events or
messages later. Now, let's focus on how to make our component at least listen to this event.
Actually, the base component already comes with two Event functions that are ready
to use, one being Update and the other one being in the script. If you are not familiar
with the concept of functions in C#, we refer you to the code snippet in the following
screenshot, which is already included in our script. Try to find it in yours:

Figure 14.22 – A function called Update, which will be executed with every frame

You will notice a (usually) green line of text (depending on the IDE) above the void
Update() line—this is called a comment. These are basically ignored by Unity. They are
just notes that you can leave to yourself and must always begin with // to prevent Unity
from trying to execute them and failing. We will use this to temporarily disable lines of
code later.

Now, to test whether this actually works, let's add an instruction to be executed all the
time. There is no better test function than print. This is a simple instruction that tells
Unity to print a message to the console, where all kinds of messages can be seen by the
developers to check whether everything is properly working. The user will never see these
messages. They are similar to the classic log files that developers sometimes ask you for
when something goes wrong in the game, and you are reporting an issue.

Using events and instructions 385

To test events in C# using functions, follow these steps:

1. Open the script by double-clicking on it.
2. To test, add print("test"); within the Event function. In the following

screenshot, you can see an example of how to do that in the Update event.
Remember to write the instruction exactly, including the correct casing, spaces, and
quotes symbols:

Figure 14.23 – Printing a message in all the frames

3. Save the file, go to Unity, and play the game.

Important note
Remember to save the file before switching back to Unity from the IDE. This is
the only way that Unity knows your file has changed. Some IDEs, such as Rider,
save the file automatically for you, but I don't recommend you use auto-save,
at least in big projects (you don't want accidental recompilations of unfinished
work; that takes too long in projects with lots of scripts).

4. Look for the Console tab and select it. This is usually found next to the Project
View tab. If you can't find it, go to Window | General | Console, or press Ctrl +
Shift + C (Command + Shift + C on macOS).

5. You will see lots of messages stating "test" printed in every frame of the Console
tab. If you don't see this, remember to save the script file before playing the game.

386 Introduction to C# and Visual Scripting

6. Let's also test the Start function. Add print("test Start"); to it, save the
file, and play the game. The full script should look as follows:

Figure 14.24 – The script that tests the Start and Update functions

If you check the console now and scroll all the way up, you will see a single "test
Start" message and lots of "test" messages following it. As you can guess, the Start
event tells you that the game has started and allows you to execute the code that needs to
happen just once at the beginning of the game. We will use this later in this book.

For the void Update() syntax, we will say to Unity that whatever is contained in the
brackets below this line is a function that will be executed in all the frames. It is important
to put the print instruction inside the Update brackets (the ones inside the brackets of
the class). Also, the print function expects to receive text inside its parentheses, called an
argument or parameter, and text in C# must be enclosed by quotation marks. Finally, all
instructions inside functions such as Update or Start must end with a semicolon.

Here, I challenge you to try to add another event called OnDestroy using print to
discover when it executes. A small suggestion is to play and stop the game and look at the
bottom of the console to test this one.

Using events and instructions 387

For advanced users, you can also use breakpoints if your IDE allows you to do that.
Breakpoints allow you to freeze Unity completely before executing a specific code line to
see how our field's data changes over time and to detect errors. Here, I will show you the
steps to use breakpoints in Rider, but the Visual Studio version should be similar:

1. Click on the vertical bar at the left of the line where you want to add the breakpoint:

Figure 14.25 – A breakpoint in the print instruction

2. Go to Run | Attach to Unity Process (in Visual Studio, go to Debug | Attach Unity
Debugger. Remember that you need the Visual Studio Unity plugin and the Visual
Studio integration package of Package Manager):

Figure 14.26 – Attacking our IDE with a Unity process

3. From the list, look for the specific Unity instance you want to test. The list will show
other opened editors or debugging builds that are executing, if any.

Stopping the debugging process won't close Unity. It will just detach the IDE from the
editor.

Now, let's explore the Visual Scripting equivalent of using events and instructions.

388 Introduction to C# and Visual Scripting

Events and instructions in Visual Scripting
The same concept of events and instructions remains in Visual Scripting, but, of course,
this will be done with nodes in the graph. Remember that a node represents an instruction
of the graph, and we can connect them to chain the effects of each instruction. To add
events and the print instruction to our graph, do the following:

1. Open Visual Script Graph (double-click the asset).
2. Right-click the Start and Update nodes that are created by default and then click

Delete. Even if those events are the ones we need, I want you to see how to create
them from scratch:

Figure 14.27 – Deleting nodes

3. Right-click in any empty space of the Graph and type start inside the Search box.
It can take a while the first time.

4. Select the Start element in the list with the green checkbox to its left. In this case, I
knew this was an event because I was aware of it, but usually, you will recognize that
it's an event because it won't have input pins (more on that in the next steps):

Figure 14.28 – Searching the Start event node

Using events and instructions 389

5. Drag the white arrow at the right of the event node, also known as the Output Flow
Pin, and release the mouse button in any empty space.

6. In the Search box, search for the print node. Select the one that says Mono
Behaviour: Print. This means that when the Start event happens, the connected
node will be executed, in this case, print. This is how we start to chain instructions
to events:

Figure 14.29 – Creating a print node connected to the event

7. Drag the empty circle at the left of the Message input pin of the Print node and
release it in any empty space. This pin has a circle indicating that it is a parameter
pin, data that will be used when executing the pin. The flow pins, the ones with
green arrows, represent the order in which the nodes will be executed.

8. Select the String Literal option. This will create a node to allow us to specify the
message to print:

Figure 14.30 – Creating a string literal node

390 Introduction to C# and Visual Scripting

9. In the empty white box, write the message to be printed:

Figure 14.31 – Specifying the message to print

10. Play the game and see the message printed in the console. Be sure you have only the
Visual Scripting version in the scene to avoid confusing the message in the console
with the C# version. You can also use different message texts in the visual scripts to
be sure which ones are actually executing.

You can chain more actions to the Start, dragging the pin at the right (Flow Output Pin)
of the Print node, chaining new nodes, but we will do that later. Now that we have our
scripts doing something, let's make the instructions use the fields we created so that the
scripts use their configurations.

Using fields in instructions
We have created fields to configure our components' behavior, but we have not used them
so far. We will create meaningful components in the next chapter, but one thing we will
often need is to use the fields we have created to change the behavior of the object. So
far, we have no real use for the speed field that we created. However, following the idea
of testing whether our code is working (also known as debugging), we can learn how to
use the data inside a field with a function to test whether the value is the expected one,
changing the output of print in the console according to the field's value.

Using events and instructions 391

In our current C# script, our speed value doesn't change during runtime. However, as
an example, if you are creating a life system with shield damage absorption and you want
to test whether the reduced damage calculation is working properly, you might want to
print the calculation values to the console and check whether they are correct. The idea
here is to replace the fixed message inside the print functions with a field. When you do
that, print will show the field's value in the console. So, if you set a value of 5 in speed
and you print it, you will see lots of messages saying 5 in the console, and the output of
the print function is governed by the field. To test this, your print message within the
Update function should look as follows:

Figure 14.32 – Using a field as a print function parameter

As you can see, we just put the name of the field without quotation marks. If you use
quotation marks, you will print a "speed" message. In other scenarios, you can use this
speed value within some moving functions to control how fast the movement will be, or
you can perhaps create a field called "fireRate" (fields use camel case instead of Pascal,
with the first letter being in lowercase) to control the cool-down time between one bullet
and the next:

Figure 14.33 – Printing the current speed

392 Introduction to C# and Visual Scripting

Now, to make the Visual Script Graph print the value of the speed variable we created in
the Variables component, perform the following steps:

1. Open the Visual Scripting graph asset (by double-clicking it).
2. In the Panel to the left, select the Object tab to display all the variables our object

has, essentially the ones we defined in the Variables component previously.
3. Drag the speed variable using the two lines to the left of the variable box to

any empty area of the graph. This will create a GetVariable node in the graph to
represent the variable. Bear in mind that the drag has a bug at the moment, so you
might need to try a couple of times:

Figure 14.34 – Dragging variables to the graph to be used in the nodes

4. Drag the empty circle at the right of the Get Variable node to the circle at the left
of the Message input pin of the Print node. This will replace the previous
connection to the String Literal node. This node doesn't have Input or Output flow
nodes (the green arrow ones), as they are data-only nodes that provide data to other
nodes. In this case, when Print needs to execute, it will execute Get Variable to get
the text to read:

Figure 14.35 – Connecting the speed variable to the Print node

Using events and instructions 393

5. Right-click on the String Literal node and delete it.
6. Play the game and observe.

With all this, we now have the necessary tools to start creating actual components. Before
moving on, let's recap some of the common errors that you will likely encounter if this is
your first time creating scripts in C#.

Common beginner C# script errors
The Visual Scripting scripts are prepared in such a way that you make fewer errors, not
allowing you to write incorrect syntax in the same way as C# script does. If you are an
experienced programmer, I bet you are quite familiar with these errors, but let's recap
the common errors that will make you lose lots of time when you are starting with C#
scripting. Most of them are caused by not copying the shown code exactly. If you have an
error in the code, Unity will show a red message in the console and won't allow you to run
the game, even if you are not using the script. So, never leave anything unfinished.

Let's start with a classic error, which is a missing semicolon, which has resulted in many
programmer memes and jokes. All fields and most instructions inside functions (such as
print), when called, need to have a semicolon at the end. If you don't add a semicolon,
Unity will show an error, such as the one in the screenshot on the left in the following
figure, in the console. You will also notice that the screenshot on the right in the following
figure also has an example of bad code, where the IDE is showing a red icon, suggesting
something is wrong in that place:

Figure 14.36 – An error in the print line hinted by the IDE and the Unity console

You will notice that the error shows the exact script (MyFirstScript.cs), the
exact line of code (18, in this case), and usually, a descriptive message—in this case, ;
[semicolon] expected. You can simply double-click the error and Unity will open
the IDE highlighting the problematic line. You can even click on the links in the stack to
jump to the line of the stack that you want.

394 Introduction to C# and Visual Scripting

I already mentioned why it is important to use the exact case for every letter of the
instruction. However, based on my experience of teaching beginners, I need to stress
this particular aspect more. The first scenario where this can happen is in instructions.
In the following screenshots, you can see how a badly written print function appears—
that is, the error that the console will display and how the IDE will suggest that there is
something wrong. First, in the case of Rider, the instruction is colored red, saying that the
instruction is not recognized (in Visual Studio, it will show a red line instead). Then, the
error message says that Print does not exist in the current context, meaning that Unity
(or C#, actually) does not recognize any instruction named Print. In another type of
script, Print in uppercase may be valid, but not in regular components, which is why the
in the current context clarification exists:

Figure 14.37 – Error hints when writing an instruction incorrectly

Now, if you write an event with the wrong casing, the situation is worse. You can create
functions such as Start and Update with whatever name you want for other purposes.
Writing update or start is perfectly valid as C# will think that you are going to use
those functions not as events but as regular functions. So, no error will be shown, and
your code will just not work. Try to write update instead of Update and see what
happens:

Figure 14.38 – The wrong casing in the Update function will compile the function but won't execute it

Another error is to put instructions outside the function brackets, such as inside the
brackets of the class or outside them. Doing this will give no hint to the function as to
when it needs to execute. So, a print function outside an Event function makes no
sense, and it will show an error such as the ones in the following screenshots. This time,
the error is not super descriptive. The expected identifier says that C# is expecting you to
create a function or a field—the kinds of structure that can be put directly inside a class:

Using events and instructions 395

Figure 14.39 – Misplaced instruction or function call

Finally, another classic mistake is to forget to close open brackets. If you don't close a
bracket, C# won't know where a function finishes and another starts or where the class
function ends. This may sound redundant, but C# needs that to be perfectly defined. In
the following screenshots, you can see how this would look:

Figure 14.40 – Missing closed brackets

This one is a little bit difficult to catch because the error in the code is shown way after the
actual error. This is caused by the fact that C# allows you to put functions inside functions
(not used often), and so C# will detect the error later, asking you to add a closing bracket.
However, as we don't want to put Update inside Start, we need to fix the error before,
at the end of Start. The error message will be descriptive in the console, but again, don't
put the closing bracket where the message suggests you do so unless you are 100% sure
that position is correct.

396 Introduction to C# and Visual Scripting

You will likely face lots of errors aside from these, but they all work the same. The IDE
will show you a hint and the console will display a message; you will learn them with time.
Just have patience as every programmer experiences this. There are other kinds of errors,
such as runtime errors, code that compiles but will fail when being executed due to some
misconfiguration, or the worst—logic errors, where your code compiles and executes with
no error but doesn't do what you intended.

Summary
In this chapter, we explored the basic concepts that you will use while creating scripts.
We discussed the concept of a script's assets and how the C# ones must inherit from
MonoBehaviour to be accepted by Unity in order to create our own scripts. We also saw
how to mix events and instructions to add behavior to an object and how to use fields in
instructions to customize what they do. All of this was done using both C# and Visual
Scripting.

We explored the basics of scripting to ensure that everyone is on the same page.
However, from now on, we will assume that you have basic coding experience in some
programming language, and you know how to use structures such as if, for, and
array. If not, you can still read through this book and try to complement the areas you
don't understand with an introductory book to C# as required.

In the next chapter, we are going to start seeing how we can use what we have learned to
create movement and spawning scripts.

15
Implementing

Movement and
Spawning

In the previous chapter, we learned the basics of scripting, so now let's create our first
behaviors for our game. We will see the basics of how to move objects through scripting
using the Transform component, which will be applied for the movement of our Player
with the keys, the constant movement of bullets, and other objects' movement. Also, we
will see how to create and destroy objects during the game, such as bullets our Player and
Enemy shoot and the Enemy Wave Spawners. These actions can be used in several other
scenarios, so we will explore a few to reinforce the idea.

In this chapter, we will examine the following scripting concepts:

• Implementing movement

• Implementing spawning

We will start by scripting components to move our character through the keyboard, and
then we will make our player shoot bullets. Something to consider is that we are going to
first see the C# version and then show the Visual Scripting equivalent in each section.

398 Implementing Movement and Spawning

Implementing movement
Almost every object in a game moves in one way or the other: the Player character with
the keyboard, the Enemies through AI, the bullets simply move forward, and so on. There
are several ways of moving objects in Unity, so we will start with the simplest one, that is,
through the Transform component.

In this section, we will examine the following movement concepts:

• Moving objects through Transform

• Using Input

• Understanding Delta Time

First, we will explore how to access the Transform component in our script to drive the
player movement, to later apply movement based on the Player's keyboard input. Then,
we are going to explore the concept of Delta Time to make sure the movement speeds are
consistent in every computer. We are going to start by learning about the Transform API
to simplify movement.

Moving objects through Transform
Transform is the component that holds the Translation, Rotation, and Scale of the object,
so every movement system, such as Physics or Pathfinding, will affect this component.
Anyway, sometimes we want to move the object in a specific way according to our game
by creating our own script that will handle the movement calculations we need and
modify Transform to apply them.

One concept implied here is that components alter other components. The main way of
coding in Unity is to create components that interact with other components. Here, the
idea is to create one that accesses another and tells it to do something, in this case, to
move. To create a script that tells Transform to move, do the following:

1. Create and add a script called Player Movement to our character. In this case, it
would be the animated robot object we created previously. Remember to move the
script to the Scripts folder after creation:

Implementing movement 399

Figure 15.1 – Creating a Player Movement script in the Character

2. Double-click the created script asset to open an IDE to edit the code.
3. We are moving, and the movement is applied at every frame, so this script will

only use the Update function or method, and we can remove Start (it is a good
practice to remove unused functions):

Figure 15.2 – A component with just the Update event function

4. To move our object along its forward axis (Z axis), add the transform.
Translate(0,0,1); line to the Update function, as shown in the following
screenshot:

Important Note
Every component inherits a transform field (to be specific, a getter) that is
a reference to the Transform of the GameObject the component is placed in;
it represents the sibling Transform of our component. Through this field, we
can access the Translate function of the Transform, which will receive the
offset to apply in X, Y, and Z local coordinates.

Figure 15.3 – A simple Move Forward script

400 Implementing Movement and Spawning

5. Save the file and play the game to see the movement.

Figure 15.4 – Temporarily disabling the Director and increasing the Player Camera priority

Important Note
I recommend you temporarily disable the Playable Director object and increase
the Priority of CM vcam1, which will disable the introduction cutscene and
make the Character-Following Camera be activated by default, reducing the
time needed to test the game. Another option is to create a secondary scene just
to test the Player Movement, something that is actually done in real projects,
but for now, let's keep things simple:

You will notice that the Player is moving too fast and that's because we are using a fixed
speed of 1 meter, and because Update is executing all frames, we are moving at 1 meter
per frame. In a standard 30 fps game, the player will move 30 meters per second, which
is too much. We can control the Player speed by adding a speed field and using the value
set in the editor instead of the fixed value of 1. You can see one way to do this in the next
screenshot, but remember the other options we discussed in the previous chapter (such as
using the Serialize Field attribute):

Figure 15.5 – Creating a speed field and using it as the Z speed of the movement script

Now, if you save the script to apply the changes and set the speed of the Player in the
Editor, you can play the game and see the results. In my case, I used 0.1, but you might
need another value (more on this later):

Implementing movement 401

Figure 15.6 – Setting a speed of 0.1 meters per frame

Now, for the Visual Scripting version, first remember to not mix C# and Visual Scripting
versions of our scripts, not because it is not possible, but because we want to keep things
simple for now. So, you can either delete the script from the Robot object and add the
Visual Scripting version or you can create two Robot objects and enable and disable them
to try both versions, but it's up to you. The way I recommend tackling this is to first create
the project using one of the versions and then recreate the scripts with the other, to get the
full experience.

The Visual Scripting Graph of this script will look as in the following screenshot:

Figure 15.7 – Setting a speed of 0.1 meters per frame

As you can see, we added a Script Machine to our Robot GameObject. Then, we
pressed the New button in the Script Machine component to create a new Graph called
PlayerMovement. We also created a Float variable called speed with the value of 0.1. In
the Graph, we added the Update event node and attached it to the Translate (X,Y,Z) node
of transform. Finally, we connected the Z parameter pin of Translate to the GetVariable
node representing the speed we created in the GameObject. If you compare this Graph
with the code we used in the C# version, they are essentially the same Update method and
Translate function. If you don't remember how to create this Graph, you can look back to
Chapter 14, Introduction to C# and Visual Scripting, to recap the process.

You will notice that the player will move automatically. Now let's see how to execute the
movement based on Player Input such as with a keyboard and mouse.

402 Implementing Movement and Spawning

Using Input
Unlike NPCs, we want the Player movement to be driven by the Player's Input, based on
which keys they press, the mouse movement, and so on. We can recall the original key
mapping we designed in Chapter 1, Designing a Game from Scratch, with the next
two tables:

Table 15.8 – Keyboard mapping

Check out the mouse mappings in the following table:

Table 15.9 – Mouse mapping

Implementing movement 403

In C#, to know whether a certain key is pressed, such as the Up arrow, we can use the
Input.GetKey(KeyCode.W) line, which will return a Boolean, indicating whether
the key specified in the KeyCode enum is pressed. We can change the key to check the
changing of the KeyCode enum value and combine the GetKey function with an If
statement to make the translation execute only when that condition is met (the key is
currently pressed).

Let's start implementing the keyboard movement by following these steps:

1. Make the forward movement execute only when the W key is pressed with the code,
as shown in the next screenshot:

Figure 15.10 – Conditioning the movement until the W key is pressed

2. We can add other movement directions with more if statements. We can use S
to move backward and A and D to move left and right, as shown in the following
screenshot. Notice how we used the minus sign to inverse the speed when we
needed to move in the opposite axis direction:

Figure 15.11 – Checking the W, A, S, and D keys' pressure

404 Implementing Movement and Spawning

Important Note
Remember that using if statements without brackets means that only the line
inside the if statement is going to be the one right next to the if statement,
in this case, the transform.Translate calls. Anyway, in the final code,
I recommend keeping the brackets.

3. If you also want to consider the arrow keys, you can use an OR inside if, as shown
in the following screenshot:

Figure 15.12 – Checking the W, A, S, and D arrow keys' pressure

4. Save the changes and test the movement in Play Mode.

Something to take into account is that, first, we have another way to map several keys to
a single action by configuring the Input Manager, a place where action mappings can be
created, and second, at the time of writing this, Unity has released a new Input System that
is more extensible than this one. For now, we will use this one because it is simple enough
to make our introduction to scripting with Unity easier, but in games with complex input,
controls are recommended to look for more advanced tools.

Now, for the Visual Scripting version, the graph will look like this:

Implementing movement 405

Figure 15.13 – Input movement in Visual Scripting

As you can see, the graph grows in size considerably compared to the C# version, which
serves as an example of why developers prefer to code instead of using visual tools. Of
course, we have several ways to split this graph into smaller chunks and make it more
readable, and also consider I needed to squeeze the nodes together to be in the same
image. Also, in the graph, we only see the example graph to move forward and backward,
but you can easily extrapolate the needed steps for lateral movement based on this one. As
usual, you can also check the GitHub repository of the project to see the completed files.

Looking at the graph, you can quickly observe all the similarities to the C# version; we
chained If nodes to the Update event node, in such a way that if the first If node condition
is true, it will execute Translate in the forward direction. If that condition is false, we
chained the False output node to another If that checks the pressure of other keys, and
in that case, we moved backward, using the Multiply (Scalar) node to inverse the speed.
You can notice nodes such as If that have more than one Flow Output pin to branch the
execution of the code.

406 Implementing Movement and Spawning

You can also notice the usage of the GetKey (Key) node, the Visual Scripting version
of the same GetKey function we used previously. When looking at this node in the
Search box, you will see all the versions of the function, and in this case, we selected the
Get Key (Key) version; the one that receives a name (string) works differently and we are
not covering that one:

Figure 15.14 – All versions of Input GetKey

We also used the Or node to combine the two Get Key (Key) functions into one condition
to give to the If node. These conditional operators can be found in the Logic category of
the Search box:

Figure 15.15 – Boolean Logic operators

One thing to highlight is the usage of the Multiply node to multiply the value of the speed
variable by -1. We needed to create a Float Literal node to represent the -1 value. Finally,
surely all programmers will notice a little limitation regarding how we used the If node's
True and False output pins, but we will address that in a moment.

Implementing movement 407

Now, let's implement the mouse controls. In this section, we will only cover rotation
with mouse movement; we will shoot bullets in the next section. In the case of mouse
movement, we can get a value by saying how much the mouse has moved both
horizontally or vertically. This value isn't a Boolean but a number, a type of input usually
known as Axis, a number that will indicate the intensity of the movement with bigger
values and the direction with the sign of the number. For example, if Unity's "Mouse X"
axis says 0.5, it means that the mouse moved to the right with a moderate speed, but if it
says -1, it moved fast to the left, and if there is no movement, it will say 0. The same goes
for sticks on gamepads; the Horizontal axis represents the horizontal movement of the
left stick in common joysticks, so if the player pulls the stick fully to the left, it will say -1.

We can create our own axes to map other common joystick pressure-based controls, but
for our game, the default ones are enough. To detect mouse movement, follow these steps:

1. Use the Input.GetAxis function inside Update, next to the movement if
statements, as shown in the following screenshot, to store the value of this frame's
mouse movement into a variable:

Figure 15.16 – Getting the horizontal movement of the mouse

2. Use the transform.Rotate function to rotate the character. This function
receives the degrees to rotate in the X-, Y-, Z-axis order. In this case, we need to
rotate horizontally, so we will use the mouse movement value as the Y-axis rotation,
as shown in the next screenshot:

Figure 15.17 – Rotating the object horizontally based on mouse movement

3. If you save and test this, you will notice that the Player will rotate but very fast
or slow, depending on your computer. Remember, this kind of value needs to be
configurable, so let's create a rotationSpeed field to configure the speed of the
player in the Editor:

Figure 15.18 – Speed and Rotation speed fields

408 Implementing Movement and Spawning

4. Now, we need to multiply the mouse movement value by the speed, so, depending
on the rotationSpeed value, we can increase or reduce the rotation amount.
As an example, if we set a value of 0.5 in the rotation speed, multiplying that value
by the mouse movement will make the object rotate at half the previous speed, as
shown in the following screenshot:

Figure 15.19 – Multiplying the mouse movement by the rotation speed

5. Save the code and go back to the editor to set the rotation speed value. If you don't
do this, the object won't rotate because the default value of the float type fields is 0:

Figure 15.20 – Setting the Rotation speed

6. You might also notice that the camera controlled by Cinemachine might have a
delay to adapt to the new Player position. You can adjust the interpolation speed as I
did in the next screenshot to have more responsive behavior:

Figure 15.21 – Reduced damping of the body and aim sections of the character virtual camera

Implementing movement 409

The Visual Scripting additions to achieve rotation will look like this:

Figure 15.22 – Rotating in Visual Scripting

The first thing to notice here is the usage of the Sequence node. An output pin can only be
attached to one another node, but in this case, Update needs to do two different things, to
rotate and to move, each one being independent of the other. Sequence is a node that will
execute all its output pins one after the other, regardless of the results of each one. You can
specify the number of output pins in the Step input box; in this example, 2 is plenty.

In output pin 0, the first one, we added the rotation code, which is pretty self-explanatory
given it's essentially the same as the movement with slightly different nodes (Rotate
(X, Y, Z) and GetAxis). Then, to Output Pin 1, we attached the If we had originally
directly attached to the Update node, in such a way that the code movement will execute
after the rotation.

Regarding the limitation we mentioned before, it's basically the fact that we cannot
execute both Forward and Backward rotation, given that if the forward movement keys
are pressed, the first If will be true. Because the backward key rotation is checked in the
false output pin, they won't be checked in such cases. Of course, in this case, it makes
sense, but consider the lateral movement; if we continue the If chaining using True and
False output pins, we will have a scenario where we can only move in one direction,
so we cannot combine, in this example, Forward and Right to move diagonally.

410 Implementing Movement and Spawning

A simple solution to this issue is to put the If nodes in the sequence instead of chaining
them, in such a way that all the Ifs are checked, as the original C# code did. You can see
an example of this in the next screenshot:

Figure 15.23 – Sequencing Ifs

Something to consider here is that the chaining of the ifs can be removed by right-clicking
the line that connected them. Now that we have completed our movement script, we need
to refine it to work in every machine by exploring the concept of Delta Time.

Understanding Delta Time
Unity's Update loop executes as fast as the computer can. You can specify in Unity the
desired frame rate but achieving that depends exclusively on whether your computer can
reach it, which depends on lots of factors, not only hardware, so you cannot expect to
always have consistent FPS. You must code your scripts to handle every possible scenario.
Our current script is moving at a certain speed per frame, and the per frame part is
important here.

We have set the movement speed to 0.1, so if my computer runs the game at 120 fps, the
player will move 12 meters per second. Now, what happens in a computer where the game
runs at 60 fps? As you may guess, it will move only 6 meters per second, making our game
have inconsistent behavior across different computers. And this is where Delta Time saves
the day.

Implementing movement 411

Delta Time is a value that tells us how much time has passed since the previous frame.
This time depends a lot on our game's graphics, the number of entities, physics bodies,
audio, and countless aspects that will dictate how fast your computer can process a frame.
As an example, if your game runs at 10 fps, it means that, in a second, your computer
can process the Update loop 10 times, meaning that each loop takes approximately 0.1
seconds; in that frame, Delta Time will provide that value. In the next diagram, you
can see an example of four frames taking different times to process, which can happen
in real-life cases:

Figure 15.24 – Delta Time value varying on different frames of the game

Here, we need to code in such a way to change the per frame part of the movement to per
second; we need to have consistent movement per second across different computers.
A way to do that is to move proportionally to the Delta Time: the higher the Delta Time
value, the longer that frame is, and the farthest the movement should be to match the real
time that has passed since the last update. We can think about our speed field current
value in terms of 0.1 meters per second; our Delta Time saying 0.5 means that half
a second has passed, so we should move half the speed, 0.05. After two frames, 1 second
has passed, and the sum of the movements of the frames (2 x 0.05) matches the target
speed, 0.1. Delta Time can be interpreted as the percentage of a second that has passed.

To make the Delta Time affect our movement, we should simply multiply our speed by
Delta Time every frame because Delta Time can be different every frame, so let's do that:

1. We access Delta Time using Time.deltaTime. We can start affecting the
movement by multiplying the Delta Time in every Translate:

Figure 15.25 – Multiplying speed by Delta Time

412 Implementing Movement and Spawning

2. We can do the same with the rotation speed, chaining the mouse and speed
multiplications:

Figure 15.26 – Applying Delta Time to rotation code

3. If you save and play the game, you will notice that the movement will be slower
than before and that's because now, 0.1 is the movement per second, meaning
10 centimeters per second, which is pretty slow; try raising those values. In my case,
10 for speed and 180 for rotation speed was enough, but the rotation speed depends
on the Player's preferred sensibility, which can be configurable, but let's keep that
for another time.

The Visual Scripting change for rotation will look like this:

Figure 15.27 – Applying Delta Time to rotation Visual Scripting

For Movement, you can easily extrapolate from this example or remember to check the
project on GitHub. We simply chained another Multiply node with Get Delta Time.

We just learned how to mix the Input system of Unity, which tells us about the state of the
keyboard, mouse, and other input devices, with the basic Transform movement functions.
This way, we can start making our game feel more dynamic.

Now that we have finished with the Player's movement, let's discuss how to make the
Player shoot bullets using Instantiate functions.

Implementing spawning 413

Implementing spawning
We have created lots of objects in the Editor that define our level, but once the game
begins, and according to the Player actions, new objects must be created to better fit the
scenarios generated by Player interaction. Enemies might need to appear after a while,
or bullets must be created according to the player input; even when enemies die, there's
a chance of spawning some power-up. This means that we cannot create all the needed
objects beforehand but should create them dynamically, and that's done through scripting.

In this section, we will examine the following spawning concepts:

• Spawning Objects

• Timing actions

• Destroying Objects

We will start by looking at the Unity Instantiate function, which allows us to create
instances of Prefabs at runtime, such as when pressing a key, or in a time-based fashion,
such as making our enemy spawn bullets after a certain amount of time. Also, we will
learn how to destroy these Objects to prevent our scene from starting to perform badly
due to too many Objects being processed.

Let's start with how to shoot bullets according to the Player's Input.

Spawning Objects
To spawn an Object at runtime or in Play Mode, we need a description of the Object,
which components it has, and its settings and possible sub-Objects. You might be thinking
about Prefabs here, and you are right; we will use an instruction that will tell Unity to
create an instance of a Prefab via scripting. Remember that an instance of a Prefab is an
Object created based on the Prefab, basically a clone of the original one.

We will start by shooting the Player's bullets, so first let's create the bullet Prefab by
following these steps:

1. Create a sphere in GameObject | 3D Object | Sphere. You can replace the sphere
mesh with another bullet model if you want, but we will keep the sphere in this
example for now.

2. Rename the sphere Bullet.
3. Create a material by clicking on the + button of the Project window and choosing

the Material option and call it Bullet. Remember to place it inside the
Materials folder.

414 Implementing Movement and Spawning

4. Check the Emission checkbox in the material and set the Emission Map and
Base Map colors to red. Remember, the Emission color will make the bullet shine,
especially with the Bloom effect in our postprocessing volume:

Figure 15.28 – Creating a red Bullet material with Emission Color

5. Apply the Material to the Sphere by dragging the material to it.
6. Setting the Scale to a smaller value, (0.3, 0.3, 0.3), worked in my case:

Figure 15.29 – Small red-colored bullet

7. Create a script called ForwardMovement to make the bullet constantly move
forward at a fixed speed. You can create it with both C# and Visual Scripting,
but for simplicity, we are only going to use C# in this case.

Implementing spawning 415

I suggest you try to solve first this by yourself and look at the screenshot in the next
step with the solution later as a little challenge to recap the movement concepts we
saw previously. If you don't recall how to create a script, please refer to Chapter 14,
Introduction to C# and Visual Scripting, and check the previous section to see how
to move objects.

8. The next screenshot shows you what the script should look like:

Figure 15.30 – A simple Move Forward script

9. Add the script (if not already there) to the bullet and set the speed to a value you
see fit. Usually, bullets are faster than the Player but that depends on the Player
experience you want to get (remember the questions in Chapter 1, Designing a
Game from Scratch). In my case, 20 worked fine. Test it by placing the bullet near
the Player and playing the game:

Figure 15.31 – Forward Movement script in the bullet

416 Implementing Movement and Spawning

10. Drag the bullet GameObject instance to the Prefabs folder to create a Bullet
Prefab. Remember that the Prefab is an asset that has a description of the created
bullet, like a blueprint of how to create a bullet:

Figure 15.32 – Creating a Prefab

11. Remove the original bullet from the Scene; we will use the Prefab to create bullets
when the player presses a key (if ever).

Now that we have our bullet Prefab, it is time to instantiate it (clone it) when the player
presses a key. To do that, follow these steps:

1. Create and add a script to the Player's GameObject (the Robot) called
PlayerShooting and open it.

We need a way for the script to have access to the Prefab to know which Prefab
to use from probably dozens we will have in our project. All of the data our script
needs that depends on the desired game experience is in the form of a field, such as
the speed field used so far, so in this case, we need a field of the GameObject type,
a field that can reference or point to a specific Prefab, which can be set using the
Editor.

2. Adding the field code would look like this:

Figure 15.33 – The Prefab reference field

Implementing spawning 417

Important Note
As you might guess, we can use the GameObject type to reference not only
Prefabs but also other Objects. Imagine an Enemy AI needing a reference to
the Player object to get its position, using GameObject to link the two objects.
The trick here is considering that Prefabs are just regular GameObjects that live
outside the scene; you cannot see them, but they are in memory, ready to be
copied or instantiated. You will only see them through copies or instances that
are placed in the scene with scripting or via the Editor as we have done so far.

3. In the Editor, click on the circle toward the right of the property and select the
Bullet Prefab. Another option is to just drag the Bullet Prefab to the property:

Figure 15.34 – Setting the Prefab reference to point to the bullet

This way, we tell our script that the bullet to shoot will be that one. Remember to drag the
Prefab and not the bullet in the scene (which should be deleted by now).

We will shoot the bullet when the player presses the left mouse button as specified in the
design document, so let's place the proper if statement to handle that in the Update
event function, such as the one shown in the next screenshot:

Figure 15.35 – Detecting the pressure of the left mouse button

You will notice that this time, we used GetKeyDown instead of GetKey, the former
being a way to detect the exact frame the pressure of the key started; this if statement will
execute its code only in that frame, and until the key is released and re-pressed, it won't
enter again. This is one way to prevent bullets from spawning at every frame, but just for
fun, you can try using GetKey instead to check how it would behave. Also, 0 is the mouse
button number that belongs to left-click, 1 the right-click, and 2 the middle-click.

418 Implementing Movement and Spawning

We can use the Instantiate function to clone the Prefab, passing the reference to it as
the first parameter. This will create a clone of the mentioned Prefab that will be placed in
the scene:

Figure 15.36 – Instantiating the Prefab

If you save the script and play the game, you will notice that when you press the mouse,
a bullet will be spawning, but probably not in the place you are expecting. If you don't
see it, try to check the Hierarchy for new objects; it will be there. The problem here is that
we didn't specify the desired spawn position, and we have two ways of setting that, which
we will see in the next steps.

The first way is to use the transform.position and transform.rotation
inherited fields from MonoBehaviour, which will tell us our current position and
rotation. We can pass them as the second and third parameters of the Instantiate
function, which will understand that this is the place we want our bullet to appear.
Remember that it is important to set the rotation to make the bullet face the same
direction as the Player, so it will move that way:

Figure 15.37 – Instantiating the Prefab in our position and rotation

The second way, which will be longer but will give us more flexibility to change other
aspects of the object, is by using the previous version of Instantiate, but saving the
reference returned by the function, which will be pointing to the clone of the Prefab.
Having a reference to the instantiated bullet allows us to change whatever we want from
it, not only the position but also the rotation, but for now, let's limit ourselves to position
and rotation. In this case, we will need the following three lines; the first will instantiate
and capture the clone reference, the second will set the position of the clone, and the third
will set the rotation. You will notice we will also use the transform.position field of
the clone, but this time to change its value by using the = (assignment) operator:

Implementing spawning 419

Figure 15.38 – The longer version of instantiating a Prefab in a specific position

Use the version you like the most—both do the same. Remember that you can check the
project repository to see the full, finished script. Now, you can save the file with one of the
versions and try the script.

If you try the script so far, you should see the bullet spawn in the Player's position, but in
our case, it will probably be the floor. The problem here is that the Robot pivot is there,
and usually, every Humanoid Character has the pivot there. We have several ways to fix
that, the most flexible one being to create a Shoot Point, an empty Player's child Object
placed in the position we want the bullet to spawn. We can use the position of that Object
instead of the Player's position by following these steps:

1. Create an empty GameObject in GameObject | Create Empty. Rename it
ShootPoint.

2. Make it a child of the Player's Robot Character Object, and place it where you want
the bullet to appear, probably a little higher and further forward than the original
spawn position:

Figure 15.39 – An empty Shoot Point object placed inside the character

420 Implementing Movement and Spawning

3. As usual, to access the data of another Object, we need a reference to it, such as the
Prefab reference, but this time that one needs to point to our Shoot Point. We can
create another GameObject type field, but this time drag ShootPoint instead
of the Prefab. The script and the Object set would look as shown in the following
screenshot:

Figure 15.40 – The Prefab and Shoot Point fields and how they are set in the Editor

4. We can access the position of the shootPoint by using the transform.
position field of it again, as shown in the following screenshot:

Figure 15.41 – The Prefab and Shoot Point fields and how they are set in the Editor

The Visual Scripting version of Forward Movement will look like this:

Figure 15.42 – Forward Movement with Visual Scripting

Implementing spawning 421

This is what it will look like for PlayerShooting:

Figure 15.43 – Instantiating with Visual Scripting

As you can see, we added a second Script Machine component with a new Graph called
Player Shooting. We also added a new variable called bulletPrefab of the GameObject
type and dragged the Bullet prefab to it, and a second GameObject type variable called
shootPoint, to have the reference to the bullet's spawn position. The rest of the script
is essentially the counterpart of the C# version without major differences. Something
to highlight here is how we connected the Transform GetPosition and Transform
GetRotation nodes to the GetVariable node belonging to the shootPoint; this way, we
are accessing the position and rotation of the shooting point. If you don't specify that, it
will use the Player's position and rotation, which in the case of our model is in the Player's
character feet.

422 Implementing Movement and Spawning

You will notice that now, shooting and rotating with the mouse has a problem; when
moving the mouse to rotate, the pointer will fall outside the Game View, and when
clicking, you will accidentally click the Editor, losing the focus on the Game View, so you
will need to click the Game View again to regain focus and use Input again. A way to
prevent this is to disable the cursor while playing. To do this, follow these steps:

1. Add a Start event function to our Player Movement Script.
2. Add the two lines you can see in the following screenshot to your script. The first

one will make the cursor visible, and the second one will lock it in the middle of the
screen, so it will never abandon the Game View. Consider the latter; you will need
to reenable the cursor when you switch back to the main menu or the pause menu,
to allow the mouse to click the UI buttons:

Figure 15.44 – Disabling the mouse cursor

3. Save and test this. If you want to stop the game, you could press either Ctrl + Shift
+ P (Command + Shift + P on Mac) or the Esc key to reenable the mouse. Both only
work in the Editor; in the real game, you will need to reenable it manually.

The Visual Scripting equivalent will look like this:

 Figure 15.45 – Disabling the mouse cursor in Visual Scripting

Now that we have covered the basics of object spawning, let's see an advanced example
by combining it with timers.

Implementing spawning 423

Timing actions
Not entirely related to spawning, but usually used together, timing actions is a common
task in videogames. The idea is to schedule something to happen later; maybe we want the
bullet to be destroyed after a while to prevent memory overflow, or we want to control the
spawn rate of enemies or when they should spawn, and that's exactly what we are going to
do in this section, starting with the second, the Enemy waves.

The idea is that we want to spawn enemies at a certain rate at different moments of the
game; maybe we want to spawn enemies from second 1 to 5 at a rate of 2 per second,
getting 10 enemies, and giving the Player up to 20 seconds to finish them, programming
another wave starting at second 25. Of course, this depends a lot on the exact game you
want, and you can start with an idea such as this one and modify it after some testing
to find the exact way you want the wave system to work. In our case, we will exemplify
timing with the previously mentioned logic.

First of all, we need an Enemy, and for now, we will simply use the same robot character
as the Player, but adding a Forward Movement script to simply make it move forward;
later in this book, we will add AI behavior to our enemies. I suggest you try to create
this Prefab by yourself and look at the following steps once you have tried, to check the
correct answer:

1. Drag the Robot FBX model to the scene to create another Robot character but
rename it Enemy this time.

2. Add the ForwardMovement script created for the bullets but this time to Enemy
and set it at a speed of 10 for now.

3. Drag the Enemy GameObject to the Project to create a Prefab based on that one;
we will need to spawn it later. Remember to choose Prefab Variant, which will keep
the Prefab linked with the original model to make the changes applied to the model
automatically apply to the Prefab. Remember also to destroy the original Enemy
from the scene.

Now, to schedule actions, we will use the Invoke functions suite, a set of functions to
create timers that are basic but enough for our requirements. Let's use it by following
these steps:

1. Create an Empty GameObject at one end of the Base and call it Wave1a.
2. Create and add a script called WaveSpawner to it.

424 Implementing Movement and Spawning

3. Our spawner will need four fields: the Enemy prefab to spawn, the game time to
start the wave, the endTime to end the wave spawning, and the spawn rate of the
enemies—basically, how much time there should be between each spawn during
the given spawning period. The script and the settings will look as in the following
screenshot:

Figure 15.46 – The fields of the wave spawner script
We will use the InvokeRepeating function to schedule a custom function to
repeat periodically. You will need to schedule the repetition just once; Unity will
remember that, so don't do it every frame. This is a good case to use the Start
event function instead. The first argument of the function is a string (text between
quotation marks) with the name of the other function to execute periodically, and
unlike Start or Update, you can name the function whatever you want. The second
argument is the time to start repeating, our startTime field, in this case. Finally,
the third argument is the repetition rate of the function, how much time needs to
pass between each repetition, this being the spawnRate field. You can find how to
call that function in the next screenshot, along with the custom Spawn function:

Figure 15.47 – Scheduling a Spawn function to repeat

Implementing spawning 425

4. Inside the Spawn function, we can put the spawning code, as we know, using the
Instantiate function. The idea is to call this function at a certain rate to spawn
one Enemy per call. This time, the spawn position will be in the same position as
the spawner, so place it carefully:

Figure 15.48 – Instantiating in the Spawn function
If you test this script by setting the Prefab startTime and spawnRate fields to
some test values, you will notice that the enemies will start spawning but never stop,
and you can see that we didn't use the endTime field so far. The idea is to call the
CancelInvoke function, a function that will cancel all InvokeRepeating calls
we made, but after a while, using the Invoke function, which works similarly to
InvokeRepeating, but this one executes just once. In the next screenshot, you
can see how we added an Invoke call to the CancelInvoke function in Start,
using the endTime field as the time to execute CancelInvoke. This will execute
CancelInvoke after a while, canceling the first InvokeRepeating call that
spawns the prefab:

Figure 15.49 – Scheduling a Spawn repetition but canceling after a while with CancelInvoke

Important Note
This time, we used Invoke to delay the call to CancelInvoke; we didn't
use a custom function because CancelInvoke doesn't receive arguments.
If you need to schedule a function with arguments, you will need to create a
parameterless wrapper function that calls the one desired and schedule that
one, as we did with Spawn, where the only intention is to call Instantiate with
specific arguments.

426 Implementing Movement and Spawning

5. Now you can save and set some real values to our spawner. In my case, I used the
ones shown in the following screenshot:

Figure 15.50 – Spawning enemies from second 1 to 5 of gameplay every 0.5 seconds, 2 per second

You should see the enemies being spawned one next to the other and because they move
forward, they will form a row of enemies. This behavior will change later with AI:

Figure 15.51 – Spawning enemies

If you want, you can create several Wave Spawner objects, scheduling waves for the later
stages of the game. Remember the difficulty balance we discussed in Chapter 1, Designing
a Game from Scratch; you will need to try this with the final AI for the enemies, but the
number of waves, times, and spawn rates will determine the difficulty of the game, and
that's why is important to set those values properly. Also, there are plenty of methods to
create waves of enemies; this is just the simplest one I could find. You may need to change
it according to your game.

Implementing spawning 427

Now, the Visual Scripting version will look like this:

Figure 15.52 – Spawning enemies in Visual Scripting

While we could use the InvokeRepeating approach in Visual Scripting, here we can see
some benefits of the Visual approach, given it sometimes has more flexibilities than coding.
In this case, we used the Wait node at the beginning of Start, a node that will basically hold
the execution of the flow for a couple of seconds. This will make the initial delay we had in
the original script, which is why we used startTime as the amount of Delay.

Now, after the wait, we used a For Loop. For this example, we changed the concept of the
script; we want to spawn a specific amount of enemies instead of spawning during a time.
The For Loop is essentially a classic For that will repeat whatever is connected to the Body
output pin a number of times specified by the Last input pin. We connected that pin to
a variable to control the number of enemies we want to spawn. Then, we connected an
Instantiate to the Body output pin of the For Loop to instantiate our enemies, and then
a Wait, to stop the flow for a time before the loop can continue spawning enemies.

Something interesting is that if you play the game now, you will receive an error in the
Console that will look like this:

Figure 15.53 – Error when using Wait nodes

428 Implementing Movement and Spawning

You can even get back to the graph editor and see that the conflicting node will be
highlighted in red:

Figure 15.54 – Node causing the error

The issue here is that in order for the Wait For Seconds nodes to work, you need to
mark the Start event as a Coroutine. This will basically allow the event to be paused
for an amount of time and be resumed later. The same concept exists in C#, but as it is
simpler to implement here in Visual Scripting than in C#, we decided to go with this
approach here.

To solve this error, just select the Start event node and check the Coroutine checkbox in
the Graph Inspector pane at the left of the Script Graph editor. If you don't see it, click
the Info button (the circle with an i) in the top-left part of the editor:

Figure 15.55 – Marking Start as a coroutine

Now that we have discussed timing and spawning, let's discuss timing and destroying to
prevent our bullets from living forever in the memory.

Implementing spawning 429

Destroying Objects
This is going to be super short but is a widely used function, so it deserves its own section.
We can use the Destroy function to destroy Object instances. The idea is to make the
bullets have a script that schedules its own auto-destruction after a while to prevent it
from living forever. We will create the script by following these steps:

1. Select the Prefab of Bullet and add a script called Autodestroy to it as you did
with other Objects using the Add Component | New Script option. This time, the
script will be added to the Prefab, and each instance of the Prefab you spawn will
have it.

2. You can use the Destroy function as shown in the following screenshot to destroy
the Object just once in Start.

The Destroy function expects the object to destroy as the first argument, and
here, we are using the gameObject reference, a way to point to our GameObject
to destroy it. If you use the "this" pointer instead, we will be destroying only the
Autodestroy component; remember that in Unity, you never create GameObjects
but components to add to them:

Figure 15.56 – Destroying an Object when it starts
Of course, we don't want the bullet to be destroyed as soon as it is spawned, so we
need to delay the destruction. You may be thinking about using Invoke, but unlike
most functions in Unity, Destroy can receive a second argument, which is the
time to wait until destruction.

3. Create a delay field to use as the second argument of Destroy, as shown in the
next screenshot:

Figure 15.57 – Using a field to configure the delay to destroy the Object

430 Implementing Movement and Spawning

4. Set the delay field to an appropriate value; in my case, 5 was enough. Now check
how the bullets de-spawn after a while by looking at them being removed from the
Hierarchy.

The Visual Scripting equivalent will look like this:

Figure 15.58 – Destroying in Visual Scripting

Regarding this version, notice how we use the Component Destroy (Obj, T) version
of the Destroy node, which includes the delay time.

Now, we can create and destroy Objects at will, which is very common in Unity scripting.

Important Note
Look up the Object Pool concept; you will learn that sometimes creating and
destroying Objects is not that performant.

Summary 431

Summary
In this chapter, we created our first real scripts, which provide useful behavior. We
discussed how to instantiate Prefabs via scripting, to create Objects at will according to the
game situation. Also, we saw how to schedule actions, in this case, spawning, but this can
be used to schedule anything. Finally, we saw how to destroy created Objects, to prevent
increasing the number of Objects to an unmanageable level. We will be using these actions
to create other kinds of Objects, such as sounds and effects, later in this book.

Now you are able to create any type of movement or spawning logic your Objects will need
and make sure those Objects are destroyed when needed. You might think that all games
move and create shooting systems the same way, but while they are similar, being able to
create your own movement and shooting scripts allows you to customize those aspects of the
game to behave as intended and create the exact experience you are looking for.

In the next chapter, we will be discussing how to detect collisions to prevent the Player
and bullets from passing through walls, and much more.

16
Physics Collisions

and Health System
Since games try to simulate real-world behaviors, one important aspect to simulate is
physics, which dictates how Objects move and how they collide with each other, such as
players colliding with walls, bullets, or enemies. Physics can be difficult to control due to
the myriad of reactions that can happen after a collision. So, in this chapter, we will learn
how to configure this to obtain semi-accurate Physics, which will generate the desired
arcade movement feeling but get collisions working – after all, sometimes, real life is not
as interesting as video games.

In this chapter, we will cover the following collision concepts:

• Configuring Physics

• Detecting collisions

• Moving with Physics

434 Physics Collisions and Health System

First, we will learn how to properly configure Physics, a step that's needed for the
collisions between Objects to be detected by our scripts, using new events we are also
going to learn about. All of this is needed to detect when our bullets touch our enemies
and damage them. Then, we are going to discuss the difference between moving with
Transform, as we have done so far, and moving with Rigidbody and the pros and cons
of each version. We will use them to experiment with different ways of moving our Player
and let you decide which one you will want to use. Let's start by discussing the available
Physics settings.

Configuring Physics
Unity's Physics system is prepared to cover a great range of possible gameplay
applications, so configuring it properly is important to get the desired results.

In this section, we will examine the following Physics settings and concepts:

• Setting shapes

• Physics Object types

• Filtering collisions

We are going to start by learning about the different kinds of colliders that Unity offers, so
that we can then learn about different ways to configure those to detect different kinds of
Physics reactions (collisions and triggers). Finally, we will discuss how to ignore collisions
between specific Objects to prevent situations such as the Player's bullets damaging them.

Setting shapes
At the beginning of this book, we learned that objects usually have two shapes: the visual
shape, which is basically the 3D mesh, and the physical one, known as the collider, which
the Physics system uses to calculate collisions. Remember that the idea of this is to allow
you to have a highly detailed visual model while having a simplified Physics shape to
increase performance.

Configuring Physics 435

Unity has several types of colliders, so here, we will recap on the common ones, starting
with the primitive types; that is, Box, Sphere, and Capsule. These shapes are the cheapest
ones (in terms of performance) for detecting collisions since the collisions between
them are done via mathematical formulas, unlike other colliders, such as Mesh Collider,
which allows you to use any mesh as the physics body of the Object, but with a higher
cost and some limitations. The idea is that you should use a primitive type to represent
your Objects or a combination of them. For example, a plane could be done with two Box
Colliders, one for the body and the other for the wings. You can see an example of this in
the following screenshot, where you can see a weapons collider made out of primitives:

Figure 16.1 – Compound colliders

Try to avoid doing this; if we want the weapon to just fall to the ground, maybe a Box
Collider covering the entire weapon can be enough, considering those kinds of collisions
don't need to be accurate, thereby increasing performance. Also, some shapes cannot be
represented even with a combination of primitive shapes, such as ramps or pyramids,
where your only solution is to use a Mesh Collider, which asks for a 3D mesh to use for
collisions. However, we won't be using them in this book; instead, we will solve all our
Physics colliders with primitives.

436 Physics Collisions and Health System

Now, let's add the necessary colliders to our scene to prepare it to calculate collisions
properly. Note that if you used an Asset Store environment package other than mine, you
may already have the scene modules with colliders; I will be showing the work I needed
to do in my case, but try to extrapolate the main ideas here to your scene. To add the
colliders, follow these steps:

1. Select a wall in the base and check the Object and possible child Objects of the
collider components; in my case, I have no colliders. If you detect a Mesh Collider,
you can leave it, but I would suggest that you remove it and replace it with another
option in the next step. The idea is to add the collider to it, but the problem I
detected here is that, since my wall is not an instance of a Prefab, I need to add
a collider to every wall.

2. One option is to create a Prefab and replace all the walls with instances of the Prefab
(the recommended solution) or just select all the walls in the Hierarchy window
(by clicking them while pressing Ctrl or Cmd on Mac) and, with them selected, use
the Add Component button to add a collider to all of them. In my case, I will use
the Box Collider component, which will adapt the size of the collider to the
mesh. If this doesn't adapt, you can just change the Size and Center properties of
the Box Collider so that it covers the entire wall:

Figure 16.2 – A Box Collider added to a wall

3. Repeat steps 1 and 2 for the corners, floor tiles, and any other obstacles that will
block Player and Enemy movement.

Configuring Physics 437

For our Enemy and Player, we will be adding the Capsule Collider, the typical collider
you use in movable characters. This is because the rounded bottom will allow the
Object to smoothly climb ramps. Being horizontally rounded allows the Object to easily
rotate corners without getting stuck. This is just one of the conveniences of this shape.
Remember that the Enemy is a Prefab, so you will need to add the collider to the Prefab,
while our Player is a simple Object in the scene, so you will need to add the collider to
that one.

Important Note
You may be tempted to add several Box Colliders to the bones of the character
to create a realistic shape for the Object, and while we can do that to apply
different damage according to the part of the body where the enemies were
shot, we are just creating movement colliders; the capsule is enough. In
advanced damage systems, both capsule and bone colliders will coexist, one for
movement and the other for damage detection; however, we will simplify this
in our game.

Also, sometimes, the collider won't adapt well to the visual shape of the Object, and in
my case, the Capsule Collider didn't have a nice shape for the character. I needed to fix
its shape so that it matches the character by setting its values, as shown in the following
screenshot:

Figure 16.3 – Character collider

The bullet we created with the Sphere already had a Sphere Collider, but if you replaced
the mesh of the bullet with another one, you might want to change the collider. For now,
we don't need other Objects in our game. So, now that everyone has its proper collider,
let's learn how to set the different Physics settings for each Object to enable proper
collision detection.

438 Physics Collisions and Health System

Physics Object types
Now that we have added colliders to every Object by making the Objects have a presence
in the Physics Simulation, it is time to configure them so that they have the exact Physics
behavior we want. We have a myriad of possible combinations we can use for the settings,
but we will discuss a set of common profiles that cover most situations. Remember
that besides colliders, we have the Rigidbody component, which we looked at at the
beginning of this book, which applies physics to the Object. The following profiles can be
created with a combination of colliders and Rigidbody settings:

• Static Collider: As its name suggests, this kind of collider is one that is not
supposed to move by any means in the game, aside from in some specific
exceptions. Most of the environment Objects fall into this category, such as walls,
floors, obstacles, and the Terrain. These kinds of colliders are just colliders with no
Rigidbody component, so they have a presence in the Physics Simulation but
don't have any Physics applied to them; they cannot be moved by other Objects,
they won't have physics, and they will be fixed at their position, no matter what.
Take into account that this has nothing to do with the static checkbox at the
top-right part of the Editor window; those are for the previously seen systems
(such as Lighting and others), so you can have a Static Collider with that checkbox
unchecked if needed.

Important Note
Take into account that these Objects can be moved via scripting, but you
shouldn't do this. Unity applies an optimization technique to them, and every
time a Static Collider is moved, the optimization becomes invalid, needing
further calculations to update it, and doing that every frame is costly.

We just mentioned Terrain as an example, and if you check the Terrain's
components, you will see that it has its own kind of collider, known as Terrain
Collider. For Terrain, that's the only collider to use.

• Physics Collider: These are colliders with a Rigidbody component, as shown in
the example of the falling ball we covered in the first part of this book. These are
fully Physics-driven Objects that have gravity and can be moved through force;
other Objects can push them and they perform every other Physics reaction you
can expect. You can use this for the Player, grenade movement, falling crates, or in
all Objects in heavily physics-based games such as The Incredible Machine.

Configuring Physics 439

• Kinematic Collider: These are colliders that have a Rigidbody component but
have the Is Kinematic checkbox checked. These don't have Physics reactions,
collisions, and forces as Static Colliders, but they can be moved via scripting
(transform.Translate) with no performance penalties. Consider that since
they don't have Physics, they won't have collisions either, so they can pass through
walls. These can be used in Objects that need to move using animations or custom
scripting movement such as moving platforms. In this case, the platform won't
collide with other Objects, but the Player, which usually has a Physics Collider, will
collide with them; actually, the Physics Collider is the one that will collide with
every kind of collider.

• Trigger Static Collider: This is a regular Static Collider but with the Is Trigger
checkbox of the Collider checked. The difference is that Kinematic and Physics
Objects pass through it but by generating a Trigger event, an event that can be
captured via scripting, that tells us that something is inside the collider. This can
be used to create buttons or trigger Objects in areas of the game where the Player
passes through something happening, such as a wave of enemies being spawned,
a door being opened, or winning the game if that area is the goal of the Player.
Consider that regular Static Colliders won't generate a trigger event when passing
through this type because those aren't supposed to move.

• Trigger Kinematic Collider: Kinematic Colliders don't generate collisions, so they
will pass through any other Object. However, they will generate Trigger events, so
we can react via scripting. We can use this to create moveable power-ups that, when
touched, disappear and gives us points, or bullets that move with custom scripting
movement and no physics, just like our bullets, but damage other Objects they come
into contact with.

We can have a Trigger Physics Collider, a collider with Rigidbody but with Is Trigger
checked. Usually, it has no real use; it will be an ever-falling Object that will generate
trigger events in the world but pass through everything. Of course, other profiles can
exist aside from these ones to be used in some games with specific gameplay requirements,
but considering all possible combinations of Physics settings is up to you to. You can
always experiment with them to see whether some are useful for your case; the profiles
we described here will cover 99% of cases.

440 Physics Collisions and Health System

To recap the previous scenarios, I leave you with the following table, which shows how the
different types of colliders react to each other. You will find a row for each profile that can
move; remember that static profiles aren't supposed to move. Each column represents the
reaction that occurs when they collide with the other types, with "Nothing" meaning the
Object will pass through with no effect, "Trigger" meaning the Object will pass through
but raise trigger events, and "Collision" meaning that the Object won't be able to pass
through another Object:

Table 15.4 – Collision Reaction Matrix

Considering this, let's start by configuring the physics of our Scene's Objects.

The walls, corners, floor tiles, and obstacles should use the Static Collider Profile,
so no Rigidbody components should be put on them and their colliders should
have the Is Trigger checkbox unchecked:

Figure 16.5 – Configuration for floor tiles; remember that the Static checkbox is for lighting only

The Player should move and generate collisions with Objects, so we need it to have a
Dynamic Profile. This profile will generate a funny behavior with our current movement
script (which I encourage you to test), especially when colliding with walls, so it won't
behave as expected. We will deal with this later in this chapter:

Configuring Physics 441

Figure 16.6 – Dynamic settings of the Player

For the Enemy Prefab, we will be using the Kinematic profile here because we will be
moving this Object with Unity's AI systems later, which means we don't need Physics
here. Since we want the player to collide with them, we need a Collision reaction, so
there's no Trigger here:

Figure 16.7 – Kinematic settings for the enemy

442 Physics Collisions and Health System

For the Bullet Prefab, it will move but with simplistic movement via scripting (just
move forward), not Physics. We don't need collisions; we will code the bullet to destroy
itself as soon as it touches something and will damage the collided Object (if possible),
so a Kinematic Trigger profile is enough for this one; we will use the Trigger event to
script the contact reactions:

Figure 16.8 – The Kinematic Trigger setting for our bullet; Is Trigger and Is Kinematic are checked

Now that we have configured the Objects, let's learn how to filter undesired collisions
between certain Object types.

Filtering collisions
After all of the hassle of configuring Objects, do we want to prevent collisions? Actually,
yes – sometimes, we want certain Objects to ignore each other. As an example, the bullets
that are shot by the Player shouldn't collide with the Player itself and the bullets from
the enemies shouldn't hit them. We can always filter this with an if statement in the C#
script, checking whether the hit Object is from the opposite team (or whatever filtering
logic you want). However, by then, it is too late – the Physics system wasted resources by
checking a collision between Objects that were never meant to collide. This is where the
Layer Collision Matrix can help us.

Configuring Physics 443

The Layer Collision Matrix sounds scary, but it is a simple setting of the Physics system
that allows us to specify which groups of Objects should collide with other groups; for
example, the Player's bullets should collide with enemies, and Enemy bullets should
collide with the Player. The idea is to create those groups and put our Objects inside
them, and in Unity, those groups are called layers. We can create layers and set the layer
property of the GameObject (the top part of the Inspector window) to assign the Object
to that group or layer. Consider that you have a limited number of layers, so try to use
them wisely.

Once we have created the layers and assigned the Object, we can go to the Physics settings
and specify which layers will collide with other layers. We can achieve this by doing the
following:

1. Go to Edit | Project Settings and look for the Tags and Layers option in the
left pane:

Figure 16.9 – Tags and Layers settings

2. From the Layers section, use the empty spaces from Layer 10 onward to create the
necessary ones. In our case, we will use this for the bullet scenario, so we need four
layers called Player, Enemy, PlayerBullet, and PlayerEnemy:

Figure 16.10 – Creating layers

444 Physics Collisions and Health System

3. Select Player and, from the top part of the Inspector window, change the layer's
property to Player. Also, change the Enemy Prefab so that it has the Enemy layer.
A window will appear, asking you whether you want to change the child Objects as
well; select that option:

Figure 16.11 – Changing the layers of the Player and Enemy Prefabs
In the case of the bullet, we have a problem; we have one Prefab but two
layers – a Prefab can only have one layer. We have two options; that is, change
the layer according to the shooter via scripting or have two bullet Prefabs with
different layers. For simplicity, I will choose the latter, also taking the chance to
apply another material to the Enemy bullet to make it look different.

We will be creating a Prefab Variant of the Player bullet. Remember that a Variant
is a Prefab that is based on the original one, similar to how class inheritance works.
When the original Prefab changes, the Variant will change, but the Variant can have
differences, which will make it unique.

4. Drop a bullet prefab onto the scene to create an instance.
5. Drag the instance to the Prefabs folder, this time selecting the Prefab Variant

option. Call it Enemy Bullet. Remember to destroy the Prefab instance in the
scene.

6. Create a second material similar to the Player bullet, but yellow or whatever color
you like, and put it on the Enemy Bullet Prefab Variant.

7. Select the Variant for the Enemy bullet, set its layer (EnemyBullet), and do the
same for the original Prefab (PlayerBullet). Even if you changed the original
Prefab layer, since the Variant modified it, the modified version (or override) will
prevail, allowing each Prefab to have its own layer.

8. Go to Edit | Project Settings and look for Physics settings (not Physics 2D).
9. Scroll down until you see the Layer Collision Matrix, which is a half grid of

checkboxes. You will notice that each column and row is labeled with the names
of the layers, so each checkbox at the intersection of a row and column will allow
us to specify whether those two should collide. In our case, we configured it like so:

Detecting collisions 445

Figure 16.12 – Making PlayerBullet collide with enemies and EnemyBullet collide with the Player

It is worth noticing that sometimes, filtering logic won't be that fixed or predictable; for
example, only hit Objects that have a certain amount of life or Objects that don't have
an invisibility temporal buff, or conditions that can change during the game that make it
difficult to generate all possible layers for all possible groups. So, in these cases, we should
rely on manual filtering after the Trigger or Collision event.

Now that we have filtered the collisions, let's check whether our settings are working
properly by reacting to collisions.

Detecting collisions
As you can see, proper Physics settings can be complicated and very important, but now
that we have tackled that, let's do something with those settings by reacting to the contact
in different ways and creating a Health System in the process.

In this section, we will examine the following collision concepts:

• Detecting Trigger events

• Modifying the other Object

First, we are going to explore the different collision and trigger events Unity offers to react
to contact between two Objects through Unity's collision events. This will allow us to
execute any reaction code we want to place. However, here, we are going to explore how to
modify the contacted Object components using the GetComponent function.

446 Physics Collisions and Health System

Detecting Trigger events
If objects have been configured properly, as we previously discussed, we can get two
reactions: triggers and collisions. The Collision reaction has a default effect that blocks the
movement of the Objects, but we can add custom behavior on top of that using scripting.
However, with triggers, unless we add custom behavior, they won't produce any noticeable
effect. Either way, we can script reactions for both possible scenarios such as adding a
score, reducing health, and losing the game. To do so, we can use the suite of available
Physics events.

These events are split into two groups, Collision events and Trigger events, so according to
your Object settings, you will need to pick the proper group. Both groups have three main
events called Enter, Stay, and Exit, telling us when a collision or trigger began (Enter),
whether they are still happening or are still in contact (Stay), and when they stopped
contacting (Exit). For example, we can script a behavior such as playing a sound when two
Objects start contacting each other in the Enter event, such as a friction sound, and stop it
when the contact ends, in the Exit event.

Let's test this by creating our first contact behavior; that is, the bullet being destroyed
when it comes into contact with something. Remember that the bullets have been
configured to be triggers, so they will generate Trigger events on contact with anything.
You can do this by performing the following steps:

1. Create and add a script called ContactDestroyer to the Bullet Player Prefab;
since the Bullet Enemy Prefab is a Variant of it, it will also have the same script.

2. To detect when a trigger occurs, such as with Start and Update, create an event
function named OnTriggerEnter.

3. Inside the event, use the Destroy(gameObject); line to make the bullet
destroy itself when it touches something:

Figure 16.13 – Auto destroying on contact with something

Detecting collisions 447

4. Save and shoot the bullets at the walls to see how they disappear instead of passing
through them. Again, here, we don't have a collision but a trigger that destroys the
bullet on contact. So, in this way, we are sure that the bullet will never pass through
anything, but we are still not using Physics movement.

For now, we won't need the other Collision events, but in case you need them, they work
similarly; just put OnCollisionEnter instead. Now, let's explore another version of
the same function. This will not only tell us that we hit something but also what we came
into contact with. We will use this to make our Contact Destroyer also destroy the other
Object. To do this, follow these steps:

1. Replace the OnTriggerEnter method signature with the one in the following
screenshot. This one receives a parameter of the Collider type, indicating the
exact collider that hit us:

Figure 16.14 – Version of the trigger event that tells us which Object we collided with

2. We can access the entire Object of that collider using the GameObject setter, so we
can use this to destroy the other one as well, as shown in the following screenshot.
If we just use Destroy by passing the other reference, it will only destroy the
Collider component:

Figure 16.15 – Destroying both Objects

3. Save and test the script. You will notice that the bullet will destroy everything it
touches.

448 Physics Collisions and Health System

The equivalent version in Visual Scripting would look as follows:

Figure 16.16 – Destroying both Objects with Visual Scripting

As you can see, we created an On Trigger Enter node and chained it to two Destroy
nodes. To specify which object each Destroy node will destroy, we used the Component:
Get GameObject node twice. The first one was created with no node connected to its
left input pin, which means it will return the GameObject that is currently executing this
script (hence the Self label in the node), which in this case is the bullet. For the second
one, we needed to connect the Collider output pin to the right of the OnTriggerEnter
node to the Get Game Object node. This way, we can specify we want to obtain the
GameObject that contains the collider out bullet collided with.

Of course, we don't want the bullet to destroy everything on contact, just itself and the
other if it complies with certain criteria, such as being the opposite team or something
else, according to our game. In our case, we will move a step forward, and instead of
directly destroying the Object on contact, we will make the enemies and the Player have
life totals that the bullets will reduce until they reach 0.

Modifying the other Object
So far, we have used the transform field to access a specific component of the Object,
but what happens when we need to access others? In our scenario, for the bullet to damage
the collided Object, it will need to access its Life component to change the amount of
life. Remember that Unity doesn't have all kinds of possible behaviors for games. So, in
our case, the Life component is the one that we are going to create, just to hold a float
field showing the amount of life. Every Object that has this component will be considered
a damageable Object. This is where the GetComponent function will help us.

Detecting collisions 449

If you have a reference to a GameObject or Component, you can use GetComponent to
access a reference of the target component if the Object contains it (if not, it will return
null). Let's learn how to use this function to make the bullet lower the amount of life of
the other Object if it is damaged:

1. Create and add a Life component with a public float field called amount
to both the Player and enemies. Remember to set the value in the amount field for
both Objects in the Inspector window:

Figure 16.17 – The Life component

2. Remove the ContactDestroyer component from the Player bullet, which will
also remove it from the Enemy Bullet Variant, and instead add a new one called
ContactDamager; you may need the ContactDestroyer behavior later, which
is why we are creating another component.

3. Add an OnTriggerEnter event that receives the other collider and add the
Destroy function call, which auto destroys itself, not the one that destroyed the
other Object; our script won't be responsible for destroying it, just reducing its life.

4. Add a float field called damage so that we can configure the amount of damage
to inflict on the other Object. Remember to save the file and set a value before
continuing.

5. Use GetComponent on the reference to the other collider to get a reference to its
Life component and save it in a variable:

Figure 16.18 – Accessing the collided Life Object component

6. Before reducing the life of the Object, we must check whether the life reference isn't
null, which would happen if the other Object doesn't have the Life component, as
in the case of walls and obstacles. The idea is that the bullet will destroy itself when
anything collides with it, and that it will reduce the life of the other Object if it is a
damageable Object that contains the Life component.

450 Physics Collisions and Health System

The following screenshot shows the complete script:

Figure 16.19 – Reducing the life of the collided Object

7. Place an Enemy in the scene based on a Prefab and set the instance speed
(the one in the scene) to 0 to prevent it from moving.

8. Select it before hitting Play and start shooting at it.

You can see how the life value reduces in the Inspector window. You can also press the
Esc key to regain control of the mouse and select the Object while in Play mode to see
the life field change at runtime in the Editor window.

At this point, you will notice that the life is decreasing, but that it will become negative;
instead, we want the Object to destroy itself when its life goes below 0. We can do this in
two ways; one is to add an Update to the Life component, which will check all of the
frames for whether life is below 0, destroying itself when that happens. The second way
is by encapsulating the life field and checking it inside the setter to prevent it checking
all frames. I would prefer the second way, but we will implement the first one to make our
scripts as simple as possible for beginners. To do this, follow these steps:

1. Add Update to the Life component.
2. Add If to check whether the amount field is below 0.

Detecting collisions 451

3. Add Destroy in case the if condition is true.
4. The full Life script will look as follows:

Figure 16.20 – The Life component

5. Save this and see how the Object is destroyed once life becomes 0.

The Visual Scripting version of the Life component would look like this:

Figure 16.21 – The Life component in Visual Scripting

452 Physics Collisions and Health System

The script is pretty straightforward; we check if our Life variable is less than zero and
then destroy ourselves, as we did previously. Now, let's check the Damager script:

Figure 16.22 – The Damager component in Visual Scripting

This version is a little bit different from its C# counterpart. At first glance, it looks the
same; we use Get Variable, as we did previously, to read the life, and then we use the
Subtract node to subtract damage from life. The result of that calculation becomes the
new value of life, using the Set Variable node to alter the current value of that variable.

The first difference we can see here is the absence of a GetComponent node. In C#, we
used that instruction to get the Life component on the collided object to alter its amount
variable, reducing the remaining life. But in Visual Scripting, our components don't have
variables, so we don't need to access the component to read it. Instead, knowing that
the enemy has a Life variable in its Variables component, we can use the Get Variable
node and connect it to the collider we hit (the Collider output pin of On Trigger Enter),
so essentially, we are reading the value of the Life variable of the collided object. The
same goes for changing its value; we use the Set Value node to connect it to the collider,
specifying we want to alter the value of the Life variable of the collider object, not ours
(we don't have one). Note that this can raise an error if the collided object doesn't have
the Life variable, and that is why we added the Object Has Variable node, which checks
if the object actually has a variable called Life. If it doesn't, we just do nothing, which is
useful when we collide with walls or other non-destructible objects. Finally, we make the
Damager (the bullet, in this case) auto-destroy.

Moving with Physics 453

Optionally, you can instantiate an Object when this happens, such as a sound, a particle,
or maybe a power-up. I will leave this as a challenge for you. By using a similar script, you
can make a life power-up that increases the Life value or a speed power-up that accesses
the PlayerMovement script and increases the speed field; from now on, use your
imagination to create exciting behaviors using this.

Now that we have explored how to detect collisions and react to them, let's explore how to
fix the Player falling when they hit a wall.

Moving with Physics
So far, the Player, the only Object that moves with the Dynamic Collider Profile and the
one that will move with Physics, is moving through custom scripting using the Transform
API. However, every dynamic Object should move using the Rigidbody API functions in
such a way that the Physics system understands this, so here, we will explore how to move
Objects, this time through the Rigidbody component.

In this section, we will examine the following Physics movement concepts:

• Applying forces

• Tweaking Physics

We will start by learning how to move Objects the correct physical way; that is, by using
force. We will apply this concept to the movement of our player. Then, we will explore why
real physics is not always fun, and how we can tweak the Physics properties of our Objects
so that they have a more responsive and appealing behavior.

Applying forces
The Physically accurate way of moving an Object is through forces, which affect the
Object's velocity. To apply force, we need to access Rigidbody instead of Transform
and use the AddForce and AddTorque functions to move and rotate, respectively. These
are functions where you can specify the amount of force to apply to each axis of position
and rotation. This way of movement will have full Physics reactions; the forces will
accumulate on the velocity so that it can start moving and will suffer from drag effects that
will make the speed slowly decrease. The most important aspect here is that it will collide
with walls, blocking the Object's way.

454 Physics Collisions and Health System

To get this kind of movement, we can do the following:

1. Create a Rigidbody field in the PlayerMovement script, but this time, make it
private. This means that we do not write the public keyword in the field, which
will make it disappear in the Editor window; we will get the reference another way.

Certain coding standards specify that you need to explicitly replace the public
keyword with the private keyword, but in C#, putting private and not putting
it has the same effect, so choose what's best for you:

Figure 16.23 – The private Rigidbody reference field

2. Using GetComponent in the Start event function, get our Rigidbody and
save it in the field. We will use this field to cache the result of the GetComponent
function; calling that function every frame to access Rigidbody is not performant.
Also, note that the GetComponent function can be used to retrieve not only
components from other Objects (as in the collision example) but also your own:

Figure 16.24 – Caching the Rigidbody reference for future usage

3. Replace the transform.Translate calls with rb.AddRelativeForce. This
will call the add force functions of Rigidbody – specifically, the relative ones,
which will consider the current rotation of the Object. For example, if you specify
a force in the Z-axis (the third parameter), the Object will apply its force along with
its forward vector.

Moving with Physics 455

4. Replace the transform.Rotate calls with rb.AddRelativeTorque, which
will apply rotation forces:

Figure 16.25 – Using the Rigidbody forces API

Important Note
If you are familiar with Unity, you might be thinking that I need to do this in
a Fixed Update, and while that's correct, doing this in the Update won't have
any noticeable effect. I prefer to use Update in beginners' scripts, given that
using GetKeyDown and GetKeyUp in FixedUpdate can cause them to
not work properly. This is because those functions get updated in the Update
function and given that FixedUpdate could be executed more than once
per frame (in low framerate cases) or can skip some frames (in high framerate
cases), the behavior could be erratic.

456 Physics Collisions and Health System

In the Visual Script version, the change is the same: replace the Transform and Rotate
nodes with the Add Relative Force and Add Relative Torque nodes. An example of Add
Relative Force would look as follows:

Figure 16.26 – Using the Rigidbody forces API

For rotation, this would look like this:

Figure 16.27 – Using the Rigidbody torque API

Moving with Physics 457

As you can see, we don't need to use GetComponent nodes here either, given that just
using the Add Relative Force or Torque nodes makes Visual Scripting understand that
we want to apply those actions on our own Rigidbody component (explaining again the
Self label). If we need to call those functions on a Rigibody other than ours, we would
need the GetComponent node there, but we'll explore that later.

Now, if you save and test the results, you will probably find that the Player is falling. That's
because we are now using real physics, which provides floor friction, and due to the force
being applied at the center of gravity, it will make the Object fall. Remember that, in terms
of Physics, you are a Capsule; you don't have legs to move, and this is where standard
physics is not suitable for our game. The solution is to tweak the Physics to emulate the
kind of behavior we need.

Tweaking Physics
To make our Player move as if they were in a regular platformer game, we will need
to freeze certain axes to prevent the Object from falling. Remove the friction from the
ground and increase the air friction (drag) to make the Player reduce speed automatically
when releasing the keys. To do this, follow these steps:

1. In the Rigidbody component, look at the Constraints section at the bottom and
check the X and Z axes of the Freeze Rotation property:

Figure 16.28 – Freezing rotation axes
This will prevent the Object from falling sideways but will allow the Object to rotate
horizontally. You can also freeze the Y-axis of the Freeze Position property if you
don't want the Player to jump, preventing some undesired vertical movement on
collisions.

2. You will probably need to change the speed values because you changed from a
meters-per-second value to newtons per second, which is the expected value of the
Add Force and Add Torque functions. Using 1000 for speed and 160 for rotation
speed was enough for me.

458 Physics Collisions and Health System

3. Now, you will probably notice that the speed will increase a lot over time, as will
the rotation. Remember that you are using forces, which affect your velocity. When
you stop applying forces, the velocity is preserved, and that's why the player kill
keeps rotating, even if you are not moving the mouse. To fix this, increase Drag
and Angular Drag, which emulate air friction and will reduce the movement and
rotation, respectively, when no force is applied. Experiment with values that you
think will be suitable; in my case, I used 2 for Drag and 10 for Angular Drag, but
I needed to increase Rotation Speed to 150 to compensate for the drag increase:

Figure 16.29 – Setting air friction for rotation and movement

4. Now, if you move while touching the wall, instead of sliding, like most games, your
Player will stick to the obstacles due to contact friction. We can remove this by
creating a Physics Material, an asset that can be assigned to the colliders to control
how they react in those scenarios.

5. Start creating one by clicking on the + button in the Project window and selecting
Physics Material (not the 2D version). Call it Player and remember to put it in
a folder for those kinds of assets.

6. Select it and set Static Friction and Dynamic Friction to 0, and Friction Combine
to Minimum, which will make the Physics system pick the minimum friction of the
two colliding Objects, which will always be the minimum – in our case, zero:

Figure 16.30 – Creating a Physics Material

Moving with Physics 459

7. Select the Player and drag this asset to the Material property of Capsule Collider:

Figure 16.31 – Setting the Physics material of the Player

8. If you play the game now, you may notice that the Player will move faster than
before because we don't have any kind of friction on the floor; you may need to
reduce the movement force.

9. A little error you might find here is that the motion blur effect that's applied by
the camera PostProcessing on the Player has some hiccups, such as frames where
the Object is moving and others where it's not. The problem is that Physics is
not executed in every frame due to performance and determinism (by default,
it is executed 50 times per frame), but the rendering does, and that is affecting
the postprocessing. You can set the Interpolate property of Rigidbody to the
Interpolate value to make Rigidbody calculate Physics at its own rate but
interpolate the position every frame to simulate fluidness:

Figure 16.32 – Making Rigidbody interpolate its position

As you can see, we needed to bend the Physics rules to allow responsive player movement.
You can get more responsiveness by increasing drags and forces, so the speeds are applied
faster and reduced faster, but that depends, again, on the experience you want your game
to have. Some games want an immediate response with no velocity interpolation, going
from 0 to full speed and vice versa from one frame to the other. In these cases, you can
override the velocity and rotation vectors of the Player directly at your will or even use
other systems instead of Physics, such as the Character Controller component, which
has special physics for platformer characters. However, let's keep things simple for now.

460 Physics Collisions and Health System

Summary
Every game has physics, one way or the other, for movement, collision detection, or both.
In this chapter, we learned how to use Unity's Physics system for both and learned about
how to use its settings to make the system work properly, in terms of reacting to collisions
to generate gameplay systems and moving the Player in such a way that they collide
with obstacles, keeping its physically inaccurate movement. We used these concepts to
create our Player and bullet movement and make our bullets damage the Enemies, but
we can reuse this knowledge to create a myriad of other possible gameplay requirements,
so I suggest that you play a little bit with the physics concepts we showed here; you can
discover a lot of interesting use cases.

In the next chapter, we will be discussing how to program the visual aspects of the game,
such as effects, and make the UI react to the input.

17
Win and Lose

Condition
Now that we have a basic gameplay experience, it's time to make the game end sometime,
when the player wins or loses. One common way to implement this is through separated
components with the responsibility of overseeing a set of Objects to detect certain
situations that need to happen, such as the Player life becoming 0 or all of the waves being
cleared. We will implement this through the concept of Managers, components that will
manage several Objects, monitoring them.

In this chapter, we will examine the following Manager concepts:

• Creating Object Managers

• Creating Game Modes

• Improving our code with events

With this knowledge, you will not only be able to create the victory and losing conditions
of the game but also be able to do so in a properly structured way using design patterns
such as Singleton and Event Listeners. These skills are not just useful for creating the
winning and losing code of the game but for any code in general.

462 Win and Lose Condition

Creating Object Managers
Not every Object in a scene should be something that can be seen, heard, or collided with.
Some Objects can also exist with a conceptual meaning, not something tangible. Imagine
you need to keep a count of the number of enemies; where do you save that? You also
need someplace to save the current score of the Player, and you may be thinking it could
be on the Player itself, but what happens if the Player dies and respawns? The data would
be lost! In such scenarios, the concept of a Manager can be a useful way of solving this in
our first games, so let's explore it.

In this chapter, we are going to look at the following Object Manager concepts:

• Sharing Variables with the Singleton design pattern

• Sharing Variables in Visual Scripting

• Creating Managers

We will start by discussing what the Singleton design pattern is and how it helps us to
simplify the communication of Objects. With it we will create Manager Objects, which
will allow us to centralize information of a group of Objects, among other things. Let's
start by discussing the Singleton design pattern.

Sharing Variables with the Singleton design pattern
Design patterns are usually described as common solutions to common problems.
There are several coding design decisions you will have to make while you code your
game, but luckily, the ways to tackle the most common situations are well-known and
well-documented. In this section, we are going to discuss one of the most common
design patterns, the Singleton, a very controversial but convenient pattern to implement
in simple projects.

A Singleton pattern is used when we need a single instance of an Object, meaning that
there shouldn't be more than one instance of a class and that we want it to be easily
accessible (not necessary, but useful in our scenario). We have plenty of cases in our game
where this can be applied, for example, ScoreManager, a component that will hold
the current score. In this case, we will never have more than one score, so we can take
advantage of the benefits of the Singleton Manager here.

Creating Object Managers 463

One benefit is being sure that we won't have duplicated scores, which makes our code
less error-prone. Also, so far, we have needed to create public references and drag Objects
via the Editor to connect two Objects or look for them using GetComponent, but with
this pattern, we will have global access to our Singleton component, meaning you can
just write the name of the component and you will access it. In the end, there's just one
ScoreManager component, so specifying which one via the Editor is redundant. This
is similar to Time.deltaTime, the class responsible for managing time—we have just
one time.

Important Note
If you are an advanced programmer, you may be thinking about code testing
and dependency injection now, and you are right, but remember, we are trying
to write simple code at the moment, so we will stick to this simple solution.

Let's create a Score Manager Object, responsible for handling the score, to show an
example of a Singleton by doing the following:

1. Create an empty GameObject (GameObject | Create Empty) and call it
ScoreManager; usually, Managers are put in empty Objects, separated from the
rest of the scene Objects.

2. Add a script called ScoreManager to this Object with an int field called amount
that will hold the current score.

3. Add a field of the ScoreManager type called instance, but add the static
keyword to it; this will make the variable global, meaning it can be accessed
anywhere by just writing its name:

Figure 17.1 – A static field that can be accessed anywhere in the code

4. In Awake, check whether the instance field is not null, and in that case, set this
ScoreManager instance as the instance reference using the this reference.

464 Win and Lose Condition

5. In the else clause of the null-checking if statement, print a message indicating that
there's a second ScoreManager instance that must be destroyed:

Figure 17.2 – Checking whether there's only one Singleton instance
The idea is to save the reference to the only ScoreManager instance in the
instance static field, but if by mistake the user creates two objects with the
ScoreManager component, this if statement will detect it and inform the user
of the error, asking them to take action. In this scenario, the first ScoreManager
instance to execute Awake will find that there's no instance set (the field is null)
so it will set itself as the current instance, while the second ScoreManager
instance will find the instance is already set and will print the message. Remember
that instance is a static field, one shared between all classes, unlike regular
reference fields, where each component will have its own reference; so in this case,
we have two ScoreManager instances added to the scene, and both will share the
same instance field.

To improve the example a little bit, it would be ideal to have a simple way to find
the second ScoreManager in the game. It will be hidden somewhere in the
Hierarchy and it will be difficult to find. We can replace print with Debug.Log,
which is basically the same but allows us to pass a second argument to the function,
which is an Object, to highlight when the message is clicked in the console. In this
case, we will pass the gameObject reference to allow the console to highlight the
duplicated Object:

Figure 17.3 – Printing messages in the console with Debug.Log

Creating Object Managers 465

6. After clicking the log message, this GameObject must be highlighted in the
Hierarchy:

Figure 17.4 – The highlighted Object after clicking the message

7. Finally, a little improvement can be made here by replacing Debug.Log with
Debug.LogError, which will also print the message but with an error icon.
In a real game, you will have lots of messages in the console, and highlighting the
errors in information messages will help us to identify them quickly:

Figure 17.5 – Using LogError to print an error message

8. Try the code and observe the error message in the console:

Figure 17.6 – An error message in the console

The next step would be to use this Singleton somewhere, so in this case, we will make the
enemies give points when they are killed by doing the following:

1. Add a script to the Enemy Prefab called ScoreOnDeath with an int field called
amount, which will indicate the number of points the Enemy will give when killed.
Remember to set the value to something other than 0 in the Editor for the Prefab.

2. Create the OnDestroy event function, which will be automatically called by Unity
when this Object, in our case, the Enemy, is destroyed:

Figure 17.7 – The OnDestroy event function

466 Win and Lose Condition

Important note
Note that the OnDestroy function is also called when we change scenes
or the game is quitting, so in this scenario, we may get points when changing
scenes, which is not correct. At the moment, this is not a problem in our case,
but later in this chapter, we will see a way to prevent this.

3. Access the Singleton reference in the OnDestroy function by writing
ScoreManager.instance, and add the amount field of our script to the
amount field of the Singleton to increase the score when an Enemy is killed:

Figure 17.8 – Full ScoreOnDeath component class contents

4. Select the ScoreManager in the hierarchy, hit play, and kill some enemies
to see the score raise with every kill. Remember to set the amount field of the
ScoreOnDeath component of the Prefab.

As you can see, the Singleton simplified the way to access ScoreManager a lot and
prevented us from having two versions of the same Object, which will help us to reduce
errors in our code. Something to take into account is that now you may be tempted to just
make everything a Singleton, such as the Player life or Player bullets, or to make your life
easier to create gameplay such as power-ups, and while that will totally work, remember
that your game will change, and I mean change a lot; any real project will suffer that.
Maybe today the game has just one Player, but in the future, you may want to add a second
Player or an AI companion, and you may want the power-ups to affect them too; so if you
abuse the Singleton pattern, you will have trouble handling those scenarios. Maybe the
companion will try to get the pickup but the main Player will be healed instead!

The point here is to try to use the pattern as few times as you can and only if you don't
have any other way to solve the problem. To be honest, there are always ways to solve
problems without Singleton, but they are a little bit more difficult to implement for
beginners, so I prefer to simplify your life a little bit to keep you motivated. With enough
practice, you will reach a point where you will be ready to improve your coding standards.

Now, let's discuss how to achieve this in Visual Scripting, which deserves its own section
given it will be a little bit different. You can skip the following section if you are not
interested in the Visual Scripting side of these scripts.

Creating Object Managers 467

Sharing Variables with Visual Scripting
Visual Scripting has a mechanism that replaces Singleton as a holder of variables to be
shared between objects, the Scene Variables. If you check the left panel in the Script
Graph editor (the window where we edit the nodes of a script) under the Blackboard
Panel (the panel that shows the variables of our object), you will notice it has many tabs:
Graph, Object, Scene, App, and Saved. If you don't see it, click the third button from the
left in the top-left part of the window, the button to the right of the i (information) button:

Figure 17.9 – Blackboard (variables) editor in Script Graph

So far, when we have created a variable in the Variables component of any object, we
were actually creating Object Variables, variables that belong to an object and are shared
between all Visual Scripts in that one, but that's not the only scope a variable can have.
Here's a list of the remaining scopes:

• Graph: Variables that can only be accessed by our current graph. No other script
can read or write that variable. Useful to save the internal state, such as private
variables in C#.

• Scene: Variables that can be accessed by all objects in the current Scene. When we
change the scene, those variables are lost.

• App: Variables that can be accessed in any part of the game at any time. Useful to
move values from one scene to the other. For example, you can increase the score in
one level and keep increasing it in the next, instead of resetting the score to 0.

• Saved: Variables whose values are kept between game runs. You can save persistent
data such as the Player Level or Inventory to continue the quest, or simpler things
such as the sound volume that the user can change in the Options menu (if you
created one).

468 Win and Lose Condition

In this case, the Scene scope is the one we want, as the Score we intend to increase will be
accessed by several objects in the scene (more on that later) and we don't want it to persist
if we reset the level to play again; it will need to be set again to 0 in each run of the level
and game.

To create Scene Variables, you can simply select the Scene tab in the Blackboard pane
of the Script Graph editor, while you are editing any Script Graph, or you can also use
the Scene Variables GameObject that is created automatically when you start editing any
graph. That object is the one that really holds the variables and must not be deleted. You
will notice it will have a Variables component as we have done before, but it will also have
the Scene Variables component, indicating those variables are Scene variables.

In the next screenshot, you can see how we have simply added the score variable to the
Scene Variables tab to make it accessible in any of our Script Graphs:

Figure 17.10 – Adding Scene variables to our game

Finally, for the score-increasing behavior, we can add the following graph to our Enemy.
Remember, as usual, to use the C# or the Visual Scripting version of the scripts, not both:

Creating Object Managers 469

Figure 17.11 – Adding the score when an object is destroyed

At first, this script seems pretty similar to our C# version. We add the scoreToAdd
variable of our object (Object scope), and then we add it to the whole Scene's score
variable, as specified in the node. The main difference you can see is that here we are
using the OnDisable event instead of OnDestroy. Actually, OnDestroy is the correct
one, but in the current version of Visual Scripting, there is a bug that prevents it from
working properly, so I replaced it for now. The problem with OnDisable is that it executes
whenever the object is disabled, and while the object is disabled before it's destroyed, it
can also be disabled in other circumstances (for example, using Object Pooling, a way
to recycle objects instead of destroying and instantiating them constantly), but at the
moment, this for us is enough. Please consider using OnDestroy first when you try this
graph to see whether it runs properly in your Unity or Visual Scripting package version.

Something to highlight is the usage of the Has Variable node to check whether the score
variable exists. This is done because OnDisable can be executed either at the moment the
enemy is destroyed or when the scene changes, which we will do later in this chapter to
the lose/win screens. If we try to get a scene variable at that moment, we risk getting an
error if the Scene Variables object is destroyed before the GameMode object, given the
change of scene involves destroying every object in the scene first.

470 Win and Lose Condition

As you may have noticed by now, even if Visual Scripting is most of the time extremely
similar to C#, one has concepts to solve certain scenarios that the other doesn't. Now that
we know how to share variables, let's look at some other Managers that we will need later
in the game.

Creating Managers
Sometimes, we need a place to put together information about a group of similar Objects,
for example, an Enemy Manager to check the number of enemies and potentially access
an array of them to iterate over them and do something, or maybe MissionManager, to
have access to all of the active missions in our game. Again, these cases can be considered
Singletons, single Objects that won't be repeated (in our current game design), so let's
create the ones we will need in our game, that is, EnemyManager and WaveManager.

In our game, EnemyManager and WaveManager will just be places to save an array
of references to the existing enemies and waves in our game, just as a way to know the
current amount of them. There are ways to search all Objects of a certain type to calculate
the count of them, but those functions are expensive and not recommended to use unless
you really know what you are doing. So, having a Singleton with a separate updated list of
references to the target Object type will require more code but will perform better. Also,
as the game features increase, these Managers will have more functionality and helper
functions to interact with these Objects.

Let's start with the enemies Manager by doing the following:

1. Add a script called Enemy to the Enemy Prefab; this will be the script that will
connect this Object with EnemyManager in a moment.

2. Create an empty GameObject called EnemyManager and add a script to it called
EnemiesManager.

3. Create a public static field of the EnemiesManager type called instance
inside the script and set the Singleton repetition check to Awake as we did in
ScoreManager.

4. Create a public field of the List<Enemy> type called enemies:

Figure 17.12 – List of Enemy components

Creating Object Managers 471

A list in C# represents a dynamic array, an array capable of adding and removing
Objects. You will see that you can add and remove elements to this list in the Editor,
but keep the list empty; we will add enemies another way. Take into account that
List is in the System.Collections.Generic namespace; you will find the
using sentence at the beginning of our script. Also, consider that you can make
the list private and expose it to the code via a getter instead of making it a public
field; but as usual, we will make our code as simple as possible for now.

Important note
Note that List is a class type, so it must be instantiated, but as this type
has exposing support in the Editor, Unity will automatically instantiate it.
You must use the new keyword to instantiate it in cases where you want
a non-Editor-exposed list, such as a private one or a list in a regular
non-component C# class.

A C# list is internally implemented as an array. If you need a linked list,
look at the LinkedList collection type.

5. In the Start function of the Enemy script, access the EnemyManager Singleton
and, using the Add function of the enemies list, add this Object to the list. This
will "register" this Enemy as active in the Manager, so other Objects can access the
Manager and check for the current enemies. The Start function is called after all
of the Awake function calls, and this is important because we need to be sure that
the Awake function of the Manager is executed prior to the Start function of the
Enemy to ensure that there is a Manager set as the instance.

Important note
The problem we solved with the Start function is called a race condition,
which is when two pieces of code are not guaranteed to be executed in the
same order, whereas the Awake execution order can change due to different
reasons. There are plenty of situations in code where this will happen, so pay
attention to the possible race conditions in your code. Also, you might consider
using more advanced solutions such as lazy initialization here, which can give
you better stability, but again, for the sake of simplicity and exploring the Unity
API, we will use the Start function approach for now.

472 Win and Lose Condition

6. In the OnDestroy function, remove the Enemy from the list to keep the list
updated with just the active ones:

Figure 17.13 – The Enemy script to register ourselves as an active Enemy

With this, we now have a centralized place to access all of the active enemies in a simple
but efficient way. I challenge you to do the same with the waves, using WaveManager,
which will have the collection of all active Waves to later check whether all waves finished
their work to consider the game as won. Take some time to solve this; you will find the
solution in the following screenshots, starting with WavesManager:

Figure 17.14 – The full WavesManager script

Creating Object Managers 473

You will also need the WavesSpawner script:

Figure 17.15 – The modified WaveSpawner script to support WaveManager

As you can see, WaveManager is created the same way EnemyManager was, just
a Singleton with a list of WaveSpawner references, but WaveSpawner is different.
We execute the Add function of the list in the Start event of WaveSpawner to register
the wave as an active one, but the Remove function needs more work.

474 Win and Lose Condition

The idea is to deregister the wave from the active waves list when it finishes spawning all
enemies when the spawner finishes its work. Before this modification, we used Invoke
to call the CancelInvoke function after a while to stop the spawning, but now we need
to do more after the end time. Instead of calling CancelInvoke after the specified
wave end time, we will call a custom function called EndSpawner, which will call
CancelInvoke to stop the spawner, InvokeRepeating, but will also call the remove
from WavesManager list function to make sure the removing from the list is called
exactly when WaveSpawner finishes its work.

Regarding the Visual Scripting version, we can add two Lists of GameObject to the Scene
Variables to hold the references to the existing Waves and Enemies so we can keep track
of them. In this case, the Lists contain only GameObjects given that the Visual Scripting
versions of WaveSpawner and Enemy scripts are not types we can reference like C# ones.
If you carried out both C# and Visual Scripting versions of these, you would see that
you can reference the C# versions, but for now, we are not going to mix C# and Visual
Scripting, so ignore this. Anyway, given how the Variables system of Visual Scripting
works, we can still access variables inside them if needed using the GetVariable node.
Remember the variables are not in the Visual Scripts but in the Variables node:

Figure 17.16 – Adding lists to the Scene Variables

Then, we can add the following to the WaveSpawner graph:

Creating Object Managers 475

Figure 17.17 – Adding elements to List

We used the Add List Item node to add our GameObject to the waves variable. We added
this as the first thing to do in the Start event node before anything. To remove that wave
from the active ones, you will need to make the following change:

Figure 17.18 – Removing elements from the List

We remove this spawner from the list using the Exit flow output pin of For Loop, which is
executed when the for loop finishes iterating.

476 Win and Lose Condition

Finally, regarding the Enemy, you will need to create a new Enemy Script graph that will
look similar to the following:

Figure 17.19 – Enemy adding and removing itself from the lists

As you can see, we simply add the enemy on Start and remove it in OnDisable.
Remember to first try to use OnDestroy instead of OnDisable due to the bug we
mentioned previously. You can check these changes by playing the game while having the
Scene Variables GameObject selected and seeing how its value changes. Also, remember
the need to use the Has Variable node if we are changing scenes.

Using Object Managers, we have now centralized information about a group of Objects,
and we can add all sorts of Object group logic here. We created EnemiesManager,
WavesManager, and ScoreManager as centralized places to store some game system
information, such as the enemies and waves present in the scene, and the score as well. We
also saw the Visual Scripting version of those centralizing that data in the Scene Variables
object, so all Visual Scripts can read that data. But besides having this information for
updating the UI (which we will do in the next chapter), we can use this information to
detect whether the Victory and Lose conditions of our game are met, creating a Game
Mode Object to detect that.

Creating Game Modes 477

Creating Game Modes
We have created Objects to simulate lots of gameplay aspects of our game, but the game
needs to end sometime, whether we win or lose. As always, the question is where to put
this logic, and that leads us to further questions. The main questions would be, will we
always win or lose the game the same way? Will we have a special level with different
criteria that kill all of the waves, such as a timed survival? Only you know the answer to
those questions, but if right now the answer is no, it doesn't mean that it won't change
later, so it is advisable to prepare our code to adapt seamlessly to changes.

Important note
To be honest, preparing our code to adapt seamlessly to changes is almost
impossible; there's no way to have perfect code that will consider every possible
case, and we will always need to rewrite some code sooner or later. We will try
to make the code as adaptable as possible to changes; always doing that doesn't
consume lots of developing time and it's sometimes preferable to write simple
code quickly than complex code that might not necessarily be slow, and so
balance your time budget wisely.

To do this, we will separate the Victory and Lose conditions' logic into its own Object,
which I like to call the "Game Mode" (not necessarily an industry-standard term). This
will be a component that will oversee the game, checking conditions that need to be met
in order to consider the game over. It will be like the referee of our game. The Game Mode
will constantly check the information in the Object Managers and maybe other sources
of information to detect the needed conditions. Having this Object separated from other
Objects allows us to create different levels with different Game Modes; just use another
Game Mode script in that level and that's all.

In our case, we will have a single Game Mode for now, which will check whether the
number of waves and enemies becomes 0, meaning that we have killed all of the possible
enemies and the game is won. Also, it will check whether the life of the Player reaches 0,
considering the game as lost in that situation. Let's create it by doing the following:

1. Create a GameMode empty Object and add a WavesGameMode script to it. As you
can see, we called the script with a descriptive name considering that we can add
other game modes.

2. In its Update function, check whether the number of enemies and waves reached
0 by using the Enemy and Wave Managers; in that case, just print a message in
the console for now. All lists have a Count property, which will tell you the number
of elements stored inside.

478 Win and Lose Condition

3. Add a public field of the Life type called PlayerLife and drag the Player to it;
the idea is to also detect the lose condition here.

4. In Update, add another check to detect whether the life amount of the
PlayerLife reference reached 0, and in that case, print a lose message in the
console:

Figure 17.20 – Win and lose condition checks in WavesGameMode

5. Play the game and test both cases, whether the Player life reaches 0 or whether you
have killed all enemies and waves.

Important note
Consider that we don't want two instances of this Object, so we can also make
it a Singleton, but as this Object won't be accessed by others, that might be
redundant; I will leave this up to you. Anyway, note that this won't prevent
you from having two different GameModes instantiated; for doing so, you
can create a GameMode base class, with the Singleton functionality ready to
prevent two GameModes in the same scene.

Now, it is time to replace the messages with something more interesting. For now, we will
just change the current scene to a Win scene and Lose scene, which will just have a UI
with a win and lose message and a button to play again. In the future, you can add a Main
Menu scene and have an option to get back to it. Let's do that by doing the following:

1. Create a new scene (File | New Scene) and save it, calling it WinScreen.
2. Add a UI Text and center it with the text You won!.
3. Add a UI Button right below the text and change its text to Play Again:

Creating Game Modes 479

Figure 17.21 – WinScreen

4. Select the Scene in the Project View and press Ctrl + D (Cmd + D on Mac) to
duplicate the scene. Rename it LoseScreen.

5. Double-click the LoseScreen scene to open it and just change the You won! text
to You lose!.

6. Go to File | Build Settings to open the Scenes in the Build list inside this window.

The idea is that Unity needs you to explicitly declare all scenes that must be included
in the game. You might have test scenes or scenes that you don't want to release
yet, so that's why we need to do this. In our case, our game will have WinScreen,
LoseScreen, and the scene we have created so far with the game scenario, which
I called "Game," so just drag those scenes from the Project View to the list of the
Build Settings window; we will need this to make the Game Mode script change the
scenes properly. Also, consider that the first scene in this list will be the first scene to
be opened when we play the game in its final version (known as the build), so you
may want to rearrange the list according to that:

Figure 17.22 – Registering the scenes to be included in the build of the game

480 Win and Lose Condition

7. In WavesGameMode, add a using statement for the UnityEngine.
SceneManagement namespace to enable the scene-changing functions
in this script.

8. Replace the console print messages with calls to the SceneManager.
LoadScene function, which will receive a string with the name of the scene to
load; in this case, it would be WinScreen and LoseScreen. You just need the
scene name, not the entire path to the file.

If you want to chain different levels, you can create a public string field to allow
you to specify via the Editor which scenes to load. Remember to have the scenes
added to the Build Settings; if not, you will receive an error message in the console
when you try to change the scenes:

Figure 17.23 – Changing scenes with SceneManager

9. Play the game and check whether the scenes change properly.

Important note
Right now, we picked the simplest way to show that we lost or won, but maybe
in the future you will want something gentler than a sudden change of the
scene, such as waiting a few moments with Invoke to delay that change or
directly show the winning message inside the game without changing the
scenes. Consider that when testing the game with people and checking whether
they understood what happens while they play, game feedback is important to
keep the Player aware of what is happening and is not an easy task to tackle.

Creating Game Modes 481

Regarding the Visual Scripting version, we added a new Script Graph to a separated
object. Let's examine it piece by piece to see it clearly. Let's start with the win condition:

Figure 17.24 – Win condition in Visual Scripting

Here, we are getting the Enemies list from the Scene context (the Get Variable node), and
knowing that it contains a List, we are using the Count Items node to check how many
enemies are remaining in this List. Remember we have a script that adds the enemy to the
list when it's spawned and removes it when is destroyed. We do the same for the waves,
combining the conditions with an and connecting it with an If to then do something
(more on that in a moment).

Now let's examine the Lose condition:

Figure 17.25 – Lose condition in Visual Scripting

482 Win and Lose Condition

As the Player's life is not in the Scene context (and shouldn't be), and the Player is a
separated GameObject from this one (we created a GameObject called GameMode for
this script), we need a variable of the GameObject type called player to reference it. As
you can see, we dragged our Player to it in the Variables component. Finally, we used Get
Variable to access our Player reference in the Graph, and then another Get Variable to
extract the life from it. We accomplished that by connecting the player reference to the
Get Variable node of the life variable. Then, we repeated this for the Player's base.

Finally, we load scenes by doing the following:

Figure 17.26 – Loading scenes in Visual Scripting

Now we have a fully functional simple game, with mechanics and win and lose conditions,
and while this is enough to start developing other aspects of our game, I want to discuss
some issues with our current Manager approach and how to solve them with events.

Improving our code with events 483

Improving our code with events
So far, we have used Unity event functions to detect situations that can happen in the
game, such as Awake and Update. These functions are ways for Unity to communicate
two components, as in the case of OnTriggerEnter, which is a way for the Rigidbody
to inform other components in the GameObject that a collision has happened. In our case,
we are using if statements inside Updates to detect changes on other components, such
as GameMode checking whether the number of enemies reached 0. But we can improve
this if we are informed by the Enemy Manager when something has changed, and just do
the check in that moment, such as with the Rigidbody telling us the collisions instead of
checking collisions every frame.

Also, sometimes, we rely on Unity events to execute logic, such as the score being given
in the OnDestroy event, which informs us when the Object is destroyed, but due to the
nature of the event, it can be called in situations where we don't want to add the score,
such as when the scene is changed or the game is closed. Objects are destroyed in those
cases, but not because the Player killed the Enemy, leading to the score being raised
when it shouldn't. In this case, it would be great to have an event that tells us that the
number of lives reached 0 to execute this logic, instead of relying on the general-purpose
destroy event.

The idea of events is to improve the model of communication between our Objects, being
sure that at the exact moment something happens, the interested parts in that situation
are notified to react accordingly. Unity has lots of events, but we can create ones specific
to our gameplay logic. Let's start by seeing this applied in the Score scenario we discussed
earlier; the idea is to make the Life component have an event to communicate to other
components that the Object was destroyed because the number of lives reached 0.

There are several ways to implement this, and we will use a little bit of a different approach
than the Awake and Update methods; we will use the UnityEvent field type. This is
a field type capable of holding references to functions to be executed when we want to,
such as C# delegates, but with other benefits, such as better Unity Editor integration. To
implement this, do the following:

1. In the Life component, create a public field of the UnityEvent type called
onDeath. This field will represent an event where other classes can subscribe to it
to be aware of when Life reaches 0:

Figure 17.27 – Creating a custom event field

484 Win and Lose Condition

2. If you save the script and go to the Editor, you can see the event in the Inspector.
Unity Events support subscribing methods to them in the Editor so we can connect
two Objects together. We will use this in the UI scripting chapter, so let's just ignore
this for now:

Figure 17.28 – UnityEvents showing up in the Inspector

Important note
You can use the generic delegate action or a custom delegate to create events
instead of using UnityEvent, and aside from certain performance aspects,
the only noticeable difference is that UnityEvent will show up in the Editor,
as demonstrated in step 2.

3. When the number of lives reaches 0, call the Invoke function of the event, and this
way, we will be telling anyone interested in the event that it has happened:

Figure 17.29 – Executing the event

Improving our code with events 485

4. In ScoreOnDeath, rename the OnDestroy function GivePoints or whatever
name you prefer; the idea here is to stop giving points in the OnDestroy event.

5. In the Awake function of the ScoreOnDeath script, get the Life component
using GetComponent and save it in a local variable.

6. Call the AddListener function of the onDeath field of the Life reference
and pass the GivePoints function as the first argument. The idea is to tell
Life to execute GivePoints when the onDeath event is invoked. This way,
Life informs us about that situation. Remember that you don't need to call
GivePoints, but just pass the function as a field:

Figure 17.30 – Subscribing to the OnDeath event to give points in that scenario

Important note
Consider calling RemoveListener in OnDestroy; as usual, it is
convenient to unsubscribe listeners when possible to prevent any memory leak
(reference preventing the GC to deallocate memory). In this scenario, it is not
entirely necessary because both the Life and ScoreOnDeath components
will be destroyed at the same time, but try to get used to that good practice.

7. Save, select ScoreManager in the Editor, and hit play to test this. Try deleting an
Enemy from the Hierarchy while in Play Mode to see how the score doesn't rise
because the Enemy was destroyed for any other reason than the number of lives
becoming 0; you must destroy an Enemy by shooting at them to see the score
being raised.

486 Win and Lose Condition

Now that Life has an onDeath event, we can also replace the Player's Life check
from the Waves Game Mode to use the event by doing the following.

8. Create an OnLifeChanged function on the WavesGameMode script and move
the life-checking condition from Update to this function.

9. In Awake, subscribe to this new function to the onDeath event of the Player's Life
component reference:

Figure 17.31 – Checking the lose condition with events

As you can see, creating custom events allows you to detect more specific situations other
than the defaults in Unity, and keeps your code clean, without needing to constantly ask
conditions in the Update function, which is not necessarily bad, but the event approach
generates clearer code.

Remember that we can also lose our game by the Player's Base Life reaching 0; we will
explore the concept of the Player's base later in this book, but for now, let's create a cube
that represents the Object that Enemies will attack to reduce the Base Life, like the Base
Core. Taking this into account, I challenge you to add this other lose condition to our
script. When you finish, you can check the solution in the following screenshot:

Improving our code with events 487

w

Figure 17.32 – Complete Waves Game Mode lose condition

As you can see, we just repeated the life event subscription; remember to create an Object
to represent the Player's Base damage point, add a Life script to it, and drag that one as
the Player Base Life reference of the Waves Game Mode.

Now, let's keep illustrating this concept by applying it in the Managers to prevent the
Game Mode from checking conditions at every frame:

1. Add a UnityEvent field to EnemyManager called onChanged. This event will
be executed whenever an Enemy is added or removed from the list.

2. Create two functions, AddEnemy and RemoveEnemy, both receiving a parameter
of the Enemy type. The idea is that instead of Enemy adding and removing itself
from the list directly, it should use these functions.

488 Win and Lose Condition

3. Inside these two functions, invoke the onChanged event to inform others that the
enemies list has been updated. The idea is that anyone who wants to add or remove
enemies from the list needs to use these functions:

Figure 17.33 – Calling events when enemies are added or removed

Important note
Here, we have the problem that nothing stops us from bypassing those two
functions and using the list directly. You can solve that by making the list
private and exposing it using the IReadOnlyList interface. Remember
that this way, the list won't be visible in the Editor for debugging purposes.

4. Change the Enemy script to use these functions:

Figure 17.34 – Making the Enemy use the add and remove functions

Improving our code with events 489

5. Repeat the same process for WaveManager and WaveSpawner, create an
onChanged event, and create the AddWave and RemoveWave functions and call
them in WaveSpawner instead of directly accessing the list. This way, we are sure
the event is called when necessary as we did with EnemyManager. Try to solve this
step by yourself and then check the solution in the following screenshot, starting
with WavesManager:

Figure 17.35 – WavesManager onChanged event implementation

490 Win and Lose Condition

Also, WavesSpawner needed changes:

Figure 17.36 – Implementing Add and Remove Wave functions

6. In WavesGameMode, rename Update to CheckWinCondition and subscribe
this function to the onChanged event of EnemyManager and the onChanged
event of WavesManager. The idea is to check for the number of enemies and
waves being changed just when it is necessary. Remember to do the subscription to
the events in the Start function due to the Singletons being initialized in Awake:

Improving our code with events 491

Figure 17.37 – Checking the win condition when the enemies or waves amount is changed

Regarding the Visual Scripting version, let's start checking the Lose condition with events,
checking first some changes needed in the Life Script Graph:

Figure 17.38 – Triggering a Custom Event in our Life graph

492 Win and Lose Condition

First, after destroying the object when the number of lives reaches 0, we use the Trigger
Custom Event node, specifying the name of our event as OnDeath. This will tell anyone
listening for us to execute the OnDeath event that we did. Remember this is our Life
Script Graph. Be sure to call destroy after triggering the event, while most of the time the
order doesn't matter given the Destroy doesn't actually happen until the end of the frame.
Sometimes it can cause issues, so it's better to be safe here. In this case, Game Mode
should listen to the Player's OnDeath event, so let's make the following change in our
Game Mode Graph:

Figure 17.39 – Listening to the OnDeath event of the Player in Visual Scripting

We used the CustomEvent node, connecting it to the player reference of our GameMode.
This way, we are specifying that if that Player executes that event, we will execute the
Load Scene node. Remember that the player reference is crucial to specify for whom
we want to execute the OnDeath event and that the Life Visual Graph will also be present
in the enemies and we are not interested in them here. Also remember to remove the If
and the conditions we used previously to detect this; the only If our GameMode will have
is the one for the Win condition.

Essentially, we set it so any object with the Life script has an OnDeath event, and we
made the GameMode listen to the OnDeath event of the player specifically.

We could also create events for the Enemies and Waves, but that would complicate our
Graphs a little bit, given we don't have WaveManager or EnemyManager in the Visual
Scripting versions. We could certainly create those to accomplish this but sometimes the
point of using Visual Scripting is to create simple logic, and these kinds of changes tend
to make a graph grow pretty much. Another possible solution is to make the Enemy and
the Wave inform the Game Mode directly.

Summary 493

We could use Trigger Custom Event in the Enemies and Waves, connecting that node to
the Game Mode, to finally let the Game Mode have a Custom Event node to listen to. The
issue is that this would violate the correct dependencies between our objects; lower-level
objects such as Enemy and Waves shouldn't communicate with higher-level object such
as Game Mode. At the end, Game Mode was supposed to be an overseer. If we do that, we
won't be able to have an Enemy in another scene or game without having a Game Mode.
So, for simplicity and code decoupling, let's keep the other conditions as they are. At the
end, more complex logic such as this will probably be handled in C# in full production
projects.

Yes, by using events we have to write more code than before, and in terms of functionality,
we didn't obtain anything new, but in bigger projects, managing conditions through
Update checks will lead to different kinds of problems, as previously discussed, such as
race conditions and performance issues. Having a scalable code base sometimes requires
more code, and this is one of those cases.

Before we finish, something to consider is that Unity Events are not the only way to create
this kind of event communication in Unity; you will find a similar approach called Action,
the native C# version of events, which I recommend you look up if you want to see all of
the options out there.

Summary
In this chapter, we finished an important part of the game, the ending, both by victory
or by defeat. We discussed a simple but powerful way to separate the different layers of
responsibilities by using Managers created through Singletons to guarantee that there's
no more than one instance of every kind of manager and simplifying the connections
between them through static access (something to consider when you discover code
testing). Also, we encountered the concept of events to streamline the communication
between Objects to prevent problems and create more meaningful communication
between Objects.

With this knowledge, you are now able not only to detect the victory and lose conditions
of a game but also to do that in a better-structured way. These patterns can be useful to
improve our game code in general, and I recommend you try to apply them in other
relevant scenarios.

In the next chapter, we are going to explore how to create visual and audio feedback to
respond to our gameplay, combining scripting and the assets we integrated in Part 2 of
this book.

18
Scripting the

UI, Sounds, and
Graphics

In a game, even if the player sees the game through the camera, there is important
information that is not visible in plain sight, such as the exact number of bullets
remaining, their health, the enemies, whether there's an enemy behind them, and so on.
We have already discussed how to tackle those issues with the UI, sounds, and visual
effects (VFX), but as we start to move on with scripting in our game, those elements also
need to adapt to the game. The idea of this chapter is to make our UI, sounds, and VFX
react to the game situation through scripting, reflecting what is happening in the world.

In this chapter, we will examine the following feedback scripting concepts:

• Scripting the UI

• Scripting feedback

By the end of this chapter, you will be able to make the UI react to the game situation,
showing relevant information in the form of text and bars, and also be able to make
the game react to interactions with the UI, such as with buttons. Also, you will be able
to make the game inform the user of this information through other mediums, such as
sound and particle graphics, which can be as effective as the UI, but more appealing.

496 Scripting the UI, Sounds, and Graphics

Scripting the UI
We previously created a UI layout with elements including bars, text, and buttons, but so
far, they are static. We need to make them adapt to the game's actual state. In this chapter,
we are going to discuss the following UI scripting concepts:

• Showing information in the UI

• Programming the Pause menu

We will start by seeing how to display information on our UI using scripts that modify
the text and images that are displayed with Canvas elements. After that, we will create the
Pause functionality, which will be used throughout the UI.

Showing information in the UI
As discussed earlier, we will use the UI to display information to the user to allow them to
make informed decisions, so let's start by seeing how we can make the player's health bar
react to the amount of life they have left in the Life script we created earlier:

1. Add a new script called Life Bar to the HealthBar Canvas child object, which is the
UI Image component we created earlier to represent the life bar:

Figure 18.1 – The Life Bar component in the player's HealthBar Canvas

2. In the LifeBar script, add a Life type field. This way, our script will ask the
editor which Life component we will be monitoring. Save the script:

Figure 18.2 – Editor-configurable reference to a Life component

Scripting the UI 497

3. In the Editor, drag the Player GameObject from the Hierarchy window to
the targetlife property to make the life bar reference the player's life, and
remember to have the HealthBar object selected before dragging Player.

This way, we are telling our LifeBar script which Life component to check to
see how much life the player has remaining. Something interesting here is that the
enemies have the same Life component, so we can easily use this component to
create life bars for every other object that has lives in our game:

Figure 18.3 – Dragging Player to reference its life component

4. Add the using UnityEngine.UI; line right after the using statements in
the first few lines of the script. This will tell C# that we will be interacting with the
UI scripts:

Figure 18.4 – All the using statements in our script. We are not going to use them all,
but let's keep them for now

5. Create a private field (without the public keyword) of the Image type. We will
save the reference to the component here in a moment:

Figure 18.5 – Private reference to an image

498 Scripting the UI, Sounds, and Graphics

6. Using GetComponent in Awake, access the reference to the Image component
in our GameObject (HealthBar) and save it in the image field. As usual, the idea
is to get this reference just once and save it for later use in the Update function.
Of course, this will always work when you put this component in an object with an
Image component. If not, the other option would be to create a public field of the
Image type and drag the image component into it:

Figure 18.6 – Saving the reference to the Image component in this object

7. Create an Update event function in the LifeBar script. We will use this to
constantly update the life bar according to the player's life.

8. In the Update event, divide the amount of life by 100 to have our current life
percentage expressed in the 0 to 1 range (assuming our maximum life is 100), and
set the result in the fillAmount field of the Image component as in the following
screenshot. Remember that fillAmount expects a value between 0 and 1, with 0
signaling that the bar is empty, and 1 that the bar is at its full capacity:

Figure 18.7 – Updating the fill amount of the LifeBar script's Image component
according to the Life component

Important note
Remember that putting 100 within the code is considered hardcoding (it is
also known as a magic number), meaning later changes to that value would
require us to look through the code for that value, which is a complicated task
in big projects. That's why it is considered bad practice. It would be better to
have a Maximum Life field in the Life component, or at least have a
constant with this value.

Scripting the UI 499

9. Save the script and, in the editor, select the player and play the game. During Play
mode, press Esc to regain access to the mouse and change the player's health in the
Inspector window to see how the life bar updates accordingly. You can also test this
by making the player receive damage somehow, such as by making enemies spawn
bullets (more on enemies later):

Figure 18.8 – Full LifeBar script

Important note
In the previous chapter, we explored the concept of events to detect changes
in the state of other objects. The life bar is another example of using an event
as we can change the fill amount of the image when the life actually changes.
I challenge you to try to create an event when the life changes and implement
this script using the one we looked at in the previous chapter.

500 Scripting the UI, Sounds, and Graphics

You may be thinking that this UI behavior could be directly coded within the Life
component, and that's completely possible, but the idea here is to create simple scripts
with little pressure to keep our code separate. Each script should have just one reason to
be modified, and mixing UI behavior and gameplay behavior in a single script would give
the script two responsibilities, which results in two possible reasons to change our script.
With this approach, we can also set the player's base life bar at the bottom by just adding
the same script to its life bar, but dragging the Base Damage object, which we created in
the previous chapter, as the target life this time.

Regarding the Visual Scripting version, here is what you need to add to your health bar
image Game Object:

Figure 18.9 – Full LifeBar Visual Graph

First, we added a targetLife variable of the GameObject type to the Variables
component of our life bar Image. Then we dragged our Player GameObject (called
Robot so far) to this variable in such a way that the Life Bar now has a reference to the
object from which we want to display its life. Then, we added a LifeBar Visual Graph that,
in the Update node, calls the Set Fill Amount node in order to update the fill amount
of the image. Remember that in this case, just calling the Set Fill Amount node will
understand we are referring to the Image component where this Visual Graph is located,
so there is no need to use GetComponent here. In order to calculate the fill amount,
we get the targetLife GameObject reference, and using a second Get Variable node, we
extract the life variable of that object. Finally, we divide it by 100 (we needed to create a
Float Literal node in order to represent the value 100) and pass it to the Set Fill Amount
node. As usual, you can check the complete version on the GitHub repository.

Scripting the UI 501

Important note
The single object responsibility principle we just mentioned is one of the
five object-oriented programming principles known as SOLID. If you don't
know what SOLID is, I strongly recommend you look it up to improve your
programming best practices.

Now that we have sorted out the player's life bar, let's make the Bullets label update
according to the player's remaining bullets. Something to consider here is that our current
Player Shooting script has unlimited bullets, so let's change that by following these steps:

1. Add a public int type field to the Player Shooting script called bulletsAmount.
2. In the if statement that checks the pressure of the left mouse button, add a

condition to check whether the number of bullets is greater than 0.
3. Inside the if statement, reduce the number of bullets by 1:

Figure 18.10 – Limiting the number of bullets to shoot

502 Scripting the UI, Sounds, and Graphics

The Visual Scripting version, the modified shooting condition of the PlayerShooting
visual graph, will look like this:

Figure 18.11 – Shooting only if bullets available in Visual Graph

As you can see, we simply check whether the number of bullets is greater than zero and then
use an And node to combine that condition with the previously existing Get Key Down
condition. Consider bullets was a variable we needed to create in the Variables component of
our Player GameObject. Regarding the bullets decrement, it will look like this:

Figure 18.12 – Decrementing bullet count in Visual Graph

We simply subtract one from the bullets variable and set bullets again with this value.

Scripting the UI 503

Now that we have a field indicating the number of remaining bullets, we can create a script
to display that number in the UI by doing the following:

1. Add a PlayerBulletsUI script to the bullet's Text GameObject. In my case, I
called it Bullets Label.

2. Add the using UnityEngine.UI statement and add a private field of the Text
type, saving it in the reference to our own Text component in Awake:

Figure 18.13 – Caching the reference to our own Text component

3. Create a public field of the PlayerShooting type called targetShooting
and drag Player to this property in the Editor. As was the case for the life
bar component, the idea is that our UI script will access the script that has
the remaining bullets to update the text, bridging the two scripts (Text and
PlayerShooting) to keep their responsibilities separate.

4. Create an Update statement and inside it, set the text field of the text
reference (I know, confusing) with a concatenation of "Bullets: " and the
bulletsAmount field of the targetShooting reference. This way, we will
replace the text of the label according to the current number of bullets:

Figure 18.14 – Updating the bullet's text label

504 Scripting the UI, Sounds, and Graphics

Important note
Remember that concatenating strings allocates memory, so again, I urge you to
only do this when necessary, using events.

Regarding Visual Scripting, before actually setting the text, we need to add support for
TextMeshPro in Visual Scripting. Visual Scripting requires manual specification of the
Unity systems and Packages we are going to use, and as TextMeshPro is not strictly a core
Unity feature, this is not included by default. We can add support for TextMeshPro in
Visual Scripting by doing the following:

1. Go to Edit | Project Settings and select the Visual Scripting category.
2. Expand the Node Library option using the arrow at its left.
3. Use the plus (+) button at the bottom of the list to add a new library.
4. Click where it says (No Assembly) and search for Unity.TextMeshPro.
5. Click the Regenerate Units button and wait:

Figure 18.15 – Adding TextMeshPro support to Visual Scripting

Scripting the UI 505

After setting that, this is what the Visual Graph to add to the Bullets text GameObject will
look like:

Figure 18.16 – Updating the bullet's text label in Visual Scripting

As usual, we need a reference to the Player to check its bullets, so we created a
targetBullets variable of the GameObject type and dragged the player there.
Then, we use a Get Variable node to extract the bullet amount from that reference and
concatenate the string "Bullets: ", using the String Literal node, with the number of
bullets using the Concat node. That node will do the same as when we added two strings
together using the + operator in C#. Finally, we use the Set Text (Source Text, Sync Text
InputBox) node to update the text of our text field.

506 Scripting the UI, Sounds, and Graphics

If you look at the two scripts, you will find a pattern. You can access the UI and
Gameplay components and update the UI component accordingly, and most UI scripts
will behave in the same way. Keeping this in mind, I challenge you to create the necessary
scripts to make the Score, Enemies, and Waves counters work. Remember to add using
UnityEngine.UI to use the Text component. After finishing this, you can compare
your solution with the one in the following screenshot, starting with ScoreUI:

Figure 18.17 – The ScoreUI script

Also, we need the WavesUI component:

Scripting the UI 507

Figure 18.18 – The WavesUI script

Finally, we need EnemiesUI:

Figure 18.19 – The EnemiesUI script

508 Scripting the UI, Sounds, and Graphics

Regarding Visual Scripting, we have the Score UI:

Figure 18.20 – The ScoreUI Visual script

Then, we have the Waves UI:

Figure 18.21 – The Waves UI Visual script

Scripting the UI 509

And finally, we have the Enemies UI:

Figure 18.22 – The Enemies UI Visual script

As you can see, we have used the events already coded in the managers to change the
UI only when necessary. Now that we have coded the UI labels and bars, let's code the
Pause menu.

Programming the Pause menu
Recall how we created a Pause menu in a previous chapter, but it is currently disabled,
so let's make it work. First, we need to code Pause, which can be quite complicated.
So again, we will use a simple approach for pausing most behaviors, which is stopping
the time! Remember that most of our movement scripts use time functionality, such as
Delta Time, as a way to calculate the amount of movement to apply, and there's a way
to simulate time going slower or faster, which is by setting timeScale. This field will
affect Unity's time system's speed, and we can set it to 0 to simulate that time has stopped,
which will pause animations, stop particles, and reduce Delta Time to 0, making our
movements stop. So, let's do it:

1. Create a script called Pause and add it to a new object in the scene, also called
Pause.

510 Scripting the UI, Sounds, and Graphics

2. In Update, detect when the Esc key is pressed, and in that scenario, set Time.
timeScale to 0:

Figure 18.23 – Stopping time to simulate a pause

3. Save and test this.

You will notice that almost everything will stop, but you can see how the shoot
functionality still works. That's because the Player Shooting script is not time-dependent.
One solution here could be to simply check whether Time.timeScale is greater than
0 to prevent this:

Figure 18.24 – Checking pause in the player shooting script

Important note
As usual, we have pursued the simplest way here, but there is a better approach.
I challenge you to try to create PauseManager with a Boolean indicating
whether the game is paused or not, changing timeScale in the process.

Now that we have a simple but effective way to pause the game, let's make the Pause menu
visible to resume the game by doing the following:

1. Add a field of the GameObject type called pauseMenu in the Pause script.
The idea is to drag the Pause menu here so that we have a reference to enable and
disable it.

Scripting the UI 511

2. In Awake, add pauseMenu.SetActive(false); to disable the Pause menu at
the beginning of the game. Even if we disabled the Pause menu in the editor, we add
this just in case we re-enable it by mistake. It must always start disabled.

3. Using the same function but passing true as the first parameter, enable the Pause
menu in the Esc key pressure check:

Figure 18.25 – Enabling the Pause menu when pressing the Esc key
Now, we need to make the Pause menu buttons work. If you recall, in the
previous chapter, we explored the concept of events, implementing them with
UnityEvents and the Button script. Our Pause menu buttons use the same class
to implement the OnClick event, which is an event that informs us that a specific
button has been pressed. Let's resume the game when pressing those buttons by
doing the following:

4. Create a field of the Button type in our Pause script called resumeButton, and
drag resumeButton to it; this way, our Pause script has a reference to the button.

5. In Awake, add a listener function called OnResumePressed to the onClick
event of resumeButton.

512 Scripting the UI, Sounds, and Graphics

6. Make the OnResumePressed function set timeScale to 1 and disable the
Pause menu, as we did in Awake:

Figure 18.26 – Unpausing the game

If you save and test this, you will notice that you cannot click the Resume button because
we disabled the cursor at the beginning of the game, so make sure you re-enable it while
in Pause and disable it when you resume:

Figure 18.27 – Showing and hiding the cursor while in Pause

Scripting the UI 513

Regarding the Visual Scripting version of the Pause script, let's start discussing the pause
mechanism:

Figure 18.28 – Pausing when Escape is pressed

So far, nothing new. We detect that Esc is pressed, and then we call Set Time Scale
and specify the 0 value. Then, we activate the Pause menu (having a reference through
a pauseMenu variable in the Variables component), and finally, we enable the cursor.

Regarding the resume behavior, the nodes to add to the same Pause graph will look
like this:

Figure 18.29 – Unpausing when the resume button is pressed

The only new element on this graph involves the use of the On Button Click node.
As you might expect, that node is an event, and anything connected to it will execute
under the pressure of a button. The way to specify which button we are referring to is by
connecting the button reference variable to the input pin of On Button Click. You can see
how we created a variable of the Button type called unpauseButton in the Variables
component to do this.

514 Scripting the UI, Sounds, and Graphics

Now that you know how to code buttons, I challenge you to code the Exit button's
behavior. Again, remember to add using UnityEngine.UI. Also, you will need to
call Application.Quit(); to exit the game, but take into account that this will do
nothing in the editor; we don't want to close the editor while creating the game. This
function only works when you build the game. So, for now, just call it and if you want to
print a message to be sure that the button is working properly, you can, and a solution is
provided in the following screenshot:

Figure 18.30 – The Quit button script

This solution proposes that you add this script directly to the Quit button Game Object
itself so that the script listens to the onClick event on its Button sibling component,
and in that case, executes the Quit function. You could also add this behavior to the
Pause script, and while that will work, remember that if a script can be split into two
because it does two unrelated tasks, it is always best to split it so that separate behavior is
unrelated. Here, the Pause behavior is not related to the Quit behavior.

Scripting feedback 515

Regarding the Visual Scripting version, the graph to add to the Quit button would look
like this:

Figure 18.31 – The Quit button Visualscript

Simple, right? As we put this in the button itself, we don't even need to specify which
button, as it automatically detects the fact that we are referring to ourselves.

Now that we have our Pause system set up using the UI and buttons, let's continue
looking at other visual and auditive ways to make our player aware of what has happened.

Scripting feedback
We just used the UI to pass on data to the user so that they know what is happening, but
sometimes that's not enough. We can reinforce game events using other types of feedback,
such as sound and explosions, which we integrated into previous chapters.

In this section, we will explore the following feedback concepts:

• Scripting visual feedback

• Scripting audio feedback

• Scripting animations

We will start seeing how to make our gameplay have more feedback, with different visuals
used in the right moments, such as audio and particle systems. Then, we are going to
make the animations of our characters match these moments, for example, we will create
the illusion that they are actually walking.

516 Scripting the UI, Sounds, and Graphics

Scripting visual feedback
Visual feedback is the concept of using different VFX, such as particles and a VFX graph,
to reinforce what is happening. For example, say right now we are shooting, and we know
that this is happening because we can see the bullet. It doesn't exactly feel like shooting as
a proper shooting simulation needs our gun to show the muzzle effect. Another example
would be the enemy dying—it just despawns! That doesn't feel as satisfying as it should be.
We can instead add a little explosion (considering they are robots).

Let's start making our enemies spawn an explosion when they die by doing the following:

1. Create an explosion effect or download one from the Asset Store. It shouldn't loop
and it needs to be destroyed automatically when the explosion is over (ensure
Looping is unchecked and Stop Action is set to destroy in the main module).

2. Some explosions in the Asset Store might use non-URP-compatible shaders. You
can fix them by setting the Edit | Render Pipeline | Univeral Render Pipeline |
Upgrade Selected Materials option to UniveralRP Materials while keeping the
materials selected.

3. Manually upgrade the materials that didn't upgrade automatically.
4. Add a script to the Enemy prefab called ExplosionOnDeath. This will be

responsible for spawning the particles prefab when the enemy dies.
5. Add a field of the GameObject type called particlePrefab and drag the

explosion prefab to it.

Important note
You may be expecting to add the explosion spawning to the Life component.
In that case, you are assuming that anything to do with life will spawn a
particle when dying, but consider scenarios where characters die with a falling
animation instead, or maybe an object that just despawns with no effect
whatsoever. If a certain behavior is not used in most scenarios, it is better to
code it in a separate optional script to allow us to mix and match different
components and get the exact behavior we want.

6. Make the script access the Life component and subscribe to its onDeath event.
7. In the listener function, spawn the particle system in the same location:

Scripting feedback 517

Figure 18.32 – The explosion spawner script

The Visual Scripting version would look like this:

Figure 18.33 – The explosion spawner visual script

518 Scripting the UI, Sounds, and Graphics

As you can see, we are just using the same concepts we learned about in previous chapters,
but combining them in new ways. This is what programming is all about. Let's continue
with the muzzle effect, which will also be a particle system, but we will take another
approach this time:

1. Download a weapon model from the Asset Store and instantiate it so that it is the
parent of the hand of the player. Remember that our character is rigged and has
a hand bone, so you should put the weapon there:

Figure 18.34 – Parenting a weapon in the hand bone

2. Create or get a muzzle particle system. In this case, my muzzle particle system was
created as a short particle system that has a burst of particles and then automatically
stops. Try to get one with that behavior because there are others out there that will
loop instead, and the script to handle that scenario would be different.

3. Create an instance of the particle system prefab in the editor and parent it inside
the weapon, locating it in front of the weapon, aligned with the cannon of the gun.
Make sure the Play On Awake property of the main module of the particle system is
unchecked; we don't want the muzzle to fire until we press the fire key:

Scripting feedback 519

Figure 18.35 – The muzzle parented to the weapon

4. Create a field of the ParticleSystem type called muzzleEffect in
PlayerShooting and drag the muzzle effect that is parented in the gun to it.
Now, we have a reference to the ParticleSystem component of the muzzle to
manage it.

5. Inside the if statement that checks whether we are shooting, execute
muzzleEffect.Play(); to play the particle system. It will automatically stop
and is short enough to finish between key pressures:

Figure 18.36 – The muzzle parented to the weapon

520 Scripting the UI, Sounds, and Graphics

The Visual Scripting version additional nodes and variables would be the following:

Figure 18.37 – The muzzle playing script

Important note
Here, we again have the same question: Will all the weapons have a muzzle
when shooting? In this scenario, I would say yes due to the scope of our
project, so I will keep the code as it is. However, in the future, you can create
an onShoot event if you need other components to know whether this script
is shooting. This way, they can extend the shooting behavior. Consider using
events as a way of enabling plugins in your script.

Now that we have some VFX in place, let's add sound effects.

Scripting audio feedback
VFX added a good depth of immersion to what is happening in the game, but we can
improve this even further with sound. Let's start adding sound to the explosion effect by
doing the following:

1. Download an explosion sound effect.
2. Select the explosion prefab and add Audio Source to it.

Scripting feedback 521

3. Set the downloaded explosion's audio clip as the AudioClip property of the
audio source.

4. Make sure Play On Awake is checked and that Loop is unchecked under
Audio Source.

5. Set the Spatial Blend slider to 3D and test the sound, configuring the 3D Sound
settings as needed:

Figure 18.38 – Adding sound to the explosion
As you can see here, we didn't need to use any script. As the sound is added to the
prefab, it will be played automatically at the very moment the prefab is instantiated.
Now, let's integrate the shooting sound by doing the following:

6. Download a shooting sound and add it through an audio source to the weapon of
the player, this time unchecking the Play On Awake checkbox, and again setting
Spatial Blend to 3D.

7. In the PlayerShooting script, create a field of the AudioSource type called
shootSound and drag the weapon to this property to connect the script with the
AudioSource variable in the weapon.

522 Scripting the UI, Sounds, and Graphics

8. In the if statement that checks whether we can shoot, add the shootSound.
Play(); line to execute the sound when shooting, using the same logic applied
to the particle system:

Figure 18.39 – Adding sound when shooting

The Visual Scripting additional nodes would look like this:

Figure 18.40 – Adding sound when shooting in Visual Scripting

Scripting feedback 523

The only thing to highlight here is that as AudioSource, which plays the shoot sound,
is located in the Player, we just left the AudioSource Play node disconnected, referring
to our own audio source. If we need to refer to an AudioSource in another GameObject,
we would need to reference it via a variable, as we did with the particle system.

Another approach to this would be the same as the one we did with the explosion; just
add the shooting sound to the bullet, but if the bullet collides with a wall, soon enough
the sound will be cut off. Or, if, in the future, we want an automatic weapon sound, it will
need to be implemented as a single looping sound that starts when we press the relevant
key and stops when we release it. This way, we prevent too many sound instances from
overlapping when we shoot too many bullets. Take into account those kinds of scenarios
when choosing the approach to script your feedback.

Now that we have finished with our audio feedback, let's finish integrating our
animation assets, which we prepared in Chapter 13, Creating Animations with Animator,
Cinemachine, and Timeline.

Scripting animations
In Chapter 13, Creating Animations with Animator, Cinemachine, and Timeline, we created
an animator controller as a way to integrate several animations, and we also added
parameters to it to control when the transitions between animations should execute. Now,
it is time to do some scripting to make these parameters be affected by the actual behavior
of the player and match the player's current state by following these steps:

1. In the PlayerShooting script, add a reference to Animator using
GetComponent in Awake and cache it in a field:

Figure 18.41 – Caching the Animator reference

524 Scripting the UI, Sounds, and Graphics

2. Call the animator.SetBool("Shooting", true); function in the if
statement that checks whether we are shooting and add the same function, but pass
false as a second argument in the else clause of the if statement. This function
will modify the "Shooting" parameter of the animator controller:

Figure 18.42 – Setting the Shooting Boolean depending on whether we are shooting

Scripting feedback 525

If you test this, you may notice an error—the animation is not playing. If you check
the script, you will notice that it will be true just for one frame as we are using
GetKeyDown, so the Shooting Boolean will immediately be set to false in the next
frame. One solution, among the several we could implement here, would be to make our
shooting script repeat shootings while pressing the key instead of releasing and clicking
again to shoot another bullet. Check the following screenshot for the solution and try to
understand the logic:

Figure 18.43 – Repetitive shooting script

526 Scripting the UI, Sounds, and Graphics

The added nodes in the Visual Scripting version would look like this:

Figure 18.44 – Animating shooting in Visual Scripting

We essentially use the same condition we used in the If also in the Animator Set Bool
node, as the condition is the same for both. We also changed the Get Key. Also, as you
can see, our script now uses GetKey to keep shooting while keeping the shoot button
pressed, and to prevent shooting in every frame, we compare the current time against the
last shoot time to check how much time has passed since the last shot. We created the
fireRate field to control the time between shots.

For the animator controller's Velocity parameter, we can detect the magnitude of the
velocity vector of Rigidbody, the velocity in meters per second, and set that as the
current value. This can be perfectly separated from the PlayerMovement script, so we
can reuse this if necessary, in other scenarios. So, we need a script such as the following,
which just connects the Rigidbody component's velocity to the animator's Velocity
parameter:

Scripting feedback 527

Figure 18.45 – Setting Velocity Animator variables

And regarding the Visual Scripting version, this is what it would look like:

Figure 18.46 – Setting Velocity Animator variables in Visual Scripting

528 Scripting the UI, Sounds, and Graphics

You may need to increase the 0.01 transitions threshold used so far slightly in the
conditions of the transitions of the animator controller because Rigidbody keeps
moving after releasing the keys. Using 1 worked perfectly for me. Another option would
be to increase the drag and the velocity of the player to make the character stop faster.
Pick whatever method works best for you.

As you can see, we can gather data about the actual movement and shooting action of our
player to inform the animator controller of its state so that it can react accordingly.

Summary
Feedback is an important topic in video games. It gives valuable information to the player,
such as the location of enemies if there is a 3D sound setup, distant shooting depicted by
muzzles being shot in the background, life bars indicating that the player is about to die,
and animations that react according to the player's movements. In this chapter, we saw
different forms of feedback, sounds, VFX, animations, and the UI, which we created in
part 2 of this book. Here, we learned how to use scripting to connect the UI to the game.

Now, you can script the UI, particle systems, and sounds to react to the game status,
including changing the score text or the life bars of the UI or playing particle and sound
effects when the character shoots. This improves the player's immersion experience in
your game.

In the next chapter, we are going to discuss how to create a challenging AI for our
enemies.

19
Implementing

Game AI for
Building Enemies

What is a game if not a great challenge to the player, who needs to use their character's
abilities to tackle different scenarios? Each game imposes different kinds of obstacles
on the Player, and the main one in our game is the enemies. Creating challenging and
believable enemies can be complex; they need to behave like real characters and must
be smart enough not to be easy to kill, but also easy enough that they are not impossible
to kill either. We are going to use basic but good enough AI techniques to make an AI
capable of sensing its surroundings and, based on that information, make decisions. These
decisions will be executed using intelligent pathfinding.

In this chapter, we will cover the following topics:

• Gathering information with sensors

• Making decisions with FSM

• Executing FSM actions

By the end of the chapter, you will have a fully functional enemy capable of detecting the
player and attacking him. So, let's start by learning how to make the sensor systems.

530 Implementing Game AI for Building Enemies

Gathering information with sensors
An AI works first by gathering information about its surroundings and then analyzing
that data to choose an action. At this point, the chosen action is executed. As you already
know, we cannot do anything without information, so let's start with that. There are
several sources of information our AI can use, such as data about itself (life and bullets) or
maybe some game state (winning condition or remaining enemies), which can easily be
found with the code we've looked at so far. However, one important source of information
is the AI's senses. Based on the needs of our game, we might need different senses such as
sight and hearing, but in our case, sight will be enough, so let's learn how to code that.

In this section, we will examine the following sensor concepts:

• Creating Three-Filters sensors with C#

• Creating Three-Filters sensors with Visual Scripting

• Debugging with Gizmos

Let's start by learning how to create a sensor with the Three-Filters approach.

Creating Three-Filters sensors with C#
The most common way to code senses is by using a Three-Filters approach to discard
enemies that are out of sight. The first filter is a distance filter, which will discard enemies
too far away to be seen. Then, there's an angle check, which will check for enemies inside
our viewing cone. Finally, there's a raycast check, which will discard enemies that are
being occluded by obstacles such as walls. Before we start, a word of advice: we will be
using Vector Mathematics here, and covering such topics in-depth is outside the scope
of this book. If you don't understand something, feel free to just copy and paste the code
from the Github repository provided and look for those concepts online. Let's start coding
our sensors:

1. Create an empty GameObject called AI as a child of the Enemy Prefab. You need
to open the Prefab first to be able to modify its children (double-click the Prefab).
Remember to set the transform of this Object to Position (0,1.75,0), Rotation
(0,0,0), and Scale (1,1,1) so that it will be aligned with the Enemy's eyes. We are
doing this to benefit the future sight sensors we will create. Note that your Enemy
prefab might have a different height for the eyes. While we can certainly just put all
the AI scripts directly in Enemy, we did this just for separation and organization
purposes:

Gathering information with sensors 531

Figure 19.1 – AI script container

2. Create a script called Sight and add it to the AI child Object.
3. Create two fields of the float type called distance and angle, and another

two of the LayerMask type called obstaclesLayers and ObjectsLayers.
distance will be used as the vision distance, angle will determine the amplitude
of the view cone, ObstacleLayers will be used by our obstacle check to
determine which Objects are considered obstacles, and ObjectsLayers will be
used to determine what types of Objects we want the sight to detect.

We just want the sight to see enemies; we are not interested in Objects such as walls
or power-ups. LayerMask is a property type that allows us to select one or more
layers to use inside code, so we will be filtering Objects by layer. In a moment, you
will learn how to use it:

Figure 19.2 – Fields to parameterize our sight check

532 Implementing Game AI for Building Enemies

4. In Update, call Physics.OverlapSphere, as shown in the Figure 19.3.

This function creates an imaginary sphere in the place specified by the first
parameter (in our case, our position) and with a radius specified in the second
parameter (the distance property) to detect Objects with the layers specified in
the third parameter (ObjectsLayers). It will return an array containing all the
Object Colliders that were found inside the sphere. These functions use Physics
to do this check, so the Objects must have at least one collider. This is how we will
be getting all the enemies inside our view distance, and we will be filtering them
further in the following steps. Notice that we are passing our position to the first
parameter, which is not actually the position of the Enemy, but the position of the
AI child object, given our script is located there. This highlights the importance of
the position of the AI object.

Important Note
Another way of accomplishing the first check is to just check the distance to the
Player, or, if you're looking for other kinds of Objects, to a Manager containing
a list of them, but the way we chose here is more versatile and can be used in
any kind of Object.

Also, you might want to check the Physics.
OverlapSphereNonAlloc version of this function, which does the same
but is more performant by not allocating an array to return the results.

5. Iterate over the array of Objects returned by the function:

Figure 19.3 – Getting all the Objects at a certain distance

Gathering information with sensors 533

6. To detect whether the Object falls inside the vision cone, we need to calculate the
angle between our viewing direction and the direction to the Object itself. If the
angle between those two directions is less than our cone angle, we consider that the
Object falls inside our vision.

We can start detecting the direction toward the Object, which is calculated by
normalizing the difference between the Object position and ours, as shown in the
following screenshot. Note that we used bounds.center instead of transform.
position; this way, we can check the direction to the center of the Object instead
of its pivot. Remember that the Player's pivot is in the ground and that the raycheck
might collide with it before the Player does:

Figure 19.4 – Calculating the direction from our position to the collider

7. We can use the Vector3.Angle function to calculate the angle between two
directions. In our case, we can calculate the angle between the direction toward the
Enemy and our forward vector to see the angle:

Figure 19.5 – Calculating the angle between two directions

Important Note
If you want, you can use Vector3.Dot instead, which will execute a dot
product. Vector3.Angle actually uses that one, but to convert the result
of the dot product into an angle, it needs to use trigonometry, and this can be
expensive to calculate. Anyway, our approach is simpler and fast as you don't
have a big number of sensors (50+, depending on the target device), which we
won't have.

8. Now, check whether the calculated angle is less than the one specified in the angle
field. Consider that if we set an angle of 90, it will actually be 180, because if the
Vector3.Angle function returns, for example, 30, it can be 30 to the left or the
right. If our angle says 90, it can be both 90 to the left or the right, so it will detect
Objects in a 180-degree arc.

534 Implementing Game AI for Building Enemies

9. Use the Physics.Line function to create an imaginary line between the first and
the second parameter (our position and the collider's position) to detect Objects
with the layers specified in the third parameter (the obstacles layers). Then, return
a boolean indicating whether that ray hit something.

The idea is to use the line to detect whether there are any obstacles between
ourselves and the detected collider, and if there is no obstacle, this means that
we have a direct line of sight toward the Object. Again, note that this function
depends on the obstacle Objects having colliders, which in our case, they do
(walls, floor, and so on):

Figure 19.6 – Using Linecast to check for obstacles between the sensor and the target Object

10. If the Object passes these three checks, this means that this is the Object we are
currently seeing, so we can save it inside a field of the Collider type called
detectedObject. By doing this, we can use this information later in the rest of
the AI scripts.

Consider using break to stop for, which is iterating the colliders, to
prevent resources from being wasted by checking the other Objects. Also, set
detectedObject to null before for to clear the result from the previous frame.
So, in case, in this frame, we don't detect anything – it will keep the null value so
that we can see there is nothing in the sensor:

Gathering information with sensors 535

Figure 19.7 – Full sensor script

Important Information
In our case, we are using the sensor just to look for the Player, the only Object
the sensor is in charge of looking for. However, if you want to make the sensor
more advanced, you can just keep a list of detected Objects, and then place
every Object that passes the three tests inside it, instead of just the first one.

536 Implementing Game AI for Building Enemies

11. In the Editor window, configure the sensor as you desire. In this case, we will set
ObjectsLayer to Player so that our sensor will focus its search on Objects
within that layer, and obstaclesLayer to Default, which is the layer we used
for walls and floors:

Figure 19.8 – Sensor settings

12. To test this, just place an Enemy with a movement speed of 0 in front of the Player,
select its AI child Object, and then play the game to see how the property is set in
the Inspector window. Also, try putting an obstacle between the two and check that
the property says "None" (null). If you don't get the expected result, double-check
your script, its configuration, and whether the Player has the Player layer and the
obstacles have the Default layer. Also, you might need to raise the AI Object
a little bit to prevent the ray from starting below the ground and hitting it:

Figure 19.9 – The sensor capturing the Player

Given the size of the script, let's dedicate an entire section to the Visual Scripting version,
given that it also introduces some new Visual Scripting concepts that are needed here.

Gathering information with sensors 537

Creating Three-Filters sensors with Visual Scripting
Regarding the Visual Scripting version, let's check it part by part, starting with Overlap
Sphere:

Figure 19.10 – Overlap Sphere in Visual Scripting

538 Implementing Game AI for Building Enemies

So far, we called Overlap Sphere after setting the sensedObject variable to null.
Something to look for in the Variables component in the Inspector window is how
the sensedObject variable doesn't have a type (a Null type is no type here). This
isn't possible in C# as all variables must have a type, and while we could set the
sensedObject variable to the proper type (Collider), we will keep the variable type to
be set later via a script. Even if we set the type now, Visual Scripting tends to forget the
type if no value is set, and we cannot set it until we actually detect something. Don't worry
about this, though – when we set the variable through our script, it will acquire the proper
type. Actually, all variables in Visual Scripting can switch types at runtime based on what
we set for them, given how the Variables component works. Anyway, I don't recommend
doing this – try to stick with the intended variable type.

Important Information
We just said that all the variables in C# must have a type, but that's not entirely
true. There are ways to create dynamically typed variables, but it is not a good
practice I recommend unless no other option is present (there are always other
options).

Another thing to observe is how we set sensedObject to null at the beginning using
the Null node, which effectively represents the null value.

Now, let's explore the For Each Loop part:

Figure 19.11 – Iterating collections in Visual Scripting

Gathering information with sensors 539

We can see that one of the output pins of Overlap Sphere is a little list that represents
the Collider array that's returned by Overlap Sphere. We connect that pin to the For
Each Loop node, which, as you might imagine, iterates over the elements of the provided
collection (array, list, dictionary, and so on). The Body pin represents the nodes to execute
in each iteration of the loop, and the Item output pin represents the item currently being
iterated – in our case, one of the colliders that was detected in Overlap Sphere. Finally,
we save that item in a Flow potentialDetection variable. Flow variables are the
equivalent of Local Variables in C# functions. The idea here is that, given the size of the
graph and the number of times we will be needing to query the currently iterated item, we
don't want the line connecting the output Item pin to the other nodes to cross the entire
graph. Instead, we will save that item in the Flow variable to reference it later, essentially
naming that value so that it can be referenced later in the graph, as you will see shortly.

Now, let's explore the Angle check:

Figure 19.12 – Angle check in Visual Scripting

540 Implementing Game AI for Building Enemies

Here, you can see a direct translation of what we did in C# to detect the angle, so this
should be pretty self-explanatory. The only thing here is given the proximity of the Item
output pin to the Get Position node, where we query its position, we directly connected
the node, but we will use the potentialDetection Flow variable later.

Now, let's explore the Linecast part:

Figure 19.13 – Linecast check in Visual Scripting

Again, essentially, this is the same as we did previously in C#. The only thing to highlight
here is the fact we used the potentialDetection Flow variable to get the position
of the current item being iterated, instead of connecting the Get Position node to the
Foreach Item output pin.

Gathering information with sensors 541

Now, let's explore the final part:

Figure 19.14 – Setting sensedObject

Again, this is pretty much self-explanatory: if Linecast returns false, we set
potentialDetection (the currently iterated item) as sensedObject, which is the
variable that will be accessed by other scripts later to query which object our AI can see
right now. Something to consider here is the usage of the Break Loop node, which is the
equivalent of the C# break keyword. Essentially, we are stopping the Foreach we are
currently in.

Now, even though we have our sensor working, sometimes, checking whether it's working
or configured properly requires some visual aids we can create using Gizmos.

Debugging with Gizmos
As we start creating our AI, we will begin to detect certain errors in edge cases, usually
related to misconfigurations. You may think that the Player falls inside the sight of the
Enemy, but maybe you cannot see that the line of sight is occluded by an Object, especially
since the enemies move constantly. A good way to debug those kinds of scenarios is by
using Editor-only visual aids known as Gizmos, which allow you to visualize invisible
data such as the sight distance or the Linecasts that have been executed to detect obstacles.

542 Implementing Game AI for Building Enemies

Let's start by learning how to create Gizmos by drawing a sphere representing the sight
distance:

1. In the Sight script, create an event function called OnDrawGizmos. This event
is only executed in the Editor window (not in builds) and is where Unity asks us to
draw Gizmos.

2. Using the Gizmos.DrawWireSphere function, pass our position as the first
parameter and the distance as the second parameter. This will draw a sphere around
our position that specifies the radius of our distance. You can check how the size of
the Gizmo changes as you change the distance field:

Figure 19.15 – Sphere Gizmo

3. Optionally, you can change the color of the Gizmo by setting Gizmos.color
before calling the drawing functions:

Figure 19.16 – Gizmos drawing code

Gathering information with sensors 543

Important Information
At this point, you are drawing Gizmos constantly. If you have lots of enemies,
they can pollute the Scene view with too many Gizmos. In that case, try the
OnDrawGizmosSelected event function instead, which draws Gizmos
only if the object is selected.

4. We can draw the lines representing the cone using Gizmos.DrawRay, which
receives the origin of the line to draw and the direction of the line. This can be
multiplied by a certain value to specify the length of the line, as shown in the
following screenshot:

Figure 19.17 – Drawing rotated lines

5. Here, we used Quaternion.Euler to generate a quaternion based on the angles
we want to rotate. If you multiply this quaternion by a direction, we will get the
rotated direction. We are taking our forward vector and rotating it based on the
angle field that will generate our cone vision lines. Also, we are multiplying this
direction by the sight distance to draw the line as far as our sight can see; this way,
the line matches the end of the sphere:

Figure 19.18 – Vision Angle lines

544 Implementing Game AI for Building Enemies

We can also draw the Line Casts, which check the obstacles, but since those depend on the
current situation of the game, such as the Objects that pass the first two checks and their
positions, we can use Debug.DrawLine instead, which can be executed in the Update
method. This version of DrawLine is designed to be used at runtime only. The Gizmos
we saw also execute in the Editor window. Let's try them out:

1. First, let's debug the scenario where LineCast didn't detect any obstacles. For
this, we need to draw a line between our sensor and the Object. Here, we can call
Debug.DrawLine in the if statement that calls LineCast, as shown in the
following screenshot:

Figure 19.19 – Drawing a line in Update

2. The following screenshot shows DrawLine in action:

Figure 19.20 – Drawing a Line toward the detected Object

Gathering information with sensors 545

3. We also want to draw a line in red when the sight is occluded by an Object. In this
case, we need to know where Linecast hit so that we can use an overloaded
version of the function. This provides an out parameter that gives us more
information about what the line collided with, such as the position of the hit and the
normal and the collided Object, as shown in the following screenshot:

Figure 19.21 – Getting information about Linecast

Important Information
Note that Linecast doesn't always collide with the nearest obstacle but with
the first Object it detects in the line, which can vary in order. If you need to
detect the nearest obstacle, look for the Physics.Raycast version of the
function.

4. We can use this information to draw the line from our position to the hit point in
else of the if sentence when the line collides with something:

Figure 19.22 – Drawing a line in case we have an obstacle

5. The following screenshot shows the results:

Figure 19.23 – Line when an obstacle occludes vision

546 Implementing Game AI for Building Enemies

Regarding the Visual Scripting version, the first part will look like this:

Figure 19.24 – Drawing Gizmos with Visual Scripting

Then, the angle lines look like this:

Figure 19.25 – Drawing Angle lines of sight in Visual Scripting

Making decisions with FSMs 547

Here, we are only showing one, but the other is essentially the same except we multiply
the angle by minus one. Finally, the red lines toward the detected object and obstacles will
look like this:

Figure 19.26 – Drawing lines toward obstacles or detected objects with Visual Scripting

Note that to accomplish this, we needed to change the previous Linecast node for the
version that returns RaycastHit information at the end.

In this section, we created a sensors system that will give sight to our AI, as well as plenty
of information about what to do next. Now that we have completed our sensors, let's use
the information provided by them to make decisions with FSMs.

Making decisions with FSMs
We explored the concept of Finite State Machines (FSMs) when we used them in the
Animator. We learned that an FSM is a collection of states, each one representing an
action that an Object can be executing at a time, and a set of transitions that dictate how
the states are switched. This concept is not only used in Animation but in a myriad of
programming scenarios, and one of the most common ones is in AI. We can just replace
the animations with AI code in the states to get an AI FSM.

548 Implementing Game AI for Building Enemies

In this section, we will examine the following AI FSM concepts:

• Creating the FSM in C#

• Creating transitions

• Creating the FSM in Visual Scripting

Let's start by creating our FSM skeleton.

Creating the FSM in C#
To create our FSM, we need to recap on some basic concepts. Remember that an
FSM can have a state for each possible action it can execute and that only one can be
executed at a time. In terms of AI, we can be Patrolling, Attacking, Fleeing, and so on.
Also, remember that there are transitions between States that determine conditions that
must be met to change from one state to the other. In terms of AI, this can be the user
being near the Enemy to start attacking or their life being so low that they need to start
fleeing. The following screenshot shows a simple example of the two possible states
of a door:

Figure 19.27 – FSM example

Making decisions with FSMs 549

There are several ways to implement FSMs for AI; you can even use the Animator if you
want to or download an FSM system from the Asset Store. In our case, we are going to
take the simplest approach possible, a single script containing a set of if sentences, which
can be basic but are still a good start for understanding the concept. Let's implement this:

1. Create a script called EnemyFSM in the AI child Object of the Enemy.
2. Create an enum called EnemyState with the GoToBase, AttackBase,

ChasePlayer, and AttackPlayer values. We are going to have these states in
our AI.

3. Create a field of the EnemyState type called currentState, which will hold the
current state of our Enemy:

Figure 19.28 – EnemyFSM state definition

4. Create three functions named after the states we defined.
5. Call those functions in Update, depending on the current state:

Figure 19.29 – If-based FSM

550 Implementing Game AI for Building Enemies

Important Information
Yes, you can use a switch here, but I just prefer the regular if syntax.

6. In the Editor window, test how changing the currentState field will change
which state is active while checking the messages being printed in the console:

Figure 19.30 – State testing

As you can see, this is a pretty simple but functional approach, so let's continue with this
FSM by creating transitions for it.

Creating transitions
If you remember the transitions we created in the Animator Controller, those were a
collection of conditions that are checked if the state the transition belongs to is active.
In our FSM approach, this translates into if sentences that detect conditions inside the
states. Let's create the transitions between our proposed states, as follows:

1. Add a field of the Sight type called sightSensor to our FSM script, and
drag the AI GameObject to that field to connect it to the Sight component
there. Since the FSM component is in the same Object as Sight, we can also use
GetComponent instead. However, in advanced AIs, you might have different
sensors that detect different Objects, so I prefer to prepare my script for that
scenario, but pick the approach you like the most.

Making decisions with FSMs 551

2. In the GoToBase function, check whether the detected Object of the Sight
component is not null, meaning that something is inside our line of vision. If
our AI is going toward the base but detects an Object on the way there, we must
switch to the Chase state to pursue the Player. This can be seen in the following
screenshot:

Figure 19.31 – Creating transitions

3. Also, we must change to AttackBase in case we are near enough to the Object
that it must be damaged to decrease the base life. We can create a field of the
Transform type called baseTransform and drag the Base Life Object
there so that we can check the distance. Remember to add a float field called
baseAttackDistance to make that distance configurable:

Figure 19.32 – GoToBase Transitions

552 Implementing Game AI for Building Enemies

4. In the case of ChasePlayer, we need to check whether the Player is out of sight
so that we can switch back to the GoToBase state, or whether we are near enough
to Player to start attacking it. We will need another distance field, which
determines the distance for attacking the Player, and we might want different
attacking distances for those two targets. Consider an early return in the transition
to prevent getting null reference exceptions if we try to access the position of the
sensor-detected Object when there isn't one:

Figure 19.33 – ChasePlayer Transitions

5. For AttackPlayer, we need to check whether Player is out of sight to go back
to GoToBase or whether it is far enough to go back to chasing it. As you can see,
we multiplied PlayerAttackDistance to make the stop-attacking distance
a little bit larger than the start-attacking distance; this will prevent switching back
and forth rapidly between attack and chase when the Player is near that distance.
You can make it configurable instead of hardcoding 1.1:

Figure 19.34 – AttackPlayer Transitions

6. In our case, AttackBase won't have any transition. Once the Enemy is close
enough to the base to attack it, it will stay like that, even if the Player starts shooting
at it. Its only objective, once there, is to destroy the base.

Making decisions with FSMs 553

7. Remember that you can use Gizmos to draw the distances:

Figure 19.35 – FSM Gizmos

8. Test the script by selecting the AI object before hitting play and then move the
Player around, checking how the states change in the Inspector window. You
can also keep the original print messages in each state to see them change in the
console. Remember to set the attack distances and the references to the Objects. The
following screenshot shows the settings that we used:

Figure 19.36 – Enemy FSM settings

A little problem that we have now is that the spawned enemies won't have the necessary
references to make the distance calculations for Base Transform. You will notice that
if you try to apply the changes for the Enemy of the scene to the Prefab (Overrides ->
Apply All), Base Transform will say None. Remember that Prefabs cannot contain
references to Objects in the scene, which complicates our work here. One alternative
would be to create BaseManager, a singleton that holds a reference to the damage
position, so that our EnemyFSM can access it. We could also make use of functions
such as GameObject.Find to find our Object.

554 Implementing Game AI for Building Enemies

In this case, we will see the latter. Even though it may be less performant than the
Manager version, I want to show you how to use it to expand your Unity toolset. In this
case, just set the baseTransform field in Awake to the return of GameObject.Find
while using BaseDamagePoint as the first parameter, which will look for an Object
with that name, as shown in the following screenshot. Also, feel free to remove the private
keyword from the baseTransform field; now that is set via code, it makes little sense
to display it in the Editor window; we should debug it instead. You will see that now, our
wave-spawned enemies will change states:

Figure 19.37 – Searching for an Object in the scene by name

Now that our FSM states have been coded and transition properly, let's learn how to
do the same in Visual Scripting. Feel free to skip the following section if you are only
interested in the C# version.

Creating the FSM in Visual Scripting
So far, every script we created in Visual Scripting was mostly a mirror of the C# version,
but with some differences in some nodes. With State Machines, we could do the same,
but instead, we are going to use the State Machine system of Visual Scripting. The concept
is the same in that you have states and can switch between them, but how the states are
organized and when the transitions trigger is managed visually, in a similar way to what
the Animator system does. So, let's learn how we can use the system to create our first
State Machine Graph and some States. Follow these steps:

1. Add the State Machine component to our Enemy. Remember that it is called State
Machine and not Script Machine, the latter being the component for regular Visual
Scripts.

2. Click the New button in the component and select a place to save the State Machine
Graph asset, in a similar way to what we've been doing so far for regular Visual
Scripts. In my case, I called it EnemyFSM:

Making decisions with FSMs 555

Figure 19.38 – Creating a Visual State Machine

3. Double-click the State Machine Graph to edit it as usual.
4. Right-click in an empty area of the Graph editor and select Create Script State to

create our first state:

Figure 19.39 – Creating our first Visual State Machine State

5. Repeat step 4 three more times to create the necessary states:

Figure 19.40 – Visual States

556 Implementing Game AI for Building Enemies

6. Select any of them. Then, in the Info panel on the left, fill in the Title field
(the first one) with the name of any of the states we created previously
(GoToBase, AttackBase, ChasePlayer, or AttackPlayer). If you
don't see the Info panel, click the button with the "i" in the middle to display it:

Figure 19.41 – Renaming a Visual State

7. Repeat this for the rest of the state nodes until you have each node named after each
state we created in the C# section:

Figure 19.42 – All the needed states

Making decisions with FSMs 557

8. Here, you can see that one of the states has a green bar at the top, which represents
which node is supposed to be the first one. I renamed that initial state GoToBase
as that's the one I prefer to be the first, but if you don't have that one as the starting
one, right-click the node that currently has the green bar in your state machine and
select Toggle Start to remove the green bar from it. Then, repeat this for the node
that you want to be the first one (GoToBase, in our scenario), adding the green bar
to that one.

Important Information
Something to consider is that you can have more than one Start State in Visual
Scripting, which means you can have multiple states running at the same time
and transitioning. Even if possible, I recommend that you avoid having more
than one state active at a time to make things simple.

9. Double-click GoToBase to enter the logic edit mode for them. Connect a print
message in the Update event node to print a message saying GoToBase:

Figure 19.43 – Our first state machine logic

10. In the top bar, click the EnemyFSM label at the left of GoToBase to return to the
whole State Machine view.

558 Implementing Game AI for Building Enemies

11. Feel free to delete the other event nodes if you are not planning to use them:

Figure 19.44 – Returning to the state machine's editor mode

12. Repeat steps 9 to 11 for each state until all of them print their names.

With this, we have created the nodes representing the possible states of our AI. In the next
section, we will be adding logic to them to make them meaningful, but before that, we
need to create the transitions between the states and the conditions that need to be met to
trigger them. To do so, follow these steps:

1. Create three variables in the Variables component of the Enemy called
baseTransform, baseAttackDistance, and playerAttackDistance.
We are going to need them to do the transitions.

2. Don't set any type to baseTransform as we will fill it later via code. However,
regarding baseAttackDistance, make it a Float type with a value of 2. Finally,
for playerAttackDistance, also make it a Float type with a value of 3. Feel
free to change those values if you wish:

Figure 19.45 – Variables needed for our transitions

3. Right-click the GoToBase node and select the Make Transition option; then, click
the ChasePlayer node. This will create a transition between the two states:

Making decisions with FSMs 559

Figure 19.46 – A transition between two nodes

4. Repeat step 9 for each transition we created in the C# version. It will need to look
as follows:

Figure 19.47 – All the needed transitions

560 Implementing Game AI for Building Enemies

5. Double-click the yellow shape in the middle of the transition between GoToBase
and Chase Player to enter the Transition mode. Here, you will be able to specify
the condition that will trigger that transition (instead of using an if statement
during the state logic). Remember that you have two yellow shapes, one for each
transition direction, so ensure that you are double-clicking the correct one based
on the white arrows connecting them.

6. Modify the graph to check if the sensedObject variable is Not Null. It should
look like this:

Figure 19.48 – Adding a transition condition

7. The transition between GoToBase and AttackBase should look like this:

Figure 19.49 – GoToBase to AttackBase transition condition

Making decisions with FSMs 561

8. Now, ChasePlayer to GoToBase should look as follows:

Figure 19.50 – ChasePlayer to GoToBase transition condition

9. ChasePlayer to AttackPlayer should look like this. Essentially, this is the same
as GoToBase and AttackBase in that there's a distance check, but there's different
targets here:

Figure 19.51 – ChasePlayer to AttackPlayer transition condition

562 Implementing Game AI for Building Enemies

10. AttackPlayer to ChasePlayer should look like this. This is another distance check
but this one is checking whether the distance is greater and multiplying the distance
by 1.1 (to prevent transition jittering, as we explained in the C# version):

Figure 19.52 – AttackPlayer to ChasePlayer transition condition

11. Finally, for AttackPlayer to GoToBase, this is the expected graph:

Figure 19.53 – AttackPlayer to GoToBase transition condition

Making decisions with FSMs 563

Something we need to tackle before moving on is the fact that we still don't have any
value set in the baseTransform variable. The idea is to fill it via code, as we did in the
C# version. However, something to consider here is that we cannot add an Awake event
node to the whole state machine, just to the states.

In this scenario, we could use the OnEnterState event, which is an exclusive event node
for state machines. It will execute as soon as the state becomes active, which is useful for
state initializations. We could add the logic to initialize the baseTransform variable in
OnEnterState of the GoToBase state, given it is the first state we execute. This way, the
GoToBase logic will look as follows. Remember to double-click the state node to edit it:

Figure 19.54 – GoToBase initialization logic

564 Implementing Game AI for Building Enemies

Notice how here, we just save the result of the Find node in the variable, instead of
getting the transform and then saving it. While this is possible, it's not needed, given
the GetPosition node also works with GameObjects directly, so there's no need to
pass only Transform (as we've done so far). Also, consider that in this case, we will be
executing the Set Variable node not only when the object initializes, but also each time
GoToBase becomes the current state. If this results in unexpected behavior, other options
could be to create a new Initial State that initializes everything and then transition to
the rest of the states, or maybe create a classic Visual Script graph that initializes those
variables in Awake.

With that, we have learned how to create a decision-making system for our AI through
FSMs. It will make decisions based on the information that's gathered by sensors and
other systems. Now that our FSM states have been coded and transition properly, let's
make them do something.

Executing FSM actions
Now, we need to do the last step—make the FSM do something interesting. Here, we can
do a lot of things, such as shoot the base or the Player and move the Enemy toward its
target (the Player or the base). We will be handling movement with a Unity Pathfinding
system called NavMesh, a tool that allows our AI to calculate and traverse paths between
two points while avoiding obstacles, which needs some preparation to work properly.

In this section, we will examine the following FSM action concepts:

• Calculating our scene's Pathfinding

• Using Pathfinding

• Adding the final details

Let's start by preparing our scene for movement with Pathfinding.

Calculating our scene's Pathfinding
Pathfinding algorithms rely on simplified versions of the scene. Analyzing the full
geometry of a complex scene is almost impossible to do in real time. There are several
ways to represent Pathfinding information that's been extracted from a scene, such as by
using Graphs and NavMesh geometries. Unity uses the latter – a simplified mesh similar
to a 3D model that spans all the areas that Unity determines are walkable. The following
screenshot shows an example of a NavMesh that's been generated in a scene; that is, the
light blue geometry:

Executing FSM actions 565

Figure 19.55 – NavMesh of the walkable areas in the scene

Generating a NavMesh can take seconds to minutes, depending on the size of the scene.
That's why Unity's Pathfinding system calculates that once in the Editor window: so that
when we distribute our game, the user will use the pre-generated NavMesh. Just like
Lightmapping, NavMesh is baked into a file for later usage. Like Lightmapping, the main
caveat here is that the NavMesh Objects cannot change at runtime. If you destroy or move
a floor tile, the AI will still walk over that area. The NavMesh on top of that didn't notice
the floor isn't there anymore, so you are not able to move or modify those Objects in any
way. Luckily, in our case, we won't suffer from any modifications being made to the scene
at runtime, but consider that there are components such as NavMeshObstacle that can
help us in those scenarios.

To generate a NavMesh for our scene, do the following:

1. Select any walkable Object and the obstacles on top of it, such as floors, walls, and
other obstacles, and mark them as Static. You might remember that the Static
checkbox also affects Lightmapping, so if you want an Object not to be part of
Lightmapping but contribute to generating NavMesh, you can click the arrow to
the left of the static check and select Navigation Static only. Try to limit Navigation
Static Objects to the ones that the enemies will traverse to increase the generation
speed of NavMesh. Making the Terrain navigable, in our case, will increase the
generation time a lot, and we will never play in that area.

566 Implementing Game AI for Building Enemies

2. Open the NavMesh panel in Window | AI | Navigation.
3. Select the Bake tab, click the Bake button at the bottom of the window, and check

the generated NavMesh:

Figure 19.56 – Generating a NavMesh

And that's pretty much everything you need to do. Of course, there are lots of settings you
can fiddle around with, such as Max Slope, which indicates the maximum angle of the
slope the AI will be able to climb, and Step Height, which will determine whether the AI
can climb stairs, connecting the floors between the steps in NavMesh. However, since we
have a plain and simple scene, the default settings will suffice.

Now, let's make our AI move around NavMesh.

Using pathfinding
To make an AI Object that moves with NavMesh, Unity provides the NavMeshAgent
component, which will make our AI stick to NavMesh, preventing the Object from going
outside it. It will not only calculate the Path to a specified destination automatically but
also move the Object through the path by using Steering Behavior Algorithms, which
mimic the way a human would move through the path, slowing down on corners and
turning with interpolations instead of instantaneously. Also, this component is capable
of evading other NavMeshAgents running in the scene, preventing all the enemies from
collapsing in the same position.

Executing FSM actions 567

Let's use this powerful component by doing the following:

1. Select the Enemy Prefab and add the NavMeshAgent component to it. Add it to
the root Object, the one called Enemy, not the AI child – we want the whole Object
to move. You will see a cylinder around the Object representing the area the Object
will occupy in NavMesh. Note that this isn't a collider, so it won't be used for
physical collisions:

Figure 19.57 – The NavMeshAgent component

2. Remove the ForwardMovement component; from now on, we will drive the
movement of our Enemy with NavMeshAgent.

3. In the Awake event function of the EnemyFSM script, use the
GetComponentInParent function to cache the reference of NavMeshAgent.
This will work similarly to GetComponent – it will look for a component in our
GameObject, but if the component is not there, this version will try to look for
that component in all the parents. Remember to add the using UnityEngine.
AI line to use the NavMeshAgent class in this script:

Figure 19.58 – Caching a parent component reference

568 Implementing Game AI for Building Enemies

Important Information
As you can imagine, there is GetComponentInChildren, which
searches for components in GameObject first and then in all its children,
if necessary.

4. In the GoToBase state function, call the SetDestination function of the
NavMeshAgent reference, passing the position of the base Object as the target:

Figure 19.59 – Setting the destination of our AI

5. Save the script and test this with a few enemies in the scene or with the enemies
spawned in waves. You will see a problem where the enemies will never stop going
toward the target position, entering inside the Object, if necessary, even if the
current state of their FSMs changes when they are near enough. That's because we
never told NavMeshAgent to stop, which we can do by setting the isStopped
field of the agent to true. You might want to tweak the distance of AttackBase
to make the enemy stop a little bit nearer or further:

Figure 19.60 – Stopping agent movement

6. We can do the same for ChasePlayer and AttackPlayer. In ChasePlayer,
we can set the destination of the agent to the Player position, and in
AttackPlayer, we can stop the movement. In this scenario, AttackPlayer can
go back again to GoToBase or ChasePlayer, so you need to set the isStopped
agent field to false in those states or before doing the transition. We will pick the
former, as that version will cover other states that also stop the agent without extra
code. We will start with the GoToBase state:

Executing FSM actions 569

Figure 19.61 – Reactivating the agent

7. Now, let's continue with ChasePlayer:

Figure 19.62 – Reactivating the agent and chasing the Player

8. Finally, let's alter AttackPlayer:

Figure 19.63 – Stopping the movement

9. You can tweak the Acceleration, Speed, and Angular Speed properties of
NavMeshAgent to control how fast the Enemy will move. Also, remember to apply
the changes to the Prefab for the spawned enemies to be affected.

570 Implementing Game AI for Building Enemies

Regarding the Visual Scripting versions, GoToBase will look as follows:

Figure 19.64 – Making our agent move

Note that we deleted Update, which is printing a message, as we don't need it anymore.
Also, note that we call the Set Destination node after, also in the OnEnterState event, as
we just need to do this once. We do this for every frame in the C# version for simplicity,
but this isn't necessary, so we are taking advantage of the OnEnterState event. We
can emulate this behavior in the C# version if we want, executing these actions when
we change the state (inside the Ifs that check the transition conditions), instead of
the update. Finally, notice how we needed to use the GetParent node to access the
NavMeshAgent component in the Enemy's root object. This is needed because we are
currently in the AI child object.

The AttackBase state will look like this:

Figure 19.65 – Making our agent stop

Executing FSM actions 571

The ChasePlayer state will look like this:

Figure 19.66 – ChasePlayer logic

Finally, AttackPlayer will look like this:

Figure 19.67 – AttackPlayer logic

Now that we have movement in our enemy, let's add the final details to our AI.

572 Implementing Game AI for Building Enemies

Adding the final details
Two things are missing here: the Enemy is not shooting any bullets and it doesn't have
animations. Let's start by fixing the shooting issue:

1. Add a bulletPrefab field of the GameObject type to our EnemyFSM script
and a float field called fireRate.

2. Create a function called Shoot and call it inside AttackBase and
AttackPlayer:

Figure 19.68 – Shooting function calls

3. In the Shoot function, place code that's similar to the code we used in the
PlayerShooting script to shoot bullets at a specific fire rate, as shown in the
following screenshot. Remember to set the Enemy layer in your Enemy Prefab, in
case you didn't previously, to prevent the bullet from damaging the Enemy itself.
You may also want to raise the AI script a little bit to shoot bullets in another
position or, better, add a shootPoint transform field and create an empty Object
in the Enemy to use as the spawn position. If you do that, consider making the
empty Object not rotated so that the Enemy rotation affects the direction of the
bullet properly:

Adding the final details 573

Figure 19.69 – Shooting function code

Important Information
Here, you will find some duplicated shooting behavior between
PlayerShooting and EnemyFSM. You can fix this by creating a Weapon
behavior with a function called Shoot that instantiates bullets and takes into
account the fire rate, before calling it inside both components to re-utilize it.

4. When the agent is stopped, not only does the movement stop but also the rotation.
If the Player moves while the Enemy is attacked, we still need the Enemy to face
it to shoot bullets in its direction. For this, we can create a LookTo function that
receives the target position to look toward and call it in AttackPlayer and
AttackBase, passing the target to shoot at:

Figure 19.70 – LookTo function calls

574 Implementing Game AI for Building Enemies

5. Complete the LookTo function by giving the direction of our parent to the
target position. We can access our parent with transform.parent because we
are the child AI Object. The Object that will move is our parent. Then, we must
set the Y component of the direction to 0 to prevent the direction from pointing
upward or downward – we don't want our enemy to rotate vertically. Finally, we
must set the forward vector of our parent to that direction so that it will face the
target position immediately. You can replace this with interpolation by using
quaternions to get a smoother rotation if you want to, but let's keep things as
simple as possible for now:

Figure 19.71 – Looking toward a target
Finally, we can add animations to the Enemy using the same Animator Controller
we used in the Player and set the parameters with other scripts.

6. Add an Animator component to the Enemy, if it's not already there, and set the
same Controller that we used in the Player; in our case, this is also called Player.

7. Create and add a script to the Enemy root Object called NavMeshAnimator,
which will take the current velocity of NavMeshAgent and set it to the Animator
Controller. This will work similar to the VelocityAnimator script and is in
charge of updating the Animator Controller velocity parameter with the velocity
of our Object. We didn't use that one here because NavMeshAgent doesn't
use Rigidbody to move. It has its own velocity system. We can actually set
Rigidbody to kinematic if we want because of this since it moves but not
with Physics:

Adding the final details 575

Figure 19.72 – Connecting NavMeshAgent to our Animator Controller

8. Cache a reference to the parent Animator in the EnemyFSM script. Just do the
same thing we did to access NavMeshAgent:

Figure 19.73 – Accessing the parent's Animator reference

576 Implementing Game AI for Building Enemies

9. Turn on the Shooting animator parameter inside the Shoot function to make
sure that every time we shoot, the parameter is set to true (checked):

Figure 19.74 – Turning on the shooting animation

10. Turn off boolean in all non-shooting states, such as GoToBase and
ChasePlayer:

Figure 19.75 – Turning off the shooting animation

Regarding the Visual Scripting version, GoToBase will look like this:

Adding the final details 577

Figure 19.76 – GoToBase state

Notice that we needed the GetParent node to access the Enemy's root GameObject again,
this time for Animator. The ChasePlayer state actions look like this:

Figure 19.77 – ChasePlayer state

578 Implementing Game AI for Building Enemies

The AttackBase actions look like this:

Figure 19.78 – AttackBase state

In this state, we have some things to highlight. First, we are using the LookAt node in
the OnEnterState event node. As you might imagine, this does the same as we did with
math in C#. We specify a target to look at (our base transform) and then we specify
that World Up is a vector pointing upward (0,1,0). This will make our object look at the
base but maintain its up vector pointing to the sky, meaning our object will not look at
the floor if the target is lower than him. We can use this function in C# if we want to
(transform.LookAt), but the idea was to show you all the available options. Also,
consider that we only execute LookAt when the state becomes active. Since the base
doesn't move, we don't need to constantly update our orientation.

The second thing to highlight is that we used coroutines to shoot, which is the same idea
we used in Enemy Spawner to constantly spawn enemies. Essentially, we make an infinite
loop between Wait For Seconds and Instantiate. We took this approach here because it
was convenient, given it takes fewer nodes in Visual Scripting. Remember to select the
OnEnterState node and check the Coroutine checkbox, as we did previously. Also, note
that we need a new Float type variable called fireRate in the Enemy's AI child object:

Adding the final details 579

Figure 19.79 – Coroutines

Then AttackPlayer will look like this:

Figure 19.80 – AttackPlayer state

Essentially, this is the same as AttackBase, with the only difference that we do a LookAt
at the root object before instantiating the bullet to make the bullet go toward the player. In
AttackBase, state wasn't necessary because the base doesn't move.

580 Implementing Game AI for Building Enemies

Finally, we need to create a new Script Graph (regular, not a state graph) in the Enemy's
root object to recreate the NavMeshAnimator component we did in C#. This will simply
look like this:

Figure 19.81 – Setting the Animator velocity parameter so that it's the same as our NavMeshAgent

Notice that we don't need the GetParent node, given that this graph is located at the
Enemy's root object, along with Animator and NavMeshAgent. With that, we have
finished all our AI behaviors. Of course, these scripts/graphs are big enough to deserve
some rework and splitting in the future, and some actions such as stopping and resuming
the animations and NavMeshAgent can be done in a better way. But with this, we have
prototyped our AI, and we can test it until we are happy with it, and then we can improve
this code.

Summary
I'm pretty sure AI is not what you imagined; you are not creating SkyNet here, but we
have accomplished a simple but interesting AI for challenging our Player, which we can
iterate and tweak so that it's tailored to our game's expected behavior. We learned how to
gather our surrounding information through sensors to make decisions on what action
to execute using FSMs, as well as using different Unity systems such as Pathfinding and
Animator to make the AI execute those actions. We used those systems to diagram a State
Machine that's capable of detecting the player, running to them, and attacking them, and
if the Player's not there, just going to the base and accomplishing the task of destroying it.

With this, we have ended Part 3 regarding C# scripting. In the next part, we are going to
finish our game's final details. In this first chapter of the next part, we are going to learn
how to optimize our game.

20
Scene Performance

Optimization
Welcome to the third part of this book—I am glad you have reached this part as it means
that you have almost completed a full game! In this chapter, we are going to discuss
optimization techniques to review your game's performance and improve it, as having
a good and constant frame rate is vital to any game. Performance is a broad topic that
requires a deep understanding of several Unity systems and could span several books. We
are going to look at how to measure performance and explore the effects of our changes to
systems to learn how they work through testing.

In this chapter, we will examine the following performance concepts:

• Optimizing graphics

• Optimizing processing

• Optimizing memory

By the end of this chapter, you will be able to gather performance data on the three main
pieces of hardware that run your game—the GPU, CPU, and RAM. You will be able to
analyze that data to detect possible performance issues and understand how to solve the
most common ones.

582 Scene Performance Optimization

Optimizing graphics
The most common cause of performance issues is related to the misuse of assets, especially
on the graphics side, due to not having enough knowledge of how Unity's graphic engines
work. We are going to explore how a GPU works at a high level and how to improve its
usage.

In this section, we will examine the following graphics optimization concepts:

• Introduction to graphic engines

• Using the Frame Debugger

• Using batching

• Other optimizations

We will start by looking at a high-level overview of how graphics are rendered to better
understand the performance data that we will gather later in the Frame Debugger. Based
on the debugger's results, we are going to identify the areas that we can apply batching to
(which is a technique to combine the rendering process of several objects, reducing its
cost), along with other common optimizations to keep in mind.

Introduction to graphic engines
Nowadays, every gaming device, whether it is a computer, a mobile device, or a console,
has a video card—a set of hardware that specializes in graphics processing. It differs from
a CPU in a subtle but important way. Graphics processing involves the processing of
thousands of mesh vertices and the rendering of millions of pixels, so the GPU is designed
to run short programs for a massive length of time, while the CPU can handle programs
of any length but with limited parallelization capabilities. The reason for having those
processing units is so that our program can use each one when needed.

The problem here is that graphics don't just rely on the GPU. The CPU is also involved in
the process, making calculations and issuing commands to the GPU, so they must work
together. For that to happen, both processing units need to communicate, and because
they are (usually) physically separated, they need another piece of hardware to allow
this—a bus, the most common type being the Peripheral Component Interconnect
Express (PCI Express) bus.

Optimizing graphics 583

PCI Express is a type of connection that allows massive amounts of data to be moved
between the GPU and CPU, but the problem is that even though it's very fast, the
communication time can be noticeable if you issue a lot of commands between both units.
So, the key concept here is that graphics performance is improved mainly by reducing the
communications between the GPU and CPU:

2

Figure 20.1 – CPU/GPU communication through a PCI Express bus

Important note
Nowadays, new hardware architecture allows the CPU and GPU to coexist in
the same chipset, reducing communication time and even sharing memory.
Sadly, that architecture doesn't allow the necessary processing power needed
for video games. It is possible that we will only see it applied to high-end
gaming, but not in the near future, or even ever.

The basic algorithm of a graphics engine is to determine which objects are visible using
culling algorithms, sorting and grouping them according to their similarities, and then
issuing drawing commands to the GPU to render those groups of objects, sometimes
more than once (as in Chapter 8, Lighting Using the Universal Render Pipeline). Here, the
main form of communication is those drawing commands, usually called draw calls,
and our main task when optimizing graphics is to reduce them as much as we can. The
problem is that there are several sources of draw calls that need to be considered, such as
the lighting, the scale of objects to see whether they are static or not, and so on. Studying
every single one of them would take a long time, and even so, new versions of Unity can
introduce new graphic features with their own draw calls. Instead, we will explore a way to
discover these draw calls using the Frame Debugger.

584 Scene Performance Optimization

Using the Frame Debugger
The Frame Debugger is a tool that allows us to see a list of all the drawing commands
or draw calls that the Unity rendering engine sends to the GPU. It not only lists them
but also provides information about each draw call, including the data needed to detect
optimization opportunities. By using the Frame Debugger, we can see how our changes
modify the number of draw calls, giving us immediate feedback on our efforts.

Important Note
Note that reducing draw calls is sometimes not enough to improve
performance, as each draw call can have different processing times; but usually,
that difference is not big enough to consider. Also, in certain special rendering
techniques, such as ray tracing or ray marching, a single draw call can drain all
of our GPU power. This won't be the case in our game, so we won't take that
into account right now.

Let's use the Frame Debugger to analyze the rendering process of our game by doing the
following:

1. Open the Frame Debugger (Window | Analysis | Frame Debugger).
2. Play the game and if you want to analyze the performance, click the Enable button

in the top-left corner of the window (press Esc to regain control of the mouse while
playing):

Figure 20.2 – Enabling the Frame Debugger

3. Click on the Game tab to open the Game view.

Important note:
Sometimes, it is useful to have both the Scene and Game panels in sight, which
you can accomplish by dragging one of them to the bottom of Unity to have
them separated and visible.

4. Drag the slider to the right of the Disable button slowly from left to right to see how
the scene is rendered. Each step is a draw call that is executed in the CPU for that
given game frame. You can also observe how the list in the left part of the window
highlights the name of the executed draw call at that moment:

Optimizing graphics 585

Figure 20.3 – Analyzing our frame's draw calls

5. Click on any draw call from the list and observe the details in the right part of the
window.

Most of them can be confusing to you if you are not used to code engines or
shaders, but you can see that some of them have a human-readable part called
Why this draw call can't be batched with the previous one, which tells you why
two objects weren't drawn together in a single draw call. We will examine those
reasons later:

Figure 20.4 – The batching break reasons in the Frame Debugger

6. With the window open in Play mode, disable the terrain and see how the amount
of draw calls changes immediately. Sometimes, just turning objects on and off
can be enough to detect what is causing performance issues. Also, try disabling
postprocessing and other graphics-related objects, such as particles.

Even if we are not fully aware of where each one of these draw calls came from, we can at
least start by modifying the settings throughout Unity to see the impact of those changes.
There's no better way of discovering how something as massive as Unity works than going
through every toggle and seeing the impact of those changes through a measuring tool.

Now, let's discuss the basic techniques for reducing draw calls and see their effects in the
Frame Debugger.

586 Scene Performance Optimization

Using batching
We discussed several optimization techniques in previous chapters, with lighting being the
most important one. If you measure the draw calls as you implement the techniques, you
will notice the impact of those actions on the draw call count. However, in this section,
we will focus on another graphics optimization technique, known as batching. Batching
is the process of grouping several objects to draw them together in a single draw call. You
may be wondering why we can't just draw everything in a single draw call, and while that
is technically possible, there is a set of conditions that need to be met in order to combine
two objects, the usual case being combining materials.

Remember that materials are assets that act as graphic profiles, specifying a Material
mode or Shader and a set of parameters to customize the aspect of our objects, and
remember that we can use the same material in several objects. If Unity has to draw an
object with a different material than the previous one, a SetPass call needs to be called
before issuing its draw call, which is another form of CPU/GPU communication used to
set the Material properties in the GPU, such as its textures and colors. If two objects use
the same materials, this step can be skipped. The SetPass call from the first object is
reused by the second, and that opens the opportunity to batch the objects. If they share
the same settings, Unity can combine the meshes into a single one in the CPU, and then
send the combined mesh in a single draw call to the GPU.

There are several ways to reduce the number of materials, such as removing duplicates,
but the most effective way is through a concept called texture atlasing. This means
merging textures from different objects into a single one. This way, several objects
can use the same material due to the fact that the texture used there can be applied to
several objects and an object that has its own texture requires its own material. Sadly,
there's no automatic system in Unity to combine the textures of three-dimensional
objects, such as the Texture Atlas object we used in 2D. There are probably some systems
in the Asset Store, but automatic systems can have several side effects. This work is usually
done by an artist, so just keep this technique in mind when working with a dedicated
3D artist (or if you are your own artist):

Optimizing graphics 587

Figure 20.5 – Pieces of different metallic objects

Let's explore batching with Frame Debugger by doing the following:

1. Search for the Render Pipeline asset that we currently want to use (Edit | Project
Settings | Graphics | Scriptable Render Settings):

Figure 20.6 – Scriptable Render Pipeline settings

2. Uncheck SRP Batcher in the Advanced section and check Dynamic Batching.
We will discuss this later:

Figure 20.7 – Disabling SRP Batcher

3. Create a new empty scene for testing (File | New Scene).
4. Create two materials of different colors.

588 Scene Performance Optimization

5. Create two cubes and put one material into the first and the other into the second.
6. Open the Frame Debugger and click Enable to see the call list for the draw calls of

our cubes:

Figure 20.8 – The draw calls for the cubes

7. Select the second Draw Mesh Cube call and look at the batch-breaking reason. It
should say that the objects have different materials.

8. Use one of the materials on both cubes and look at the list again. You will notice
that now we just have one Draw Mesh Cube call. You might need to disable and
enable the Frame Debugger again for it to refresh properly.

Now, I challenge you to try the same steps but to create spheres instead of cubes. If you
do that, you will probably notice that even with the same materials, the spheres are not
batched! Here is where we need to introduce the concept of dynamic batching.

Remember that GameObjects have a Static checkbox, which serves to notify several
Unity systems that the object won't move so that they can apply several optimizations.
Objects that don't have this checkbox checked are considered dynamic. So far, the cubes
and spheres we used for our tests have been dynamic, so Unity needed to combine them
in every frame because they can move and combining is not "free." Its cost is associated
directly with the number of vertexes in the model. You can get the exact numbers and
all the required considerations from the Unity manual, which will appear if you search
Unity Batching. However, it is enough to say that if the number of vertexes of an
object is big enough, that object won't be batched, and doing so would require more
than issuing two draw calls. That's why our spheres weren't batched; a sphere has too
many vertices.

Now, things are different if we have static objects because they use a second batching
system—the static batcher. The concept of this is the same: merge objects to render them
in one draw call, and again these objects need to share the same material. The main
difference is that this batcher will batch more objects than the dynamic batcher because
the merging is done once, at the time that the scene loads, and is then saved in memory
to use in the next frames, costing memory but saving lots of processing time each frame.
You can use the same approach we used to test the dynamic batcher to test the static
version just by checking the Static checkbox of the spheres this time and seeing the result
in Play mode; in Edition mode (when it is not playing), the static batcher won't work:

Optimizing graphics 589

Figure 20.9 – A static sphere and its static batch

Before moving on, let's discuss why we disabled SRP Batcher and how that changes what
we just discussed. In its 2020 edition, Unity introduced the URP (Universal Render
Pipeline), a new Render Pipeline. Along with several improvements, one that is relevant
right now is SRP Batcher, a new batcher that works on dynamic objects with no vertex
or material limits (but with other limits). Instead of relying on sharing the same material
with batch objects, SRP Batcher can have a batch of objects with materials that use the
same Shader, meaning we can have, for example, 100 objects with 100 different materials
for each one, and they will be batched regardless of the number of vertexes, as long as the
materials use the same Shader and Variant:

Figure 20.10 – GPU data persistence for materials, which allows SRP Batcher to exist

590 Scene Performance Optimization

One Shader can have several versions or Variants, and the selected Variant is chosen based
on the settings. We can have a Shader that doesn't use normal mapping and a Variant that
doesn't calculate normals will be used, so that can affect SRP Batcher. So, there's basically
no drawback to using SRP Batcher, so go ahead and turn it on again. Try creating lots
of spheres with as many materials as you can and check the number of batches it will
generate in the Frame Debugger. Just consider that if you need to work on a project done
in a pre-URP era, this won't be available, so you will need to know the proper batching
strategy to use.

Other optimizations
As mentioned before, there are lots of possible graphics optimizations, so let's discuss
briefly the basic ones, starting with Level of Detail (LOD). LOD is the process of
changing the mesh of an object based on its distance from the camera. This can reduce
draw calls if you replace, for example, a house with several parts and pieces with a single
combined mesh with reduced detail when the house is far away. Another benefit of using
LOD is that you reduce the cost of a draw call because of the reduction in the vertex
count.

To use this feature, do the following:

1. Create an empty object and parent the two versions of the model. You need to use
models that have several versions with different levels of detail, but for now, we are
just going to test this feature using a cube and a sphere:

Figure 20.11 – A single object with two LOD meshes

2. Add an LOD group component to the parent.
3. The default LOD group is prepared to support three LOD mesh groups, but as we

only have two, right-click on one and click Delete. You can also select Insert Before
to add more LOD groups:

Optimizing graphics 591

Figure 20.12 – Removing an LOD group

4. Select LOD 0, the highest-detail LOD group, and click on the Add button in the
Renderers list below this to add the sphere to that group. You can add as many
mesh renderers as you want.

5. Select LOD 1 and add the cube:

Figure 20.13 – Adding renderers to LOD groups

6. Drag the line between the two groups to control the distance range that each group
will occupy. As you drag it, you will see a preview of how far the camera needs to be
to switch groups. Also, you have the culled group, which is the distance from where
the camera will not render any group.

7. Just move the camera around in Edit mode to see how the meshes are swapped.
8. Something to consider here is that the colliders of the objects won't be disabled, so

just have the renderers in the LOD sub-objects. Put the collider with the shape of
the LOD 0 in the parent object, or just remove the colliders from the LOD group
objects, except group 0.

592 Scene Performance Optimization

Another optimization to consider is frustum culling. By default, Unity will render any
object that falls into the view area or frustum of the camera, skipping the ones that don't.
The algorithm is cheap enough to always use, and there's no way to disable it. However,
it does have a flaw. If we have a wall hiding all the objects behind it, even if they are
occluded, they fall inside the frustum, so they will be rendered anyway. Detecting whether
every pixel of a mesh occludes every pixel of the other mesh is almost impossible to do in
real time, but luckily, we have a workaround: occlusion culling.

Occlusion culling is a process that analyzes a scene and determines which objects can
be seen in different parts of the scene, dividing them into sectors and analyzing each
one. As this process can take quite a long time, it is done in the editor, as is done with
lightmapping. As you can imagine, it only works on static objects. To use it, do the
following:

1. Mark the objects that shouldn't move as static, or if you only want this object to be
considered static for the occlusion culling system, check the Occluder Static and
Ocludee Static checkboxes of the arrow to the right of the Static checkbox.

2. Open the Occlusion Culling window (Window | Rendering | Occlusion Culling).
3. Save the scene and hit the Bake button at the bottom of the window, and then wait

for the baking process. If you don't save the scene before the baking process, it won't
be executed.

4. Select the Visualization tab in the Occlusion Culling window.
5. With the Occlusion Culling window visible, select the camera and drag it around,

seeing how objects are occluded as the camera moves:

Figure 20.14 – On the left is the normal scene and on the right is the scene with occlusion culling

Optimizing processing 593

Take into account that if you move the camera outside the calculated area, the process
won't take place, and Unity will only calculate areas near the static objects. You can
extend the calculation area by creating an empty object and adding an Occlusion Area
component, setting its position and size to cover the area that the camera will reach, and
finally, rebaking the culling. Try to be sensible with the size of the cube. The larger the area
to calculate, the larger the space needed in your disk to store the generated data. You can
use several of these areas to be more precise—for example, in an L-shaped scene, you can
use two of them:

Figure 20.15 – Occlusion Area

If you see that the objects are not being occluded, it could be that the occluder object
(the wall in this case) is not big enough to be considered. You can increase the size of
the object or reduce the Smallest Occluder setting in the Bake tab of the window. Doing
that will subdivide the scene further to detect small occluders, but that will take more
space in the disk to store more data. So again, be sensible with this setting.

There are still some more techniques that we can apply to our game, but the ones we have
discussed are enough for our game. So, in this section, we learned about the process of
rendering graphics in a video card, the concept of batch, how to profile them to know
exactly how many of them we have and what they are doing, and finally, how to reduce
them as much as we can. Now, let's start discussing other optimization areas, such as the
processing area.

Optimizing processing
While graphics usually take up most of the time that a frame needs to be generated,
we should never underestimate the cost of badly optimized code and scenes. There are
several parts of the game that are still calculated in the CPU, including part of the graphics
process (such as the batching calculations), Unity Physics, audio, and our code. Here, we
have a lot more causes of performance issues than on the graphics side, so again, instead
of discussing every optimization, let's learn how to discover them.

594 Scene Performance Optimization

In this section, we will examine the following CPU optimization concepts:

• Detecting CPU- and GPU-bound

• Using the CPU Usage Profiler

• General CPU optimization techniques

We will start by discussing the concepts of CPU and GPU bound, which focus on the
optimization process, determining whether a problem is GPU or CPU related. Later, as
with the GPU optimization process, we will look at how to gather the performance data of
the CPU and interpret it to detect possible optimization techniques to be applied.

Detecting CPU- and GPU-bound
As with the Frame Debugger, the Unity Profiler allows us to gather data about the
performance of our game through a series of Profiler modules, each one designed to
gather data about different Unity systems per frame, such as Physics, audio, and most
importantly, CPU usage. This last module allows us to see every single function that Unity
called to process the frame—that is, from our script's executed functions to other systems,
such as Physics and graphics.

Before exploring the CPU usage, one important bit of data that we can gather in this
module is whether we are CPU or GPU bound. As explained before, a frame is processed
using both the CPU and GPU, and those pieces of hardware can work in parallel. While
the GPU is executing drawing commands, the CPU can execute Physics and our scripts in
a very efficient way. But now, let's say that the CPU finishes its work while the GPU is still
working. Can the CPU start to work on the next frame? The answer is no. This would lead
to de-synchronization, so in this scenario, the CPU would need to wait. This is known
as being CPU bound, and we have also the opposite case, GPU bound, when the GPU
finishes earlier than the CPU.

Important note:
It is worth mentioning that on mobile devices, it is sometimes preferable to
reduce the framerate of our game to reduce battery consumption, making
the game idle for a moment between frames, but that could lead to a slower
response in our commands and input. To solve that, Unity has created a
package that adds the ability to skip the rendering process after a configurable
number of frames, which keeps the processing working but skips rendering. So,
naturally, those frames will be CPU bound only.

Optimizing processing 595

It is important to concentrate our optimization efforts, so if we detect that our game is
GPU bound, we will focus on GPU graphics optimization, and if it is CPU bound, then
we will focus on the rest of the systems and the CPU side of graphics processing. To detect
whether our game is one or the other, do the following:

1. Open Profiler (Window | Analysis | Profiler).
2. In the Profiler Modules dropdown in the top-left corner, check GPU Usage to

enable the GPU profiler:

Figure 20.16 – Enabling the GPU profiler

3. Play the game and select the CPU Usage profiler, clicking on its name in the left
part of the Profiler window.

4. Click the Last Frame button – the one with the double arrow pointing to the right,
to always display the info of the last frame being rendered:

Figure 20.17 – The last frame button (double arrow to the right)

5. Also click the Live button to enable the Live mode, which allows you to see the
results of profiling in real time. This can have an impact on performance, so you
can disable it later:

Figure 20.18 – Enabling Live mode

596 Scene Performance Optimization

6. Observe the bar with the CPU and GPU labels in the middle of the window. It
should say how many milliseconds are being consumed by the CPU and GPU. The
one with the higher number will be the one that is limiting our framerate and will
determine whether we are GPU or CPU bound:

Figure 20.19 – Determining whether we are CPU or GPU bound

7. There is a chance that when you try to open the GPU profiler, you will see a not
supported message, and this can happen in certain cases (such as on Mac devices
that use the Metal graphics API). In that scenario, another way to see whether we
are GPU bound is by searching waitforpresent in the search bar right next to
the CPU/GPU labels while selecting the CPU Usage profiler:

Figure 20.20 – Searching waitforpresent

8. Here, you can see how long the CPU has been waiting for the GPU. Check the
Time ms column to get the number. If you see 0.00, it is because the CPU is not
waiting for the GPU, meaning we are not GPU bound. In the preceding screenshot,
you can see that my screen displays 0.00 while the CPU is taking 9.41ms and the
GPU is taking 6.73ms. So, my device is CPU bound, but consider that your device
and project might give different results.

Now that we can detect whether we are CPU or GPU bound, we can focus our
optimization efforts. So far, we have discussed how to profile and optimize part of the
GPU process. Now, if we detect that we are CPU bound, let's see how to profile the CPU.

Optimizing processing 597

Using the CPU Usage Profiler
Profiling the CPU is done in a similar way to profiling the GPU. We need to get a list
of actions the CPU executes and try to reduce them, and here is where the CPU Usage
Profiler module comes in—a tool that allows us to see all the instructions that the
CPU executed in one frame. The main difference is that the GPU mostly executes draw
calls, and we have a few types of them, while the CPU can have hundreds of different
instructions to execute, and sometimes some of them cannot be deleted, such as a Physics
Update or audio processing. In these scenarios, we are looking to reduce the cost of these
functions if they are consuming too much time. So, again, an important note here is to
detect which function is taking too much time and then reduce its cost or remove it,
which requires a deeper understanding of the underlying system. Let's start detecting the
function first.

When you play the game with the Profiler tab opened, you will see a series of graphics
showing the performance of our game, and in the CPU Usage Profiler, you will see that
the graphic is split into different colors, each one referring to different parts of frame
processing. You can check the information to the left of the Profiler to see what each color
means, but let's discuss the most important ones. In the following screenshot, you can see
how the graphic should look:

Figure 20.21 – Analyzing the CPU Usage graph

598 Scene Performance Optimization

If you check the graphic, you will probably assume that the dark-green part of the graph
is taking up most of the performance time, and while that is true, you can also see from
the legend that dark green means Others, and that's because we are profiling the game in
the editor. The editor won't behave exactly like the final game. In order for it to run, it has
to do lots of extra processing that won't be executed in the game, so the best you can do is
profile directly in the build of the game. There, you will gather more accurate data. We are
going to discuss how to do builds in the next chapter, so for now, we can ignore that area.
What we can do now is simply click on the colored square to the left of the Others label to
disable that measurement from the graph in order to clean it up a little bit. If you also see
a large section of yellow, it is referring to VSync, which is basically the time spent waiting
for our processing to match the monitor's refresh rate. This is also something that we can
ignore, so you should also disable it. In the next screenshot, you can check the graphic
color categories and disable them:

Figure 20.22 – Disabling VSync and Others from the Profiler

Now that we have cleaned up the graph, we can get a good idea of our game's potential
framerate by looking at the line with the ms label (in our case, 5ms (200 FPS)), which
indicates that frames below that line have more than 200 FPS, and frames above that line
have less. In my case, I have excellent performance, but remember, I am testing this on
a powerful machine. The best way to profile is not only in the build of the game (as an
executable) but also in the target device, which should be the lowest spec hardware we
intend our game to run on. Our target device depends a lot on the target audience of the
game. If we are making a casual game, we are probably targeting mobile devices, so we
should test the game on the lowest spec phone we can, but if we are targeting hardcore
gamers, they will probably have a powerful machine to run our game on.

Important note:
If you are targeting hardcore gamers, of course, this doesn't mean that we can
just make a very unoptimized game because of that, but it will give us enough
processing space to add more detail. Anyway, I strongly recommend you avoid
those kinds of games if you are a beginner as they are more difficult to develop,
which you will probably realize. Stick to simple games to begin with.

Optimizing processing 599

Looking at the graphics colors, you can observe the cost on the CPU side of rendering
in light green, which the graph shows is taking up a significant portion of the processing
time, which is actually normal. Then, in blue, we can see the cost of our scripts' execution,
which is also taking up a significant portion, but again, this is quite normal. Also, we can
observe a little bit of orange, which is Physics, and also a little bit of light blue, which is
Animation. Remember to check the colored labels in the Profiler to remember which
color refers to what.

Now, those colored bars represent a group of operations, so if we consider the Rendering
bar to be representing 10 operations, how do we know which operations that includes?
Also, how do we know which of these operations is taking up the most performance time?
Out of those 10 operations, a single one could be causing these issues. Here is where the
bottom part of the profiler is useful. It shows a list of all the functions being called in the
frame. To use it, do the following:

1. Clear the search bar we used earlier. It will filter function calls by name, and we
want to see them all.

2. Click on the Time ms column until you see an arrow pointing downward. This will
order the calls by cost in descending order.

3. Click on a frame that is catching your attention in the graph—probably one of the
ones with the highest height that consumes more processing time. This will make
the Profiler stop the game straight away and show you information about that
frame.

Important Note
There are two things to consider when looking at the graph. If you see peaks
that are significantly higher than the rest of the frames, that can cause a hiccup
in your game—a very brief moment where the game is frozen—which can
break the performance. Also, you can look for a long series of frames with
higher time consumption. Try to reduce them as well. Even if this is only
temporary, the impact of it will easily be perceived by the player.

4. PlayerLoop will probably appear as the most time-consuming frame, but that's not
very informative. You can explore it further by expanding it by clicking on the arrow
to its left.

600 Scene Performance Optimization

5. Click on each function to highlight it in the graph. Functions with higher
processing times will be highlighted with thicker bars, and those are the ones we
will focus on:

Figure 20.23 – The Render Camera function highlighted in the graph

6. You can keep clicking on the arrows to further explore the functions until you hit
a limit. If you want to go deeper, enable the Deep Profiler mode in the top bar of
the Profiler. This will give you more details but take into account that this process is
expensive and will make the game go slower, altering the time shown in the graph,
making it appear much greater than the real time. Here, ignore the numbers and
look at how much of the process a function is taking up based on the graph. You
will need to stop, enable Deep Profile, and play it again to make it work:

Figure 20.24 – Enabling Deep Profile

With this knowledge, we can start improving our game's performance (if it's below the
target framerate), but each function is called by the CPU and will need to be improved in
its own unique way, which requires a greater knowledge about Unity's internal workings.
That could span several books, and anyway, the internals change on a version-to-version
basis. Instead, you could study how each function works by looking up data about that
specific system on the internet, or again, by just disabling and enabling objects or parts
of our code to explore the impact of our actions, as we did with the Frame Debugger.
Profiling requires creativity and inference to interpret and react accordingly to the data
obtained, so you will need some patience here.

Optimizing processing 601

Now that we have discussed how to get profiling data relating to the CPU, let's discuss
some common ways to reduce CPU usage.

General CPU optimization techniques
In terms of CPU optimizations, there are lots of possible causes of high performance,
including the abuse of Unity's features, a large number of Physics or audio objects,
improper asset/object configurations, and so on. Our scripts can also be coded in an
unoptimized way, abusing or misusing expensive Unity API functions. So far, we have
discussed several good practices for using Unity Systems, such as audio configurations,
texture sizes, batching, and finding functions such as GameObject.Find and replacing
them with managers. So, let's discuss some specific details about common cases.

Let's start by seeing how a large amount of objects impacts our performance. Here, you
can just create lots of objects with Rigidbody configured in Dynamic Profile, and
observe the results in the Profiler. You will notice, in the following screenshot, how the
orange part of the profiler just got bigger and that the Physics.Processing function
is responsible for this increase:

Figure 20.25 – The Physics processing of several objects

602 Scene Performance Optimization

Another test to see the impact of several objects could be creating lots of audio sources. In
the following screenshot, you can see that we needed to re-enable Others because audio
processing comes under that category. We mentioned earlier that Others belongs to the
editor, but it can encompass other processes as well, so keep that in mind:

Figure 20.26 – The Physics processing of several objects

So, to discover these kinds of problems, you can just start disabling and enabling objects
and see whether they increase the time or not. A final test is on particles. Create a system
that spawns a big enough number of particles to affect our framerate and check the
Profiler. In the following screenshot, you can check how the particle processing function is
highlighted in the graph, showing that it takes a large amount of time:

Figure 20.27 – Particle processing

Optimizing memory 603

Then, on the scripting side, we have other kinds of things to consider, some of which
are common to all programming languages and platforms, such as iterating long lists of
objects, the misuse of data structures, and deep recursion. However, in this section, I will
mainly be discussing Unity-specific APIs, starting with print or Debug.Log.

This function is useful to get debugging information in the console, but it can also be
costly because all logs are written onto the disk immediately to avoid losing valuable
information if our game crashes. Of course, we want to keep those valuable logs in the
game, but we don't want it to affect the performance, so what can we do?

One possible approach is to keep those messages but disable the non-essential ones in the
final build, such as informative messages, keeping the error-reporting function active.
One way to do this is through compiler directives, such as the ones used in the following
screenshot. Remember that this kind of if statement is executed by the compiler and can
exclude entire portions of code when compiling if its conditions are not met:

Figure 20.28 – Disabling code

In the preceding screenshot, you can see how we are asking whether this code is being
compiled by the editor or for a development build, which is a special kind of build
intended to be used for testing (more on that in the next chapter). You can also create
your own kind of logging system with functions with the compiler directives, so you
don't need to use them in every log that you want to exclude.

In this section, we learned about the tasks a CPU faces when processing a video game,
how to profile them to see which ones are not necessary, and how to reduce the impact
of those processes. There are a few other script aspects that can affect performance not
only on the processing side but also on the memory side, so let's discuss them in the
next section.

Optimizing memory
We discussed how to profile and optimize two pieces of hardware—the CPU and
GPU—but there is another piece of hardware that plays a key role in our game—RAM.
This is the place where we put all of our game's data. Games can be memory-intensive
applications, and unlike several other applications, they are constantly executing code,
so we need to be especially careful about that.

604 Scene Performance Optimization

In this section, we will examine the following memory optimization concepts:

• Memory allocation and the garbage collector

• Using the Memory Profiler

Let's start by discussing how memory allocation works and what role garbage collection
plays here.

Memory allocation and the garbage collector
Each time we instantiate an object, we are allocating memory in RAM, and in a game,
we will be allocating memory constantly. In other programming languages, aside from
allocating memory, you need to manually deallocate it, but C# has a garbage collector,
which is a system that tracks unused memory and cleans it. This system works with
a reference counter, which tracks how many references to an object exist, and when
that counter reaches 0, it means all references have become null and the object can be
deallocated. This deallocation process can be triggered in several situations, the most
common situation being when we reach the maximum assigned memory and we want
to allocate a new object. In that scenario, we can release enough memory to allocate our
object, and if that is not possible, the memory is expanded.

In any game, you will probably be allocating and deallocating memory constantly, which
can lead to memory fragmentation, meaning there are small spaces between alive object
memory blocks that are mostly useless because they aren't big enough to allocate an
object, or maybe the sum of the spaces is big enough but we need continuous memory
space to allocate our objects. In the following diagram, you can see a classic example of
trying to fit a big chunk of memory into the little gaps generated by fragmentation:

Figure 20.29 – Trying to instantiate an object in fragmented memory space

Optimizing memory 605

Some types of garbage collection systems, such as the one in regular C#, are generational,
meaning memory is split into generation buckets according to the "age" of the memory.
Newer memory will be placed in the first bucket, and this memory tends to be allocated
and deallocated frequently. Because this bucket is small, working within it is fast. The
second bucket has the memory that survived a previous deallocation sweep process in the
first bucket. That memory is moved to the second bucket to prevent it from being checked
constantly if it survived the process, and it is possible that that memory will last the length
of our program's lifetime. The third bucket is just another layer of bucket two. The idea
is that most of the time, the allocation and deallocation system will be working in bucket
one, and as it is small enough, it is quick to allocate, deallocate, and compact memory in
a continuous fashion.

The problem here is that Unity uses its own version of the garbage collection system,
and that version is non-generational and non-compacting, meaning memory is not split
into buckets and memory won't be moved to fill the gaps. This suggests that allocating
and deallocating memory in Unity will still result in the fragmentation problem, and if
you don't regulate your memory allocation, you might end up with an expensive garbage
collection system being executed very often, producing hiccups in our game, which you
can see in the Profiler CPU Usage module as a pale-yellow color.

One way to deal with this is by preventing memory allocation as much as you can,
avoiding it when is not necessary. There are a few tweaks here and there that you can
do to prevent memory allocation, but before looking at those, again, it is important to
first get data about the problem before starting to fix things that may not be an issue.
This advice applies to any type of optimization process. Here, we can still use the CPU
Usage Profiler to see how much memory is allocated to each function call that the CPU
executes in each frame, and that is simply done by looking at the GC Alloc column, which
indicates the amount of memory that the function allocated:

Figure 20.30 – The memory allocation of the Update event function of Sight

606 Scene Performance Optimization

In the preceding screenshot, we can see how our function is allocating too much memory,
which is produced because there are many enemies in the scene. But that's no excuse;
we are allocating that much RAM at every frame, so we need to improve this. There are
several things that can contribute to our memory being claimed by allocations, so let's
discuss the basic ones, starting with array-returning functions.

If we review the Sight code, we can see that the only moment where we are allocating
memory is in the call to Physics.OverlapSphere, and that is evident because it is
an array-returning function, which is a function that returns a varying amount of data.
To do this, it needs to allocate an array and return that array to us. This needs to be done
on the side that created the function, Unity, but in this case, Unity gives us two versions
of the function—the one that we are using and the NonAlloc version. It is usually
recommended to use the second version, but Unity uses the other one to make coding
simpler for beginners. The NonAlloc version looks as in the following screenshot:

Figure 20.31 – Memory allocation of the Update event function of Sight

This version requires us to allocate an array with enough space to save the largest amount
of colliders our OverlapSphere variable can find and pass it as the third parameter.
This allows us to allocate the array just once and reuse it on every occasion that we need it.
In the preceding screenshot, you can see how the array is static, which means it is shared
between all the Sight variables as they won't execute in parallel (no Update function
will). This will work fine. Keep in mind that the function will return the number of objects
that were detected, so we just iterate on that count. The array can have previous results
stored within it.

Now, check your Profiler and notice how the amount of memory allocated has been
reduced greatly. There might be some remaining memory allocation within our function,
but sometimes there is no way to keep it at 0. However, you can try to look at the reasons
for this using deep profiling or by commenting some code and seeing which comment
removes the allocation. I challenge you to try this. Also, OverlapSphere is not the only
case where this could occur. You have others, such as the GetComponents function
family, which, unlike GetComponent, finds all the components of a given type, not just
the first one, so pay attention to any array-returning function of Unity and try to replace it
with a non-allocating version, if there is one.

Optimizing memory 607

Another common source of memory allocation is string concatenation. Remember that
strings are immutable, meaning they cannot change if you concatenate two strings. A
third one needs to be generated with enough space to hold the first ones. If you need to
concatenate a large number of times, consider using string.Format if you are just
replacing placeholders in a template string, such as putting the name of the player and
the score they got in a message or using StringBuilder, a class that just holds all the
strings to be concatenated in a list and, when necessary, concatenates them together,
instead of concatenating them one by one as the + operator does. Also, consider using the
new string interpolation functionality of C#. You can see some examples in the following
screenshot:

Figure 20.32 – String management in C#

608 Scene Performance Optimization

Finally, a classic technique to consider is object pooling, which is suitable in cases where
you need to instantiate and destroy objects constantly, such as with bullets or effects. In
that scenario, the use of regular Instantiate and Destroy functions will lead to
memory fragmentation, but object pooling fixes that by allocating the maximum amount
of required objects possible. It replaces Instantiate by taking one of the preallocated
functions and it replaces Destroy by returning the object to the pool. A simple pool can
be seen in the following screenshot:

Figure 20.33 – A simple object pool

There are several ways to improve this pool, but it is fine as it is for now. Note that objects
need to be reinitialized when they are taken out of the pool, and you can do that with the
OnEnable event function or by creating a custom function to inform the object to do so.

Now that we have explored some basic memory allocation reduction techniques, let's
look at the new Memory Profiler tool, introduced in the latest version of Unity, to explore
memory in greater detail.

Optimizing memory 609

Using the Memory Profiler
With this Profiler, we can detect memory allocated on a frame-by-frame basis, but it won't
show the total memory allocated so far, which would be useful to study how we are using
our memory. This is where the Memory Profiler can help us. This relatively new Unity
package allows us to take memory snapshots of every single object allocated both on the
native and managed side—native meaning the internal C++ Unity code and managed
meaning anything that belongs to the C# side (that is, both our code and Unity's C#
engine code). We can explore snapshots with a visual tool and rapidly see which type of
object is consuming the most RAM and how they are referenced by other objects.

To start using the Memory Profiler, do the following:

1. Open Package Manager (Window | Package Manager) and enable preview
packages (Wheel Icon | Advanced Project Settings | Enable Pre-release Packages):

Figure 20.34 – Enabling preview packages

2. Click the Plus (+) button and select Add package from git URL…:

Figure 20.35 – Installing packages from git URLs

3. In the dialog box, enter com.unity.memoryprofiler and click Add. We need
to add the package this way as it's still an experimental one:

Figure 20.36 – Installing the Memory Profiler

610 Scene Performance Optimization

4. Once installed, open the Memory Profiler in Window | Analysis | Memory
Profiler.

5. Play the game and click on the Capture button in the Memory Profiler window:

Figure 20.37 – Capturing a snapshot

6. Click on the Open button next to the snapshot that was captured to open the tree
view, where you can see the memory split into blocks by type. It can take a while so
be patient:

Figure 20.38 – Memory blocks

7. In our case, we can see that RenderTexture uses up the most memory, which
belongs to the image that is displayed in the scene, as well as some textures used
by postprocessing effects. Try to disable the PPVolume object and take another
snapshot to detect the difference.

8. In my case, that dropped off 130 MB. There are other textures needed for other
effects, such as HDR. If you want to explore where those remaining MBs came
from, click on the block to subdivide it into its objects and take your own guesses
based on the names of the textures:

Optimizing memory 611

Figure 20.39 – Memory blocks in detail

9. You can repeat the same process in the Texture2D block type, which belongs
to the textures used in the materials of our models. You can look at the biggest
one and detect its usage—maybe it is a big texture that is never seen close enough
to justify its size. Then, we can reduce its size using the Max Size of the Texture
import settings.

Important note
As with any profiler, it is always useful to carry out the profiling directly in the
build (more on that in the next chapter) because taking snapshots in the editor
will capture lots of memory that is used by the editor and will not be used in
the build. An example of this is the loading of unnecessary textures because the
editor probably loaded them when you clicked them to see their previews in
the Inspector window.

Take into account that due to the Memory Profiler being a package, its UI can change
often, but its basic idea will remain. You can use this tool to detect whether you are using
the memory in unexpected ways. Something useful to consider here is how Unity loads
assets when loading a scene, which consists of loading all assets referenced in the scene
at load time. This means that you can have, as an example, an array of prefabs that have
references to materials that have references to textures, and even if you don't instantiate
a single instance of them, the prefabs must be loaded in memory, causing them to occupy
space. In this scenario, I recommend that you explore the use of addressables, which
provide a way to load assets dynamically. But let's keep things simple for now.

You can do more with the Profiler, such as access a list view of all objects and observe
every field of it and its references to see which objects are using it (from the main menu,
go to TreeMap | Table | All objects), but for beginners, I found that view a little bit
confusing. A good alternative to the Memory Profiler reference navigation system is
using the Memory module of the Profiler. This is a basic version of the Memory Profiler
that won't show you the memory with a nice tree view or in the amount of detail that the
Memory Profiler can provide, but provides a simpler version of a reference navigator,
which can be enough most of the time.

612 Scene Performance Optimization

To use it, do the following:

1. Open the Profiler (Window | Analysis | Profiler).
2. While in play mode, scroll down through the list of Profiler modules and select

Memory.
3. With the Gather object references toggle turned on, click on Take Sample

Playmode.
4. Explore the list that pops up, open the categories, and select an asset. In the

following screenshot, you can see that I have selected the texture and on the
right panel, I can explore the references. This texture is used by a material named
base color, which is referenced by a mesh renderer in a GameObject called
floor_1_LOD0. You can even click on an item in the reference list to highlight
the referencer object:

Figure 20.40 – Memory Profiler module

As you can see, both the Memory Profiler and the Memory module in the Profiler do
similar things. They can take snapshots of memory for you to analyze them. I believe
that with time, Unity will unify those tools, but for now, use one or the other based on
their strong and weak points, such as the ability of the Memory Profiler to compare two
snapshots to analyze differences, or its ability to explore low-level data of the memory,
such as seeing which managed object is using which native object (which is pretty
advanced and most times unnecessary). You can use the Memory module to analyze
references to see which object is using which texture and why.

Summary 613

Summary
Optimizing a game is not an easy task, especially if you are not familiar with the internals
of how each Unity system works. Sadly, this is a titanic task, and no one knows every
single system down to its finest details, but with the tools learned in this chapter, we have
a way to explore how changes affect systems through exploration. We learned how to
profile the CPU, GPU, and RAM and what the key hardware in any game is, and also
covered some common good practices to avoid abusing them.

Now, you are able to diagnose performance issues in your game, gathering data about
the performance of the three main pieces of hardware—the CPU, GPU, and RAM—and
then use that data to focus your optimization efforts on applying the correct optimization
technique. Performance is important as your game needs to run smoothly to give your
users a pleasant experience.

In the next chapter, we are going to see how to create a build of our game to share with
other people, without needing to install Unity. This is also very useful for profiling, given
that profiling builds gives us more accurate data than profiling in an editor.

Section 4 –
Releasing

Your Game

Now that we have a prototype, it is time to show it to the world! We will be learning how
to prepare our project for publishing by building it and polishing it sufficiently.

This section comprises the following chapters:

• Chapter 21, Building the Project

• Chapter 22, Finishing Touches

• Chapter 23, Augmented Reality in Unity

21
Building the Project

So, we have reached a point where the game is mature enough that we can test it with
real people. The problem is that we can't pretend people will install Unity, open a project,
and hit Play. They will want to receive a nice executable file to double-click and play
right away. In this chapter, we are going to discuss how we can convert our project into
an easy-to-share executable format. Then, we will learn how to apply the profiling and
debugging techniques we learned about in Chapter 20, Scene Performance Optimization,
but this time on the build. After reading this chapter, you will be able to detect potential
performance bottlenecks and know how to tackle the most common ones, leading to an
increase in your game's framerate.

In this chapter, we will cover the following Build concepts:

• Building a project

• Debugging the Build

618 Building the Project

Building a project
In software development (including video games), the result of taking the source files of
our project and converting them into an executable format is called a Build. The generated
executable files are optimized to get the maximum performance possible. We can't get
performance while editing the game due to the ever-changing nature of a project. It would
be time-consuming to prepare the assets so that they're in their final form while editing the
game. Also, the generated files are in a difficult-to-read format. They won't have the textures,
audios, and source code files just there for the user to look at. They will be formatted in
custom file structures, so in a way, they are protected from users stealing them.

Important Note
Actually, there are several tools we can use to extract source files from video
games, especially from a widely used engine such as Unity. You can extract
assets such as textures and 3D models, and there are even programs that extract
those assets directly from the VRAM, so we cannot guarantee that the assets
won't be used outside the game. In the end, users have the data of those assets
on their disks.

The Build process is pretty simple when you target desktop platforms such as PC, Mac,
or Linux, but there are a few settings we need to keep in mind before building. The first
configuration we are going to see is the scenes list. We have already discussed this, but
now is a good time to remember that it is important to set the first element of this list to
the scene that will be loaded first. Remember, you can do this by going to File -> Build
Settings and dragging your desired starter scene to the top of the list. In our case, we
defined the Game scene as the first scene, but in a real game, it would be ideal to create
a Main Menu scene using the UI and some graphics:

Figure 21.1 – The Scene's list order

Building a project 619

Another setting you can change here is the target platform; that is, the target operating
system that the build will be created for. Usually, this is set for the same operating system
you are developing on, but in case you are, for example, developing on a Mac, and you
want to build for Windows, just set the Target Platform setting to Windows. That way,
the result will be exe instead of app. You may see Android and iOS as other target
platforms, but making mobile games requires that we make other considerations that we
are not going to discuss in this book:

Figure 21.2 – Target Platform

In the same window, you can click the Player Settings button at the bottom left, or just
open the Edit | Project Settings window and click on the Player category to access the
rest of the Build Settings. Unity calls the generated executable files the game's "Player."
Here, we have a set of configurations that will affect how the Build or Player behaves, and
here is a list of the basic ones:

• Product Name: This is the name of the game in the window title bar and
executable file.

• Company Name: This is the name of the company that developed the game,
which is used by Unity to create certain file paths and will be included in the
executable information.

• Default Icon: Here, you can select a texture to act as the executable icon.

• Default Cursor: You can set a texture to replace the regular system cursor. If you
do that, remember to set the Cursor Hotspot property to the pixel of the image you
want the cursor to do the clicks for.

• Resolution and Presentation: There are settings regarding how our game's
resolution is going to be handled.

• Resolution and Presentation | Default is Native Resolution: With this checked
and when the game is running in full-screen mode, the resolution that's currently
being used by the system will be the one that's used by Unity. You can uncheck this
and set your desired resolution.

620 Building the Project

• Splash Image: This provides settings about the splash image the game will show
after loading for the first time.

• Splash Image | Show Splash Screen: This will enable a Unity splash screen that will
display logos as an introduction to the game. If you have the Unity Pro License, you
can uncheck this to create your custom splash screen, if you want to.

• Splash Image | Logos List: Here, you can add a set of images that Unity will display
when launching the game. If you are using the free version of Unity, you are forced
to have the Unity logo displayed in this list.

• Splash Image | Draw Mode: You can set this to All Sequential to show each logo,
one after the other, or to Unity logo Below to show your custom introductory logos
with the Unity logo always present below yours:

Figure 21.3 – Player settings

After configuring these settings as you wish, the next step is to do the actual Build, which
can be accomplished by hitting the Build button in the File | Build Settings window.
This will ask you to set where you want the Build files to be created. I recommend that
you create an empty folder on your desktop so that you have easy access to the result.
Be patient – this process can take a while based on the size of the project:

Building a project 621

Figure 21.4 – Building the game

Something that can fail here is having non-build compatible scripts – scripts that are
intended to be executed only in the Editor window, mostly Editor extensions. We haven't
created any of those, so if you receive an error message in the console after building,
similar to what's shown in the following screenshot, this can happen because of a script
in an Asset Store package. In that case, just delete the files that are shown in the console
before the Build Error message. If, by any chance, there is one of your scripts there, ensure
you don't have the using UnityEditor; line in any of your scripts. This line will try
to use the Editor namespace, the one that is not included in the Build compilation, to save
space on the disk:

Figure 21.5 – Build errors

622 Building the Project

And that's pretty much everything you need to know. With that, you have generated
your game! Something to take into account is that every file that was created in the folder
that you specified when building must be shared, not just the executable file. The Data
folder contains all the necessary assets and it is important to include when sharing the
game in the case of Windows Builds. For Linux and Mac Builds, just one file is generated
(x86/x86_64 and app packages, respectively):

Figure 21.6 – A Windows-generated folder

Now that we have the build, you can test it by double-clicking the executable file. Now that
you have tried your build, we will discuss how to use the same Debugging and Profiling
tools we used in the Editor to test our build.

Debugging the Build
In an ideal world, the Editor and the build will behave the same, but sadly, that isn't
true. The Editor is prepared to work in fast-iteration mode. Code and assets go through
minimal processing before being used to make changes often and fast, so we can test
our game easily. When the game is built, a series of optimizations and differences from
the Editor project will be applied to ensure the best performance we can get, but those
differences can cause certain parts of the game to behave differently, making the profiling
data of the player differ from the Editor. That's why we are going to explore how we can
debug and profile our game in the Build.

In this section, we will examine the following Build Debugging concepts:

• Debugging Code

• Profiling Performance

Let's start by discussing how to debug the code of a Build.

Debugging the Build 623

Debugging Code
As Player code is compiled differently, we can get errors in the Build that didn't happen in
the Editor, and we need to debug them somehow. We have two main ways to debug – by
printing messages and by using breakpoints. So, let's start with the first one, messages. If
you ran your executable file, you may have noticed that there's no console available. It's
just the Game view in full screen, which makes sense; we don't want to distract the user
with annoying testing messages. Luckily, the messages are still being printed, but in a file,
so we can just go to that file and look for them.

The location varies based on the operating system. In this list, you can find the possible
locations of this file:

• Linux: ~/.config/unity3d/CompanyName/ProductName/Player.log

• Mac: ~/Library/Logs/Company Name/Product Name/Player.log

• Windows: C:\Users\username\AppData\LocalLow\CompanyName\
ProductName\Player.log

In these paths, you must change CompanyName and ProductName and use the values
of the properties in the Player settings we set previously, which have the same names;
that is, Company and Product Name. In Windows, you must replace username with the
name of the Windows account you are executing the game in. Consider that the folders
might be hidden, so enable the option to show hidden files on your operating system:

Figure 21.7 – Showing hidden files

Inside that folder, you will find a file called Player; you can open it with any text editor
and look at the messages. In this case, I have used Windows, so the directory path looks
like this:

Figure 21.8 – Debugging directory

624 Building the Project

Aside from downloading a custom package from the Asset Store, there is a way to see the
messages of the console directly in the game –the error messages, at least – and that is by
creating a development build. This is a special Build that provides extended debugging
and profiling capabilities in exchange for not fully optimizing the code like the final Build
does, but it will be enough for general debugging. You can create this kind of Build by just
checking the Development Build checkbox in the File | Build Settings window:

Figure 21.9 – The Development Build checkbox

Remember that just the error messages will be displayed here, so a little trick you can do
is replace the print and Debug.Log function calls with Debug.LogError, which
will also print the message in the console but with a red icon. Note that this is not a good
practice, so limit the usage of this kind of message for temporal debugging. For permanent
logging, use the log file or find a custom debugging console for runtime in the Asset Store.

One little trick we performed is that we enabled Development Build – pay attention to
the Script Build Only checkbox in the Build window. If you only changed your code and
want to test that change, check it and do the build. This will make the process go faster
than a regular build. Just remember to uncheck this option if you have changed anything
else in the Editor because those changes won't be included if you have it checked. Also,
remember that this won't work for Release builds (non-development builds).

Remember that for Development Build to work, you need to build the game again;
luckily, the first build is the one that takes the most time, and the next will be faster. This
time, you can just click the Build and Run button to do the Build in the folder where you
did the previous Build:

Figure 21.10 – Debugging error messages

Debugging the Build 625

Something interesting regarding Development Builds is that, unlike regular builds, the
error messages are displayed directly in the build, allowing you to properly debug your
project. In the following screenshot, you can see the error message being displayed in the
runtime:

Figure 21.11 – Error messages in a development Build

Note that aside from showing the error message, there's an Open Log File button on the
right, allowing you to view the log file. This is a text file containing detailed information
regarding all the messages and logs that occurred in this run of the game to pinpoint the
issue. Essentially, this is the same information that the Console panel shows in the editor.

Also, you can use regular breakpoints in the same way as we explained in Chapter 14,
Introduction to C# and Visual Scripting. Upon attaching the IDE to the Player, it will show
up in the list of targets. But for that to work, you must not only check Development Build
in the Build window but also Script Debugging. Here, you have an additional option
that, when checked, allows you to pause the entire game until a debugger is attached.
This is called Wait for Managed Debugger. This is useful if you want to test something
that happens immediately at the beginning and doesn't give you enough time to attach
the debugger:

Figure 21.12 – Enabling script debugging

We have another way to view these messages, but that will require the Profiler to work,
so let's use this as an excuse to also discuss how to profile the Editor.

626 Building the Project

Profiling performance
We are going to use the same tools we looked at in the previous chapter, but to profile
the Player this time. Luckily, the difference is minimal. As we did in the previous section,
you need to build the Player in Development mode by checking the Development Build
checkbox in the Build window. Upon doing this, the profilers should automatically detect it.

Let's start using the Profiler on the Build by doing the following:

1. Play the game through the Build.
2. Switch to Unity using Alt + Tab (Cmd + Tab on Mac).
3. Open the Profiler.
4. Click the menu that says Playmode and select the item that contains Player in it.

Because I have used Windows, it says WindowsPlayer:

Figure 21.13 – Profiling the Player

Notice that when you click a frame, the game won't stop like it does in the Editor window.
If you want to focus your attention on the frames at a specific moment, you can click the
record button (the red circle) to make the Profiler stop capturing data so that you can
analyze the frames that have been captured so far.

Also, you can see that when the Profiler is attached to the Player, the console will also be
attached, so you can see the logs directly in Unity. Note that this version requires Unity to
be open, and we cannot expect our friends who are testing our game to have it. You might
need to click on the Player button that appears in the Console window and check Player
Logging for this to work:

Debugging the Build 627

Figure 21.14 – Enabling Player Logging after attaching the Profiler

Frame Debugger must also be enabled to work with the Player. Here, you need to click
the Editor button in Frame Debugger. Again, you will see the player in the list of possible
debugging targets; after selecting it, hit Enable as usual. Consider that the preview of the
Draw Calls won't be seen in the Game view but in the Build itself. If you are running the
game in full-screen mode, you might need to switch back and forth between Unity and
the Build:

Figure 21.15 – Debugging the frames of our game's Player

You may also wish to run the game in Windowed mode, which you can do by setting
the Fullscreen Mode property in the Player settings to Windowed, as well as establish
a default resolution that is smaller than your desktop resolution to have both Unity and
the Player visible:

Figure 21.16 – Enabling Windowed mode

628 Building the Project

Finally, Memory Profiler also supports profiling the Player. As you might have guessed,
you can just select the Player from the list that is displayed when you click the first button
shown in the top bar of the window, and then click Capture Player:

Figure 21.17 Taking memory snapshots of the Player

And that is it. As you can see, Unity Profilers are designed to be easily integrated with the
Player. If you start to take data from them, you will see the difference compared to Editor
profiling, especially in Memory Profiler.

Summary
In this chapter, we learned how to create an executable version of the game and configure
it properly so that you can share it with not only your friends but potentially the world!
We also discussed how to profile our Build; remember that doing that will give us more
accurate data than profiling the Editor, so we can improve the performance of our game
even more.

But before we do that, we must discuss some final details. These are not Unity-related
details, but game-related ones – things you need to consider before and after showing your
game to people other than yourself or any person that saw your game while it was being
developed. In the next chapter, we will briefly discuss the non-technical aspects of game
development, and what you should do before and after finishing your game.

22
Finishing Touches

Here we are! At this point, we have a fully developed game, so can we get some money
now? Sadly not. A successful game relies on heavy refinement; the devil is in the details!
Also, don't get too hyped about earning money yet; this is your first game and there are
a lot of non-development-related tasks to accomplish. It's time to discuss what can we do
now with what we have achieved so far. By the end of this chapter, you should be aware
of the work you need to do to make your game reach its full potential, as well as the
processes and challenges of releasing a game to the market.

In this chapter, we will cover the following topics:

• Iterating your game

• Releasing your game

Iterating your game
We are about to finish the first iteration of our game. We had an idea, we implemented it,
and now it's time to test it. After this test, we will get feedback on the things that can be
improved, so we will formulate ideas to improve them, implement them, test them, and
then repeat this. This is what an iteration is.

630 Finishing Touches

In this section, we will examine the following iteration concepts:

• Testing and feedback

• Solving feedback

Let's start by discussing how to properly test the game on people.

Testing and feedback
Apart from a strong marketing strategy, the success of your game relies on the first 10
minutes of gameplay. If you can't grab the attention of the player in that time, you will
certainly lose them. The first impression of your game is important. Those first 10 minutes
must be flawless and sadly, our perception of the game is not relevant here. You have spent
several hours playing it and you know every inch of the levels and how to properly control
your character, as well as all the mechanics and dynamics of your game – it is YOUR
game, after all. You love it as it is. It's a big accomplishment. However, someone who has
never played the game won't feel the same way. That's why testing is so important.

The first time you make someone play your game, you will be shocked – believe me, I've
been there. You will notice that the player probably won't understand the game. They
won't understand how to control the player or how to win the game and will get stuck in
parts of the level that you never imagined to be difficult. There will be bugs everywhere
and it will be a total mess – and that is great! That is the purpose of testing your game: to
get valuable information or feedback. This feedback is what will make your game better if
you tackle it properly.

In a testing session, there are two main sources of feedback – observation and user
feedback. Observation is the act of silently looking at the person who is playing the game
and seeing how they play it – which keys they press first, their reaction when something
happens, when they start getting frustrated in a non-expected way (some games rely on
frustration, such as Dark Souls), and generally checking that the player is getting the exact
experience you expected.

The silent part of the observation is crucial. You must not talk to the player, and especially
not give them any hints nor help, at least not unless they are completely lost and the
testing session can't progress without help – a situation that is also a form of useful
feedback. You must observe the player in their natural state so that it's the same situation
where they would be playing your game in their house. If not, the feedback that's gathered
will be biased and won't be useful. When testing big games, they even carry out tests in
Gesell chambers. These are rooms with a pane of glass that can be seen from one side
only – like an interrogation room but less scary. This way, the player won't feel any kind
of pressure about being observed:

Iterating your game 631

Figure 22.1 – Gesell chamber

The second source is direct feedback, which is asking the tester about their impressions
of the game after the session. Here, you can let the tester tell you their experience and
provide any feedback that they have, if any, and then you can start asking questions related
to that feedback or other questions related to the test. This could include questions such
as, how did you find the controls? Which part of the game did you find most frustrating?
Which part was the most rewarding? Would you pay for this game?

Something important to consider when taking feedback from the tester is who they
are. Are they a friend, a relative, or a total stranger? When testing with people close to
you, it's possible that the feedback won't be useful. They will try to water down the poor
parts of the game as they might think that you asked them to play the game to receive
compliments, but that cannot be farther from the truth. You want real, harsh, objective
feedback – that's the only way you can really improve your game.

So, unless your friends are really honest with you, try to test your game on unknown
people. This could be other students in your educative institution, or at your workplace,
or random people in the streets. Try to go to game conventions with spaces to showcase
indie games. Also, consider your target audience when testing. If your game is a casual
mobile game, you shouldn't be taking it to a Doom meet-up as you will mostly receive
unrelated feedback. Know your audience and look for them. Also, consider that you will
probably need to test your game on at least 10 people. You will notice that maybe one
person didn't like the game and the other nine did. As in statistics, your sample must be
big enough to be considerable.

Also, even though we said that our perception doesn't count, if you apply common sense
and be honest with yourself, you can get feedback from your own playtesting. But now
that we have gathered feedback, what we can do with it?

632 Finishing Touches

Interpreting feedback
So, you've got what you wanted – lots of information about your game. But what do you
do now? Well, that depends on the feedback. You have different types and different ways
to solve them. The easiest feedback to tackle is errors – for example, the door didn't open
when I put in the key, the enemy won't die no matter how many bullets I shoot at it, and
so on. To solve these, you must carry out what the player did step by step so that you can
reproduce the issue. Once you've reproduced it, debug your game to see the error – maybe
it's caused by a null check or a misconfiguration in the scene.

Try to gather as much detail about the situation as possible, such as when the issue
occurred and at what level, which gear the player had, the number of lives the player had
left, or if the player was in the air or crouched down – any data that allows you to get to
the same situation. Some bugs can be tricky and can sometimes happen in the strangest
situations. You might think that strange bugs that happen 1% of the time can be ignored,
but remember that if your game is successful, it will be played by hundreds, maybe
thousands, of players – that 1% can really affect your player base.

Then, you have to balance the feedback. You could get feedback such as there weren't
enough bullets, I had too many lives, the enemies are tough, the game is too easy, or the
game is too hard. This must be considered alongside your objectives. Did you really want
the player to be short on bullets or lives? Did you want the enemies to be hard to defeat?
In this scenario, things that the player found difficult might be the exact experience you
desired, and here is where you need to remember the target audience. Maybe the user
that gave you that feedback is not who you expect to play the game (again, think of the
example of Dark Souls, a game that is not for everyone). But if the player is the target
audience, you might need to create a balance.

Balance is when you need to tweak the game numbers, the number of bullets, the number
of waves, the enemies, the enemies' lives, the enemies' bullets, and so on. That's why we
exposed lots of properties of our scripts – so that they can be easily changed. This can
be an extensive process. Getting all those numbers to work together is difficult. If you
increase a property too much, another one might need to be reduced. Your game is a big
spreadsheet of calculations. Actually, most game designers master the use of spreadsheets
to do exactly this – balance the game, make calculations, and see how changing one cell
changes the other – and before testing it the hard way, play the game. In the following
screenshot, you can see how we prepared our Player object to be easily configured
in the Editor window:

Iterating your game 633

Figure 22.2 – Some of the properties that affect gameplay

You can also get some feedback such as "I don't understand why the player does what
they do," "I don't understand the motives of the villains," and so on. This can be easy to
underestimate, but remember that your game mechanics, aesthetics, and story (if any)
must be in sync. If one of those elements fails, there is the risk of the rest of them also
failing. If you have a futuristic history setting but your main weapon is a metal sword,
you need to justify its existence somehow, perhaps with a story point. If your enemy wants
to destroy the world but appears to be a kind person, you need to justify that somehow.
These details are what make the game believable.

Finally, you have perception feedback, such as "the game didn't entertain me" or "I didn't
enjoy the game." That feedback can be converted into other feedback if you ask the right
questions, but sometimes, the tester doesn't know what the problem is; the game can just
feel wrong in their eyes. This, of course, is not useful by itself, but don't underestimate it.
It might be a hint that you need to do further testing.

In game development, when you think you are finished with the game, you will discover
that you have just started to develop it. Testing will make you realize that the game is not
finished until the players are happy with the game, and that can take even more time than
preparing the first version, so prepare for having to iterate the game a lot.

634 Finishing Touches

Big game developers, where their first prototype could take years, carry out testing in the
early stages of their game, sometimes with fake assets to hide sensitive information that
can spoil the game or make the competitors aware of their plans. Some developers even
release a mini-game based on the main game, with a different story and aesthetics, just to
test an idea. Also, there is the soft launch, where the game is released but to a restricted
audience – maybe to a specific country that will not be your main audience and source of
income – to test and iterate the game before releasing it to the rest of the world.

So, have patience. Testing is where the real development of the game starts, but once all
those extensive testing sessions have ended and the game is finished, what is the next step?
Releasing it!

Releasing your game
We are here – the big moment! We have the gold build, which is the final version of the
game. Do we just throw it at our target store (such as Steam, the Play store, the Apple
App Store, and so on)? Well… no – actually, we still have lots of work to do, work that we
should have started before getting to the gold build. So, let's explore what that extra work
is and in which phase it should be carried out.

In this section, we will examine the following release phases:

• Pre-release

• Release

• Post-release

Let's start by discussing the pre-release phase.

Pre-release
One thing you should do before pre-release, and ideally before you start developing your
game, is decide where you are going to sell your game. Nowadays, that means choosing
a digital store – selling physical copies of games is not an option for newly starting
independent developers. You have several options, but for PCs, the most common place
for this is Steam, a well-known platform that allows you to upload your game to the
platform for 100 USD. Once it has been reviewed, it can be published. On iOS, the only
way to do this is by using the App Store, which charges 100 USD per year for you to
publish on it. Finally, on Android, you have the Play store, which allows you to publish
on it for a one-off payment of 25 USD. Consoles have harder requisites, so we are not
going to mention them.

Releasing your game 635

After picking a digital store, if you just release your game without any preparation, your
game can be easily lost in the sea of releases that happen on the same day. Nowadays, the
competition is strong, and dozens of games might be released on the same day as yours,
so you must highlight your game somehow. There are lots of ways to do this, but it
requires experience in digital marketing, which can be difficult. It requires skills other
than regular developer ones. If you insist on doing it by yourself without hiring someone,
here are some things you can do.

First, you can create a game community, such as a blog or group, where you can post
information about your game regularly. This includes updates on its development,
screenshots of new features, new concept art, and so on. Your job here is to capture the
interest of players and keep them interested in your game, even if it's not been released
yet, just to prepare them to buy your game as soon as it's released. Here, you need to
be creative to keep their interest in the game – vary the content you post, maybe share
some mini-games with your community with the opportunity to win prizes, or post
questionnaires or giveaways; really, do anything that captures the attention of your
audience.

Also, try to develop a community when you are not too near but not too far from the
release date. That way, you won't lose the attention of the players due to long wait times
and you can be honest about the expectations of your game. They will change a lot during
development and the scope is likely to be reduced from its initial design. You will need to
deal with the hype, which can be dangerous.

Of course, we need people to join the community, so you must publish it somewhere.
You can pay for ads, but aside from the cost and difficulty of making them relevant,
there are other free ways of doing this. You might send a free copy of your game to an
influencer, such as a YouTuber or an Instagrammer, so that they can play your game and
give a review to their audience. This can be difficult if the influencer doesn't like the game
as they will be honest, and that can be bad for you. So, you really need to be sure to give
them a polished version, but not necessarily a final version. There are also paid influencers
that you can approach, but again, that requires money.

You have other free options, such as going onto forums or groups and posting information
about your game, but be sensible here. Don't make your post feel like cheap advertising
– know where you are publishing. Some groups don't like those kinds of posts and will
reject them. Try to look for places that allow that kind of self-advertising. There are groups
intended just for that, so just avoid being invasive in certain communities.

636 Finishing Touches

Finally, another option you have is to contact a publisher, a company that specializes
in doing this kind of marketing. They will allocate money for publishing and will have
people that work to manage your communities, which can be a big relief. You have more
time to create your game, but this option also has some drawbacks. First, they will get
a cut of your game revenue, and depending on the publisher, this can be high. However,
you need to contrast that with the revenue you will get by doing your own marketing.
Also, publishers will ask you to change your game to meet their criteria. Some will ask
for your game to be localized (support several languages) or ask for your game to support
certain controllers, have a certain way of doing tutorials, and so on. Finally, consider that
certain publishers are associated with certain types of games, so if you are creating an
intense action game, you wouldn't publish it with a casual games publisher. Find the right
publisher for you:

Figure 22.3 – Some well-known publishers, some of which don't develop their own games,
just publish them

Now that we have the foundations prepared for release, how do we release the game?

Release
Aside from all the setup and integrations your game might need to have for the selected
digital store platform (which, again, depends on your audience), there are some things to
consider when releasing it.

Some stores might have a review process, which consists of playing your game and seeing
whether it meets the criteria of the store. As an example, at the time of writing this book,
the Apple App Store requires every game they publish to have some kind of social sign-in
option (such as Facebook, Google, and so on) and must also support Apple sign-in. They
will simply not admit your game if you do not comply. Another example is PS Vita, which
asks your game to support some kind of interaction with its front or rear touchpads. So, be
aware of these requirements early on. They can influence the release of your game a lot if
you don't take care of them.

Releasing your game 637

Aside from these requirements, of course, there are other criteria to be met, such as
whether there is adult or violent content. Consider a platform that supports the kind of
game you have created. Some may even ask you to get ratings from the Entertainment
Software Rating Board (ESRB) or similar rating boards. Another common requirement
that you need to be aware of is that the game should not crash, at least not in the usual
workflow of the game. Also, the game must perform well, can't have intense performance
issues, and sometimes, your initial game download size can't exceed a specified maximum
limit, which you can usually solve by downloading the content in the game itself (look
for the Addressables Unity package for this). Again, all of these requirements vary,
depending on the store.

Now, even if these requirements are met, the process of checking them can take
time – days, weeks, or sometimes even months. So, keep this in mind when defining
a release date. In big consoles where this process can take months, sometimes, the
developers use that time to create the famous day-1 patch, a patch that fixes bugs, which
won't stop the game from being released but helps with the overall game experience. It's
a questionable but understandable practice.

Finally, remember that the first day of the release is critical. You will be in the New
Releases section of the store, and this is where you will have the most exposure. After that,
all exposure will mostly rely on your marketing and sales. Some stores allow you to be
featured. You can talk directly with the representatives of the store and see how you can do
this. If the store is interested in your game, they might feature you (or you might have to
pay for it). The first day is important, so be prepared for that.

At this point, the game is out and in the hands of people. Have we finished our work?
A few years ago, this might have been true, but not today. We still have the post-release
work to do.

Post-release
Even if the game has been released, this is not an excuse to stop testing it. You can get even
more feedback if your game is played by thousands of people. Sadly, you can't be there to
observe them, but you can automate the information-gathering process. You can do this by
making your code report analytics to a server, as the Unity Analytics package does. Even if
this information is not as direct as in-person testing, a massive amount of data and statistics
can be gathered this way, and you can improve the game on the fly thanks to updates,
something that old games couldn't do as easily as they can today. No game is released
perfect, and sometimes, due to time pressures, you might need to roll out an early release,
so prepare your game to be updated regularly after release. There are some cases of games
that had a bad launch but were resurrected from the grave. Don't underestimate that last
resource. You have already spent too much to give up on your badly released game.

638 Finishing Touches

Also, if your monetization model relies on in-app purchases, which means people spend
money on loot boxes or cosmetic items, you will need to have constant content updates.
This will keep the players playing your game. The more they play the game, the more
money will be spent on it. You might take advantage of the information you gather
through analytics, not only to fix your game but also to decide which content is being
consumed the most by your players, and then focus on that. You can also carry out A/B
testing, which consists of releasing two versions of the update to different users and seeing
which one is the most successful. This allows you to test ideas on a live game. As you can
see, there is still plenty of work to do. Also, use metrics to track whether players are losing
interest in your game, and if so, why – is there a difficult level? Is the game too easy? Pay
attention to your player base. Ask them questions in the communities you created, or just
look at the reviews – users are usually willing to tell you how they would like their favorite
game to be improved.

Summary
Developing a game is just one part of the job; releasing it so that it's successful can be
a huge task. Sometimes, it can cost more than the game itself. So, unless you are making
a game for fun, if you want to make games for a living, you will need to learn how to
manage releases or hire people that are capable of helping with the pre-release, release,
and post-release phases of your games, which can be a smart move.

Of course, this chapter just provided a simple introduction to this big topic, so I would
recommend that you read some extra material if you want to take this part of game
development seriously. A very well-explained and bite-sized source of information on
this topic is the Extra Credits YouTube channel, which provides short videos to convey
valuable information. Also, there is a great book called The Art of Game Design: A Book
of Lenses, which provides a thorough introduction to game design.

Congratulations, you have almost finished part 3 of this book! You have gained some basic
knowledge to kick-start your game development career and choose some of the several
roles you can do in it. I recommend that you put this to practice before reading more
books on this topic. Gaining information is important, but the only way to convert that
information into knowledge is through experimentation. Just be sure to balance theory
and practice.

In the next chapter of this book, we are going to explore some extra topics regarding
augmented reality applications, by learning how to make a simple game that uses the
device's camera to bring the real world into your game, and then extend it with
virtual objects.

23
Augmented Reality

in Unity
Nowadays, new technologies are expanding the fields of the application of Unity, from
gaming to all kinds of software, such as simulations, training, apps, and more. In the latest
versions of Unity, we saw lots of improvements in the field of augmented reality (AR),
which allows us to add a layer of virtuality on top of our reality, thereby augmenting what
our device can perceive to create games that rely on real-world data, such as the camera's
image, our real-world position, and the current weather. This can also be applied to work
environments, such as when viewing a building map or checking the electrical ducts
inside a wall. Welcome to this extra section of this book, where we are going to discuss
how to create AR applications using Unity's AR Foundation package.

In this chapter, we will examine the following AR Foundation concepts:

• Using AR Foundation

• Building for mobile devices

• Creating a simple AR game

By the end of this chapter, you will be able to create AR apps using AR Foundation and
will have a fully functional game that uses AR Foundation's framework so that you can
test its capabilities.

Let's start by exploring the AR Foundation framework.

640 Augmented Reality in Unity

Using AR Foundation
When it comes to AR, Unity has two main tools to create applications: Vuforia and AR
Foundation. Vuforia is an AR framework that can work on almost any phone and contains
all the features needed for basic AR apps; but with a paid subscription, we get more
advanced features. On the other hand, the completely free AR Foundation framework
supports the latest native AR features of our devices but is supported only on new devices.
Your choice of one or the other depends a lot on the type of project you're going to build and
the target audience. However, since this book aims to discuss the latest Unity features, we
are going to explore how to use AR Foundation to create our first AR app for detecting the
positions of images and surfaces in the real world. So, we'll start by exploring its API.

In this section, we will examine the following AR Foundation concepts:

• Creating an AR Foundation project

• Using tracking features

Let's start by discussing how to prepare our project so that it can run AR Foundation apps.

Creating an AR Foundation project
Something to consider when creating AR projects is that we will not only change the
way we code our game, but also the way we design our game. AR apps have differences,
especially in the way the user interacts, and also limitations, such as the user being in
control of the camera all the time. We cannot simply port an existing game to AR without
changing the very core experience of the game. That's why, in this chapter, we are going to
work on a brand-new project; it would be too difficult to change the game we've created so
far so that it works well in AR.

In our case, we are going to create a game where the user controls a player moving a
"marker," a physical image you can print that will allow our app to recognize where the
player is in the real world. We will be able to move the player while moving that image,
and this virtual player will automatically shoot at the nearest Enemy. Those enemies will
spawn from certain spawn points that the user will need to place in different parts of the
home. As an example, we can put two spawn points on the walls and place our player
marker on a table in the middle of the room so that the enemies will go toward them.
In the following figure, you can see a preview of what the game will look like:

Using AR Foundation 641

Figure 23.1 – Finished game. The Cylinder is an Enemy Spawner, the Capsule is the Enemy, and the
Cube is the Player. These are positioned in a marker image displayed by the cellphone

We'll start creating a new URP-based project in the same way that we created one for
our first game. Something to consider is that AR Foundation works with other pipelines,
including built-in ones, in case you want to use it in already existing projects. If you don't
remember how to create a project, please refer to Chapter 2, Setting Up Unity. Once you're
in your new blank project, install the AR Foundation package from the Package Manager,
just like we've installed other packages previously; that is, go to Window | Package
Manager. Remember to set the Package Manager so that it shows all packages, not only
the ones in the project (the Packages button at the top-left part of the window needs to
be set to Unity Registry). At the time of writing this book, the latest release is 4.1.7, but if
you find a newer version than mine, you can try using that one, but as usual, if something
works differently to what we want, please install this specific version:

Figure 23.2 – Installing AR Foundation

642 Augmented Reality in Unity

Before we install any other needed packages, now is a good moment to discuss some core
ideas of the AR Foundation framework. This package, by itself, does nothing; it defines
a series of AR features that mobile devices offer, such as image tracking, cloud points,
and object tracking, but the actual implementation of how to do that is contained in the
Provider packages, such as AR Kit and AR Core XR plugins. This is designed like this
because, depending on the target device you want to work with, the way those features are
implemented changes. As an example, in iOS, Unity implements those features using AR
Kit, while in Android, it uses AR Core; they are platform-specific frameworks.

Something to consider here is that not all iOS or Android devices support AR Foundation
apps. You might find an updated list of supported devices when searching for AR Core-
and AR Kit-supported devices on the internet. At the time of writing, the following links
provide the supported device lists:

• iOS: https://www.apple.com/lae/augmented-reality (at the bottom
of the page)

• Android: https://developers.google.com/ar/devices

Also, there isn't a PC Provider package, so the only way to test AR Foundation apps so far
is directly on the device, but testing tools are going to be released soon. In my case, I will
be creating an app for iOS, so aside from the AR Foundation package, I need to install
the ARKit XR plugin. However, if you want to develop for Android, install the ARCore
XR plugin instead (or both if you're targeting both platforms). Also, I will be using the
4.1.7 version of these packages. Usually, the versions of the AR Foundation and Provider
packages match but apply the same logic as when you picked the AR Foundation version.
In the following screenshot, you can see the ARKit package in Package Manager:

Figure 23.3 – Installing the platform-specific AR provider package

https://www.apple.com/lae/augmented-reality
https://developers.google.com/ar/devices

Using AR Foundation 643

Now that we have the needed plugins, we need to prepare a scene for AR, as follows:

1. Create a new Scene in File | New Scene and select the Basic template.
2. Delete Main Camera; we are going to use a different one.
3. In the GameObject | XR menu, create an AR Session Object.
4. In the same menu, create an AR Session Origin Object that has a Camera object

inside it:

Figure 23.4 – Creating the Session objects

Your hierarchy should look as follows:

Figure 23.5 – Starter ARScene

The AR Session object will be responsible for initializing AR Framework and will handle
all the update logic for the AR systems. The AR Session Origin object will allow the
framework to locate tracked objects such as images and point clouds in a relative position
to the scene. The devices inform the positions of tracked objects relative to what the
device considers "the origin." This is usually the first area of your house you were pointing
at when the app started detecting objects, so the AR Session Origin object will represent
that point in your physical space. Finally, you can check the camera inside the origin,
which contains some extra components, with the most important being AR Pose Driver,
which will make your Camera object move along with your device. Since the device's
position is relative to the Session Origin object's point, the camera needs to be inside the
origin object.

644 Augmented Reality in Unity

One extra step if you are working on a URP project (as in our case) is that you need to set
up the render pipeline so that it supports rendering the camera image in the app. To do
that, go to the Settings folder that was generated when we created the project, look
for the Forward Renderer file, and select it. In the Renderer Features list, click the
Add Renderer Feature button and select AR Background Renderer Feature. In the
following screenshot, you can see what the Forward Renderer asset should look like:

Figure 23.6 – Adding support for URP)

And that's all! We are ready to start exploring the AR Foundation components so that we
can implement tracking features.

Using tracking features
For our project, we are going to need two of the most common tracking features in AR
(but not the only ones): image recognition and plane detection. The first one consists of
detecting the position in the real world of a specific image so that we can place digital
objects on top of it, such as the player. The second one, plane detection, consists of
recognizing real-life surfaces, such as floors, tables, and walls, so that we have a reference
of where we can put objects such as the enemies' spawn points. Only horizontal and
vertical surfaces are recognized (just vertical surfaces on some devices).

Using AR Foundation 645

The first thing we need to do is tell our app which images it needs to detect, as follows:

1. Add an image to the project that you can print or display on a cellphone. Having
a way to display the image in the real world is necessary to test this. In this case,
I will use the following image:

Figure 23.7 – Image to track

Important Note
Try to get an image that contains as many features as you can. This means an
image with lots of little details, such as contrasts, sharp corners, and so on.
These are what our AR systems use to detect it; the more detail, the better the
recognition. If your device has trouble detecting our current image, try other
images (the classic QR code might help).

Consider that some devices might have trouble with certain images, such as the
image suggested in this book. If this generates issues when testing, please try using
another one. You will be testing this on your device in the upcoming sections of this
chapter, so just keep this in mind.

646 Augmented Reality in Unity

2. Create a Reference Image Library asset, an asset containing all the images we
wish our app to recognize, by clicking the + button in Project Panel and selecting
XR | Reference Image Library:

Figure 23.8 – Creating a Reference Image Library

3. Select the library asset and click the Add Image button to add a new image to
the library.

4. Drag the texture to the texture slot (the one that says None).
5. Turn Specify Size on and set Physical Size to the size that your image will be in real

life, in meters. Try to be accurate here; on some devices, not having this value right
might result in the image not being tracked:

Figure 23.9 – Adding an image to be recognized

Now that we've specified the images to be detected, let's test this by placing a cube on top
of the real-life image:

1. Create a prefab of a cube and add the AR Tracked Image component to it.
2. Add the AR Tracked Image Manager component to the AR Session Origin object.

This will be responsible for detecting images and creating objects in its position.

Using AR Foundation 647

3. Drag the Image Library asset to the Serialized Library property of the component
to specify the images to be recognized.

4. Drag the Cube prefab to the Tracked Image prefab property of the component:

Figure 23.10 – Setting up the Tracked Image Manager

And that's all! We will see a cube spawning in the same position the image is located at in
the real world. Remember that you need to test this in the device, which we will do in the
next section, so for now, let's keep coding our test app:

Figure 23.11 – Cube located on top of the image being displayed by the cellphone

648 Augmented Reality in Unity

Let's also prepare our app so that it can detect and display the plane surfaces the camera
has recognized. This is simply done by adding the AR Plane Manager component to the
AR Session Origin object:

Figure 23.12 – Adding the AR Plane Manager component

This component will detect surface planes over our house as we move the camera over
it. It can take a while to detect them, so it's important to visualize the detected areas to
get feedback about this to ensure it's working properly. We can manually get information
about the plane from a component reference to the AR Plane Manager, but luckily, Unity
allows us to visualize planes easily. Let's take a look:

1. Create a prefab of a plane, first by creating the plane in GameObject | 3D Object |
Plane.

2. Add a Line Renderer component to it. This will allow us to draw a line over the
edges of the detected areas.

3. Set the Width property of the Line Renderer component to a small value such as
0.01, set the Color gradient property to black, and uncheck Use World Space:

Figure 23.13 – Setting the Line Renderer component

Using AR Foundation 649

4. Remember to create a material with the proper shader (Universal Render Pipeline/
Unlit) and set it as the material of the Line Renderer component under the
Materials list property:

Figure 23.14 – Creating the Line Renderer Material

5. Also, create a transparent material and use it in the MeshRenderer plane. We want
to see through it so that we can easily see the real surface beneath:

Figure 23.15 – Material for the detected plane

650 Augmented Reality in Unity

6. Add the AR Plane and AR Plane Mesh Visualizer components to the Plane prefab.
7. Drag the prefab to the Plane Prefab property of the AR Plane Manager component

of the AR Session Origin object:

Figure 23.16 – Setting the plane visualization prefab

Now, we have a way to see the planes, but seeing them is not the only thing we can do
(sometimes, we don't even want them to be visible). The real power of planes lies in
placing virtual objects on top of real-life surfaces, tapping a specific plane area, and getting
its real-life position. We can access the plane data using the AR Plane Manager or by
accessing the AR Plane component of our visualization planes, but an easier way is to use
the AR Raycast Manager component.

The AR Raycast Manager component provides us with the equivalent to the Physics.
Raycast function of the Unity Physics system, which, as you may recall, is used to
create imaginary rays that start from one position and go in a specified direction in
order to make them hit surfaces and detect the exact hit point. The version provided by
AR Raycast Manager, instead of colliding with Physics Colliders, collides with tracked
objects, mostly Point Clouds (we are not using them) and the Planes we are tracking. We
can test this feature by following these steps:

1. Add the AR Raycast Manager component to the AR Session Origin object.
2. Create a custom script called InstanceOnPlane in the AR Session Origin object.
3. In the Awake cache, add the reference to ARRaycastManager. You will need to

add the using UnityEngine.XR.ARFoundation; line to the top of the script
for this class to be usable in our script.

4. Create a private field of the List<ARRaycastHit> type and instantiate it; the
Raycast is going to detect every plane our ray hit, not just the first one:

Figure 23.17 – List to store hits

5. Under Update, check if the Left Mouse Button (KeyCode.Mouse0) is being
pressed. In AR apps, the mouse is emulated with the device's touch screen
(you can also use the Input.touches array for multi-touch support).

Using AR Foundation 651

6. Inside the if statement, add another condition for calling the Raycast function
of AR Raycast Manager, passing the position of the mouse as the first parameter
and the list of hits as the second.

7. This will throw a raycast toward the direction the player touches the screen and
store the hits inside the list we provided. This will return true if something has
been hit, and false if not:

Figure 23.18 – Throwing AR raycasts

8. Add a public field to specify the prefab to instantiate in the place we touched.
You can just create a Sphere prefab to test this; there's no need to add any special
component to the prefab here.

9. Instantiate the prefab in the Position and Rotation fields of the Pose property of the
first hit stored in the list. The hits are sorted by distance, so the first hit is the closest
one. Your final script should look as follows:

Figure 23.19 – Raycaster component

652 Augmented Reality in Unity

In this section, we learned how to create a new AR project using AR Foundation. We
discussed how to install and set up the framework, as well as how to detect real-life image
positions and surfaces, and then how to place objects on top of them.

As you may have noticed, we never hit play to test this, and sadly at the time of writing
this book, we cannot test this in the Editor. Instead, we need to test this directly on the
device. Due to this, in the next section, we are going to learn how to do builds for mobile
devices such as Android and iOS.

Building for mobile devices
Unity is a very powerful tool that solves the most common problems in game
development very easily, and one of them is building the game for several target platforms.
Now, the Unity part of building our project for such devices is easy to do, but each device
has its non-Unity-related nuances for installing development builds. In order to test our
AR app, we need to test it directly on the device. So, let's explore how we can make our
app run on Android and iOS, the most common mobile platforms.

Before diving into this topic, it is worth mentioning that the following procedures change
a lot over time, so you will need to find the latest instructions on the internet. The Unity
Learn portal site (https://learn.unity.com/tutorial/how-to-publish-
to-android-2#5f95b4b7edbc2a00201965d4) may be a good alternative in case
the instructions in this book fail, but try the steps here first.

In this section, we will examine the following mobile building concepts:

• Building for Android

• Building for iOS

Let's start by discussing how to build our app so that it runs on Android phones.

Building for Android
Creating Android builds is relatively easy compared to other platforms, so we'll start
with Android. Remember that you will need an Android device capable of running
AR Foundation apps, so please refer to the link regarding Android-supported devices
we mentioned in the first section of this chapter. The first thing we need to do is check
whether we have installed Unity's Android support and configured our project to use that
platform. To do that, follow these steps:

1. Close Unity and open Unity Hub.
2. Go to the Installs section and locate the Unity version you are working on.

https://learn.unity.com/tutorial/how-to-publish-to-android-2#5f95b4b7edbc2a00201965d4
https://learn.unity.com/tutorial/how-to-publish-to-android-2#5f95b4b7edbc2a00201965d4

Building for mobile devices 653

3. Click the three dots button at the top-right corner of the Unity version and click
Add Modules:

Figure 23.20 – Adding modules to the Unity version

4. Make sure Android Build Support and the sub-options that are displayed when
you click the arrow on its left are checked. If not, check them and click the Done
button at the bottom-right to install them:

Figure 23.21 – Adding Android support to Unity

5. Open the AR project we created in this chapter.
6. Go to Build Settings (File | Build Settings).
7. Select the Android platform from the list and click the Switch Platform button in

the bottom-right corner of the window:

Figure 23.22 – Switching to Android builds

654 Augmented Reality in Unity

To build an app on Android, there are some requirements we need to meet, such as having
the Java SDK (not the regular Java runtime) and Android SDK installed, but luckily, the
new versions of Unity take care of that. Just to double-check that we have installed the
needed dependencies, follow these steps:

1. Go to Unity Preferences (Edit | Preferences on Windows, Unity | Preferences
on Mac).

2. Click External Tools.
3. Check that all the options that say …Installed with Unity on the Android section

are checked. This means we will be using all the dependencies installed by Unity:

Figure 23.23 – Using installed dependencies

There are some additional Android AR Core-specific related settings to check that you
can find at https://developers.google.com/ar/develop/unity-arf/
quickstart-android. These can change if you are using newer versions of AR Core.
You can apply them by following these steps:

1. Go to Player Settings (Edit | Project Settings | Player).
2. Uncheck Multithreaded Rendering and Auto Graphics API.
3. Remove Vulkan from the Graphics APIs list.

https://developers.google.com/ar/develop/unity-arf/quickstart-android
https://developers.google.com/ar/develop/unity-arf/quickstart-android

Building for mobile devices 655

4. Set Minimum API Level to Android 7.0:

Figure 23.24 – AR Core settings

5. Go to Edit | Project Settings and select the XR Plug-in Management option.

656 Augmented Reality in Unity

6. Check ARCore under Plug-in Providers to make sure it will be enabled in our
build; if not, we won't see anything:

Figure 23.25 – ARCore plugin enabled

Now, you can finally build the app from File | Build Settings as usual, by using the Build
button. This time, the output will be a single APK file that you can install by copying the
file to your device and opening it. Remember that in order to install APKs that weren't
downloaded from the Play Store, you need to set your device to allow Install Unknown
Apps. The location for that option varies a lot depending on the Android version and
the device you are using, but this option is usually located in the Security settings. Some
Android versions prompt you to view these settings when installing the APK.

Now, we can copy and install the generated APK build file every time we want to create
a build. However, we can let Unity do that for us using the Build and Run button. This
option, after building the app, will look for the first Android device connected to your
computer via USB and will automatically install the app. For this to work, we need to
prepare our device and PC, as follows:

1. On your device, find the build number in the Settings section of the device, whose
location, again, can change depending on the device. On my device, it is located in
the About Phone | Software Information section:

Building for mobile devices 657

Figure 23.26 – Locating the build number

658 Augmented Reality in Unity

2. Tap it a few times until the device says you are now a programmer. This procedure
enables the hidden developer option in the device, which you can now find in
the settings.

3. Open the developer options and turn on USB Debugging, which allows your PC to
have special permissions on your device. In this case, it allows you to install apps.

4. Install the USB drivers from your phone manufacturer's site onto your computer.
For example, if you have a Samsung device, search for Samsung USB Driver.
Also, if you can't find that, you can look for Android USB Driver to get the
generic drivers, but that might not work if your device manufacturer has their own.
On Mac, this step is usually not necessary.

5. Connect your device (or reconnect it if it's already connected). The Allow USB
Debugging option will appear on the device. Check Always Allow and click OK:

Figure 23.27 – Allowing USB debugging

6. Accept the Allow Data prompt that appears.
7. If these options don't appear, check that the USB Mode setting of your device is set

to Debugging and not anything else.
8. In Unity, build with the Build and Run button.

Please remember to try another image if you have trouble detecting the image where we
instantiate the player (the Unity logo, in my case). This might vary a lot, according to your
device's capabilities.

And that's all! Now that you have your app running on your device, let's learn how to do
the same for the iOS platform.

Building for mobile devices 659

Building for iOS
When developing on iOS, you will need to spend some money. You will need to run Xcode,
a piece of software you can only run on OS X. Due to this, you'll need a device that can
run it, such as a MacBook, a Mac mini, and so on. There may be ways to run OS X on PCs,
but you will need to find this out and try it for yourself. Besides spending on a Mac and on
an iOS device (iPhone, iPad, iPod, and so on), you'll need to pay for an Apple developer
account, which costs 99 USD per year, even if you are not planning to release the application
on the App Store (there may be alternatives, but, again, you will need to find them).

There are a few iOS-specific steps regarding AR Foundation, the following ones:

1. Go to Edit | Project Settings and select the Player option.
2. In Other Settings, set the Camera Usage Description property. This will be

a message shown to the user to tell them why we need access to their camera:

Figure 23.28 – Message regarding camera usage

3. Go to Edit | Project Settings and select the XR Plug-in Management option.
4. Check ARKit under Plug-in Providers to make sure it will be enabled in our build;

if not, we won't see anything:

Figure 23.29 – ARKit plugin enabled

660 Augmented Reality in Unity

Now, to create an iOS build, you should do the following:

1. Get a Mac computer.
2. Get an iOS device.
3. Create an Apple developer account (at the time of writing this book, you can create

one at https://developer.apple.com/).
4. Install the latest Xcode from the App Store onto your Mac.
5. Check whether you have iOS build support in Unity Install on the Unity Hub

(please refer to the Building on Android section for more information about
this step):

Figure 23.30 – Enabling iOS build support

6. Switch to the iOS platform under Build Settings, by selecting iOS and clicking the
Switch Platform button:

Figure 23.31 – Switching to iOS build

7. Click the Build button in the Build Settings window and wait.

You will notice that the result of the build process will be a folder containing an Xcode
project. Unity cannot create the build directly, so it generates a project you can open with
the Xcode software we mentioned previously.

https://developer.apple.com/

Building for mobile devices 661

The steps you need to follow to create a build with the Xcode version being used in this
book (12.4) are as follows:

1. Double-click the .xcproject file inside the generated folder:

Figure 23.32 – Xcode project file

2. Go to Xcode | Preferences.
3. In the Accounts tab, hit the + button at the bottom-left part of the window and log

in with your Apple developer account:

Figure 23.33 – Account settings

4. Connect your device and select it from the top-left part of the window, which
should now show your iPhone's name or Generic iOS device:

Figure 23.34 – Selecting the device

662 Augmented Reality in Unity

5. Xcode might ask you to install certain updates to support your device, please install
it if needed.

6. Your device might prompt you to trust your computer. Click Trust and enter your
unlock code if requested.

7. In the left panel, click the folder icon and then the Unity-iPhone settings to display
the project settings.

8. From the TARGETS list, select Unity-iPhone and click on the Signing &
Capabilities tab.

9. In the Team settings, select the option that says Personal Team:

Figure 23.35 – Selecting a team

10. If you see a Failed to register bundle identifier error, just change the Bundle
Identifier setting for another one, always respecting the format (com.XXXX.
XXXX), and then click on Try Again until it is solved. Once you find one that works,
set it in Unity (Bundle Identifier under Player Settings) to avoid needing to change
it in every build.

11. Hit the Play button at the top-left part of the window and wait for the build to
complete. You might be prompted to enter your password a couple of times in the
process, so please do so.

12. When the build completes, remember to unlock the device. A prompt will ask you
to do that. Note that the process won't continue unless you unlock the phone.

Creating a simple AR game 663

13. After completion, you may see an error saying that the app couldn't be launched but
that it was installed anymore. If you try to open it, it will say you need to trust the
developer of the app, which you can do by going to the settings of your device.

14. From there, go to General | Profile & Device Management and select the first
developer in the list.

15. Click the blue Trust … button and then Trust.
16. Open the app again.
17. Please remember to try another image if you're having trouble detecting the image

where we instantiate the player (the Unity logo, in my case). This might vary a lot,
depending on your device's capabilities.

In this section, we discussed how to build a Unity project that can run on iOS and
Android, thus allowing us to create mobile apps – AR mobile apps, specifically. Like any
build, there are methods we can follow to profile and debug, as we saw when we looked
at PC builds, but we are not going to discuss that here. Now that we have created our first
test project, we will convert it into a real game by adding some mechanics to it.

Creating a simple AR game
As we discussed previously, the idea is to create a simple game where we can move our
player while moving a real-life image, and also put in some Enemy Spawners by just
tapping where we want them to be, such as a wall, the floor, a table, and so on. Our player
will automatically shoot at the nearest Enemy, and the enemies will shoot directly at the
player, so our only task will be to move the Player so that they avoid bullets. We are going
to implement these game mechanics using scripts very similar to the ones we used in this
book's main project.

In this section, we will develop the following AR game features:

• Spawning the Player and Enemies

• Coding the Player and Enemy behavior

First, we are going to discuss how to make our Player and Enemies appear on the app,
specifically in real-world positions, and then we will make them move and shoot each
other to create the specified gameplay mechanics. Let's start with spawning.

664 Augmented Reality in Unity

Spawning the Player and Enemies
Let's start with the Player, since that's the easiest one to deal with: we will create a prefab
with the graphics we want the player to have (in my case, just a cube), a Rigidbody with
Is Kinematic checked (the Player will move), and an AR Tracked Image script. We will
set that prefab as Tracked Image Prefab of the AR Tracked Image Manager component
in the AR Session Origin object. This will put the Player on the tracked image. Remember
to set the size of the Player in terms of real-life sizes. In my case, I scaled the Player to
(0.05, 0.05, 0.05). Since the original cube is 1 meter in size, this means that my player
will be 5x5x5 centimeters. Your Player prefab should look as follows:

Figure 23.36 – The starting Player prefab

The enemies will require a little bit more work, as shown here:

1. Create a prefab called Spawner with the graphic you want your Spawner to have
(in my case, a cylinder) and its real-life size.

2. Add a custom script that spawns a prefab every few seconds, such as the one shown
in the following screenshot.

Creating a simple AR game 665

3. You will notice the usage of Physics.IgnoreCollision to prevent the Spawner
from colliding with the Spawner object, getting the colliders of both objects and
passing them to the function. You can also use the Layer Collision Matrix to prevent
collisions, just like we did with this book's main project if you prefer to:

Figure 23.37 – Spawner script

4. Create an Enemy prefab with the desired graphic (a Capsule, in my case) and a
Rigidbody component with the Is Kinematic checkbox checked. This way, the
Enemy will move but not with physics. Remember to consider the real-life size of
the Enemy.

666 Augmented Reality in Unity

5. Set the Prefab property of the Spawner so that it spawns the Enemy at your
desired frequency:

Figure 23.38 – Configuring the Spawner

6. Add a new SpawnerPlacer custom script to the AR Session Origin object that
instantiates a prefab in the place the player tapped using the AR Raycast system, as
shown in the following screenshot:

Figure 23.39 – Placing the Spawners

7. Set the prefab of SpawnerPlacer so that it spawns the Spawner prefab we
created earlier.

And that's all for the first part. If you test the game now, you will be able to tap on the
detected planes in the app and see how the Spawner starts creating enemies. You can
also look at the target image and see our Cube Player appear.

Now that we have the objects in the scene, let's make them do something more interesting,
starting with the Enemies.

Creating a simple AR game 667

Coding the Player and Enemy behavior
The Enemy must move toward the player in order to shoot at them, so it will need to have
access to the player position. Since the Enemy is instantiated, we cannot drag the Player
reference to the prefab. However, the Player has also been instantiated, so we can add
a PlayerManager script to the player that uses the Singleton pattern (as we did with
managers). To do that, follow these steps:

1. Create a PlayerManager script similar to the one shown in the following
screenshot and add it to the Player:

Figure 23.40 – Creating the PlayerManager script

2. Now that the Enemy has a reference to the player, let's make them look at the player
by adding a LookAtPlayer script, as shown here:

Figure 23.41 – Creating the LookAtPlayer script

668 Augmented Reality in Unity

3. Also, add a simple MoveForward script like the one shown in the following
screenshot to make the Enemy not only look at the player but also move toward
them. Since the LookAtPlayer script is making the Enemy face the Player, this
script moving along the z axis is just enough:

Figure 23.42 – Creating the MoveForward script

Now, we will take care of the Player movement. Remember that our player is controlled
through moving the image, so here, we are actually referring to the rotation, since the
player will need to automatically look and shoot at the nearest Enemy. To do this, follow
these steps:

1. Create an Enemy script and add it to the Enemy prefab.
2. Create an EnemyManager script like the one shown in the following screenshot

and add it to an empty EnemyManager object in the scene:

Figure 23.43 – Creating the EnemyManager script

Creating a simple AR game 669

3. In the Enemy script, make sure to register the object in the all list of EnemyManager,
as we did previously with WavesManager in this book's main project:

Figure 23.44 – Creating the Enemy script

4. Create a LookAtNearestEnemy script like the one shown in the following
screenshot and add it to the Player prefab to make it look at the nearest Enemy:

Figure 23.45 – Looking at the nearest Enemy

670 Augmented Reality in Unity

Now that our objects are rotating and moving as expected, the only thing missing is
shooting and damaging.

5. Create a Life script like the one shown in the following screenshot and add it to
both the Player and Enemy components. Remember to set a value for the field for
the amount of life. You will see this version of Life instead of needing to check
whether the life amount has reached zero every frame. We have created a Damage
function to check that damage is dealt (the Damage function is executed), but the
other version of this book's project also works:

Figure 23.46 – Creating a Life component

6. Create a Bullet prefab with the desired graphics, the collider with the Is Trigger
checkbox on the collider checked, a Rigidbody component with Is Kinematic
checked (a Kinematic Trigger Collider), and the proper real-life size.

7. Add the MoveForward script to the Bullet prefab to make it move. Remember
to set the speed.

8. Add a Spawner script to both the Player and Enemy components and set the
Bullet prefab as the prefab to spawn, as well as the desired spawn frequency.

9. Add a Damager script like the one shown in the following screenshot to the Bullet
prefab to make bullets inflict damage on the objects they touch. Remember to set
the damage:

Creating a simple AR game 671

Figure 23.47 – Creating a Damager script – part 1

10. Add an AutoDestroy script like the one shown in the following screenshot to the
Bullet prefab to make it despawn after a while. Remember to set the destroy time:

Figure 23.48 – Creating a Damager script – part 2

And that's all! As you can see, we basically created a new game using almost the same
scripts we used in the main game, mostly because we designed them to be generic
(and the game genres are almost the same). Of course, this project can be improved
a lot, but we have a nice base project to create amazing AR apps.

672 Augmented Reality in Unity

Summary
In this chapter, we introduced the AR Foundation Unity framework and explored how to
set it up and how to implement several tracking features so that we can position virtual
objects on top of real-life objects. We also discussed how to build our project so that it can
run on both iOS and Android platforms, which is the only way we can test our AR apps at
the time of writing. Finally, we created a simple AR game based on the game we created in
the main project but modified it so that it's suitable for use in AR scenarios.

With this new knowledge, you will be able to start your path as an AR app developer,
creating apps that augment real objects with virtual objects by detecting the positions of
the real objects. This can be applied to games, training apps, and simulations. You may
even be able to find new fields of usage, so take advantage of this new technology and its
new possibilities!

Well, this is the end of this journey into Unity 2021; I'm really glad you reached this
point in the book. I hope this knowledge will help you to improve or start your Game
Development career with one of the most versatile and powerful tools on the market,
Unity. Hope to see your creations someday! See you on the road!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
https://
https://packt.com
https://customercare@packtpub.com
https://www.packt.com

674 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Game Development Patterns with Unity 2021 - Second Edition

David Baron

ISBN: 978-1-80020-081-4

• Structure professional Unity code using industry-standard development patterns

• Identify the right patterns for implementing specific game mechanics or features

• Develop configurable core game mechanics and ingredients that can be modified
without writing a single line of code

• Review practical object-oriented programming (OOP) techniques and learn how
they're used in the context of a Unity project

https://www.packtpub.com/product/game-development-patterns-with-unity-2021-second-edition/9781800200814

Other Books You May Enjoy 675

• Build unique game development systems such as a level editor

• Explore ways to adapt traditional design patterns for use with the Unity API

Unity 2021 Shaders and Effects Cookbook - Fourth Edition

John P. Doran

ISBN: 978-1-83921-733-3

• Understand physically based rendering to fit the aesthetic of your game

• Create eye-catching effects for your games by testing the limits of what shaders
can do

• Apply advanced shaders techniques for your AAA-scale games

• Use Shader Graph to create 2D and 3D elements for your games without
writing code

• Master the math and algorithms behind the most used lighting models

• Get to grips with the post-processing stack to tweak the appearance of your
game effectively

https://www.packtpub.com/product/unity-2021-shaders-and-effects-cookbook-fourth-edition/9781839218620

676 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

https://authors.packtpub.com
https://authors.packtpub.com

Other Books You May Enjoy 677

Hi!

I am Nicolas Borromeo, author of Hands-on Unity 2021 Game Development Second
Edition. I really hope you enjoyed reading this book and found it useful to enter the
world of Game Development with Unity or improve your knowledge of it.

It would really help me (and other potential readers!) if you could leave a review
on Amazon sharing your thoughts on Hands-on Unity 2021 Game Development
Second Edition.

Your review will help me to understand what's worked well in this book, and what could
be improved upon for future editions, so it really is appreciated.

Best Wishes,

Nicolas Borromeo

Index

Symbols
2D AudioSources

using 257-261
3D AudioSources

using 257-261

A
Action approach 493
actions

timing 423-428
advanced effects

depth map 239-247
HDR map 239-247
using 238

ambient light
about 198
configuring, with skyboxes 198-202

Android
app, building for 652-658

animation clips
creating 357-360

Animation Controllers
used, for integrating basic

configuration 342-348

animations
scripting 523-528

Animator
used, for skinning animations 334

AR Foundation
project, creating 640-644
using 640

AR game
creating 663
Enemies, spawning 664-666
Enemy behavior, coding 667-671
Player behavior, coding 667-671
Player, spawning 664-666

Artificial Intelligence (AI) 4
assets

about 42
configuring 116
importing 99
importing, from Asset Store 102-108
importing, from internet 100-102
integrating 109
meshes, configuring 117-119
meshes, integrating 112, 113
scene, assembling 120-123
terrain textures, integrating 109-112

680 Index

textures, configuring 119, 120
textures, integrating 114-116

Asset Store
assets, importing from 102-108
URL 103

audio
importing 250
import settings, configuration 252-255
integrating 256
mixing 256

AudioClips 257
audio feedback

scripting 520-523
audio integration concepts

2D AudioSources, using 257-261
3D AudioSources, using 257-261

Audio Mixer
using 262-267

audio modes
Frequent Medium Audio 254
Frequent Short Audio 253
Infrequent Large Audio 254

AudioSources 257
AudioSources, settings

loop 258
pitch 258
play on awake 258
spatial blend 258
volume 258

audio, types
about 250-252
ambient sound 250
music 250
sound effects (SFX) 250

augmented reality (AR) 28
avatar 339

B
baked lighting 216
Baked mode 221
Base Damage object 500
batching

using 586-588
billboards 164
Blackboard 382
Blocks 183
bonfire effect

creating 174-176
Build

debugging 622
project, building 618-622

Build, debugging concepts
code, debugging 623-625
performance, profiling 626-628

C
C#

events 383-387
Finite State Machines (FSMs),

creating 548-550
instructions 383-387
used, for creating Three-

Filters sensors 530-536
camera behaviors

creating 349-353
Canvas

about 270
used, for creating User

Interface (UI) 271, 272
Canvas object type 275

Index 681

Canvas object type, concept
assets, integrating for UI 276-284
UI controls, creating 284-293

Canvas Scaler component 299
Cartesian coordinate system 48
central processing unit (CPU) 57
chromatic aberration 235
Cinemachine

camera behaviors, creating 349-353
dolly tracks, creating 353-356
used, for creating dynamic cameras 349

code, with events
improving 483-493

collisions
detecting 445
filtering 442-444

collisions, concepts
Object, modifying 448-453
Trigger events, detecting 446-448

complex simulations
creating, with Visual Effect Graph 177

components
about 52, 53
manipulating 53-58

compression format
ADPCM 254
PCM 254
Vorbis 254

compute shader 177
Contexts 182
core loop 7
Coroutine 428
CPU bound

detecting 594-596

CPU optimization
about 593
general CPU optimization

techniques 601-603
CPU Usage Profiler

using 597-600
C# script

beginner errors 393-395
creating 374-377
fields, adding 378-380

cutscene
creating, with Timeline 356

D
Deferred Rendering 192
Delta Time

exploring 410-412
depth bias 211
depth map 239
depth of field 239
Directional Light 203
Direct Lights 198
Direct Lights, types

Directional Light 203
Point Light 203
Spotlight 204-207

documentation 16
dolly tracks

creating 353-356
Draw Call 194, 583
dynamic cameras

creating, with Cinemachine 349
dynamic positioning 320-324
dynamic scaling 324-326
dynamic sizing 320-324

682 Index

E
elements

positioning, with
RectTransform 272-275

elevator pitch
about 19
examples 20

Enter event 446
Entertainment Software Rating

Board (ESRB) 637
events

in C# 383-387
in Visual Scripting 388-390
using 383

EventSystem 272
Exit event 446

F
feedback

about 631
interpreting 632, 634
scripting 515

fields
adding, to C# script 378-380
using, in instructions 390-393

Filmbox (FBX) 337
Finite State Machines (FSMs)

about 547
creating, in C# 548-550
creating, in Visual Scripting 554-564
decision making 547
transitions, creating 550-554

fluids 164

fluid simulations
bonfire effect, creating 174-176
creating 172
waterfall effect, creating 172-174

Forward Rendering 192
Forward Vector 48
Frame Debugger

using 584, 585
frames per second (FPS) 17, 57
frustum culling 592
FSM actions

executing 564
pathfinding algorithms,

calculating 564-566
pathfinding algorithms, using 566-571

G
game

feedback 630, 631
feedback, interpreting 632, 634
iterating 629
releasing 634
testing 630, 631

game characters
about 8
enemies 8, 9
hero 8

game concept
about 4
game idea 5
input controls 5-7
losing condition 7
winning condition 7

Game Design Document (GDD)
about 16
creation tools 17-19

Index 683

elevator pitch 19, 20
formats 17

Game Design Document (GDD) tips
changes 23
content section 22
control 22
creating 21, 23
gameplay section 22
graphics 23
idea 22
paper prototypes 23
readability 21
regular prototypes 23
setting 22

game difficulty
about 13
plan, implementing 15, 16
questions 14, 15

game engine
about 27
using, as Unity 26

Game Modes
creating 477-482

GameObjects
about 43
components 51
creating 44-46
manipulating 47-51

gameplay
about 9
ending condition 11
game-world layout 9, 10
Heads-up display (HUD) 12, 13
point system 12
starting condition 10

garbage collection 605
G-Buffer 196

generic model 339
Gizmos

used, for debugging sensors 541-547
Global Coordinates 48
GPU bound

detecting 594-596
graphic engines 582, 583
graphics

optimizing 582
gray-boxing 46

H
HDR rendering 240
Height Map generated mesh 75
Heightmap Resolution 78
Height Maps

about 74
authoring 79-81
configuring 76-78
creating 76-78
details, adding 82-84

high concept 20
high concept, sections

demographics 21
elevator pitch 20
features 21
genre 20
platform 21
Unique Selling Points (USPs) 21

High Definition Render Pipeline 192
high dynamic range (HDR) 238

I
Indirect Lights 198
instance

prefab relationship 63-66

684 Index

instructions
fields, using in 390-393
in C# 383-387
using 383

Integrated Development
Environment (IDE) 371

internet
assets, importing from 100-102

intro cutscene
sequencing 360-364

Inverse Kinematics (IK) 339
iOS

app, building for 659-663

J
Joint Photographic Experts

Group (JPG) 40

K
Kinematic Collider 439

L
Landscape

creating, with Terrain 74
layers 443
Level of Detail (LOD)

about 590
using 590, 591

lighting
applying 192
configuring, in URP 203
optimizing 216

lighting methods 192-197

lightmap
about 217
using 218-225

Light Probes 227
Load Type, options

Compressed in Memory 253
Decompress on Load 253
Streaming 253

Local axes 48
low dynamic range (LDR) 240

M
Material mode 586
Material properties 586
memory

optimizing 603
memory allocation 604-608
Memory Profiler

using 609-612
Mesh

about 54
configuring 117-119
integrating 112, 113
manipulating 88-93

Mixed mode 221
mobile devices

app, building for 652
modules

about 166
using 170-172

motion blur 237
movement

implementing 398

Index 685

movement, concepts
Delta Time 410-412
objects, moving through

Transform 398-401
Player Input, using 402-410

MPEG Audio Layer 3 (MP3) 40
Multi-Pass Forward 192

N
Non-Player Character (NPC) 8
normal bias 212

O
object

destroying 429, 430
modifying 448-453
moving, through Transform 398-401
spawning 413-422

object hierarchies
about 58
parenting objects 59, 60
usage, possibilities 60

Object Managers
creating 462-476

Object Managers, concepts
Variables, sharing with Singleton

design pattern 462-466
Variables, sharing with Visual

Scripting 467-470
Object Pooling 469
Object Variables 467
occlusion area 593
occlusion culling 592, 593
override 64

P
panels 43
parenting objects 59, 60
particles 164
particle systems

about 164
advanced modules, using 170-172
creating 165-170

Pause menu
programming 509-515

performant shadows
configuring 213-216

Peripheral Component Interconnect
Express (PCI Express) bus 582, 583

Physics
configuring 434
moving 453
tweaking 457-459

Physics Collider 438
Physics, concepts

forces, applying 453-457
Physics Object

types 438-442
Physics, settings and concepts

collisions, filtering 442-444
Object types 438-442
shapes, setting 434-437

pivot 60
Pixel Lighting 195
Pixels Per Unit 292
Player Input

using 402-410
Point Light 203
Portable Network Graphics (PNG) 40
PostProcessing

about 232
using 232

686 Index

Post Processing Stack version
2 (PPv2) 232

post-release phase 637
precalculating shadows 216
prefabs

about 61
creating 62, 63
instance relationship 63-66

Prefab variant 66, 67
pre-release phase 634, 635
ProBuilder

details, adding 94-96
installing 85, 86
used, for creating shapes 85

processing
optimization 593

projects
saving 67
structure 69-71

R
rain effect

creating 184-189
random-access memory (RAM) 42
realtime lighting 217
Realtime mode 221
RectTransform

about 270
used, for positioning elements 272-275

relative positions
using 326-331

release phases
about 634-637
post-release 637
pre-release 634, 635

render pipeline 132, 133
Responsive UI

creating 293
creating, with UI Toolkit 320
dynamic positioning 320-324
dynamic scaling 324-326
dynamic sizing 320-324
object positions, adapting 294-297
object sizes, adapting 298-300
relative positions, using 326-331

retargeting concept 337
Right Vector 48
Role Playing Game (RPG) 20
Runtime Extension 305

S
scene

about 42
assembling 120-123
manipulating 42
purpose 42
saving 67, 68

Scene Variables 467
Scene View

about 43, 44
navigating 46, 47

Scottish terrain Height Map 74
scriptable render pipeline (SRP) 132
Script Graph 380
scripts

creating 370, 371
initial setup 371-374

sensors
about 530
debugging, with Gizmos 541-547

Index 687

Three-Filters sensors, creating
with C# 530-536

Three-Filters sensors, creating with
Visual Scripting 537-541

Shader Graph
creating 139-143
textures, combining 153-156
textures, using 144-153
transparency, applying 157-159
used, for creating shaders 138
vertex effects, creating 160-162

shader pipeline
about 128
blending 131
culling 130
depth testing 131
fragment shader 130
input assembler 129
rasterizer 130
vertex shader 129

shaders
about 128
creating, with Shader Graph 138

shaders, concepts
render pipeline 132, 133
shader pipeline 128
URP 132, 133
URP built-in shaders 134-138

Shadow Acne 210
shadow calculations 207-212
Shadow Cascades 212
shadows

applying 207
shape

creating 87, 88
creating, with ProBuilder 85
setting 434-437

Shoot function
adding, to AI 572-580

Shuriken 177
Single-Pass Forward 192
Singleton design pattern

Variables, sharing with 462-466
skeletal animations

importing 338-342
skinned meshes 334
skinning 335-337
skinning animations

using, with Animator 334
skyboxes

used, for configuring ambient
light 198-202

Soft Shadows 209
spawning

implementing 413
spawning, concepts

actions, timing 423-428
Objects, destroying 429, 430
Objects, spawning 413-422

Spotlight 204-207
Standalone Contexts 183
static batcher 588
static lighting

about 216, 217
applying, to static objects 226-229

static meshes 334
static objects

static lighting, applying 226-229
Stay event 446
string concatenation 607
Stylesheet Classes 316
Stylesheet asset 315
System 182

688 Index

T
Terrain

used, for creating Landscape 74
Terrain Collider 438
terrain textures

integrating 109-112
TextMesh Pro 281
texture atlasing 586
Texture Atlas object 586
textures

configuring 119, 120
integrating 114-116

Three-Filters sensors
creating, with C# 530-536
creating, with Visual Scripting 537-541

Timeline
about 356
used, for creating cutscenes 356

timing actions 423-428
tonemapping 240
tracking features, AR

using 644-651
Transform

objects, moving through 398-401
Transform Gizmo 47
Transform relationship 59
Trigger events

detecting 446-448
Trigger Kinematic Collider 439
Trigger Static Collider 439

U
UI

information, showing 496-509
Pause menu, programming 509-515

UI Builder 307

UI Documents
creating 306, 307
creating, with UI Toolkit 305
editing 308-315

UI Stylesheets
creating 315-319

UI systems
IMGUI 270
UI Toolkit 270
Unity UI 270

UI Toolkit
creating 305, 306
learning 304
used, for creating Responsive UI 320
used, for creating UI Documents 305

Uniform Scaling 51
Unity

benefits 27, 28
game engine, using 26
gaming industry 26
installing 28
project, creating 36-38
project structure 38-40

Unity concepts
management system, installing 29
technical requirements 29
Unity Hub, installing 30-35

Universal Render Pipeline (URP)
about 36, 44, 132, 133, 178, 232, 589
lighting, configuration 203

Up Vector 48
URP built-in shaders

about 134-138
Lit 134
Simple Lit 134
Unlit 134

Index 689

URP postprocessing concepts
basic effects, using 235-238
profile, setting up 232-234

User Interface (UI)
creating, with Canvas 271, 272
information, showing 496-509
Pause menu, programming 509-515
scripting 496

V
Variables

sharing, with Singleton design
pattern 462-466

sharing, with Visual Scripting 467-470
Variables component 382
Vertex Lighting 195
Vertex Lit 192
vertex snapping 122
vignette 236
virtual reality (VR) 28, 236
Visual Effect Graph

about 17, 176
analyzing 180-183
complex simulations, creating with 177
creating 180-183
Initialize Particle stage 183
installing 178, 179
Output Particle Quad stage 183
rain effect, creating 184-189
Update Particle stage 183

Visual Effect Graph, documentation
reference link 189

visual feedback
scripting 516, 518, 520

Visual Script
creating 380-382
events 388-390

Finite State Machines (FSMs),
creating 554-564

instructions 388-390
used, for creating Three-

Filters sensors 537-541
variables, sharing with 467-470

Visual Scripting graph
example 369

Visual Scripting package 371
Vuforia 640

W
waterfall effect

creating 172, 174
Waveform Audio File Format (WAV) 40
What You See Is What You Get

(WYSIWYG) 44
Wireframe 164

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Contributors
	Table of Contents
	Preface
	Section 1 –
Our First Level
	Chapter 1: Designing a Game from Scratch
	Game concept
	Game idea
	Input controls
	Winning and losing

	Game characters
	Hero
	Enemies

	Gameplay
	Game-world layout
	Starting condition
	Ending condition
	Point system
	HUD

	The difficulty balance
	Difficulty balance questions
	Implementation plan

	Documentation
	Game Design Document (GDD)
	GDD formats
	GDD creation tools
	Elevator pitch
	High concept
	Tips for creating GDDs

	Summary

	Chapter 2: Setting Up Unity
	Why use a game engine such as Unity?
	Past and present industry insight
	Game engines
	Benefits of using Unity

	Installing Unity
	Unity Technical Requirements
	Unity installs
	Installing Unity with Unity Hub

	Creating projects
	Creating a project
	Project structure

	Summary

	Chapter 3: Working with Scenes and Game Objects
	Manipulating scenes
	The purpose of a scene
	The Scene View
	Creating our first GameObject
	Navigating the Scene View
	Manipulating GameObjects

	GameObjects and components
	Understanding components
	Manipulating components

	Object hierarchies
	Parenting objects
	Possible uses

	Prefabs
	Creating Prefabs
	Prefab-instance relationship
	Prefab variants

	Saving scenes and projects
	Saving our changes
	Project structure

	Summary

	Chapter 4: Grayboxing with Terrain and ProBuilder
	Creating a Landscape with Terrain
	Discussing Height Maps
	Creating and configuring Height Maps
	Authoring Height Maps
	Adding Height Map details

	Creating Shapes with ProBuilder
	Installing ProBuilder
	Creating a Shape
	Manipulating the mesh
	Adding details

	Summary

	Chapter 5: Importing and Integrating Assets
	Importing assets
	Importing assets from the internet
	Importing assets from the Asset Store

	Integrating assets
	Integrating terrain textures
	Integrating meshes
	Integrating textures

	Configuring assets
	Configuring meshes
	Configuring textures
	Assembling the scene

	Summary

	Section 2 – Improving Graphics and Sound
	Chapter 6: Materials and Effects with URP
and Shader Graph
	Introducing shaders
	Shader pipeline
	The Render Pipeline and URP
	URP's Built-in Shaders

	Creating Shaders with Shader Graph
	Creating our first Shader Graph
	Using textures
	Combining Textures
	Applying transparency
	Creating Vertex Effects

	Summary

	Chapter 7: Visual Effects with Particle Systems and Visual Effect Graph
	Introduction to particle systems
	Creating a basic particle system
	Using advanced modules

	Creating fluid simulations
	Creating a waterfall effect
	Creating a bonfire effect

	Creating complex simulations with Visual Effect Graph
	Installing Visual Effect Graph
	Creating and analyzing a Visual Effect Graph
	Creating a rain effect

	Summary

	Chapter 8: Lighting Using the Universal Render Pipeline
	Applying lighting
	Discussing lighting methods
	Configuring ambient lighting with skyboxes
	Configuring lighting in URP

	Applying shadows
	Understanding shadow calculations
	Configuring performant shadows

	Optimizing lighting
	Understanding static lighting
	Baking lightmaps
	Applying static lighting to static objects

	Summary

	Chapter 9: Fullscreen Effects with Postprocessing
	Using PostProcessing
	Setting up a profile
	Using basic effects

	Using advanced effects
	Advanced effects

	Summary

	Chapter 10: Sound and Music Integration
	Importing audio
	Audio types
	Configuring the import settings

	Integrating and mixing audio
	Using 2D and 3D AudioSources
	Using an Audio Mixer

	Summary

	Chapter 11: User Interface Design
	Understanding Canvas and RectTransform
	Creating a UI with Canvas
	Positioning elements with RectTransform

	Canvas object types
	Integrating assets for the UI
	Creating UI controls

	Creating a responsive UI
	Adapting object positions
	Adapting object sizes

	Summary

	Chapter 12: Creating a UI with the UI Toolkit
	Why learn UI Toolkit?
	Creating UIs with UI Toolkit
	Installing UI Toolkit
	Creating UI Documents
	Editing UI Documents
	Creating UI Stylesheets

	Making a Responsive UI with UI Toolkit
	Dynamic positioning and sizing
	Dynamic Scaling
	Using relative positions

	Summary

	Chapter 13: Creating Animations with Animator, Cinemachine, and Timeline
	Using Skinning Animations with Animator
	Understanding skinning
	Importing skeletal animations
	Integration using Animation Controllers

	Creating dynamic cameras with Cinemachine
	Creating camera behaviors
	Creating dolly tracks

	Creating cutscenes with Timeline
	Creating animation clips
	Sequencing our intro cutscene

	Summary

	Section 3 –
Scripting Level Interactivity with C#
	Chapter 14: Introduction to C# and Visual Scripting
	Creating Scripts
	Initial setup
	Creating a C# Script
	Adding fields
	Creating a Visual Script

	Using events and instructions
	Events and instructions in C#
	Events and instructions in Visual Scripting
	Using fields in instructions
	Common beginner C# script errors

	Summary

	Chapter 15: Implementing Movement and Spawning
	Implementing movement
	Moving objects through Transform
	Using Input
	Understanding Delta Time

	Implementing spawning
	Spawning Objects
	Timing actions
	Destroying Objects

	Summary

	Chapter 16: Physics Collisions and Health System
	Configuring Physics
	Setting shapes
	Physics Object types
	Filtering collisions

	Detecting collisions
	Detecting Trigger events
	Modifying the other Object

	Moving with Physics
	Applying forces
	Tweaking Physics

	Summary

	Chapter 17: Win and Lose Condition
	Creating Object Managers
	Sharing Variables with the Singleton design pattern
	Sharing Variables with Visual Scripting
	Creating Managers

	Creating Game Modes
	Improving our code with events
	Summary

	Chapter 18: Scripting the UI, Sounds, and Graphics
	Scripting the UI
	Showing information in the UI
	Programming the Pause menu

	Scripting feedback
	Scripting visual feedback
	Scripting audio feedback
	Scripting animations

	Summary

	Chapter 19: Implementing
Game AI for
Building Enemies
	Gathering information with sensors
	Creating Three-Filters sensors with C#
	Creating Three-Filters sensors with Visual Scripting
	Debugging with Gizmos

	Making decisions with FSMs
	Creating the FSM in C#
	Creating transitions
	Creating the FSM in Visual Scripting

	Executing FSM actions
	Calculating our scene's Pathfinding
	Using pathfinding

	Adding the final details
	Summary

	Chapter 20: Scene Performance Optimization
	Optimizing graphics
	Introduction to graphic engines
	Using the Frame Debugger
	Using batching
	Other optimizations

	Optimizing processing
	Detecting CPU- and GPU-bound
	Using the CPU Usage Profiler
	General CPU optimization techniques

	Optimizing memory
	Memory allocation and the garbage collector
	Using the Memory Profiler

	Summary

	Section 4 –
Releasing
Your Game
	Chapter 21: Building the Project
	Building a project
	Debugging the Build
	Debugging Code
	Profiling performance

	Summary

	Chapter 22: Finishing Touches
	Iterating your game
	Testing and feedback
	Interpreting feedback

	Releasing your game
	Pre-release
	Release
	Post-release

	Summary

	Chapter 23: Augmented Reality in Unity
	Using AR Foundation
	Creating an AR Foundation project
	Using tracking features

	Building for mobile devices
	Building for Android
	Building for iOS

	Creating a simple AR game
	Spawning the Player and Enemies
	Coding the Player and Enemy behavior

	Summary

	About Packt
	Other Books You May Enjoy
	Index

