
Game Development
with Unity for
.NET Developers
The ultimate guide to creating games with Unity and
Microsoft Game Stack

G
am

e D
evelopm

ent w
ith U

nity for
.N

ET D
evelopers

Jiadong Chen

Jiadong Chen
Foreword by Ed Price, Senior Program Manager of Architectural Publishing
Microsoft | Azure Architecture Center

Understand what makes Unity the world’s most widely used real-time 3D development platform
and explore its powerful features for creating 3D and 2D games, as well as the Unity game engine
and the Microsoft Game Dev, including the Microsoft Azure Cloud and Microsoft Azure PlayFab
services, to create games.

You will start by getting acquainted with the Unity Editor and the basic concepts of Unity script
programming with C#. You'll then learn how to use C# code to work with Unity's built-in modules,
such as UI, animation, physics, video, and audio, and understand how to develop a game with
Unity and C#. As you progress through the chapters, you'll cover advanced topics such as the
math involved in computer graphics and how to create a custom render pipeline in Unity with the
new Scriptable Render Pipeline, all while optimizing performance in Unity. Along the way, you'll
be introduced to Microsoft Game Dev, Azure services, and Azure PlayFab, and using the Unity3D
PlayFab SDK to access the PlayFab API.

By the end of this Unity book, you'll have become familiar with the Unity engine and be ready to
develop your own games while also addressing the performance issues that you could encounter
in the development process.

Game Development with Unity
for .NET Developers

Things you will learn:

• Get to grips with using the Unity Editor
• Use C# scripts to work with Unity's built-

in modules such as UI, animation, physics,
video, and audio

• Create a custom render pipeline in
Unity Engine with the latest Scriptable
Render Pipeline

• Write high-performance multithreaded
code with the latest DOTS in Unity

• Discover the Azure PlayFab Client library
for C# in Unity

• Understand how the asset management
and serialization system within Unity
really works

• Explore some of the most commonly
used profi ler tools in Unity development

Game Development
with Unity for
.NET Developers

The ultimate guide to creating games with
Unity and Microsoft Game Stack

Jiadong Chen

BIRMINGHAM—MUMBAI

Game Development with Unity for
.NET Developers
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Aaron Tanna
Senior Editor: Aamir Ahmed
Content Development Editor: Feza Shaikh
Technical Editor: Joseph Aloocaran
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Aparna Bhagat
Marketing Coordinator: Anamika Singh

First published: May 2022

Production reference: 2130522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-807-8

www.packt.com

http://www.packt.com

This book is dedicated to my wife, Yi Liang, for her encouragement and
support, especially during the COVID-19 pandemic; her positive attitude

toward life has inspired me and helped me through difficult times.

– Jiadong Chen

Foreword
"A delayed game is eventually good, but a rushed game is forever bad."

– Industry catchphrase

You now hold in your hands the tools to make great games. If this was a Mario game,
then you just punched a question mark block, and then a glowing, flashing, smoking
mushroom just rose out of it. If this was a Zelda game, then you just navigated a boss
dungeon, found a treasure chest, pulled this book out of it, and raised the book high above
your head (with some suitable music playing). In other words, you just acquired a key
powerup for your quest.

You can feel that dedication to excellence (which the industry quote refers to) when you
play Nintendo games, Halo, Minecraft, and Sonic the Hedgehog (and pretty much
whatever your favorite game is). Now you have the same opportunity: you can use your
knowledge and your new Unity skills (granted, you probably haven't learned them yet)
to make a powerful statement through your work.

"Nintendo's philosophy is to never go the easy path; it's always to
challenge ourselves and try to do something new."

– Shigeru Miyamoto (2005)

So that's why Nintendo makes some great games (and some really weird ones)! Regardless,
here's your chance to make something that's unique and that really shows who you are.
With these tools, your passion opens limitless opportunities.

And that brings us to a Microsoft quote (you knew it was coming).

"Learning to fly is not pretty, but flying is."

– Satya Nadella, Hit Refresh
You learn tools to create masterpieces (or to at least get a job, or a better one). It's not easy
to learn these new tools, but after you gain this knowledge, you can make great games.

Game Development with Unity for .NET Developers makes that process a whole lot easier!
Unity is the world's most widely used, real-time 3D development platform for a reason!
If you approach Unity with the .NET Framework, then you can leverage the power of C#,
Microsoft Game Dev tools, Microsoft Azure Cloud services, and Azure PlayFab. You'll also
see how these resources work seamlessly with Visual Studio and GitHub.

Our author, Jiadong Chen, used to work at Unity Technologies as a field engineer. He's
been working in this .NET and Unity gaming stack for over 9 years. He's a member of
the .NET Foundation, and has been a Microsoft MVP (Most Valuable Professional) for 6
years. (That means he's been awarded the title every year since 2015, based on his impact
on the Microsoft developer community.) As you can imagine, his MVP award category is
Developer Technologies. In other words, Jiadong is the perfect person to teach you how to
use the .NET Framework and Microsoft developer stack to learn how to develop with the
Unity game engine and how to take your games to the next level!

Make no mistake: as the title implies, this is a book for .NET developers to learn Unity.
First, Jiadong starts with the basics of the Unity game engine. Then, you'll dig into
scripting, using Unity to build your game UI, animating your game graphics, building
physics, and adding audio and video (the basic components of building your game). Next,
Jiadong gets into game math, while also using a rendering pipeline, data-oriented tech,
a serialization system, and assets management. Finally, he shows you how to leverage
the Microsoft Game Dev suite of technologies, Azure Cloud, and Azure PlayFab as you
develop with the Unity engine.

In Game Development with Unity for .NET Developers, Jiadong Chen takes you on a tour,
explaining the concepts with images and examples, so that you can fully understand each
topic. He then takes you through the process, using real code, so that you can implement
your own solutions. The process of learning how to develop games isn't easy, but this book
will make it a lot easier.

After you're done reading the book, if life was a Mario game, you'll have grabbed the flag
at the top of the flag pole and entered a sewer pipe! If this was a Zelda game, you'll have
collected the Triforce. And if it's a Sonic game, then you just beat Dr. Robotnik in a giant
robot mech that looks like him. As Satya Nadella implied, learning to fly won't be easy,
but once you're done, you're going to be able to really take off and do some great things
with Unity!

Ed Price

Senior Program Manager of Architectural Publishing
Microsoft, Azure Architecture Center (http://aka.ms/Architecture) Co-author of
seven books, including Meg the Mechanical Engineer, The Azure Cloud Native Architecture
Mapbook (Packt), and ASP.NET Core 5 for Beginners (Packt)

http://aka.ms/Architecture

Contributors

About the author
Jiadong Chen is one of 3,000 international Microsoft® Most Valuable Professional
(MVP) award winners, recognized by Microsoft as one of the technology industry's best
and brightest six years in a row, and is currently working as a senior software developer
at Company-X, based in Hamilton, New Zealand.

He specializes in the Microsoft Azure cloud, Unity and XR development, and .NET/C#.
He is a Microsoft Certified Azure Solutions Architect Expert, a Microsoft Certified Azure
Developer, a Microsoft Certified Azure AI Engineer, and a Microsoft Certified Trainer.
He is also a member of the .NET Foundation.

Before joining Company-X, Jiadong worked for Unity, the creator of the world's most
widely used real-time 3D development platform, as a field engineer.

After this long adventure, I would first like to thank my wife for
her support. Writing a book is not an easy task, especially during the

COVID-19 pandemic, and my wife's support has given me the psychological
comfort to overcome the difficulties and finish the book.

A special thanks to the Packt team (especially Aaron, Manthan, and Feza)
for being with me on this journey.

About the reviewer
Simon Jackson is a long-time software engineer and architect with many years of Unity
game development experience, as well as an author of several Unity game development
titles. He loves to both create Unity projects and lend a hand to help educate others,
whether it's via a blog, vlog, user group, or major speaking event.

He currently works at a mixed-reality research lab called xRealityLabs, building the future
of digital solutions for the construction and medical industries.

His primary focus at the moment is on the Reality Toolkit project, which is aimed at
building a cross-platform mixed-reality framework to enable both VR and AR developers
to build efficient solutions in Unity.

Table of Contents
Preface

Part 1: Basic Unity Concepts

1
Hello Unity

Technical requirements 4
Getting started with the Unity
Editor 4
Choosing the right Unity release for you 5
Choosing the right subscription plan
for you 6
Downloading and installing the Unity
Editor 8
Exploring the Unity Editor 21

Working with different features

in Unity 38
What is a game engine? 39
Features in Unity 40

.NET/C# and scripting in Unity 42

.NET profiles in Unity 42
Scripting backends in Unity 44

Building Unity games with
Visual Studio 46
Summary 52

2
 Scripting Concepts in Unity

Technical requirements 54
Understanding the concepts of
scripting in Unity 54
GameObject-components architecture 54
Common classes in Unity 56
Prefabs in Unity 62
Special folders in Unity 70

The life cycle of a script instance 71
Initialization 71
Update 74
Rendering 77

Creating a script and using it as
a component 81
How to create a new script in Unity 81

x Table of Contents

Adding a script as a component to a
GameObject in the Scene 85
Accessing a component attached to a
GameObject 90

Packages and the Unity

Package Manager 94
Unity Package Manager 95
Package 99

Summary 103

Part 2: Using C# Scripts to Work with
Unity's Built-In Modules

3
Developing UI with the Unity UI System

C# scripts and common UI
components in Unity 108
Canvas 109
Image 125
Text 132
Selectable UI components 139

C# scripts and the UI Event
System in Unity 142
Input Modules 143

The new Input System package 144

The Model-View-ViewModel
(MVVM) pattern and the UI 145
Performance tips to increase
performance of the UI 154
The Unity Profiler 154
Multiple canvases 156
Use Sprite Atlas 156

Summary 159

4
Creating Animations with the Unity Animation System

Technical requirements 162
Exploring the Unity animation
system's concepts 162
Animation Clips 163
Animator Controller 170
Avatar 174
Animator component 180

Implementing 3D animation in
Unity 182
Importing animation assets 183
Configuring the Animator Controller 187

Implementing 2D animation in
Unity 192

Table of Contents xi

Improving the performance of
Unity's animation system 197
The Unity Profiler 197

Animator's Culling Mode 201
Anim. Compression 202

Summary 203

5
Working with the Unity Physics System

Technical requirements 206
Concepts in the Unity Physics
system 206
Collider 207
Rigidbody 213
Trigger 218

Scripting with the Physics
system 219
Collision methods 220
Trigger methods 222

Methods of Rigidbody 224

Creating a simple game based
on the Physics system 228
Increasing the performance of
the Physics system 242
The Unity Profiler 242
Increasing the fixed timestep 244
Reducing unnecessary layer-based
collision detections 245

Summary 247

 6
Integrating Audio and Video in a Unity Project

Technical requirements 250
Concepts in Unity's audio
system and video system 250
Audio clips 250
Audio Sources 256
Audio Listener 259
Video clips 260
Video Player 264

Scripting with audio and video 269
AudioSource.Play 269
AudioSource.Pause 272
AudioSource.Stop 274
VideoPlayer.clip 275
VideoPlayer.url 278

VideoPlayer.Play 280
VideoPlayer.frame and VideoPlayer.
frameCount 281

Things to note when using
Unity to develop web
applications 284
URL 285
Frame rate 288

Increasing the performance of
the audio system 289
The Unity Profiler 289
Using Force To Mono to save memory 291

Summary 292

xii Table of Contents

Part 3: Advanced Scripting in Unity

7
Understanding the Mathematics of Computer Graphics
in Unity

Getting started with coordinate
systems 296
Understanding left-handed and right-
handed coordinate systems 297
Local space 298
World space 302
Screen space 304

Working with vectors 308
Vector addition 309
How to subtract vectors 310
Dot product 311

Cross product 315

Working with the
transformation matrix 316
Translation matrix 317
Rotation matrix 319
Scaling matrix 320

Working with quaternions 322
Creating rotations 323
Manipulating rotations 326
Working with Euler angles 328

Summary 329

8
The Scriptable Render Pipeline in Unity

An introduction to the
Scriptable Render Pipeline 332
The Fontainebleau Demo 333
The Spaceship Demo 334
The BoatAttack Demo 334
The Heretic: Digital Human 335
The Heretic: VFX Character 336
Universal Render Pipeline 337
The High Definition Render Pipeline 340

Working with Unity's Universal
Render Pipeline 343
Exploring the sample scene 344

The Universal Render Pipeline asset 352
The Volume framework and post-
processing 357

The Universal Render Pipeline
shaders and materials 362
Commonly used shaders 363
Upgrading project materials to
Universal Render Pipeline materials 366
Creating a shader and a Shader Graph 368

Table of Contents xiii

Increasing performance of the
Universal Render Pipeline 378
The Frame Debugger 379

The SRP Batcher 381

Summary 383

9
The Data-Oriented Technology Stack in Unity

Technical requirements 386
DOTS overview 386
Object-oriented design pattern versus
DOTS 387
C# Job System 391
ECS 392
The Burst compiler 393

Multithreading and the C# Job
System in Unity 394
Coroutines 394
async/await 395
Working with the C# Job System 398

Working with ECS in Unity 412
Using C# and the Burst
compiler 430
Summary 431

10
Serialization System and Assets Management in Unity
and Azure

Technical requirements 434
Serialization system in Unity 435
What is Unity's serialization system? 435

The assets workflow in Unity 451
GUID and File ID 453
Meta files 460
The AssetPostprocessor class and the
import pipeline 464
The Library folder 467

Introducing the special folders
in Unity 469
Resources folder 469
StreamingAssets folder 471

Azure Blob storage with Unity's
Addressable Asset system 473
Setting up an Azure Blob storage
service 474
Installing the Addressable Assets
system package 482
Building addressable content 483
Deploying content to the Azure Cloud 494
Loading addressable content from the
Azure Cloud 496

Summary 498

xiv Table of Contents

11
Working with Microsoft Game Dev, Azure Cloud, PlayFab,
and Unity

Technical requirements 500
Introducing Microsoft Game
Dev, Microsoft Azure Cloud, and
Azure PlayFab 500
Microsoft Game Dev 500
Microsoft Azure Cloud 502
Azure PlayFab 503

Setting up Azure PlayFab for a
Unity project 504
Creating a new Azure PlayFab account 505
Setting up a game studio and a game
title in Azure PlayFab 508
Setting up the Azure PlayFab SDK in
the Unity project 510

Signing up and logging in
players using Azure PlayFab in
Unity 514
Signing up players in Azure PlayFab 515
Logging in players in Azure PlayFab 521

Implementing a leaderboard
using Azure PlayFab in Unity 524
Setting up a leaderboard in Azure
PlayFab 525
Updating the score of a player from
Unity using the Azure PlayFab API 530
Loading the leaderboard data from
Azure PlayFab in Unity 536

Summary 543

Index

Other Books You May Enjoy

Preface
As one of the most widely used game engines in the world, Unity provides easy-to-use and
powerful game development tools, which undoubtedly attracts many developers to choose
it to develop their own games. However, the tools needed in modern game development
are not limited to game engines; other tools and services such as the cloud are increasingly
used in game development. In this book, we will explore how to use the Unity game
engine and the Microsoft Game Dev, including the Microsoft Azure Cloud and Microsoft
Azure PlayFab services, to create games.

Starting by understanding the fundamentals of the Unity game engine, you will gradually
become familiar with the Unity Editor and the key concepts of writing Unity scripts in C#,
which will get you ready to make your own game.

Then, you'll learn how to work with Unity's built-in modules, such as the UI system,
animation system, physics system, and how to integrate video and audio in your game
to make your game more interesting.

As you progress through the chapters, I'll take you through advanced topics, such as the
math involved in computer graphics, how to create post-processing effects in Unity with
the new Scriptable Render Pipeline, how to use Unity's C# Job System to implement
multithreading, and how to use Unity's Entity Component System (ECS) to write game
logic code in a data-oriented way to improve game performance.

Along the way, you'll also learn about the Microsoft Game Dev, the Azure cloud services,
Azure PlayFab, and using the Unity3D PlayFab SDK to access the PlayFab API to save
and load data from the cloud.

By the end of this book, you'll be familiar with the Unity game engine, have a high-level
understanding of the Azure cloud, and be ready to develop your own games.

Who this book is for
The book is for developers with intermediate .NET and C# programming experience
who are interested in learning game development with Unity. Basic experience in
C# programming is assumed.

xvi Preface

What this book covers
Chapter 1, Hello Unity, explains the fundamentals of the Unity game engine. Beginning
with the Unity installation process and then exploring the editor, you will also learn about
.NET profiles and the scripting backend offered by Unity, and finally, you will have a broad
understanding of Unity.

Chapter 2, Scripting Concepts in Unity, continues from the previous chapter and introduces
scripting in Unity in detail. It begins by introducing the most commonly used classes in
Unity scripting and then explains the life cycle of scripts. It also covers how to create a new
script in Unity and attach a script as a component to a GameObject, and demonstrates
how to add or remove packages through the Unity Package Manager.

Chapter 3, Developing UI with the Unity UI System, covers the different types of UI
elements commonly used in Unity. Additionally, this chapter also discusses how to develop
UI in Unity by using a Model View ViewModel (MVVM) architectural pattern. It ends by
exploring some optimization tips for Unity UI.

Chapter 4, Creating Animations with the Unity Animation System, covers the most
important concepts of the Unity animation system, such as animation clips, Animator
Controller, Avatar, and the Animator component. Here, you will implement 3D and 2D
animations using the animation system. It ends by exploring some optimization tips for
the animation system in Unity.

Chapter 5, Working with the Unity Physics System, presents an overview of the physics
solutions provided by Unity, including two built-in physics solutions, the NVIDIA PhysX
engine and the Box2D engine. It also covers key concepts in the Unity physics system,
such as Collider and Rigidbody. Here, you will implement a physics-based ping-pong
game. It ends by exploring some optimization tips for the physics system in Unity.

Chapter 6, Integrating Audio and Video in a Unity Project, covers key concepts in the
Unity audio system and video system, such as audio clip assets, Audio Source components,
Audio Listener components, and Video Player components. It ends by exploring some
optimization tips for the audio system in Unity.

Chapter 7, Understanding the Mathematics of Computer Graphics in Unity, covers the
mathematics related to computer graphics, such as coordinate systems, vectors, matrices,
and quaternions.

Preface xvii

Chapter 8, The Scriptable Render Pipeline in Unity, presents an overview of three
ready-made render pipelines to choose from in Unity, namely the legacy built-in render
pipeline and two pre-made render pipelines based on the Scriptable Render Pipeline, the
Universal Render Pipeline and the High Definition Render Pipeline. It also covers how to
use the Universal Render Pipeline Asset to configure the render pipeline and how to use
the Volume framework to apply post-processing effects to a game. It ends by exploring
some optimization tips for the Universal Render Pipeline.

Chapter 9, Using Data-Oriented Technology Stack in Unity, covers what data-oriented
design is and the difference between data-oriented design and traditional object-oriented
design. It also explores the Data-Oriented Technology Stack (DOTS) in Unity and the
three technology modules that make it up – namely, the C# Job System, ECS, and the
Burst compiler.

Chapter 10, Serialization System and Assets Management in Unity and Azure, discusses
binary serialization, YAML serialization, and JSON serialization in Unity. It also covers
the assets workflow in Unity and ends by exploring how to create an Azure Blob storage
service in the Azure cloud and load addressable content from Azure into a Unity project.

Chapter 11, Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity, discusses
what Microsoft Game Dev, Microsoft Azure Cloud, and Azure PlayFab are and why you
should consider using them in game development. Here, you will implement the registration,
login, and leaderboard functions in a Unity project through the API of Azure PlayFab.

To get the most out of this book
This book assumes that you have some familiarity with .NET and C#. This book covers
basic concepts, advanced topics of the Unity game engine, and also other technologies
such as the Microsoft Azure cloud and Azure PlayFab.

You'll also need a Long-Term Support (LTS) version of Unity installed on your computer
– 2020 or later is recommended. You can find out how to install Unity on your computer
in Chapter 1, Hello Unity. All code examples have been tested with Unity 2020.3.24 on a
Windows OS. However, they should work with future version releases too.

You'll also need a Microsoft Azure cloud subscription, and you can apply for a free Azure
account at the following link: https://azure.microsoft.com/en-in/free/.

https://azure.microsoft.com/en-in/free/

xviii Preface

If you wish to download sample projects from our GitHub repository, you will need a Git
client; we recommend GitHub Desktop as it is the easiest to use. You can download it at
the following link: https://desktop.github.com.

If you are using the Windows OS, you can also consider using Git for Windows. It can be
downloaded at the following link: https://git-scm.com/download/win.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/Game-Development-with-Unity-for-.
NET-Developers. If there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801078078_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "If some content is generated at the beginning of the object collision via
OnCollisionEnter, and you want to destroy them when the object collision ends,
then you should consider using OnCollisionExit."

https://desktop.github.com
https://git-scm.com/download/win
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801078078_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801078078_ColorImages.pdf

Preface xix

A block of code is set as follows:

using UnityEngine;

public class TriggerTest : MonoBehaviour

{

 private void OnTriggerStay(Collider other)

 {

 Debug.Log($"{this} stays {other}");

 }

}

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

using UnityEngine;

public class PingPongBall : MonoBehaviour

{

 [SerializeField] private Rigidbody _rigidbody;

 [SerializeField] private Vector3 _initialImpulse;

 private void Start()

 {

 _rigidbody.AddForce(_initialImpulse,

 ForceMode.Impulse);

 }

}

Bold: Indicates a new term, an important word, or words that you see onscreen.
For instance, words in menus or dialog boxes appear in bold. Here is an example:
"Select 3D Object | Plane to create a new Plane object in the editor."

Tips or Important Notes
Appear like this.

xx Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Game Development with Unity for .NET Developers, we'd love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1801078076

Part 1:
Basic Unity

Concepts

In this section of the book, we'll explore the fundamentals of the Unity game engine and
introduce some of the key concepts of scripting in Unity to get you ready to make your
own games.

This section includes the following chapters:

• Chapter 1, Hello Unity

• Chapter 2, Scripting Concepts in Unity

1
Hello Unity

Before we get started with using Unity to develop games, I think it's good to first
understand Unity itself. Many people, especially those who are interested in games and
game development, know that Unity is a widely used game engine, and you may have
played many games developed with Unity. But you may not be familiar with how to use
Unity to develop games. For example, there are many different Unity versions available, so
how do you choose the version that suits you? Unity provides different subscription plans,
but which subscription plan is right for your situation?

If you have never used Unity before, it is necessary for you to learn how to use the Unity
Editor first. In addition to the Unity Editor, what features does the Unity engine provide to
help game developers develop games? It is also important to know the features in Unity. If
you are a .NET developer, then it's likely that you are familiar with Visual Studio. You need
to know how to use Visual Studio to develop a Unity game. But developing a Unity game is
different from developing a .NET application.

Am I asking too many questions? Don't worry – this chapter will help you answer them.

In this chapter, we will introduce how to choose the right release of Unity and provide
an overview of how to download and install Unity via the Unity Hub or the Unity installer.
Then, we will choose the right subscription plan for your situation. At this point, you
should have installed Unity and opened the Unity Editor.

4 Hello Unity

If you have only just started using the Unity Editor, you may not know how to use it.
We will first explore the Unity Editor and then discuss the different features provided
by Unity. We will then introduce the .NET profiles in Unity and the scripting backend
offered by Unity. Finally, we will present how to use Visual Studio to develop Unity games.

We will cover the following key topics in this chapter:

• Getting started with the Unity Editor

• Working with different features in Unity

• .NET/C# and scripting in Unity

• Building Unity games with Visual Studio

Technical requirements
Before starting, I highly recommend you first check whether your system can run the Unity
Editor. The following table gives the minimum requirements to run the Unity Editor:

Getting started with the Unity Editor
Whether you are an independent game developer or work in a team for a company, you
need to do two things before installing or even downloading Unity:

• Choose the right Unity release for you.

• Choose the right subscription plan for you.

Getting started with the Unity Editor 5

Therefore, before introducing how to install Unity and exploring the Unity Editor, let's
first introduce the Unity release and subscription plans. We hope that by reading these
contents, you can find the right release for you and choose a suitable subscription plan.

Choosing the right Unity release for you
Nowadays, Unity offers two different release versions each year. They are as follows:

• Tech Stream releases

• Long-Term Support (LTS) releases:

Figure 1.1 – Unity releases

You may not be quite sure which version of Unity is best to use in your project, so I will
explain these two different releases so that you can get an idea of how to choose the right
release for you.

LTS releases provide developers with maximum stability and full support for their
projects, and they are the last Tech Stream releases of each year. With LTS releases, there
are no new features or API changes. The updates of LTS releases address crashes, and fix
bugs and any minor issues. As I mentioned at the beginning of this section, each year,
Unity releases new versions of the LTS release, and each one is supported for 2 full
years from the date of the announcement.

6 Hello Unity

Therefore, if you are looking for performance and stability, or your project is already in
production or in the middle of development, it is a good idea to use the latest LTS release
version to ensure best performance and stability.

Note
At the time of writing (April 2022), there are two LTS releases, namely Unity
2020 LTS and Unity 2019.4. Unity 2020 LTS is the latest LTS release and has the
same feature set as the Unity 2020.2 Tech Stream release. Alternatively, Unity
2019.4 is the legacy LTS release now.

The Tech Stream releases give developers who want to explore the latest in-progress
features an option to use them to prepare for future projects. Unlike the LTS releases,
a Tech Stream release will be released twice a year (typically published in the first and
last quarters) and will only be supported until the next Tech Stream release is officially
published.

Therefore, if you are preparing for your next project or working on prototyping and
experimentation, you should try the Tech Stream releases.

Note
At the time of writing (April 2022), the latest Tech Stream release is Unity
2021.2.

By reading this section, I hope you have gained an understanding of the Unity releases,
and you should be able to choose the right Unity release according to your situation.

When writing this book, I chose the latest LTS version, Unity 2020.3.

Choosing the right subscription plan for you
Unity is a widely used game engine, and many independent game developers use Unity
to develop their games. But technically speaking, Unity is not a free game engine. In this
section, I will introduce several different subscription plans offered by Unity. I hope that
after reading this section, you can choose a subscription plan that suits your situation.

Getting started with the Unity Editor 7

Unity offers a range of plans, from the free Personal plan for individual learners to
Enterprise plans used by large organizations:

Figure 1.2 – The Plans and pricing page

Because each Unity plan has different eligibility requirements, you should choose the right
plan for your project. Next, I will introduce the subscription plans:

• The Personal plan is free and includes all the basic functionality of Unity. You can
choose this plan if you work as an individual and have earned less than $100,000 in
revenue or funding for your Unity project in the past 12 months. In addition, if you
are a student or educator, you can get additional benefits, but before that, you need
to join the GitHub Student Developer Pack to be verified.

• The Plus plan is a paid plan and offers more functionality and training resources,
such as advanced cloud diagnostics and splash screen customization. If you have
earned more than $100,000 but less than $200,000 in revenue from using Unity in
the past 12 months, you should choose this plan.

8 Hello Unity

• The Pro plan is also a paid plan. Compared with the Plus plan, you can get more
technical support from Unity by using the Pro plan. If your organization has earned
more than $200,000 in the last 12 months from any source, you must use the Pro
plan or the Enterprise plan.

• The Enterprise plan is specifically for teams with at least 20 members and provides
more support than the Pro plan. For example, a customer success manager from
Unity will be assigned to your organization to provide guidance, orchestrate
resources, and serve as an internal advocate.

I hope this section was helpful for you in choosing the right Unity plan for your situation.
Next, let's download and install the Unity Editor!

Downloading and installing the Unity Editor
There are two different ways to download and install the Unity Editor. The first and
recommended way to download and install Unity is to use the Unity Hub.

The Unity Hub is a management tool that can be used to manage all your Unity projects
and Unity installations. We can take the following steps to install the Unity Hub and
the Unity Editor:

1. To install the Unity Hub, visit the Download Unity page at https://unity3d.
com/get-unity/download:

Figure 1.3 – The Download Unity page

https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download

Getting started with the Unity Editor 9

As you can see in the System requirements section in the preceding screenshot, the
Unity Hub supports Windows, Mac OS X, Ubuntu, and CentOS.

2. Installing the Unity Hub is very easy; you just need to choose the folder where the
Unity Hub is installed. Then, click on the Install button:

Figure 1.4 – Unity Hub Setup

10 Hello Unity

3. After installing the Unity Hub, select the Run Unity Hub option and click on the
Finish button to launch the Unity Hub:

Figure 1.5 – Completing Unity Hub Setup

I am using the latest version of Unity Hub (version 3.0.0) at the time of writing. If
you have used previous versions of Unity Hub, you will find that the launch page of
the new version of Unity Hub is completely different.

4. You need a Unity account to access the Unity Editor and the Unity Hub. If you don't
have a Unity account yet, then you need to create a new one:

Getting started with the Unity Editor 11

Figure 1.6 – Unity Hub

5. When you sign into the Unity Hub for the first time, you will be asked to add an
active license, as you can see at the top of the following screenshot. Click on the
Manage licenses button to open the Licenses setting panel:

Figure 1.7 – Click the Manage licenses button

12 Hello Unity

6. There are two buttons available for you to add a new license. You can click either the
Add button at the top-right corner or the Add license button:

Figure 1.8 – The Licenses setting panel

Then, you have different options to activate the license. We have discussed the
different Unity subscription plans in the previous section:

Figure 1.9 – Add new license

Getting started with the Unity Editor 13

7. After adding the new license, we can start exploring the Unity Hub. From the
Projects view, you can find a list of Unity projects that are tracked by the Unity Hub.
You can also create a brand-new project by clicking the New project button at the
upper-right corner of the Projects view, or you can import an existing project by
clicking the Open button:

Figure 1.10 – The Projects view

14 Hello Unity

8. To install the Unity Editor, open the Installs view, where you can manage the
installation of multiple versions of the Unity Editor:

Figure 1.11 – The Installs view

There is a list of the Unity Editors that are installed and managed by the Unity Hub.
Similar to the Projects view, you can download and install a new Unity Editor,
or you can import an existing Unity Editor that is not managed by the Unity Hub,
such as the Unity Editor that we installed using the Unity installer.

Getting started with the Unity Editor 15

9. Open the Install Unity Editor panel by clicking the Install Editor button on the
Installs view. Then, you will see the latest version of each release:

Figure 1.12 – Install Unity Editor

Note
Unity 2018 LTS has reached the end of its support cycle, so you should not
install it.

16 Hello Unity

We will use the latest version of the Unity 2020 LTS release, so we need to install
Unity 2020.3.13f1 here:

Figure 1.13 – Install Unity 2020.3.13f1

Then, we need to select the modules that need to be installed. As you can see in the
preceding screenshot, Microsoft Visual Studio Community 2019 will be installed by
default, which will be our Integrated Development Environment (IDE) to develop
games in Unity.

Note
If you want to change the installation location, you can change it in the Installs
settings of the Preferences panel.

Getting started with the Unity Editor 17

Once it has been downloaded and installed, we are ready to start exploring the
Unity Editor!

Sometimes, you may need a specific version that is not available through the Unity Hub,
such as some older Unity versions. At this point, you can also install the Unity Editor
a second way, which is through the Unity installer. You can use the Unity installer to
download the previous versions of Unity:

Figure 1.14 – The Unity download archive page

18 Hello Unity

Now, follow these steps to install the Unity Editor through the Unity installer:

1. To download a previous version of Unity, you should access the Unity download
archive page at https://unity3d.com/get-unity/download/archive.

2. Click on the Next button and choose the components of Unity that you want to
download and install. The Unity installer should resemble the following screenshot:

Figure 1.15 – The Unity installer

3. The Unity Editor is selected by default; in order to build games for different
platforms, you also need to select the corresponding build support components.
For example, if you want to build an Android game running on Android devices,
you need to download and install the Android Build Support component:

https://unity3d.com/get-unity/download/archive

Getting started with the Unity Editor 19

Figure 1.16 – Choosing components

4. Click the Next button, and then you need to choose download and install locations:

Figure 1.17 – Choose Download and Install locations

20 Hello Unity

5. After specifying where to download and install these files, click the Next button to
download Unity:

Figure 1.18 – Downloading and Installing

After the download and installation are complete, the Unity Editor icon will appear on
your desktop.

Getting started with the Unity Editor 21

Exploring the Unity Editor
The first thing we need to do is use the Unity Hub to create a new Unity project. As I
mentioned in the previous section, we will create a brand-new project by clicking the
New Project button at the upper-right corner of the Projects view.

Figure 1.19 – Creating a new project

As shown in the preceding screenshot, we can choose different Unity Editor versions for
this new project, and Unity provides us with some built-in project templates, such as the
2D, 3D, HDRP, and URP templates. You can also download and install more templates
from Unity, such as the VR template and the AR template. In the PROJECT SETTINGS
section, you can set the name of the project and the location of the project.

22 Hello Unity

Here, we will choose the default 3D project template and name our project UnityBook.
Then, click on the Create project button. After that, the Unity Editor you previously
selected will launch and open a new project for you:

Figure 1.20 – The Unity Editor

As you can see in the preceding screenshot, the Unity Editor layout organizes the most
important windows for you. Specifically, the default layout divides the editor interface into
five key areas. From top to bottom, they are as follows:

1. Toolbar
2. Hierarchy window
3. Scene view and Game view
4. Inspector window
5. Project window

Next, I will introduce these UI areas in order.

Getting started with the Unity Editor 23

The Toolbar
The Toolbar is always at the top of the Unity Editor interface, and it consists of several
groups of controls:

Figure 1.21 – The Toolbar

From left to right, the first tool in the Toolbar is the transform tools set. The transform
tools are used in the Scene view and allow you to pan around the Scene and move, rotate,
and scale individual GameObjects in the Scene:

Figure 1.22 – The transform tools set

The next tool is the Gizmo handle position toggles set, which is used to define the
position of any transform tool Gizmo in the Scene view:

Figure 1.23 – The Gizmo handle position toggles set

Then, you can find the Play, Pause, and Step buttons in the center. You can use these
buttons in the Game view:

Figure 1.24 – The Play, Pause, and Step buttons

On the right side, let's take a look at the Unity Plastic SCM button first, which allows you
to access the Plastic SCM version control and source code management tool in the Unity
Editor directly. You can click the cloud button to open the Unity Services window, where
you are able to access a lot of cloud services provided by Unity, such as the Cloud Build
service, the Analytics service, and the Ads service.

24 Hello Unity

You can also access your Unity account from the Account drop-down menu. There are
two other drop-down menus on the right, namely Layers and Layout; you can control
which objects in the Scene view appear using the Layers drop-down menu and change
or create a new layout of your Unity Editor using the Layout drop-down menu:

Figure 1.25 – The Unity Collaborate and Unity Services buttons and
the Unity Account, Layers, and Layout dropdowns

The Hierarchy window
The second area is the Hierarchy window. As you can see in the following screenshot, the
Hierarchy window in the Unity Editor displays everything in a Scene; the things in the
Scene, such as Main Camera, Directional Light, and the 3D cube, are called GameObjects.

We can also organize all the objects in the game world in the Hierarchy window:

Figure 1.26 – The Hierarchy window

It is very easy to create a new GameObject in a Scene. You only need to right-click on
the Hierarchy window, and a menu will pop up where you can select the object you
want to create:

Getting started with the Unity Editor 25

Figure 1.27 – Creating a new GameObject

26 Hello Unity

It is worth noting that Unity uses parent-child hierarchies to organize GameObjects, so
you can create one object as a child of another. If you want to create a new GameObject as
a child of another GameObject, then you only need to select the parent GameObject first
and then right-click to create the child GameObject:

Figure 1.28 – The parent-child hierarchy

Another way to create a parent-child hierarchy is to directly drag an existing GameObject
onto the parent GameObject in the Hierarchy window:

Figure 1.29 – The parent-child hierarchy

As you can see in the preceding screenshot, we dragged the GameObject named Cube
onto the GameObject named Child to create a parent-child hierarchy.

Figure 1.30 – Hiding and showing GameObjects

Getting started with the Unity Editor 27

Another feature of the Hierarchy window is that it allows you to hide and show
GameObjects in the Scene view without changing their visibility in the Game view
or the final application.

The Scene view and the Game view
The center of the default Unity Editor layout is the Scene view and the Game view, which
is the most important window in the Unity Editor. The Scene view is an interactive view
of the game world you are creating:

Figure 1.31 – The Scene view

You can use the Scene view to manipulate GameObjects and view them from various
angles. Also, there are some useful tools available in the Scene view, such as the Scene
Gizmo tool at the upper-right corner of the Scene view:

Figure 1.32 – The Scene Gizmo tool

28 Hello Unity

It shows the current orientation of the Scene view camera and allows you to quickly
modify the angle of the view and projection mode.

If you want to modify the settings of the Scene view camera, you can click the Camera
button next to the Gizmos button to open the Scene Camera settings window:

Figure 1.33 – The Scene Camera settings

Getting started with the Unity Editor 29

Here, you can adjust some settings of the Scene view camera, such as Field of View and
Camera Speed.

A visual grid is another useful tool that you can use in the Scene view to help you align
GameObjects by moving them to the nearest grid location:

Figure 1.34 – Toggle the visibility of the grid

As you can see in the preceding screenshot, you can also move a GameObject to a grid
projected along the X, Y, or Z axes.

30 Hello Unity

The last useful tool in the Scene view that I want to introduce is draw mode used in
the Scene:

Figure 1.35 – The draw mode in the Scene

This is useful if your project uses the built-in render pipeline of Unity because a different
draw mode in the Scene can help you understand and debug the lighting in it.

Getting started with the Unity Editor 31

In the default layout, the Game view also appears in the same area as the Scene view. You
can click the Game button to switch to the Game view from the Scene view:

Figure 1.36 – Click the Game button to switch to the Game view

The Game view represents your final published game. The content of the Game view is
rendered from the camera(s) in your game. In the Game view, you cannot modify the
viewing angle and projection mode at will, as with the Scene view. You need to modify
the settings of the camera object to achieve this function:

Figure 1.37 – The Game view

You can run your game directly inside the Game view by clicking the Play button on the
Toolbar. It's important to note that in Play mode, any changes you make are temporary
and will be reset when you exit it; therefore, it is not a good idea to make lots of changes
in play mode.

32 Hello Unity

I want to introduce three tools in the Game view, namely Aspect, Maximize On Play,
and Stats.

The Aspect drop-down menu is very useful when you develop games for different screens
with different aspect ratios. You can select different values to test how your game looks
on these screens, and you even can add custom values by clicking the plus button at the
bottom of the menu:

Figure 1.38 – The Free Aspect drop-down menu

The second feature is called Maximize On Play, which can maximize the Game view for
a full-screen preview when you enter play mode:

Getting started with the Unity Editor 33

Figure 1.39 – The Maximize On Play button

The third feature is called Stats. This feature is useful because it can display the rendering
statistics about your game's audio and graphics. Therefore, you can use it for monitoring
the performance of your game while in play mode:

Figure 1.40 – The Stats window

In the Scene view, you can view and adjust the game world you are creating. In the Game
view, you can see your final game. So, this area is very important in the Editor. Next, let's
take a look at the UI area related to a specific GameObject in the Scene.

34 Hello Unity

The Inspector window
If you want to modify the properties of a GameObject or a component on a GameObject,
you need to use the Inspector window.

You can select a GameObject in the Scene view or the Hierarchy window, and then you
will see the properties and the components of it in the Inspector window:

Figure 1.41 – The Inspector window of a GameObject

Getting started with the Unity Editor 35

You can modify these properties directly in the Inspector window, which also provides
some useful tools that can help you modify your GameObjects.

For example, if you want to copy the values of a component on a GameObject, you can
right-click on the component, and then a menu will pop up; from there, you can select
the Copy Component command:

Figure 1.42 – Copy Component

36 Hello Unity

Not only can the GameObjects in the Scene view be inspected but also the digital assets
in the Project window. You can select a digital asset in the Project window, and the
Inspector window will display the settings that control how Unity imports and uses the
asset at runtime:

Figure 1.43 – The Inspector window of an asset

Getting started with the Unity Editor 37

In this section, we learned how to view and modify the properties of a GameObject and
asset through the Inspector window.

The Project window
The final window I will introduce is the Project window. In the Project window, you can
find all the digital assets of your project. The Project window works like a file browser,
organizing assets files in folders:

Figure 1.44 – The Project window

The Project window is the main way to navigate and find assets in your game. It provides
two ways to search assets, by type or label:

Figure 1.45 – Searching assets by type

38 Hello Unity

It is very easy to import external digital assets or create an asset inside the Unity Editor
directly. You just need to right-click on the Project window and a menu will pop up where
you can create a new asset or import an existing asset:

Figure 1.46 – Creating an asset

I hope you now have a good understanding of the Unity Editor by reading this section.
Next, I will introduce what a game engine is and what important features Unity provides
as a game engine.

Working with different features in Unity
Nowadays, Unity is no longer just a game engine but also a creative tool widely used in
various industries. However, Unity still retains its game engine roots, and it remains one
of the most popular game engines. To learn how to use Unity to develop games, you must
first understand what features Unity provides for game developers as a game engine.

In fact, almost all game engines provide similar functional modules to Unity to game
developers. So, the first question is, what exactly is a game engine?

Working with different features in Unity 39

What is a game engine?
The term game engine is widely used in the game industry, but not everyone knows what
this term means, especially new game developers. So, I will explain what a game engine is
and, at the same time, introduce the corresponding functions in Unity.

A game engine is not just a computer graphics renderer. Of course, rendering is an
important function of a game engine, but the process of creating a game is much
more complicated than just rendering.

As a game developer, you need to import different types of digital assets, such as 3D
models, 2D textures, and audio, and most of these digital assets are not created inside a
game engine. Therefore, a game engine should provide the function of managing digital
assets. In addition to digital assets, you also need to use scripts to add game logic to guide
these assets to perform correct behaviors, such as character interactions.

UI is another integral part of a game, and even some gameplay is based on UI. Therefore,
a good game engine should provide an easy-to-use and powerful UI toolkit to develop
user interfaces for games.

You can use other software to develop animation files and import them into a game
engine, but in order for animation files to be played and controlled correctly in the game,
the game engine needs to provide an animation feature.

At the same time, a physical effect is a common function in modern games, so a powerful
game engine should provide a physical function so that game developers do not need to
implement a physical effect from scratch.

There is no doubt that adding video and audio to your game can make your game
livelier and more interesting. With audio especially, suitable background music and some
appropriate sound effects can make your game feel completely different. Even if it is just
a prototype, background music and sound effects can make the game more complete and
more professional. Therefore, although many people often ignore the functions of video
and sound when talking about game engines, I don't think that a game engine without
video and audio functions is a good one.

As you can see, there are many features in a game engine for game developers to develop
their games. A game engine integrates all aspects of creating a game to create a complete
game user experience. So, in game development, you will deal with different functions.
For example, you may need to properly manage digital assets and create appropriate
digital assets for your game engine to optimize performance at runtime, or you may need
to know how to use the scripting function provided by the game engine you are using to
develop logic for your game.

As one of the most popular game engines, Unity also provides the aforementioned
functions. In the following subsection, I will introduce these functions in Unity.

40 Hello Unity

Features in Unity
Like other excellent game engines, Unity also provides many functions for game
developers. You will be introduced to these functions in the following sections.

Graphics
The first feature I want to introduce is graphics in Unity. You can use Unity's graphics
features to create beautiful, optimized graphics on various platforms:

Figure 1.47 – A Unity HDRP template Scene

A render pipeline performs a series of operations that render the contents of a Scene on
a screen. There are three render pipelines available in Unity:

• The Built-in Render Pipeline, which is the default render pipeline in Unity. You
cannot modify this render pipeline.

• The Universal Render Pipeline (URP), which allows developers to customize and
create optimized graphics for different platforms.

• The High Definition Render Pipeline (HDRP), which focuses on cutting-edge,
high-fidelity graphics on high-end platforms.

In addition, you can also create your own render pipeline by using the Scriptable
Render Pipeline API in Unity. We will introduce it in detail in Chapter 8, The Scriptable
Render Pipeline in Unity.

Working with different features in Unity 41

Scripting
Scripting is another essential feature of Unity. You need scripts to implement the game
logic in your games.

The Unity engine is built with native C/C++ internally, but it offers scripting APIs in
C#, so you do not have to learn C/C++ to create a game. In the following sections and
chapters, you will learn more about the concepts of scripting.

UI
UI is very important for a game, and Unity offers three different UI solutions for game
developers:

• The Immediate Mode Graphical User Interface (IMGUI)

• The Unity UI (uGUI) package

• The UI Toolkit

The IMGUI is a relatively old UI solution in Unity, and it is not recommended for building
a runtime UI. The UI Toolkit is the latest UI solution; however, it is still missing some
features that you can find in the uGUI package and the IMGUI. The uGUI package is a
mature UI solution in Unity, which is widely used in the game industry. We will introduce
the uGUI package in detail in Chapter 3, Developing UI with the Unity UI System.

Animation
Animation can make your game more vivid. Unity provides a powerful animation feature
called Mecanim that allows you to retarget an animation, control the weight of it at
runtime, and call events from the animation playback.

We will introduce Unity's animation system in Chapter 4, Creating Animations with the
Unity Animation System.

Physics
Physical simulation is an indispensable feature in certain types of games, and some
gameplays are even based entirely on physical simulation. There are different physics
engine implementations in Unity, and you can select one according to your game needs.

We will introduce Unity's physics engine implementations in Chapter 5, Working with the
Unity Physics System.

42 Hello Unity

Video and audio
Good background music, sound effects, and video can make your game stand out. This is
a feature that cannot be ignored. Unity provides video and audio features, allowing your
game to play videos on different platforms, and supports real-time mixing and full
3D spatial sound effects.

We will discuss video and audio more in Chapter 6, Integrating Audio and Video in a
Unity Project.

Assets
You can import your digital asset files into the Unity Editor, such as 3D models and
2D textures. Unity offers an Asset Import Pipeline to process these imported assets. You
can also customize the import settings to control how Unity imports and uses the assets
at runtime.

We will introduce assets management and serialization in Chapter 10, Serialization
System and Assets Management In Unity and Azure.

We've briefly introduced the functions that a game engine needs to provide and the
functions provided by Unity. Next, let's introduce .NET/C# and scripting in Unity.

.NET/C# and scripting in Unity
Unity is a game engine written in C/C++, but in order to make it easier for game
developers to develop games, Unity provides C# (pronounced C-sharp) as a scripting
programming language to write game logic in Unity. This is because compared with
C/C++, C# is easier to learn. In addition, it is a "managed language," which means that
it will automatically manage memory for you – allocate release memory, cover memory
leaks, and so on.

In this section, we will introduce .NET/C# and scripting in Unity.

.NET profiles in Unity
The Unity game engine uses Mono, an open source ECMA CLI, C#, and .NET
implementation, for scripting. You can follow the development of Unity's fork of Mono
on GitHub: https://github.com/Unity-Technologies/mono/tree/unity-
master-new-unitychanges.

https://github.com/Unity-Technologies/mono/tree/unity-master-new-unitychanges
https://github.com/Unity-Technologies/mono/tree/unity-master-new-unitychanges

.NET/C# and scripting in Unity 43

Unity provides different .NET profiles. If you are using the legacy version of Unity, which
is before Unity 2018, you may find that it provides two API compatibility levels in the
Player settings panel (Edit | Project Settings | Player | Other Settings), which are .NET
2.0 Subset and .NET 2.0. First of all, if you are using a legacy version of Unity, then I
strongly recommend that you update your Unity version. Secondly, both the .NET 2.0
Subset and .NET 2.0 profiles in Unity are closely aligned with the .NET 2.0 profile
from Microsoft.

If you are using a modern version of Unity, which is Unity 2019 or later, you will find
another two .NET profiles supported by Unity, which are .NET Standard 2.0 and
.NET 4.x:

Figure 1.48 – The Api Compatibility Level settings

Note
The name of the .NET Standard 2.0 profile can be a bit misleading because it
is not related to the .NET 2.0 and .NET 2.0 Subset profiles from the legacy
versions of Unity.

.NET Standard is a formal specification of the .NET APIs that all .NET platforms have to
implement. These .NET platforms include .NET Framework, .NET Core, Xamarin, and
Mono. You can find the .NET Standard repository on GitHub: https://github.com/
dotnet/standard.

https://github.com/dotnet/standard
https://github.com/dotnet/standard

44 Hello Unity

On the other hand, the .NET 4.x profile in Unity matches the .NET 4 series (.NET 4.5,
.NET 4.6, .NET 4.7, and so on) of profiles from the .NET Framework.

Therefore, it is a good idea to use the .NET Standard 2.0 profile in Unity, and you should
choose the .NET 4.x profile only for compatibility reasons.

Scripting backends in Unity
In addition to the .NET profiles, Unity also provides two different scripting backends,
which are Mono and IL2CPP (which stands for Intermediate Language To C++):

Figure 1.49 – The Scripting Backend settings

You can change the scripting backend of your project in the same settings panel, which
can be found by going to Edit | Project Settings | Player | Other Settings.

The key difference between the two scripting backends is how they compile your Unity
scripting API code (C# code):

• The Mono scripting backend uses Just-in-Time (JIT) compilation and compiles code
on demand at runtime. It will compile your Unity scripting API code to regular .NET
DLLs. And, as I mentioned in the previous sections, Unity uses an implementation of
the standard Mono runtime for scripting that natively supports C#.

• Alternatively, the IL2CPP scripting backend uses Ahead-of-Time (AOT)
compilation and compiles your entire application before it is run. And it not
only compiles your Unity scripting API code into .NET DLL but also converts all
managed assemblies into standard C++ code. In addition, the runtime of IL2CPP
is developed by Unity, which is an alternative to the Mono runtime:

.NET/C# and scripting in Unity 45

Figure 1.50 – The IL2CPP scripting backend

As shown in Figure 1.50, IL2CPP not only compiles C# code into managed assemblies but
also further converts assemblies into C++ code, and then compiles the C++ code into the
native binary format.

Clearly, IL2CPP takes more time to compile code compared to Mono, so why do we still
need IL2CPP?

Well, first, IL2CPP uses AOT compilation, which takes longer to compile, but when you
ship the game for a specific platform, the binary files are fully specified, which means that
compared to Mono, code generation is greatly improved.

Second, it is worth noting that IL2CPP is the only scripting backend available when
building for iOS and WebGL. In addition to iOS and WebGL, Unity has added support
for Android 64-bit in Unity 2018.2 to comply with the Google Play Store policy, which
requires that starting from August 1, 2019, your apps published on Google Play need to
support 64-bit architectures:

Figure 1.51 – The Android 64-bit ARM architecture is not supported on the Mono scripting backend

46 Hello Unity

And as you can see in the preceding screenshot, the Android 64-bit ARM architecture is
not supported on the Mono scripting backend. In this situation, you have to choose the
IL2CPP scripting backend.

So, whether we use IL2CPP for better code generation or some specific platforms or
architectures, spending more compilation time is still a disadvantage of IL2CPP. So, how
should we optimize the compilation time of IL2CPP? I think the following tips will help:

• Don't delete the previous build folder, and build your project with the IL2CPP
scripting backend at the same location as the folder. This is because we can use
incremental building, which means the C++ compiler only recompiles files that
have changed since the last build.

• Store your project and target build folder on a Solid-State Drive (SSD). This is
because when IL2CPP is selected, the compilation process will convert the IL code
into C++ and compile it, which involves a lot of read/write operations. A faster
storage device will speed up this process.

• Disable anti-malware software before building the project. Of course, this depends
on your security strategy.

Well, I hope that by reading this section, you now have a general understanding of Unity's
scripting system, such as the .NET profiles in Unity, the two scripting backends, and some
optimization tips for IL2CPP.

In the next section, you will learn how to set up your development environment and use
the widely used Visual Studio to develop games in Unity.

Building Unity games with Visual Studio
Before you start writing any code, it is important to choose suitable development tools.
Microsoft's Visual Studio is not only a widely used IDE but also the development
environment that is installed by default when you install Unity on Windows or macOS:

Building Unity games with Visual Studio 47

Figure 1.52 – Visual Studio Installer

While installing Visual Studio, Visual Studio Tools for Unity will also be installed. It is a
free extension that provides support for writing and debugging C# in Unity.

48 Hello Unity

If you do not install Visual Studio through the Unity Hub, please make sure you installed
this extension. You can check it in the Visual Studio Installer:

Figure 1.53 – Installing Visual Studio Tools for Unity

After installing the Unity Editor and Visual Studio Community 2019, you can check the
External Script Editor settings in the Preferences window of the Unity Editor:

Building Unity games with Visual Studio 49

Figure 1.54 – The External Script Editor settings

In addition, you can also select other script editors by modifying this setting, such as
Visual Studio Code and JetBrains Rider.

50 Hello Unity

Then, we can create a new C# script file named NewBehaviourScript in the Unity
Editor and double-click to open it in Visual Studio:

Figure 1.55 – IntelliSense for the Unity APIs

As you can see in the preceding screenshot, there are two built-in methods in the script
file by default, namely Start and Update. Visual Studio supports IntelliSense for
Unity APIs, so we can write code quickly:

Building Unity games with Visual Studio 51

Figure 1.56 – Debugging your code

It is also very easy to debug your code in Visual Studio. In the preceding screenshot,
I set a breakpoint inside the Start method and clicked the Attach to Unity button
in Visual Studio:

Figure 1.57 – Clicking the Attach to Unity button

52 Hello Unity

In order to run this code, I attach this script to a GameObject in the Scene and click on the
Play button in the Unity Editor to run the game in the Game view.

Figure 1.58 – The debugger stopping at the breakpoint

Then, the debugger will stop at the breakpoint, and you can look at the current state of
the game.

Summary
In this chapter, we started by choosing the Unity release and subscription plan that suits
your needs. Then, you learned how to install and manage the Unity Editor by using the
Unity Hub and explored the five important areas of the Unity Editor – the Toolbar, the
Hierarchy window, the Scene view and the Game view, the Inspector window, and the
Project window. You were then introduced to the Unity Editor toolbars and the windows
provided by Unity. We also discussed what a game engine is and explored the different
features provided by Unity for developers to develop games. We then introduced the
.NET profiles in Unity and the scripting backends offered by Unity; you should now know
the difference between the Mono scripting backend and the IL2CPP scripting backend.
Finally, we demonstrated how to set up Visual Studio for Unity Editor to write code.

In the next chapter, we will start with a detailed introduction to the basic concepts of
scripting in Unity, such as GameObjects, components, and some special, important
components such as Transform. We will also introduce you to the life cycle of a script
instance. Then, we will discuss how to create objects from scripts and how to access
GameObjects or components through C# code. Some best practices for scripting in
Unity will also be introduced. Finally, we will introduce packages and the Package
Manager in Unity.

2
 Scripting Concepts

in Unity
In the previous chapter, we discussed scripting in Unity at a high level. In this chapter,
we will introduce this topic in detail. We already know that Unity is internally written in
C/C++, but it provides many C# APIs for game developers and allows us to implement
game logic in C#. This means that not only can we write our own classes but also many
built-in classes are available to us. So, before creating our own C# class, let's learn a bit
about Unity's built-in classes first. The life cycle of Unity scripts is another important topic
because we need to use different event functions provided by Unity to implement game
logic. Then, we will introduce how to create a script in the Unity Editor and use it as a
component.

We will cover the following key topics in this chapter:

• Understanding the concepts of scripting in Unity

• The life cycle of a script instance

• Creating a script and using it as a component

• Packages and the Unity Package Manager

54 Scripting Concepts in Unity

Technical requirements
You can find complete code examples on GitHub under the following repository:
https://github.com/PacktPublishing/Game-Development-with-
Unity-for-.NET-Developers.

Before starting, I want to mention that the following software will be used in this chapter:

• Visual Studio 2019

• Visual Studio Tools for Unity

• Unity 2020.3+

Understanding the concepts of scripting
in Unity
Let's get started with understanding the concepts of scripting in Unity. We know that
Unity is not an open source engine; except for enterprise users and users who subscribe to
the Pro plan, no one else can access Unity's source code. However, Unity's C# API is open
source. Because the C# API is just a wrapper, it does not include the internal logic of the
engine. But Unity's open source C# API is also a good reference for us to understand script
programming in Unity. You can access it on GitHub: https://github.com/Unity-
Technologies/UnityCsReference.

GameObject-components architecture
First of all, I want to let you know that Unity is a component-based system. So, the two
terms you often hear in Unity game development are GameObject and component. A
GameObject is nothing more than a container for components. It represents an object in
the game world, but it does not have any function itself. On the other hand, a component
implements the real functionality and can be attached to a GameObject to provide the
function for a specific object.

https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/Unity-Technologies/UnityCsReference
https://github.com/Unity-Technologies/UnityCsReference

Understanding the concepts of scripting in Unity 55

Figure 2.1 – A Main Camera GameObject with a Camera component

For example, you can find a Main Camera object in a default Scene in the Unity Editor.
It is created by attaching a Camera component to a GameObject.

You can enable or disable a set of functions attached to this object by enabling or disabling
the GameObject, or enabling or disabling a specific component to enable or disable a
specific function.

This way is different from traditional object-oriented programming. It is a bit like LEGO
blocks; when an object needs a certain type of function, you only need to add related
components to it.

56 Scripting Concepts in Unity

Common classes in Unity
Unity provides a lot of built-in C# classes, so I will introduce some of the classes we often
use in Unity development.

The MonoBehaviour class
In Unity development, the class you most often encounter is the MonoBehaviour class.
This is because it is the base class from which every Unity script is derived.

Let's create a new script file in the Unity Editor and name it ChapterTwo.cs.

Figure 2.2 – A default script

Then, we open it in Visual Studio by double-clicking it. You can see our new
ChapterTwo class derives from MonoBehaviour.

So, why is MonoBehaviour so important? Because it provides a framework for game
developers to interact with the Unity engine. For example, if you want to attach a script
to a GameObject in the Scene, the class must inherit from the MonoBehaviour class;
otherwise, the script cannot be added to the GameObject. When you try to attach a class
that does not inherit from MonoBehaviour to a GameObject, the Unity Editor will pop
up the following error message:

Understanding the concepts of scripting in Unity 57

Figure 2.3 – Can't add script error

Without the MonoBehaviour class, your code will not be able to access Unity's built-in
methods and events, such as the Start and Update functions that will be created by
default in each of your new script files.

MonoBehaviour is the most important class in Unity. Start and Update are the most
common built-in functions in Unity. Every time you create a new script file, they will
appear in this new file. But if you want to modify the template that creates the script,
it is also possible; you only need to modify the script template stored here:

• Windows: %EDITOR_PATH%\Data\Resources\ScriptTemplates

• Mac: %EDITOR_PATH%/Data/Resources/ScriptTemplates

Figure 2.4 – The ScriptTemplates folder

58 Scripting Concepts in Unity

The GameObject class
We already know that objects in a Scene are called GameObjects. In order to access a
GameObject from your script, Unity provides the GameObject class to represent it.

When you create a new empty GameObject in a Scene, you'll find this new GameObject
contains a name, a tag, a layer, and a Transform component.

Figure 2.5 – A GameObject

You can modify whether it is a static object from the Inspector window as well. If the
GameObject does not move during runtime, you should check the Static property
checkbox in the upper-right corner of the Inspector window. This is because many
systems in Unity can precalculate information about static GameObjects in the Editor
to improve performance at runtime.

As we mentioned earlier, a GameObject is a container that can contain various
components. Therefore, in scripting, the GameObject class mainly provides a set of
methods for managing components, such as the AddComponent method to add a new
component to a GameObject and GetComponent to access a component attached to a
GameObject.

Understanding the concepts of scripting in Unity 59

Let's create a built-in 3D Cube object in the Scene and look at the Inspector window of
this cube.

Figure 2.6 – Cube object in the Scene

As you can see in the previous screenshot, this GameObject is called Cube, and there are
four components that are attached to this Cube object, namely, Transform, Cube (Mesh
Filter), Mesh Renderer, and Box Collider. These components provide rendering and
physical simulation functions for this object. Therefore, a GameObject is just a container
for components, and specific functions come from specific components. You can add a
new component by clicking the Add Component button in the Inspector window, or you
can add a component at runtime via code.

60 Scripting Concepts in Unity

In addition to components, the GameObject class also offers a collection of methods
to find other GameObjects, send messages between GameObjects, or create and destroy
a GameObject. For example, you can find GameObjects by using the GameObject.
Find method, to find a GameObject by name and return it, or the GameObject.
FindWithTag method, to find a GameObject by tag. You can also use the
Instantiate method to create a new instance of a GameObject, and the Destroy
method to destroy an instance of a GameObject.

Figure 2.7 – [SerializeField] attribute in a class

Understanding the concepts of scripting in Unity 61

It is worth noting that using certain methods to dynamically find a specific GameObject
instance at runtime will bring additional overhead, so the easiest way to obtain a reference
to another GameObject instance is to declare a public GameObject field or use the
[SerializeField] attribute and declare a private field to maintain the encapsulation
of the class. As shown in the previous screenshot, I prefer the second way. We will cover
serialization in Unity further in later chapters.

Now, you will find the GameObject field is visible in the Inspector. You can just drag a
GameObject from the Scene or Hierarchy panel onto this variable to assign it.

Figure 2.8 – A GameObject variable

The Transform class
An instance of the Transform class will be created automatically when you create a new
GameObject in the Scene. This is because every GameObject in the Scene has position,
rotation, and scale properties and the Transform class is used to store and manipulate
the position, rotation, and scale of the GameObject in Unity. So, it is impossible to create a
GameObject in Unity without a Transform component and you cannot remove it from
a GameObject as well.

62 Scripting Concepts in Unity

You can move, rotate, or scale a GameObject by modifying the properties of the
Transform component in the Unity Editor directly, or you can modify them
at runtime by accessing the instance of the Transform class.

Figure 2.9 – The Transform component

Prefabs in Unity
Prefab is an important concept in Unity. Game developers can use a Prefab to save
GameObjects, components, and properties to reuse these resources when developing
games with Unity. When instantiating a Prefab, the Prefab acts as a resource template.
Next, let's see how to create a new Prefab in Unity.

Understanding the concepts of scripting in Unity 63

How to create a Prefab
First, let's talk about how to create a Prefab. Take a "barbell" as an example. It consists
of a Cube and two Sphere objects.

Figure 2.10 – How to create a Prefab

We can create a Prefab of this barbell object by following these steps:

1. First, find the target GameObject named BarbellObject in the Hierarchy panel,
as shown in Figure 2.10.

2. Drag the target GameObject from the Hierarchy panel to the Project panel to
create a Prefab of it. The newly created Prefab file is shown as a blue cube icon
in the Unity Editor.

Figure 2.11 – A Prefab file

64 Scripting Concepts in Unity

3. At this point, if we look at the Hierarchy panel again, we can find that the name text
of BarbellObject and the small cube icon on the left of it have changed from white
to blue because it is now a Prefab instance. In this way, we can distinguish whether
an object is a Prefab instance on the Hierarchy panel.

Figure 2.12 – A Prefab instance

As you can see, creating a new Prefab is not complicated. Next, let's explore how to edit
an already-created Prefab.

How to edit a Prefab
Unity provides two ways for developers to edit a Prefab, as follows:

• The first way is to edit a Prefab in Prefab Mode.

• The second way is to edit a Prefab via its instance.

Let's start with Prefab Mode first.

Prefab Mode is a mode specially designed to support editing Prefabs individually. Prefab
Mode allows the content of the Prefab to be viewed and edited in a separate Scene. You
can enter Prefab Mode in the following ways:

1. The first way is to click the arrow button of the Prefab instance in the Hierarchy view.

Figure 2.13 – Entering Prefab Mode

2. The second way is to select the Prefab file in the Project panel. A button with
the words Open Prefab will be displayed in the Inspector panel. Click it to enter
Prefab Mode.

Understanding the concepts of scripting in Unity 65

Figure 2.14 – Entering Prefab Mode

3. You can also double-click the Prefab file in the Project panel to enter Prefab Mode.

After entering Prefab Mode, you can modify the Prefab here and you can also
find that a navigation bar will be displayed above the Scene view, as shown in the
following screenshot:

Figure 2.15 – Prefab Mode

66 Scripting Concepts in Unity

4. Use the navigation buttons to switch between the game Scene and Prefab Mode. In
addition, at the top of the Hierarchy view, a title bar is also displayed that displays
the name of the currently opened Prefab. Clicking the left arrow button in the title
bar can also be used to return to the game Scene.

In addition to Prefab Mode, we can also modify a Prefab by modifying the instance of
the Prefab in the Hierarchy panel. Let's follow these steps to modify the BarbellObject
Prefab:

1. Select one of the spheres in the BarbellObject Prefab instance from the Hierarchy
panel and modify its scale from 1 to 2, as shown in the following screenshot:

Figure 2.16 – Modifying the Prefab instance

2. When the root node of the Prefab instance is selected, three buttons will appear
in the Inspector panel, namely Open, Select, and Overrides. Click the Overrides
drop-down window to view all modified data items, such as properties and
components.

Understanding the concepts of scripting in Unity 67

Figure 2.17 – Opening the Overrides drop-down window

3. In this drop-down window, we can discard or apply all modifications. Here, we
should click the Apply All button to apply this modification to the Prefab.

Figure 2.18 – Clicking the Apply All button

Through the two methods described previously, we can easily modify a Prefab in Unity.
Next, let's talk about how to instantiate a Prefab at runtime using C# code.

68 Scripting Concepts in Unity

How to instantiate a Prefab
In Unity development, we can use the Instantiate method to create an instance
of a Prefab at runtime. There are several variants of the Instantiate method. The
commonly used Instantiate method variants are shown here:

public static Object Instantiate(Object original, Vector3

 position, Quaternion rotation);

public static Object Instantiate(Object original, Vector3

 position, Quaternion rotation, Transform parent);

We instantiate a Prefab using these two variants of the Instantiate method, both of
which can be used to specify the instance's position and orientation, and the latter can also
specify the instance's parent.

Let's use the following example to learn how to instantiate a Prefab by calling the
Instantiate method:

1. First, let's create a new script called TestInstantiatePrefab. In this script, we
will assign a reference to a Prefab in the script and call Instantiate to create a
new instance of this Prefab and assign a parent to the new object:

using UnityEngine;

public class TestInstantiatePrefab : MonoBehaviour

{

 [SerializeField]

 private GameObject _prefab;

 [SerializeField]

 private Transform _parent;

 private GameObject _instance;

 private void Start()

 {

 var position = new Vector3(0f, 0f, 0f);

 var rotation = Quaternion.identity;

 _instance = Instantiate(_prefab, position,

 rotation, _parent);

 }

}

Understanding the concepts of scripting in Unity 69

2. Then, we also need to attach this script to a GameObject in the Scene, assign
the Prefab to the _prefab field of this script, and assign this GameObject as
the parent object of the instance of the Prefab that will be created later, as shown
in the following screenshot:

Figure 2.19 – Setting up the component and properties

3. Click the Play button of the Unity Editor to run the script. In the following
screenshot, you can see that a new instance of the BarbellObject Prefab is created
and named BarbellObject(Clone), which means that it is an instance of a Prefab,
and it is also a child of the InstantiatePrefab object:

Figure 2.20 – Creating a new instance of a Prefab

In this section, we discussed an important concept in Unity, namely, Prefabs. By reading
this section, you should understand what a Prefab is, how to create a Prefab, how to edit
a Prefab, and how to instantiate a Prefab at runtime using C# code.

70 Scripting Concepts in Unity

Special folders in Unity
In addition to the commonly used classes and concepts introduced in the previous
sections, there are also some special folders for different purposes in Unity. Some of
these folders are related to scripting in Unity. They are as follows:

• The Assets folder

• The Editor folder

• The Plugins folder

• The Resources folder

• The StreamingAssets folder

Let's look at each one.

The Assets folder
When a Unity project is created, an Assets folder is created to store various resources
from models and textures to script files that will be used in this Unity project. This is also
the folder you will mainly use when developing a Unity project.

The Editor folder
The Editor folder is used to store script files for the Editor. For example, you can add
more functionality to the default Unity Editor by creating some Editor scripts in an Editor
folder. Unity compiles the scripts in four independent stages according to the location of
the script files. At each stage, Unity will create a separate C# project file (.csproj) for
this stage. The scripts in the Editor folder will not be available at runtime. If the Editor
folder is located in a Plugins folder, then a CSharp project file named Assembly-
CSharp-Editor-firstpass will be created; otherwise, a CSharp project file named
Assembly-CSharp-Editor will be created.

The Plugins folder
You should put the plugins or the code that needs to be compiled first in the Plugins
folder, and Unity will compile the code in this folder first. A CSharp project file named
Assembly-CSharp-firstpass will be created for the scripts located in this folder.
Unity will create a CSharp project file named Assembly-CSharp for all other scripts
that are in the Assets folder but not in the Plugins folder and the Editor folder.

The life cycle of a script instance 71

Figure 2.21 – CSharp project file for different stages

There are some other special folders, such as the Resources folder and the
StreamingAssets folder. We will introduce them in later chapters.

In this section, we discussed the GameObject components architecture of Unity and
introduced some of the most common built-in classes in Unity and some special folders
related to scripts in Unity. Next, we will learn about another important topic related to
scripting in Unity, that is, the life cycle of a script instance.

The life cycle of a script instance
In the previous section, we introduced basic concepts of scripting in Unity. Now, we
will explain another important topic regarding scripting in Unity: the life cycle of a
script instance.

We already know that the Unity C# API does not include the internal logic of the engine
and the event functions on the script are triggered by the engine's C/C++ code. Therefore,
in order to use the Unity engine correctly, it is very important to understand the order of
execution for event functions and the life cycle of a C# script in Unity.

We can divide the Unity event functions into the following categories depending on
their purpose :

• Initialization

• Update

• Rendering

Let's discuss them next.

Initialization
If you are familiar with developing .NET applications, you may be surprised by script
initialization in Unity because Unity scripts do not use constructors for initialization.
Instead, Unity provides some engine event functions to initialize a script instance.

72 Scripting Concepts in Unity

Actually, we have already seen a Unity event function for initialization purposes. Yes, it is
the Start() function created by default when creating a new script in Unity.

However, the Start() function is not the first event function that will be triggered when
a new instance of the script is created. When a Scene starts, the Awake() event function
in each object in the Scene is always called before any Start() functions. Except for the
fact that Awake() will be called first, Start() and Awake() work similarly. Both of
them are called once during initialization. Now, you may have a question: since we already
have the Start function, why do we still need the Awake function?

This is because the Awake function is useful for separating initialization. For example, it
is a good idea to use Awake to initialize an object's own references and variables before
the game starts. This means that you should not access references to other objects in the
Awake function, but should use Start to pass reference information of different objects.

You may be confused, so let me show you some code. Let's consider a case where there are
two classes, namely, AwakeAndStartA and AwakeAndStartB. In the first class, there is
a List<int> variable and a List<int> property, and the List variable is set up in the
Awake function of AwakeAndStartA:

public class AwakeAndStartA : MonoBehaviour

{

 private List<int> _listRef;

 public List<int> ListRef => _listRef;

 private void Awake()

 {

 _listRef = new List<int>();

 }

}

Now, we get the second class:

public class AwakeAndStartB : MonoBehaviour

{

 private void Awake()

 {

 var comp =

 GameObject.Find("A").GetComponent<AwakeAndStartA>();

The life cycle of a script instance 73

 Debug.Log($"comp is null > {comp is null}");

 Debug.Log(comp.ListRef.Count);

 }

}

The AwakeAndStartB class tries to get the reference of the AwakeAndStartA class
and also access the ListRef property of AwakeAndStartA in its Awake function.

If we run the code, we will get the following output; that is, object B can access object A,
but not the variables or properties of object A in the Awake function. This is because we
should not assume that a reference set up by one GameObject's Awake will be usable in
another GameObject's Awake.

Figure 2.22 – Null reference exceptions

Therefore, in order to use ListRef in object B, we can get the reference in the Start
function. Let's move the code for printing the number of elements contained in the list
from the Awake function to the Start function:

public class AwakeAndStartB : MonoBehaviour

{

 private void Start()

 {

 var comp =

 GameObject.Find("A").GetComponent<AwakeAndStartA>();

 Debug.Log($"comp is null > {comp is null}");

 Debug.Log(comp.ListRef.Count);

 }

}

74 Scripting Concepts in Unity

This time, the code will print the correct number, as shown in Figure 2.23:

Figure 2.23 – The number of elements contained in the list is 0

Another difference between the Start and Awake functions is that if a script component is
not enabled in the Scene, its Start function will not be called but the Awake function will
always be called, as you can see in the following screenshot:

Figure 2.24 – The Awake function is always called

There is a third event function for initialization, which is the OnEnable function. If the
script component is enabled in the Scene, then this function will be called after the Awake
function and before the Start function. However, there is a big difference between the
OnEnable function and the Awake/Start function; that is, the OnEnable function could
be called multiple times. This function is called when the component becomes enabled.

Update
For a game, Update is a very important function because the gameplay logic is driven
by Update. Unity offers three different Update functions for different purposes. They
are as follows:

• FixedUpdate

• Update

• LateUpdate

The life cycle of a script instance 75

FixedUpdate is used for physics simulations. So, you should not use this function if
your game does not include physics simulations. The FixedUpdate function is called at
every fixed framerate frame and it could be called multiple times in a single frame. This is
because it is very important to ensure a fixed incremental time in a physical simulation.
Now, you may be confused again. Let me explain it to you.

By default, the physics simulation needs to be updated every 0.02 seconds. You can change
this value in Project Settings | Time | Fixed Timestep.

Figure 2.25 – Fixed Timestep setting

Let's consider a case where the framerate of the game itself is low, for example, 25 FPS.
This means that the game will take 0.04 seconds to update one frame. Then, the question
is, how do we ensure a fixed incremental time for physics simulations?

76 Scripting Concepts in Unity

The answer is not complicated. Unity only needs to call FixedUpdate twice in each
frame before calling the Update function, and in this example, FixedUpdate is called
every 0.02 seconds. The following screenshot shows the result:

Figure 2.26 – FixedUpdate is called twice in a frame

Therefore, only use the FixedUpdate function when using a physics simulation in your
project. If your project does not include a physics simulation, then you should not use it.

The Update function is another function that will be created by default when you are
creating a new script. It is the most commonly used and most important function to
implement any type of game logic in Unity. If the script component is enabled in a Scene,
then Update will be called once per frame.

The third function used to update is the LateUpdate function. As its name indicates,
LateUpdate will be called after the Update function. So, we can use it to implement
a two-step update in every frame. For example, you have a bunch of GameObjects in the
Scene that need to be moved and rotated in the Update function, and you will use a
camera in the Scene to track the movement of these GameObjects. In order to ensure that
all GameObjects have moved completely, you can implement a smooth camera follow in
the LateUpdate function.

The life cycle of a script instance 77

Rendering
For a game, in addition to the game logic, another important aspect is the game's graphics
and rendering. Here, I will introduce three commonly used event functions of rendering.
They are as follows:

• OnBecameVisible/OnBecameInvisible

• OnRenderImage

• OnGUI

OnBecameVisible will be called when the renderer is visible to any camera, while
OnBecameInvisible is the opposite.

Figure 2.27 – OnBecameVisible/OnBecameInvisible

As you can see in the previous screenshot, when the Cube object moves out of the
camera's field of view, OnBecameInvisible will be called, and if it enters the camera's
field of view, OnBecameVisible will be called.

78 Scripting Concepts in Unity

If your game logic is very complex, then you can use OnBecameVisible/
OnBecameInvisible to avoid unnecessary performance overhead. For example, when
a GameObject moves out of view, the functions of the GameObject can be suspended.

OnRenderImage is useful for implementing postprocessing effects in Unity. This
function will be called after the Scene is completely rendered, and then you can apply
a fullscreen effect to the image, which can greatly improve the appearance of your game.
The following screenshots show the difference between an image with postprocessing
and an image without postprocessing:

Figure 2.28 – Scene with no postprocessing (Unity)

As shown in Figure 2.29, applying postprocessing enhances the overall look of the Scene
and delivers stunning effects:

Figure 2.29 – Scene with postprocessing (Unity)

The life cycle of a script instance 79

It is worth noting that in order to use OnRenderImage correctly, you need to attach the
script that implements this function to the GameObject that the Camera component is
attached to:

public class PostProcessing : MonoBehaviour

{

[SerializeField]

private Material _mat;

 private void OnRenderImage(RenderTexture src,

 RenderTexture dest)

 {

 Graphics.Blit(src, dest, _mat);

 }

}

Sometimes, you may need to create some UI to do some prototypes or conduct some
tests. Then, OnGUI is an ideal option for you. You can create an Immediate Mode GUI
(IMGUI) in Unity by implementing rendering and handling GUI events in the
OnGUI function:

public class OnGUITest : MonoBehaviour

{

 private void OnGUI()

 {

 if (GUI.Button(new Rect(10, 10, 200, 100),

 "Button"))

 {

 Debug.Log("Hello World!");

 }

 }

}

80 Scripting Concepts in Unity

The GUI line is a Button control declaration. A Button control with the Button header
text will be displayed on screen. It is worth noting that the entire Button declaration is
placed in an if statement. This is because the code in the if block needs to be executed
when the button is clicked. Specifically, taking the preceding code as an example, when the
game is running and the button is clicked, this if statement returns true and executes
the Debug.Log("Hello World") line in the if block to print out Hello World in
the Console window.

Figure 2.30 – IMGUI

The preceding screenshot shows an IMGUI button and the message printed in the
Console window by clicking this button.

In this section, we explained the life cycle of a script instance and some commonly used
event functions offered by the Unity engine. In the next section, we will explore how
to create a script file that will interact with the engine and add it as a component to a
GameObject in the Scene.

Creating a script and using it as a component 81

Creating a script and using it as a component
In addition to Unity's built-in components, we can also create script components. When
you create a script and attach it to a GameObject, you can see the component you created
in the GameObject's Inspector window, just like Unity's built-in components.

How to create a new script in Unity
It is very easy to create a new C# script in Unity. I will introduce two different ways to do it.

Firstly, you can right-click the Project panel in the Unity Editor, and then a menu will pop
up. You only need to select Create | C# Script, then the Unity Editor will create a C# file in
the folder identified in the Project panel.

Figure 2.31 – Creating a new C# script from the Create menu

82 Scripting Concepts in Unity

The filename of the new script is NewBehaviourScript.cs by default. You can change
the name when creating it.

Figure 2.32 – Changing the name of the script when creating it

For example, in the previous screenshot, the new C# file will be created in the Assets/
Chapter 2/Scripts folder. In this way, the newly created script will not be
automatically attached to a GameObject in the Scene. You need to manually add it to a
GameObject later.

On the other hand, you can also create a script and attach this script to a GameObject
directly. What you need to do is to select a GameObject in the Scene and click Add
Component | New script in the Inspector window to create a new script. This script will
be automatically attached to the GameObject, and you can find the script file you just
created in the Assets folder of your project.

Creating a script and using it as a component 83

Figure 2.33 – Creating a new script from the Inspector window

84 Scripting Concepts in Unity

Similar to creating a new script in the Project window, you also need to type the name of
this script because the default name of the script is NewBehaviourScript.cs.

Figure 2.34 – Changing the name of the script when creating it

If you want to open the script in the IDE, we have set Visual Studio 2019 as the IDE for the
Unity project; you can double-click the script file to open it in Visual Studio 2019. You will
find the name of the C# class is the same as the name of the script file.

Creating a script and using it as a component 85

Figure 2.35 – C# class name and the filename of the script

Adding a script as a component to a GameObject in
the Scene
In the previous section, we introduced how to create a new script and attach it to a
GameObject automatically. But we still need to learn how to add a script to a GameObject
manually in the Editor and add a script component to a GameObject through C# code
at runtime.

Adding a script component to a GameObject in the Editor
The easiest way to add a script as a component to a GameObject in the Unity Editor is
to drag the script file to the GameObject.

However, the following two situations may cause the script to not be added to the
GameObject:

• The filename and the class name are different. This is why the name of the script
is the same as the class name when the script is created. However, you may change
one of them by mistake. So, if you cannot add a script to a GameObject, check the
filename and the class name first.

86 Scripting Concepts in Unity

• The second reason is relatively obvious: there are compile errors in the script. In this
situation, the Console window will print out the compile errors. You need to fix all
of these errors so that you can add them to a GameObject.

Figure 2.36 – Can't add script message

You can also add a script component to the GameObject from the Inspector window.
The following steps demonstrate how to do it:

1. Select the GameObject that you want to attach the script to.
2. Click the Add Component button in the Inspector window. Not only will the

scripts we created be added, but also lots of built-in components can be added
to the GameObject.

3. In order to quickly find the script that needs to be added, we can enter the name of
the script in the search box.

4. Finally, select the target script in the drop-down box.

Creating a script and using it as a component 87

Figure 2.37 – Adding a component from the Inspector window

Adding a script component to a GameObject at runtime
In addition to manually adding script components to a GameObject in the Editor, we can
also add components to a GameObject through C# code at runtime.

Let's open the Test.cs file we just created in Visual Studio 2019 and add a new field, as
shown here:

[SerializeField]

private HelloWorld _helloWorld;

Note
A field is a variable of any type that is declared directly in a class or struct.

88 Scripting Concepts in Unity

Here, you can see that the name of the private field of the HelloWorld type is
_helloWorld, and you will also find that a [SerializeField] attribute is placed on
the declaration of _helloWorld. This is to allow Unity to serialize this private field. We
will discuss the serialization system in Unity in later chapters, but you should understand
that when Unity serializes a script, it only serializes public fields by default. If a variable
can be serialized by Unity, then it can be displayed and modified in the Unity Editor. So,
you can use a public field here. However, generally, it is a good idea to use fields only for
variables that have private or protected accessibility. This is why Unity provides developers
with the [SerializeField] attribute, which will force Unity to serialize private fields.

Then, we add the Test script component to a GameObject in the Scene by dragging it to
the GameObject.

Figure 2.38 – A GameObject with a Test component

You can see that there is the serialized field of the Test script component attached to the
GameObject in the previous screenshot. The value of this field is None, which means
we need to assign a value to it. Let's add more code to the Test.cs script to attach the
HelloWorld script component to the same GameObject and assign a reference to this
new HelloWorld component to this field.

Because we only want the code to run once, we can modify the Start function, as follows:

 void Start()

 {

 _helloWorld =

 gameObject.AddComponent<HelloWorld>();

 }

Creating a script and using it as a component 89

Here, we are calling the AddComponent<T> method, which is a generic method to add
the HelloWorld component to this GameObject, and it will return the reference to the
attached component, so we can assign this value to the _helloWorld field.

Note
A generic method is a method that is declared with type parameters. The
preceding code shows how to call the AddComponent<T> method by using
HelloWorld for the type argument.

It is worth noting that in addition to the generic method, there is also a version of
AddComponent, which is AddComponent(string className), a method with
a string argument. It has been deprecated, so you should no longer use this method,
but instead use the generic version.

Play the game by clicking the Play button in the Unity Editor.

Figure 2.39 – Attaching the HelloWorld component at runtime

90 Scripting Concepts in Unity

Looking at the Inspector window again, you can see in the preceding screenshot that
there is a HelloWorld component attached to the GameObject, and the reference
to this component is assigned to the field of the Test component.

Well done. Now we have learned how to add components to the GameObjects in
the Scene. Next, let's explore how to access components on the same GameObject
or different GameObjects through C# code.

Accessing a component attached to a GameObject
When we develop a Unity project, we often need to access other components, because
we can reuse the functions defined by different components.

Here, let's add some code to the HelloWorld.cs script to print a Hello World! message
to the Console window in the Editor:

 public void SayHi()

 {

 Debug.Log("Hello World!");

 }

Note
The Debug.Log line in the SayHi method is a commonly used method
to print messages that can help you debug your game to the Console window.
The Debug class also offers many other methods, such as LogError,
LogWarning, and Assert.

We can think of this as a feature that we want to reuse in different scripts. Then, we also
need to create a new script called TestGetComponent.cs. This is the script where
we will place the code to access the HelloWorld component at runtime:

public class TestGetComponent : MonoBehaviour

{

 void Update()

 {

 var helloWorld =

 gameObject.GetComponent<HelloWorld>();

 if (helloWorld == null)

Creating a script and using it as a component 91

 {

 return;

 }

 helloWorld.SayHi();

 }

}

As we already know that the Update function runs at every frame of the game, in order
to demonstrate how to access a component, we can put the code in the Update function,
as shown in the code of the TestGetComponent class.

Figure 2.40 – A GameObject with the TestGetComponent component

92 Scripting Concepts in Unity

Then, we attach the TestGetComponent script to the same GameObject as a
component, play the game, and look at the Console window. The Hello World!
message appears there.

Figure 2.41 – Hello World! appears in the Console window

Note
For performance reasons, it is recommended to not use this function in every
frame.

In this case, we accessed other components attached to the same GameObject.
Additionally, we can also access other components on different GameObjects.

Firstly, we need to get the reference of the target GameObject. Here, we can either assign
the referenced object to this script in the Editor or use the GameObject.Find method
to find the target object at runtime. From the perspective of game performance, don't call
the GameObject.Find method to find the target object in a method such as Update
that is called at every frame. If you can't assign a reference to your script in the Editor, for
example, the referenced object is dynamically created at runtime, then you can use this
method to find the target object and cache the target object instead of finding the target
object at every frame. In this example, we can find the target object and cache it in the
Start method, as shown:

private GameObject _targetGameObject;

 private void Start()

Creating a script and using it as a component 93

 {

 // Using Find method to find game objects is not

 recommended,

 // this is just to demonstrate how to call this

 method to find

 // the target object at runtime.

 _targetGameObject =

 GameObject.Find("GameObjectTest");

 }

Then, let's change the Update function of the TestGetComponent class, as follows:

 void Update()

{

 var helloWorld =

 _targetGameObject.GetComponent<HelloWorld>();

 if (helloWorld == null)

 {

 return;

 }

 helloWorld.SayHi();

 }

Here, we are using the GameObject.Find(string name) function to find
a GameObject by name and return it. The name of the target GameObject is
GameObjectTest.

There are other functions that can be used to look for a GameObject at runtime, such as
GameObject.FindWithTag(string tag), which returns one active GameObject
tagged tag. However, in order to use this function correctly, the tag must first be declared
in the tag manager. You can manage these tags from Project Settings | Tags and Layers.

However, as we mentioned earlier, the Find method and its variants are not
recommended to find GameObjects. This example is just to demonstrate how to call
the method at runtime to find the target object if you need to find dynamically created
objects at runtime.

94 Scripting Concepts in Unity

Next, we create a new GameObject and attach the TestGetComponent script to it. At
the same time, remove the TestGetComponent script from the target GameObject
named GameObjectTest.

Figure 2.42 – A GameObject with the TestGetComponent component

Play the game and look at the Console window. The same Hello World! message appears
there again.

In this section, we learned how to create a new script in Unity and how to attach a script
as a component to a GameObject, and also discussed how to access a component through
code at runtime to reuse functions. Next, let's explore the Unity Package Manager and
packages in Unity.

Packages and the Unity Package Manager
If you are a .NET developer, then I believe that you must know the NuGet package
manager. The Package Manager in Unity is very similar to NuGet, which enables game
developers to share and consume useful code. But they are different. In Unity, you can
reuse not only useful code but also digital assets, Shaders, plugins, and icons. A package
in Unity is a container that includes the contents mentioned earlier.

In this section, I will introduce packages and Package Manager in Unity so that you can
understand the package mechanism in Unity and how to use the Unity Package Manager
to manage packages.

Packages and the Unity Package Manager 95

Unity Package Manager
Unity provides game developers with a tool called the Unity Package Manager to manage
the packages in a project and add new packages to the project. We can open the Package
Manager window by clicking Window | Package Manager.

Figure 2.43 – Opening the Package Manager window from the Window menu

96 Scripting Concepts in Unity

By default, this window shows the installed packages in your project and the version of
each package. If a new version of a package is available, there will be an upgrade icon
beside the version number. You can also sort these packages, for example, in ascending
order by name or descending order by release date.

Figure 2.44 – Unity Package Manager

On the right side of the window, detailed information on the currently selected package
will be displayed, such as the package name, publisher, release date, version number,
document link, and description. You can also remove a package from your project by
clicking the Remove button in the lower-right corner.

Figure 2.45 – Switching package lists

Packages and the Unity Package Manager 97

This window can also display different lists. For example, you can view, download, and
import assets purchased from the Unity Asset Store (https://assetstore.unity.
com/) by selecting the My Assets option from the drop-down menu.

The assets purchased from the Asset Store may be free or paid. The Asset Store provides
a variety of assets, covering everything from textures, models, and animations to entire
project examples.

Figure 2.46 – Packages in Unity Registry

You can also install a package from Unity Registry. By selecting the Unity Registry option
from the drop-down menu, you can browse all packages registered in Unity Registry.
If you want to install a package, you need to select it and click the Install button in the
lower-right corner.

https://assetstore.unity.com/
https://assetstore.unity.com/

98 Scripting Concepts in Unity

In addition to installing a package from Unity Registry, the Unity Package Manager also
provides other ways to install a package, that is, installing a new package from a local
folder, installing a new package from a local tarball file, and installing a new package
using a Git URL.

Figure 2.47 – Installing a new package

You can use these three different ways to add a new package by clicking the + button in
the upper-left corner of the Package Manager window.

Some of the built-in features of the Unity game engine are also provided as packages. You
can view the list of all built-in packages by selecting the Built-in option from the drop-
down menu. Here, you can manage these built-in features. You can reduce the runtime
build size of your game by disabling packages that you do not need. For example, if you
develop a game without VR or AR functionality, you can disable XR-related packages by
clicking the Disable button in the lower-right corner of the Package Manager window.

Packages and the Unity Package Manager 99

Figure 2.48 – Built-in packages

Package
A package is a container that contains features to meet various needs of a project. You can
add a new feature to your game by adding a package. For example, the AR Foundation
package will provide AR functionality. You can also remove a package to reduce the size of
your game. Therefore, the use of packages makes Unity game development more flexible
and decoupled.

100 Scripting Concepts in Unity

However, if you are not careful, using a package may also make your game full of bugs.
This is because different packages may be in different states.

Figure 2.49 – Package life cycle with Unity Package Manager (Unity)

A package developed and maintained by Unity may be in one of the following two states:

• Preview packages

• Verified packages

A package in preview means that it is currently ready for testing, and it may go through
many changes in later versions. Unity cannot guarantee future support for preview
packages, so you should not use them in production.

By default, you cannot find packages in the preview state in the Package Manager window.
If you really need to use the preview packages, for example, to test new features for future
projects, you can follow these steps to allow the Package Manager window to display the
packages in the preview state:

1. Open the Project Settings window for the Package Manager by clicking the gear
icon and then clicking the Advanced Project Settings item.

Packages and the Unity Package Manager 101

Figure 2.50 – Advanced Project Settings

2. Check the Enable Preview Packages option.

Figure 2.51 – Package Manager settings

102 Scripting Concepts in Unity

3. Then, look at the Package Manager window. You will see that the preview packages
appear in the package list. In the package list, all packages in the preview state are
marked with Preview.

Figure 2.52 – Preview packages

On the other hand, a package in the verified state means it can be used in production.
A package will only be considered a verified package if it has been rigorously tested
and Unity guarantees supporting that verified package.

The Package Manager window displays the verified packages list by default. Packages in
the verified state are marked with Verified.

Summary 103

Figure 2.53 – Verified packages

Summary
In this chapter, we started by introducing some of the most commonly used classes
in Unity script programming, and then explained the life cycle and important event
functions of a script instance, as well as discussing how Unity initializes a script and
how the game logic is updated in a script.

We also discussed how to create a new script in Unity and how to attach a script as a
component to a GameObject. In addition to manually adding components in the Editor,
we can also use C# code to dynamically add a component or access a component
at runtime.

Finally, we demonstrated how to add or remove a package through the Unity Package
Manager to provide a feature or reduce the size of the game. At the same time, we also
explained the difference between preview packages and verified packages.

In the next chapter, we will learn about the UI system in Unity and, at the same time,
we will also introduce how to optimize UI performance in Unity.

Part 2:
Using C# Scripts to
Work with Unity's

Built-In Modules

After gaining a general understanding of the Unity game engine and knowing how to
write scripts in Unity, we can start to learn the main modules in the Unity engine one by
one, such as creating a UI in Unity and applying physics in a game.

This part includes the following chapters:

• Chapter 3, Developing UI with the Unity UI System

• Chapter 4, Creating Animations with the Unity Animation System

• Chapter 5, Working with the Unity Physics System

• Chapter 6, Integrating Audio and Video in a Unity Project

3
Developing UI with

the Unity UI System
The UI is very important for a game, and Unity offers three different UI solutions for
game developers. They are the Immediate Mode Graphical User Interface (IMGUI), the
Unity UI (uGUI) package, and the UI Toolkit. IMGUI is a relatively old UI solution in
Unity and it is not recommended for building a runtime UI. The UI Toolkit is the latest
UI solution; however, it is still missing some features you can find in the uGUI package
and IMGUI. The uGUI package is a mature UI solution in Unity that is widely used in the
game industry. Therefore, this chapter will introduce how to use uGUI to develop the UI
of your game.

We will cover the following key topics in this chapter:

• C# scripts and common UI elements in Unity

• C# scripts and the UI Event System in Unity

• The Model-View-ViewModel (MVVM) pattern and the UI

• Performance tips to increase performance of the UI

Let's get started!

108 Developing UI with the Unity UI System

C# scripts and common UI components in Unity
uGUI has been provided as a built-in package in the Unity Editor since Unity 2019;
therefore, we can see the content of the uGUI package directly in the Project window,
which also includes the C# source code.

Figure 3.1 – The uGUI package

As we mentioned in the previous chapter, the Unity development workflow is primarily
built around the structure of components. uGUI is no exception. It is a component-based
UI system that uses different components to provide different UI functions. For example,
every button, text, or image you see in the UI is actually a GameObject with a set
of components.

As shown in Figure 3.1, we can find the C# source code of many commonly used
UI elements, such as Text, Slider, and Toggle. However, some UI components are
implemented using C++ code inside the engine, such as Canvas, and the code of such
components cannot be viewed from within the Unity Editor.

In this section, we will introduce the commonly used UI components in Unity. We can
divide these components into the following four categories, according to their functions:

• Canvas

• Image and Raw Image

• Text

• Selectable UI components

C# scripts and common UI components in Unity 109

Canvas
Canvas is the most basic and important UI component of uGUI. To understand how to
use uGUI correctly and efficiently, it is essential to understand Canvas first.

Canvas is the component used to render UI elements in uGUI. All UI elements should be
located inside the area of a canvas, which is very simple to create in a scene.

Figure 3.2 – Creating a canvas from the Hierarchy window

110 Developing UI with the Unity UI System

As shown in Figure 3.2, you can create a new canvas as follows:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI | Canvas.

In addition to creating a new Canvas object from the Hierarchy window, we can also
create a new Canvas object by clicking GameObject | UI | Canvas.

Figure 3.3 – Creating a canvas from the GameObject menu

C# scripts and common UI components in Unity 111

As you can see in Figure 3.2 and Figure 3.3, we can also create other different UI elements
from these menus, such as Text, Button, Image, and Slider. Since all UI elements are the
children of Canvas, if you want to create a new UI element directly and there is no canvas,
a new Canvas object will be created automatically. The new UI element will be a child
object of the Canvas object parent.

Figure 3.4 – A Canvas object

112 Developing UI with the Unity UI System

Once a Canvas object is created, we can see that there is not only a Canvas component
attached to this GameObject but also Rect Transform, Canvas Scaler, and Graphic
Raycaster components. As mentioned previously, Canvas is the component used to render
UI elements, so all UI components must be children of Canvas; otherwise, they will not be
rendered by Unity.

We will explore them separately in order.

The Canvas component
If you select the Canvas object in the scene, you may be surprised to find that its position
is strange. By default, it is not in the field of view of Main Camera.

Figure 3.5 – A Canvas object with the Screen Space - Overlay render mode in the scene

C# scripts and common UI components in Unity 113

This is because the Canvas component attached to this GameObject provides three
different render modes, as follows:

• Screen Space - Overlay

• Screen Space - Camera

• World Space

Figure 3.6 – Render modes

The Screen Space - Overlay render mode places UI elements on the screen that are
rendered on top of the scene. Therefore, the cameras located in the scene used to render
the game scene will not affect the rendering of the UI. This is the default render mode
provided by the Canvas component.

As the name implies, the Screen Space - Camera render mode is somewhat similar to the
previous one. However, as can be seen from the name, the second render mode will be
affected by the camera.

Figure 3.7 – The Screen Space - Camera render mode

114 Developing UI with the Unity UI System

As you can see in Figure 3.7, if the Screen Space - Camera render mode is selected, we
need to specify a camera for this canvas and set a distance between them. Furthermore, if
we still select this canvas in the scene, we will find that it has been moved into the field of
view of this particular camera.

Figure 3.8 – A Canvas object with the Screen Space - Camera render mode in the scene

In this case, the UI elements are rendered by this camera, which means that the camera
settings affect the appearance of the UI. This is different from the Screen Space - Overlay
render mode.

Figure 3.9 shows that when the Field of View value of this camera is changed from 100 to
30, the game scene and the UI have changed:

C# scripts and common UI components in Unity 115

Figure 3.9 – The field of view (FoV) of the camera is 100 in the upper half and 30 in the lower half

The last render mode is World Space. In this mode, the canvas will work like any other
GameObject in the scene. The biggest difference between this mode and the Screen Space
- Camera render mode is that we can manually adjust the size, position, and even rotation
angle of the canvas, just like a normal GameObject.

116 Developing UI with the Unity UI System

As shown in Figure 3.10, we can use the Rect Transform component of this Canvas object
to adjust its Width and Rotation values:

Figure 3.10 – The World Space render mode

Figure 3.11 shows the Canvas object in the scene after manually setting the Width and
Rotation values:

C# scripts and common UI components in Unity 117

Figure 3.11 – A Canvas object with the World Space render mode in the scene

Here, we use the RectTransform component to set the size of the canvas. Every UI object
will contain a RectTransform component, just like every normal GameObject will contain
a Transform component. Next, we will explore the RectTransform component.

The Rect Transform component
The Rect Transform component is similar to the regular Transform component. The
biggest difference is that the former is used for UI elements instead of regular GameObjects.
When a new UI element object is created, the Rect Transform component will be
automatically attached to it.

118 Developing UI with the Unity UI System

Looking at this component, you can see some properties that can be seen on the
Transform component, such as Position, Rotation, and Scale. There are also some
unique properties.

Figure 3.12 – A Rect Transform component

These unique ones are Anchor and Pivot. We will discuss these in turn.

Anchors
The anchors are numerical values indicating the position of the four corners of the area
as seen from the Rect Transform parent. The lower left is represented by AnchorMin.x
and AnchorMin.y, and the upper right is represented by AnchorMax.x and
AnchorMax.y. By default, the lower left is 0.5 and 0.5, and the upper right is also 0.5
and 0.5, centered relative to the parent, as shown in Figure 3.12.

We can directly modify the value of anchors – for example, we can change the lower-left
corner from 0.5 and 0.5 to 0 and 0, so that the lower-left corner of the parent and child
are the same. Then, we change the upper-right corner from 0.5 and 0.5 to 0.5 and 1, which
means that the position of the upper-right corner of the child is half of the x axis position
of the upper-right corner of the parent. The result is shown in Figure 3.13:

C# scripts and common UI components in Unity 119

Figure 3.13 – Modifying the anchors

Anchors are very useful when developing the UI in Unity. For example, if you want to
display the UI at the top of the screen, such as a title, you need to specify the distance from
the top of the parent. If you want to display the UI at the bottom of the screen, such as a
footer, you need to specify the distance from the bottom of the parent.

In order to make it easier for developers to use anchors, Unity provides some anchor
presets, as shown in Figure 3.14:

Figure 3.14 – Anchor Presets

120 Developing UI with the Unity UI System

Pivot
The Pivot point is the origin of this rectangle area. The value of the Pivot point is specified
in normalized values between 0 and 1. When the UI element is scaled or rotated, it will
scale or rotate around that point:

Figure 3.15 – Rotate 45 degrees along the z axis around the center and
45 degrees along the z axis around the upper-right corner

Figure 3.15 shows a 45-degree rotation along the z axis around the center, which has a
Pivot point value of 0.5 and 0.5, and a 45-degree rotation along the z axis around the
upper-right corner, which has a Pivot point value of 1 and 1.

The Canvas Scaler component
Along with the Canvas component, a Canvas Scaler component is also created
automatically. The Canvas Scaler component is used to control the overall scale and
pixel density of UI elements inside a canvas. By using Canvas Scaler, we can implement
a resolution-independent UI layout:

Figure 3.16 – The Canvas Scaler component

C# scripts and common UI components in Unity 121

There are three UI Scale Mode types provided by a Canvas Scaler component:

• Constant Pixel Size

• Scale With Screen Size

• Constant Physical Size

If the canvas render mode is ScreenSpace - Overlay or ScreenSpace - Camera, then
we can set the UI Scale Mode. On the other hand, if the canvas render mode is World
Space, the UI Scale Mode cannot be modified. Next, we will introduce these three
different modes.

Constant Pixel Size is the default UI Scale Mode. In this mode, the size of the UI elements
will retain the same size in pixels regardless of screen size.

Figure 3.17 – The Hello World UI text displayed in different screen sizes
(1920 x 1080 in the upper half and 3840 x 2160 in the lower half)

As shown in Figure 3.17, a Hello World UI text will retain its own size in pixels. When the
screen resolution is relatively low (1920 x 1080), the text will be displayed larger. When at
a higher screen resolution (3840 x 2160), the text will be displayed smaller.

122 Developing UI with the Unity UI System

If you want to keep the UI elements displayed consistently under different screen
resolutions, the Scale With Screen Size mode is an ideal option.

Figure 3.18 – The Scale With Screen Size mode

If UI Scale Mode is set to Scale With Screen Size, the position and size of the UI elements
will be specified according to the value of pixels in the Reference Resolution properties,
as shown in Figure 3.18.

If the current screen resolution is greater than the reference resolution, the canvas will be
scaled to fit the screen resolution. Conversely, if the current screen resolution is less than
the reference resolution, the canvas will shrink to fit the screen resolution.

If the screen resolution ratio is the same as the reference resolution ratio, it is very easy
to scale and shrink the UI elements. But when the screen resolution ratio is different
from the reference resolution ratio, scaling the canvas will distort it. In order to avoid this
situation, the resolution of the canvas will also depend on the setting of Screen Match
Mode, which you can also see in Figure 3.18. By default, the Screen Match Mode setting
is Match Width or Height, which allows you to scale the canvas area with the width or
height as the reference, or a value in between.

When UI Scale Mode is set to Constant Physical Size, the position and size of UI
elements are specified in physical units such as millimeters and inches.

Figure 3.19 – The Constant Physical Size mode

C# scripts and common UI components in Unity 123

In addition to the Canvas Scaler component, another component is also automatically
created, which we will take a look at next.

The Graphic Raycaster component
As the name suggests, the Graphic Raycaster component is used to perform raycasting
against a list of UI elements within a canvas to determine which of the UI elements has
been hit. So it can translate the player's input into UI events. It should be noted that there
needs to be an Event System component in the scene for Graphic Raycaster to work
properly. About the Event System component, we will introduce it later in the section
"C# scripts and the UI Event System in Unity".

This is useful when you need to determine whether the cursor is over UI elements
in the scene, such as UI text or UI images. For example, say you want the player to
be able to drag and drop a UI image into your game to change its position, then you
have to know whether the player's cursor is over the UI image and get data about the
cursor movement when the drag occurs. In this case, you need to create a script that
implements the IPointerDownHandler and IDragHandler interfaces defined in the
UnityEngine.EventSystems namespace, meaning that you can get events when the
player clicks and drags the image, as shown here:

using UnityEngine;

using UnityEngine.EventSystems;

public class DragAndDropExample : MonoBehaviour,

 IPointerDownHandler, IDragHandler

{

 private RectTransform _rectTransform;

 public void OnPointerDown(PointerEventData eventData)

 {

 Debug.Log("This UI image is clicked!!!");

 _rectTransform = GetComponent<RectTransform>();

 }

 public void OnDrag(PointerEventData eventData)

 {

 Debug.Log("This UI image is being dragged!!!");

124 Developing UI with the Unity UI System

 if (RectTransformUtility

 .ScreenPointToWorldPointInRectangle

 (_rectTransform, eventData.position,

 eventData.pressEventCamera,

 out var cursorPos))

 {

 _rectTransform.position = cursorPos;

 }

 }

}

Let's break down the code as follows:

• We add the UnityEngine.EventSystems namespace with the using keyword
to get events related to clicking and dragging UI elements.

• The DragAndDropExample class implements the two interfaces, namely,
IPointerDownHandler and IDragHandler.

 � Specifically, we implement the OnPointerDown method in the
IPointerDownHandler interface, which will be called when the UI element
is clicked.

 � And we implemented the OnDrag method in the IDragHandler interface.
When a drag occurs, this method will be called every time the cursor is moved.

• In the implementation of the OnPointerDown method, which takes
PointerEventData as an argument, gets an instance of the RectTransform
component, and assigns it to the _rectTransform field.

• In the implementation of the OnDrag method, which also takes
PointerEventData as an argument, gets the cursor position, and modifies the
position property of the _rectTransform field to move the UI element.

In order for this script to work, you need to attach the script to the UI element in the scene
that you want to drag and drop.

C# scripts and common UI components in Unity 125

Figure 3.20 – Dragging and dropping a UI image

Figure 3.20 shows the UI image drag and drop interaction based on the Graphic
Raycaster component.

The components described previously are automatically created when a Canvas object is
created. Next, we will introduce other UI elements.

Image
Displaying images is an important function of the UI. There are two types of components
provided by uGUI that display images – the Image component and the Raw Image
component.

We will now explain these features and how to use them properly.

126 Developing UI with the Unity UI System

The Image component
You can use the Image component to display an image on your UI.

Figure 3.21 – Creating a new image

As shown in Figure 3.21, you can create a new image as follows:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI > Image.

C# scripts and common UI components in Unity 127

If you want to create a background image for your game UI, you can also select
UI > Panel. The panel is nothing but an image.

Figure 3.22 – The Image component

128 Developing UI with the Unity UI System

In this case, we create a panel as the background. As you can see in Figure 3.22, here we
specify a texture called SF Background as the source image of this Image component. It
should be noted that the texture used by the Image component must be set to the Sprite
type when imported into Unity.

Figure 3.23 – Texture Import Settings

Texture Type can be set in the texture's Import Settings panel, as shown in Figure 3.23.

Note
Sprites are 2D graphic objects used for the UI and other elements of 2D
gameplay.

The advantage of using sprites as an image source is that the corners will not be stretched
or distorted when resizing the sprites.

C# scripts and common UI components in Unity 129

Figure 3.24 – The Sprite Editor

This is because Sprite Editor in Unity provides the option of 9-slicing the image, which
divides the image into nine regions. As shown in Figure 3.24, in this case, when the image
is resized, the corners of the image will remain the same.

Note
9-slicing is a common technique in UI implementation. The main advantage of
using 9-slicing is that it can handle the stretching of the image very well. Once
an image is stretched, there will be problems such as distortion and blurring,
but some parts of the image can be stretched. For example, a UI background
frame, the middle part of which is usually a solid color, can be stretched, but
the four corners of the image may have some special patterns that cannot be
stretched. At this time, we can use the 9-slicing technique to divide the whole
image into nine grids, and each of the four corners is in a grid. Then, we can
only stretch and enlarge the middle part of the image and keep the four corners
as they are.

Therefore, in most cases, using the Image component to display UI images is the
preferred choice.

130 Developing UI with the Unity UI System

The Raw Image component
The Raw Image component is another component used to display images on the game UI.

Figure 3.25 – Creating a new raw image

C# scripts and common UI components in Unity 131

As shown in Figure 3.25, you can create a new image, as follows:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI > Raw Image.

The difference between the Raw Image component and the Image component is that the
source of an Image component must be a Sprite type. Conversely, Raw Image accepts
any texture. Also, the function of the Raw Image component is simpler than an Image
component, as shown in the following screenshot:

Figure 3.26 – A Raw Image component

The following code snippet shows how to modify the image displayed by the Image and
Raw Image components:

using UnityEngine;

using UnityEngine.UI;

public class ImageAndRawImage : MonoBehaviour

{

[SerializeField]

private Image _image;

[SerializeField]

private Sprite _sprite;

[SerializeField]

private RawImage _rawImage;

132 Developing UI with the Unity UI System

[SerializeField]

private Texture _texture;

 void Start()

 {

 _image.sprite = _sprite;

 _rawImage.texture = _texture;

 }

}

It should be noted that in order to be able to access UI-related classes in the code, we need
to use the UnityEngine.UI namespace.

Another important part of the UI is text. Next, let's explore the two components provided
by uGUI to display text.

Text
The simplest way to display characters in uGUI is to use the Text component. However,
it is also troublesome to adjust the spacing between characters and express decorations
with Text alone. TextMeshPro is another option, which provides gorgeous character
expression. In this section, we will explore the Text and TextMeshPro components in turn.

The Text component
The Text component is a component commonly used to display UI text since the early
days of uGUI. Creating text for the game UI is very simple; just follow these step:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI > Text.

C# scripts and common UI components in Unity 133

Figure 3.27 – Creating text

134 Developing UI with the Unity UI System

A Text object will be created in the canvas; we can find it in the Scene view of the Unity
Editor, as shown in Figure 3.28:

Figure 3.28 – Text in the Scene view

You can see that the text content is in a white frame, which represents the Rect Transform
component attached to this Text object and identifies its size. If changing the font size
causes the text content to exceed this white frame, the text content cannot be displayed.
Therefore, remember to consider the Rect Transform component of Text when changing
the font size.

C# scripts and common UI components in Unity 135

In addition to changing the font size, you can also change the font used or enable
Rich Text.

Figure 3.29 – The Text component

As you can see in Figure 3.29, if the Rich Text checkbox is ticked, then we can use markup
tags, such as , <i></i>, and <color></color>, within the text to provide
style changes to the text.

However, the function provided by the Text component is relatively simple. When the
Text component changes, the polygon used to display the text needs to be recalculated,
resulting in graphic reconstruction, which can cause potential performance problems, and
when displayed in high resolution, the text rendered by this component looks very blurry.
Therefore, after the original Text component, Unity also provides another text solution for
the UI. Next, we will introduce the TextMesh Pro component.

136 Developing UI with the Unity UI System

The TextMeshPro component
TextMeshPro (TMP) is the ultimate text solution for the UI provided by Unity. It is a
powerful mechanism for text rendering that can be used to replace the Text component.
TextMesh Pro has been designed to take advantage of Signed Distance Field (SDF)
rendering, allowing it to render text beautifully at any resolution. You can also create
custom shaders for TextMesh Pro to get effects such as outlines and soft shadows.

It should be noted that it is not included in the default Unity UI package, but is included
in the TextMeshPro package. So if you can't find TextMesh Pro when creating UI text,
then you should first check whether this package has been added to your project.

Figure 3.30 – Creating a TextMeshPro object

C# scripts and common UI components in Unity 137

Creating TextMeshPro text for the game UI is very simple; just follow these steps:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI > Text > TextMeshPro.

Figure 3.31 – The TextMeshPro component

As shown in Figure 3.31, the text rendered by TextMeshPro is sharper than that rendered
by the Text component.

In addition to rendering the text sharper, TextMeshPro also provides improved control
over text format and layout. As shown in Figure 3.32, you can directly change the style
of the text through the editor. There are several common styles to choose from, such as
bold and italics. Similarly, you can also use tags to modify the text style, just like the Text
component, and features such as Spacing Options, Alignment, and Wrapping, can be
used to control the text layout.

138 Developing UI with the Unity UI System

In addition, you can also achieve more rendering effects, such as clicking the outline
option of the shader to add outline effects to the text.

Figure 3.32 – The TextMeshPro component

Using TextMesh Pro to implement your UI text is a good choice.

C# scripts and common UI components in Unity 139

Selectable UI components
You can use selectable components in uGUI to handle interactions. These components
include Button, Toggle, Slider, Dropdown, Input Field, and Scrollbar. In this section, we
will mainly discuss the most commonly used component, namely, the Button component.

Button
Creating a Button element for the game UI is very simple; just follow these steps:

1. Right-click in the Hierarchy window to open the menu.
2. Select UI > Button - TextMeshPro.

Figure 3.33 – Creating a Button object

140 Developing UI with the Unity UI System

As shown in Figure 3.33, there are two options to create a button in the menu, namely,
Button and Button -TextMeshPro. Here, we select Button -TextMeshPro so that the
text content on the button is rendered by TextMeshPro.

Figure 3.34 – An Image component and a Button component are attached to the button

C# scripts and common UI components in Unity 141

Once a default button object is created, this object includes not only a Button component
but also an Image component. This is because the Button component only provides the
function of interacting with the user; it does not provide the function of graphic display.
Therefore, the image of the button needs an Image component to display.

Selected states
The Button component has five selected states inherited from the Selectable class,
namely, Normal, Highlighted, Pressed, Selected, and Disabled, which are
defined by an enumeration named Selectable.SelectionState. Therefore, as
shown in Figure 3.34, there are five different colors in the Transition section corresponding
to these five different selected states, which means that when the user interacts with this
button, this button will provide different feedback according to the different states.

onClick
The important role of a button is to receive user clicks and trigger corresponding events.
In Unity, it is very easy to set up button onClick events. You can either manually set up
button onClick events in the editor or set button onClick events programmatically.

In order to set up a new event to the button in the editor, we can click the + button at the
bottom of the On Click () section, as shown in Figure 3.35. This will create a new action.

Figure 3.35 – Setting up a new onClick event in the editor

We can also programmatically set the button onClick event; the following code shows
how to do this:

using UnityEngine;

using UnityEngine.UI;

public class ButtonClickExample : MonoBehaviour

{

 // Start is called before the first frame update

 void Start()

 {

 var button = GetComponent<Button>();

 button.onClick.AddListener(() =>

142 Developing UI with the Unity UI System

 {

 Debug.Log(You have clicked the button!);

 });

 }

}

In this section, we learned about commonly used UI components and got an
understanding of uGUI, the UI solution provided by Unity. Next, we will explore the
UI Event System in Unity. If there is no event system in the scene, UI elements such as
buttons cannot interact with players, so it's an important topic.

C# scripts and the UI Event System in Unity
EventSystem is a mechanism for sending events to objects in a game that supports
keyboards, mice, screen touches, and so on. EventSystem consists of multiple modules
for sending events. If there is no EventSystem object in the scene, then, when creating a
canvas, an EventSystem object will be automatically created along with it.

Figure 3.36 – EventSystem

C# scripts and the UI Event System in Unity 143

As shown in Figure 3.36, the Inspector window of the EventSystem object exposes very
few functionalities. This is because EventSystem is designed as a manager for cooperation
between various input modules.

It should be noted that there can be, at most, one EventSystem object in a scene. If there
are multiple EventSystem objects in the scene, a warning message will be displayed, as
shown in Figure 3.37:

Figure 3.37 – A warning message when there are multiple EventSystem objects

When the game is running, EventSystem will look for the InputModule component
attached to the same GameObject. This is because InputModule is the class responsible
for the main logic of EventSystem. We can also find the Input Module used in this case,
as shown in Figure 3.36, namely, Standalone Input Module. Next, we will introduce
Input Modules.

Input Modules
Unity provides two built-in Input Modules, namely, the Standalone Input Module
and the Touch Input Module. In the past, the Standalone Input Module was used for
keyboards, mice, and game controllers, and the Touch Input Module was for touch panels
such as smartphones. Nowadays, the Standalone Input Module is compatible with all
platforms and the Touch Input Module has been deprecated, so you can treat the Input
Module as the Standalone Input Module.

The purpose of the Input Module is to map hardware-specific inputs (such as touches,
joysticks, mice, and game controllers) to events sent through the messaging system.

144 Developing UI with the Unity UI System

The new Input System package
In addition to this default built-in Input Module, Unity also provides a new, more
powerful, flexible, and configurable Input System package.

Figure 3.38 – The Input System package

If you want to use the new input system, then you need to install the package from
the Package Manager window, as shown in Figure 3.38. Moreover, a newly created
EventSystem component will still use the legacy Standalone Input Module component
by default, so you need to manually replace it with the new InputSystemUIInputModule
component, as shown in Figure 3.39:

The Model-View-ViewModel (MVVM) pattern and the UI 145

Figure 3.39 – Replace with InputSystemUIInputModule

By reading this section, we learned that in order to ensure that the game UI can correctly
respond to player input, an EventSystem component and an Input Module are necessary.
Next, let's move on to discussing how to create UI in Unity using the Model-View-
ViewModel (MVVM) pattern.

The Model-View-ViewModel (MVVM) pattern
and the UI
A common challenge in Unity development is to find elegant ways to decouple
components from each other, especially when developing the UI because it involves UI
logic and UI rendering. Model–View–ViewModel (MVVM) is a software architectural
pattern that helps developers separate the ViewModel, which is the UI logic, from the
View, which is the UI graphics. In this section, we will explore how to implement an
MVVM pattern in Unity.

Figure 3.40 – MVVM

146 Developing UI with the Unity UI System

As its name suggests, MVVM consists of three parts:

• Model: This refers to the data access layer, which can be Database, or
PlayerPrefs, which stores player preferences in Unity, and so on.

• View: This represents the Unity UI. It needs to be a Unity component that inherits
from MonoBehaviour and is attached to the UI object. Its main role is to manage
UI elements and trigger UI events, but it does not implement any concrete UI
logic itself.

• ViewModel: This can be a pure C# class and does not need to inherit from
MonoBehaviour. It does not need to consider what the UI looks like; it only
needs to implement concrete logic.

We can see that there are three parts in MVVM, so how should they be connected?
Generally, we use two ways to connect them:

• Data binding: Data binding is the key technology of MVVM. It is used to bind
and connect the properties of ViewModel and View. Elements bound to data will
automatically reflect every data change. By using data binding, a ViewModel can
modify the value of the UI control in the View.

• Event-driven programming: This method is used to raise events from the View
triggered by user actions, which are then processed by the ViewModel.

There are some mature MVVM framework implementations for Unity, such as the
Loxodon Framework, which is a lightweight MVVM framework built specifically to
target Unity. You can find its repository on GitHub (https://github.com/vovgou/
loxodon-framework) or add it to your project via Unity Asset Store directly.

https://github.com/vovgou/loxodon-framework
https://github.com/vovgou/loxodon-framework

The Model-View-ViewModel (MVVM) pattern and the UI 147

Figure 3.41 – Loxodon Framework

Since our next example will use this framework, I recommend that you import this
framework into your project first. After importing this framework, you should find
it in the Assets folder of your project.

Figure 3.42 – The LoxodonFramework folder

148 Developing UI with the Unity UI System

Now, let's perform the following steps to implement a sample MVVM UI via
LoxodonFramework in Unity:

1. First, let's set up LoxodonFramework in our game scene. We need to create a new
canvas and add the GlobalWindowManager component to this canvas, as shown
in Figure 3.43. A GlobalWindowManager component is a container that is used
to manage views.

Figure 3.43 – The GlobalWindowManager component

2. Next, we need to define a view. As we mentioned earlier, a view represents UI
elements in Unity. As you can see from the following code, this view is relatively
simple, containing only a button UI element and a text UI element, and this
SampleView class inherits from the Window class in the Loxodon Framework.
In the following code, you can also find the BindingSet class, which is used to
bind and connect properties of ViewModel and View:

using UnityEngine;

using UnityEngine.UI;

using Loxodon.Framework.Views;

using Loxodon.Framework.Binding;

using Loxodon.Framework.Binding.Builder;

using Loxodon.Framework.ViewModels;

using TMPro;

public class SampleView : Window

{

 [SerializeField]

The Model-View-ViewModel (MVVM) pattern and the UI 149

 private Button _submitButton;

 [SerializeField]

 private TextMeshProUGUI _message;

 private SampleViewModel _viewModel;

 protected override void OnCreate(IBundle bundle)

 {

 _viewModel = new SampleViewModel();

 BindingSet<SampleView, SampleViewModel>

 bindingSet =

 this.CreateBindingSet(_viewModel);

 bindingSet.Bind(_message).For(v =>

 v.text).To(vm => vm.Message).OneWay();

 bindingSet.Bind(_submitButton).For(v =>

 v.onClick).To(vm => vm.Submit);

 bindingSet.Build();

 }

}

Let's break down this example:

 � The two _submitButton and _message fields of this SampleView class refer
to a Button component and a TextMeshProUGUI component, respectively.

 � In the OnCreate method, we first create a BindingSet instance to
bind SampleView to its corresponding ViewModel class – that is,
SampleViewModel. We will introduce how to create the SampleViewModel
class later.

 � Then, we bind the text property of the _message field in SampleView to
the Message property in SampleViewModel by calling the Bind method
of BindingSet. You can see in the code that we use OneWay binding here,
which means that only the view model can modify the value of the UI element
in the view.

 � We also bind the onClick event of the _submitButton field in SampleView
to the Submit method in SampleViewModel. Finally, we call the Build
method of BindingSet to build the binding.

150 Developing UI with the Unity UI System

3. At the same time, we also need to create these required UI elements in the Unity
scene, as shown in the following figure. Let's call it SampleUI.

Figure 3.44 – Setting up the UI elements

4. Then, let's create a new folder called Resources and create a prefab for this sample
UI by dragging it from the Hierarchy window to the Resources folder, as shown in
the following screenshot. So far, we have created UI elements and a View component
that represent UI elements in the MVVM architecture. SampleUI can be removed
from the scene because we will load its prefab and create the UI at runtime.

Figure 3.45 – The SampleUI prefab

The Model-View-ViewModel (MVVM) pattern and the UI 151

5. We also need a SampleViewModel class, which implements concrete logic.
The SampleViewModel class inherits from the ViewModelBase class in
the Loxodon framework, and the logic is implemented in the Submit method,
which modifies the Message property. In the view we created earlier, we bound
the button's onClick event to the Submit method in the SampleViewModel
class, and we also bound the view's text property of the Text UI element to the
Message property of SampleViewModel. Therefore, after the Submit method
modifies the Message property, the modified message content will be displayed
on the UI:

using Loxodon.Framework.ViewModels;

public class SampleViewModel : ViewModelBase

{

 private string _message;

 private int _count;

 public SampleViewModel() { }

 public string Message

 {

 get { return _message; }

 set => Set<string>(ref _message, value,

 Message);

 }

 public void Submit()

 {

 _count++;

 Message = $The number of times the button is

 clicked: {_count};

 }

}

152 Developing UI with the Unity UI System

6. Finally, start up code is needed to register services and create the UI. The following
start up code supports loading the prefab of SampleUI and setting up the view. You
can find the ApplicationContext class in the following code; we use it to store
data and services that can be accessed by other classes in the Loxodon Framework.
Then, the code registers the IUIViewLocator service to load the UI prefab and
create the UI elements:

public class Startup : MonoBehaviour

{

 private ApplicationContext _context;

 private void Awake()

 {

 _context = Context.GetApplicationContext();

 // Register services

 IServiceContainer container =

 _context.GetContainer();

 container.Register<IUIViewLocator>(new

 ResourcesViewLocator ());

 var bundle = new

 BindingServiceBundle

 (_context.GetContainer());

 bundle.Start();

 }

 private IEnumerator Start()

 {

 // Create a window container

 var winContainer =

 WindowContainer.Create(MAIN);

 yield return null;

 IUIViewLocator locator =

 _context.GetService<IUIViewLocator>();

The Model-View-ViewModel (MVVM) pattern and the UI 153

 var sampleView =

 locator.LoadWindow<SampleView>(winContainer,

 SampleUI);

 sampleView.Create();

 ITransition transition =

 sampleView.Show().OnStateChanged((w, state)

 =>

 {

 });

 yield return transition.WaitForDone();

 }

}

7. Let's run the game. As you can see in the following screenshot, we create a view
that displays the message text at the top and a Submit button at the bottom.
Once we click the Submit button, an event will be triggered and processed by the
SampleViewModel class to update the message information, and the view will
also update the UI text to display the latest information through data binding.

Figure 3.46 – The sample UI with MVVM

154 Developing UI with the Unity UI System

This way, the UI graphics and UI logic are separated. UI designers and programmers can
work at the same time without relying on each other, thereby improving the efficiency of
UI development in Unity.

In this section, we discussed how to use MVVM to implement the UI in Unity. Next, we
will learn what we must pay attention to when implementing the UI in Unity – that is,
optimizing UI performance.

Performance tips to increase performance of
the UI
The UI is an important part of a game, so if you do not implement it properly, it may
cause potential performance issues. In this section, we will discuss the best practices for
implementing the game UI in Unity to optimize the performance problems caused by
the UI.

The Unity Profiler
The first best practice tip is to be good at using the Unity Profiler. The Profiler is a tool
that you can use to get performance data about your game, including CPU Usage, GPU
Usage, Rendering, Memory, UI, and UI Details. In order to view performance data about
the UI, perform the following steps:

1. Click Window > Analysis > Profiler to open the Profiler window.
2. Click the UI or UI Details module area in the Profiler window to view performance

data related to the UI, such as the CPU time consumed by Layout and Render.

Performance tips to increase performance of the UI 155

Figure 3.47 – The UI area in the Profiler window

In addition to the UI and UI Details areas, the CPU Usage area in the Profiler window
also provides performance information related to the UI. In the CPU Usage area,
you can see the CPU time consumed by a specific marker, such as UGUI.Rendering.
RenderOverlays, as shown in the following screenshot:

Figure 3.48 – The CPU Usage area in the Profiler window

This was just a brief introduction to the Profiler tool. In the following chapters, we will
discuss the Unity Profiler in detail.

156 Developing UI with the Unity UI System

Multiple canvases
The second-best practice tip is a very important aspect that needs to be considered when
implementing the UI in Unity, especially when your game UI is very complex. If necessary,
you may need to create multiple canvases to manage and display different UI elements. As
we have mentioned before, a canvas generates meshes representing the UI elements placed
on it and regenerates the meshes when the UI elements change.

Suppose that you build the UI of the entire game in a single canvas with thousands of UI
elements, and when one or more UI elements on the canvas change, all the meshes used to
display the UI regenerate. This may be expensive, and you may experience CPU spikes that
take a few milliseconds.

Therefore, it is a good idea to create multiple different canvases to manage them, based
on the update frequency of UI elements. For example, frequently updated dynamic UI
elements such as progress bars and timers can be in one canvas, and infrequently updated
static UI elements such as UI panels and background images can be in another. Of course,
there is no magic bullet; you need to manage the canvas on a project-by-project basis.

Use Sprite Atlas
As we introduced when discussing UI images, sprites are 2D graphic objects used for the
UI and other elements of 2D gameplay. When importing a new texture into the Unity
Editor, we can set the texture type of this texture to a sprite. So, your game project may
contain a lot of sprite files. If so, many sprites are treated as separate individuals, and
rendering performance may decrease. This is because Unity will issue a draw call for each
sprite in the scene, and multiple draw calls may consume a lot of resources and negatively
affect your game performance.

Note
A draw call is a call to the graphics API to draw objects (for example, to draw a
triangle).

Performance tips to increase performance of the UI 157

As shown in the following screenshot, there are two draw calls to render Button1 and
Button2 because these two buttons use two different textures:

Figure 3.49 – Multiple draw calls

158 Developing UI with the Unity UI System

So, it is a good idea to combine several textures or sprites into a combined texture.

We can perform the following steps to use the Sprite Atlas provided by Unity to
combine textures:

1. If the Sprite Atlas packing is disabled, enable it in Edit > Project Settings > Editor
> Sprite Packer > Mode.

2. Click Assets > Create > 2D > Sprite Atlas to create a Sprite Atlas asset.

Figure 3.50 – Creating a Sprite Atlas

3. Under the Objects for Packing drop-down menu of the Sprite Atlas asset, select the
+ symbol to add textures or folders to the Sprite Atlas.

However, we still need to be aware that although Sprite Atlas can effectively reduce the
count of draw calls, improper use can easily lead to a waste of memory. When a sprite
is active in an atlas, Unity loads all the sprites in the atlas to which the sprite belongs.
If there are many sprites in an atlas, even if only one sprite is referenced in the scene,
the whole atlas will be loaded, which will cause large memory consumption. In order
to solve this problem, the sprites can be packaged into multiple smaller atlases according
to their purpose. For example, the sprites used in the login panel can be packaged as a
login panel atlas, while the sprites used in the game character panel are packaged as a
character panel atlas.

Summary 159

Summary
In this chapter, we started by introducing some of the most commonly used UI
component classes of the uGUI solution, such as the Canvas, Rect Transform, and Image
components. We then explained the Event System in Unity, the legacy Input Module, and
the new more powerful Input System package provided by Unity.

We also discussed how to decouple components from each other when developing the
UI in Unity by using the MVVM architectural pattern.

Finally, we explored some best practices for implementing the game UI in Unity to
optimize the performance problems caused by the UI.

In the next chapter, we will learn about the animation system in Unity and, at the same
time, we will also introduce how to optimize animation performance in Unity.

4
Creating Animations

with the Unity
Animation System

Whether for 2D games or 3D games, if you want a game to be lively and interesting, good
animation is essential. As a very popular game engine, Unity provides easy-to-use and
powerful animation development tools. In this chapter, we will explore the animation
system in Unity, sometimes referred to as Mecanim, to make Scenes and characters in
your game not static, but dynamic. Then, we will demonstrate how to implement 3D
and 2D animation in Unity with two examples. Finally, we'll cover how to improve the
performance of the animation system in Unity.

We will cover the following key topics in this chapter:

• Exploring the Unity animation system's concepts
• Implementing 3D animation in Unity
• Implementing 2D animation in Unity
• Improving the performance of Unity's animation system

By the end of this chapter, you will be able to create 3D and 2D animations in Unity,
as well as knowing how to control animations through C# code and how to optimize
animation performance.

162 Creating Animations with the Unity Animation System

Technical requirements
Before starting, I recommend you first download Unity-Chan! Model from Unity Asset
Store: https://assetstore.unity.com/packages/3d/characters/unity-
chan-model-18705.

This cute 3D girl model asset is produced by Unity Technologies Japan, and it's available
for all developers to download and make games with it.

The following content is included in this asset:

• 3D models with beautiful textures

• "Unity-Chan!" original shaders

• 31 animations

• 31 still poses

• 12 emotions made from blend shapes

• A sample locomotion scene and other sample Scenes

Now, let's get started!

Exploring the Unity animation system's
concepts
Animation is an important aspect of game development. In this section, we will first
learn the basic concepts of the Unity animation system. Specifically, we will introduce
the following concepts:

• What Animation Clips are and how to create an Animation Clip in Unity

• How to create an Animator Controller to manage a set of animations for characters

• How to use the Avatar system to work with animation rigging

• What the Animator component is and how to use it to assign animation to a
GameObject

Let's move on!

https://assetstore.unity.com/packages/3d/characters/unity-chan-model-18705
https://assetstore.unity.com/packages/3d/characters/unity-chan-model-18705

Exploring the Unity animation system's concepts 163

Animation Clips
Animation in Unity can range from simple cube rotation to complex character movement
and actions, and they are all based on Animation Clips, which are used to store
keyframe-based animations in Unity.

We can manually create an Animation Clip file in the Unity Editor to implement some
simple traditional keyframe animation effects via the Animation window, such as simple
movement, rotation, and so on.

The following steps show how to animate a GameObject in a Scene:

1. Right-click in the Hierarchy window (on the right-hand side) and select 3D Object
| Cube from the pop-up menu to create a new Cube object in the Scene.

Figure 4.1 – Create a new Cube object in the Scene

164 Creating Animations with the Unity Animation System

2. Select the Cube object in the Scene view. Then navigate to Window | Animation |
Animation to open the Animation window. In addition to opening this window
from the menu, we can also use the Ctrl + 6 shortcut to open it:

Figure 4.2 – Open the Animation window

3. Click on the Create button in the Animation window to create a new Animation
Clip:

Figure 4.3 – The Animation window

Exploring the Unity animation system's concepts 165

4. Click on the Add Property button to display a list of available properties that can be
animated. As shown in Figure 4.4, we can not only modify Position and Rotation
but also modify the properties of other components. Here we can add Scale as the
property that will be animated by clicking the + button next to it:

Figure 4.4 – Add Property

5. When a property is added, two keyframes are created by default: the first keyframe
and the second keyframe are at 0:00 and 1:00 on the timeline respectively. So, we
need to create a third keyframe to change the Scale property of this Cube:

I. Place your cursor at 0:10 on the timeline.
II. Right-click in the Animation window and click on Add Key from the pop-up

menu to add a new keyframe.

166 Creating Animations with the Unity Animation System

III. Set Scale.x to 0.5, as shown in Figure 4.5:

Figure 4.5 – Add keyframes

6. In order to preview the animation, click on the Play button to play the Animation
Clip. You will see that the volume of the Cube shrinks rapidly and then slowly
enlarges.

Exploring the Unity animation system's concepts 167

Figure 4.6 – Play the Animation Clip

We can also use recording mode to create an Animation Clip in Unity, as demonstrated
in these steps:

1. The steps to create a new GameObject and open the Animation window are the
same as before. So, let's start directly with how to use recording mode to create an
Animation Clip for a Sphere object in the Scene. We can click the record button
to enable keyframe recording mode, as shown in Figure 4.7:

Figure 4.7 – Enable keyframe recording mode

168 Creating Animations with the Unity Animation System

2. After clicking the record button, it will enter recording mode. Now, we can modify
the point in time that we want it to be at by dragging on the timeline:

Figure 4.8 – Drag on the timeline

In recording mode, whether you move, rotate, or scale the target GameObject in the
Scene, Unity will automatically add the keyframe of the current time point to the
Animation Clip. Here we can move the GameObject from its original position (0, 0,
0) to a new position, let's say, (1, 0, 0). And you can see in the following figure that
Unity created keyframes for the Sphere object:

Figure 4.9 – Unity creates keyframes

3. Finally, click on the record button again to exit recording mode and click the Play
button to play the Animation Clip we just created:

Exploring the Unity animation system's concepts 169

Figure 4.10 – Play the Animation Clip

In addition, importing external animation assets into the Unity Editor can also
automatically create Animation Clip files.

Figure 4.11 – Animation Clips created automatically after importing animation assets

170 Creating Animations with the Unity Animation System

Animation files such as generic FBX files, Autodesk® 3ds Max® (.max) files, native
Autodesk® Maya® (.mb or .ma) files, and Blender™ (.blend) files need to be imported
into our Unity project first before they can be used by Unity. After animation files are
imported, Unity will generate Animation Clip files. We can open the Animation window
to view an Animation Clip by double-clicking the Animation Clip file in the Unity Editor,
as shown in Figure 4.11.

Now that you understand what an Animation Clip is and how to create a new one in
Unity, let's move on to the next concept: the Animator Controller.

Animator Controller
Imagine that our game character has multiple animations. For example, say a character
can both run and attack – it is very important to manage both of these animations for
the character. In a Unity project, we use the Animator Controller asset to arrange and
maintain a set of animations for characters or other animated GameObjects.

An Animator Controller will reference the Animation Clips it uses and use a so-called
state machine to manage various animation states and transitions between them.

We can import the Unity-Chan! Model asset that we downloaded earlier.

Figure 4.12 – Unity-Chan! Model ActionCheck Scene

This asset provides multiple demo Scenes; we chose to open the ActionCheck Scene. You
can find these Scenes in the Assets/unity-chan!/Unity-chan! Model/Scenes
folder.

Exploring the Unity animation system's concepts 171

Figure 4.13 – Unity-Chan! Model

As Figure 4.13 shows, the Unity-Chan! model has been set up in the Scene. If we open the
Animator Controller file used by this model, we can see all the Animation Clips used by
this model and the transitions between Animation Clips in the state machine displayed in
the Animator window, as shown in Figure 4.14.

Figure 4.14 – Animator Controller

172 Creating Animations with the Unity Animation System

We can also follow these steps to manually create an Animator Controller asset in the
Unity Editor:

1. Select the Project view and right-click to open the menu.
2. Select Create | Animator Controller to create a new Animator Controller asset:

Figure 4.15 – Create a new Animator Controller

Exploring the Unity animation system's concepts 173

3. Double-click the Animator Controller asset we just created to open the
Animator window.

4. Here, drag the POSE01 Animation Clip into the Animator window directly to
create a new state. In the state machine, a state is represented by a box because
the POSE01 Animation Clip is the first animation we dragged, so we can see this
animation is connected to the entry point of the Animator Controller, indicating
that this animation will be the default animation.

Figure 4.16 – Create a new state

5. Create the second state by dragging the POSE02 Animation Clip into the Animator
window.

174 Creating Animations with the Unity Animation System

6. Select the POSE01 state and right-click to open a menu, then select Make
Transition to make a transition between POSE01 and POSE02.

Figure 4.17 – Make Transition

Now, we've created an Animator Controller asset and added some Animation Clips to the
state machine.

Avatar
Unlike the animation we created for Unity's built-in Cube model earlier, the model
imported from the external tools into the Unity Editor may be more complicated. For
example, the Unity-Chan! model is a human-like model. A model in Unity is represented
by a mesh of triangles, and a triangle is composed of vertices. When the model is
animated, the position of the vertices will be modified. Obviously, when many vertices
make up a model, moving each vertex individually is an inefficient operation. Therefore,
a common technique in computer animation is not to move each triangle individually
during the animation but to skin the model before it is animated. This technique is called
skeletal animation or rigging.

Unity uses a system called Avatar to identify whether the animation model is a humanoid
layout and which parts of the model correspond to the head, body, arms, legs, and so on.

Exploring the Unity animation system's concepts 175

Figure 4.18 – Import Settings

We can open the Import Settings window for Unity-Chan! by clicking the model in the
Unity Editor. As Figure 4.18 shows, we can specify the kind of rig it is in the Rig tab of the
window, and in this case, Animation Type for this model is Humanoid. The animation
system will try to match the model's existing bone structure with the Avatar bone
structure. If the bone structure can be successfully mapped, then an Avatar asset will be
created automatically as shown in Figure 4.19.

Figure 4.19 – unitychanAvatar

176 Creating Animations with the Unity Animation System

Note
Bones are a hierarchical set of interconnected parts of skeletal animation.
Skinning makes each vertex of the triangle depend on the bone.

On the other hand, if the animation system cannot automatically match the model's
existing bone structure with the Avatar bone structure, we need to configure the Avatar
manually. In addition, even if the bone structure can be successfully mapped, sometimes
we want to manually adjust things to achieve better results. At this time, we can also
modify it by configuring the Avatar asset.

Figure 4.20 – Configure Avatar

Follow these steps to configure it:

1. Click on the model to open the Import Settings window for it.
2. Click the Configure button in the Rig tab of the window to open the Avatar

Inspector window.
3. Configure the bones in the Avatar Inspector window as shown in Figure 4.20.

Exploring the Unity animation system's concepts 177

Avatar Mask
After we create a mapping between the bones of the model and the bone structure of
Unity's Avatar system, we can play the animation of this character. However, sometimes
we may not want to animate all the bones of the character. A common example is that
the walking animation may involve a character swinging their arms, but if they pick up a
phone to make a call, their arms should hold the phone instead of swinging as they walk.
In this case, we want to restrict an animation to specific body parts, and the Avatar Mask
asset provided by Unity can help us achieve this goal.

We can create a new Avatar Mask asset by selecting Assets | Create | Avatar Mask as
shown in Figure 4.21.

Figure 4.21 – Create an Avatar Mask

178 Creating Animations with the Unity Animation System

After creating a new Avatar Mask asset, we can configure it to define which parts of the
animation should be masked. As Figure 4.22 shows, the Avatar Mask Inspector window
allows us to click on a diagram of a humanoid body to select or deselect certain parts to
mask. Here we mask an arm of Unity-Chan!, which means some animation will not affect
this arm at runtime.

Figure 4.22 – Avatar Mask

In order for this Avatar Mask asset to take effect, we need to apply it to an Animator
Controller.

Exploring the Unity animation system's concepts 179

Figure 4.23 – Apply the Avatar Mask asset

In this case, we will apply this Avatar Mask asset to the Animator Controller we created
earlier as follows:

1. Double-click the New Animator Controller file to open the Animator window.
2. Click on the gear icon of the Base Layer item to open the Layer settings panel.
3. Then, click the radio button next to the Mask field and select the New Avatar Mask

asset to apply from the Select AvatarMask window that pops up, as shown in
Figure 4.23.

In this way, we can limit the animation to specific body parts.

Next, we will explore another important concept in Unity's Animation development
solution, namely the Animator component. By using Animator, we can use this
Animator Controller asset in our game.

180 Creating Animations with the Unity Animation System

Animator component
In the previous sections, we explored Animation Clips, Animator Controllers, and Avatar
in Unity. However, just creating Animation Clips, Animator Controllers, and Avatar assets
is not enough to animate the characters in a game Scene. We still need the Animator
component to assign animation to the GameObject in the Scene.

Note
Animator Controllers and Animator components have similar names but
different functions. An Animator component uses an associated Animator
Controller to apply animations to a GameObject.

If you see an Animator component on a GameObject, you will find that it will bring
together all the various assets we discussed before. It is the root of the binding system in
Unity's animation solution, so it is very important.

Figure 4.24 – Animator component

Exploring the Unity animation system's concepts 181

Here we can drag the Unity-Chan! model into the Scene to create a new character
GameObject, and add an Animator component to the GameObject, as Figure 4.24 shows.
This is how the Animator component was configured:

• The Animator component needs to reference an Animator Controller, which
defines the Animation Clips to be used. We can assign the Animator Controller
that we created in the Animator Controller section to it, with the name New
Animator Controller.

• Since the Unity-Chan! model is a humanoid model, provide the corresponding
Avatar asset to this Animator component.

• The Apply Root Motion setting of the Animator component determines whether
or not any change to the position or rotation of the root node will be applied.

• The Update Mode setting of the Animator component determines the update mode
of the Animator component. There are three different options, namely Normal,
Animate Physics, and Unscaled Time.

Figure 4.25 – The Update Mode setting

182 Creating Animations with the Unity Animation System

• The last setting is Culling Mode, which determines whether the animations of the
Animator component should play off-screen. There are three different options,
namely Always Animate, Cull Update Transforms, and Cull Completely.

Figure 4.26 – The Culling Mode setting

After reading this section, we have an understanding of the concepts of Unity's animation
system. We will use this system to create 3D animations in the next section!

Implementing 3D animation in Unity
We have covered some important concepts, such as Animation Clips, Animator
Controllers, Avatar, and Animator components, in the Unity animation system in the
previous sections. In this section, you will learn how to implement animation for 3D
models with these concepts.

Implementing 3D animation in Unity 183

Importing animation assets
First, we need to know how to import animation assets into Unity from digital content
creation (DCC) software. As a demonstration, we still use the Unity-Chan! model asset
as an example. We can find all the animation assets in the /Assets/unity-chan!/
Unity-chan! Model/Art/Animations folder as shown in the following screenshot:

Figure 4.27 – The Animations folder

184 Creating Animations with the Unity Animation System

Here we can select one animation asset in the Project window to open its Import Settings
window.

Figure 4.28 – Import settings for animations

As shown in Figure 4.28, click Animation in the Inspector window to switch to the
Animation tab, and you can see all the Animation Clips contained in the animation asset.

Animation compression
In addition, in the Animation tab, we can also find animation-related import settings.

Figure 4.29 – The Anim. Compression setting

Implementing 3D animation in Unity 185

As shown in Figure 4.29, there is a setting called Anim. Compression, whose value is
Off by default, which means that Unity doesn't reduce the keyframe count on import. In
this case, Unity will keep the highest precision animation, but at the expense of a large
animation size. If reducing the size of the animation, whether on our hard disk or in
memory, is important, we can consider the two other Anim. Compression options,
which are Keyframe Reduction and Optimal.

Figure 4.30 – Optimal

If the Keyframe Reduction option is selected, the Animation Compression Error
options will be displayed, as shown in the preceding figure. The values mean how much
to reduce the precision of the Animation Clip to. The default value is 0.5; the smaller
the value, the higher the precision.

If the Optimal option is selected, Unity will decide how to compress the Animation Clip.

Animation Events
We can also modify the properties of a single Animation Clip. After selecting an
Animation Clip in the list, we can scroll down to see the settings for this particular
Animation Clip.

Figure 4.31 – Settings for the Animation Clip

186 Creating Animations with the Unity Animation System

As the preceding figure shows, there is an option for the Animation Clip to add an
Animation Event, which allows us to call functions in a script at a specified point
in the timeline.

In order to create a new Animation Event, first, we need to position the point in
the timeline where we want to add the event, then click the Add Event button in the
upper-left corner. A small white marker on the timeline will be created, which indicates
the new event.

After creating a new event, we also need to configure it by following these steps:

1. As we can see in Figure 4.32, there are multiple fields to fill in, and we entered the
name PrintStringFromAnimationEvent in the Function field, which means
this event is set up to call the PrintStringFromAnimationEvent function in
a script attached to the GameObject. Several other fields can pass in different types
of parameters for this function, such as Float, Int, and String.

Figure 4.32 – Add an Animation Event

2. After setting the event, remember to click the Apply button to make the
configuration of the event take effect.

At the same time, we need to implement a function whose name must
exactly match the name already filled in the function field, namely
PrintStringFromAnimationEvent:

 public void PrintStringFromAnimationEvent(string

 stringValue)

 {

 Debug.Log("PrintStringFromAnimationEvent is called

 with a value of " + stringValue);

 }

Implementing 3D animation in Unity 187

This function will accept a string type parameter; once this Animation Event is triggered,
this function will be called, and the string value will be printed in the Console window, as
shown in the following figure:

Figure 4.33 – Print the string value in the Console window

Now that we know more about importing animation assets into Unity and how to set up
Animation Events, let's turn our attention to setting up the Animator Controller!

Configuring the Animator Controller
After importing animation assets, we need to set up an Animator Controller to reference
these Animation Clips that will be used in our game. In fact, we created an Animator
Controller when we introduced it earlier and referenced two Animation Clips that will be
used. However, we did not configure this Animator Controller; for instance, we did not
configure how to switch between the two animations. In this section, we will explore how to
configure an Animator Controller and use C# code to switch between different animations.

Adjusting the animation speed
We can view the settings of a specific state in the Animator Controller by selecting the
state in the Animator window.

Figure 4.34 – Settings of an animation's state

188 Creating Animations with the Unity Animation System

There are multiple settings, such as Speed, Multiplier, and Motion Time. First, let's review
the Speed setting and adjust the animation speed. The default value of Speed is 1. If the
Speed value is 0.5, the play speed of Motion Time will be halved, so it needs twice the
play time. Similarly, a speed of 2 will make the play speed of Motion Time twice the
normal speed and halve the play time.

Animator parameters
As we can see in Figure 4.35, there are other settings that require parameters to be used.
These parameters are called animation parameters and they are variables defined in the
Animator Controller that can be accessed and assigned values from a C# script. Therefore,
they are an important part of using C# code to control animation. In order to add new
parameters and edit existing parameters, we should switch to the Parameters section of
the Animator window by clicking the Parameters button in the top-right corner.

Figure 4.35 – The Parameters section

As shown in the preceding figure, the parameters can be one of the following four types:

• Float

• Int

• Bool

• Trigger

As a demonstration, we can add a new parameter called SpeedMultiplier. Then, we open
the settings of the POSE01 animation state again and check the Parameter checkbox
after the Multiplier setting, and you can see that the newly created SpeedMultiplier
parameter appears.

Implementing 3D animation in Unity 189

Figure 4.36 – The SpeedMultiplier parameter

As we mentioned earlier, these parameters can be accessed and assigned values
using C# code. Therefore, we can create a new script to access and set a value of the
SpeedMultiplier parameter as shown in the following code snippet:

using UnityEngine;

public class AnimationParametersTest : MonoBehaviour

{

[SerializeField]

private Animator _animator;

[SerializeField]

private float _speedMultiplier;

 // Start is called before the first frame update

 void Start()

 {

 if(_animator == null)

 {

190 Creating Animations with the Unity Animation System

 _animator = GetComponent<Animator>();

 }

 _animator.SetFloat("SpeedMultiplier",

 _speedMultiplier);

 }

}

Here, we create a new C# script named AnimationParametersTest and obtain a
reference to the Animator component, then we set the value of the parameter by calling
the SetFloat method of the Animator component, because the type of this parameter is
float. Similarly, the Animator component also has, SetInteger, SetBool, and SetTrigger
methods, which are used to set values for different types of parameters.

Configuring transitions
Animation parameters can also be used to implement animation switching. We can use
animation transitions to connect two animation states and switch between them. However,
by default, animation transitions will automatically switch between two connected
animation states, but we obviously prefer to be able to control the switching of animations
when developing games.

Figure 4.37 – Animation transitions

We can set a transition to occur only when certain conditions are true, and animation
parameters can be used to determine whether these conditions are met, so we can use
them here to control the switching of the animation.

The following steps demonstrate how to add a new parameter, set up a condition,
and control the switching of different animations from C# code:

1. Switch to the Parameters section of the Animator window and create a new
bool variable parameter called Run; its default value is false, as shown in the
following screenshot.

Implementing 3D animation in Unity 191

Figure 4.38 – A new parameter

2. Select the transition we want to apply the condition to; here we choose the
transition from POSE01 to POSE02.

3. In the Inspector window of the POSE01 -> POSE02 transition, we can give a name
such as Go To Run to this transition, as shown in Figure 4.39.

Figure 4.39 – Name the transition

4. At the bottom of the same window, all the conditions for this transition are listed.
By clicking the + button, add a new condition for this Go To Run transition, as
shown here:

Figure 4.40 – Add a new condition

192 Creating Animations with the Unity Animation System

5. After adding a new condition, we also need to select a parameter, the value of which
is considered as the condition. The parameter here is Run. When the value of the
Run parameter is true, it can be considered that the condition is met.

Figure 4.41 – Select a parameter as the condition

6. However, the default value of the Run parameter is false. Therefore, in order to
switch from POSE1 to POSE2, create a C# script to set the value as follows:

Figure 4.42 – C# code snippets

The Input.GetKey method will return true when the user holds down the key
identified by KeyCode; otherwise, it will return false, and then we use this value
to set the value of the Run parameter. Therefore, we can control the switching of
the animation by pressing the key.

After reading this section, we have learned how to implement animation for 3D models
and how to control animation through C# code in Unity. Next, we will discuss how to
implement animation for 2D assets.

Implementing 2D animation in Unity
In this section, we will use the tools we explored earlier to implement 2D animation
in Unity.

The implementation of 2D animation is different from the implementation of 3D
animation. A common implementation technique for 2D animation is to use Sprite
Animations, which are Animation Clips that are created for 2D assets.

Implementing 2D animation in Unity 193

There are many ways to create Sprite Animations; we can create them directly in the
Animation window of the Unity Editor or create them in external tools, such as Aseprite,
a popular animation sprite editor, and Piskel, a free online sprite editor.

Here, we use the sprite animation created by an external tool. You can download this asset
from Unity Asset Store here: https://assetstore.unity.com/packages/2d/
characters/free-pixel-mob-113577.

Figure 4.43 – A Sprite Sheet

After downloading the assets, we can find that this image contains many different
Sprites, as shown in Figure 4.43. We call this a Sprite Sheet, which is an image containing
sequential Sprites commonly used for animation for 2D assets.

Note
If an image contains a set of non-sequential Sprite images, we call it a Sprite
Atlas, which is often used to implement UI.

Then, we should import this image file into the Unity Editor by performing the
following steps:

1. As shown in Figure 4.44, since this image contains a series of Sprite images, we set
Sprite Mode to Multiple in the Import Settings window:

Figure 4.44 – Import Settings of the Sprite Sheet

https://assetstore.unity.com/packages/2d/characters/free-pixel-mob-113577
https://assetstore.unity.com/packages/2d/characters/free-pixel-mob-113577

194 Creating Animations with the Unity Animation System

2. Click the Sprite Editor button to open Sprite Editor in Unity. Sprite Editor
provides tools that allow us to modify Sprite Sheets, such as slicing Sprite Sheets
into individual Sprites.

Figure 4.45 – Sprite Editor in Unity

3. By clicking the Slice button, we can open the drop-down menu where we can set
Type to Grid By Cell Count. Since there are 16 individual Sprite images here, in the
Grid By Cell Count option, change the value of Column to 16, change the value of
Row to 1, and then click the Slice button at the bottom of the drop-down menu and
close Sprite Editor, as shown in the following screenshot:

Figure 4.46 – Grid By Cell Count

Implementing 2D animation in Unity 195

4. Then we can select this Sprite Sheet asset in the Project window to expand it, and
you can see all the individual Sprites in it:

Figure 4.47 – Sprites in the Sprite Sheet

At this point, we have imported the assets and created these sprites. The next question
is, how do we use these Sprites to create Animation Clips in Unity? The answer is not
complicated. We only need to select the Sprites that make up the Animation Clip we
want to create and drag them into the scene. The Unity Editor will automatically create
the Animation Clip and ask us to select the folder where the Animation Clip file will be
stored, as shown in the following screenshot:

Figure 4.48 – Create an Animation Clip file

196 Creating Animations with the Unity Animation System

In this case, we select the first eight Sprites from the Sprite Sheet and drag them to the
Scene view of the Unity Editor. Then, we rename the Animation Clip file to walk and
save it.

Unity will create the Animation Clip file, as I mentioned earlier, and a new Animator
Controller asset as well. A new GameObject with an Animator component attached
will also be created in the Scene, which references the Animator Controller, as shown
in Figure 4.49.

Figure 4.49 – New GameObject in the Scene

Now we can run the game to play the animation by clicking the Play button in the Unity
Editor, and we can see the walk animation is playing!

Improving the performance of Unity's animation system 197

Figure 4.50 – Play the walk animation

After reading this section, you have learned how to implement animation for 2D assets;
next, we will share some tips to improve animation performance.

Improving the performance of Unity's
animation system
In Unity, the implementation of animation may cause excessive memory usage and CPU
overhead. In this section, we will talk about how to avoid performance problems caused
by animation. Specifically, we'll first introduce the Unity Profiler tool and how to use it
to view animation-related performance metrics, and then we'll look at how to reduce the
CPU overhead and memory footprint of animations.

The Unity Profiler
First, we should learn how to use tools to view and locate performance bottlenecks rather
than relying on subjective guesses and experience. Of course, it's not that experience is not
important, but using tools will help you locate problems more quickly.

The Unity Editor provides developers with a Profiler tool, which we can use to view the
detailed memory usage of the game and real-time CPU overhead.

198 Creating Animations with the Unity Animation System

In order to view performance data about the CPU overhead of animation, we should
follow these steps:

1. Click Window | Analysis | Profiler to open the Profiler window.
2. Click the CPU Usage module area in the Profiler window to view the performance

data on the CPU overhead, such as the CPU time consumed by Animator.Update,
as shown in Figure 4.51.

Figure 4.51 – The Unity Profiler

3. The Unity Profiler also allows us to switch from the Hierarchy view to the Timeline
view, which is more intuitive in some cases.

Improving the performance of Unity's animation system 199

Figure 4.52 – The Timeline view in the Profiler window

In addition to the CPU Usage module, we can also view the detailed memory
consumption of the game in the Memory module.

4. Click on the Memory module area in the Profiler window to view the performance
data of memory consumption. The default display mode is Simple mode, and the
memory consumption is counted by types in the Profiler window. For example, the
memory usage of Textures is about 106.3 MB, and the memory usage of Meshes is
about 4.5 MB, as shown here:

Figure 4.53 – Memory data in the Profiler window

200 Creating Animations with the Unity Animation System

5. Compared with Simple mode, Detailed mode is more powerful. We can switch
from Simple mode to Detailed mode by selecting Detailed from the drop-down
menu in the upper-left corner.

Figure 4.54 – Switch to Detailed mode

Detailed mode does not display memory consumption data in real time like Simple
mode. Instead, we need to manually click the Take Sample Playmode button to
sample the game memory at the current time.

Figure 4.55 – Take a memory sample

Depending on the number of objects created in the game or how much memory is
consumed, the sampling time will be different. But once the sampling is complete,
we will see the detailed memory overhead; for example, in the following screenshot,
there are 82 Animation Clips taking up 50.1 MB of memory.

Improving the performance of Unity's animation system 201

Figure 4.56 – Detailed memory data in the Profiler window

From the preceding introduction, we can see that the optimization of animation should
mainly focus on CPU overhead and memory consumption. Therefore, the following
two best practices need to be considered when using Unity's animation system to
implement animation.

Animator's Culling Mode
In order to reduce the CPU overhead of animation, we should set the Animator window's
Culling Mode property to Cull Update Transforms or Cull Completely.

Figure 4.57 – Animator's Culling Mode

202 Creating Animations with the Unity Animation System

By setting it to Cull Update Transforms, Unity will disable some features of the animation
system such as Retarget, Inverse Kinematics (IK) Transforms when the Animator is
not visible on screen. If it is set to Cull Completely, Unity will completely disable the
animation when the Animator is not visible. Therefore, the goal of reducing CPU
overhead can be achieved.

Anim. Compression
Another best practice is to set Anim. Compression in the animation import settings
window to save memory.

Figure 4.58 – Anim. Compression

By setting it to Keyframe Reduction, Unity will reduce keyframes on import and
compress keyframes when storing animations in files. If it is set to Optimal, Unity will
decide how to compress, either by reducing keyframes or by using a dense format.

Summary 203

Summary
In this chapter, we started by introducing some of the most important concepts of the
Unity animation system, such as Animation Clips, Animator Controllers, Avatar, and
the Animator component. Then, we demonstrated how to implement 3D animation in
Unity, including how to import animation assets into the Unity Editor, how to create an
Animation Event on an Animation Clip, how to set up animation parameters to control
an animation via C# code, and so on.

We also discussed how to implement 2D animation in Unity. The implementation
of 2D animation is different from the implementation of 3D animation. A common
implementation technique for 2D animation is to use Sprite Animations, which are
Animation Clips that are created for 2D assets.

Finally, we explored some best practices for implementing animation in Unity to optimize
the performance problems caused by the animation system.

In the next chapter, we will learn about the Physics system in Unity, and at the same time,
we will also introduce how to optimize Physics performance in Unity.

5
Working with

the Unity Physics
System

A physics simulation in a game is not only an indispensable function for implementing the
realism in the game. Adding a physics simulation to your game can usually improve the
fun and playability of the game. Generally speaking, it determines how objects move and
how they collide with one another, such as the collision between a player and a wall and the
effect of gravity. As a popular game engine, Unity provides developers with a variety of tools,
allowing developers to integrate physics simulation functions in their games.

We will cover the following key topics in this chapter:

• Concepts in the Unity Physics system
• Scripting with the Physics system
• Creating a simple game based on the Physics system
• Increasing the performance of the Physics system

By the end of this chapter, you will be able to apply the physics simulation correctly and
efficiently in Unity to add more realism or fun to your game.

Now, let's get started!

206 Working with the Unity Physics System

Technical requirements
You can find complete code examples on GitHub under the following repository:
https://github.com/PacktPublishing/Game-Development-with-
Unity-for-.NET-Developers.

Concepts in the Unity Physics system
A simulation is a useful function of a game. Unity provides different tools for different
purposes. For example, if we want to develop a 3D game, then we can use the built-in
3D physics integrated with the Nvidia PhysX engine. If we want to add a physics
simulation to a 2D game, then we can choose the built-in 2D physics integrated with
the Box2D engine.

Note
PhysX is an open source, real-time physics engine middleware SDK developed
by Nvidia as a part of the Nvidia GameWorks software suite. Box2D is a free,
open source 2D physics simulator engine.

In addition to these built-in Physics solutions, Unity also provides Physics engine
packages. These are the Unity Physics package and the Havok Physics for
Unity package. They are different from the built-in Physics systems. They need to
be installed separately using Unity's Package Manager, and they are used in
projects with Unity's Data-Oriented Technology Stack (DOTS). We will introduce
DOTS in later chapters.

Note
Havok Physics is designed primarily for video games and allows for the real-
time collision and dynamics of Rigidbodies in 3D.

In this chapter, we will focus on the built-in physics and will first learn the basic concepts
of the Unity Physics system.

https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers

Concepts in the Unity Physics system 207

Collider
Similar to the rendering function, a physics engine also needs to understand the shape of
GameObjects in a game scene in order to perform physics simulation correctly. When
developing a Unity project, we can use the Collider component to define the shape of a
GameObject for physical collision calculations.

It should be noted that the shape defined by a collider does not have to be exactly the
same as the shape of the model. We can even create a collider without a model display. For
example, we can create a new cube in the scene, and a collider component will be created
and attached to this cube automatically. Then, the shape of the collider can be modified
from the Inspector window, as shown in the following image; its shape is different from
the shape of the model.

Figure 5.1 – Modifying the shape of the Collider (green frame)

In order to reduce the complexity of physics simulation and improve the performance
of the game, we often use some rough shapes, such as the Box Collider and the Sphere
Collider. Next, we will explore one of the most commonly used colliders, namely,
the Box Collider.

208 Working with the Unity Physics System

Primitive colliders
Unity provides a set of primitive colliders for game developers, including the Sphere
Collider and the Box Collider. The Box Collider is one of the most commonly used
colliders in Unity. It will be automatically created and assigned to the Cube object in
a scene, as we see in Figure 5.1. We can also add a new Box Collider to a GameObject
manually, as follows:

1. Create a new GameObject in the scene by clicking the Create Empty button.

Figure 5.2 – Creating a new GameObject

2. Select this newly created GameObject and click the Add Component button in the
Inspector window.

Concepts in the Unity Physics system 209

Figure 5.3 – Add Component

3. Here, we can select the Physics > Box Collider button or enter Box Collider in
the search box to add the Box Collider component to this GameObject.

Figure 5.4 – Adding the Box Collider

210 Working with the Unity Physics System

Now we have added a new Box Collider component, and the properties of this Box
Collider are shown in the following screenshot:

Figure 5.5 – Properties of the Box Collider

The Edit Collider button at the top allows us to edit the shape of this box in the scene.
Below this button, there is an Is Trigger checkbox which, if enabled, means this collider
will be used as a trigger. We will introduce more details about triggers later. The third
property of this collider is the Material property, for referring to a Physics Material
instance. The default value of the Material property is null, and we can assign an instance
of Physics Material to adjust the friction and bouncing effects of colliding objects. The last
two properties, Center and Size, are used to modify the position and size of this box.

As we mentioned earlier, similar to the Box Collider, Unity also provides other colliders
with primitive shapes, such as the Sphere Collider.

We use them in cases where the accuracy of physical collision simulations is not high, but
if the game requires accurate physical collision simulations, then we can also use another
collider, namely, Mesh Collider.

Mesh Collider
Sometimes, we need to develop some game projects that require high physical simulation
accuracy. In this case, the physical shape of the GameObject is often required to be
consistent with the shape of the model mesh of the GameObject. This is why we need
a Mesh Collider.

Concepts in the Unity Physics system 211

There are different ways to create and add a Mesh Collider to a GameObject. Because
the Mesh Collider needs the information of the mesh, so, the first way to create a Mesh
Collider is by importing the model into the Unity Editor. You can check the Generate
Colliders checkbox to import the mesh that automatically attaches mesh colliders, as
shown in Figure 5.6:

Figure 5.6 – Generate Colliders

212 Working with the Unity Physics System

Unity also allows us to add a Mesh Collider component to a GameObject manually.
The steps for adding a Mesh Collider are similar to the steps for adding a Box Collider in
the previous section. After selecting the target GameObject, click the Add Component
button, and then select Physics > Mesh Collider to add it to the GameObject, as shown
in Figure 5.7:

Figure 5.7 – Adding a Mesh Collider to a GameObject

Since the mesh of a model may consist of many vertices and triangles, and the Mesh
Collider will be generated based on the mesh, the computational cost of a Mesh Collider
is much larger than that of the colliders introduced before. Even by default, Unity does not
calculate the collision between mesh colliders, but only calculates the collision between a
Mesh Collider and primitive colliders, such as a Box Collider and a Sphere Collider.

In order to enable collision detection between mesh colliders, we need to reduce their
complexity by checking the Convex checkbox of the Mesh Collider component, as you
can see in the following screenshot:

Figure 5.8 – Properties of a Mesh Collider

Concepts in the Unity Physics system 213

By enabling this checkbox, Mesh Collider is limited to 255 triangles. If we look at the
GameObject in the scene at the same time, we can see that the Mesh Collider is only roughly
consistent with the model's mesh, and that the complexity has been greatly reduced.

Figure 5.9 – A convex Mesh Collider

However, if we run the game now, we will find that no physical effects are applied to the
game; for example, objects will not fall due to gravity. This is because our game still lacks
an important component. Let's explore this next!

Rigidbody
The Rigidbody component is an indispensable component for applying physical effects in
Unity. By adding Rigidbody to a GameObject, physics will control the GameObject, such
as applying gravity to it. Rigidbodies are usually used with colliders; if two Rigidbodies
collide with one another, unless the two GameObjects have colliders attached, they will
not have a collision effect between them but will pass through each other.

214 Working with the Unity Physics System

Now, let's add a Rigidbody component to a GameObject in the scene:

1. Create a new cube in the scene by clicking the 3D Object > Cube button.

Figure 5.10 – Creating a new cube

2. Select this newly created cube and click the Add Component button in the
Inspector window. And as you can see in Figure 5.11, a Box Collider has been
attached to the cube:

Concepts in the Unity Physics system 215

Figure 5.11 – Add Component

216 Working with the Unity Physics System

3. Here, we can select the Physics > Rigidbody button to add a Rigidbody component
to this cube.

Figure 5.12 – Adding the Box Collider

Now we have added a new Rigidbody component, and the properties of this Rigidbody
are shown in Figure 5.13:

Figure 5.13 – Properties of a Rigidbody

As we can see in Figure 5.13, the Use Gravity property of the Rigidbody is checked by
default, which means that this Rigidbody will apply gravity to the cube. If we run the game
at this time, we will find that the cube will fall down under the influence of gravity.

Concepts in the Unity Physics system 217

In addition to the Use Gravity property, the Rigidbody has other properties, and we will
introduce these properties below.

The first property of a Rigidbody component is Mass, which determines how Rigidbodies
react when they collide with each other. Next is the Drag property, which determines how
much air resistance the object is affected by when it is moving under force. By default, the
value is zero, which means there is no air resistance when the cube is moving by force.
The Angular Drag property is similar to the Drag property, the difference being that it
determines how much air resistance affects the object when rotating from torque.

The Is Kinematic property is important because it determines whether this GameObject
will be controlled by the Physics system in Unity. By default, it's disabled. If we enable it,
this GameObject will no longer be driven by physics. The Interpolate property is useful
when you find that the Rigidbody's movement is jerky. The default value of Interpolate is
None, but Unity allows us to select different options for this property, such as Interpolate
or Extrapolate, which, respectively, indicate that the transform is based on the transform
of the previous frame for smoothing, or that the transform is smoothed based on the
estimated transform of the next frame, as shown in the following screenshot:

Figure 5.14 – Options of the Interpolate property

Next is the Collision Detection property. Sometimes, if a Rigidbody is moving too fast,
causing the physics engine to not detect the collision in time, then maybe adjusting
this property is a good idea. Unity also provides us with different options for Collision
Detection; these are Discrete, Continuous, Continuous Dynamic, and Continuous
Speculative.

Figure 5.15 – Options of the Collision Detection property

218 Working with the Unity Physics System

The Discrete option is the default value and is used for detecting normal collisions. If you
encountered issues with fast object collisions, then Continuous is a good choice, but you
should remember that Continuous will impact performance compared to Discrete.

If you want to restrict a Rigidbody's motion, such as restricting the Rigidbody from
moving in a certain direction or not being able to rotate on a certain axis, then you
can do so by modifying the Constraints property.

Figure 5.16 – The Constraints property

As shown in Figure 5.16, you can select an axis to prevent the Rigidbody from moving
along it.

Through a Rigidbody component, we add physical effects to a GameObject, but
sometimes we don't want the GameObject to move according to the results of the physics
simulation, but just want to be able to detect the collision between two objects and trigger
some events. This is a common function in games; for example, the player triggers the
corresponding logic after entering a certain area. Next, we will introduce another feature
provided by Unity to implement such requirements.

Trigger
In addition to providing collision effects, colliders can also be used as triggers.
However, unlike being used as a normal collider, when a trigger is enabled, there is no
collision effect when Rigidbodies collide. However, the physical effect will still take effect;
for example, a trigger can still fall under the influence of gravity, but it will not collide
with other Rigidbodies.

Scripting with the Physics system 219

When developing a Unity project, triggers are used to detect external interactions from
other GameObjects and execute the code in the OnTriggerEnter, OnTriggerStay,
or OnTriggerExit functions in the script. These three functions represent three
different stages of interactions, namely, entering, staying, and exiting. We will introduce
more details about those functions in the next section. For the moment, let's create a
trigger by performing the following steps:

1. Select the Cube object we created earlier to open Inspector window.
2. Enable the Is Trigger property of the Box Collider component attached to this Cube

object, as shown in the following screenshot:

Figure 5.17 – Enabling the Is Trigger property

Now, this cube is set as a trigger, and it will no longer block other Rigidbodies. Since it is
now a trigger, we can use it to create game levels. For example, when the player touches
this cube, it will trigger a trap.

As a reminder, Unity also provides physical components used for 2D. If you want to
develop a 2D game and need to apply physical effects to your game, then you can easily
add 2D versions of these physical components in the same way.

By reading this section, we have learned some concepts of Unity's Physics system, such as
colliders, Rigidbodies, and triggers. Next, we will continue to explore how to use C# scripts
to interact with the Physics system.

Scripting with the Physics system
In this section, we will explore how to interact with the Physics system via C# scripts.
Similar to the previous section, we will also introduce the C# methods for colliders,
triggers, and Rigidbodies, respectively. We will start with the C# methods for colliders.

220 Working with the Unity Physics System

Collision methods
When a collider is not used as a trigger, collisions between Rigidbodies still occur. These
three methods are called when a collision occurs, and the parameter type is the Collision
class, which provides some information to describe the collision, such as the contact point
and the impact velocity of the collision.

OnCollisionEnter
The first method is OnCollisionEnter, which is called when this collider begins to
touch another collider. It is useful when you want to make this object be affected by a
physical collision, but also want to perform some game logic when the collision occurs.
For example, when a bullet hits the target in a game, a corresponding explosion effect can
be generated for it, as the following C# code snippet demonstrates:

using UnityEngine;

public class CollisionTest : MonoBehaviour

{

[SerializeField]

private Transform _explosionPrefab;

 private void OnCollisionEnter(Collision collision)

 {

 var contact = collision.contacts[0];

 var rotation =

 Quaternion.FromToRotation(Vector3.up,

 contact.normal);

 var position = contact.point;

 Instantiate(_explosionPrefab, position, rotation);

 Destroy(gameObject);

 }

}

In the code snippet, we accessed the contact point data provided by the collision object
and instantiated the explosion asset at that point.

Scripting with the Physics system 221

OnCollisionStay
OnCollisionStay is the second method we will explore here. As long as two objects
collide, OnCollisionStay will be called once per frame. Since this method will be
called during the collision of objects, it is suitable to be used to implement some logic
that will last for a period of time. An interesting example of this is as follows: Suppose
you are developing a helicopter game, and you want the helicopter's engine to run at 60%
of its maximum strength when the skid touches the ground. In this case, we can use the
following code snippet to implement this function:

using UnityEngine;

public class CollisionTest : MonoBehaviour

{

 private void OnCollisionStay(Collision collision)

 {

 if (collision.gameObject.name == "Ground")

 {

 //Reduce engine strength to 60%

 }

 }

}

OnCollisionExit
The last method I want to introduce here is OnCollisionExit. As the name of this
method implies, it will be called when this collider stops touching another collider. If some
content is generated at the beginning of the object collision via OnCollisionEnter,
and you want to destroy them when the object collision ends, then you should consider
using OnCollisionExit:

using UnityEngine;

public class CollisionTest : MonoBehaviour

{

 private bool _isGrounded;

 private void OnCollisionEnter(Collision collision)

222 Working with the Unity Physics System

 {

 _isGrounded = true;

 }

 private void OnCollisionExit(Collision collision)

 {

 _isGrounded = false;

 }

}

The preceding code snippet demonstrates how to use OnCollisionExit to reset
the _isGrounded field.

We have covered typical methods used in colliders. Now, we'll look at how to use triggers
in a Unity project.

Trigger methods
In fact, we still use colliders to implement triggers, and just need to check the Is Trigger
option of the Collider component. At this time, the collider will no longer produce the
physical collision effect, but activate trigger events.

There are three events commonly used to implement a trigger, namely,
OnTriggerEnter, OnTriggerStay, and OnTriggerExit. These three methods
are called when two GameObjects collide, and the parameter type is the Collider class,
which provides information about other colliders involved in this collision.

OnTriggerEnter
The first method is OnTriggerEnter, which is called when this collider begins touching
another collider. The Is Trigger option should be enabled in this case. This method is
useful when you want to trigger some operations on surrounding elements but don't want
to produce physical collision effects. For example, you could use this to implement a trap
in your game.

It is also very simple to use. We only need to include the game logic that will be triggered
in the definition of this method, as shown in the following code snippet:

using UnityEngine;

public class TriggerTest : MonoBehaviour

{

Scripting with the Physics system 223

 private void OnTriggerEnter(Collider other)

 {

 Debug.Log($"{this} enters {other}");

 }

}

When this GameObject collides with another GameObject, the string by means of which
this GameObject enters the other GameObject will be printed in the Console window.

OnTriggerStay
OnTriggerStay is the second method we will explore here. Similar to the
OnCollisionStay method we discussed before, OnTriggerStay will be called in all
frames when other colliders touch this trigger. This method is also suitable for implementing
trap-like gameplay in a game; for example, the player enters a poisonous fog and will
continue to be hurt:

using UnityEngine;

public class TriggerTest : MonoBehaviour

{

 private void OnTriggerStay(Collider other)

 {

 Debug.Log($"{this} stays {other}");

 }

}

Here, we also only need to put the game logic that will be triggered in the definition of the
OnTriggerStay method, as shown in the preceding code snippet.

OnTriggerExit
The last method I want to introduce here is OnTriggerExit. This method will be
called when other colliders leave the trigger. This method is suitable for some tasks, such
as destroying the GameObjects created when other colliders enter this trigger, resetting
the state, and so on. The following code snippet shows how to destroy a GameObject in
OnTriggerExit:

using UnityEngine;

public class TriggerTest : MonoBehaviour

224 Working with the Unity Physics System

{

 private void OnTriggerExit(Collider other)

 {

 Destroy(other.gameObject);

 }

}

Methods of Rigidbody
The Rigidbody component provides us with the ability to directly interact with the
Physics system in Unity. We can use the methods provided by the Rigidbody component
in the C# script to apply a force to this Rigidbody, and we can also apply a force to a
Rigidbody that simulates explosion effects.

It should be noted that, as we mentioned in Chapter 2, Scripting Concepts in Unity, in a
script, it is recommended to use the FixedUpdate function for a physical update, so
we should call Rigidbody methods in the FixedUpdate function to apply the physical
effect. Now, let's explore some commonly used methods.

AddForce
The AddForce method is one of the most commonly used methods related to physics. As
its name implies, we can call this method to apply a force to the Rigidbody. The function
signature of AddForce is as follows:

public void AddForce(Vector3 force,

 [DefaultValue("ForceMode.Force")] ForceMode mode);

As you can see, this method requires two parameters, namely, the force vector in world
coordinates and the type of force to apply. AddForce allows us to define a force vector and
choose how to apply this force to the GameObject to affect how our GameObject moves.

The first parameter, force, is a vector type that specifies the direction in which the force
is applied to this object.

On the other hand, the ForceMode type parameter, mode, determines the type of force
applied. ForceMode is an enum type, which defines four different types of force. By
default, the AddForce method will add a continuous force to the Rigidbody, using its
mass. In the following section, I will introduce the different types of force modes in detail.

Scripting with the Physics system 225

ForceMode
ForceMode is defined in the UnityEngine namespace, and we can see its definition in
the following code snippet:

namespace UnityEngine

{

 //

 // Summary:

 // Use ForceMode to specify how to apply a force

 using Rigidbody.AddForce.

 public enum ForceMode

 {

 //

 // Summary:

 // Add a continuous force to the rigidbody,

 using its mass.

 Force = 0,

 //

 // Summary:

 // Add an instant force impulse to the

 rigidbody, using its mass.

 Impulse = 1,

 //

 // Summary:

 // Add an instant velocity change to the

 rigidbody, ignoring its mass.

 VelocityChange = 2,

 //

 // Summary:

 // Add a continuous acceleration to the

 rigidbody, ignoring its mass.

 Acceleration = 5

 }

}

As the preceding code snippet shows, there are four types of force mode, namely, Force,
Impulse, VelocityChange, and Acceleration.

226 Working with the Unity Physics System

Force is the default mode and in this mode, more force must be applied to push or
distort objects with larger masses because it depends on the mass of the Rigidbody.
It will add a continuous force to the Rigidbody.

If we choose Impulse mode as the argument, then the AddForce method will apply an
instant force impulse to the Rigidbody. This mode is suitable for simulating forces from
explosions or collisions. As with the Force mode, the Impulse mode also depends on
the mass of the Rigidbody.

VelocityChange is the third mode here. If we select this mode, then Unity will apply
the velocity change instantly with a single function call. It should be noted that the
VelocityChange mode is different from the Impulse mode and the Force mode. The
VelocityChange mode does not depend on the mass of the Rigidbody, which means
that VelocityChange will change the velocity of each Rigidbody in the same way.

The last mode is Acceleration mode. If this mode is selected, then Unity will
add a continuous acceleration to the Rigidbody. Like the VelocityChange mode,
Acceleration mode also ignores the mass of the Rigidbody, which means AddForce
will move every Rigidbody the same way.

So far, we have learned the different force modes available for the AddForce method.
Next, let's create a new C# script and apply a force to the cube by calling AddForce:

using UnityEngine;

public class RigidbodyMethods : MonoBehaviour

{

[SerializeField]

private Rigidbody _rigidbody;

[SerializeField]

private float _thrust = 50f;

 private void Start()

 {

 _rigidbody = GetComponent<Rigidbody>();

 }

 private void FixedUpdate()

 {

 if (Input.GetKey(KeyCode.F))

 {

Scripting with the Physics system 227

 _rigidbody.AddForce(transform.forward *

 _thrust);

 }

 if (Input.GetKey(KeyCode.A))

 {

 _rigidbody.AddForce(transform.forward *

 _thrust, ForceMode.Acceleration);

 }

 }

}

As shown in the code, we can apply a continuous force to the Rigidbody by pressing the F
key on the keyboard and applying a continuous acceleration to the Rigidbody by pressing
the A key on the keyboard.

MovePosition
Sometimes, we just want to move our GameObjects and don't want to deal with forces.
The MovePosition method of Rigidbody can help us to achieve this goal.

The function signature of MovePosition is as follows:

public void MovePosition(Vector3 position);

Here, we need a parameter position to provide the new position for the Rigidbody object
to move to. To make the Rigidbody move smoothly, we often use interpolation to achieve a
smooth transition between frames. Since MovePosition is still a method of Rigidbody,
we still call it in the FixedUpdate function, as shown in the following code snippet:

using UnityEngine;

public class RigidbodyMethods : MonoBehaviour

{

[SerializeField]

private Rigidbody _rigidbody;

[SerializeField]

private float _speed = 50f;

228 Working with the Unity Physics System

 private void Start()

 {

 _rigidbody = GetComponent<Rigidbody>();

 }

 private void FixedUpdate()

 {

 var direction = new

 Vector3(Input.GetAxis("Horizontal"), 0,

 Input.GetAxis("Vertical"));

 _rigidbody.MovePosition(transform.position +

 direction * Time.deltaTime * _speed);

 }

}

Here, we get user input as the direction of movement and apply the movement to the
current position. You can also see that the movement vector is multiplied by deltaTime
and speed, which is for smooth movement.

After reading this section, we learned how to interact with the Physics system through
C# scripts. But it's best if we implement a simple game ourselves using the physics system,
and that's what we'll do in the next section! Let's move on.

Creating a simple game based on the Physics
system
We have learned the concepts of Unity's Physics system and discussed how to use C# code
to interact with the Physics system. Next, we will use the knowledge we have learned to
create a simple physics-based ping-pong game in Unity.

Creating a simple game based on the Physics system 229

First, let's perform the following steps to create a Plane object as a ping-pong table:

1. Right-click on the Hierarchy window to open the menu.
2. Select 3D Object > Plane to create a new Plane object in the editor.

Figure 5.18 – Creating a Plane object

3. Rename the Plane object to Table.

230 Working with the Unity Physics System

4. Select Table to open its Inspector window, modify the Z value of Scale to 2, and we
can see that a Mesh Collider has been added to this object by default.

Figure 5.19 – The Inspector window of "Table"

5. Let's create four Cube objects as walls on the table by selecting 3D Object > Cube,
which is similar to the process of creating a Plane object. By default, a Box Collider
has been added to every Cube object.

6. We can easily adjust the position, size, and rotation of these four Cube objects by
using the tools in the editor to create the walls on the table.

Creating a simple game based on the Physics system 231

Figure 5.20 – Creating walls on the table

In order to make the table look less boring, we can apply different materials
to the walls and the table. Now we have set up the ping-pong table, as shown in the
following image:

Figure 5.21 – The ping-pong table

232 Working with the Unity Physics System

Next, we need to create two players, namely, Player1 and Player2. To keep it simple,
we still use two Cube objects as players:

1. Select 3D Object > Cube to create a new Cube object in the scene.
2. Rename the Cube object to Player1.
3. Adjust the position and size of Player1. For example, we can modify the X value

of Scale to 3.

Figure 5.22 – The Inspector window of Player1

4. Let's repeat the preceding steps to create another player.
5. We can use different colors to identify Player1 and Player2 to distinguish them,

as the following figure shows:

Creating a simple game based on the Physics system 233

Figure 5.23 – Player1 and Player2

Now we have the Player objects in our simple game. Next, we will add a ping-pong ball to
our game:

1. Select 3D Object > Sphere to create a new Sphere object in the scene.
2. Rename the Sphere object to Ball.
3. Select Ball to open its Inspector window. We can see that a Sphere Collider has been

added to the ball by default.

Figure 5.24 – The Sphere Collider component

234 Working with the Unity Physics System

4. Then, we need to add a Rigidbody component to this ball by clicking the Add
Component button and selecting Physics > Rigidbody.

Figure 5.25 – Adding a Rigidbody component

5. Then, we change the Interpolate option of this Rigidbody component from None
to Interpolate to make the transformation smooth based on the transformation of
the previous frame.

Figure 5.26 – Changing the Interpolate option

Creating a simple game based on the Physics system 235

6. Then, we also change the Collision Detection option of this Rigidbody component
from Discrete to Continuous Dynamic so that we can handle the fast-moving
ping-pong ball correctly.

Figure 5.27 – Changing the Collision Detection option

7. Since the real-world ping-pong ball will bounce back when it hits an obstacle, in
order to simulate this bounce effect, we need to create a physic material by clicking
Create > Physic Material in the Project window.

Figure 5.28 – Creating a physic material

236 Working with the Unity Physics System

8. Let's select the newly created physic material to open the Inspector window and
change both Dynamic Friction and Static Friction from 0.4 to 0, and Bounciness
from 0 to 1. Also, set the Friction Combine option to Multiply and the Bounce
Combine option to Maximum, as shown in the following screenshot:

Figure 5.29 – Physic Material settings

9. Then, assign this physic material to the Material option of the Sphere Collider.

Figure 5.30 – Assigning the physic material to the Sphere Collider

Now we have set up the ping-pong ball that will be used in our game. Next, let's create a
new C# script to apply force to the ball to move it:

using UnityEngine;

public class PingPongBall : MonoBehaviour

{

 [SerializeField] private Rigidbody _rigidbody;

 [SerializeField] private Vector3 _initialImpulse;

Creating a simple game based on the Physics system 237

 private void Start()

 {

 _rigidbody.AddForce(_initialImpulse,

 ForceMode.Impulse);

 }

}

In this script, we are using the AddForce method and Impulse force mode that
we learned about previously to apply an impulse force to the ball. The direction and
magnitude of the force are provided by the _initialImpulse variable. This can
be set in the editor.

Let's now attach this script to the ball and provide a value for the _initialImpulse
variable.

Figure 5.31 – Ping Pong Ball (Script)

As the preceding screenshot demonstrates, the value of the _initialImpulse variable
is (8, 0, 8), which means we add an instant force impulse pointing to the lower-right
corner of the table to the Rigidbody.

238 Working with the Unity Physics System

Let's play the game and see what happens.

Figure 5.32 – The ball is bounced

From the picture, we can see that the ping-pong ball in the game hit the wall and bounced.
Next, we will add more logic to the player objects so that we can control them in the game.

However, before we start to write C# code for our player objects, we should first add a
Rigidbody component to each of them, and set the Rigidbody component settings as
shown in the following screenshot:

Figure 5.33 – Settings of the player's Rigidbody component

Creating a simple game based on the Physics system 239

As you can see from the screenshot, we first set the mass of the Rigidbody component
to 1000 and disabled the effect of gravity by unchecking the Use Gravity option.

Then, it is worth your attention that we have restricted the movement of the Rigidbody.
Since the player object will only move along the x axis and will not rotate, we only keep
the Rigidbody moving along the x axis without constraint.

Next, we also need to configure the controls for these two different players, as shown
in the following steps:

1. Open the Project Settings window by selecting Edit > Project Settings in
the editor.

Figure 5.34 – Opening the Project Settings window

240 Working with the Unity Physics System

2. Select Input Manager from the navigation on the left to open the Input Manager
window.

Figure 5.35 – Opening the Input Manager window

3. We will define the input axis and related actions of player 1 and player 2 in this
window to allow us to use the up and down arrow keys and the w and s keys to
control the movement of these two player objects, respectively, as shown in the
following screenshot:

Figure 5.36 – Setting up the input controls for players

Creating a simple game based on the Physics system 241

So far, we have set up the Rigidbody components and the input control needed by the
player objects, and then we can write a C# script to control the player objects in our game.

Remember the MovePosition method we introduced before? Here, we will use this
method to move the player objects:

using UnityEngine;

public class Player : MonoBehaviour

{

[SerializeField]

private Rigidbody _rigidbody;

[SerializeField]

private float _speed = 10f;

[SerializeField]

private bool _isPlayerOne;

 private void Start()

 {

 _rigidbody = GetComponent<Rigidbody>();

 }

 private void FixedUpdate()

 {

 var inputAxis = _isPlayerOne ? "PlayerOneMove" :

 "PlayerTwoMove";

 var direction = new

 Vector3(Input.GetAxis(inputAxis), 0, 0);

 _rigidbody.MovePosition(transform.position +

 direction * Time.deltaTime * _speed);

 }

}

As shown in the preceding code, this script will first determine which player the object
is, get the corresponding input settings, and then determine the direction of the object's
movement based on the player's input.

242 Working with the Unity Physics System

Now, let's attach this script to these two player objects and start the game!

Figure 5.37 – The ping-pong game

As shown in the preceding image, we can now use the w and s keys and the up and down
keys to control the movement of player 1 and player 2 and, as expected, the ping-pong
ball will bounce when it hits the players.

In this section, we made a simple physics-based game, and now we will introduce how
to optimize the performance of the Physics system when developing a game in Unity.

Increasing the performance of the Physics
system
Physical simulation requires a lot of calculations, especially in the case of high physical
accuracy requirements. Therefore, it is very important to understand how to use Unity's
Physics system correctly and reduce unnecessary computing overhead.

The Unity Profiler
First, we should learn how to use tools to view and locate performance bottlenecks caused
by the Physics system in Unity.

The Profiler tool in the Unity Editor is our recommended tool, which allows us to easily
view various performance data and locate performance issues related to the Physics system.

Increasing the performance of the Physics system 243

Taking the ping-pong game we just made as an example, we can perform the following
steps to view the performance data of this game:

1. Start the game in the editor by clicking the Play button.

Figure 5.38 – Playing the game in the editor

2. Click Window > Analysis > Profiler or use the keyboard shortcut Ctrl + 7
(Command + 7 on macOS) to open the Profiler window.

3. Click the CPU Usage module area in the Profiler window to view the performance
data of CPU overheads, such as the CPU time consumed by FixedUpdate.
PhysicsFixedUpdate, as shown here:

Figure 5.39 – The Unity Profiler

244 Working with the Unity Physics System

In addition to the CPU Usage module, we can also view the detailed information of
the Physics system, such as the number of Rigidbodies and the number of contacts
at a specific moment, as shown in the following screenshot:

Figure 5.40 – The Physics data in the profiler

Next, we will introduce some tips for improving the performance of the Physics system.

Increasing the fixed timestep
One idea to reduce the cost of physics computing is to reduce the number of updates per
second of the Physics system. We can perform the following steps to increase this Fixed
Timestep setting to achieve this goal:

1. Open the Project Settings window by selecting Edit > Project Settings in
the editor.

2. Select Time from the navigation on the left to open the Time window.

Increasing the performance of the Physics system 245

Figure 5.41 – Time settings

3. The default value of Fixed Timestep is 0.02, which means the Physics system will be
updated 50 times per second. To reduce the number of updates per second, we can
increase this value.

Reducing unnecessary layer-based collision detections
Unity uses a rather inefficient physical collision detection mode by default; that is, collision
detection is performed on all GameObjects. We can reduce the number of collision
detections by modifying the Layer Collision Matrix field in the Physics settings of Unity
and setting different layers for different GameObjects. The following steps demonstrate
how to modify it:

1. Open the Project Settings window by selecting Edit > Project Settings in the editor.
2. Select Physics from the navigation on the left to open the Physics window.

246 Working with the Unity Physics System

3. You can find Layer Collision Matrix at the bottom of the Physics window, and you
can see in Figure 5.42 that everything collides with everything by default. We should
only enable the layers that require collision detection in this matrix.

Figure 5.42 – Layer Collision Matrix

In this section, we introduced how to use Unity's Profiler tool to view the performance
data of the Physics system and explored how to optimize the performance of the latter.

Summary 247

Summary
In this chapter, we started by introducing the physics solutions provided by Unity,
including two built-in physics solutions, Nvidia PhysX engine and Box2D engine, and
Unity also provides Physics engine packages, namely, the Unity Physics package and
the Havok Physics for Unity package. Then, we explored some of the most important
concepts in Unity's Physics system, such as the Collider component, the Rigidbody
component, and Triggers. We also discussed how to create a new script in Unity to
interact with Unity's Physics system.

Then, we demonstrated how to implement a physics-based ping-pong game in Unity.

Finally, we explored some best practices for applying a physics simulation in Unity to
optimize the performance problems caused by the Physics system.

In the next chapter, we will be discussing how to implement video and audio features
in Unity.

 6
Integrating Audio

and Video in
a Unity Project

In the previous chapters, we have discussed how to use C# scripts to develop game
logic in Unity, how to efficiently implement UI, how to implement animation, and
how to integrate physics simulation into your game. However, one feature that is often
overlooked in game development is sound. The proper use of sound effects can enhance
the immersion of a game, and the background music that matches the background of the
game can trigger the emotional resonance of the players. Sometimes, playing video in a
game is also a way to increase the fun of a game. There is no doubt that adding video and
audio to your game can make your game more lively and interesting.

In this chapter, we will introduce the following key topics:

• Concepts in Unity's audio system and video system

• Scripting with audio and video

• Things to note when using Unity to develop web applications

• Increasing the performance of the audio system

250 Integrating Audio and Video in a Unity Project

By the end of this chapter, you will be able to implement audio and video correctly and
efficiently in Unity to add more realism and fun to your game.

Now, let's get started!

Technical requirements
You can find complete code examples on GitHub in the following repository: https://
github.com/PacktPublishing/Game-Development-with-Unity-for-.
NET-Developers.

Concepts in Unity's audio system and video
system
Unity provides video and audio features, allowing your game to play videos on different
platforms, and supports real-time mixing and full 3D spatial sound effects. In this section,
we will introduce important concepts of the Unity audio system and video system.

Audio clips
In order to be able to play audio in Unity, we need to import an audio file into the
Unity editor first. The audio data will be saved in an audio clip object in Unity. We can
download and import the Ultra Sci-Fi Game Audio Weapons Pack Vol. 1 from Unity
Asset Store at the following link: https://assetstore.unity.com/packages/
audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-
vol-1-113047. You can see this in the following screenshot:

https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047
https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047
https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047

Concepts in Unity's audio system and video system 251

Figure 6.1 – Ultra Sci-Fi Game Audio Weapons Pack Vol. 1

The format of the audio files contained in this pack is .wav. In addition to .wav files that
can be imported into Unity, Unity also supports importing files in the following formats:

• .aif

• .mp3

• .ogg

• .xm

• .mod

• .it

• .s3m

252 Integrating Audio and Video in a Unity Project

After importing these audio files, we can choose one of them to open the Import settings
as shown in Figure 6.2:

Figure 6.2 – Import settings of audio

As you can see in the Import settings, Unity supports mono and multichannel audio
assets, up to eight channels. Unity also provides a lot of import options. Let's introduce
some important options.

Load Type
Unity provides game developers with three different ways to load audio assets at runtime.
We can determine how Unity loads this audio file by modifying the Load Type property
in the Import settings window.

Figure 6.3 – Load Type

Concepts in Unity's audio system and video system 253

The three methods are as follows:

• Decompress On Load: This is the default value for Load Type. If the audio file is
small, such as UI sounds or footstep sounds, we should choose this option. This
is because, in this way, the audio file will be decompressed and decoded into the
memory at its original size. The advantage is that it will be ready for on-demand
playing with minimal CPU usage.

• Compressed In Memory: As a contrast with Decompress On Load, by choosing
this method, Unity will store the compressed audio data in memory and require
the CPU to decompress and decode it when playing the audio.

• Streaming: This is completely different from the previous two. If we choose this
method, Unity will not load the audio data into the memory, but instead will stream
it from disk. This method uses the least memory, but at the cost of the highest CPU
usage and disk usage.

Compression Format
In addition to the Load Type property just introduced, the Compression Format
property is also very important for audio assets. Unity supports a variety of audio
compression formats, and there are different formats available according to the different
target platforms. For example, if the target platform is Windows, the following formats
are available:

Figure 6.4 – Compression Format on Windows

254 Integrating Audio and Video in a Unity Project

On the other hand, if the target platform is Android, in addition to the previous formats,
it also supports the MP3 format.

Figure 6.5 – Compression Format on Android

We will explore the different compression formats here:

• PCM: Pulse-code modulation (PCM) is a lossless, uncompressed format and is the
standard form of digital audio in computers. It offers high quality and has a very
large file size. As you can see in Figure 6.6, when the PCM format is selected, the
imported size of this audio file is equal to its original size.

Figure 6.6 – The PCM format

Concepts in Unity's audio system and video system 255

• Vorbis: This is the default value for Compression Format. Vorbis is a very effective
audio compression format. Compared with PCM audio, this compression produces
smaller files, but the quality is lower. If we choose the Vorbis option, the imported
size of this audio file will be much smaller than its original size. There is a Quality
slider that allows us to adjust the compression quality.

Figure 6.7 – The Vorbis format

• ADPCM: ADPCM is short for adaptive differential pulse-code modulation.
Although the name is similar to PCM, it is a lossy compression format. But unlike
Vorbis, its compression ratio cannot be adjusted in Unity. The compressed file size
will always be 3.5 times smaller than PCM.

Figure 6.8 – The ADPCM format

256 Integrating Audio and Video in a Unity Project

• MP3: This is available on mobile platforms, such as Android. The MP3 format is
similar to Vorbis, which is a very effective audio compression format. There is also
a Quality slider that allows us to adjust the compression quality.

Figure 6.9 – The MP3 format

After we set the import settings for these audio files, they can be imported into the Unity
editor as audio clips.

Figure 6.10 – Audio clips

As shown in Figure 6.10, we can find these audio clips in the Project window, and the icon
of the audio clip will show its waveform.

Audio Sources
In order to play the audio clip we just created in the game scene, we also need to set
an Audio Source. Then this audio clip can be dragged to the Audio Source or used
from a C# script.

Concepts in Unity's audio system and video system 257

Let's follow these steps to create an Audio Source first:

1. Right-click in the Hierarchy window to open the menu.
2. Choose Create Empty to create a new GameObject in the scene. As a reminder,

the GameObject that is the Audio Source is not necessarily a static object. In many
cases, the Audio Source needs to be moved, such as simulating the effect of firing a
cannonball in a game. But for the sake of simplicity, we will not add movement logic
to this GameObject here.

Figure 6.11 – Create an Audio Source object

3. Select this newly created GameObject and click the Add Component button to
open the components list.

258 Integrating Audio and Video in a Unity Project

4. Choose Audio | Audio Source to add an Audio Source component to this
GameObject.

Figure 6.12 – Add an Audio Source component

Now we have created a new Audio Source component in our game scene. The properties
of this Audio Source component are shown in Figure 6.13.

Figure 6.13 – Properties of Audio Source

Concepts in Unity's audio system and video system 259

We will explore some of them here:

• AudioClip: Here, we find the first property of Audio Source is a reference to Audio
Clip. We can drag an Audio Clip asset to this field directly in the editor.

• Output: We don't have to set this property, because the output of this Audio Source
will then be picked up by an Audio Listener in the scene by default. Set this property
only when you want to output the sound to an Audio Mixer Group.

• Play On Awake: This option is enabled by default, which means the sound will
start playing when the scene is loaded. If you don't want this Audio Source to emit
sounds when the scene is loaded and want to control when the audio is played
through code, then you can disable this option and call the Play method in a
C# script.

In addition to the Audio Source, to emit the sound in the scene, an Audio Listener is also
needed to receive the sound from the source. Next, we will discuss Audio Listener.

Audio Listener
Generally speaking, you don't need to worry about the absence of Audio Listener in the
scene, because an Audio Listener will be attached to the main camera in the scene by
default when a scene is created, as shown here.

Figure 6.14 – An Audio Listener

In real life, sounds are heard by listeners, and Audio Listener is the representation of
a listener in Unity. If you set Audio Source correctly in the game scene and the audio
clip is available but you can't hear the sound when you run the game, then you can first
check whether there is an Audio Listener in the scene. Usually, the listener is attached to
the camera.

260 Integrating Audio and Video in a Unity Project

To hear the sound, we need to make sure that an Audio Listener is available, but at the
same time, it should be noted that there cannot be more than one Audio Listener in the
scene, otherwise you will see the following warning message in the Console window. So,
please ensure there is always exactly one Audio Listener in the scene.

Figure 6.15 – Please ensure there is always exactly one audio listener in the scene

After introducing a few important concepts about audio in Unity, let's discuss the concepts
related to video in Unity next.

Video clips
Similar to audio clips, we also need to import external video files into the Unity editor
to generate video clips. Unity supports typical file extensions for video files, such as
the following:

• .mp4

• .mov

• .webm

• .wmv

After importing a video file, we can choose to open Import settings, as shown in
Figure 6.16:

Concepts in Unity's audio system and video system 261

Figure 6.16 – Import settings of a video clip

By default, the Transcode option is disabled, which means that Unity will use the default
settings to import this video file. If we enable this option, Unity will allow us to modify
these settings, as shown in Figure 6.17, and we will introduce a few of them. At the bottom
of the Import settings window, we can also directly preview the video by clicking the
play button.

262 Integrating Audio and Video in a Unity Project

Now, let's check and enable the Transcode option and explore some of these
import settings.

Figure 6.17 – Video import settings

• Dimensions: By default, Unity will not resize the original video, but if you want to
resize the video file in Unity, you can change the Dimensions option. You will find
a list of presets, such as Half Res, and you can also customize new sizes.

Figure 6.18 – Dimensions option

Concepts in Unity's audio system and video system 263

• Codec: Unity provides the option to transcode video clip assets into one of the
following video codecs: H264, H265, and VP8, as shown in the following figure.
Auto is the default value for Codec. Of course, you can also choose the video codec
by yourself. H264 is the best natively supported hardware-accelerated video codec.

Figure 6.19 – Codec option

• Keep Alpha: As you can see in Figure 6.19, Keep Alpha is not an option in this
case. This is because this option can only be checked when the video file contains an
alpha channel. If your video file contains an alpha channel and you want to keep the
alpha channel when the video is played in the game, then check this option.

• Flip Horizontally: As the name suggests, if this option is enabled, Unity will flip the
video horizontally, switching the left side to the right side.

• Flip Vertically: Similar to Flip Horizontally, if this option is enabled, Unity will flip
the video vertically to make it upside down.

• Import Audio: If your original video file contains audio tracks, then you can decide
whether to import the audio tracks of the video by checking this option.

After setting the import settings, we can click Apply to transcode the video. It may take
some time to complete the transcoding process.

Figure 6.20 – Transcoding the video

264 Integrating Audio and Video in a Unity Project

Now we have imported the video file into the Unity editor, next we need to set up a video
player to play the video clip.

Video Player
Let's create a Video Player by following these steps:

1. Right-click in the Hierarchy window to open the menu.
2. Choose Create Empty to create a new GameObject and rename this GameObject

to VideoPlayer.
3. Select this newly created GameObject and click the Add Component button to

open the components list.
4. Choose Video | Video Player to add a VideoPlayer component to this

GameObject.

Figure 6.21 – Add a Video Player component

Now we have created a new Video Player in our game scene. The properties of this Video
Player are shown in Figure 6.22:

Concepts in Unity's audio system and video system 265

Figure 6.22 – Properties of Video Player component

Next, we will explore some of these properties:

• Source: In Unity, a Video Player can play videos from video clip assets or from
a URL. By default, the Video Player needs a video clip asset as the video source,
but we can also choose a URL as the source for video here.

Figure 6.23 – Choose the type of video source

• Play On Awake: This option is enabled by default, which means the video will
start playing when the scene is loaded. We can disable this option and call the
Play method in a C# script to trigger the video playback at another point during
the runtime.

• Playback Speed: We can increase or decrease the playback speed by adjusting this
slider. The default value is 1.

266 Integrating Audio and Video in a Unity Project

Render Mode
This is a very important setting, so we will explain it in detail. If you just set up the Video
Player, drag a video clip asset to the Source property, and play the game, you will find that
nothing will happen. This is because the default value for Render Mode in a Video Player
is Render Texture, which means you should create and assign a render texture to the
Target Texture property of the Video Player first. Then the Video Player will output the
video to this render texture, as you can see in Figure 6.24:

Figure 6.24 – Set the Target Texture property

However, at this stage, we only render the video to the render texture, and the video is not
played in the game scene. In order to play this video in the game scene, we can create a
new Raw Image UI element in the scene and assign this render texture to the Raw Image
UI element.

Concepts in Unity's audio system and video system 267

Figure 6.25 – The Raw Image UI element

Now, let's play the game again and the video plays as expected.

Figure 6.26 – Play the video

268 Integrating Audio and Video in a Unity Project

We can also change Render Mode. As you can see in Figure 6.27, the other options
include the following:

• Camera Far Plane, which renders video content behind the camera's scene,
allows developers to change the value of the alpha channel to make video content
transparent, and can be used as a background video player.

• Camera Near Plane, which renders video content in front of the camera's scene,
allows developers to change the value of the alpha channel to make video content
transparent, and can be used as a foreground video player.

• Material Override: In Unity, a material is used to describe the appearance of the
surface of a model. If this mode is selected, the video content will be passed into a
user-specified property of the target material instead of being drawn on the screen
or in a render texture. This mode is often used when making 360-degree panoramic
videos in Unity.

• API Only, which does not render the video content, but allows developers to access
the video content via an API.

Figure 6.27 – Render Mode List

As an example, we will choose Camera Far Plane for Render Mode. Instead of a render
texture, we need to provide a camera here and, as you can see in the following figure,
it allows us to modify the Alpha value as well.

Figure 6.28 – Camera Far Plane

If we play the game, the video plays again this time.

Scripting with audio and video 269

Figure 6.29 – Play the video

In this section, we learned about some concepts of Unity's audio and video systems.
Now, let's explore how to write C# code in Unity to control audio and video.

Scripting with audio and video
In this section, we will explore how to interact with the audio and video systems via
C# scripts. Similar to the previous section, we will also introduce the C# methods for
Audio Source and Video Player respectively. We first start with the C# methods for
Audio Source.

AudioSource.Play
The first function we will introduce is the Play function of AudioSource. The function
signature of Play is as follows:

public void Play();

It is very simple and straightforward to call this function to play an audio clip. However,
if you need to deal with more complex scenarios, such as delaying the playback of an
audio clip, you can call the PlayDelayed function, which will play the clip with a delay
specified in seconds.

270 Integrating Audio and Video in a Unity Project

Note
There was an overloaded version of the Play function, which requires a
delay parameter. However, it's deprecated now. Developers are advised to use
the PlayDelayed function instead of the old Play (delay) function.

The following is the function signature of PlayDelayed:

public void PlayDelayed(float delay);

It requires a parameter, delay, which is specified in samples relative to the 44.1 kHz
reference rate.

Now let's create a new C# script to first obtain a reference to the Audio Source in the scene
and play the audio clip assigned to it by calling the Play function:

using UnityEngine;

public class AudioPlayer : MonoBehaviour

{

[SerializeField]

private AudioSource _audioSource;

 private void Start()

 {

 if(_audioSource == null)

 {

 _audioSource = GetComponent<AudioSource>();

 }

 }

 public void OnClickPlayAudioButton()

 {

 _audioSource.Play();

 }

}

Then we drag this newly created script onto the Audio Source GameObject in the scene to
attach this script to the GameObject as a new component.

Scripting with audio and video 271

Figure 6.30 – Attaching the script to the GameObject

Here, we can manually drag the AudioSource component to the Audio Source field
of the audio player component to obtain a reference to the AudioSource component,
as shown in Figure 6.30. If you forget to assign a value to it, then you can use the
GetComponent<AudioSource>() function to get the AudioSource component
in the code as well.

Next, we will create a UI button in the scene and bind the button with the
OnClickPlayAudioButton function so that when the button is clicked,
the Audio Source will play the audio clip.

Figure 6.31 – Create a button

272 Integrating Audio and Video in a Unity Project

Now we can run the game and click the button to play the sound effect in the scene. This
function is very useful when implementing audio effects; for example, when the player
fires a gun, the sound of the bullet can be played, and so on.

AudioSource.Pause
An Audio Source can be used to play background music. In some cases, we would like
the background music to be paused, such as when the player enters a different scene or
triggers a new plot. At this point, we can consider using the Pause function to pause
playing the background music clip.

The function signature of Pause is very simple, as follows:

public void Pause();

We can create another function for the AudioPlayer class we created earlier:

 public void OnClickPauseAudioButton()

 {

 _audioSource.Pause();

 }

Since the assets pack we downloaded earlier only contains sound effects with a short
duration, in order to demonstrate the function of pausing background music, we can
download and import Free Music Tracks For Games from the Unity Asset Store at the
following link: https://assetstore.unity.com/packages/audio/music/
free-music-tracks-for-games-156413.

https://assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-156413
https://assetstore.unity.com/packages/audio/music/free-music-tracks-for-games-156413

Scripting with audio and video 273

Figure 6.32 – Free Music Tracks For Games

Then replace the sound effect clip referenced by AudioSource with a new background
music clip. Next, we will create another UI button and bind the button with the newly
created OnClickPauseAudioButton function.

Now, we can run the game. If you click the first button, the background music will play;
if you click the second button, we can pause the music.

AudioSource also provides an UnPause function to unpause the paused playback and
an isPlaying property to check whether the current audio clip is playing.

The following is the function signature of UnPause:

public void UnPause();

We can use them to implement a more flexible function of pausing and continuing music
playback as in the following code snippet:

 public void OnClickPauseAudioButton()

 {

 if(_audioSource.isPlaying)

 {

 _audioSource.Pause();

 }

 else

274 Integrating Audio and Video in a Unity Project

 {

 _audioSource.UnPause();

 }

 }

In this way, we can click the second button to pause the music playback, and click again
to continue playing the music.

AudioSource.Stop
In some cases, you may want the background music of the game to stop and then start
from the beginning, instead of pausing and continuing to play. The Stop function of
AudioSource is a suitable solution here.

The function signature of Stop is also very simple, as shown in the following code snippet:

public void Pause();

Let's create another function in the C# script to stop the background music and start
playing from the beginning:

 public void OnClickStopAndPlayAudioButton()

 {

 if(_audioSource.isPlaying)

 {

 _audioSource.Stop();

 }

 else

 {

 _audioSource.Play();

 }

 }

And we will also create a third UI button and bind the button with the
OnClickStopAndPlayAudioButton function.

Run the game and click this button and the background music starts to play. Click again
to stop the background music, and if you click for a third time, the background music
will start to play from the beginning.

Scripting with audio and video 275

VideoPlayer.clip
By default, a VideoPlayer component will play the video clip it refers to. However,
it's a common requirement that we should be able to change the video when the game is
running instead of creating many different Video Player instances. So, we can just modify
the clip property of VideoPlayer via C# code:

using UnityEngine;

using UnityEngine.Video;

public class VideoManager : MonoBehaviour

{

[SerializeField]

private VideoPlayer _videoPlayer;

[SerializeField]

private VideoClip _videoClip;

 void Start()

 {

 if (_videoPlayer == null)

 {

 _videoPlayer = GetComponent<VideoPlayer>();

 }

 }

 public void OnClickChangeVideoClip()

 {

 _videoPlayer.clip = _videoClip;

 }

}

276 Integrating Audio and Video in a Unity Project

In this case, we create a new C# script called VideoManager, which will get a reference
to the target VideoPlayer component and a reference to the video clip asset. There is
also a function called OnClickChangeVideoClip, which will later be bound to a
UI button to change the video clip being played.

Compared to setting an Audio Source, setting a Video Player is slightly more complicated,
because we also need to select a Render Mode option for Video Player. For simplicity,
here we select the Camera Near Plane option and use Main Camera in the scene to
render each frame of the video clip, as shown in Figure 6.33.

Figure 6.33 – Video Player

Then, we also need to assign the newly created script VideoManager to the same
GameObject.

Scripting with audio and video 277

Figure 6.34 – Video Manager

As you can see in Figure 6.34, we not only assigned a reference to Video Player to the
VideoManager script but also assigned a reference to a video clip asset to it.

The third thing is to create a new UI button and bind the button with the
OnClickChangeVideoClip function we mentioned earlier.

Figure 6.35 – UI button

278 Integrating Audio and Video in a Unity Project

Let's play the game in the editor and click the button to change the video clip.

Figure 6.36 – Change the video clip

As shown in Figure 6.36, the video clip of the Video Player component is changed to the
video clip asset we want it to play.

VideoPlayer.url
Sometimes, playing videos from video clip assets is not a good idea. For example, we do
not want to increase the size of the game due to the inclusion of video files, or we want to
develop WebGL-based games, and WebGL does not support video clip assets. Then, the
use of a URL to provide video resources becomes an obvious solution. So, let's add another
function called OnClickSetVideoURL to let the Video Player in the game scene play
the video pointed to by the URL:

[SerializeField] private string _videoURL;

…

 public void OnClickSetVideoURL()

Scripting with audio and video 279

 {

 _videoPlayer.url = _videoURL;

 }

And we also need to create a new UI button and bind the button with the
OnClickSetVideoURL function.

Figure 6.37 – Set Video URL

Run the game and click the Set Video URL button to play the video from the URL,
as shown in the preceding figure.

Note
Unity does not support playing videos from YouTube, so you can host your
video resources on other platforms, such as the Azure cloud.

280 Integrating Audio and Video in a Unity Project

VideoPlayer.Play
In the previous two examples, whether we set the video clip asset or the video URL, the
Video Player will automatically play the video. This is because we have enabled the Play
On Awake option by default, as shown in Figure 6.38.

Figure 6.38 – Play On Awake

Usually, we prefer to be able to control when to play the video ourselves. Therefore, it is a
good idea to disable this option and use C# code in a script to control playback, as shown
in the following code block:

 public void OnClickPlay()

 {

 _videoPlayer.Play();

 }

Scripting with audio and video 281

Here, we will create the third UI button and bind the button with the OnClickPlay
function.

Figure 6.39 – Play Video

This time, if we run the game and click the Change Video Clip button or the Set Video
URL button, there will be no video playing automatically. We also need to click the Play
Video button to call the Play function of Video Player to play the video, as shown in
Figure 6.39.

VideoPlayer.frame and VideoPlayer.frameCount
Speaking of controlling video playback, the video progress bar is a useful feature. We can
also implement a video progress bar in Unity. Next, let's discuss how to use the frame and
frameCount properties of Video Player to implement a video progress bar.

282 Integrating Audio and Video in a Unity Project

The frameCount property is read-only and provides the number of frames in the current
video content. On the other hand, the frame property can be modified and provides the
frame index of the current frame. Therefore, we should first create a UI slider and then
modify the value of the slider according to the value of frame and frameCount for a
VideoPlayer component, as shown in Figure 6.40.

Figure 6.40 – Create a slider

We also need to modify the C# script to obtain a reference to the slider and update the
value of the slider based on the value of frame and the value of frameCount:

using UnityEngine;

using UnityEngine.Video;

using UnityEngine.UI;

public class VideoManager : MonoBehaviour

{

 [SerializeField] private VideoPlayer _videoPlayer;

 [SerializeField] private VideoClip _videoClip;

 [SerializeField] private string _videoURL;

 [SerializeField] private Slider _progressBar;

Scripting with audio and video 283

 void Start()

 {

 if (_videoPlayer == null)

 {

 _videoPlayer = GetComponent<VideoPlayer>();

 }

 }

 private void Update()

 {

 _progressBar.value = (float)_videoPlayer.frame /

 (float)_videoPlayer.frameCount;

 }

 public void OnClickChangeVideoClip()

 {

 _videoPlayer.clip = _videoClip;

 }

 public void OnClickSetVideoURL()

 {

 _videoPlayer.url = _videoURL;

 }

 public void OnClickPlay()

 {

 _videoPlayer.Play();

 }

}

In this case, we are using the UnityEngine.UI namespace because we need to access
the UI slider from our code. And we implemented the Update function to update the
value of the slider.

284 Integrating Audio and Video in a Unity Project

Let's run the game and play the video as before.

Figure 6.41 – The progress bar

We can see that as the video plays, the progress bar is also updated.

In this section, we explored and demonstrated the use of C# code to control audio
and video, such as how to play audio and video, pause audio and video, and implement
a progress bar via C# code.

However, if you are using Unity to develop a web application, then you may encounter
other problems. Let's continue to explore.

Things to note when using Unity to develop
web applications
Unity is a cross-platform game engine, which means that we can deploy games that use
the same code base and resources on different platforms, including WebGL. However, if
you are using Unity to develop games for the web platform, here are some notes about
implementing a video player.

Things to note when using Unity to develop web applications 285

URL
First of all, the VideoPlayer.clip property is not supported on WebGL, which means
that you can implement your video player solution by playing the video content in the
video clip assets in the editor. However, once you build and deploy your web application
to the server and run it, the video will not be played, even if the required video assets are
packaged and deployed together.

Figure 6.42 – WebGL

As shown in Figure 6.42, when we run the web app and click the Play Video button,
nothing will happen.

In this case, we have to provide a video source via the VideoPlayer.url property
instead. If the video file has been hosted on another cloud platform, then we can
directly use the method introduced in the previous section to play the video pointed to
by the URL. In addition, VideoPlayer.url also supports local absolute or relative
paths. Therefore, we can also build and deploy video files and other content of the
game together. It should be noted that in this case, we no longer use Unity's video clip
assets, but directly use the original video files, and put these video files in a folder called
StreamingAssets.

286 Integrating Audio and Video in a Unity Project

Note
StreamingAssets is a special folder name of a Unity project. Files in this folder
are available in their original format.

Here, we can create a new folder in the root of the project, rename it StreamingAssets,
then put the original video file in this folder.

Figure 6.43 – StreamingAssets folder

As you can see in Figure 6.43, the video file is in its original format and has not been
converted into a Unity video clip asset.

Next, let's create another C# script to demonstrate how to make Video Player load this
video file and play it in the browser:

using System.IO;

using UnityEngine;

using UnityEngine.Video;

public class VideoManagerForWeb : MonoBehaviour

{

 [SerializeField] private VideoPlayer _videoPlayer;

 [SerializeField] private string _videoFileName;

 void Start()

 {

 if (_videoPlayer == null)

 {

 _videoPlayer = GetComponent<VideoPlayer>();

 }

 }

Things to note when using Unity to develop web applications 287

 public void OnClickSetVideoURL()

 {

 _videoPlayer.url =

 Path.Combine(Application.streamingAssetsPath,

 _videoFileName);

 }

}

In this script, we access the Application.streamingAssetsPath property to get the
path to the folder at runtime and assign the path to the url property of VideoPlayer.

Now, instead of running the game in the editor, we build and deploy it as a web application,
and then run it in the browser.

Figure 6.44 – Play the video in the broswer

This time the video played as expected in the browser.

288 Integrating Audio and Video in a Unity Project

Frame rate
When developing WebGL applications with Unity, another thing you should pay
attention to is the frame rate of the video. In Unity, the frame rate is expressed as
frames per second.

Let's print the video length, video frame count, and video frame rate information of the
sample video we are using in the editor.

Figure 6.45 – Frame rate

As you can see here, the frame count of this video is 213, the video length is 7.1 seconds,
and the frame rate is 30 FPS.

However, since the underlying implementation on the WebGL platform, that is, the
JavaScript API for HTML5 <video>, does not disclose frame rate information, the frame
rate is always assumed to be 24 FPS, even if the real frame rate of the video is 30 FPS.
Therefore, frames/second of a video is always 24, which should be paid attention to when
implementing the video progress bar for WebGL.

In this section, we discussed the things that need to be paid attention to when using Unity
to develop video functions due to some limitations of the web platform. Next, we will
explore how to use the profiler tool provided by Unity to locate the performance problems
caused by audio and how to solve them.

Increasing the performance of the audio system 289

Increasing the performance of the audio
system
In game development, the importance of audio is often overlooked. Sometimes this is
also reflected in performance optimization. Game developers usually invest more effort in
other performance areas, such as performance optimization for graphics rendering. But as
games become more and more complex, audio can also cause performance problems, such
as greater memory usage and so on. In this section, we will explore how to optimize audio
performance in Unity.

The Unity Profiler
First, we should learn how to use the Unity Profiler tool to view and locate performance
bottlenecks caused by the audio system in Unity:

1. Click Window | Analysis | Profiler or use the keyboard shortcut Ctrl + 7
(command + 7 on macOS) to open the Profiler window.

2. Click the Audio module area in the Profiler window to view the performance data
of the audio system. You can find out how many Audio Sources are playing, the
number of audio clips being used, and the amount of memory being used for audio,
and so on, as shown in Figure 6.46:

Figure 6.46 – Audio Profiler

290 Integrating Audio and Video in a Unity Project

As shown in Figure 6.46, the value of Total Audio Memory is 38.9 MB, which is
very bad because, currently, only one Audio Source is playing sound. Therefore, we
can click on the drop-down menu labeled Simple and switch to the Detailed view.

Figure 6.47 – Switch to the Detailed view

3. We can get more information about the audio system and identify the specific audio
asset that occupies 38.9 MB of memory.

Figure 6.48 – Detailed view

Next, we will introduce how to reduce the memory occupied by this audio resource.

Increasing the performance of the audio system 291

Using Force To Mono to save memory
If we inspect this audio asset, we will find the audio asset is stereo, as shown in Figure 6.49.

Figure 6.49 – The audio clip

However, since there is only one Audio Source in the game scene, which means that the
sound is emitted from one point, the effect of using stereo is lost here, but the memory
consumption is twice that of mono. Therefore, if the game does not require stereo and
needs to reduce memory overhead, we can just enable the Force To Mono option in the
audio clip's import settings to convert the stereo audio clip to a mono audio clip.

Figure 6.50 – Enable Force To Mono

292 Integrating Audio and Video in a Unity Project

Then let's play the audio again. This time we find that the memory consumption of this
audio clip has dropped from 38.9 MB to 20.2 MB, which is almost halved.

Figure 6.51 – Memory consumption has dropped

In this section, we introduced how to use Unity's Profiler tool to view the performance
data of the audio system and explored how to optimize the performance of the
audio system.

Summary
In this chapter, we started by introducing the audio and video features provided by Unity,
then we explored some of the most important concepts in the Unity audio system and
video system, such as audio clip assets, Audio Source components, Audio Listener
components, Video Player components, and so on. We also discussed how to create
a new script in Unity to interact with Unity's audio system and video system.

Then we demonstrated how to implement a video for the web platform because WebGL
does not support Unity's video clip assets and due to underlying implementation reasons,
the video frame rate is always assumed to be 24 FPS. These need to be paid attention to.

Finally, we explored how to view and locate performance bottlenecks caused by the audio
system in Unity.

In the next chapter, we will introduce the mathematics of computer graphics in Unity.

Part 3:
Advanced Scripting

in Unity

In this section, we will introduce advanced topics in Unity, such as the Scriptable Render
Pipeline, the Data-Oriented Technology Stack (DOTS), and serialization in Unity.
Additionally, we'll also cover how to use the Microsoft Azure cloud for assets management
and hosting player data in the cloud.

This part includes the following chapters:

• Chapter 7, Understanding the Mathematics of Computer Graphics in Unity

• Chapter 8, The Scriptable Render Pipeline in Unity

• Chapter 9, Using Data-Oriented Technology Stack in Unity

• Chapter 10, Serialization System and Assets Management in Unity and Azure

• Chapter 11, Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

7
Understanding the

Mathematics of
Computer Graphics

in Unity
Mathematics is a topic that is often discussed in game development. Although Unity has
provided game developers with many helper functions to reduce the complexity of using
mathematics in Unity, it is still necessary to have some basic mathematical knowledge
about computer graphics, such as coordinate systems, vectors, matrices, and quaternions.

In this chapter, we will explore the following key topics:

• Getting started with coordinate systems

• Working with vectors

• Working with the transformation matrix

• Working with quaternions

296 Understanding the Mathematics of Computer Graphics in Unity

By the end of this chapter, you will have mathematical knowledge of computer graphics
and know how to use vectors, matrices, quaternions, and Euler angles in scripts correctly.

Now, let's get started!

Getting started with coordinate systems
Like many files, most model files are binary files. When a game engine, such as Unity,
needs to render a model, the data of the model, such as the vertex array of the model and
the index of the vertex array, will be extracted and processed through the render pipeline
of the game engine.

Note
You can find more information about the render pipeline in computer graphics
at https://www.khronos.org/opengl/wiki/Rendering_
Pipeline_Overview.

A graphics render pipeline mainly includes two functions: one to convert the 3D
coordinates of an object into 2D coordinates in the screen space and the other to
color each pixel of the screen. Finally, the 3D model is rendered on the 2D screen.

In the process of the render pipeline, a lot of coordinate system conversion work will be
involved, as you can see in Figure 7.1. So, it's an important topic and we will introduce
information about coordinate systems in this section:

Figure 7.1 – Coordinate transformation process (CC BY 4.0)

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

Getting started with coordinate systems 297

Understanding left-handed and right-handed
coordinate systems
A coordinate system is a geometric system that typically uses numbers to determine the
position of a point in space.

In mathematics, there are many different types of coordinate systems, such as the number
line coordinate system, Cartesian coordinate system, and polar coordinate system. In
computer graphics, the Cartesian coordinate system is the most commonly used.

Figure 7.2 – Cartesian coordinate system

The Cartesian coordinate system is also very common in our daily lives, that is, the x axis,
y axis, and z axis are used to describe the coordinate information of the object. When
used to describe 3D space, the Cartesian coordinate system can be either a left-handed
coordinate system or a right-handed coordinate system. As their names imply, we can
actually distinguish between the two by using the left hand and the right hand.

Figure 7.3 – Coordinate systems (CC BY-SA 3.0)

298 Understanding the Mathematics of Computer Graphics in Unity

As shown in Figure 7.3, we can distinguish between the left-handed coordinate system and
the right-handed coordinate system by visualizing the thumb pointing to the x axis, the
index finger to the y axis, and the middle finger to the z axis.

Figure 7.4 – Left-handed coordinate system in Unity

If we look in the Unity Editor, we can see that Unity uses the left-handed coordinate
system, as shown in Figure 7.4.

Local space
Coordinate space is the space where 3D positions and transformations exist within the
coordinate system, such as local space and world space. In Unity, we often work with local
space or world space. Local space is related to the concept of the parent-child relationship,
which means it uses the origin and axes of the GameObject's parent node in the hierarchy
of GameObjects. The position, rotation, and scaling of the parent GameObject will affect
the local space defined by it. Therefore, this is useful not when we are dealing with the
transformation of a single GameObject but of a group of GameObjects.

Getting started with coordinate systems 299

For example, in Figure 7.5, the five cube objects are all children of the GameObject named
LocalSpace:

Figure 7.5 – LocalSpace parent object

We can see that the Position and Rotation values of the parent GameObject are 0. Now,
let's move this parent object down 2 units along the y axis and also rotate it 45 degrees
around the y axis.

Figure 7.6 – LocalSpace parent object

300 Understanding the Mathematics of Computer Graphics in Unity

As shown in Figure 7.6, all these cubes have moved down 2 units along the y axis and
rotated 45 degrees around the y axis. However, if we look at the position and rotation of
individual cubes in the Inspector window, we can see that these values have not changed.
This is because, currently, they are in local space defined by their parent object, and the
position and rotation of a single cube relative to its parent object have not changed.

Figure 7.7 – Local space child object

We can change the local position, local rotation, and local scale of a child object through
C# code at runtime, as shown:

public class LocalSpaceTest : MonoBehaviour

{

 private Vector3 _localPosition = new Vector3(-2, 0, 0);

 private Vector3 _localScale = new Vector3(1, 2, 1);

 private Transform _transform;

Getting started with coordinate systems 301

 private void Start()

 {

 _transform = gameObject.transform;

 _transform.localPosition = _localPosition;

 _transform.localScale = _localScale;

 }

}

Attach this script to the child object named Cube (1) and run the game. We can see in the
following screenshot that the child object has moved 2 units along the x axis relative to the
parent object and is magnified 2 times along the y axis relative to the parent object:

Figure 7.8 – Changing the local postion and local scale

In this section, we discussed local space. Next, we will explore world space.

302 Understanding the Mathematics of Computer Graphics in Unity

World space
Unlike local space, which is defined by a parent GameObject, world space is the coordinate
system for the entire Scene. The center of the Scene is the origin of world space.

Let's create a new Cube object in the Scene and this time, this new cube is not a child of
other GameObjects.

Figure 7.9 – World space

As shown in Figure 7.9, when the position of the cube is 0, the cube is located in the center
of the Scene. If we change the x value of the cube position from 0 to 1, then the cube will
advance 1 unit along the x axis of world space.

Getting started with coordinate systems 303

Figure 7.10 – Moving in world space

We can also modify the position, rotation, and scale of a GameObject in world space in
a C# script. The following code snippet shows how to do this:

using UnityEngine;

public class WorldSpaceTest : MonoBehaviour

{

 void Start()

 {

 transform.position = new Vector3(0, 1, 0);

 }

}

304 Understanding the Mathematics of Computer Graphics in Unity

The position property is the world space position of the transform. In addition
to directly modifying the position or rotation properties, we can also call the
following method to modify the position and rotation properties of the object
at the same time:

public void SetPositionAndRotation(Vector3 position, Quaternion

 rotation);

We can see that this method requires a Vector3-type parameter and a Quaternion-
type parameter. We will introduce vectors and quaternions later in the Working with
vectors and Working with quaternions sections, respectively.

Screen space
As we mentioned at the beginning of this section, the coordinate system can be used to
determine a point in space. This refers to not only 3D space but also 2D space. Screen
space is the space defined by the viewer's screen. It means that the screen space projects
the content onto the screen.

In screen space, the coordinates are in 2D; (0,0) is the lower-left corner and (screen.width,
screen.height) is the upper-right corner, as shown in the following screenshot:

Figure 7.11 – Screen space

Getting started with coordinate systems 305

2D elements are often described in screen space, and the most common is the UI. Another
common use of screen space is to get the position of the mouse input. The reason is
obvious: the mouse moves on the screen. The following code snippet demonstrates
how to get the position of the mouse in a C# script:

using UnityEngine;

public class ScreenSpaceTest : MonoBehaviour

{

 void Update()

 {

 Vector2 mousePosition = Input.mousePosition;

 Debug.Log($"Mouse Position: {mousePosition}");

 }

}

The mousePosition property of the Input class will return the current mouse
position in screen space, and the preceding code will print the mouse position to the
Console window, as shown in Figure 7.12:

Figure 7.12 – Mouse position

306 Understanding the Mathematics of Computer Graphics in Unity

After obtaining the screen space position of the mouse, we can use the methods provided
by Unity's Camera class to convert the screen space position to the world space position.
In addition, Unity allows us to create a ray that goes from the camera through a screen
point to the game world. This can help us deal with a common situation in games where
we need to know what the player is clicking on in the 3D game world, even though the
player can only actually click on a 2D screen.

The method signatures of some methods are as follows:

public Ray ScreenPointToRay(Vector3 pos);

public Vector3 ScreenToWorldPoint(Vector3 position);

As we just mentioned, the ScreenPointToRay method is very useful because it returns
a Ray instance from the camera pointing to the mouse position in the world space. I hope
you still remember the Collider component in the physics system we introduced in the
previous chapter because we can use this method to cast a ray to the collider and get the
details of the collider, and it can also be used to draw a line in the Scene view of the Unity
Editor to help with debugging.

Next, we will modify the previous code to implement a function that can detect whether
there is a collider at the mouse click position and draw a red line in the Scene view if
there is a collider:

 Ray _ray;

 private void FixedUpdate()

 {

 _ray =

 Camera.main.ScreenPointToRay(Input.mousePosition);

 if (Physics.Raycast(_ray, out RaycastHit hit, 50))

 {

 Debug.DrawLine(_ray.origin, hit.point,

 Color.red);

 }

 }

Getting started with coordinate systems 307

As the code snippet shows, we are calling the ScreenPointToRay method to create a ray
pointing in the direction of the mouse from the location of the main camera in the scene,
and then using this ray to detect colliders in the Scene by calling Physics.Raycast,
and finally calling Debug.DrawLine to draw a red line in the Scene view, as shown in
the following screenshot:

Figure 7.13 – Drawing a red line

In Figure 7.13, the top is the game view, which is the window where the game is running,
and the bottom is the Scene view, which is the window for debugging.

We have introduced you to coordinate systems in this section. Next, we will discuss
another very important topic: vectors.

308 Understanding the Mathematics of Computer Graphics in Unity

Working with vectors
In game development, we use vectors to define directions and positions. As shown in the
following figure, we draw a line between two points to represent a vector. In this case, the
vector starts from the origin, which is point B (0, 0) on the graph, to point A (6, 2):

Figure 7.14 – 2D position

We can see this vector is made up of two components, namely x and y. They represent
the distance from the origin along the x axis and the y axis. Therefore, this vector can be
used to define the position of point A relative to the origin in the space. In addition to the
position of point A, we can also calculate the length of the distance between these two
points, and we call it the magnitude. The magnitude of a 2D vector is the square root
of (x*x+y*y).

In Unity, we will use the Vector2 structure to represent 2D vectors and points. The
magnitude property of Vector2 returns the value of the magnitude of this 2D vector.

3D vectors are similar to 2D vectors, but we also need to consider the value of the z axis.
The magnitude of a 3D vector is the square root of (x*x+y*y+z*z).

Unity also provides the Vector3 structure to represent 3D vectors and points. If you look
at the Inspector window of a GameObject in the Scene, you will find that the Position,
Rotation, and Scale properties of the object are all Vector3 types, as shown in the
following figure:

Working with vectors 309

Figure 7.15 – Transform of a GameObject

Vector addition
Since vectors can be used to describe positions, they can also be used to describe positions
that change over time. A moving object has a velocity, which is the speed of the object in a
given direction.

Figure 7.16 – Vector addition

As shown in Figure 7.16, suppose an object is currently located at point A and its velocity
is (1, 1) per minute, which means the object will move in a direction that is 1 unit further
on the x axis and 1 unit further on the y axis. So, we will add its current position vector to
its velocity vector to calculate where it will end up after 1 minute:

(6, 2) + (1, 1) = (7, 3)

The new position of this object after 1 minute is (7, 3).

310 Understanding the Mathematics of Computer Graphics in Unity

How to subtract vectors
Vector subtraction and vector addition are very similar. We can reverse the direction of
the second vector and use vector addition. Let's still use the previous example. Suppose a
moving object is currently located at point A and its velocity is (-1, -1) per minute, which
means the object will move in a direction that is -1 unit further on the x axis and -1 unit
further on the y axis.

Figure 7.17 – Vector subtraction

Let's add its current position vector to its velocity vector to calculate where it will end up
after 1 minute again:

(6, 2) - (1, 1) = (6, 2) + (-1, -1) = (5, 1)

The new position of this object after 1 minute is (5, 1).

In Unity, we can add vectors and subtract vectors in C# code, as follows:

 private void Start()

 {

 var vector1 = new Vector3(1, 1, 1);

 var vector2 = new Vector3(1, 2, 3);

 var addVector = vector1 + vector2;

 var subVector = vector1 - vector2;

 Debug.Log($"Addition: {addVector}");

 Debug.Log($"Subtraction: {subVector}");

 }

Working with vectors 311

In the previous code snippet, we created two 3D vectors, (1, 1, 1) and (1, 2, 3).
Then, we added and subtracted them respectively and printed the results to the
Console window.

Figure 7.18 – Adding vectors and subtracting vectors

In order to move objects in Unity, knowledge of vectors is needed. But sometimes we don't
have to directly calculate the result of vector addition or subtraction in the code. This is
because Unity provides us with the Transform.Translate function to move objects.
Of course, we still need to pass a vector parameter to provide velocity:

 private void Update()

 {

 transform.Translate(_speed * Time.deltaTime *

 Vector3.forward);

 }

The preceding code snippet demonstrates how to move an object by calling the
Transform.Translate function.

Dot product
In addition to vector addition and vector subtraction, 3D vector operations commonly
used in game development also include dot product operations and cross product
operations. We will introduce them separately in this section and the next section.

First, we will explore the dot product in Unity. The dot product or scalar product takes two
vectors and returns a single scalar value.

Suppose there are two 3D vectors, named vector1 and vector2; the calculation process of
the dot product is very simple, as shown:

scalar value = (x1 * x2) + (y1 * y1) + (z1 * z2)

312 Understanding the Mathematics of Computer Graphics in Unity

In game development, vector dot product operations are often used to find out whether
these two vectors are perpendicular to each other. If the result of their dot product
operation is 0, the two vectors are perpendicular to each other. If the result is positive, the
angle between the two vectors is less than 90 degrees. If the result is negative, the angle
between the two vectors is greater than 90 degrees.

Next, we can create two 3D vectors in the Unity Editor to demonstrate how to use the
vector dot product operation.

Figure 7.19 – Two 3D vectors in the Editor

As shown in Figure 7.19, the green line represents the first vector, which is (0, 5, 0), and
the yellow line represents the other vector, which is (5, 0, 5). The result of the dot product
operation of these two vectors is as follows:

0 = (0 * 5) + (5 * 0) + (0 * 5)

Working with vectors 313

At the same time, we can see in Figure 7.19 that these two vectors are perpendicular.

If the first vector is (0, 5, 5), the result of the dot product operation of these two vectors
will be as follows:

25 = (0 * 5) + (5 * 0) + (5 * 5)

As shown in Figure 7.20, the two vectors are not perpendicular this time, and the included
angle is less than 90 degrees:

Figure 7.20 – Two 3D vectors in the Editor

If the first vector is (0, 1, -1), the result of the dot product operation of these two vectors
will be as follows:

-5 = (0 * 5) + (1 * 0) + (-1 * 5)

314 Understanding the Mathematics of Computer Graphics in Unity

As shown in Figure 7.21, the two vectors are not perpendicular this time, and the included
angle is greater than 90 degrees:

Figure 7.21 – Two 3D vectors in the Editor

Unity provides us with a function to calculate the result of the dot product of two 3D
vectors, as follows:

public static float Dot(Vector3 lhs, Vector3 rhs);

It is a static function and we can call it directly in our C# code:

public class VectorTest : MonoBehaviour

{

 private Vector3 _vectorA = new Vector3(0, 1, -1);

 private Vector3 _vectorB = new Vector3(5, 0, 5);

 private void Start()

 {

 var result = Vector3.Dot(_vectorA, _vectorB);

 Debug.Log(result);

 }

}

Working with vectors 315

Cross product
On the other hand, the cross product takes two vectors as well but returns another
vector instead of a single scalar value. This vector is perpendicular to both of the
original two vectors.

Figure 7.22 – Cross product (CC BY-SA 4.0)

Compared with the dot product, the calculation process of the cross product is more
complicated. The preceding figure demonstrates this process.

Unity also offers another helpful function to calculate the result of the cross product of
two 3D vectors, as follows:

public static Vector3 Cross(Vector3 lhs, Vector3 rhs);

It is a static function and we can call it directly in our C# code:

 void FixedUpdate()

 {

 var vector1 = new Vector3(0, 1, 0);

 var vector2 = new Vector3(1, 0, 1);

 Debug.DrawLine(Vector3.zero, vector1, Color.green);

 Debug.DrawLine(Vector3.zero, vector2,

 Color.yellow);

 var resultVector = Vector3.Cross(vector1, vector2);

 Debug.DrawLine(Vector3.zero, resultVector,

 Color.cyan);

 }

316 Understanding the Mathematics of Computer Graphics in Unity

In this code snippet, we calculate the result of the cross product of vector1 and vector2
and at the same time, we also draw these three vectors in the Unity Editor, as shown in
the following figure:

Figure 7.23 – Cross product

In this section, we introduced vectors and explored how to use vectors correctly in Unity
scripts. Next, let's continue to explore another important concept in computer graphics,
namely matrices.

Working with the transformation matrix
In game development, the transformation matrix is also a common term. Specifically, we
use the transformation matrix to encode transformations, including translation, rotation,
and scaling transforms.

Unity provides us with the Matrix4x4 struct in C# to represent a standard 4x4
transformation matrix.

Figure 7.24 – A 4x4 matrix

Working with the transformation matrix 317

As shown in Figure 7.24, a transformation matrix is a grid of numbers. Although it is a
common term, we rarely use this matrix directly in scripts. This is because the calculation
of the matrix is relatively cumbersome, and Unity, as an easy-to-use game engine, has
encapsulated the complex calculations in the Transform class for us, and we only need
to call some functions. Therefore, in this section, we only give a brief introduction to the
transformation matrix.

Before we start, you should know that transformations include translation, rotation,
scaling, and these operations can be represented as matrices. We will discuss them one
by one in the following subsections.

Translation matrix
We can move an object by using a translation matrix. The following diagram shows a
translation matrix and how to move the original vector by multiplying the translation
matrix:

Figure 7.25 – Translation matrix (CC BY 4.0)

Let's create a C# script and demonstrate how to move an object by using a matrix directly
in Unity:

using UnityEngine;

public class MatrixTest : MonoBehaviour

{

 void Start()

 {

 var translationMatrix = new Matrix4x4(

 new Vector4(1, 0, 0, 0),

 new Vector4(0, 1, 0, 0),

 new Vector4(0, 0, 1, 0),

 new Vector4(3, 2, 1, 1)

);

318 Understanding the Mathematics of Computer Graphics in Unity

 var newPosition =

 translationMatrix.MultiplyPoint

 (transform.position);

 transform.position = newPosition;

 }

}

As you can see in this code snippet, we used four Vector4 instances to create an instance
of the Matrix4x4 struct. It should be noted here that each Vector4 we used to create
the matrix represents a column of the matrix, not a row. Therefore, the code creates a
matrix, as shown in the following figure:

Figure 7.26 – Creating a matrix

Then, we calculated the new position of the object by calling the MultiplyPoint
function of Matrix4x4, where the parameter is the original position of the object.
Finally, we set the position of the object to this new vector.

Figure 7.27 – Changing the position of the object

If we create an object at the origin and run this script, the result will be that the object is
moved to the point (3, 2, 1), as shown in Figure 7.27.

Working with the transformation matrix 319

Rotation matrix
Similarly, a matrix can also be used to rotate an object, that is, a rotation matrix. This time,
we also need to create an instance of Matrix4x4 in the C# script, but instead of calling
its constructor, we call this function:

public static Matrix4x4 Rotate(Quaternion q);

The Rotate function is a static function of Matrix4x4, and it creates and returns a
rotation matrix. This function requires a quaternion-type parameter. We will introduce
quaternions in the next section.

Now, let's write some code to rotate the object by using Matrix4x4:

 var rotation = Quaternion.Euler(0, 90, 0);

 var rotationMatrix = Matrix4x4.Rotate(rotation);

 var newPosition =

 rotationMatrix.MultiplyPoint(transform.position);

 transform.position = newPosition;

This code will move the point from its original position to a place rotated 90 degrees
around the y axis.

Figure 7.28 – Rotation matrix

320 Understanding the Mathematics of Computer Graphics in Unity

Let's set the original position of this object to (1, 0, 0) and then run the code. The new
position of this object should be (0, 0, -1), as shown in the preceding figure.

Figure 7.29 – The real result

After running the code, we can see that the real result is consistent with what we expected.

Scaling matrix
When we scale a vector, we will keep its direction unchanged and change the length by
the amount we want to scale. We can also use a scaling matrix to scale a point away from
the origin. You can imagine that a model is composed of many vertices. When we scale
a model, we actually extend or shrink the positions of the vertices that make it up.

Unity also provides us with the following function to directly create a scaling matrix
in a C# script:

public static Matrix4x4 Scale(Vector3 vector);

The Scale function is a static function of Matrix4x4, and it creates and returns a
scaling matrix:

 private void ScalingMatrixTest()

 {

 var scale = new Vector3(3, 2, 1);

 var scalingMatrix = Matrix4x4.Scale(scale);

 var newPosition =

 scalingMatrix.MultiplyPoint(transform.position);

 transform.position = newPosition;

 }

Working with the transformation matrix 321

In order to demonstrate how to apply a scaling matrix to a point, we created the preceding
code snippet. As you can see in the code, we created a new Vector3 to present the scaling
factors. Then, we created a scaling matrix by calling the Matrix4x4.Scale function
and finally, we applied this matrix to a point.

Let's create a new GameObject in the Scene and locate this GameObject at the position
(1, 1, 0).

Figure 7.30 – GameObject at (1, 1, 0)

Then, attach this script to it and run the script.

Figure 7.31 – Apply the scaling matrix to this object

322 Understanding the Mathematics of Computer Graphics in Unity

As shown in Figure 7.31, the new position of this object is (3, 2, 0). This is because this
scaling matrix increases the point three times along the x axis from its original position
and two times along the y axis.

Figure 7.32 – Scaling a point

As we mentioned at the beginning of this section, in Unity development, matrix
operations are relatively low-level operations. Unity has provided us with many functions
to cover up the complexity of matrices. Developers don't often use matrices directly, but as
an important concept, we still need to understand some concepts around them. However,
when it comes to object rotation, Unity often uses another type to save rotation data. If
you are interested in this, let's continue to explore quaternions.

Working with quaternions
In Unity, the rotation of a transform is stored internally as a quaternion, which has four
componenets, namely x, y, z, and w. However, these four components do not represent
angles or axes, and we developers usually do not need to access them directly. You may
be confused because if you look at the Inspector window of a transform, you will find the
rotation is displayed as a Vector3.

Working with quaternions 323

Figure 7.33 – Rotation property in the Inspector window

This is because although Unity uses quaternions to store rotations internally, in addition to
quaternions, rotations can also be represented by three angle values of x, y, and z, namely
Euler angles.

Therefore, for the convenience of developers to edit, Unity displays the value of the
equivalent Euler angle in the Inspector.

So, why doesn't Unity use Euler angles to store rotations directly? It is composed of three
axes angles and is in a format that is easy for humans to read. This is because the Euler
angle is affected by the gimbal lock, which means that the "degree of freedom" is lost.

On the other hand, using quaternion rotation will not cause the gimbal lock issue.
Therefore, Unity uses quaternions to store rotations internally. But what you have to
remember is that the four components of a quaternion do not represent angles, so we will
not modify the value of a component individually, and it is very complicated to modify a
quaternion directly. Fortunately, Unity provides us with many built-in C# functions in the
Quaternion struct to manage quaternion rotations easily. It is our best choice to use the
Quaternion structure and its functions to manage the rotation values in Unity.

We can divide these functions into three groups according to their purpose, namely
creating rotations, manipulating rotations, and working with Euler angles. Let's explore
them next.

Creating rotations
The first function we will introduce is LookRotation and the function signature of this
function is as follows:

public static Quaternion LookRotation(Vector3 forward,

 [DefaultValue("Vector3.up")] Vector3 upwards);

324 Understanding the Mathematics of Computer Graphics in Unity

This is a static function; you can pass in parameters to specify the forward and upward
direction for it, and it will return the correct rotation value according to the passed-in
parameters.

In the following example, we set up a Scene in which there are two objects, named
target and player, and created a new C# script called LookAtScript.cs. We then
attached this script to the player object, as shown in Figure 7.34. The blue cube represents
the player and the red sphere represents the target object:

Figure 7.34 – Objects in the Scene

In the following script, we demonstrate how to implement the function that the player
always faces the target object no matter where the target moves:

using UnityEngine;

public class LookAtTest : MonoBehaviour

{

 [SerializeField] private Transform _targetTransform;

Working with quaternions 325

 private void Update()

 {

 if (_targetTransform == null) return;

 var dir = _ targetTransform.position –

 transform.position;

 transform.rotation = Quaternion.LookRotation(dir);

 }

}

First, we calculated the direction from the player to the target. Next, we called the
Quaternion.LookRotation function to calculate the rotation value.

Figure 7.35 – The player facing the target

Finally, we moved the target object and the player also moved to face the target, as shown
in Figure 7.35.

326 Understanding the Mathematics of Computer Graphics in Unity

Manipulating rotations
There are some functions that are used to manipulate rotations and Quaternion.
Slerp is one of them. The following is the function signature of it:

public static Quaternion Slerp(Quaternion a, Quaternion b,

 float t);

This is a static function. The result of calling Quaternion.Slerp is that the object will
start to rotate, slower, then faster in the middle.

In the following example, we still use the Scene we set up earlier, this time creating a new
C# script called OrbitScript.cs. Then, we will attach this script to the player object
to implement a gravity orbit effect.

Figure 7.36 – Attaching the script to the GameObject

The code of OrbitScript.cs is as follows:

using UnityEngine;

public class OrbitScript : MonoBehaviour

{

 [SerializeField] private Transform _target;

 void Update()

Working with quaternions 327

 {

 if (_target == null) return;

 var dir = _target.position - transform.position;

 var targetRotation = Quaternion.LookRotation(dir);

 var currentRotation = transform.localRotation;

 transform.localRotation =

 Quaternion.Slerp(currentRotation, targetRotation,

 Time.deltaTime);

 transform.Translate(0, 0, 5 * Time.deltaTime);

 }

}

In this script, we reused some code from LookAtScript.cs. We also first calculated the
angle of the player toward the target. But unlike the previous script, we did not directly
modify the player's rotation, but saved the target rotation and the player's current rotation
with two temporary variables, namely targetRotation and currentRotation.
Then, the Quaternion.Slerp function was called to make the player gradually turn to
the target, which is also the key to achieving the effect of gravity orbit. Finally, we called
the transform.Translate function to keep the player moving forward.

Figure 7.37 – Running the game

328 Understanding the Mathematics of Computer Graphics in Unity

If we run the game, we will find that the player will move around the target and turn to
face the target, as shown in Figure 7.37.

Working with Euler angles
If in some cases you prefer to use Euler angles instead of quaternions, Unity allows you
to convert Euler angles to a quaternion, but you should not retrieve Euler angles from
a quaternion and apply it to the quaternion after modifying it, because this may cause
problems.

Quaternion.Euler is one of these functions that we can use to convert Euler angles
into quaternions. The following is its function signature:

public static Quaternion Euler(Vector3 euler);

This function requires a Vector3-type parameter, which provides the angle around the
x axis, the angle around the y axis, and the angle around the z axis. Based on this data, this
function returns the corresponding quaternion rotation.

The following code snippet demonstrates how to use Euler angles in the script correctly:

using UnityEngine;

public class EulerAnglesTest : MonoBehaviour

{

 private float _xValue;

 private void Update()

 {

 _xValue += Time.deltaTime * 5;

 var eulerAngles = new Vector3(_xValue, 0, 0);

 transform.rotation = Quaternion.Euler(eulerAngles);

 }

}

Summary 329

In the code, we created Euler angles that rotate around the x axis, and then called the
Quaternion.Euler function to convert Euler angles into quaternions.

Figure 7.38 – Converting Euler angles into quaternions

Attach this script to a cube and run the game. You will find the cube rotates around
the x axis.

In this section, we introduced you to quaternions and explored how to use quaternions
correctly in Unity scripts. It should be noted that in Unity, rotation can not only be
represented by quaternions, but also by Euler angles. When Euler angles are used to
represent rotation, its format is easy for humans to read, but due to the influence of
the gimbal lock, Unity still uses quaternions to save rotations internally.

Summary
This chapter first introduced the concept of the coordinate system in computer graphics,
and then discussed the coordinate system used by Unity. Then, we discussed the
concept of vectors and how to perform vector operations such as vector addition,
vector subtraction, dot product, and cross product in Unity.

We also introduced the concept of a matrix and demonstrated how to use a matrix
to translate, rotate, and scale in Unity.

330 Understanding the Mathematics of Computer Graphics in Unity

Finally, we explored how to create rotations and manipulate rotations in quaternions, and
demonstrated how to use Euler angles in the script correctly.

By reading this chapter, you should now have a bit more mathematical knowledge about
computer graphics. In the next chapter, we will introduce the Scriptable Render Pipeline
in Unity.

8
The Scriptable

Render Pipeline in
Unity

In the Chapter 7, Understanding the Mathematics of Computer Graphics in Unity, we learned
about the mathematics used in computer graphics. This knowledge is general computer
graphics knowledge, and all 3D software and game engines use those mathematical
concepts. For a game engine, rendering is one of the most important functions. In this
chapter, we will specifically explore the rendering functions provided by Unity.

The following key topics will be explored in this chapter:

• An introduction to the Scriptable Render Pipeline

• Working with Unity's Universal Render Pipeline

• The Universal Render Pipeline shaders and materials

• Increasing performance of the Universal Render Pipeline

332 The Scriptable Render Pipeline in Unity

By the end of this chapter, you will understand what the Scriptable Render Pipeline is and
how to enable the Scriptable Render Pipeline-based Universal Render Pipeline and High
Definition Render Pipeline in your project. You will also know how to use the Universal
Render Pipeline Asset to configure your render pipeline and how to use the Volume
framework to apply post-processing effects to your game. You will also know how to create
a custom shader and material that can be used in the Universal Render Pipeline, how to use
Unity's Frame Debugger tool to view the information of the rendering process, and how to
use the SRP Batcher to reduce the number of draw calls in your project.

It sounds exciting! Now, let's get started!

An introduction to the Scriptable Render
Pipeline
Since its first release in 2004, the Unity game engine has grown into the world's most
widely used real-time content creation platform. A large number of games are developed
using the Unity game engine. At the same time, Unity is being rapidly applied to the
content design and production process of traditional industries, including VR, AR,
and MR simulation applications, architectural design display, automobile design and
manufacturing, and even film and television animation production. The development of
real-time rendering technology based on computer graphics is an important reason for
the rapid growth and widespread use of the Unity engine.

Before the Unity 2018 version, developers could only use the built-in render pipeline
provided by Unity. Since the Unity engine itself is a closed source engine, the built-in
render pipeline in Unity is like a black box for developers, and developers cannot know
the specific logic implementation of rendering inside the Unity engine. Furthermore,
games developed using Unity's built-in render pipeline will use the same set of rendering
logic on different platforms. It is very difficult for developers to customize the render
pipeline for different platforms.

With the release of the Scriptable Render Pipeline, developers can view its code directly
on GitHub and use C# code to control the rendering process, customizing a unique
rendering pipeline for their games or applications.

Note
You can find the code of the Scriptable Render Pipeline on GitHub:
https://github.com/Unity-Technologies/Graphics.

https://github.com/Unity-Technologies/Graphics

An introduction to the Scriptable Render Pipeline 333

The Scriptable Render Pipeline is a toolbox provided by Unity for developers, through
which developers can freely implement specific rendering functions in Unity. For
the convenience of developers, there are two pre-build render pipelines based on the
Scriptable Render Pipeline available, namely the Universal Render Pipeline and the
High Definition Render Pipeline.

By using Scriptable Render Pipeline-based pre-built render pipelines, we can directly
modify a specific function in the render pipelines without having to implement a
new pipeline from scratch, simultaneously obtaining excellent rendering results and
continuous updates. Therefore, when using Unity to develop games, there are three
ready-made render pipelines to choose from:

• The legacy built-in render pipeline

• The Universal Render Pipeline

• The High Definition Render Pipeline

Of course, you can also choose to develop your own render pipeline based on the
Scriptable Render Pipeline.

The following are some open source projects on GitHub made using the Universal Render
Pipeline or the High Definition Render Pipeline, which you can download and use.

The Fontainebleau Demo
The first one is the Fontainebleau Demo project, made with the High Definition
Render Pipeline:

Figure 8.1 – The Fontainebleau Demo

334 The Scriptable Render Pipeline in Unity

As shown in Figure 8.1, this project allows you to walk in a forest in first-person mode.
You can find the project here: https://github.com/Unity-Technologies/
FontainebleauDemo.

The Spaceship Demo
The second project I want to introduce is the Spaceship Demo project. This is a playable
AAA first-person mode demo, as shown in Figure 8.2:

Figure 8.2 – The Spaceship Demo

In this open source project, you can see how to implement GPU-accelerated particle
effects, such as realistic flames, smoke, and electrical spark visual effects. You can find the
project here: https://github.com/Unity-Technologies/SpaceshipDemo.

The BoatAttack Demo
If you choose to use the Universal Render Pipeline as the render pipeline of your game,
then this open source project is worth checking out:

https://github.com/Unity-Technologies/FontainebleauDemo
https://github.com/Unity-Technologies/FontainebleauDemo
https://github.com/Unity-Technologies/SpaceshipDemo

An introduction to the Scriptable Render Pipeline 335

Figure 8.3 – The BoatAttack Demo

As shown in Figure 8.3, this is a boat racing game, made using the Universal
Render Pipeline. You can find the project here: https://github.com/Unity-
Technologies/BoatAttack.

In addition to open source projects on GitHub, Unity also provides developers with free
resources on Unity's Asset Store for developers to learn and use.

Here are some samples.

The Heretic: Digital Human
The first one I want to share is the The Heretic: Digital Human project on the Asset Store:

Figure 8.4 – The Heretic: Digital Human on the Asset Store

https://github.com/Unity-Technologies/BoatAttack
https://github.com/Unity-Technologies/BoatAttack

336 The Scriptable Render Pipeline in Unity

As shown in Figure 8.4, this is a free project that shows how to make a digital human
with real skin, eyes, eyebrows, and so on. You can find the project here: https://
assetstore.unity.com/packages/essentials/tutorial-projects/
the-heretic-digital-human-168620.

The Heretic: VFX Character
The second project is from The Heretic on the Asset Store as well, and it's free to download:

Figure 8.5 – The Heretic: VFX Character

As shown in Figure 8.5, this project demonstrates how to create a VFX-based character
with the High Definition Render Pipeline in Unity. You can find the project here:
https://assetstore.unity.com/packages/essentials/tutorial-
projects/the-heretic-vfx-character-168622.

Well, after introducing a lot of projects based on Scriptable Render Pipeline, which are
open source and free, are you more interested in this render pipeline now? If so, then we
will briefly introduce the two pre-built render pipelines based on the Scriptable Render
Pipeline, namely the Universal Render Pipeline and the High Definition Render Pipeline.

https://assetstore.unity.com/packages/essentials/tutorial-projects/the-heretic-digital-human-168620
https://assetstore.unity.com/packages/essentials/tutorial-projects/the-heretic-digital-human-168620
https://assetstore.unity.com/packages/essentials/tutorial-projects/the-heretic-digital-human-168620
https://assetstore.unity.com/packages/essentials/tutorial-projects/the-heretic-vfx-character-168622
https://assetstore.unity.com/packages/essentials/tutorial-projects/the-heretic-vfx-character-168622

An introduction to the Scriptable Render Pipeline 337

Universal Render Pipeline
The Universal Render Pipeline is a pre-built render pipeline based on the Scriptable
Render Pipeline in Unity. As its name implies, this render pipeline can be used on all
platforms supported by Unity. Different pipelines cannot be mixed, so once you choose
to use the Universal Render Pipeline, the built-in render pipeline and the High Definition
Render Pipeline will not be enabled.

Unity uses the legacy built-in render pipeline by default, but you can enable the Universal
Render Pipeline in your project in different ways.

If you want to develop a new project, then you can use the 3D Sample Scene (URP) project
template provided by Unity Hub to create a new Universal Render Pipeline project:

Figure 8.6 – The 3D Sample Scene (URP) project template

338 The Scriptable Render Pipeline in Unity

As shown in Figure 8.6, the 3D Sample Scene (URP) project template configures project
settings to use the Universal Render Pipeline in the project:

Figure 8.7 – A new URP project

After waiting for the new project to be created, you can view the sample scene rendered
using the Universal Render Pipeline, as shown in Figure 8.7.

However, if you want to switch an existing project from the built-in render pipeline to the
Universal Render Pipeline, recreating a new project using the Universal Render Pipeline
is not suitable for your project. At this point, choosing to use Unity's Package Manager to
install the Universal Render Pipeline is a more suitable option:

An introduction to the Scriptable Render Pipeline 339

Figure 8.8 – Opening the Package Manager window

The Package Manager window can be opened by clicking on Window | Package Manager
in the Unity Editor toolbar, as shown in the previous figure:

Figure 8.9 – Package Manager

340 The Scriptable Render Pipeline in Unity

As shown in Figure 8.9, you can find the Universal RP package in the packages list and
install it in your project.

In this section, we briefly introduced the Universal Render Pipeline and how to install it in
your project. A more detailed introduction on how to use it will be covered in the Working
with Unity's Universal Render Pipeline section. Next, let's continue our journey to briefly
explore the High Definition Render Pipeline and how to install it in your project.

The High Definition Render Pipeline
The High Definition Render Pipeline is another pre-built render pipeline based on the
Scriptable Render Pipeline in Unity. Unlike the Universal Render Pipeline, it does not
support all platforms supported by Unity, only supporting high-end platforms. The
following table shows the platforms supported by the High Definition Render Pipeline:

Figure 8.10 – The platforms supported by the High Definition Render Pipeline

As shown in the previous table, the High Definition Render Pipeline is currently mainly
used for platforms such as consoles or desktop computers. If you are developing a
mobile-oriented project, then the High Definition Render Pipeline is not a suitable choice.

An introduction to the Scriptable Render Pipeline 341

Since we want to cover as many usage scenarios as possible, this chapter will mainly focus
on the use of the Universal Render Pipeline – hence the brief introduction to the High
Definition Render Pipeline. However, if you want to try it or really need to use the High
Definition Render Pipeline, installing it is very similar to installing the Universal Render
Pipeline, as described earlier.

Firstly, if you are starting a new project, you can use the 3D Sample Scene (HDRP) project
template provided by Unity Hub to create a new High Definition Render Pipeline project.

As shown in Figure 8.11, the 3D Sample Scene (HDRP) project template configures
project settings to use the High Definition Render Pipeline in the project:

Figure 8.11 – The 3D Sample Scene (HDRP) template

342 The Scriptable Render Pipeline in Unity

After waiting for the new project to be created, you can view the sample scene rendered
using the High Definition Render Pipeline, as shown in Figure 8.12:

Figure 8.12 – A new HDRP project

Of course, you can also install the High Definition RP package from the Package
Manager in Unity:

Figure 8.13 – Installing High Definition RP via Package Manager

Working with Unity's Universal Render Pipeline 343

As shown in Figure 8.13, you can find the High Definition RP package in the packages list
and install it to your project.

In this section, we briefly introduced the High Definition Render Pipeline and how to
install it in your project.

By reading this section, An Introduction to the Scriptable Render Pipeline, you should now
have an understanding of what the Scriptable Render Pipeline is and how to install a
Scriptable Render Pipeline-based Universal Render Pipeline and High Definition Render
Pipeline in your project. Next, we will discuss in detail how to use the Universal Render
Pipeline correctly in your project.

Let's get started!

Working with Unity's Universal Render Pipeline
The Universal Render Pipeline is widely used by Unity developers. It is not only used to
develop games for PC or video game consoles; you can also use it to develop mobile games.

We can create a new Universal Render Pipeline project through the Unity Hub project
template. Through the project template, Unity will automatically set up all the render
pipeline resources for us. The project also contains a sample scene, as shown in Figure
8.14. You can find a camera, a directional light, a spot light, a post-process volume,
reflection probes, and some models in this scene:

Figure 8.14 – The sample scene of the Universal Render Pipeline

344 The Scriptable Render Pipeline in Unity

For starters, this sample scene is a good starting point. We will use it to explain how to use
the Universal Render Pipeline.

Exploring the sample scene
Let's first explore this sample scene. As you can see in Figure 8.14, this scene is not
complicated, but it contains most of the functions of the Universal Render Pipeline.
We will introduce these components in the scene separately.

The main camera
Let's start with the main camera in the scene. We can select the Main Camera in the
Hierarchy window to open the Inspector window of it, as shown in the following figure:

Figure 8.15 – The Main Camera object

There is a Camera component attached to the Main Camera object, which provides
all the functions related to the camera object. You can set the background, culling mask,
anti-aliasing setting, perspective settings of the camera, and so on.

Working with Unity's Universal Render Pipeline 345

Another component that you need to be aware of is the Universal Additional Camera
Data component, which you can find at the bottom of Figure 8.15. If you are using the
Universal Render Pipeline, Unity does not allow you to remove it from the camera because
this component is used to store data internally.

The directional light
There is only one directional light in this sample project, which is used to simulate the
sunlight. You can modify the color, intensity, and shadow effect of the light by modifying
the settings of the Light component attached to the light object in the scene. You can also
modify the rotation property of the Transform component of the light object to adjust the
direction of the directional light, as shown in Figure 8.16.

Figure 8.16 – The Directional Light object

In this example, the intensity value of this light is 2, and soft shadows are used.

346 The Scriptable Render Pipeline in Unity

The Spot Light
There are four types of lights in Unity, which are Directional Light, Point Light, Spot
Light, and Area Light. In this sample scene, in addition to a directional light used to
simulate the sunlight, there is also a spot light used to simulate a spotlight:

Figure 8.17 – The Spot Light object

As shown in the preceding figure, the effect of the spotlight object in Unity is like
spotlights in the real world. The settings of a spot light are similar to the settings
of a directional light in Unity:

Working with Unity's Universal Render Pipeline 347

Figure 8.18 – The Spot Light settings

You still can modify the color, intensity, and shadow effect of the spot light by modifying
the settings of the Light component attached to the Spot Light object, and you can also
modify the range and the inner/outer spot angle of this spot light, as shown in Figure 8.18.

348 The Scriptable Render Pipeline in Unity

The Post-process Volume
Now, let's take a look at the Post-process Volume object in the sample scene. In game
development, post-processing is a technique that is often used to add various effects to a
rendered image, common effects such as tone mapping, depth of field, bloom, anti-aliasing,
and motion blur:

Figure 8.19 – Post-process Volume

The Universal Render Pipeline provides the Volume component and the Volume Profile
object to manage different post-processing effects applied to rendered images, as shown
in Figure 8.19. One advantage of using the Volume component is that component and
specific settings can be decoupled. All settings on the Volume component come from the
associated Volume Profile object. We will discuss the Volume Profile object in detail later.

Working with Unity's Universal Render Pipeline 349

In this sample scene, the Tonemapping, Bloom, and Vignette effects are applied. If you're
curious about the original rendered image without post-processing, let's see what happens
when we disable this post-process volume:

Figure 8.20 – The original image (top) versus the post-processed image (bottom)

Figure 8.20 shows a comparison of the original image and the post-processed image of the
sample scene.

350 The Scriptable Render Pipeline in Unity

The reflection probes
A reflection probe can provide efficient reflection information for related models in
a scene by sampling the scene around itself so that the surface of the model in the scene
has a realistic reflection effect:

Figure 8.21 – Reflection probes in the scene

In this sample scene, we can see there are three reflection probes as child objects of the
GameObject named Reflection Probes, as shown in the preceding figure.

Working with Unity's Universal Render Pipeline 351

If we select one of these reflection probes, then the corresponding reflection probe will be
displayed in the scene view and show the reflection information, as shown in Figure 8.22:

Figure 8.22 – Viewing the reflection information in the scene

Since the reflection probes in different positions will obtain different reflection
information, in order to use the reflection information correctly, they need to be placed
in the proper place. While the definition of "proper place" varies from scene to scene, a
general guideline is that you should place reflection probes near any large objects in the
scene that will be significantly reflected. For example, place reflection probes in the areas
around the center and corners of walls in the scene. Of course, this doesn't mean ignoring
all the smaller objects in the scene. For example, a campfire in a scene may be a small
object compared to a wall, but reflecting the fire from the campfire is just as important
to create a realistic rendering of the scene.

352 The Scriptable Render Pipeline in Unity

The Universal Render Pipeline asset
Since this new sample project is created using the Universal Render Pipeline template,
Unity has automatically set everything up for us to make the Universal Render Pipeline
work properly. However, if your project is using the built-in render pipeline for
development and you want to switch to using the Universal Render Pipeline, or if your
project has been developed using the Universal Render Pipeline but you want to use
another render pipeline, it is necessary to know how to set up it in Unity.

Note
In this chapter, we are using the forward rendering path in the Universal
Render Pipeline. The so-called rendering path refers to a series of operations
related to lighting and shading. Unity's built-in render pipeline provides
different rendering paths, such as the forward rendering path and the deferred
rendering path. After version 12.0.0 of the Universal Render Pipeline,
developers can also use the deferred rendering path in the pipeline, but that
is beyond the scope of this chapter. If you are interested in this topic, you
can find out more at https://docs.unity3d.com/Packages/
com.unity.render-pipelines.universal@12.0/manual/
rendering/deferred-rendering-path.html and https://
docs.unity3d.com/Packages/com.unity.render-
pipelines.universal@12.0/manual/urp-universal-
renderer.html#rendering-path-comparison.

We will walk you through the following steps to learn how to set up a render pipeline for
your project in Unity:

1. Let's start with the Project Settings window. You can open this window through
Edit | Project Settings in the Unity Editor toolbar.

2. Next, click the Graphics item in the category list on the left to open the Graphics
Settings panel, as shown in Figure 8.23:

mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/rendering/deferred-rendering-path.html
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/rendering/deferred-rendering-path.html
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/rendering/deferred-rendering-path.html
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/urp-universal-renderer.html#rendering-path-comparison
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/urp-universal-renderer.html#rendering-path-comparison
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/urp-universal-renderer.html#rendering-path-comparison
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/urp-universal-renderer.html#rendering-path-comparison

Working with Unity's Universal Render Pipeline 353

Figure 8.23 – The Graphics settings

Let's take a look at the Scriptable Render Pipeline Settings property in detail:
 � The Scriptable Render Pipeline Settings property of the Graphics settings is

associated with an object of the Universal Render Pipeline Asset type named
UniversalRP-HighQuality, which is automatically created when this project is
created using the template.

 � If the Scriptable Render Pipeline Settings property of the Graphics settings is set
to none, then Unity will use the default built-in render pipeline.

354 The Scriptable Render Pipeline in Unity

3. You can find this Universal Render Pipeline Asset object in the Assets > Settings
folder of the project:

Figure 8.24 – The Universal Render Pipeline Asset objects

4. Then, select the UniversalRP-HighQuality object to open the Inspector window so
that we can check the detailed information of this Universal Render Pipeline Asset
object. As shown in Figure 8.25, a Universal Render Pipeline Asset object provides
various settings for the current Universal Render Pipeline, such as rendering
functions and rendering quality:

Working with Unity's Universal Render Pipeline 355

Figure 8.25 – The Inspector window of this Universal Render Pipeline Asset object

 � Next, let's walk through these settings. We can configure the general settings of the
render pipeline in the General section, as shown in Figure 8.26. For example, if the
Depth Texture option is enabled, you can access the depth map generated by the
render pipeline from your shader code:

Figure 8.26 – The General settings

Note
In game development, depth textures are used to represent the depth
information of objects in 3D space from the camera's perspective.

356 The Scriptable Render Pipeline in Unity

 � We can also control the global rendering quality:

Figure 8.27 – The Quality settings

In Figure 8.27, we enable the global HDR option, and the global Anti Aliasing
setting is 2x. We can also modify the rendering resolution by adjusting the Render
Scale slider.

 � As a very important factor for real-time rendering, the lighting of the Universal
Render Pipeline can also be configured in the Lighting section, as shown in
Figure 8.28:

Figure 8.28 – The Lighting settings

The main light in the settings panel is the brightest directional light in the game
scene. You can decide whether to enable it and whether to allow it to cast shadows.

 � In Figure 8.29, you can find the Shadows settings under the Lighting settings. You
can modify the parameters here to adjust what the shadows look like in Unity:

Figure 8.29 – The Shadows settings

Working with Unity's Universal Render Pipeline 357

 � Finally, let's explore the Advanced settings:

Figure 8.30 – The Advanced settings

Here, we can check the SRP Batcher option to enable the SRP Batcher function to
improve the performance of the Universal Render Pipeline, which we will explain in
detail in the Increasing performance of the Universal Render Pipeline section. We can
also modify the level of the Debug log output, as shown in Figure 8.30.

Note
If there is no Universal Render Pipeline Asset in your project, you can create
a new one by clicking Assets > Create > Rendering > Universal Render
Pipeline > Pipeline Asset in the Unity Editor toolbar.

In this section, we introduced the Universal Render Pipeline Asset in Unity and how to
switch between different render pipelines by changing the Scriptable Render Pipeline
Settings property of the Graphics settings. Next, we will explore another important asset
in the Universal Render Pipeline, namely the Volume Profile.

The Volume framework and post-processing
The Volume framework is provided to game developers by the Scriptable Render Pipeline.
By using this framework, developers can decouple a component from the specific settings of
the component. Those render pipelines based on the Scriptable Render Pipeline, such as the
Universal Render Pipeline and the High Definition Render Pipeline, use this framework.

358 The Scriptable Render Pipeline in Unity

As we mentioned before, the Universal Render Pipeline uses the Volume component and
the Volume Profile object to manage different post-processing effects applied to rendered
images. The following steps demonstrate how to enable the Volume framework and apply
some post-processing effects to the sample project:

1. First of all, we need to add a Volume component to a GameObject in the scene to
enable the Volume framework, as shown in the following figure:

Figure 8.31 – Adding a Volume component

2. In Figure 8.31, the Profile property of this Volume component is 0, so we can either
create a new Volume Profile file by clicking the New button below it or assign an
existing Volume Profile file to it. Here, we will create a new Volume Profile file:

Figure 8.32 – Creating a new Volume Profile file

Working with Unity's Universal Render Pipeline 359

3. Click the Add Override button to open the Volume Overrides panel, and click the
Post-processing item to open the Post-processing overrides list:

Figure 8.33 – Add Override

4. In Figure 8.34, you can see lots of post-processing effects in the Post-processing
overrides list. You can choose the effects that you want to apply to the rendered
image, such as Bloom:

Figure 8.34 – Post-processing effects

360 The Scriptable Render Pipeline in Unity

5. Finally, let's modify the configuration of the Bloom effect; check the Threshold
and Intensity options and set their values to 0.9 and 4 respectively, as shown in
the following figure:

Figure 8.35 – Setting up the Bloom effect

After completing the preceding steps, switch to the game view. We can see the game scene
in Figure 8.36 after applying the Bloom effect:

Working with Unity's Universal Render Pipeline 361

Figure 8.36 – The applied Bloom effect image (top) versus the original image (bottom)

In this section, we started by exploring the sample scene that is included in the template to
learn the functions of the Universal Render Pipeline. Then, we introduced how to switch
between different render pipelines and the Universal Render Pipeline Assets. Finally, we
demonstrated how to use the Volume framework to implement post-processing in the
Universal Render Pipeline. The next stop of our journey is to explore the shaders and
materials that are important for rendering in Unity.

362 The Scriptable Render Pipeline in Unity

The Universal Render Pipeline shaders and
materials
Shaders and materials are essential for rendering models in Unity. Shaders are used
to provide algorithms to calculate the color of each pixel. A material provides various
parameters for the shader associated with it to determine how to render the model,
such as providing texture as the input of the shader and defining how the shader
samples the texture:

Figure 8.37 – Materials and shaders

If we select a model in the scene, such as the safety hat model, the material settings will be
displayed in the Inspector window, as shown in Figure 8.37.

The Universal Render Pipeline shaders and materials 363

Commonly used shaders
Each material can be associated with a specified shader, and the parameters required by
this shader are displayed in the Inspector window. The commonly used shader when
using the Universal Render Pipeline is Universal Render Pipeline/Lit, and this safety
hat model is rendered using this shader as well. By adjusting various parameters, the
Universal Render Pipeline/Lit shader can be used to render different material surfaces,
such as metal, glass, and wood.

Note
The shader with Lit in its name implies that this shader will perform lighting
calculations. The shader with Unlit in the name means that the shader does not
consider the lighting factor when calculating the color of a pixel.

We can change the shader associated with a material by selecting a different one through
the Shader drop-down window, as shown in Figure 8.38:

Figure 8.38 – Shaders

364 The Scriptable Render Pipeline in Unity

Once we have determined the shader associated with the material, we can then provide
various parameters for this specific shader through this material:

Figure 8.39 – The parameters of the shader

In Figure 8.39, developers can specify various maps in the Surface Inputs section for the
Universal Render Pipeline/Lit shader. The textures associated with these map parameters
are used to provide different information for the shader. We will explain in detail as
follows:

• Base Map is used to provide the base color of the surface to the shader.

• Metallic Map is used to provide metallic workflow information to the shader to
determine how "metal-like" the surface is.

• Normal Map is used to add more details to the surface of the model that do not
exist on the original model.

• Occlusion Map is used to provide information to the shader to simulate shadows
from ambient lighting.

The parameters required by different shaders may be different, and due to different shader
algorithms, the final rendering results are also different:

The Universal Render Pipeline shaders and materials 365

Figure 8.40 – The Unlit shader

For example, if we change the shader associated with this material to Universal Render
Pipeline/Unlit, then only Base Map remains in the Surface Inputs section to provide the
base color for the surface:

Figure 8.41 – The safety hat model

366 The Scriptable Render Pipeline in Unity

The safety hat model rendered with this material will only display the basic color and will
no longer be affected by any lighting. You can see the difference between the safety hat
model and the surrounding models in the preceding screenshot.

Upgrading project materials to Universal Render
Pipeline materials
As we mentioned at the beginning of this chapter, if you choose to use the Universal
Render Pipeline, the built-in render pipeline will no longer be available. This includes
not only the built-in render pipeline itself but also the shaders used with the built-in
render pipeline.

Therefore, when changing an existing project that is being developed using the built-in
render pipeline to use the Universal Render Pipeline, developers often encounter a
problem known as "material errors":

Figure 8.42 – The built-in Standard shader cannot be used in the Universal Render Pipeline

The Universal Render Pipeline shaders and materials 367

For example, we can change the shader used to render the safety hat model from Universal
Render Pipeline/Unlit to the built-in Standard shader. Then, you can see that the safety
hat model displays a pink color, which means that there is an error in the material, as
shown in the preceding figure.

Therefore, if your project is developing using the built-in render pipeline but you need to
switch to using the Universal Render Pipeline, then in order to ensure that the Universal
Render Pipeline can work correctly, you need to upgrade the existing materials to
Universal Render Pipeline materials.

You can manually modify the shaders associated with the existing materials, such as
replacing the built-in Standard shader with the Universal Render Pipeline/Lit shader:

Figure 8.43 – Upgrading the project materials

368 The Scriptable Render Pipeline in Unity

On the other hand, Unity also provides a function for developers to upgrade existing
materials to Universal Render Pipeline materials automatically. You can find it by clicking
Edit > Render Pipeline > Universal Render Pipeline > Upgrade Project Materials to
UniversalRP Materials in the Unity Editor toolbar, as shown in the preceding screenshot.

Figure 8.44 – Material Upgrader

Then, the Material Upgrader window will pop up. As shown in Figure 8.44, the
changes cannot be undone, so if you want to upgrade all of the materials in your
project to Universal Render Pipeline materials and have backed up the project,
click the Proceed button.

Note
This Material Upgrader tool can only upgrade the built-in shaders to Universal
Render Pipeline shaders but not the custom shaders created by developers.
Therefore, the custom shaders still need to be modified manually.

Creating a shader and a Shader Graph
Sometimes, you may want to create a new shader to implement some custom features that
can be used with the Universal Render Pipeline. There are two ways to do it – you can
either create a new shader file or a Shader Graph file.

The Universal Render Pipeline shaders and materials 369

Creating a new shader file
First of all, even if our project uses the Universal Render Pipeline, we can still use the
legacy way to create custom shader files using shader templates in the built-in render
pipeline in Unity. As shown in Figure 8.45, we can click Assets > Create > Shader to
create a new shader:

Figure 8.45 – Create a shader file

Some built-in shader templates are listed, such as Standard Surface Shader, Unlit Shader,
and Image Effect Shader. Here, we choose the Unlit Shader item to create a new shader
that does not consider lighting factors and name this shader CustomShader:

Figure 8.46 – CustomShader

Then, a shader file is created in our project, as shown in the preceding figure. You can
open a shader source file in your IDE by double-clicking it, and then you can use Unity's
ShaderLab language to write shader code that defines how Unity calculates the color
rendered for each pixel.

370 The Scriptable Render Pipeline in Unity

Note
How to write shaders in Unity's ShaderLab language is beyond the scope of this
chapter, but if you're interested, you can find more information at https://
docs.unity.cn/Packages/com.unity.render-pipelines.
universal@7.7/manual/writing-custom-shaders-urp.
html.

In addition to creating a shader file, we can also create a new custom Shader Graph file
to render these models in the scene. Let's continue.

Creating a new Shader Graph file
Compared with the legacy way of creating a shader file, creating a new Shader Graph
file is easier. The Shader Graph feature was introduced to Unity for the first time in Unity
2018. When developing a Shader Graph file, you don't need to write shader code but use
the visualization node to develop directly.

We can still create a new unlit shader, but this time, we will use Shader Graph instead of
a shader file, as shown in the following steps below:

1. As shown in Figure 8.47, click Assets > Create > Shader > Universal Render
Pipeline > Unlit Shader Graph in the Unity Editor toolbar to create a new Shader
Graph file and name it CustomShaderGraph:

Figure 8.47 – Creating a new Shader Graph file

mailto:https://docs.unity.cn/Packages/com.unity.render-pipelines.universal@7.7/manual/writing-custom-shaders-urp.html
mailto:https://docs.unity.cn/Packages/com.unity.render-pipelines.universal@7.7/manual/writing-custom-shaders-urp.html
mailto:https://docs.unity.cn/Packages/com.unity.render-pipelines.universal@7.7/manual/writing-custom-shaders-urp.html
mailto:https://docs.unity.cn/Packages/com.unity.render-pipelines.universal@7.7/manual/writing-custom-shaders-urp.html

The Universal Render Pipeline shaders and materials 371

2. A new Shader Graph file is created, and its suffix is .shadergraph, as shown in
the following figure:

Figure 8.48 – A Shader Graph file

3. Double-click this file, and this time, the Shader Graph file will not be opened in
an IDE but a visual node editor, displayed directly in the Unity Editor, as shown in
Figure 8.49:

Figure 8.49 – The Shader Graph editor

372 The Scriptable Render Pipeline in Unity

This visual node editor is a lot to take in, so let's walk through it in more detail:
 � In Unity, a shader usually consists of two parts, namely the Vertex program and

the Fragment program.
 � The Vertex program is usually used to convert the 3D coordinates of the vertices

of the model into 2D coordinates in the screen space. We already introduced the
knowledge of coordinate systems in the previous chapter. In this example, there
are three nodes in the vertex program, namely Position, Normal, and Tangent.

 � Alternatively, the Fragment program determines the color of the pixels, and in this
example, the Fragment program only has one node, named Base Color.

 � You can also preview the result of this shader in the Main Preview window in the
lower-right corner, as shown in Figure 8.49. This shader we just created here will
render pixels in blue.

Now that we've created a new Shader Graph file and opened it in the Shader Graph editor,
which allows us to edit, add, and delete nodes, we will next take a look at how to edit a
node in a Shader Graph file. Let's go!

Editing the properties of a node in Shader Graph
We can edit the properties of an existing node in the Shader Graph file. As we mentioned
earlier, there is a node named Base Color, so let's edit this node as follows:

Figure 8.50 – Edit the Base Color node

The Universal Render Pipeline shaders and materials 373

1. In the Shader Graph editor, select the Base Color node in the Fragment section.
2. Click the color input of this node to open the color picker window.
3. Select the color you want to use in the color picker window – in this case,

we chose yellow for the Base Color node. The Main Preview window shows us
what's happening to the shader, as shown in Figure 8.50.

As you can see, it is very easy to modify an existing node; in addition to modifying a node,
we can also create a new one to provide more data to the shader. Let's continue.

Adding a new node in Shader Graph
Developing a shader usually involves sampling a texture and returning a color value for
the shader to use. Let's perform the following steps to add a new node to add the ability
to sample textures to our example shader:

1. Right-click in the Shader Graph editor and select Create Node from the
pop-up menu:

Figure 8.51 – Creating a node

374 The Scriptable Render Pipeline in Unity

2. Enter texture in the search bar in the top-left corner of the Create Node window,
and then select Sample Texture 2D item in the results list:

Figure 8.52 – Selecting the Sample Texture 2D node

3. As shown in Figure 8.53, a new Sample Texture 2D node is created. Click the
Texture slot of this node to provide the texture asset:

Figure 8.53 – Clicking the Texture slot of the node

The Universal Render Pipeline shaders and materials 375

4. Select a texture from the pop-up Select Texture window:

Figure 8.54 – Selecting a texture

376 The Scriptable Render Pipeline in Unity

5. Then, as shown in Figure 8.55, the Sample Texture 2D node samples the texture
from its Texture input and gets the texture's color:

Figure 8.55 – Loading data from a texture asset

Now, we have added a new node to the Shader Graph file, but the color obtained from
texture sampling is still stored in the Sample Texture 2D node. Next, we need to connect
it with the Base Color node in the Fragment section so that the shader can render the
pixels with the colors obtained from this texture.

The Universal Render Pipeline shaders and materials 377

Connect two nodes in Shader Graph
We can pass data such as color from one node to another by connecting two nodes in
a Shader Graph file, so let's connect the Sample Texture 2D node with the Base Color
node using the following steps:

1. Click the radio button next to the RGBA(4) output, as shown in Figure 8.56:

Figure 8.56 – Clicking the radio button

2. After that, a line that can be dragged freely will appear:

Figure 8.57 – A line will appear

378 The Scriptable Render Pipeline in Unity

3. Drag this line to the color input of the Base Color node. As shown in Figure 8.58, we
connected these two nodes, and the Main Preview window shows us that the shader
has rendered the pixel using the color obtained from the texture:

Figure 8.58 – Connecting two nodes

Now you should know how to create a Shader Graph file and how to modify, add, and
connect nodes in it. As developers, we do not need to write shader code when using
Shader Graph, but Unity will automatically generate shader code based on the content
of the Shader Graph file.

In this section, we introduced knowledge related to Universal Render Pipeline shaders
and materials, then demonstrated how to upgrade a built-in material to Universal Render
Pipeline material, and finally, explored how to create a custom shader that can be used in
the Universal Render Pipeline. Next, we will continue to discuss how to find performance
issues and improve performance of the Universal Render Pipeline.

Increasing performance of the Universal
Render Pipeline
Rendering is a major function of a game engine. Therefore, it is very important to
understand how to use Unity's render pipeline efficiently. In this section, the topic
we will discuss is performance.

Increasing performance of the Universal Render Pipeline 379

The Frame Debugger
First, we should learn how to use tools to view and locate performance bottlenecks caused
by rendering in Unity.

The Frame Debugger tool in the Unity Editor is our recommended tool, which allows us
to easily view the entire process of rendering a frame in Unity.

Let's follow the following steps to see how Unity's render pipeline renders a frame of
your game:

1. Start the game in the editor by clicking the Play button:

Figure 8.59 – Playing the game in the editor

2. Click Window > Analysis > Frame Debugger in the Unity Editor toolbar to open
the Frame Debugger window, as shown in Figure 8.60:

Figure 8.60 – Opening the Frame Debugger

380 The Scriptable Render Pipeline in Unity

3. In the Frame Debug window, click the Enable button to take a snapshot of the
current frame of your game, as shown in Figure 8.61:

Figure 8.61 – The Frame Debugger

4. In Figure 8.62, we can see there are 109 draw calls, which call to the graphics APIs,
such as OpenGL, Direct3D, and Vulkan, to draw objects. We can also select a
specific draw call to view the detailed information of it:

Figure 8.62 – Viewing the draw call information

Increasing performance of the Universal Render Pipeline 381

Through the Frame Debugger tool, we can understand the entire rendering process and
view the information of a specific draw call, which provides us with insight to determine
what should be done to improve rendering performance. For example, in Figure 8.62,
we can see that 33 draw calls are used to render opaque objects. Therefore, reducing the
count of draw calls here is what we should do. Next, we will introduce how to use the SRP
Batcher to do it.

The SRP Batcher
The SRP Batcher is a feature provided by the Scriptable Render Pipeline, so every render
pipeline based on the Scriptable Render Pipeline can use this feature to reduce the number
of draw calls and improve rendering performance.

In order to ensure that the SRP Batcher can work correctly in your project, you need to
ensure two things. The first is to enable the SRP Batcher function of the Universal Render
Pipeline, and the second is to ensure that the shaders in your project are compatible with
the SRP Batcher.

Let's first make sure that the SRP Batcher is enabled in the render pipeline. As we
mentioned in The Universal Render Pipeline Asset subsection, we can enable it by checking
the SRP Batcher option in the Advanced settings of the Universal Render Pipeline Asset
file that our project is using, as shown in Figure 8.63:

Figure 8.63 – Enabling the SRP Batcher

382 The Scriptable Render Pipeline in Unity

Next, let's check whether the shaders we are using to render these opaque objects are
compatible with the SRP Batcher:

Figure 8.64 – The SRP Batcher compatibility status of the shader

We can find the SRP Batcher compatibility status of the shader in the Inspector window,
as shown in the preceding figure. Here, the Universal Render Pipeline/Lit shader is used,
which is compatible with the SRP Batcher.

Now, let's run the game and check the Frame Debugger again:

Figure 8.65 – The number of draw calls is reduced

Summary 383

As you can see in Figure 8.65, the total number of draw calls has been reduced from
109 to 91, the number of draw calls used to render opaque objects has been reduced
from 33 to 20, and each draw call is marked as SRP Batch.

In this section, we started by introducing how to use Unity's Frame Debugger tool to view
the entire rendering process and the information of a specific draw call. Then, we also
explored how to reduce the number of draw calls and improve rendering performance
by using the SRP Batcher.

Summary
This chapter introduces three ready-made render pipelines to choose from in Unity,
namely the legacy built-in render pipeline and two pre-made render pipelines based on
the Scriptable Render Pipeline – the Universal Render Pipeline and the High Definition
Render Pipeline. At the same time, we also introduced some open source projects that use
these render pipelines for you to learn and use.

Then, we discussed how to use the Universal Render Pipeline in Unity by first exploring
a sample scene, and then we explained how to use the Universal Render Pipeline Asset to
configure your render pipeline and the Volume framework to apply post-processing effects
to your game.

We also introduced the concept of shaders and materials, demonstrated how to upgrade
a built-in material to Universal Render Pipeline material, and explored how to create a
custom shader that can be used in the Universal Render Pipeline.

Finally, we explored how to use Unity's Frame Debugger tool to view the information of
the rendering process and how to use the SRP Batcher to reduce the number of draw calls.

By reading this chapter, you should now understand how to work with the Universal
Render Pipeline correctly in Unity. In the next chapter, we will introduce how to use
the Data-Oriented Technology Stack (DOTS) in Unity.

9
The Data-Oriented

Technology Stack
in Unity

The Unity engine is a very developer-friendly engine. When developing game logic,
Unity's GameObject-Components architecture can help developers develop functions
quickly, and adding a new behavior to a GameObject in Unity just requires attaching the
corresponding component to it. However, with today's games becoming more complex,
this approach, while very developer-friendly, especially to those familiar with traditional
Object-Oriented Programming (OOP) models, is not ideal for game performance and
project maintainability.

Therefore, Unity introduced the Data-Oriented Technology Stack (DOTS) to allow
developers to write game code using an alternative programming philosophy that is
data-oriented rather than object-oriented. It also introduces multithreading capabilities
to optimize the performance of the game.

The following key topics will be part of our learning path in this chapter:

• DOTS overview

• Multithreading and the C# Job System in Unity

386 The Data-Oriented Technology Stack in Unity

• Working with ECS in Unity

• Using C# and the Burst compiler

By reading this chapter, you will learn what DOTS is and the difference between
data-oriented design and traditional object-oriented design. You will also find out how to
use Unity's C# Job System to implement multithreading to improve game performance,
how to use Unity's Entity Component System (ECS) to write game logic code in a
data-oriented way, and how to use the Burst compiler to optimize the generated native
code for Unity games.

Technical requirements
The example project for this chapter is already available on GitHub. You can find it
here: https://github.com/PacktPublishing/Game-Development-with-
Unity-for-.NET-Developers/tree/main/Chapter9-DOTS.

DOTS overview
DOTS is a new programming pattern in Unity and a topic that has been discussed a lot in
the Unity developers community in recent years.

Figure 9.1 – The Megacity demo based on DOTS

https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers/tree/main/Chapter9-DOTS
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers/tree/main/Chapter9-DOTS

DOTS overview 387

If you have previous .NET programming experience, you will be familiar with the
Object-Oriented Programming (OOP) pattern. OOP is widely adopted in the software
industry, and developing games with Unity was no exception until Unity introduced
DOTS. There's no doubt that OOP is an old habit for many programmers. Therefore,
before discussing why Unity introduced DOTS, we will first talk about the problems
that may be encountered when using OOP in Unity development.

Object-oriented design pattern versus DOTS
First of all, let's talk about the concepts of OOP. We can find some useful information
on Wikipedia. These concepts include object/class, inheritance, interface, information
hiding, and polymorphism. The following link provides detailed explanations:
https://en.wikipedia.org/wiki/Object-oriented_design.

If we focus on the object/class and inheritance, we will find that these two concepts are
the biggest difference between OOP and DOTS.

Let's start with an object/class. In a traditional OOP pattern, a class is a tightly coupled
set of data and behavior that acts on that data. Here, we have an example:

using UnityEngine;

public class Monster : MonoBehaviour

{

 # region Data

 private string _name;

 private float _hp;

 private Vector3 _position;

 private bool _isDead;

 #endregion

 #region Behavior

 public void Attack(Monster target){}

 public void Move(float speed){}

 public void Die(){}

 #endregion

}

https://en.wikipedia.org/wiki/Object-oriented_design

388 The Data-Oriented Technology Stack in Unity

As you can see in the code, we have a class called Monster and it has some data for its
position, health, name, and whether or not it's dead. In addition, this class can also behave
like a real object on its own data. Each Monster object can attack the target, move itself,
or die.

So far, everything is perfect; the objects in the program are like objects in the real world,
as if they have a life of their own, which is also in line with human experience. Next, let's
discuss the inheritance concept of OOP. We can extend the data and behavior of a class
and reuse some of its code via inheritance.

Suppose in this example we realize that not all monsters attack other monsters; some
may attack humans. From a programming perspective, humans and monsters have a lot
in common: position, health, and whether or not it's dead. But some monsters may not
be killed, and humans cannot fly to move. In real life, we have a superset of monsters
and humans, namely, creatures. Let's put the data that monsters and humans share in the
Creature class so that they can both have this data, but we don't have to type them
again, as shown:

public class Creature : MonoBehaviour

{

 #region Data

 private string _name;

 private float _hp;

 private Vector3 _position;

 private bool _isDead;

 #endregion

}

public class Monster : Creature

{

 # region Data

 private bool _canFly;

 #endregion

 #region Behavior

DOTS overview 389

 public void Attack(Creature target){}

 public void Move(float speed){}

 public void Die(){}

 #endregion

}

Basically, if we keep going with this idea, we will end up with some complex class diagrams
where you have a bunch of different creatures, such as monsters, humans, animals, and
plants. We haven't even considered performance and we have already found that OOP
can give us a lot of trouble.

Now, let's see how OOP also misuses the hardware. With the development of technology,
processor hardware is getting faster and faster, but a point that is often overlooked is
that if the data cannot be submitted from memory to the processor fast enough, then
no matter how fast the processor is, it will not work as fast as expected. Cache, which is
located closer to the processor core, is smaller, faster memory. When the processor issues
a memory access request, it will first check whether there is data in the cache. If it exists
(this is also called a cache hit), the data is returned directly without accessing the main
memory; if it does not exist, the corresponding data in the main memory must be loaded
into the cache first and then returned to the processor. CPUs typically use a hierarchy with
multiple cache levels; for example, in a two-level cache system, the L1 cache is close to the
processor side, and the L2 cache is close to the memory side.

CPU caches are designed around several assumptions. The reason why the caches are
effective is mainly that the access to the memory when the program runs is characterized by
locality. This locality includes both spatial locality and temporal locality. That is, the pieces
of data we need to perform a series of related operations may be very close to each other
in memory, or the data we just used for an operation may soon be used again for another
operation. Taking advantage of this locality, caches can achieve extremely high hit rates.

However, OOP often misuses the hardware. Let's still use the Monster class as an
example. Assuming a Monster object will occupy 56 bytes of memory, we iterate over a
list of monsters and call their Move() function to change the monster's position property.

The pseudocode is as follows:

 public void Update()

 {

 for (var i = 0; i < _monsters.count; i++)

 {

 _monsters[i].Move(speed);

390 The Data-Oriented Technology Stack in Unity

 }

}

This code actually modifies a set of Vector3 data every frame, but how is this data allocated
in memory? The following diagram shows how monster objects are allocated in memory
when a 64-byte cache line is split up into 8-byte chunks:

Figure 9.2 – The data layout in memory (OOP)

From the diagram, we can see that the position data that will be modified at every frame is
discontinuous in memory, which means that our game cannot effectively use high-speed
memory, that is, the caches.

Now, let's look at the new programming pattern in Unity, DOTS.

Unlike OOP, DOTS' philosophy is to design for data rather than objects, focusing on
prioritizing and organizing data to make its memory access as efficient as possible.
Let's still use the Monster class as an example to see how its data is allocated in memory
when using DOTS.

Figure 9.3 – The data layout in memory (DOTS)

DOTS overview 391

Do you remember? When moving a monster, we actually only need 12 bytes of position
data for the monster, so the code only needs to load and process the position data of all
the monsters to move them. Using DOTS allows us to pack all of this position data into an
array and allocate memory more efficiently, as shown in the previous figure. Placing data
in a contiguous array in memory improves data locality, which results in extremely high
hit rates for caches, which improves code performance.

So, how does Unity's DOTS make developers' code run more efficiently? Well, DOTS
in Unity is not just a change of programming paradigm from object-oriented to data-
oriented; it actually includes a series of new technology modules, namely the following:

• The C# Job System

• ECS

• The Burst compiler

Each of them consists of one or more Unity packages. We can install the corresponding
functions through Unity's Package Manager. Next, we will briefly introduce these three
modules, respectively.

C# Job System
By using the C# Job System, we can write efficient asynchronous code in Unity that takes
full advantage of the hardware.

Figure 9.4 – Tech demo using the C# Job System

392 The Data-Oriented Technology Stack in Unity

The preceding figure shows a demo project developed using Unity's C# Job System,
showing thousands of "soldiers" attacking the enemy in the scene. You can find
this project on GitHub: https://github.com/Unity-Technologies/
UniteAustinTechnicalPresentation.

We will discuss the C# Job System in detail in the Multithreaded and C# Job System in
Unity section.

ECS
The full name of ECS is Entity Component System. It is the core part of DOTS in Unity
and is built around using data-oriented design, which is very different from the object-
oriented design you may be used to.

Figure 9.5 – The Megacity demo

https://github.com/Unity-Technologies/UniteAustinTechnicalPresentation
https://github.com/Unity-Technologies/UniteAustinTechnicalPresentation

DOTS overview 393

The preceding figure shows Unity's impressive tech demo using ECS called Megacity,
which developers can download here: https://unity.com/megacity.

Figure 9.6 – Megacity download page

We'll cover ECS in detail in the Working with ECS in Unity section.

The Burst compiler
The Burst compiler in Unity is an advanced compiler technology. Unity projects made
with DOTS can use Burst technology to improve their runtime performance. Burst
works on a subset of C# called High-Performance C# (HPC#) and applies advanced
optimization methods under the LLVM compiler framework to generate efficient binaries,
which achieves efficient use of device energy.

We will introduce how to use it in your project in a later section, Using C# and the
Burst compiler.

This section introduces DOTS-related knowledge, such as what technology modules
DOTS contains, how its design philosophy differs from traditional OOP, and what
problems it solves. However, DOTS is not a replacement for OOP; it just provides another
efficient programming pattern for game developers in Unity. For example, you can still
use the C# Job System to implement multithreaded programming in the traditional Unity
GameObject-Components style, rather than maintaining thread pools yourself. Well, next,
let's explore how to implement efficient multithreaded programming in Unity.

https://unity.com/megacity

394 The Data-Oriented Technology Stack in Unity

Multithreading and the C# Job System in Unity
Asynchronous programming is very common when developing .NET projects. But unlike
what many people who are familiar with .NET development think, Unity's support for
asynchronous programming was not friendly at first.

Coroutines
Before Unity 2017, if a game developer wanted to handle asynchronous operations, a
common scenario was waiting for a network response. The ideal solution was to use
coroutines in Unity.

We can start a coroutine in Unity as follows:

 void Start()

 {

 var url = "https://jiadongchen.com";

 StartCoroutine(DownloadFile(url));

 }

 private static IEnumerator DownloadFile(string url)

 {

 var request = UnityWebRequest.Get(url);

 request.timeout = 10;

 yield return request.SendWebRequest();

 if (request.error != null)

 {

 Debug.LogErrorFormat("error: {0}, url is: {1}",

 request.error, url);

 request.Dispose();

 yield break;

 }

 if (request.isDone)

 {

 Debug.Log(request.downloadHandler.text);

 request.Dispose();

 yield break;

 }

 }

Multithreading and the C# Job System in Unity 395

As you can see in the code, we use the StartCoroutine function to start a coroutine,
and inside the coroutine, we can pause the execution by using yield statements.
However, coroutines are still inherently single-threaded, just spread-out tasks across
multiple frames, rather than multithreaded.

async/await
Unity introduced the async/await operator in Unity 2017, allowing game developers
to use async/await in their games to write asynchronous code, but it's still not like a
normal .NET/C# program. This is because the Unity engine manages these threads by
itself, and most of the logic runs on Unity's main thread, which includes not only the C#
code as scripts but also the engine's C++ code. We can use the Unity Profiler tool to view
the CPU timeline. As shown in the following screenshot, the Unity engine runs scripts in
the main thread by default:

Figure 9.7 – The Timeline of CPU

There are 50 GameObjects in this scene, and each of them is attached with a
MainThreadExample script. You can see that the Update functions in these 50 scripts are
executed one by one.

You can multithread different types of tasks; for example, doing some Vector3 math in
a separate thread is no problem. But as long as the task needs to access the transform or
GameObject outside Unity's main thread, the program will throw an exception.

Let's look at an example. The purpose of the following code is to change the scale of the
GameObject and use async/await to perform the operation in another thread:

using System.Threading.Tasks;

using UnityEngine;

public class AsyncExceptionTest : MonoBehaviour

{

396 The Data-Oriented Technology Stack in Unity

 private async void Start()

 {

 await ScaleObjectAsync();

 }

 private async Task<Vector3> ScaleObjectAsync()

 {

 return await Task.Run(() => transform.localScale = new

 Vector3(2, 2, 2));

 }

}

Attach this script to a GameObject in the scene, then click the Play button in the Unity
editor to run the script. The result of the operation is that the scale of the GameObject has
not changed, and a UnityException: get_transform can only be called from the main
thread exception is thrown, as shown in the following screenshot:

Figure 9.8 – Exception

So, you should take care of this and not access transforms or GameObjects from threads
other than Unity's main thread.

As we mentioned earlier, we can do math in a separate thread. So, in order to make the
previous code work correctly, we can just calculate the scale value in different threads,
access the Transform component, and modify the localScale property of it in
Unity's main thread:

 private async Task ScaleObjectAsync()

 {

 var newScale = Vector3.zero;

Multithreading and the C# Job System in Unity 397

 await Task.Run(() => newScale = CalculateSize());

 transform.localScale = newScale;

 }

 private Vector3 CalculateSize()

 {

 Debug.Log("Threads");

 return new Vector3(2, 2, 2);

 }

This time, everything is going well and if we view the Unity Profiler again, we can find
the timeline of these threads in the Scripting Threads section, as shown in the following
screenshot:

Figure 9.9 – Scripting threads

However, as a developer, there are still many challenges with writing thread-safe and
efficient code even in C#, such as the following:

• Thread-safe code is hard to write.
• Race conditions, where the result of a computation depends on the order in which

two or more threads are scheduled.
• Inefficient context switching; is time-consuming when switching threads.

398 The Data-Oriented Technology Stack in Unity

The C# Job System in Unity is a solution that focuses on solving these challenges so that
we can enjoy the benefits of multithreading to develop games. Next, let's explore how to
use the C# Job System in our Unity projects.

Working with the C# Job System
The Job System was originally the internal thread management system of the Unity engine,
but with the growth of developers' demands for multithreaded programming in Unity,
Unity introduced the C# Job System, which allows developers to write multithreaded parallel
processing code painlessly in C# scripts to improve games' performance. Game developers
do not need to implement complex thread pools themselves to keep each thread running
properly. The C# Job System is integrated with Unity's native Job System, and C# script code
and Unity engine's C++ code share threads.

This form of cooperation allows game developers to write code in the way required by the
Job System; the Unity engine handles multithreading for game developers and developers
no longer have to worry about problems that may be encountered when writing
multithreaded code, because the C# Job System will not create any managed threads, but
instead use Unity's worker threads on multiple cores, giving them tasks, which are called
jobs in Unity.

Installing the Jobs package
In order to install and enable the Job System in your project, you need to install the Jobs
package first, as shown in the following screenshot:

Figure 9.10 – The Jobs package

Multithreading and the C# Job System in Unity 399

However, the Jobs package is currently still in the preview state, as shown in the preceding
screenshot, and the Unity Package Manager does not display packages in the preview state
by default. So, if you can't find the Jobs package, then you need to follow these steps to
allow showing the package in the preview state:

1. Open the Project Settings window by clicking the Edit | Project Settings… item in
the Unity editor toolbar, as shown in the following screenshot:

Figure 9.11 – Opening the Project Settings window

400 The Data-Oriented Technology Stack in Unity

2. Next, click the Package Manager item in the category list on the left to open the
Package Manager settings panel.

Figure 9.12 – Opening the Package Manager settings

3. In the following screenshot, you can see that the Enable Preview Packages option
is not selected by default. Let's check it to enable preview packages in the Unity
Package Manager.

Figure 9.13 – Enable Preview Packages

Once done, you should be able to find the Jobs package and install it into your project.

Next, let's look at an example to understand how to use the Job System to improve the
performance of a game.

Multithreading and the C# Job System in Unity 401

How to use the C# Job System
In this example, we will first use Unity's traditional way, that is, the
GameObject+Components way, to create 10,000 cartoon cars in a game scene,
with each car containing a Movement component to move it.

Figure 9.14 – The car models

The car models used in this example are from the Unity Asset Store, and you can
download them here: https://assetstore.unity.com/packages/3d/
vehicles/land/mobile-toon-cars-free-99857. Then, take the following steps:

1. Let's create our first C# script, named CarSpawner, to generate the cars in the
scene. In this script, we can create 10,000 new car instances from the car prefab
by pressing the spacebar. As you can see in the following code, inside the Update
method, we use the Input.GetKeyDown(KeyCode.Space) method to check
whether the spacebar is pressed. If the spacebar is pressed, the CreateCars
method is called to create new car instances:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class CarSpawner : MonoBehaviour

{

[SerializeField]

private List<GameObject> _carPrefabs;

[SerializeField]

https://assetstore.unity.com/packages/3d/vehicles/land/mobile-toon-cars-free-99857
https://assetstore.unity.com/packages/3d/vehicles/land/mobile-toon-cars-free-99857

402 The Data-Oriented Technology Stack in Unity

private float _rightSide, _leftSide, _frontSide,

 _backSide;

 private void Update()

 {

 if(Input.GetKeyDown(KeyCode.Space))

 {

 CreateCars(10000);

 }

 }

 private void CreateCars(int count)

 {

 for(var i = 0; i < count; i++)

 {

 var posX = Random.Range(_rightSide,

 _leftSide);

 var posZ = Random.Range(_frontSide,

 _backSide);

 var pos = new Vector3(posX, 0f, posZ);

 var rot = Quaternion.Euler(0f, 0f, 0f);

 int index = Random.Range(0,

 _carPrefabs.Count);

 var carPrefab = _carPrefabs[index];

 var carInstance = Instantiate(carPrefab, pos,

 rot);

 }

 }

}

2. Next, we also need another script that will be attached to each of the car objects to
move them. As you can see, this Movement script is relatively simple; it moves the
GameObject forward:

using UnityEngine;

public class Movement : MonoBehaviour

Multithreading and the C# Job System in Unity 403

{

[SerializeField]

private float _speed;

 private void Update()

 {

 transform.position += transform.forward *

 _speed * Time.deltaTime;

 }

}

3. Then, attach this Movement script to the car prefab.

Figure 9.15 – The car Prefab

404 The Data-Oriented Technology Stack in Unity

4. Click the Play button in the Unity editor to run the example and press the spacebar
to generate 10,000 cars in the scene. As shown in the following screenshot,
when there are 10,000 cars in the scene, the value of Frames per Second (FPS)
is around 12:

Figure 9.16 – The FPS

5. We can view the CPU usage timeline of this example. Press Ctrl + 7 or click the
Window | Analysis | Profiler item in the Unity editor toolbar to open the Profiler
window. Here, we can see that the Movement.Update for these 10,000 cars
happens on the main thread while the job workers are idle.

Multithreading and the C# Job System in Unity 405

Figure 9.17 – The Timeline of CPU

Obviously, when we see all the logic being executed on the main thread, as game
developers we definitely want to be able to have some operations running on other
threads. However, before we start writing some real code, we should cover a little bit about
how to write jobified code in Unity.

In Unity's Job System, each job can be seen as a method call. When writing a new job, you
must follow these points:

• In order to ensure that the data is distributed contiguously in memory, and to
reduce Garbage Collection (GC) pressure, a job must be a value type, which means
it must be a struct, never a class.

• A new job struct needs to implement the IJob interface. There are many variants of
the IJob interface, such as IJobParallelFor, IJobParallelForBatch, and
IJobParallelForTransform. When implementing these interfaces, we need
to implement the Execute method. It is worth noting that the parameters required
by the Execute method are different when implementing different variants of
the IJob interface, which allows us to handle different scenarios. For example, a
new job implementing the IJobParallelForTransform interface can access
transform data, such as position, rotation, and scale data, in parallel.

406 The Data-Oriented Technology Stack in Unity

The following code is for a sample job that implements the IJobParallelFor interface:

using Unity.Jobs;

public struct SampleJob : IJobParallelFor

{

 public void Execute(int index)

 {

 throw new System.NotImplementedException();

 }

}

We have created a new job, but how do we make it work? Well, we have to schedule it.
Usually, scheduling a job is very simple. The following code demonstrates how to
schedule it:

SampleJob job = new SampleJob();

JobHandle handle = job.Schedule();

handle.Complete();

We've covered some basics on how to create a new job and how to make it work. Now, let's
use the Job System to rewrite the Movement script to distribute the operation of moving
the cars to different threads to run:

1. First of all, let's create a job that moves cars. You can find the new MotionJob
script below. MotionJob is a struct rather than a class and implements the
IJobParallelForTransform interface, so this job can access the position
data and modify it:

using UnityEngine;

using UnityEngine.Jobs;

public struct MotionJob : IJobParallelForTransform

{

 public float Speed, DeltaTime;

 public Vector3 Direction;

 public void Execute(int index, TransformAccess

 transform)

 {

Multithreading and the C# Job System in Unity 407

 transform.position += Direction * Speed *

 DeltaTime;

 }

}

2. Next, we need another script called JobsManager to create the job, provide it with
transform data (specifically in the script, we use the TransformAccessArray
struct to provide this data), and schedule it. Also, this script is similar to the
previous CarSpawner script. It checks whether the spacebar is pressed and creates
10,000 cars in the game scene if the spacebar is pressed. First, let's see how to
create and schedule a job on Unity's Job worker thread. In the Update method, we
create a new MotionJob object and pass data to it, such as deltaTime, speed,
and direction to create a new job, then we call _motionJob.Schedule to
distribute the job to different threads:

using UnityEngine;

using UnityEngine.Jobs;

using Unity.Jobs;

using System.Collections.Generic;

public class JobsManager : MonoBehaviour

{

[SerializeField]

private List<GameObject> _carPrefabs;

[SerializeField]

private float _rightSide, _leftSide, _frontSide,

 _backSide, _speed;

 private TransformAccessArray _transArrays;

 private JobHandle _jobHandle;

 private MotionJob _motionJob;

 private void Start()

 {

 _transArrays = new

 TransformAccessArray(10000);

 _jobHandle = new JobHandle();

 }

408 The Data-Oriented Technology Stack in Unity

 private void Update()

 {

 _jobHandle.Complete();

 if(Input.GetKeyDown(KeyCode.Space))

 {

 CreateCars(10000);

 }

 // Create the Job

 _motionJob = new MotionJob()

 {

 DeltaTime = Time.deltaTime,

 Speed = _speed,

 Direction = Vector3.forward

 };

 // Provide the transform data and schedule the

 Job.

 _jobHandle = _motionJob.Schedule(_transArrays);

 }

3. Next, let's see how to create cars in the code. Since we only need the position data
for these cars this time, in the CreateCars method, we add the car's transform
data to TransformAccessArray so that the job we just created can access
TransformAccessArray to get that transform data. The CreateCars method
is as follows:

 private void CreateCars(int count)

 {

 _jobHandle.Complete();

 _transArrays.capacity = _transArrays.length +

 count;

 for (var i = 0; i < count; i++)

 {

 var posX = Random.Range(_rightSide,

 _leftSide);

 var posZ = Random.Range(_frontSide,

Multithreading and the C# Job System in Unity 409

 _backSide);

 var pos = new Vector3(posX, 0f, posZ);

 var rot = Quaternion.Euler(0f, 0f, 0f);

 int index = Random.Range(0,

 _carPrefabs.Count);

 var carPrefab = _carPrefabs[index];

 var carInstance = Instantiate(carPrefab,

 pos, rot);

 _transArrays.Add(carInstance.transform);

 }

}

4. This time, we no longer need to attach the Movement component to each car
instance at runtime to move the car, so we need to remove the Movement
component that was previously attached to the car prefab.

Figure 9.18 – Removing the Movement component

410 The Data-Oriented Technology Stack in Unity

5. Click the Play button in the Unity editor to run the example and press the spacebar
to generate 10,000 cars in the scene. As shown in the following screenshot, when
there are 10,000 cars in the scene, this time the value of FPS is around 19. In a scene
with 10,000 cars in motion, the game's frame rate nearly doubled:

Figure 9.19 – The FPS

6. Let's press Ctrl + 7 or click the Window | Analysis | Profiler item in the Unity
editor toolbar to open the Profiler window to view the CPU usage timeline this
time. Here, we can see that MotionJob is spread over multiple Job worker threads in
Unity, instead of running on the main thread.

Multithreading and the C# Job System in Unity 411

Figure 9.20 – Running on Job worker threads

Through this example, we saw how to use the Job System in Unity to improve the running
performance of the game.

In this section, we discussed topics related to using asynchronous programming in Unity.
Next, we will discuss another important topic in DOTS – namely, ECS.

412 The Data-Oriented Technology Stack in Unity

Working with ECS in Unity
Unity has always been centered around the concept of components; for example, we can
add a Movement component to a GameObject so that the object can move. We can also add
a Light component to the GameObject to make it emit light. We also add the AudioSource
component, which can make the GameObject emit sound. In this case, the GameObject is
a container to which game developers can attach different components to provide different
behaviors. We can call this architecture a GameObject-Components relationship. In this
architecture, we use the traditional OOP programming paradigm to write components,
coupling data and behavior together. In the previous section, Object-oriented design pattern
versus DOTS, we also discussed the impact of OOP on game performance.

So, to address these issues, Unity introduced ECS, which allows developers to write
data-oriented code in Unity. In ECS, data and behavior are separated, which can greatly
improve memory usage efficiency and thus improve performance.

Note
The so-called behavior here, specifically, is methods.

As its name suggests, ECS consists of three parts, namely the following:

• Entity

• Component

• System

We will introduce them respectively in the following sections.

Entity
When using ECS, we talk more about entities, not GameObjects. You might think that
there is not much difference between an entity and a GameObject, because you might
think of an entity as a container for components, just like a GameObject. However, this
is not the case. An entity is just an integer ID. It is neither an object nor a container. Its
function is to associate the data of its components together.

EntityManager and World
If you want to create new entities in your own C# code, Unity provides the
EntityManager class to manage entities, which you can use to create entities, update
entities, and destroy entities. ECS uses the World class to organize entities, and only one
EntityManager instance can exist in a World.

Working with ECS in Unity 413

When we click the Play button in the Unity Editor to run the game, Unity will create a
World by default, so we can get the EntityManager that exists in the default World
with the following code:

var entityManager =

 World.DefaultGameObjectInjectionWorld.EntityManager;

Archetypes
ECS combines all entities with the same set of components in memory. ECS refers
to this type of component set as an Archetype. Assuming that an entity has only
two components, then those two components form a new Archetype. The following
pseudocode demonstrates how to use EntityManager to create an Archetype that
holds a set of components:

ComponentType[] types;

var archetype = entityManager.CreateArchetype(types);

NativeArray
Undoubtedly, we also need an array to hold the newly created entities. But in ECS, we
will use a different container than a traditional array in .NET programming, namely,
NativeArray.

NativeArray provides a C# wrapper for accessing native memory so that game
developers can share data directly between managed and native memory. Therefore,
operations on NativeArray do not generate GC of managed memory like common
arrays in .NET and require elements to be value types, that is, structs. The following
pseudocode shows how to create a new NativeArray and create new entities:

var entityArray = new NativeArray<Entity>(count,

 Allocator.Temp);

entityManager.CreateEntity(entityArchetype, entityArray);

Component
In ECS, there are also components, but the component in ECS is a different concept
from the Movement "component" mentioned when talking about the GameObject-
Components relationship previously. Before ECS was introduced, we usually thought of
MonoBehaviour attached to GameObjects as components. MonoBehaviour contains
data and behavior. ECS is different because entities and components do not have any
behavioral logic; they only contain data, and logical operations will be handled by the
system in ECS.

414 The Data-Oriented Technology Stack in Unity

A component must be a struct rather than a class and needs to implement one of the
following interfaces:

• IComponentData

• ISharedComponentData

• IBufferElementData

• ISystemStateComponentData

• ISharedSystemStateComponentData

The IComponentData interface is commonly used. The following uses it as an example
to show how to create a new component in ECS:

using Unity.Entities;

public struct SampleComponent : IComponentData

{

 public int Value;

}

If you try to add this SampleComponent to a GameObject in the scene, you will find
that you can't because it doesn't inherit from the MonoBehaviour class. But you can
add the [GenerateAuthoringComponent] attribute to your component to mark
it as an authoring component, as follows:

using Unity.Entities;

[GenerateAuthoringComponent]

public struct SampleComponent : IComponentData

{

 public int Value;

}

An authoring component can be added to a GameObject even if it does not inherit
from MonoBehaviour.

Working with ECS in Unity 415

System
We already know that when using ECS, data and behavior are decoupled. In ECS, all
logic is handled by systems, which takes a group of entities and performs the requested
behavior based on the data contained in the grouped entities. As we already know, using
ECS can make our code access memory efficiently, and in fact, systems in ECS can also be
combined with the C# Job System to efficiently utilize multithreading and further improve
game performance.

We can create a new system in ECS. The following code is an example:

using Unity.Entities;

public class SampleSystem : SystemBase

{

 protected override void OnUpdate()

 {

 Entities.ForEach((ref SampleComponent sample) =>

 {

 sample.Value = -1;

 }).

 ScheduleParallel();

 }

}

In this example, this new SampleSystem inherits the SystemBase class, and there
is a ScheduleParallel Lambda function after the Entites.ForEach loop in
OnUpdate for scheduling work to Unity's Job worker threads using the C# Job System.

Through these brief introductions, I believe you have a general understanding of ECS.
Next, let's install ECS in our project.

416 The Data-Oriented Technology Stack in Unity

Installing the Entities and Hybrid Renderer packages
In order to install and enable ECS in your project, you need to install the Entities package
first, as shown in the following screenshot:

Figure 9.21 – The Entities package

As shown in the preceding screenshot, the Entities package is also in the preview state.
Although we checked the Enable Preview Packages option in the previous subsection, the
Package Manager still does not display this package. This is because starting from Unity
2020.1, this package is no longer hosted on Unity Registry, but hosted on GitHub, so we
need to follow these steps to install it:

Working with ECS in Unity 417

1. The Package Manager window can be opened by clicking the Window | Package
Manager item in the Unity editor toolbar, as shown in the following screenshot:

Figure 9.22 – Opening the Package Manager window

418 The Data-Oriented Technology Stack in Unity

2. Click the + button in the upper-left corner to add packages from other sources.

Figure 9.23 – Adding packages from other sources

3. Click Add package from git URL… to install the Entities package in your project.
The name of the package is com.unity.entities, so we enter it and click the
Add button.

Working with ECS in Unity 419

Figure 9.24 – Adding the Entities package

4. Then, wait for the package installation to complete.

Figure 9.25 – Installing a Git package

Once done, you should be able to find the Entities package installed in your project.

Sometimes we also need another package, the Hybrid Renderer package. This package
helps us render ECS entities.

420 The Data-Oriented Technology Stack in Unity

The process of installing the Hybrid Renderer package is the same as the process of
installing the Entities package, except that we need to enter the name of this package after
clicking Add package from git URL…, which is com.unity.rendering.hybrid.

Figure 9.26 – Installing the Hybrid Renderer package

Wait for the package installation to complete, and then you'll find it's installed in
your project.

Figure 9.27 – The Hybrid Renderer package

Working with ECS in Unity 421

Next, we will use the previous example to understand how to use ECS to further improve
the performance of a game based on the use of the C# Job System.

How to use ECS
In this example, we will create a new component, entities, and a new system and use the
C# Job System to distribute work to Unity's Job worker threads. Let's get started!

1. First, we will create a component script just for the data. In this case, it's the speed
of cars:

using Unity.Entities;

public struct CarSpeed : IComponentData

{

 public float SpeedValue;

}

2. Next, we also need a normal script called CarsManager to access the
EntityManager object in World to create archetypes and entities. Here, we'll
add some premade components from ECS to these entities, such as Translation,
which contains only entity location data, and RenderMesh, which contains entity
graphics attribute data:

using UnityEngine;

using Unity.Collections;

using Unity.Mathematics;

using Unity.Entities;

using Unity.Rendering;

using Unity.Transforms;

using Random = UnityEngine.Random;

public class CarsManager : MonoBehaviour

{

[SerializeField]

private Mesh _mesh;

[SerializeField]

private Material _material;

422 The Data-Oriented Technology Stack in Unity

[SerializeField]

private int _count = 10000;

[SerializeField]

private float _rightSide, _leftSide, _frontSide,

 _backSide, _speed;

 private void Start()

 {

 var entityManager =

 World.DefaultGameObjectInjectionWorld

 .EntityManager;

 // Create entity achetype

 var entityArchetype =

 entityManager.CreateArchetype(

 typeof(CarSpeed),

 typeof(Translation),

 typeof(LocalToWorld),

 typeof(RenderMesh),

 typeof(RenderBounds));

 var entityArray = new

 NativeArray<Entity>(_count, Allocator.Temp);

 // Create entities

 entityManager.CreateEntity(entityArchetype,

 entityArray);

 for (int i = 0; i < entityArray.Length; i++)

 {

 var entity = entityArray[i];

 entityManager.SetComponentData(entity, new

 CarSpeed { SpeedValue = 1f });

 entityManager.SetComponentData(entity, new

 Translation { Value = new

 float3(Random.Range(_rightSide,

Working with ECS in Unity 423

 _leftSide),0,

 Random.Range(_frontSide, _backSide)) });

 entityManager.SetSharedComponentData(entity, new

 RenderMesh

 {

 mesh = _mesh,

 material = _material

 });

 }

 entityArray.Dispose();

 _information.CarCounts = _count;

 }

}

3. Then, attach this CarsManager script to a GameObject in the scene and assign the
appropriate properties, such as the car's mesh, and speed values.

Figure 9.28 – The CarsManager object

424 The Data-Oriented Technology Stack in Unity

4. At this point, we have set up the components and entities. The next thing to do is
to create the system. The system is also where the game logic is handled. In this
example, we'll use the system to move these cars. As you can see in the following
code, instead of searching for components in the traditional Update method and
then operating on each instance at runtime, with ECS, we just statically declare that
we need to process all entities with Translation and CarSpeed components
attached. To find all of these entities, we just need to find the archetypes that match
a specific "components set," which is done by the system:

using Unity.Entities;

using Unity.Transforms;

public class CarMotionSystem : SystemBase

{

 protected override void OnUpdate()

 {

 var deltaTime = Time.DeltaTime;

 Entities.ForEach((ref Translation translation,

 ref CarSpeed carSpeed) =>

 {

 translation.Value.z += carSpeed.SpeedValue

 * deltaTime;

 }).

 ScheduleParallel();

 }

}

5. Click the Play button in the Unity editor to run the example. As shown in the
following screenshot, when there are 10,000 cars in the scene, this time the value
of FPS is around 260! In this scene with 10,000 moving cars, using ECS increased
the game's frame rate by nearly 30 times compared to the original traditional
implementation:

Working with ECS in Unity 425

Figure 9.29 – Using ECS to improve game performance

6. If we look at the Hierarchy panel of this game scene, we won't see any car objects
in the list. This is because when using ECS, traditional GameObjects and traditional
components are not created, but entities and components from ECS are used to
organize data.

Figure 9.30 – No GameObjects are created

426 The Data-Oriented Technology Stack in Unity

7. In order to see the entities, components, and system used in the scene, we can use
the Entity Debugger to view this information. By clicking the Window | Analysis |
Entity Debugger item from the toolbar in the Unity editor, we can open the Entity
Debugger window.

Figure 9.31 – Opening the Entity Debugger window

Working with ECS in Unity 427

8. We can see a list of entities as well as a list of systems in the Entity Debugger
window. As shown in the following screenshot, there are 10,002 entities, including
10,000 car entities:

Figure 9.32 – The Entity Debugger

428 The Data-Oriented Technology Stack in Unity

9. If we select an entity in the entity list, the Inspector window for that entity will
open, showing all components of this entity and data for those components.

Figure 9.33 – Inspector window for an entity

Working with ECS in Unity 429

10. Finally, let's view the CPU usage timeline in the Profiler window. If you forget how
to open this window, just press Ctrl + 7 or click Window | Analysis | Profiler in the
Unity Editor toolbar. Here, we can see that the ECS work is distributed to multiple
Job worker threads by the C# Job System as we expected:

Figure 9.34 – ECS and Job System

Through the preceding steps, we changed the traditional GameObject-Components-style
development method in Unity to the development method using ECS, adopting the
data-oriented design method and using the C# Job System, making full use of
multithreaded programming, and improving the running efficiency of the game.

Next, let's discuss another technology in DOTS, the Burst compiler.

430 The Data-Oriented Technology Stack in Unity

Using C# and the Burst compiler
The Burst compiler in Unity is an advanced compiler technology that can be used to
convert a subset of .NET code into highly optimized native code for Unity games. It
should be noted that it is not a general-purpose compiler, but a compiler designed for
Unity to make Unity games run faster.

Burst works on a subset of C# called HPC#, so let's explore this subset of C# next.

High-Performance C# (HPC#)
HPC# is a subset of C#. The standard C# language uses the concepts of "objects on the
heap" and uses the garbage collector to reclaim unused memory automatically. So, as
developers, we cannot control how the data is allocated in memory. On the other hand,
HPC# doesn't support reference types, namely, classes, to avoid allocation in the heap and
disable the garbage collector. In addition to these, some functions, such as try-catch-
finally, are not supported in HPC# as well.

To summarize, we can use the following types in HPC#:

• Value types, such as int, float, bool, and char, enum types, and struct types

• NativeArray in Unity

Enabling the Burst compiler
The Burst compiler is usually used with the C# Job System in Unity to optimize the code
of a job. As we know, a job is a value type struct, so it is suitable for use with the Burst
compiler. Enabling it in a job is very simple: just add the [BurstCompile] attribute
to the job struct, as shown in the following code:

using Unity.Jobs;

using Unity.Burst;

[BurstCompile]

public struct SampleJobWithBurst : IJobParallelFor

{

 public void Execute(int index)

 {

 throw new System.NotImplementedException();

 }

}

Summary 431

If you also want to enable the Burst compiler in the Unity editor, you can find the settings
for it at Jobs | Burst in the toolbar.

Figure 9.35 – Settings of Burst

By reading this section, you should know what the Burst compiler and HPC# are. You
should also know that the Burst compiler is often used with the C# Job System in Unity
and how to enable it in job code to generate more efficient native binary code.

Summary
This chapter first introduced what data-oriented design is and the difference between
data-oriented design and traditional object-oriented design. Then, we explored DOTS in
Unity and the three technology modules that make it up, namely, the C# Job System, ECS,
and the Burst compiler.

After that, we discussed in detail how to implement asynchronous programming in Unity
and used an example to demonstrate how to use Unity's C# Job System to implement
multithreading to improve game performance.

We also introduced the concept of ECS, discussed the difference between ECS and the
traditional GameObject-Components architecture in Unity, and demonstrated how to
use ECS and the C# Job System to further improve game performance.

432 The Data-Oriented Technology Stack in Unity

Finally, we explored what the Burst compiler and HPC# are and how to enable them to
generate highly optimized native code for your Unity games.

By reading this chapter, you should now understand how to work with DOTS correctly
in Unity. In the next chapter, we will discuss topics related to assets management and
serialization In Unity.

10
Serialization

System and Assets
Management in
Unity and Azure

In the last chapter, Chapter 9, Using Data-Oriented Technology Stack in Unity, we learned
what the data-oriented technology stack is and how you can use this technology to
take advantage of multicore processors to improve the performance of your game. In
this chapter, we will cover some other important topics in Unity development, namely,
serialization and asset management in Unity. Usually, a game not only has code but also
consists of many different kinds of assets, such as models, textures, and audio. Hence,
understanding what the serialization system in Unity is and what the assets workflow is
can help you better develop games with Unity.

434 Serialization System and Assets Management in Unity and Azure

In the last section of this chapter, we will also explore an interesting topic – how to use the
Azure Cloud storage services to host the content of a Unity game and load the content
from the Azure Cloud to the Unity game by using Unity's Addressable Assets system.

The following key topics will be included in our learning path:

• Serialization system in Unity

• The Assets workflow in Unity

• Introducing the special folders in Unity

• Azure Blob storage with Unity's Addressable Assets system

By the end of this chapter, you will not only understand the serialization system and assets
management in Unity, but you will also be familiar with Azure Cloud storage services.

Sounds exciting!

Technical requirements
Since this chapter will be covering Azure's Storage account service, if you don't have an
Azure account available, I recommend you set up a free Azure trial account first before
starting this chapter. You can click the following link to create a free Azure trial account
with $200 credit:

https://azure.microsoft.com/en-us/free/

https://azure.microsoft.com/en-us/free/

Serialization system in Unity 435

Figure 10.1 – Microsoft Azure page

Now, let's get started!

Serialization system in Unity
When developing a game, adding a reliable content saving and loading feature is a critical
part of the development process. If you're using a game engine editor, such as the Unity
engine editor, you'll also need some common editor features, such as undo, saving editor
settings, and more. All of this, whether the game saves or loads content at runtime, or
whether the developer uses the editor to develop the game, is built on serialization.

What is Unity's serialization system?
So, what is serialization? According to Wikipedia, the definition of serialization is the
process of translating a data structure or object state into a format that can be stored or
transmitted and reconstructed later. The opposite operation is deserialization.

436 Serialization System and Assets Management in Unity and Azure

In Unity, there are three serialization formats, namely the following:

• Binary serialization

• YAML serialization

• JSON serialization

YAML and binary serialization in Unity
Assets created by Unity, such as Scenes and Prefabs, will be saved in YAML
format by default. For example, if we open the Scene of this chapter, namely,
Chapter10.unity, in a text editor such as Sublime Text, you can see that this
Scene is serialized in YAML format, and you will see that there are options including
OcclusionCullingSettings and RenderSettings. If you scroll down,
you can also find the GameObjects and components contained in this Scene.

Figure 10.2 – The Scene in YAML format

Serialization system in Unity 437

As shown in Figure 10.2, there is no doubt that the YAML format is human-readable and
makes it easy for the version control tools to work with. However, YAML is a text-based
format, so you can also choose to use binary serialization for the more efficient use of
space and increased security. Let's perform the following steps to set Unity's serialization
mode:

1. Open the Project Settings window by clicking the Edit | Project Settings... item in
the Unity Editor toolbar, as shown in the following screenshot:

Figure 10.3 – Opening the Project Settings window

438 Serialization System and Assets Management in Unity and Azure

2. Next, click the Editor item in the category list on the left to open the Editor
settings panel, as shown in Figure 10.4:

Figure 10.4 – The Editor settings panel

3. In the Asset Serialization section, we can find that the Mode option is Force Text
by default. In this mode, all the assets created by Unity will be serialized in YAML
format. This is also the recommended setting if you use a version management tool
such as Git, as using plain text serialization can often avoid unresolvable merge
conflicts. As shown in Figure 10.5, in the drop-down window, we can select Force
Binary mode to convert all the assets to binary format, and we can also choose the
Mixed mode option to retain the serialization format of the current assets; that is,
the assets that are serialized in binary format are still in binary format, and assets
that are serialized using YAML format are still in YAML format. However, newly
created assets will be serialized in binary format.

Serialization system in Unity 439

Figure 10.5 – Asset Serialization mode

4. Here, we can select Force Binary mode and check the same Scene file in our
text editor again. The Scene file is converted to binary format, as shown in the
following screenshot:

Figure 10.6 – The Scene file in binary format

440 Serialization System and Assets Management in Unity and Azure

As we mentioned earlier, serialization is also an important part of implementing the Unity
Editor. Not only are the assets created by Unity as used in the game, such as game Scenes,
serialized by Unity, but the various settings in the Unity Editor are also serialized by Unity.

In the project root directory, we can find the ProjectSettings folder, which is
automatically created by the Unity Editor when the project is created, as shown in
Figure 10.7:

Figure 10.7 – The ProjectSettings folder

Double-click this folder to open it. We can find all the settings files of the current
project here.

Figure 10.8 – The settings files in the ProjectSettings folder

Next, we still use the text editor to open a settings file, such as GraphicsSettings.
asset, and serialize this file using Unity's binary serialization mode and text serialization
mode, respectively. Figure 10.9 shows the settings file serialized in binary format:

Serialization system in Unity 441

Figure 10.9 – The settings file in binary format

On the other hand, you can see the settings file serialized in YAML format in Figure 10.10:

Figure 10.10 – The settings file in YAML format

So far, we've discussed Unity's binary serialization and text-based YAML serialization, but
we haven't covered the JSON serialization provided by Unity yet. Next, let's take a look at
JSON serialization in Unity.

442 Serialization System and Assets Management in Unity and Azure

JsonUtility class and JSON serialization in Unity
If you have previous experience of developing .NET projects, you are probably familiar
with JSON serialization. You can choose the solutions provided by .NET, such as using
the DataContractJsonSerializer class defined in the System.Runtime.
Serialization.Json namespace or using the JsonSerializer class defined in
the System.Text.Json namespace, and there are also solutions from the open source
community, such as Newtonsoft.Json, which is a very popular JSON framework for
.NET. Unity also provides game developers with JSON serialization capabilities in Unity
development, namely, the JsonUtility class. We can call JsonUtility's ToJson
method to serialize an object into a JSON string, and conversely, JsonUtility's
FromJson method can deserialize a JSON string into an object. Next, let's look at an
example of how to use the JsonUtility class in Unity:

1. Create a new folder named Scripts by clicking the Create | Folder item in the
Project window.

Figure 10.11 – Creating the Scripts folder

Serialization system in Unity 443

2. Double-click on the Scripts folder to enter it, and then create a new C# script
in this folder, name it PlayerData, and add the following to this script. The
PlayerData struct is used to store the data of a player, and an object of it will be
serialized to a JSON string later. And you should note that fields of the structs or
classes should be public; otherwise, the Unity serializer will ignore these fields:

public struct PlayerData

{

 public string Name;

 public int Age;

 public float HP;

 public float Attack;

 public PlayerData(string name, int age, float hp,

 float attack)

 {

 Name = name;

 Age = age;

 HP = hp;

 Attack = attack;

 }

}

3. Next, we also need to create another C# script in the same folder and name it
JSONSerializationSample. The code in JSONSerializationSample is
as follows. In the Start method, we create a new PlayerData object and assign
values to its fields, and then call the JsonUtility.ToJson method to serialize
this object into a JSON string and print the string to the Console window:

using UnityEngine;

public class JSONSerializationSample : MonoBehaviour

{

 private void Start()

 {

 var playerData = new PlayerData("player1", 50,

 100, 100);

444 Serialization System and Assets Management in Unity and Azure

 var jsonString =

 JsonUtility.ToJson(playerData);

 Debug.Log(jsonString);

 }

}

4. Create a new GameObject in the Scene, attach the JSONSerializationSample
script to it, and run the game in the editor. The JSON string, as shown in the
following screenshot, will be printed:

Figure 10.12 – The JSON string

5. Deserializing a JSON string to an object is fairly straightforward; you just need to
call JsonUtility.FromJson<T>, which is a generic method. If you don't know
about generic methods in C#, generic methods are methods declared with type
parameters. So, let's go back to JSONSerializationSample and update the
code in the Start method. This code will deserialize the JSON string into a new
object, and the object's Name field will be printed in the Console window:

using UnityEngine;

public class JSONSerializationSample : MonoBehaviour

{

 private void Start()

 {

 var playerData = new PlayerData("player1", 50,

 100, 100);

 var jsonString =

 JsonUtility.ToJson(playerData);

 Debug.Log(jsonString);

Serialization system in Unity 445

 var deserializedObject =

 JsonUtility.FromJson<PlayerData>(jsonString);

 Debug.Log(deserializedObject.Name);

 }

}

6. Run the game in the editor. The name of this player is printed as shown in the
following screenshot:

Figure 10.13 – Deserializing the JSON string

7. If you want PlayerData as a field of another class and you want to serialize this
class, PlayerData needs to be marked with the [System.Serializable]
attribute, otherwise, PlayerData as a field won't be serialized correctly. So,
let's go back to PlayerData and update the code to add the [System.
Serializable] attribute:

[System.Serializable]

public struct PlayerData

{

 //No Change

}

Now that you know how to use the JsonUtility class to serialize an object to a
JSON string and deserialize a JSON string to an object in Unity, it's time to discuss the
advantages and limitations of Unity's JsonUtility class.

446 Serialization System and Assets Management in Unity and Azure

Advantages and limitations of Unity's JsonUtility class
Let's start with the advantages of Unity's JsonUtility class. Using the JsonUtility
class in Unity can achieve relatively high performance in terms of serializing and
deserializing JSON. The ToJson method and the FromJson method of JsonUtility
use the Unity serializer internally, and it has better support for some built-in types of
Unity, such as Vector2 and Vector3. In addition, since it is provided by the Unity
game engine, there is no need to install additional packages.

However, JsonUtility has limited functionality compared to other popular JSON
frameworks such as Newtonsoft.Json. The two most obvious limitations are that
JsonUtility does not support the serialization of dictionaries and that the root
element must be an object, not an array or a list. Let's look at an example of the
limitations of the JsonUtility class:

1. Create a new C# script in the Scripts folder, name it TeamData, and add the
following to this script. As shown in the following code, this class has two fields, a
PlayerData list and a dictionary:

using System.Collections.Generic;

public class TeamData

{

 public List<PlayerData> Players;

 public Dictionary<string, PlayerData> Roles;

 public TeamData()

 {

 Players = new List<PlayerData>();

 Roles = new Dictionary<string, PlayerData>();

 }

}

Serialization system in Unity 447

2. Next, we also need to create another C# script in the same folder
and name it JsonUtilityLimitationsSample. The code in
JsonUtilityLimitationsSample is as follows. In the Start method, we
create a new TeamData object, add an element to the Players list, and add a key
and value to the Roles dictionary. Then, call the JsonUtility.ToJson method
to serialize this object into a JSON string and print the string to the Console window:

using UnityEngine;

public class JsonUtilityLimitationsSample :

 MonoBehaviour

{

 private void Start()

 {

 var playerData = new PlayerData("player1", 50,

 100, 100);

 var teamData = new TeamData();

 teamData.Players.Add(playerData);

 teamData.Roles.Add("leader", playerData);

 var jsonStringFromTeamData =

 JsonUtility.ToJson(teamData);

 Debug.Log(jsonStringFromTeamData);

 }

}

3. Run the game in the editor; you can find that only the Players list is serialized,
but the Roles dictionary is not serialized as expected, as shown in the following
screenshot. This is because JsonUtility does not support serializing dictionaries
in Unity.

Figure 10.14 – The Roles dictionary is not serialized

448 Serialization System and Assets Management in Unity and Azure

4. Then, let's go back to JsonUtilityLimitationsSample and update the code
in the Start method to try to serialize the Players list individually:

public class JsonUtilityLimitationsSample :

 MonoBehaviour

{

 private void Start()

 {

 // No Change

 var jsonStringFromList =

 JsonUtility.ToJson(teamData.Players);

 Debug.Log(jsonStringFromList);

 }

}

5. Run the game in the editor again and you will find that the Players list is not
serialized this time, as shown in the following screenshot. This is because if using
JsonUtility for serialization, the root element must be an object, not an array
or list.

Figure 10.15 – The Players list is not serialized

Newtonsoft.Json framework
It is a real headache to encounter the problems mentioned in the preceding example
during development, so some other JSON frameworks may also be worth trying. Next,
we will use Newtonsoft.Json to modify the preceding example so that the Roles
dictionary in the TeamData class and the individual Players list can be serialized
into JSON strings correctly:

1. First, if the Newtonsoft.Json package is not installed in your project, you can
install it through Unity's Package Manager. You can open it by clicking the Window
| Package Manager item in the toolbar.

Serialization system in Unity 449

Figure 10.16 – Opening Package Manager

2. Then, click the + in the upper-left corner to open the drop-down menu, and select
the Add package from git URL… item in the drop-down menu.

Figure 10.17 – Add package from git URL

450 Serialization System and Assets Management in Unity and Azure

3. Enter com.unity.nuget.newtonsoft-json in the input box that appears,
click the Add button, and wait for Package Manager to install this package.

Figure 10.18 – Adding Newtonsoft.Json

4. After installing the package in the project, we can use the
Newtonsoft.Json framework in our C# script, so let's go back to
JsonUtilityLimitationsSample.cs and update the code:

using UnityEngine;

using Newtonsoft.Json;

public class JsonUtilityLimitationsSample :

 MonoBehaviour

{

 private void Start()

 {

 var playerData = new PlayerData("player1", 50,

 100, 100);

 var teamData = new TeamData();

 teamData.Players.Add(playerData);

 teamData.Roles.Add("leader", playerData);

 var jsonStringFromTeamData =

 JsonConvert.SerializeObject(teamData);

 Debug.Log(jsonStringFromTeamData);

The assets workflow in Unity 451

 var jsonStringFromList =

 JsonConvert.SerializeObject(teamData.Players);

 Debug.Log(jsonStringFromList);

 }

}

Let's break down the code as follows:

 � We add the Newtonsoft.Json namespace with the using keyword, which
provides classes and methods for JSON serialization and deserialization.

 � In the Start method, we replace the JsonUtility.ToJson method
with the JsonConvert.SerializeObject method that is defined in the
Newtonsoft.Json namespace.

5. Run the game. You will find that the Roles dictionary field of the TeamData
object is serialized as expected, while the Players list as the root element is also
serialized correctly.

Figure 10.19 – Newtonsoft.Json works correctly

In this section, we have explained what Unity's serialization system is and how to use
JSON serialization in your Unity project. Now I think you're ready to continue exploring
how assets in your game project are managed by the Unity engine!

The assets workflow in Unity
Unity's assets workflow is another very interesting topic that is also very closely related to
serialization. So, what is an asset in Unity? If you look at a Unity project, you will find
that there is a folder called Assets in the root directory of this project, and an asset is a
file stored in this folder.

452 Serialization System and Assets Management in Unity and Azure

In Unity development, assets can be divided into the following two categories according
to their sources:

• External assets that are imported into Unity; the most common in this case are
models, textures, and audio. They are often created by third-party tools,
such as Maya, 3Ds Max, and Photoshop, and then imported into Unity for use.

• Assets created by Unity itself, such as Prefab and Scene files.

Whether it's an imported asset or an asset created by Unity, Unity does the following three
things with them:

1. Unity will assign a GUID to this asset.
2. Then, a meta file will be created automatically by Unity to store some additional

information about the asset, such as the GUID and the import settings of this
asset. Figure 10.20 shows an example of an automatically created meta file. When
a PNG file named SampleTexture is imported into the Unity project, Unity
automatically creates a meta file and names it SampleTexture.PNG.meta.

Figure 10.20 – A meta file

3. Finally, Unity will process the asset file, convert its content into an internal
representation in Unity, and store the internal representation in the Library folder
in the project root. We will cover this in detail when we introduce the Library
folder later.

The assets workflow in Unity 453

Figure 10.21 – The Library folder

Armed with an understanding of Unity's assets workflow, let's introduce the three
things involved in this workflow in more detail: GUID and File ID, meta files, and
the Libary folder.

GUID and File ID
GUID and File ID are obviously an important topic when we discuss Unity's asset
workflow. This is because no matter whether we use Unity to create an asset or import an
external asset, Unity has to uniquely identify this asset, and this unique value is the GUID.
File ID is often used together with GUID; it is not used to identify an asset like GUID,
but is used to identify a reference to another object within an object.

Now that we have a brief understanding of GUID and File ID, it's time to move on to
exploring GUID and File ID in more detail!

GUID
As we just mentioned, Unity assigns a GUID to each asset in the Assets folder as the
asset's identifier. We can use a text editor to open the meta file associated with this asset
to find the GUID of this asset within the Unity engine.

454 Serialization System and Assets Management in Unity and Azure

Let's now perform the following steps to create a new C# script as an asset and check the
GUID of this C# script in Unity:

1. Create a new C# script in the Scripts folder, name it AssetSample, and add the
following to this script. As shown in the following code, this class has a Texture field:

public class AssetSample : MonoBehaviour

{

 [SerializeField]

 private Texture _texture;

}

2. A meta file called AssetSample.cs.meta is created next to the C# script file in
the file explorer, as shown in the following screenshot:

Figure 10.22 – The AssetSample.cs.meta file

3. Open the AssetSample.cs.meta file in a text editor, and you
will discover that the GUID of this C# script asset in Unity is
e35f96b75211edd4bad6451a26675090, as shown in the following screenshot:

Figure 10.23 – The GUID of this C# script

The assets workflow in Unity 455

After reading this, you should know how to find the GUID of an asset in Unity; however,
where is the File ID stored, and how does Unity use it to create and maintain references
between objects? So, let's continue our journey with another example.

File ID
We mentioned earlier that Unity uses a File ID to refer to another object within an
object, which is the unique ID of the object referenced within that object.

Now, let's take a look at an example to learn how to find the File IDs and how Unity
uses the File IDs to maintain the reference relationship between objects. In this
example, we will still use the AssetSample script we just created, so now let's get started!

1. First, create a new GameObject in the Scene and name it
AssetSampleGameObject. You already know that a Transform component is
automatically created and attached to this GameObject, as shown in Figure 10.24:

Figure 10.24 – Creating an AssetSampleGameObject

456 Serialization System and Assets Management in Unity and Azure

2. Attach an AssetSample component to AssetSampleGameObject, and then
assign a texture from the Project window to the Texture field of AssetSample.
Then, attach another AssetSample component to the same GameObject; however,
this time, we set the Texture field of AssetSample to None and save the Scene.

Figure 10.25 – Adding AssetSample components to the GameObject

3. Make sure your project's Asset Serialization mode is now Force Text (we covered
this topic in the YAML and binary serialization in Unity section), and then use a text
editor to open the Scene file from File Explorer. You will see a lot of content in the
Scene file, as shown in the following screenshot:

The assets workflow in Unity 457

Figure 10.26 – Opening the Scene file in a text editor

458 Serialization System and Assets Management in Unity and Azure

This file gives us a lot of information, recording the GameObjects, components, and
referenced assets in the Scene. So let's break it down:

• First of all, we can find the record of the GameObject called
AssetSampleGameObject in the file. In the following screenshot, you can see
that there are three components attached to this GameObject, with File IDs of
306521988, 306521989, and 306521990, respectively:

Figure 10.27 – The AssetSampleGameObject record

• If we search these three File IDs, we can find records for three components
in this file – a Transform component, which is created and attached to this
GameObject when the GameObject is created, and two MonoBehaviour
components, which represent C# script components.

The assets workflow in Unity 459

Figure 10.28 – File IDs

460 Serialization System and Assets Management in Unity and Azure

• So, what is the difference between File ID and GUID? If we focus on
these two MonoBehaviour components, we can see that the m_Script
field of both components references the same C# script with a GUID of
e35f96b75211edd4bad6451a26675090.

Figure 10.29 – The MonoBehaviour components

Therefore, we can find that although these two component objects refer to the same
C# script, namely, AssetSample, they are two different instances of AssetSample;
the file ID of the first MonoBehaviour component object is 306521989, and the
file ID of the second MonoBehaviour component object is 306521990.

Moreover, the _texture field of one instance refers to a texture asset, and the
_texture field of the other instance does not refer to any texture asset.

By reading this section, we learned that Unity uses GUID to identify an asset and File ID
to identify a referenced object.

Meta files
We already know that a meta file records the GUID of its associated asset in a Unity
project, and that a meta file also records the import settings of this asset. In this section,
we will talk about meta files that look inconspicuous but are actually very important.

The assets workflow in Unity 461

Meta files and version management
A common mistake developers new to Unity make is not paying attention to these
autogenerated meta files. One such example is ignoring meta files when using Git or
other version control systems to manage the version of the Unity project.

If you remember from the previous section, Unity assigns each asset a GUID, uses this
GUID to identify the asset, and records this GUID in the meta file.

So, if your version management system does not include meta files, your Unity
development progress may be disrupted.

To illustrate this, let's imagine a scenario where, when a Unity project that does not
contain meta files is cloned from a remote repository to your colleague's local machine,
the Unity Editor will reimport those assets and assign them new GUIDs and create meta
files to store this information. As a result, references that previously existed between
objects in your Unity project will no longer be valid.

As an example, assuming that the AssetSample.cs.meta meta file of the
AssetSample C# script we created earlier is not managed by the version management
system, then you will encounter the Script Missing error, as shown in Figure 10.30,
after cloning and opening the project on another computer:

Figure 10.30 – The Script Missing error

462 Serialization System and Assets Management in Unity and Azure

At this point, the script actually exists, but since its GUID has been regenerated, the
previous reference relationship is invalid.

Therefore, when developing a Unity project, please make sure that the meta files are
managed by your version management tool.

Import settings in meta files
In addition to storing the GUID of an asset, a meta file also stores the import settings of
this asset. Of course, the meta files that will be discussed in this subsection mainly refer to
the meta files of assets created in third-party software and that are then imported into the
Unity Editor, such as models, textures, and audio.

Let's use a meta file of an audio asset as an example to see how the import settings of the
asset are saved.

The audio asset we are using here is from Unity's Asset Store and you can download it
from here: https://assetstore.unity.com/packages/audio/sound-fx/
weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047.

Figure 10.31 – Audio pack

https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047
https://assetstore.unity.com/packages/audio/sound-fx/weapons/ultra-sci-fi-game-audio-weapons-pack-vol-1-113047

The assets workflow in Unity 463

After importing the audio into the Unity project, we can select the first audio file in the
Ultra SF Game Audio Weapons Pack v.1 folder to open the audio's Inspector
window in the Unity Editor, which shows the asset's import settings. Then we use a text
editor to open the meta file of the same audio asset in the folder explorer and, as shown in
Figure 10.32, we can see that AudioImporter in the meta file corresponds to the import
settings in the editor:

Figure 10.32 – WPN_SCI-FI_FIRE_01 audio's import settings and meta file

464 Serialization System and Assets Management in Unity and Azure

The import settings of a texture asset and a model asset are also stored in their meta files.
The following screenshot shows the import settings for a texture and a model:

Figure 10.33 – Import settings of a texture (left) and the import settings of a model (right)

Since the meta file stores the import settings of the asset, once we modify the import
settings of the asset in the Unity Editor, the corresponding meta file will be updated.

The import settings often affect how Unity processes these assets, so it is important to
ensure that the import settings can be managed according to the requirements of the
project. For example, in many mobile game projects, we should check the Force To Mono
option on the audio import settings to reduce the memory usage of this audio file.

Next, let's take a look at how to manage import settings through a C# script in Unity.

The AssetPostprocessor class and the import pipeline
Unity provides the AssetPostprocessor class for game developers to hook into the
assets import pipeline in Unity. When importing an asset, we can manage the import
pipeline according to the asset type.

The assets workflow in Unity 465

In the following example, we will create a new C# script to set the Force To Mono option
enabled in the import settings of all audio files in the Unity projec:

1. Create a subfolder in the Scripts folder and name it Editor. This is because the
C# class that we will create inherits from the AssetPostprocessor class, which
is a class for the editor, so it needs to be placed in an Editor folder.

Figure 10.34 – Creating an Editor folder

2. Double-click on the Editor folder to enter it, create a new C# script in this folder,
name it AssetImporterSample, and then add the following to this script:

using UnityEditor;

public class AssetImporterSample : AssetPostprocessor

{

 private void OnPreprocessAudio()

 {

 var audioImporter =

 (AudioImporter)assetImporter;

 if(audioImporter == null)

 {

 return;

 }

 audioImporter.forceToMono = true;

 audioImporter.SaveAndReimport();

 }

}

466 Serialization System and Assets Management in Unity and Azure

Let's break down how this works:

 � First, the code is using the UnityEditor namespace. This is because the
AssetPostprocessor class is defined in this namespace, which also means
that the AssetImporterSample C# script is used in the Unity Editor and
not at runtime.

 � The AssetImporterSample class inherits the AssetPostprocessor
class and implements the OnPreprocessAudio method, which will be
called before the audio asset is imported. We can also implement other similar
methods to be called when other asset types will be imported. For example,
the OnPreprocessTexture method will be called before the texture asset
is imported, and the OnPreprocessModel method will be called before the
model asset is imported.

 � In the OnPreprocessAudio method, we can get an instance of
AudioImporter, set the forceToMono option to true, and then save
and re-import the asset to ensure that the new import settings for the asset
take effect.

3. Save the C# script and the Unity Editor should modify the import settings of these
audio assets in the project and then re-import them, as shown in Figure 10.35:

Figure 10.35 – Importing audio assets

4. Let's now select an audio file to check its import settings. As shown in Figure 10.36,
the new import settings work as expected:

The assets workflow in Unity 467

Figure 10.36 – New import settings

In this subsection, we introduced how to use C# code to manage the asset import pipeline.
Next, let's explore another assets workflow topic in Unity – the Library folder.

The Library folder
In a Unity project, Unity will process and convert the external assets into Unity internal
format assets and save them in the Library folder. Because the data stored in the
Library folder is cached data that can always be regenerated from the source asset files
based on the import settings, the Library folder should generally not be included in a
version management system.

Note
In addition to the Library folder, there are some other Unity folders that
need to be excluded from version management, including Temp, Obj, and
Logs. If you are using Git as your version management tool, you can find
the .gitignore file for Unity projects at this link: https://github.
com/github/gitignore/blob/main/Unity.gitignore.

https://github.com/github/gitignore/blob/main/Unity.gitignore
https://github.com/github/gitignore/blob/main/Unity.gitignore

468 Serialization System and Assets Management in Unity and Azure

You can find the Library folder in the root directory of your Unity project, as shown in
Figure 10.37. If there is no Libary folder in the root directory of your Unity project, you
need to open the project with the Unity Editor. The Unity Editor will import the assets in
the Assets folder and generate the Library folder automatically.

Figure 10.37 – The Library folder

Double-click the Library folder to enter it and you will see the ScriptAssemblies
subfolder, which saves the assemblies of the C# code in the project, and you can also see
the PackageCache subfolder, which saves the cache of Unity packages used by the
project. In addition to these, you also can see the Artifacts subfolder, where the
assets processed by Unity are saved.

Figure 10.38 – The Artifacts folder

In this section, we introduced Unity's assets workflow, covering topics such as GUIDs,
File IDs, meta files, and the Library folder. Next, let's take a look at the special folders
created and managed by developers related to assets management in Unity.

Introducing the special folders in Unity 469

Introducing the special folders in Unity
We already covered some of these special folders related to scripting in Unity in Chapter 2,
Scripting Concepts in Unity. In this section, we will introduce the remaining special folders,
which are related to asset management in Unity.

Resources folder
First, let's take a look at the Resources folder in Unity. Resources is a special folder
name in Unity, but Unity does not automatically create a Resources folder for you. If
you want to use a Resources folder to manage assets, you need to create it yourself. It
should be noted that there can be multiple Resources folders in the Assets directory
in a Unity project.

Unity provides the Resources.Load method to load assets in Resources folders.
Next, we will use an example to learn how to use Resources folders to manage assets:

1. Create a new folder named Resources by clicking the Create | Folder item in the
Project window.

Figure 10.39 – Creating a Resources folder

2. Create an empty GameObject, name it SamplePrefab, and drag it into the
Resources folder to create a new prefab, as shown in Figure 10.40:

Figure 10.40 – SamplePrefab

470 Serialization System and Assets Management in Unity and Azure

3. Create a new C# script in the Scripts folder, name it ResourcesLoadExample,
and add the following to this script:

using UnityEngine;

public class ResourcesLoadExample : MonoBehaviour

{

 private GameObject _gameObjectInstance;

 private void Start()

 {

 var samplePrefab =

 Resources.Load<GameObject>("SamplePrefab");

 if(samplePrefab != null)

 {

 _gameObjectInstance =

 Instantiate(samplePrefab);

 }

 }

}

Let's break down how this works:

I. In the Start method, we call the Resources.Load method and pass
the path to the asset to load as an argument to this method, which is
SamplePrefab.

II. Then, if the prefab asset is loaded, we instantiate it to create a new GameObject
in the game Scene.

4. Create a new GameObject and attach the ResourcesLoadExample script to it.
Run the game in the Unity Editor by clicking the Play button. We can see that a new
instance of the prefab is created as expected.

Figure 10.41 – Loading assets from the Resources folders

Introducing the special folders in Unity 471

Through this example, we see that using Resources folders to manage assets is very
convenient, especially when you need to develop a prototype quickly, but managing
assets in a Unity project by using Resources folders is not recommended for the
following reasons:

• When the Unity Editor builds the game, the assets in Resources folders will
be included in the build, even if the assets are not used, so improper use of the
Resources folder may cause the build game to be too large. In addition, it will
also affect the game's startup speed.

• Using Resources folders will make incremental content upgrades to the game
very difficult or impossible.

Now that we have an understanding of the Resources folders, we know the situations in
which they will be suitable, such as developing a rapid prototype, as well as its limitations.

Next, we will continue to introduce another special folder in Unity, namely,
StreamingAssets

StreamingAssets folder
In Unity, StreamingAssets is also a special folder name. We actually already covered
this in Chapter 6, Integrating Audio and Video in a Unity Project. In this subsection, we will
discuss it in more detail.

We mentioned earlier that Unity will process assets in the Assets folder in a format that
the Unity engine understands, but there is an exception.

The assets in the StreamingAssets folder in the Unity project will still be in the
original format and these assets will not be built into the game along with the other assets
when Unity builds the game. Instead, all assets in the folder will be copied to a specific
folder on the target device.

Since the location of this special folder is different on different platforms, Unity provides
the Application.streamingAssetsPath property so that we can access the correct
path to this folder from C# code.

The following code snippet is from the example used in Chapter 6, Integrating
Audio and Video in a Unity Project. We can see how to use Application.
streamingAssetsPath in C# code:

 public void OnClickSetVideoURL()

 {

 _videoPlayer.url =

472 Serialization System and Assets Management in Unity and Azure

 Path.Combine(Application.streamingAssetsPath,

 _videoFileName);

 }

Similar to the Resources folder, Unity does not automatically create the
StreamingAssets folder for you. If you wish to use it, you need to create it yourself,
as shown in Figure 10.42:

Figure 10.42 – Creating a StreamingAssets folder

Then we can place an audio WAV file in the StreamingAssets folder. As you can see
from the following screenshot, the icon of this WAV file is not the same as the icon of
an audio clip in Unity that we are already familiar with. This is because Unity does not
process the WAV file; it still maintains its original format.

Figure 10.43 – Placing a WAV file in the StreamingAssets folder

Azure Blob storage with Unity's Addressable Asset system 473

In this section, we explored the Resources folder and the StreamingAssets folder,
which are special folders in Unity, and understood that what they do can help you better
develop games with Unity.

Next, we'll cover another interesting topic; how to use Azure Blob storage in the Azure
Cloud with Unity's Addressable Asset system.

Azure Blob storage with Unity's Addressable
Asset system
In this section, we'll cover the Azure Blob storage service in Microsoft's Azure Cloud and
how to use it with Unity's Addressable Asset system.

Azure Blob storage is a type of Azure Storage account in Azure. Other types of Azure
Storage accounts include queues, file shares, and tables. Among them, Blob storage is
very suitable for storing large amounts of unstructured data such as binary data.

Note
You can find additional information and resources about the Azure
Storage account in Microsoft's Azure Cloud at https://docs.
microsoft.com/en-us/azure/storage/common/storage-
introduction.

Unity's Addressable Asset system, as the name suggests, provides a convenient method
for loading specific assets, whether on the local or remote server, according to a specific
address. When discussing the Resources folder in the previous section, we discussed
various limitations when using it in terms of managing assets, and the Addressable Asset
system can solve these problems very well; for example, the size of the game package can
be well controlled, there is no need to include unnecessary assets in game builds, and
assets can be hosted on remote servers, such as the Azure Cloud, to incrementally update
assets within the game.

Note
Before the Addressable Asset system was introduced, developers could also use
AssetBundles to manage assets; AssetBundles is beyond the scope of
what we need here, but if you're interested, you can find out more at https://
docs.unity3d.com/Manual/AssetBundlesIntro.html.

https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.unity3d.com/Manual/AssetBundlesIntro.html
https://docs.unity3d.com/Manual/AssetBundlesIntro.html

474 Serialization System and Assets Management in Unity and Azure

Well, now we have an understanding of Azure Blob storage and the Addressable Asset
system. Next, we will explore how to use Azure Blob storage to host assets and use the
Addressable Asset system to manage them.

Let's start!

Setting up an Azure Blob storage service
First, make sure you have an available Azure subscription. You can apply for a free Azure
trial account on the page introduced at the beginning of this chapter.

If everything is ready, we can create our first resource in Azure, namely, an Azure
resource group.

Creating a new resource group
Usually, a resource group is our first resource in the Azure Cloud. This is because a
resource group is a container for holding other Azure resources.

We can create a resource group in just a few steps:

1. Sign in to the Azure portal page with your account at https://portal.azure.
com/.

Figure 10.44 – Azure portal page

https://portal.azure.com/
https://portal.azure.com/

Azure Blob storage with Unity's Addressable Asset system 475

2. The Azure portal page does not display the portal menu by default. We can click
the Show portal menu button in the upper-left corner of the page to open the
portal menu.

Figure 10.45 – Show portal menu

3. Select Resource groups from the portal menu.

Figure 10.46 – Selecting the Resource groups service

476 Serialization System and Assets Management in Unity and Azure

4. The Resource groups page will then open. Click the Create button on this page, as
shown in Figure 10.47:

Figure 10.47 – Creating a resource group

5. Then, you will see the Create a resource group page. Select your Azure subscription
and enter the name of the resource group. Here, it is rg-unitybook-dev-001.
Select the region of the resource group as (Asia Pacific) Australia East
and then click on Review + create to verify the settings of this resource group and
create it, as shown in Figure 10.48:

Figure 10.48 – Creating a resource group

We've created a resource group in Azure. Next, let's create an Azure Storage account
resource.

Azure Blob storage with Unity's Addressable Asset system 477

Note
You can find additional information about the naming convention in
Microsoft's Azure Cloud at https://docs.microsoft.com/en-
us/azure/cloud-adoption-framework/ready/azure-
best-practices/resource-naming.

Creating a new Azure Storage account resource
In order to set up an Azure Blob storage service, we will need to create an Azure Storage
account to provide a unique namespace in Azure for the assets that will be hosted first.

We will perform the following steps:

1. Go back to the Azure portal page, repeat the steps introduced previously to open the
portal menu, and then click Storage accounts this time, as shown in Figure 10.49:

Figure 10.49 – Clicking Storage accounts

2. The Storage accounts page will then open. Click the Create button on this page, as
shown in Figure 10.50:

Figure 10.50 – Creating a storage account

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming

478 Serialization System and Assets Management in Unity and Azure

3. Similar to creating a resource group, on the Create a storage account page, we also
need to select the Azure subscription first and then select the resource group we just
created. Then, in the Instance details section, enter the name of the storage account
and the location of the resource, unitybookchapter10 and (Asia Pacific)
Australia East, respectively. The other settings can be left as their defaults, and
then click the Review + create button to create the resource.

Figure 10.51 – Creating a storage account

Azure Blob storage with Unity's Addressable Asset system 479

4. We can click the notifications button in the upper-right corner of the page to view
the progress of the resource deployment. When the resource is deployed, we can
click Go to resource to go to the resource page.

Figure 10.52 – Notifications

5. As shown in Figure 10.53, a Storage account named unitybookchapter10 is
created:

Figure 10.53 – The Storage account page

480 Serialization System and Assets Management in Unity and Azure

At this point, we have set up a Storage account resource in Azure. Next, let's set up
Blob Storage.

Creating a container
As we mentioned at the beginning of this section, Blob Storage is a type of Azure Storage
account, so we can find the settings for Blob Storage on the Storage account page we just
opened. We can perform the following steps to set up Blob Storage:

1. First, we need to create a container, similar to a directory in the filesystem on our
computers, to organize a group of files, and a container to organize a group of blobs
on the Azure Cloud. Scroll down the menu on the left side of the Storage account
page and, in the Data storage section, we can see four different storage types. Then,
select Containers.

Figure 10.54 – Selecting containers

2. Then, click the + Container button, as shown in Figure 10.55:

Figure 10.55 – Clicking the + Container button

Azure Blob storage with Unity's Addressable Asset system 481

3. In the New container panel, we enter remotedata as the name of the container,
and for simplicity, we set Public access level to Blob to allow anonymous access to
blobs inside the container.

Figure 10.56 – Creating a new container

Note
For security purposes, you should try to manage access to blobs in a more
secure way, for example, by using an access key for authorization, or by using a
Shared Access Signature (SAS) to delegate access. If you're interested, you can
find out more at https://docs.microsoft.com/en-us/azure/
storage/blobs/authorize-data-operations-portal.

Now that we have set up Azure Blob storage, we also need to use the Addressable Assets
system in Unity to create asset packages and deploy them to Azure.

https://docs.microsoft.com/en-us/azure/storage/blobs/authorize-data-operations-portal
https://docs.microsoft.com/en-us/azure/storage/blobs/authorize-data-operations-portal

482 Serialization System and Assets Management in Unity and Azure

Installing the Addressable Assets system package
By default, the Addressable Asset system is not available in a Unity project. So, we need
to install the Addressables package first.

As shown in Figure 10.57, we can find this package in Unity's Package Manager and install
it in our project.

Figure 10.57 – Installing the Addressables package

Once installed, you can find the Addressables item in the Window menu of the
Unity Editor.

Azure Blob storage with Unity's Addressable Asset system 483

Figure 10.58 – Addressables item

Next, let's build addressable content by using the Addressable Assets system.

Building addressable content
Building addressable content that can be hosted on the Azure Cloud sounds complicated,
but we can break this task down further into the following tasks:

1. First, mark an asset as addressable.
2. Then, enable the remote catalog.
3. And finally, build the content.

Now, let's move on to explore the first task.

484 Serialization System and Assets Management in Unity and Azure

Marking addressable assets
In the Unity Editor, we can easily mark an asset as addressable. Before we mark an
addressable asset, let's create a new asset first. We can create a new cube in the Scene,
name it SampleContentOnAzure, and drag it into the Project window to create
a new prefab asset.

Then, select this new prefab to open its Inspector window and you can see the
Addressable checkbox in the window, as shown in Figure 10.59:

Figure 10.59 – Marking an addressable asset

By checking this checkbox, we will mark the prefab asset as addressable.

Enabling the remote catalog
Before enabling the remote catalog in the Addressable Asset settings, we can first create a
new profile that defines variables such as RemoteLoadPath.

Creating a profile
So, let's start by creating a profile using the following steps:

1. In the toolbar, click on Window | Asset Management | Addressables | Profiles.

Azure Blob storage with Unity's Addressable Asset system 485

Figure 10.60 – Opening the Profiles window

2. In the Addressables Profiles window, click the Create button and select Profile in
the drop-down menu to create a new profile.

Figure 10.61 – Creating a new profile

486 Serialization System and Assets Management in Unity and Azure

3. Then, rename this new profile to AzureCloud and enter the URL of the Azure Blob
container in relation to the RemoteLoadPath variable.

Figure 10.62 – Setting up the new profile

If you don't know the URL of the Azure Blob container, you can find it on the container's
Properties page in Azure, as shown in the following screenshot:

Figure 10.63 – Container Properties

Creating a new addressables group

Azure Blob storage with Unity's Addressable Asset system 487

Next, we also need to create a new addressables group, which is a container for
addressable assets and their data, and can determine whether the assets within the group
will be hosted on a remote server or stored locally. We can then place assets that need
to be hosted on a remote server in this new group without changing the local location
configured in the default group.

Let's perform the following steps:

1. In the toolbar, click on Window | Asset Management | Addressables | Groups.

Figure 10.64 – Opening the Groups window

488 Serialization System and Assets Management in Unity and Azure

2. In the Addressables Groups window, click the Create button, then select Group >
Packed Assets to create a new group.

Figure 10.65 – Creating a new group

Rename it to Azure Remote Group.

Figure 10.66 – Azure Remote Group

3. Change the active profile from Default to AzureCloud so that the Addressable
Assets system can access the variables in AzureCloud.

Figure 10.67 – Activating the AzureCloud profile

Azure Blob storage with Unity's Addressable Asset system 489

4. Select the Azure remote group in the Addressables Groups window to open its
Inspector window and set Content Packing & Loading using the remote path
defined in the AzureCloud profile.

Figure 10.68 – Setting up the addressables group

5. By default, the marked addressable asset will be under Default Local Group; we
need to move it to the Azure remote group we just created.

Figure 10.69 – Moving the asset to Azure Remote Group

490 Serialization System and Assets Management in Unity and Azure

6. Finally, we also need to set a label, Azure, for this asset. You can think of it as a
key so that we can then load this specific asset through the Addressables.
LoadResourceLocationsAsync method with this key in C# code.

Figure 10.70 – Setting a label

Now that we've set up the addressables group, next, let's move on to enable the ability
to build remote content.

Enabling the Build Remote Catalog checkbox
1. Back to the toolbar, click on Window | Asset Management | Addressables |

Settings to open the Addressable Asset Settings window.

Azure Blob storage with Unity's Addressable Asset system 491

Figure 10.71 – Opening the Addressable Asset Settings window

492 Serialization System and Assets Management in Unity and Azure

2. Scroll down the window and you will find the Content Update section. Then, check
the Build Remote Catalog checkbox and set the Build Path and Load Path fields,
respectively.

Figure 10.72 – The Build Remote Catalog settings

Azure Blob storage with Unity's Addressable Asset system 493

Now that you know how to enable the remote catalog in the Addressable Asset system,
I think you're ready and can't wait to learn how to build the content. Let's go!

Building the content
It's finally time to build the content with the help of the following steps:

1. Go back to the Addressables Groups window, click Play Mode Script, and select
Use Existing Build (requires built groups) in the drop-down menu, as shown in
Figure 10.73:

Figure 10.73 – Setting up the Play mode scripts

Note
Unity provides developers with three build scripts to create play mode
data. Here, we are using Use Existing Build mode, which best matches the
game build deployed. You can find more information about build scripts
in the Addressable Asset system at https://docs.unity3d.com/
Packages/com.unity.addressables@1.9/manual/
AddressableAssetsDevelopmentCycle.html.

2. Then, click Build | New Build | Default Build Script to build the content.

Figure 10.74 – Building the content

mailto:https://docs.unity3d.com/Packages/com.unity.addressables@1.9/manual/AddressableAssetsDevelopmentCycle.html
mailto:https://docs.unity3d.com/Packages/com.unity.addressables@1.9/manual/AddressableAssetsDevelopmentCycle.html
mailto:https://docs.unity3d.com/Packages/com.unity.addressables@1.9/manual/AddressableAssetsDevelopmentCycle.html

494 Serialization System and Assets Management in Unity and Azure

3. Wait for the build to complete and then you can find the build in the ServerData
folder in your project root.

Figure 10.75 – ServerData

Now that you know how to build addressable content in the Addressable Asset system,
next, let's move on to deploy the content to the Azure Cloud.

Deploying content to the Azure Cloud
To deploy the addressable content we just built to the Azure Cloud, follow these steps:

1. Navigate to the remotedata container we created in Azure and then click the
Upload button.

Figure 10.76 – The remotedata container page

Azure Blob storage with Unity's Addressable Asset system 495

2. An Upload blob panel will then appear. Select the files you want to upload and click
the Upload button.

Figure 10.77 – Uploading the content

3. Wait for the upload to finish and then we can see our addressable content in the
blobs list in the remotedata container.

Figure 10.78 – The addressable content in Azure

Now that you know how to deploy addressable content to the Azure Cloud, next, let's
move on to exploring how to load content into your game from Azure.

496 Serialization System and Assets Management in Unity and Azure

Loading addressable content from the Azure Cloud
Since we are using the Addressable Asset system to manage assets, loading content from
the Azure Cloud into the game also needs to use the methods provided by the Addressable
Asset system.

Let's get started!

1. Create a new C# script in the Scripts folder, name it
LoadAddressableContentFromAzureCloud, and add the
following to this script:

using UnityEngine;

using UnityEngine.AddressableAssets;

public class LoadAddressableContentFromAzureCloud :

 MonoBehaviour

{

 [SerializeField]

 private string _assetKey;

 private void Start()

 {

 GetContentFromAzureCloud();

 }

 private async void GetContentFromAzureCloud()

 {

 var resourceLocations = await

 Addressables.LoadResourceLocationsAsync

 (_assetKey).Task;

 foreach (var resourceLocation in

 resourceLocations)

 {

 await Addressables.InstantiateAsync

Azure Blob storage with Unity's Addressable Asset system 497

 (resourceLocation).Task;

 }

 }

}

As you can see in the code, we first provide _assetKey, whose value is the label
of the asset we set in the previous section. Then, we call the Addressables.
LoadResourceLocationsAsync method to load content and
Addressables.InstantiateAsync to instantiate a GameObject.

2. Create a new GameObject, attach the
LoadAddressableContentFromAzureCloud script to it, set the value of
Asset Key to Azure, and then run the game in the Unity Editor by clicking the
Play button. We can see that a new instance of the prefab is created as expected.

Figure 10.79 – Loading the addressable content from the Azure Cloud

By reading this section, you learned what the Azure Blob storage service in the Microsoft
Azure Cloud is and how to use it with Unity's Addressable Asset system to host and
update game content. This section also brings us to the end of the chapter!

498 Serialization System and Assets Management in Unity and Azure

Summary
We've come a long way in this chapter. We started by introducing Unity's serialization
system, discussing binary serialization, YAML serialization, and JSON serialization in
Unity. Then we explored the assets workflow in Unity, covering important concepts
such as GUIDs, File IDs, meta files, the Library folder, and how to manage the assets
import pipeline from C# code. Next, we discussed the Resources folder and the
StreamingAssets folder in detail, which are special folders in Unity, and understood
that what they do can help you better develop games with Unity. Finally, we covered quite
a bit about Azure Blob storage and Unity's Addressable Asset system, from how to create
an Azure Blob storage service in the Azure Cloud to how to load the addressable content
from Azure into a Unity project. It's been an amazing journey!

The knowledge you have acquired in this chapter will help you choose the appropriate
serialization mode in Unity according to your needs, manage assets reasonably, and use
the Azure Cloud to achieve incremental updates of game content.

In the next chapter, we will continue this wonderful journey to explore how to create
games with Unity, Microsoft Game Dev, and the Azure Cloud.

11
Working with

Microsoft Game
Dev, Azure Cloud,

PlayFab, and Unity
This is the last chapter of this book. In the previous chapters, we have learned about the
various modules that can be used to develop games with the Unity engine, such as the UI
module, the physics module, and the animation module, and also covered some advanced
topics – for example, Unity's rendering pipelines and the new Data-Oriented Technology
Stack. Also, in Chapter 10, Serialization System and Assets Management in Unity and
Azure, we not only discussed Unity's serialization system and assets management but
also covered some knowledge related to Microsoft Azure Cloud.

This chapter will continue to explore Microsoft Game Dev (previously known as
Microsoft Game Stack), the Microsoft Azure cloud, and Microsoft Azure PlayFab
because the tools needed in modern game development are not limited to game engines;
other tools and services such as the cloud are increasingly used in game development.

500 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

The following key topics will be included in our learning path:

• Introducing Microsoft Game Dev, Microsoft Azure Cloud, and Azure PlayFab

• Setting up Azure PlayFab for a Unity project

• Signing up and logging in players using Azure PlayFab in Unity

• Implementing a leaderboard using Azure PlayFab in Unity

By the end of this chapter, you will understand what Microsoft Game Dev, Microsoft
Azure Cloud, and Microsoft Azure PlayFab are and how to set up Azure PlayFab in
a Unity project and use Azure PlayFab's API to implement registration, login, and
leaderboard functions in Unity.

Sounds exciting! Now, let's get started!

Technical requirements
You can find the example project that will be used in this chapter, namely Chapter11-
AzurePlayFabAndUnity, in the following GitHub repository: https://
github.com/PacktPublishing/Game-Development-with-Unity-for-.
NET-Developers.

Introducing Microsoft Game Dev, Microsoft
Azure Cloud, and Azure PlayFab
We have learned how to use the Unity engine to develop games. However, modern game
development requires not only game engines but also other tools, such as cloud services.

Microsoft Game Dev
In 2019, Microsoft announced Microsoft Game Stack, now known as Microsoft Game
Dev, which aims to provide game developers with the tools and services they need to
easily create and operate games:

https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers
https://github.com/PacktPublishing/Game-Development-with-Unity-for-.NET-Developers

Introducing Microsoft Game Dev, Microsoft Azure Cloud, and Azure PlayFab 501

Figure 11.1 – Microsoft Game Dev products (from the Game Dev website)

These tools and services in Microsoft Game Dev include not only DirectX, Visual Studio,
Xbox Services, App Center, and Havok, which are commonly used by game developers to
complete game development and content creation, but also cloud-based services such as
Microsoft Azure Cloud and Azure PlayFab, which all come together to form a powerful
ecosystem that every game developer can use, as shown in Figure 11.1.

The Microsoft Azure cloud and Azure PlayFab are important parts of Microsoft Game
Dev. Not only are more and more modern games requiring multiplayer support but it is
also becoming more common for single-player games to store player data in the cloud.
Therefore, the cloud is becoming more and more important in game development.

At the Game Developers Conference in March 2022, Microsoft announced a new
program, ID@Azure, designed to help game developers develop games using the
Microsoft Azure cloud and Azure PlayFab services. Any game developer can apply to join
the program, whether they are an independent game developer or a game studio. After
joining the program, you can get up to $5,000 in Azure credits, so you can access many
cloud services, get a free Azure PlayFab Standard Plan, get expert support, and so on.

Note
If you are interested in the ID@Azure program, you can find more information
at https://aka.ms/idazure.

https://aka.ms/idazure

502 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

Now that you have an understanding of what Microsoft Game Dev is, let's move on to
exploring what the Microsoft Azure cloud and Azure PlayFab are.

Microsoft Azure Cloud
Microsoft Azure is a cloud computing service platform where you can find the
following services:

• Cloud computing services, such as Azure App Service, Azure Functions, and Azure
Virtual Machines

• Database services, such as Cosmos DB, Azure SQL Database, and Azure Cache
for Redis

• Storage services, such as an Azure Storage account and Data Lake Storage

• Networking services, such as Azure Application Gateway, Azure Firewall, and
Azure Load Balancer

• Analytics services, such as Azure Data Factory and Azure Synapse Analytics

• Security services, such as Azure Defender and Azure DDoS Protection

• AI services, such as Azure Cognitive Services and Azure Bot Service

In the game industry, game servers are usually deployed in data centers as close as
possible to players, which not only reduces network latency but also meets data
sovereignty requirements in certain countries and regions:

Figure 11.2 – The Microsoft Azure global infrastructure

Introducing Microsoft Game Dev, Microsoft Azure Cloud, and Azure PlayFab 503

According to data from Microsoft, the Microsoft Azure cloud covers 140 countries and
regions around the world, and the number of available areas is more than any other cloud
platform. The huge global coverage helps game developers quickly deploy game services
for target countries or regions.

Note
You can find more information about the Microsoft Azure Global
Infrastructure at https://infrastructuremap.microsoft.
com/explore.

In addition to using Azure data centers to host games, game developers can also develop
games using Azure virtual machines on the Microsoft Azure cloud. A new Azure Game
Development Virtual Machine was announced at the Game Developers Conference in
March 2022, which is customized for game developers and pre-installed with tools such
as the Microsoft Game Development Kit, Visual Studio 2019 Community Edition, and
Blender to enable game production on the cloud.

Note
If you are interested in the Azure Game Development Virtual Machine, you can
find more information at https://aka.ms/gamedevvmdocs.

Azure PlayFab
PlayFab is a complete backend service for building and operating real-time games. In early
2018, Microsoft acquired PlayFab. Now, PlayFab has joined the Azure family and changed
its name to Azure PlayFab, becoming a part of Azure. Azure PlayFab combines the Azure
cloud with PlayFab; the Azure cloud brings reliability, global-scale accessibility, and
enterprise-grade security, while PlayFab provides game developers with a complete
game backend service.

https://infrastructuremap.microsoft.com/explore
https://infrastructuremap.microsoft.com/explore
https://aka.ms/gamedevvmdocs

504 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

As a complete backend service solution, Azure PlayFab mainly provides the following
functions for game developers to develop games:

• Built-in authentication that game developers can use to enable player registration,
login, and even track players across devices

• The ability to create dynamically scaled multiplayer servers and manage player data
on the cloud

• The ability to easily implement a leaderboard on the backend server

Note
Azure PlayFab also provides other services for maintaining and operating
games, such as Liveops (short for Live Operations) and data analytics services,
which can be used to manage game content, such as making updates to a game
without releasing a new version, and reporting and analyzing game data daily.
They are beyond what we need here, but if you're interested, you can find
out more at https://docs.microsoft.com/en-us/gaming/
playfab.

In the rest of this chapter, we will integrate Azure PlayFab into a Unity project to
implement player registration, login, data saving, loading, and a leaderboard.

Let's move on!

Setting up Azure PlayFab for a Unity project
In this example, we will add player registration, login, data saving, loading, and
leaderboard functions to a Flappy Bird-style game in Unity:

https://docs.microsoft.com/en-us/gaming/playfab
https://docs.microsoft.com/en-us/gaming/playfab

Setting up Azure PlayFab for a Unity project 505

Figure 11.3 – The Unity project

Next, we will first create a new Azure PlayFab account, set up a game studio and a game
title in Azure PlayFab, and then set up the Azure PlayFab SDK in this Unity project.

Creating a new Azure PlayFab account
First of all, we need a new Azure PlayFab account. To create a new Azure Playfab account,
let's perform the following steps:

1. Visit the home page of Microsoft Azure PlayFab at https://playfab.com/
and click the SIGN UP button at the upper-right corner to open the sign-up page:

Figure 11.4 – The home page of Azure PlayFab

https://playfab.com/

506 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

2. Enter your email address and password on the sign-up page and click the Create
a free account button:

Figure 11.5 – Creating a free account

3. You will then receive a verification email from Azure PlayFab to verify your email
address; click VERIFY YOUR EMAIL ADDRESS:

Setting up Azure PlayFab for a Unity project 507

Figure 11.6 – An email address verification from Azure PlayFab

4. After the email address verification is complete, you can log in with the Azure
PlayFab account you just created, and you can see your game studio and a game title
already set up in the Azure PlayFab developer portal, also known as Game Manager
in Azure PlayFab:

Figure 11.7 – My Game Studio in Azure PlayFab

Now that we have created a new Azure PlayFab account, we can start looking at how to set
up a game studio and a game title in Azure PlayFab.

508 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

Setting up a game studio and a game title in
Azure PlayFab
After creating an Azure PlayFab account, the next task is to set up your own game studio
and game title:

1. The default game studio is called My Game Studio, which doesn't make much sense,
so you can click ... | Studio settings on the right to open the Edit Studio page:

Figure 11.8 – Opening the Edit Studio page

2. On the Edit Studio page, change the game studio name to UnityBook and click
the Save studio button to save:

Setting up Azure PlayFab for a Unity project 509

Figure 11.9 – Changing the studio name to UnityBook

3. Similarly, the default game title is My Game, which also doesn't make much sense.
As shown in the following figure, you can click the gear button and then Edit title
info to open the Edit Title page:

Figure 11.10 – Opening the Edit Title page

510 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

4. On the Edit Title Information page, you can set various information about the
title here, such as name, genre, and player modes. Let's change the title name to
Chapter11-AzurePlayfabAndUnity and click Save title to save:

Figure 11.11 – Changing the title name

Now that we have set up a game studio and a game title in Azure PlayFab, let's turn our
attention to setting up the Azure PlayFab SDK in the Unity project!

Setting up the Azure PlayFab SDK in the Unity project
In order to access the API in Azure PlayFab from Unity, we need to import the Azure
PlayFab SDK into the Unity project first:

1. You can find the Azure PlayFab SDK at https://docs.microsoft.com/
en-us/gaming/playfab/sdks/unity3d/. Here, you can also find the link
to the Unity PlayFab SDK GitHub repository, as shown in Figure 11.12:

https://docs.microsoft.com/en-us/gaming/playfab/sdks/unity3d/
https://docs.microsoft.com/en-us/gaming/playfab/sdks/unity3d/

Setting up Azure PlayFab for a Unity project 511

Figure 11.12 – The Azure PlayFab SDK download links

2. Drag and drop the UnitySDK package you just downloaded into the Unity Editor.
The Import Unity Package window will pop up, where you can preview the
contents of the package, and then click the Import button to import it into
this Unity project:

Figure 11.13 – Importing the Azure PlayFab SDK

512 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

3. Once the SDK has been imported, you will find the PlayFab menu in the Unity
Editor toolbar. Then, you can click on PlayFab > MakePlayFabSharedSettings to
open the PlayFabSharedSettings window, where you need to configure settings to
connect this Unity project to the game title in Azure PlayFab:

Figure 11.14 – The PlayFab SDK has been imported

4. In the Play Fab Shared Settings window, you should provide the game title ID
and the developer secret key of your game title, as shown in Figure 11.15:

Figure 11.15 – The Play Fab Shared Settings window

Setting up Azure PlayFab for a Unity project 513

5. In order to find out the game title ID and the developer secret key, you need to go
back to the developer portal of Azure PlayFab, where you can find the game title ID
on the game title item:

Figure 11.16 – The game title ID

6. The developer secret key is tightly coupled to the game title in Azure PlayFab, so on
the developer portal, you first need to click on the title item to open the overview
page of the game title. As shown in the following figure, you need to click on the
gear button and then click Title settings to open the settings page of the game title:

Figure 11.17 – The Overview page of the game title

514 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

7. In the settings page of the game title, select the Secret Keys tab to switch to the
secret keys settings, where you can find the default developer secret key:

Figure 11.18 – The Secret Keys page

8. Go back to the Play Fab Shared Settings window in Unity, and use the title ID and
the developer secret key you just got from the Azure PlayFab developer portal to set
the title ID and the developer secret key.

Now that we have set up the Azure PlayFab SDK for this Unity project, you should now
have an understanding of Azure PlayFab, including the Azure PlayFab developer portal,
(which is also called Game Manager), how to set up a game studio and a game title, and
how to import Azure PlayFab's SDK into a Unity project and connect the game title in
Azure PlayFab to the project. Next, let's move on to exploring how to register and log
in a player via Azure PlayFab.

Signing up and logging in players using Azure
PlayFab in Unity
In the demo project mentioned in the Technical requirements section, you can find the
signup and login UI panel in AzurePlayFabIntegration folder | StartScene, which we
will use to implement the signup and login functionality:

Signing up and logging in players using Azure PlayFab in Unity 515

Figure 11.19 – The signup tab (left) and the login tab (right) on the UI panel

As shown in Figure 11.19, like many common signup and login pages, the signup and
login UI panels in our example also have two tabs, namely the signup tab and the login
tab, which can be switched by clicking the red reminder text on the panel. The signup tab
requires the player to provide a username, email, and password to create a new player
account in Azure PlayFab, while the login tab only requires the player to provide the email
and password to log in.

Signing up players in Azure PlayFab
Next, let's take a look at how to implement the signup function first:

1. Create a new folder in the AzurePlayFabIntegration folder and name
it Scripts:

Figure 11.20 – Creating a Scripts folder

516 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

2. Create a new C# script in the Scripts folder, name it
AzurePlayFabAccountManager, and add the following code:

using System.Text;

using System.Security.Cryptography;

using UnityEngine;

using UnityEngine.UI;

using PlayFab;

using PlayFab.ClientModels;

public class AzurePlayFabAccountManager :

 MonoBehaviour

{

 [SerializeField]

 private InputField _userName, _email, _password;

 [SerializeField]

 private Text _message;

 public void OnSignUpButtonClick()

 {

 var userRequest = new

 RegisterPlayFabUserRequest

 {

 Username = _userName.text,

 Email = _email.text,

 Password = Encrypt(_password.text)

 };

 PlayFabClientAPI.RegisterPlayFabUser(userRequest,

 OnRegisterSuccess, OnError);

 }

 public void

 OnRegisterSuccess(RegisterPlayFabUserResult result)

 {

 _message.text = "created a new account!";

Signing up and logging in players using Azure PlayFab in Unity 517

 var displayNameRequest = new

 UpdateUserTitleDisplayNameRequest

 {

 DisplayName = result.Username

 };

 PlayFabClientAPI.

 UpdateUserTitleDisplayName(display

 NameRequest, OnUpdateDisplayNameSuccess,

 OnError);

 }

 public void OnError(PlayFabError error)

 {

 _message.text = error.ErrorMessage;

 }

 private static string Encrypt(string input)

 {

 var md5 = new MD5CryptoServiceProvider();

 var bytes = Encoding.UTF8.GetBytes(input);

 bytes = md5.ComputeHash(bytes);

 return Encoding.UTF8.GetString(bytes);

 }

}

This is quite a long script; let's break down the code as follows:

 � We add System.Security.Cryptography and the System.Text
namespace with the using keyword to encrypt the password in the Encrypt
method.

 � We add PlayFab and the PlayFab.ClientModels namespace with the
using keyword to access the API that Azure PlayFab offers.

 � In the fields section, we reference three InputField UI elements to provide
the username, email address, and password. Also, we get a reference to the Text
UI element to display the message from Azure PlayFab.

 � We create a new instance of RegisterPlayFabUserRequest and call
PlayFabClientAPI.RegisterPlayFabUser to register this user in
Azure PlayFab.

518 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

 � We also have two callbacks – OnRegisterSuccess, which is called when the
result is received, and OnError, which is called when an error occurs.

 � In OnRegisterSuccess, we create a new instance of
UpdateUserTitleDisplayNameRequest and call PlayFabClientAPI.
UpdateUserTitleDisplayName to update the user's display name with the
username at registration; otherwise, the user's display name is an empty string by
default. Also, you can use this method to allow the user to change the account's
display name in the future.

3. Drag and drop AzurePlayFabAccountManager.cs onto the
SignupAndLogin GameObject in the scene, and assign the UI elements to the
corresponding fields, as shown in Figure 11.21:

Figure 11.21 – Setting up AzurePlayFabAccountManager

Signing up and logging in players using Azure PlayFab in Unity 519

4. Select the Sign up and log in button in the UI panel to open the Inspector
window of this button. In the Inspector window, first, click the + button
at the bottom of the On Click() section, then select the GameObject that
AzurePlayFabAccountManager is attached to, and finally, select the method
defined in the AzurePlayFabAccountManager class that will be called when
the button is clicked, namely OnSignUpButtonClick, as shown in Figure 11.22:

Figure 11.22 – Setting up the sign-up button

5. Run the game, and enter the username, email address, and password in the Sign
up and login UI panel, and then click the Sign up and login button to send a
register user request to Azure PlayFab. As shown in the following figure,
a new account is created:

Figure 11.23 – A new account is created

520 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

6. Let's go back to the dashboard of the game title in Azure PlayFab. In the dashboard,
you can see that there is a new API call and a new user has been created. Then, we
can also click the Players button to open the Players page for more information:

Figure 11.24 – The dashboard of the game title

7. Take a look at the player list on the Players page; you can see the new account we just
created. There is also some information about the account, such as the last login time,
the time the account was created, and which country the player logged in from:

Figure 11.25 – The Players page

Signing up and logging in players using Azure PlayFab in Unity 521

Now that we've implemented the registration function, it's time to implement the login
function for the players who have accounts.

Logging in players in Azure PlayFab
By taking the following steps, we will require players to provide an email and password to
log in, and if the login is successful, they will jump to our Flappy Bird-style game scene:

1. Go back to the AzurePlayFabAccountManager script and add the
following code:

// ... pre-existing code ...

using UnityEngine.SceneManagement;

//... pre-existing code ...

 public void OnLoginButtonClick()

 {

 var userRequest = new

 LoginWithEmailAddressRequest

 {

 Email = _email.text,

 Password = Encrypt(_password.text)

 };

 PlayFabClientAPI.

 LoginWithEmailAddress(userRequest,

 OnLoginSuccess, OnError);

 }

 public void OnLoginSuccess(LoginResult result)

 {

 _message.text = "login successful!";

 StartGame();

 }

 private static void StartGame()

 {

522 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

 SceneManager.LoadScene(1);

 }

Let's break down the newly added code as follows:

 � First of all, the UnityEngine.SceneManagement namespace is added with
the using keyword. This is because if the player logs in successfully, we need to
switch the scene from the login scene to the game scene, and the logic related to
scene loading is defined in this namespace.

 � We create a new instance of LoginWithEmailAddressRequest and call
PlayFabClientAPI.LoginWithEmailAddress to log the player into
Azure PlayFab.

 � In addition to using email to log in, Azure PlayFab also offers multiple login
methods, such as calling PlayFabClientAPI .LoginWithFacebook
to log in with a Facebook access token, and calling PlayFabClientAPI.
LoginWithGameCenter to log in with an iOS Game Center player identifier.

 � The SceneManager.LoadScene method will be called when the player logs in
successfully. The SceneManager.LoadScene method takes an int parameter,
which is the index of the target scene.

 � There are two scenes in this example – the first one is StartScene, with an
index of 0, which allows players to register or log in here; and the second is
GameScene, with an index of 1, which allows players to play the game, so we
use an index of 1 to switch from StartScene to GameScene.

2. Select the Login button in the UI panel to open the Inspector window
of this button. In the Inspector window, first, click the + button at the
bottom of the On Click() section, then select the same GameObject that
AzurePlayFabAccountManager is attached to, and finally, select the method
defined in the AzurePlayFabAccountManager class that will be called when
the Login button is clicked; this time, it is the OnLoginButtonClick method,
as shown in Figure 11.26:

Figure 11.26 – Setting up the Login button

Signing up and logging in players using Azure PlayFab in Unity 523

3. Run the game, switch to the login tab, enter the email address and password, and
then click the Login button to send a login user request to Azure PlayFab, as shown
in the following figure:

Figure 11.27 – The login tab

524 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

4. Then, if the player logs in successfully, the game scene will be loaded and the game
will start, as shown in the following figure:

Figure 11.28 – Playing the game

In this section, you learned how to use the Azure PlayFab API to register a user, how to
update a user's display name in Azure PlayFab via the Azure PlayFab API, and how to use
that to log into Azure PlayFab from a Unity game. Next, we will explore how to implement
a leaderboard in a Unity game using Azure PlayFab.

Implementing a leaderboard using Azure
PlayFab in Unity
Most games today use leaderboards, which indicate who is the best performer in a game
and increase gamer engagement with a game. In this section, we will be exploring how to
implement a leaderboard using Azure PlayFab in our Unity project.

Implementing a leaderboard using Azure PlayFab in Unity 525

Setting up a leaderboard in Azure PlayFab
In order to use Azure PlayFab's leaderboard feature, we first need to set up a leaderboard
in the developer portal of Azure PlayFab:

1. Go back to the dashboard of the game title in Azure PlayFab. In the dashboard,
you will find the Leaderboards option in the left column; click it to open the
Leaderboards page:

Figure 11.29 – The Leaderboards option

526 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

2. As shown in the following figure, no leaderboard has been created yet, so click the
New leaderboard button to create a new leaderboard in Azure PlayFab:

Figure 11.30 – Creating a new leaderboard

3. In the New Leaderboard settings panel, we will set up three properties for this
leaderboard, namely Statistic name, Reset frequency, and Aggregation method,
as shown in Figure 11.31:

Implementing a leaderboard using Azure PlayFab in Unity 527

Figure 11.31 – Setting up a new leaderboard

Let's explain these three properties one by one:

 � Statistic name is the name of this leaderboard; we've named it UnityBookGame
in this example.

 � Reset frequency determines how often the leaderboard should be reset. There are
five options:

 � Manually: This is the default value, and we leave the reset frequency set to this
so that the leaderboard doesn't reset automatically.

 � Hourly: Automatically resets the leaderboard every hour.

 � Daily: Automatically resets the leaderboard every day.

 � Weekly: Automatically resets the leaderboard every week.

 � Monthly: Automatically resets the leaderboard every month.

528 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

 � Aggregation method determines how the scores from the players are saved. There
are four options:

 � Last: This is the default option; it is always updated with a new value, regardless
of whether it is higher or lower than the existing value.

 � Minimum: Always use the lowest value.

 � Maxmum: Always use the highest value. We choose this option to save the
highest score of a player in our game.

 � Sum: Add this value to the existing value.

4. Click the Save button in the New Leaderboard settings panel; then, we have an
empty leaderboard set up in Azure PlayFab:

Figure 11.32 – A new empty leaderboard

5. In order to allow the Unity game to post player statistics requests to Azure PlayFab,
we also need to enable the Allow client to post player statistics option in Azure
PlayFab. So, click the gear icon at the upper-left corner first, and then select the
Title settings option to open the settings page of the game title, as shown in the
following figure:

Implementing a leaderboard using Azure PlayFab in Unity 529

Figure 11.33 – Open the Title settings page

6. On the settings page, click on the API Features tab to switch to the API
Features settings:

Figure 11.34 – The API Features settings

530 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

7. Scroll down to the ENABLE API FEATURES section, enable the Allow client to
post player statistics option, and save, as shown in Figure 11.35:

Figure 11.35 – Enable the Allow client to post player statistics option

Now that we've created and set up a leaderboard in Azure PlayFab, let's move on to explore
how to update the score of a player from Unity using the Azure PlayFab API.

Updating the score of a player from Unity using the
Azure PlayFab API
When a player completes a game and has a higher score than before, we want to update
the player's score on the leaderboard in Azure PlayFab. Let's perform the following steps
to implement it:

1. Create a new C# script in the Scripts folder, name it
AzurePlayFabLeaderboardManager, and add the following code:

using System.Collections.Generic;

using UnityEngine;

using PlayFab;

using PlayFab.ClientModels;

public class AzurePlayFabLeaderboardManager :

 MonoBehaviour

{

 public void UpdateLeaderboardInAzurePlayFab(int

 score)

 {

 var scoreUpdate = new StatisticUpdate

 {

Implementing a leaderboard using Azure PlayFab in Unity 531

 StatisticName = "UnityBookGame",

 Value = score

 };

 var scoreUpdateList = new

 List<StatisticUpdate> { scoreUpdate };

 var scoreRequest = new

 UpdatePlayerStatisticsRequest

 {

 Statistics = scoreUpdateList

 };

 PlayFabClientAPI.UpdatePlayerStatistics

 (scoreRequest, OnUpdateSuccess, OnError);

 }

 public void OnUpdateSuccess

 (UpdatePlayerStatisticsResult result)

 {

 Debug.Log("Update Success!");

 }

 public void OnError(PlayFabError error)

 {

 Debug.LogError(error.ErrorMessage);

 }

}

Let's break down the code, as follows:

 � In the UpdateLeaderboardInAzurePlayFab method, we create a new
instance of the StatisticUpdate class, which encapsulates the data that needs
to be updated for the leaderboard. Here, we provide the name of the leaderboard
and the player's score.

 � Then, we create a list of StatisticUpdate and add the instance of
StatisticUpdate that we just created to it.

532 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

 � After that, we create a new instance of the UpdatePlayerStatisticsRequest
class, which encapsulates the StatisticUpdate list we used to update the
leaderboard, and call PlayFabClientAPI.UpdatePlayerStatistics to
update the leaderboard in Azure PlayFab.

 � We also have two callbacks – OnUpdateSuccess, which is called when the result
is received, and OnError, which is called when an error occurs.

2. Then, we need to make sure that the UpdateLeaderboardInAzurePlayFab
method will be called when the game is over. So, let's open the example project's
Game scene in the BasicGame | Scenes folder, as shown in Figure 11.36:

Figure 11.36 – The example game scene

3. Create a new GameObject in the Game scene, name it AzurePlayFabManager,
and then drag and drop AzurePlayFabLeaderboardManager.cs onto it, as
shown in Figure 11.37:

Implementing a leaderboard using Azure PlayFab in Unity 533

Figure 11.37 – Setting up the GameObject

4. Next, we need to modify an existing C# script in the example project. You can
find the ExampleGameManager.cs file in the BasicGame > Scripts folder;
double-click it to open it, as shown in Figure 11.38:

Figure 11.38 – The ExampleGameManager.cs file

534 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

5. Add the following code to the ExampleGameManager class:

// ... pre-existing code ...

 [SerializeField]

 private AzurePlayFabLeaderboardManager

 _azurePlayFabLeaderboardManager;

// ... pre-existing code ...

 public void GameOver()

 {

 _azurePlayFabLeaderboardManager.

 UpdateLeaderboardInAzurePlayFab(score);

 }

Let's break down the added code, as follows:

 � First, we add a new field to get the reference to the instance of
AzurePlayFabLeaderboardManager.

 � Then, we call the UpdateLeaderboardInAzurePlayFab method in
GameOver to update the leaderboard.

6. Remember to assign the reference to the AzurePlayFabLeaderboardManager
instance to the field we just added:

Figure 11.39 – Assigning the reference to the field

Implementing a leaderboard using Azure PlayFab in Unity 535

7. Let's go back to the Start scene and run the game in the Editor, using the player
account we created in the previous section to log in and play. In the following
screenshot, we have 4 points at the end of the game:

Figure 11.40 – We have 4 points in the game

8. At the same time, go to the Leaderboard dashboard of Azure PlayFab, where you
can see that the player's highest score is 4 points and they rank first:

Figure 11.41 – The leaderboard in Azure PlayFab

536 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

We have called the API to update the score of a player on the leaderboard in Azure
PlayFab from Unity. Our next challenge will be to load the leaderboard data from it.

Loading the leaderboard data from Azure PlayFab in
Unity
In the example project, you also can find the leaderboard panel in BasicGame | Scenes
| GameScene, which we will use to display the top 10 players on the leaderboard loaded
from Azure PlayFab. By default, this UI panel is not activated, so now, we can't see it in
the Game view:

Figure 11.42 – The leaderboard panel

Implementing a leaderboard using Azure PlayFab in Unity 537

Before we start exploring how to load leaderboard information from Azure PlayFab, let's
register more players and add more items to the UnityBookGame leaderboard, as shown
in the following figure:

Figure 11.43 – The UnityBookGame leaderboard

538 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

Then, our first task is to call the Azure PlayFab API in Unity to get leaderboard data. To
do so, proceed as follows:

1. Go back to the AzurePlayFabLeaderboardManager script and add the code,
as follows:

 // ... pre-existing code ...

 public void LoadLeaderboardDataFromAzurePlayFab()

 {

 var loadRequest = new GetLeaderboardRequest

 {

 StatisticName = "UnityBookGame",

 StartPosition = 0,

 MaxResultsCount = 10

 };

 PlayFabClientAPI.GetLeaderboard(loadRequest,

 OnLoadSuccess, OnError);

 }

// ... pre-existing code ...

 public void OnLoadSuccess(GetLeaderboardResult

 result)

 {

 Debug.Log("Load Success!");

 }

Let's break down the added code, as follows:

 � We create a new method and name it
LoadLeaderboardDataFromAzurePlayFab.

 � In the LoadLeaderboardDataFromAzurePlayFab method, we create a
new instance of GetLeaderboardRequest and call PlayFabClientAPI.
GetLeaderboard to retrieve up to 10 entries from the UnityBookGame
leaderboard, starting at index 0.

 � We also add a new callback, OnLoadSuccess, which is called when the result
is received to print "Load Success!" in the console window.

Implementing a leaderboard using Azure PlayFab in Unity 539

2. Then, go back to ExampleGameManager.cs and update the code as follows:

public void GameOver()

{

 _azurePlayFabLeaderboardManager.

 UpdateLeaderboardInAzurePlayFab(score);

 _azurePlayFabLeaderboardManager.

 LoadLeaderboardDataFromAzurePlayFab();

 }

The newly added code will get leaderboard information from Azure PlayFab when
the game is over.

3. Run the game and take a look at the console window when the game is over; we
successfully load leaderboard data from Azure PlayFab, as shown in the following
screenshot:

Figure 11.44 – Load Success!

Now that we've received successful results from Azure PlayFab, our next task is display this
data in the leaderboard UI panel in our Unity project:

1. Go back to the AzurePlayFabLeaderboardManager script again and update
the code, as follows:

// ... pre-existing code ...

 [SerializeField]

 private GameObject _leaderboardUIPanel;

 [SerializeField]

 private List<Text> _itemsText;

// ... pre-existing code ...

 public void OnLoadSuccess(GetLeaderboardResult

 result)

 {

540 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

 _leaderboardUIPanel.SetActive(true);

 CreateRankingItemsInUnity(result.Leaderboard);

 }

 private void CreateRankingItemsInUnity

 (List<PlayerLeaderboardEntry> items)

 {

 foreach(var item in items)

 {

 var itemText = _itemsText[item.Position];

 itemText.text = $"{item.Position + 1}:

 {item.Profile.DisplayName} –

 {item.StatValue}";

 }

 }

Let's break down the newly added code, as follows:

 � In the fields section, we reference the Leaderboard GameObject in the
scene; this is because the leaderboard panel is not activated by default, and we
want to activate it at the end of the game to display leaderboard information from
Azure PlayFab. Additionally, we get a reference to the list of Text UI elements
used to display each item on the leaderboard.

 � In OnLoadSuccess, we activate the Leaderboard GameObject in
the scene and receive the leaderboard information from Azure PlayFab.
Then, call the CreateRankingItemsInUnity method, which takes
List<PlayerLeaderboardEntry> as a parameter.

 � In CreateRankingItemsInUnity, we update the Text UI elements to
display information about each item, including the player's rank, display name,
and score.

Implementing a leaderboard using Azure PlayFab in Unity 541

2. Don't forget to assign these UI elements to these newly added fields accordingly
in the AzurePlayFabManager GameObject in the Game scene, as shown in
Figure 11.45:

Figure 11.45 – Assigning the UI elements to the newly added fields

542 Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity

3. Let's go back to the Start scene and run the game. In the following screenshot, we
can see that the leaderboard UI panel appears at the end of the game and displays
the ranking information for the top 10 players:

Figure 11.46 – The leaderboard in Unity

By reading this section, you should now know how to set up a leaderboard in Azure
PlayFab, how to update leaderboard data from a Unity game using the Azure PlayFab API,
and how to use the Azure PlayFab API to get leaderboard data from Azure PlayFab and
display it in Unity.

Summary 543

Summary
This chapter is the last chapter of the book and the final level of our long adventure. Along
the way, you've learned a lot of different topics on how to develop games with the Unity
game engine, which may include areas you're familiar with, such as how to implement
UI in Unity using the MVVM architectural pattern, or there may be content that you
have never touched upon before, such as rendering pipelines and related mathematical
knowledge. I hope you enjoyed the journey and are ready for the new challenges ahead.

In addition to the Unity engine itself, this chapter also focuses on Microsoft Game Dev,
the Microsoft Azure cloud, and Azure PlayFab. We discussed what they are and why we
should consider using them in game development. Then, we used an example project
to demonstrate how to create a new Azure PlayFab developer account, set up the Azure
PlayFab SDK in the Unity project, and implement the registration, login and leaderboard
functions in Unity through the Azure PlayFab API.

By reading this chapter and this book, I hope that you now understand that the knowledge
required for game development is not limited to how to use a game engine; it also involves
knowledge of programming, computer graphics, and even cloud services.

While this chapter is the end of the book, this book is only the beginning of your game
developer journey. Keep learning, and keep growing!

Index

Symbols
2D animation

implementing, in Unity 192-196
3D Sample Scene (HDRP)

project template 341
9-slicing technique 129
.NET 2.0 43
.NET 2.0 Subset 43
.NET 4.x 43
.NET profiles 42
.NET Standard

reference link 43
.NET Standard 2.0 43

A
adaptive differential pulse-code

modulation (ADPCM) 255
Addressable Assets system package

installing 482
addressable content

Azure Cloud, deploying to 494, 495
loading, from Azure Cloud 496, 497

addressable content, building
about 483
addressable assets, marking 484

remote catalog, enabling 484
steps 493, 494

addressables group
creating 487-490

Ahead-of-Time (AOT) compilation 44
animation

about 39, 41
assets, importing 183, 184
compression 184, 185
concepts 162
Culling Mode 201
events, configuring 186, 187
parameters 188-190
speed, adjusting 187, 188

Animation Clip
about 163
creating, recording mode used 167-170
playing 166
settings 185

animation system
performance, improving 197

animation transitions
about 190
configuring 190-192

546 Index

Animator Component
about 180
Culling Mode 182
Update Mode 181

Animator Controller
about 170
configuring 187
creating 172, 173

Anim. Compression 202
Archetypes 413
Aspect drop-down menu 32
AssetBundles

reference link 473
AssetPostprocessor class 464-466
assets 42
Assets folder 70
Asset Store

URL 97
Assets workflow

about 451, 452
AssetPostprocessor class 464
File ID 455-460
GUID 453, 454
Library folder 467
meta files 460

async/await operator
about 395
using 395

audio assets
compression format 253-256
load type 252, 253

audio clips 250
audio files

formats 251, 252
Audio Listener 259, 260
Audio Source

creating 257, 258
properties 259

AudioSource.Pause 272-274
AudioSource.Play 269-271
AudioSource.Stop 274
Avatar

about 174
configuring 176

Avatar Mask
about 177
applying 179
creating 177, 178

Azure Blob storage
about 473
setting up 474

Azure Cloud
addressable content, loading

from 496, 497
content, deploying to 494, 495

Azure Game Development
Virtual Machine

reference link 503
Azure PlayFab

about 501, 503
account, creating 505-507
functions, for game developers 504
game studio, setting up 508-510
game title, setting up 508-510
leaderboard data, loading from 536-542
leaderboard, setting up 525-529
players, logging in 521-524
players, signing up 515-520
setting up, for Unity project 504
URL 505

Azure PlayFab API
score of player, updating

from Unity 530-536
Azure PlayFab SDK

setting up, in Unity project 510-514

Index 547

Azure Resource Group
creating 474-476

Azure Storage account resource
creating 477-479

B
best practices, for increasing Unity

Physics system performance
fixed timestamp, increasing 244
Unity Profiler, using 242-244
unnecessary layer-based collision

detections, reducing 245, 246
binary serialization 436
Blob Storage

setting up 480
BoatAttack Demo project

about 334
reference link 335

Box2D engine 206
Box Collider 207
Build Remote Catalog checkbox

enabling 490-492
Built-in Render Pipeline 40
Burst compiler

about 393, 430
enabling 430, 431

Button component
creating 139-141
onClick events 141, 142
selected states 141

C
C# 42
Cache 389
Canvas component

about 109, 112

canvas, creating from GameObject
menu 111, 112

canvas, creating from Hierarchy
window 110

render modes 113-117
Canvas Scaler component

about 120
UI Scale Mode types 121

Cartesian coordinate system 297
C# Job System

about 391, 392
using 401-410
working with 398

class 387, 388
classes, Unity

GameObject 58-61
MonoBehaviour 56, 57
Transform 61

collider
about 207
Mesh Collider 210-213
primitive colliders 208-210

Collision class 220
collision methods

OnCollisionEnter 220
OnCollisionExit 221, 222
OnCollisionStay 221

component, attached to GameObject
accessing 90-94

component-based UI system 108
compression formats, audio assets

ADPCM 255
MP3 256
PCM 254
Vorbis 255

coordinate systems 297
coroutines 394, 395

548 Index

cross product
about 315
using 315, 316

C# scripts
Unique Physics system,

interacting via 219
C# source code 108

D
Data-Oriented Technology Stack (DOTS)

about 206, 386, 390, 391
versus object-oriented

design pattern 387
deferred rendering path 352
depth textures 355
digital assets 39
digital content creation (DCC) 183
Direct3D 380
directional light 345
dot product

about 311
using 312-314

Download Unity page 8
draw call 156
draw mode 30

E
Editor

script component, adding to
GameObject 85, 86

Editor folder 70
Entities package

installing 416-419
Entity Component System (ECS) 392

component 413, 414
entity 412

system 415
using 421, 424-429
working with 412

EntityManager class 412
Euler angles

about 323
working with 328, 329

EventSystem
about 142, 143
input modules 143
Input System package 144

F
features, Unity

animation 41
assets 42
graphics 40
physical simulation 41
scripting 41
UI 41
video and audio 42

File ID 453, 455-460
file shares 473
folders, Unity

about 70
Assets 70
Editor 70
Plugins 70

Fontainebleau Demo project
about 333
reference link 334

Force To Mono option
using 291, 292

forward rendering path 352
Frame Debugger tool

about 379
using 379-381

Index 549

G
game engine 39
GameObject

about 54, 55
animating 163-166

GameObject class 58-61
GameObjects 24
game studio

setting up, in Azure PlayFab 508-510
game title

setting up, in Azure PlayFab 508-510
Game view 27, 31-33
gimbal lock 323
GitHub Student Developer Pack 7
Gizmo handle position toggles set 23
Graphic Raycaster component 123-125
graphics 40
GUID 453, 454

H
Havok Physics 206
Hierarchy window 24-26
High Definition Render Pipeline

(HDRP) 40, 340-343
High-Performance C# (HPC#) 393, 430
Hybrid Renderer package

installing 420

I
ID@Azure

about 501
reference link 501

IL2CPP 44-46

Image component
about 125
background image, creating 127, 128
image, creating 126
image size, setting to sprite type 129
texture import settings 128

Immediate Mode Graphical User
Interface (IMGUI) 41, 79

inheritance 388
input module, EventSystem

about 143
Standalone Input Module 143
Touch Input Module 143

Inspector window 34-37
IntelliSense 50

J
jobs 398
Jobs package

installing 398-400
JSON serialization 442
JsonUtility class

advantages 446
limitations, example 446-448
using 442-445

Just-in-Time (JIT) compilation 44

L
L1 cache 389
L2 cache 389
leaderboard

setting up, in Azure PlayFab 525-529
leaderboard data

loading, from Azure PlayFab 536-542
left-handed coordinate system 297, 298

550 Index

Library folder 467, 468
Liveops 504
load type, audio assets

Compressed In Memory 253
Decompress On Load 253
Streaming 253

local space 298-301
Loxodon Framework

about 146
using 147

M
magnitude 308
main camera 344
materials 362
Material Upgrader tool 368
Maximize on Play 32
Mecanim 41, 161
Megacity

download link 393
Mesh Collider 210-213
meta files

about 460, 461
import settings 462-464

methods, Rigidbody
about 224
AddForce 224
ForceMode 225-227
MovePosition 227, 228

Microsoft Azure Cloud
about 501, 502
AI services 502
analytics services 502
cloud computing services 502
database services 502

networking services 502
security services 502
storage services 502

Microsoft Azure Global Infrastructure
reference link 503

Microsoft Game Dev
about 500
tools and services 501

Model-View-ViewModel
(MVVM) pattern

about 145
data binding 146
event-driven programming 146
Loxodon Framework 146
Model 146
UI 145
View 146
ViewModel 146

Mono 42, 44
MonoBehaviour class 56, 57
MP3 format 256
MVVM UI

implementing, via
LoxodonFramework 148-154

N
NativeArray 413
Newtonsoft.Json framework 448-451
node

adding, in Shader Graph 373-376
connecting, in Shader Graph 377, 378

number line coordinate system 297
Nvidia PhysX engine 206

Index 551

O
object-oriented design pattern

concepts 387-390
reference link 387
versus DOTS 387

Object-Oriented Programming
(OOP) pattern 387

OnRenderImage 78
OpenGL 380

P
package

about 99
installing 98
in Unity Registry 97
life cycle 100
preview 100-102
verified 102

parent-child relationship 298
physical effect 39
physical simulation 41
physics-based ping-pong game

creating 228-242
Physics Material 210
PhysX 206
players

logging, in Azure PlayFab 521-524
signing up, in Azure PlayFab 515-520

Plugins folder 70
polar coordinate system 297
post-processing effects

applying 358-360
Post-process Volume 348
Prefab

about 62
creating 63, 64

editing 64-67
instantiating 68, 69

preview packages 100-102
primitive colliders 208-210
profile

creating 484, 486
project materials

upgrading, to Universal Render
Pipeline materials 366-368

Project window 37
pulse-code modulation (PCM) 254

Q
quaternions

working with 322, 323
queues 473

R
Raw Image component 130-132
recording mode

used, for creating Animation
Clip 167-170

Rect Transform component
about 117, 118
anchor presets 119
anchors 118
anchors, modifying 119
Pivot point 120

reflection probes 350, 351
release versions, Unity

LTS releases 5, 6
Tech Stream releases 6

remote catalog
enabling 484

rendering 378
rendering path 352

552 Index

rendering statistics 33
render modes, Canvas component

Screen Space - Camera 113, 114
Screen Space - Overlay 113
World Space 115-117

render pipeline
about 40, 296
reference link 296
setting up 352-357

resources, Azure Storage account
reference link 473

Resources folder
about 469
using 469-471

rigging 174
right-handed coordinate system 297
Rigidbody

about 213, 216, 217
adding, to GameObject 214-218

rotation matrix 319
rotations

creating 323-325
manipulating 326, 327

S
sample scene 344
scaling matrix 320-322
Scene 24
Scene Gizmo tool 28
Scene view 27-30
screen space 304-307
Scriptable Render Pipeline

about 332, 333
reference link 332

Scriptable Render Pipeline API 40

script component
adding, to GameObject at

runtime 87-90
adding, to GameObject in Editor 85, 86

scripting
about 41, 54
backends 44
threads 397

script instance, life cycle
about 71
initialization 71-74
rendering 77-80
update 74-76

scripts
about 39
creating, in Unity 81-84

Selectable UI components
about 139
Button, creating 139-141

serialization
about 435
binary serialization 436
formats 436
JSON serialization 442
using 437-441
YAML serialization 436, 437

shader file
creating 369

Shader Graph
creating 368
node, adding 373-376
nodes, connecting 377, 378
properties of node, editing 372

Shader Graph file
creating 370-372

ShaderLab language
about 369
reference link 370

Index 553

shaders
about 362-364
creating 368
Lit 363
parameters 364
Unlit 363

Shared Access Signature (SAS) 481
Signed Distance Field (SDF)

rendering 136
skeletal animation 174
Solid-State Drive (SSD) 46
Spaceship Demo project

about 334
reference link 334

spatial locality 389
Sphere Collider 207
Spot Light 346, 347
Sprite Animations 192
Sprite Atlas

about 193
creating 158
using 156-158

sprites
about 128
advantage 128

Sprite Sheet 193
SRP Batcher

about 381
using 382, 383

Standalone Input Module 143
state machine 170
StreamingAssets folder 286, 471, 472
Sublime Text 436
subscription plan, Unity

about 6, 7
Enterprise plan 8
Personal plan 7

Plus plan 7
Pro plan 8

T
tables 473
temporal locality 389
Text component

about 132, 135
text, creating 132-134

TextMeshPro component
about 132, 136
text, creating 137
text, rendering 137

The Heretic: Digital Human project
about 335
reference link 336

The Heretic: VFX Character project
about 336
reference link 336

Toolbar 23
Touch Input Module 143
transformation matrix

working with 316, 317
Transform class 61
transform tools 23
translation matrix 317, 318
trigger

creating 219
methods 222
OnTriggerEnter 222
OnTriggerExit 223
OnTriggerStay 223
using 219

554 Index

U
UI 39, 41
UI best practice tips

about 154
multiple canvases, creating 156
Sprite Atlas, using 156-158
Unity Profiler, using 154, 155

UI components
about 108
Canvas 109
Image 126
Raw Image 130
Selectable UI 139
Text 132

UI Scale Mode types, Canvas
Scaler component

Constant Physical Size 122
Constant Pixel Size 121
Scale With Screen Size 122

UI Toolkit 41
Unique Physics system

interaction, via C# script
collision methods 220
methods of Rigidbody 224
trigger methods 222

Unity
classes 56
features 40, 41
folders 70
release versions 5, 6
script, creating 81-84
subscription plan 6-8

Unity 2020.3.13.f1
installing 16

Unity download archive page 17

Unity Editor
about 5
exploring 21, 22
Game view 27, 31-33
Hierarchy window 24-26
Inspector window 34-37
installing 18-20
Project window 37
Scene view 27-30
Toolbar 23

UnityException 396
Unity games

building, with Visual Studio 46-52
Unity Hub

about 8
installing 8-10
Installs view 14
license, adding 13
Licenses setting panel 12
Manage licenses button 11
Projects view 13
signing into 11

Unity Package Manager 94-96
Unity Physics system

collider 207
concepts 206
interaction, via C# scripts 219
performance, increasing 242
physics-based ping-pong game,

creating 228-241
Rigidbody 213-218
trigger 218, 219

Unity Plastic SCM button 23
Unity Profiler

about 154, 289, 290, 395
using 154, 155, 197-200, 242, 243

Index 555

Unity project
Azure PlayFab SDK, setting up 510-514
Azure PlayFab, setting up 504

Unity to develop web applications,
considerations

frame rate 288
VideoPlayer.url property 285-287

Unity UI (uGUI) package 41, 108
Universal Render Pipeline materials

project materials, upgrading to 366-368
Universal Render Pipeline (URP)

about 40, 337-340, 352
performance, increasing 378
working with 343, 344

V
vectors

addition 309
subtraction 310, 311
working with 308

verified packages 102
version management 461
video and audio features 39, 42, 250
video clips

formats 260
settings 261-263

Video Player
creating 264
properties 265
Render Mode 266-268

VideoPlayer.clip 275-278
VideoPlayer.frame 281, 282
VideoPlayer.frameCount 282
VideoPlayer.Play 280, 281
VideoPlayer.url 278, 279
Visual Studio

Unity games, building 46-52
Volume framework

about 357
enabling 358

Vorbis 255
Vulkan 380

W
World class 412
world space 298, 302-304

Y
YAML serialization 436, 437

Hi!

I'm Jiadong Chen, author of Game Development with Unity for .NET Developers. I really
hope you enjoyed reading this book and found it useful for increasing your productivity
and efficiency in developing games with Unity and Microsoft Azure cloud.

It would really help us (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Game Development with Unity for .NET Developers.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1801078076

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

https://packt.link/r/1801078076

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

560 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-on Game Development with Unity 2018.1
Raymundo Barrera
ISBN: 978-1-78646-543-6

• Develop a foundation in game development in Unity by using industry-standard
techniques

• Design and implement prototypes to iterate quickly

• Build a reusable framework to make development smoother

• Master Unity's latest features to stay ahead of the curve

• Master the best practices and techniques you need to know to develop professional
games in Unity from beginning concept to launch

https://www.packtpub.com/product/hands-on-game-development-with-unity-2018-1-video/9781786465436

Other Books You May Enjoy 561

Customizing ASP.NET Core 6.0

Jürgen Gutsch

ISBN: 978-1-80323-360-4

• Explore various application configurations and providers in ASP.NET Core 6

• Enable and work with caches to improve the performance of your application

• Understand dependency injection in .NET and learn how to add third-party
DI containers

• Discover the concept of middleware and write your middleware for ASP.NET
Core apps

• Create various API output formats in your API-driven projects

• Get familiar with different hosting models for your ASP.NET Core app

https://subscription.packtpub.com/product/web_development/9781803233604

562

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

	Cover
	Title page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Basic Concepts of Unity and Script Programming in Unity
	Chapter 1: Hello Unity
	Technical requirements
	Getting started with the Unity Editor
	Choosing the right Unity release for you
	Choosing the right subscription plan for you
	Downloading and installing the Unity Editor
	Exploring the Unity Editor

	Working with different features in Unity
	What is a game engine?
	Features in Unity

	.NET/C# and scripting in Unity
	.NET profiles in Unity
	Scripting backends in Unity

	Building Unity games with Visual Studio
	Summary

	Chapter 2: Scripting Concepts in Unity
	Technical requirements
	Understanding the concepts of scripting in Unity
	GameObject-components architecture
	Common classes in Unity
	Prefabs in Unity
	Special folders in Unity

	The life cycle of a script instance
	Initialization
	Update
	Rendering

	Creating a script and using it as a component
	How to create a new script in Unity
	Adding a script as a component to a GameObject in the Scene
	Accessing a component attached to a GameObject

	Packages and the Unity Package Manager
	Unity Package Manager
	Package

	Summary

	Part 2:
Using C# Scripts to Work with Unity's Built-In Modules
	Chapter 3: Developing UI with the Unity UI System
	C# scripts and common UI components in Unity
	Canvas
	Image
	Text
	Selectable UI components

	C# scripts and the UI Event System in Unity
	Input Modules
	The new Input System package

	The Model-View-ViewModel (MVVM) pattern and the UI
	Performance tips to increase performance of the UI
	The Unity Profiler
	Multiple canvases
	Use Sprite Atlas

	Summary

	Chapter 4: Creating Animations with the Unity Animation System
	Technical requirements
	Exploring the Unity animation system's concepts
	Animation Clips
	Animator Controller
	Avatar
	Animator component

	Implementing 3D animation in Unity
	Importing animation assets
	Configuring the Animator Controller

	Implementing 2D animation in Unity
	Improving the performance of Unity's animation system
	The Unity Profiler
	Animator's Culling Mode
	Anim. Compression

	Summary

	Chapter 5: Working with the Unity Physics System
	Technical requirements
	Concepts in the Unity Physics system
	Collider
	Rigidbody
	Trigger

	Scripting with the Physics system
	Collision methods
	Trigger methods
	Methods of Rigidbody

	Creating a simple game based on the Physics system
	Increasing the performance of the Physics system
	The Unity Profiler
	Increasing the fixed timestep
	Reducing unnecessary layer-based collision detections

	Summary

	Chapter 6: Integrating Audio and Video in
a Unity Project
	Technical requirements
	Concepts in Unity's audio system and video system
	Audio clips
	Audio Sources
	Audio Listener
	Video clips
	Video Player

	Scripting with audio and video
	AudioSource.Play
	AudioSource.Pause
	AudioSource.Stop
	VideoPlayer.clip
	VideoPlayer.url
	VideoPlayer.Play
	VideoPlayer.frame and VideoPlayer.frameCount

	Things to note when using Unity to develop web applications
	URL
	Frame rate

	Increasing the performance of the audio system
	The Unity Profiler
	Using Force To Mono to save memory

	Summary

	Part 3:
Advanced Script Programming in Unity
	Chapter 7: Understanding the Mathematics of Computer Graphics in Unity
	Getting started with coordinate systems
	Understanding left-handed and right-handed coordinate systems
	Local space
	World space
	Screen space

	Working with vectors
	Vector addition
	How to subtract vectors
	Dot product
	Cross product

	Working with the transformation matrix
	Translation matrix
	Rotation matrix
	Scaling matrix

	Working with quaternions
	Creating rotations
	Manipulating rotations
	Working with Euler angles

	Summary

	Chapter 8: The Scriptable Render Pipeline in Unity
	An introduction to the Scriptable Render Pipeline
	The Fontainebleau Demo
	The Spaceship Demo
	The BoatAttack Demo
	The Heretic: Digital Human
	The Heretic: VFX Character
	Universal Render Pipeline
	The High Definition Render Pipeline

	Working with Unity's Universal Render Pipeline
	Exploring the sample scene
	The Universal Render Pipeline asset
	The Volume framework and post-processing

	The Universal Render Pipeline shaders and materials
	Commonly used shaders
	Upgrading project materials to Universal Render Pipeline materials
	Creating a shader and a shader graph

	Increasing performance of the Universal Render Pipeline
	The Frame Debugger
	The SRP Batcher

	Summary

	Chapter 9: The Data-Oriented Technology Stack
in Unity
	Technical requirements
	DOTS overview
	Object-oriented design pattern versus DOTS
	C# Job System
	ECS
	The Burst compiler

	Multithreading and the C# Job System in Unity
	Coroutines
	async/await
	Working with the C# Job System

	Working with ECS in Unity
	Using C# and the Burst compiler
	Summary

	Chapter 10: Serialization System and Assets Management in Unity and Azure
	Technical requirements
	Serialization system in Unity
	What is Unity's serialization system?

	The assets workflow in Unity
	GUID and File ID
	Meta files
	The AssetPostprocessor class and the import pipeline
	The Library folder

	Introducing the special folders in Unity
	Resources folder
	StreamingAssets folder

	Azure Blob storage with Unity's Addressable Asset system
	Setting up an Azure Blob storage service
	Installing the Addressable Assets system package
	Building addressable content
	Deploying content to the Azure Cloud
	Loading addressable content from the Azure Cloud

	Summary

	Chapter 11: Working with Microsoft Game Dev, Azure Cloud, PlayFab, and Unity
	Technical requirements
	Introducing Microsoft Game Dev, Microsoft Azure Cloud, and Azure PlayFab
	Microsoft Game Dev
	Microsoft Azure Cloud
	Azure PlayFab

	Setting up Azure PlayFab for a Unity project
	Creating a new Azure PlayFab account
	Setting up a game studio and a game title in
Azure PlayFab
	Setting up the Azure PlayFab SDK in the Unity project

	Signing up and logging in players using Azure PlayFab in Unity
	Signing up players in Azure PlayFab
	Logging in players in Azure PlayFab

	Implementing a leaderboard using Azure PlayFab in Unity
	Setting up a leaderboard in Azure PlayFab
	Updating the score of a player from Unity using the Azure PlayFab API
	Loading the leaderboard data from Azure PlayFab in Unity

	Summary

	Index
	Other Books You May Enjoy

