

Dynamic Story
Scripting with
the ink Scripting
Language

Create dialogue and procedural storytelling systems
for Unity projects

Daniel Cox

BIRMINGHAM—MUMBAI

Dynamic Story Scripting with the ink
Scripting Language
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Harshal Gundetty
Senior Editor: Ruvika Rao
Content Development Editor: Urvi Shah
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare

First published: October 2021
Production reference: 1061021

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-932-9
www.packt.com

http://www.packt.com

To the Inkle Discord and the larger ink community for supporting my
previous work creating ink tutorials and video guides. To my friends, both

local and remote, for being patient with me while I took on this project.

– Daniel Cox

Contributors

About the author
Daniel Cox is a PhD student in Texts and Technology program and a visiting instructor in
the Games and Interactive Media department at the University of Central Florida with
a decade of experience creating online learning materials across interactive fiction tools
such as Twine, Bitsy, and ink. He previously helped create and served as the managing
editor of the Twine Cookbook for 4 years. He currently teaches game design as a full-time
instructor and volunteers with the Interactive Fiction Technology Foundation.

I want to thank the people who have supported me, especially my friends
and my program advisor, Anastasia Salter.

About the reviewer
Johnnemann Nordhagen is an 18-year veteran of the game industry. He has worked as a
QA tester, in Sony's Research and Development department, on the BioShock series at 2K
Marin, and was cofounder of The Fullbright Company and the sole programmer on Gone
Home. He founded Dim Bulb Games and headed the development of Where the Water
Tastes Like Wine, released in February of 2018. He lives in Santa Fe, New Mexico.

Preface

Section 1: ink Language Basics

1
Text, Flow, Choices, and Weaves

Technical requirements� 3
Understanding branching
narratives as a flow� 4
Nonlinear storytelling� 5
Introducing ink� 6
Text flowing down� 6
The smallest unit is a line� 7
Gluing lines together� 8
Using comments as notes to authors� 9

Creating choices and making
weaves� 10
Making weaves� 11
Choices within choices� 12
Selective choice output� 14
Gathering points� 15

Disappearing and sticky choices� 17
Summary� 19
Questions� 19

2
Knots, Diverts, and Looping Patterns

Technical requirements� 21
Tangling a flow in knots� 22
Creating knots� 22
Diverting between knots� 23
Using DONE and END� 23

Moving between sections� 24
Knots and stitches� 26

Dividing up a story across different files� 28

Looping knots� 30
Looping structures� 31
Revisiting sticky choices� 32

Detecting and changing options� 33
Labeled and conditional options� 33
Building dynamic weaves� 35

Table of Contents

viii Table of Contents

Summary� 37 Questions� 37

3
Sequences, Cycles, and Shuffling Text

Technical requirements� 40
Using alternatives� 40
Sequences� 40
Cycles� 43
Shuffles� 45

Creating multi-line alternatives� 45
Multi-line cycles� 46

Multi-line sequences� 47

Nesting alternatives� 48
Combining cycles and shuffles� 48
Shuffling shuffles� 50

Summary� 51
Q&A� 52

4
Variables, Lists, and Functions

Technical requirements� 54
Storing values using VAR� 54
Showing variables� 56
Updating variables� 58
Storing the current values
of alternatives� 58

Working with LIST� 60
Making a LIST� 60
Updating LIST values� 61

Calling functions� 62
Common mathematics functions� 63
Using LIST functions� 65

Making new functions and
calling knots� 68
Summary� 72
Questions� 73

5
Tunnels and Threads

Technical requirements� 76
Diverting to a divert� 76
Making tunnels� 77
Tunneling to tunnels� 79

Pulling on threads� 80

Making threads� 81
Using multiple threads� 82
Ending threads� 84

Combining tunnels and threads� 86
Reusing tunnels and repeating threads� 86
Threads with tunnels� 88

Table of Contents ix

Summary� 90 Questions� 90

Section 2: ink Unity API

6
Adding and Working with the ink-Unity Integration Plugin

Technical requirements� 94
Adding the ink-Unity
Integration plugin� 94
Finding and importing the plugin� 95
Verifying the package is installed� 97

Working with ink files� 98
Adding ink source files� 99

Editing source files with Inky� 100
Updating ink source files� 105

Adjusting plugin settings� 106
Finding ink-Unity Integration settings� 106
Updating automatic re-compilation� 108

Summary� 109
Questions� 109

7
Unity API – Making Choices and Story Progression

Technical requirements� 112
Loading a compiled ink story� 112
Creating a script component� 112
Adding the ink Story API� 116
Running an ink JSON file� 119
Checking whether a story can continue� 121

Selecting options
programmatically� 123
Detecting ink choices� 124
Making choices using the Unity API� 127

Loading all text until the next weave� 128

Creating a dynamic user
interface� 131
Creating a new project and game
objects� 132
Associating Prefab and ink JSON files� 136
Making a dynamic user interface� 138

Summary� 146
Questions� 146

8
Story API – Accessing ink Variables and Functions

Technical requirements� 148
Changing ink variables outside
a story� 148

Accessing ink variables� 148
Changing the value of the ink variables� 150

x Table of Contents

Calling ink functions externally� 151
Verifying and evaluating ink functions� 152
Retrieving the ink function text output� 153

Controlling a story through
variables and functions� 155

Preparing a user interface� 155
Scripting user interface objects� 156
Adjusting the presentation values� 160

Summary� 163
Questions� 164

9
Story API – Observing and Reacting to Story Events

Technical requirements� 166
Listening for variable changes� 166
Dynamically responding to ink
stories� 168

Observing multiple ink values� 171
Summary� 173
Questions� 173

Section 3: Narrative Scripting with ink

10
Dialogue Systems with ink

Technical requirements� 178
Writing dialogue in Ink using
tags� 178
Tagging ink text� 179
Using speech tags� 181
Reviewing approaches to tagging
dialogue� 184

Dialogue loops and story knots� 186
Click to continue� 186

Counting choices for trees� 189

User interface models for
conversations� 192
Listing dialogue options� 192
Presenting a radial menu for dialogue� 194

Summary� 196
Questions� 196

11
Quest Tracking and Branching Narratives

Technical requirements� 198
Making a quest count� 198
Creating a quest template in ink� 199

Choosing specific knots in Unity� 201

Tracking progress across
multiple quests� 203

Table of Contents xi

Building on the ink quest template� 204
Making Quest and Dialogue classes in
Unity� 205
Organizing multiple quest files� 206
Toggling quests� 208

Displaying and awarding player

progression� 210
Tracking quest values� 211
Showing player progress� 213

Summary� 216
Q&A� 216

12
Procedural Storytelling with ink

Technical requirements� 218
Introducing procedural
storytelling in ink� 218
Random encounters� 219
Weighted randomness� 220
Conditional content� 222

Loading values into ink� 224
Substitution grammars� 224

Story planning� 226

Coding collections in Unity� 228
Using multiple stories� 228
Conditionally choosing stories� 231

Summary� 233
Questions� 233

Assessments
Other Books You May Enjoy
Index

Preface
Dynamic Story Scripting with the ink Scripting Language teaches you an easy-to-learn
narrative scripting language. Instead of needing to build an entirely new system for every
project, ink allows authors to create story-driven content using a robust markup language
designed for simple and advanced narrative experiences alike. Combined with the ink
Unity Integration plugin, authors can work with developers to write all their story content
in one language, ink, and access its variables, call functions, or move between sections of a
story using code in Unity.

In this book, we will start with the ink itself. The first five chapters will walk you through
how ink understands stories, manages the flow, the movement between sections of a story,
and how to store and manipulate different values within a story. This will lead directly into
the middle four chapters, which cover how to use the ink Unity Integration plugin and the
application programming interface it provides to communicate between ink stories and
Unity projects.

Finally, the last three chapters will highlight three common use cases. We will start with
creating a dialogue system and review some approaches to handling data when using
ink and Unity. Next, we examine how to create an advanced quest tracking system where
each ink story contains a quest, but Unity is used to track values between them. The
last use case will review some common terms and patterns across ink and Unity to help
developers get started using procedural storytelling in their projects.

Who this book is for
This book is for Unity developers looking for a solution for narrative-driven projects and
authors who want to create interactive story projects in Unity. Basic knowledge of Unity
development and related concepts is needed to get the most out of this book.

What this book covers
Chapter 1, Text, Flow, Choices, and Weaves, describes the core concepts of ink, flow,
choices, and the relationship between them.

xiv Preface

Chapter 2, Knots, Diverts, and Looping Patterns, covers the divisions of stories, knots, and
how to move between them.

Chapter 3, Sequences, Cycles, and Shuffling Text, explains programmable ways of
generating dynamic text, alternatives, and their different forms.

Chapter 4, Variables, Lists, and Functions, covers how to store values in different ways
along with advanced programming in ink.

Chapter 5, Tunnels and Threads, explains how to chain knots together, describes what
tunnels are, and covers how to pull content into new configurations – threads.

Chapter 6, Adding and Working with the ink-Unity Integration Plugin, explains how to
locate, install, and verify the installation of the ink-Unity Integration plugin.

Chapter 7, Unity API – Making Choices and Story Progression, covers how to select options
in a weave and progress an ink story using the Story API in Unity.

Chapter 8, Story API – Accessing ink Variables and Functions, explains how to access and
use ink variables and functions from Unity using the Story API.

Chapter 9, Story API – Observing and Reacting to Story Events, explains how to observe
and react to changes in ink using the Story API in Unity.

Chapter 10, Dialogue Systems with ink, describes general approaches to creating a dialogue
system in ink using hashtags, speech tags, and how the visual representation of options in
Unity affects code in ink.

Chapter 11, Quest Tracking and Branching Narratives, provides a general template in ink
for quests, how to track multiple quests from Unity, and an approach to synchronizing ink
variables across stories.

Chapter 12, Procedural Storytelling with ink, provides an introduction to the term
procedural storytelling, how to begin to use it in ink, and how the same approaches in ink
work in Unity.

To get the most out of this book
You will need at least Unity 2021.1 and Inky 0.12.0. All code examples have been tested on
Windows OS. However, they should work with future releases of both Unity and Inky.

Preface xv

Chapter 10, Chapter 11, and Chapter 12 include Unity projects. When using Unity projects
from GitHub, remember to be patient as Unity rebuilds files when opening a project for the
first time and to always open the SampleScene scene in each project to see the final code.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-
ink-Scripting-Language. If there's an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here:

https://static.packt-cdn.com/downloads/9781801819329_
ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "Every time the button is clicked, the Story
method ChooseChoiceIndex() will be called with the correct index, and the
LoadTextAndWeave() method will be called again, refreshing the value of
currentLinesText and updating the current buttons shown on the screen... ."

A block of code is set as follows:

public class InkLoader : MonoBehaviour

{

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801819329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801819329_ColorImages.pdf

xvi Preface

 public TextAsset InkJSONAsset;

 // Start is called before the first frame update

 void Start()

 {

 Story exampleStory = new Story(InkJSONAsset.text);

 }

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

void Start()

{

Story exampleStory = new Story(InkJSONAsset.text);

Debug.Log(exampleStory.Continue());

Debug.Log(exampleStory.Continue());

}

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example:

1.	 Select the Prefab button in the project window.

2.	 In the Inspector view, click on the Tag drop-down menu and then click on the Add
Tag… option.

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

mailto:customercare@packtpub.com

Preface xvii

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Dynamic Story Scripting with the ink Scripting Language, we'd love to
hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81932-7

Section 1:
ink Language Basics

By the time you've completed this section, you will be able to describe the major core
language concepts and patterns of ink and how to use their syntax. This section contains
the following chapters:

•	 Chapter 1, Text, Flow, Choices, and Weaves

•	 Chapter 2, Knots, Diverts, and Looping Patterns

•	 Chapter 3, Sequences, Cycles, and Shuffling Text

•	 Chapter 4, Variables, Lists, and Functions

•	 Chapter 5, Tunnels and Threads

1
Text, Flow, Choices,

and Weaves
This chapter introduces the core concepts of nonlinear storytelling by examining
branching narratives and how ink supports creating them. Building on these concepts,
this chapter also reviews using lines, text within them, and how to combine them.

As a central element of creating nonlinear, interactive narratives in ink, choices are
explained and how best to use them. Weaves and collections of choices are discussed
within the context of when a large branching structure might be needed and how to
collapse these weaves into simpler parts using gathering points.

In this chapter, we will cover the following main topics:

•	 Understanding branching narratives as a flow

•	 Creating choices and making weaves

•	 Disappearing and sticky choices

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub:
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter1.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter1
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter1

4 Text, Flow, Choices, and Weaves

Understanding branching narratives as a flow
When holding a physical book, a reader moves through a story by turning its pages. The
movement between pages is also a movement through the story. What is experienced by
the reader is called a narrative. The story is the packaging of its content into different
parts called pages. The reader's narrative, however, is the experience of the story across
those pages.

In a digital setting, there are no physical pages. The words of a story could be stored as
part of a simple text file or bundled together in something more complex. Parts of a digital
story, which are the pages in a physical book, can also be arranged much more easily, and
the reader might experience them in different configurations, creating new narratives
from the same story content.

Consider the following example, where each sentence is a part of a story:

The sun was shining in a clear blue sky.

Clouds rolled in and it began to rain.

The clouds cleared away and the sun emerged.

When taken in order from the first sentence to the last one, there is a story where the
major parts are the sun shining, the clouds coming in, but then the clouds leaving and the
sun shining again. However, what happens if the parts are rearranged?

Example 1:

The clouds cleared away and the sun emerged.

The sun was shining in a clear blue sky.

Clouds rolled in and it began to rain.

With a different ordering, a new narrative is created for the reader. In this version, the
progression begins with the sun emerging and shining. Next, the clouds move in and
it begins to rain. In either case, only three events are used, but their order affects the
narrative experience of the reader.

Understanding branching narratives as a flow 5

Nonlinear storytelling
In the second example, the story still makes sense. This time, however, the events start
with the clouds, move into the sun shining, and end with the clouds returning. The second
example, in moving around the events, is an example of nonlinear storytelling, where
the events or parts of a story are experienced in a new or different way than created or
originally written. The progression is not linear from one part to another as created in the
story, but a cohesive narrative is still created:

Figure 1.1 – Mapping nonlinear storytelling

The structures created by navigating a nonlinear story are often compared to trees. They
start with a trunk and then, as different parts are encountered over others, a branching
pattern is created, with each branch representing a movement through parts of a story
from one end to another. The narrative traversal through a nonlinear story creates a
branching narrative, where different parts were or were not encountered. The map of the
experienced narrative represents a particular branch of the overall tree of the story and
its parts.

While nonlinear storytelling can be done with a printed book, it is often much more
difficult. In a digital setting, where events can be broken up into different parts,
rearranging them can often be as easy as selecting them and dragging them to a different
part of the same document. This consequence of representing stories as data makes
writing code to handle arranging the different parts easier too. This is known as narrative
scripting.

6 Text, Flow, Choices, and Weaves

Introducing ink
ink is a narrative scripting language. It determines which part of the story comes next for
the reader. As a user clicks or presses buttons, the code written in ink makes the decision
between which branches they should visit and when. Based on rules written by an author,
the code can even repeat the same part of the story with new values.

Because ink is designed for the purpose of scripting narratives, it understands navigation
through a story as a special concept called flow. As the reader moves through the different
parts, they are creating their own experienced narrative, which ink calls the flow. In fact,
one of the most common errors encountered by authors is where the flow runs out of a
story. Even when writing a nonlinear story with different branches, the story must start
and end somewhere. Even if all the parts between the start and end of a narrative change
each time a user traverses the parts of a story, these two points define the range of possible
branches.

Text flowing down
The concept of flow also extends to how code is understood in ink. All movement across a
story in ink moves down from the top of the code to the bottom unless told to navigate to a
different part in the story.

The example stories shared earlier in this chapter are both also code examples. ink is
designed to create branching narratives and supplies the ability to write code to create
these structures. This means text or words written in a story without any other special
characters or syntax are valid in ink.

Spacing within a line of text is important in ink. Because the text is considered a form of
code, ink assumes any use of spacing is a deliberate choice on the part of the author. For
example, adding extra spaces between words is not removed in its output:

The sun was shining in a clear blue sky.

Output:

The sun was shining in a clear blue sky.

ink ignores any empty lines. It assumes each line of text is important and any spacing
between them should be ignored as something unimportant to the story itself.

Understanding branching narratives as a flow 7

Example 2:

The sun was shining in a clear blue sky.

Clouds rolled in and it began to rain.

The clouds cleared away and the sun emerged.

Output:

The sun was shining in a clear blue sky.

Clouds rolled in and it began to rain.

The clouds cleared away and the sun emerged.

The smallest unit is a line
The use of three lines as part of a story when introducing nonlinear storytelling was not a
mistake. The smallest unit within an ink story is a single line:

This is a story.

Because ink considers text to be a part of the code, a single line with only four words is a
completely valid story. Adding more lines would also extend what would be presented to
the reader, but a single line can be a story by itself:

This is a story in ink.

It has two lines.

The use of the term line is important in ink. When reading a physical book, the smallest
unit in a story is usually a sentence. This is often the smallest complete thought in a larger
work. In a digital context, and specifically within ink, a line is the smallest unit. When ink
loads a story, it moves through the story line by line. It treats each as equally important as
the last.

8 Text, Flow, Choices, and Weaves

As more complex code is introduced, the concept of a line will become more important
as well. However, just like the single-line example, a story need not be complex to be
important. To ink, a story is composed of lines. This could be one or potentially
many more.

Gluing lines together
An author may need to use multiple lines of text as one "line" of code. For these situations,
ink provides a concept called glue. When the less-than and greater-than symbols, <>, are
used together, they glue the content of one onto the next, creating one long line:

Example 3:

This <>

is <>

considered <>

one <>

line of text.

Output:

This is considered one line of text.

Spacing when using glue is important. As with spacing within a single line, ink respects
the choices of the author when presenting text in a single line. When using glue, these
spaces are also respected.

Without the spaces after each word, the use of glue in the previous example would glue all
the words together:

This<>

is<>

considered<>

one<>

line of text.

Output:

Thisisconsideredoneline of text.

Understanding branching narratives as a flow 9

Using comments as notes to authors
As a scripting language, ink also provides the ability to include notes within the code
of a story. Borrowing from a more general programming term, ink calls these notes
comments. They begin with two slashes and then contain the content of the comment.
Any part of the line is also considered part of the comment:

Example 4:

The sun was shining in a clear blue sky.

// Change this next line in the future.

Clouds rolled in and it began to rain.

// Maybe update this story in a future version?

The clouds cleared away and the sun emerged.

When run, the text of the story would be treated as its code. However, any use of
comments would not appear in the output of the story. Comments are only designed for
human audiences and allow an author to explain the code to other audiences, or, more
generally, as notes to themselves or other members of their team about how something
works.

Working with Inky
To help authors more quickly develop a story in ink, Inkle Studios has created a program
called Inky. This editing tool allows an author to write code and see it run as a preview of
its output:

Figure 1.2 – Screenshot of the Inky editor

While initially developed by Inkle Studios, Inky is now an open source project and often
sees dozens of commits by the community to fix small issues or add new functionality.
A new minor version usually comes out every year.

10 Text, Flow, Choices, and Weaves

At the time of writing, Inky does not have a Windows installer but provides builds for
macOS X and Linux systems. When running on Windows or Linux, the ZIP file needs to
be unzipped to an existing folder and the Inky.exe (for Windows) or Inky (for Linux)
file run to open the editor.

Using Inky
Inky presents an interface with two panes:

•	 The left is where ink code is written.

•	 The right shows a preview of the code while it is being developed.

This allows users to quickly see how their code would produce different outputs
depending on what code was used.

Inky's most useful function is the ability to "rewind" a story to an earlier point and try a
different branch of the narrative. This allows authors to test branches of their story more
quickly, without needing to restart the story each time.

Figure 1.3 – The "Rewind a single choice" and "Restart story" buttons

Important note
This book will use screenshots from Inky to show the resulting output of
different code.

Creating choices and making weaves
While having code pick parts of a story to produce a new possible narrative for a user
could be exciting, most users want some input on what happens next. They want an
interactive story. In ink, interactivity is created by presenting the user with choices.
Depending on which choice the reader makes, the narrative could then branch in
different ways.

Creating choices and making weaves 11

Making weaves
Choices in ink are a part of another important concept, weaves. As a user creates
a flow from one part to another, they often encounter intersections within a story where
branches might be possible depending on what choice is made. This is what is known as
a weave within ink. These are collections of choices where each one has the potential to
branch the story in different ways.

Choices are written in ink using an asterisk, *. What might appear as a list of things is, in
ink, each a different choice within a single weave:

What did I want to eat?

* Apples

* Oranges

* Pears

In the previous code, each line starting with an asterisk is a choice. It starts from the
asterisk and extends to the end of the line. Everything that is part of the line becomes a
part of the choice. Each asterisk on a new line creates a new choice within the weave:

We smiled again at each other across the coffee shop. I had
seen her coming in at this same time for over a week now. We
had spoken a couple of times, but I could not bring myself to
talk to her more.

As I looked back down at my coffee, I needed to decide.

* I decided to go talk to her.

"Uh. Hi!" I said, maybe a little too loud as I approached her.

* I gave up for now. Maybe tomorrow.

I shook my head to myself and looked away from her and out the
window. Today was not the day.

Each choice in a weave has the potential to branch the narrative. In the previous code,
there are two choices. However, after each choice is another line of code. When run, ink
would understand each line following a choice as being the result of choosing the reader.
To help to visually differentiate the result of the choice better, the line following a choice is
often indented at its start.

12 Text, Flow, Choices, and Weaves

Changing the previous code to use indentation would look as follows:

Example 6:

We smiled at each other again across the coffee shop. I had
seen her coming in at this same time for over a week now. We
had spoken a couple of times, but I could not bring myself to
talk to her more.

As I looked back down at my coffee, I needed to decide.

* I decided to go talk to her.

 "Uh. Hi!" I said, maybe a little too loud, as I approached
 her.

* I gave up for now. Maybe tomorrow.

 I shook my head to myself and looked away from her and out
 the window. Today was not the day.

Choices within choices
Choices can also appear inside other choices. These are sub-choices and use an additional
asterisk to indicate that they are the result of a previous layer of a weave:

Example 7:

Should I really forgive her again? I thought about the options
in front of me as I considered what she told me.

* I forgive her.

 ** She does the same behavior again.

 I just end up hurt again.

 ** She really does change.

 She does not have another affair and maybe we can save
 our relationship.

* I do not forgive her.

 ** I would have to move out.

 I would need to find another apartment.

 ** I stay with her and try to live again without being in a
 relationship.

 I could try going back to being friends like we were
 before our relationship.

Creating choices and making weaves 13

In the previous code, there are two choices that each lead to their own choices, branching
off the central set. This is an example of a complex weave. The first layer of the weave is
the initial two choices. The result of either choice is then another weave, which then ends
in text. Depending on the user's flow, they might only see part of the overall story when
moving between these parts.

One possible branch within the complex weave could be the following output for
the reader:

Output

Should I really forgive her again? I thought about the options
in front of me as I considered what she told me.

I forgive her.

She does the same behavior again.

I just end up hurt again.

A different series of branches within the story might also create the following output:

Should I really forgive her again? I thought about the options
in front of me as I considered what she told me.

I do not forgive her.

I would have to move out.

I would need to find another apartment.

14 Text, Flow, Choices, and Weaves

Selective choice output
When using choices, the text of the choice itself appears in its output. This can be changed
by using a special concept with choices called selective output. By using open and closing
square brackets around any text in the line of the choice, it will not appear as part of the
output as a result of making the choice:

What did I want to eat?

* [Apples]

* [Oranges]

* [Pears]

I got some food.

In the previous code, the output, regardless of the choice made by the reader, would be the
same:

What did I want to eat?

I got some food.

In the cases where the text of the choice is different from what is shown to the reader, the
term option is used. A choice is created in ink using code. What is ultimately shown to
the reader is an option.

In more advanced code examples, ink can generate choices dynamically. In these cases, as
with selective output, it can be important to understand the use of a choice as something
written by a developer and an option as selected by the reader. Often, these can be the
same thing, but they do not have to be when writing code in ink.

Selective output also allows creating more dynamic output by selectively showing text
from an option in the output. An effect of using selective output is that the closing square
bracket in a line signals an end to what is shown to the reader. Any additional text on the
same line is ignored:

Example 8:

I looked at the timer again and then at the wires in front of
me. I had five seconds to stop this bomb from exploding.

* [I cut the wire.] It was the green one.

Creating choices and making weaves 15

* [I cut the wire.] It was the red one.

* [I cut the wire.] It was the blue one.

Possible output:

I looked at the timer again and then at the wires in front me.
I had five seconds to stop this bomb from exploding.

It was the green one.

From the reader's perspective, the previous code would show three options. Each one
would read I cut the wire. However, the use of selective output is telling ink to
ignore the additional text of each color. After making a choice, the user would then see
the result of the choice as a new line, with the use of square brackets excluding anything
they enclose.

Selective output can often be useful to hide additional information behind a choice where
the reader must pick an option and then see the additional text of a line.

Gathering points
Each choice in a weave can potentially branch a narrative. However, sometimes there is
a need to gather one or more branches back to where they began. Instead of leading off in
a new direction, a gathering point can be used to collapse a more complex weave into a
central point. In ink, gathering points are created using a single minus sign (-) on a line:

You peer down at the desk with two drawers.

* Try to open the top drawer.

 It does not open.

 ** Try again more forcefully.

 ** Give up for now

* Try to open the side drawer.

 It does not open.

 ** Try again more forcefully.

 ** Give up for now

- All the drawers seem locked tight.

16 Text, Flow, Choices, and Weaves

In the previous code, there are two choices with two sub-choices each. However, at the
bottom of the weave is a gathering point. No matter what branch is taken across the first
weave and then into the next layer, the flow will always gather at the last line. This is the
power of gathering points: they allow a complex weave with multiple layers to collapse
into a single point.

The placement of gathering points is important. In ink, stories flow down from the top
to the bottom. If the gathering point appeared before the weave, it would be ignored.
Without anything to gather, the gathering point does nothing. This also only affects
weaves. Multiple gathering points in a story would do nothing without a weave above
them to act as a point of collapsing them.

Gathering points only work on a single weave at a time. As the last line of a weave, they
act to gather the choices. However, they only apply to one branching structure at a time.
A new gathering point is needed per weave to collapse those branches back together:

Example 9:

You peer down at the desk with two drawers to open.

* [Try the top drawer.]

* [Try the side drawer.]

- All the drawers seem locked tight.

You give up on the drawers and look at the top of the desk.

* [Look at the papers on top of the desk.]

* [Pick up the papers and look through them.]

- You find nothing of interest.

In the previous code, both selective output and gathering points are used to create the
illusion of two weaves with two choices each. The outcome of each, because they are using
gathering points, is the last line of each. Options are presented to the reader, but the code
itself collapses any possible branching of each weave and flows the story from the first
weave to the second layer.

Disappearing and sticky choices 17

Disappearing and sticky choices
The default behavior of a weave is to direct the flow of a story along with one of the
branches presented by its choices. When the reader makes a choice, the others disappear,
and the branch chosen becomes the current flow of the story. Even when rewinding when
using Inky to test a story, there appears to only be one valid branch of a weave at any
one time.

Anticipating situations where the reader might revisit a part of a story with choices the
reader might not have seen before, ink uses the concept of sticky choices to present the
same choices again to the reader. Using sticky choices, each remains open during a revisit
and can be used again in the future:

You look at the boulder in front of you.

+ Push the boulder.

Sticky choices are created using the plus sign (+). They can be thought of as the opposite
of a gathering point. Instead of collapsing a weave, a sticky choice keeps open the option
within a weave of using a different branch. Any sticky choice created as part of a weave is
always sticky, even if it is the only one within the weave:

Example 10:

You look at the boulder in front of you.

+ Push the boulder.

* Ignore it for now.

In the previous code, there are two choices:

•	 The first is a sticky choice.

•	 The second would be removed upon a second visit to the code.

In the example, boulder could be ignored once, but the next time the reader visited the
part again, they would only see one option: Push the boulder.

18 Text, Flow, Choices, and Weaves

In examples where the story only flows down from top to bottom, sticky choices seem of
little use. Upon making any choice, the story would flow along a branch and to the next
lower part in the story regardless of the choice type:

The blank page stared back at me, taunting me. I glanced again
at the clock and then back at the page. I needed to write
something.

+ I tried again to write something.

 I wrote a few words and paused.

+ I checked my email again.

 No new messages.

In the preceding example, there is a single weave with two sticky choices. When moving
through the story from top to bottom, the weave would be visited once and either choice
would branch out and then back together again at the end.

The same example could be made with the other choice type.

Example 11:

The blank page stared back at me, taunting me. I glanced again
at the clock and then back at the page. I needed to write
something.

* I tried again to write something.

 I wrote a few words and paused.

* I checked my email again.

 No new messages.

Where the two code examples are different is in their intention. In the first, the reader
could, potentially, revisit the same part of the story and see the choices again. In the
second, the choices are one-way. By making a choice within the weave, they cannot be
revisited in a story. Once made, a basic choice is permanent. The only way to change this
intention is to use sticky choices that add themselves back to the weave when used.

Summary 19

In the next chapter, Chapter 2, Knots, Diverts, and Looping Patterns, we move into
examining loops and controlling the flow of a story across more complex structures.
Loops will allow us to revisit the same section of a story multiple times. In these cases,
sticky choices will become the default usage for creating options for the player. Because
sticky choices remain open, they allow an author to create a weave where a player can
select the same option multiple times.

Summary
This chapter provided you with an explanation of the term story, content, and the
narrative, what the reader might experience from its content. We examined nonlinear
storytelling as how the parts of a story can be experienced in an order different than how
they were written or originally composed. Next, we learned about branching narratives as
a description of experiencing a nonlinear story where different sequences, branches, are
explored over others. Through using code (scripting), we saw how different narratives can
be created by controlling when the reader experiences story content.

ink is a narrative scripting language. We understand the movement through a story as
a concept called flow. We discovered that each intersection, created by using different
types of choices, is known as a weave. By using choices, we saw that different layers of
a weave and more branching are possible. For situations where a weave is growing too
complex, we can use a gathering point. This collapses a weave into a single point or line.

In the next chapter, we will begin to use knots, labeled sections of a story, and diverts,
moving between these, to build on the concepts of nonlinear storytelling and branching
narratives. We will start to use choices to move the reader to a particular knot or repeat
the same weave again.

Questions
1.	 What is the difference between the story and the narrative?
2.	 How does ink understand the concept of flow?
3.	 How can multiple lines of text be combined into one?
4.	 What is a weave made of in ink?
5.	 What are the different types of choices?
6.	 How can selective output be used to hide information from the reader in a choice?
7.	 Why might a sticky choice be the preferred way to present options to the reader?

2
Knots, Diverts, and

Looping Patterns
This chapter introduces the concept of knots, sections of an ink story, and diverts, which
is the functionality to move between them. We will then move into defining and moving
between knots to create simple looping patterns. By incorporating choices (covered in
Chapter 1, Text, Flow, Choices, and Weaves), we will see how you can begin to experience
narratives composed of selecting options, having the story move between knots, and then
use looping patterns to build complex interactions from simple rules in ink.

In this chapter, we will to cover the following main topics:

•	 Tangling a flow in knots

•	 Moving between sections

•	 Looping knots

•	 Detecting and changing options

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub at
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter2.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter2
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter2

22 Knots, Diverts, and Looping Patterns

Tangling a flow in knots
In Chapter 1, Text, Flow, Choices, and Weaves, choices were explained as capable of
branching a story into different sections. Some simple branching structures were shown,
but movement through a story consisted of flowing down from one weave to another.
When a section is given a name in ink, it becomes one of its central concepts: a knot.
A knot is a section of an ink story created by using at least two equals signs (==) and
the name of the knot on a single line. After this definition, every line until the next knot
encountered becomes a part of the original knot. By giving names to sections, they can be
navigated to within ink to create more complex narrative experiences for readers.

Creating knots
A physical book is often divided into chapters. With knots, a digital ink story can also be
divided into different parts. While a novel or textbook might use names for sections based
on the word chapter, digital stories can grow beyond these limitations to use locations,
characters, or other, more abstract divisions of a story.

For example, an ink story based on a detective speaking to different suspects of a crime
might divide itself up into knots based on its characters, as illustrated in the following
code snippet:

The detective considered the suspects in front of her.

== lady_taylor

== lord_davies

== sir_jones

== lady_turner

The name of knots in ink must follow three specific rules, as outlined here:

•	 They can contain numbers.

•	 They can contain uppercase and lowercase letters.

•	 The only special symbol allowed is an underscore.

Tangling a flow in knots 23

Spaces cannot be used in the names of knots. Without spaces to break up words, knot
names are often written using lowercase letters with an underscore between names, words,
or other important details.

Diverting between knots
Creating knots themselves has little usefulness without a way to move between them.
In ink, moving between knots is called diverting. A divert is created by using a minus sign
(-) and a greater-than sign (>). This combination, ->, points to which knot the flow will
move to next, as illustrated in the following code snippet:

-> example_knot

== example_knot

Some content.

Once defined, a knot can be accessed by any other code within the same story. Within an
ink story using knots, it is not uncommon for one of the first lines of code to be a divert.

Using DONE and END
The introduction to the concept of a flow in Chapter 1, Text, Flow, Choices, and Weaves
mentioned a specific error that all the three previous code examples in this chapter have
in common. Because diverting between knots introduces the possibility of creating
a complex narrative, ink needs to know at least one ending of the story to stop a story
from running out. To help signal to ink when a story is going to end, all stories have two
built-in knots called DONE and END. Unlike other knots using lowercase and— often—
underscores, these are written using uppercase letters.

The differences between DONE and END are in their usage. When a story diverts to DONE
(-> DONE), it signals the end of the current flow but not the end of the story. END,
however, signals the end of all possible flows and completely ends a story. The use of
DONE allows for creating a new flow structure. END stops the story and does not allow for
anything else to happen.

24 Knots, Diverts, and Looping Patterns

Any ink story diverting to a knot, not DONE or END, must divert to either at some point,
or the story will be unusable. Returning to the use of example_knot earlier in this
chapter, a usable form of the code would be this:

Example 1

-> example_knot

== example_knot

Some content.

-> DONE

Within Inky, the use of the phrase End of story displayed at the end of every output is
the use of the special knot, END. Without content to show, the story has come to its end.
In the terminology of ink, it has diverted to END. Here is a screenshot displaying this:

Figure 2.1 – End of story

Moving between sections
Knots allow authors to divide up an ink story into sections they can name. Diverting
allows for moving between these knots. In Chapter 1, Text, Flow, Choices, and Weaves,
choices were introduced using the asterisk (*) and the ability to branch a story. Using
a divert as the result of a choice allows an author to craft a weave, a set of choices, where
each could divert to different knots.

For example, returning to the detective example earlier in the chapter, an updated version
with choices where each one diverted to knots for the characters would look like this:

Example 2

The detective considered the suspects in front of her.

* Lady Taylor

 -> lady_taylor

Moving between sections 25

* Lord Davies

 -> lord_davies

* Sir Jones

 -> sir_jones

* Lady Turner

 -> lady_turner

== lady_taylor

Standing off to the side of the gathered crowd and looking
out the window was Lady Taylor. She was elegantly dressed in
a cream evening gown and the light from the storm outside was
a stark contrast to the flowing dress and quiet form of the
woman.

The detective made her way over to question her.

-> DONE

== lord_davies

"Ah! Detective!" barked the commanding voice of Lord Davies.
With a drink in his hand and the red evidence of practiced
drinking on his face, he began again. "Over here! I know you
will want to hear what happened from me."

The detective considered the man and then turned to face him.

-> DONE

== sir_jones

The detective turned to the fireplace. Leaning against it was
"Sir Jones." The detective knew this was a nickname for the
person in front of her. They were neither of the rank "sir" in
this area nor was their name "Jones." They had appeared about
six months ago at parties like this one and was quite a fixture
at this point. No one knew much about them other than that they
went by the name "Sir Jones" now.

The detective regarded them for a moment and headed over.

-> DONE

== lady_turner

26 Knots, Diverts, and Looping Patterns

Lady Turner had been crying. The evidence of sorrow was etched
into the drying black edges of her makeup at the bottom of her
eyes as she tried to clean up her face. As the detective looked
over, Lady Turner caught her eye and seemed to communicate how
much she did not like to show the evidence of crying on her
face and was trying to clear it quickly.

The detective walked to her and sat down.

-> DONE

In the updated version, a weave is added. Each choice within it immediately diverts to
a knot matching a character. Inside the knots is a use of the built-in DONE knot to let ink
know the flow should stop after the content of the knot. In the new code, a much more
complex story is created by only using the three concepts of choices, diverts, and knots.

Knots and stitches
Knots allow an ink story to be broken up into different parts. Within a knot, additional
subsections can be added, called stitches. A stitch is created using a single equals sign (=)
and its name. Stitches follow the same naming rules of knots: they can contain numbers,
letters, and an underscore, but cannot use any other special characters. Stitches can also
only appear inside an existing knot.

Returning to the example_knot code, two stitches could be added, as follows:

-> example_knot

== example_knot

= stitch_one

= stitch_two

The common error of a flow running out for knots also applies to stitches. As subsections
of a story, they must also either divert to another knot or stitch or use the built-in knots
to stop the flow or story. In the following screenshot, you can see an example of a flow
running out in a stitch:

Moving between sections 27

Figure 2.2 – An error of flow running out in an example stitch

The first stitch in a knot is an exception to this error. The story will flow from the knot into
the first stitch automatically. A corrected version of the previous example, accounting for
flowing into the first stitch and including additional diverts, is given here:

Example 3

-> example_knot

== example_knot

= stitch_one

Diverting to example_knot will automatically show this.

-> DONE

= stitch_two

-> DONE

This would be the output:

Figure 2.3 – Inky output from diverting to example_knot

As their own subsections of an ink story, stitches can also be accessed directly. Diverting
to a stitch inside of a knot follows dot notation. A period, dot (.), is used between the
name of the divert and the stitch within it.

28 Knots, Diverts, and Looping Patterns

Diverting directly to stitch_two at the top of the previous code would produce the
following code:

Example 4

-> example_knot.stitch_two

== example_knot

= stitch_one

Diverting to example_knot will automatically show this.

-> DONE

= stitch_two

This will now appear because the stitch is being diverted to
directly.

-> DONE

This would be the output:

Figure 2.4 – Ink output from diverting to example_knot.stitch_two stitch

Dividing up a story across different files
As new knots and stitches are added to a single file, they can quickly grow very long. To
help with this issue, ink has a keyword for combining files: INCLUDE. When used with
ink code, the INCLUDE keyword includes another file based on its filename.

The use of the INCLUDE keyword has the following two rules:

•	 It should only be used at the top of files.

•	 It cannot be used inside knots.

Moving between sections 29

In Inky, additional files can be added to an existing project by using the New Included ink
File menu option, as illustrated in the following screenshot, and naming the new file:

Figure 2.5 – Inky's New Included Ink File menu option

Using this functionality with the main ink file option also adds a single newline to the
existing ink file, if it exists. For example, creating an additionalFile.ink file will
generate an additional line of code: INCLUDE additionalFile.ink.

Warning
Inky does not automatically add .ink to a filename when creating included
ink files. It is strongly recommended to always add the file type when using this
functionality.

Every use of INCLUDE adds the file to the current project. This means any knots and
stitches in these included files can be accessed by any others. Because files can be named
after locations, characters, or other abstractions in the story, this allows an author to break
a story into different files with their own knots and stitches, as shown in the following
code example:

Example 5

INCLUDE books.ink

You stand in front of a shelf with two books.

* [Red Book]

 -> books.red_book

* [Blue Book]

 -> books.blue_book

30 Knots, Diverts, and Looping Patterns

Each choice diverts to a stitch in another file in the new example. Because Inky uses
INCLUDE to combine files into a single project, the knots and stitches as part of the
books.ink file can be accessed as if all the code were part of one file, as illustrated in the
following code example:

Example 5 (books.ink)

== books

= red_book

The red book slides open as a deep, masculine voice fills your
mind.

-> DONE

= blue_book

The blue book slowly flips open as a reluctant, feminine voice
creeps into your thoughts.

-> DONE

Flow runs top to bottom in ink. Starting with the first file, the flow would show the weave
of two choices. Choosing the Red Book option would then divert to the stitch in the
other file and, ultimately, to the use of the divert in the DONE special knot, as illustrated in
the following screenshot:

Figure 2.6 – Combined output from Red Book choice in Example 5

Looping knots
A knot can divert to itself. This fundamental concept is an important part of the advanced
dialog and narrative structures in ink. However, care must be taken when having knots
divert to themselves or in a looping pattern. It can become very easy to create infinite
loops where the code loops without stopping. To prevent this error, it is always a good
idea to include a weave with at least one choice whose content ends the story or breaks
the loop.

Looping knots 31

By combining choices, diverts, and knots, looping structures can be created. Within these
structures, sticky choices become important for creating consistent options for readers to
choose from during each loop.

Looping structures
The most basic looping structure has two choices. The first continues the loop and the
second must end the story somehow, as illustrated in the following code example:

Example 6

You look at the rock in front of you.

-> rock

== rock

* Push the rock up the hill.

 -> rock

* Ignore the rock for now.

 -> DONE

Choices, those created with an asterisk (*), can only be used once in an entire story.
In the previous example, if the first option is chosen, the loop repeats, but the second
option then appears as the only one, as illustrated in the following screenshot:

Figure 2.7 – Example 6 choices after one loop

In some stories, reducing the options as the reader moves through the story could work
well, but a different type of choice is needed for those cases where the same options are
needed for every loop: sticky choices.

32 Knots, Diverts, and Looping Patterns

Revisiting sticky choices
In Chapter 1, Text, Flow, Choices, and Weaves, sticky choices were introduced. Shown
as part of a flow moving from top to bottom and without repeating any sections, sticky
choices did not seem very useful at the time. However, within looping patterns using
diverts and knots, sticky choices are often the best type of choice to use, as illustrated in
the following code example:

Example 7

You look at the rock in front of you.

-> rock

== rock

+ Push the rock up the hill.

 -> rock

+ Ignore the rock for now.

 -> rock

In the updated code, both options are sticky choices. This new code allows for a repeating
pattern and consistent weave options regardless of loop count, as illustrated in the
following screenshot:

Figure 2.8 – Inky output from multiple loops of Example 7

Detecting and changing options 33

Detecting and changing options
Knots and stitches are not the only ink concept capable of looping—options can do so as
well. They also have the unique ability to detect when they are part of looping structures.
These special types of options are named labeled options. They create an ability to give
a label to an option and track if it has been seen before in the story. Labels are also an
example of a variable: a value changed as part of the story by code.

The use of labeled options enables us to use the second type of option: conditional
options. As with their labeled sisters, conditional options are part of the option, but they
do not track loops. Instead, they conditionally show the option. If the comparison is true,
the option is shown. If it is not, the option is hidden.

Labeled and conditional options
Labeled options are created using open and closing parentheses around a name after
the symbol for a choice, a plus sign (+) or asterisk (*), and the text of the choice itself.
Labeled options follow the same rules as the name of knots and stitches: they can contain
numbers, uppercase and lowercase letters, and an underscore. They cannot contain spaces
or other special symbols. This is illustrated in the following code snippet:

You look at the rock in front of you.

-> rock

== rock

+ (push) Push the rock up the hill.

 -> rock

* Push the rock over the edge.

 -> DONE

In the new example code, a label called push is added to the first option and exists as
a variable in the story. Because it is part of the option itself, its value will be increased
every time the option is revisited in the story. This allows an author to test whether the
player has been picking the same option multiple times. The following code example
illustrates this:

Example 8

You look at the rock in front of you.

-> rock

34 Knots, Diverts, and Looping Patterns

== rock

+ (push) Push the rock up the hill.

 -> rock

* {push >= 4} Push the rock over the edge.

 -> DONE

In the latest change, a conditional option has also been added using open—{—and
closing—}—curly brackets around the comparison between a variable and a value. In the
new code, when the story starts, the reader can choose the Push the rock up the
hill option. As they do, the value of the label for the option also increases. Once its value
is at least 4, the second option becomes available, and the reader can push the rock over
the edge, as illustrated in the following screenshot:

Figure 2.9 – Push the rock up the hill chosen four times in Example 8

Conditional and labeled options can also be combined. However, the order in which they
appear is important. Labels must appear in front of conditional options. They cannot
appear in the other order, as illustrated in the following code example:

Example 9

You look at the rock in front of you.

-> rock

== rock

Detecting and changing options 35

+ (push) {push < 6} Push the rock up the hill.

 -> rock

* {push >= 6} Push the rock over the edge.

 -> DONE

In the new example code, the reader only sees a single option when the story starts.
They must make the same choice six times before the first option is removed and the
second becomes available. Once the reader selects this option, the story finally ends.

Building dynamic weaves
Sticky choices enable options to remain across loops created by diverting to the same knot.
Labeled and conditional options allow for tracking and showing certain options after
certain conditions are met in a story. Using all these concepts, dynamic weaves become
possible, as illustrated in the following code example:

Example 10

You pause to double-check check the folder again. Yes, you have
all the evidence here.

You nod at your partner and he enters the other room. You take
a breath and open the door.

The suspect sits in front of you. As you take a seat, she turns
to look at you.

-> interrogation

== interrogation

+ (knife) {knife < 1} [Ask about the knife]

 The suspect shakes their head. "I don't know nothing!"

 -> interrogation

+ (knife_again) {knife == 1 && knife_again < 1} [Ask about the
 knife again.]

 You take a picture of the knife out of the folder and put
 it down on the table without saying another word.

 -> interrogation

+ (knife_once_again) {knife_again == 1 && knife_once_again < 1}

36 Knots, Diverts, and Looping Patterns

[Ask about the knife one more time.]

 "Yes. Fine. It's mine," the suspect replies and crosses
 her arms. Looking at them, you notice the slight cuts on
 the underside of her arm.

 -> interrogation

+ (cuts) {knife_once_again == 1 && cuts < 1} [Ask about the
 cuts on her arm.]

 You point to the cuts on her arms.

 She shrugs. "It was an accident."

 You frown and point at the knife.

 "It's my knife, yes," she says, looking away.

 -> interrogation

+ {cuts == 1} [Take out the picture of the gun next.]

 "This is not yours, though," you say, taking out the
 picture.

 She does not look back.

 "He attacked you. And not for the first time," you say
 and point to the older scars still visible. "You finally
 had enough. You shot him."

 She still looks away, but you can see her shoulders slump.
 She knows that you know.

 -> DONE

In the new code, complex combinations of labels and conditional options are used to track
information during the interrogation of the suspect. Making one choice unlocks the next
in order, as the flow loops back to the same knot as information is slowly unlocked and
the reader learns more through making one choice at a time.

Note
Some conditional options in Example 10 use two ampersands, &&. This is
known as logical AND. It tests the first condition and, if it is true, it checks
the next. If both are true, the entire combination is true.

In the next chapter, easier ways to create sequences of information will be covered, as well
as introducing randomness into creating text and options. Instead of using diverts and
knots, ink supplies much simpler functionality for doing the same general actions and
building repetitions explicitly using knots each time.

Summary 37

Summary
This chapter introduced you to knots, sections of a story, and diverts, which are ways to
move between them. We examined the use of DONE and END as built-in knots to end
a flow (DONE) and stop a story completely (END). Stitches, subsections of a knot, were
then discussed to break up a story into even more parts. We learned that the INCLUDE
keyword can be used to break a story into separate files and be included as part of the
same project.

Knots can divert to themselves. This, as we saw, is the key to creating looping structures
where the use of other concepts, labeled and conditional options, can also be combined.
Labels allow us to create variables for tracking how many times an option has been shown.
Labeled options then led on to using conditional options, testing how many times an
option has been chosen when using a looping structure. Finally, we ended with making
a dynamic weave, using a looping structure where each choice made changed the values of
labels and unlocked each choice in order.

In the next chapter, we will build on the concepts of knots and diverts. By navigating to
different sections of a story, alternatives, an ink concept where different text is shown
across a story or because of multiple loops, becomes possible. This allows ink to react to
readers revisiting knots and options to show different content.

Questions
1.	 What is a knot?
2.	 What is the difference between DONE and END?
3.	 What is a stitch?
4.	 How can INCLUDE be used in ink?
5.	 What is the difference between a labeled and a conditional option?

3
Sequences, Cycles,
and Shuffling Text

This chapter introduces the concept of alternatives, programmable ways of introducing
additional text, and advanced code that can react to loops. We will cover each type
of alternative (sequence, cycle, and shuffle) in turn and look at how they can be
combined with looping structures in ink. Next, we will examine multi-line alternatives,
functionality for defining more complex structures based on the type of alternative used
to create them. Finally, we will close the chapter with nested alternatives, the use of one
or more alternatives inside each other.

In this chapter, we will to cover the following main topics:

•	 Using alternatives

•	 Creating multi-line alternatives

•	 Nesting alternatives

40 Sequences, Cycles, and Shuffling Text

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub:
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter3.

Using alternatives
In Chapter 2, Knots, Diverts, and Looping Patterns, the use of opening, {, and closing,
}, curly brackets signaled the use of a conditional option. Between using labels and
conditions, options could become dynamic and react to the reader making choices
between loops. However, curly brackets are used for more than conditional options. In
ink, they also signal the use of any code, and one of the most common forms of code is the
use of an alternative. Used to create different text effects and react to loops, alternatives
separate each of their elements by a vertical bar, |. Depending on the type of alternative
used, different text effects can happen.

Sequences
The first and default alternative is a sequence. As its name might suggest, a sequence is
a series of values. They are accessed based on their name, in sequence:

Example 1:

It was a {dark and stormy night|bright and shining day}.

In Example 1, a sequence is used. It has two elements, dark and stormy night and
bright and shining day, with a vertical bar between them. When first run, the
sequence would produce the following output:

It was a dark and stormy night.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter3
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter3

Using alternatives 41

In a sequence, any elements beyond the first are only shown when the sequence is run
additional times. In other words, a sequence with more than one element works best
inside a looping structure:

Example 2:

She looked out the window.

-> weather

== weather

+ What was the weather like?

 It was a {dark and stormy night|bright and shining day}.

 -> weather

* Ignore the weather.

 -> DONE

By diverting back to the knot, weather, a loop is created. This allows the second element
of the sequence to be shown on the second loop:

Figure 3.1 – Screenshot of Inky showing both elements from Example 2

42 Sequences, Cycles, and Shuffling Text

A sequence only continues if new elements are within it. Once a sequence reaches its end,
it stops on the last element. In Example 2, choosing the option What was the weather
like? would not move to the first element. With only two elements, the last one, bright
and shining day, would be shown again:

Figure 3.2 – Screenshot of Inky showing the repeating element from Example 2

Important note
Example 2 follows a pattern established in Chapter 2, Knots, Diverts, and
Looping Patterns, with two choices. The first loops the structure and the second
breaks it. Always use choices when creating loops to avoid creating ones that
cannot end!

Sequences are best used in situations where a user might exhaust a series of elements
and end on the last one. When a repeating sequence is needed, a different concept is
used: cycles.

Using alternatives 43

Cycles
Like sequences, cycles are also created using open and closing curly brackets. However,
cycles include an ampersand, &, in front of the first element in the set. This tells ink to
cycle the elements and return to the first after the last:

Example 3:

He flipped the calendar, looking at each month in turn.

-> calendar

== calendar

+ [Flip pages]

 He saw the month was {&January|February|March|April|May|
 June|July|August|September|October|November|December}.

 -> calendar

* Put down calendar.

 -> DONE

In Example 3, the looping structure reruns the cycle, moving through all the months and
then cycling back to the first element again:

Figure 3.3 – Screenshot of ink showing all elements from the Example 3 cycle

44 Sequences, Cycles, and Shuffling Text

All alternatives can contain empty elements. For cycles, any blank elements count towards
the total number. It is possible to create a cycle that shows elements only after a certain
number of loops:

Example 4:

He awoke to the sudden darkness. He tried to bend his elbows
outward and his arms stopped against some sort of wall.
Carefully bringing his arms up, he pressed his palms out and
hit another surface inches from his face.

Desperate to figure out where he was, he remembered he still
had his lighter in his pocket. Shifting the left side of his
body against the wall, he reached the tips of his right hand
into his back pocket and drew it out.

-> lighter

== lighter

+ [Try lighter]

 {&|||For a moment, there was light before the flame went
out.}

 -> lighter

Using empty elements with a cycle can be very effective for creating a situation where
the reader must take an action multiple times before a result happens. In Example 4, the
cycle has multiple empty elements separated by vertical bars. The last element, For a
moment, there was light before the flame went out., is only shown
after the reader chooses the option Try lighter four times:

Figure 3.4 – Screenshot of Inky showing Example 4's use of empty elements

Creating multi-line alternatives 45

Shuffles
Shuffles are a type of alternative where elements are accessed at random. Like cycles,
shuffles also use a special symbol. A shuffle is created when a tilde, ~, appears before the
first element in the set:

Example 5:

The lucky number for today is {~1|2|3|4|5|6|7|8|9|10}.

Unlike sequences and cycles, shuffles do not show their elements in order. Combined with
empty elements, as shown previously with cycles, the chances of an element being picked
are always consistent with the total number of elements. This means that to create a shuffle
where one of its elements is shown 1 of 10 runs, the code would be the following:

Example 6:

One out of ten runs of this shuffle will produce the number 10:
{~|||||||||10}

In Example 6, element 10 has a 10% chance of appearing. Most runs (90%) would not see
it, creating a unique moment for those users encountering the event within their narrative
experience of the story's content:

Figure 3.5 – Screenshot of Inky showing the output of Example 6 without element 10

Creating multi-line alternatives
Sequences, cycles, and shuffles can be written using one single line of code. However,
all alternatives can also be written using their multi-line form. For each of these, curly
brackets are still used, but each element is on its own line with a dash, -, appearing
before it.

46 Sequences, Cycles, and Shuffling Text

Multi-line cycles
To create a multi-line cycle, the keyword cycle is used with a colon, :, and with each
element on its own line:

Example 7:

He flipped the calendar, looking at each month in turn.

-> calendar

== calendar

+ [Flip pages]

 He saw the month was <>{cycle:

 - January

 - February

 - March

 - April

 - May

 - June

 - July

 - August

 - September

 - October

 - November

 - December

 }<>.

 -> calendar

* Put down calendar.

 -> DONE

Any use of multi-line alternatives also introduces a new issue. Because each element is on
its own line, each is also considered a line by ink. This means its output would introduce
additional spacing between lines. To help with this issue, glue can be used between the
multi-line alternative and the next text content.

Reminder
Chapter 1, Text, Flow, Choices, and Weaves, introduced the concept of glue,
the use of the less-than and greater-than symbols together. This concept glues
one line to the end of the previous. With multi-line alternatives, the use of glue
removes the additional space between its output and the next line of content.

Creating multi-line alternatives 47

Multi-line sequences
Multi-line cycles use the keyword cycle and multi-line shuffles use the keyword
shuffle. However, multi-line sequences use the keyword stopping:

Example 8:

She looked out the window.

-> weather

== weather

+ What was the weather like?

 It was a <>{stopping:

 - dark and stormy night

 - bright and shining day

 }<>.

 -> weather

* Ignore the weather.

 -> DONE

Multi-line sequences also introduce an important difference between themselves and their
one-line forms: readability. Each element in a multi-line alternative is separated by a new
line. In the one-line form, a sequence with a particularly long text element would be hard
to differentiate between its end and the start of the next element in the alternative:

{This is one really long line that keeps going and going just
to make sure that it wraps to a new line.|This is more content
as part of this second element.}

Broken into new lines, the previous code can become much easier to edit and understand:

Example 9:

{stopping:

- This is one really long line that keeps going and going to
make sure that it wraps to a new line.

- This is more content as part of this second element.

}

48 Sequences, Cycles, and Shuffling Text

Nesting alternatives
Sequences, cycles, and shuffles can all be nested inside each other. When this happens, the
combined form is what is known as a nested alternative, where one alternative appears as
the element of another.

Combining cycles and shuffles
Within a looping structure, a cycle can be very useful to repeat content after a certain
number of loops. When combined with a shuffle, random content can be selected from
the shuffle and then repeated within the larger cycle. For example, to generate a new
random number for each loop, a cycle with a single element using multiple shuffles would
produce this effect using only one line of code:

Example 10:

Her hands were sweating, and her head hurt. She just needed to
enter the correct digits into the controls and the vault would
open. Once she got in and away with the treasure inside, she
could be done with this job and leave this life behind. She had
sworn there would only be one more job like this one job ago.
This was truly the last one, she decided again.

She wiped her forehead and considered the controls again.

-> combination

== combination

What was the combination again?

+ [Was it {&{~1|2|3|4|5}-{~1|2|3|4|5}-{~1|2|3|4|5}}?]

 -> combination

* Give up on the controls. This was hopeless. She could not
remember the numbers.

 -> DONE

Example 10 uses a cycle and three shuffles. Each time the loop runs, the cycle reruns. With
only one element, it cycles again and reruns the shuffles, each of which picks a random
number from one to five. This has the effect of generating a new three-digit number for
each loop:

Nesting alternatives 49

Figure 3.6 – Screenshot of Inky showing random three-digit numbers across loops from Example 10

The code in Example 10 also demonstrates something not previously made explicit about
how alternatives work in ink. The elements of alternatives often have text content, and
options are created from the text of choices. This means that alternatives can be used
with choices to generate dynamic options. This also means that diverts can be elements of
alternatives as well.

For example, a set of diverts can be used with a shuffle to move the reader to different
points at random based on the options they chose:

Example 11:

They stood before the doorway at the end of the hallway.
Without knowing where it would go, they reached out.

* [Open door]

 {~-> treasure|-> back_in_hallway}

== treasure

Yes! The room was full of treasure.

-> DONE

== back_in_hallway

As the door opened, there was a flash, and they blinked several

50 Sequences, Cycles, and Shuffling Text

times before realizing what had happened. They were back in
front of the door. No!

-> DONE

When run, the combination of diverts and a shuffle in Example 11 would randomly pick
between two possible branches. The reader would either be diverted to the treasure
or back_in_hallway knots.

Shuffling shuffles
In both Example 10 and Example 11, one type of alternative was combined with another.
It is also possible to nest the same type of alternative. Shuffles can be nested within other
shuffles to make advanced combinatorial results. For example, it is possible to generate
a quick history of a fantasy kingdom by defining possible years and events, and then using
one-line shuffles inside a multi-line shuffle to build a sentence describing the kingdom:

Example 12:

It was the

<> {shuffle:

- year {~1|2|3|4|5|6|7|8|9}{~1|2|3|4|5|6|7|8|9} of the New

 Era

- {~second|third|fourth|fifth|sixth|seventh} {~Year of the

 Frog|Year of the Snake}

 }

<> and our kingdom

<> {shuffle:

- {~was doing well|was facing a crisis}

- {~was at war|was recovering from a war} with {~the

 giants|the elves|the humans}

 }

<>.

In Example 12, the use of the single-line shuffles creates all of the small details of the
kingdom. These are then used within the larger multi-line shuffles for the major events.
They build a history based on different elements shuffled together:

Summary 51

Figure 3.7 – Screenshot of Inky showing of one of the many possible outputs of Example 12

Alternatives and their multi-line forms can be very useful for detecting and acting on
loops by using sequences and cycles to show new or change old content. Shuffles, with the
ability to introduce randomness in a story, are an easy way to generate dynamic text in
a story, as shown in Example 12.

When combining different types of alternatives, such as those used in Example 10,
these nested alternatives can generate complex content based on how each type works
individually. However, what was not covered and is introduced in the next chapter is
a way to save what is generated by an alternative and then compare values. As with the
story used in Example 10, generating a random three-digit number is useful, but saving
and remembering it is even better. Chapter 4, Variables, Lists, and Functions, introduces
how to retain values across a story as generated by alternatives and changed because of
a user's interactions in ink.

Summary
In this chapter, we looked at the seemingly simple concept of alternatives. In ink, the
three types of alternatives are sequences, cycles, and shuffles. Each provides a different
way of accessing its elements. Sequences show each element in turn until its last one.
Cycles repeat their elements, looping back to the first element after encountering the end.
Shuffles select a random element from their set each time they are run, creating a way to
introduce randomness to stories for the first time.

Alternatives can also be expressed in both one-line and multi-line forms. When written
in their longer multi-line forms, alternatives use a keyword for their type and have each
element on a separate line. While much easier to read for an author, we reviewed how
care must be taken to incorporate glue because of how ink interprets each line of text in
a story.

Finally, we learned alternatives can be combined in a nested form. An element of an
alternative can be another alternative. When used together, this showed how, for example,
a cycle and shuffle can be combined to regenerate random selections from multiple
shuffles each time they are run. We also saw how the text of elements from alternatives
can be used with choices and even how diverts can be elements of alternatives.

In the next chapter, we will see how to create and access the values of variables in ink.

52 Sequences, Cycles, and Shuffling Text

Q&A
1.	 What are the three types of alternatives in ink?
2.	 What special symbol is used between elements in their single-line form?
3.	 What special symbol is used before the first element in the set to create a cycle?
4.	 What is the difference between a sequence and a cycle?
5.	 What is unique about a shuffle?
6.	 What is the keyword used to create a multi-line sequence?

4
Variables, Lists, and

Functions
This chapter builds on multiple concepts that were introduced in Chapter 2, Knots,
Diverts, and Looping Patterns. In the first topic, we will examine how the keyword VAR
works with a single value in ink, and how it can be combined with alternatives. Once
values have been saved, they can be changed as part of larger looping structures. In the
second topic, we will work with multiple variables together using the LIST keyword.

In ink, we can group variables into a concept called a list. We will also examine how to
create and change the values that are part of a list. We will then review when they are
best used in a project and situations where multiple, single variables might work better.
This discussion will move us on to the next topic, where we will look at working with
functions.

Values that are part of a list can be changed by other concepts called functions. In the
third topic, we will call some of the built-in functions to work with different list values.
These will allow us to perform actions across a list, such as determining the number of
entries or picking one out at random. Working with functions will help us prepare for the
next step, which is creating functions.

54 Variables, Lists, and Functions

In the last topic, we will explore how to create our functions in ink. As we will see,
functions allow us to define small tasks or series of actions we can use multiple times by
calling the created function. Functions, as we will learn, are special forms of knots in ink.
This means we can send data to a function as well as a knot. However, only functions can
return data.

In this chapter, we will cover the following main topics:

•	 Storing values using VAR

•	 Working with LIST

•	 Calling functions

•	 Making new functions and calling knots

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub:
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter4.

Storing values using VAR
In Chapter 2, Knots, Diverts, and Looping Patterns, variables were introduced as a part of
using labeled options within the weaves of looping structures in ink. By creating a label,
an option could record whether it had been shown before. This allowed us to keep track
of the number of loops within a knot easily. Within ink, labeled options are one form of
a more general concept for storing and changing any kind of value. This more general
form uses a special keyword: VAR.

The VAR keyword creates a variable that's capable of storing different types of data.
Variables created with the VAR keyword can store numbers (including decimal values),
strings (collections of letters, numbers, and special symbols enclosed in single-quotation
or double-quotation marks), Booleans (true or false values), and even diverts.
Variables created using the VAR keyword are also global: they can be accessed by any code
that is part of the overall project.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter4
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter4

Storing values using VAR 55

Variable names that use the VAR keyword in ink follow the same rules as that of knots
and stitches:

•	 They can contain numbers.

•	 They can contain uppercase and lowercase letters.

•	 The only special symbol that's allowed is an underscore.

Like the naming conventions for knots and stitches, an underscore is often used between
words within the name of the variable:

Example 1 (Example1.ink):

VAR reader_name = "Dan"

Variables are given values by an operation called assignment. You can use the equals sign
(=) to assign the variable the value following the sign on the same line. It is common to
include a single space between the name of the variable, the equals sign (=), and the value
being assigned to the variable.

There is one explicit rule that must always be followed when using the VAR keyword and
assigning a variable its initial value: whatever the value is, it must be static. In ink, this
means that the first assignment of any variable cannot be a combination of other, existing
values or the result of code performing mathematical operations.

Once created, however, the value of the variable can be changed, but the initial assignment
must always exist first and not be the result of any computation.

In this topic, we will learn how to show and change variable values. Because alternatives
(covered in Chapter 3, Sequences, Cycles, and Shuffling Text) produce values, we will also
explore how to save what they produce and use that value as part of additional code.

56 Variables, Lists, and Functions

Showing variables
The use of opening, {, and closing, }, curly brackets in ink signals the use of code. When
combined with the name of a variable, ink will substitute the value of the variable as part
of the surrounding text. This allows an author to use variables as part of the text and have
ink switch the name of the variable with its value in its final output:

Example 2 (Example2.ink):

VAR reader_name = "Dan"

The name of the reader is {reader_name}.

When the code in Example 2 is run, ink creates a variable named reader_name. Next, it
sets the variable to the value of "Dan". When it encounters the text, ink understands that
the curly brackets are code and switches the name of the variable for its value:

Figure 4.1 – Screenshot of ink's output for Example 2

The use of curly brackets signals the use of any code in ink. This means that mathematical
operations can also be performed inside curly brackets on variables. ink will substitute the
resulting value as part of the final output, as shown in the following example:

Example 3 (Example3.ink):

VAR first_variable = 2

VAR second_variable = 2

Adding the values of the two variables together produces:

 {first_variable + second_variable}.

In Example 3, there are two variables. Each holds a separate, numerical value. When
ink encounters the use of curly brackets, it substitutes the value of each variable with its
name. Next, because the curly brackets also contain the addition symbol, ink adds the two
numbers together:

Storing values using VAR 57

Figure 4.2 – Screenshot of ink's output for Example 3

Depending on the types of data involved, mathematical operations may not always
produce the expected output based on experiences with other programming and
scripting languages. For example, operations such as addition (using the plus symbol,
+), subtraction (using the hyphen, -), multiplication (using the asterisk, *), and division
(using the forward slash, /) will all work on numerical values:

Example 4 (Example4.ink):

VAR number_two = 2

2 * 2 = {number_two * 2}

2 + 3 = {number_two + 3}

6 / 2 = {6 / number_two}

9 - 2 = {9 - number_two}

Using mathematical operations with numerical and string values will produce errors. The
only valid way to use mathematic symbols with string values is to use the plus symbol (+).
This performs the concatenation operation: when a numerical or string value is added to
an existing string value, it produces a new string value, as shown in the following example:

Example 5 (Example5.ink):

VAR example_string = "Hi"

Perform concatenation: {example_string + 3}

When the code in Example 5 is run, ink creates a variable with a string value. However,
when it encounters text and curly brackets, it does not perform mathematics. Instead,
it concatenates the value of the example_string variable with the number 3. This
produces a combination of both values in its output:

Figure 4.3 – Screenshot of ink's output for Example 5

58 Variables, Lists, and Functions

Let's now move to the next part and understand how to update variables.

Updating variables
Variables can change values. Once a variable is created in ink using the VAR keyword, it
can be accessed and its value can be changed at any point within the same code. However,
while ink understands that the initial assignment of a variable must be separate from
text, we must use a special symbol when changing the value of a variable: a tilde (~). For
example, we can create a variable using the VAR keyword and then change its value later
in the same code:

Example 6 (Example6.ink):

VAR reader_name = "Dan"

The reader's name is {reader_name}.

~ reader_name = "Jesse"

The reader's name is now {reader_name}.

If a line of code starts with a tilde (~), this lets ink know that some type of code will occur
on this single line. For example, when an initial value is assigned to the variable, ink
understands something code-related will be following the tilde (~).

We can create variables using the VAR keyword and update them with code lines starting
with a tilde (~). However, as we saw in Chapter 3, Sequences, Cycles, and Shuffling Text,
alternatives allow us to generate a value from a set. As we will see in the next section, we
can save the generated value in variables and use it in later parts of the same code.

Storing the current values of alternatives
Alternatives were introduced in Chapter 3, Sequences, Cycles, and Shuffling Text. They
are used to generate alternative text content based on the number of times they had been
accessed during looping structures. Because alternatives generate text, their output can
also be saved in variables:

Example 7 (Example7.ink):

VAR day_of_week = ""

~ day_of_week = "{~Monday|Tuesday|Wednesday|Thursday

Storing values using VAR 59

 |Friday|Saturday|Sunday}"

-> calendar

== calendar

Today is {day_of_week}!

-> DONE

Instead of needing to rerun an alternative to generate new text, a shuffle can have its
output saved for future use. This allows the value to be incorporated into other code
without the need to recreate the alternative.

Alternatives generate content when they're run. This means that they cannot be used as
part of the initial assignment of a variable in ink. The reason for this is that ink handles
the creation of variables before it runs any alternatives. The generated values of any
alternative do not exist when variables are created initially. Because of this, a common
pattern is to create a variable with an initial value and then overwrite this value with the
generated output of an alternative later in the code.

In Example 7, quotation marks enclose the use of a shuffle alternative to create a string
value. When run, the shuffle will generate a value that will then become a string, based on
the quotation marks around it. As a string value, it will then be able to be used with the
assignment line with the tilde (~).

Saving the output of an alternative in ink always requires at least two lines of code. The
first is used to create a variable using the VAR keyword with its initial value, while the
second is reassigned its value to what is generated by the alternative when the code is run.
As was explained in the introduction to the Storing values using VAR topic, the explicit
rule for using the VAR keyword is that the initial value must exist when the variable is
created. The output that's produced by an alternative is considered dynamic, and the
initial value of a variable using the VAR keyword must be static.

In this topic, we worked with single values. We started by creating new variables using
the VAR keyword and then learned how to update their values with lines beginning with
tildes (~). We also explored how the output from an alternative can be saved, but that the
variable must be set to an initial value and then updated to the dynamic output produced
by the alternative. In the next topic, we will build on the use of variables and create
a collection of them using a new keyword called LIST.

60 Variables, Lists, and Functions

Working with LIST
Each use of the VAR keyword creates a single value. In many projects, a handful of single
values would be enough to track anything needed while running. However, there are
contexts where a set of values might be needed. For these cases, ink has a special keyword
called LIST that creates a list of possible values.

The values of a list can be thought of as possible states of its variable. For example, for
a LIST named days_of_week, possible values might be the 7 days of the week. These
could be defined with LIST itself and then assigned as needed instead of the need to use
string values for each day of the week.

In ink, a list defines a new collection of values within the context of the project. Once
created, the values of a list can act as possible values for other variables using the VAR
keyword.

However, while powerful in its ability to create new possible values for variables, the
values that are created have some limitations and often need extra functionality to
perform some common operations that are available to other types of data in ink. (LIST
functions will be covered in the Using LIST functions section, later in this chapter.)

In this topic, we will begin by creating a list of values. We will explore how to use the
LIST keyword to create this collection. Then, we will change the values that are part of
the collection by following the same pattern that we learned about for working with single
values.

Making a LIST
A new list can be created by using the LIST keyword. On a line starting with the
LIST keyword, the name of the list is followed by the equals sign (=), and its values are
separated by commas. The name of a list, as with other variables in ink, must only contain
numbers, letters, and an underscore character. It cannot contain other special symbols or
spaces.

Unlike the use of the VAR keyword, when values are assigned to a list, spaces are ignored,
including additional new, empty lines between one value and the next. Variables that are
created by the VAR keyword must be defined on a single line. The values of a list can be
spread across multiple lines:

Example 8 (Example8.ink):

LIST days_of_week =

Monday,

Working with LIST 61

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

VAR day = Monday

Today is {day}.

In Example 8, a list was created with seven possible values. Next, one of its values,
Monday, was assigned to the variable that was created with the VAR keyword. Finally, the
last line of code shows the value of day:

Figure 4.4 – Screenshot of ink's output for Example 8

Like with a variable created with the VAR keyword, the values of a list, once created,
can also be updated. This follows the pattern that we introduced as part of the Updating
variables section. To update a list or one of its values, as we will learn in the next section,
a line starting with a tilde (~) is needed.

Updating LIST values
While values, as shown in Example 8, can seemingly be shown, the output that was created
was the name of the value, Monday, and not the string, "Monday". Regarding the output
of a project, this is a small but important difference between a variable using the VAR
keyword and those as part of a collection using the LIST keyword: only LIST values can
be added to a list. To add a new value to an existing list, it must have been created by itself
or another list:

Example 9 (Example9.ink):

LIST all_pets = Cats, Dogs, Fish

LIST current_pets = Cats, Dogs

~ current_pets = current_pets + Fish

62 Variables, Lists, and Functions

In Example 9, the Fish value could be added to current_pets because it was created
as part of another list, all_pets. This illustrates one of the major problems with using
values from a list: while they can be very useful for introducing new possible values to
a project, they must be defined before they can be accessed. Any new list is dependent
on values that were previously defined or created within its assignment. However, it is
possible to change the value to another type of data in ink:

Example 10 (Example10.ink):

LIST standing_with_family_members =

father = 0,

mother = 1,

sister = 2,

brother = 0

In Example 10, each of the values of the standing_with_family_members list is
also assigned a number. This is allowed in ink and can be a useful way to create specific
values of a list associated with numerical values in a project. However, accessing these
numbers requires understanding another ink concept: functions.

Calling functions
Functions are a foundational part of most programming languages. In ink, a function is
a subset of code that can accept input separated by commas, may produce output, and can
be accessed through an operation called calling.

A function is called by using its name and then opening (() and closing ()) parentheses.
The operation of calling a function in ink temporarily moves the flow of the story to the
code of a function and then returns it when the code finishes.

Note
Functions can only be called when used within code in ink. This means they
either appear within opening and closing curly brackets or on lines starting
with the tilde (~) as part of variable reassignment.

In this topic, we will start by reviewing some functions that are built into ink and how
they can help us with common operations. Next, we will look at functions that have been
designed to work exclusively with values created with the LIST keyword. These functions
perform common operations on a list, such as letting us know the number of entries
within it or picking a random entry from its collection.

Calling functions 63

Common mathematics functions
One of the most used functions in ink is RANDOM(). It accepts a minimum and
a maximum whole number. It then picks a random number within the range specified.

For many role-playing games, a common need is a number within a certain range, such as
between 1 and 4 or 1 and 20. The RANDOM() function allows us to set a range and then
view the outcome:

Example 11 (Example11.ink):

An example of a dice roll of 1-to-20 is {RANDOM(1,20)}.

When the Example 11 code is run, ink will encounter a set of curly brackets. It will then
see the RANDOM() function with a minimum of 1 and a maximum of 20. Each time it is
run, a different number in this range will be chosen:

Figure 4.5 – Screenshot of ink's output for Example 11

ink also has functions for converting between different types of numbers. The INT()
function converts a decimal number into a whole (integer) number, while the FLOAT()
function converts an integer into a decimal (float) number. Each accepts a single number
and produces the output of a different type of number:

Example 12 (Example12.ink):

VAR example_decimal = 3.14

VAR example_integer = 5

Convert a decimal into an integer: {INT(example_decimal)}.

Convert an integer into a decimal: {FLOAT(example_integer +

 1.3)}.

64 Variables, Lists, and Functions

The values that are produced by functions can be saved in variables. This allows, for
example, the use of the RANDOM() function and its value, which has been saved as part of
a variable:

Example 13 (Example13.ink):

A common table-top role-playing game combination is 2d6 where
two dice rolls of 1-to-6 are rolled, and their values combined.

VAR dice_one = 0

~ dice_one = RANDOM(1,6)

VAR dice_two = 0

~ dice_two = RANDOM(1,6)

The combined total of 2d6 is {dice_one + dice_two}.

The Example 13 code contains two variables and two uses of the same function. As was
mentioned at the start of the Storing values using VAR topic, variables must start with a
static value. In the Example 13 code, each variable is initially assigned a value of 0. They
are immediately reassigned a value that's generated by the RANDOM() function. However,
as part of the explicit rule with variables that are created using the VAR keyword, they
must be set to a static value before they can be reassigned a dynamic variable that's been
generated by a function such as RANDOM().

When run, the Example 13 code creates the necessary variables and reassigns their values
from a call to the RANDOM() function with a minimum of 1 and a maximum of 6. When
ink encounters the text and use of curly brackets, it adds the two values:

Figure 4.6 – Screenshot of ink's output for Example 13

Reminder
Like using a shuffle alternative and the VAR keyword, the output of the
RANDOM() function cannot be used as the initial value of a variable. It must
be created first, and then reassigned the value produced by RANDOM().

Calling functions 65

As we have seen, there are multiple built-in functions in ink for working with single
values. This is also true of values that are created using the LIST keyword. In the next
section, we will review some of the functions that have been designed specifically for lists
and their values.

Using LIST functions
While there are functions that have been designed for a single value, most built-in
functions in ink are used with a list. These all start with the LIST_ prefix and have the
action or operation they perform or access as the second word. For example, to count the
number of included values within a list, the LIST_COUNT() function can be used:

Example 14 (Example14.ink):

LIST days_of_week =

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

The total days are {LIST_COUNT(days_of_week)}.

When run, the Example 14 code creates a list containing seven values. In the curly
brackets is a call to the LIST_COUNT() function. This function is then passed the days_
of_week list. Based on the lines that were used in the assignment of the list, the default
assumption would be that the output will be 7 based on the number of days in the list.
However, this is not the case. Its output is 0:

Figure 4.7 – Screenshot of ink's output for Example 14

66 Variables, Lists, and Functions

The output produced by Example 14 shows a hidden aspect of working with values from
a list. Technically, all the values for creating a list are known as a Boolean set in ink. Each
value that's created by a list is set to either true or false and by default, all values are
set to false.

The use of the LIST_COUNT() function counts the number of true values within the
list. In Example 14, there are none. The count that was produced by the function is correct.
To change a value from its default of false to true, it needs to be enclosed in opening
(() and closing ()) parentheses:

Example 15 (Example15.ink):

LIST days_of_week =

(Monday),

(Tuesday),

(Wednesday),

(Thursday),

(Friday),

(Saturday),

(Sunday)

The total days are {LIST_COUNT(days_of_week)}.

In Example 15, the output includes the number 7. This is correct. Each value within the
list from Example 14 is now enclosed within its own set of parentheses, changing its value
from false to true for each.

For the cases where every value, regardless of being true or false, is wanted from a list,
the LIST_ALL() function returns all values:

Example 16 (Example16.ink):

LIST days_of_week =

(Monday),

(Tuesday),

(Wednesday),

(Thursday),

(Friday),

(Saturday),

(Sunday)

Calling functions 67

The days of the week are: {LIST_ALL(days_of_week)}.

In Example 16, the use of the LIST_ALL() function returns all the values that are
currently part of the days_of_week list:

Figure 4.8 – Screenshot of ink's output for Example 16

The LIST_RANDOM() function returns a random entry regarding the total number of
true values in a list, as shown in the following example:

Example 17 (Example17.ink):

LIST days_of_week =

(Monday),

(Tuesday),

(Wednesday),

Thursday,

Friday,

Saturday,

Sunday

A random day of the week is: {LIST_RANDOM(days_of_week)}.

In Example 17, only the Monday, Tuesday, and Wednesday values are set to true.
The other values of days_of_week, because they are set to false by default, cannot be
accessed by LIST_RANDOM().

Returning to the code from Example 10, the LIST_VALUE() function can be used to
access any data that's been assigned to a value as part of a list:

Example 18 (Example18.ink):

LIST standing_with_family_members =

father = 0,

68 Variables, Lists, and Functions

mother = 1,

sister = 2,

brother = 0

The value of sister is {LIST_VALUE(sister)}.

In this improved version of Example 10, known as Example 18, the LIST_VALUE()
function can be used to access the data that's been assigned to the sister value.

While ink has many functions for performing different options, both mathematically and
with the values of a list, it also provides authors with the ability to create their own. In the
next topic, we will review how to create and call functions.

Making new functions and calling knots
The Calling functions topic introduced functions for accepting input, possibly producing
output, and explained how ink's built-in functions can be called.

It is also possible to create new functions in ink using the function keyword. Any new
functions created in ink can be used like any others, and they are often a useful way to
create separate lines of code that can be used across a project or multiple times without
the need to write the same code again.

In this topic, we will explore how to create new functions using the function keyword.
We will learn how they can be called, perform a small task, and even potentially return
data. In Chapter 2, Knots, Diverts, and Looping Patterns, we discussed knots initially.
Different sections of a story are defined by a name. In ink, functions, as we will learn, are
special types of knots. This relationship means knots can also be called and passed data.

A function is created in ink using at least two equals signs (=), the function keyword,
the name of the function, and then the opening (() and closing ()) parentheses, which are
put around its input (if any). The name of a function follows the same rules as variables
and knots: they can contain numbers, letters, and an underscore character. They cannot
contain other special symbols or spaces.

Making new functions and calling knots 69

Like variables, functions are also global in ink. They can be accessed by any other code
within the project once they have been created. Because both variables and functions are
global, a common pattern is to design a function that changes a single variable. This allows
an author to define an action that takes place when calling the function, such as increasing
or decreasing its current value:

Example 19 (Example19.ink):

VAR money = 30

VAR apples = 0

VAR oranges = 0

You approach the marketplace and consider what is on sale.

-> market

== market

You have {money} gold.

You have purchased {apples} apples.

You have purchased {oranges} oranges.

+ {money > 10} [Buy Apple for 10 gold]

 ~ decreaseMoney(10)

 ~ increaseApples()

 -> market

+ {money > 15} [Buy Oranges for 15 gold]

 ~ decreaseMoney(15)

 ~ increaseOranges()

 -> market

* [Leave market]

 -> DONE

== function decreaseMoney(amount)

~ money = money - amount

== function increaseApples()

~ apples = apples + 1

70 Variables, Lists, and Functions

== function increaseOranges()

~ oranges = oranges + 1

Example 19 uses three different functions. The first, decreaseMoney(), accepts a value
called amount. This is an example of a parameter. When creating a function, different
variables can be defined within its open and closing parentheses. These are known as its
parameters, and they affect how it performs calculations or processes.

When a function is called, the data that's passed to it is called its arguments. These
match its parameters. The values that are passed as arguments become the values of its
parameters. Example 19 uses one function, decreaseMoney(), that has a parameter
and receives a single argument, and two functions, increaseApples() and
increaseOranges(), that do not accept arguments.

The placement of the increaseApples() and increaseOranges() functions also
matches a common pattern in ink where functions for adjusting the values of variables
are found at the bottom of the code. Because both are global, which means they can be
accessed from anywhere in the project, functions can be defined anywhere in the project.

However, functions, like their sister concept knots, define themselves as being all the lines
between when they start and the next knot or function. Placing them at the bottom of
a file prevents issues where code might be confused or considered part of another knot or
function.

Functions are not the only concepts able to define parameters and accept arguments. In
ink, knots can also be called as if they were functions. This is because functions are special
types of knots that can return data. This also marks the difference between them. A knot
can accept data, but only a function can return data. However, using knots in this way
allows us to easily track values within a looping structure:

Example 20 (Example20.ink):

-> time_machine(RANDOM(20,80))

== time_machine(loop)

The large machine looms over everything in the room. With
flashing lights, odd wires running between parts, and a
presence all its own, it seems to be almost a living, pulsating
thing as the scientist runs between sections parts and adjusts
various parts.

"I'm so close!" he shouts as he turns a knob and then pulls
down a lever. "I just need more time to figure out how to
control the loops!"

Making new functions and calling knots 71

You regard him and the machine skeptically.

"If you could, just press that last button and everything
should be all set for the first demonstration of my time
machine! I'm so glad the newspaper sent you to cover this
event," he says, adjusting more settings on the grand machine
in front of you.

You pause to try to understand the blinking lights as he yells
again. "Press the button for me! I just need to make some last-
minute changes over here."

On the panel in front of you is a large, green button. You
consider it and the scientist rushing around across the room.

+ [Press button]

 ~ loop = loop + 1

 There is a flash of light and the readings on the

 machine show a message: "This is loop {loop}."

 -> time_machine(loop)

There is a single variable within Example 20 that's created as a parameter of the time_
machine knot. Before the loop starts, the RANDOM() function is used to select a value
within the range of 20 to 80. This value is passed to the knot in the first loop. Whenever
the player selects the Press button option, the loop value is increased by one and its
current value is passed to the time_machine knot. On any future loops, the loop
variable is increased by one, and it sends its current value into the next loop.

The code in Example 20 also shows how variables can be used without the VAR keyword.
Within the knot, the loop variable exists as a parameter. This means it exists as a variable,
but only within the time_machine knot. When used in this way, the loop variable will
not be global. As a part of the time_machine knot, the loop variable cannot be used
outside of its code.

Functions are a powerful concept in ink. However, they do have two major limitations
compared to working with knots. The first is that functions cannot use choices of any
kind. Functions cannot branch a story and must return to where they were called when
they are finished. The second limitation is that functions cannot divert to another section
of a story. Like the first limitation, a function should only perform a small task or change
a value.

72 Variables, Lists, and Functions

Calling knots as if they were functions can be very useful for many projects. However,
unlike functions, knots cannot return values. As shown in Example 20, it is possible
to use knots for some, but not all, of the same purposes as functions in ink. Authors
must consider whether a function or a knot is a better way to complete a task or present
information. If the goal is to process data and return a value, a function is best. If data is
to be passed, options must be presented, or the story may divert in some way, a knot is the
better way to organize your code and data.

Summary
In this chapter, we learned more about how variables work, and how they can be created
using the VAR keyword. With multiple types of data, variables must be created using static
values. They can then be changed through an operation called assignment using lines
starting with a tilde (~) for writing a single line of code.

In the second topic, for the cases where we needed multiple values, we saw that the LIST
keyword can be used. This keyword allows us to create values other variables can use, but
also comes with the limitations that only values created with LIST can be used with
a list. We also examined how all the values of a list are part of a Boolean set and have
either true or false values upon creation.

Next, in the third topic, we investigated how functions work in ink. With several built-in
functions, we can create random numbers or convert between types of numbers. With
LIST values, we compared the results of LIST_COUNT() and LIST_ALL() by
examining how to change the values of a list from true to false when they are created.

Finally, in the last topic, we wrote some functions with the function keyword to
perform simple tasks, such as adjusting the value of a variable. Because both variables
were created using the VAR keyword and functions are global, we saw that a common
pattern is to use a function to change the value of a variable. As part of this topic, we also
revisited knots and learned that functions are special types of knots. This allows both to
receive data using parameters, though only a function can return data.

As we will see in the coming chapters on combining ink and Unity, understanding how
values are stored and accessed in ink will be vital to creating a unified project. We must
understand how ink works with different values across both those created using the VAR
keyword and the LIST keyword before we can work with code in Unity. By understanding
the relationship between variables and functions, we can begin to write ink code and,
much later, run it alongside C# code in Unity.

Questions 73

In the next chapter, Chapter 5, Tunnels and Threads, we will look at the last two major
concepts in ink: tunnels and threads. Using many of the concepts introduced over the last
four chapters, we will use tunnels to create advanced structures in ink with very little code.
With threads, we will break up a digital story into even more parts and have ink combine
everything for us as a reader is diverted from one knot to another. This will create an
intricate narrative experience based on understanding and managing story flow between
sections of a story.

Questions
1.	 What is the operation called where a variable gets a value?
2.	 What is the operation called when a string is created by "adding" two other strings

or a string and a number together?
3.	 How is the tilde (~) used with variables and code in ink?
4.	 What kind of set are the values of a list?
5.	 What is the technical term for a variable that's created as part of a function or knot

and defined within its parentheses?

5
Tunnels and Threads
This chapter begins with the concept of a tunnel. Created using multiple diverts and at
least two knots (please refer to Chapter 2, Knots, Diverts, and Looping Patterns), tunnels
serve as a faster way in which to create complex structures than previously discussed in
the last chapters. Following this, we will move on to review threads, which is another way
of using diverts to connect multiple parts of an ink project dynamically. Finally, we will
look at combining tunnels and threads to make even more complex structures based on
the simple rules of how ink understands knots and diverts within a story.

In this chapter, we will cover the following main topics:

•	 Diverting to a divert

•	 Pulling on threads

•	 Combining tunnels and threads

In this chapter, we will explore the various ways of using tunnels and threads to make
more complex projects. We have already explored multiple levels of choices and their
outcomes to create a subdivided story. Instead of diverting to one knot or stitch after
another, we will learn how to integrate tunnels as a series of diverts before returning to
their original location. We will also look at how knots can be easily combined into one by
threading them together.

76 Tunnels and Threads

Technical requirements
The examples used in this chapter, in the *.ink files, can be found on GitHub at
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter5.

Diverting to a divert
In Chapter 2, Knots, Diverts, and Looping Patterns, the concept of a divert was introduced
alongside story sections called knots. Using diverts and knots, looping structures
were created and other ink concepts were also revealed as alternatives (please refer to
Chapter 3, Sequences, Cycles, and Shuffling Text). The use of functions and passing values
to knots were covered in Chapter 4, Variables, Lists, and Functions. This section builds on
those concepts by explaining how diverts can be used to create more advanced stories.

In Chapter 2, Knots, Diverts, and Looping Patterns, diverts appeared according to the
following pattern:

Example 1:

For the reader, <>

-> next_part

== next_part

this appears as one line.

-> DONE

Figure 5.1 – Inky's output for Example 1

A divert can also be used multiple times. In ink, this is known as the concept of a tunnel.
The flow will move to a knot and then back to its original position. From the reader's
perspective, the flow tunnels from one section to another. Tunnels are an incredibly useful
concept in ink where looping structures are common.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter5
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter5

Diverting to a divert 77

In this topic, we will review how to make and use tunnels. Instead of needing to specify
each location of a divert within a knot or a stitch, a tunnel allows an author to move
the flow of a story through a series of sections and then back again when the tunnel
finally ends.

Making tunnels
Tunnels are created in ink by using a divert, ->, the name of a knot or stitch, and then
another divert, ->. This signals to ink that the flow will move to the knot and then back
again. In the destination knot, two diverts are then used together: ->->. This creates the
tunneling effect of the flow moving to the knot and then moving back again:

Example 2:

For the reader, <>

-> next_part ->

<> as one line

== next_part

this appears

->->

Example 2 can appear confusing if you don't remember how the flow works in ink.
A divert moves the flow to a destination in the story. In Example 2, the flow starts with
the text of For the reader, <>. Then, this is diverted to the next_part knot.
The start of the tunnel begins with the code of -> next_part ->, continues into the
next_part knot, and then returns with the use of two diverts, ->->. For a reader who
only sees the output, it will appear as a complete sentence:

Figure 5.2 – Inky's output from Example 2

Reminder
Chapter 1, Text, Flow, Choices, and Weaves, introduced the concept
of glue and the use of the less-than and greater-than symbols together.
This concept glues one line to the end of the previous. In Example 2, glue is
used before the start of the tunnel and then after it ends to create the complete
sentence from the knot in the story.

78 Tunnels and Threads

Tunnels can connect any two points within a story. In Example 2, the tunnel started,
moved to a knot, and then returned. Another use of a tunnel might be to create a series of
story events for a player to view. You can do this by creating a tunnel from one knot to the
next until the end of the story:

Example 3:

You lift the body onto your back and then carry it over to the
edge of the hole before dropping it again. You watch it hit the
ground with a pleasant thump. It is dirty work, gravedigging
is (you laugh at your own joke as you brush some dirt off
your hands and onto your already dirty pants), but it pays the
bills.

-> past -> present -> future -> DONE

== past

You did not want to be a gravedigger at first. Who does? No,
you stumbled into it as many people do. You needed the money
and dead people were dead as far as you were concerned. Dig a
hole, put the body in, cover the hole. Easy work. Easy money.

->->

== present

You shake your head and then kick the body so that it plops
into the grave. Another sound you did not expect to like when
you started so many years ago, but you take little joys where
you can. Life is funny that way.

->->

== future

"There's no future in the dead," your wife had said. But she
is dead now, too. And what did she know? Other than dirt! (You
laugh at another of your jokes.)

You pick up the shovel.

One load of dirt after another.

It is a living. Or a dying! (You laugh again to yourself as you
continue.)

->->

Diverting to a divert 79

In Example 3, the three different knots (that is, past, present, and future) are all
part of one long tunnel. The first connects to the past knot, the past knot is then
connected to the present knot, the present knot is connected to the future knot,
and, finally, the future knot is connected to the DONE knot to end the flow and the story.
In each of these cases, the use of the two diverts, ->->, points back to where the tunnel
started before it continues to the next knot in the longer series. As with Example 2 and
its complete sentence, the resulting output from Example 3 is one single flow through the
sections to create a complete narrative experience for the reader.

Tunneling to tunnels
Example 3 pointed towards a great use of tunnels: they can connect to other tunnels!
It is possible to tunnel into a tunnel in ink. While linear patterns such as the one used
in Example 3 are common, advanced patterns reuse tunnels as part of larger, looping
structures. Because knots that use two diverts will always return to where they started, it
is possible to use knots to perform small calculations or to check values before continuing
the repeating pattern:

Example 4:

VAR playful = 0

VAR anger = 0

On your daily walk, you decide to sit for a few minutes on a
nearby bench. You close your eyes to take in the evening sun.

Suddenly, you hear a small sound and look down. A kitten is
circling your legs.

-> kitten

== kitten

-> check_kitten ->

+ [Scratch the kitten on its head]

 You pet the kitten on its head.

 -> scratch_head -> kitten

+ [Scratch the kitten on its side]

 You pet the kitten on its side.

 -> scratch_side -> kitten

== scratch_head

~ playful = playful + 1

->->

== scratch_side

80 Tunnels and Threads

~ anger = anger + 1

->->

== check_kitten

{anger >= 2: The kitten seems angry and walks away. -> DONE}

{playful >= 2: One moment, you were scratching the kitten and
the next your hand has some small cuts on it. You decide to
leave the kitten alone. -> DONE}

->->

Example 4 demonstrates a more complex pattern using knots, variables, and tunnels. For
each loop of the kitten knot, a tunnel is created for the check_kitten knot, which
then returns to kitten again. In the check_kitten knot, two checks are made. The
first check is to make sure the value of the anger variable is greater than or equal to 2.
If it is, the sentence is shown and then the story diverts to DONE. The second check is to
make sure the playful variable is greater than or equal to 2. If this second check is true,
a different sentence is shown, and the story diverts to DONE. Inside the weave created
by the two sticky choices, each option, either Scratch the kitten on its head or scratch
the kitten on its side, diverts to a tunnel to either of the two knots: scratch_head or
scratch_side. Inside each, the knots associated with the player's actions increase the
value of the variable.

Example 4 uses multiple tunnels to create a complex pattern. However, there is another
concept in ink that would make the same code easier to understand: threads. As we will
discuss in the next section, threads allow us to easily pull in knots without needing to
divert to them first.

Pulling on threads
Diverts were introduced as pointing to their destination. To create a tunnel, a hyphen
and a greater-than symbol were combined, ->, on either side of the name of the knot
or stitch. However, diverts can point inward as well. When a divert is created with
a less-than symbol and a hyphen, <-, it becomes a different concept called a thread.
Instead of moving the flow to the destination, ink threads the destination's text or code
into another location.

In this section, we will work with threads to collapse more complex weaves into simpler
structures. Instead of multiple levels of choices and their text outcomes, we will use
threads to achieve the same result in a more efficient way.

Pulling on threads 81

Making threads
Often, threads are considered to be an inverse of diverts. Instead of the flow moving to
the section of the story, the section of the story moves to the current position of the flow.
Returning to the code from Example 4, threads can be used in multiple places to achieve
the same result:

Example 5:

VAR playful = 0

VAR anger = 0

On your daily walk, you decide to sit for a few minutes on a
nearby bench. You close your eyes to take in the evening sun.

Suddenly, you hear a small sound and look down. A kitten is
circling your legs.

-> kitten

== kitten

<- check_kitten

+ [Scratch the kitten on its head]

 You pet the kitten on its head.

 <- scratch head

 -> kitten

+ [Scratch kitten on its side]

 You pet the kitten on its side.

 <- scratch_side

 -> kitten

== scratch_head

~ playful = playful + 1

== scratch_side

~ anger = anger + 1

== check_kitten

{anger >= 2: The kitten seems angry and walks away. -> DONE}

{playful >= 2: One moment, you were scratching the kitten and
the next your hand has some small cuts on it. You decide to
leave the kitten alone. -> DONE}

82 Tunnels and Threads

In Example 5, threads are used in place of the previous tunnels in Example 4. The
scratch_head and scratch_side knots are now threaded into the code of the
kitten knot. This is also true for check_kitten. Instead of creating multiple tunnels,
threads are often used to collapse an increasingly complex structure into sections that can
be threaded together.

Warning
Sometimes, the use of complex tunnel and thread structures can confuse
Inky. Always double-check all of the code when using these more advanced
concepts!

Using multiple threads
Each use of a thread must be on its own line. The reason why they cannot be combined
is that ink moves the section of the story up to the location of the current flow. A second
thread cannot have its content moved to the previous location. It no longer exists!
However, threads, like diverts, can also be elements within a set or alternative. Just as
a different form of a divert can be pointing inward, threads can be used with a shuffle on
a single line:

Example 6:

"Hey! Jesse!" you shout, trying to get her attention. Hearing
your voice, she turns, and you hurry to catch up with her as
you jog from the building after your class.

{~ <- question_one|<- question_two}

== question_one

<> "How was your class"? you ask.

== question_two

<> "Are you going to the party tonight?" you ask.

In Example 6, threads are used as elements of a shuffle. Each time the story is run, one
of the two threads will be chosen and threaded into the story, creating a new experience.
Combining threads with alternatives in this way is useful when creating alternative
content for a story that is accessed as part of the thread itself.

Pulling on threads 83

A common pattern found in many role-playing video games uses various player statistics
to determine what content is available based on testing the value of a variable. If it is
within a certain range, content can then be threaded into the current weave. This will add
additional context for the result of an action for the reader:

Example 7:

VAR strength = 16

VAR intelligence = 16

-> save_or_doom

== save_or_doom

The villain holds the ancient artifact and is moments away
from enslaving the world with its limitless power as part of a
complex ritual.

* {strength > 15} [Use strength]

 <- use_strength

* {intelligence > 15} [Use intelligence]

 <- use_intelligence

- -> DONE

= use_strength

You throw your hand axe as hard as you can. It strikes the
artifact, shattering it into multiple pieces and ending the
ritual.

= use_intelligence

You quickly calculate the size of the artifact based on its
materials and cast the spell to banish it to another dimension.
In a blink of an eye, the ritual ends!

Each of the stitches in Example 7 holds additional text. Because the stitches are a part of
the overall save_or_doom knot, they can be used as part of a thread. Subsections of
a story are still sections.

84 Tunnels and Threads

Example 7 also uses conditional options, as covered in Chapter 2, Knots, Diverts, and
Looping Patterns, and variables, as discussed in Chapter 4, Variables, Lists, and Functions.
By testing for the range of values of the strength and intelligence variables, the
Use strength or Use intelligence options are shown to the reader. In Example 7, because
both variables have values greater than 15, both options are shown:

Figure 5.3 – Inky's output from Example 7

A single thread can be created using the inverse action of diverting. Instead of moving to
a location, the section moves to the current moment in the flow. Additionally, multiple
threads can be combined to create a continuous narrative experience for the reader as they
are pulled together. When working with threads, there is one more important aspect: the
DONE keyword. In the last section of this topic, we will examine how threads can be closed
and what this means when you are using threads inside each other.

Ending threads
The DONE and END keywords were introduced in Chapter 2, Knots, Diverts, and Looping
Patterns. The differences between the two keywords were explained in their usage. The
END keyword stops the story, and the DONE keyword stops the current flow. When using
threads, the flow of a story is also affected. In other words, the DONE keyword closes the
current flow. In many cases, this will be the story itself. When using threads, the keyword
closes the thread itself.

When creating knots in Inky, often, authors will get a warning suggesting the DONE
keyword is needed within a knot that does not contain the keyword. When working with
threads, this warning clues the author into this important aspect of threads and the DONE
keyword:

Example 8:

<- thread_1

<- thread_2

== thread_1

* This is a choice

-> DONE

Pulling on threads 85

== thread_2

* This is another choice

-> DONE

Example 8 uses two instances of the DONE keyword. This might seem strange, but each use
of the keyword closes its own thread. When run within Inky, the two choices, each within
a separate thread, will be combined:

Figure 5.4 – The combined thread output for Example 8

In Example 8, the separate uses of the DONE keyword do not interact with each other. Each
thread is contained within itself. This becomes evident when trying to move the inclusion
of the second thread inside the first after the DONE keyword:

Example 9:

<- thread_1

== thread_1

* This is a choice

-> DONE

<- thread_2

== thread_2

* This is another choice

-> DONE

In Example 9, the second thread comes after the use of the DONE keyword. Unlike
Example 8, where both choices will be combined into a single weave, the story will end
before the second thread occurs:

Figure 5.5 – Thread closing in Example 9

Example 9 demonstrates the interaction between the DONE keyword and the threads. The
DONE keyword closes the current flow. In Example 9, the second thread inside the first is
never reached because it is closed using the DONE keyword.

86 Tunnels and Threads

Threads and tunnels are not separate concepts, but two different ways in which to achieve
similar results based on the needs of the author. In the next topic, we will look at various
ways of combining both concepts to create even more complex stories. We will use tunnels
to move to a location in a story and examine how threads can be repeated instead of
writing more code.

Combining tunnels and threads
Tunnels allow the flow of a story to move to a knot or a stitch and then return. Threads act
as the inverse, moving the content from the knot or the stitch to the current flow position.
Together, they form a powerful way in which to craft a story composed of different parts.
Often, in advanced projects, these two concepts are paired together with weaves and
gathering points to expand or contract the number of possible branches.

Tunnels can be reused, and threads can be repeated. In this topic, we will explore
how threads and tunnels can be combined to create more complex stories using less
overall code.

Reusing tunnels and repeating threads
Example 4 used multiple tunnels, and Example 5 showed the same result using multiple
threads. It is also possible to combine multiple tunnels and threads by breaking up content
into stitches as part of multiple knots for each part of a story. For example, many role-
playing video games start by presenting dialogue from a character. Then, they provide the
player with the illusion of control by letting them choose between various options before,
finally, looping back to the same options until the player makes a certain selection
to continue:

Example 10:

VAR has_rake = false

-> tutorial

== tutorial

= awake

You feel a hand on your shoulder and wake up to a young woman
frowning down at you.

Jane: "I see you are finally awake! I wish you would stop
sleeping under this tree instead of working."

Combining tunnels and threads 87

Jane: "Uncle John is going to catch you one of these days and
then you will be in trouble."

Jane: "Do you remember what you need to do today?"

* [What was it again?]

 <- tasks

* [I remember.]

 <- remember

- -> rake ->

-> old_shrine

= tasks

Jane: "In case you forgot, you need to clean up all the leaves
around the old shrine."

Jane: "And don't forget to take your rake!"

= remember

Jane: "Good! Get out to that old shrine and finish your
cleaning!"

= rake

+ [Pick up rake]

 ~ has_rake = true

+ [Skip the rake]

 ~ has_rake = false

- ->->

== old_shrine

{has_rake == false: You realize you do not have your rake.}

+ {has_rake == false} [Retrieve rake]

 -> tutorial.rake ->

 {has_rake == false: -> old_shrine}

- You begin to rake the leaves around the old shrine.

-> DONE

Example 10 reuses a tunnel. The first instance occurs when the reader selects between
the What was it again? and I remember. options. When the reader encounters the
old_shrine knot and does not have the rake (that is, if has_rake is equal to false),
they are prompted with the Retrieve rake option and the second possible instance of
the tunnel.

88 Tunnels and Threads

Threads are used in Example 10 to break up the text of the responses from the character.
This creates a simplified weave with the text split into its stitches. For authors, this pattern
allows them to change or add to the response text without needing to worry about the
code portion of the weave.

Finally, gathering points (as discussed in Chapter 1, Text, Flow, Choices, and Weaves)
are used three times. The first one collapses the possible branches of the first weave and
creates the first instance of a tunnel. The second occurs as part of the rake stitch. This
gathering point is the end of both instances of tunnels and collapses the result of either
option: Pick up rake or Skip the rake. The last gathering point occurs at the very end
of the story. Once the player has their rake (that is, has_rake is equal to true), the
Retrieve rake option no longer appears, and the story ends with the character raking the
leaves at the old shrine.

Dialogue tags are used multiple times in Example 10. When writing dialogue coming
from a particular character, a tag can be used to specify who is saying the words. Often,
these tags will appear with the character's name and their action after the dialogue, such
as "This is an example," Dan wrote. However, in Example 8, the name of
the character appears before the dialogue to signal who is saying the words. Chapter 10,
Dialogue Systems with ink, will revisit the use of tags and examine some approaches for
writing and tagging dialogue appearing in a video game.

Threads with tunnels
Threads move a section of a story to the current flow position when moving through the
in-memory version of the code. Internally, this does not change their actual location in the
larger story code but their connection to the current version of the flow as the story is run.
This means it is possible to include a tunnel inside a thread. In these scenarios, the flow
would thread the knot or stitch and then move to another section and back again:

Example 11:

<- knot_example.stitch_one

<- knot_example.stitch_two

== knot_example

= stitch_one

-> tunnel ->

= stitch_two

-> tunnel ->

== tunnel

Combining tunnels and threads 89

This is a tunnel inside a thread!

->->

Example 11 demonstrates the basic pattern of using tunnels inside threads. This is safe
to do in ink because of the way the flow threads through the knots or stitches. A more
complicated usage might be part of a dialogue system for a video game, where data is
passed to knots to perform different small calculations as part of the reaction to a player
following certain branches of a conversation:

Example 12:

VAR reputation = 10

-> villager_1

== villager_1

Villager: Heroes! You have returned from fighting the monsters
in the forest! Did you find any sign of my husband? He has been
missing for several days.

+ \(Lie\) We have not found him yet.

 <- adjust_reputation(-10)

+ We found what was left of him. I'm sorry to report he is

 dead.

 <- adjust_reputation(10)

+ I used his leg to fight off some spiders! Oh. Right...

 he's, you know, dead.

 <- adjust_reputation(-15)

- -> DONE

== adjust_reputation(amount)

~ reputation = reputation + amount

-> report_reputation ->

== report_reputation

Current reputation: {reputation}

Example 12 is a more practical example of the pattern introduced in Example 1.
It uses a thread to pass data to a knot as if it was a function. Additionally, Example 12
uses a tunnel inside the adjust_reputation knot as a connection to the report_
reputation knot. For each choice, the value of the reputation variable will be
changed after a reader makes the selection. The new value of reputation will be shown
as a result.

90 Tunnels and Threads

Note
Example 12 uses a backslash, \, with opening, (, and closing,), parentheses.
These escape the use of the parentheses instead of creating an optional label.

Summary
In this chapter, we learned even more about how diverts work with knots and stitches
in ink. We explored how the concept of a tunnel connects two different sections in ink.
When a story runs, the flow moves to the knot or the stitch and then returns with the
use of two diverts, ->->. We also reviewed how tunnels can be used as part of a more
complicated flow pattern of a longer series of connections between two sections. Next, we
saw how threads, another concept in ink, act as the inverse of a divert, where a section is
moved to the current flow location instead of the flow moving to its content. Finally, we
examined some patterns of using tunnels inside threads to pass data to a knot and show
the changed values of a variable.

Threads and tunnels, while more advanced concepts, create simpler overall code. Threads
allow developers to separate code into different sections and then thread them back
together again. Tunnels allow developers to achieve the same general result as threads but
in a different way. Instead of pulling content together, a tunnel moves to a knot or a stitch
and then back again, tunneling through a story to a location and then back again. Threads
and tunnels have their specific usages, but both allow a developer to create more complex
projects by using their different sections more efficiently.

In the next chapter, we move on to use the ink-Unity Integration plugin. While Inky has
been used to show the ink code output, the ink-Unity Integration plugin will allow us to
have far more control over how an ink story runs. In the coming chapters, we will also
learn how to use C# and the ink API to make selections, change the value of variables, and
even access functions in ink code.

Questions
1.	 To return from a tunnel in a knot or a stitch, which ink concept must be used twice?
2.	 How do tunnels work in ink?
3.	 How are threads different from diverts and tunnels?
4.	 Can multiple threads be used on the same line?

Section 2:
ink Unity API

By the time you've completed this section, you will be able to make choices and access
internal values in an ink story using the ink-Unity Integration plugin in Unity. This
section contains the following chapters:

•	 Chapter 6, Adding and Working with the ink-Unity Integration Plugin

•	 Chapter 7, Unity API – Making Choices and Story Progression

•	 Chapter 8, Story API – Accessing ink Variables and Functions

•	 Chapter 9, Story API – Observing and Reacting to Story Events

6
Adding and Working

with the ink-Unity
Integration Plugin

This chapter begins with discussing how to add the ink-Unity Integration plugin to
existing projects in Unity. We will then discuss working with ink files, .ink, and their
compiled forms, .json, within a Unity project and its Project window. Then, we will
review how to associate Inky with ink source files and use it to edit files directly from
Unity. Finally, we will conclude by examining how to adjust the plugin's settings for
a project.

In this chapter, we are going to cover the following main topics:

•	 Adding the ink-Unity Integration plugin

•	 Working with ink files

•	 Adjusting plugin settings

94 Adding and Working with the ink-Unity Integration Plugin

In this chapter, we will find, import, and work with the ink-Unity Integration plugin. This
will allow us to work with ink files and adjust the plugin settings. We cannot work with
ink files without the plugin, and the steps outlined in this chapter will help developers
set up the package for later chapters focused on working with ink files and the Story API
available after installing the plugin.

Note on Unity versions
This chapter has been tested with Unity 2020.3 (LTS) and Unity 2021.1
(current). This chapter also covers version 1.0.2 of the ink-Unity Integration
plugin. Inkle reports that version 1.0.2 of the ink-Unity Integration plugin is
compatible with 2018.4 and later versions of Unity, but only 2020.3 (LTS) and
2021.1 (current) are recommended.

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub:
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter6.

Adding the ink-Unity Integration plugin
We cannot work with Ink files in Unity without a special package called the ink-Unity
Integration plugin. Like other packages for Unity, it can only be added to an existing
project and must be re-imported for any new project wanting to use its code and available
API. In this topic, we will work through the steps required to find, import, and verify the
plugin is ready for use in a project. Each section in this topic should be used with the same
project as the first section, Finding and importing the plugin, beginning with instructions
to create a new Unity project based on the 2D template.

Note
The official name of the package is ink-Unity Integration. However, Inkle, the
creators of ink, call this package a plugin in its own documentation. This book
follows the same naming convention to avoid confusion.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter6
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter6

Adding the ink-Unity Integration plugin 95

Finding and importing the plugin
The process for finding and importing the ink-Unity Integration plugin requires the
following steps:

1.	 Create a new Unity project using the built-in 2D template.

Warning
Inkle does not recommend using the Unity Asset Store version of the ink-
Unity Integration plugin because of the delays between updates. This book will
use the installation method recommended by the developers of the plugin to
get the most up-to-date version.

2.	 Navigate to the OpenUPM page for the ink-Unity Integration plugin:
https://openupm.com/packages/com.inklestudios.ink-unity-
integration/.

3.	 Click on the Get installer.unitypackage link on the right-hand side:

Figure 6.1 – OpenUPM page for the ink-Unity Integration plugin

4.	 Clicking on the Get installer.unitypackage link will prompt a file download. Once
the download finishes, find the local file and run the installer.

https://openupm.com/packages/com.inklestudios.ink-unity-integration/
https://openupm.com/packages/com.inklestudios.ink-unity-integration/

96 Adding and Working with the ink-Unity Integration Plugin

5.	 Open the downloaded installer file while Unity is open. This will open the Import
Unity Package window in Unity and load the contents of the installer file.

Figure 6.2 – Import Unity Package window showing ink-Unity Integration

6.	 In the Import Unity Package window, click on All and then Import. This will
guarantee all files are selected and imported. Once the importing is done, Unity will
give a message that a new scoped registry has been added to the project.

Figure 6.3 – Importing a scoped registry window in Unity

Adding the ink-Unity Integration plugin 97

7.	 Click the Close button to close the Importing a scoped registry window. Unity also
opened the Project Settings window. This can be closed as well.

As one final step, we will test that the package is installed and ready for use. In the next
section, we will work with the Package Manager window.

Verifying the package is installed
Depending on the version of Unity, other packages in use, or developer settings, it can
sometimes be unclear whether the ink-Unity Integration package has been installed and is
ready for use.

To verify the plugin is enabled and ready, follow these steps:

1.	 Open the Package Manager window by clicking on Window from the File menu
and then click on Package Manager:

Figure 6.4 – Window menu with Package Manager selected in Unity

98 Adding and Working with the ink-Unity Integration Plugin

2.	 In the Package Manager window, click on the Packages drop-down menu and
make sure In Project is selected:

Figure 6.5 – Package Manager with the In Project option selected

3.	 The ink-Unity Integration plugin is ready for usage if it is included in a listing of
packages currently in use with the project and has a green checkmark next to its
name indicating it is installed in the current project.

Figure 6.6 – Package manager showing the ink Unity Integration package installed

4.	 After verifying that the ink Unity Integration package is installed, the Package
Manager window can be closed.

In the next section, we will move on to working with ink files. After installing the
ink-Unity Integration Plugin, we will learn how to create ink files, edit them, and use the
auto-compilation process built into the plugin.

Working with ink files
Unity is only aware of files inside of the folders it watches. To work with other files, they
must be added as new assets to an existing project. With the ink-Unity Integration plugin
installed, Unity will watch all new files with the .ink file type and will automatically
compile them for usage in Unity projects based on its Project Settings. However, the first
step is to add these Ink source files to an existing Unity project using the plugin.

Working with ink files 99

Adding ink source files
Files created with Inky are saved with the .ink file type. These are source files for projects.
They are the code form of Ink stories. To work with ink in Unity, the first step is to create
a new .ink file.

To create a new ink source file in Unity, open an existing project and make sure the
Project window is open. (If not open, it can be re-opened using the Window menu by
clicking on General and then Project.)

There are often multiple ways of doing the same thing in Unity. This applies to creating
new files in the Project window as well. One way to create new ink files is use the Project
window's toolbar and the Create menu and then the Ink option. They can also be created
by right-clicking in the Project window and going to the Create menu and then down
to Ink:

Figure 6.7 – Create menu in the Project window

100 Adding and Working with the ink-Unity Integration Plugin

The created Ink source file can either be renamed or the default name of New Ink
can be accepted by clicking outside of its filename area. Moments after being created,
the ink-Unity Integration plugin will generate a new file matching the name of the
created one.

Figure 6.8 – ink-Unity Integration plugin generated file in Unity Project view

Auto-compilation setting
If Unity does not automatically generate a .json file based on the ink source
file, the auto-compilation setting may be turned off. Consult the Updating
automatic re-compilation section of the Adjusting plugin settings topic later in
this chapter for how to change this setting.

Clicking on the generated file will reveal it is a .json file. When ink runs a story, it
runs what it calls a compiled project. In ink, these are created by using the ink-Unity
Integration plugin or other tools to change the source .ink file into a compiled
.json file.

With the ink-Unity Integration plugin installed, a new .json file will automatically be
created for every existing .ink file. The plugin will also track changes and re-compile the
project every time it detects new changes.

Editing source files with Inky
ink source files are best edited using Inky. However, new ink source files are often added
to a Unity project using its Create menu or moving a file into its folders. This can often
make the file harder to find for editing in Inky. To fix this issue, new .ink files can be
associated with Inky for editing when open within Unity.

Depending on the operating system, the instructions are different. The next two sections
contain the steps for Windows (10 and later) and macOS (11.1 and later).

Working with ink files 101

Windows: Associating Inky with ink source files
To start to associate Inky with all .ink files in Windows 10 and later, follow these steps:

1.	 Click on a created file in the Project window of Unity. This will open it in the
Inspector view:

Figure 6.9 – Inspector view of an ink source file

2.	 Click on Open to open the file. This will prompt you for what program should be
used to open this and future .ink files.

Figure 6.10 – File association prompt in Windows 10

102 Adding and Working with the ink-Unity Integration Plugin

3.	 Click on More apps and scroll to the bottom of the listing:

Figure 6.11 – Program listings in Windows 10

4.	 Click on Look for another app on this PC. This will open a prompt for the
application to use. Navigate to where the Inky.exe file is found and select it:

Figure 6.12 – Application chooser in Windows 10

Working with ink files 103

5.	 Click Open to associate Inky with .ink files. After a few moments, Windows will
then open the .ink file found in the Project window of Unity in Inky.

Moving forward, assuming the Inky.exe file is not deleted, Unity will redirect all file
opening actions for .ink files to Inky.

macOS: Associating Inky with ink source files
To start to associate Inky with all .ink files in macOS (11.1 and later), follow these steps:

1.	 Right-click on a created file in the Project window of Unity. Click on Reveal
in Finder:

Figure 6.13 – File context menu for Unity in macOS

104 Adding and Working with the ink-Unity Integration Plugin

2.	 After Finder opens, right-click on the file and navigate to Open With:

Figure 6.14 – Open With file context menu in macOS

3.	 If Inky.app does not appear, click on Other…:

Figure 6.15 – Application chooser in macOS

4.	 Search for Inky in the Applications folder and select Inky.app from the listing.
Click on Open.

Working with ink files 105

Moving forward, assuming the Inky.app file is not deleted, Unity will redirect all file
opening actions for .ink files to Inky.

Updating ink source files
Once Inky has been associated with ink source files, editing the files becomes much easier.
Double-clicking on the files in the Project window will open them in Inky. Because the
Ink-Unity Integration plugin will automatically re-compile all changed Ink source files
into .json files, this means both the source and compiled files will always be up to date.

1.	 To see this process in action, double-click on the created ink file from the Adding
Ink source files section to open it in Inky.

2.	 Change its contents to the following Example 1:

Hello! This is an Ink source file!

3.	 Save the file in Inky by clicking on File and then Save Project. Return to Unity.

After detecting the file change, the ink-Unity Integration plugin will have
re-compiled and generated a new .json file. The Console window will also show
when this process started and was completed.

Figure 6.16 – Console window showing ink compilation messages

With Inky associated with .ink files and the ink-Unity Integration plugin installed in
a Unity project, new Ink source files can be added to a Unity project and then edited with
Inky. Every time they are saved, the ink-Unity Integration plugin will re-compile them
based on its Project Settings. Updating ink source files becomes as easy as adding them to
a Unity project and then editing them in Inky.

With the ink-Unity Integration plugin ready, we move ahead in the next section to
examining its settings and how to update the auto-compilation functionality.

106 Adding and Working with the ink-Unity Integration Plugin

Adjusting plugin settings
The ink-Unity Integration plugin comes with multiple settings that can be changed
depending on the needs of the Unity project. This topic will review how to find the
Project Settings window and update a common option – automatic re-compilation.

Finding ink-Unity Integration settings
The Ink-Unity Integration plugin comes with default settings. These can be changed by
editing them as part of Project Settings:

1.	 Click on Edit and then Project Settings:

Figure 6.17 – Edit menu with Project Settings… selected

Adjusting plugin settings 107

2.	 Click on Ink from the sidebar options to see the related settings for the project.

Figure 6.18 – Ink Project Settings in Unity

In the next section, we will use the Project Settings window to update a common setting,
the automatic re-compilation of ink source files.

108 Adding and Working with the ink-Unity Integration Plugin

Updating automatic re-compilation
If a project has a large ink source file or many different smaller files each using the
INCLUDE keyword in ink, the compilation process might take more than a few seconds
each time files are changed. In these contexts, turning off the re-compilation of ink source
files might prevent the ink-Unity Integration plugin from wasting time re-compiling the
ink source files.

1.	 In the Project Settings window, click on Ink:

Figure 6.19 – Ink Project Settings in Unity

2.	 Click on the checkbox next to Compile All Ink Automatically to disable the
automatic compilation process. (This can be re-enabled by clicking on the checkbox
again later.)

In this topic, we examined the Ink Project Settings window and updated the auto-
compilation option. Depending on the size of the ink source and other factors, the
compilation process can sometimes take too long between changes. Updating the
automatic compilation of ink sources files can often be a very useful setting to be aware of
and update, depending on the project.

Summary 109

Summary
In this chapter, we learned how to find the ink-Unity Integration plugin online as part of
the first topic. We reviewed how to import the package and then verify it was installed.
This is an important step for all projects using the plugin, as it must be re-imported for
any new project.

In the second topic, Working with ink files, we looked at how to create new ink files in
Unity. We examined how to associate Inky with ink source files in both Windows 10 and
macOS. We then learned how to edit ink files and how the ink-Unity Integration plugin
will detect any changes and recreate the compiled JSON file if the option is enabled in the
Project Settings.

Finally, in the Adjusting plugin settings topic, we looked at the settings when using the
ink-Unity Integration plugin. We first reviewed how to find the Project Settings for the
plugin by selecting Ink from the available options. Next, we examined how to adjust the
automatic re-compilation of ink files.

In the next chapter, we'll move ahead to use the Ink API to work with a running story.
The ink-Unity Integration plugin helps to generate the JSON files based on the ink source
files. We will use the JSON files in the next chapter, and we will learn how to load parts of
a story as part of a larger Unity project.

Questions
1.	 Does Inkle recommend using the Unity Asset Store?
2.	 What is at least one way to create an ink file using the ink-Unity Integration plugin

in Unity?
3.	 What program is a good choice for editing ink files?
4.	 Can the auto-compilation process of the ink-Unity Integration plugin be changed?

7
Unity API – Making
Choices and Story

Progression
This chapter begins with reviewing how to add a script component to a game object in
Unity. By creating a script component associated with a C# file, code can be written to
load the compiled JSON files created by the ink-Unity Integration plugin from ink source
files as part of the Unity scene. Next, we will examine how to load an ink story and start
to progress through it. We will see how to programmatically make selections of options
presented by ink and then how to continue story progression as a result. We will end
with an example of a common approach of presenting multiple user interface elements to
a player in Unity. A user will be able to click buttons in Unity and guide story progression
in a running ink story.

In this chapter, we will cover the following main topics:

•	 Loading a compiled ink story

•	 Selecting options programmatically

•	 Creating a dynamic user interface

112 Unity API – Making Choices and Story Progression

Technical requirements
The examples used in this chapter, in *.ink files, can be found online on GitHub:
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter7.

Loading a compiled ink story
In Chapter 6, Adding and Working with the ink-Unity Integration Plugin, we saw how to add
new ink files to a Unity project. After importing the plugin, new files can be created using
the Create menu from the Project window. When an ink source was added, the plugin
automatically created a compiled JSON file. As we now move into working with the ink API
provided by the plugin, we will use the created JSON files for working with a story.

The first step for working with code in Unity is to create a GameObject. This is a basic
container in Unity. Each GameObject holds at least one component. The different
systems in Unity, such as the rendering system (for drawing things on a screen), physics
(for detecting whether two things overlap on a screen), and input (for detecting whether
a user presses a button) all communicate with these components. When Unity runs a
project, it sends data to components matching the system associated with it. For example,
to work with data from the input system, an input component is needed.

To work with code in Unity, a script component is needed. All code added to a Unity
project works through being a part of different systems. A script component allows
a developer to write code for working with a game object and the different components
it contains. Unlike most other components that primarily receive data from different
systems, a script component can script other objects and values. Through code, it can
instruct other components to change their values when different events, such as a user
clicking on a button, happen.

Creating a script component
Any game object can have a script component. However, for better organization, it is
often useful to create a new GameObject for each type of data, behavior, or task related
to a project. This separates each new action or possible event with a GameObject and
makes working on the different parts of a larger project much easier:

1.	 Open a new or existing Unity project.
2.	 If not already added, be sure to install the ink-Unity Integration plugin.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter7
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter7

Loading a compiled ink story 113

There are always multiple ways to do things in Unity, and this is also true of creating
a new game object. One of the easiest ways to create a new game object is by using
the GameObject menu.

3.	 Click on GameObject and then click on Create Empty.

Figure 7.1 – GameObject menu

4.	 A new GameObject will be created and added to the Hierarchy view. Clicking on
the created GameObject will show its current components in the Inspector view.

Figure 7.2 – Inspector view in Unity
Each GameObject is merely a container. Its components do all the work involved
with running the project. Even the name of the GameObject is a value contained
as part of its components.

114 Unity API – Making Choices and Story Progression

5.	 To change the name of the created GameObject, click on it in the Hierarchy view
to show its components in the Inspector view. Click on text entry and change the
name from GameObject (the default value) to Ink Story.

Figure 7.3 – Ink Story name change in Unity
The newly named Ink Story will be a container for other components related to
running an ink story. Changing the name of the game object to Ink Story makes
it easier to find it among potentially many other objects in the project and explains
its role in the project as well.

6.	 With the components of Ink Story shown in the Inspector view, click on
Add Component.

Figure 7.4 – Component listing in the Add Component menu

Loading a compiled ink story 115

7.	 In the listing, click on New script.

Figure 7.5 – New script component creation

8.	 Name this new script file inkLoader.cs.

Note
Clicking on the script component name does not always allow access to
rename the file in Unity. Pressing the down arrow twice on the keyboard will
move the selection from the search to the title of the file.

Figure 7.6 – Script renamed InkLoader

116 Unity API – Making Choices and Story Progression

9.	 After renaming the file, click the Create and Add button. A new C# file will be
added to the Project window.

Figure 7.7 – Assets in Unity with the new InkLoader.cs file

10.	 Double-click on this file to open it in Visual Studio for editing.

This first section has included a step-by-step process of preparing a Unity project for
working with the ink Story API. We have seen how to create a GameObject and add
a script component. In the next section, we will build on this project to begin to work
with the Story API added to Unity as part of the ink-Unity Integration plugin.

Adding the ink Story API
Installing the ink-Unity Integration plugin adds an additional namespace for use with
C# code in Unity. A namespace is a collection of classes and methods collected under
a common name and set of actions. The namespace added by the ink-Unity Integration
plugin is called Ink. It contains, in turn, three other namespaces named Parsed,
Runtime, and UnityIntegration, each of which contains classes related to their
names. To work with compiled ink JSON files, the Ink.Runtime namespace is needed.
This tells Unity that it should start with the ink namespace and then find the namespace
within it named Runtime:

1.	 In the file opened in the Creating a script component section, add a new using line
after those already there in the created file:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using Ink.Runtime;

The using keyword tells Unity to include the Ink.Runtime namespace and allow
its classes to be used as part of this file.

Loading a compiled ink story 117

2.	 Next, create a public field called inkJSONAsset and change the Start()
method to the following:

public class InkLoader: MonoBehaviour

{

 public TextAsset InkJSONAsset;

 // Start is called before the first frame update

 void Start()

 {

 Story exampleStory = new Story

 (InkJSONAsset.text);

 }

}

The use of the InkJSONAsset field with the public keyword will allow this
value to be changed inside the Unity editor. The addition of the Story class creates
a new ink story as part of the Runtime namespace. This is known as the Story API
because multiple methods will be used as part of the Story class.

3.	 Save the InkLoader.cs file in Visual Studio and return to Unity.
4.	 After a moment, Unity will refresh and reload the changed C# file.
5.	 The final step is to associate an ink JSON file with the created C# file. In the

Hierarchy view, click on the InkStory game object. In the Inspector view,
there will be a new property under the script component, as shown in the
following screenshot:

Figure 7.8 – New Ink JSON Asset property in the Inspector view

The property shows the value None (Text Asset). This means no files are associated
with this property. To change this, a compiled JSON file needs to be added.

118 Unity API – Making Choices and Story Progression

Note
An ink JSON file will be needed for the next steps. If one is not created, add
a new one by creating an ink file and letting the Automatic compile option
create one, or click on an existing ink source file and then click on Compile in
the Inspector view to create a new JSON file.

6.	 Click on the TextAsset selection circle next to the value to open a Select TextAsset
window.

Figure 7.9 – Select TextAsset window

7.	 Select an ink-compiled JSON file.

Figure 7.10 – Updated Ink JSON Asset property

Loading a compiled ink story 119

After the value of the Ink JSON Asset property updates, close the Select TextAsset
window.

8.	 Click on the Play button in the middle of the Unity editor.

Figure 7.11 – Play button in Unity

Unity will run the current scene, and nothing will appear to happen. If no errors appear
in the Console window, everything has run correctly. Internally, Unity has loaded the
compiled ink JSON file and is ready to run the ink story.

Stop the running scene by clicking on the Play button a second time.

Running an ink JSON file
ink stories are run using the Story class and methods. Loading an ink JSON file is only
the first step. The Story class must be told to load one or more lines of the story at a time.

When Inky was used to run the ink source file previously, it displayed one line at a time
with an empty line between them:

Example 1:

This is the start.

And then this happens.

When run in Inky, Example 1 creates the following output:

Figure 7.12 – Example 1 output

120 Unity API – Making Choices and Story Progression

In Inky, the extra lines it created are a result of its own use of the Story API. To replicate
this output, we will need to add a new method: Continue():

1.	 In the same file used as part of the Adding the ink Story API section, open the file in
Inky for editing.

2.	 Change the content of the new ink source file to Example 1 and then save the file in
Inky. Do not close Inky after saving the file. Now return to Unity.

3.	 Upon detecting the change in the ink source file, the ink-Unity Integration plugin
will automatically re-compile the ink JSON file. Because it was associated with the
Ink JSON Asset property as part of the Adding the ink Story API section, the ink
JSON file will also always be loaded correctly.

4.	 If the InkLoader.cs file is not already open in Visual Studio, double-click on it in
the Project window.

5.	 Add the following line to the Start() method:

void Start()

{

Story exampleStory = new Story(InkJSONAsset.text);

 Debug.Log(exampleStory.Continue());

}

6.	 Save the changed inkLoader.cs file and return to Unity.
7.	 Click on the Play button to run the current scene.

This time, the Console window will show a message.

Figure 7.13 – Console window in Unity

The Debug.Log() method used what was returned by the Continue() method as part
of the Story class to display a message in the Console window.

Each time the Continue() method is called, it loads the next line in an ink story and
returns a string representing it. However, the method has an issue: it cannot detect the end
of a story. For that, a different property is required.

Stop the running scene by clicking on the Play button again.

Loading a compiled ink story 121

Checking whether a story can continue
The Continue() method loads the next line of a story if it is available. In the code from
Example 1, there are two lines.

1.	 Return to Visual Studio and edit the InkLoader.cs file. Change the Story()
method to the following:

void Start()

{

Story exampleStory = new Story(InkJSONAsset.text);

Debug.Log(exampleStory.Continue());

Debug.Log(exampleStory.Continue());

}

2.	 Save the InkLoader.cs file after adding the new line of code. Return to Unity
and click on the Play button to play the current scene and updated file.

3.	 The Console window will show two messages.

Figure 7.14 – Example 1 content loaded via the Continue() method
Both lines from Example 1 are now shown in the Console window. Each one
was loaded by the Continue() method and then passed to the Debug.Log()
method.

4.	 Click on the Play button again in Unity to stop the current scene.
5.	 Return to Visual Studio and edit the InkLoader.cs file. Add the following code

to the Start() method:

void Start()

{

Story exampleStory = new Story(InkJSONAsset.text);

Debug.Log(exampleStory.Continue());

Debug.Log(exampleStory.Continue());

122 Unity API – Making Choices and Story Progression

Debug.Log(exampleStory.Continue());

}

6.	 Save the updated InkLoader.cs file.
7.	 Return to Unity and play the scene.

With the third use of the Continue() method, an error will happen and be
displayed in the Console window.

Figure 7.15 – Continue() error in the Unity console

8.	 Click on the Play button in Unity to stop the scene from running.

The error happened because the Continue() method does not check whether
there is another line to load. When there is no more content, it throws an error.

To fix this issue, a property mentioned in the error is needed. The Story class
provides the canContinue property for checking whether there is more
story content to load. It contains a Boolean value. If there is more content,
canContinue will be true. Otherwise, it will be false.

9.	 Return to Visual Studio and edit the InkLoader.cs file. Update the Start()
method in the InkLoader.cs file to the following:

void Start()

{

Story exampleStory = new Story(InkJSONAsset.text);

while(exampleStory.canContinue)

 {

 Debug.Log(exampleStory.Continue());

 }

}

Selecting options programmatically 123

10.	 Save the edited InkLoader.cs file in Visual Studio.
11.	 Return to Unity and play the scene again.

With the use of a while loop, the story will be loaded line by line until there is no
content left. Once this happens, the canContinue property is changed to false
and the loop ends.

Figure 7.16 – Console window using an updated while loop

The combination of the canContinue property with the Continue() method is
a common pattern when using the Story API. More advanced usage patterns may not use
a while loop, but the property and method will often appear together.

Selecting options programmatically
Displaying only the text of an ink story has limited usefulness. Most advanced ink
stories use weaves to present different options. Along with the Continue() method
and the canContinue property, the Story API also has another property called
currentChoices that contains a list of the options generated by the most recent weave.

As was demonstrated in the Checking whether a story can continue section, the
canContinue property is affected by the Continue() method. After each line is
loaded and returned as a string, the Story class will update the canContinue property
if there is more story to load. This is also true of the currentChoice property. When
the Continue() method is used, it will load the next line and any weaves.

Note
Any previously used game objects or C# files created as part of this chapter
can safely be deleted. This section will create a new game object and script
component, and use different code for working with weaves and options.

124 Unity API – Making Choices and Story Progression

Detecting ink choices
The first step to act on a weave is to detect that its choices have been loaded by the
currentChoices property. This means both the canContinue property and
Continue() method are also needed. The first prevents any issues of trying to load
content that may not exist and the second loads the current line and any weaves along
the way:

1.	 In a new or existing Unity project with no other game objects using the Story API,
create a new, empty GameObject. Name it Ink Choices.

Figure 7.17 – ink Choices GameObject

2.	 As was shown in the Creating a script component section, create a new
script component on the Ink Choices game object. Name this new file
LoadingChoices.cs.

Figure 7.18 – LoadingChoices.cs file in the Assets window

Selecting options programmatically 125

3.	 Double-click on the LoadingChoices.cs file in the Assets window to open it
for editing in Visual Studio:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using Ink.Runtime;

public class LoadingChoices : MonoBehaviour

{

 public TextAsset InkJSONAsset;

 void Start()

 {

 Story InkStory = new Story(InkJSONAsset.text);

 InkStory.Continue();

 foreach (Choice c in InkStory.currentChoices)

 {

 Debug.Log(c.text);

 }

 }

}

4.	 Save the file in Visual Studio and return to Unity.
5.	 Create a new ink file and name (or rename) the file to Example3.ink.

Figure 7.19 – Example3.ink file in the Assets window

126 Unity API – Making Choices and Story Progression

6.	 Following the instructions in the Running an ink JSON file section, associate the
automatically generated ink JSON file with the Ink Choices game object property.

Figure 7.20 – Example3.json file associated with the ink JSON Asset property

7.	 Open the Example3.ink file for editing in Inky. Change it to the following:

Sam reached out, not quite touching Juan.

* "Are you just going to leave me?"

* "He didn't mean anything to me!"

* "Can't we just start again?"

8.	 Save the changed Example3.ink file. Return to Unity and run the scene. The
Console window in Unity will now show the text content of each option.

Figure 7.21 – Example 3 options in the Console window

Selecting options programmatically 127

The use of the Continue() method loaded not only the first line of Example 3 but also
the first weave appearing within the code. The currentChoices property contains
a List<Choice> of objects per choice that exists within the weave. Each element of
List<Choice> is a Choice object, a special class containing two important properties:
index and text.

Within the foreach loop, the text property of each Choice object is retrieved. This is
then passed to the Debug.Log() method. When run, the ink story is loaded. Next, the
first line and weave are loaded. Inside the loop, the currentChoices property is used
to retrieve the value of each text property. Each is then shown in the Console window
using the Debug.Log() method.

Making choices using the Unity API
Options are selected by players to continue a story. Within the ink source code, a choice
is created using either the asterisk (*) or the plus symbol (+). When run, the ink runtime
code as part of the Story class creates options from these source code choices. However,
to progress in an ink story, a choice must be made. It must exist in the code and then be
presented as an option.

The Story class provides a method named ChooseChoiceIndex(). This accepts
an index (int) within the range of the current total number of elements in the
currentChoices property. Each Choice object within the list of currentChoices
has index and text properties. In the Detecting ink choices section, the text property
was used to display the generated option from the ink source file. To make a choice, its
index property is used:

1.	 Double-click on the LoadingChoices.cs file from the Detecting ink choices
section to open it for editing if it is not already open in Visual Studio.

2.	 Update the file to the following:

void Start()

{

Story InkStory = new Story(InkJSONAsset.text);

InkStory.Continue();

Choice exampleChoice = InkStory.currentChoices[0];

InkStory.ChooseChoiceIndex(exampleChoice.index);

Debug.Log(InkStory.Continue());

}

3.	 Save the file in Visual Studio, return to Unity, and run the scene.

128 Unity API – Making Choices and Story Progression

The Console window will show the text of the choice matching the first (0) position
element within the currentChoices property.

Figure 7.22 – Option chosen from Example 3 in the Console window

The ChooseChoiceIndex() method selects the first choice within the weave based on
the index property of exampleChoice. This is then displayed in the Unity Console
window using the Continue() method.

To make choices when using ink and Unity, a combination of things needs to happen in
sequence. First, a story must be loaded. Second, at least one line needs to be loaded that also
contains a weave. Next, the currentChoices property of the Story class must be used
to retrieve the created options for the player. The ChooseChoiceIndex() method then
needs to be used with the index property of one of the Choice objects retrieved from the
currentChoices property. Finally, the next part of the story needs to be loaded. This
additional loading will include the text of the option (if selective output is not used) chosen
using the ChooseChoiceIndex() method. The rest of the story can then proceed.

Loading all text until the next weave
While useful for loading story content, the Continue() method must be used multiple
times to load each line at a time. As with the code in the Making choices using the Unity
API section, this means it would need to appear across multiple lines of code. Anticipating
this problem, the Story API also includes a method named ContinueMaximally().

Instead of loading a line at a time, the ContinueMaximally() method loads all
content until it encounters a weave. For many projects, this is a preferred method to use
when there might be multiple lines of text between weaves or generated by ink internally
as a part of the weave itself:

1.	 Create a new ink source file in Unity. Name (or rename) the file to Example4.
ink.

2.	 Open Example4.ink for editing in Inky and update it to the following:

You read all the books and convinced your parents into
going to the zoo. You just had to know.

You enter the area containing the snakes and walk up to
the glass.

Selecting options programmatically 129

-> snake_house

== snake_house

+ (tap){tap < 2}[Tap the glass and say something {tap >
0: again}]

 {tap <= 1: You tap on the glass in front of you.

 The snake turns slightly toward the noise and

 sticks out its tongue.}

 {tap > 1: No, you finally decide. You cannot talk

 to snakes.}

 -> snake_house

+ [Ignore the snake]

 You regard the coiled snake and then walk out.

 {tap > 1: What were you thinking? Talking to

 snakes is fictional.}

 -> DONE

3.	 Update the Example4.ink file with the content from Example 4.
4.	 Click on the Ink Choices game object and then, in the Inspector view, change the

associated file from Example3.json to Example4.json.

Figure 7.23 – Updated Example4.json value in the Inspector view

5.	 Double-click on LoadingChoices.cs to open it for editing in Visual Studio.

130 Unity API – Making Choices and Story Progression

6.	 Update the file to the following:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using Ink.Runtime;

public class LoadingChoices : MonoBehaviour

{

 public TextAsset InkJSONAsset;

 void Start()

 {

 Story InkStory = new Story(InkJSONAsset.text);

 Debug.Log(InkStory.ContinueMaximally());

 Choice exampleChoice =

 InkStory.currentChoices[0];

 Debug.Log(exampleChoice.text);

 InkStory.ChooseChoiceIndex

 (exampleChoice.index);

 Debug.Log(InkStory.ContinueMaximally());

 }

}

7.	 Save the changes in Visual Studio, return to Unity, and run the scene.

Figure 7.24 – Loaded lines and choice text from Example 4

8.	 Stop the running scene.

Creating a dynamic user interface 131

The first usage of the ContinueMaximally() method loaded the first two lines and the
weave. Next, the ChooseChoiceIndex() method chose the first option. The second
ContinueMaximally() method usage, when paired with the internal divert, then
loaded the next line and the weave again.

When working with looping structures, the ContinueMaximally() method is often
better than using the Continue() method. Use of the ContinueMaximally()
method will always load all the new text until it encounters the next weave. For loops
where text might appear between weaves, a single use of the ContinueMaximally()
method would achieve the same effect as multiple calls to the Continue() method to
load the same content.

This topic started with detecting choices in a running ink story with the
currentChoices property. We then moved into making choices, both creating them
in the ink code and then using the ChooseChoiceIndex() method to pick them.
Finally, we saw how the ContinueMaximally() method can be combined with both
the currentChoices property and the ChooseChoiceIndex() method. In the next
topic, we will expand on these concepts. To create a dynamic interface, we can use our
knowledge of the Story API to associate the GameObjects user interface and create
a connection between clicking a button on the screen and progressing an ink story.

Creating a dynamic user interface
The Story class provides multiple methods for loading and progressing a story. However,
without a user interface, a player is not able to select between options and see the result.
To fix this problem, additional game objects are needed to show text and provide an
interface for a user to click on different things.

To start, a new project is needed. Instead of example code, this will use different user
interface objects for working with a user. The project will also need to create a Prefab. In
Unity, a GameObject can become prefabricated by moving it from the Hierarchy view
into the Project window. This allows its settings and values to be kept as an asset in the
project. Prefabs in Unity can also be instantiated, a process by which C# code can create
a copy of an existing GameObject during runtime.

The current lines as returned by the ContinueMaximally() method and choices
in the currentChoices property can potentially be dynamic while an ink story runs.
Combined with a Prefab, C# code can recreate an interface dynamically because of
a player clicking on buttons to make choices in a story.

132 Unity API – Making Choices and Story Progression

In this topic, we will move through the steps of creating a dynamic interface by starting
with a new Unity project and creating the necessary game objects. Next, we will associate
a Prefab with our code. Finally, we will end with a section on putting everything together
and running the combined project.

Creating a new project and game objects
Let us now start with creating a new project and game objects:

1.	 Create a new project in Unity. Name this project The Body and use a 2D template.

Figure 7.25 – Unity Hub project creation with the name of The Body

Important Note
Before doing anything else, install the ink-Unity Integration plugin in the new
project using the instructions as part of Chapter 6, Adding and Working with
the ink-Unity Integration Plugin.

2.	 Once the project has been created by Unity, add a Canvas game object to the
Hierarchy view.

Creating a dynamic user interface 133

A new Canvas game object can be accessed by selecting UI and then Canvas from
the GameObject menu.

Figure 7.26 – GameObject menu with UI and Canvas selected
By adding a Canvas game object, Unity will automatically add an EventSystem
game object.

134 Unity API – Making Choices and Story Progression

3.	 Click on the Canvas game object. In the Inspector view, click on the Add
Component button. Select Layout and then Vertical Layout Group.

Figure 7.27 – Vertical Layout Group component selection
A vertical layout group will automatically align all other UI game objects within
itself in a vertical pattern.

4.	 In the vertical layout group, click on the Child Alignment dropdown and select
Middle Center.

Figure 7.28 – Vertical Layout Group with Middle Center selected

Creating a dynamic user interface 135

5.	 With the Canvas game object selected in the Hierarchy view, create a new Text
game object. Text game objects can be found under UI and then Text. The created
Text will be added as a child of the Canvas game object.

Figure 7.29 – Added Text game object in the Hierarchy view

6.	 With the Canvas game object selected in the Hierarchy view, create a Button
game object. Button can be found under UI and then Button. The created
Button game object will be added as a child of the Canvas game object.

Figure 7.30 – Added Button game object in the Hierarchy view

7.	 Select the newly added Button game object, and then click and drag it from
the Hierarchy view to the Project window. This will create a Prefab based on the
Button in the Project window.

Figure 7.31 – Prefab created in the Project window

136 Unity API – Making Choices and Story Progression

8.	 After the Button game object icon changes in the Hierarchy view, delete the
Button game object in the Hierarchy view only. Because the Button game
object is now a Prefab, it exists as an asset and does not need to exist in the current
Hierarchy view. (It will later be instantiated by code.)

With the project and game objects created, the next item is a script component. This
will create the necessary properties for other files to be associated with running the story.

Associating Prefab and ink JSON files
After creating the game objects in the last section, we will now create a script
component, create the necessary properties, and then associate assets with the properties:

1.	 Select the Canvas game object in the Hierarchy view.
2.	 In the Inspector view, create a new script component using the instructions in

the Creating a script component section.
3.	 Name (or rename following creation) this new file InkStory.cs.

Figure 7.32 – Created InkStory.cs file

4.	 Double-click on the InkStory.cs file for editing in Visual Studio.
5.	 Update the code to the following:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using Ink.Runtime;

public class InkStory : MonoBehaviour

{

 public TextAsset InkJSONAsset;

 public GameObject prefabButton;

}

Creating a dynamic user interface 137

There are three new additions to the default code provided by Unity. The first is the
inclusion of the Ink.Runtime namespace. This will allow us to work with ink while
a story runs. The second two additions are the properties we will be using in the Inspector
view in the Unity editor. To associate assets with code, we can use the public keyword in
C# to create a property we can adjust in the editor:

1.	 Save the file and return to Unity.
2.	 Create a new ink file named (or renamed following creation) TheBody.ink.
3.	 Open the TheBody.ink file in Inky for editing and copy the contents from the file

from GitHub.

Note
The code for this example, TheBody.ink, can be found on GitHub.

4.	 Save the ink source file and return to Unity.

The use of the public keyword in InkStory.cs added two new properties to
the Canvas game object.

Figure 7.33 – Properties added in the Inspector view

5.	 Click on the file selection next to the Ink JSON Asset property to open the
Select TextAsset window.

6.	 Associate the ink JSON file created by the ink-Unity Integration plugin with the Ink
JSON Asset property and then close the Select TextAsset window.

7.	 Click on the file selection next to the Button Prefab to open the Select
GameObject window.

8.	 Select the Assets tab in the Select GameObject window if it is not open.
9.	 Select the Button Prefab and then close the Select GameObject window.

138 Unity API – Making Choices and Story Progression

The result of associating the ink JSON file with the Button Prefab will be that the code
has access to those assets during runtime.

Figure 7.34 – Updated Ink Story component with the ink JSON file and button Prefab values

With the file associated with properties of the script component, additional code can
now be written. Changing the ink source file, TheBody.ink, and saving the change
will automatically update the TheBody.json file. The same is also true of the Button
Prefab. It can also be adjusted, and its settings changed. As long as neither asset is
renamed, Unity will maintain the association and allow developers to customize their
settings independent of the code using them when the scene runs.

By the end of this section, we will have created a Unity project, its game objects, and
associated assets with properties. Before we can run the project, we will need to write
more code to dynamically create a user interface based on the content of a running ink
story. In the next section, we will write the code to use the Prefab and create a dynamic
interface based on the text output of the ContinueMaximally() method and the
currentChoices property.

Making a dynamic user interface
The final series of steps needed before the Unity project can be run is to add more code.
We need to incorporate the concepts explained in this chapter covering the use of the
ContinueMaximally() method and the currentChoices property. We also
need to add an overall loop within the code using the canContinue property to check
whether there is more content before progressing the story.

We begin by adding the properties we will need within the class that will not be used by
the Unity editor. We mark these using the private keyword.

Open InkStory.cs for editing in Visual Studio:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

Creating a dynamic user interface 139

using Ink.Runtime;

public class InkStory : MonoBehaviour

{

 public TextAsset InkJSONAsset;

 public GameObject prefabButton;

 private Story inkStory;

 private Text currentLinesText;

}

To work with user interface game objects, another instance of the using keyword is
needed. This adds access to classes such as Text and Button used in this file.

The Story class and the Text game object currentLinesText will be used across
methods in this code. To make sure they can be used in this way, they must be properties
of the InkStory class and not variables within any method.

The first thing that must happen is the loading of the ink JSON file. Next, a reference to
the Text component is needed. The text will be shown to the user each time they make
a choice. This means the text property of the Text game object will need to be updated.
However, as it is a child of Canvas, the GetComponentInChildren() method
is needed:

void Start()

{

inkStory = new Story(InkJSONAsset.text);

currentLinesText = GetComponentInChildren<Text>();

}

The process of loading the text content and current choices will be used multiple times.
This means all the code used as part of the process should be its own method:

void LoadTextAndWeave()

{

if (inkStory.canContinue)

{

currentLinesText.text = inkStory.ContinueMaximally();

foreach (Choice c in inkStory.currentChoices)

140 Unity API – Making Choices and Story Progression

{

GameObject cloneButtonGameObject =

 Instantiate(prefabButton, this.transform);

Button cloneButtonButton =

 cloneButtonGameObject.GetComponent<Button>();

cloneButtonButton.onClick.AddListener(delegate

{

inkStory.ChooseChoiceIndex(c.index);

LoadTextAndWeave();

 });

Text cloneButtonText = cloneButtonButton.

 GetComponentInChildren<Text>();

cloneButtonText.text = c.text;

}

}

}

In the new LoadTextAndWeave() method, new text content will be loaded if the
canContinue property is true. Using the foreach keyword, new buttons will be
added by using the Instantiate() method in Unity. This instantiates a Prefab as a
GameObject during runtime, creating it through code and adding it to the running scene.

Finally, the AddListener() method is used with the OnClick property of a button
in Unity. This adds to a collection of which functions should be notified that a click has
happened. The delegate keyword allows a developer to pass a method as an argument
to another method. In this case, a short method is created within the same scope as the
foreach loop. The index property can thus be used inside this created method.

Every time the button is clicked, the Story class method ChooseChoiceIndex() will
be called with the correct index, and the LoadTextAndWeave() method will be called
again, refreshing the value of the currentLinesText method and updating the current
buttons shown on the screen:

1.	 To run the current code, one more change is needed. The LoadTextAndWeave()
method needs to be called inside the Start() method:

void Start()

{

Creating a dynamic user interface 141

inkStory = new Story(InkJSONAsset.text);

currentLinesText = GetComponentInChildren<Text>();

LoadTextAndWeave();

}

2.	 Save the current code in Visual Studio. Return to Unity and run the scene.

Immediately, two problems will become evident. First, the default black text on
a dark background makes the text impossible to read. Second, only the first few
words will be shown.

Figure 7.35 – The Body project running in Unity

3.	 Click on the (Continue.) button to see two more problems.

Figure 7.36 – Dynamically created buttons in The Body

142 Unity API – Making Choices and Story Progression

The first problem is that instead of replacing the first button, Unity added two more. This
is caused by the second call to the LoadTextAndWeave()method internally. First, the
text content and button were loaded. Next, when the (Continue.) button was clicked, it
was called again, adding more buttons.

We can also observe that the buttons are small and hard to read. By default, Unity will
assume some values for a Button game object. While adjusting our code, we will also
need to change the properties:

1.	 Stop the running scene.
2.	 To start to fix the issue with the text, first, select the Text game object in the

Hierarchy view. The default values of its width and height are 160 and 30.
3.	 Through either clicking and dragging using the Rect Transform tool, or by

changing the number directly, update their values to a width of 800 and height
of 300.

Figure 7.37 – The Inspector view in Unity with updated width and height values

4.	 Click on the Font Size property and change its value from 14 to 24. This will make
the starting size larger.

5.	 Click on the Color property. Change the color from its default to white and
then close the Color window.

The updated values will now display more text and, with the white on a darker
background, increase its readability.

Creating a dynamic user interface 143

Figure 7.38 – Updated Text GameObject component values

6.	 Click on the Button Prefab in the Project window.
7.	 Like the Text game object, its default width is 160 and its height is 30. Change the

width to 250 and the height to 100.

Figure 7.39 – Updated button Prefab values

8.	 Return to editing InkStory.cs in Visual Studio.

The fix to the code is a small but important one. Each time the button is clicked, the code
will need to destroy the current buttons and then create new ones:

1.	 A new method is needed for the specific task of destroying Button children:

void DestroyButtonChildren()

{

 foreach (Transform child in transform)

 {

 if(child.tag == "ButtonChoice")

 {

144 Unity API – Making Choices and Story Progression

 GameObject.Destroy(child.gameObject);

 }

 }

}

The new DestroyButtonChildren() method needs to be called as part of the
delegate method. Before the content is refreshed, the current buttons need to be
destroyed:

cloneButtonButton.onClick.AddListener(delegate

{

inkStory.ChooseChoiceIndex(c.index);

DestoryButtonChildren();

LoadTextAndWeave();

});

2.	 Save the updated file in Visual Studio and return to Unity.

The DestroyButtonChildren() method looks for a specific tag value. This
needs to be added to the Button Prefab.

3.	 Select the Button Prefab in the Project window.
4.	 In the Inspector view, click on the Tag drop-down menu and then the Add Tag…

option.

Figure 7.40 – Tag drop-down menu in the Unity Inspector view

Creating a dynamic user interface 145

5.	 Click on the + icon to add a new tag to the list. In the prompt, use the name
ButtonChoice.

Figure 7.41 – New tag name

6.	 Click on Save to create a new tag.
7.	 Click on the Button Prefab in the Project window to open its values in the

Inspector view.

Now that the ButtonChoice tag has been added, it must be selected.
8.	 In the Tag dropdown, select ButtonChoice.

Figure 7.42 – Added ButtonChoice option to the Tag drop-down menu

9.	 Run the scene. Play through the story by clicking on buttons to make choices and
see the result.

10.	 Stop the running scene when done playing the story.

The changes to the Text game object and code will load the new text and correctly update
the choices as the player clicks on the buttons. While consisting of multiple steps, this
same approach can be used with most ink JSON files to present text and dynamic buttons
for a player to make different choices and then see the result on the screen.

146 Unity API – Making Choices and Story Progression

Summary
In this chapter, we worked through the process of adding a script component,
associating an ink JSON file with a property, and using methods and properties as part of
the Story class to progress a running ink story. We saw how the Continue() method
loads one line at a time and the ContinueMaximally() method loads all text until it
encounters a weave. When combined with the canContinue property, these methods
allow for text content to be loaded from an ink JSON file and prevent any errors when the
content runs out. With the currentChoices property, we examined how to use loops,
such as those using the foreach keyword. When we used the ChooseChoiceIndex()
method, we picked which option among the weave we wanted and progressed through
a story using the Continue() or ContinueMaximally() methods again.

By setting up user interface game objects in Unity, we built a dynamic process to load ink
story content, destroy buttons, and then create new ones. Needing to create a Button
Prefab, we saw how these could be instantiated by the code while it was running.
Adjusting the values of Text and Button game objects, we completed an interface for
running an ink JSON file and built a system usable by many other projects working with
the same game objects and organization.

In the next chapter, we continue to use the Story class and its methods. We will
examine how to retrieve and update the values of variables in an ink story using C# code.
We will also see ways of accessing functions in ink and how to pass data in and out of
them. Combined with user interface game objects, we will build an example of how to
communicate between the ink runtime and Unity code by using content from ink to
create multiple dynamic interfaces in Unity.

Questions
1.	 What is the difference between the Continue() and ContinueMaximally()

methods in the Story class?
2.	 What type of data does the ChooseChoiceIndex() method in the Story

class expect?
3.	 How is the canContinue property used with the Continue() and

ContinueMaximally() methods in the Story class?
4.	 What is a Prefab in Unity?
5.	 What type of object is found in the currentChoices list property of the

Story class?

8
Story API – Accessing

ink Variables and
Functions

In this chapter, we will discuss how to use the ink Unity API to work with variables and
functions. Any variables or functions defined in ink can be accessed from any point in
its code. The API provided by the ink-Unity Integration plugin provides an interface
through its variablesState property to access any defined variables. This is also
true of a method provided by the EvaluateFunction() API, which can access any
functions defined in the ink code. Understanding this functionality is key to creating more
complex projects by using the ink-Unity Integration plugin as a bridge between an ink
story and Unity code.

In this chapter, we will cover the following main topics:

•	 Changing ink variables outside a story

•	 Calling ink functions externally

•	 Controlling a story through variables and functions

148 Story API – Accessing ink Variables and Functions

Technical requirements
The examples used in this chapter, in the *.cs and *.ink files, can be found on GitHub
at https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter8.

Changing ink variables outside a story
Variables were first introduced in Chapter 4, Variables, Lists, and Functions. In ink,
variables are created using the VAR keyword and an initial value. Throughout a story, the
value of a variable can be changed. By comparing their values, variables can also influence
the flow of a story.

Variables are global in ink. Once created, they can be accessed by any other part of the
code within the same story. This functionality is also carried over into a named property
as part of the ink-Unity Integration plugin, called variablesState. Every variable
defined in an Ink story can be accessed by using its name.

In this topic, we will examine how to use this property to access and change values in
a running ink story. We will begin by looking at how to use the variablesState
property and comparing values in ink to control its flow outside the story.

Accessing ink variables
The Story API in Unity provides access to ink variables. In this section, we will explore the
variablesState property and how to access an ink variable by its name. Perform the
following steps:

1.	 Start by creating a new project in Unity based on the 2D built-in template.
2.	 Import the ink-Unity Integration plugin.
3.	 Add a new ink file and rename it InkVariables.ink.

The file that is created will hold the ink source code. Because the ink-Unity
Integration plugin runs compiled ink stories, the source code for a story must exist
before the API can be used to access and run its contents:

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter8
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter8

Changing ink variables outside a story 149

Figure 8.1 – The project window showing the InkVariables.ink file

4.	 Open the InkVariables.ink file for editing in Inky.
5.	 Change the contents to the Example 1 (InkVariables.ink) file.
6.	 Save the file and return to Unity.

Reminder
The automatic recompilation of ink source files can be changed by visiting
the Project Settings window. You can do this by clicking on Edit and then
Project Settings. Clicking on Ink and then changing the Compile All Ink
Automatically setting allows you to update this value. If enabled, the plugin
will automatically create a JSON file.

7.	 Create a new, empty game object and name it InkStory.
8.	 Create a new Script component in the InkStory game object and name the new

C# file InkStoryScript.cs.
9.	 Open the InkStoryScript.cs file for editing in Visual Studio.
10.	 Update the InkStoryScript.cs file to Example 1 (InkStoryScript.cs).

The updated code uses the GetVariableWithName() method as part
of the VariablesState object. The variablesState property is used
with the name of the variable in ink, number_example, as part of the
GetVariableWithName() method. Additionally, the Debug.Log() method is
used to display the value of the variable in the Console window when run in Unity.

11.	 Associate the file with the code. You can do this using either the Select TextAsset
window or by dragging and dropping the compiled JSON file into the new Ink
JSON File property inside the Script component.

12.	 Run the project in Unity.

150 Story API – Accessing ink Variables and Functions

Once the project starts running, open the Console window. A new message will
have been added:

Figure 8.2 – The console window showing the value of the ink variable

13.	 Stop the running project in Unity.

If variables are defined before the first text content in ink, they are also loaded before the
content. In Example 1, as is evident from Step 8, the initial values of the variables can be
accessed immediately after loading an ink story. The functionality for accessing variables
is separate from the functionality of loading and displaying text content.

Any ink variable that is able to be accessed can also be changed. In the next section, we
will discover how this functionality is key to using the variablesState property, as
part of the Ink API, and how it allows you to create more complex projects in Unity when
using the ink-Unity Integration plugin.

Changing the value of the ink variables
The English word "variable" means able to be changed. All ink variables, once created, can
be changed at any point. The variablesState property follows the same pattern.
If a variable can be accessed, its value can be changed.

The VariablesState class contains multiple methods in which to access and change
the values of the variables within an ink story. However, it also contains a shorthand
access operator using square brackets and the name of the variable in quotation marks.
Often, this shorthand is used rather than directly using method names to change the
values of variables within the variablesState property.

Now, return to the project that we used as part of the Accessing Ink variables section.
Perform the following steps:

1.	 Open the InkStoryScript.cs file for editing in Visual Studio.
2.	 Change the existing code to Example 2 (InkStoryScript.cs).

Calling ink functions externally 151

3.	 Save the file and return to Unity.
4.	 Run the project.

The Console window will show an updated message. Instead of showing the initial
value of the variable, it will show an updated value:

Figure 8.3 – The updated value of the ink variable in the Console window
Once a story has been loaded, the values of its variables exist within the
variablesState property. Any changes to these values are reflected in the next
use of the Continue() or ContinueMaximally() methods.

5.	 Stop the running project in Unity.

Variables are not the only values that can be accessed from outside an ink story. The
ink-Unity Integration plugin also adds the ability to call functions in ink from Unity.
While accessing and changing the values of variables can be helpful, directly calling
functions in ink and passing them values from Unity is often the preferred way in which
to approach the exchange of data between Unity and ink. In the next section, we will
review why using functions is frequently the better option for complex data or for when
you want to process multiple values as part of the same task in ink.

Calling ink functions externally
As with variables, functions are also global in ink. This means they can be accessed as part
of any ink code that is part of the same story. As part of the Unity API provided by the
Story class, the EvaluateFunction() method calls a function in the ink code based
on the name passed to it. Because functions in ink are global, they can be called from
outside the story itself. However, unlike working with the variablesState property
and only accessing a single value, multiple values can be passed to an ink function at one
time. Additionally, the EvaluateFunction() method can be configured to return the
text output within the ink function or any returning data, too.

152 Story API – Accessing ink Variables and Functions

In this section, we will begin by testing whether an ink function exists using the
HasFunction() method. Next, we will examine how the EvaluateFunction()
method is the preferred option for complex data or multiple data values when
communicating between Unity and ink. Finally, we will review examples of how to use the
text result and return data from an ink function within Unity code.

Verifying and evaluating ink functions
When working with functions in ink, the HasFunction() method verifies whether
an ink function exists. Note that it should always be used before working with an ink
function to prevent any issues:

1.	 Create a new project in Unity based on the built-in 2D template.
2.	 Import the ink-Unity Integration plugin.
3.	 Create a new, empty game object named InkStory.
4.	 Add a Script component to the InkStory game object and name the ink file

InkStoryFunctions.cs.
5.	 Add a new ink file and rename it InkFunctions.ink.
6.	 Open the InkFunctions.ink file in Inky and change its contents to Example

4 (InkFunctions.ink).
7.	 Open InkStoryFunctions.cs for editing in Visual Studio.
8.	 Update the InkStoryFunctions.cs file to Example 4

(InkStoryFunctions.cs).
9.	 Save the InkStoryFunctions.cs file.
10.	 In Unity, associate the compiled JSON file for the InkFunctions.ink file

with the Ink JSON File property, as part of the Script component of the
InkStory game object.

11.	 Run the project.

In the Console window, a message will appear, showing how the relationship
ink variable has been changed as a result of calling two methods, HasFunction()
and EvaluateFunction(). The HasFunction() method of the Story class
returns a Boolean value. It also guarantees that a function exists before it is used.

12.	 Stop the project.

Calling ink functions externally 153

After verifying that a function exists, it can be evaluated. The code in the
InkStoryFunctions.cs file uses two methods: HasFunction() and
EvaluateFunction(). Within the ink API, the term evaluate is important. Functions
in ink are a special form of knots, which means they are sections of a story. This
potentially means that any usage of ink functions can be incredibly disruptive to the
existing values in the story. The term evaluate informs the developer how the result of
the action of working with a function might change existing values. In ink, functions are
evaluated using the EvaluateFunction() method.

When using the EvaluateFunction() method, the first parameter is the name
of the function in ink. Any additional parameters are passed to the ink function
directly. In the code that is used as part of the InkStoryFunctions.cs file, the
use of the EvaluateFunction() method includes two parameters: the name of the
increase() ink function and the amount of value to increase inside ink.

This use of an ink function that has been called from Unity to change values
is a very common pattern when using the ink-Unity Integration plugin. In this case, the
increase() function in ink updates the relationship value inside ink. This allows
ink values to be adjusted by ink functions. When working in Unity, values can be passed
to ink to perform multiple tasks, depending on the ink functions defined for those tasks,
without extra code on the Unity side.

ink functions are special sections of a story. This means they can also produce text output
along with other code-related actions. However, to gain access to the text output of an ink
function using the EvaluateFunction() method, a special keyword is needed in C#:
out. We will learn more about this keyword in the next section.

Retrieving the ink function text output
The C# programming language allows you to define a variable and then pass it to
a method. Internal to the method, it is expected that the value of the variable will change.
Note that this will not be a change to the value passed to the method, but to the value
contained within the variable itself. More generally, in programming, this is known as
passing by reference. Instead of passing some data to a method, a reference (that is, where
to find the variable to store the value) is passed instead.

In C#, the out keyword can be used with a parameter to a method to specify that the
variable, and not its value, should be passed by reference. This means that when the
method is finished with its actions, the value within a variable that was passed to the
method will change as a result. In C#, using the out keyword allows a developer to
specify they want a value out of the method and into a specific variable.

154 Story API – Accessing ink Variables and Functions

When working with the EvaluateFunction() method provided by the ink-Unity
Integration plugin, if the second parameter uses the out keyword, the method knows to
take any text produced during the evaluation and pass it out of the method back to the
variable. Perform the following steps:

1.	 Return to the code used in the Verifying and evaluating ink functions section.
2.	 Update the code in the InkStoryFunctions.cs file to Example 5

(InkStoryFunctions.cs).
3.	 Save the changed InkStoryFunctions.cs file.
4.	 Return to Unity.
5.	 Play the project.
6.	 Stop the project.

Using the out keyword with the functionOut variable as a parameter to the
EvaluateFunction() method lets C# know to pass any text out of the method.
Because the relationship value was updated internally in ink by calling the
increase() function from Unity to ink, its value is shown as 51 in the Console
window when the project is run. The functionOut variable in C# is given the text out of
the use of the EvaluateFunction() method. This allows it to then pass its value to the
Debug.Log() method and, ultimately, show the updated value in the Console window.

When the out keyword is used with the EvaluateFunction() method in this way,
any text output from a function can be captured and passed back from ink to Unity.
Combined with creating ink functions to update ink values, this additional change to
the pattern shown in the Verifying and evaluating ink functions section allows you to call
ink functions to perform ink-related tasks. This allows for the separation between ink
concerns and those in Unity.

Within ink, a story can be controlled by different values. Using conditional options and
a selective output, the text of a choice can be displayed or a diversion followed. Because
the values of variables can be directly accessed using the variablesState property
and functions that have been called using the EvaluateFunction() method, this
means an ink story can be controlled from Unity. In the next section, we will learn how to
connect user interface elements in Unity with ink variables and functions.

Controlling a story through variables and functions 155

Controlling a story through variables and
functions
The variablesState property and the EvaluateFunction() method give the
developer two ways in which to access values within an ink story. By using these two
approaches, a story can be controlled by more than just the options that are presented to
a player. User interface elements within Unity can be attached to methods that can then
change ink values.

In this section, we will connect ink to Unity. By using the variablesState property
and the EvaluateFunction() method, we will review a code pattern where Unity
provides the user interface and communicates with ink functions to adjust and react to
values during runtime.

Across the three sections of this topic, first, we will prepare a Unity project by creating the
necessary game objects. Next, we will add the code to control the user interface. Finally,
we will adjust the presentation of the user interface and run the project.

Preparing a user interface
To begin work with Unity buttons, a new project is required. For simplicity, a 2D project
is recommended. This will allow you to work easily with an interface without needing to
worry about perspective. Perform the following steps:

1.	 Create a new project in Unity using the built-in 2D template and name this project
Shopping Trip.

2.	 Import the ink-Unity Integration plugin.
3.	 Create a new, empty game object named InkStory.
4.	 Create a new Script component inside the InkStory game object. Name the

created C# file InkStoryShopping.cs.
5.	 Create a new ink file named InkShopping.ink.
6.	 Open the InkShopping.ink file for editing in Inky and change its contents to

Example 6 (InkShopping.ink).

156 Story API – Accessing ink Variables and Functions

In Unity, create a new Button game object. Select the automatically created
Canvas game object in Unity and create a second Button game object so that
both buttons are the children of the Canvas game object:

Figure 8.4 – The created buttons in Unity

7.	 Select the Canvas game object again and create a Text game object. Both buttons,
along with the newly created Text game object, should all be children of the
Canvas game object.

The ink file created as part of Step 6 established the ink functions that will be called from
future Unity code. The two buttons will serve as an interface for the buying and selling of
an inventory that is also tracked by the ink code. In the next section, we will move from
having set up everything to writing the Unity code to create a bridge between the interface
and ink. This will track two values: money and inventory.

Scripting user interface objects
In the previous section, we worked through the steps that were needed to create a new
Unity 2D project and to create the necessary game objects. In this section, we will learn
how to connect user actions (that is, clicking) with the user interface by adding code
on the Unity side. Then, we will use the EvaluateFunction() method in Unity to
communicate with ink functions within a running story to control its progression:

1.	 Open the InkStoryShopping.cs file for editing in Visual Studio.
2.	 Change its content to Example 6 (InkStoryShopping.cs).

Controlling a story through variables and functions 157

In the new code, three new methods have been added to the Unity code. We have
directly mapped the Unity methods to ink functions. For example, the name of the
Sell() method in Unity almost matches the sell() name of the ink function.
The differences in capitalization are only because of the recommended capitalization
usage in each programming context.

3.	 Associate the compiled ink JSON file with the new public property. Associate the
Text game object with the Text Status property:

Figure 8.5 – Associating the Text GameObject with the Text Status property

Recommendation
Because the two existing Button game objects have children Text game
objects, it is recommended that you use the drag-and-drop approach to
associate a game object with a property. This will prevent any issues with
associating the wrong Text game object.

4.	 Select the Canvas game object in Unity in the Hierarchy view. In the Inspector
view, click on Add Component, Layout, and then Horizontal Layout Group. This
will add a Horizontal Layout Group component.

158 Story API – Accessing ink Variables and Functions

5.	 Change the Child Alignment property of the Horizontal Layout Group
component from the default value of Upper Left to Middle Center:

Figure 8.6 – The adjusted Child Alignment property for Horizontal Layout Group
The addition of the Horizontal Layout Group component adds a layout
structure to the Canvas game object. The adjustment of the Child Alignment
property changes the starting position of all its children to the absolute-center
positions of the available screen space.

6.	 Select the first Button game object of the children game objects of the Canvas
game object, in the Hierarchy view, in Unity. In the Inspector view, scroll down to
the On Click () component. At the bottom of this area, click on the small plus (+)
symbol:

Figure 8.7 – Addition to the On Click () component
Each Button game object can have one or more listener functions associated with
its OnClick user event. When a user clicks on the Button game object, these
functions will be called in the order in which they appear in the list.

Controlling a story through variables and functions 159

Because Button is a GameObject, it can only communicate with other game
objects. This is an important aspect of how Unity understands the differences
between game objects and their components. A GameObject is a container for
other components, including any script components. This means that to
connect the OnClick user event for a Button game object to some code found in
a script component, the GameObject that the script component is associated
with must be used. For us, this means the InkStory game object.

7.	 Associate the InkStory game object with the On Click () component of
the first Button game object. This can be done by dragging and dropping the
InkStory game object onto the property:

Figure 8.8 – Associating the InkStory GameObject with the On Click () component
Once a GameObject has been associated with an entry in the On Click ()
component listing, the No Function drop-down menu will be enabled. Upon this
association, Unity will have processed the game object and looked for every possible
method or function that might be used.

8.	 Using the No Function drop-down menu, select the InkStoryShopping object and
then the Buy () method entry.

Once the method has been associated as a listening function, the value of the No
Function drop-down menu will update to InkStoryShopping.Buy.

9.	 Select the second Button game object of the children of the Canvas game
object, in the Hierarchy view, in Unity. In the Inspector view, scroll down to the
On Click () component.

160 Story API – Accessing ink Variables and Functions

10.	 Follow Step 7 and Step 8 to associate the InkStory game object with the On
Click () component. For Step 8, instead of using the Buy () method, select the
Sell () method:

Figure 8.9 – Associating the InkStoryShopping.Sell() method
At the end of Step 10, the first Button game object is associated with the Buy()
method, and the second is associated with the Sell() method. Internally, those
methods are communicating with their corresponding ink functions. As you will
discover shortly, clicking on the buttons will call Unity methods, which, in turn, will
call ink functions.

Adjusting the presentation values
In this final section, we will change the default values of the user interface game objects
created in the previous section. Adjusting these values will help us to better understand
the relationship between game objects and improve the experience of interacting with the
onscreen buttons:

1.	 Select the first Button game object in the Hierarchy view in Unity. Using the drop-
down arrow next to its name, expand the listing of these children and click on the
first Text game object.

2.	 Change the Text property value from its default setting of Button to Buy:

Controlling a story through variables and functions 161

Figure 8.10 – Changing the Text property

3.	 Select the second Button game object in the Hierarchy view in Unity. Using the
drop-down arrow next to its name, expand the listing of these children and click on
the first Text game object presented.

4.	 Change the default text of the second Button game object from Button to Sell.
5.	 Select the third child game object of the Canvas game object, that is, the Text

game object. Be sure not to select the previous two Text game objects that were
updated in the previous steps.

6.	 Change the width and height of the Text game object to 400 and 250:

Figure 8.11 – Adjusting the width and height of the Text game object

162 Story API – Accessing ink Variables and Functions

7.	 Change the font size of the Text game object from its default value to 32.
8.	 Change the color of the Text game object from its default setting to a white or

near-white color:

Figure 8.12 – Updating the color for the Text game object

9.	 Play the project.

When played, the far-left side will show the updated status of the money and
inventory variables in ink. Clicking on the buttons will call the Unity methods,
which, in turn, will evaluate the ink functions and change the values inside the
running ink story. This is a complete example of how to control an ink story through
variables and functions.

10.	 Stop the project.

While multiple steps were involved to create the user interface elements and change the
values of their properties, the code is relatively simple. Functions were created in ink
to adjust the ink values. In Unity, methods were created matching the names of the
ink functions.

Summary 163

This section demonstrated how a simple shopping scene could be created in ink and
manipulated from Unity. By knowing the name of the ink functions, C# methods in Unity
can evaluate them to either adjust values or, in the case of the status() ink function,
retrieve the text output. This was also a demonstration of how to separate user interface
programming from story-related code. They communicated with each other, but they
were written in different contexts.

In the next chapter, we will examine a different approach to working with variables and
functions in a story while continuing the trend of separating our narrative and game
code. However, instead of clicking on buttons in Unity to trigger functions in ink, we will
explore the reverse. Events will happen in ink and trigger changes in Unity. This chapter
focused on how to control ink from Unity. The next chapter will demonstrate how to
control parts of Unity from events happening within a running ink story.

Summary
In this chapter, we began by demonstrating how the variablesState property exposes
all of the variables in ink. We started by using the GetVariableWithName() method
to access variables by name and the provided shorthand syntax of using square brackets.
For completeness, the variablesState property was explained. However, in most
situations, ink functions should change ink values. This helps to keep any code working
with those values existing within the ink story and is easier to maintain over time, and we
closed the chapter on this same theme. Additionally, we explored how buttons in Unity
can call their methods and then call ink functions. By using the EvaluateFunction()
method, we can access the ink function in Unity to either pass data into the project or
retrieve possible text output with the out keyword in C#.

In Chapter 9, Story API – Observing and Reacting to Story Events, we will emphasize
the ink-Unity Integration plugin and its API by inspecting a different approach to the
relationship between Unity and ink. Instead of using Unity methods to call ink functions,
we will examine some patterns to control parts of Unity from ink. Instead of having to
click on buttons in Unity to change values, ink will cause changes that will then register in
Unity. For projects requiring more real-time feedback from ink, these patterns will be
a preferred approach to those shown in this chapter using the variablesState
property and the EvaluateFunction() method.

164 Story API – Accessing ink Variables and Functions

Questions
1.	 Are variables global in ink?
2.	 What effect does functions being global mean regarding how they are accessed

in ink?
3.	 Do the Continue() and ContinueMaximally() methods affect the values of

variables in ink?
4.	 What shorthand syntax does the VariablesState class provide to access

variables based on their names?
5.	 Should the name of an ink function be used to test whether it exists before you

attempt to access it?
6.	 How is the out C# keyword used with the EvaluateFunction() method as

part of the Story API when working with the ink-Unity Integration plugin?

9
Story API –

Observing and
Reacting to Story

Events
In this chapter, we will explore how changes in a running ink story can trigger events
in Unity. We will learn how the ObserveVariable() and ObserveVariables()
methods of the Story API, as provided by the ink-Unity Integration plugin, allow you to
prepare functions to react to future events in Unity. We will begin by observing a single
variable and then move on to learn how to watch multiple values.

In Chapter 8, Story API – Accessing ink Variables and Functions, the focus was on
controlling an ink story by calling its functions and changing its values from Unity. This
chapter reverses the emphasis between the two systems. In this chapter, we will explore
how narrative events, such as variables changing because of a player's choices, can be used
to control what information is presented in Unity.

166 Story API – Observing and Reacting to Story Events

In this chapter, we will cover the following topics:

•	 Listening for variable changes

•	 Dynamically responding to ink stories

•	 Observing multiple ink values

Technical requirements
The examples used in this chapter, in the *.ink files, can be found on GitHub at
https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter9.

Listening for variable changes
Variables in ink are global. Once they are created, they can be accessed at any point in the
story. In Chapter 8, Story API – Accessing ink Variables and Functions, we learned how this
functionality can be used with the variablesState property to access or change their
values. However, instead of directly interfering in a running ink from Unity, we can also
wait for something to happen in ink and then react in Unity. The verb used for this type of
approach, as part of the Story API, is called observing.

When we observe an ink variable, we can write our own rules regarding what should
happen when its value changes or meets a certain threshold. We are merely observing its
value. What we do because of this observance is up to the developer.

In this topic, we will explore the ObserveVariable() method.

Recommendation
It is recommended that you create a new Unity 2D project for this topic.
Instructions regarding how to create a new Unity project and import the
ink-Unity Integration plugin can be found in Chapter 6, Adding and Working
with the ink Unity Plugin.

We will perform the following steps:

1.	 In a new Unity project, using the 2D template with the ink-Unity Integration plugin
imported, create a new, empty game object and name it InkStory. This game
object will hold the script component and react to changes in the Ink code.

2.	 Create a new Ink file and name it InkStoryStepCounter.ink.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter9
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter9

Listening for variable changes 167

3.	 Open InkStoryStepCounter.ink for editing in Inky and update its contents
to Example 1 (InkStoryStepCounter.ink).

4.	 Create a new script component inside the InkStory game object. Name the
created file InkStoryScript.cs.

5.	 Open InkStoryScript.cs for editing in Visual Studio.

Update InkStoryScript.cs to Example 1 (InkStoryScript.cs).

The ObserveVariable() method is a new method introduced in this chapter
and accepts two parameters. The first parameter is the name of a variable to observe
and the second is a function or a method to call.

The code used in this example also incorporates a C# concept known as a lambda
expression. Any function without a name in C# is a lambda expression. This allows
you to write a function with its parameters and body, but without a name.

Putting the concepts together, the ObserveVariable() method watches
a variable in ink. If its value changes at any point, the lambda expression will run.
This operates outside the normal flow.

6.	 Associate the compiled Ink JSON file.
7.	 Run the project.

When the project is run, the Console window will show a series of messages. The first
message will show the text of the story, the second will show the value produced by the
ObserveVariable() method, and the third will be the text produced as the first
option chosen:

Figure 9.1 – The Text output is shown in order of execution in Unity

168 Story API – Observing and Reacting to Story Events

The reason why the second message shows the value before the third text of the option is
because of the execution order. Within the running ink story, the ObserveVariable()
method occurs before the text output is produced for the option and returned to Unity.
The use of the delegated lambda expression occurs outside the normal flow of execution
in this way. Whenever the value of the observed variable changes, the function is
immediately called, regardless of any other code happening around it at the same time.

In the next section, we will build on this pattern. Often, there are contexts in which
Unity should only be told a variable has been changed when it happens. This frees up the
execution time for other tasks in Unity and allows a developer to write more reactive code
that only runs when needed.

Dynamically responding to ink stories
In Unity, multiple methods are called as part of the normal execution cycle when a project
runs. Often, methods such as Update(), a common part of behavior scripts in Unity,
include many lines of code. Even a method such as FixedUpdate(), called at the end of
the physics calculations for each cycle in a running project, might include multiple parts.
Any code that depends on other systems, such as those communicating with ink, can also
add extra time per cycle.

The use of the ObserveVariable() method allows data from ink to only update Unity
when needed. Because the Story API will only call the delegated function when necessary,
Unity will also only get the data when there is a change it needs to know about when it
needs to know about it. This will also happen outside the use of an Update() method or
even a FixedUpdate() method in Unity.

In this section, we will examine how the ObserveVariable() method operates outside
of other methods as part of Unity. It will only call the delegated function when a value
changes allowing a dynamic response in Unity.

Return to the project created in the previous section, and perform the following steps:

1.	 Update the InkStoryScript.cs file to Example 2 (InkStoryScript.
cs).

2.	 Within the Update() method, four different actions are taking place.

The first is the increase in the variable time with the most recent Time.
deltaTime, which is the number of milliseconds between cycles as measured in
a decimal (float) number. The second is a conversion between its float value into an
integer. This operation removes the decimal part of the number. The third action is
a mathematical operation called modulo.

Dynamically responding to ink stories 169

In many programming languages, C# among them, the percentage symbol, %,
can be used to find the remainder from division. This operation is called modulo.
However, many programming languages also use the term remainder operator.
When this operation is performed, it will determine how many times one number
can be divided into another. In this case, using the remainder of 60, the seconds
variable will always be equal to the number of seconds that have passed since the
project began, as divided by the time variable.

The fourth action within the Update() method is the assignment of the seconds
variable to the number of seconds, as defined by the previously explained actions.
In every cycle in Unity, this number will be updated, and the seconds variable will
always be up to date.

One final action takes place in the delegated function, that is, the use of the
Destroy() method. Within the code, once the value of the steps ink variable
is equal to 3, as determined by Unity, it will remove a button from the scene. This
helps to keep the control of the button connected to a value changed outside of
Unity. Once the ink variable changes and is reported to Unity, the button
is removed.

On the last line of the Start() method, a button is given a listener function for
its onClick event. When the button is clicked on, any functions associated with
the listeners will be called. In this example, clicking on the button will call the new
TakeStep() method. This will load the next text content up to the next weave
encountered in the ink code and then choose the first (0) option within the weave.
This will cause the ink code to loop internally.

With the code created, two more steps are required before the project can be played.
First, a new Button game object needs to be added to the project. Then, once the
Button game object exists, it must be associated with the InkStory property as
part of the new code.

3.	 Create a new Button game object in Unity.
4.	 Associate the Button game object with the Button Step property.
5.	 Play the project.

170 Story API – Observing and Reacting to Story Events

6.	 The created Button game object appears at the bottom of the scene. Clicking on
the Button game object four times will cause it to disappear, and a message will
appear in the Console window:

Figure 9.2 – A message in the Console window generated by a delegated function

7.	 Stop the project.

When the project first started, the Update() method of the code was called during
each cycle. Internally, it updated the time and seconds variables in the Unity code.
Whenever the Button game object was clicked on, it progressed the ink code, which
looped itself internally. Because of the use of the ObserveVariable() method, any
time the ink variable steps were updated, it called the delegated function and tested the
new value passed to it. Once it reached 3 (based on a total of four clicks to move it from 0
to 3), the delegated function created a message in the Console window and destroyed the
Button game object.

The example used in this section follows a common pattern where Unity performs its
own calculations as part of a method, such as Update(), and dynamically responds to
changes in an ink story as they happen. Instead of potentially checking the steps ink
variable as part of the variablesState property every cycle, and wasting time if the
value has not changed, the delegated function allows Unity to only act when needed. For
more complicated projects, this is the preferred approach, and generally, it produces faster
projects.

More than a single variable can be observed in ink. Depending on the complexity of
design, a Unity project might be interested in observing multiple ink values and updating
onscreen areas with information on story progression or the current statistics of the
player. For these contexts, a different method is needed: ObserveVariables(). In the
next section, we will demonstrate how to work with this method.

Observing multiple ink values 171

Observing multiple ink values
Along with the ObserveVariable() method is a sister method named
ObserveVariables(). However, while the ObserveVariable() method accepts
the name of a variable and a delegate function, the ObserveVariables() method
accepts an IList<string> of variable names and a delegate function. Instead of
responding when a single variable is changed, its delegate function is called when any of
the variables passed as a list to the method are changed. While slightly more complicated
to set up, the ObserveVariables() method provides the functionality to observe
multiple ink variables.

Recommendation
It is recommended that you create a new Unity 2D project for this section.
Instructions regarding how to create a new Unity project and import the
ink-Unity Integration plugin can be found in Chapter 6, Adding and Working
with the ink-Unity Integration Plugin.

Perform the following steps:

1.	 In a new Unity 2D project with the ink-Unity Integration plugin imported, create
a new, empty game object and name it InkStory. This game object will hold the
Script component and react to any changes in the ink code.

2.	 Create a new ink file and name it InkStoryPlayerStatistics.ink.
3.	 Open the InkStoryPlayerStatistics.ink file for editing in Inky and

update its content to Example 3 (InkStoryPlayerStatistics.ink).
4.	 Create a new script component inside the InkStory game object. Name the

created file InkStoryPlayerStatisticsScript.cs.
5.	 Open the created InkStoryPlayerStatisticsScript.cs file in Visual

Studio. Update it to Example 3 (InkStoryPlayerStatisticsScript.cs).

The updated code begins by setting up the Story API. It does this by creating a new
object based on the Story class. Next, a List<string> is created. This is used
as a list of the variable names based on their string values. After creating the list,
two values are added to it in an order, based on the names of the mental_health
and physcial_health ink variables. This created list is then passed to the
ObserveVariables() method, and a second parameter, that is, a delegated
function in the form of a lambda expression, is used.

172 Story API – Observing and Reacting to Story Events

The Start() method ends with a call to the created ProgressStory() method.
Inside this created method, the story is progressed programmatically by using
the ContinueMaximally() and ChooseChoiceIndex() methods. The
first method loads all of the text content up to the first weave, while the second
method selects the first (0) option in the weave. The final, second use of the
ContinueMaximally() method loads the resulting text within the Ink code and
is needed to cause the variable to change.

6.	 Associate the compiled Ink JSON file with the InkStory game object.
7.	 Run the project.

When the project starts, it will programmatically progress the ink story used within
this section. As a result, it will produce a message in the Console window:

Figure 9.3 – The Console window showing changes to the mental_health ink variable
Two different ink variables were added to the List<string> that was passed to
the ObserveVariables() method. However, only one of them was changed
because of the ink story progression. As a result, the variable changed, and its new
value was passed back to Unity. When the change happened, the delegated function
was called with the second parameter, the name of the variable (variableName),
and its new value (newValue).

The ObserveVariables() method works similarly to its sister
ObserveVariable() method. Both respond with the name of the variable and
the changed value as soon as they happen in ink. The major difference between
them is in their first parameter. The ObserveVariables() method accepts the
name of a single variable name in ink, and the ObserveVariables() method
is a list of which variables to observe and then respond to using the delegated
function.

8.	 Stop the project.

Summary 173

This section focused on the use of the ObserveVariables() method, echoing the
pattern in the previous section where we used the ObserveVariable() sister method.
In general, either approach offers a way to control how Unity reacts to ink, shifting the
control of information between the two systems. Along with the variablesState
property, the different approaches in this chapter, as covered in Chapter 8, Story API –
Accessing ink Variables and Functions, provide access to the variables in ink. They can be
used in a project, depending on the needs of the developer, to either drive a Unity project
more from the ink side or directly change values on the ink side from the Unity code
as needed.

Summary
In this chapter, we explored multiple examples. First, we started with the
ObserveVariable() method and watched only one variable. In the second section,
we dynamically responded to ink stories in Unity. Using delegated functions, we learned
how parts of a piece of code will only be called when an ink variable changes. In the third
section, we looked at the use of the ObserveVariables() method to watch multiple
variables specified by name.

In Chapter 10, Dialogue Systems with ink, we will move away from the individual
properties and methods of the Story API and start to combine functionality into more
complex use cases. Combining parts of the Unity API introduced in Chapter 7, Unity API
– Making Choices and Story Progression, along with the ObserveVariable() method
covered in this chapter, we will examine how to create different dialogue systems.

Questions
1.	 What is the action of observing, and how does it apply to the methods provided by

the Story class?
2.	 What roles do delegated functions serve when working with the

ObserveVariable() and ObserveVariables() methods?
3.	 What is the difference between the ObserveVariable() method and the

ObserveVariables() method?
4.	 What is the difference between accessing ink variables using the

variablesState property and using the ObserveVariable() method or the
ObserveVariables() method?

Section 3:
Narrative Scripting

with ink

By the time you've completed this chapter, you will have code examples of dialogue, quest,
and simple procedural storytelling systems using ink and its Story API in Unity. This
section contains the following chapters:

•	 Chapter 10, Dialogue Systems with ink

•	 Chapter 11, Quest Tracking and Branching Narratives

•	 Chapter 12, Procedural Storytelling with ink

10
Dialogue Systems

with ink
In this chapter, we will explore three different approaches to create a dialogue system
using ink, Unity, and the ink-Unity Integration plugin. In the first topic, we will begin
by examining how hashtags, that is, text content starting with a hash (#), can be used to
mark different lines in ink as being associated with certain characters in a story. Then, we
will discuss an alternative to tags, where the name of the speaker precedes their dialogue.
Finally, we will conclude the first part by reviewing how tags can be used and how both
approaches can be combined.

In the second topic, we will look at how to recreate the click-to-continue dialogue pattern
that is found in many video games using ink. We will explore various ways of saving time
and effort by using tunnels to move to different knots and back again in an ink project
for use when needed. Following this, we will examine several different ways in which to
generate dialogue trees in ink where players can explore different paths through extended
branches of conversation.

In the third and final topic, we will look at two common visual patterns in which to
present dialogue options to players, that is, lists and radial menus, and how they affect
both writing ink code and how information is displayed to a player in Unity. We will begin
with the visual pattern of a list, where all options are shown to the player in a vertical
pattern. Then, we will examine the radial menu pattern, where options are limited to
a smaller number of options arranged in a specific, visual way.

178 Dialogue Systems with ink

In this chapter, we will cover the following topics:

•	 Writing dialogue in ink using tags

•	 Dialogue loops and story knots

•	 User interface models for conversations

Note
Unlike previous chapters, where sections built toward a completed project,
this chapter will examine different approaches toward more visually complex
systems. Each approach covered by a section can be found online on GitHub as
a completed project. Only selected files and code, as they relate to the approach
of each section, will be shown in this chapter. The specific files of each example
are also noted within each section.

Technical requirements
The completed code for the different sections of this chapter can be found on GitHub
at https://github.com/PacktPublishing/Dynamic-Story-Scripting-
with-the-ink-Scripting-Language/tree/main/Chapter10.

Writing dialogue in Ink using tags
When ink was first introduced in Chapter 1, Text, Flow, Choices, and Weaves, the
importance of a single line was also discussed. Each line in ink can consist of code, text,
or a combination of the two. Depending on the use of other concepts, such as glue or
comments, what counts as a single line can often be composed of multiple blocks of text
or include notes for the authors as part of a single line. However, in addition to these
previously reviewed concepts is another concept that has not previously been discussed:
hashtags.

In ink, a new, single hashtag is created when a hash (#) is used before any text. Starting
from the hash (#) and until the end of that line, any text that appears between the two is
considered part of the single tag:

This is text. #This is a tag.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter10
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter10

Writing dialogue in Ink using tags 179

Hashtags in ink are specifically designed to work with other systems. They have no
meaning within Inky itself and are shown in the middle of the output:

Figure 10.1 – A hashtag used within Inky

When working with another system such as Unity, hashtags can be used to add extra
data to a single line in ink. The current tags for the loaded chunk of the ink story exist
within a property provided by the Story API, called currentTags, which contains a
List<string> of all tags detected within the last load of story content. As with other
text-related content, the currentTags property is also affected by any usages of the
Continue() or ContinueMaximally() methods.

We will begin by learning how to use hashtags in ink. We will retrieve their values using
the currentTags property in Unity to build a simple dialogue system where each
spoken line has a name associated with who is communicating it. Next, we will examine
a different approach to the same dialogue system using speech tags in front of the text of
each ink line. The last section of this topic will compare the two approaches and review
when one might be better than the other or whether a combination of the two might
be needed.

Tagging ink text
In ink, hashtags are used on a per-line basis. They exist for that line but remain part of
the current hashtags until the next part of the story is loaded using the Continue()
or ContinueMaximally() methods. In this section, we will review an example that
uses hashtags with dialogue and the name of the speaker as part of a single line in ink.
We will learn how the currentTags property is affected using the Continue() and
ContinueMaximally() methods.

Reminder
The completed project for this section can be found in the Chapter 10 examples
on GitHub; these are under the name of Chapter10-TaggingInkText. Only
selected parts of the code will be shown as they relate to the concepts examined
in this section.

180 Dialogue Systems with ink

Dialogue lines are meaningless unless attributed to a character within a piece of work.
This helps establish who is communicating and enables you to build continuity within the
story. In the Chapter10-TaggingInkText example, each line of dialogue ends with
the name of its speaker as a hashtag in ink. This helps attribute who is communicating
each line:

Example 1 (InkDialogueTags.ink):

Hi, there! Welcome to an Ink example! #???

* [\[Continue\]]

-

My name is Narrator! I will be guiding you through this
example.

.. #Narrator

* [\[Continue\]]

-

My name is Dan. #Dan

* [\[Continue\]]

-

I'm another character in this example! #Dan

The ink code of Example 1 contains the lines of dialogue and the name of the speaker for
each line. Moving over to Unity, this translates into using the currentTags property to
access the tags after at least one use of the Continue() or ContinueMaximally()
methods:

Example 2 (InkStoryScript.cs):

void UpdatePanel()

{

DestroyChildren(OptionsPanel.transform);

InkOutputText.text = InkStory.ContinueMaximally();

SpeakerNameText.text = InkStory.currentTags[0];

}

In Example 2, because the currentTags property is a List<string>, the first (0)
position can be retrieved using the number of its index. The result is the separation of the
tagged speaker and their lines in Unity despite them being written as one line in ink.

Writing dialogue in Ink using tags 181

Hashtags are a powerful tool in which to add extra data to a single line in ink. As
demonstrated in this section, they can be used to add the name of the character
communicating the line at the end each time. However, there is another way to achieve
the same outcome. In the next section, we will repeat the same general code but use speech
tags in front of each line instead.

Using speech tags
In creative writing, a speech tag appears before or after some dialogue and signals who is
doing the communicating. For example, a common example found in many novels might
use the word said in the following way:

"Hello," Dan said.

The use of Dan said acts as a tag to the speech captured in the quotation marks. It signals
who is doing the talking (Dan) and what is being said (Hello).

Often, many people who write for games or other interactive projects follow a slightly
different format where the name of the speaker appears before the speech. This style
borrows from conventions found in screenwriting. The same words used in the previous
example might appear as follows:

Dan: Hello

In the updated form, the use of quotation marks is dropped, and the name of the speaker
precedes their words. There is also an introduction of a colon (:). This marks the end
of the speaker and the beginning of their words. In screenwriting, both the name of the
speaker and their dialogue will be centered. However, in an updated form that is more
commonly used as part of game writing, this formatting is dropped, and the text appears
as part of one line.

Reminder
The completed project for this section can be found inside the
Chapter 10 examples on GitHub under the name of Chapter10-
UsingSpeechTags. Only selected parts of the code will be shown as they
relate to the concepts examined in this section.

182 Dialogue Systems with ink

The ink code in Chapter10-UsingSpeechTags follows a different pattern from
the one found in the previous section. Instead of the name of the speaker included as a
hashtag after the dialogue lines, it now precedes it. Often, this format is used for dialogue
by writers working on video games and other interactive projects:

Example 3 (InkSpeechTags.ink):

???: Hi, there! Welcome to an Ink example!

* [\[Continue\]]

-

Narrator: My name is Narrator! I will be guiding you through
this example.

* [\[Continue\]]

-

Dan: My name is Dan.

* [\[Continue\]]

-

Dan: I'm another character in this example!

When the Example 3 code is run in Inky, because the code is no longer using hashtags, the
first output and weave will be updated:

Figure 10.2 – Speech tag usage in Inky

Immediately, there is a visual difference between using ink hashtags and formatting
the dialogue using speech tags. When testing the code in Inky, it is obvious who is
communicating because their name will precede the text. However, while testing in Inky
is easier, the removal of the hashtags within the ink code means the currentTags
property cannot be used. Instead, more C# code must be added to parse the name from
each line of text.

Writing dialogue in Ink using tags 183

To detect, parse, and remove the use of the colon (:) within the ink output, multiple lines
of C# code are needed:

Example 4 (InkStoryScript.cs):

void UpdatePanel()

{

DestroyChildren(OptionsPanel.transform);

string inkOutput = InkStory.ContinueMaximally();

if(inkOutput.Contains(":"))

{

string[] splitInkOutput = inkOutput.Split(':');

splitInkOutput[0] = splitInkOutput[0].TrimEnd(':');

SpeakerNameText.text = splitInkOutput[0];

InkOutputText.text = splitInkOutput[1];

}

else

{

SpeakerNameText.text = "";

InkOutputText.text = inkOutput;

}

}

Example 4 now detects whether a colon (:) exists in the output using the Contains()
method. If it does, the string is split into two parts using the Split() method. The colon
(:) is then trimmed from the first (0) string using the Trim() method and its value is
then used for the speaker's name. The second (1) string is used for the output of Ink.

The result of this new code appears to be the same as the previous section. However, it
uses speech tags to mark who is speaking and when. This makes it easier to test the ink
code outside of Unity, as hashtags in ink have no meaning in Inky. However, this approach
also comes with the issue that a colon (:) can only appear as part of the speech tag. If the
text contains a colon, the C# code might become confused and attempt to split the text as
though it contained a speech tag instead.

184 Dialogue Systems with ink

In the next section, we will compare each of the approaches outlined earlier:

•	 The first approach, using hashtags in ink, allows us to add extra data to a single line
and then use the currentTags property to retrieve this in the C# code.

•	 The second approach, using speech tags directly in the text, makes the ink code
easier to test but creates a need for more C# code to parse the resulting ink.

As we will mention in the next section, there might be contexts in which both approaches
can be combined.

Reviewing approaches to tagging dialogue
In ink, hashtags add extra data per line. They can be used, as we learned in the Tagging ink
text section, to add hashtags to each line of dialogue and then retrieve this data using the
currentTags property in C# code as part of a Unity project. However, hashtags in ink
come with two issues. The first is that they can only be used per line. The second is that
only one tag per line can be used at a time. This makes hashtags very useful, for example,
in the task of adding who is communicating to the line, but it also means they can only be
used once per line.

Dialogue can be directly marked using speech tags in the text. As we learned in the Using
speech tags section, a colon can be used to mark who the speaker is and what they are
communicating. This can be very useful for testing in Inky, as the speaker and their lines
are closely connected and appear together. However, using speech tags in ink requires
additional C# code to understand the output. Additionally, it means the colon can only be
used as part of speech tags, as any other user might create confusion.

Both approaches have benefits and potential obstacles when used separately. However,
there are also contexts in which both approaches might be combined to present the name
of the speaker using speech tags and to convey extra data using a tag in ink at the same
time. For example, many games not only present text to a player but also use audio, video,
or some type of animation closely linked to the text itself. In these cases, the text could
contain a speech tag and the ink code could also use tags to signal that additional media
should be played as part of the combined delivery of the dialogue to a player.

For games with spoken dialogue lines, it is very common to use a database or
a spreadsheet of the text line and its corresponding audio based on a naming convention
as part of the same row. Depending on the team, company, and other factors, the naming
convention might use specific formatting or numbers, but a general example might
include the type of audio, the character's name, their state of mind or emotion, and any
additional information for the context, level, or area of the game:

dialogue_diana_happy_desert.mp3

Writing dialogue in Ink using tags 185

Because ink hashtags can add extra data, a single line within the ink code can use speech
tags to mark who was communicating and then use the hashtag after the line with the
media file to play. Such code will combine both approaches.

Reminder
The completed project for this section can be found inside the Chapter 10
examples on GitHub under the name of Chapter10-CombiningTags.
Only selected parts of the code will be shown as they relate to the concepts
examined in this section.

The ink code in the Chapter10-CombiningTags example uses the combined
approach. It includes both the name of the speaker preceding the dialogue lines and the
use of a hashtag with the corresponding media file or reference to be used when the line is
shown:

Example 5 (InkCombiningTags.ink):

Diana: I love the desert! #dialogue_diana_happy_desert

* [\[Continue\]]

-

Diana: But I hate how hot it gets! #dialogue_diana_sad_desert

* [\[Continue\]]

-

Diana: Perhaps I'm just fickle. #dialogue_diana_shrug_desert

* [\[Continue\]]

-

For simplicity, the project for this section only displays the text of the hashtag. By adding
an extra Text game object and associating it with an existing property, the adjusted
C# code will incorporate the changes to parsing speech tags along with the usage of the
currentTags property:

Example 6 (InkStoryScript.cs):

if(InkStory.currentTags.Count > 0)

{

MediaText.text = InkStory.currentTags[0];

}

186 Dialogue Systems with ink

else

{

MediaText.text = "";

}

In Example 6, the new code tests for the number of entries in the currentTags
property. If it contains at least one hashtag, the first (0) entry is used as text for a Text
game object. When run, the project shows the speaker, their communication, and the
name of the media file that will be played or used as part of the dialogue in a smaller font.

In the next topic, we will recreate some common patterns found in video game dialogue.
We will learn how to create a click-to-continue pattern as well as more complex dialogue
trees for players to explore. There will also be advice for those starting new projects on
how to plan and then allow the code in ink to guide you to create an interface in Unity.

Dialogue loops and story knots
Writing dialogue in ink often means being aware of how it will be used with other systems.
In the previous section, we investigated two approaches to using tags when writing single
lines of dialogue. In this topic, we will move away from a focus on individual lines and
work with the larger structures within an ink project. By inspecting two common patterns
in which to present choices to a player, we will learn how knots in ink can be reused
within projects to save future time and effort. The last section in this topic also includes
advice for starting a new project or converting it using ink.

Because it appears most often, we will begin with a pattern that appears in the Writing
dialogue in ink using tags section as part of the ink code examples using tags: click
to continue.

Click to continue

Reminder
The completed project for this section can be found inside the
Chapter 10 examples on GitHub under the name of Chapter10-
ClickToContinue. Only selected parts of the code will be shown as they
relate to the concepts examined in this section.

There are many repeating patterns found in video game writing. One of the most common
is the click-to-continue pattern. This is the presentation of information across a series
of messages to a player, where they must press a button or click on the screen to progress
through them.

Dialogue loops and story knots 187

In ink, one way to create the click-to-continue pattern is with a single choice and then,
usually, a gathering point to collapse the weave right after it. In its most simplistic form, it
only contains these concepts and a single word to indicate an action, such as Continue:

* [\[Continue\]]

-

Breaking out the click-to-continue code into a knot allows a writer to reuse the same
section multiple times by writing it once and then tunneling to it and back again when
needed. In an extended example, the use of a specific knot for this purpose saves more
lines of code the more times it appears:

Example 7 (InkClickToContinue.ink):

Guard: Sir! A dragon! There's a dragon!

-> continue ->

King: What? Are you sure?

-> continue ->

Guard: Let me check!

-> continue ->

Guard: Just a large bird, turns out.

-> continue ->

Guard: Sorry, sir.

-> continue ->

== continue ==

+ [\[Continue\]]

-

->->

In the code for Example 7, the continue ink knot is reused multiple times. Each
usage tunnels to the knot and returns. This allows the code to decrease the number of
overall lines.

188 Dialogue Systems with ink

Based on the structure in ink, the amount of C# code can also be reduced. The pattern
in the ink code can be reflected in a simplified technique in the C# code by providing
a method and attaching to the overall panel holding two Text game objects:

Example 8 (InkStoryScript.cs):

void UpdatePanel()

{

SpeakerNameText.text = "";

InkOutputText.text = "";

string inkOutput = "";

if (InkStory.canContinue)

{

inkOutput = InkStory.ContinueMaximally();

}

if (inkOutput.Contains(":"))

{

string[] splitInkOutput = inkOutput.Split(':');

splitInkOutput[0] = splitInkOutput[0].TrimEnd(':');

SpeakerNameText.text = splitInkOutput[0];

InkOutputText.text = splitInkOutput[1];

}

else

{

SpeakerNameText.text = "";

InkOutputText.text = inkOutput;

}

}

public void ProgressDialogue()

{

if(InkStory.currentChoices.Count > 0)

{

InkStory.ChooseChoiceIndex(0);

Dialogue loops and story knots 189

}

UpdatePanel();

}

In the new Example 8 code, the ProgressDialogue() method is used by a Panel
game object as part of an EventTrigger component:

Figure 10.3 – Event Trigger on the Panel game object

By associating the ProgressDialogue() method with the Panel game object, you
can click on a visual representation of a dialogue. This then loads the next part of the
click-to-continue pattern based on the ink code.

While the click-to-continue pattern is the most common, there is another, more advanced
pattern found in many role-playing games and narrative-heavy interactive projects:
dialogue trees. In this pattern, multiple options are presented with each expanding out to
separate branches of dialogue for players to explore. In the next section, we will learn how
to create this pattern in ink and how new options can be easily added to branches.

Counting choices for trees
In ink, a weave is composed of one or more choices. Depending on the code following
each choice, multiple levels can be created, and the flow of an ink story can branch off into
different paths. When it comes to presenting options, there are often contexts where a user
will progress through what is known as a dialogue tree. The use of the word tree is named
after the shape created by the different parts, or branches, with all of them together as a
single trunk.

Often, in role-playing and narrative-heavy games, this pattern appears as part of a scene
with information about an event or as part of a character explaining something to a player.
In these scenarios, the normal use of weaves does not quite work as intended. Instead
of needing to pick a single choice among a set, we need to progress across the collection
instead. For this, a special built-in ink function is required: CHOICE_COUNT().

190 Dialogue Systems with ink

The ink runtime keeps track of the current number of options within the loaded chunk.
This number can be accessed as part of the CHOICE_COUNT() ink function. When used
as part of a conditional option in ink, this allows an author to limit the number of options
presented to a reader by comparing the current count with the value returned by the
CHOICE_COUNT() function. However, to keep track of values across loops, a variable
is required:

Example 9 (oneBranch.ink):

VAR count = 0

-> loop

== loop

~ count = CHOICE_COUNT()

* {limitChoice(count)} This is the first

* {limitChoice(count)} This is the second

* {limitChoice(count)} This is the third

+ Return

- -> loop

== function limitChoice(localCount) ==

~ return localCount == CHOICE_COUNT()

The use of the count variable in Example 9 records the current choice count at the
start of the loop. Then, for each choice in turn, the value is compared with the increased
number of uses of the choice before the comparison. The effect is the loading of each
choice, in turn, from the set. At the beginning of the loop, the This is the first
option will be provided. The use of a gathering point will automatically loop the code. This
will continue until there are no choices left except the sticky choice of Return. This last
choice will always remain and allow the player to either close the dialogue or return to a
previous point.

This model can be extended into multiple branches as well. For each tree, there needs to
be a separate knot or stitch with tunnels used to move between to maintain the flow of the
ink story. The use of multiple sections with their choice counts also means using another
ink concept: temporary variables. The temp keyword can be used inside any knot or stitch
to create a variable that does not exist outside of it:

Example 10 (multipleBranches.ink):

-> loop

== loop

Dialogue loops and story knots 191

<- tree1.branch1

<- tree1.branch2

+ \[Close\]

 -> DONE

- -> loop

== tree1

= branch1

~ temp count = CHOICE_COUNT()

* {limitChoice(count)} Branch 1, first

* {limitChoice(count)} Branch 1, second

* {limitChoice(count)} Branch 1, third

- -> loop

= branch2

~ temp count = CHOICE_COUNT()

* {limitChoice(count)} Branch 2, first

* {limitChoice(count)} Branch 2, second

* {limitChoice(count)} Branch 2, third

- -> loop

== function limitChoice(localCount) ==

~ return localCount == CHOICE_COUNT()

In the preceding code for Example 10, each branch is broken out into its own stitches
within a larger collected knot. Starting with the loop knot, threads are used to pull in
the two stitches and create a unified appearance of options from two different parts of
the code.

Depending on the structure of the project, the CHOICE_COUNT() ink function can be
used to limit one choice per set, in order, or a more traditional collection can be created.
Each of these approaches provides different ways in which to create a dialogue tree for a
player to explore. They can either exhaust each option one after another or use tunnels to
pass the flow to the knot containing the tree structure and then back again.

In this section, we examined two different structures for dialogue systems: click-to-
continue and dialogue trees. In the last topic in this chapter, we will finally transition from
ink structures into their visual representations in Unity. We will examine two models for
presenting options to users: lists and radial menus. We will determine when each is best
used and how the models affect both the structures in ink and the designs in Unity.

192 Dialogue Systems with ink

User interface models for conversations
There is a long history of presenting dialogue options to players in video games and other
interactive projects. From the earliest text prompts to complicated layers of menus in more
modern video games, each generation of video game systems has introduced different
methods of presenting information. However, two general models appear in many games:
lists and radial menus. They can be explained as follows:

•	 Based on the original presentation of one choice after another in a vertical
arrangement, the list pattern first appeared in early computer games and continues
in visual designs where there is more space to show a variety of longer-text options
to a player.

•	 The second model, the radial menu pattern, generally appears as part of role-
playing games on video game consoles or mobile game spaces where there is limited
visual space and, thus, options are arranged in a circle for easy access when using
a controller.

In the first section, we will start with lists. As we have already mentioned in multiple Unity
examples across this book, and in earlier topics in this chapter, the vertical arrangement of
options is a very common approach. However, we will discuss some common pitfalls when
using this model and review several examples where they are best used and others where
you might want to avoid them before we move on to cover the radial menu model next.

Listing dialogue options
There is one question we should ask when considering the user interface model of a list:
how much visual spacing is allowed for each option? In computer games focused on
text or with narrative-heavy designs, the list model is often the best to use. However, the
reason for this is based not on computer games themselves, but on the assumed input
peripherals used with the system. Often, computer games use the mouse as a primary
input. This means a user can click on various things and scroll through a long list of
options. Because the user is accustomed to this form of input and is willing to move
through a longer presentation of text, the list is often a great model to follow.

Reminder
The completed project for this section can be found in the Chapter 10 examples
on GitHub under the name of Chapter10-ListingOptions. Only
selected parts of the code will be shown as they relate to the concepts examined
in this section.

User interface models for conversations 193

In some role-playing or visual novel-based video games, the player might be presented
with many options based on their past associations with other characters, political parties,
or organizations. The number of options might also be influenced by certain skills, traits,
or other in-game perks that grant the player additional benefits within dialogue selection.
The Chapter10-ListingOptions project is based on such a premise.

In the dialogue presented in the ink code, the player is aboard a passenger ship and on
their way to another city where they encounter another character in a crew-only area.
There are multiple programmed options for the player to consider, as follows:

Example 11 (InkListingOptions.ink):

You sneak into the crew-only area. After you close the door,
a man quickly stands up from what he was doing on the floor.
Behind him seems to be a corpse on the floor.

* "Just give me any money you have, and I won't tell the
captain you have been murdering on his ship."

* "Is that dark magic!? I'll go to report you to the captain
right now!"

* "I don't care what you are doing in here. Leave. Now."

* \[Necromancer\] "Praise the Bone Mother! What foul sorcery
have you been up to? And can I help?"

* "Oh, gosh. I totally forgot to clean up that body earlier. I
guess I must kill you now too."

* \[Ignore them.\]

Because of the amount of visual space taken up by the dialogue selection in the code for
Example 11, the multiple options extend off the screen. The player must scroll down and
carefully read over the list in order to consider their choice. Such an interface works well
in visual designs with a heavy narrative focus or on platforms such as desktop computers
where the user might feel comfortable reviewing everything before making a final decision
when progressing through a dialogue tree. However, this is not the only model a developer
might want to use.

In the next section, we will examine the radial menu pattern. Popularized by role-playing
games on video game consoles where the number of inputs is limited, the radial menu
pattern presents not only a design challenge but a writing one as well. As we will explore
in more detail, the radial menu pattern limits the amount of text that appears on the
screen and forces a developer to make sure the intent of a single word or phrase conveys
the outcome the player will experience when choosing an option.

194 Dialogue Systems with ink

Presenting a radial menu for dialogue
Many video game controllers have at least one joystick and a limited number of buttons.
Because of this reduced set of inputs, designing a user interface for a player to decide
between multiple options often means presenting options arranged in a clockwise pattern
on the screen. More commonly, this visual design pattern is called a radial menu. This
term takes its name from the mathematical concept radius, which is the distance from the
center of a circle to its perimeter. A radial menu shows options based on a circular pattern.

Reminder
The completed project for this section can be found in the Chapter 10 examples
on GitHub under the name of Chapter10-OptionWheel. Only selected
parts of the code will be shown as they relate to the concepts examined in this
section.

Demonstrating a common use of the radial menu, the Chapter10-OptionWheel
example presents a scene where a player must confront a door and has multiple skills
based on their in-game statistics. The outcomes for each option are represented by the
name of the statistic:

Example 12 (InkOptionWheel.ink):

* [Strength]

 You kick the door down.

* [Intelligence]

 With a careful touch to two places where the wood has
 rotted, the door falls flat.

* [Wisdom]

 You reach over and turn the knob. The door opens.

* [Charisma]

 You turn to your companions and nod towards the door. One
 of them opens it for you.

In the code for Example 12, there are four options, each with the name of an example
game statistic. When arranged in a simplified radial pattern, they might appear as the
following in Unity:

User interface models for conversations 195

Figure 10.4 – The arrangement of dialogue options as a simplified radial menu

The radial menu pattern comes with the built-in limitation of reduced visual space.
As mentioned in the Listing dialogue options section, the visual space given to the
presentation of the options dictates how the information is presented. For the radial menu
model, this is even more true.

As with the code for Example 12, the options presented on the screen must be matched
to either the in-game statistics or the known outcomes to the player. For example,
a player might know that if they select a certain icon, it will match a certain action. In
these scenarios, they will be limited to no words in Ink to represent the option, with Unity
taking more of the load to represent the option to the player as part of the user interface.

In this section, we reviewed the radial menu pattern. Presenting options in a clockwise
arrangement, this pattern most often appears as part of a dialogue system for video game
consoles with controllers or as part of a visual design with limited visual space. However,
the use of the pattern has a direct effect on how options are written in ink. In one pattern,
that is, lists, longer sentences can be included, but a player might not see all of them at
once. For the other model, that is, the radial menu pattern, the options are only single
words or perhaps even icons that represent more complex reactions.

196 Dialogue Systems with ink

Summary
In this chapter, we explored three different approaches to dialogue systems. In the first
approach, we worked through hashtags and speech tags. In ink, we can add a hashtag to
the end of a line. This allows you to add extra information per line such as the speaker for
a line of dialogue or which media file to play for the line. With speech tags, a colon (:) can
be added in front of the dialogue to mark the speaker. The speech tag helps with testing
with Inky but requires more C# code in Unity. Hashtags and speech tags can be combined
in various contexts where the hashtag can represent the media file or additional data for
the developer whereas the speech tag contains who is communicating the line.

In the second approach, we zoomed out from the line-by-line emphasis with tags to the
structures within ink. To replicate a click-to-continue pattern, we can combine a knot and
the use of tunnels in ink. This is also true of dialogue trees, which we can break out into
their own stitches within a larger knot. We also learned about the use of the CHOICE_
COUNT() ink function and how to progress through a set of options.

In the final approach, we zoomed out from ink to consider visual designs in Unity and
how they affect the writing of dialogue. The pattern used, whether a list or radial menu,
will dictate how dialogue is created within ink. For a list, where each option can include
multiple lines of text, a player will only see a limited selection at a time. For the radial
menu pattern, where options are presented in a clockwise pattern on the screen, the
dialogue within ink will be limited or nonexistent. In either case, the visual space for user
interface elements directly affects how options are presented to a player.

In Chapter 11, Quest Tracking and Branching Narratives, we will move from smaller
dialogue systems to the much larger ones of quest tracking and creating branching
narratives. While many video games often present dialogue to a player, some track
multiple values over longer periods. We will examine how the LIST ink keyword can
be used to track quest progression and how larger ink projects can be broken up across
multiple files for easier asset maintenance.

Questions
1.	 What is a hashtag in ink?
2.	 What are the differences between a hashtag and a speech tag?
3.	 How did the term dialogue tree get its name?
4.	 What is a list pattern?
5.	 What is a radial menu pattern?

11
Quest Tracking
and Branching

Narratives
In this chapter, we will review how to create an ink template for quests, track multiple
quests based on this template, and show the player the values of variables across quests.
In the first section, we will create an ink template and its required sections. Next, we will
improve the ink template and create a Quest class to track multiple quests progressing
independently from each other. Finally, we will show the player the results of progressing
quests and view the values of change during this progression.

Many larger or narrative-focused video games are composed of separate quests for the
player to complete. This chapter will provide a template for creating quests in ink and will
also show you how to access and manipulate this template in Unity. Using multiple quests,
a branching narrative approach is possible by allowing a player to progress through each
quest separately, as explained in this chapter.

198 Quest Tracking and Branching Narratives

In this chapter, we will cover the following topics:

•	 Making a quest count

•	 Tracking progress across multiple quests

•	 Displaying and awarding player progression

Important
Each topic in this chapter has a separate, completed Unity project. Each topic
includes instructions that state the name of the project and where to find it.

Technical requirements
The examples in this chapter have been divided into folders per project and can be found
online on GitHub: https://github.com/PacktPublishing/Dynamic-Story-
Scripting-with-the-ink-Scripting-Language/tree/main/Chapter11.

Making a quest count
In narrative terms, a quest is a series of events connected to a character within a story. In
video games, quests are a sequence of connected events experienced by the player. In role-
playing games, a quest might include unlocking a weapon, rescuing a prince, or defeating
some great evil. Each point along the way is a step of the quest. Translated in terms of
story and code, a quest can be thought of as a series of steps where the resolution of each
step unlocks the next.

ink supports this pattern of smaller parts within a larger whole as stitches within a knot.
Thought of in this way, each step of the quest can become its own stitch within the code,
with the outcome of each stitch being able to move to the next within the larger structure.
Using LIST in ink also allows us to define the steps we want by name, with a special knot
progressing the player from one stitch to the next within the quest structure.

In this section, we will learn how to design a quest template in ink and access its values
in Unity across one single project, with each section building on the previous one:

•	 In the first section, Creating a quest template in ink, we will review how to use this
pattern and the built-in automation available by using existing Ink functions.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter11
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter11

Making a quest count 199

•	 In the second section, Choosing specific knots in Unity, we will move away from ink
and look at Unity. Here, we will examine how to run the template in ink, as well as
some potential issues to be aware of when using certain Story API methods.

Reminder
The completed project for this section can be found in the Chapter 11, examples
on GitHub folder, under the name Chapter11,QuestProgression.
Only select parts of the code will be shown as they relate to the concepts
examined in the sections of this topic.

Now let us understand the next topic where we will create a quest template.

Creating a quest template in ink
ink stories are composed of different sections. In Chapter 1, Text Flow, Choices, and
Weaves, we learned how ink breaks code into different sections called knots. Inside these,
subsections can be defined called stitches. In Chapter 2, Knots, Diverts, and Looping
Patterns, the concept of diverts was introduced, which are used to move between knots
and their stitches. By putting these ideas together while using variables that use the VAR
and LIST keywords in ink, which we did in Chapter 4, Variables, Lists, and Functions, we
can create a quest that's composed of a series of steps:

LIST stages = (one), (two), (three)

VAR stage = one

VAR end = false

This code creates a list named steps, a variable named step, and a variable named end
in ink. These three values keep track of the quest's progression. The name of each step in
the quest is added as an entry to the list, with the first used as the value of the stage
variable:

You meet an old man by the side of a dusty road with a wide hat
set out in front of him. "Got any change?"

* [Sure]

 -> quest

* [Not today]

 -> quest.stop

200 Quest Tracking and Branching Narratives

The player is presented with their first options: Sure and Not today. If the first is
selected, the flow moves into the quest knot. If the second is selected, the flow moves to
a stitch inside of the quest knot named stop:

== quest

{step:

 - one: -> first

 - two: -> second

 - three: -> third

}

-> DONE

The names quest and stop were chosen specifically. The use of the word quest helps in
understanding the code as part of a template for other quests. As will be outlined in the
next section, Tracking progress across multiple quests, multiple Story objects can exist at
the same time in Unity. In this case, the word is used to show the pattern.

The quest knot contains the central logic of this pattern. Because the entries in a LIST
in ink are Boolean values (either true or false), a multi-line comparison is used, where
the order is important. The list named steps contains three entries, each of which are
initially set to true. When the quest knot is first encountered, it will move the flow to
the stitch named first:

= first

You empty some coins from your pocket and the old man nods.
"Thanks, stranger! May the gods bless you!"

-> DONE

The first stitch contains an unusual ending. The use of the DONE keyword usually
signals that the story is over in ink. However, in this case, the DONE keyword is used to
signal that the step is done. Instead of diverting to the quest knot or another section,
the story seemingly stops. Progression happens using a combination of the LIST_MIN()
function and the subtraction (-) operation for lists in Ink:

== progress

~ steps -= LIST_MIN(steps)

~ step = LIST_MIN(steps)

-> quest

Making a quest count 201

Within the progress knot, each entry is removed (subtracted) and the top (minimum)
value is used as part of the step variable. Each use of this knot progresses the quest by
removing a step from the list and then using the top remaining one each time. However,
the knot itself is not accessed directly. Instead, it is used externally by Unity.

In this section, we learned how each step can be divided into stitches as part of a knot
named quest. By using a LIST and different variables in ink, progress can be tracked
across the quest. In the next section, we will learn how an ink template can be used as
a series of steps to access the progress knot externally in Unity.

Choosing specific knots in Unity
Different methods and properties of the Story API provided by the ink-Unity Integration
plugin were covered in Chapter 7, Unity API – Making Choices and Story Progression,
and Chapter 8, Story API – Accessing ink Variables and Functions. However, what was not
covered in those chapters was a useful but potentially very dangerous method named
ChoosePathString(). In this section, we will look at an example of how this method
can be used safely.

Internally, the ink runtime uses the term "path string" to describe any knot that is part of
a story. When loaded, these can be accessed by using the ChoosePathString()
method, which forcibly moves the story to that section. In most cases, this is unwanted
behavior, as its use will disregard any existing tunnels or threads. It can be thought of as
ripping the flow away from wherever it was and dropping it into a new location.

As part of the ink runtime, variables are global. This means that while their values
might be changed as part of the flow of a story, they exist outside of it. The values of
variables are maintained despite any uses of the ChoosePathString() method. In
other words, by carefully avoiding any structures that might be disrupted by its use, the
ChoosePathString() method can be carefully used in projects.

In the previous section, the ink progress knot was introduced. To choose this path
string in Unity using the ChoosePathString() method, only its name is needed:

public void Progress()

{

 InkStory.ChoosePathString("progress");

 FlipProgress();

 UpdateContent();

}

202 Quest Tracking and Branching Narratives

When the ChoosePathString() method is used with the progress ink knot, it does
disrupt the flow of the story that's kept within the InkStory C# variable. However, as
we learned, the values of variables are maintained throughout the story because of their
global nature. The use of the progress ink knot progresses the quest to its next step by
updating the variables each time.

The code also includes calls to two other methods: FlipProgress() and
UpdateContent(). The first method sets a Button game object in Unity to inactive
by using the SetActive() method in Unity. When a game object is turned off (set to
inactive) in Unity, it does not appear on the screen. This code effectively sets the game
object to appear as needed and to disappear when the player is selecting dialogue options:

void FlipProgress() {

ProgressButton.gameObject.SetActive(!ProgressButton.gameObject.
activeSelf);

}

The second method, UpdateContent(), follows the pattern we first introduced in
Chapter 7, Unity API – Making Choices and Story Progression, where a Prefab is used to
dynamically create Button game objects as needed:

void UpdateContent()

{

 DestroyChildren(OptionsPanel.transform);

 DialogueText.text = InkStory.ContinueMaximally();

 foreach (Choice in InkStory.currentChoices)

 {

 Button choiceButton = Instantiate(ButtonPrefab,

 OptionsPanel.transform);

 choiceButton.onClick.AddListener(delegate

 {

 InkStory.ChooseChoiceIndex(choice.index);

 FlipProgress();

 UpdateContent();

 });

 Text choiceText =

 choiceButton.GetComponentInChildren<Text>();

Tracking progress across multiple quests 203

 choiceText.text = choice.text;

 }

}

In this section, we learned how to create a template for quests in ink. Using a knot and
then individual stitches for each step, the parts were divided into different sections.
Next, we looked at the progress ink knot. After that, we looked at Unity and using
the ChoosePathString() method. While it can be potentially dangerous with larger
projects using more advanced techniques, using variables in the ink quest template helped
maintain their values. Finally, at the end of this section, the ChoosePathString()
method in Unity was paired with the progress knot in ink. By using this knot, the Unity
code could progress the quest, with ink updating its internal variables.

In the next section, we will continue with the pattern we looked at in this section by
extending part of the quest template in ink and creating Quest and Dialogue classes in
C#. These will allow us to track multiple quests at the same time.

Tracking progress across multiple quests
In the previous section, we created an ink template for a quest and then moved into Unity
to create the user interface to progress the quest using the ChoosePathString()
method. This forced the flow within ink to move to a specific location. In this section, we
move beyond a single quest and start tracking multiple quests at the same time. To do
this, the ink template needs additional variables. For this, we will need the Quest and
Dialogue classes in C#. We also will depart from using a single ink file and start using
multiple files. For every quest, we will create a separate file and use the Quest class to
track the progress of each in Unity with the Dialogue class, which handles creating
options for a player to choose from during each step in the quest.

First, we will update the ink template with a new variable we will access later in Unity.
Then, we will create the Quest and Dialogue classes in Unity. After that, we will access
multiple ink files in Unity to present an interface containing multiple quests. Finally, we
will allow a user to toggle between quests and progress them independently of each other.

Reminder
The completed project for this section can be found in the Chapter 11 examples
on GitHub folder, under the name Chapter11-MultipleQuests. Only select
parts of the code will be shown as they relate to the concepts examined in the
sections of this topic.

204 Quest Tracking and Branching Narratives

Building on the ink quest template
As we saw in Chapter 8, Story API – Accessing ink Variables and Functions, we can access
ink variables that have been created with the VAR keyword using the variablesState
property in Unity. This allows us to retrieve the value of a variable based on its name. With
that in mind, the existing ink template can be expanded to include a new variable for each
quest – its name.

By understanding that the compiled ink files will be operated from Unity, we can
anticipate certain needs we will have with quests. For example, a quest usually has a name.
We can then define this variable alongside our existing values in Ink:

LIST steps = (one), (two), (three)

VAR step = one

VAR end = false

VAR name = "Old Man's Change"

Once we know that the name variable exists in ink, we can read it in Unity. However,
unlike what was shown in the previously section, we will need to observe the end ink
variable as well:

InkStory = new Story(text);

Name = (string)InkStory.variablesState["name"];

End = (bool)InkStory.variablesState["end"];

InkStory.ObserveVariable("end", delegate

{

 End = (bool)InkStory.variablesState["end"];

});

These small changes may not seem important, but by establishing a pattern where certain
variables exist (name and end) and all files containing quests will also have a knot named
progress (as defined in the previous section), we can write any quests we want if those
parts remain the same.

Once these variables have been prepared, we can start creating the Quest and Dialogue
classes, which will hold the values we defined in ink and read them in Unity.

Tracking progress across multiple quests 205

Making Quest and Dialogue classes in Unity
In the previous section, we combined a simple presentation of dialogue options with the
values and methods to progress the single quest presented. In this section, we will break
that functionality into two new classes in Unity: Quest and Dialogue.

Most of the Quest class was shown in the previous section. However, its purpose is to
hold a Story object and to expose a method named Progress() that internally calls
the ChoosePathString() method:

using Ink.Runtime;

public class Quest

{

 public Story InkStory;

 public string Name;

 public string Description;

 public bool End;

 public Quest(string text)

 {

 InkStory = new Story(text);

 Name = (string)InkStory.variablesState["name"];

 End = (bool)InkStory.variablesState["end"];

 InkStory.ObserveVariable("end", delegate

 {

 End = (bool)InkStory.variablesState["end"];

 });

 }

 public void Progress()

 {

 InkStory.ChoosePathString("progress");

 }

}

The Quest class is small because it is used by other classes. Its sole purpose is to
contain the quest (ink story) and provide a way to progress the quest (via the
Progress() method).

206 Quest Tracking and Branching Narratives

The new class, Dialogue, performs most of the work to create the Button game objects
needed and to remember what the last line of dialogue was as a reminder for the player.
Its UpdateContent() method looks like the example code that was first shown in
Chapter 7, Unity API – Making Choices and Story Progression, except for using the new
Quest class:

public void UpdateContent()

{

 DestroyChildren();

 if(quest.InkStory.canContinue)

 {

 DialogueText.text =

 quest.InkStory.ContinueMaximally();

 lastDialogue = DialogueText.text;

 }

 else

 {

 DialogueText.text = lastDialogue;

 }

With the updated ink template from the first section and the introduction of the Quest
and Dialogue classes in this section, two more parts are needed:

•	 Quests need to be based on compiled JSON files

•	 Players need to be able to toggle which quest they are progressing

In the next section, we will start with the first part by learning how to read files and
creating a new Quest class per file found.

Organizing multiple quest files
In the previous examples in this book, a single ink file was used per project. This section
will break away from that pattern. To track multiple quests, we will define each quest in
its own file and then read the compiled JSON files. The Quest class, which we looked at
in the previous section, will hold the contents and expose some of the values in each file.
The Dialogue class will create the options the player will see based on the Quest class's
values. First, however, we will need to read the files.

Tracking progress across multiple quests 207

This book follows the recommended naming convention of Unity folders and has placed
all the Ink files in a folder named Ink. Using the Compile All Ink Automatically option
in the Project Settings window, each created ink file will also contain a JSON file:

Figure 11.1 – Compiled JSON files in the Ink folder

Because Unity can run on many different operating systems, it exposes the Assets folder
(shown in the Project window) as part of a global property named Application.
dataPath. This is the path to the data, as part of the currently running application.
Based on this value, any additional folders can be found, and their files can be accessed:

void GetFiles()

{

 string inkPath = Application.dataPath + "/Ink/";

 foreach(string file in Directory.GetFiles(inkPath,

 "*.json"))

 {

 string contents = File.ReadAllText(file);

 quests.Add(new Quest(contents));

 }

}

By using the Application.dataPath property, each compiled ink file (JSON file)
can be read, and a new object based on the Quest class is created. This not only allows
each quest to operate independently of each other via their quest progression, but it also
exposes values that the Dialogue class can use to present different options to the player.

In the next and final section, we will write some code that will allow a player to toggle
between which quest is active for them and see the Quest and Dialogue classes
in action.

208 Quest Tracking and Branching Narratives

Toggling quests
In Unity, the Toggle game object allows a user to select a single item among a group
of items. For its usage in the project that's part of this section, a Toggle prefab must
be created. Like the usage of Button game objects, these are created as needed. As
each Toggle game object is based on an object using the Quest class, this means the
GetFiles() method (shown in the previous section, Organizing multiple quest files) is
run first, and the resulting quests are used to make the Toggle game objects:

void CreateQuestToggles()

{

 foreach(Quest q in quests)

 {

 Toggle questToggle = Instantiate(QuestTogglePrefab,

 QuestPanel.transform);

 questToggle.group =QuestPanel.GetComponent

 <ToggleGroup>();

 Text questToggleText = questToggle

 .GetComponentInChildren<Text>();

 questToggleText.text = q.Name;

 }

}

The CreateQuestToggles() method references a component named
ToggleScript. This is a Script component that is part of each Toggle prefab. Each
time one is created, its values are set:

ToggleScript ts = questToggle.GetComponent<ToggleScript>();

ts.quest = q;

ts.DialogueText = DialogueText;

ts.ButtonPrefab = ButtonPrefab;

ts.OptionsPanel = OptionsPanel;

ts.ProgressPanel = ProgressPanel;

ts.ProgressButtonPrefab = ProgressButtonPrefab;

Tracking progress across multiple quests 209

This process, starting with the GetFiles() method, creates objects based on the
Quest class first. Next, Toggle prefabs are created, and values are passed to its Script
component. Internally, the Toggle prefab creates an additional Script component
based on the Dialogue class:

dialogue = gameObject.AddComponent<Dialogue>();

dialogue.quest = quest;

dialogue.DialogueText = DialogueText;

dialogue.ButtonPrefab = ButtonPrefab;

dialogue.OptionsPanel = OptionsPanel;

The reason for this multiple-step process of creating objects based on the Quest class,
and then leading to the Dialogue class, is to allow each Toggle prefab to control what
is shown to the player:

Figure 11.2 – Quest selection and options shown to the player

Upon clicking on a Toggle prefab, its object is enabled based on the Dialogue class,
showing the current text and options to the player. These, in turn, are based on the Quest
class's values, as passed to the Dialogue class.

The combined effect of the code is to create separate quests. Depending on which is
active, as determined by each Toggle prefab selected by the player, they will see different
dialogue options and be presented with the ability to progress each quest independently of
each other at the end of each step. This combines the ink template that we created in the
first section with a multiple-quest approach, as shown in this section, which uses multiple
files and adds the ability to progress across individual quests, independent of each other.

210 Quest Tracking and Branching Narratives

In the next section, we will examine how to award player progression by passing
information between quests. This will build on the project we created for this section and
the concepts from the first section.

Displaying and awarding player progression
In programming, there are two approaches to accessing values in one system from
another: polling and events-based. Either a value can be checked if it has changed
(polling) or one system can wait for a message (event) from the other to signal that a value
has changed. Because the second system must wait for an event to happen, this is often
known as the observer pattern because the second system is observing events.

In the first section, we saw an example of polling in action. Each time a step of the quest
came to its end, the Unity code checked (polled) the ink values to see if it should show
a Button game object and allow the player to progress the quest. The second section
moved us closer to an events-based approach, where the ObserveVariable() method
was used within the Quest class. In the second project, whenever the end ink variable
changed, it updated the End property of the Quest class in Unity. As this value (the End
property) was used as part of determining whether the quest could progress, this made the
second project more dynamic than the one that was used in the first project.

To award a player for completing a quest or achieving some outcome as part of one
quest in another, information needs to be passed between them. Because the ink
runtime already supports an events-based approach via its ObserveVariable()
and ObserveVariables() named methods, this makes the process slightly easier.
However, as we introduced in the previous section, using a Quest class means each ink
story is now independent of each other.

In this section, we will start by creating a way for each Quest class to share changes as
they happen while a player is progressing them. We will end by learning how to show the
player this information as they complete different quests.

Reminder
The completed project for this section can be found in the Chapter 11 examples
on GitHub folder, under the name Chapter11-TrackingQuests. Only select
parts of the code will be shown as they relate to the concepts examined in the
sections of this topic.

Displaying and awarding player progression 211

Tracking quest values
The Story class method, ObserveVariables(), can track different variables based
on their names. However, the existing ink template contains the variables it uses to track
progression. This means that the first step of tracking quest values is to make a list of
variables to exclude from tracking as part of an expanded Quest class:

public Story InkStory;

public string Name;

public string Description;

public bool End;

public List<string> excludeVariables = new List<string>(){
"step", "steps", "name", "end" };

Next, all the variables contained in the variablesState property, excluding those in
the created list used to track quest progression, need to be tracked. This means that for
each variable, it can be added to a separate list to be passed to the Story method known
as ObserveVariables(). This can be part of the ObserveVariables() method, as
part of the Quest method, so that it matches the one on the Story class:

public void ObserveVariables(Story.VariableObserver callback)

{

 List<string> variables = new List<string>();

 foreach(string n in InkStory.variablesState)

 {

 if(!excludeVariables.Contains(n))

 {

 variables.Add(n);

 }

 }

 InkStory.ObserveVariables(variables, callback);

}

212 Quest Tracking and Branching Narratives

The new ObserveVariables() method that was added to the Quest class accepts
a single parameter, Story.VariableObserver. Internally, the Story class defines
a delegate method called VariableObserver. Using the same type for the new
method allows other methods to be passed through the Quest method to the Story
method of the same name. In other words, the new method works the same as the existing
one, but it will exclude a specific list of variable names.

While observing variables, there also needs to be a way to update the values of variables
across all quests whenever a value changes in one. Using the existing variablesState
property, a new method can be added to the Quest class named UpdateVariable():

public void UpdateVariable(string name, object value)

{

 if(InkStory.variablesState.GlobalVariableExistsWith

 Name(name))

 {

 if (!InkStory.variablesState[name].Equals(value))

 {

 InkStory.variablesState[name] = value;

 }

 }

}

Inside the UpdateVariable() method are two important checks. The first uses the
GlobalVariableExistsWithName() method. This method checks if a variable
exists. Without this check, if one quest added a variable another did not have, the entire
project could crash. The second check verifies whether the variable to be updated does not
already have the same value. Without this second check, updating a variable would trigger
a variable change in any other quests, which would trigger another update. This would
eventually cause a crash as quests would be trying to update each other in an endless loop.

Between the two new methods, ObserveVariables() and UpdateVariable(),
one more part is needed: the two methods must be combined. Based on the project from
the second section, Tracking progress across multiple quests, the InkStoryScript code
is the best place to add this combination. The reason for this placement is because this will
allow each quest to be configured as part of the existing loop:

foreach(Quest q in quests)

{

 q.ObserveVariables((name, value) =>

 {

Displaying and awarding player progression 213

 UpdateAllQuests(name, value);

 });

}

This new code references an additional method, UpdateAllQuests(). When passed
the name of a variable and its value, this new method works through the existing quests
and updates their values by calling UpdateVariable() per quest:

void UpdateAllQuests(string name, object value)

{

 foreach (Quest q in quests)

 {

 q.UpdateVariable(name, value);

 }

}

In this section, we have defined multiple new methods. We added two to the Quest
class called ObserveVariables() and UpdateVariable(). These detect changes
using the event approach. ink will signal to Unity when a variable in one of the quests
changes. We also added code to InkStoryScript by using a new method called
UpdateAllQuests(), which will update the same variable in other quests.

In the next section, we will finalize this project. Detecting changes and updating other
quests help keep all of them updated as changes happen. Next, we need to show data to
the player as changes happen.

Showing player progress
In the previous section, we created the necessary code to keep all the variables used across
quests updated. To show the player this data, we must add a new game object named
StatisticsText. Next, we need to use a special keyword in C#: static.

Any method or property using the static keyword in C# exists outside of any instances
of the class. This means that the property can be accessed or the method can be called
anywhere in the project. However, this comes with a major caveat: any static method
can only access static properties. To allow another class (Dialogue) to be able to
call a static method in InkStoryScript (which holds all the quests), the existing
quests and new StatisticsText variable must both use the static keyword:

public GameObject QuestPanel;

public Toggle QuestTogglePrefab;

214 Quest Tracking and Branching Narratives

public Text DialogueText;

public Button ButtonPrefab;

public GameObject OptionsPanel;

public GameObject ProgressPanel;

public Button ProgressButtonPrefab;

public static GameObject StatisticsText;

static List<Quest> quests;

With the quests and StatisticsText properties, they can be accessed by a new
method named ShowStatistics():

public static void ShowStatistics()

{

 StatisticsText =

 GameObject.Find("/Canvas/Right/StatisticsText");

 Dictionary<string, object> vars = new

 Dictionary<string, object>();

 foreach (Quest q in quests)

 {

 foreach(string s in q.InkStory.variablesState)

 {

 if(!vars.ContainsKey(s) &&

 !q.excludeVariables.Contains(s))

 {

 vars.Add(s,

 q.InkStory.variablesState[s]);

 }

 }

 }

 Text stats = StatisticsText.GetComponent<Text>();

 stats.text = "";

 foreach (KeyValuePair<string, object> entry in vars)

 {

 stats.text += entry.Key + ": " + entry.Value +

Displaying and awarding player progression 215

 "\n";

 }

}

The new ShowStatistics() method uses a Dictionary<string, object>.
This combines the name of the variable (string) with its value (object). However,
a Dictionary in C# comes with an obstacle: it can only contain unique keys. In the
ShowStatistics() method, the use of the ContainsKey() method prevents
this issue.

To set up a method that can be called by another class, the new ShowStatistics()
code must be placed within the Dialogue class as part of its UpdateContent()
method, after the creation of the Button game objects based on the current choices:

foreach (Choice in quest.InkStory.currentChoices)

{

 Button choiceButton = Instantiate(ButtonPrefab,

 OptionsPanel.transform);

 choiceButton.onClick.AddListener(delegate

 {

 quest.InkStory.ChooseChoiceIndex(choice.index);

 UpdateContent();

 });

 Text choiceText =
 choiceButton.GetComponentInChildren<Text>();

 choiceText.text = choice.text;

}

InkStoryScript.ShowStatistics();

The new code will always show the latest values of the variables as the values are updated.
Because each quest handles updating its variables based on an event-based approach, any
user action for making choices or selecting a quest will update all the values being tracked
by the project and constantly show player progression.

216 Quest Tracking and Branching Narratives

In this section, we awarded player progression by showing the player's the updated values.
We started by adding some code from the previous section to constantly update the
variables with the same names across all quests. This keeps all the quests connected. Then,
we created a ShowStatistics() method to show these values and updated a Text
game object with their names and values.

Summary
We started this chapter by creating an ink template. By defining variables and
a progress knot in ink, we can move through the various sections of a quest as
individual stitches within a larger knot. Next, we looked at the ChoosePathString()
method, which can forcibly move a story to a new section.

In the second section, we broke away from single files and developed a Quest class. Each
object based on the Quest class contained an ink Story object based on different files
and a method named Progress(), which calls the ChoosePathString() method
internally. As part of this section, we learned how the Quest and Dialogue classes can
help organize functionality into different classes.

Finally, we displayed the name and values of variables. First, we added new methods to
detect variable changes in any quest using an events-based approach. This triggered other
variables with the same name in other quests to have their values updated. Then, we added
the ShowStatistics() method to display these updating values.

In the next chapter, Chapter 12, Procedural Storytelling with ink, we will review the basics
of procedurally organizing different story sections and content. While looking at two
approaches, either coding values in ink or loading data into ink dynamically, we will
examine when one approach might be better, depending on the context.

Q&A
1.	 What is a quest?
2.	 What is the name of the knot that's used to progress a quest based on the ink

template shown in this chapter?
3.	 How does the ChoosePathString() method work?
4.	 What is the name of the global property where Unity records the path for the data

of the application?
5.	 What is the difference between polling and events-based approaches?

12
Procedural

Storytelling with ink
In this chapter, we will review procedural storytelling using ink and Unity. Inkle, the
company that created and maintains the narrative scripting language ink, has published
multiple games that combine ink and Unity. These games use procedural storytelling to
provide different experiences per session based on randomness and player choices. This
chapter will introduce approaches to achieving this same general result: loading values in
ink and coding collections in Unity.

In the first topic, we will review the term procedural storytelling more generally. Based on
concepts initially introduced in Chapter 3, Sequences, Cycles, and Shuffling Text, we will
learn how to use a shuffle in ink to create dynamic content based on simple rules.

Diving even deeper into ink, the second topic will demonstrate how to load values in ink.
This process focuses on using ink to generate content for players based on simple rules.

In the final topic, we will switch the emphasis from ink to Unity. We will use Unity to
load values and call functions in ink to process values instead. This approach uses more
complex code in Unity, but simpler code in ink.

218 Procedural Storytelling with ink

In this chapter, we will cover the following topics:

•	 Introducing procedural storytelling in ink

•	 Loading values into ink

•	 Coding collections in Unity

Technical requirements
The examples in this chapter can be found online on GitHub: https://github.
com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-
Scripting-Language/tree/main/Chapter12.

Introducing procedural storytelling in ink
The term procedural storytelling takes its name from another term, procedural generation.
The word "procedural" preceding "generation" means that content is created based on
a sequence of procedures; that is, rules. When referring to generating assets such as 3D
models or placing non-player characters within some world in a video game, the term
procedural generation applies. When discussing planning, generating, or dynamically
ordering content related to the story or experienced narrative of the player within an
interactive project, the better term to use is procedural storytelling.

Procedural storytelling occurs when a project uses rules to define how a player may
interact with or encounter parts of its story content. For example, if a project has a set of
rules to create dynamic names for its characters, a player in a science fiction setting may
interact with a generated character name of Neldronor, while a different player might
see the name Vynear for the same entity. Procedurally generating story content can also
extend beyond substituting names to deciding which quests a player may have access to,
when they encounter certain characters, or even the possible events that may happen in
their play session.

In this topic, we will cover three examples of simple patterns for understanding procedural
generation in ink based on randomness. The first, Random encounters, will explain how
to combine the use of a shuffle and threads in ink to create a listing of possible encounters
for a player. The second pattern, Weighted randomness, uses the same concepts as the first
pattern but defines the weighted probability a player might see some content. Both patterns
are easy ways to add simple procedural generation to an existing project without too much
disruption to its existing structure. The last section and pattern, Conditional content, will
cover using the previous actions and input from a player to influence which encounter
a player sees. It does so by using concepts from the two previous patterns.

https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter12
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter12
https://github.com/PacktPublishing/Dynamic-Story-Scripting-with-the-ink-Scripting-Language/tree/main/Chapter12

Introducing procedural storytelling in ink 219

Random encounters
Many tabletop role-playing games use a concept known as a random table. In the material
or book for the game, there is a table or list of possible things a player might encounter
in a location or scene. The person running the game would roll some dice, consult the
table to find the row matching the rolled number, and then tell the players what they
encountered. This system creates the possibility for random encounters. Based on the
random element of the dice, the player would see or interact with different things each
time they used the same table to generate content for their game.

Translated into a digital setting, the random tables of tabletop games can become a set of
possible encounters. In ink, we can create this using a shuffle and threads:

{shuffle:

 - <- encounter.animal

 - <- encounter.machine

 - <- encounter.person

}

Because the shuffle will always pick one of its entries at random, each thread has the same
probability of occurring. However, as is perhaps not as obvious, each possible encounter
is additional content. Unlike a much more authored experience without any procedural
storytelling functionality, even a simple addition such as a table of possible encounters
means creating new content per possible encounter:

Example 1:

{shuffle:

 - <- encounter.animal

 - <- encounter.machine

 - <- encounter.person

}

== encounter

= animal

You hear a soft thud and then see a face peering at you. The
sound starts as if it is a meow and then turns into language
the longer you listen. "Meee-Hello. Sorry. I'm not used to
talking to people.

-> DONE

= machine

The small machine buzzes to life in front of you. "Hi, there!

220 Procedural Storytelling with ink

I'm Ge8at10, but you can call me 'Great!'"

-> DONE

= person

You look around and see a man standing awkwardly against a
tree. He waves and then looks away before speaking. "Uh. Yeah.
Over here. Hi."

-> DONE

Example 1 demonstrates using a shuffle in ink containing three different threads as
a simple random encounter system. Each thread references a knot called encounter
with a stitch named after the kind of encounter, such as animal. Based on random
selection, the player would see one of three possible encounters.

Using random encounters, as defined within a shuffle, is an easy way to add simple
procedural storytelling in ink to a project. It does require adding extra content per entry
in the shuffle, but such a pattern can be the least disruptive to an existing project. It is also
possible to have additional sets and create more dynamic outcomes where a player might
encounter any number of things across multiple settings, contexts, or levels where each
usage is based on a shuffle and threads in ink.

In the next section, we will examine weighted probabilities as part of controlling the
randomness of a set of encounters. Instead of all entries having an equal probability
of occurring, as is the case when using a shuffle, there may be situations where certain
encounters should occur more often for players.

Weighted randomness
The shuffle is powerful functionality in ink. It allows us to create a set of possible entries
and then randomly select one. As was seen in the Random encounters section, a simple set
of possible encounters can be created; then, a shuffle can be used to select one as needed.

However, there may be situations where equally weighted probabilities are not wanted.
For example, a developer may only want a player to encounter a character 30% of the time
when traveling through a forest area in a game. For these situations, we want to weight the
randomness of encounters.

Introducing procedural storytelling in ink 221

In ink, the RANDOM() function allows us to define the range of random whole
numbers that are produced. If we wanted numbers between 1 and 10, we could use
RANDOM(1,10). Based on the number that's returned by the RANDOM() function, it is
possible to test values and only act if its result is in a certain range:

Example 2:

VAR percentage = 0

~ percentage = RANDOM(1,10)

{

 - percentage <= 3:

 <- encounter.brown_wizard

 - else:

 <- encounter.travel

}

== encounter

= brown_wizard

As you move through the forest, you encounter a strange man on
a sled driven by large rabbits. You talk for a moment before
the man moves away from you and deeper into the forest.

-> DONE

= travel

They travel through the forest.

-> DONE

In Example 2, the brown_wizard stitch is only encountered if the result from the use
of RANDOM(1, 10) is less than or equal to 3. This creates a 30% chance of the player
encountering this character. This is an example of a weighted probability. Instead of an
equal probability between the two encounters, one is weighted more than the other.
The travel stitch is more likely to be encountered by the player than the other stitch,
brown_wizard.

In the previous section, Random encounters, we learned how to create different content
within stitches and select them with equal probability using a shuffle. In this section, we
controlled this randomness using a weighted probability with the RANDOM() function
in ink.

In the next section, we will combine this and the previous pattern for conditional content.
Based on the previous options that were selected by a player, we can influence what the
player encounters using both randomness and by comparing other values.

222 Procedural Storytelling with ink

Conditional content
In projects that don't use randomness, it is very common to use conditional blocks or
choices to respond to what the player selects and how they are progressing through
a story. As we saw in the Random encounters and Weighted randomness sections, we can
also use shuffles and the RANDOM() function in ink to shape a story. In this section,
we will look at an example of using both concepts together to create more complex
procedures to generate connections between content for players.

In the previous section, Weighted randomness, we saw how we can create a set of different
conditional statements within a block to control what the player encounters next. In
Example 2, this was the weighted outcomes of either the brown_wizard or travel
stitch, with the travel stitch more likely to be seen by the player. However, players rarely
want to only read the text in a game. They want to have some input over what happens as
part of a story.

By using labels with choices in ink, we can test whether a player selects a particular option
and then influence the weighted outcome for the player:

Example 3:

VAR percentage = 0

A vast forest stretches out before you and alongside the forest
is a winding river.

* (travel_forest) [Enter the forest]

* (travel_river) [Travel by river]

-

~ percentage = RANDOM(1,10)

{

 - percentage <= 3 && travel_forest == 1:

 <- encounter.brown_wizard

 - percentage > 3 && travel_forest == 1:

 <- encounter.travel

 - travel_river == 1:

 <- encounter.river

}

== encounter

= brown_wizard

As you move through the forest, you encounter a strange man on
a sled driven by large rabbits. You talk for a moment before

Introducing procedural storytelling in ink 223

the man moves away from you and deeper into the forest.

-> DONE

= travel

They travel through the forest.

-> DONE

= river

You travel down the river safely.

-> DONE

Example 3 is an updated form of Example 2. However, instead of merely showing text, the
player is presented with two options within a weave. Depending on which one they select,
the story then branches along two possible paths. In the first, if the player chooses to
travel in the forest, there is a 30% chance they will encounter a character. In the second, if
a player chooses to travel by the river, they will not encounter the character.

While some projects might use shuffle or weighted options, many more incorporate player
selections and past choices with randomness. This not only gives the player more control
over what they are experiencing, but it also allows the author to craft a story, along with
certain predictable outcomes. Instead of trying to account for multiple outcomes when
only using a shuffle, the use of the weave and its limited number of options shapes the
possible paths of future encounters. Because there are only two options in the wave, there
are only two possible main branches, with the weighted randomness only affecting one
and not the other.

In this topic, we have examined three different patterns for introducing or adjusting
simple procedural storytelling rules in ink projects. In the first section, Random
encounters, we learned how to create a set of equally weighted entries using a shuffle with
threads to pull in different story content. In the second section, Weighted randomness, we
explored how to control randomness with weighted outcomes where one outcome was
more likely than another.

In the last section, Conditional content, we combined randomness with the result of
players selecting options and investigated how to create seemingly more advanced rules,
where the number of choices within a weave has a stronger influence on the shape of the
story than the randomness contained within any one branch.

In the next topic, we will look at more complex patterns. For many projects, ink will be the
driving force behind content generation and how the project uses procedural storytelling.
We will look at how to load values into ink as part of examining how to write a grammar
for stories, and then plan how players will encounter its different parts in dynamic ways.

224 Procedural Storytelling with ink

Loading values into ink
The procedural aspect of procedural storytelling can exist either primarily in ink or Unity.
In this topic, we will examine the process of loading values into ink. We will center
a design focused on letting ink make procedural decisions about what content a user
might see or interact with during a play session.

In the first section, Substitution grammars, we will consider how to use what we learned
in the previous section, Introducing procedural storytelling in ink, to build a set of possible
events for a player. This will lead us into the next section, Story planning, where we will
apply rules to the grammars themselves. This will allow us to control how different sets of
encounters are influenced by previous ones, creating simple formulas for complex stories.

Substitution grammars
In linguistics, grammar describes the rules that define how a language works. For
example, in English, there is a specific order of subject, verb, and object in sentences. In
programming contexts, we can define what is called substitution grammar, where a set
of rules describes how words or phrases are replaced with others. This can often be used
to define a specific order, such as the use of subjects and verbs in an English sentence.
In a programming context, dynamic constructions can be produced where dynamic or
random values are substituted in specific places in the defined pattern.

In ink, we can create functions to return values based on shuffles. By writing a grammar –
that is, rules for what order entries appear in – we can create a simple substitution pattern
where random entries are used from specific sets to create a dynamic text interaction:

Example 4:

First, we saw the {getLocation()}. Next, we visited the

 {getMarker()}.

== function getLocation() ==

~ return "{~tower|ruin|temple}"

== function getMarker() ==

~ return "{~grave|farmstead|ancient tree}"

In Example 4, the getLocation() and getMarker() ink functions provide the
substitutions within the grammar of the sentence. By placing shuffles within the functions
and surrounding them with quotation marks, the text's result can be returned; that is,
where the functions are called. Because all functions are global, this also means they can
be used multiple times in the code.

Loading values into ink 225

Warning
Based on Example 4, it can be tempting to assume functions can also be used
to generate possible divert targets using a shuffle. This is not the case. While
variables can hold divert targets, functions are not allowed to divert in ink, and
the language prevents combinations of calling functions and using the returned
value to thread or divert to another section in a story.

Functions in ink can be useful for generating and returning text. However, because of
its design, ink does not allow functions to control story flow. In cases where each entry
within a shuffle might also want to use diverting or threads, we can create an extended
tunnel where each part of the tunnel acts as part of the grammar:

Example 5:

 location -> marker -> DONE

== location

First, we saw the <>

{shuffle:

 - tower

 - ruin

 - temple

}<>.

->->

== marker

Next, we saw the <>

{shuffle:

 - grave

 - farmstead

 - ancient tree

}<>.

->->

226 Procedural Storytelling with ink

Example 5 is a rewritten version of Example 4 using an extended tunnel. For simple text
substitution, the pattern shown in Example 4, which is using shuffles and functions, can
be very useful. However, the pattern in Example 5, which is using knots and multi-line
shuffles, allows each entry in the shuffle to potentially divert or use threads themselves.
This is often the preferred pattern for creating a substitution grammar, where each part
of the grammar can expand as needed.

In this section, we learned how to use substitution grammar for text and then a more
advanced one for incorporating tunnels. In the next section, we will apply substitution
grammar as part of a planning process for stories. Loops and other conditional aspects
will be introduced to create more advanced substitution grammars.

Story planning
In the previous section, we saw how substitution grammars can provide us with a specific
order of events. By using shuffles, we can pick random entries for each part and create
a dynamic experience for a player. In the examples shown in the previous section, there
was also only one entry per part of the grammar. There was one for location, one for
marker, and then the tunnel ended. This is useful, but many games will want to create
dynamic patterns based on previous entries. In other words, it is also possible to base the
range of future entries on previous ones within a grammar.

When we create a formula where previous entries can affect future entries as part
of advanced grammar, we are using a concept called story planning. In procedural
storytelling, story planning occurs when the story is planned based on rules for generating
more complex patterns than simple substitution.

As explained in Chapter 3, Sequences, Cycles, and Shuffling Text, alternatives can be
embedded inside each other. This means we can use alternatives inside of multi-line
conditional blocks to create contexts where, based on previous values, random entries
can be chosen:

Example 6:

VAR location_pick = 0

-> location -> marker -> DONE

== location

First, we saw the <>

{shuffle:

 - tower

Loading values into ink 227

 ~ location_pick = "tower"

 - ruin

 ~ location_pick = "ruin"

 - temple

 ~ location_pick = "temple"

}<>.

->->

== marker

Next, we saw the <>

{

 - location_pick == "tower":

 {shuffle:

 - grave

 - memorial stone

 }

 - else:

 {shuffle:

 - farmstead

 - ancient tree

 }

}<>.

->->

In Example 6, a new variable has been introduced based on the code from Example 5.
In this new version, the values of the marker knot are based on the location_pick
variable. Within the extended tunnel moving from the location knot to the marker
knot, the location_pick variable is changed. Depending on its value moving into the
marker knot, different results can be produced. If the random entry from location is
"tower", the first two values, grave and memorial stone, are enabled. Otherwise,
the farmstead and ancient tree values are.

In this topic, we focused on loading and generating values in ink. In the first section,
Substitution grammars, we learned how to create simple patterns. In this section, Story
planning, we reviewed a simple example of story planning using a single variable for
branching within the second part of a tunnel. Depending on the planning that's wanted,
authors can create very complex grammars using different variables where previous values
can branch out future calculations and ranges of entries in shuffles or other alternatives.

228 Procedural Storytelling with ink

In the next topic, we will move away from ink and back into Unity. When it comes to
scripting narrative experiences, ink is an incredible language. However, ink does not work
well with more complex value manipulations. In Unity, with the use of C#, we can perform
much more complicated procedural storytelling approaches, where we can make decisions
about which ink story to load and how to pass its values to make decisions internally.

Coding collections in Unity
In the previous topic, we examined ways to have ink create and plan content for a player.
In this section, we move back into Unity. Often, in large projects, story and otherwise,
narrative content will be one of several complex interlocking mechanics in a game. In
these cases, procedural storytelling will be one of multiple systems, and Unity, as the game
engine driving the project, will be programmed to use one story over another as part of
more complex operations and planning. In these cases, the narrative content is stored in
what C# names collections. These can be something as simple as an array or a much more
complex data structure capable of sorting its internal elements based on patterns or the
values of their internal elements.

In the first section, Using multiple stories, we will look at an example of moving the
procedural storytelling aspect of a project from ink into Unity. Instead of working with
shuffles in ink, we will use randomness in Unity to select between different possible stories
within a collection and then remove them from future selections. This will allow us to
concentrate on the story content in ink, creating dialog or player choices within separate
files, and then use Unity to choose what to show a player.

In the final section, Conditionally choosing stories, we will apply the concept of simple
story planning, as shown in the Story planning subsection, using ink in Unity. Much like
it did in ink, this will allow us to start to define a substitution grammar for how we want
story content to appear to the player, but with the coded collections in Unity performing
the work of selecting parts instead of ink.

Using multiple stories
As we first explored in Chapter 11, Quest Tracking and Branching Narratives, in the
Tracking progress across multiple quests topic, it is possible to use multiple ink files as
separate instances of the Story class in a project. In that topic, each file was a separate
quest. However, it is also possible to use each file as a scene within a larger story. In these
cases, each ink file would represent a separate narrative experience for a player. This could
become part of a session or a longer story, upon being selected by Unity, to show the
player in a random order.

Coding collections in Unity 229

Note
The completed project for this section can be found in the Chapter 12 examples
on GitHub under the name Chapter12-MultipleStories. Only
select parts of the code will be shown as they relate to the concepts being
examined.

When you're using multiple ink files to break a story down into different scenes where
each could be accessed independently of each other, the easiest way to approach this is
to load them all at once. The following project uses a method named GetFiles() to
process the compiled JSON files and create Story class instances. With each new object
that's created, it is added to a List<Story> collection named Stories:

void GetFiles()

{

 string inkPath = Application.dataPath + "/Ink/";

 foreach (string file in Directory.GetFiles(inkPath,

 "*.json"))

 {

 string contents = File.ReadAllText(file);

 Stories.Add(new Story(contents));

 }

}

In the Random encounter section of the Introducing procedural storytelling in ink topic,
a shuffle was used to pick between different threads. In C#, the Random class works
similarly. It provides random data based on some range. Using its Next() method and
the Count property of the collection, it provides an index to select between entries in the
List<Story> collection, which is populated by the GetFiles() method:

void PickRandomStory()

{

 if (Stories.Count > 0)

 {

 System.Random rand = new System.Random();

 int index = rand.Next(Stories.Count);

 Story entry = Stories[index];

 Stories.RemoveAt(index);

 UpdateContent(entry);

 }

230 Procedural Storytelling with ink

 else

 {

 SceneDescription.text = "(There are no more

 stories.)";

 }

}

To prevent the same story from appearing again, the RemoveAt() method removes the
entry from the List<Story> collection at random. This prevents the same story from
being shown twice.

Put together, the Start() method is used to call multiple other methods to parse
the files and pick a random story. Based on the weave contained in the randomly
picked Story, a method named UpdateContent(), which is called from
PickRandomStory(), presents two options to the player as Button game objects.
Clicking on either of these changes the value of a variable within the story. This is then
shown to the player as updates to two variables, violence and peace, which are
tracked in Unity:

void Start()

{

 Stories = new List<Story>();

 UpdateStatistics();

 GetFiles();

 PickRandomStory();

}

While relatively simple, the project shown in this section illustrates an important aspect
of balancing between ink and Unity as separate systems for procedural storytelling.
The complexity of an ink story is not reflected in the C# code needed to pick it from
a collection or show its contents. Simple code can be used in Unity to randomly select an
ink story that, itself, uses randomness, substitution grammars, or its story planning in its
design. In Unity, the C# Random class can be used without any knowledge of what an ink
story is doing.

In the next section, we will follow a similar movement to what we did in the Introducing
procedural storytelling in ink topic. In this first section, we focused on using multiple ink
stories with the C# Random class while picking between them equally. However, most
projects will want to only select ink stories based on preconditions. In the next section, we
will look at conditionally choosing between ink stories.

Coding collections in Unity 231

Conditionally choosing stories
In the previous section, we saw how the C# Random class allows us to pick between
objects based on the Story class as part of a collection, List<Story>. This has limited
usefulness for most projects. Instead, most developers would prefer to have control over
when an ink story is selected and the conditions under which it becomes available. In this
section, we will look at a simple implementation of a system that checks the preconditions
of a story before loading any of its contents. Values will be tracked across stories in the
collection and, if the preconditions are met for the story, it will be considered available.
If not, it will be ignored.

Note
The completed project for this section can be found in the Chapter 12 examples
on GitHub under the name Chapter12-ConditionalStories.
Only select parts of the code will be shown as they relate to the concepts being
examined.

To check the preconditions of ink stories, there needs to be a separate class,
ConditionalStory, that contains the ink story and methods that originally appeared
in the Tracking quest values subsection of the Displaying and awarding player progression
section in Chapter 11, Quest Tracking and Branching Narratives, including simplified
versions of ObserveVariables() and UpdateVariable():

public void ObserveVariables(Story.VariableObserver

 callback)

{

 InkStory.ObserveVariables(new List<string>() {

 "violence", "peace" }, callback);

}

public void UpdateVariable(string name, object value)

{

 if(InkStory.variablesState.

 GlobalVariableExistsWithName(name))

 {

 if (!InkStory.variablesState[name].Equals(value))

 {

 InkStory.variablesState[name] = value;

 }

 }

}

232 Procedural Storytelling with ink

The ConditionalStory class has a method called Available(). Internally, this uses
the EvaluateFunction() method of the Story class to call an ink function named
check(). Assuming the ink story contains the function, it will be called, and the result
will be converted into a Boolean value:

public bool Available()

{

 bool result = false;

 if(InkStory.HasFunction("check"))

 {

 result = (bool)

 InkStory.EvaluateFunction("check");

 }

 return result;

}

Each story file has a conditional check that is fed back into the Available() method of
the ConditionalStory class. If the check() ink function returns true, the story is
available for use.

Various changes have been made to the code shown in the previous section, Using multiple
stories. The first is the use of ConditionalStory as a class containing an object based
on the Story class. The second is the SelectStories() method. Unlike picking
a random entry, it uses the FindAll() method of List<ConditionalStory> to
search through its entries. If the Available() method, which is calling the check()
ink function each time, reports true, it considers the story to be available:

List<ConditionalStory> selection = Stories.FindAll(e =>

 e.Available());

if (selection.Count > 0)

{

 System.Random rand = new System.Random();

 int index = rand.Next(selection.Count);

 ConditionalStory entry = selection[index];

 Stories.Remove(entry);

 UpdateContent(entry);

}

Summary 233

If each ink story defines how and if it is available for use in a larger project, this allows the
ink and C# code in Unity to be developed separately. To become available so that it can be
selected, the check() function in ink must report true to the ConditionalStory
class in C#. This creates a simple but easily repeatable pattern for creating conditional
stories in Unity based on understanding how its collections work by using the
FindAll() method, as specified in this section, and the Random class, as specified in
the previous section, in C# to access individual entries based on their indices.

Summary
The goal of this chapter was not to solve all problems with procedural storytelling or to
cover every possible algorithm. The first topic, Introducing procedural storytelling in ink,
reviewed the important concepts, such as how randomness can play a role in selecting
content in ink. The second section, Loading values into ink, looked at how more advanced
concepts such as grammars and story planning can be used with ink. Finally, in the
Coding collections in Unity topic, we saw how Unity can be used to randomly select ink
stories in a collection in the first section, as well as how some simple conditional testing
can be incorporated by communicating between ink stories and C# classes in Unity.

We have now completed the last chapter of this book and hope that you will walk
away with different concepts to explore and with simple patterns to use for much more
advanced projects. Procedural storytelling is a diverse and deep subject. Many researchers
and developers have created and continue to explore possible ways to build substitution
grammars, plan for stories, and use ink and Unity, either separately or together, to craft
simple rules for complex stories and experiences for players.

Questions
1.	 What is procedural storytelling?
2.	 What is a random table?
3.	 What is weighted randomness?
4.	 What is substitution grammar?
5.	 What is story planning?

Assessments
This section contains answers to questions from all the chapters.

Chapter 1 – Text, Flow, Choices, and Weaves
1.	 The story is the content, and the narrative is the experience of it. In nonlinear

storytelling, the story is potentially experienced in a different order, with each
reordering creating a new narrative for the reader.

2.	 ink understands flow as movement through the story as a narrative-like experience.
In ink, this can "run out" when there are no paths to the end of the story.

3.	 Multiple lines can be combined using glue, a combination of less-than and greater-
than symbols.

4.	 A weave is a collection of choices.
5.	 The different types of choices are basic, often called disappearing, and sticky

choices. The first can only be used once and the second multiple times, as they
"stick around" across weave usages.

6.	 Selective output allows an author to select what to use when shaping an option
based on the text of the choice in ink. Different amounts of text can be shown to
the reader based on the use of opening and closing square brackets with the text of
the choice.

7.	 Sticky choices keep options open for later use. In more complex stories, the reader
may return to a weave and pick a different or the same option again.

Chapter 2 – Knots, Diverts, and Looping
Patterns

1.	 A knot is a section of a story with a name that can be diverted to ink.
2.	 DONE ends the current flow and END stops the story completely.
3.	 A stitch is a sub-section of a story that can only appear inside a knot.

236 Assessments

4.	 The INCLUDE keyword pulls in other files and allows a project to use multiple files
with their own knots and stitches available to the whole project.

5.	 A labeled option creates a value that is increased each time it is shown. Conditional
values, on the other hand, allow for comparing variables and values. If the condition
is true when used with an option, it will be shown. Otherwise, it will be hidden.

Chapter 3 – Sequences, Cycles, and Shuffling
Text

1.	 The three types of alternatives are sequences, cycles, and shuffles.
2.	 The single-line forms of sequences, cycles, and shuffles all use the vertical bar, |,

between elements.
3.	 The ampersand, &, is used before the first element as an alternative to creating

a cycle.
4.	 A sequence will show each of the elements until the last. A cycle will loop back to

the first element after its last one.
5.	 A shuffle picks a random element from its set each time it is run.
6.	 Multi-line sequences use the stopping keyword. This is unlike cycles and shuffles,

which each use the name of the type of alternative as the keyword to create their
multi-line forms.

Chapter 4 – Variables, Lists, and Functions
1.	 Assignment happens any time a variable is given a new value. This happens when

a variable is first created in ink and can also happen on single lines of code.
2.	 A new string created based on two strings being added, or between a string and

numerical value, is known as concatenation.
3.	 The tilde defines a single line of code in ink. It is often used with assignment, to call

a function, or to perform some other single-line action.
4.	 The values in a list are part of a Boolean set. This means they are either true or

false. In ink, all values in a list are set to false by default. To change to true,
they must be surrounded by opening and closing parentheses.

5.	 The technical term for a variable defined as part of a function or a knot is
a parameter. It affects the calculations or how content is processed by the function.

Chapter 5 – Tunnels and Threads 237

Chapter 5 – Tunnels and Threads
1.	 To create a tunnel, a divert must be used before and after the name of a knot or

stitch. Within the knot or stitch, two diverts must be used together to return from
the tunnel.

2.	 Tunnels connect two different locations in ink. They can be used between knots,
stitches, or other locations in a story. Tunnels move the flow to a location and then
return when two diverts are encountered.

3.	 A divert moves the flow to another knot or stitch. A tunnel uses two diverts to move
to a knot or stitch and then returns to where it started. A thread is the inverse of
a divert. It moves the knot or stitch to the current flow location instead of moving
the flow to the knot or stitch.

4.	 Normally, multiple threads cannot be used on the same line. However, when using
alternatives, it is possible to include multiple threads as part of the same structure.
They are still accessed one at a time but can be grouped together on one line.

Chapter 6 – Adding and Working with the
ink-Unity Integration Plugin

1.	 No, Inkle, the maintainers of the ink-Unity Integration plugin, do not recommend
using the version found in the Unity Asset Store. This version is often out of date.

2.	 When the ink-Unity Integration plugin is installed in a project, new ink files
can be created using the Create menu. This can be accessed using the Project
window toolbar, right-clicking in the Project window, or via the Assets menu by
selecting Create.

3.	 Inky is a good choice for editing ink source files. However, it needs to be associated
with ink source files, which can be opened by double-clicking on files in the
Project window.

4.	 Yes, the auto-compilation process can be adjusted by opening the Project Settings,
selecting Ink, and then changing the Compile All Ink Automatically option.

Chapter 7 – Unity API – Making Choices and
Story Progression

1.	 The Continue() method only loads a single line of ink text content and the next
weave it encounters each time it is called. The ContinueMaximally() method
loads all text content until it encounters a weave or the end of the story.

238 Assessments

2.	 The ChooseChoiceIndex() method expects an int value within the range of
the total number of entries in the currentChoices property in the Story class.

3.	 The canContinue property is a Boolean value. If there is more story content, it
will be true. Otherwise, it will be false. The canContinue property should
always be checked as part of a conditional statement before using the Continue()
or ContinueMaximally() methods to prevent either method from throwing
an error.

4.	 A prefab is a GameObject instance saved as an asset in Unity. Any game object
used as part of the Hierarchy view can be saved as an asset by dragging it into the
Project window. A copy of a prefab can be created during runtime through
a process called instantiation in Unity.

5.	 For a weave encountered in a running ink story, the currentChoices properties
will contain a List<Choice> instance, where each entry is an object based on the
Choice class with text and index properties.

Chapter 8 – Story API – Accessing ink Variables
and Functions

1.	 Yes, once a variable is created in ink, it can be accessed at any point in the story.
By using the variablesState property as part of the Story API, the values of
variables can also be accessed and changed.

2.	 Because functions are global in ink, this means they can be accessed from any
point in an ink story. When working with the ink-Unity Integration plugin, the
HasFunction() and EvaluateFunction() methods as part of the Story
API provide the ability to test for a global function in an ink story and evaluate it,
if it exists. The EvaluateFunction() method calls the ink function and can be
used to pass data to ink or retrieve the text output of the function using the out C#
keyword.

3.	 Unlike text content, the values of variables in ink exist outside of story progression
controlled by the Continue() method or ContinueMaximally()
method. However, because variables are global, their values can be changed
during the action of loading a line or a larger chunk of a story. The value of
a variable might be changed because of using either the Continue() method or
ContinueMaximally() method, but they are not technically needed to work
with variables in ink.

Chapter 9 – Story API – Observing and Reacting to Story Events 239

4.	 Any variables can be accessed by using their name in quotation marks within square
brackets when working with the variablesState property as part of the Story
API. While the same API provides methods for working with variables in ink, the
shorthand syntax is often the preferred way to access and change the values of
variables.

5.	 Yes. It is recommended to use the HasFunction() method for functions before
attempting to change the value of a variable or evaluate a function. This will help
prevent potentially game-crashing problems.

6.	 The out C# keyword provides a way to pass a variable by reference instead of
passing only its value. This is an easy way to retrieve the text output of an ink
function as a parameter to the EvaluateFunction() method of the Story API.

Chapter 9 – Story API – Observing and Reacting
to Story Events

1.	 The ObserveVariable() and ObserveVariables() methods are based on
the use of the action of observing variables. This separates the reaction in Unity from
the action in ink. The action of observing allows Unity to react in any way it wants.
The methods only provide the name of the variable and its new value.

2.	 Delegated functions are the second parameter of both the ObserveVariable()
and ObserveVariables() methods. The use of the delegate C# keyword
delegates the running of a function because of another function or method. The
ObserveVariable() and ObserveVariables() methods are used in a
callback approach.

3.	 The first, the ObserveVariable() method, accepts the name of a single
variable and a delegated function to be called when it changes. The second, the
ObserveVariables() method, accepts a List<string> instance of variables
to watch and a delegated function. In both cases, the delegated function will be
called with the name of the variable that changed and its new value.

4.	 The variablesState property provides direct access to ink variables and their
current values by their names. However, the name of the ink variable must be
used to access its value as part of recurring code such as might be found in the
Update() or FixedUpdate() methods in Unity. The ObserveVariable()
and ObserveVariables() methods allow a developer to write code that only
runs when one or more ink variables change and only then. This can free up time
each cycle to only run the necessary code and then update Unity when ink itself
updates some value.

240 Assessments

Chapter 10 – Dialogue Systems with ink
1.	 A hashtag is created when the hash (#) is used to create a tag on a single line in ink.

Hashtags are used to add extra data per line.
2.	 A hashtag can only be used at the end of a line, but a speech tag is often used at the

beginning of a line. A speech tag is always used to mark who is communicating, but
a hashtag conveys extra information of any form.

3.	 The branching patterns of dialogue often look like trees, where the initial set of
choices appears as a "trunk," with each branch moving outward into its own sets.

4.	 The list pattern presents options in a vertical arrangement. It can display multiple
sentences per option but often needs scroll bars to present all the options within a
set. It is best used when there is more visual spacing available for dialogue choices.

5.	 The radial menu pattern presents options clockwise on the screen. It is often used
with video game consoles or other limited visual space contexts. Because of the
reduced amount of spacing, options often appear as single words, icons, or short
descriptions of their outcomes.

Chapter 11 – Quest Tracking and Branching
Narratives

1.	 A quest is a series of events connected to a character within a story.
2.	 The name of the ink knot used to progress a quest is progress.
3.	 The ChoosePathString() method abruptly moves the current location from

one section to another.
4.	 The global property in Unity is named Application.dataPath.
5.	 Polling requires checking values in one system from another. The events-based

approach allows one system to observe another and respond to changes (events) as
they happen.

Chapter 12 – Procedural Storytelling with ink
1.	 Procedural storytelling occurs when the story of a project is generated by

procedures, or rules, that dynamically plan or shape content for a player.
2.	 A random table is a set of entries where individual values are chosen at random.

Originally created as tables where rows were chosen using dice, the same concept
can be used in ink with shuffles.

Chapter 12 – Procedural Storytelling with ink 241

3.	 Randomness can be weighted toward certain probabilities. In ink, the RANDOM()
function can be used to decide the probability of entries instead of the default equal
amounts when using the shuffle functionality.

4.	 A grammar is a set of rules for a language. A substitution grammar decides the
substitution of words or phrases according to a set of rules. Often, substitution
grammars are used with random entries or according to conditional rules.

5.	 Story planning is the ordering of story content based on rules. Story planning is
based on using a substitution grammar for deciding which parts of a project a player
might experience, either before play starts or because of certain player actions.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

244 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Unity 2021 Game Development - Second Edition

Nicolas Alejandro Borromeo

ISBN: 9781801071482

•	 Explore both C# and Visual Scripting tools to customize various aspects of a game,
such as physics, gameplay, and the UI

•	 Program rich shaders and effects using Unity's new Shader Graph and Universal
Render Pipeline

•	 Implement postprocessing to improve graphics quality with full-screen effects

•	 Create rich particle systems for your Unity games from scratch using VFX Graph
and Shuriken

•	 Add animations to your game using the Animator, Cinemachine, and Timeline

•	 Use the brand-new UI Toolkit package to create user interfaces

•	 Implement game AI to control character behavior

https://packt.link/9781801071482

Other Books You May Enjoy 245

Game Development Patterns with Unity 2021 - Second Edition

David Baron

ISBN: 9781800200814

•	 Structure professional Unity code using industry-standard development patterns

•	 Identify the right patterns for implementing specific game mechanics or features

•	 Develop configurable core game mechanics and ingredients that can be modified
without writing a single line of code

•	 Review practical object-oriented programming (OOP) techniques and learn how
they're used in the context of a Unity project

•	 Build unique game development systems such as a level editor

•	 Explore ways to adapt traditional design patterns for use with the Unity API

https://packt.link/9781800200814

246

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Dynamic Story Scripting with the ink Scripting Language, we'd love
to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave
a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81932-7
https://packt.link/r/1-801-81932-7

Index

A
alternatives

current values, storing of 58, 59
cycles 43, 44
sequence 40-42
shuffle 45
using 40

arguments 70
assignment 55
auto-compilation setting 100
automatic re-compilation

updating 108

B
Boolean set 66
branching narratives

about 5
as flow 4

branching pattern 5

C
calling 62

choices
counting, for trees 189-191
within choices 12, 13

click-to-continue pattern 186-189
collections, coding in Unity

multiple stories, using 228-230
stories, selecting conditionally 231-233

comments
using, as notes to authors 9

compiled ink story
Continue() method, checking 121-123
ink JSON file, running 119, 120
ink Story API, adding 116-119
loading 112
script component, creating 112-116

compiled project 100
complex weave 13
concatenation operation 57
conditional content 222, 223
conditional options

about 33, 34
detecting 33
modifying 33

Continue() method 121-123
currentTags 179

248 Index

current values
storing, of alternatives 58, 59

cycles 43, 44
cycles and shuffles

combining 48-50

D
dialogue

writing, in Ink with tags 178, 179
Dialogue classes

creating, in Unity 205, 206
dialogue options

listing 192, 193
dialogue tags 88
dialogue tree 189
divert

diverting 76, 77
diverting 23
DONE keywords 84
dot notation 27
dynamic user interface

creating 131, 132, 138-145
ink JSON files, associating 136-138
new project and game objects,

creating 132-136
Prefab files, associating 136-138

dynamic weaves
building 35, 36

E
END keywords 84
events-based 210

F
flow 6

functions
about 62
calling 62
creating, with function keyword 68-71
mathematics functions 63-65

G
gathering points 15, 16
glue 8, 46

H
hashtags 178

I
infinite loops 30
ink

about 6
concept, of flow 6
procedural storytelling 218
quest template, creating 199-201
values, loading into 224
working, with files 98

ink functions
calling, externally 151
controlling 155
evaluating 152, 153
text output, retrieving 153, 154
verifying 152, 153

ink JSON file
running 119, 120
associating 136-138

Inkle Studios 9
ink quest template

building on 204

Index 249

ink source files
adding 99, 100
editing, with Inky 100
updating 105

ink stories
responding, dynamically 168-170

ink story
line 7
options, selecting programmatically 123

ink Story API
adding 116-119

ink story, options
choices, detecting 124-127
choices, making with Unity

API 127, 128
text, loading until next weave 128-131

ink text
tagging 179, 180

ink-Unity Integration plugin
about 94
adding 94
importing 95, 96
package, verifying for installation 97, 98
searching 95, 96
settings, adjusting 106

ink-Unity Integration settings
finding 106, 107

ink variables
accessing 148-150
controlling 155
modifying 148
value, modifying 150, 151

Inky
about 9
associating, with ink source

files in macOS 103-105
associating, with Ink source files

in Windows 101-103

used, for editing source files 100
using 10
working with 9

K
knots

about 22, 26, 27, 70, 71, 199
creating 22, 23
diverting, between 23
DONE, using 23, 24
END, using 23, 24
flow, tangling 22
looping 30
looping, structures 31
selecting, in Unity 201-203
sticky choices, revisiting 32

L
labeled options

about 33, 34
detecting 33
modifying 33

lambda expression 167
line 7
list

creating, with LIST keyword 60, 61
working with 60

LIST functions
using 65-68

LIST keyword 60
list pattern 192
LIST values

updating 61, 62
logical AND 36

250 Index

M
macOS

ink source files, used for
associating Inky 103-105

mathematics functions 63-65
modulo 168
multi-line alternatives

creating 45
multi-line cycle

creating 46
multi-line sequences

creating 47
multiple ink values

observing 171-173
multiple quests

files, organizing 206, 207
progress, tracking across 203

multiple threads
using 82, 83

N
narrative 4
narrative scripting 5
nested alternative

about 48
cycles and shuffles, combining 48-50
shuffles, shuffling 50, 51

nonlinear storytelling 5

O
observer pattern 210
OpenUPM page, for ink-Unity

Integration plugin
reference link 95

option 14

P
pages 4
parameter 70
player progression

awarding 210
displaying 210
quest values, tracking 211-213
showing 213-215

polling 210
Prefab files

associating 136-138
procedural storytelling

about 218
in ink 218

procedural storytelling, in ink
conditional content 222, 223
random encounters 219, 220
weighted randomness 220, 221

Q
Quest classes

creating, in Unity 205, 206
quests

count, creating 198, 199
toggling 208-210

quest template
creating, in ink 199-201

quest values
tracking 211-213

R
radial menu

presenting, for dialogue 194, 195
radial menu pattern 192, 193

Index 251

random encounters 219, 220
random table 219

S
script component

creating 112-116
sections, of ink story

about 24-26
dividing, across different files 28-30
knots 26, 27
stitches 26, 27

selective output 14, 15
sequence 40-42
shuffles

about 45, 59
shuffling 50, 51

speech tags
about 181
approaches 184
using 181-183

sticky choices 17, 18, 32
stitches 26, 27, 199
story planning 226-228
strings 54
substitution grammar 224-226

T
tagging dialogue

approaches, reviewing 184-186
tags

used, for writing dialogue
in ink 178, 179

threads
about 75
combining, with tunnels 86

creating 81, 82
ending 84-86
pulling on 80
repeating 86-88
with tunnels 88-90

tunnels
about 75
combining, with threads 86
creating 77-79
reusing 86-88
tunneling 79, 80
with threads 88-90

U
Unity

collections, coding 228
Dialogue classes, creating 205, 206
knots, selecting 201-203
Quest classes, creating 205, 206

Unity API
used, for making choices 127, 128

user interface
objects, scripting 156-160
preparing 155, 156
presentation values, adjusting 160-162

user interface models
for conversations 192

V
values

storing, with VAR keyword 54, 55
values, loading into ink

story planning 226-228
substitution grammar 224-226

252 Index

variable
about 33
changes, listening 166-168

variables
showing 56, 57
updating 58

VAR keyword
about 54
used, for storing values 54, 55

W
weaves

about 11
making 11

weighted randomness 220, 221
Windows

ink source files, used for
associating Inky 101-103

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
ink Language Basics
	Chapter 1: Text, Flow, Choices, and Weaves
	Technical requirements
	Understanding branching narratives as a flow
	Nonlinear storytelling
	Introducing ink
	Text flowing down
	The smallest unit is a line
	Gluing lines together
	Using comments as notes to authors

	Creating choices and making weaves
	Making weaves
	Choices within choices
	Selective choice output
	Gathering points

	Disappearing and sticky choices
	Summary
	Questions

	Chapter 2: Knots, Diverts, and Looping Patterns
	Technical requirements
	Tangling a flow in knots
	Creating knots
	Diverting between knots
	Using DONE and END

	Moving between sections
	Knots and stitches
	Dividing up a story across different files

	Looping knots
	Looping structures
	Revisiting sticky choices

	Detecting and changing options
	Labeled and conditional options
	Building dynamic weaves

	Summary
	Questions

	Chapter 3: Sequences, Cycles, and Shuffling Text
	Technical requirements
	Using alternatives
	Sequences
	Cycles
	Shuffles

	Creating multi-line alternatives
	Multi-line cycles
	Multi-line sequences

	Nesting alternatives
	Combining cycles and shuffles
	Shuffling shuffles

	Summary
	Q&A

	Chapter 4: Variables, Lists, and Functions
	Technical requirements
	Storing values using VAR
	Showing variables
	Updating variables
	Storing the current values of alternatives

	Working with LIST
	Making a LIST
	Updating LIST values

	Calling functions
	Common mathematics functions
	Using LIST functions

	Making new functions and calling knots
	Summary
	Questions

	Chapter 5: Tunnels and Threads
	Technical requirements
	Diverting to a divert
	Making tunnels
	Tunneling to tunnels

	Pulling on threads
	Making threads
	Using multiple threads
	Ending threads

	Combining tunnels and threads
	Reusing tunnels and repeating threads
	Threads with tunnels

	Summary
	Questions

	Section 2:
ink Unity API
	Chapter 6: Adding and Working with the ink-Unity Integration Plugin
	Technical requirements
	Adding the ink-Unity Integration plugin
	Finding and importing the plugin
	Verifying the package is installed

	Working with ink files
	Adding ink source files
	Editing source files with Inky
	Updating ink source files

	Adjusting plugin settings
	Finding ink-Unity Integration settings
	Updating automatic re-compilation

	Summary
	Questions

	Chapter 7: Unity API – Making Choices and Story Progression
	Technical requirements
	Loading a compiled ink story
	Creating a script component
	Adding the ink Story API
	Running an ink JSON file
	Checking whether a story can continue

	Selecting options programmatically
	Detecting ink choices
	Making choices using the Unity API
	Loading all text until the next weave

	Creating a dynamic user interface
	Creating a new project and game objects
	Associating Prefab and ink JSON files
	Making a dynamic user interface

	Summary
	Questions

	Chapter 8: Story API – Accessing ink Variables and Functions
	Technical requirements
	Changing ink variables outside a story
	Accessing ink variables
	Changing the value of the ink variables

	Calling ink functions externally
	Verifying and evaluating ink functions
	Retrieving the ink function text output

	Controlling a story through variables and functions
	Preparing a user interface
	Scripting user interface objects
	Adjusting the presentation values

	Summary
	Questions

	Chapter 9: Story API – Observing and Reacting to Story Events
	Technical requirements
	Listening for variable changes
	Dynamically responding to ink stories
	Observing multiple ink values
	Summary
	Questions

	Section 3:
Narrative Scripting with ink
	Chapter 10: Dialogue Systems with ink
	Technical requirements
	Writing dialogue in Ink using tags
	Tagging ink text
	Using speech tags
	Reviewing approaches to tagging dialogue

	Dialogue loops and story knots
	Click to continue
	Counting choices for trees

	User interface models for conversations
	Listing dialogue options
	Presenting a radial menu for dialogue

	Summary
	Questions

	Chapter 11: Quest Tracking and Branching Narratives
	Technical requirements
	Making a quest count
	Creating a quest template in ink
	Choosing specific knots in Unity

	Tracking progress across multiple quests
	Building on the ink quest template
	Making Quest and Dialogue classes in Unity
	Organizing multiple quest files
	Toggling quests

	Displaying and awarding player progression
	Tracking quest values
	Showing player progress

	Summary
	Q&A

	Chapter 12: Procedural Storytelling with ink
	Technical requirements
	Introducing procedural storytelling in ink
	Random encounters
	Weighted randomness
	Conditional content

	Loading values into ink
	Substitution grammars
	Story planning

	Coding collections in Unity
	Using multiple stories
	Conditionally choosing stories

	Summary
	Questions

	Assessments
	About Packt
	Other Books You May Enjoy
	Index

