
Augmented Reality with
Unity AR Foundation
A practical guide to cross-platform AR development with Unity 2020
and later versions

Jonathan Linowes

A
ugm

ented Reality w
ith U

nity AR Foundation
Jonathan Linow

es

Things you will learn:

• Discover Unity engine features for
building AR applications and games

• Get up to speed with Unity AR
Foundation components and the
Unity API

• Build a variety of AR projects using
best practices and important AR user
experiences

• Understand the core concepts of
augmented reality technology and
development for real-world projects

• Set up your system for AR development
and learn to improve your development
workfl ow

• Create an AR user framework with
interaction modes and UI, saved as a
template for new projects

Augmented reality applications allow people to interact meaningfully with the real world through
digitally enhanced content.

The book starts by helping you set up for AR development, installing the Unity 3D game engine,
required packages, and other tools to develop for Android (ARCore) and/or iOS (ARKit) mobile devices.
Then we jump right into the building and running AR scenes, learning about AR Foundation components,
other Unity features, C# coding, troubleshooting, and testing. We create a framework for building AR
applications that manages user interaction modes, user interface panels, and AR onboarding graphics
that you will save as a template for reuse in other projects in this book. Using this framework, you will
build multiple projects, starting with a virtual photo gallery that lets you place your favorite framed
photos on your real-world walls, and interactively edit these virtual objects. Other projects include an
educational image tracking app for exploring the solar system, and a fun selfi e app to put masks and
accessories on your face. The book provides practical advice and best practices that will have you up
and running quickly.

By the end of this AR book, you will be able to build your own AR applications, engaging your users in
new and innovative ways.

Augmented Reality with
Unity AR Foundation

Augmented Reality
with Unity AR
Foundation

A practical guide to cross-platform AR development
with Unity 2020 and later versions

Jonathan Linowes

BIRMINGHAM—MUMBAI

Augmented Reality with Unity AR Foundation
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Senior Editor: Hayden Edwards
Content Development Editor: Aamir Ahmed
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Sinhayna Bais

First published: August 2021

Production reference: 1130821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-259-1

www.packt.com

http://www.packt.com

Yes, I love my wife, Lisa, and our four amazing children, but this book
I dedicate to my dog, Coder, a large, sweet, and boisterous Doberman

Shepherd who keeps trying to pull me from my desk to play frisbee outside
in the real world.

– Jon

Contributors

About the author
Jonathan Linowes is a VR/AR enthusiast, Unity, and full stack developer, entrepreneur,
certified Unity instructor, and the owner of Parkerhill XR Studio, an immersive media,
applications, and game developer. Jonathan has a bachelor of fine arts degree from
Syracuse University, a master of science degree from the MIT Media Lab, and has held
technical leadership positions at Autodesk and other companies. He has authored multiple
books on VR and AR published by Packt Publishing.

About the reviewers
David Cantón Nadales is a software engineer from Seville, Spain, with over 15 years of
experience. He specializes in Firebase and the development of mobile apps and video
games, and is experienced in VR/AR with Oculus, Hololens, HTC Vive, DayDream, and
LeapMotion. He was the ambassador of the Samsung development community "Samsung
Dev Spain," and the organizer of the "Google Developers Group Seville" community He
has worked on, and brought to fruition, more than 50 projects during his professional
career. As a social entrepreneur, Grita stands out, a social network that emerged during
the period of COVID-19 confinement that allowed people to talk to others in the same
circumstances and help each other psychologically.

Rohit Gonsalves is connecting computer graphics, video, media, and devices to create
beautiful Extended Reality (XR) workflows for PC and mobiles. He has 17+ years of
experience working with computer graphics, specifically, C++, Windows, and DirectX. He
is also the author of an in-progress book entitled 3D Game and Graphics Programming
using UNIGINE. He is the CTO of BEiT Media.

Preface

Section 1 – Getting Started with
Augmented Reality

1
Setting Up for AR Development

Technical requirements� 4
Defining Augmented Reality� 4
Getting started with Unity� 7
Installing Unity Hub� 7
Installing a Unity Editor� 8
Creating and managing Unity projects� 10
Introducing the Unity Editor interface� 12
Basics of using the Unity Editor� 15
Organizing your project assets� 17

Preparing your project for AR
development� 18
Installing XR plugins for AR devices� 20

Installing the AR Foundation package� 23
Choosing an input handler� 25
Adding support for the Universal
Render Pipeline� 26

Setting up for mobile
development� 27
Setting up for Android/ARCore
development� 27
Setting up for iOS/ARKit development� 30
Developing for wearable AR glasses� 33

Building and running a test scene�35
Summary� 40

2
Your First AR Scene

Technical requirements� 42
Exploring the AR Foundation
example projects from Unity� 42

Building and running the Samples
project� 43
Exporting the sample assets for reuse� 46

Table of Contents

ii Table of Contents

Building the SimpleAR scene in
your own project� 48
Creating a new project� 48
Importing the Sample assets into your
own project� 49

Starting a new, basic AR scene� 51
Using AR Session� 52
Using AR Session Origin� 54
Using the AR Camera� 56
Adding Plane and Point Cloud managers� 57
Adding AR Raycast Manager� 59
Adding Light Estimation� 60
Building and running the scene� 61

Placing an object on a plane� 61
Setting up a PlaceObject input action� 62
Introducing Unity C# programming
and the MonoBehaviour class� 64
Writing the PlaceObjectOnPlane script� 67
Building and running the scene� 71
Refactoring your script� 72

Creating a prefab for placing� 74
Understanding GameObjects and
Transforms� 74
Finding a 3D model� 75
Completing the scene� 77

Summary� 78

3
Improving the Developer Workflow

Technical requirements� 82
Troubleshooting with log
messages� 82
Using Debug.Log� 84
Using the Console with a mobile device� 86
Simulating a Console window in
your app� 90

Debugging with a debugger� 99
Debugging on a remote device� 102

Testing with an editor remote
tool� 104
Simulating with Unity MARS� 107
Capturing with the MARS
Companion app� 108

Summary� 109

Section 2 – A Reusable AR User Framework

4
Creating an AR User Framework

Technical requirements� 114
Understanding AR
interaction flow� 115

Installing prerequisite assets� 117
TextMeshPro� 117
DOTween� 117
Serialized Dictionary Lite� 118

Table of Contents iii

Other prerequisite assets� 118

Starting with a new scene� 119
Creating the UI canvas and
panels� 120
Creating the screen space canvas� 121
Adding an app title� 121
Creating the UI panels� 123

Creating the UI controller� 125
Creating a Singleton class script� 125
Writing the UIController script� 127
Fading the UI panels� 130

Creating an Interaction
Controller mode� 132
Creating the interaction
mode hierarchy� 132
Writing the Interaction Controller� 133

Creating the interaction modes
behavior� 138
The StartupMode script� 138
The ScanMode script� 140
The MainMode script� 141
The NonARMode script� 141

Testing it out� 142
Using the Unity onboarding
UX assets� 143
Introducing the onboarding assets� 143
Preparing the Unity AR
onboarding assets� 145
Installing dependency packages� 146
Importing the OnboardingUX package� 148
Writing the AnimatedPrompt script� 148
Integrating the onboarding graphics� 151

Creating a scene template for
new scenes� 152
Summary� 153

5
Using the AR User Framework

Technical requirements� 156
Planning the project � 157
Starting with the ARFramework
scene template� 158
Adding a main menu� 160
Adding PlaceObject-mode with
instructional UI� 162
Creating the PlaceObject UI panel� 162
Creating the PlaceObject mode� 163

Wiring the menu buttons� 166

Performing a Building and Run� 168
Hiding tracked objects when
not needed� 169
Advanced onboarding issues� 174
Making an AR-optional project� 174
Determining whether the device
supports a specific AR feature � 176
Adding localization� 178

Summary� 180

iv Table of Contents

Section 3 – Building More AR Projects

6
Gallery: Building an AR App

Technical requirements� 184
Specifying the Art Gallery
project UX� 184
Project objectives� 186
Use cases� 186
UX design� 186
User stories� 188

Getting started� 188
Collecting image data� 189
Importing photos to use� 189
Adding image data to the scene� 190
Obtaining the pixel dimensions of
an image� 192
Loading the pictures list at runtime� 193

Creating a framed photo prefab�194
Creating the prefab hierarchy� 194
Writing a FramedPhoto script� 197
Scaling the picture's shape� 198

Hanging a virtual photo on your
wall� 200
Detecting vertical planes� 200
Creating the AddPicture UI panel� 200
Writing the initial AddPictureMode
script� 201
Creating the AddPicture Mode object� 203
Creating a main menu Add button� 204
Build And Run� 206
Completing the AddPictureMode script� 208
Showing tracked planes in
AddPicture mode� 210

Selecting an image to use� 211
Creating the SelectImage mode� 211
Creating the Select Image UI panel� 212
Creating an Image Button prefab� 215
Writing an ImageButtons script� 216
Reroute the Add button� 219

Adjusting for image
aspect ratio� 220
Summary� 222

7
Gallery: Editing Virtual Objects

Technical requirements� 224
Creating an Edit mode� 224
Creating an edit menu UI� 225
Creating EditPicture mode � 226

Selecting a picture to edit� 228

Defining a SelectObject input action� 228
Replacing the MainMode script� 229
Selecting an object from Main-mode� 230
Wiring the Done edit button� 233

Highlighting the selected
picture � 234

Table of Contents v

Selecting an object from
Edit mode� 237
Avoiding intersecting objects� 238
Deleting a picture� 242
Replacing the picture's image� 242
Replacing the frame� 246

Interacting to edit a picture� 247
Ensuring FramedPhoto objects receive
Input Action messages� 247
Adding the interaction components� 248
Using our finger to move the picture� 249
Pinching to resize the picture� 253

Summary� 257

8
Planets: Tracking Images

Technical requirements� 260
Understanding AR image
tracking� 260
Specifying the Planets project� 262
User experience flow� 263
Preparing the planet cards� 263
Collecting planet textures and data� 265

Getting started� 265
Tracking reference images� 266
Adding AR Tracked Image Manager� 266
Creating a reference image library� 267

Configuring the user interaction
modes and UI� 269
Scanning for reference images� 269
Build and run� 271

Creating and instantiating a
virtual Earth prefab� 273
Creating the generic Planet Prefab� 273

Understanding equirectangular images� 274
Creating the Earth prefab� 276
Adding planet metadata� 278
Animating the planet's rotation� 279

Building the app's Main-mode� 281
Writing the PlanetsMainMode script� 282

Expanding the project with
multiple planets� 285
Adding the planet card image to the
Reference Image Library� 285
Creating the planet prefab� 286
Responding to detected images� 288

Making a responsive UI� 291
Creating the Main-mode UI� 291
Pointing the camera to show
information� 292
Displaying information details� 294

Summary� 297

9
Selfies: Making Funny Faces

Technical requirements� 300
Understanding face tracking� 300

Face tracking versus face identification� 301
Tracking a face with AR Foundation� 301

vi Table of Contents

Getting started� 302
Creating a new scene using the
ARFramework template� 302
Setting up iOS ARKit for face tracking� 303
Importing assets used in this project� 304

Configuring a new AR scene for
face tracking� 305
Setting the AR camera for selfies� 306
Adding an AR Face Manager component�306
Prompting the user to find a face, or not�307
Build and run� 308

Tracking the face pose with
3D heads� 309
Making a Mr. Plastic Head prefab� 310
Making a Mr. Facet Head prefab� 312

Building the Main mode
and menu � 313
Creating a changeable face prefab� 313
Writing a main mode controller script� 314
Creating scrollable main menu buttons� 316
Adding a reset face button� 319

Attaching 3D Accessories� 320
Wearing a hat� 320
Sporting cool sunglasses� 322

Updating the scripts for accessories� 323
Adding accessories to the main menu� 325

Making dynamic face meshes
with a variety of materials� 327
Exploring AR Default Face� 327
Creating face materials� 328
Adding a face mesh visualizer to the
changeable
face prefab� 330
Controlling the face material� 331
Adding face materials to the
main menu� 333

Using eye tracking (ARKit)� 334
Attaching stickers to face
regions (ARCore)� 336
Creating the sticker prefabs� 337
Managing attachments' positions� 337
Adding region attachments to the
main menu� 342
ARCore-only UI buttons� 344

Tracking expressive face blend
shapes (ARKit)� 345
Summary� 347

Other Books You May Enjoy
Index

Preface
Augmented Reality (AR) allows people to interact meaningfully with the real world
through digitally enhanced content. This book will help get you started developing your own
AR applications using the Unity 3D game engine and the AR Foundation toolkit provided
by Unity Technologies Inc. Using the techniques and lessons presented in this book, you will
be able to create your own AR applications and games for a variety of target devices.

AR technology is now commonly available on mobile consumer devices—smartphones
and tablets, both iOS (ARKit) and Android (ARCore), and a new generation of wearable
smart glasses. In this book, I focus on instructing you on how to develop AR applications
for mobile devices, but the techniques and projects can also be applied to wearables.

By the end of this book, you will be able to build and run your own AR applications that
add layers of information to the real world, enabling interaction with real and virtual
objects and innovatively engaging your users.

Who this book is for
If you want to develop your own AR applications, I recommend using Unity with AR
Foundation as it is one of the most powerful and flexible platforms. Developers interested
in creating AR projects can use this book to accelerate their progress on the learning
curve and gain experience through a variety of fun and interesting projects. This book
complements Unity's own documentation and other resources and provides practical
advice and best practices that will have you up and running and productive quickly.

You do not need to be a Unity expert to use this book, but some familiarity will help you
get started more quickly. If you are a beginner, I recommend you first run through one or
two introductory tutorials found on Unity Learn (https://learn.unity.com/). It may also be
helpful to have some experience developing for mobile devices (iOS and/or Android).

That said, I start from the very beginning, walking you along your learning curve
slowly at first and then faster as you gain experience. And I provide plenty of links to
external resources if you want to learn more and explore specific topics in more depth.
Experienced readers can push past the instructions and explanations they already know.

https://learn.unity.com/

viii Preface

What this book covers
Chapter 1, Setting Up for AR Development, after briefly defining AR, gets you set up for
AR development, installing the Unity 3D game engine and the AR Foundation toolkit,
and ensuring your system is ready to develop for Android (ARCore) and/or iOS (ARKit)
mobile devices.

Chapter 2, Your First AR Scene, jumps right into building and running AR scenes, starting
with examples provided in the AR Foundation samples project from Unity, and then
moving on to building your own simple scene from scratch, learning about ARSession
components, prefabs, and a little bit of C# coding too.

Chapter 3, Improving the Developer Workflow, teaches you about troubleshooting,
debugging, remote testing, and Unity MARS, which can make your development
workflow more efficient.

Chapter 4, Creating an AR User Framework, sees you develop a framework for building
AR applications that manages user interaction modes, user interface panels, and AR
onboarding graphics, which we will save as a template for reuse in other projects in this
book.

Chapter 5, Using the AR User Framework, is where you will build a simple AR place-on-
plane application using the AR user framework created in the previous chapter, including
a main menu and a PlaceObject mode and UI. This chapter also discusses some advanced
issues, such as making AR optional, determining device support, and adding localization
to your projects.

Chapter 6, Gallery: Building an AR App, is part one of a two-chapter project. Here, you
will develop a picture gallery application that lets you hang virtual framed photos on
your real-world walls. In the process, you will learn about UX design, managing data and
objects, menu buttons, and prefabs.

Chapter 7, Gallery: Editing Virtual Objects, is the second part of the Gallery project, where
you will learn to implement interactions with virtual objects in your AR scene, including
selecting and highlighting, moving, resizing, deleting, collision detection, and changing
the photo in your picture frame.

Chapter 8, Planets: Tracking Images, shows you how to build an educational AR app
that uses image tracking of Solar System "planet cards" that instantiates virtual planets
hovering and spinning above your table.

Preface ix

Chapter 9, Selfies: Making Funny Faces, is where you will learn to use the front-facing
camera of your device to make fun and entertaining face filters, including 3D heads,
face masks (with choice of material textures), and accessories such as sunglasses and
mustaches. It also covers advanced features specific to ARCore and ARKit that may not be
generally supported by AR Foundation itself.

To get the most out of this book
First, you need a PC or Mac capable of running Unity. The minimum requirements
are not difficult; almost any PC or Mac today will be sufficient (see https://docs.
unity3d.com/Manual/system-requirements.html).

If you are developing for iOS, you will need a Mac running OSX with the current version
of XCode installed, and an Apple developer account. If you are developing for Android,
you can use either a Windows PC or Mac.

It is not practical to develop for AR without a device capable of running your application.
You should have an iOS device that supports Apple ARKit (search the web; Apple does
not appear to publish a list – check here, for instance: https://ioshacker.com/
iphone/arkit-compatibility-list-iphone-ipad-ipod-touch), or an
Android device that supports ARCore (https://developers.google.com/ar/
discover/supported-devices).

In Chapter 1, Setting Up for AR Development, I walk you through installing Unity Hub,
the Unity Editor, XR plugins for your target device, the AR Foundation toolkit package,
and other software to get you set up. The projects in this book are written and tested with
Unity 2021.1.

As the technology is rapidly evolving, I try to focus on existing stable tools and
techniques. Regarding software versions and installation instructions, naturally, things can
change, and I recommend you use my instructions as guidelines but also look at online
documentation (links usually given) for the most current instructions.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/system-requirements.html
https://ioshacker.com/iphone/arkit-compatibility-list-iphone-ipad-ipod-touch
https://ioshacker.com/iphone/arkit-compatibility-list-iphone-ipad-ipod-touch
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar/discover/supported-devices

x Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-
Foundation. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838982591_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Utilizing the Unity Input System package, we will first add a new
SelectObject input action."

A block of code is set as follows:

 public void SetPlacedPrefab(GameObject prefab)

 {

 placedPrefab = prefab;

 }

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

using UnityEngine;

using UnityEngine.InputSystem;

public class GalleryMainMode : MonoBehaviour

{

 void OnEnable()

 {

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838982591_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838982591_ColorImages.pdf

Preface xi

 UIController.ShowUI("Main");

 }

}

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "In the New
Scene dialog box, select the ARFramework template."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Section 1 –
Getting Started with

Augmented Reality

This section provides a basic introduction to developing AR applications and games with
Unity, including AR technology concepts and how to use the Unity Editor. We cover the
Unity XR plugin architecture, the AR Foundation toolkit, and other productivity tools. By
the end of this section, you will be prepared to begin creating your own AR applications
with Unity.

This section comprises the following chapters:

•	 Chapter 1, Setting Up for AR Development

•	 Chapter 2, Your First AR Scene

•	 Chapter 3, Improving the Developer Workflow

1
Setting Up for AR

Development
Augmented reality (AR) is widely recognized as the next-generation computing platform
where digital content is seamlessly merged into real-world experiences. This book will
help get you started with developing your own AR applications using the Unity 3D game
engine and the AR Foundation toolkit provided by Unity.

In this chapter, you will take your first steps by setting up your computer for AR
development using the Unity 3D game engine. We will begin by briefly defining
augmented reality, thus setting the context for this industry and some of the basics of
AR technology. We will then install the Unity software, the AR Foundation toolkit, and
make sure your system has been set up to develop for Android and/or iOS mobile devices.
Finally, we'll build and run a test scene to verify things are working as they should.

We will cover the following topics:

•	 Defining augmented reality

•	 Getting started with Unity, including installation and using Unity

•	 Preparing your project for AR development, including XR plugins, AR Foundation,
Input System, and the Universal Render Pipeline

•	 Setting up for mobile development (Android ARCore and iOS ARKit)

4 Setting Up for AR Development

Note for Experienced Readers
If you are already familiar with Unity, already have it installed on your system,
and are set up to build for your iOS or Android mobile device, you may be
able to skim through details related to those topics that are interspersed in this
chapter.

Technical requirements
First, you need a PC or Mac that's capable of running Unity. The minimum requirements
are not difficult; almost any PC or Mac today will be sufficient (see https://docs.
unity3d.com/Manual/system-requirements.html).

If you are developing for iOS, you will need a Mac running OSX with the current version of
XCode installed, and an Apple developer account. If you are developing for Android, you
can use either a Windows PC or Mac. We will discuss this further throughout this chapter.

It is not practical to develop for AR without a device capable of running your application.
For this chapter (and this book as a whole), you will need either an iOS device that
supports Apple ARKit (search the web as Apple does not appear to publish a list; for
example, https://ioshacker.com/iphone/arkit-compatibility-list-
iphone-ipad-ipod-touch) or an Android device that supports ARCore (https://
developers.google.com/ar/discover/supported-devices).

Because this chapter is largely about installing tools and packages according to your
requirements, please work through the topics in this chapter for additional technical
requirements and to learn how to install them. The GitHub repository for this book can
be found at https://github.com/PacktPublishing/Augmented-Reality-
with-Unity-AR-Foundation.

Defining Augmented Reality
According to the Merriam-Webster dictionary, the word augment means "to make greater,
more numerous, larger, or more intense," while reality is defined as "the quality or state of
being real." Considering this, we realize that "augmented reality" is all about using digital
content to improve our real world to add better information, understanding, and value to
our experiences.

https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/system-requirements.html
https://ioshacker.com/iphone/arkit-compatibility-list-iphone-ipad-ipod-touch
https://ioshacker.com/iphone/arkit-compatibility-list-iphone-ipad-ipod-touch
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar/discover/supported-devices
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Defining Augmented Reality 5

Augmented reality is most commonly associated with visual augmentation, where
computer-generated graphics are combined with actual real-world visuals. When using a
handheld mobile phone or tablet, for instance, AR combines graphics with the on-screen
video (I call this video see-through AR). Using wearable AR glasses, graphics are directly
added to your visual field (optical see-through AR).

But AR is not simply a computer graphic overlay. In his acclaimed 1997 research report,
A Survey of Augmented Reality (http://www.cs.unc.edu/~azuma/ARpresence.
pdf), Ronald Azuma proposed that AR must meet the following characteristics:

•	 Combines the real and virtual: The virtual objects are perceived as real-world objects
that are sharing the physical space around you.

•	 Interactive in real time: AR is experienced in real time, not pre-recorded. For
example, cinematic special effects that combine real action with computer graphics
do not count as AR.

•	 Registered in 3D: The graphics must be registered to real-world 3D locations. For
example, a heads-up display (HUD) where information is simply overlayed in the
visual field is not AR.

To register a virtual object in 3D, the AR device must have the ability to track its location
in 3D space and map the surrounding environment to place objects in the scene.
There are multiple technologies and techniques for positional and orientation tracking
(together referred to as pose tracking), as well as environmental feature detection,
including the following:

•	 Geolocation: GPS provides low-resolution tracking of your location on the Earth
(GPS accuracy is measured in feet or meters). This is usually good enough for
wayfinding in a city and identifying nearby businesses, for example, but not for
more specific positioning.

•	 Image Tracking: Images from the device's camera can be used to match the
predefined or real-time 2D images, such as QR code markers, game cards, or
product packaging, to display AR graphics that track an image's pose (3D position
and orientation) relative to the camera space.

•	 Motion Tracking: Using the device's camera and other sensors (including inertial
measurement by IMU motion sensors), you can compute your position and
orientation in 3D, and detect visually distinct features in the environment.
Academically, you may see this referred to as Simultaneous Localization and
Mapping (SLAM).

http://www.cs.unc.edu/~azuma/ARpresence.pdf
http://www.cs.unc.edu/~azuma/ARpresence.pdf

6 Setting Up for AR Development

•	 Environmental Understanding: As features are detected in the environment, such as
X-Y-Z location depth points, they can be clusters to identify horizontal and vertical
planes, as well as other shapes in 3D. These can be used by your application for
object placement and interaction with real-world objects.

•	 Face and Object Tracking: Augmented selfie pictures use the camera to detect faces
and map a 3D mesh that can be used to add a face mask or other (often humorous)
enhancements to your image. Likewise, other shaped objects can be recognized and
tracked, as may be required for industrial applications.

In this book, we will be using many of these techniques in real projects with Unity's AR
Foundation toolkit, so that you can learn how to build a wide variety of AR applications.
And we'll also be learning many other details and capabilities offered by Unity and AR
software, all of which we'll use to improve the quality and realism of your graphics and
provide engaging interactive experiences for your users.

Like all technologies, AR can potentially be used for better or for worse. A great exposé on a
hypothetical disturbing future, where AR is ubiquitous and as consuming as today's mobile
media technologies, can be found in this 2016 Hyper-Reality art video by Keiichi Matsuda
(http://hyper-reality.co/). Hopefully, you can help build a better future!

Figure 1.1 – Hyper-Reality video by Keiichi Matsuda (used with permission)

http://hyper-reality.co/

Getting started with Unity 7

In this book, we are using the Unity 3D game engine for development (https://
unity.com/), as well as the AR Foundation toolkit package. AR Foundation provides a
device-independent SDK on top of the device-specific system features provided by Google
ARCore, Apple ARKit, Microsoft HoloLens, Magic Leap, and others. For further reading
and to get a good introduction to mobile handheld augmented reality, check out the
following links:

•	 ARCore Fundamental Concepts: https://developers.google.com/ar/
discover/concepts.

•	 Introducing ARKit: https://developer.apple.com/augmented-
reality/arkit/.

•	 Getting Started with AR Development in Unity: https://developers.
google.com/ar/discover/concepts.

Let's start developing AR applications with Unity. First, you'll need to install Unity on
your development computer.

Getting started with Unity
To develop AR applications with Unity, you need to install Unity on your development
machine. In this section, we'll step through the installation process using Unity Hub,
create a new Unity project, and introduce the basics of using the Unity Editor interface.

Installing Unity Hub
Unity Hub is a desktop application that serves as a portal to many of the resources
developers may need to use Unity in their workflows. For now, we'll be using the Installs
menu to install a version of the Unity Editor. Then, we'll use the Projects menu to create
and manage our Unity projects. To do this, follow these steps:

1.	 Please download and install the Unity Hub program from https://unity3d.
com/get-unity/download. Generally, you'll always want to use Unity Hub to
install versions of Unity rather than downloading a Unity version installer directly.

2.	 If you haven't already, you may need to activate a Unity User License. This is free
for the Student and Community plans; you can decide to upgrade to Plus or Pro at
a later time. All license plans include the same versions of Unity; no features are
disabled for free plans. The paid plans add access to professional cloud services that
are very useful but not necessary for project development.

https://unity.com/
https://unity.com/
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download

8 Setting Up for AR Development

3.	 Use the Download Unity Hub button, as shown in the following screenshot (you
may need to agree to the Terms of Service first):

Figure 1.2 – Installing Unity Hub instead of downloading Unity directly

4.	 With Unity Hub installed and open, you'll see menus for Learn and Community.

Clicking Learn takes you to Unity Learn projects and tutorials (including
downloads for the various project assets). These can range from 5-minute tutorials
to projects that take 15 hours to complete!

The Community menu provides links to many other Unity-hosted resources,
including Unity Now conference talks, Unity Blog, Answers, Q&As, and Forums.

Now, let's install a version of the Unity Editor.

Installing a Unity Editor
When starting a new project, I like to use the latest Official Release, which has a
leading edge without being a Beta or Alpha prerelease. If you are more cautious or
have requirements to use the most stable release, choose the long-term support (LTS)
version. These can be found under the Recommended Release heading in Unity Hub.
Unity versions that are compatible with the writeups in this book are noted in the current
.README file of this book's GitHub repository. Install a copy of the Unity Editor now,
as follows:

1.	 Select the Installs tab, then press ADD to open the Add Unity Version box.

Getting started with Unity 9

2.	 From here, you can select a version of Unity to install.

Note – Unity Versions
In the current Unity version numbering system, the major release number (for
example, Unity 2020.x.x) loosely correlates with calendar years. The most stable
versions are ones designated LTS, for Long-Term Support; for example, Unity
2020.3.14f1 (LTS). LTS versions receive periodic maintenance and security
updates but no new features. Point releases lower than LTS (for example, Unity
2021.1.15f1) are considered technical releases, which are reasonably stable
while new features and bug fixes are currently in development. For the more
adventurous, Beta and Alpha prereleases include cutting-edge features but with
added risks.

3.	 Once you've selected the version of Unity you wish to install, click Next to see the
Add modules to your install options. Here, you want to know what platforms and
devices you expect to target with your projects.

Module software can be quite large and may take time to install, so only pick what
you know you will need soon. You can always come back later and add (or remove)
modules as needed. Specifically, if you are developing your AR project for Android
and ARCore, choose Android Build Support. If you are targeting iOS and ARKit,
choose iOS Build Support. Likewise, if you are targeting other devices such as
HoloLens or Magic Leap, choose the corresponding modules.

4.	 Depending on the modules you selected, you may need to press Next and accept
an additional user license agreement. Then, press Done to download and install
the software.

Tip – Where to Install Unity
Using the gear icon in the top-right of the Unity Hub window opens a
Preferences window. Under the General preference tab, you can select the
folder where your User Editors are installed on your computer. Since these
can take up a considerable amount of disk space, you may not want to use the
default location.

If you have any problems with Unity Hub or otherwise want to join in with discussions,
visit the relevant section of the Unity community discussion forum at https://forum.
unity.com/forums/unity-hub.142/.

https://forum.unity.com/forums/unity-hub.142/
https://forum.unity.com/forums/unity-hub.142/

10 Setting Up for AR Development

Now, you're ready to create your first Unity project.

Creating and managing Unity projects
You will use Unity Hub to create new Unity projects. Projects are created in a specific
folder on your system, with a set of subfolders populated with default settings and content
based on the starting template you choose. Projects are opened with a specific version
of Unity and continue to be associated with that specific version. To start a new project,
complete the following steps:

1.	 Open the Unity Hub, select the Projects tab, and then click the New button. Notice
the down arrow of the New button, which lets you select a Unity version to use for
the new project that's different from the one you currently have installed.

2.	 The Create New Project box gives you the option to choose a Project Name, a
Location where it should be created, and a starting Template. As shown in the
following screenshot, I am selecting the Universal Render Pipeline template, in a
folder named D:\Documens\UnityProjects:

Figure 1.3 – Creating a new project with the URP template in Unity Hub

Note – We're Using the Universal Render Pipeline
Unity offers multiple alternative render pipelines. The legacy "built-in" render
pipeline sports better support from older third-party assets as it came before
the newer Scriptable Render Pipeline (SRP) system (https://unity.
com/srp), but the newer SRP-based pipelines are more performant and
flexible. These include the High Definition Render Pipeline (HDRP) for high-
quality rendering using high-end graphics hardware. There's also the Universal
Render Pipeline (URP), which is very fast, even on mobile devices, while
providing excellent rendering quality. I recommend starting new AR projects
with URP.

https://unity.com/srp
https://unity.com/srp

Getting started with Unity 11

Tip – Avoid Spaces in Project Names
At the time of writing, there's a bug in some ARCore features that require that
your project pathname contains no spaces, including the project name and all
folder names up the tree.

3.	 After pressing Create, it may take a few moments for Unity to create your new
project, import the default assets, and perform other setup steps before opening the
Unity Editor window.

Tip – Upgrading Unity Projects
A great thing about Unity Hub is its ability to manage multiple versions of
Unity and all your Unity projects. I tend to start new projects with the latest
official release, though inevitably, new versions of the Unity Editor will be
released. In general, it's best to stick with the version of Unity you used to
create your project. If you need to upgrade to a newer version, do so cautiously
and deliberately.

Generally, going to a new minor update (for example, Unity 2021.2.3 to
2021.2.16) is safe. Going to a point release (for example, Unity 2021.2.x
to 2021.3.x) is usually OK but you may encounter unexpected problems.
Upgrading to a new major release is an unusual event for me in my projects. In
any of these cases, be sure that your project has been backed up (for example,
on GitHub) before opening the project in a different version of Unity, and
schedule time to resolve unforeseen problems.

Unity includes automated tools to facilitate upgrading a project to a new
version when it's opened in Unity. Your assets will be reimported. While
upgrading to newer versions is supported, downgrading to a previous version
is not.

When I create a new project in Unity, one of the first things I do is set Target Platform
in Build Settings to the first platform that I know I will be using to develop and test my
project. There are advantages to doing this as early as possible, as any new assets you
add to the project will be imported and processed for your target platform. You are not
required to do this now, but I do recommend that you perform the following steps. We will
go into more detail later in this chapter (in the platform-specific topic sections).

With your project opened in Unity, follow these steps:

1.	 Open the Build Settings window by going to File | Build Settings.
2.	 In the Platform selection panel, choose your target platform. For example, if you're

developing for Android ARCore, select Android, while if you're developing for
Apple ARKit, choose iOS.

12 Setting Up for AR Development

If the platform you require is not listed or is disabled, you may have forgotten to add
the platform build module when you installed this version of Unity. Use Unity Hub
to add the module now.

Tip – You Can Add Target Platform Modules via Unity Hub
If you are missing support for a target platform, open Unity Hub, click Installs,
and then, for the specific Unity version you're using, click the 3-dot context
menu and choose Add Modules. From there, you can use the checkboxes to
add new modules.

3.	 You don't need to worry about the other build settings right now. Press the Switch
Platform button. It may take a few minutes to reimport your project's assets.

At this point, your Unity Editor should have opened a new Unity project, showing a default
URP SampleScene. Feel free to explore the editor windows and scene objects. It may look
daunting at first, but we'll review the user interface next to help you get more comfortable.

Introducing the Unity Editor interface
When you open the Unity Editor for the first time, you will notice that it has a lot of
separate window panels that contain different content. Let's explore these together.

The following screenshot shows Unity Editor with the Universal Render Pipeline
template's SampleScene. The windows are arranged in a default layout. This "under
construction" scene demonstrates many of the awesome rendering features of Unity that
may or may not be relevant in an AR project. But let's focus on Unity itself for a moment:

Figure 1.4 – Unity Editor with the URP sample scene open

Getting started with Unity 13

The Unity Editor is arranged in a layout of separate tabbed windows. An Editor window
is a UI panel containing specific types of information and controls. More windows can
be opened via the Window main menu. Let's review each window in the preceding
screenshot and introduce some other fundamental terminology since you're getting to
know Unity:

•	 Hierarchy window (1): The tree view of the current scene's GameObjects. Shows
the same content as the scene in a hierarchical tree view of parent-child objects.

You may have noticed in the preceding screenshot that, while examining both the
Scene and Hierarchy windows, the Safety Hat GameObject is currently selected
and highlighted. A Unity GameObject is an object that is part of a scene.

•	 Scene view window (2): This shows a 3D view of the current scene. Along the top of
the scene window is an icon toolbar for controlling your working view of the scene.

•	 Inspector window (3): The components and properties of the selected GameObject.

GameObjects have components attached that define the runtime behavior of a
GameObject. Unity includes many built-in components, and you can write your
own using the C# programming language. Each component may have individual
properties; that is, settings that control the component.

You can see that the Safety Hat has Transform and Mesh Renderer components,
for instance.

GameObjects always have one Transform component. GameObjects may also have
a 3D mesh, renderer, and materials that determine how it's rendered in the scene.
There are many other components you can add that extend an object's behavior,
physics, and interactions.

•	 Project assets window (4): In this window, you'll find the files stored on the hard
drive in your project's Assets/ folder, located under the project's root directory.

Assets include files that may be added to objects in a scene, such as images, audio,
video, materials, and scripts. Scenes themselves are saved as assets. Complex
predefined GameObjects can also be saved as assets, called prefabs.

•	 Console window (4, hidden behind Project tab): This shows error and information
messages from your application.

•	 Game view window (2, hidden behind Scene tab): This shows the user's view, as
rendered by the in-scene camera GameObject.

•	 Main Menu: At the top of the Editor window is a menu where you can access
many features of Unity. Adding additional packages to your project may add more
menu items.

14 Setting Up for AR Development

•	 Main Toolbar: At the top of the Editor window and below the Main menu is an
icon toolbar organized into three sections. On the left-hand side, there are tools for
editing the Scene view (including Move Tool, Rotate Tool, and Scale Tool). In the
center, there are the play mode controls (including Play and Pause). Finally, on the
right, there are additional controls, including some that allow you to access your
Unity account and cloud services.

Take a moment to explore the main menu items:

•	 The File menu is for creating, saving, and loading scenes and accessing your
build settings.

•	 The Edit menu is for selecting and editing objects in the project, accessing project-
specific settings and preferences, and other editor-related tools.

•	 The Assets menu provides tools for importing and managing project assets (as
found in the Project window's Assets/ folder).

•	 The GameObject menu lets you add new objects to the current scene.

•	 The Component menu provides a categorized list of components that you can add
to the currently selected GameObject in the scene.

•	 The Window menu is where you can find and open additional windows that
provide more features. Importing new packages into Unity may add new menu
bar items.

Information – Using Play Mode in AR Projects
In most Unity projects, you can press the Play button (in the main toolbar)
to go into play mode and run your scene in the Editor, running on your
desktop rather than on the device. This is not so simple with an augmented
reality scene since it requires an onboarding phase, where the software scans
the environment for physical world features and then uses the physical
device sensors for positional tracking. There are several solutions to facilitate
your iterative developer workflow, all of which we will discuss in Chapter 3,
Improving the Developer Workflow.

You can personalize and rearrange the editor's window layout to suit your needs and
preferences. Layouts can be saved and loaded using the Layout selection menu in the
top-right corner of the editor. The screenshots in this book use layouts that are different
from Unity's default layout.

Getting started with Unity 15

OK, enough talk – this is a hands-on book, so let's get hands-on right away and try out the
Unity Editor.

Basics of using the Unity Editor
In this section, we'll build a trivial scene with a 3D cube that gives us more context to
explain how to use Unity:

1.	 Create a new scene from the main menu by selecting File | New Scene.
2.	 A New Scene window will appear (Unity 2020+ only) that lets you select a scene

template. Choose the one named Basic (Built-in). Then, press Create.

You will notice right away that the new scene contains two default GameObjects: a
Main Camera and a Directional Light.

3.	 Add a 3D cube to the scene by clicking GameObject | 3D Object | Cube. With
that, the Cube will be added to the scene and be visible in both the Scene and
Hierarchy windows.

4.	 Ensure the Cube rests at the origin of our scene; that is, the (0, 0, 0) X-Y-Z
coordinates. With Cube selected in the Hierarchy window, look in the Inspector
window and set its Transform | Position | X, Y, and Z values to zero.

5.	 Let's rotate the Cube. In the same Inspector Transform component, set its
X-Rotation value to -20.

The scene may now look as follows:

Figure 1.5 – New scene with a 3D cube

16 Setting Up for AR Development

At this point, I encourage you to get familiar with the Scene view controls. Using a
3-button mouse on Windows, for example, right-click in the window to pivot the view,
Alt + left-click to orbit the view around the "center" of the view, and center-click the
mouse to move the view. To move closer or further out (zoom), use Alt + right-click
or use the scroll wheel. Note that the directional gizmo in the top right of the Scene
window indicates the current view showing the X, Y, and Z axes. For further information
(including one- or two-button mice), see https://docs.unity3d.com/Manual/
SceneViewNavigation.html.

Tip – RGB == XYZ
It's handy to remember that the red, green, and blue colors in gizmos
correspond to the X, Y, and Z axes, respectively.

We modified the Cube's transform by editing its numerical values in the Inspector
window. You can also transform an object by directly manipulating it in the Scene
window. For example, in the main toolbar, select Rotate Tool. With the Cube currently
selected, you should now see the rotate gizmo rendered on the object in the scene. You can
grab one of the gizmo handles (X, Y, or Z) and drag it to rotate the object around that axis,
as shown in the following screenshot:

Figure 1.6 – Rotate tool selected

For more on transforming objects directly in the Scene window, see the Unity Manual
(https://docs.unity3d.com/Manual/PositioningGameObjects.html).

https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html

Getting started with Unity 17

This was a very brief introduction to get you started. As a matter of habit, you should
always save your work after accomplishing something. Let's save the scene, as follows:

1.	 From the main menu, select File | Save As, which will open the Save Scene window.
2.	 Navigate to the Scenes/ subfolder (in your project's Assets folder).
3.	 Give the scene a name, such as My Cube, and press Save.

Tip – Confused or Overwhelmed? Take it a Step at a Time
As with any professional development and creative application, there's a huge
assortment of things you can do with Unity, and it provides many tools to
help you achieve your objectives. If you are confused or overwhelmed, a great
strategy is to try and focus only on the menu items and windows you need
right now and ignore the rest. We'll walk you through this with simple step-by-
step instructions. As you gain experience and confidence, you'll expand your
radius of familiarity and see how it all fits together. To be honest, I still learn
new things about Unity each time I work on a project.

Of course, this was just a brief introduction to Unity. If you need to find out more, please
head over to Unity Learn, where there are some excellent beginner tutorials (using the
https://unity.com/learn/get-started link or the Learn tab in Unity Hub).

Also, take a look at the Unity Manual introductory topics (https://docs.unity3d.
com/Manual/UnityOverview.html).

Organizing your project assets
You have access to your project assets in the Project window. I like to keep the project
assets that I create in their own top-level folder, separate from other assets I might import
from third-party sources such as the Unity Asset Store.

Likewise, Unity's URP project template includes SampleScene and example assets. I
suggest moving the URP example assets into their own folder to keep them separate from
your own application assets. You can do this by following these steps:

1.	 Create an Assets folder named URP-examples. In the Project window, click the
+ icon in the top left, select Folder, and name it URP-examples.

2.	 Drag each of the example folders into the URP-examples one, namely
ExampleAssets, Materials, Scenes, Scripts, TutorialInfo, and the
Readme file.

3.	 Leave the Presets and Settings folders in the root Assets/ folder.

https://unity.com/learn/get-started
https://docs.unity3d.com/Manual/UnityOverview.html
https://docs.unity3d.com/Manual/UnityOverview.html

18 Setting Up for AR Development

4.	 Create an Assets folder named _App. I like to prepend an underscore to this
folder's name so that it remains at the top of the list.

5.	 Create child folders inside _App/ named Materials, Prefabs, Scenes, and
Scripts. These subfolders will remain empty for now, but we'll add to them as we
work through this book.

Organizing your assets by file type is a common convention in Unity, but you may have
your own way of doing things. Unity does not depend on these folder names or asset
file locations. (That said, there are a few reserved folder names with special meanings to
Unity; see https://docs.unity3d.com/Manual/SpecialFolders.html).
Your Project window may now look as follows:

Figure 1.7 – Reorganized Project Assets folders

I think we're now ready to move on and continue setting up your system and installing the
packages you need for AR development. We'll start by adding an AR device plugin to your
project, and then do the same for the Foundation package.

Preparing your project for AR development
When you develop and build a project for augmented reality, Unity needs to know the
device and platform you are targeting. This is a multi-step process that includes adding
the device plugin to your project and setting the target platform in Build Settings. We'll
address the device plugins now and Build Settings later in this chapter.

https://docs.unity3d.com/Manual/SpecialFolders.html

Preparing your project for AR development 19

The following diagram shows the Unity XR technology architecture. As you can see, at the
bottom of the stack are the various AR (and VR) provider plugins:

Figure 1.8 – The Unity XR tech stack

At the bottom of the stack is XR Plugins, separate provider packages that implement
a software interface to a specific device. Plugins allow Unity to talk with a device by
connecting the Unity XR subsystems with an operating system and runtime API.
Ordinarily, you will not be using a plugin directly but a higher-level toolkit instead, such
as AR Foundation (which we will install in the next section). Some plugins are provided
and maintained by Unity Technologies; others are vendor-supported third-party plugins.

In the preceding diagram, at the top of the plugins are XR Subsystems, which form
XR Plugin Framework. This abstracts sets of features into separate APIs. When an
application is running, it can query the capabilities of the current runtime device and
enable or disable sets of features in the app accordingly. Atop XR Subsystems is the AR
Foundation toolkit (and XR Interaction Toolkit), which provides the main AR API for
your Unity applications. We will be using AR Foundation extensively for the projects in
this book.

Now, let's install the XR plugin(s) you need for this project.

20 Setting Up for AR Development

Installing XR plugins for AR devices
To prepare our project for AR development, we'll install the AR device plugin for your
target device via the XR Plug-in Management window. With your project open in Unity,
follow these steps:

1.	 Open the Project Settings window by selecting Edit | Project Settings from the
main menu.

2.	 In the Settings menu on the left, select XR Plugin Management.
3.	 Click the Install XR Plugin Management button. It may take a moment for Unity

to import and compile the package scripts.
4.	 If necessary, click the XR Plug-in Management item again to show Plug-in

Providers and other options. Notice that there are tabs for each of the target
platforms. Select the one you will be targeting first.

For example, in the XR Plug-in Management window, the Android tab will be only
available if you installed the Android Build Support module when you installed
Unity via Unity Hub.

5.	 Check the checkbox for the AR plugin you want to use. For example, for Android,
select ARCore, while for iOS, select ARKit.

Tip – Don't Mix VR and AR Plugins in the Same Project
You'll see that the XR Plug-in Management window lets you choose any
combination of AR and VR plugins. In our projects, we're only interested in
the AR ones. Generally, do not include both AR and VR plugins in the same
project as the build settings, player settings, camera rigs, and many other things
can differ significantly between AR and VR projects. (Perhaps when you read
this, there will be devices that support both modes in a single app, but I am not
aware of any at this time.)

Preparing your project for AR development 21

In the following screenshot of the Project Settings window, I have selected the XR
Plug-in Management Settings menu. In my window, there are three tabs for each
of the possible target platforms for this project that I have installed: Desktop, iOS, and
Android (yours may be different). With the Android tab selected, you can see that I have
checked the ARCore plugin. You'll also notice that, on the left-hand side, there's
an additional ARCore menu item that you can click to see options that are specific to
that plugin:

Figure 1.9 – XR Plug-in Management window with the ARCore plugin selected

Interestingly, XR Plug-in Manager is a shortcut to installing the corresponding packages
in Package Manager. You can verify this by opening Package Manager and reviewing the
installed packages by performing the following steps:

1.	 Open Package Manager from the main menu and choose Window | Package
Manager.

2.	 Ensure the filter selection at the top left of the Package Manager window says
Packages In Project.

3.	 You should see your plugin in the list; for example, ARCore XR Plugin.

22 Setting Up for AR Development

For example, in the following screenshot of Package Manager, which shows Packages
In Project (top left of the window), ARCore XR Plugin has been installed and selected.
You can see that this specific version of the plugin has been Verified for the Unity version
being used by this project. It also shows a description of the plugin's features, links to its
documentation, and other details. Also, I have unfolded the plugin's Other Versions list
to show you how to review each of the plugin's versions; this is where you might upgrade
(or downgrade) a plugin to a different version:

Figure 1.10 – Package Manager with the ARCore XR plugin installed in this project

At this point, you could begin developing an augmented reality project, if you wanted
to write code directly using the XR subsystem's developer-facing C# interface. However,
it's more likely that you will install a higher-level toolkit that is more Unity developer-
friendly. Still, you may need to drop down into the plugin framework to access the XR
subsystems directly. For example, you may wish to scan and start a particular subsystem,
as shown in the example at https://docs.unity3d.com/Manual/xrsdk-
runtime-discovery.html. Later in this book, we may need to access the
plugin framework's SDK. For the most part, we will be using the higher-level AR
Foundation toolkit.

https://docs.unity3d.com/Manual/xrsdk-runtime-discovery.html
https://docs.unity3d.com/Manual/xrsdk-runtime-discovery.html

Preparing your project for AR development 23

Installing the AR Foundation package
AR Foundation is a package that provides a development layer between your application
and the underlying device features and plugins. AR Foundation provides components
and other assets that help you build AR projects once, then deploy for multiple mobile
and wearable AR devices. Using a "unified workflow," as Unity says, your app can support
current and future features that may or may not be currently available on your end user's
specific device at runtime. This helps "future-proof " your AR apps. In this section, we'll
install and explore AR Foundation.

The features that are supported by AR Foundation will depend on the current capabilities
of the target devices and varies between versions of AR Foundation. The following chart
shows the feature support per platform that AR Foundation offers:

Figure 1.11 – AR Foundation 4.1.5 features per platform

See the Platform Support section of the AR Foundation documentation page (https://
docs.unity3d.com/Packages/com.unity.xr.arfoundation@latest/
index.html) for the most up to date details for the version you are using.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@latest/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@latest/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@latest/index.html

24 Setting Up for AR Development

Unity provides a Package Manager, which enables you to expand Unity's core
functionality by installing additional packages in your project. This way, you can choose
just the features you need for a particular project. The XR plugins we installed in the
previous section are packages. Now, we'll use the Package Manager to install the AR
Foundation package.

Information – Advantages of Unity Packages
With Unity packages come many advantages. Unity can update the core Editor
independently of other features. Likewise, packages can be updated outside of
Unity's core release cycle. Decoupling their dependencies reduces the risk of
schedule delays and technical problems, allowing for more agile development
cycles and support for technology advances inside and outside the Unity
offices. For example, if Apple releases an update to ARKit, then Unity can
release an update to its ARKit plugin without having to wait for the next release
of the Unity Editor, nor depending on the Unity core development team. If
you've ever worked on a large project with multiple teams, you can appreciate
the benefits of this architecture. Teams can be organized so that they focus on
the details that their package provides, and then test for successful integration
with the Unity core product.

You can install AR Foundation using Package Manager by following these steps:

1.	 Open the Package Manager from the main menu by going to Window | Package
Manager.

2.	 Set the package filter in the top left to Unity Registry to see a list of all the official
packages.

3.	 In the search box, type ar. You should now see all the AR-related packages in
the list.

4.	 It is important to pay attention to the version numbers of the package, and whether
that particular version has been verified with the Unity version you're using in your
project.

5.	 Select AR Foundation, and then press Install. It may take a moment to install.

Once installed, you may discover that new items have been added to the main menu bar,
including options under GameObject | XR. Don't select any just yet – we'll get to that in
the next chapter, Chapter 2, Your First AR Scene, where we will use the toolkit to create our
first AR scene with AR Foundation.

You also need to choose an input handler for your project. We'll look at this in the
next section.

Preparing your project for AR development 25

Choosing an input handler
The Unity product is continually improving. One relatively recent advancement is the
introduction of the new Input System, which is replacing the classic Input Manager.
At the time of writing, Unity projects can be configured to use either one, or both in
the same project. The input handler you choose can have a significant impact on your
development because their usages are quite different. The classic Input Manager mostly
uses polling, while the new Input System uses events (see https://blog.unity.com/
technology/introducing-the-new-input-system). This is a generalization
as both software patterns can be implemented using either handler, but the new Input
System is better designed and more flexible. In the interest of advancing the state of the
art, the projects in this book will use the new Input System.

However, some example scenes that you will be importing into your project, including
the AR Foundation Samples in Chapter 2, Your First AR Scene, will use the classic Input
Manager, so it's prudent to allow your project to support both.

To configure your project to use the new Input System, perform the following steps:

1.	 To import the Input System package, open the Packager Manager by going to
Window | Package Manager.

2.	 Select Unity Registry from the filter selection in the top left of the window.
3.	 Find Input System (use the search field and type in input), and click Install.
4.	 You may be prompted to let Unity automatically change your Player Settings to use

the new Input System. You can say "no" to this. We'll do this manually.
5.	 Open the Player Settings window by going to Edit | Project Settings | Player.
6.	 Locate Configuration | Active Input Handling and select Both (or if you prefer,

select Input System Package (New)).

We will begin working with input in Chapter 2, Your First AR Scene, as well as the
subsequent chapters.

You also need to set up the project's render pipeline for AR support. Let's learn how to
do this.

https://blog.unity.com/technology/introducing-the-new-input-system
https://blog.unity.com/technology/introducing-the-new-input-system

26 Setting Up for AR Development

Adding support for the Universal Render Pipeline
Because we created this project using the Universal Render Pipeline (URP), there's
one additional thing you need to do – add AR video background support to the
graphics forward renderer (see https://docs.unity3d.com/Packages/com.
unity.xr.arfoundation@4.1/manual/ar-camera-background-with-
scriptable-render-pipeline.html). This feature renders the device's video feed
immediately on the screen before the virtual graphics are rendered on top of those pixels.
Perform the following steps:

1.	 In the Project window, locate the folder that contains the Scriptable Render Pipeline
settings assets. This is usually the Assets/Settings/ folder.

2.	 Select the asset named ForwardRenderer.
3.	 In the Inspector window, click the Add Renderer Feature button and select AR

Background Renderer Feature. The resulting Forward Renderer settings are shown
in the following screenshot:

Figure 1.12 – ForwardRenderer data asset with the AR Background Renderer Feature added

Furthermore, as a reminder, if you import any assets into your project, you may need to
convert their materials for the render pipeline. We will do this for the sample assets at the
end of this chapter.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ar-camera-background-with-scriptable-render-pipeline.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ar-camera-background-with-scriptable-render-pipeline.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ar-camera-background-with-scriptable-render-pipeline.html

Setting up for mobile development 27

You have now installed Unity using Unity Hub, created and opened a new Unity project,
installed XR plugins for your AR device, installed the AR Foundation package, selected an
input handler for your project, and configured the render pipeline for AR. The next step is
to continue setting up your project for the target platform.

Setting up for mobile development
Depending on the device platform you are targeting with your project, you will need to
install additional software and development tools, as well as configure your Unity project
with platform-specific settings.

If you are developing for Android ARCore, go to the Setting up for Android/ARCore
Development section. If you are developing for Apple ARKit, go to the Setting Up for iOS/
ARKit Development section. Finally, if you are developing for wearable AR devices, go to
the Developing for wearable AR glasses section.

Setting up for Android/ARCore development
If you want to build and run your project on an Android device, there are a few extra
steps in setting up your project for Android development and ARCore. I'll summarize
the process here but naturally, things can change, and I recommend that you look at the
documentation for the most current instructions, including Google's ARCore docs, in
addition to the Unity Manual. Here is a list of some relevant links:

•	 ARCore Supported Devices: https://developers.google.com/ar/
devices

•	 Unity Manual – Android Environment Setup: https://docs.unity3d.com/
Manual/android-sdksetup.html

•	 ARCore Unity – Overview of Features: https://developers.google.com/
ar/develop/unity

•	 Unity ARCore Extensions Installation: https://developers.google.com/
ar/develop/unity-arf/enable-arcore

•	 Unity ARCore Plugin: https://docs.unity3d.com/Packages/com.
unity.xr.arcore@4.1/manual/index.html (find the doc page for the
version you are using)

https://developers.google.com/ar/devices
https://developers.google.com/ar/devices
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://developers.google.com/ar/develop/unity
https://developers.google.com/ar/develop/unity
https://developers.google.com/ar/develop/unity-arf/enable-arcore
https://developers.google.com/ar/develop/unity-arf/enable-arcore
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arcore@4.1/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arcore@4.1/manual/index.html

28 Setting Up for AR Development

You may have already completed the first few steps for setting up for Android and ARCore
development, but I'll repeat them here briefly:

1.	 Build support modules: In Unity Hub, ensure you have installed the Android
platform build support modules for the specific version of Unity you are using with
your project.

In the Unity Hub Add Modules window, there's a > icon for unfolding Android
Build Support. Ensure you have checked the checkboxes for both Android SDK &
NDK Tools and OpenJDK.

Note that if you need to customize the location of either the Android SDK, NDK, or
JDK libraries, use the Unity Preferences window in the Unity Editor, by navigating
to Edit | Preferences | External Tools, and specify the paths for Unity to find where
you installed these separately.

2.	 Target Platform: In the Unity Editor, open the Build Settings window by selecting
File | Build Settings. Within the Platforms panel, select the Android platform
from the list. If it is not already selected, please click the Change Platform button. If
it is disabled, go back to Step 1.

3.	 XR Plugin: Ensure the ARCore plugin is currently installed and selected. Select
Edit | Project Settings, and then select XR Plug-in Management from the side
menu (initializing it if necessary). Click the Android icon to see the list of Android
plugins and check the ARCore checkbox if it is not already checked.

4.	 USB Debugging: The next step is to enable USB debugging on your Android device
(phone or tablet). Open the device's Settings > About window and find the Build
Number item. (Depending on the brand, you may need to drill down another level
or find the Build Number item in a slightly different location.) The next thing you
must do I think is very funny – perform a magical incantation by clicking the Build
Number item seven times! Then, magically, a Developer Options menu option will
appear. Select that and enable USB Debugging.

You can now connect your device to your development machine, and it should be
recognized as an attached peripheral device.

Setting up for mobile development 29

The next thing to consider is the Android Player settings in your project. A review
of these options can be found here: https://docs.unity3d.com/Manual/
class-PlayerSettingsAndroid.html. Specific settings are required for AR
projects targeting ARCore. Please double-check the current requirements, as can be
found in the Configure Project Settings topic on the Quickstart ARCore page (https://
developers.google.com/ar/develop/unity-arf/quickstart-android).
Continuing from the previous steps, I suggest doing the following:

1.	 Player Settings: In Unity, navigate to Edit | Project Settings | Player to open the
Player Settings window. It contains many options, including tabs at the top to
switch between platform-specific settings. Generally, you can keep the default
settings unless otherwise advised, or when you're optimizing your project builds.
Initialize the following settings:

2.	 Other Settings | Rendering: Uncheck Auto Graphics API. If Vulkan is listed
under Graphics APIs, remove it as Vulkan is not yet supported by ARCore. To do
so, select Vulcan and press the - (minus) icon in the lower right. Also, uncheck
Multithreaded Rendering as it's (currently) not compatible with ARCore.

3.	 Other Settings | Package Name: Create a unique app ID using a Java package name
format. Unity chooses a default based on your project name; for example, com.
DefaultCompany.MyARProject.

4.	 Other Settings | Minimum API Level: If you are building an AR Required app,
specify Android 7.0 'Nougat' (API Level 24) or higher. If you are building an AR
Optional app, specify Android API Level 14 or higher.

Information – The Word "player" in Unity
The word "player" in Unity carries multiple meanings. The user of your
application or game may be referred to as the player. In a game, the first-
person GameObject (containing a camera controlled by the user) might also be
referred to as the player. In a non-AR video game, the game controller might
be called the player controller. However, in Project Settings, the player refers
to the result of the build process; it is an executable program that is installed
on your target device (along with other asset files and data) that "plays" your
application. In this case, the word is akin to a media player, for example, that
plays a music or video file. Player Settings in Unity configures how Unity is
built and deployed to your target device.

https://docs.unity3d.com/Manual/class-PlayerSettingsAndroid.html
https://docs.unity3d.com/Manual/class-PlayerSettingsAndroid.html
https://developers.google.com/ar/develop/unity-arf/quickstart-android
https://developers.google.com/ar/develop/unity-arf/quickstart-android

30 Setting Up for AR Development

Meanwhile, you also have the option to install additional capabilities provided by the
ARCore Extensions package for Unity. This package extends AR Foundation to some
more advanced features of ARCore that are currently not supported in AR Foundation. To
install ARCore Extensions, perform the following steps:

1.	 Download the latest arcore-unity-extensions-*.tgz tarball from the
GitHub releases page at https://github.com/google-ar/arcore-
unity-extensions/releases/.

2.	 Open the Package Manager using Window | Package Manager.
3.	 In the top left of the window, click the + icon and choose Add package from

tarball, as shown here:

Figure 1.13 – Adding a tarball package

4.	 Locate the downloaded arcore-unity-extensions-*.tgz tarball.
5.	 Then, click Open. It may take a few moments to install the package and

any dependencies.

Your project is now set up to target Android ARCore with AR Foundation. We'll verify
your settings in the next chapter, Chapter 2, Your First AR Scene, when we create an AR
scene, build it, and run it on your device.

Setting up for iOS/ARKit development
If you want to build and run your project on an Apple iOS device, there are a few extra
steps in setting up your project for iOS development and ARKit. I'll summarize the
process here, but naturally, things can change, and I recommend that you look at the
necessary documentation for the most current instructions.

Developing for iOS requires a Mac computer running OSX. Then, you need to install the
XCode development environment. It is also strongly recommended that you join the Apple
Developer Program, which currently costs $99 (USD) per year for individuals. You can do
some limited Unity development for iOS without becoming an Apple Developer but it's not
practical, especially for AR, where you need to test your app on a physical device.

https://github.com/google-ar/arcore-unity-extensions/releases/
https://github.com/google-ar/arcore-unity-extensions/releases/

Setting up for mobile development 31

Here is a list of some relevant links:

•	 Apple Developer Program: https://developer.apple.com/programs/

•	 Unity Manual – Getting Started with iOS Development: https://docs.
unity3d.com/Manual/iphone-GettingStarted.html

•	 Unity Manual – Building for iOS: https://docs.unity3d.com/Manual/
UnityCloudBuildiOS.html

•	 Unity ARKit Plugin: https://docs.unity3d.com/Packages/com.unity.
xr.arkit@4.1/manual/index.html (find the doc page for the version you
are using)

Information – How to Develop for iOS Without a Mac
While iOS development requires a Mac computer running OSX, it's possible to
work around this using Unity Cloud Builds. This process is not for beginners,
nor those timid about DevOps procedures. You will still need access to a
Mac development machine to set up your Apple license, provisioning profile,
iOS certificate, and p12 file, but then you can use those to set up a Unity
Cloud Build for iOS. See https://docs.unity3d.com/Manual/
UnityCloudBuildiOS.html for more information. After each
successful build, you'll download the built application's .ipa file to your iOS
device. This does not lend itself to a rapid development cycle! If you're in this
situation, my recommendation is to buy a used Android phone that supports
ARCore. Then, develop your app using AR Foundation on your Windows PC
targeting Android first, and then periodically run iOS/ARKit builds to test and
verify it runs on that device. Unity Cloud Builds requires a Unity Plus or Pro
license or a Unity Teams Advanced subscription.

Developing for iOS and ARKit requires performing the following steps. You may have
completed some of these steps already:

1.	 Apple Developer Program: This is your admission ticket for developing for iOS. Go
to https://developer.apple.com/programs/ to learn more and enroll.

2.	 Xcode: Download and install the current copy of Xcode, the development
environment required to develop any Apple products. It's available on the Mac App
Store: https://apps.apple.com/us/app/xcode/id497799835.

3.	 Build support modules: In Unity Hub, ensure you have installed the iOS platform
build support modules for the specific version of Unity you are using with
your project.

https://developer.apple.com/programs/
https://docs.unity3d.com/Manual/iphone-GettingStarted.html
https://docs.unity3d.com/Manual/iphone-GettingStarted.html
https://docs.unity3d.com/Manual/iphone-GettingStarted.html
https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit@4.1/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit@4.1/manual/index.html
https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
https://developer.apple.com/programs/
https://apps.apple.com/us/app/xcode/id497799835

32 Setting Up for AR Development

4.	 Target Platform: In the Unity Editor, open the Build Settings window by selecting
File | Build Settings. Within the Platforms panel, select the iOS platform from
the list. If it is not already selected, please click the Change Platform button. If it is
disabled, go back to Step 1.

5.	 XR Plugin: Ensure the ARKit plugin is currently installed and selected. Select Edit
| Project Settings, and then select XR Plug-in Management from the side menu
(initialize it if necessary). Click the iOS tab to see the list of iOS plugins, and check
the ARKit checkbox if it is not already checked.

6.	 Player Settings: In the Edit | Project Settings | Player Settings window, there are
settings you may need to use, including checking the Requires ARKit checkbox,
providing a text value for Camera Usage Description (such as Required for
augmented reality support), setting Target minimum iOS Version to 11,
and Architecture | ARM64.

When Unity builds an iOS project, it does not actually build the app. Instead, it constructs
an XCode project folder that is then opened in XCode, which, in turn, is used to build
the app. One of the critical services XCode provides is ensuring you are authorized for
development by provisioning your app, including the following:

•	 Installing a Development Provisioning Profile for each device where you plan
to test your app. Follow the instructions at https://docs.unity3d.com/
Manual/UnityCloudBuildiOS.html, under the Create a Certificate topic.

•	 Adding your Apple ID account to Xcode by going to Preferences | Accounts.

For more information on using Xcode and Unity, see the Unity Manual:
Structure of a Unity Xcode Project (https://docs.unity3d.com/Manual/
StructureOfXcodeProject.html) and other related pages.

This process can be confusing. Everyone who develops for iOS goes through a similar
process, so you're certainly not alone, and there's a lot of answers to be found on the
internet. Remember: "DuckDuckGo is your friend." And fortunately, you usually only
need to do this once.

Note that you can also set your Signing Team ID in your Unity Player settings by
navigating to Edit | Project Settings | Player | Identification.

https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
https://docs.unity3d.com/Manual/UnityCloudBuildiOS.html
https://docs.unity3d.com/Manual/StructureOfXcodeProject.html
https://docs.unity3d.com/Manual/StructureOfXcodeProject.html

Setting up for mobile development 33

Information – Apple's Own AR Development Tools
Upon reviewing the Apple web pages, you will discover that they provide their
own AR development tools (https://developer.apple.com/
augmented-reality/tools/) apart from Unity. Of course, I'm a big
fan of Unity and AR Foundation, which give you device independence and all
the other powerful features of Unity, but it's good to be aware of alternatives.

Your project has now been set up to target Apple ARKit with AR Foundation. We'll verify
your settings in the next chapter, Chapter 2, Your First AR Scene, when we create an AR
scene, build it, and run it on your device.

Developing for wearable AR glasses
AR Foundation supports not just handheld mobile AR devices using ARCore and ARKit,
but also wearable AR glasses, including Microsoft HoloLens and Magic Leap. Likewise,
targeting wearable AR devices may require configuring Unity to target a platform other
than Android or iOS. Wearable AR glasses remain relatively expensive and outside the
reach of the typical consumer as they're aimed at corporate or industrial applications.
While this book can serve as a lovely starting point for developing these devices, and
the projects can be adapted accordingly, it is outside the scope of this book to support
wearable AR devices in the subsequent chapters.

For Microsoft HoloLens, you must set up Unity to target Universal Windows Platform
(UWP), beginning with installing the required module via Unity Hub, as shown in the
following screenshot:

Figure 1.14 – Adding UWP build support for HoloLens

https://developer.apple.com/augmented-reality/tools/
https://developer.apple.com/augmented-reality/tools/

34 Setting Up for AR Development

To set up for HoloLens development, you will need to use Visual Studio IDE and a
compatible version of Windows 10 SDK. For additional information, here are some
useful links:

•	 Unity for Windows Mixed Reality: https://unity3d.com/partners/
microsoft/mixed-reality.

•	 Microsoft Mixed Reality – Install the Tools: https://docs.microsoft.
com/en-us/windows/mixed-reality/develop/install-the-
tools?tabs=unity (this includes an installation checklist too).

•	 Unity Windows XR Plugin: https://docs.unity3d.com/Packages/com.
unity.xr.windowsmr@5.2/manual/index.html.You just have to find the
document page for the version you are using. This page also includes recommended
Build Settings and Player Settings.

Information – Microsoft Mixed Reality Toolkit (MRTK)
Note that Microsoft also offers its own open source cross-platform
development kit, known as the Mixed Reality Toolkit (MRTK), for Unity, an
alternative to AR Foundation. I think this framework has a very interesting
implementation with a versatile architecture that supports a spectrum of
devices from AR to VR. Learn more here: https://docs.microsoft.
com/en-us/windows/mixed-reality/develop/unity/
mrtk-getting-started.

For the Magic Leap wearable AR products, you must set up Unity to target Lumen OS,
beginning with installing the required module via Unity Hub, as shown in the
following screenshot:

Figure 1.15 – Adding Lumen OS build support for Magic Leap

https://unity3d.com/partners/microsoft/mixed-reality
https://unity3d.com/partners/microsoft/mixed-reality
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/install-the-tools?tabs=unity
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/install-the-tools?tabs=unity
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/install-the-tools?tabs=unity
mailto:https://docs.unity3d.com/Packages/com.unity.xr.windowsmr@5.2/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.windowsmr@5.2/manual/index.html
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started

Building and running a test scene 35

For additional information, here are some useful links:

•	 Unity for Magic Leap: https://unity3d.com/partners/magicleap

•	 Magic Leap Developer Portal: https://developer.magicleap.com/
en-us/home

•	 Magic Leap Unity Development: https://developer.magicleap.com/
en-us/learn/guides/unity-overview

•	 Using Magic Leap with AR Foundation: https://resources.unity.
com/unitenow/onlinesessions/using-magic-leap-with-ar-
foundation-in-unity-2020-1 (Unite Now presentation)

Interestingly, Magic Leap provides a Unity Template that you can add to Unity
Hub as a starting point for new projects (https://github.com/magicleap/
UnityTemplate).

Now that you have a project set up for AR development on your target platform and
device, let's build a test to make sure things are working so far.

Building and running a test scene
Before moving on and building an AR project, it is prudent to verify your project has been
set up properly so far by trying to build and run it on your target device. For this, we'll
create a minimal AR scene and verify that it satisfies the following checklist:

•	 You can build the project for your target platform.

•	 The app launches on your target device.

•	 When the app starts, you see a video feed from its camera on the screen.

•	 The app scans the room and renders depth points on your screen.

I'll walk you through this step by step. Don't worry if you don't understand everything; we
will go through this in more detail together in Chapter 2, Your First AR Scene. Please do
the following in your current project, which should be open in Unity:

1.	 Create a new scene named BasicTest by selecting File | New Scene, then Basic
(Built-In) template, then File | Save As. From here, navigate to your Scenes folder,
call it BasicTest, and click Save.

2.	 In the Hierarchy window, delete the default Main Camera (right-click and select
Delete, or use the Del keyboard key).

3.	 Add an AR Session object by selecting GameObject | XR | AR Session.

https://unity3d.com/partners/magicleap
https://developer.magicleap.com/en-us/home
https://developer.magicleap.com/en-us/home
https://developer.magicleap.com/en-us/learn/guides/unity-overview
https://developer.magicleap.com/en-us/learn/guides/unity-overview
https://resources.unity.com/unitenow/onlinesessions/using-magic-leap-with-ar-foundation-in-unity-2020-1
https://resources.unity.com/unitenow/onlinesessions/using-magic-leap-with-ar-foundation-in-unity-2020-1
https://resources.unity.com/unitenow/onlinesessions/using-magic-leap-with-ar-foundation-in-unity-2020-1
https://github.com/magicleap/UnityTemplate
https://github.com/magicleap/UnityTemplate

36 Setting Up for AR Development

4.	 Add an AR Session Origin object by selecting GameObject | XR | AR
Session Origin.

5.	 Add a point cloud manager to the Session Origin object by clicking Add
Component in the Inspector window. Then, enter ar point in the search field
and select AR Point Cloud Manager.

You will notice that the Point Cloud Manager has an empty slot for a Point Cloud Prefab,
which is used for visualizing the detected depth points. A prefab is a GameObject saved
as a project asset that can be added to the scene (instantiated) at runtime. We'll create a
prefab using a very simple Particle System. Again, if this is new to you, don't worry about
it – just follow along:

1.	 Create a Particle System by selecting GameObject | Effects | Particle System.
2.	 In the Inspector window, rename it PointParticle.
3.	 On the Particle System component, uncheck the Looping checkbox.
4.	 Set its Start Size to 0.1.
5.	 Uncheck the Play on Awake checkbox.
6.	 Click Add Component, enter ar point in the search field, and select AR

Point Cloud.
7.	 Likewise, click Add Component and select AR Point Cloud Visualizer.
8.	 Drag the PointParticle object from the Hierarchy window to the Prefabs folder

in the Project window (create the folder first if necessary). This makes the
GameObject into a prefab.

9.	 Delete the PointParticle object from the Hierarchy window using right-click |
Delete or press the Del key.

Building and running a test scene 37

The Inspector window of the PointParticle object should now look as follows:

Figure 1.16 – Inspector view of our PointParticle prefab with the settings we're using highlighted

38 Setting Up for AR Development

We can now apply the PointParticle prefab to the AR Point Cloud Manager, as follows:

1.	 In the Hierarchy window, select the AR Session Origin object.
2.	 From the Project window, drag the PointParticle prefab into the AR Point Cloud

Manager | Point Cloud Prefab slot. (Alternatively, click the "doughnut" icon to the
right of the slot to open the Select GameObject window, select the Assets tab, and
choose PointParticle).

3.	 Save the scene using File | Save.

The resulting AR Session Origin should look as follows:

Figure 1.17 – Session Origin with a Point Cloud Manager component populated with the PointParticle
prefab

Now, we are ready to build and run the scene. Perform the following steps:

1.	 Open the Build Settings window using File | Build Settings.
2.	 Click the Add Open Scenes button to add this scene to the build list.
3.	 In the Scenes in Build list, uncheck all scenes except the BasicTest one.
4.	 Ensure your device is connected to your computer via USB cable.
5.	 Press the Build And Run button to build the project and install it on your device.

It will prompt you for a save location; I like to create a folder in my project root
named Builds/. Give it a filename (if required) and press Save. It may take a while
to complete this task.

Building and running a test scene 39

If all goes well, the project will build, install on your device, and launch. You should see a
camera video feed on your device's screen. Move the phone slowly in different directions.
As it scans the environment, feature points will be detected and rendered on the screen. The
following screen capture shows my office door with a point cloud rendered on my phone. As
you scan, the particles in the environment that are closer to the camera appear larger than
the ones further away, contributing to the user's perception of depth in the scene.

Figure 1.18 – Point cloud rendered on my phone using the BasicTest scene

If you encounter errors while building the project, look at the Console window in the
Unity Editor for messages (in the default layout, it's a tab behind the Project window).
Read the messages carefully, generally starting from the top. If that doesn't help, then
review each of the steps detailed in this chapter. If the fix is still not apparent, do an
internet search for the message's text, as you can be certain you're probably not the first
person to have a similar question!

40 Setting Up for AR Development

Tip – Build Early and Build Often
It is important to get builds working as soon as possible in a project. If not now,
then certainly do so before the end of the next chapter, as it does not make a lot
of sense to be developing an AR application without having the confidence to
build, run, and test it on a physical device.

With a successful build, you're now ready to build your own AR projects. Congratulations!

Summary
In this chapter, after a quick introduction to augmented reality, you immediately got
started on your road to developing your own AR projects. You installed Unity via Unity
Hub and learned the importance of tracking the different versions of Unity, as well as its
projects and packages. You got a brief tour of using the Unity Editor, including some key
concepts that are fundamental to 3D and AR.

You then set up your project and system software for AR development, including
installing an XR plugin, the AR Foundation package, tools for Android or Xcode,
and other items necessary to get things set up. Lastly, we created a minimal AR scene
(including a quick point cloud prefab using a particle system component) and built the
scene to verify it builds and runs on your target device.

Setting up your machine may be intricate and painful, but it's your entry ticket to Unity
development, and everyone has to do it. If you got through this chapter with everything
running, you are a hero!

In the next chapter, we'll begin to take a closer look at AR development using Unity and
AR Foundation by creating a new AR scene, step by step, explaining each component as
we go.

2
Your First AR Scene

Creating a simple Augmented Reality (AR) scene is quite simple with Unity AR
Foundation. The steps involved might only take a page or two. However, when we create a
scene together in this chapter, each step will be explained in context so that you can gain a
full understanding of what comprises an AR scene using AR Foundation.

But before we do that, we'll take a look at some AR examples provided by Unity, including
the AR Foundation Samples project, and build their example scenes for your device. And
because that project contains some useful assets, we'll export those as an asset package for
reuse in our own projects.

In this chapter, we will cover the following topics:

•	 Building and running the AR Foundation Samples project

•	 Exporting and importing sample assets

•	 Constructing a new Unity AR scene

•	 Introduction to C# programming and the MonoBehaviour class

•	 Using AR raycast to place an object on a plane

•	 Instantiating a GameObject

•	 Creating and editing prefabs

42 Your First AR Scene

Technical requirements
To implement the project provided in this chapter, you will need Unity installed on
your development computer, connected to a mobile device that supports augmented
reality applications (see Chapter 1, Setting Up for AR Development, for instructions). The
completed project can be found in this book's GitHub repository at https://github.
com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation.

Exploring the AR Foundation example projects
from Unity
A great way to learn about how to create AR projects with Unity AR Foundation is to
explore the various example projects from Unity. These projects include example scenes,
scripts, prefabs, and other assets. By cloning a project and opening an example scene,
you can learn how to use AR Foundation, experiment with features, and see some best
practices. In particular, consider these projects:

•	 AR Foundation Samples: https://github.com/Unity-Technologies/
arfoundation-samples.

•	 AR Foundation Demos: https://github.com/Unity-Technologies/
arfoundation-demos.

•	 XR Interaction Toolkit Examples: https://github.com/Unity-
Technologies/XR-Interaction-Toolkit-Examples/tree/master/AR.

•	 For more advanced work, I'm also a fan of several individual contributors, including
Dan Miller, a senior XR developer at Unity. See https://github.com/
DanMillerDev for more information.

Please look through the README file for each of these projects (found on the GitHub
project's home page) to gain an understanding of what the project does, any dependencies
it has, and other useful information about the project.

Each of these repositories contains a full Unity project. That is, they are not simply Unity
asset packages you can import into an existing project. Rather, you'll clone the entire
repository and open it as its own project. This is typical for demo projects that may have
other package dependencies and require preset settings to build and run properly.

The AR Foundation Samples project is my go-to project for learning various AR
Foundation features. It contains many example scenes demoing individual features,
often in place of detailed documentation elsewhere (see https://github.com/
Unity-Technologies/arfoundation-samples/tree/main/Assets/
Scenes).

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/Unity-Technologies/arfoundation-samples
https://github.com/Unity-Technologies/arfoundation-samples
https://github.com/Unity-Technologies/arfoundation-demos
https://github.com/Unity-Technologies/arfoundation-demos
https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples/tree/master/AR
https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples/tree/master/AR
https://github.com/DanMillerDev
https://github.com/DanMillerDev
https://github.com/Unity-Technologies/arfoundation-samples/tree/main/Assets/Scenes
https://github.com/Unity-Technologies/arfoundation-samples/tree/main/Assets/Scenes
https://github.com/Unity-Technologies/arfoundation-samples/tree/main/Assets/Scenes

Exploring the AR Foundation example projects from Unity 43

Each scene is extremely simple (almost to a fault) as it has the atomic purpose of
illustrating a single feature. For example, there are separate scenes for plane detection,
plane occlusion, and feathered planes. Notably, the project also contains a main menu
scene (Assets/Scenes/ARFoundationMenu/Menu) that launches the other scenes
when you build them all into a single executable. I recommend starting with the scene
named SimpleAR, which we'll review in a moment.

Another is the AR Foundation Demos project, which contains some more complex user
scenarios and features not covered in the Samples project. For example, it demonstrates
the Unity Onboarding UX assets, which we'll introduce you to in Chapter 4, Creating an
AR User Framework. It also covers image tracking, mesh placement, language localization,
and some useful shaders (for example, wireframe, shadows, and fog).

The XR Interaction Toolkit Examples repository contains two separate Unity projects: one
for VR and another for AR. It is largely a placeholder (in my opinion) for things to come.

Information – XR Interaction Toolkit
The XR Interaction Toolkit from Unity is not covered in this book. It provides
components and other assets for developing interactive scenes using hand
controllers and device-supported hand gestures. At the time of writing, XR
Interaction Toolkit is focused on Virtual Reality (VR) applications (evidenced
by its Examples project, which contains seven scenes for VR and just one for
AR, which only supports mobile AR) but I believe it is a key part of Unity's XR
strategy and architecture for the future. If you are interested in XR Interaction
Toolkit for VR, check out my other book, Unity 2020 Virtual Reality Projects –
Third Edition, from Packt Publishing.

Let's get a copy of the AR Foundation Samples project and take a look at the SimpleAR scene.

Building and running the Samples project
In this section, you are going to build the AR Foundation Samples project and run it on
your device. First, please clone the project from its GitHub repository and open it in
Unity, as follows:

1.	 Clone a copy of the project from GitHub to your local machine. The project can be
found at https://github.com/Unity-Technologies/arfoundation-
samples. Please use whatever cloning method you prefer; for example, GitHub
Desktop (https://desktop.github.com/) or the command line
(https://git-scm.com/download/).

2.	 Add the project to Unity Hub by selecting Projects | Add, navigating to the cloned
project's root folder, and pressing Select Folder.

https://github.com/Unity-Technologies/arfoundation-samples
https://github.com/Unity-Technologies/arfoundation-samples
https://desktop.github.com/
https://git-scm.com/download/

44 Your First AR Scene

3.	 Open the project in Unity. In the Unity Hub projects list, if you see a yellow
warning icon, then the cloned project's Unity version is not currently installed
on your system. Use the Unity Version selection to choose a newer version of the
editor that you have, preferably of the same major release (for example, 20XX).

4.	 Open the project by selecting it from the Unity Hub projects list.
5.	 If your version of Unity is newer than the project from when it was last saved, you

will see a prompt asking, "Do you want to upgrade your project to a newer version
of Unity?." Press Confirm.

One of the scenes, SimpleAR, is a basic AR example scene. When run, the user will scan
their room with their device's camera and the app will detect any horizontal planes that
are rendered on the screen. When your user taps on one of these planes, a small red
cube will be placed in the environment. You can walk around the room and the cube will
remain where it was placed. If you tap again on another location, the cube will be moved
there. Let's briefly review this SimpleAR scene's GameObjects:

1.	 Open the SimpleAR scene from the Project window by navigating to the
Scenes/SimpleAR/ folder and double-clicking the SimpleAR scene file.

2.	 In the Hierarchy window, you will find two GameObjects of particular interest:
AR Session and AR Session Origin.

3.	 Select the AR Session Origin object and examine its components in the Inspector
window. These include AR Plane Manager, AR Point Cloud Manager, AR Raycast
Manager, and a Place On Plane script. We'll explain all of this later in this chapter.

Now, let's try to build and run the project:

1.	 Switch to your target platform if necessary. To do this, go to File | Build Settings,
choose your device's platform from the Platform list (for example, Android or iOS),
and click Switch Platform.

2.	 Most likely, the cloned project's settings have already been configured, but let's make
sure. From the Build Settings window, click the Player Settings button to open that
window and confirm the necessary settings mentioned in Chapter 1, Setting Up for
AR Development. For example, Android ARCore does not support Vulcan graphics
and needs Nougat (API Level 24) as a minimum requirement.

3.	 In the Build Settings window again, notice that the list of scenes in Scenes in Build
starts with the Menu scene and contains all the demo scenes from this project
(the first in the list will be the first scene to load when the app loads). You can
leave these alone or just pick the one you want in the build.

4.	 Ensure your mobile device is plugged into a USB port on your computer.

Exploring the AR Foundation example projects from Unity 45

5.	 Press the Build And Run button to build the project and install it on your device.
It will prompt you for a file folder location; I like to create a folder in my project
root, named Builds/. Give it a filename (if required) and press Save. It may take
a while to complete this task.

If all goes well, the project will build, be installed on your device, and launch.

If you encounter errors while building the project, look at the Console window in the
Unity Editor for messages (in the default layout, it's a tab behind the Project window).
Read the messages carefully, generally starting from the top. If the fix is not obvious,
do an internet search for the message's text, as you can be certain you're probably not the
first person to have a similar question!

Tip – "Failed to generate ARCore reference image library" error
If you receive an error when attempting to build the project that says
something like Failed to generate ARCore reference image library,
please make sure there are no spaces in the pathname of your project
folder! See https://github.com/Unity-Technologies/
arfoundation-samples/issues/119 for more information.

The main menu will be displayed, as shown in the following screen capture (left panel):

Figure 2.1 – Screenshot of my phone running the arfoundation-samples app and SimpleAR scene

https://github.com/Unity-Technologies/arfoundation-samples/issues/119
https://github.com/Unity-Technologies/arfoundation-samples/issues/119

46 Your First AR Scene

A cool thing about AR Foundation (and this project) is that it can detect the capabilities
of the device it is running on at runtime. This means that the buttons in the main menu
will be disabled when AR Foundation detects that the features demoed in that scene are
not supported on the device. (The device I'm using in the preceding screen capture is an
Android phone, so some iOS-only feature scenes are disabled).

Click the Simple AR button to open that scene. You should see a camera video feed on
your device's screen. Move your phone slowly in different directions and closer/away.
As it scans the environment, feature points and planes will be detected and rendered on
the screen. Tap one of the planes to place a cube on the scene, as shown in the right-hand
panel of the preceding screen capture.

Some of the assets and scripts in the Samples project can be useful for building our own
projects. I'll show you how to export them now.

Exporting the sample assets for reuse
Unity offers the ability to share assets between projects using .unitypackage files.
Let's export the assets from the AR Foundation Samples project for reuse. One trick I like
to do is move all the sample folders into a root folder first. With the arfoundation-samples
project open in Unity, please perform the following steps:

1.	 In the Project window, create a new folder under Assets named ARF-samples
by clicking the + icon (top left of the window) and selecting Folder.

2.	 Drag the following folders into the ARF-samples one: Materials, Meshes,
Prefabs, Scenes, Scripts, Shaders, and Textures. That is, move all of
them but leave the XR folder at the root.

3.	 Right-click on the ARF-samples folder and select Export Package.
4.	 The Exporting Package window will open. Click Export.
5.	 Choose a directory outside this project's root, name the file (for example,

arf-samples), and click Save.

Exploring the AR Foundation example projects from Unity 47

The Assets/ARF-samples/ folder in the Project window is shown in the
following screenshot:

Figure 2.2 – The Samples assets folder being exported to a .unitypackage file

You can close the arfoundation-samples project now if you want. You now have an
asset package you can use in other projects.

Tip – Starting a New Project by Copying the Samples Project
An alternative to starting a new Unity AR project from scratch is to duplicate
the arfoundation-samples project as the starting point for new AR projects. To
do that, from your Windows Explorer (or macOS Finder), duplicate the entire
project folder and then add it to Unity Hub. This way, you get all the example
assets and demo scenes in one place, and it's set up with reasonable default
project settings. I often do this, especially for quick demos and small projects.

Next, we are going to import the Samples assets into your Unity project and build the
given SimpleAR scene.

48 Your First AR Scene

Building the SimpleAR scene in your own
project
As you will see later in this chapter, the Samples project includes some assets we can use
in your own projects, saving you time and effort, especially at the start. We will import
unitypackage, which we just exported, and then build the given SimpleAR scene as
another test to verify that you're set up to build and run AR applications.

Creating a new project
If you already have a Unity project set up for AR development, as detailed in Chapter 1,
Setting Up for AR Development, you can open it in Unity and skip this section.
If not, perform the following steps, which have been streamlined for your convenience.
If you require more details or explanations, please revisit Chapter 1, Setting Up for
AR Development.

To create and set up a new Unity project with AR Foundation, Universal Render Pipeline,
and the new Input System, here are the abbreviated steps:

1.	 Create a new project by opening Unity Hub, selecting Projects | New, choosing
Universal Render Pipeline, specifying a Project Name, such as MyARProject,
and clicking Create.

2.	 Open your project in the Unity Editor by selecting it from Unity Hub's Projects list.
3.	 Set your target platform by going to File | Build Settings, choosing Android or iOS

from the Platform list, and clicking Switch Platform.
4.	 Set up the Player Settings according to Chapter 1, Setting Up for AR Development,

and/or your device's documentation by going to the Edit | Project Settings | Player
window. For example, Android ARCore does not support Vulcan graphics and
needs Nougat (API Level 24) as a minimum requirement.

5.	 Install an XR plugin by going to Edit | Project Settings | XR Plugins Manager
| Install XR Plugin Management. Then, check the checkbox for your device's
Plug-in Provider.

6.	 Install AR Foundation by going to Window | Package Manager, choosing Unity
Registry from the filter list at the top left, searching for ar using the search input
field, selecting the AR Foundation package, and clicking Install.

Building the SimpleAR scene in your own project 49

7.	 Install the Input System package by going to Window | Package Manager, choosing
Unity Registry from the filter list at the top left, searching for input using the
search input field, selecting the Input System package, and clicking Install.

When prompted to enable the input backend, you can say Yes, but we'll actually
change this setting to Both in the next topic when we import the Sample assets into
the project.

8.	 Add the AR Background Renderer to the URP Forward renderer by locating the
ForwardRenderer data asset, usually in the Assets/Settings/ folder. In
its Inspector window, click Add Renderer Feature and select AR Background
Renderer Feature.

You might want to bookmark these steps for future reference. Next, we'll import the
Sample assets we exported from the AR Foundation Samples project.

Importing the Sample assets into your own project
Now that you have a Unity project set up for AR development, you can import the sample
assets into your project. With your project open in Unity, perform the following steps:

1.	 Import the package from the main menu by selecting Assets | Import Package |
Custom Package.

2.	 Locate the arf-samples.unitypackage file on your system and click Open.
3.	 The Import Unity Package window will open. Click Import.
4.	 If you created your project using the Universal Render Pipeline (or HDRP),

rather than using the built-in render pipeline like we did, you need to convert
the imported materials. Select Edit | Render Pipeline | URP | Upgrade Project
Materials to URP Materials. Then, when prompted, click Proceed.

5.	 Then, go to Player Settings using Edit | Project Settings | Player, select
Configuration | Active Input Handling, and choose Both. Then, when prompted,
click Apply.

6.	 We will use the new Input System for projects in this book. However, some
demo scenes in the Samples project use the old Input Manager. If you choose
Input System Package (New) for Active Input Handling, then those demo scenes
may not run.

50 Your First AR Scene

Hopefully, all the assets will import without any issues. However, there may be some
errors while compiling the Samples scripts. This could happen if the Samples project
is using a newer version of AR Foundation than your project and it is referencing API
functions for features your project does not have installed. The simplest solution is to
upgrade the version of AR Foundation to the same or later version as the Samples project.
To do so, perform the following steps:

1.	 To see error messages, open the Console window using its tab or selecting
Window | General | Console.

2.	 Suppose that, in my project, I have additional errors because I have installed AR
Foundation 4.0.12 but the Samples project uses version 4.1.3 features, which are not
available in my version. Here, I'll go to Window | Package Manager, select the AR
Foundation package, click See Other Versions, select the 4.1.3 version, and then
click the Update to 4.1.3 button.

3.	 The project also might be using preview versions of packages. Enable preview
packages by selecting Edit | Project Settings | Package Manager | Enable preview
packages.

4.	 Ensure the ARCore XR plugin and/or AR Kit XR plugin version matches the
version of the AR Foundation package the project is using.

5.	 Another message you might see is that some Samples scripts require that you enable
"unsafe" code in the project. Go to Project Settings | Player | Script Compilation |
Allow 'unsafe' code and check the checkbox.

This is not as threatening as it may sound. "Unsafe" code usually means that
something you installed is calling C++ code from the project that is potentially
unsafe from the compiler's point of view. Enabling unsafe code in Unity is usually
not a problem unless, for example, you are publishing WebGL to a WebPlayer,
which we are not.

Finally, you can verify your setup by building and running the SimpleAR scene, this time
from your own project. Perform the following steps:

1.	 Open the SimpleAR scene from the Project window by navigating to the
ARF-samples/Scenes/SimpleAR/ folder and double-clicking the SimpleAR
scene file.

2.	 Open the Build Settings window by going to File | Build Settings.
3.	 For the Scenes in Build list, click the Add Open Scenes button and uncheck all the

scenes in the list other than the SimpleAR one.

Starting a new, basic AR scene 51

4.	 Ensure your device is connected via USB.
5.	 Press the Build And Run button to build the project and install it on your device.

It will prompt you for a location; I like to create a folder in my project root named
Builds/. Give it a filename (if required) and press Save. It may take a while to
complete this task.

The app should successfully build and run on your device. If you encounter any errors,
please review each of the steps detailed in this chapter and Chapter 1, Setting Up for
AR Development.

When the app launches, as described earlier, you should see a camera video feed on your
screen. Move your phone slowly in different directions and closer/away. As it scans the
environment, feature points and planes will be detected and rendered on the screen. Tap
one of these planes to place a cube on the scene.

Your project is now ready for AR development!

Starting a new, basic AR scene
In this section, we'll create a scene very similar to SimpleAR (actually, more like the
Samples scene named InputSystem_PlaceOnPlane) but we will start with a new
empty scene. We'll add AR Session and AR Session Origin objects provided by AR
Foundation to the scene hierarchy, and then add trackable feature managers for planes
and point clouds. In the subsequent sections of this chapter, we'll set up an Input System
action controller, write a C# script to handle any user interaction, and create a prefab 3D
graphic to place in the scene.

So, start the new scene by performing the following steps:

1.	 Create a new scene by going to File | New Scene.
2.	 If prompted, choose the Basic (Built-in) template. Then, click Create.

Unity allows you to use a Scene template when creating a new scene. The one
named Basic (Built-in) is comparable to the default new scene in previous versions
of Unity.

3.	 Delete Main Camera from the Hierarchy window by using right-click | Delete
(or the Del key on your keyboard).

4.	 Add an AR Session by selecting GameObject from the main menu, then XR |
AR Session.

5.	 Add an AR Session Origin by selecting GameObject from the main menu, then XR
| AR Session Origin.

52 Your First AR Scene

6.	 Unfold AR Session Origin and select its child; that is, AR Camera. In the Inspector
window, use the Tag selector at the top left to set it as our MainCamera. (This is
not required but it is a good practice to have one camera in the scene tagged as
MainCamera.)

7.	 Save the scene using File | Save As, navigate to the Assets/Scenes/ folder, name
it BasicARScene, and click Save.

Your scene Hierarchy should now look as follows:

Figure 2.3 – Starting a scene Hierarchy

We can now take a closer look at the objects we just added, beginning with the
AR Session object.

Using AR Session
The AR Session object is responsible for enabling and disabling augmented reality
features on the target platform. When you select the AR Session object in your scene
Hierarchy, you can see its components in the Inspector window, as shown in the
following screenshot:

Starting a new, basic AR scene 53

Figure 2.4 – The AR Session object's Inspector window

Each AR scene must include one (and only one) AR Session. It provides several options.
Generally, you can leave these as their default values.

The Attempt Update option instructs the AR Session to try and install the underlying AR
support software on the device if it is missing. This is not required for all devices. iOS, for
example, does not require any additional updates if the device supports AR. On the other
hand, to run AR apps on Android, the device must have the ARCore services installed.
Most AR apps will do this for you if they are missing, and that is what the Attempt
Update feature of AR Session does. If necessary, when your app launches and support is
missing or needs an update, AR Session will attempt to install Google Play Services for AR
(see https://play.google.com/store/apps/details?id=com.google.
ar.core). If the required software is not installed, then AR will not be available on the
device. You could choose to disable automatic updates and implement them yourself to
customize the user onboarding experience.

https://play.google.com/store/apps/details?id=com.google.ar.core
https://play.google.com/store/apps/details?id=com.google.ar.core

54 Your First AR Scene

Note
The Match Frame Rate option in the Inspector window is obsolete. Ordinarily,
you would want the frame updates of your apps to match the frame rate
of the physical device, and generally, there is no need to tinker with this.
If you need to tune it, you should control it via scripting (see https://
docs.unity3d.com/ScriptReference/Application-
targetFrameRate.html).

Regarding Tracking Mode, you will generally leave it set to Position and Rotation,
as this specifies that your VR device is tracking in the physical world 3D space using
both its XYZ position and its rotation around each axis. This is referred to as 6DOF, for
six-degrees-of-freedom tracking, and is probably the behavior that you expect. But for
face tracking, for example, we should set it to Rotation Only, as you'll see in Chapter 9,
Selfies: Making Funny Faces.

The AR Session GameObject also has an AR Input Manager component that manages
our XR Input Subsystem for tracking the device's pose in a physical 3D space. It reads
input from the AR Camera's AR Pose Driver (discussed shortly). There are no options for
the component, but this is required for device tracking.

We also added an AR Session Origin GameObject to the Hierarchy. Let's look at that next.

Using AR Session Origin
The AR Session Origin will be the root object of all trackable objects. Having a root
origin keeps the Camera and any trackable objects in the same space and their positions
relative to each other. This session (or device) space includes the AR Camera and any
trackable features that have been detected in the real-world environment by the AR
software. Otherwise, detected features, such as planes, won't appear in the correct place
relative to the Camera.

https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html

Starting a new, basic AR scene 55

Tip – Scaling Virtual Scenes in AR
If you plan to scale your AR scene, place your game objects as children of AR
Session Origin and then scale the parent AR Session Origin transform, rather
than the child objects themselves. For example, consider a world-scale city map
or game court resized to fit on a tabletop. Don't scale the individual objects in
the scene; instead, scale everything by resizing the root session origin object.
This will ensure the other Unity systems, especially physics and particles, retain
their scale relative to the camera space. Otherwise, things such as gravity,
calculated as meters per second, and particle rendering could mess up.

When you select the AR Session Origin object in your scene Hierarchy, you can see its
components in the Inspector window, as shown in the following screenshot:

Figure 2.5 – The AR Session object's Inspector window

At the time of writing, the default AR Session Origin object simply has an AR Session Origin
component. We'll want to build out its behavior by adding more components in a moment.

The Session Origin's Camera property references its own child AR Camera GameObject,
which we'll look at next.

56 Your First AR Scene

Using the AR Camera
The AR Camera object is a child of AR Session Origin. Its Inspector window is shown in
the following screenshot:

Figure 2.6 – The AR Camera object's Inspector window

During setup, we tagged the AR Camera as our MainCamera. This is not required but it is
a good practice to have one camera in the scene tagged as MainCamera, for example, for
any code that may use Camera.main, which is a shortcut for the find by tag name.

As its name implies, the AR Camera object includes a Camera component, required in all
Unity scenes, which determines what objects to render on your screen. The AR one has
mostly default values. The Near and Far Clipping planes have been adjusted for typical
AR applications to (0.1, 20) meters. In AR apps, it's not unusual to place the device
within inches of a virtual object, so we wouldn't want it to be clipped. Conversely, in an
AR app, if you walk more than 20 meters away from an object that you've placed in the
scene, you probably don't need it to be rendered at all.

Starting a new, basic AR scene 57

Importantly, rather than using a Skybox, as you'd expect in non-AR scenes, the camera's
Background is set to a Solid black color. This means the background will be rendered
using the camera's video feed. This is controlled using the AR Camera Background
component of the AR Camera. In an advanced application, you can even customize how
the video feed is rendered, using a custom video material (this topic is outside the scope of
this book). Similarly, on a wearable AR device, a black camera background is required, but
with no video feed, to mix your virtual 3D graphics atop the visual see-through view.

The video feed source is controlled using the AR Camera Manager component. You can
see, for example, that Facing Direction can be changed from World to User for a selfie
face tracking app (see Chapter 9, Selfies: Making Funny Faces).

The Light Estimation options are used when you want to emulate real-world lighting
when rendering your virtual objects. We'll make use of this feature later in this chapter.

You also have the option to disable Auto Focus if you find that the camera feature is
inappropriate for your AR application.

Tip – When to Disable Camera Auto Focus for AR
Ordinarily, I disable Auto Focus for AR applications. When the software uses the
video feed to help detect planes and other features in the environment, it needs
a clear, consistent, and detailed video feed, not one that may be continually
changing for Auto Focus. That would make it difficult to process AR-related
algorithms accurately to decode their tracking. On the other hand, a selfie face
tracking app may be fine with Auto Focus enabled and could improve the user
experience when the area behind the user loses focus due to depth of field.

The AR Pose Driver component is responsible for updating the AR Camera's transform as
it tracks the device in the real world. (There are similar components for VR headsets and
hand controllers, for instance.) This component relies on the XR plugin and the Input XR
Subsystem to supply the positional tracking data (see https://docs.unity3d.com/
Manual/XRPluginArchitecture.html).

Our next step is to add Plane and Point Cloud visualizers to the scene.

Adding Plane and Point Cloud managers
When your application runs, you'll ask the user to scan the room for the AR software to
detect features in the environment, such as depth points and flat planes. Usually, you'll
want to show these to the user as they're detected. We do this by adding the corresponding
feature managers to the AR Session Origin game object. For example, to visualize planes,
you'll add an AR Plane Manager to the AR Session Origin object, while to visualize point
clouds, you'll add an AR Point Cloud Manager.

https://docs.unity3d.com/Manual/XRPluginArchitecture.html
https://docs.unity3d.com/Manual/XRPluginArchitecture.html

58 Your First AR Scene

AR Foundation supports detecting and tracking the following features:

•	 Anchor: A fixed pose (consisting of location and rotation) in the physical
environment (controlled by the AR Anchor Manager component). This is also
known as a Reference Point.

•	 Reflection Probe: Environment reflection probes for rendering shiny surface
materials (controlled by the AR Environment Probe Manager component).

•	 Face: A human face detected by the AR device (controlled by the AR Face
Manager component).

•	 Human Body: A trackable human body and the body's skeleton (controlled by the
AR Human Body Manager component).

•	 Image: A 2D image that has been detected and tracked in the environment's
AR Tracked Image Manager component.

•	 Participant: Another user (device) in a collaborative session.

•	 Plane: A flat plane, usually horizontally or vertically inferred from the point cloud
(controlled by the AR Plane Manager component).

•	 Point Cloud: A set of depth points detected by the AR device (controlled by the AR
Point Cloud Manager component).

•	 Object: A 3D object detected and tracked in the environment (controlled by the AR
Tracked Object Manager component).

Not all of these are supported on every platform. See the documentation for your
current version of AR Foundation (for example, visit https://docs.unity3d.
com/Packages/com.unity.xr.arfoundation@4.1/manual/index.
html#platform-support and select your version at the top left). We will be using
many of these in various projects throughout this book. Here, we will use the Plane and
Point Cloud trackables. Please perform the following steps to add them:

1.	 Select the AR Session Origin object from the Hierarchy window.
2.	 Add a Point Cloud Manager by selecting Add Component, searching for ar in the

search input field, then clicking AR Point Cloud Manager.
3.	 Add a Plane Manager by selecting Add Component, searching for ar in the search

input field, and clicking AR Plane Manager.
4.	 On the AR Plane Manager, change Detection Mode to only horizontal planes by

selecting Nothing (to clear the list), then selecting Horizontal.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/index.html#platform-support
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/index.html#platform-support
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/index.html#platform-support

Starting a new, basic AR scene 59

You'll notice that the Point Cloud Manager has an empty slot for the Point Cloud Prefab
visualizer and that the Plane Manager has an empty slot for the Plane Prefab visualizer.
We'll use prefabs from the Samples project, as follows:

1.	 In the Inspector window, go to AR Point Cloud Manager | Point Cloud Prefab
and press the doughnut icon on the right-hand side of the field to open the Select
GameObject dialog box.

2.	 Click the Assets tab and double-click the AR Point Cloud Visualizer prefab.

There are alternative point cloud visualizer prefabs you might like to try out also,
such as AR Point Cloud Debug Visualizer and AllPointCloudPointsPrefab.

3.	 Likewise, for AR Plane Manager | Plane Prefab, press the doughnut icon on the
right-hand side of the field to open the Select GameObject dialog box.

4.	 Click the Assets tab and double-click AR Feathered Plane.

There are alternative plane visualizer prefabs to try out also, such as AR Plane
Debug Visualizer, AR Feathered Plane Fade, and CheckeredPlane.

5.	 Save the scene by going to File | Save.

We're using the visualizer prefabs we got from the Samples project. Later in this chapter,
we'll talk more about prefabs, take a closer look at the visualizer ones, and learn how to
edit them to make our own custom visualizers. First, we'll add the AR Raycast Manager to
the scene.

Adding AR Raycast Manager
There's another component I know we're going to need soon, known as AR Raycast
Manager. This will be used by our scripts to determine if a user's screen touch
corresponds to a 3D trackable feature detected by the AR software. We're going to use it in
our script to place an object on a plane. Perform the following steps to add it to the scene:

1.	 Select the AR Session Origin object from the Hierarchy window.
2.	 Select Add Component | search for ar in the search input field, and click

AR Raycast Manager.

The AR Session Origin GameObject with the manager components we added now looks
like this in the Inspector window:

60 Your First AR Scene

Figure 2.7 – AR Session Origin with various manager components

One more thing that's handy to include is light estimation, which helps with rendering
your virtual objects more realistically.

Adding Light Estimation
By adding a Light Estimation component to your Directional Light source, the AR camera
can use this information when rendering your scene to try and match the scene's lighting
more closely to the real-world environment.

To add light estimation, perform the following steps:

1.	 In the Hierarchy window, select the Directional Light object.
2.	 In the Inspector, click Add Component, search for light estimation, and

add the Basic Light Estimation component.
3.	 In the Hierarchy window, find AR Camera (child of AR Session Origin), drag it into

the Inspector window, and drop it onto the Light Estimation | Camera Manager slot.
4.	 In the Hierarchy window, select AR Camera, then set AR Camera Manager | Light

Estimation to Everything. Note that not all platforms support all light estimation
capabilities, but using the Everything flags will have them use all of the ones that
are available at runtime.

5.	 Save your work by going to File | Save.

Placing an object on a plane 61

Good! I think we should try to build and run what we have done so far and make sure
it's working.

Building and running the scene
Currently, the scene initializes an AR Session, enables the AR camera to scan the
environment, detects points and horizontal planes, and renders these on the screen using
visualizers. Let's build the scene and make sure it runs:

1.	 Open the Build Settings window by going to File | Build Settings.
2.	 For the Scenes in Build list, click the Add Open Scenes button and uncheck all the

scenes in the list other than this current scene (mine is named BasicARScene).
3.	 Ensure your device is connected to your computer via USB.
4.	 Press the Build And Run button to build the project and install it on your device.

It will prompt you for a location; I like to create a folder in my project root named
Builds/. Give it a filename (if required) and press Save. It may take a while to
complete this task.

The app should successfully build and run on your device. If you encounter any errors,
please read the error messages carefully in the Console window. Then, review each of the
setup steps detailed in this chapter and Chapter 1, Setting Up for AR Development.

When the app launches, you should see a video feed on your screen. Move the device
slowly in different directions and closer/away. As it scans the environment, feature points
and planes will be detected and rendered on the screen using the visualizers you chose.

Next, let's add the ability to tap on one of the planes to instantiate a 3D object there.

Placing an object on a plane
We will now add the ability for the user to tap on a plane and place a 3D virtual object in
the scene. There are several parts to implementing this:

•	 Setting up a Place Object input action when the user taps the screen.

•	 Writing a PlaceObjectOnPlane script that responds to the input action and places
an object on the plane.

•	 Determining which plane and where to place the object using AR Raycast Manager.

•	 Importing a 3D model and making it a prefab for placing in this scene.

Let's begin by creating an input action for a screen tap.

62 Your First AR Scene

Setting up a PlaceObject input action
We are going to use the Unity Input System package for user input. If the Input System
is new to you, the steps in this section may seem complicated, but only because of its
great versatility.

The Input System lets you define Actions that separate the logical meaning of the input
from the physical means of the input. Using named actions is more meaningful to the
application and programmers.

Note – Input System Tutorial
For a more complete tutorial on using the Input System package, see
https://learn.unity.com/project/using-the-input-
system-in-unity.

Here, we will define a PlaceObject action that is bound to screen tap input data. We'll set
this up now, and then use this input action in the next section to find the AR plane that
was tapped and place a virtual object there.

Before we begin, I will assume you have already imported the Input System package via
Package Manager and set Active Input Handing to Input System Package (or Both) in
Player Settings. Now, follow these steps:

1.	 In the Project window, create a new folder named Inputs using right-click | Create
| Folder (or use the + button at the top left of the window). I put mine under
my _App/ folder.

2.	 Create an input action controller asset by right-clicking inside the Inputs folder,
then selecting Create | Input Actions (or using the + button at the top left of the
window). Rename it AR Input Actions.

3.	 Click Edit Asset to open its editor window.
4.	 In the leftmost Action Maps panel, click the + button and name the new map

ARTouchActions.
5.	 In the middle Actions panel, rename the default action to PlaceObject using

right-click | Rename.
6.	 In the right-hand side Properties panel, set Action Type to Value.

https://learn.unity.com/project/using-the-input-system-in-unity
https://learn.unity.com/project/using-the-input-system-in-unity

Placing an object on a plane 63

7.	 Set its Control Type to Vector 2.
8.	 In the middle Actions panel, click the child <No Binding> item to add a binding.
9.	 In the right-hand side Properties panel, under Binding, using the Path select list,

choose TouchScreen | Primary Touch | Position.
10.	 At the top of the window, click Save Asset (unless the Auto-Save checkbox

is checked).

With that, we've created a data asset named AR Input Actions that contains an action
map named ARTouchActions, which has one action, PlaceObject, that detects a screen
touch. It returns the touch position as a 2D vector (Vector2) with the X, Y values in
pixel coordinates. The input action asset is shown in the following screenshot:

Figure 2.8 – Our AR Input Actions set up for screen taps

Now, we can add the input actions to the scene. This can be done via a Player Input
component. For our AR scene, we'll add a Player Input component to the AR Session
Origin, as follows:

1.	 In the Hierarchy window, select the AR Session Origin object.
2.	 In its Inspector window, click Add Component | Input | Player Input.
3.	 From the Project window, drag the AR Input Actions asset from your Inputs/

folder into the Player Input | Actions slot in the Inspector window.
4.	 Leave Behavior set to Send Messages.

64 Your First AR Scene

Information – Input System Behavior Types
Unity and C# provide different ways for objects to signal other objects. The
Player Input component lets you choose how you want input actions to be
communicated, via its Behavior setting. The options are as follows:
Send Messages: Will send action messages to any components on the same
GameObject (https://docs.unity3d.com/ScriptReference/
GameObject.SendMessage.html). As we'll see, your message handler
must be named with the "On" prefix (for example, OnPlaceObject) and
receives an InputValue argument (https://docs.unity3d.
com/Packages/com.unity.inputsystem@1.1/api/
UnityEngine.InputSystem.InputValue.html).
Broadcast Messages: Like Send Messages, Broadcast Messages will send
messages to components on this GameObject and all its children (https://
docs.unity3d.com/ScriptReference/Component.
BroadcastMessage.html).
Invoke Unity Events: You can set event callback functions using the
Inspector or in scripts (https://docs.unity3d.com/
Manual/UnityEvents.html). The callback function receives an
InputAction.CallbackContext argument (https://docs.
unity3d.com/Packages/com.unity.inputsystem@1.1/
api/UnityEngine.InputSystem.InputAction.
CallbackContext.html).
Invoke C# Events: You can set event listeners in scripts (https://docs.
microsoft.com/en-us/dotnet/csharp/programming-
guide/events/).
To learn more about the Player Input component, see https://docs.
unity3d.com/Packages/com.unity.inputsystem@1.0/
api/UnityEngine.InputSystem.PlayerInput.html.

I've decided to use Send Messages here, so we'll need to write a script with an
OnPlaceObject function, which we'll do next. But first, I'll provide a quick
introduction to Unity C# programming.

Introducing Unity C# programming and the
MonoBehaviour class
Writing C# scripts is an essential skill for every Unity developer. You don't need to be an
expert programmer, but you cannot avoid writing some code to make your projects work.
If you are new to coding, you can simply follow the instructions provided here, and over
time, you'll get more comfortable and proficient. I also encourage you to go through some
of the great beginner tutorials provided by Unity (https://learn.unity.com/) and
others, including the following:

https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html
https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputValue.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputValue.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputValue.html
https://docs.unity3d.com/ScriptReference/Component.BroadcastMessage.html
https://docs.unity3d.com/ScriptReference/Component.BroadcastMessage.html
https://docs.unity3d.com/ScriptReference/Component.BroadcastMessage.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputAction.CallbackContext.html)
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputAction.CallbackContext.html)
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputAction.CallbackContext.html)
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/api/UnityEngine.InputSystem.InputAction.CallbackContext.html)
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/api/UnityEngine.InputSystem.PlayerInput.html
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/api/UnityEngine.InputSystem.PlayerInput.html
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/api/UnityEngine.InputSystem.PlayerInput.html
https://learn.unity.com/

Placing an object on a plane 65

•	 Coding in C# in Unity for Beginners: https://unity3d.com/learning-c-
sharp-in-unity-for-beginners

•	 Working with Scripts: https://learn.unity.com/tutorial/working-
with-scripts

•	 Beginner Scripting: https://learn.unity.com/project/beginner-
gameplay-scripting

Given that, I will offer some brief explanations as we work through this section. But I'll
assume that you have at least a basic understanding of C# language syntax, common
programming vocabulary (for example, class, variable, and function), using an editor
such as Visual Studio, and how to read error messages that may appear in your Console
window due to typos or other common coding mistakes.

We're going to create a new script named PlaceObjectOnPlane. Then, we can attach
this script as a component to a GameObject in the scene. It will then appear in the object's
Inspector window. Let's begin by performing the following steps:

1.	 In the Project window, locate your Scripts/ folder (mine is Assets/_App/
Scripts/), right-click it, and select Create | C# Script.

2.	 Name the file PlaceObjectOnPlane (no spaces nor other special characters are
allowed in the name, and it should start with a capital letter).

This creates a new C# script with the .cs file extension (although you don't see the
extension in the Project window).

3.	 Double-click the PlaceObjectOnPlane file to open it in your code editor. By default,
my system uses Microsoft Visual Studio.

As you can see in the following initial script content of the template, the
PlaceObjectOnPlane.cs file declares a C# class, PlaceObjectsOnPlane, that
has the same name as the .cs file (the names must match; otherwise, it will cause compile
errors in Unity):

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PlaceObjectOnPlane : MonoBehaviour

{

 // Start is called before the first frame update

 void Start()

(https://learn.unity.com/tutorial/working-with-scripts

(https://learn.unity.com/tutorial/working-with-scripts

66 Your First AR Scene

 {

 }

 // Update is called once per frame

 void Update()

 {

 }

}

The first three lines in this script have a using directive, which declares an SDK
library, or namespace, that will be used in the script. When a script references external
symbols, the compiler needs to know where to find them. In this case, we're saying that
we'll potentially be using standard .NET system libraries for managing sets of objects
(collections). And here, we are using the UnityEngine API.

One of the symbols defined by UnityEngine is the MonoBehaviour class. You can see
that our PlaceObjectsOnPlane class is declared as a subclass of MonoBehaviour.
(Beware its British spelling, "iour"). Scripts attached to a GameObject in your scene must
be a subclass of MonoBehaviour, which provides a litany of features and services related
to the GameObject where it is attached.

For one, MonoBehaviour provides hooks into the GameObject life cycle and the
Unity game loop. When a GameObject is created at runtime, for example, its Start()
function will automatically be called. This is a good place to add some initialization code.

The Unity game engine's main purpose is to render the current scene view every frame,
perhaps 60 times per second or more. Each time the frame is updated, your Update()
function will automatically be called. This is where you put any runtime code that needs
to be run every frame. Try to keep the amount of work that's done in Update() to a
minimum; otherwise, your app may feel slow and sluggish.

You can learn more about the MonoBehaviour class here: https://docs.unity3d.
com/ScriptReference/MonoBehaviour.html. To get a complete picture of the
GameObject and MonoBehaviour scripts' life cycles, take a look at this flowchart here:
https://docs.unity3d.com/Manual/ExecutionOrder.html.

We can now write our script. Since this is the first script in this book, I'll present it slowly.

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

Placing an object on a plane 67

Writing the PlaceObjectOnPlane script
The purpose of the PlaceObjectOnPlane script is to place a virtual object on the AR
plane when and where the user taps. We'll outline the logic first (in C#, any text after //
on the same line is a comment):

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.InputSystem;

public class PlaceObjectOnPlane : MonoBehaviour

{

 void OnPlaceObject(InputValue value)

 {

 // get the screen touch position

 // raycast from the touch position into the 3D scene
 looking for a plane

 // if the raycast hit a plane then

 // get the hit point (pose) on the plane

 // if this is the first time placing an object,

 // instantiate the prefab at the hit position
 and rotation

 // else

 // change the position of the previously
 instantiated object

 }

}

As it turns out, in this script, there is no need for an Update function as it is only used for
frame updates, which this script can ignore.

This script implements OnPlaceObject, which is called when the user taps the screen.
As we mentioned previously, the Player Input component we added to the AR Session
Origin uses the Send Messages behavior and thus expects our script to implement
OnPlacedObject for the PlacedObject action. It receives an InputValue. Notice
that I also added a line using UnityEngine.InputSystem;, which defines the
InputValue class.

68 Your First AR Scene

First, we need to get the screen touch position from the input value we passed in. Add the
following code, which declares and assigns it to the touchPosition local variable:

 // get the screen touch position

 Vector2 touchPosition = value.Get<Vector2>();

The next step is to figure out if the screen touch corresponds to a plane that was detected
in the AR scene. AR Foundation provides a solution by using the AR Raycast Manager
component that we added to the AR Session Origin GameObject earlier. We'll use it in our
script now. Add these lines to the top of your script:

using UnityEngine.XR.ARFoundation;

using UnityEngine.XR.ARSubsystems;

Then, inside the OnPlaceObject function, add the following code:

 // raycast from the touch position into the 3D scene
 looking for a plane

 // if the raycast hit a plane then

 ARRaycastManager raycaster =
 GetComponent<ARRaycastManager>();

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 //

 }

Firstly, we get a reference to the ARRaycastManager component, assigning it to
raycaster. We declare and initialize a list of ARRaycastHit, which will be
populated when the raycast finds something. Then, we call raycaster.Raycast(),
passing in the screen's touchPosition, and a reference to the hits list. If it finds
a plane, it'll return true and populate the hits list with details. The third argument
instructs raycaster.Raycast on what kinds of trackables can be hit. In this case,
PlaneWithinPolygon filters for 2D convex-shaped planes.

Placing an object on a plane 69

Information – For More Information on AR Raycasting
For more information on using ARRaycastManager, see https://
docs.unity3d.com/Packages/com.unity.
xr.arfoundation@4.1/manual/raycast-manager.html.

For a list of trackable types you can pass in, see https://
docs.unity3d.com/Packages/com.unity.
xr.arsubsystems@4.1/api/UnityEngine.
XR.ARSubsystems.TrackableType.html.

The code inside the if statement will only be executed if raycaster.Raycast returns
true; that is, if the user had tapped a location on the screen that casts to a trackable plane
in the scene. In that case, we must create a 3D GameObject there. In Unity, creating a new
GameObject is referred to as instantiating the object. You can read more about it here:
https://docs.unity3d.com/Manual/InstantiatingPrefabs.html.

First, let's declare a variable, placedPrefab, to hold a reference to the prefab that we
want to instantiate on the selected plane. Using the [SerializedField] directive
permits the property to be visible and settable in the Unity Inspector. We'll also declare a
private variable, spawnedObject, that holds a reference to the instantiated object.
Add the following code to the top of the class:

public class PlaceObjectOnPlane : MonoBehaviour

{

 [SerializeField] GameObject placedPrefab;

 GameObject spawnedObject;

Now, inside the if statement, we will instantiate a new object if this is the first time the
user has tapped the screen, and then assign it to spawnedObject. If the object had
already been spawned and the user taps the screen again, we'll move the object to the new
location instead. Add the following highlighted code:

 public void OnPlaceObject(InputValue value)

 {

 // get the screen touch position

 Vector2 touchPosition = value.Get<Vector2>();

 // raycast from the touch position into the 3D scene
 looking for a plane

 // if the raycast hit a plane then

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/raycast-manager.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/raycast-manager.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/raycast-manager.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.1/api/UnityEngine.XR.ARSubsystems.TrackableType.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.1/api/UnityEngine.XR.ARSubsystems.TrackableType.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.1/api/UnityEngine.XR.ARSubsystems.TrackableType.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.1/api/UnityEngine.XR.ARSubsystems.TrackableType.html
https://docs.unity3d.com/Manual/InstantiatingPrefabs.html

70 Your First AR Scene

 ARRaycastManager raycaster =
 GetComponent<ARRaycastManager>();

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 // get the hit point (pose) on the plane

 Pose hitPose = hits[0].pose;

 // if this is the first time placing an object,

 if (spawnedObject == null)

 {

 // instantiate the prefab at the hit position
 and rotation

 spawnedObject = Instantiate(placedPrefab,
 hitPose.position, hitPose.rotation);

 }

 else

 {

 // change the position of the previously
 instantiated object

 spawnedObject.transform.SetPositionAndRotation(
 hitPose.position, hitPose.rotation);

 }

 }

 }

Raycast populates a list of hit points, as there could be multiple trackable planes in line
where the user has tapped the screen. They're sorted closest to furthest, so in our case,
we're only interested in the first one, hits[0]. From there, we get the point's Pose, a
simple structure that includes 3D position and rotation values. These, in turn, are used
when placing the object.

After that, save the script file.

Placing an object on a plane 71

Now, back in Unity, we'll attach our script as a component to AR Session Origin by
performing the following steps:

1.	 First, check the Console window (using the Console tab or Window | General |
Console) and ensure there are no compile errors from the script. If there are,
go back to your code editor and fix them.

2.	 In the Hierarchy window, select the AR Session Origin object.
3.	 In the Project window, drag the PlaceObjectOnPlane script into the Inspector

window so that when you drop it, it is added as a new component.

You'll notice that there is a Placed Prefab property in the component's Inspector
window. This is the placedPrefab variable we declared in the script. Let's
populate it with the red cube prefab provided by the Samples assets.

4.	 In the Project window, navigate to the ARF-samples/Prefabs/ folder.
5.	 Drag the AR Placed Cube prefab into the Inspector window, on the Place Object

On Plane | Placed Prefab slot.
6.	 Save the scene by going to File | Save.

Our script, as a component on the AR Session Origin GameObject, should now look
as follows:

Figure 2.9 – PlaceObjectOnPlane as a component with its Placed Prefab slot populated

Let's try it! We're now ready to build and run the scene.

Building and running the scene
If you've built the scene before, in the previous section, you can go to File | Build And Run
to start the process. Otherwise, perform the following steps to build and run the scene:

1.	 Open the Build Settings window by going to File | Build Settings.
2.	 For the Scenes in Build list, click the Add Open Scenes button and uncheck all the

scenes in the list other than this one (mine is named BasicARScene).

72 Your First AR Scene

3.	 Ensure your device is connected via USB.
4.	 Press the Build And Run button to build the project and install it on your device.

It will prompt you for a location; I like to create a folder in my project root named
Builds/. Give it a filename (if required) and press Save. It may take a while to
complete this task.

The app should successfully build and run on your device. As usual, if you encounter any
errors, please read the error messages carefully in the Console window. When the app
launches, you should see a video feed on your screen. Move your device slowly in different
directions and closer/away. As it scans the environment, feature points and planes will be
detected and rendered on the screen. If you tap the screen on a tracked plane, the red cube
should be placed at that location.

Refactoring your script
Refactoring is reworking a script to make the code cleaner, more readable, more
organized, more efficient, or otherwise improved without changing its behavior or adding
new features. We can now refactor our little script to make the following improvements:

•	 Move initialization code that only needs to be done once out of Update() into
Start() (for example, initialize the raycaster variable).

•	 Avoid allocating new memory in Update() to avoid memory fragmentation and
garbage collection (for example, initialize the hits list as a class variable).

The modified script is shown in the following code block. The changed code is
highlighted, beginning with the top part, which contains the new class variables and the
Start() function:

public class PlaceObjectOnPlane : MonoBehaviour

{

 [SerializeField] GameObject placedPrefab;

 GameObject spawnedObject;

 ARRaycastManager raycaster;

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

 void Start()

 {

 raycaster = GetComponent<ARRaycastManager>();

 }

Placing an object on a plane 73

Now, add the OnPlacedObject function, as follows:

 public void OnPlaceObject(InputValue value)

 {

 // get the screen touch position

 Vector2 touchPosition = value.Get<Vector2>();

 // raycast from the touch position into the 3D scene
 looking for a plane

 // if the raycast hit a plane then

 // REMOVE NEXT TWO LINES

 // ARRaycastManager raycaster =
 GetComponent<ARRaycastManager>();

 //List<ARRaycastHit> hits = new List<ARRaycastHit>();

5.	 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

Please save the script, then build and run it one more time to verify it still works.

Information – Public versus Private and Object Encapsulation
One of the driving principles of object-oriented programming is
encapsulation, where an object keeps its internal variables and functions
private, and only exposes properties (public variables) and methods (public
functions) to other objects when they're intended to be accessible. C# provides
the private and public declarations for this purpose. And in C#, any
symbol not declared public is assumed to be private. In Unity, any public
variables are also visible (serialized) in the Inspector window when the script is
attached to a GameObject as a component. Ordinarily, private variables are not
visible. Using the [SerializeField] directive enables a private variable
to also be visible and modifiable in the Inspector window.

Congratulations! It's not necessarily a brilliant app, and it's modeled after the example
scenes found in the Samples projects, but you started from File | New Scene and built it
up all on your own. Now, let's have a little fun with it and find a 3D model that's a little
more interesting than a little red cube.

74 Your First AR Scene

Creating a prefab for placing
The prefab object we've been placing on the planes in this chapter is the one named AR
Placed Cube, which we imported from the AR Foundation Samples project. Let's find a
different, more interesting, model to use instead. In the process, we'll learn a bit more
about GameObjects, Transforms, and prefabs.

Understanding GameObjects and Transforms
I think a good place to start is by taking a closer look at the AR Placed Cube prefab we've
been using. Let's open it in the Editor by performing the following steps:

1.	 In the Project window, navigate to the ARF-samples/Prefabs/ folder.
2.	 Double-click the AR Placed Cube prefab.

We are now editing the prefab, as shown in the following screenshot (I have rearranged
my windows differently from the default layout):

Figure 2.10 – Editing the AR Placed Cube prefab

The Scene window now shows the isolated prefab object, and the Hierarchy window is the
hierarchy for just the prefab itself. At its root is an "empty" GameObject named AR Placed
Cube; it has only one component – Transform, which is required of all GameObjects. Its
Transform is reset to Position (0, 0, 0), Rotation (0, 0, 0), and Scale (1, 1, 1).

Beneath the AR Placed Cube is a child Cube object, as depicted in the preceding
screenshot. This cube is scaled to (0.05, 0.05, 0.05). These units are in meters
(0.05 meters is about 2 inches per side). And that's its size when it's placed in the physical
environment with our app.

Creating a prefab for placing 75

You'll also notice that the child Cube's X-Y-Z Position is (0, 0.025, 0), where Y in
Unity is the up-axis. As 0.025 is half of 0.05, we've raised the cube half its height above the
zero X-Z plane.

The origin of a Cube is its center. So, the origin of the AR Placed Cube is the bottom of the
child Cube. In other words, when we place this prefab in the scene, the cube's bottom side
rests on the pose position, as determined by the hit raycast.

Parenting a model with an empty GameObject to normalize its scale and adjust its origin
is a common pattern in Unity development.

Now, let's find a different model for our app and normalize its Transform as we make it
a prefab.

Finding a 3D model
To find a 3D model, feel free to search the internet for a 3D model you like. If you're a 3D
artist, you may already have ones of your own. You will want a relatively simple, low-poly
model (that is, with not many polygons). Look for files in .FBX or .OBJ format, as they
will import into Unity without conversion.

I found a model of a virus microbe on cgtrader.com here: https://www.
cgtrader.com/free-3d-models/science/medical/microbe. It is a free
download and royalty-free, has 960 polygons, and is available in FBX format. My file is
named uploads_files_745381_Microbe.fbx.

Once you've found a file and downloaded it to your computer, perform the following steps
to import it into Unity:

1.	 In the Project window, create a folder named Models under your _App folder (this
step is optional).

2.	 Drag the model from your Windows File Explorer or macOS Finder into the
Models folder to import it into the project. Alternatively, you can use the main
menu by clicking Assets | Import New Asset.

3.	 When you select the model in the Project window, you can review it in the
Inspector window. While there, take a look at the many Import Settings. Generally,
you can keep their default values.

https://www.cgtrader.com/free-3d-models/science/medical/microbe
https://www.cgtrader.com/free-3d-models/science/medical/microbe

76 Your First AR Scene

Now, we'll make a prefab of the model and make sure it's been scaled to a usable size. I like
to use a temporary Cube object to measure it:

1.	 In the Project window, create a folder named Prefabs under your _App folder
(this step is optional).

2.	 Right-click inside the Prefabs folder, select Create | Prefab, and give it a name
(I named mine Virus).

3.	 Double-click the new prefab, or click its Open Prefab button in the
Inspector window.

4.	 For measurement purposes, add a temporary Cube by selecting GameObject |
3D Object | Cube from the main menu (or use the + button at the top left, or
right-click directly in the Hierarchy window).

5.	 Assuming I want my model to appear in the scene as the same size as the red cube
we had been using, set this measuring cube Scale to (0.05, 0.05, 0.05) and
its Position to (0, 0.025, 0).

6.	 Drag the 3D model you imported from your Project Models folder into the
Hierarchy window as a child of the root object.

7.	 Use the Scene edit toolbar and gizmos to scale and position your model so that
it's about the same size and position as the Cube. I found this works: Scale
(0.5, 0.05, 0.05), Position (0, 0.04, 0), Rotation (0, 0, 0).

8.	 Delete or disable the Cube. With Cube selected, in its Inspector window, uncheck
the Enable checkbox at the top left.

9.	 Save the prefab by clicking the Save button at the top of the Scene window.

The model I found did not come with a material, so let's create one for it now. With the
prefab we're working on still open for editing, perform the following additional steps:

1.	 In the Project window, create a folder named Materials under your _App folder
(this step is optional).

2.	 Right-click inside the Materials folder, select Create | Material, and give it a
name. I named mine Virus Material.

3.	 Drag Virus Material onto the model object (uploads_files_745381_Microbe) in
the Hierarchy window.

4.	 With the microbe model selected in the Hierarchy window, you can modify its
material in the Inspector window. For example, you can change its color by clicking
the Base Map color chip and choosing a new one. I'll also make mine shinier by
setting its Metallic Map value to 0.5.

Creating a prefab for placing 77

5.	 Again, Save your prefab.
6.	 Exit back to scene editing by clicking the < button at the top left of the

Hierarchy window.

My prefab now looks like this while open for editing (I have rearranged my windows so
that they're different from the default layout):

Figure 2.11 – Editing my Virus prefab

We're now ready to add this prefab to the scene. After, we will build and run the
finished project.

Completing the scene
We now have our own prefab to place in the AR scene. Let's add it to the Place Object On
Plane component, as follows:

1.	 Ensure you've exited the prefab edit mode and are now editing BasicARScene.
2.	 Select the AR Session Origin object in the Hierarchy window.
3.	 From the Project window, drag your prefab (mine is _App/Prefabs/Virus) into

the Inspector window, onto the Place Object On Plane | Placed Prefab slot.
4.	 Save the scene with File | Save.
5.	 Build and run the scene by going to File | Build And Run.

78 Your First AR Scene

As shown in the following screenshot, I have infected my desk with a virus!

Figure 2.12 – Running the project shows a virus on my keyboard

There it is. You've successfully created an augmented reality scene that places a virtual
3D model in the real world. Perhaps you wouldn't have chosen a virus, but it's a sign of
the times!

You're now ready to proceed with creating your own AR projects in Unity.

Summary
In this chapter, we examined the core structure of an augmented reality scene using AR
Foundation. We started with the AR Foundation Samples project from Unity, building
it to run on your device, and then exported its assets into an asset package for reuse.
Then, we imported these sample assets into our own project, took a closer look at the
SimpleAR scene, and built that to run on your device.

Summary 79

Then, starting from a new empty scene, we built our own basic AR demo from scratch
that lets the user place a virtual 3D object in the physical world environment. For this,
we added AR Session and AR Session Origin game objects and added components for
tracking and visualizing planes and point clouds. Next, we added user interaction, first by
creating an Input Action controller that responds to screen touches, and then by writing
a C# script to receive the OnPlaceObject action message. This function performs a
raycast from the screen touch position to find a pose point on a trackable horizontal plane.
It then instantiates an object on the plane at that location. We concluded this chapter by
finding a 3D model on the internet, importing it into the project, creating a scaled prefab
from the model, and using it as the virtual object placed into the scene. Several times
along the way, we did a Build And Run of the project to verify that our work at that point
runs as expected on the target device.

In the next chapter, we will look at tools and practices to facilitate developing and
troubleshooting AR projects, which will help improve the developer workflow, before
moving on to creating more complete projects in subsequent chapters.

3
Improving the

Developer Workflow
When developing for Augmented Reality (AR), like any software development, it's
important to understand your tools, learn how to troubleshoot when you get "stuck," and
endeavor to make your overall developer workflow more efficient. In this chapter, we will
consider some best practices, techniques, and advanced tools for troubleshooting and
testing AR applications in development.

Unity is generally quite friendly for developing for mobile devices. For example, you will
normally use the Editor Play-mode to preview your scene in the Editor, allowing rapid
develop-test-update-repeat cycles. And with an editor remote tool, you can run and test on
your target mobile device without having to do builds each time.

But Augmented Reality imposes unique challenges because it requires sensor input on
the remote device, including a live camera feed and motion sensors. It also requires AR
processing built into the mobile software (Android, iOS) that detects features in the
environment (such as planes or faces) and tracks your physical device in the real world.
Your app requires this data, but it's remote and not normally available to Unity in the
Editor Play mode. In this chapter, we'll explore various techniques and tools to deal with
this and improve AR development workflows.

82 Improving the Developer Workflow

In this chapter, you will learn about the following:

•	 Troubleshooting with log messages

•	 Debugging with a debugger

•	 Testing with an editor remote tool

•	 Simulating environments with the Unity project MARS

If you're impatient and want to begin developing an AR project right away, you may skip
this chapter and jump into Chapter 4, Creating an AR User Framework, where we start our
first real project. If that's the case, go ahead but please plan to come back here as soon as
you realize this chapter can help you.

Technical requirements
This chapter does not have special technical requirements other than a working
development system with Unity installed, a project set up with the XR Plugin and the AR
Foundation package, and the ability to successfully build and run on your target device,
as given in Chapter 1, Setting Up for AR Development. The scripts and assets created in
this chapter can be found in this book's GitHub repository: https://github.com/
PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation.

Troubleshooting with log messages
If (and when) an error occurs while developing or running your Unity project, the first
thing you must do is consult the Console window for messages. The Console window is
where you'll find all kinds of messages including asset import warnings, compiler errors,
runtime errors in play mode, build problems when you Build And Run, and others.
Compiler errors (such as coding syntax errors) may prevent the scene from running at all
(and the Play button will become disabled).

There are three levels of console messages: Info, Warning (shown in orange), and Error
(shown in red). You can filter the messages using the toggle buttons in the Console
window toolbar, as highlighted in the following screen capture:

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Troubleshooting with log messages 83

Figure 3.1 – The Console window showing a null exception error

Runtime errors, such as the ArgumentNullException error shown in the preceding
screenshot, can occur during program execution when you try to use a variable that is not
set to any value (more precisely, when its value is null).

Tip: "Warning" messages can be extraneous
I generally ignore the warning messages in the Unity Editor's Console window,
unless I'm deliberately looking for something, as they're often verbose, not
relevant to my own problem solving, and thus become noise instead of
information. You can hide warning messages by un-clicking the Warning
button in the Console toolbar.

In the Console window, you can often click on an error message to see more details. You
might see a list of messages detailing the stack trace that provides the runtime state of the
program when the error occurred. A stack trace shows the filenames and line numbers
in components and Unity code. Although sometimes insightful, you generally will not
be interested in traces that refer to built-in Unity or system code. Rather, you'll want to
focus on your own scripts. So, look for messages that reference scripts located in your
own Assets/ folder. In the preceding screenshot, Figure 3.1, the null exception error
occurred on line 27 of the MyScript.cs file when it was calling the C# System.
Int32.Parse function.

Tip: Read your Console messages carefully
A common mistake I often see by novice and experienced developers alike is
not reading error messages carefully. When you're in the flow of things, it's
often too easy to assume you know what the message is saying and not really
read it, missing key clues needed for troubleshooting.

84 Improving the Developer Workflow

You can also write a message to the Console from your own scripts, using Debug.
Log calls.

Using Debug.Log
When writing C# scripts, you can log your own messages to the Console using Debug.
Log() function calls. This is the most common method of checking and understanding
what is going on inside your code when it is running. Debug.Log messages appear as
Info messages in the Console (you can also call Debug.LogError() to have them
appear as Error messages instead).

For example, suppose I'm trying to locate the root cause of an error in my project. And
suppose there are several MonoBehaviour scripts that I'm developing related to this
problem. I may place log statements at the entry of specific functions and other log
statements to print out specific variables that I am suspicious of. Take the following code,
for example, for a script named MyScript.cs:

// MyScript.cs

using UnityEngine;

class MyScript : MonoBehaviour

{

 public int number;

 void Start()

 {

 number = 10;

 }

 void Update()

 {

 if (number >= 0)

 {

 Debug.Log("in MyScript Update, count = " +
 number);

 DoSomething();

 number -= 1; // reduce number by one

 }

 }

Troubleshooting with log messages 85

 private void DoSomething()

 {

 Debug.Log("inside DoSomething");

 number = -1; // accidently set number to minus-1

 // other code…

 }

}

In C# you can combine (concatenate) text strings using the plus (+) operator. In our
example, the integer number is concatenated to the message string (in Update), and C#
automatically converts the number to a string value first.

Add this script to your scene by creating an empty GameObject (GameObject | Create
Empty) and dragging the script file from the Project window onto the GameObject. Then
click Play.

When this code runs, what I see in the Console window is shown in the following screen
capture:

Figure 3.2 – Console messages about my Debug.Log statements

This will reveal that DoSomething is only called once rather than 10 times as expected.
Can you figure out why?

Studying the code in Update does not explain why DoSomething was only called once.
From there I can re-examine the logic to determine why and when number prematurely
becomes less than zero. You can see the bug is in the DoSomething function itself
where it "accidentally" sets number = -1, causing the condition in Update to never
call DoSomething after the first time. You may have been stumped while fixated on the
Update code, but then discovered the bug actually occurs deeper in the program.

86 Improving the Developer Workflow

Tip: Bug hunting? It's probably not where you're looking
Here's a funny story. A man leaves a bar and sees a drunk guy walking around
in circles near a lamppost, searching the sidewalk. "Hey pal, what's the matter?".
The drunk replies, "I lost my keys." So together they keep looking. Finally, the
man asks, "Are you sure you dropped them here?". The other responds, "Well,
I dropped them over there. But the light's better here." Keep this in mind
when you're trying to find a bug – it's often exactly not where you're looking,
otherwise you probably would have found it already!

So far, we've been using the Console window to log messages using the Unity Editor play
mode. In fact, the Console is so useful for troubleshooting, you may also want to see your
debug messages while running your project on your remote device. Next, let's consider
how you can use the Console while running on a mobile device connected via USB.

Using the Console with a mobile device
You can use Console logs while running your app on your mobile device, provided the
app was built with Development Mode enabled, and the device is attached to the Unity
Editor via a USB cable (or equivalent). To set this up, use the following steps:

1.	 Open the Build Settings window using File | Build Settings.

2.	 Check the Development Mode checkbox.

3.	 Click the Build And Run button.

4.	 After the app successfully builds, installs on the device, launches, and starts to run,
any Debug.Log calls will appear in the Console if you attach it to the application.

In the Unity Console window toolbar, select the Editor button and select the
process running on your mobile device. For example, the following screenshot
shows me attaching the Editor Console to my Android device:

Troubleshooting with log messages 87

Figure 3.3 – Console window attached to an Android device

It's that easy.

There are other kinds of logs provided by Unity and by your device's operating system.
In the Console window, use the three-dot context menu at the top right to access the full
Player logs and Editor logs files. On Android, you can also get more detailed messages
from your Android device using logcat.

Using logcat with Android devices
On Android mobile devices you can monitor any and all log messages from Android itself
and any apps running on the device (including your own Unity one) using a tool called
logcat. You can install and use logcat directly inside the Unity Editor from the Package
Manager with the following steps:

1.	 Use Window | Package Manager to open the Package Manager window.

2.	 In the filter select list at the top left, choose Unity Registry.

3.	 Use the search input field at the top right to look for logcat.

4.	 Select the package and click the Install button.

5.	 After the package installs, open the Logcat window using Window | Analysis |
Android Logcat.

88 Improving the Developer Workflow

With logcat installed and its window open, you can run your app on your connected
mobile device. It now does not require being built in Development Mode enabled nor
attached to the Editor Console. You'll discover there is a lot going on inside your device;
messages may be streaming from all the running tasks, not just your own application! The
Android Logcat window offers ways to filter the messages to show only those coming
from your app, while your app is running on the device:

•	 Use the filter drop-down list and choose your app.

•	 Enter search expressions to filter the message stream.

A screen capture of the Android Logcat window is shown in the following figure:

Figure 3.4 – Android Logcat window

I realize the text in this screen capture is probably too small to read here! This screenshot
is intended to give you a feel of what the window provides.

Troubleshooting with log messages 89

Info: Using the Android adb command-line tool
If you are developing for an Android device, I recommend you also install the
Android adb (Android Debug Bridge) command-line tool. (This is what Unity
uses internally for watching Console logs and running the Logcat window.)
If you have installed the full Android Studio (https://developer.
android.com/studio), it may already be present on your system.
Otherwise, you can install just the command-line tools by navigating to
https://developer.android.com/studio#downloads and
scrolling down the page to the Command line tools only section to find the
download link for your platform.

With adb installed (and in your command path), you can run a variety of
device actions. For more details, see https://developer.android.
com/studio/command-line/adb. For example, the adb devices
command will list the Android device it presently sees connected to your
computer. adb logcat will show the internal device logs. To filter the logs
for only Unity-related messages, use the adb logcat -v time -s
Unity command.

Using the Unity Editor Console and logcat is great, but what can you do if you want
to troubleshoot an app without the mobile device attached to your computer? This can
certainly be the case with augmented reality applications that require moving within your
environment. One solution is you could create a virtual console window, explained next.

Info: Using the Xcode console for iOS devices
If you're developing for iOS, there is no equivalent to logcat in Unity. However,
you can view logs from your device using the Xcode log console. Open the
console using View | Debug Area | Activate Console.

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio#downloads
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb

90 Improving the Developer Workflow

Simulating a Console window in your app
A strategy for capturing console logs, even when your device is detached from the
development computer, is to provide a "virtual console" window in your application. This
window would be for development, not production. The idea is to replace Debug.Log
calls with a wrapper function, which optionally outputs to a text object on an in-app text
area when running a development build.

We will talk about Unity Canvas objects and UI components more in Chapter 4, Creating
an AR User Framework, so I offer the steps here with only limited explanation.

To implement the wrapper function, use the following steps:

1.	 In the Project window, navigate to your scripts/ folder (create one if you don't
have one yet).

2.	 Right-click in the scripts folder, select Create | C# Script, and name the script
ScreenLog.

3.	 Open the script for editing and replace the default code with the following:

// ScreenLog.cs

using UnityEngine;

using UnityEngine.UI;

public class ScreenLog : MonoBehaviour

{

 public Text logText;

 public static ScreenLog Instance { get; private set;
}

 void Awake()

 {

 if (!Instance)

 Instance = this;

 }

 private void Start()

 {

 logText.text = "";

 }

Troubleshooting with log messages 91

 private void _log(string msg)

 {

 if (logText)

 logText.text += msg + "\n";

 }

 public static void Log(string msg)

 {

 if (Instance)

 Instance._log(msg);

 Debug.Log(msg);

 } }

We implement ScreenLog as a singleton class (using the public static
ScreenLog Instance variable), ensuring there will only be one instance of
ScreenLog in the scene and providing the ability to address the Log function as a class
method. (We'll discuss class versus instance methods and the singleton pattern more in the
next chapter.) This way, you're able to call ScreenLog.Log() from anywhere in your
own code.

Next, we'll add a text window to the app, and toggle its visibility with a Debug button
in the UI. (As mentioned, we are going to cover the Unity UI in more detail in later
chapters.) First, let's assume your AR application will be used on a mobile device in
portrait orientation with a screen space Canvas to contain the text area:

1.	 From the main menu, create a new Canvas by selecting GameObject | UI | Canvas,
and rename it Debug Canvas. This will also add an Event System game object to
the scene if one is not already present.

2.	 To edit the Screen Space Canvas, let's switch the Scene window to a 2D view by
clicking the 2D button in the Scene window toolbar.

92 Improving the Developer Workflow

3.	 It's also helpful to arrange the Game window and Scene window side by side.
Because we're developing for AR, set the Game window's display to a fixed portrait
aspect ratio, such as 2160x1080 Portrait using the dimension select list in the
Game window's top toolbar. This layout can be seen in the following screenshot:

Figure 3.5 – The Scene and Game windows side by side with the portrait device view set up

(This screenshot was captured after all these steps were completed; your Canvas does not
have the scrolling text area yet.)

Next, we'll add a scrolling text area where we'll write the log messages:

1.	 In the Hierarchy window, select Debug Canvas. Then right-click, and select
UI | Scroll View.

Troubleshooting with log messages 93

2.	 Resize and place the Scroll View in a convenient area of the screen. Use the Anchor
Presets menu to help align the panel along specific edges of the screen. For example,
to anchor it to the top of the screen, select the Anchor Presets button | Stretch-Top
and then Shift + Alt + click Stretch-Top and set its Height to 400. The resulting
Rect Transform has Left, Right: (0, 0), Pos Y: 0, Anchor Min: (0, 1), Anchor
Max: (1, 1), and Pivot: (0.5, 1). The Rect Transform component and the
location of the Anchor Presets menu button are shown in the following screenshot:

Figure 3.6 – The Rect Transform component with the Anchor Presets button highlighted

3.	 Allow only vertical scrolling by un-checking the Scroll Rect | Horizontal checkbox.

4.	 Then double-click Debug Canvas in Hierarchy to bring it into focus (you might
need to double-click it twice).

5.	 In Hierarchy, unfold Scroll View (the triangle icon) and its Viewport. Select the
child Content object and set its anchors and size by selecting Rect Transform |
Anchor Presets | Stretch-Stretch, and Shift + Alt + click Stretch-Stretch to fill the
Viewport.

94 Improving the Developer Workflow

The Inspector window for Scroll View is shown in the following screenshot:

Figure 3.7 – Scroll View property settings

Now we can work on the text element itself:

1.	 On the Content object, right-click | Create | UI | Text. Rename it Debug Text.
(Note, you may prefer to use TextMesh Pro text elements, which give you more
control over the typography and padding without any performance costs—
introduced in the next chapter.)

2.	 With the Debug Text game object selected, have it fill the Content area by using
Anchor Presets | Stretch-Stretch, and Shift + Alt + click Stretch-Stretch.

3.	 For reference, enter a placeholder string in the Text | Text property, such as [Log
message].

4.	 Adjust Font Size, for example, to 36.

Troubleshooting with log messages 95

5.	 Set Alignment to Bottom.

6.	 Change Vertical Overflow to Overflow (instead of Truncate).

7.	 Personally, I like white text on a black background for the Console. If you agree, in
Scroll View | Image | Color, set R, G, B to 0 and Alpha to 200, and in Debug Text
| Text | Color, set R, G, B to 255.

The resulting GameObject Hierarchy and Inspector settings for the Debug Text object
are shown in the following screenshot:

Figure 3.8 – Debug Canvas Hierarchy and Debug Text settings

Next, we will add our script to the scene:

1.	 With Debug Canvas selected in the Hierarchy window, locate the ScreenLog script
in the Project window and drag the script file onto the Debug Canvas GameObject.

96 Improving the Developer Workflow

2.	 With Debug Canvas still selected, locate the Debug Text GameObject in the
Hierarchy window, drag it into the Inspector, and drop it onto the Log Text slot on
the Screen Log component, as shown in the following screenshot:

Figure 3.9 – Setting the Log Text reference to the Debug Text GameObject

We can now add a Debug button to the UI to toggle the text panel, as follows:

1.	 Right-click on Debug Canvas in Hierarchy and select UI | Button from the
menu, to make it a child of the Canvas object. Rename the GameObject to Debug
Button.

2.	 Size and place the button on your screen. For example, set its Rect Transform |
Width, Height to (175, 175), and anchor it to the lower left of the screen using
Rect Transform | Anchor Presets | Bottom-Left and Shift + Alt + Bottom-Left,
then set Pos X, Pos Y to (30, 30).

3.	 In Hierarchy, unfold Debug Button and select its child Text object. In the
Inspector, change its Text content to Debug. You can also adjust its font properties
from here, such as setting Font Size to 36.

4.	 To change the Debug button into a toggle button, replace the Button component
with a Toggle component.

In Hierarchy, select the Debug Button object. In the Inspector, use the three-dot
context menu icon on the Button component (or right-click on the component) and
select Remove Component.

5.	 Then click Add Component, search toggle, and add a Toggle component.

6.	 Now we'll configure the toggle to handle On Value Changed events. In the Toggle |
On Value Changed properties, click the small + icon at the bottom right.

7.	 Drag the Scroll View object from the Hierarchy window onto the on-click
event's None (Object) slot. Then, in the Function selector, choose Game Object |
Dynamic Bool | SetActive.

Troubleshooting with log messages 97

The Toggle component now has the following settings:

Figure 3.10 – Debug Button set up with a Toggle component

8.	 Lastly, save this rig as a prefab that you can reuse in other scenes. Drag Debug
Canvas from the Hierarchy window into your Prefabs/ folder in the Project
window. (If you don't have a Prefabs folder, create one first. The folder name is
not required, it's by convention.)

And remember, if you make new changes to this Canvas (or children) in Hierarchy,
save those changes to the prefab asset using Overrides | Apply All.

98 Improving the Developer Workflow

With this setup, we can now use the ScreenLog.Log() function instead of Debug.
Log() anywhere you want to add an info message in your code, as shown in the following
screen capture from my phone:

Figure 3.11 – Screenshot of my phone using the virtual console

An advantage of this approach is you can modify it to selectively provide a status message
log even for end users, not just your own development.

Info: Third-party virtual consoles
Aside from rolling your own as we do in this chapter, there are third-party
virtual console packages you can find in the Asset Store, with a range of
features and costs. The Lunar Mobile Console – Free asset, for example,
is easy to install and use – see https://assetstore.unity.
com/packages/tools/gui/lunar-mobile-console-
free-82881. These tend to be strictly for development purposes and are not
appropriate for exposing log messages to end users.

To get a deeper insight into what their code is doing, many programmers like to use
a debugger tool provided by Integrated development environments (IDEs) such as
Visual Studio.

https://assetstore.unity.com/packages/tools/gui/lunar-mobile-console-free-82881
https://assetstore.unity.com/packages/tools/gui/lunar-mobile-console-free-82881
https://assetstore.unity.com/packages/tools/gui/lunar-mobile-console-free-82881

Debugging with a debugger 99

Debugging with a debugger
Professional software developers are familiar with code debuggers, used to test and debug
programs by stopping the execution at specific lines of code and examining the state of the
memory and other runtime conditions. In this section, I will give you an introduction to
using the Visual Studio debugger with Unity projects. The debugger can be used in both
the Unity Editor play mode, as well as in your builds running on the attached device.

With a debugger, you can set a breakpoint at a specific line of code, where the execution
will stop at that line, allowing you to query the values of variables, and wait for you to step
through or continue the execution of the program.

To use a debugger in the Editor play mode you do not need to make any special changes,
provided you are already using Visual Studio for your code editor (or another supported
interactive development environment (IDE) such as VS Code or JetBrains Rider).
You can configure Unity for your preferred editor/debugger using Edit | Preferences |
External Tools. For example, in the following screenshot, you can see my Unity install has
External Script Editor set to a Visual Studio Community version:

Figure 3.12 – You can set your default code editor in the Unity Preferences window

100 Improving the Developer Workflow

With Visual Studio opened for your project (choose Assets | Open C# Project), you
can do more than edit your scripts. You can debug them too. For example, you can set
a breakpoint by clicking in the left margin on the line you would like to debug. The
following screen capture shows the MyScript.cs script is open, and I've created a
breakpoint on line 25, indicated in VS Code by a red dot on the screen:

Figure 3.13 – Setting a breakpoint in Visual Studio

To attach the debugger to your Unity Editor session, use the Attach To Unity button
in the top toolbar. Back in Unity, if you have not yet enabled C# debugging, you will get
a prompt like the following:

Figure 3.14 – Unity prompt to enable debugging

Debugging with a debugger 101

Click one of the Enable buttons.

Note that Debug Mode can be toggled using the corresponding icon in the bottom-right
corner of the Editor window.

Once debugging is enabled and you click Play in the Editor, if and when a breakpoint line
is reached in your code, execution will stop, and Visual Studio will be given focus on your
desktop. The current line of code will be highlighted in yellow on your screen:

Figure 3.15 – Debugging a line of code in the Visual Studio debugger

There are also debugging windows where you can examine the current values of variables
in the script, the current call stack, and so on.

102 Improving the Developer Workflow

While debugging, the debugger toolbar is also active at the top of the window, depicted in
the following screenshot:

Figure 3.16 – The debugger toolbar

The Continue button (1) will continue running from here until it reaches another
breakpoint. The Stop button (2) will disable the debugger mode, and the step buttons (3)
do the following: Step Into follows the code into the body of a function call, Step Over
will run to the next line of code in the current file, and Step Up takes you up the call stack
one level.

You can also run the debugger on code running on your attached mobile device.

Debugging on a remote device
To run the debugger on your project running on your mobile device, you must first
enable Script Debugging and Development Build in the project's Build Settings. Use the
following steps:

1.	 Open the Build Settings window using File | Build Settings.

2.	 Check the Development Build checkbox.

3.	 Check the Script Debugging checkbox.

4.	 Optionally, check the Wait For Managed Debugger checkbox.

5.	 When you're ready, click Build And Run.

When the app is running on the device, attach your debugger to the remote process
as follows:

1.	 In Visual Studio, select from the main menu Debug | Attach Unity Debugger.

2.	 A dialog box will appear with a list of potential processes, as depicted in the
following screenshot. Choose the process that you want to attach and click OK:

Debugging with a debugger 103

Figure 3.17 – Attaching the Visual Studio debugger to a Unity process on a mobile phone

You can now set and examine breakpoints in the app running on your device. Note, once
you close the app on your phone, the debugger also stops in Visual Studio and detaches.

The Wait For Managed Debugger build option is useful if you need to start the debugger
before Unity starts running. Since Visual Studio needs a process to attach to, the app will
start up, then wait for you to attach the debugger, as shown in the following screenshot:

Figure 3.18 – Prompt on phone waiting for a debugger to be attached

In fact, we need this in our little example because the Update function in MyScript will
likely be called before I get a chance to attach the debugger.

104 Improving the Developer Workflow

Info: Additional Unity debugging tools
Unity provides more windows and tools you can use to debug your projects
and gain insight into what is going on under the hood. For troubleshooting
Input System actions, see Window | Analysis | Input Debugger. For deep
analysis and profiling, there is the Profiler, Frame Debugger, and Physics
Debugger also under the Window | Analysis menu. For the UI, there's the
Immediate Mode GUI (IMGUI) debugger at Window | Analysis | IMGUI
Debugger, and when customizing the Unity Editor user interface, see the
Window | UI Toolkit | Debugger (UI Toolkit is expected to be extended for
use in your own apps in the future). There's even a Window | Render Pipeline
| Render Pipeline Debug window.

Wouldn't it also be good if you could click Play to run the project on your mobile device
without having to Build And Run every time? Let's look at editor remote tools next.

Testing with an editor remote tool
Developers have been using Unity for many years to develop games and applications for
iOS and Android devices. You want the ability to click Play in the Unity Editor and run
the current scene remotely on your attached mobile device. Having an iterative develop-
test-update-repeat cycle is key to more efficient and effective development.

To facilitate this developer workflow, Unity provides an application called Unity Remote
5 that you install on your phone and then connect to the Unity Editor. It is available for
both Android (https://play.google.com/store/apps/details?id=com.
unity3d.mobileremote) and iOS (https://apps.apple.com/us/app/
unity-remote-4/id871767552). It allows you to use a mobile device to view and
test your project live, inside the Unity Editor, without having to build each time. The
device acts as a "remote control" for the scene running in the Editor Play-mode, including
screen touch, accelerometer, gyroscope, and webcam input.

Unfortunately, Remote 5 is not suitable for AR development. A remote tool from Unity
compatible with AR Foundation has been long promised and is expected, but as I am
writing this, it does not exist. Perhaps it will be available by the time you are reading
this as a free core Unity feature, so try searching the Unity Forums (https://forum.
unity.com/?gq=AR%20Foundation%20Editor%20Play%20Mode).

https://play.google.com/store/apps/details?id=com.unity3d.mobileremote
https://play.google.com/store/apps/details?id=com.unity3d.mobileremote
https://apps.apple.com/us/app/unity-remote-4/id871767552
https://apps.apple.com/us/app/unity-remote-4/id871767552
https://forum.unity.com/?gq=AR%20Foundation%20Editor%20Play%20Mode
https://forum.unity.com/?gq=AR%20Foundation%20Editor%20Play%20Mode

Testing with an editor remote tool 105

As is often the case in large developer communities, at least one talented individual has
stepped up and produced a remote tool for AR Foundation, available on the Unity Asset
Store. The AR Foundation Editor Remote tool by Kyrylo Kuzyk can be found at https://
assetstore.unity.com/packages/tools/utilities/ar-foundation-
editor-remote-168773. It is not free and, at the present time, it does not support
the new Input System, only the legacy Input Manager.

If you choose to purchase the package, you can install it using the Package Manager as
follows:

1.	 Open Package Manager using Window | Package Manager.

2.	 Filter the list for My Assets using the select list at the top left of the window.

3.	 Find the AR Foundation Editor Remote package, click Download (if necessary),
then click Import. And then in the Import dialog box, click the Import button.

4.	 The package is installed in the Plugins/ARFoundationRemoteInstaller/
folder. The installer should run automatically. Note there is a Documentation file
as well.

To use the AR Foundation Editor Remote tool, take the following steps as outlined in the
documentation:

1.	 Go to Edit | Project Settings | XR Plug-in Management | the Desktop tab.

2.	 Check the AR Foundation Remote checkbox.

3.	 Ensure your project is targeting your mobile device platform in File | Build
Settings.

https://assetstore.unity.com/packages/tools/utilities/ar-foundation-editor-remote-168773
https://assetstore.unity.com/packages/tools/utilities/ar-foundation-editor-remote-168773
https://assetstore.unity.com/packages/tools/utilities/ar-foundation-editor-remote-168773

106 Improving the Developer Workflow

4.	 In the Project window, navigate to Plugins/
ARFoundationRemoteInstaller, select the Installer asset, and view the
Inspector window as shown in the following screenshot:

Figure 3.19 – The AR Foundation Remote Installer

5.	 Click the Install AR Companion App button.

Let it build and install the companion app on your device.

6.	 In the Project window, navigate to the Plugins/
ARFoundationRemoteInstaller/Resources/ folder and
select the Settings object.

7.	 Following the instructions on your phone screen and enter the given IP address in
the Settings | AR Companion App IP field in the Inspector window.

You're now set up. When you want to use AR Foundation Remote, ensure the AR
Companion app is running on your phone. Then, click Play to run your scene using the
mobile device as a remote.

Using an editor remote tool lets you use the Unity Editor Play-mode with your mobile
device. Camera and other sensing data is input into your Game window so you can test in
your real-world environment without having to use Build And Run.

What if, instead of playing your app on your mobile device, we inverted this approach
by bringing your real-world environment into the Unity Editor? Unity is pioneering this
innovative approach with Unity MARS.

Simulating with Unity MARS 107

Simulating with Unity MARS
Unity MARS (an acronym for Mixed Augmented Reality Studio) (https://unity.
com/products/unity-mars) is a product solution from Unity Technologies that
solves many of the issues with developing Augmented Reality applications discussed thus
far in this chapter, and much more.

What is MARS? With MARS you can author and test complex AR applications within the
Unity Editor with runtime logic for a range of target physical world environments.

Consider this one scenario: You are developing an AR application for museum visitors,
where they point their mobile device at an exhibit or artwork and the app recognizes
it and delivers additional information and infotainment, providing a much-enhanced
learning experience. But you are at your desk, in your office, across town, or in a different
city. How do you develop and test your app? Rather than making travel plans, you could
use MARS to bring the target physical space into the Unity Editor and develop-test-update-
repeat from the comfort of your own desk.

With MARS you can capture and assemble real-world assets such as locations, objects,
and props, then drag and drop them into Unity to test them. It supports tracking planes,
images, faces, and many other kinds of semantically meaningful data, or traits. The MARS
documentation can be found at https://docs.unity3d.com/Packages/com.
unity.mars@1.0/manual/index.html.

The first step in this museum scenario may be to capture the museum's physical
environment sensor readings for use at your workstation. The MARS Companion app,
described more in this section, can serve this purpose. Likewise, MARS includes a
collection of sample environment templates you can use out of the box. The following
image, for example, shows a Simulation View of a kitchen along with a Device View in
the same space:

Figure 3.20 – MARS Simulation and Device views

https://unity.com/products/unity-mars
https://unity.com/products/unity-mars
mailto:https://docs.unity3d.com/Packages/com.unity.mars@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.mars@1.0/manual/index.html

108 Improving the Developer Workflow

With MARS you have environment simulations that can run either in Edit-mode or
Play-mode. You can preview the execution of a scene in Edit-mode, where proxy objects
of the real world are copied into the Simulation scene view, which is separate from the
normal project Scene view. You can also start and stop a continuous Simulation view that
is more analogous to the normal Play-mode in Unity. The data fed into the simulation can
be synthetic, recorded, or live data. You can then test your project against a wide variety
of indoor and outdoor spaces. For a more complete explanation of how MARS simulation
works, I recommend this article: https://blogs.unity3d.com/2020/08/14/a-
look-at-how-simulation-works-in-unity-mars.

MARS provides additional high-level tools and intelligent components that address
common challenges for AR developers. Physical environments are not always so
predictable. The MARS procedural authoring framework simulates real-world objects,
conditions, and actions including "fuzzy authoring" where you specify minimum and
maximum measurements for physical features when the app is deciding where and when
to let the user interact.

MARS is built on AR Foundation, so it works with all supported AR devices and
platforms. Presently, there is a separate annual license fee to use Unity MARS after
a trial period.

Using MARS you may still be faced with how to capture your target environment
geometry and surface feature for use in simulations. That's where the MARS Companion
app comes in.

Capturing with the MARS Companion app
The MARS Companion app can be used to capture real-world data and bring it into the
Unity Editor for use with Unity MARS.

Using the app, you can scan a room, take pictures, and record video, capturing and saving
this data to the cloud. This data can then be made available to the Unity Editor using the
MARS authoring studio.

The app also has limited authoring features that let you create content and layout assets on
your device. This could be useful, for example, troubleshooting edge cases where lighting
or environment features are ambiguous or difficult to scan.

At this time, the MARS Companion app is still in Beta (https://forum.
unity.com/threads/unity-mars-companion-app-open-beta-
announcement.1037638/) and may eventually be decoupled from MARS for use as
an editor remote tool (see the previous section in this chapter).

https://blogs.unity3d.com/2020/08/14/a-look-at-how-simulation-works-in-unity-mars
https://blogs.unity3d.com/2020/08/14/a-look-at-how-simulation-works-in-unity-mars
https://forum.unity.com/threads/unity-mars-companion-app-open-beta-announcement.1037638/
https://forum.unity.com/threads/unity-mars-companion-app-open-beta-announcement.1037638/
https://forum.unity.com/threads/unity-mars-companion-app-open-beta-announcement.1037638/

Summary 109

Unity MARS is a powerful new framework for augmented reality development. It
represents Unity's long-term commitment to the AR industry, users, developers, and
device manufacturers. Like most Unity packages and modules, it can also be extended
with custom behaviors, data extensions, queries, and other add-on modules.

I have not attempted to provide a tutorial for MARS in this chapter (it could be a whole
separate book), and we will not be using MARS in the projects in this book. Nonetheless,
you are more than welcome to improve your workflow using MARS with the projects in
this book if you want.

Summary
By its nature, augmented reality mixes the physical and virtual worlds, and that presents
unique challenges to AR developers. We develop on a desktop or laptop computer, but the
target device for the application is an untethered mobile device. While running an app in
Unity Play-mode, an AR scene still needs sensor inputs from the remote device.

In this chapter, we covered a spectrum of tools and techniques that can help with
developing and troubleshooting your augmented reality applications using Unity. We
started with a basic, classic "print statement," using Debug.Log() where you can output
log messages to the Console window for insight into what is happening in your code.
Initially, you might use this just in Play-mode, but we saw how you can build and run
your project, and still attach it to the Unity Console window to monitor log messages with
the app running on your mobile device. Then we built a virtual console window and wrote
a ScreenLog.Log() wrapper function to optionally let you view log messages on your
device without being tethered to Unity at all.

For deeper understanding and to debug your applications, you can use a debugger like
the one provided in Visual Studio. While debugging, you can set breakpoints, examine
variable values, and step through the code. You can run the debugger both on Unity
Play-mode and on applications built and running on your mobile device.

You could also use an editor remote tool—an app that runs on the mobile device and
connects to the Unity Editor so you can use the Play-mode and receive input data from
the attached device.

Then we took a brief tour of Unity MARS. This AR development studio framework
inverts the ordinary remote development paradigm. Rather than running your app on
a remote device to capture environment sensor data, MARS lets you use environment
sensor simulations directly in the Unity Editor. This provides the opportunity to greatly
improve your development workflow and test your application for a wide range of physical
environments without leaving your desk.

110 Improving the Developer Workflow

You are now ready to get started building AR applications. In the next chapter, we develop
a framework for controlling user interaction in AR projects. This framework will be
saved and used as a template for building and managing the user interfaces in each of the
projects in this book.

Section 2 –
A Reusable AR User

Framework

In this section, we will create a framework for building AR applications with Unity and
AR Foundation. Having such a framework generalizes some of the scene structure that I
have found myself repeating from one project to the next. The framework manages user
interaction modes, user interface panels, and AR onboarding graphics, and we will save it
as a template for reuse in other projects in this book. Then, we will show you how to use
this framework in a simple place-on-plane project with a main menu.

This section comprises the following chapters:

•	 Chapter 4, Creating an AR User Framework

•	 Chapter 5, Using the AR User Framework

4
Creating an AR User

Framework
In this chapter, we will develop a framework for building Augmented Reality (AR)
applications that manage user interaction modes and the corresponding user interface
(UI). The framework includes important user experience (UX) steps when starting up
the AR session at runtime and interacting with AR features. This framework will form the
basis for new scenes for projects later in this book.

This is a Unity framework for building mode-based applications. It generalizes some of
the scene structure that I have found myself repeating from one project to the next. For
example, when an AR app first starts, it must verify that the device supports AR. Once the
AR session is initialized, the app may prompt the user to begin scanning the environment
to establish tracking. At some point later in the application, the user might be prompted to
tap the screen to place a virtual object, often in Add-object mode. These steps are common
to many AR applications, including the projects in this book, so we will set up some
infrastructure beforehand in a scene that may be used as a template.

This chapter involves some advanced C# coding. If you're already an intermediate or
advanced programmer, you should be able to follow along fairly easily. If you're a novice,
you can just copy/paste the code provided here and learn from it. Or, you have the option
of skipping the chapter altogether and using the scene template from this chapter found in
this book's GitHub repository.

114 Creating an AR User Framework

In this chapter, we will cover the following topics:

•	 Installing prerequisite assets for our framework

•	 Starting with a new scene

•	 Creating the UI canvas and panels

•	 Creating the UI controller, using a Singleton class

•	 Creating an interaction modes controller

•	 Creating the interaction modes, including startup, scan, main, and non-AR modes

•	 Usng the Unity onboarding UX assets

•	 Creating a scene template for new scenes

By the end of the chapter, you'll have a scene template, named ARTemplate, with AR
onboarding features, and a user interaction framework that can be used as a starting point
for other AR projects.

Technical requirements
To implement the project in this chapter, you need Unity installed on your development
computer, connected to a mobile device that supports AR applications. We'll use the Unity
project set up for AR development in Chapter 1, Setting Up for AR Development. In review,
the project configuration included the following:

•	 It created a new project (via Unity Hub) using the Universal Render Pipeline
template.

•	 It set Target Platform for Android or iOS in Build Settings, and the corresponding
required Player Settings.

•	 It installed an XR Plugin, AR Foundation package, and configured the URP
Forward Renderer for AR.

•	 It installed the Input System package and sets Active Input Handling (to Input
System Package or Both).

The completed scene from this chapter can be found in this book's GitHub repository
at https://github.com/PacktPublishing/Augmented-Reality-with-
Unity-AR-Foundation.

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Understanding AR interaction flow 115

Understanding AR interaction flow
In an Augmented Reality application, one of the first things the user must do is scan the
environment with the device camera, slowly moving their device around until it detects
geometry for tracking. This might be horizontal planes (floor, tabletop), vertical planes
(walls), a human face, or other objects. A simplistic user flow given in many example
scenes is shown in the following diagram:

Figure 4.1 – A simple AR onboarding user workflow

As shown in the preceding diagram, the app starts by checking for AR support, asking
the user for permission to access the device camera and other initializations. Then, the
app asks the user to scan the environment for trackable objects, and may need to report
scanning problems, such as if the room is too dark or there's not enough texture to detect
features. Once tracking is achieved, the user is prompted to tap the screen to place a
virtual object in the scene.

This is great for demo scenes but is probably too simplistic for a real AR application.
For example, in the Art Gallery app that we are going to build in Chapter 6, Gallery:
Building an AR App, after the application starts, the environment is scanned for vertical
planes (walls).

116 Creating an AR User Framework

Then, the app enters Main mode, where the user must tap an Add button to add a new
picture. That, in turn, displays a modal Select Image menu. With pictures added to the
scene, the user can pick one and enter Edit mode to move, resize, or otherwise modify the
virtual object. Part of this general interaction flow is shown in the following diagram:

Figure 4.2 – User interaction flow, including Main, Add, and Edit modes

Naturally, each application has its own interaction flows. The framework we are building
in this chapter supports this scenario and can be adapted for other projects that require
managing a current modal state and corresponding UI.

This framework implements a state machine design pattern, where the scene has a current
state (interaction mode and visible UI). Specific conditions must be met to then transition
from one state to another.

There are two major areas of this framework – the UI panels and the interaction modes.
Generally, there will be a one-to-one correlation between the modes and the UI used by
the modes. For example, in Main mode, there will be the main menu UI. In Add-object
mode, there will be a UI prompt for the user to tap to place an object in the scene. This
implements a design pattern called view-controller, with UI views and mode controllers.

Installing prerequisite assets 117

Let's now begin to implement this basic workflow in our scene by adding a number of
additional prerequisite packages to the project.

Installing prerequisite assets
Our user interaction framework uses several additional packages that need to be installed
in your project, namely, TextMeshPro, DOTween, and Serialized Dictionary Lite. In this
section, I will also include some utility assets. Let's install them now.

TextMeshPro
TextMeshPro provides high-quality text assets that replace the built-in text element. It
is not mandatory, but I strongly recommend it. To import TextMeshPro, if you haven't
installed it yet in your project, perform the following steps:

1.	 Go to Window | TextMeshPro | Import TMP Essential Resources.

2.	 In the Import Unity Package window, click Import.

The TextMeshPro package is now installed. You may also install the TMP Examples and
Extras package, which includes additional fonts and other assets that may be useful and
fun for your projects.

DOTween
DOTween is, in my opinion, an indispensable free package for doing small, lightweight
animation effects on just about any MonoBehaviour property. Without it, you may
need to write a dozen lines of code to do what DOTween does in one. Documentation
for DOTween can be found online at http://dotween.demigiant.com/
documentation.php.

To add DOTween, perform the following steps:

1.	 Go to its Unity Asset Store page: https://assetstore.unity.com/
packages/tools/animation/dotween-hotween-v2-27676.

2.	 Press Add to My Assets and/or Open In Unity.

3.	 This will take you to the Package Manager window in your Unity project.

4.	 Ensure My Assets is selected from the Packages filter dropdown in the upper-left
corner of the Package Manager window.

5.	 Search for DOTween using the search text input field in the upper-right corner
of the Package Manager window.

http://dotween.demigiant.com/documentation.php
http://dotween.demigiant.com/documentation.php
https://assetstore.unity.com/packages/tools/animation/dotween-hotween-v2-27676
https://assetstore.unity.com/packages/tools/animation/dotween-hotween-v2-27676

118 Creating an AR User Framework

6.	 Select the DOTween package and then click Install.

7.	 Once imported, you are prompted to Open DOTween Utility Panel to set up
the package.

8.	 Then, click the Setup DOTween button.

DOTween is now installed and set up on your project.

Serialized Dictionary Lite
A C# dictionary is a key-value list structure where values in the list can be referenced
by a key value. For example, we will use dictionaries to look up a UI panel or interaction
mode object by name. Unfortunately, Unity does not provide native support for
dictionaries in the Editor's Inspector window. Serialized Dictionary Lite is a free
extension to the Unity Editor that allows dictionaries to be edited using Inspector.
To add Serialized Dictionary Lite to your project, perform the following steps:

1.	 Go to its Unity Asset Store page, https://assetstore.unity.
com/packages/tools/utilities/serialized-dictionary-
lite-110992.

2.	 Press Add to My Assets and/or Open In Unity.

3.	 This will take you to the Package Manager window in your Unity project.

4.	 Ensure My Assets is selected from the Packages filter dropdown in the upper-left
corner of the Package Manager window.

5.	 Search for Serialized using the search text input field in the upper-right corner
of the Package Manager window.

6.	 Select the Serialized Dictionary Lite package and click Install (or, if prompted,
click Download and then Import).

Serialized Dictionary Lite is now installed in your project.

Other prerequisite assets
In addition to the aforementioned packages, we will assume that you have the following
already added to your Unity project:

•	 Assets from the Unity arfoundation-samples project imported from the
ARF-samples.unity package created in Chapter 2, Your First AR Scene.

https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992.

Starting with a new scene 119

•	 In Chapter 2, Your First AR Scene, we also created an AR Input Actions asset
containing an Action Map named ARTouchActions, including (at least) one
PlaceObject action.

With our prerequisite assets present, we can get started with building the scene.

Starting with a new scene
We start this project with a new empty scene and set it up with the AR Foundation
objects: AR Session and AR Session Origin. Create a new scene named ARFramework
using the following steps:

1.	 Create a new scene using File | New Scene.

2.	 Choose the Basic (Built-in) template. Press Create.

3.	 Save the scene using File | Save As, navigate to your Assets/Scenes/ folder,
give it the name ARFramework, and then click Save.

Next, we'll set up the scene with the basic AR Foundation game objects as follows:

1.	 Delete Main Camera from the Hierarchy window by right-clicking and selecting
Delete (or the pressing Del key on your keyboard).

2.	 Add an AR session by selecting GameObject from the main menu, and then
XR | AR Session.

3.	 Add an AR Session Origin object by selecting GameObject from the main menu,
and then XR | AR Session Origin.

4.	 Select the AR Session Origin object in the Hierarchy window. In the Inspector
window, click Add Component, search for raycast, and then add an AR Raycast
Manager component.

5.	 Unfold AR Session Origin and select its child AR Camera. In the Inspector
window, use the Tag selector in the upper-left corner to set its tag to MainCamera.
(This is not required, but it is a good practice to have one camera in the scene
tagged as MainCamera).

6.	 In the Inspector window, click Add Component, search for audio listener,
and add an Audio Listener component to the camera.

120 Creating an AR User Framework

For demo purposes, we'll add an AR Plane Manager component for detecting and
tracking horizontal planes. This may change based on the requirements of a specific
project:

1.	 With AR Session Origin selected in the Hierarchy window, click Add Component
in the Inspector window, search for ar plane manager, and then add an AR
Plane Manager component.

2.	 Choose an AR plane visualizer prefab and add it to the Plane Prefab slot. For
example, try the AR Plane Debug Visualizer prefab found in the ARF-samples/
Prefabs folder.

We can also set up some basic AR light estimation as follows:

1.	 Select Main Camera in the Hierarchy window. On its AR Camera Manager
component, set Light Estimation to Everything.

2.	 In the Hierarchy window, select the Directional Light game object. In the
Inspector window, click Add Component, search for light estimation, and
then add a Basic Light Estimation component.

3.	 Drag the AR Camera object from the Hierarchy window onto the Basic Light
Estimation | Camera Manager slot.

4.	 Save your work using File | Save.

We now have a scene named ARFramework with a few things set up, including the AR
Session, AR Session Origin, AR Camera, and basic light estimation. We can now begin to
construct our framework's UI panels.

Creating the UI canvas and panels
The main screen space UI canvas will contain various user interface panels that may
be displayed at various times throughout the application. Presently, we'll include the
following UI panels.

•	 The Startup UI panel with any initialization messages

•	 The Scan UI panel, which prompts the user to scan for trackable features

•	 The Main UI panel for the main mode that could display the main menu buttons

•	 The NonAR UI panel, which could be shown when the device does not support
Augmented Reality

Creating the UI canvas and panels 121

Creating the screen space canvas
First, we need to create a Canvas to contain these panels. Follow these steps:

1.	 From the main menu, select GameObject | UI | Canvas and rename the Canvas UI
Canvas. We can leave the default Render Mode as Screen Space – Overlay. This
will also add an Event System game object to the scene if one is not already present.

2.	 By default, the new Canvas is in screen space, and this is what we want here. Some
people prefer to change Canvas Scaler UI Scale Mode from Constant Pixel Size to
Scale With Screen Size.

3.	 To edit a Screen Space canvas, let's switch the Scene window to a 2D view by
clicking the 2D button in the Scene window toolbar. Then, double-click the UI
Canvas object in the Hierarchy window to focus the Scene view on this object.

4.	 It's also helpful to arrange the Game window and Scene window side by side.
Because we're developing for AR, set the Game window's display to a fixed portrait
aspect ratio, such as 2160x1080 Portrait using the dimension select list in the
Game window's top toolbar.

On this canvas, we will add the separate panels. First, let's add an app title at the top
of the screen.

Adding an app title
Let's add a placeholder for an app title as a text panel positioned at the top of the screen.
Add the title using the following steps:

1.	 Right-click on UI Canvas and select UI | Panel. Rename the panel App Title
Panel.

122 Creating an AR User Framework

2.	 With the App Title Panel object selected, in its Inspector window, open the
Anchor Presets menu (found in the upper-left corner of the Rect Transform
component), and click the Stretch-Top button. The Anchor Presets menu is shown
open in the following screenshot, to the left of the Rect Transform component:

Figure 4.3 – Anchor Presets menu for App Title Panel set to Top-Stretch

3.	 Then, press Shift + Alt + Stretch-Top to set its pivot and position.

4.	 Set Rect Transform | Height to 100.

5.	 Next, right-click on App Title Panel, select UI | Text – TextMeshPro, and rename
the object Title Text.

6.	 In its TextMeshPro – Text component, set Text Input to My AR Project.

7.	 Using the Anchor Presets menu in the upper-left corner of Rect Transform, select
Stretch-Stretch. Then, press Shift + Alt + Stretch-Stretch.

8.	 Set Alignment to Center and Middle.

9.	 You may also choose to adjust the Font Size and Vertex Color fields as you wish.

There isn't much to see, but the Game window, along with the title of the app, is shown in
the following screenshot:

Creating the UI canvas and panels 123

Figure 4.4 – Game window (cropped) with the App Title panel anchored as Top-Stretch

Now that you have experience using the Anchor Presets menu, I'll abbreviate the
instructions going forward. Next, we'll add a panel for the start up mode.

Creating the UI panels
We'll now create the UI panels for each of the initial interaction modes supported by the
framework. Since they are all very similar, we'll create the first one, and then duplicate and
modify it for the others.

The first UI panel, Startup UI, will be a text panel displayed when the app is initializing.
Create it using the following steps:

1.	 In the Hierarchy window, right-click the UI Canvas object and select UI | Panel.
Rename it Startup UI.

2.	 We don't need a background image so, in the Inspector window, remove the Image
component using the 3-dot context menu | Remove Component.

3.	 Click the Add Component button, search for canvas group, and add a Canvas
Group component to the panel. We're going to use this component to fade panels
on and off later in this chapter.

4.	 Right-click the Startup UI object and select UI | Text – TextMeshPro.

5.	 Set Text Input to Initializing….

6.	 Using its Anchor Presets menu, select Stretch-Stretch. Then, press Shift + Alt +
Stretch-Stretch.

7.	 Set Alignment to Center and Middle.

Next, we can add a panel that can be displayed if the device we're running on does not
support AR. Create this panel as follows:

1.	 Right-click the Startup UI panel and select Duplicate. Rename it to NonAR UI.

2.	 Unfold the object and select its child text object. Change the text content to
Augmented reality not supported on this device.

124 Creating an AR User Framework

The Scan UI panel will be used to prompt the user to scan the room while the app tries to
detect AR features. Create the panel by following these steps:

1.	 Right-click the Startup UI panel and select Duplicate. Rename it to Scan UI.

2.	 Unfold the object and select its child text object. Change the text content to
Scanning… Please move device slowly.

Lastly, we'll add a placeholder panel for the main mode UI. This panel could later include,
for example, a main menu for the app:

1.	 Right-click the Startup UI panel and select Duplicate. Rename it to Main UI.

2.	 Unfold the object and select its child text object. For development purposes, change
the text content to Main Mode Running.

The current UI Canvas hierarchy is shown in the following screenshot:

Figure 4.5 – UI Canvas hierarchy

So far, we have created a simple hierarchy of UI panels under a screen space UI Canvas.
The panels are acting as a placeholder, for the most part, containing a text element so that
you can see which panel is active at runtime. As you build your own apps from this scene,
you'll fill in the panels with app-specific UI elements.

Next, we'll create the UI controller script.

Creating the UI controller 125

Creating the UI controller
It will be convenient to have a script with a small API that makes it easy to switch between
UI panels. For the controller scripts in our framework, I've decided to define them as
singletons.

A singleton is a software design pattern that ensures there is only a single instance
of a script object at runtime. Then, the object's instance can be more easily referenced,
using a static reference to Instance in the class definition. Learn more at https://
wiki.unity3d.com/index.php/Singleton.

Then, we'll write a UIController script that controls the visibility of your UI panels.
Lastly, we'll implement some code to fade in and out for a more pleasing user experience
when we hide and show the panels.

Creating a Singleton class script
We'll begin by writing a Singleton class to use (or, if you already have a favorite,
feel free to use that Singleton class definition instead). You can find some singleton
implementations available as packages in the Unity Asset Store, but all we need is a short
script that you can now create as follows:

1.	 In your Project window, create a new C# script in your Scripts/ folder by
right-clicking and selecting Create | C# Script, and name it Singleton.

2.	 Write the script as follows:

using UnityEngine;

/// Singleton behaviour class, used for components
 that should only have one instance

/// </summary>

/// <typeparam name="T"></typeparam>

public class Singleton<T> : MonoBehaviour where T :
Singleton<T>

{

 public static T Instance { get; private set; }

 /// <summary>

 /// Returns whether the instance has been
 initialized or not.

 /// </summary>

 public static bool IsInitialized {

https://wiki.unity3d.com/index.php/Singleton
https://wiki.unity3d.com/index.php/Singleton

126 Creating an AR User Framework

 get { return Instance != null; }

 }

 /// <summary>

 /// Base awake method that sets the singleton's
 unique instance.

 /// </summary>

 protected virtual void Awake()

 {

 if (Instance != null)

 Debug.LogError($"Trying to instantiate a
 second instance of singleton class
 {GetType().Name}");

 else

 Instance = (T)this;

 }

 protected virtual void OnDestroy()

 {

 if (Instance == this)

 Instance = null;

 }

}

3.	 Save the file.

Info: A singleton as an anti-pattern
Note that the singleton pattern can be abused, and some programmers are
adamantly opposed to using it, as it can cause problems down the road
should your application grow and get more complex. But it's a powerful
tool when you are certain that the app will only ever require one instance of
the class, as will be the case in this interaction framework. One of the main
advantages of singletons is that you can then reference the object instance
as a static variable on the object class itself. An alternative technique is
to find the instance to the component at runtime, for example, by calling
FindObjectOfType<T>() from the script's Start() function.

This script can be used to declare a singleton's MonoBehaviour class, as we'll see next in
UIController and other scripts.

Creating the UI controller 127

Writing the UIController script
With our Singleton class in hand, we can now write a UI controller. This component
provides a way to switch between UI panels visible to the user. Perform the following
steps to write the UIController class:

1.	 Begin by creating a new script in your Project Scripts/ folder by right-clicking
and selecting Create | C# Script. Name the script UIController.

2.	 Double-click the file to open it for editing and replace the default content, starting
with the following declarations:

using UnityEngine;

using RotaryHeart.Lib.SerializableDictionary;

[System.Serializable]

public class UIPanelDictionary :
SerializableDictionaryBase<string, CanvasGroup> { }

public class UIController : Singleton<UIController>

{

 [SerializeField] UIPanelDictionary uiPanels;

 CanvasGroup currentPanel;

At the top, we declare a serializable dictionary, UIPanelDictionary, using the
Serializable Dictionary Lite package's base class (we installed this package as a
prerequisite earlier in this chapter. See https://assetstore.unity.com/
packages/tools/utilities/serialized-dictionary-lite-110992
and the associated Unity Forum for documentation). The dictionary lookup key
is the UI's name, and its value is a reference to the UI panel's CanvasGroup
component.

Instead of declaring UIController as a MonoBehaviour class, we declare
it a Singleton (which itself derives from MonoBehaviour). Don't worry
about the syntax of the declaration, public class UIController :
Singleton<UIController>. This is what our Singleton class expects.

The script declares a uiPanels variable as a UIPanelDictionary. We also
declare a currentPanel variable to track which panel is presently active.

https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992

128 Creating an AR User Framework

3.	 Next, add the following functions to the script, which ensure all the UI panels are
disabled when the app is started, by iterating through the uiPanels list and calling
SetActive(false):

 void Awake()

 {

 base.Awake();

 ResetAllUI();

 }

 void ResetAllUI()

 {

 foreach (CanvasGroup panel in uiPanels.Values)

 {

 panel.gameObject.SetActive(false);

 }

 }

}

Note that Awake calls base.Awake() because the parent Singleton class
also has an Awake that must be called in order for this to work. Then it calls
ResetAllUI.

4.	 Then, add the following functions to the script:

 public static void ShowUI(string name)

 {

 Instance?._ShowUI(name);

 }

 void _ShowUI(string name)

 {

 CanvasGroup panel;

 if (uiPanels.TryGetValue(name, out panel))

 {

 ChangeUI(uiPanels[name]);

 }

 else

 {

 Debug.LogError("Undefined ui panel " + name);

Creating the UI controller 129

 } }

 void ChangeUI(CanvasGroup panel)

 {

 if (panel == currentPanel)

 return;

 if (currentPanel)

 currentPanel.gameObject.SetActive(false);

 currentPanel = panel;

 if (panel)

 panel.gameObject.SetActive(true);

 }

_ShowUI is an instance function that, given a panel name, calls ChangeUI.
ChangeUI hides the current panel and then activates the required one (note that
I'm using an underscore prefix to distinguish private instance functions from the
public one). The C# dictionary, TryGetValue, looks up the value for the given
key.

The static ShowUI class function simply calls the instance's _ShowUI function.
In this way, another script can show a panel by calling UIController.
ShowUI(panelname); without requiring a direct reference to the instance. It
uses the null-conditional operator (https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/operators/member-access-
operators#null-conditional-operators--and-) as a shortcut to make sure
the instance is defined before we reference it.

Now, add the script as a component on the UI Canvas and set up its properties by
performing the following steps:

1.	 In the Hierarchy window, select UI Canvas.

2.	 Drag the UIController script onto UI Canvas, adding it as a component.

3.	 In the Inspector window, on the UI Controller component, unfold the UI Panels
dictionary list.

4.	 Click the + button in the bottom-right corner of the UI Panels list.

5.	 In the elements Id slot, write Startup.

6.	 Unfold the element and then, from the Hierarchy window, drag the Startup UI
game object onto the Value slot.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-

130 Creating an AR User Framework

7.	 Repeat steps 4 – 6 three times for each of the following: NonAR : NonAR UI, Scan :
Scan UI, and Main : Main UI.

The UI Controller component should now look like the following:

Figure 4.6 – UI Controller component populated with UI panel references

Thus far, we have created a simple UI for an AR application, organized on one canvas
as a set of separate panels. Our plan is to present only one panel at a time to the user,
depending on what the application is doing. We also wrote a UIController script to
handle switching between panels.

Fading the UI panels
An improvement we can make is to fade the UI in and out while transitioning instead of
abruptly hiding/showing a panel. Presently, we call SetActive to change the panel's
visibility. Instead, we can use the panel's CanvasGroup component and animate
its Alpha value, and the DOTween library is very handy for this. (You can skip this
modification if you do not want to install DOTween). To do this, follow these steps:

1.	 Open the UIController script for editing and add the following declaration at
the top of the file:

using DG.Tweening;

Creating the UI controller 131

2.	 Add these two fader helper functions at the bottom of the class:

 void FadeIn(CanvasGroup panel)

 {

 panel.gameObject.SetActive(true);

 panel.DOFade(1f, 0.5f);

 }

 void FadeOut(CanvasGroup panel)

 {

 panel.DOFade(0f, 0.5f).OnComplete(() => panel
 gameObject.SetActive(false));

 }

3.	 Then, modify the ChangeUI function to call the fader helps instead of
SetActive, as shown here (the lines in comments are replaced):

 void ChangeUI(CanvasGroup panel)

 {

 if (panel == currentPanel)

 return;

 if (currentPanel)

 FadeOut(currentPanel);

 //currentPanel.gameObject.SetActive(false);

 currentPanel = panel;

 if (panel)

 FadeIn(panel);

 //panel.gameObject.SetActive(true);

 }

Eventually, when you run the scene, the UI panels will fade in and out when shown and
hidden, respectively.

Next, we will write an Interaction Controller that handles the application interaction
modes and uses the UI Controller to display the specific UI it needs.

132 Creating an AR User Framework

Creating an Interaction Controller mode
For our user framework, we will make a clever use GameObject with a mode script on
it to represent interaction modes. Modes will be enabled (and disabled) by enabling
(and disabling) the corresponding objects. We'll organize these objects in a hierarchy, like
the UI panels we created in the previous section, but separated to keep the "controllers"
apart from the "views," as prescribed by the controller/view software pattern. Presently,
we'll include the following modes:

•	 Startup mode: Active while the AR session is initializing, and then it initiates Scan
mode.

•	 NonAR mode: A placeholder should you want your application to run even if the
device does not support AR.

•	 Scan mode: This prompts the user to scan for trackable features until the AR
session is ready, and then it initiates Main mode.

•	 Main mode: This displays the main menu and handles non-modal interactions.

First, we'll create the object hierarchy representing each of these modes, under an
Interaction Controller game object. With separate GameObjects representing each mode,
we'll be able to enable one mode or another separately.

Creating the interaction mode hierarchy
To create the interaction mode hierarchy, perform the following steps:

1.	 From the main menu, select GameObject | Create Empty, and rename the object
Interaction Controller.

2.	 Right-click the Interaction Controller object and select Create Empty. Rename it
Startup Mode.

3.	 Repeat step 2 three more times to create objects named NonAR Mode, Scan
Mode, and Main Mode.

The mode hierarchy game objects now look like the following:

Figure 4.7 – Interaction Controller modes hierarchy

Creating an Interaction Controller mode 133

Now we can write and set up the InteractionController script.

Writing the Interaction Controller
The role of our Interaction Controller is to manage the top-level user interaction of the
application. We'll begin by writing the script as follows:

1.	 Create a new script in your Project Scripts/ folder by right-clicking Create C#
Script and name the script InteractionController.

2.	 Double-click the file to open it for editing and replace the default content, starting
with the following declarations:

using System.Collections;

using UnityEngine;

using RotaryHeart.Lib.SerializableDictionary;

[System.Serializable]

public class InteractionModeDictionary :
SerializableDictionaryBase<string, GameObject> { }

public class InteractionController :
Singleton<InteractionController>

{

 [SerializeField] InteractionModeDictionary
 interactionModes;

 GameObject currentMode;

}

At the top, we declare a serializable dictionary, InteractionModeDictionary,
using the Serializable Dictionary Lite package's base class. The dictionary key is
the mode's name, and its value is a reference to the mode game object.

Instead of declaring InteractionController as a MonoBehaviour class, we
declare it a Singleton (which itself derives from MonoBehaviour).

Then we declare the interactionModes variable as this type of dictionary. We
also declare a currentMode variable that tracks the current enabled mode.

134 Creating an AR User Framework

3.	 Next, add the following functions to the script, which ensures all the modes are
disabled when the app is started, by iterating through the interactionModes list
by calling SetActive(false):

 protected override void Awake()

 {

 base.Awake();

 ResetAllModes();

 }

 void ResetAllModes()

 {

 foreach (GameObject mode in interactionModes
 Values)

 {

 mode.SetActive(false);

 }

 }

Note that Awake calls base.Awake() because the parent Singleton class
also has an Awake that must be called in order for this to work. It then calls
ResetAllModes.

4.	 Then, add the following functions to the script:

 public static void EnableMode(string name)

 {

 Instance?._EnableMode(name);

 }

 void _EnableMode(string name)

 {

 GameObject modeObject;

 if (interactionModes.TryGetValue(name, out
 modeObject))

 {

 StartCoroutine(ChangeMode(modeObject));

 }

 else

Creating an Interaction Controller mode 135

 {

 Debug.LogError("undefined mode named " +
 name);

 } }

 IEnumerator ChangeMode(GameObject mode)

 {

 if (mode == currentMode)

 yield break;

 if (currentMode)

 {

 currentMode.SetActive(false);

 yield return null;

 }

 currentMode = mode;

 mode.SetActive(true);

 }

_EnableMode is an instance function that, given a mode name, calls
ChangeMode. ChangeMode disables the current mode and then activates the
requested one.

Note that ChangeMode is called as a coroutine to allow the current mode an
extra frame to be disabled before activating the new one. (To learn more about
coroutines, see https://docs.unity3d.com/Manual/Coroutines.
html).

The static EnableMode class function simply calls the instance's
_EnableMode function. In this way, another script can show a panel by calling
InteractionController.EnableMode(modename); without requiring a
direct reference to the instance. It uses the null-conditional operator (https://
docs.microsoft.com/en-us/dotnet/csharp/language-reference/
operators/member-access-operators#null-conditional-
operators--and-) as a shortcut to make sure the instance is defined before we
reference it.

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators#null-conditional-operators--and-

136 Creating an AR User Framework

5.	 Lastly, assuming we want the app to start in Startup mode, add the following:

 void Start()

 {

 _EnableMode("Startup");

 }

This assumes we will include a "Startup" mode in the interactionModes
dictionary.

UIController will contain references to each of the app's mode game objects.
When the app needs to switch modes, it will call InteractionController.
EnableMode(modeName) with the name of the mode. The current mode will be
disabled, and the required one will be enabled.

Add the script as a component on the Interaction Controller game object and set up its
properties by following these steps:

1.	 In the Hierarchy window, select the Interaction Controller game object.

2.	 Drag the InteractionController script onto the Interaction Controller,
adding it as a component.

3.	 In the Inspector window, on the Interaction Controller component, unfold the
Interaction Modes dictionary list.

4.	 Click the + button in the bottom-right corner of the Interaction Modes list.

5.	 On the elements Id slot, write Startup.

6.	 Unfold the element and then, from the Hierarchy window, drag the Startup Mode
game object onto the Value slot.

7.	 Repeat steps 4 – 6 three times for each of the following: NonAR : NonAR Mode,
Scan : Scan Mode, and Main : Main Mode.

The Interaction Controller component should now look like the following:

Creating an Interaction Controller mode 137

Figure 4.8 – Interaction Controller component populated with interaction mode object references

8.	 The Interaction Controller component will be responding to user input, so we
need to add a Player Input component (assuming your project is using the new
Input system).

With Interaction Controller selected in the Hierarchy window, click Add
Component in the Inspector window.

9.	 Search for player inp ut and add a Player Input component.

10.	 Locate the AR Input Actions asset in your Project window (for example, the
Inputs/ folder) and drag it to the Player Input | Actions slot. (As noted in the
Technical requirements earlier in the chapter, I assume you already have this asset as
created in Chapter 2, Your First AR Scene).

11.	 Set Player Input | Behavior to Broadcast Messages.

THIS IS IMPORTANT! We need to make sure the player actions are forwarded to
the child mode objects.

In this section, we have created a hierarchy for interaction modes, organized under one
Interaction Controller game object that has a script for enabling/disabling mode objects.
Our plan is to allow only one mode to be active at a time. Of course, we still need to write
the scripts that control each mode, and handle conditions when it's time to transition
from one particular mode to a different one.

138 Creating an AR User Framework

Creating the interaction modes behavior
When the app enables a mode, it will enable the corresponding game object, which has a
script that controls the behavior of that mode. When the app changes modes, the current
mode object will be disabled, and the new one enabled. Each mode is responsible for the
following:

•	 Displaying its corresponding UI

•	 Transitioning to a different mode when specific conditions are met

We will write mode scripts for each of the modes.

The StartupMode script
Startup mode begins when the application starts (it's enabled from the
InteractionController Start() function). It displays the Startup UI panel. Then
it waits for the ARSession state to become ready, and transitions to Scan mode. Or, if
the ARSession reports that AR is not supported on the current device, it transitions to
NonAR mode.

Follow these steps to create Startup mode:

1.	 Create a new script in your Project Scripts/ folder by right-clicking and selecting
Create | C# Script, and name the script StartupMode.

2.	 Drag the StartupMode script onto the Startup Mode game object in the
Hierarchy window.

3.	 Double-click the StartupMode script file to open it for editing and write it as
follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class StartupMode : MonoBehaviour

{

 [SerializeField] string nextMode = "Scan";

 void OnEnable()

 {

 UIController.ShowUI("Startup");

 }

Creating the interaction modes behavior 139

 void Update()

 {

 if (ARSession.state ==
 ARSessionState.Unsupported)

 {

 InteractionController.EnableMode("NonAR");

 }

 else if (ARSession.state >= ARSessionState.Ready)

 {

 InteractionController.EnableMode(nextMode);
 }

 }

}

The script uses the AR Foundation's ARSession class state variable, ARSession.
state, to determine when the session is initialized or whether AR is unsupported. The
state is an enum ARSessionState with one of the following values:

•	 None: The session has not yet been initialized.

•	 Unsupported: The device does not support AR.

•	 CheckingAvailability: The session is in the process of checking availability.

•	 NeedsInstall: The device needs to install or update AR support software.

•	 Installing: The device is in the process of installing AR support software.

•	 Ready: The device supports AR and you can enable the ARSession component.

•	 SessionInitializing: The AR session is scanning the environment and trying
to detect trackable objects.

•	 SessionTracking: The AR session has found trackable objects and can
determine the device's location within the real-world 3D environment.

When state is Unsupported, we transition to NonAR mode.

When state is Ready (or higher), we transition to Scan mode.

140 Creating an AR User Framework

The ScanMode script
Scan mode is enabled when the device is scanning the environment, trying to detect
trackable features in the real world. It displays a prompt asking the user to point the
camera into the room and slowly move the device.

The conditions for ending Scan mode may vary depending on the AR application. For
example, it may wait until at least one horizontal or vertical plane has been detected,
or a reference image has been recognized, or a selfie face is being tracked. Presently,
we'll check ARPlaneManager if any trackables have been detected.

Perform the following steps to create Scan mode:

1.	 Create a new script in your Project Scripts/ folder by right-clicking and selecting
Create | C# Script and name the script ScanMode.

2.	 Drag the ScanMode script onto the Scan Mode game object in the Hierarchy
window.

3.	 Double-click the ScanMode script file to open it for editing and write it as follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class ScanMode : MonoBehaviour

{

 [SerializeField] ARPlaneManager planeManager;

 void OnEnable()

 {

 UIController.ShowUI("Scan");

 }

 void Update()

 {

 if (planeManager.trackables.count > 0)

 {

 InteractionController.EnableMode("Main");

 }

 }

}

Creating the interaction modes behavior 141

4.	 Drag the AR Session Origin object from the Hierarchy window onto the Scan
Mode | Plane Manager slot.

When Scan mode is enabled, the Scan UI panel is shown. Then, it waits for at least one
trackable plane has been detected by the AR system by checking for planeManager.
trackables.count > 0 before switching to Main mode.

The MainMode script
Main mode, as its name implies, is the main operating mode of the application. It may
display the main menu, for example, and handle main user interactions. For our default
framework, there's not much to do yet apart from display the Main UI panel.

Perform the following steps to create Main mode:

1.	 Create a new script in your Project's Scripts/ folder by right-clicking and
selecting Create | C# Script and name the script MainMode.

2.	 Drag the MainMode script onto the Main Mode game object in the Hierarchy
window.

3.	 Double-click the MainMode script file to open it for editing and write it as follows:

using UnityEngine;

public class MainMode : MonoBehaviour

{

 void OnEnable()

 {

 UIController.ShowUI("Main");

 }

}

Lastly, we define NonAR mode.

The NonARMode script
NonAR mode will be enabled when the device you're running does not support AR. You
might simply notify the user that the app cannot run, and gracefully exit. Alternatively,
you may continue to run the app without AR capabilities if that makes sense for your
project.

142 Creating an AR User Framework

Perform the following steps to create a NonAR mode placeholder:

1.	 Create a new script in your Project's Scripts/ folder by right-clicking and selecting
Create | C# Script, and name the script NonARMode.

2.	 Drag the NonARMode script onto the NonAR Mode game object in the Hierarchy
window.

3.	 Double-click the NonARMode script file to open it for editing and write it as
follows:

using UnityEngine;

public class NonARMode: MonoBehaviour

{

 void OnEnable()

 {

 UIController.ShowUI("NonAR");

 }

}

That about does it. We've created a hierarchy with each of the interaction
modes as children of Interaction Controller. To enable a mode, you'll call
InteractionController.EnableMode(), which disables the current mode and
activates a new one. When a mode is enabled, its mode script begins running, showing its
UI, and potentially interacting with the user until specific conditions are met, and then
transitions to a different mode. Let's try running the scene on your device.

Testing it out
Now is a good time to Build And Run the scene to make sure things are working as
expected so far. Perform the following steps:

1.	 First, be sure to save your work by using File | Save.

2.	 Select File | Build Settings to open the Build Settings window.

3.	 Click Add Open Scenes to add the ARFramework scene to Scenes In Build, and
ensure it is the only scene in the list with a checkmark.

4.	 Ensure that your target device is plugged into a USB port and that it is ready.

5.	 Click Build And Run to build the project.

Using the Unity onboarding UX assets 143

Once the project builds without errors and launches on your device in Startup mode.
You'll first see the words Initializing… from the Startup UI panel.

Once the AR Session is started, the app transitions to Scan mode and you will see the
words Scanning... Please move device slowly.

Once a horizontal plane is being tracked, Scan mode transitions to Main mode. You will
then see on the screen the words Main Mode Running....

If all goes well, the framework is working as intended. To accomplish this, we have
implemented the Canvas UI and child panels for the user interface. We have implemented
the Interaction Controller and child mode controllers with scripts that implement the
UI and interactions required in each mode. And it's all wired together. This is a basic
framework for an AR project that we will use for projects in this book.

There are many ways in which we can improve and build on this framework. For one,
we can make the UI a little more interesting by replacing some of the text prompts with
animated graphics from the AR Onboarding UX from Unity.

Using the Unity onboarding UX assets
Unity provides a set of AR onboarding UX assets useful for prompting users in an AR
application. Onboarding refers to the user experience when your app starts up and
prompts the user to interact with AR features. First, I'll explain some of what this package
provides. Then we'll prepare the assets for use in our own projects.

Introducing the onboarding assets
The onboarding UX assets are part of the AR Foundation Demos project found at
https://github.com/Unity-Technologies/arfoundation-demos.
(This is different from the AR Foundation Samples project we explored in Chapter 2, Your
First AR Scene). And its documentation can be found on that project's GitHub page.

The onboarding UX assets include icons and video graphics to prompt the user when
scanning is required. It automatically tells the user the reasons why tracking may be
failing, such as the room is too dark, or the camera view does not see sufficient details. It
provides components to manage that process that are composed into an example prefab,
named ScreenspaceUI, which can be customized to the look and feel of your own project.

https://github.com/Unity-Technologies/arfoundation-demos

144 Creating an AR User Framework

For example, when the app is scanning, you can use an animated graphic prompt to Move
Device Slowly while scanning the room. If there's a problem, it will display the reason, as
shown in the left-side panel of the following image (where I have my finger covering the
camera lens). It says Look for more textures or details in the area. If you want to prompt
the user to tap the screen to place an object, there's a Tap to Place animated graphic, and
so on:

Figure 4.9 – Using the onboarding UX assets

Furthermore, the package supports localization of the text prompts, should your project
require multi-language support for various countries. It also includes some good default
assets for visualizing AR planes and point clouds that you can use.

The package includes the following components.

•	 ARUX Animation Manager: This displays instructional graphic animations
to prompt the user to find a plane or tap to place, for example.

•	 ARUX Reasons Manager: This checks the AR Session's status and displays reasons
why tracking may be failing as hints to the user.

Using the Unity onboarding UX assets 145

•	 Localization Manager: This supports localized text and graphics for adapting the
instructional and reasons UI to different languages.

•	 UI Manager: This is an example script for managing the user workflow.

Info: The UI Manager script is an example script
The UIManager script from the AR Foundation Demos project is a
useful control script, but it is only an example of how to interface with the
ARUXAnimationManager. Reading the script is informative but not
reusable. In our framework, we have implemented our own solution for the
user flow that replaces the UIManager script.

UI Manager lets you set up one or two goals via the Inspector window. A goal may be
Found a Plane or Placed an Object. You then set the instructional UI to prompt the user
to perform the current activity until its goal has been completed.

Preparing the Unity AR onboarding assets
While the onboarding UX assets are also available as a package in the Unity Asset Store,
I recommend you clone the GitHub project version because it has more examples and
assets, including Universal Render Pipeline (URP) shader-graph shaders. Both versions
are full Unity projects, so either way, you will need to open it in a new Unity project and
then export the assets into a package that you can import into your own projects.

We will clone the project and then export the AR Foundation Demos assets into
a .unitypackage file that we can import into our own project. I will also provide
a copy of this Unity package with the files for this book in the GitHub repository.

To clone the project and export the folders we want, perform the following steps:

1.	 Clone a copy of the project from GitHub to your local machine. The project can be
found at https://github.com/Unity-Technologies/arfoundation-
demos. Please use whatever cloning method you prefer, for example, GitHub
Desktop (https://desktop.github.com/) or Command Line (https://
git-scm.com/download/).

2.	 Open the Unity Hub application on your desktop.

3.	 Add the project to Unity Hub by selecting Projects | Add, navigating to the cloned
project's root folder, and then press Select Folder.

https://github.com/Unity-Technologies/arfoundation-demos
https://github.com/Unity-Technologies/arfoundation-demos
https://desktop.github.com/
https://git-scm.com/download/
https://git-scm.com/download/

146 Creating an AR User Framework

4.	 In the Unity Hub projects list, if you see a yellow warning icon indicating that the
Unity version used by the cloned project is not presently installed on your system,
use the Unity Version selection to choose a newer version of the editor that you do
have installed (preferably the same major release number).

5.	 Open the project by selecting it from the Unity Hub projects list.

6.	 We're going to move selected folders into a root folder named
ARFoundationDemos that we can export into a package.

In Unity, in the Project window, create a new folder using the + button in the
top-left of the Project window and name it ARFoundationDemos.

7.	 With your mouse, move the following four folders into this
ARFoundationDemos/ folder: AddressableAssetsData, Common, Shaders, and
UX.

8.	 In the Project window, right-click on the ARFoundationDemos/ folder and
select Export Package.

9.	 The Exporting Package window will open. Click Export.

10.	 Choose a directory outside of this project's root and name the file (such as
ARF-OnboardingUX). Then, click Save.

Before you close the ARFoundationDemos project, you may want to look in the
Package Manager window and note the AR Foundation package version used in
the given project, to make sure your own project uses the same or later version of AR
Foundation.

You can close the ARFoundationDemos project now. You now have an asset package
you can use in this and other projects.

Installing dependency packages
The AR onboarding UX has some dependencies on other Unity packages that you must
install in your own project: Addressables and Localization. Open your AR project and
install them now.

The Addressable Asset system simplifies loading assets at runtime with a unified scheme.
Assets can be loaded from any location with a unique address, whether they reside in your
application or on a content delivery network. Assets can be accessed via direct references,
traditional asset bundles, or Resource folders. The Addressables package is required
by the onboarding UX assets. To learn more, see https://docs.unity3d.com/
Packages/com.unity.addressables@1.16/manual/index.html.

mailto:https://docs.unity3d.com/Packages/com.unity.addressables@1.16/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.addressables@1.16/manual/index.html

Using the Unity onboarding UX assets 147

To import the Addressables package, perform the following steps:

1.	 Open the Package Manager window by using Window | Package Manager.

2.	 Ensure Unity Registry is selected from the Packages filter dropdown in the upper-
left corner of the Package Manager window.

3.	 Search for Addressables using the search text input field in the upper-right
corner of the Package Manager window.

4.	 Select the Addressables package and click Install.

The Addressables package is now installed.

The Localization package translates text strings and other assets into local languages. See
https://docs.unity3d.com/Packages/com.unity.localization@1.0/
manual/index.html. To import the Localization package, perform the following steps
(these steps may have changed by the time you read this):

1.	 If you have not already done so, enable Preview Packages by navigating to the Edit
| Project Settings | Package Manager settings and checking the Enable Preview
Packages checkbox.

2.	 Then, in the Package Manager window, use the + button in the top-left corner and
select Add Package From Git URL.

3.	 Then, type com.unity.localization to begin installing the package.

Info: Using Preview packages and Git URLs
As I write this, the Localization package is in preview, that is, not yet fully
released by Unity. Also, it is not yet included in the Unity package registry. To
enable preview packages, you must click Enable Preview Packages in Project
Settings. Also if a package is not included in the built-in Unity registry, you
can add a package from a Git URL, from disk, or from a tarball file.

The Localization package is now installed. We can now install the AR onboarding UX
assets themselves.

mailto:https://docs.unity3d.com/Packages/com.unity.localization@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.localization@1.0/manual/index.html

148 Creating an AR User Framework

Importing the OnboardingUX package
We saved the assets exported from the AR Foundation Demos project into a file named
OnboardingUX.unitypackage. Importing the package is straightforward. Follow
these steps to add it to your project. Back in your own Unity project, do the following:

1.	 Select Assets | Import Package | Custom Package. Alternatively, drag the
OnboardingUX.unitypackage file from your Explorer or Finder directly into
the Unity Project window.

2.	 In the Import Unity Package window, click Import.

3.	 The assets include materials that use the built-in render pipeline. Since our project
is using the URP, you need to convert the materials by selecting Edit | Render
Pipeline | Universal Render Pipeline | Upgrade Project Materials to URP.

Tip: SphereObject shadow material in the URP
The SphereObject prefab that comes with the onboarding UX demo assets is
configured to cast a shadow using the built-in render pipeline, not the URP. As
such, the shadow appears as a missing shader and is colored magenta. To fix
this, locate the material named ShadowMat in the ARFoundationDemos/
Common/Materials/ folder and, in the Inspector window, change its
Shader, using the drop-down menu, to ShaderGraphs/BlurredShadowPlane.

The onboarding UX assets are now imported into your project. We can now add it to our
framework scene.

Currently, our app renders a UI panel with text to prompt the user to scan the
environment. This panel is a game object that is enabled when needed. Basically, we want
to replace the panel text with animated graphics.

Writing the AnimatedPrompt script
Let's start by writing a new script, AnimatedPrompt, that displays a specific animation
when it is enabled and hides the animation when disabled:

1.	 Create a new script in your Project Scripts/ folder by right-clicking and selecting
Create | C# Script and name the script AnimatedPrompt.

Using the Unity onboarding UX assets 149

2.	 Double-click the file to open it for editing and replace the default content, starting
with the following declarations:

using UnityEngine;

public class AnimatedPrompt : MonoBehaviour

{

 public enum InstructionUI

 {

 CrossPlatformFindAPlane,

 FindAFace,

 FindABody,

 FindAnImage,

 FindAnObject,

 ARKitCoachingOverlay,

 TapToPlace,

 None

 };

 [SerializeField] InstructionUI instruction;

 [SerializeField] ARUXAnimationManager
 animationManager;

 bool isStarted;

In this script, we declare a public property, instruction, whose value is an enum
InstructionUI type that indicates which animation to play (borrowed from the
UIManager script from the onboarding assets, to be consistent).

3.	 When the script is started or enabled, it will initiate the animated graphics.
Inversely, when the object is disabled, the graphics are turned off:

 void Start()

 {

 ShowInstructions();

 isStarted = true;

 }

 void OnEnable()

150 Creating an AR User Framework

 {

 if (isStarted)

 ShowInstructions();

 }

 void OnDisable()

 {

 animationManager.FadeOffCurrentUI();

 }

I've added a fix to ensure the animation does not restart when both Start and
OnEnable are called at the start.

4.	 When the script is enabled, it calls the helper function, ShowInstructions,
which calls a corresponding function in ARUXAnimationManager:

 void ShowInstructions()

 {

 switch (instruction)

 {

 case InstructionUI.CrossPlatformFindAPlane:

 animationManager.
 ShowCrossPlatformFindAPlane();

 break;

 case InstructionUI.FindAFace:

 animationManager.ShowFindFace();

 break;

 case InstructionUI.FindABody:

 animationManager.ShowFindBody();

 break;

 case InstructionUI.FindAnImage:

 animationManager.ShowFindImage();

 break;

 case InstructionUI.FindAnObject:

 animationManager.ShowFindObject();

 break;

 case InstructionUI.TapToPlace:

 animationManager.ShowTapToPlace();

Using the Unity onboarding UX assets 151

 break;

 default:

 Debug.LogError("instruction switch
 missing, please edit AnimatedPrompt.cs "
 + instruction);

 break;

 }

 }

}}

Now we can add this to our scene.

Integrating the onboarding graphics
To integrate the onboarding graphics, we can add the demo prefab (unfortunately named
ScreenspaceUI) from the AR Foundation Demos package. Follow these steps:

1.	 In the Project window, navigate to the ARFoundationDemos/UX/Prefabs/
folder and drag the ScreenspaceUI prefab into the Hierarchy window root of the
scene.

2.	 Give it a more indicative name; rename the object OnboardingUX.

3.	 Our framework replaces the demo UI Manager component, so you should
remove this.

With the OnboardingUX object selected in Hierarchy, click the 3-dot context menu
in the top-right corner of the UI Manager component in the Inspector window and
select Remove Component.

We can now use AnimatedPrompt to replace the text in our UI prompt panels. To use
it, perform the following steps:

1.	 In the Hierarchy window, select the Scan UI panel object, right-click Create Empty,
and rename the new object Animated Prompt.

2.	 With the Animated Prompt object selected, drag the new AnimatedPrompt
script from the Project window onto the object.

3.	 Set the Animated Prompt | Instruction to Cross-Platform Find A Plane.

4.	 From the Hierarchy window, drag the OnboardingUX object into the Inspector
window and drop it on to the Animation Manager slot.

5.	 You can disable the Text (TMP) child element of Scan Prompt Panel so that it
won't be rendered.

152 Creating an AR User Framework

If you Build And Run the project again, when it enters Scan mode, you will be greeted
with nice, animated graphics instead of the text prompt.

With a working AR user framework, let's make this scene into a template that we can use
when creating new scenes.

Creating a scene template for new scenes
We can save this ARFramework scene we've been working on as a template to use
for starting new scenes in this Unity project. To create a scene template, perform the
following steps.

1.	 With the ARFramework scene open, select File | Save As Scene Template.

2.	 In the Save window, navigate to your Scenes/ folder, verify the template name
(ARFramework.scenetemplate), and then press Save.

3.	 Subsequently, when you want to start a new AR scene, use this template. By
default, Unity will duplicate any dependencies within the scene into a separate
folder. In our case, this is generally not what we want to do.

To prevent cloning the scene dependencies when the template is used, click on this
new scene template file in your Project Assets/ window.

4.	 In its Inspector window, in the Dependencies panel, uncheck each of the assets
you do not want to be cloned and want to be shared between your scenes. In our
case, we do not want to clone any, so use the checkbox at the top of the Clone
column to change the checkboxes in bulk.

Tip: Updating a template scene
A Unity scene template contains metadata used when selecting and
instantiating a new scene via the File | New Scene menu. It does not include
the scene's GameObjects. Rather, it contains a reference to your prototype
Unity scene. If you want to modify this prototype, don't re-save the scene
as a new template. You simply edit the scene it is referencing. In this case,
that will be the scene named ARFramework. Just remember to check the
Dependencies list in the template if you've added any new assets to the scene
as these will default to be cloned.

To use the template when creating a new scene in this project, use File | New Scene as
usual. The dialog box will now contain the ARFramework template as an option. Select
the location in your assets folder and press Create. If the template specifies any assets to
be cloned, those copies will be added to a subfolder with the same name as the new scene.

Summary 153

We are now ready to build upon the work we did in this chapter, using the ARFramework
template for new project scenes.

Summary
In this chapter, we developed a framework for building AR applications and saved it as a
template we can use for projects in this book. The framework provides a state-machine
structure for implementing modes and identifying the conditions when to transition to a
different mode. The framework also offers a controller-view design pattern where, when a
mode is active, its corresponding UI is visible, keeping the mode control objects separate
from the UI view objects.

For the framework template, we implemented four modes: Startup mode, Scan mode,
Main mode, and NonAR mode, along with four UI panels: Startup UI, Scan UI, Main
UI, and NonAR UI. Scan mode uses the onboarding UX assets from the AR Foundation
Demos project to prompt the user to scan for trackable features and report problems with
detection and the AR session.

In the next chapter, I will demonstrate the use of this framework with a simple demo
project and then build upon the framework more extensively in subsequent chapters.

5
Using the AR User

Framework
In this chapter, we will learn how to use the Augmented Reality (AR) user framework
that we set up in the previous chapter, Chapter 4, Creating an AR User Framework. Starting
with the ARFramework scene template, we will add a main menu for placing virtual
objects in the environment. If you skipped that chapter or just read through it, you can
find the scene template and assets in the files provided on this book's GitHub repository.

For this project, we'll extend the framework with a new PlaceObject-mode that prompts
the user to tap to place a virtual object in the room. The user will have a choice of objects
from the main menu.

In the latter half of the chapter, I'll discuss some advanced AR application issues including
making an AR-optional project, determining whether a device supports a specific AR
feature, and adding localization to your User Interface (UI).

This chapter will cover the following topics:

•	 Planning the project

•	 Starting with the ARFramework scene template

•	 Adding a main menu

•	 Adding PlaceObject mode and instructional UI

156 Using the AR User Framework

•	 Wiring the menu buttons

•	 Doing a Build And Run

•	 Hiding tracked objects when not needed

•	 Making an AR-optional project

•	 Determining whether a device supports specific AR features at runtime

•	 Adding localization features to a project

By the end of the chapter, you'll be more familiar with the AR user framework developed
for this book, which we'll use in subsequent chapters as we build a variety of different AR
application projects.

Technical requirements
To implement the project in this chapter, you need Unity installed on your development
computer, with a mobile device connected that supports AR applications (see Chapter 1,
Setting Up for AR Development, for instructions), including the following:

•	 Universal Render Pipeline

•	 Input System package

•	 XR Plugin for your target device

•	 AR Foundation package

We assume you have installed the assets from the Unity arfoundation-samples project
imported from ARF-samples.unitypackage created in Chapter 2, Your First AR
Scene.

Also from Chapter 2, Your First AR Scene, we created an AR Input Actions asset that we'll
use in this project, containing an action map named ARTouchActions including (at least)
a PlaceObject action.

We also assume you have the ARFramework scene template created in Chapter 4,
Creating an AR User Framework, along with all the prerequisite Unity packages detailed
at the beginning of Chapter 4 Creating an AR User Framework. A copy of the template
and assets can be found in this book's GitHub repository at https://github.com/
PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation (not
including the third-party packages that you should install yourself).

The AR user framework requires the following prerequisites, as detailed in Chapter 4,
Creating an AR User Framework, including the following:

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Planning the project 157

•	 The Addressables package

•	 The Localization package

•	 TextMesh Pro

•	 The DOTween package from the Asset Store

•	 The Serialized Dictionary Lite package from the Asset Store

The completed scene for this chapter can also be found in the GitHub repository.

Planning the project
For this project, we'll create a simple demo AR scene starting with the ARFramework
scene template and building up the user framework structure we have set up.

With the framework, when the app first starts, Startup-mode is enabled and the AR
Session is initialized. Once the session is ready, it transitions to Scan-mode.

If the AR Session determines that the current device does not support AR, Scan-mode will
transition to NonAR-mode instead. Presently this just puts a text message on the screen.
See the Making an AR-optional project section near the end of this chapter for more
information.

In Scan-mode, the user is prompted to use their device camera to slowly scan the room
until AR features are detected, namely, horizontal planes. The ScanMode script checks for
any tracked planes and then transitions to Main-mode.

Given this, our plan is to add the following features:

•	 The AR session will be configured to detect and track horizontal planes. We'll also
render point clouds.

•	 Main-mode will show a main menu with buttons that lets the user choose objects to
place in the real-world environment. You can find your own models to use here, but
we'll include three buttons for a cube, a sphere, and a virus (created in Chapter 2,
Your First AR Scene).

•	 When a place-object button is selected, it will enable a new PlaceObject-mode that
prompts the user to tap to place the objects onto a detected plane.

•	 Tapping on a tracked horizontal plane will create an instance of the object in the
scene. The app then goes back to Main-mode.

•	 Tracked AR features (planes and point clouds) will be hidden in Main-mode, and
visible in PlaceObject-mode.

158 Using the AR User Framework

I have chosen to provide a cube, a sphere, and a virus (the virus model was created in
Chapter 2, Your First AR Scene). Feel free to find and use your own models instead. The
prefab assets I will be using are the following:

•	 AR Placed Cube (found in the Assets/ARF-samples/Prefabs/ folder)

•	 AR Placed Sphere (found in the Assets/ARF-samples/Prefabs/ folder)

•	 Virus (found in Assets/_ARFBookAssets/Chapter02/Prefabs/ folder)

This is a simple AR demo that will help you become more familiar with the AR user
framework we developed and will use in subsequent projects in this book.

Let's get started.

Starting with the ARFramework scene
template
To begin, we'll create a new scene named FrameworkDemo using the ARFramework
scene template, using the following steps:

1.	 Select File | New Scene.
2.	 In the New Scene dialog box, select the ARFramework template.
3.	 Press Create.
4.	 Select File | Save As. Navigate to the Scenes/ folder in your project's Assets

folder, give it the name FrameworkDemo, and press Save.

Note: Unintended clone dependencies
When creating a new scene from a scene template, if you're prompted right
away for a name to save the file under, this indicates your scene template has
some clone dependencies defined. If this is not your intention, cancel the
creation, select the template asset in your Project window, and ensure all the
Clone checkboxes are cleared in the Dependencies list. Then try creating your
new scene again.

The new AR scene already has the following game objects included from the template:

•	 The AR Session game object

•	 The AR Session Origin rig with the raycast manager and plane manager components.

Starting with the ARFramework scene template 159

•	 UI Canvas is a screen space canvas with Startup UI, Scan UI, Main UI, and NonAR
UI child panels. It also has the UI Controller component script that we wrote.

•	 Interaction Controller is a game object with the Interaction Controller component
script we wrote that helps the app switch between interaction modes, including
Startup, Scan, Main, and NonAR modes. It also has a Player Input component
configured with the AR Input Actions asset we previously created.

•	 The OnboardingUX prefab from the AR Foundation Demos project that provides
AR session status and feature detection status messages, and animated onboarding
graphics prompts.

Set up the app title now as follows:

1.	 In the Hierarchy window, unfold the UI Canvas object, and unfold its child App
Title Panel.

2.	 Select the Title Text object.
3.	 In its Inspector, change its text content to Place Object Demo.

The default AR Session Origin already has an AR Plane Manager component. Let's ensure
it's only detecting horizontal planes. Let's add a point cloud visualization too. Follow these
steps:

1.	 In the Hierarchy window, select the AR Session Origin object.
2.	 In the Inspector, set the AR Plane Manager | Detection Mode to Horizontal by

first selecting Nothing (to clear the list) and then selecting Horizontal.
3.	 Click the Add Component button, search for ar point cloud, then add an AR

Point Cloud Manager component.
4.	 Find a point cloud visualizer prefab and set the Point Cloud Prefab slot (for

example, AR Point Cloud Debug Visualizer can be found in the Assets/
ARF-samples/Prefabs/ folder).

5.	 Save your work with File | Save.

We've created a new scene based on the ARFramework template and added AR trackables
managers for point clouds and horizontal planes. Next, we'll add the main menu.

160 Using the AR User Framework

Adding a main menu
The main menu UI resides under the Menu UI panel (under UI Canvas) in the scene
hierarchy. We will add a menu panel with three buttons to let you add a cube, a sphere,
and a virus. We'll create a menu sub-panel and arrange the menu buttons horizontally.
Follow these steps:

1.	 In the Hierarchy, unfold the UI Canvas, and unfold its child Main UI object.
2.	 First, remove the temporary Main mode text element. Right-click the child Text

object and select Delete.
3.	 Right-click the Menu UI and select UI | Panel, then rename it Main Menu.
4.	 On the Main Menu panel, use the Anchor Presets to set Bottom-Stretch, and

use Shift + Alt + click Bottom-Stretch to make a bottom panel. Then set Rect
Transform | Height to 175.

5.	 I set my background Image | Color to opaque white with Alpha: 255.
6.	 Select Add Component, search layout, then select | Horizontal Layout Group.
7.	 On the Horizontal Layout Group component check the Control Child Size |

Width and Height checkboxes (leave the others at their default values, Use Child
Scale unchecked, and Child Force Expand checked). The Main Menu panel looks
like this in the Inspector:

Figure 5.1 – The Main Menu panel settings

Adding a main menu 161

Now we'll add three buttons to the menu using the following steps:

1.	 Right-click the Main Menu, select UI | Button – TextMeshPro, and rename it to
Cube Button.

2.	 Select its child text object, and set the Text value to Cube and Font Size to 48.
3.	 Right-click the Cube Button and select Duplicate (or press Ctrl + D). Rename it

Sphere Button and change its text to Sphere.
4.	 Repeat step 3 again, renaming it Virus Button, and changing the text to Virus.

The resulting scene hierarchy of the Main Menu is shown in the following screenshot:

Figure 5.2 – Main Menu hierarchy

I decided to go further and add a sprite image of each model to the buttons. I created the
images by screen-capturing a view of each model, edited them with Photoshop, saved
them as PNG files, and in Unity made sure the image's Texture Type is set to Sprite (2D
and UI). I then added a child Image element to the buttons. The result is as shown in the
following image of my menu:

Figure 5.3 – Main Menu with icon buttons

Thus far we have created a Main Menu panel with menu buttons under the Main UI.
When the app goes into Main-mode, this menu will be displayed.

Next, we'll add a UI panel that prompts the user to tap the screen to place an object into
the scene.

162 Using the AR User Framework

Adding PlaceObject-mode with instructional
UI
When the user picks an object from the main menu, the app will enable PlaceObject-
mode. For this mode, we need a UI panel to prompt the user to tap the screen to place the
object. Let's create the UI panel first.

Creating the PlaceObject UI panel
The PlaceObject UI panel should be similar to the Scan UI one, so we can duplicate and
modify it using the following steps:

1.	 In the Hierarchy window, unfold the UI Canvas.
2.	 Right-click the Scan UI game object and select Duplicate. Rename the new object

PlaceObject UI.
3.	 Unfold PlaceObject UI and select its child Animated Prompt.
4.	 In the Inspector, set the Animated Prompt | Instruction to Tap To Place. The

resulting component is shown in the following screenshot:

Figure 5.4 – Animated Prompt settings for the PlaceObject UI panel

5.	 Now we add the panel to the UI Controller.

In the Hierarchy, select the UI Canvas object.
6.	 In the Inspector, at the bottom-right of the UI Controller component, click the +

button to add an item to the UI Panels dictionary.
7.	 Enter PlaceObject as text in the Id field.
8.	 Drag the PlaceObject UI game object from the Hierarchy onto the Value slot. The

UI Controller component now looks like the following:

Adding PlaceObject-mode with instructional UI 163

Figure 5.5 – UI Controller's UI Panels list with PlaceObject added

We added an instructional user prompt for the PlaceObject UI. When the user chooses
to add an object to the scene, this panel will be displayed. Next, we'll add the PlaceObject
mode and script.

Creating the PlaceObject mode
To add a mode to the framework, we create a child GameObject under the Interaction
Controller and write a mode script. The mode script will show the mode's UI, handle any
user interactions, and then transition to another mode when it is done. For PlaceObject-
mode, it will display the PlaceObject UI panel, wait for the user to tap the screen,
instantiate the prefab object, and then return to Main-mode.

Let's write the PlaceObjectMode script as follows:

1.	 Begin by creating a new script in your Project Scripts/ folder using right-click |
Create C# Script, and name the script PlaceObjectMode.

2.	 Double-click the file to open it for editing and replace the default content, starting
with the following declarations:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

164 Using the AR User Framework

using UnityEngine.InputSystem;

using UnityEngine.XR.ARFoundation;

using UnityEngine.XR.ARSubsystems;

public class PlaceObjectMode : MonoBehaviour

{

 [SerializeField] ARRaycastManager raycaster;

 GameObject placedPrefab;

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

The script will use APIs from ARFoundation and ARSubsystems so we
specify these in the using statements at the top of the script. It will use the
ARRaycastManager to determine which tracked plane the user has tapped. Then
it will instantiate the placedPrefab into the scene.

3.	 When the mode is enabled, we will show the PlaceObject UI panel:

 void OnEnable()

 {

 UIController.ShowUI("PlaceObject");

 }

4.	 When the user selects an object from the Main Menu, we need to tell
PlaceObjectMode which prefab to instantiate, given the following code:

 public void SetPlacedPrefab(GameObject prefab)

 {

 placedPrefab = prefab;

 }

5.	 Then when the user taps the screen, the Input System triggers an OnPlaceObject
event (given the AR Input Actions asset we previously set up), using the following
code:

 public void OnPlaceObject(InputValue value)

 {

 Vector2 touchPosition = value.Get<Vector2>();

 PlaceObject(touchPosition);

 }

 void PlaceObject(Vector2 touchPosition)

Adding PlaceObject-mode with instructional UI 165

 {

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 Pose hitPose = hits[0].pose;

 Instantiate(placedPrefab, hitPose.position,
 hitPose.rotation);

 InteractionController.EnableMode("Main");

 }

 }

}

When a touch event occurs, we pass the touchPosition to the PlaceObject
function, which does a Raycast to find the tracked horizontal plane. If found, we
Instantiate the placedPrefab at the hitPose location and orientation.
And then the app returns to Main-mode.

6.	 Save the script and return to Unity.

We can now add the mode to the Interaction Controller as follows:

1.	 In the Hierarchy window, right-click the Interaction Controller game object and
select Create Empty. Rename the new object PlaceObject Mode.

2.	 Drag the PlaceObjectMode script from the Project window onto the PlaceObject
Mode object adding it as a component.

3.	 Drag the AR Session Origin object from the Hierarchy onto the Place Object
Mode | Raycaster slot.

Now we'll add the mode to the Interaction Controller.
4.	 In the Hierarchy, select the Interaction Controller object.
5.	 In the Inspector, at the bottom-right of the Interaction Controller component,

click the + button to add an item to the Interaction Modes dictionary.
6.	 Enter the PlaceObject text in the Id field.

166 Using the AR User Framework

7.	 Drag the PlaceObject Mode game object from the Hierarchy onto the Value slot.
The Interaction Controller component now looks like the following:

Figure 5.6 – The Interaction Controller's Interaction Modes list with PlaceObject added

We have now added a PlaceObject Mode to our framework. It will be enabled by the
Interaction Controller when EnableMode("PlaceObject") is called by another script or,
in our case, by a main menu button. When enabled, the script shows the PlaceObject
instructional UI, then listens for an OnPlaceObject input action event. Upon the input
event, we use Raycast to determine where in the 3D space the user wants to place the
object, then the script instantiates the prefab and returns to Main-mode.

The final step is to wire up the main menu buttons.

Wiring the menu buttons
When the user presses a main menu button to add an object to the scene, the button will
tell PlaceObjectMode which prefab is to be instantiated. Then PlaceObject mode is
enabled, which prompts the user to tap to place the object and handles the user input
action. Let's set up the menu buttons now using the following steps:

1.	 Unfold the Main Menu game object in the Hierarchy by navigating to UI Canvas /
Main UI / Main Menu and select the Cube Button object.

2.	 In its Inspector, on the Button component, in its OnClick section, press the +
button in the bottom right to add an event action.

Wiring the menu buttons 167

3.	 From the Hierarchy, drag the PlaceObject Mode object onto the OnClick Object
slot.

4.	 In the Function selection list, choose PlaceObject Mode | SetPlacedPrefab.
5.	 In the Project window, locate a cube model prefab to use. For example, navigate to

your Assets/ARF-samples/Prefabs/ folder and drag the AR Placed Cube
prefab into the Game Object slot for this click event in Inspector.

6.	 Now let the button enable PlaceObject Mode. In its Inspector, on the Button
component, in its OnClick section, press the + button in the bottom right to add
another event action.

7.	 From the Hierarchy, drag the Interaction Controller object onto the OnClick
event's Object slot.

8.	 In the Function selection list, choose InteractionController | EnableMode.
9.	 In the string parameter field, enter PlaceObject.

The Cube Button object's Button component now has the following OnClick event settings:

Figure 5.7 – The OnClick events for the Cube Button

Repeat these steps for the Sphere Button and Virus Button. As a shortcut we can copy/
paste the component settings as follows:

1.	 With the Cube Button selected in the Hierarchy, over in the Inspector, click the
three-dot context menu for the Button component, and select Copy Component.

2.	 In the Hierarchy, select the Sphere Button object.
3.	 In its Inspector, click the three-dot context menu for the Button component, and

select Paste Component Values.
4.	 In the Project window, locate a sphere model prefab to use. For example, navigate to

your Assets/ARF-samples/Prefabs/ folder and drag the AR Placed Sphere
prefab into the Game Object slot for this click event in Inspector.

168 Using the AR User Framework

5.	 Likewise, repeat steps 1-4 for the Virus Button, and set the GameObject to the
Virus prefab (perhaps located in your own Prefabs folder).

6.	 Save your work using File | Save.

Everything should be set up now. We created a new scene using the ARFramework
template, added a main menu with buttons, added the PlaceObject-mode with
instructional user prompt, wrote the PlaceObjectMode script that handles user input
actions and instantiates the prefab, and wired it all up to the main menu buttons. Let's try
it out!

Performing a Building and Run
To build and run the project, use the following steps:

1.	 Open the Build Settings window using File | Build Settings.
2.	 Click the Add Open Scenes button if the current scene (FrameworkDemo) is not

already in the Scenes In Build list.
3.	 Ensure that the FrameworkDemo scene is the only one checked in the Scenes In

Build list.
4.	 Click Build And Run to build the project.

When the project builds successfully, it starts up in Startup-mode while the AR Session is
initializing. Then it goes into Scan-mode that prompts the user to scan the environment,
until at least one horizontal plane is detected and tracked. Then it goes into Main-mode
and displays the main menu. Screen captures of the app running on my phone in each of
these modes are shown in the following figure:

Hiding tracked objects when not needed 169

Figure 5.8 – Screen captures of Startup-mode, Scan-mode, and Main-mode

On pressing one of the menu buttons, the app goes into PlaceObject-mode, prompting the
user to tap to place an object. Tapping the screen instantiates the object at the specified
location in the environment. Then the app returns to Main-mode.

We now have a working demo AR application for placing various virtual objects onto
horizontal surfaces in your environment. One improvement might be to hide the trackable
objects in Main-mode and only display them when needed in PlaceObject-mode.

Hiding tracked objects when not needed
When the app first starts tracking, we show the trackable planes and point clouds. This
is useful feedback to the user when the app first starts and subsequently when placing an
object. But once we have objects placed in the scene, these trackable visualizations can be
distracting and unwanted. Let's only show the object while in PlaceObject-mode and hide
them after at least one virtual object has been placed.

In AR Foundation, hiding the trackables requires two separate things: hiding the existing
trackables that have already been detected, and preventing new trackables from being
detected and visualized. We will implement both.

170 Using the AR User Framework

To implement this, we can write a separate component on PlaceObject mode that shows
the trackables when enabled and hides them when disabled. Follow these steps:

1.	 Create a new C# script in your Scripts/ folder named
ShowTrackablesOnEnable and open it for editing.

2.	 At the top of the class, add variable references to ARSessionOrigin,
ARPlaneManager, and ARPointCloudManager. Also, we will now remember
the most recently placed object in lastObject, and initialize them in Awake, as
follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class ShowTrackablesOnEnable : MonoBehaviour

{

 [SerializeField] ARSessionOrigin sessionOrigin;

 ARPlaneManager planeManager;

 ARPointCloudManager cloudManager;

 bool isStarted;

 void Awake()

 {

 planeManager =
 sessionOrigin.GetComponent<ARPlaneManager>();

 cloudManager = sessionOrigin.GetComponent
 <ARPointCloudManager>();

 }

 private void Start()

 {

 isStarted = true;

 }

I've also added an isStarted flag that we'll use to prevent the visualizers from
being hidden when the app starts up.

Hiding tracked objects when not needed 171

Info: OnEnable and OnDisable can be called before Start
In the life cycle of a MonoBehaviour component, OnEnable is called
when the object becomes enabled and active. OnDisable is called when the
script object becomes inactive. Start is called on the first frame the script
is enabled, just before Update. See https://docs.unity3d.com/
ScriptReference/MonoBehaviour.Awake.html.

In our app, it is possible for OnDisable to get called before Start (when
we're initializing the scene from InteractionController). To prevent
ShowTrackables(false) from getting called before the scene has
started, we use an isStarted flag in this script.

3.	 We will show the trackables when the mode is enabled and hide them when
disabled using the following code:

 void OnEnable()

 {

 ShowTrackables(true);

 }

 void OnDisable()

 {

 if (isStarted)

 {

 ShowTrackables(false);

 }

 }

4.	 These call ShowTrackables, which we implement as follows:

 void ShowTrackables(bool show)

 {

 if (cloudManager)

 {

 cloudManager.SetTrackablesActive(show);

 cloudManager.enabled = show;

 }

 if (planeManager)

 {

 planeManager.SetTrackablesActive(show);

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html

172 Using the AR User Framework

 planeManager.enabled = show;

 }

 }

}

Setting SetTrackablesActive(false) will hide all the existing trackables.
Disabling the trackable manager component itself will prevent new trackables from
being added. We check for null managers in case the component is not present in
ARSessionOrigin.

5.	 Save the script.
6.	 Back in Unity, select the PlaceObject Mode game object in the Hierarchy.
7.	 Drag the ShowTrackablesOnEnable script onto the PlaceObject Mode object.
8.	 Drag the AR Session Origin object from the Hierarchy into the Inspector and

drop it onto the Show Trackables On Enable | Session Origin slot.
9.	 Save the scene using File | Save.

Now when you click Build And Run again, the trackables will be shown when
PlaceObject Mode is enabled, and will be hidden when disabled. Thus, the trackables will
be visible when Main mode is first enabled but after an object has been placed and the app
goes back to Main-mode, the trackables will be hidden. This is the behavior we desire. The
PlaceObject-mode and subsequent Main-mode are shown in the following screen captures
of the project running on my phone:

Hiding tracked objects when not needed 173

Figure 5.9 – Screen captures of PlaceObject-mode, and subsequent Main-mode with trackables hidden

Tip: Disable trackables by modifying the plane detection mode
To disable plane detection, the method I'm using is to disable the
manager component. This is the technique given in the example
PlaneDetectionController.cs script in the AR Foundation
Samples project. Alternatively, the Unity ARCore XR Plugin docs (
https://docs.unity3d.com/Packages/com.unity.
xr.arcore@4.1/manual/index.html) recommend disabling plane
detection by setting the ARPlaneManager detection mode to the value
PlaneDetectionMode.None.

We've now completed a simple AR project to place various virtual objects on horizontal
planes detected in the environment, using our AR user framework.

Further improvements you could add to the project include the following:

•	 A reset button in the main menu to remove any virtual objects already placed in the
scene.

•	 Only allow one instance of a virtual object to be placed in the scene at a time.

https://docs.unity3d.com/Packages/com.unity.xr.arcore@4.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arcore@4.1/manual/index.html

174 Using the AR User Framework

•	 The ability to move and resize an existing object (see Chapter 7, Gallery: Editing
Virtual Objects).

•	 Can you think of more improvements? Let us know.

In the rest of this chapter, we'll discuss some advanced onboarding and user experience
features you may want to include in your projects at a later time.

Advanced onboarding issues
In this section, we'll review some other issues related to AR onboarding, AR sessions, and
devices, including the following:

•	 Making an AR-optional project

•	 Determining whether the device supports a specific AR feature

•	 Adding localization to your project

Making an AR-optional project
Some applications are intended to be run specifically using AR features and should just
quit (after a friendly notification to the user) if it's not supported. But other applications
may want to behave like an ordinary mobile app with an extra optional capability of
supporting AR features.

For example, a game I recently created, Epoch Resources (available for Android at
https://play.google.com/store/apps/details?id=com.parkerhill.
EpochResources&hl=en_US&gl=US, and iOS at https://apps.apple.com/
us/app/epoch-resources/id1455848902) is a planetary evolution incremental
game with a 3D planet you mine for resources. It offers an optional AR-viewing mode
where you can "pop" the planet into your living room and continue playing the game in
AR, as shown in the following image.

https://play.google.com/store/apps/details?id=com.parkerhill.EpochResources&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.parkerhill.EpochResources&hl=en_US&gl=US
https://apps.apple.com/us/app/epoch-resources/id1455848902
https://apps.apple.com/us/app/epoch-resources/id1455848902

Advanced onboarding issues 175

Figure 5.10 – Epoch Resources is an AR-optional game

For an AR-optional application, your app will probably start up as an ordinary non-AR
app. Then at some point the user may choose to turn on AR-specific features. That's when
you'll activate the AR Session and handle the onboarding UX.

None of the projects in this book implement AR-optional so this is an informational
discussion only. To start, you'll tell the XR Plugin that AR is optional by going to Edit
| Project Settings | XR Plug-in Management and selecting Requirement | Optional
(instead of Required) for each of your platforms (ARCore and ARKit are set separately).

You will need a mechanism for running with or without AR. One approach is to have
separate AR and non-AR scenes that are loaded as needed (see https://docs.
unity3d.com/ScriptReference/SceneManagement.SceneManager.html).

In the case of the Epoch Resources game, we did not create two separate scenes. Rather
the scene contains two cameras, the normal default camera for non-AR mode and the AR
Session Origin (with child camera) for AR mode. We then flip between the two cameras
when the user toggles viewing modes.

Another issue you may run into is determining whether the user's device supports a
specific AR feature at runtime.

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html

176 Using the AR User Framework

Determining whether the device supports a specific AR
feature
It is possible that your app requires a specific AR feature that is not supported by all
devices. We can ask the Unity AR subsystems what features are supported by getting the
subsystem descriptor records.

For example, suppose we are interested in detecting vertical planes. Some older devices
may support AR but only horizontal planes. The following code illustrates how to get and
check plane detection support:

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.XR.ARSubsystems;

public class CheckPlaneDetectionSupport : MonoBehaviour

{

 void Start()

 {

 var planeDescriptors =
 new List<XRPlaneSubsystemDescriptor>();

 SubsystemManager.
 GetSubsystemDescriptors(planeDescriptors);

 Debug.Log("Plane descriptors count: " +
 planeDescriptors.Count);

 if (planeDescriptors.Count > 0)

 {

 foreach (var planeDescriptor in planeDescriptors)

 {

 Debug.Log("Support horizontal: " +
 planeDescriptor.
 supportsHorizontalPlaneDetection);

 Debug.Log("Support vertical: " +
 planeDescriptor.
 supportsVerticalPlaneDetection);

 Debug.Log("Support arbitrary: " +
 planeDescriptor.
 supportsArbitraryPlaneDetection);

Advanced onboarding issues 177

 Debug.Log("Support classification: " +
 planeDescriptor.supportsClassification);

 }

 }

 }

}

The types of descriptors available in AR Foundation include the following (their purpose
is self-evident from their names):

•	 XRPlaneSubsystemDescriptor

•	 XRRaycastSubsystemDescriptor

•	 XRFaceSubsystemDescriptor

•	 XRImageTrackingSubsystemDescriptor

•	 XREnvironmentProbeSubsystemDescriptor

•	 XRAnchorSubsystemDescriptor

•	 XRObjectTrackingSubsystemDescriptor

•	 XRParticipantSubsystemDescriptor

•	 XRDepthSubsystemDescriptor

•	 XROcclusionSubsystemDescriptor

•	 XRCameraSubsystemDescriptor

•	 XRSessionSubsystemDescriptor

•	 XRHumanBodySubsystemDescriptor

Documentation for the AR Subsystems API and these descriptor records can
be found at https://docs.unity3d.com/Packages/com.unity.
xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.html.
For example, the XRPlaneSubsystemDescriptor record we used here is
documented at https://docs.unity3d.com/Packages/com.unity.
xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.
XRPlaneSubsystemDescriptor.Cinfo.html.

If you are planning to distribute your application in different countries, you may also be
interested in localization.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRPlaneSubsystemDescriptor.Cinfo.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRPlaneSubsystemDescriptor.Cinfo.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRPlaneSubsystemDescriptor.Cinfo.html

178 Using the AR User Framework

Adding localization
Localization is the translation of text strings and other assets into local languages. It can
also specify date and currency formatting, alternative graphics for national flags, and so
on, to accommodate international markets and users. The Unity Localization package
provides a standard set of tools and data structures for localizing your application. More
information can be found at https://docs.unity3d.com/Packages/com.
unity.localization@0.10/manual/QuickStartGuide.html. We do not use
localization in any projects in this book, except where already supported by imported
assets such as the Onboarding UX assets from the AR Foundation Demos project.

The Unity Onboarding UX assets has built-in support for localization of the user prompts
and explanation of scanning problems. The ReasonsUX localization tables given with
the Onboarding UX project, for example, can be opened by selecting Window | Asset
Management | Localization Tables and is shown in the following screenshot. You can see,
for example, the second-row INIT key says in English, Initializing augmented reality,
along with the same string translated into many other languages:

Figure 5.11 – The ReasonsUX localization tables included in Onboarding UX assets

In the code, the Initializing augmented reality message, for example, is retrieved with a
call like this:

string localizedInit = reasonsTable.GetEntry("INIT").
GetLocalizedString();

mailto:https://docs.unity3d.com/Packages/com.unity.localization@0.10/manual/QuickStartGuide.html
mailto:https://docs.unity3d.com/Packages/com.unity.localization@0.10/manual/QuickStartGuide.html

Advanced onboarding issues 179

When we added the onboarding UX prefab (ARFoundationDemos/UX/Prefabs/
ScreenspaceUI) to our scene, I had you disable the Localization Manager component
because it gives runtime errors until it is set up. Provided you've installed the Localization
package via Package Manager as described earlier in this chapter, we can set it up now for
the project using the following steps:

1.	 Open the Localization settings window by going to Edit | Project Settings |
Localization.

2.	 In the Project window, navigate to Assets/ARFOundationDemos/Common/
Localization/ and drag the LocalizationSettings asset onto the
Location Settings slot (or use the doughnut icon to open the Location Setting
Select dialog box).

3.	 In the settings window, click Add All.
4.	 In the Hierarchy window, select the OnboardingUX object and in the Inspector,

enable the Localization Manager component.
5.	 Open the Addressables Groups window using Window | Asset Management |

Addressables | Groups.
6.	 From the Addressables Groups menu bar, select Build | New Build | Default

Build Script. You will need to do this for each target platform you are building (for
example, once for Android and once for iOS).

As you can see in this last step, the Localization package uses Unity's new Addressables
system for managing, packing, and loading assets from any location locally or
over the internet (https://docs.unity3d.com/Packages/com.unity.
addressables@1.12/manual/index.html).

Note that as I'm writing this, the Onboarding UX LocalizationManager script
does not select the language at runtime. The language must be set in the Inspector and
compiled into your build.

The AR UI framework we built in this chapter can be used as a template for new scenes.
Unity makes it easy to set that up.

https://docs.unity3d.com/Packages/com.unity.addressables@1.12/manual/index.html
https://docs.unity3d.com/Packages/com.unity.addressables@1.12/manual/index.html

180 Using the AR User Framework

Summary
In this chapter, we got a chance to use the AR user framework we developed in the
previous Chapter 4, Creating an AR User Framework, in a simple AR Place Object Demo
project. We created a new scene using the ARFramework scene template that implements
a state machine mechanism for managing user interaction modes. It handles user
interaction with a controller-view design pattern, separating the control scripts from the
UI graphics.

By default, the scene includes the AR Session and AR Session Origin components
required by AR Foundation. The scene is set up with a Canvas UI containing separate
panels that will be displayed for each interaction mode. It also includes an Interaction
Controller that references separate mode objects, one for each interaction mode.

The modes (and corresponding UI) given with the template are Startup, Scan, Main, and
NonAR. An app using this framework first starts in Startup-mode while the AR Session is
initializing. Then it goes into Scan-mode, prompting the user to scan the environment for
trackable features, until a horizontal plane is detected. Then it goes into Main-mode and
displays the main menu.

For this project, we added a main menu that is displayed during Main-mode and that
contains buttons for placing various virtual objects in the environment. Pressing a button
enables a new PlaceObject-mode that we added to the scene. When PlaceObject-mode
is enabled, it displays an instructional animated prompt for the user to tap to place an
object in the scene. After an object is added, the app returns to Main-mode, and the
trackables are hidden so you can see your virtual objects in the real world without any
extra distractions.

In the next chapter, we will go beyond a simple demo project and begin to build a more
complete AR application – a photo gallery where you can place framed photos of your
favorite pictures on the drab walls in your home or office.

Section 3 –
Building More AR

Projects

In this section, we will build a variety of AR projects, each using different feature detection
techniques supported by AR Foundation, including plane detection, image recognition,
and face tracking. The result of each project is a working demo that could be improved
and developed into a more complete working app.

This section comprises the following chapters:

•	 Chapter 6, Gallery: Building an AR App

•	 Chapter 7, Gallery: Editing Virtual Objects

•	 Chapter 8, Planets: Tracking Images

•	 Chapter 9, Selfies: Making Funny Faces

6
Gallery: Building an

AR App
In this chapter, we will begin building a full Augmented Reality (AR) app, an AR art
gallery that lets you hang virtual framed photos on your real-world walls.

First, we'll define the goals of the project and discuss the importance of project planning
and user experience (UX) design. When the user presses the Add button in the main
menu, they'll see a Select Image menu. When they pick one, they'll be prompted to place a
framed copy of the image on their real-world wall.

To implement the project, we will start with the AR user framework scene template that
we created earlier in this book. We'll build a Select Image UI panel and interaction mode,
and define the image data used by the app.

In this chapter, we will cover the following topics:

•	 Specifying a new project and UX design

•	 Using data structures and arrays, and passing data between objects

•	 Creating a detailed UI menu panel with a grid of buttons

•	 Creating prefabs for instantiating in an AR scene

•	 Implementing a complete scenario based on a given user story

184 Gallery: Building an AR App

By the end of the chapter, you'll have a working prototype of the app that implements
one scenario: placing pictures on the wall. Then we'll continue to build and improve the
project in the next chapter.

Technical requirements
To implement the project in this chapter, you need Unity installed on your development
computer, connected to a mobile device that supports AR applications (see Chapter
1, Setting Up for AR Development, for instructions). We also assume that you have the
ARFramework template and its prerequisites installed; see Chapter 5, Using the AR
User Framework. The completed project can be found in this book's GitHub repository,
https://github.com/PacktPublishing/Augmented-Reality-with-
Unity-AR-Foundation.

Specifying the Art Gallery project UX
An important step before beginning any new project is to do some design and
specifications ahead of time. This often entails writing it down in a document. For games,
this may be referred to as the Game Design Document (GDD). For applications, it may
be a Software Design Document (SDD). Whatever you call it, the purpose is to put
into writing a blueprint of the project before development begins. A thorough design
document for a Unity AR project might include details such as the following:

•	 Project overview: Summarize the concept and purpose of the project, identify the
primary audience, and perhaps include some background on why the project exists
and how and why it will be successful.

•	 Use cases: Identify the real-life problems the product will solve. It's often effective
to define separate user personas (with real or fictitious names) representing types
of users of the application, their main goals, and how they'll use the app to achieve
these objectives.

•	 Key features: Identify the discrete areas of functionality that deliver value to your users,
perhaps with an emphasis on what distinguishes it from other similar solutions.

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Specifying the Art Gallery project UX 185

•	 UX design: The user experience (UX) design may include a variety of user scenarios
that detail specific workflows, often presented as a storyboard using abstract pencil
or wireframe sketches. In lieu of drawing skills, photo captures of a whiteboard
session and sticky notes may be sufficient.

Separately, you may also include UI graphic designs that define actual style guides
and graphics, for example, color schemes, typography, button graphics, and so on.

•	 Assets: Collect and categorize the graphic assets you anticipate needing, including
concept art, 3D models, effects, and audio.

•	 Technical plan: This includes software architecture and design patterns that will be
used, development tools (such as Unity, Visual Studio, and GitHub), the Unity version,
third-party packages (for example, via Package Manager), plus Unity Services and
other cloud services (such as advertising, networking, and data storage).

•	 Project plan: The implementation plan may show the anticipated project phases,
production, and release schedules. This could involve the use of tools such as Jira
or Trello.

•	 Business plan: Non-technical planning may include plans for project management,
marketing, funding, monetization, user acquisition, and community-building.

For very large projects, these sections could be separate documents. For small projects,
the entire thing may only be a few pages long with bullet points. Just keep in mind that the
main purpose is to think through your plans before committing to code. That said, don't
over-design. Keep in mind one of my favorite quotes from Albert Einstein:

"Make everything as simple as possible, but not simpler."
Assume things can and will change as the project progresses. Rapid iteration, frequent
feedback from stakeholders, and engaging real users may reaffirm your plans. Or it may
expose serious shortcomings with an original design and can take a project in new, better
directions. As I tell my clients and students:

"The time you know least about a project is at the beginning!"
In this book, I'll provide an abbreviated design plan at the beginning of each project that
tries to capture the most important points without going into a lot of detail. Let's start
with this AR Gallery project, and spec out the project objective, use cases, a UX design,
and a set of user stories that define the key features of the project.

186 Gallery: Building an AR App

Project objectives
We are going to build an AR art gallery project that allows users to place their favorite
photos on walls of their home or office as virtual framed images using AR.

Use cases
Persona: Jack. Jack works from home and doesn't have time to decorate his drab
apartment. Jack wants to spruce up the walls by adding some nice pictures on the wall. But
his landlord doesn't allow putting nails in the walls. John also wants to be able to change
his hung pictures frequently. Jack spends many hours per day using his mobile phone, so
looking at the walls through his phone is satisfying.

Persona: Jill. Jill has a large collection of favorite photos. She would like to hang them on
the walls of her office but it's not very appropriate for a work environment. Also, she is a
bit obsessive and thus would like to frequently rearrange the photos and swap the pictures.

UX design
The user experience (UX) for this application must include the following requirements
and scenarios:

•	 When the user wants to place a photo on the wall, they select an image from a menu
and then tap the screen, indicating where to place the photo.

•	 When the user wants to modify a photo already placed on the wall, they can tap the
photo to enable editing. Then the user can drag to move, pinch to resize, choose a
different photo or frame, or swipe to remove the photo.

•	 When the framed photo is rendered, it matches the current room lighting
conditions and casts shadows on real-world surfaces.

•	 When the user exits and re-opens the app, all the photos they placed in the room
will be saved and restored in their locations.

Specifying the Art Gallery project UX 187

I asked a professional UX designer (and friend of mine) Kirk Membry (https://
kirkmembry.com/) to prepare UX wireframe sketches specifically for this book's
project. The following image shows a few frames of a full storyboard:

Figure 6.1 – UX design wireframe sketches

The leftmost frame shows the image gallery menu that appears when the user has chosen
to add a new photo into the scene. The middle frame depicts the user choosing a location
to hang the photo on a wall. And the rightmost frame shows the user editing an existing
picture, including finger gestures to move and resize, and a menu of other edit options on
the bottom of the screen.

Storyboards like this can be used to communicate the design intent to graphic designers,
coders, and stakeholders alike. It can form the basis of discussion for ironing out kinks in
the user workflow and inconsistencies in the user interface. It can go a long way to make
the project management more efficient by preventing unnecessary rework when it's most
costly – after features have been implemented.

With enough of the design drafted, we can now select some of the assets we'll use while
building the project.

https://kirkmembry.com/
https://kirkmembry.com/

188 Gallery: Building an AR App

User stories
It is useful to break up the features into a set of "user stories" or bite-sized features that
can be implemented incrementally, building up the project a piece at a time. In an agile-
managed project, the team may choose a specific set of stories to accomplish in one- or
two-week sprints. And these stories could be managed and tracked on a shared project
board such as Trello (https://trello.com/) or Jira (https://www.atlassian.
com/software/jira). Here are a set of stories for this project:

•	 When the app starts, I am prompted to scan the room while the device detects and
tracks vertical walls in the environment.

•	 After tracking is established, I see a main menu with an Add button.

•	 When I press the Add button, I am presented with a selection of photos.

•	 When I choose a photo from the selection, I see the tracked vertical planes and I am
prompted to tap to hang a framed photo (picture) on a wall.

•	 When the picture is instantiated, it hangs squarely upright and flush against the
wall plane.

•	 When I tap on an existing virtual picture to begin editing the picture.

•	 When editing a picture, I see an edit menu with options to change the photo, change
the frame, or remove the framed picture.

•	 When editing a picture, I can drag the picture to a new location.

•	 When editing a picture, I can pinch (using two fingers) to resize it.

That seems like a good set of features. We'll try to get through the first half of them in this
chapter and complete it in the next chapter. Let's get started.

Getting started
To begin, we'll create a new scene named ARGallery using the ARFramework scene
template, with the following steps:

1.	 Select File | New Scene.
2.	 In the New Scene dialog box, select the ARFramework template.
3.	 Select Create.
4.	 Select File | Save As. Navigate to the Scenes/ folder in your project's Assets

folder, give it the name ARGallery, and select Save.

https://trello.com/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

Collecting image data 189

The new AR scene already has the following objects:

•	 An AR Session game object.

•	 An AR Session Origin rig with raycast manager and plane manager components.

•	 UI Canvas is a screen space canvas with child panels Startup UI, Scan UI, Main UI,
and NonAR UI. It has the UI Controller component script that we wrote.

•	 Interaction Controller is a game object with the Interaction Controller component
script we wrote that helps the app switch between interaction modes, including
Startup, Scan, Main, and NonAR modes. It also has a Player Input component
configured with the AR Input Actions asset we created previously.

•	 An OnboardingUX prefab from the AR Foundation Demos project that provides
AR session status and feature detection status messages, and animated onboarding
graphics prompts.

We now have a plan for the AR gallery project, including a statement of objectives, use
cases, and a UX design with some user stories to implement. With this scene, we're ready
to go. Let's find a collection of photos we can work with and add them to the project.

Collecting image data
In Unity, images can be imported for use in a variety of purposes. Textures are images that
can be used for texturing the materials for rendering the surface of 3D objects. The UI
uses images as sprites for button and panel graphics. For our framed photos, we're going
to use images as… images.

The most basic approach to using images in your application is to import them into your
Assets folder and reference them as Unity textures. A more advanced solution would
be to dynamically find and load them at runtime. In this chapter, we'll use the former
technique and build the list of images into the application. Let's start by importing the
photos you want to use.

Importing photos to use
Go ahead and choose some images for your gallery from your favorites. Or you can use
the images included with the files in this book's GitHub repository, containing a collection
of freely usable nature photos found on Unsplash.com (https://unsplash.com/)
that I found, along with a photo of my own named WinterBarn.jpg.

https://unsplash.com/

190 Gallery: Building an AR App

To import images into your project, use the following steps:

1.	 In the Project window, create a folder named Photos by right-clicking, then
selecting Create | Folder.

2.	 From your Windows Explorer or OSX Finder, locate an image you want to use.
Then drag the image file into Unity, dropping it in your Photos/ folder.

3.	 In the Inspector window, you can check the size of the imported image. Because
we're using it in AR and on a relatively low-resolution mobile device, let's limit
the max size to 1,024 pixels. Note that Unity requires textures be imported into
a size that is a power of 2 for best compression and runtime optimization. In the
Inspector, ensure the Default tab is selected and choose Max Size | 1024.

Now we'll add a way to reference your images in the scene.

Adding image data to the scene
To add the image data to the scene, we'll create an empty GameObject with an
ImagesData script that contains a list of images. First, create a new C# script in your
project's Scripts/ folder, name it ImagesData, and write it as follows:

using UnityEngine;

[System.Serializable]

public struct ImageInfo

{

 public Texture texture;

 public int width;

 public int height;

}

public class ImagesData : MonoBehaviour

{

 public ImageInfo[] images;

}

The script starts by defining an ImageInfo data structure containing the image
Texture and the pixel dimensions of the image. It is public so it can be referenced
from other scripts. Then the ImagesData class declares an array of this data in the
images variable. The ImageInfo structure requires a [System.Serializable]
directive so it will appear in the Unity Inspector.

Collecting image data 191

Now we can add the image data to the scene, using the following steps:

1.	 From the main menu, select GameObject | Create Empty to add an object to the
root of your hierarchy, and rename it Images Data (reset its Transform for
tidiness, using the 3-dot context menu and Reset).

2.	 Drag the ImagesData script onto the Images Data object, making it a component.
3.	 To populate the images array, in the Inspector, enter the number of images you

plan to use, or simply press the + button in the bottom right to incrementally add
elements to the array.

4.	 Add your imported image files one at a time by unfolding an Element from the
Images list, then drag an image file from the Project window onto the Texture slot
for the element. Please also enter the Width and Height in pixels of each image.

My Images Data looks like this in the Inspector:

Figure 6.2 – Images Data component with a list of images

192 Gallery: Building an AR App

Using ScriptableObjects
A different, and probably better, approach to providing the list of images is
to use ScriptableObjects instead of GameObjects. ScriptableObjects are data
container objects that live in your Assets/ folder rather than in the scene
hierarchy. You can learn more about ScriptableObjects at https://docs.
unity3d.com/Manual/class-ScriptableObject.html and
https://learn.unity.com/tutorial/introduction-to-
scriptable-objects.

It is a little tedious having to manually enter the pixel dimensions of each image. It would
be nice if there were a better way because that's not very easy.

Obtaining the pixel dimensions of an image
Unfortunately, when Unity imports an image as a texture, it resizes it to a power of two to
optimize runtime performance and compression, and the original dimension data is not
preserved. There are several ways around this, none of which are very pretty:

•	 Require the developer to specify the pixel dimensions manually for each image. This
is the approach we are taking here.

•	 Tell Unity to not resize the image when it is imported. For this, select an image
asset, and in its Inspector window, you'll see its Import Settings. Notice its physical
size on disk is listed in the preview panel at the bottom. Then change Advanced
| Non-Power of 2 to None and select Apply. Note the new size is probably
significantly bigger because Unity will not compress the data. And that will
make your final app size much bigger too. But since the texture is now the
original unscaled size, you can access it in C# using Texture.width and
Texture.height.

•	 Take the first method but automatically determine the pixel size using an Editor
script. Unity allows you to write scripts that only run in the Editor, not runtime.
The Editor has access to the original image file in your Assets folder before it has
been imported as a texture. So it's possible to read and query this information,
either using system I/O functions, or possibly (undocumented) the Unity API (see
https://forum.unity.com/threads/getting-original-size-of-
texture-asset-in-pixels.165295/).

https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://learn.unity.com/tutorial/introduction-to-scriptable-objects
https://learn.unity.com/tutorial/introduction-to-scriptable-objects
https://forum.unity.com/threads/getting-original-size-of-texture-asset-in-pixels.165295/
https://forum.unity.com/threads/getting-original-size-of-texture-asset-in-pixels.165295/

Collecting image data 193

Given that, we'll stick with the manual approach in this chapter, and you can explore the
other options on your own.

Perhaps you're also wondering, what if I don't want to build the images into my project
and want to find and load them at runtime?

Loading the pictures list at runtime
Loading assets at runtime from outside your build is an advanced topic and outside the
scope of this chapter. There are several different approaches that I will briefly describe, and
I will point you to more information:

•	 Including images in Asset Bundles: In Unity, you have the option of bundling
assets into an Asset Bundle that the application can download after the user
has installed the app, as downloadable content (DLC). See https://docs.
unity3d.com/Manual/AssetBundlesIntro.html.

•	 Downloading images from a web URL: If you have the web address of an image
file, you can download the image at runtime using a web request and use it as a
texture in the app. See https://docs.unity3d.com/ScriptReference/
Networking.UnityWebRequestTexture.GetTexture.html.

•	 Getting images from the device's photos app: For an application such as our
Gallery, it's natural to want to get photos from the user's own photos app. To access
data from other apps on the mobile device you need a library with native access. It
may also require your app to obtain additional permissions from the user. Search
the Unity Asset Store for packages.

If you want to implement these features, I'll leave that up to you.

We have now imported the photos we plan to use, created a C# ImageInfo data
structure including the pixel dimensions of each image, and populated this image data
in the scene. Let's create a framed photo prefab containing a default image and a picture
frame that we can place on a wall plane.

https://docs.unity3d.com/Manual/AssetBundlesIntro.html
https://docs.unity3d.com/Manual/AssetBundlesIntro.html
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequestTexture.GetTexture.html
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequestTexture.GetTexture.html

194 Gallery: Building an AR App

Creating a framed photo prefab
The user will be placing a framed photo on their walls. So, we need to create a prefab game
object that will be instantiated. We want to make it easy to change images and frames, as
well as resize them for various orientations (landscape versus portrait) and image aspect
ratios. For the default frame, we'll create a simple block from a flattened 3D cube and
mount the photo on the face of it. For the default image, you may choose your own or use
one that's included with the files for this chapter in the GitHub repository.

Creating the prefab hierarchy
First, create an empty prefab named FramedPhoto in your project's Assets/ folder.
Follow these steps:

1.	 In the Project window, navigate to your Prefabs/ folder (create one if needed).
Then right-click in the folder and select Create | Prefab.

2.	 Rename the new prefab FramedPhoto.
3.	 Double-click the FramedPhoto asset (or click its Open Prefab button in the

Inspector window).

We're now editing the empty prefab.
4.	 Add a child AspectScaler container that we can later use to adjust its aspect ratio

for the given image: right-click in the Hierarchy window and select Create Empty
(or use the + button in the top-left of the window). Rename it AspectScaler.

5.	 Let's create a modern-looking rectangular black frame using a flattened cube.
With the AspectScaler object selected, right-click and select 3D Object | Cube and
rename it Frame.

6.	 Give the frame some thickness. In the frame's Inspector window, set its Transform
| Scale | Z to 0.05 (that's in meters).

7.	 Likewise, offset it from the wall by setting Transform | Position | Z to -0.025.
8.	 To give this frame a black finish, create and add a new material as follows.

In the Project window, navigate to your Materials/ folder (create one if needed).
Then right-click in the folder and select Create | Material. Rename the new material
Black Frame Material.

9.	 Set its Base Map color to a charcoal black color.

Creating a framed photo prefab 195

10.	 Then, in the Hierarchy, select the Default Frame object and drag the Black Frame
Material onto it.

The current frame properties are shown in the following screenshot:

Figure 6.3 – The FramedPhoto's frame properties

Next, we'll add a default image to the FramedPhoto rig. I'm using the one named
WinterBarn.jpg that is included with the files for this book. Use the following steps to
create an image object with a material that uses this photo as its texture image:

1.	 With the FramedPhoto prefab open for editing, in Hierarchy, right-click on the
AspectScaler object, select Create | 3D Object | Quad, and rename it Image. A
quad is the simplest Unity 3D primitive object, a flat quadrilateral plane with only
four edges and facing in a single direction.

196 Gallery: Building an AR App

2.	 To add your image as a texture on the quad, we need to create a material. In the
Project window, navigate to your Materials/ folder, right-click in the folder and
select Create | Material. Rename the new material Image Material.

3.	 Drag your image file (WinterBarn.jpg) from the Project window into the
Inspector window, dropping it onto the little square "chip" slot on the left side of the
Base Map property.

4.	 Drag the Image Material onto the Image game object.
5.	 Offset the image quad so it's slightly in front of the frame cube's plane. Set its

Transform | Position | Z to -0.06.
6.	 You should be able to see the image now. But the frame is hidden because the image

quad is scaled to the same size as the frame. Shrink the image by setting its Scale X
and Y to 0.9.

The prefab hierarchy now looks like the following screenshot, where the image is currently
selected and visible in the Inspector:

Figure 6.4 – The FramedPhoto prefab

Next, let's add a simple script that will help our other code set the image of a
FramedPhoto object.

Creating a framed photo prefab 197

Writing a FramedPhoto script
We are going to need to set various properties of each instance of the FramedPhoto
prefab. Specifically, the user will be able to choose which image belongs in the frame of
each picture. So, we can provide a SetImage function for this that gets the image data for
this picture.

Create a new C# script named FramedPhoto, open it for editing, and write the script
as follows::

using UnityEngine;

public class FramedPhoto : MonoBehaviour

{

 [SerializeField] Transform scalerObject;

 [SerializeField] GameObject imageObject;

 ImageInfo imageInfo;

 public void SetImage(ImageInfo image)

 {

 imageInfo = image;

 Renderer renderer =
 imageObject.GetComponent<Renderer>();

 Material material = renderer.material;

 material.SetTexture("_BaseMap", imageInfo.texture);

 }

}

At the top of the FramedPhoto class, we declare two properties. The imageObject is
a reference to the child Image object, for when the script needs to set its image texture.
scalerObject is a reference to the AspectScaler for when the script needs to change its
aspect ratio (we do this at the end of this chapter).

When a FramedPhoto gets instantiated, we are going to call SetImage to change the
Image texture to the one that should be displayed. The code required to do this takes a few
steps. If you look at the Image object in the Unity Inspector, you can see it has a Renderer
component that references its Material component. Our script gets the Renderer, then
gets its Material, and then sets its base texture.

198 Gallery: Building an AR App

We can now add this script to the prefab as follows:

1.	 With the FramedPhoto prefab opened for editing, drag the FramedPhoto script
onto the FramedPhoto root object to make it a component.

2.	 From the Hierarchy, drag the AspectScaler object into the Inspector and drop it
onto the Framed Photo | Scaler Object slot.

3.	 From the Hierarchy, drag the Image object onto the Framed Photo | Image
Object slot.

Our prefab is now almost ready to be used. Of course, the picture we're using isn't really
supposed to be square, so let's scale it.

Scaling the picture's shape
The photo I'm using by default is landscape orientation, but our frame is square, so it
looks squished. To fix it, we need to get the original pixel size of the image and calculate
its aspect ratio. For example, the WinterBarn.jpg image included on GitHub for this
book is 4,032x3,024 (width x height), or 3:4 (height:width landscape ratio). Let's scale
it now for the image's aspect ratio (0.75). Follow these steps:

1.	 In the Hierarchy window, select the Scaler object.
2.	 Set its Transform | Scale Y to 0.75 (if your image is portrait, scale the X axis

instead, leaving the Y axis at 1.0).

The properly scaled prefab now looks like the following:

Figure 6.5 – FramedPhoto prefab with corrected 3:4 landscape aspect ratio

Creating a framed photo prefab 199

3.	 Save the prefab by clicking the Save button in the top-right of the Scene window.
4.	 Return to the scene editor using the < button in the top-left of the Hierarchy window.
5.	 Setting up the FramedPhoto rig this way has advantages, including the following:

•	 The FramedPhoto prefab is normalized to unit scale, that is, scaled (1, 1, 1)
regardless of the aspect ratio of the photo within it or the thickness of the frame.
This will help with the user interface for placing and scaling the framed photo in
the scene.

•	 The FramedPhoto prefab's anchor point is located at the center of the picture along
the back face of the frame, so when it's placed on a wall it'll be positioned flush with
the detected wall plane.

•	 The Frame model and photo Image objects are within an AspectScaler object that
can be scaled according to the aspect ratio of the image. By default, we set it to
0.75 height for the 3:4 aspect ratio.

•	 The Image is scaled evenly (that is, by the same ratio for both X and Y) to fit within
the picture area of the frame. In this case, I decided the frame has a 0.05 size
border, so the Image is scaled by 0.9.

•	 The front-back offset of the image will also depend on the frame's model. In this
case, I moved it closer, -0.06 versus -0.025 units, so it sits slightly in front of the
frame's surface.

When assembling a prefab, thinking through how it can head off gotchas later.

In this section, we created a scalable FramedPhoto prefab made from a cube and an
image mounted on the face of the frame block that we can now add to our scene. It is
saved in the project Assets folder so copies can be instantiated in the scene when the
user places a picture on a wall. The prefab includes a FramedPhoto script that manages
some aspects of the behavior of the prefab, including setting its image texture. This script
will be expanded later in the chapter. We now have a FramedPhoto prefab with a frame.
We're ready to add the user interaction for placing pictures on your walls.

200 Gallery: Building an AR App

Hanging a virtual photo on your wall
For this project, the app scans the environment for vertical planes. When the user wants to
hang a picture on the wall, we'll show a UI panel that instructs the user to tap to place the
object, using an animated graphic. Once the user taps the screen, the AddPicture mode
instantiates a FramedPhoto prefab, so it appears to hang on the wall, upright and flush
against the wall plane. Many of these steps are similar to what we did in Chapter 5, Using
the AR User Framework, so I'll offer a little less explanation here. We'll start with a similar
script and then enhance it.

Detecting vertical planes
Given the AR Session Origin already has an AR Plane Manager component (provided in
the default ARFramework template), use the following steps to set up the scene to scan
for vertical planes (instead of horizontal ones):

1.	 In the Hierarchy window, select the AR Session Origin object.
2.	 In its Inspector window, set the AR Plane Manager | Detection Mode to Vertical

by first selecting Nothing (clearing all the selections) and then selecting Vertical.

Now let's create the AddPicture UI panel that prompts the user to tap a vertical plane to
place a new picture.

Creating the AddPicture UI panel
The AddPicture UI panel is similar to the Scan UI one included with the scene template,
so we can duplicate and modify it as follows:

1.	 In the Hierarchy window, unfold the UI Canvas.
2.	 Right-click the Scan UI game object and select Duplicate. Rename the new object

AddPicture UI.
3.	 Unfold AddPicture UI and select its child, Animated Prompt.
4.	 In the Inspector, set the Animated Prompt | Instruction to Tap To Place.
5.	 To add the panel to the UI Controller, in the Hierarchy, select the UI Canvas object.
6.	 In the Inspector, at the bottom-right of the UI Controller component, click the +

button to add an item to the UI Panels dictionary.
7.	 Enter AddPicture in the Id field.
8.	 Drag the AddPicture UI game object from the Hierarchy onto the Value slot.

Hanging a virtual photo on your wall 201

We added an instructional user prompt for the AddPicture UI. When the user chooses
to add a picture to the scene, we'll go into AddPicture mode, and this panel will be
displayed. Let's create the AddPicture mode now.

Writing the initial AddPictureMode script
To add a mode to the framework, we create a child GameObject under the Interaction
Controller and write a mode script. The mode script will show the mode's UI, handle any
user interactions, and then transition to another mode when it is done. For AddPicture
mode, it will display the AddPicture UI panel, wait for the user to tap the screen,
instantiate the prefab object, and then return to main mode.

The script starts out like the PlaceObjectMode script we wrote in Chapter 5, Using the
AR User Framework. Then we'll enhance it to ensure the framed picture object is aligned
with the wall plane, facing into the room, and hanging straight.

Let's write the AddPictureMode script, as follows:

1.	 Begin by creating a new script in your project's Scripts/ folder by right-clicking
and selecting Create C# Script. Name the script AddPictureMode.

2.	 Double-click the file to open it for editing. Paste the following code, which is the
same as the PlaceObjectMode script you may already have to hand, with differences
highlighted. The first half of the script is as follows:

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.InputSystem;

using UnityEngine.XR.ARFoundation;

using UnityEngine.XR.ARSubsystems;

public class AddPictureMode : MonoBehaviour

{

 [SerializeField] ARRaycastManager raycaster;

 [SerializeField] GameObject placedPrefab;

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

 void OnEnable()

 {

 UIController.ShowUI("AddPicture");

 }

202 Gallery: Building an AR App

3.	 The second part of the script is actually unchanged from the PlaceObjectMode
script:

 public void OnPlaceObject(InputValue value)

 {

 Vector2 touchPosition = value.Get<Vector2>();

 PlaceObject(touchPosition);

 }

 void PlaceObject(Vector2 touchPosition)

 {

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 Pose hitPose = hits[0].pose;

 Instantiate(placedPrefab, hitPose.position,
 hitPose.rotation);

 InteractionController.EnableMode("Main");

 }

 }

}

At the top of AddPictureMode, we declare a placedPrefab variable that will
reference the FramedPhoto Prefab asset we created. We also define and initialize
references to the ARRaycastManager and a private list of ARRaycaseHit hits that
we'll use in the PlaceObject function.

When the mode is enabled, we show the AddPicture UI panel. Then, when there's
an OnPlaceObject user input action event, PlaceObject does a Raycast on the
trackable planes. If there's a hit, it instantiates a copy of the FramedPhoto into the scene,
and then goes back to main mode.

Let's go with this initial script for now and fix any problems we discover later. The next
step is to add the AddPicture mode to the app.

Hanging a virtual photo on your wall 203

Creating the AddPicture Mode object
We can now add the AddPicture mode to the scene by creating an AddPicture Mode
object under the Interaction Controller, as follows:

1.	 In the Hierarchy window, right-click the Interaction Controller game object and
select Create Empty. Rename the new object AddPicture Mode.

2.	 Drag the AddPictureMode script from the Project window onto the AddPicture
Mode object, adding it as a component.

3.	 Drag the AR Session Origin object from the Hierarchy onto the Add Picture
Mode | Raycaster slot.

4.	 Locate your FramedPhoto Prefab asset in the Project window and drag it onto the
Add Picture Mode | Placed Prefab slot. The AddPicture Mode component now
looks like the following (note that this screenshot also shows two more parameters,
Image Data and Default Scale, that we add to the script at the end of this chapter):

Figure 6.6 – AddPicture Mode added to the scene

5.	 Now we'll add the mode to the Interaction Controller. In the Hierarchy, select the
Interaction Controller object.

6.	 In the Inspector, at the bottom-right of the Interaction Controller component,
click the + button to add an item to the Interaction Modes dictionary.

7.	 Enter AddPicture in the Id field.

204 Gallery: Building an AR App

8.	 Drag the AddPicture Mode game object from the Hierarchy onto the Value slot.
The Interaction Controller component now looks like the following:

Figure 6.7 – Interaction Controller with AddPicture Mode added to the Interaction Modes dictionary

We now have an AddPicture mode that will be enabled from Main mode when the user
clicks an Add button. Let's create this button now.

Creating a main menu Add button
When the app is in Main mode, the Main UI panel is displayed. On this panel, we'll have
an Add button for the user to press when they want to place a new picture in the scene. I'll
use a large plus sign as its icon, with the following steps:

1.	 In the Hierarchy window, unfold the UI Canvas object, and unfold its child Main
UI object.

2.	 The default child text in the panel is a temporary placeholder; we can remove it.
Right-click the child Text object and select Delete.

3.	 Now we add a button. Right-click the Main UI game object and select UI | Button –
TextMeshPro. Rename it Add Button.

4.	 With the Add Button selected, in its Inspector window use the anchor menu
(upper-left) to select a Bottom-Right anchor. Then press Shift + Alt + click Bottom-
Right to also set its Pivot and Position in that corner.

Hanging a virtual photo on your wall 205

5.	 Adjust the button size and position, either using the Rect Tool from the Scene
window toolbar (the fifth icon from the left) or numerically in the Inspector, such as
Width, Height to (175, 175), and Pos X, Pos Y to (-30, 30), as shown in the
following screenshot:

Figure 6.8 – The Add button Rect Transform settings

6.	 In the Hierarchy window, unfold the Add Button by clicking its triangle-icon and
select its child object, Text (TMP).

7.	 Set its Text value to + and set its Font Size to 192.
8.	 You can add another text element to label the button. Right-click the Add Button

and select UI | Text – TextMeshPro. Set its Text content to Add, Font Size: 24,
Color: black, Alignment: center, and Rect Transform | Pos Y to 55.

Our button now looks like the following:

Figure 6.9 – The Add button

9.	 To set up the button to enable PlacePicture Mode, select the Add Button in the
Hierarchy. In its Inspector, in the OnClick section of the Button component, press
the + button on the bottom-right to add an event action.

206 Gallery: Building an AR App

10.	 Drag the Interaction Controller from the Hierarchy and drop it onto the Object
slot of the OnClick action.

11.	 In the Function select list, choose InteractionController | EnableMode.
12.	 In its string parameter field, enter the text AddPicture.

The On Click property of now looks like this:

Figure 6.10 – When the Add button is clicked, it calls EnableMode("AddPicture")

We have now added AddPicture Mode to our framework. It will be enabled by the
Interaction Controller when the Add button is clicked. When enabled, the script shows
the AddPicture instructional UI, then waits for a PlaceObject input action event.
Then it uses Raycast to determine where in 3D space the user wants to place the object,
instantiates the prefab, and then returns to Main mode. Let's try it out.

Build And Run
Save the scene. If you want to try and see how it looks, you can now Build And Run, as
follows:

1.	 Select File | Build Settings.
2.	 Click the Add Open Scenes button if the current scene (ARGallery) is not already

in the Scenes In Build list.
3.	 Ensure that the ARGallery scene is the only one checked in the Scenes In Build

list.
4.	 Click Build And Run to build the project.

The app will start and prompt you to scan the room. Slowly move your device around to
scan the room, concentrating on the general area of the walls where you want to place
the photos.

Hanging a virtual photo on your wall 207

What makes for good plane detection?
When AR plane detection uses the device's built-in white light camera for
scanning the 3D environment, it relies on good visual fidelity of the camera
image. The room should be well lit. The surfaces being scanned should have
distinctive and random textures to assist the detection software. For example,
our AR Gallery project may have difficulty detecting vertical planes if your
walls are too smooth. (Newer devices may include other sensors, such as laser-
based LIDAR depth sensors that don't suffer from these limitations). If your
device has trouble detecting vertical wall planes, try strategically adding some
sticky notes or other markers on the walls to make the surfaces more distinctive
to the software.

When at least one vertical plane is detected, the scan prompt will disappear, and you'll see
the Main UI Add button. Tapping the Add button will enable AddPicture Mode, showing
the AddPicture UI panel with its tap-to-place instructional graphic. When you tap a
tracked plane, the FramedPhoto prefab will be instantiated in the scene. Here's what mine
looks like, on the left side:

Figure 6.11 – Placing an object on the wall (left) and correcting for surface normal and upright (right)

208 Gallery: Building an AR App

Oops! The picture is sticking out of the wall perpendicularly, as shown in the preceding
screenshot (on the left side). We want it to hang like a picture on the wall like in the right-
hand image. Let's update the script to take care of this.

Completing the AddPictureMode script
There are a number of improvements we need to implement to complete the
AddPictureMode script, including the following:

•	 Rotate the picture so it is upright and flat against the wall plane.

•	 Tell the picture which image to show in its frame.

•	 Include a default scale when the picture is first placed on a wall.

The AddPictureMode script contains the following line in the code that sets the
rotation to hitPose.rotation:

Instantiate(placedPrefab, hitPose.position, hitPose.rotation);

As you can see in the previous screenshot, the "up" direction of a tracked plane is
perpendicular to the surface of the plane, so with this code the picture appears to be
sticking out of the wall. It makes sense to instantiate a placed object using this default up
direction for horizontal planes, where you want your object standing up on the floor or a
table. But in this project, we don't want to do that. We want the picture to be facing in the
same direction as the wall. And we want it hanging straight up/down.

Instead of using the hit.pose.rotation, we should calculate the rotation using the
plane's normal vector (pose.up). Then we call the Quaternion.LookRotation
function to create a rotation with the specified forward and upward directions
(see https://docs.unity3d.com/ScriptReference/Quaternion.
LookRotation.html).

Quaternions
A quaternion is a mathematical construct that can be used to represent
rotations in computer graphics. As a Unity developer, you simply need to know
that rotations in Transforms use the Quaternion class. See https://
docs.unity3d.com/ScriptReference/Quaternion.
html. However, if you'd like an explanation of the underlying math,
check out the great videos by 3Blue1Brown such as Quaternions and 3D
rotation, explained interactively at https://www.youtube.com/
watch?v=zjMuIxRvygQ.

https://docs.unity3d.com/ScriptReference/Quaternion.LookRotation.html
https://docs.unity3d.com/ScriptReference/Quaternion.LookRotation.html
https://docs.unity3d.com/ScriptReference/Quaternion.html
https://docs.unity3d.com/ScriptReference/Quaternion.html
https://docs.unity3d.com/ScriptReference/Quaternion.html
https://www.youtube.com/watch?v=zjMuIxRvygQ
https://www.youtube.com/watch?v=zjMuIxRvygQ

Hanging a virtual photo on your wall 209

Another thing we need is the ability to tell the FramedPhoto which image to display.
We'll add a public variable for the imageInfo that will be set by the Image Select menu
(developed in the next section of this chapter).

Also, we will add a defaultScale property that scales the picture when it's instantiated.
If you recall, we defined our prefab as normalized to 1 unit max size, which would make
it 1 meter wide on the wall unless we scale it. We're only scaling the X and Y axes, leaving
the Z at 1.0 so that the frame's depth is not scaled too. I'll set the default scale to 0.5, but
you can change it later in the Inspector.

Modify the AddPictureMode script as follows:

1.	 Add the following declarations at the top of the class:

 public ImageInfo imageInfo;

 [SerializeField] float defaultScale = 0.5f;

2.	 Replace the PlaceObject function with the following:

 void PlaceObject(Vector2 touchPosition)

 {

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 ARRaycastHit hit = hits[0];

 Vector3 position = hit.pose.position;

 Vector3 normal = -hit.pose.up;

 Quaternion rotation = Quaternion.LookRotation
 (normal, Vector3.up);

 GameObject spawned = Instantiate(placedPrefab,
 position, rotation);

 FramedPhoto picture =
 spawned.GetComponent<FramedPhoto>();

 picture.SetImage(imageInfo);

 spawned.transform.localScale = new
 Vector3(defaultScale, defaultScale, 1.0f);

 InteractionController.EnableMode("Main");

210 Gallery: Building an AR App

 }

 }

3.	 Save the script and return to Unity.

Note that I had to negate the wall plane normal vector (-hit.pose.up), because when
we created our prefab, by convention, the picture is facing in the minus-Z direction.

When you place a picture, it should now hang properly upright and be flush against the
wall, as shown in right-hand panel of the screenshot at the top of this section.

Showing tracked planes in AddPicture mode
Another enhancement might be to hide the tracked planes while in Main mode and show
them while in AddPicture mode. This would allow the user to enjoy their image gallery
without that distraction. Take a look at how we did that in the Hiding tracked object when
not needed topic of Chapter 5, Using the AR User Framework. At that time, we wrote a
script, ShowTrackablesOnEnable, that we can use now too. Follow these steps:

1.	 With the AddPicture Mode game object selected in the Hierarchy (under
Interaction Controller).

2.	 In the Project window, locate your ShowTrackablesOnEnable script and drag
it onto the AddPicture Mode object.

3.	 From the Hierarchy, drag the AR Session Origin object into the Inspector and
drop it onto the Show Trackables On Enable | Session Origin slot.

That is all we need to implement this feature.

To recap, we configured the scene to detect and track vertical planes, for the walls of
your room. Then we created an AddPicture UI panel that prompts the user with an
instructional graphic to tap to place. Next, we created an AddPicture mode, including the
interaction AddPicture Mode game object and added a new AddPictureMode script.
The script instantiates a copy of the FramedPhoto prefab when the user taps on a vertical
plane. Then we improved the script by ensuring the picture is oriented flat on the wall
and upright. The script also lets us change the image in the frame and its scale. Lastly, we
display the trackable planes when in AddPicture mode and hide them when we return to
Main mode.

The next step is to give the user a choice to select an image before hanging a new picture
on the wall. We can now go ahead and create an image select menu for the user to pick
one to use.

Selecting an image to use 211

Selecting an image to use
The next thing we want to do is create an image select menu containing image buttons for
the user to choose a photo before adding it to the scene. When the Add button is pressed,
rather than immediately prompting the user to place a picture on the wall, we'll now
present a menu of pictures to select from before hanging the image chosen on the wall.
I'll call this SelectImage mode. We'll need to write an ImageButtons script that builds
the menu using the Images list you've already added to the project (the Image Data game
object). And then we'll insert the SelectImage mode before AddPicture mode, so the
selected image is the one placed on the wall. Let's define the SelectImage mode first.

Creating the SelectImage mode
When SelectImage mode is enabled by the user, all we need to do is display the
SelectImage UI menu panel with buttons for the user to pick which image to use. Clicking
a button will notify the mode script by calling the public function, SetSelectedImage,
that in turn tells the AddPictureMode which image to use.

Create a new C# script named SelectImageMode and write it as follows:

using UnityEngine;

public class SelectImageMode : MonoBehaviour

{

 void OnEnable()

 {

 UIController.ShowUI("SelectImage");

 }

}

Simple. When SelectImageMode is enabled, we display the SelectImage UI panel
(containing the buttons menu).

Now we can add it to the Interaction Controller as follows:

1.	 In the Hierarchy window, right-click the Interaction Controller game object and
select Create Empty. Rename the new object SelectImage Mode.

2.	 Drag the SelectImageMode script from the Project window onto the
SelectImage Mode object adding it as a component.

3.	 Now we'll add the mode to the Interaction Controller. In the Hierarchy, select the
Interaction Controller object.

212 Gallery: Building an AR App

4.	 In the Inspector, at the bottom-right of the Interaction Controller component,
click the + button to add an item to the Interaction Modes dictionary.

5.	 Enter SelectImage in the Id field.
6.	 Drag the SelectImage Mode game object from the Hierarchy onto the Value slot.

The Interaction Controller component now looks like the following:

Figure 6.12 – Interaction Controller with SelectImage Mode added

Next, we'll add the UI for this mode.

Creating the Select Image UI panel
To create the SelectImage UI panel, we'll duplicate the existing Main UI and adapt it. The
panel will include a Header title and Cancel button. Follow these steps:

1.	 In the Hierarchy, right-click the Main UI (child of UI Canvas) and select
Duplicate. Rename the copy SelectImage UI. Delete any child objects,
including Add Button, using right-click Delete.

2.	 Make the panel size a little smaller than fullscreen so it looks like a modal popup.
In its Inspector window, on the Rect Transform, set the Left, Right, and Bottom
values to 50. Set the Top to 150 to leave room for the app title.

3.	 We want this panel to have a solid background so on its Image component, select
Component | UI | Image from the main menu.

4.	 Create a menu header sub-panel. In the Hierarchy, right-click the SelectImage UI
and select UI | Panel and rename it Header.

Selecting an image to use 213

5.	 Position and stretch the Header to the top of the panel using the Anchor
Presets box (icon in the upper-left of the Rect Transform component), click on
Top-Stretch, and then Alt+Shift + click Top-Stretch. We can leave the default
Height
at 100.

6.	 Right-click the Header, select UI | Text – TextMeshPro, and rename the object
Header Text.

7.	 On the Header Text, set its Text value to Select Image, Vertex Color: black,
Font Size to 48, Alignment to Center and Middle, and Anchor Presets to Stretch-
Stretch. Also, Alt + Shift + click Stretch-Stretch.

8.	 We'll also add a Cancel button to the Header. Right-click the Header object and
select UI | Button – TextMeshPro. Rename it Cancel Button.

9.	 Set the Cancel button's Anchor Preset to Middle-Right and use Alt + Shift + click
Middle-Right to position it there. Set its Width, Height to 80 and Pos X to -20.
Also set its Image | Color to a light gray color.

10.	 For the Cancel Button child text element, set its Text value to X and Font Size
to 48.

11.	 With the Cancel Button selected in Hierarchy, in its Inspector click the + button
on the bottom-right of the Button | OnClick actions.

12.	 Drag the Interaction Controller game object from the Hierarchy onto the OnClick
Object slot.

13.	 From the Function list, choose InteractionController | EnableMode. Enter
Main in the text parameter field. The X cancel button will now send you back to
Main mode.

The header of the SelectImage UI panel is shown in the following screenshot:

Figure 6.13 – The header panel of the SelectImage UI

Next, we'll add a panel to contain the image buttons that will display photos for the user to
pick. These will be laid out in a grid. Use the following steps:

1.	 In the Hierarchy, right-click the SelectImage UI, select UI | Panel, and rename it
Image Buttons.

2.	 On the Image Buttons panel, uncheck its Image component or remove it. We don't
need a separate background.

214 Gallery: Building an AR App

3.	 Its Anchor Presets should already be Stretch-Stretch by default. Set the Top
to 100.

4.	 Select Add Component, search for layout and add a Grid Layout
Group component.

5.	 On the Grid Layout Group, set its Padding to 20, 20, 20, 20, set Cell Size to
200, 200, and set Spacing to 20, 20. Set Child Alignment to Upper Center.

We now have an ImageSelect UI panel with a header and a container for the image
buttons. Parts of the current hierarchy are shown in the following screenshot:

Figure 6.14 –UI Canvas with SelectImage UI, and Interaction Controller with SelectImage Mode

Lastly, we need to add the panel to the UI Controller as follows:

1.	 To add the panel to the UI Controller, in the Hierarchy, select the UI Canvas object.
2.	 In the Inspector, at the bottom-right of the UI Controller component, click the +

button to add an item to the UI Panels dictionary.
3.	 Enter SelectImage in the Id field.
4.	 Drag the SelectImage UI game object from the Hierarchy onto the Value slot.

Selecting an image to use 215

We now have a UI panel with a container for the image buttons. To make the buttons, we'll
create a prefab and then write a script to populate the Image Buttons panel.

Creating an Image Button prefab
We will define an Image Button as a prefab so it can be duplicated for each image that we
want to provide to the user in the selection menu. Create the button as follows:

1.	 In the Hierarchy, right-click the Image Buttons object, select UI | Button, and
rename it Image Button.

2.	 Under the Image Button, delete its child Text element.
3.	 On the Image Button, remove its Image component (using right-click and

Remove Component) and then press Add Component. Search and add a Raw
Image component instead.

4.	 Its Button component needs a reference to its graphic that we just replaced. In the
Inspector, drag the Raw Image component onto Button | Target Graphic slot.

5.	 Now drag your default image texture, such as the WinterBarn asset, from the
Project window Photos/ folder into the Inspector and drop it onto the Raw
Image | Texture slot.

UI Image versus Raw Image
An Image component takes an image sprite for its graphic. A Raw Image
component takes a texture for its graphic. Sprites are small, highly efficient,
preprocessed images used for UI and 2D applications. Textures tend to
be larger with more pixel depth and fidelity used for 3D rendering and
photographic images. You can change an imported image between these and
other type using the image file's Inspector properties. To use the same photo
asset (PNG files) for both the FramedPhoto prefab and the button, we're using
a Raw Image component on the buttons.

6.	 Let's save the Image Button as a prefab. Drag the Image Button object from the
Hierarchy into the Project window and drop it into your Assets Prefabs/ folder.
This creates a prefab asset and changes its color in the Hierarchy to blue, indicating
it's a prefab instance.

216 Gallery: Building an AR App

7.	 In the Hierarchy window, right-click the Image Button object, select Duplicate
(or press Ctrl/Option + D on the keyboard), and make several copies. Because the
buttons are parented by the Image Buttons panel that has a Grid Layout Group,
they are rendered in a grid, as shown in the following screenshot:

Figure 6.15 – Select image panel with Image Buttons in a grid layout

Next, we'll write a script to populate the buttons with actual images we want to use.

Writing an ImageButtons script
The ImageButtons script will be a component on the Image Buttons panel. Its job is to
generate the image buttons with pictures of the corresponding images. Create a new C#
script named ImageButtons, open it for editing, and write it as follows:

using UnityEngine;

using UnityEngine.UI;

public class ImageButtons : MonoBehaviour

{

 [SerializeField] GameObject imageButtonPrefab;

 [SerializeField] ImagesData imagesData;

 [SerializeField] AddPictureMode addPicture;

 void Start()

 {

 for (int i = transform.childCount - 1; i >= 0; i--)

 {

Selecting an image to use 217

 GameObject.Destroy(
 transform.GetChild(i).gameObject);

 }

 foreach (ImageInfo image in imagesData.images)

 {

 GameObject obj =
 Instantiate(imageButtonPrefab,transform);

 RawImage rawimage = obj.GetComponent<RawImage>();

 rawimage.texture = image.texture;

 Button button = obj.GetComponent<Button>();

 button.onClick.AddListener(() => OnClick(image));

 }

 }

 void OnClick(ImageInfo image)

 {

 addPicture.imageInfo = image;

 InteractionController.EnableMode("AddPicture");

 }

}

Let's go through this script. At the top of the class, we declare three variables.
imageButtonPrefab will be a reference to the ButtonPrefab that we will
instantiated. imagesData is a reference to the object containing our list of images. And
addPicture is a reference to AddPictureMode for each button to tell which image
has been selected.

The first thing Start() does is clear out any child objects in the buttons panel. For
example, we created a number of duplicates of the button to help us develop and visualize
the panel, and they'll still be in the scene when it runs unless we remove them first.

Then, Start loops through each of the images, and for each one, creates an Image
Button instance and assigns the image to the button's RawImage texture. And it adds a
listener to the button's onClick events.

When one of the buttons is clicked, our OnClick function will be called, with that
button's image as a parameter. We pass this image data to the AddPictureMode that
will be used when AddPictureMode instantiates a new FramedPhoto object.

218 Gallery: Building an AR App

Add the script to the scene as follows:

1.	 In the Hierarchy, select the Image Buttons object (under UI Canvas/Select Image
Panel).

2.	 Drag the ImageButtons script onto the Image Buttons object, making it
a component.

3.	 From the Project window, drag the Image Button prefab into the Inspector and
drop it onto the Image Buttons | Image Button Prefab slot.

4.	 From the Hierarchy, drag the AddPicture Mode object into the Inspector and
drop it onto the Image Buttons | Add Picture slot.

5.	 Also from the Hierarchy, drag the Images Data object and drop it onto the
Image Buttons | Images Data slot.

The Image Buttons component now looks like the following screenshot:

Figure 6.16 – Image buttons panel with the ImageButtons script that builds the menu at runtime

Selecting an image to use 219

OK. When the app starts up, the Image Buttons menu will be populated from the
Images list in Images Data. Then, when the user presses an image button, it'll tell the
AddPictureMode which image was selected, and then enabled AddPicture mode.

Reroute the Add button
There is just one last step before we can try it out. Currently, the main menu's Add button
enables AddPicture mode directly. We need to change it to call SelectImage instead, as
follows:

1.	 In the Hierarchy, select the Add button (located in UI Canvas / Main UI).
2.	 In the Inspector, in the Button | On Click action list, change the EnableMode

parameter from AddPicture to SelectImage.
3.	 Save the scene.

If you got all this right, you should be able to Build and Run the scene and run through
the complete scenario: pressing the Add button will present a Select Image menu.
Tapping an image, the select panel is replaced with a prompt to tap to place the image,
with its frame, on a wall. The following screenshots from my phone show, on the left, the
Select Image menu. After selecting an image and placing it on the wall, the result is shown
on the right. Then the app returns to the main menu:

Figure 6.17 – Pressing the Add button, I see an image menu (left), and the result after placing (right)

220 Gallery: Building an AR App

To summarize, in this section we added the Select Image menu to the scene by first
creating the UI panel and adding it to the UI Controller. Then we created an Image
Button prefab and wrote the ImageButtons script that instantiates buttons for each
image we want to include in the app. Clicking one of the buttons will pass the selected
image data to AddPicture mode. When the user taps to place and a FramedPhoto is
instantiated, we set the image to the one the user has selected. We also included a Cancel
button in the menu so the user can cancel the add operation.

This is looking good so far. One problem we have is all the pictures are rendered in the
same sized landscape frame and thus may look distorted. Let's fix that.

Adjusting for image aspect ratio
Currently, we're ignoring the actual size of the images and making them all fit into a
landscape orientation with a 3:4 aspect ratio. Fortunately, we've included the actual
(original) pixel dimensions of the image with our ImageInfo. We can use that now to
scale the picture accordingly. We can make this change to the FramedPhoto script that's
on the FramedPhoto prefab.

The algorithm for calculating the aspect ratio can be separated as a utility function in the
ImagesData script. Open the ImagesData script and add the following code:

 public static Vector2 AspectRatio(float width, float
 height)

 {

 Vector2 scale = Vector2.one;

 if (width == 0 || height == 0)

 return scale;

 if (width > height)

 {

 scale.x = 1f;

 scale.y = height / width;

 }

 else

 {

 scale.x = width / height;

 scale.y = 1f;

 }

Adjusting for image aspect ratio 221

 return scale;

 }

When the width is larger than height, the image is landscape, so we'll keep the X
scale at 1.0 and scale down Y. When the height is larger than the width, it is portrait,
so we'll keep the Y scale at 1.0 and scale down X. If they're the same or zero, we return
(1,1). The function is declared static so it can be called using the ImagesData
class name.

Open the FramedPhoto script for editing and make the changes highlighted in the
following:

 public void SetImage(ImageData image)

 {

 imageData = image;

 Renderer renderer =
 imageObject.GetComponent<Renderer>();

 Material material = renderer.material;

 material.SetTexture("_BaseMap", imageData.texture);

 AdjustScale();

 }

 public void AdjustScale()

 {

 Vector2 scale = ImagesData.AspectRatio(imageInfo.width,
 imageInfo.height);

 scalerObject.localScale = new Vector3(scale.x, scale.y,
 1f);

 }

If you recall, the SetImage function is called by AddPictureMode immediately
after a FramedPhoto object is instantiated. After SetImage sets the texture, it now calls
AdjustScale to correct its aspect ratio. AdjustScale uses ImageData.AspectRatio to
get the new local scale and updates the scalerObject transform.

You may notice that the frame width is slightly different on the horizontal versus vertical
sides when the picture is not square. Fixing this requires an additional adjustment to the
Frame object's scale. For example, on a landscape orientation, try setting the child Frame
object's Scale X to 1.0 – 0.01/aspectratio. I'll leave that implementation up to you.

222 Gallery: Building an AR App

When you run the project again and place a picture on your wall, it'll be the correct aspect
ratio according to the photo you picked. One improvement you could add is to scale the
images on the Select Image Panel buttons so they too are not squished. I'll leave that
exercise up to you.

Summary
At the beginning of this chapter, I gave you the requirements and a plan for this AR
gallery project, including a statement of the project objectives, use cases, UX design, and
user stories. You started the implementation using the ARFramework template created in
Chapter 4, Creating an AR User Framework, and built upon it to implement new features
for placing a framed photo on your walls.

To implement this feature, you created a SelectImage UI panel, a SelectImage Mode
interaction mode, and populated a list of images data. After the app starts up and AR is
tracking vertical planes, when the user presses the Add button in the main menu, it opens
a Select Image menu showing images to pick from. The image buttons grid was generated
from your image data using an ImageButton prefab you created. Clicking an image,
you're prompted to tap an AR tracked wall, and a new framed photo of that image is
placed on the wall, correctly scaled to the image's aspect ratio.

We now have a fine start to an interesting project. There is a lot more that can be done.
For example, presently pictures can be placed on top of one another, which would be a
mistake. Also, it would be good to be able to move, resize, and remove pictures. We'll add
that functionality in the next chapter.

7
Gallery: Editing
Virtual Objects

In this chapter, we will continue building the project we started previously in Chapter 6,
Gallery: Building an AR App, where we created an AR gallery that lets users place virtual
framed photos on their real-world walls. In this chapter, we will build out more features
related to interacting with and editing virtual objects that have already been added to a
scene. Specifically, we'll let users select an object for editing, including moving, resizing,
deleting, and replacing the image in the picture frame. In the process, we'll add new input
actions, make use of Unity collision detection, and see more C# coding techniques using the
Unity API.

In this chapter, we will cover the following topics:

•	 Detecting collisions to avoid intersecting objects

•	 Building an edit mode and edit menu UI

•	 Using a physics raycast to select an object

•	 Adding touch input actions to drag to move and pinch to scale

•	 C# coding and the Unity API, including collision hooks and vector geometry

By the end of this chapter, you'll have a working AR application with many user
interactions implemented.

224 Gallery: Editing Virtual Objects

Technical requirements
To complete the project in this chapter, you will need Unity installed on your development
computer, connected to a mobile device that supports augmented reality applications
(see Chapter 1, Setting Up for AR Development, for instructions). We will also assume
you have created the ARGallery scene that we started in Chapter 6, Gallery: Building
an AR App, where you'll also find additional dependencies detailed for you in the
Technical requirements section. You can find that scene, as well as the one we will
build in this chapter, in this book's GitHub repository at https://github.com/
PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation.

Note that in this book's repository, some of the scripts (and classes) for this chapter have
been post-fixed with 07, such as AddPictureMode07, to distinguish them from the
corresponding scripts that were written for the previous chapter. In your own project,
you can leave the un-post-fixed name as is when you edit the existing scripts described in
this chapter.

Creating an Edit mode
To get started with this chapter, you should have the ARGallery scene open in Unity where
we left off at the end of Chapter 6, Gallery: Building an AR App. To recap, after launching
the app, it starts by initializing the AR session and scanning to detect features in your real-
world environment. Once the vertical planes (walls) have been detected, the main menu
will be presented. Here, the user can tap the Add button, which opens an image select
menu where the user can pick a photo to use. Then, the user will be prompted to tap on a
trackable vertical plane to place the framed photo on. Once the photo is hanging on their
wall, the user is returned to Main-mode.

In this chapter, we'll let users modify existing virtual framed photos that have been added
to the scene. The first step is for the user to select an existing object to edit from Main-
mode, which then activates EditPicture-mode for the selected object. When an object is
selected and being edited, it should be highlighted so that it's apparent which object has
been selected.

Using the AR user framework that's been developed for this book, we will start by adding
an EditPicture-mode UI to the scene. First, we'll create the edit menu user interface,
including multiple buttons for various edit functions, and an Edit-mode controller script
for managing it.

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Creating an Edit mode 225

Creating an edit menu UI
To create the UI for editing a placed picture, we'll make a new EditPicture UI panel. It's
simpler to duplicate the existing Main UI and adapt it. Perform the following steps:

1.	 In the Hierarchy window, right-click Main UI (child of UI Canvas) and select
Duplicate. Rename the copy EditPicture UI. Delete any child objects,
including Add Button, by right-clicking | Delete.

2.	 Create a subpanel for the menu by right-clicking EditPicture UI and selecting UI |
Panel. Rename it Edit Menu.

3.	 Use the Anchors presets to set Bottom-Stretch, and then use Shift + Alt + Bottom-
Stretch to make a bottom panel. Then, set its Rect Transform | Height value to 175.

4.	 I set my background Image | Color to opaque white with Alpha at55.
5.	 Select Add Component, search for layout, and select Horizontal Layout Group.
6.	 On the Horizontal Layout Group component, check the Control Child Size |

Width and Height checkboxes. (Leave the others at their default values, Use Child
Scale unchecked, and Child Force Expand checked). The Edit Menu panel looks
like this in the Inspector window:

Figure 7.1 – The Edit Menu panel settings

226 Gallery: Editing Virtual Objects

7.	 Now, we will add four buttons to the menu. Begin by right-clicking Edit Menu and
selecting UI | Button – TextMeshPro. Rename it Replace Image Button.

8.	 Select its child text object, set the Text value to Replace Image, and set Font
Size to 48.

9.	 Right-click the Replace Image button and select Duplicate (or Ctrl + D). Repeat this
two more times so that there are four buttons in total.

10.	 Rename the buttons and change the text on the buttons so that they read as
Replace Frame, Remove Picture, and Done.

11.	 We may not use the Replace Frame feature soon, so disable that button by
unchecking its Interactable checkbox in the Button component. The resulting
menu will look as follows:

Figure 7.2 – Edit Menu buttons

Add the panel to the UI Controller, as follows:

1.	 To add the panel to the UI Controller, in the Hierarchy window, select the UI
Canvas object.

2.	 In the Inspector window, at the bottom right of the UI Controller component, click
the + button to add an item to the UI Panels dictionary.

3.	 Enter EditPicture in the Id field.
4.	 Drag the EditPicture UI game object from the Hierarchy window onto the

Value slot.

The next step is to create an EditPicture mode object and controller script.

Creating EditPicture mode
As you now know, our framework manages interaction modes by activating game objects
under the Interaction Controller. Each mode has a control script that displays the UI
for that mode and handles any user interactions until certain conditions are met; then,
it transitions to a different mode. In terms of our EditPicture-mode, its control script
will have a currentPicture variable that specifies which picture is being edited, a
DoneEditing function that returns the user to Main-mode, among other features.

Creating an Edit mode 227

Create a new C# script named EditPictureMode and begin to write it, as follows:

using UnityEngine;

public class EditPictureMode : MonoBehaviour

{

 public FramedPhoto currentPicture;

 void OnEnable()

 {

 UIController.ShowUI("EditPicture");

 }

}

Now, we can add it to our Interaction Controller object, as follows:

1.	 In the Hierarchy window, right-click the Interaction Controller game object and
select Create Empty. Rename the new object EditPicture Mode.

2.	 Drag the EditPictureMode script from the Project window onto the
EditPicture Mode object, adding it as a component.

3.	 Now, we'll add the mode to the Interaction Controller. In the Hierarchy window,
select the Interaction Controller object.

4.	 In the Inspector window, at the bottom right of the Interaction Controller
component, click the + button to add an item to the Interaction Modes dictionary.

5.	 Enter EditPicture in the Id field.
6.	 Drag the EditPicture Mode game object from the Hierarchy window onto the

Value slot.

With that, we have created an EditPicture UI containing edit buttons that is controlled
by UIController. After this, we created an EditPicture Mode game object with an
EditPictureMode script that is controlled by InteractionController.

With this set up, the next thing we must do is enhance Main-mode so that it detects
when the user taps on an existing FramedPhoto and can start EditPicture-mode for the
selected object.

228 Gallery: Editing Virtual Objects

Selecting a picture to edit
While in Main-mode, the user should be able to tap on an existing picture to edit it.
Utilizing the Unity Input System, we will add a new SelectObject input action. Then,
we'll have the MainMode script listen for that action's messages, find which picture was
tapped using a Raycast, and enable Edit-mode on that picture. Let's get started!

Defining a SelectObject input action
We will start by adding a SelectObject action to the AR Input Actions asset by
performing the following steps:

1.	 In the Project window, locate and double-click the AR Input Actions asset we
created previously (it may be in the Assets/Inputs/ folder) to open it for
editing (alternatively, use its Edit Asset button).

2.	 In the middle Actions section, select + and name it SelectObject.
3.	 In the rightmost Properties section, select Action Type | Value and Control Type |

Vector 2.
4.	 In the middle Actions section, select the <No Binding> child. Then, in the

Properties section, select Path | Touchscreen | Primary Touch | Position to bind
this action to a primary screen touch.

5.	 Press Save Asset (unless Auto-Save is enabled).

The updated AR Input Actions asset is shown in the following screenshot:

Figure 7.3 – AR Input Actions asset with the SelectObject action added

Although we're defining this action with the same touchscreen binding that we used for
the PlaceObject action we created earlier (Touchscreen Primary Position), it serves
a somewhat different purpose (tap-to-select versus tap-to-place). For example, perhaps,
in the future, if you decide to use a double-tap for selecting an item instead of a single tap,
you can simply change its input action.

Selecting a picture to edit 229

Now, we can add the code for this action.

Replacing the MainMode script
First, because we're deviating from the default MainMode script provided in the
ARFramework template, we should make a new, separate script for this project. Perform
the following steps to copy and edit the new GalleryMainMode script:

1.	 In the Project window's Scripts/ folder, select the MainMode script. Then,
from the main menu bar, select Edit | Duplicate.

2.	 Rename the new file GalleryMainMode.
3.	 You'll see a namespace error in the Console window because we now have two files

defining the MainMode class.

Open GalleryMainMode for editing and change the class name to
GalleryMainMode, as highlighted here:

using UnityEngine;

using UnityEngine.InputSystem;

public class GalleryMainMode : MonoBehaviour

{

 void OnEnable()

 {

 UIController.ShowUI("Main");

 }

}

4.	 Save the script. Then, back in Unity, in the Hierarchy window, select the Main
Mode game object (under Interaction Controller).

5.	 Drag the GalleryMainMode script onto the Main Mode object, adding it as a
new component.

6.	 Remove the previous Main Mode component from the Main Mode object.

Now, we're ready to enhance the behavior of Main-mode.

230 Gallery: Editing Virtual Objects

Selecting an object from Main-mode
When the user taps the screen, the GalleryMainMode script will get the touch position
and use a Raycast to determine whether one of the PlacedPhoto objects was selected. If
so, it will enable EditPicture mode on that picture.

We have seen Raycasts previously in our tap-to-place scripts, including
AddPictureMode. In that case, our scripts used the AR Raycast Manager class's
version of the function because we were only interested in hitting a tracked AR plane.
But in this case, we're interested in selecting a regular GameObject – an instantiated
FramedPhoto prefab. For this, we'll use the Physics.Raycast function (https://
docs.unity3d.com/ScriptReference/Physics.Raycast.html). As part
of the Unity Physics system, it requires the raycast-able object to have a Collider (which
FramedPhoto does, and I'll show you soon).

Also, we will be using the AR Camera's ScreenPointToRay function to define the 3D
ray that corresponds to the touch position that we're going to Raycast into the scene.

To add this, open the GalleryMainMode script for editing and follow these steps:

1.	 We're going to listen for Input System events, so to begin, we need to add a using
statement for that namespace. Ensure the following line is at the top of the file:

using UnityEngine.InputSystem;

2.	 We need a reference to tell EditPictureMode which object to edit. Add it to the
top of the class, as follows:

public class GalleryMainMode : MonoBehaviour

{

 [SerializeField] EditPictureMode editMode;

3.	 We're going to be using AR Camera here, so it's good practice to get a reference to
that at the start by using the Camera.main shortcut. (This requires the AR Camera
to be tagged as MainCamera, which should be done from the scene template.) Add
a private variable at the top of the class and initialize it using Start:

 Camera camera;

 void Start()

 {

 camera = Camera.main;

 }

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Selecting a picture to edit 231

4.	 Now for the meat of our task – add the following OnSelectObject and
FindObjectToEdit functions:

 public void OnSelectObject(InputValue value)

 {

 Vector2 touchPosition = value.Get<Vector2>();

 FindObjectToEdit(touchPosition);

 }

 void FindObjectToEdit(Vector2 touchPosition)

 {

 Ray ray = camera.ScreenPointToRay(touchPosition);

 RaycastHit hit;

 int layerMask =
 1 << LayerMask.NameToLayer("PlacedObjects");

 if (Physics.Raycast(ray, out hit, Mathf.Infinity,
 layerMask))

 {

 FramedPhoto picture = hit.collider.
 GetComponentInParent<FramedPhoto>();

 editMode.currentPicture = picture;

 InteractionController.
 EnableMode("EditPicture");

 }

 }

Let's walk through this code together. The OnSelectObject function is automatically
called when the SelectObject Input System action is used (the On prefix is a standard
Unity convention for event interfaces). It grabs Vector2 touchPosition from the
input value and passes it to our private FindObjectToEdit function. (You don't need
to separate this into two functions, but I did for clarity.)

FindObjectToEdit gets the 3D ray corresponding to the touch position by calling
camera.ScreenPointToRay. This is passed to Physics.Raycast to find an object
in the scene that intersects with the ray. Rather than casting to every possible object, we'll
limit it to ones on a layer named PlacedObjects using its layermask. (For this, we
need to make sure FramedPhoto is assigned to this layer, which we'll do soon.)

232 Gallery: Editing Virtual Objects

Information – Layer Name, Layer Number, and Layermask
A layermask uses the binary bits of a 32-bit integer to identify up to 32 layers,
one bit each. We define the mask by getting the layer number from its name
(LayerMask.NameToLayer) and shifting one bit to the left that many
times. To manage the layers in your project and see what name has been
assigned to each layer number, click the Layers button in the top-right corner
of the Editor.

If the raycast gets a hit, we must grab a reference to the FramedPhoto component in the
prefab and pass it to the EditPictureMode component. Then, the app will transition to
EditPicture-mode.

Save the script. Now, let's fix the housekeeping things on our game objects that I
mentioned: set the camera tag to MainCamera, set the FramedPhoto object so that
it resides on the PlacedObjects layer, and ensure FramedPhoto has a collider
component. In Unity, do the following:

1.	 In the Hierarchy window, with the Main Mode game object selected, drag the
EditPicture Mode object from the Hierarchy window into the Inspector window
and drop it onto the Gallery Main Mode | Edit Mode slot.

2.	 In the scene Hierarchy, unfold AR Session Origin and select its child AR Camera.
In the top-left position of the Inspector window, verify that Tag (atop the Inspector
window) is set to MainCamera. If not, set it now.

3.	 Next, open the FramedPhoto prefab for editing by double-clicking the asset in the
Project window.

4.	 With its root FramedPhoto object selected, in the top right of its Inspector
window, click the Layer drop-down list and select PlacedObjects.

If the layer named PlacedObjects doesn't exist, select Add Layer to open
the Layers manager window. Add PlacedObjects to one of the empty
slots. In the Hierarchy window, click the FramedPhoto Prefab object to get
back to its Inspector window. Again, using the Layers drop-down list, select
PlacedObjects.

You will then be prompted with the question Do you want to set layer to
PlacedObjects for all child objects as well?. Click Yes, Change Children.

5.	 While we're here, let's also verify that the prefab has a collider, as required for
Physics.Raycast. If you recall, when we constructed the prefab, we started with
an Empty game object for the root and added another Empty child for AspectScaler.
Then, we added a 3D Cube for the Frame object. Click this Frame object.

Selecting a picture to edit 233

6.	 In the Inspector window, you will see that the Frame object already has a Box
Collider. Perfect. Note that if you press its Edit Collider button, you can see (and
edit) the collider's shape in the Scene window, as shown in the following screenshot,
where its edges are outlined and there are little handles to move the faces. But
there's no need for us to change it here:

Figure 7.4 – Editing the Box Collider of the Frame object

7.	 Save the prefab and exit the prefab editor to get back to the Scene hierarchy.

If you were to Build and Run the scene now, and then add a picture to a wall, when you
tap on that picture, it should hide the main menu and show the edit menu. Now, we need
a way to get back from Edit-mode to Main-mode. Let's wire up the Done button.

Wiring the Done edit button
In this section, we will set up the Done button to switch from EditPicture-mode to Main-
mode. It simply needs to call EnableMode in InteractionController. Follow
these steps:

1.	 In the Hierarchy window, select the Done button, which should be located under
UI Canvas | EditPicture UI | Edit Menu.

2.	 In the Inspector window, click the + button on the bottom right of the Button |
OnClick area to add a new event action.

234 Gallery: Editing Virtual Objects

3.	 Drag the Interaction Controller object from the Hierarchy window and drop it
onto the Object slot of the OnClick action.

4.	 In the function select list, choose InteractionController | EnableMode.
5.	 Type Main into the mode string parameter slot.

Now, if you Build and Run the scene where you have a picture instantiated in the scene
and tap the picture, you'll switch to Edit-mode and see the edit menu. Tap the Done
button to get back to Main-mode.

This is progress. But if there's more than one picture on your wall, it's not obvious which
one is currently being edited. We need to highlight the currently selected picture.

Highlighting the selected picture
There are many ways to highlight objects in Unity to indicate that an object has been
selected by the user. Often, you'll find that a custom shader will do the trick (there are
many on the Asset Store). The decision comes down to what "look" you want. Do you
want to change the selected object's color tint, draw a wireframe outline, or create some
other effect? Instead of doing this and to keep things easy, I'll just introduce a "highlight"
game object in the FramedPhoto prefab as a thin yellow box that extends from the edges
of the frame. Let's make that now:

1.	 Open the FramedPhoto prefab for editing by double-clicking it in the Project window.
2.	 In the Hierarchy window, right-click on the AspectScaler object and select 3D

Object | Cube. Rename the cube Highlight.
3.	 Set its Transform | Scale setting to (1.05, 1.05, 0.005) so that it is thin and

extends past the edges of the frame.
4.	 Set its Transform | Position setting to (0, 0, -0.025).
5.	 Create a yellow material. In the Project window, right-click in your Materials/

folder (create one if needed) and select Create | Material. Rename it Highlight
Material.

6.	 Set Highlight Material | Shader | Universal Render Pipeline | Unlit.
7.	 Set its Base Map color (using the color swatch) to yellow.

Highlighting the selected picture 235

8.	 Drag Highlight Material onto the Highlight game object. The Scene view should
now look as follows:

Figure 7.5 – FramedPhoto with highlight

We can now control this from the FramedPhoto script. You may want the highlight the
picture for different reasons, but for this project, I've decided that when the object is selected
and highlighted, that means it is being edited. So, we can toggle the highlight when making
the object editable. Open the script in your editor and make the following changes:

1.	 Declare a variable for highlightObject:

 [SerializeField] GameObject highlightObject;

 bool isEditing;

2.	 Add a function to toggle the highlight:

 public void Highlight(bool show)

 {

 if (highlightObject) // handle no object or app
 end object destroyed

 highlightObject.SetActive(show);

 }

236 Gallery: Editing Virtual Objects

3.	 Ensure the picture isn't highlighted at the beginning:

 void Awake()

 {

 Highlight(false);

 }

4.	 Add a BeingEdited function. This will be called when the object is being edited.
It'll highlight the object and enable other editing behavior later. Likewise, when we
stop editing and pass a false value, the object will be un-highlighted:

 public void BeingEdited(bool editing)

 {

 Highlight(editing);

 isEditing = editing;

 }

5.	 Save the script. In Unity, select the root FramedPhoto object.
6.	 Drag the Highlight object from the Hierarchy window onto the Framed Photo |

Highlight Object slot.

This is great! Now, we can update EditPictureMode to tell the picture when it's being
edited or not. Open the EditPictureMode script and make the following edits:

1.	 Add the BeingEdited call to OnEnable:

 void OnEnable()

 {

 UIController.ShowUI("EditPicture");

 if (currentPicture)

 currentPicture.BeingEdited(true);

 }

2.	 Also, add the BeingEdited call to OnDisable for when it's not being edited;
that is, when Edit-mode has been exited:

 void OnDisable()

 {

 if (currentPicture)

 currentPicture.BeingEdited(false);

 }

Selecting an object from Edit mode 237

Notice that although we would never intentionally enter Edit-mode without
currentPicture defined, I've added null checks in case the mode is activated or
deactivated during the app startup or teardown sequences.

If you play the scene now and add a picture, when you tap the picture via Main-mode,
Edit-mode will become enabled, and the picture will be highlighted. When you exit back
to Main-mode, the picture will be un-highlighted.

Let's keep going. Suppose you have multiple pictures on your walls. Currently, when
you're editing one picture and you want to edit a different one, you must press Done to
exit Edit-mode and then select the other picture from Main-mode. To switch between
objects that are currently being editing, we can add that code to the EditMode script.

Selecting an object from Edit mode
When in Edit-mode for one picture, to let the user choose a different picture without
exiting Edit-mode, we can use the same SelectObject input action we used in Main-mode.
In fact, the code is mostly the same. Open the EditPictureMode script for editing and
make the following changes:

1.	 We're going to listen for Input System events, so to begin, we need to add a using
statement for that namespace. Ensure the following line is at the top of the file:

using UnityEngine.InputSystem;

2.	 Add a private camera variable at the top of the class and initialize it in Start:

 Camera camera;

 void Start()

 {

 camera = Camera.main;

 }

3.	 The OnSelectObject action listener will call FindObjectToEdit. Like in
GalleryMainMode, it does a Raycast on the PlacedObjects layer. But now,
we must check whether it has hit an object other than the current picture. If so, we
must stop editing currentPicture and make the new selection current:

 public void OnSelectObject(InputValue value)

 {

 Vector2 touchPosition = value.Get<Vector2>();

238 Gallery: Editing Virtual Objects

 FindObjectToEdit(touchPosition);

 }

 void FindObjectToEdit(Vector2 touchPosition)

 {

 Ray ray = camera.ScreenPointToRay(touchPosition);

 RaycastHit hit;

 int layerMask =
 1 << LayerMask.NameToLayer("PlacedObjects");

 if (Physics.Raycast(ray, out hit, 50f,
 layerMask))

 {

 if (hit.collider.gameObject !=
 currentPicture.gameObject)

 {

 currentPicture.BeingEdited(false);

 FramedPhoto picture = hit.collider.
 GetComponentInParent<FramedPhoto>();

 currentPicture = picture;

 picture.BeingEdited(true);

 }

 }

 }

To summarize, when you have more than one FramedPhoto instantiated in the scene
and you are editing one, if you tap on a different picture, the current one will be
un-highlighted and the new one will be highlighted and become the currentPicture
object being edited.

Here's another problem: if you've been playing with the project, you may have noticed that
you can place pictures on top of one another, or actually, inside one another, as they do not
seem to have any physical presence! Oops. Let's fix this.

Avoiding intersecting objects
In Unity, to specify that an object should participate in the Unity Physics system, you
must add a Rigidbody component to the GameObject. Adding a Rigidbody gives an
object mass, velocity, collision detection, and other physical properties. We can use this to
prevent objects from intersecting. In many games and XR apps, Rigidbody is important
for applying motion forces to objects to let them bounce when they collide, for example.

Avoiding intersecting objects 239

In our project, if a picture collides with another picture, it should simply move out of the
way so that they're never intersecting. But it should also stay flush with the wall plane.
Although a Rigidbody allows you to constrain movement along any of the X, Y, and Z
directions, these are the orthogonal world space planes, not the arbitrary angled wall
plane. In the end, I decided to position the picture manually when a collision is detected
rather than using physics forces. My solution is to constrain the position (and rotation) of
all the pictures so that physics forces won't move them. Then, I can use the collision as a
trigger to manually move the picture out of the way.

Information – Collision Versus Trigger Detection
When two GameObjects with Rigidbody and Collider collide, physics forces
will be applied to the objects, sending them in different directions. You can
add constraints and other properties to limit this behavior. In that case, you
can write functions for OnCollisionEnter, OnCollisionStay, and
OnCollisionExit to hook into these events.

However, you can completely disable Unity applying physical forces by marking
a Collider as Is Trigger. When it's a trigger, you would instead write functions
for OnTriggerEnter, OnTriggerStay, and OnTriggerExit to
hook into these events.

To add collision detection to the FramedPhoto prefab, follow these steps:

1.	 In the Project window, locate and double-click on the FramedPhoto prefab to open
it for editing.

2.	 Ensure you have selected the root FramedPhoto object in the Hierarchy window.
3.	 In the Inspector window, click Add Component, search for rigidbody, and add

a Rigidbody to the object.
4.	 Unfold the Constraints properties and check all six boxes; that is, Freeze Position:

X, Y, Z and Freeze Rotation: X, Y, Z.
5.	 Uncheck its Use Gravity checkbox. (This is not necessary since we set constraints,

but I like to be clear about this anyway.)
6.	 We need a Collider. As we've seen, there is one on the Frame child object. So, select

the Frame game object.
7.	 In the Inspector window, in its Box Collider component, check the Is

Trigger checkbox.
8.	 To avoid any problems, disable (or remove) other colliders in the prefab. Namely,

remove Mesh Collider from Image and Box Collider from Highlight.

240 Gallery: Editing Virtual Objects

Now, we can handle the collision trigger and move the picture out of the way when
another picture is in the same space. We just want to make sure it moves along the
wall. We can make use of the fact that the wall plane's normal vector (the vector that's
perpendicular to the surface of the plane) is also the forward direction vector of our
picture prefab since we originally placed it there. Also, we only want to consider collisions
with objects on the placed object plane (for example, not the AR tracked plane objects).

My algorithm determines the distance between this picture and the other intersecting
picture, in 3D. Then, it finds the direction to move this picture in by projecting the
distance vector onto the wall plane and scaling it. The picture will continue moving away
from the other frames until it is no longer intersecting.

Let's write the code for this. Open the FramedPhoto script for editing and follow
these steps:

1.	 Begin by adding a reference to the collider and layer numbers at the top of
the class, as follows:

 [SerializeField] Collider boundingCollider;

 int layer;

2.	 Initialize the layer number from its name. It's good to initialize this ahead of time
because OnTriggerStay may be called every frame:

 void Awake()

 {

 layer = LayerMask.NameToLayer("PlacedObjects");

 Highlight(false);

 }

3.	 We'll use OnTriggerStay here, which is called with each update while the object
is colliding with another object, as follows:

 void OnTriggerStay(Collider other)

 {

 const float spacing = 0.1f;

 if (isEditing && other.gameObject.layer == layer)

Avoiding intersecting objects 241

 {

 Bounds bounds = boundingCollider.bounds;

 if (other.bounds.Intersects(bounds))

 {

 Vector3 centerDistance =
 bounds.center - other.bounds.center;

 Vector3 distOnPlane =
 Vector3.ProjectOnPlane(centerDistance,
 transform.forward);

 Vector3 direction =
 distOnPlane.normalized;

 float distanceToMoveThisFrame =
 bounds.size.x * spacing;

 transform.Translate(direction *
 distanceToMoveThisFrame);

 }

 }

 }

4.	 Save the script. In Unity, drag the Frame object (which has a Box Collider) from the
Hierarchy window onto the Framed Photo | Bounding Collider slot. The Framed
Photo component now looks as follows:

Figure 7.6 – Framed Photo component properties, including Bounding Collider

5.	 Save the prefab and return to the scene hierarchy.

When you play the scene now, place a picture on a wall, and then place another picture
in the same space, the new picture will move away from the first one until they're no
longer colliding.

Now that we can have many pictures on our walls, you might want to learn how to remove
one from the scene. We'll look at this in the next section.

242 Gallery: Editing Virtual Objects

Deleting a picture
Deleting the picture that is being edited is straightforward. We just need to destroy the
currentPicture GameObject and go back to Main-mode. Perform the following steps:

1.	 Open the EditPictureMode script and add the following function:

 public void DeletePicture()

 {

 GameObject.Destroy(currentPicture.gameObject);

 InteractionController.EnableMode("Main");

 }

2.	 Save the script.
3.	 In Unity, in the Hierarchy window, select Remove Button (located under UI

Canvas | EditPicture UI | Edit Menu).
4.	 In the Inspector, click the + button at the bottom right of the Button | OnClick

area.
5.	 Drag the EditPicture Mode object from the Hierarchy window onto the OnClick

Object slot.
6.	 From the function selection, choose EditPictureMode | DeletePicture.

When you play the scene, create a picture, go into EditPicture-mode, and then tap the
Remove Picture button, the picture will be deleted from the scene, and you will be back in
Main-mode.

We now have two of the Edit menu buttons operating – Remove Picture and Done. Now,
let's add the feature that lets you change the picture in an existing FramedPhoto from the
Image Select menu panel.

Replacing the picture's image
When you add a picture from the Main menu, the Select Image menu is displayed. From
here, you can pick a picture. At this point, you will be prompted to add a FramedPhoto
to the scene using the image you selected. We implemented this by adding a separate
SelectImage Mode. We now want to make that mode serve two purposes. It's called from
Main-mode when you're adding a new, framed photo to the scene, and it's called from
EditPicture-mode when you want to replace the image of an existing framed photo that's
already in the scene. This requires us to refactor the code.

Replacing the picture's image 243

Currently, when we build the Select Image buttons (in the ImageButtons script) we
have it configure and enable AddPicture-mode directly. Instead, it now needs to depend
on how SelectImage-mode is being used, so we'll move that code from ImageButtons
to SelectImageMode, as follows:

1.	 Edit the SelectImageMode script and add a reference to AddPictureMode at
the top of the class:

 [SerializeField] AddPictureMode addPicture;

2.	 Then, add a public ImageSelected function:

 public void ImageSelected(ImageInfo image)

 {

 addPicture.imageInfo = image;

 InteractionController.EnableMode("AddPicture");

 }

3.	 Edit the ImageButtons script and add a reference to SelectImageMode at the
top of the class:

 [SerializeField] SelectImageMode selectImage;

4.	 Then, replace the OnClick code with a call to ImageSelected, which we
just wrote:

 void OnClick(ImageInfo image)

 {

 selectImage.ImageSelected(image);

 }

This refactoring has not added any new functionality, but it restructures the code
for SelectImageMode to decide how the modal menu will be used. Now, let's edit
SelectImageMode again and add support for replacing the currentPicture
image.

5.	 At the top of the SelectImageMode script, add the following declarations:

 [SerializeField] EditPictureMode editPicture;

 public bool isReplacing = false;

244 Gallery: Editing Virtual Objects

6.	 Then, update the ImageSelected function, as follows:

 public void ImageSelected(ImageInfo image)

 {

 if (isReplacing)

 {

 editPicture.currentPicture.SetImage(image);

 InteractionController.
 EnableMode("EditPicture");

 }

 else

 {

 addPicture.imageInfo = image;

 InteractionController.
 EnableMode("AddPicture");

 }

 }

So, now, when the menu is being used for replacing, it sends the selected image
data to the edit mode's currentPicture object. Otherwise, it behaves as it did
previously for AddPicture-mode.

Now, we need to make sure the isReplacing flag is set to false when adding
and set to true when replacing. Again, this requires some refactoring. Currently,
the main menu's Add button enables SelectImage-mode directly. Let's replace this
with a SelectImageToAdd function in the GalleryMainMode script.

7.	 At the top of the GalleryMainMode class, add a reference to
SelectImageMode:

 [SerializeField] SelectImageMode selectImage;

8.	 Then, add a SelectImageToAdd function, as follows:

 public void SelectImageToAdd ()

 {

 selectImage.isReplacing = false;

 InteractionController.EnableMode("AddPicture");

 }

We just need to remember to update the Add button OnClick action before
we're done.

Replacing the picture's image 245

9.	 Likewise, now, we can add a SelectImageToReplace function to the
EditPictureMode script. Declare selectImage at the top of the class:

 [SerializeField] SelectImageMode selectImage;

Then, add the function, as follows:
 public void SelectImageToReplace()

 {

 selectImage.isReplacing = true;

 InteractionController.EnableMode("SelectImage");

 }

Save all the scripts. Now, we need to connect it up in Unity, including setting the Add and
Replace Image buttons' OnClick actions, and then setting the new SelectImage Mode
parameters. Back in Unity, starting with the Add button, follow these steps:

1.	 In the Hierarchy window, select the Add button under UI Canvas | Main UI.
2.	 From the Hierarchy window, drag the Main Mode game object (under Interaction

Controller) onto the Button | OnClick action's Object slot.
3.	 In the Function selector, choose Gallery Main Mode | Select Image To Add.
4.	 Now, we'll wire up the Replace Image button, which is located under UI Canvas |

EditPicture UI | Edit Menu.
5.	 In the Inspector window, on its Button component, click the + button at the

bottom right of the OnClick actions.
6.	 From the Hierarchy window, drag the EditPicture Mode game object onto the

OnClick Object slot.
7.	 In the Function selector, choose Edit Picture Mode | Select Image To Replace.

The buttons are now set up. All we have to do now is assign the other references.
8.	 In the Hierarchy window, select the Main Mode game object (under Interaction

Controller).
9.	 Drag the SelectImage Mode object from the Hierarchy window onto the Select

Image slot.
10.	 In the Hierarchy window select the SelectImage Mode game object (under

Interaction Controller).
11.	 Drag the AddPicture Mode object from the Hierarchy window onto the Add

Picture slot.

246 Gallery: Editing Virtual Objects

12.	 Drag the EditPicture Mode object from the Hierarchy window onto the Edit
Picture slot.

13.	 In the Hierarchy window, select the EditPicture Mode game object (under
Interaction Controller).

14.	 Drag the SelectImage Mode object from the Hierarchy window onto the Select
Image slot.

15.	 In the Hierarchy window, select the Image Buttons game object (under UI Canvas
| SelectImage UI).

16.	 Drag the SelectImage Mode object from the Hierarchy window onto the Select
Image slot.

That should do it!

In summary, we have refactored the ImageButtons script to call SelectImageMode.
ImageSelected when a button is pressed. SelectImageMode will know whether the
user is adding a new picture or replacing the image with an existing one. In the former
case, the modal was called from Main-mode. In the latter case, the modal was called from
EditPicture-mode and has an isReplacing flag set.

Go ahead and Build and Run the scene. Add a picture and then edit it. Then, tap the
Replace Image button. The Select Image menu should appear. At this point, you can
pick another image, and it will replace the one in the currently selected FramedPhoto.
There are more features you could add to this project, including letting the user choose a
different frame for their pictures.

Replacing the frame
The last Edit button we must implement is Replace Frame. I will leave this feature up to
you to build since at this point, you may have the skills to work through this challenge on
your own. A basic solution may be to keep the current FramedPhoto prefab and let the
user just pick a different color for the frame. Alternatively, you could define separate frame
objects within the FramedPhoto prefab, perhaps using models found on the Asset Store
or elsewhere, and pick a frame that enables one or another frame object. Here are some
suggestions regarding where to find models:

•	 Classic Picture Frame: https://assetstore.unity.com/packages/3d/
props/furniture/classic-picture-frame-59038

•	 Turbosquid: https://www.turbosquid.com/3d-model/free/picture-
frame

https://assetstore.unity.com/packages/3d/props/furniture/classic-picture-frame-59038
https://assetstore.unity.com/packages/3d/props/furniture/classic-picture-frame-59038
https://assetstore.unity.com/packages/3d/props/furniture/classic-picture-frame-59038
https://www.turbosquid.com/3d-model/free/picture-frame
https://www.turbosquid.com/3d-model/free/picture-frame
https://www.turbosquid.com/3d-model/free/picture-frame

Interacting to edit a picture 247

So far, we've been interacting with the placed object indirectly through the Edit menu
buttons. Next, we'll consider directly interacting with the virtual object.

Interacting to edit a picture
We will now implement the ability to move and resize a virtual object we have placed in
the AR scene. For this, I've decided to give the object being edited responsibility for its
own interactions. That is, when FramedPhoto is being edited, it'll listen for input action
events and move or resize itself.

I've also decided to implement these features as separate components, MovePicture
and ResizePicture, on the FramedPhoto prefab. This will only be enabled while
FramedPhoto is being edited. First, let's ensure that instantiated FramedPhoto objects
receive Input Action messages so that they can respond to user input.

Ensuring FramedPhoto objects receive Input Action
messages
We are currently using the Unity Input System, which lets you define and configure user
input actions, as well as listening for those action events with a Player Input component.
Currently, the scene has one Player Input component, attached to the Interaction
Controller game object. The component is configured to broadcast messages down the
local hierarchy. Therefore, if we want the FramedPhoto script to receive input action
messages (which we now do), we must make sure the FramedPhoto object instances are
children of the Interaction Controller. Let's simply parent the FramedPhoto objects under
the AddPicture Mode game object where it's instantiated, as follows:

1.	 Edit the AddPictureMode script.
2.	 In the PlaceObject function, set the spawned object's parent as the AddPicture

Mode game object by adding this line of code:

 GameObject spawned = Instantiate(placedPrefab,
 position, rotation);

 spawned.transform.SetParent(
 transform.parent);

The instantiated FramedPhoto prefabs will now be parented by the AddPicture Mode
game object.

248 Gallery: Editing Virtual Objects

Information – Scene Organization and Input Action Messages
It's advisable to consider how you will organize your scene object hierarchy
and where to place instantiated objects. For example, generally, I'd prefer
to keep all our FramedPhotos in a separate root object container. If we did
that now, we would have to set Player Input Behavior to invoke events,
instead of broadcasting messages down the local hierarchy. And then,
scripts responding to those input actions would subscribe (add listeners) to
those messages (see https://docs.unity3d.com/Packages/
com.unity.inputsystem@1.1/manual/Components.
html#notification-behaviors). On the other hand, for tutorial
projects such as the ones in this book, I've decided that using the built-in input
action messages is cleaner and more straightforward to explain.

Let's start by creating the empty scripts and adding them to the scene. Then, we'll build
them out.

Adding the interaction components
To expedite the implementation, we must create the script files first by performing the
following steps:

1.	 In your Project assets, create a new C# script named MovePicture.
2.	 Create another new C# script named ResizePicture.
3.	 Open the FramedPhoto prefab for editing.
4.	 Drag the MovePicture script and the ResizePicture script from the Project assets

folder onto the root FramedPhoto object.
5.	 Edit the FramedPhoto script in your code editor. Add the following declarations

at the top of the class:

MovePicture movePicture;

ResizePicture resizePicture;

6.	 Initialize it in Awake and start with the components disabled:

 void Awake()

 {

 movePicture = GetComponent<MovePicture>();

 resizePicture = GetComponent<ResizePicture>();

 movePicture.enabled = false;

 resizePicture.enabled = false;

mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/manual/Components.html#notification-behaviors
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/manual/Components.html#notification-behaviors
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.1/manual/Components.html#notification-behaviors

Interacting to edit a picture 249

 layer = LayerMask.NameToLayer("PlacedObjects");

 Highlight(false);

}

7.	 Then, enable these components when editing:

 public void BeingEdited(bool editing)

 {

 Highlight(editing);

 movePicture.enabled = editing;

 resizePicture.enabled = editing;

 isEditing = editing;

 }

We've now prepared ourselves to add the move and resize direct manipulation features to
the FramedPhoto object. These will be separate components that are enabled only while
the picture is in EditPicture mode.

OK. Let's start by interactively moving the picture along the wall by dragging it with our
finger on the screen.

Using our finger to move the picture
We will start by implementing the drag-to-move feature by adding a MoveObject action
to the AR Input Actions asset. Like the SelectObject action (and PlaceObject) that we
already have, this will be bound to the touchscreen's primary touch position. We'll keep
this action separate from the others, for example, should you decide to use a different
interaction technique, such as a touch and hold, to start the dragging operation. But for
now, we can just copy the other one, as follows:

1.	 In the Project window, double-click the AR Input Actions asset (in the Assets/
Inputs/ folder) to open it for editing (or use its Edit Asset button).

2.	 In the middle section, right-click the SelectObject action and select Duplicate.
3.	 Rename the new one MoveObject.
4.	 Press Save Asset (unless Auto-Save is enabled).

Now, we can add the code that will listen for this action. Edit the MovePicture script
and write the following:

using System.Collections.Generic;

using UnityEngine;

250 Gallery: Editing Virtual Objects

using UnityEngine.EventSystems;

using UnityEngine.InputSystem;

using UnityEngine.XR.ARFoundation;

using UnityEngine.XR.ARSubsystems;

public class MovePicture : MonoBehaviour

{

 ARRaycastManager raycaster;

 List<ARRaycastHit> hits = new List<ARRaycastHit>();

 void Start()

 {

 raycaster = FindObjectOfType<ARRaycastManager>();

 }

 void Start(){ }

 public void OnMoveObject(InputValue value)

 {

 if (!enabled) return;

 if (EventSystem.current.IsPointerOverGameObject(0))
 return;

 Vector2 touchPosition = value.Get<Vector2>();

 MoveObject(touchPosition);

 }

 void MoveObject(Vector2 touchPosition)

 {

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 ARRaycastHit hit = hits[0];

 Vector3 position = hit.pose.position;

 Vector3 normal = -hit.pose.up;

Interacting to edit a picture 251

 Quaternion rotation =
 Quaternion.LookRotation(normal, Vector3.up);

 transform.position = position;

 transform.rotation = rotation;

 }

 }

}

This code is very similar to that in the AddPictureMode script. It's using AR Raycast
Manager to find a trackable plane and place the object so that it's flush with the plane and
upright. The difference is that we're not instantiating a new object, we're just updating
the transform of the existing one. And we're doing this continuously, so long as the input
action events are being generated (that is, so long as the user is touching the screen).

The OnMoveObject function is skipped if the input action message is received but this
component is not enabled. It also checks that the user is not tapping a UI element (an
event system object), such as one of our edit menu buttons.

Try it out. If you play the scene, create a picture, and begin editing it, you should be able
to drag the picture with your finger and it will move along the wall plane. In fact, since we
are raycasting each update, it could find a newer, refined tracked plane as you're dragging,
or even move the picture to a different wall.

As we mentioned previously, if you tap the screen on any tracked plane, the current
picture will "jump" to that location. If that is not your desired behavior, we can check that
the initial touch is on the current picture before we start updating the transform position.
The modified code is as follows:

1.	 Declare and initialize references to camera and layerMask:

 Camera camera;

 int layerMask;

 void Start() {

 raycaster = FindObjectOfType<ARRaycastManager>();

 camera = Camera.main;

 layerMask =
 1 << LayerMask.NameToLayer("PlacedObjects");

 }

252 Gallery: Editing Virtual Objects

2.	 Add a raycast to MoveObject to ensure the touch is on a picture before you move
it:

 void MoveObject(Vector2 touchPosition)

 {

 Ray ray = camera.ScreenPointToRay(touchPosition);

 if (Physics.Raycast(ray, Mathf.Infinity, layerMask))

 {

 if (raycaster.Raycast(touchPosition, hits,
 TrackableType.PlaneWithinPolygon))

 {

 ARRaycastHit hit = hits[0];

 Vector3 position = hit.pose.position;

 Vector3 normal = -hit.pose.up;

 Quaternion rotation =
 Quaternion.LookRotation(normal,
 Vector3.up);

 transform.position = position;

 transform.rotation = rotation;

 }

 }

 }

Currently, we only have the tracked planes visible in AddPicture-mode. I
think it would be useful to also show them in Edit-mode. We can use the same
ShowTrackablesOnEnable script we wrote in a previous chapter that's already been
applied to the AddPicture Mode game object. Add this as follows:

1.	 In the Hierarchy window, select the EditPicture Mode game object (under
Interaction Controller).

2.	 Locate the ShowTrackablesOnEnable script in your Project Scripts/ folder.
3.	 From the Hierarchy window, drag the AR Session Origin game object onto the

Show Trackables On Enable | Session Origin slot.
4.	 Drag the script onto the EditPicture Mode object, adding it as a component.

Now, when EditPicture Mode is enabled, the trackable planes will be displayed. When it's
disabled and you go back to Main-mode, they'll be hidden again.

Next, we'll implement the pinch-to-resize feature.

Interacting to edit a picture 253

Pinching to resize the picture
To implement pinch-to-resize, we'll also use an Input Action, but this will require a
two-finger touch. As such, the action is not simply returning a single value (for example,
Vector2). So, this time, we'll use a PassThrough Action Type. Add it by performing the
following steps:

1.	 Edit the AR Input Actions asset, as we did previously.
2.	 In the middle Actions section, select + and name it ResizeObject.
3.	 In the rightmost Properties section, select Action Type | Pass Through, and

Control Type | Vector 2.
4.	 In the middle Actions section, select the <No Binding> child. Then, in the

Properties section, select Properties | Path | Touchscreen | Touch #1 | Position to
bind this action to a second finger screen touch.

5.	 Press Save Asset (unless Auto-Save is enabled).

Now, we can add the code to listen for this action. Edit the ResizePicture script and
write it as follows. In the first part of the script, we declare several properties that we can use
to tweak the behavior of the script from the Unity Inspector. pinchspeed lets you adjust
the sensitivity of the pinch, while minimumScale and maximumScale let you limit how
small or big the user will end up making the picture, respectively. Follow these steps:

1.	 Begin the script with the following code:

using UnityEngine;

using UnityEngine.EventSystems;

using UnityEngine.InputSystem;

public class ResizePicture : MonoBehaviour

{

 [SerializeField] float pinchSpeed = 1f;

 [SerializeField] float minimumScale = 0.1f;

 [SerializeField] float maximumScale = 1.0f;

 float previousDistance = 0f;

 void Start() { }

254 Gallery: Editing Virtual Objects

Note that I declared an empty Start() function. This is needed because a
MonoBehaviour component without a Start or Update function cannot be
disabled (you'll see this for yourself if you remove Start from the code and look at
it in the Inspector window – you'll see that the Enable checkbox is missing).

2.	 The OnResizeObject function is the listener for the input action messages.
Because we specified the Action Type as Pass Through, there are no incoming
arguments to the function. Instead, we can read the current state of Touchscreen
to get the first and second finger touches. Then, we can pass those touch positions to
our TouchToResize function:

 public void OnResizeObject()

 {

 if (!enabled) return;

 if (EventSystem.current.
 IsPointerOverGameObject(0)) return;

 Touchscreen ts = Touchscreen.current;

 if (ts.touches[0].isInProgress &&
 ts.touches[1].isInProgress)

 {

 Vector2 pos =
 ts.touches[0].position.ReadValue();

 Vector2 pos1 =
 ts.touches[1].position.ReadValue();

 TouchToResize(pos, pos1);

 }

 else

 {

 previousDistance = 0;

 }

 }

Interacting to edit a picture 255

3.	 The TouchToResize algorithm is straightforward. It gets the distance between the
two finger touches (in screen pixels) and compares it against the previous distance.
Dividing the new distance by the previous distance gives us the percentage change,
which we can use to directly modify the transform scale. It seems to work pretty
well for me:

 void TouchToResize(Vector2 pos, Vector2 pos1)

 {

 float distance = Vector2.Distance(pos, pos1);

 if (previousDistance != 0)

 {

 float scale = transform.localScale.x;

 float scaleFactor = (distance /
 previousDistance) * pinchSpeed;

 scale *= scaleFactor;

 if (scale < minimumScale)

 scale = minimumScale;

 if (scale > maximumScale)

 scale = maximumScale;

 Vector3 localScale = transform.localScale;

 localScale.x = scale;

 localScale.y = scale;

 transform.localScale = localScale;

 }

 previousDistance = distance;

 }

}

256 Gallery: Editing Virtual Objects

Try it out. If you play the scene, create a picture, and begin editing it, you should be able
to use two fingers to resize the picture, pinching your fingers together to make it smaller
and un-pinching them apart to increase the picture's size. Here's a screen capture from my
phone with some pictures arranged on my dining room wall, all of which are various sizes:

Figure 7.7 – Virtual framed photos arranged on my dining room wall

In this section, we looked at how to directly interact with virtual objects. Using input
actions, we added features using the touchscreen to drag and move a picture on a wall, as
well as pinching to resize a picture.

We could improve this by adding a Cancel Edit feature that restores the picture to its
pre-edited state. One way to do this is to make a temporary copy of the object when it
enters edit mode, and then restore or discard it if the user cancels or saves their
changes, respectively.

Summary 257

Another feature worth considering is persisting the picture object arrangements between
sessions, so that the app saves your pictures when you exit the app and restores them
when you restart the app. This is an advanced topic that I will not cover in this book
since it is outside of Unity AR Foundation itself. Each provider has its own proprietary
solutions. If you're interested, take a look at ARCore Cloud Anchors, which is supported
by Unity ARCore Extensions (https://developers.google.com/ar/develop/
unity-arf/cloud-anchors/overview) and ARKit ARWorldMap (https://
developer.apple.com/documentation/arkit/arworldmap), as exposed
in the Unity ARKit XR Plugin (https://docs.unity3d.com/Packages/com.
unity.xr.arkit@4.0/api/UnityEngine.XR.ARKit.ARWorldMap.html).

This concludes our exploration of, and building, an AR photo gallery project.

Summary
In this chapter, you expanded on the AR gallery project we began in Chapter 6, Gallery:
Building an AR App. That project left us with the ability to place framed photos on our
walls. In this chapter, you added the ability to edit virtual objects in the scene.

You implemented the ability to select an existing virtual object in Main-mode, where the
selected object is highlighted and the app goes into EditPicture-mode. Here, there is an
edit menu with buttons for Replace Image, Replace Frame, Remove Picture, and Done
(return to Main-mode). The Replace Image feature displayed the same SelectImage
modal menu that is used when we're creating (adding) new pictures. We had to refactor
the code to make it reusable.

While placing and moving a picture on the wall, you implemented a feature to avoid
overlapping or colliding objects, automatically moving the picture away from the other
ones. After that, you implemented some direct interactions with the virtual objects by
using touch events to drag a picture to a new location. You also implemented pinching
to resize pictures on the wall. Finally, you learned how to use more Unity APIs from C#,
including collision trigger hooks and vector geometry.

In the next chapter, we'll begin a new project while using a different AR tracking
mechanism – tracked images – as we build a project for visualizing 3D data; namely, the
planets in our Solar System.

https://developers.google.com/ar/develop/unity-arf/cloud-anchors/overview
https://developers.google.com/ar/develop/unity-arf/cloud-anchors/overview
https://developer.apple.com/documentation/arkit/arworldmap
https://developer.apple.com/documentation/arkit/arworldmap
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit@4.0/api/UnityEngine.XR.ARKit.ARWorldMap.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit@4.0/api/UnityEngine.XR.ARKit.ARWorldMap.html

8
Planets: Tracking

Images
In this chapter, we will be using augmented reality for data visualization and education.
We're going to build a project where users can learn about the planets in our Solar System.
Suppose you have a children's science book on the Solar System with a companion mobile
app. On the page about planet Earth, for example, the reader can point their mobile device
at the picture on the page and a 3D rendering of the Earth will pop out of the page.

The AR mechanism we'll be using is known as image tracking. With image tracking, you
prepare a reference library of images that may be recognized and tracked in the real world
at runtime. When the user's device's camera detects one of these images, a virtual object
can be instantiated at the image location.

I have provided you with "planet cards," which have pictures and unique markers on them
for each planet that I created from free resources available on the web, for you to print
yourself and use with the app. For rendering the planets' spherical surface skins, we will be
using free texture images of the actual planets.

We will cover the following topics in this chapter:

•	 Understanding AR image tracking

•	 Specifying the Planets project and getting started

•	 Defining and tracking reference images

260 Planets: Tracking Images

•	 Creating and instantiating a virtual Earth prefab

•	 Rotating a planet on its axis

•	 Expanding the project with multiple planets

•	 Making a responsive UI

By the end of this chapter, you'll have a working app that detects images on the provided
planet cards, renders a 3D model of the given planet, and offers additional information
details about a planet.

Technical requirements
To implement the project in this chapter, you need Unity installed on your development
computer, connected to a mobile device that supports augmented reality applications (see
Chapter 1, Setting Up for AR Development, for instructions). We also assume that you have
the ARFramework template and all its prerequisites installed. See Chapter 5, Using the
AR User Framework, for more details. The completed project can be found in this book's
GitHub repository at https://github.com/PacktPublishing/Augmented-
Reality-with-Unity-AR-Foundation.

Understanding AR image tracking
Before we start building our project, let's take a moment to learn how AR image tracking
works. In this section, I'll introduce some of the basic principles behind image recognition
and tracking, and what makes some images better than others for this purpose.

As we know, the principles behind augmented reality involve using compute mechanisms
to recognize features in the real world, determine their position and orientation in a
3D space, instantiate virtual objects relative to and anchored within this 3D space, and
track the user as they move within this space. Modern devices can accomplish this
using their video cameras and other sensors built into the device to performing real-
time spatial mapping of the environment. A different approach is for the device to track
predetermined images. That is what we will use for the project in this chapter.

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation

Understanding AR image tracking 261

Augmented reality technology was born in the 1990s, where QR code-like marker images
were used for tracking. An example is shown in the following image:

Figure 8.1 – A basic AR marker

Marker images can be used for triggering and positioning virtual objects in the real world.
These simplistic yet visually distinct markers are easily detected, even by low-end devices.
Such markers are readily detectable because of their distinctive details, high contrast edges,
and an asymmetric shape – that is, it's an easily recognizable image with unambiguous top,
bottom, left, and right sides. In this way, the detection software can determine which marker
image is in view and the orientation of the camera relative to the marker in 3D space.

Taken to the next level, products such as Merge Cube (https://mergeedu.com/
cube) have markers on each of its six faces, just like a physical cube that you can hold
in your hand. Users can find companion apps with a wide gamut of games, learning, and
exploration experiences. Merge offers a Unity package for developers so that you can build
your own projects for it too. Merge Cube is depicted in the following image:

Figure 8.2 – Merge Cube provides a 3D tracking cube with markers on each face

https://mergeedu.com/cube
https://mergeedu.com/cube

262 Planets: Tracking Images

Markers can be combined with natural images to provide pleasing and informative yet
visually distinct images that also act as AR markers. You'll often see this in AR augmented
storybooks or even cereal boxes. This is the approach I have taken in this chapter.

While markers provide the highest reliability, they are not necessarily required for image
tracking. Ordinary photographic images can also be used. In AR lingo, these are referred
to as natural feature images. Images for tracking must have the same characteristics that
make markers reliable – distinctive details, high contrast edges, and an asymmetric shape.
Much has been written about the best practices for selecting images. For instance, the AR
Core developer guide (https://developers.google.com/ar/develop/java/
augmented-images/) contains additional tips about using reference images, including
the following:

•	 Use an image resolution of at least 300 x 300 pixels. However, a very high resolution
does not help with recognition.

•	 Color information is not used, so either color or grayscale images are just as good.

•	 Avoid images with a lot of geometric features, or too few.

•	 Avoid repeating patterns.

The AR Core SDK comes with an arcoreimg tool that can evaluate images and returns
a quality score between 0 and 100 for each image, where a score of at least 75 is
recommended. Likewise, Unity uses a similar tool when compiling the Image Reference
Library in your builds (we'll learn more about this later in this chapter).

Given this general understanding of using image tracking in augmented reality
applications, let's begin by defining a fun and interesting project – visualizing our Solar
System's planets.

Specifying the Planets project
We are going to build a planet information app that allows users to scan planet cards
to visualize a 3D model of each planet in the Solar System. Imagine this being part of a
trading card collection or a companion app to a children's science book. When the user
points the device's camera at one of the planet cards, they can see a 3D rendering of the
planet. Upon pressing an Info button, the user can get additional information about that
planet. In this section, I will define the general user experience flow, give you instructions
for preparing the planet cards for your own use, and help you collect assets that you'll use
in this project.

https://developers.google.com/ar/develop/java/augmented-images/
https://developers.google.com/ar/develop/java/augmented-images/

Specifying the Planets project 263

User experience flow
The general onboarding user workflow will play out as follows:

1.	 Startup-mode: The app will start, check the device for AR support, and ask for
camera permissions (OS-dependent). Once read, the app will go into Scan-mode.

2.	 Scan-mode: The user is prompted to aim the camera at an image for detection and
tracking. When at least one image is being tracked, the app goes into Main-mode.

3.	 Main-mode: This is where the app responds to new or updated tracked images and
allows the user to interact with the planet. When an image is tracked, it determines
which planet corresponds to the image and instantiates the planet's game object. If
tracking is lost, the app may go back to Scan-mode to prompt the user. If a different
image is tracked, the current planet is replaced with the new image's planet.

This workflow is a bit simpler than the ones we implemented in the previous chapters. In
that case, we needed the user to scan the environment for trackable planes before starting
Main-mode. The user was then asked to deliberately tap the screen to place a virtual object
in the scene. Furthermore, in the AR Gallery project, we added Edit-mode to modify
pictures that had been added by the user. Much of that is unnecessary in this project; the
process is more automated as we let the device detect an image and we instantiate a virtual
object in response.

Preparing the planet cards
For this project, we are using printed planet cards as marker images so that we can choose
a planet to visualize. You can find a PDF file that contains the cards in the project files for
this chapter (in the folder named Printables/). To prepare the cards for this project,
follow these steps:

1.	 Print out the PlanetCards.pdf file.
2.	 Then, cut the sheets into separate cards.
3.	 I suggest that you print on thick paper stock or mount the printouts on paperboard

to avoid warping, which may affect the software's ability to recognize the images at
runtime.

264 Planets: Tracking Images

The following photo shows getting these cards ready for use:

Figure 8.3 – Cutting the printed planet cards for this project

These cards were created from a combination of resources that can be found for free on
the web. I found the original flashcards on the Kids Flashcards website. Upon going to
https://kids-flashcards.com/en/free-printable/solar-system-
flashcards-in-english, I downloaded the Solar System flashcards free PDF file.

First, I attempted to use the flashcards as-is, but the pictures were not distinctive enough
to be detected individually. So, I decided to add ArUco markers to each one. ArUco is a
square marker with a wide black border and inner binary matrix that determines its ID
based on OpenCV (the Open Source Computer Vision library, which was developed at
the University of Cordoba, Spain; see https://docs.opencv.org/3.2.0/d5/dae/
tutorial_aruco_detection.html). I used the online ArUco marker generator at
https://chev.me/arucogen/ to make separate markers for each planet.

Then, I used Photoshop to combine the markers with the planet flashcards to make our
final planet cards for this project. (The Photoshop PSD file is also included with this
chapter's files on GitHub.)

Each planet card is also a separate PNG image. These have been provided for you in
the Image Library/ folder. Later in this chapter, we will create an image reference
library and add these images. The images are named with the pattern [planetname]-
MarkerCard.png; for example, Earth-MarkerCard.png. We'll take advantage of
this naming convention in our code.

When the app detects a planet card, the application will instantiate a model of the planet.
For this, we need texture images for the planet materials.

https://kids-flashcards.com/en/free-printable/solar-system-flashcards-in-english
https://kids-flashcards.com/en/free-printable/solar-system-flashcards-in-english
https://docs.opencv.org/3.2.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.2.0/d5/dae/tutorial_aruco_detection.html
https://chev.me/arucogen/

Getting started 265

Collecting planet textures and data
We need texture images to use as the planet skins of the spherical mesh for each planet.
The ones we're using I found at the interesting Solar System Scope project site (https://
www.solarsystemscope.com/). These are included with the files for this chapter
in this book's GitHub repository and can be downloaded from https://www.
solarsystemscope.com/textures/. That said, you can find alternative assets
in the Unity Asset Store (https://assetstore.unity.com/?q=solar%20
system&orderBy=1), including the classic Planet Earth Free package (https://
assetstore.unity.com/packages/3d/environments/sci-fi/planet-
earth-free-23399) for Earth itself, which includes cloud cover.

For additional metadata about the planets, I found the Planetary Fact Sheet on the NASA.
gov website (https://nssdc.gsfc.nasa.gov/planetary/factsheet/
index.html) and more details at https://nssdc.gsfc.nasa.gov/planetary/
planetfact.html. We could use some of these details directly while rendering and
animating our models, such as the planet diameter (km), rotation period (hours), and tilt
(obliquity to orbit in degrees).

With our planet cards, planet skin textures, and other planetary details in hand, we're
ready to start building the project.

Getting started
To begin, we'll create a new scene named PlanetsScene using the ARFramework
scene template. Follow these steps:

1.	 Select File | New Scene.
2.	 In the New Scene dialog box, select the ARFramework template.
3.	 Press Create.
4.	 Select File | Save As. Navigate to the Scenes/ folder in your Assets project,

name it PlanetsScene, and click Save.

The new AR scene already has the following set up:

•	 AR Session game object.

•	 AR Session Origin rig with the raycast manager and plane manager components.

•	 UI Canvas is a screen space canvas with child panels; that is, Startup UI, Scan UI,
Main UI, and NonAR UI. It also contains the UI Controller component script that
we wrote.

https://www.solarsystemscope.com/
https://www.solarsystemscope.com/
https://www.solarsystemscope.com/textures/
https://www.solarsystemscope.com/textures/
https://assetstore.unity.com/?q=solar%20system&orderBy=1
https://assetstore.unity.com/?q=solar%20system&orderBy=1
https://assetstore.unity.com/packages/3d/environments/sci-fi/planet-earth-free-23399
https://assetstore.unity.com/packages/3d/environments/sci-fi/planet-earth-free-23399
https://assetstore.unity.com/packages/3d/environments/sci-fi/planet-earth-free-23399
https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
https://nssdc.gsfc.nasa.gov/planetary/planetfact.html
https://nssdc.gsfc.nasa.gov/planetary/planetfact.html

266 Planets: Tracking Images

•	 Interaction Controller is a game object that contains the Interaction
Controller component script we wrote, which helps the app switch between
interaction modes, including the Startup, Scan, Main, and NonAR modes. It also
has a Player Input component that's been configured with the AR Input Actions
asset we created previously.

•	 The OnboardingUX prefab from the AR Foundation Demos project, which
provides AR session status and feature detection status messages, as well as
animated onboarding graphics prompts.

We can set the app title now, as follows:

1.	 In the Hierarchy window, unfold the UI Canvas object and unfold its child App
Title Panel.

2.	 Select the Title Text object.
3.	 In its Inspector window, change its text content to Planet Explorer.

Using this scene as a basis, we will replace the AR trackable components with an AR
Tracked Image Manager one.

Tracking reference images
Our starter scene includes an AR Session Origin with components for Player Input and
AR Raycast Manager. It also has a component we do not need in this project, for detecting
and tracking planes, which we'll replace with AR Tracked Image Manager instead.
Documentation on AR Tracked Image Manager can be found at https://docs.
unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/
tracked-image-manager.html. Then, we'll create an image reference library for our
planet card images.

Adding AR Tracked Image Manager
To configure the AR Session to track images, perform the following steps:

1.	 In the Hierarchy window, select the AR Session Origin game object.
2.	 In the Inspector window, use the 3-dot context menu (or right-click) on AR Plane

Manager and select Remove Component.

mailto:https://docs. unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ tracked-image-manager.html
mailto:https://docs. unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ tracked-image-manager.html
mailto:https://docs. unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ tracked-image-manager.html

Tracking reference images 267

3.	 Using the Add Component button, search for AR and add an AR Tracked Image
Manager component.

You'll notice that there is a Serialized Library slot on the component for the reference
image library. We'll create that next.

Creating a reference image library
The reference image library contains records for each of the images that the application
will be able to detect and track in the real world. In our case, we're going to add the planet
card images. In the assets provided in the GitHub repository for this book, there is a folder
named Image Library/ that already contains the planet card images we'll be adding to
the library. We will start with just the Earth card here; we will add the other planets later
in this chapter.

We can create the library by performing the following steps:

1.	 In the Project window, find or create a folder named Image Library/.
2.	 Right-click on the Image Library/ folder and select Create | XR | Reference

Image Library.
3.	 With the ReferenceImageLibrary assets selected, in the Inspector window, click

Add Image.
4.	 Drag the Earth-MarkerCard image from the Project window onto the square

image texture slot.
5.	 Check the Specify Size checkbox.
6.	 If you printed the planet cards from the PDF provided, at scale, the width will be

about 8 cm, or 0.08 meters. Otherwise, use a ruler to measure the Earth planet card
you printed.

7.	 Then, enter the width (0.08) in the X field. The Y value will be automatically
updated based on the PNG image's pixel dimensions.

8.	 Check the Keep Texture At Runtime checkbox.

268 Planets: Tracking Images

The resulting Reference Image Library settings are shown in the following screenshot:

Figure 8.4 – Reference Image Library with the Earth added

Now, we can update the AR Tracked Image Manager component, as follows:

1.	 In the Hierarchy window, select the AR Session Origin object.
2.	 Drag the ReferenceImageLibrary asset from the Project window onto the

Serialized Library slot of AR Tracked Image Manager.
3.	 Temporarily, while we get this project set up, we'll instantiate an existing prefab

object when the image is detected.

For example, drag the AR Placed Cube prefab from the ARF-samples/
Prefabs/ folder onto the Tracked Image Prefab slot (or another similar object).

The AR Tracked Image Manager component should now look as follows:

Figure 8.5 – The AR Tracked Image Manager with the reference image library assigned

You now have an AR scene that recognizes and tracks images that have been defined in a
reference library. Currently, the library only contains the Earth-MarkerCard image. When
the image is recognized while running the app, a simple cube will be placed on the Earth
planet card.

We're almost ready to try this out. But first, let's configure the user framework's UI
and modes.

Configuring the user interaction modes and UI 269

Configuring the user interaction modes and UI
The scene template, ARFramework, where we started provides a simple framework for
enabling user interaction modes and displaying the corresponding UI panels for a mode.
This project will start in Startup-mode while the AR Session is initializing so that we can
verify that the device supports AR. Then, it will transition to Scan-mode, where it will try
to find one of the reference images. Once found, it will transition to Main-mode, where
we can support additional user interactions with the app's content.

Scanning for reference images
In Scan-mode, we'll display an instructional graphic prompting the user to point the
camera at a planet card with a planet and marker image. Perform the following steps to
configure this:

1.	 In the Hierarchy window, unfold the UI Canvas game object and unfold its child
Scan UI. Select the child Animated Prompt object.

2.	 In the Inspector window set Animated Prompt | Instruction to Find An Image.

This will now play the Find Image Clip we defined on the OnboardingUX object, which
is provided by the Unity Onboarding UX assets and is already present in our scene
hierarchy. What you can expect is shown in the following screen capture. On the left
is Startup-mode, where the AR Session is being initialized. On the right is Scan-mode,
where the user is prompted to find an image (you can't see the video feed because I'm
covering the camera to make the prompt more visible in the screen capture).

Figure 8.6 – Screen captures of Startup mode (left) and Scan mode (right)

270 Planets: Tracking Images

Now, we need to set up the Scan-mode's script to know when an image has
been found and transition to Main-mode. We'll replace the default ScanMode
script with a similar one that references ARTrackedImageManager instead of
ARTrackedPlaneManager, as follows:

1.	 In the Project window, create a new C# script in your Scripts/ folder by right-
clicking and selecting Create | C# Script. Name the new file ImageScanMode.

2.	 Edit ImageScanMode and replace its content, as follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class ImageScanMode : MonoBehaviour

{

 [SerializeField] ARTrackedImageManager imageManager;

 private void OnEnable()

 {

 UIController.ShowUI("Scan");

 }

 void Update()

 {

 if (imageManager.trackables.count > 0)

 {

 InteractionController.EnableMode("Main");

 }

 }

}

3.	 Save the script. Then, back in Unity, in the Hierarchy window, select the Scan Mode
game object (under Interaction Controller).

4.	 In the Inspector window, remove the original Scan Mode component using the
3-dot context menu and selecting Remove Component.

Configuring the user interaction modes and UI 271

5.	 Drag the ImageScanMode script onto the Scan Mode object, adding it as a
new component.

6.	 From the Hierarchy window, drag the AR Session Origin object into the Inspector
window and drop it onto the Image Scan Mode | Image Manager slot.

The component will now look as follows:

Figure 8.7 – The Image Scan Mode component

Currently, we have created a new scene using the ARFramework template and modified it
to use AR Tracked Image Manager and prompt the user to scan for an image accordingly.
When an image is detected (for example, the Earth-MarkerCard), a generic game object
will be instantiated (for example, the AR Placed Cube prefab). Let's test what we have
accomplished so far on the target device.

Build and run
To build and run the scene on your target device, perform the following steps:

1.	 Ensure you've saved the work you've done on the current scene by going to
File | Save.

2.	 Select File | Build Settings to open the Build Settings window.
3.	 Click Add Open Scenes to add the current scene to the Scenes In Build list (if it's

not already present).
4.	 Uncheck all but the current scene, PlanetsScene, from the list.
5.	 Then, click Build And Run to build the project.

272 Planets: Tracking Images

When the app launches, point your device's camera at the printed Earth planet card. Your
virtual cube should get instantiated at that location, as shown in the following screen
capture from my phone:

Figure 8.8 – The Earth card has been detected, and the cube has been instantiated

We now have a basic AR scene with image detection set up to recognize the Earth planet
card and instantiate a sample prefab at that location. Now, let's make a planet Earth model
that we can use instead of this silly cube.

Creating and instantiating a virtual Earth prefab 273

Creating and instantiating a virtual Earth
prefab
In this section, we will create prefab game objects for each of the planets. Since each of the
planets has similar behaviors (for example, they rotate), we'll first create a generic Planet
Prefab, and then make each specific planet a variant of that one. In Unity, prefab variants
allow you to define a set of predefined variations of prefabs, such as our planet one (see
https://docs.unity3d.com/Manual/PrefabVariants.html). We'll write a
Planet script that animates the planet's rotation and handles other behavior. Each planet
will have its own "skin" defined by a material, along with a base texture map, which we
downloaded earlier from the web.

In this section, we'll create a generic Planet Prefab object, create an Earth Prefab as a
variant, add planet metadata by writing a Planet component script, and implement a
planet rotation animation.

Creating the generic Planet Prefab
The Planet Prefab contains a 3D sphere that gets rendered with each planet's texture
image. Planets spin along their axes, so we'll set up a hierarchy with an Incline transform
that defines this incline axis. Follow these steps:

1.	 In your Project window, right-click and select Create | Prefab (create the folder first
if necessary). Name it Planet Prefab.

2.	 Double-click (or select Open Prefab in the Inspector window) to open the prefab
for editing.

3.	 From the main menu, select GameObject | Create Empty and name it Incline.
4.	 Right-click the Incline game object in the Hierarchy window and select 3D Object

| Sphere. Name it Planet.
5.	 It will be useful to have any planets we instantiate in the scene on a specific layer.

I will name this layer PlacedObjects. (I introduced and discussed layers in a
previous chapter). With its root Planet Prefab object selected, in the top right of its
Inspector window, click the Layer drop-down list and select PlacedObjects.

If the PlacedObjects layer doesn't exist, select Add Layer to open the
Layers manager window. Add the name PlacedObjects to one of the empty
slots. In the Hierarchy window, click the FramedPhoto Prefab object to get
back to its Inspector window. Again, using the Layers drop-down list, select
PlacedObjects.

https://docs.unity3d.com/Manual/PrefabVariants.html

274 Planets: Tracking Images

You will then be prompted with the question, Do you want to set layer to
PlacedObjects for all child objects as well? Click Yes, Change Children.

6.	 Save the prefab.

This is very simplistic right now (only a sphere child object is being parented by an Incline
transform), but it will serve as a template for each planet prefab that we add. The Planet
Prefab hierarchy is shown in the following screenshot:

Figure 8.9 – The Planet Prefab hierarchy

Each planet will be rendered with a skin representing an actual view of that planet. Before
creating the Earth prefab, let's take a moment to understand render materials and the
texture images we are going to use.

Understanding equirectangular images
When Unity renders a 3D model, it starts with a 3D mesh that describes the geometry.
Much like a fishing net, a mesh is a collection of vertices and vectors, with the vectors
connecting these vertices, organized as triangles (or sometimes four-sided quads) that
define the surface of the mesh. The following illustration shows a wireframe view of a
sphere mesh on the left. On the right is a rendered view of the sphere, with a globe texture
mapped onto its 3D surface:

Figure 8.10 – Sphere mesh (left) and rendered sphere with texture (right)

Creating and instantiating a virtual Earth prefab 275

A texture image is just a 2D image file (for example, a PNG file) that is computationally
mapped onto the 3D mesh's surface when it is rendered. Think of unraveling a globe as a 2D
map, like cartographers have been doing for centuries. A common 2D projection is known
as equirectangular, where the center (equator) is at the correct scale and the image gets
increasingly stretched as it approaches the top and bottom poles. The following image shows
the equirectangular texture of the preceding globe (illustration by Stefan Kuhn):

Figure 8.11 – Equirectangular texture that defines the skin of a sphere

Information – Equirectangular Images Are Also Used in 360-Degree Media
and VR
Equirectangular images are also known as 360-degree images and used in
virtual reality applications. In VR, the image is effectively mapped to the inside
of a sphere, where you're viewing from the inside rather than the outside of a
globe!

For our project, we have texture images for each of the planets. The Mars one, for example,
is as follows:

Figure 8.12 – Texture map image for Mars

276 Planets: Tracking Images

To create a prefab for a specific planet, such as Earth, we'll need to create a material that
uses the Earth texture image. We'll build that now.

Creating the Earth prefab
The Earth prefab will be a variant of the Planet Prefab, with its own Earth Material. Create
it by performing the following steps:

1.	 In the Project window, right-click Planet Prefab and select Create | Prefab Variant.
Name the new asset Earth Prefab.

2.	 Double-click Earth Prefab (or select Open Prefab in the Inspector window).
3.	 In the Project window, right-click in your Materials/ folder (create one if

necessary) and select Create | Material. Rename it Earth Material.
4.	 Drag Earth Material from the Project window and drop it onto the Planet

game object.
5.	 Locate the Earth texture image (for example, in Planet Textures/earth) in

the Project Assets and drag it onto the Surface Inputs | Base Map texture chip. The
following screenshot shows Earth Material in the Inspector window:

Figure 8.13 – Earth Material with the Base Map texture defined

6.	 Let's pick a default size for our planet when added to the scene. Unless you want to
place a 1-meter diameter planet into your scene (!), we need to set its Scale.

Select the Planet child object in the Hierarchy window.
7.	 In its Inspector window, set Transform | Scale | X, Y Z to (0.1, 0.1, 0.1).

Creating and instantiating a virtual Earth prefab 277

8.	 Likewise, to rest the planet on the image's surface, we could set its Y position to 0.05.
But to let it hover a little above, we will set Transform | Position | Y to 0.075.

9.	 Save the prefab and exit back to the Scene hierarchy.

Use this prefab instead of the AR Placed Cube prefab in the AR Tracked Image Manager
component on the AR Session Origin object. Later, we'll manage this more correctly using
a script but for now, let's just try it out:

1.	 In the Hierarchy window, select the AR Session Origin game object.
2.	 Drag Earth Prefab from the Project window into the Inspector window and drop

it into the AR Tracked Image Manager | Tracked Image Prefab slot.
3.	 Build and Run the scene.

This time, when you point the camera at the Earth planet card, the Earth prefab will
appear, as shown in the following screen capture:

Figure 8.14 – While tracking the Earth planet card, the app instantiates an Earth prefab

This looks pretty nice. The prefab could also include other information about the planet.
We'll look at how to do this next.

278 Planets: Tracking Images

Adding planet metadata
Each planet prefab can include additional information about that planet. We can capture
this in the Planet script of the prefab, as follows:

1.	 From the Project window, open Planet Prefab for editing.
2.	 In the Project window's Scripts/ folder, create a new C# script named Planet.
3.	 Drag the Planet script onto the root Planet Prefab game object, adding it as

a component.
4.	 Open the Planet script in your code editor and write the following:

using UnityEngine;

public class Planet : MonoBehaviour

{

 public string planetName;

 public string description;

}

5.	 Save the script. Then, in Unity, Save the prefab.

Although we have made all these changes to the Planet Prefab, the Earth Prefab
inherits everything because it is a prefab variant.

6.	 Now, open Earth Prefab for editing.
7.	 In the Planet Name field, enter Earth.
8.	 In the Description field, enter a text description that we'll use later in the project,

such as Earth is the third planet from the Sun and the only
astronomical object known to harbor and support life.

9.	 Save the prefab.

We also can ascribe behaviors to the planet prefab, such as rotation about its axis.

Creating and instantiating a virtual Earth prefab 279

Animating the planet's rotation
Planets spin. Some faster than others. Mercury just barely – it rotates once every 59
Earth days, while it orbits the Sun in 88 Earth days! And a planet's axis of rotation is not
perfectly vertical (relative to its orbit around the Sun). Earth, for example, is tilted by 23.4
degrees, while Venus rotates on its side at 177.4 degrees! OK, enough science trivia – let's
animate our Earth model. We're going to add a Planet behavior script to the Planet
Prefab that rotates the planet along its rotation axis. Follow these steps to do so:

1.	 Open the Planet script in your code editor and add the following code:

 [SerializeField] private float inclineDegrees =
 23.4f;

 [SerializeField] private float rotationPeriodHours =
 24f;

 [SerializeField] private Transform incline;

 [SerializeField] private Transform planet;

 public float animationHoursPerSecond = 1.0f;

 void Start()

 {

 incline.Rotate(0f, 0f, inclineDegrees);

 }

 void Update()

 {

 float speed =
 rotationPeriodHours * animationHoursPerSecond;

 planet.Rotate(0f, speed * Time.deltaTime, 0f);

 }

At the top of the class, we will declare variables for inclineDegrees (Earth is 23.4)
and rotationPeriodHours (Earth is 24). We will also define references to the prefab's
incline and planet child objects.

There's also a public animationHoursPerSecond, which sets the animation speed.
I've initialized it to 1.0, which means the Earth will complete one rotation in 24 seconds.

The Start() function sets up the Incline angle by rotating along the Z-axis. This only
needs to be done once.

280 Planets: Tracking Images

The Update() function rotates the planet about its local Y-axis. Since the planet is
parented by the Incline transform, it appears to rotate about the tilted incline axis.
Multiplying the speed by Time.deltaTime each Update is a common Unity idiom
for calculating how an object's Transform changes from one frame to the next, where
deltaTime is the fraction of a second since the previous Update.

After saving the script, back in Unity, do the following:

1.	 From the Project window, open Planet Prefab for editing.
2.	 Ensure the root Plane Prefab game object is selected in the Hierarchy window.
3.	 Drag the Incline game object from the Hierarchy window into the Inspector

window before dropping it onto the Planet | Incline slot.
4.	 Drag the Planet object onto the Planet | Planet slot.

The Planet component will now look like this in the Inspector window:

Figure 8.15 – The Planet component on the Planet Prefab

Please now Build and Run the project. When the Earth is instantiated, it will be tilted and
rotating at the rate of one full rotation every 24 seconds.

At this point, we have a basic AR scene with image tracking. It lets the AR Tracked Image
Manager instantiate our Earth Prefab directly when an image is detected. Currently, it
doesn't distinguish what image is detected (supposing you had multiple images in the
reference library) and always instantiates an Earth Prefab. We need to make the app more
robust, and we can do this from the Main-mode.

Building the app's Main-mode 281

Building the app's Main-mode
As you now know, AR Tracked Image Manager (on the AR Session Origin game object)
performs 2D image tracking. But so far, we've being using the AR Tracked Image Manager
incorrectly! We populated its Tracked Image Prefab property with our Earth Prefab.
That's a no-no. According to the Unity documentation, "ARTrackedImageManager
has a "Tracked Image Prefab" field; however, this is not intended for content" (https://
docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/
manual/tracked-image-manager.html). Currently, when any reference image is
recognized, the Earth Prefab will always be instantiated.

Rather, when the app is in Main-mode, we should determine which planet card image is
being tracked and instantiate the corresponding planet prefab for that card. So far, we only
have one planet, Earth, in the image reference library. However, later in this chapter, we'll
expand the project for all the planets. We can start by removing the prefab from the AR
Tracked Image Manager component, as follows:

1.	 In the Hierarchy window, select the AR Session Origin game object.
2.	 In the Inspector window, delete the contents of the AR Tracked Image Manager |

Tracked Image Prefab slot, as shown in the following screenshot:

Figure 8.16 – AR Tracked Image Manager with the default prefab field cleared

When no prefab is specified in AR Tracked Image Manager, an empty game object is
created with an ARTrackedImage component on it. Now, we can instantiate the prefab
as a child of that.

In our scene framework, the app starts in Startup-mode, then goes into Scan-mode once
the AR Session is ready. When Scan-mode detects a reference image, it goes into Main-
mode by enabling the Main Mode game object under Interaction Controller. This
displays the Main UI panel. Let's build this panel now.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/tracked-image-manager.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/tracked-image-manager.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/tracked-image-manager.html

282 Planets: Tracking Images

Writing the PlanetsMainMode script
In this section, we will write a new PlanetsMainMode script to replace the default
MainMode one provided in the default scene template. Like other modes in our
framework, it will display the appropriate UI panel when enabled. Then, when an image is
tracked, it will find the corresponding planet prefab and instantiate it.

The script needs to figure out which image the AR software found and decide which
prefab to instantiate as a child of the tracked image. In our case, we'll use the name of the
detected image file to determine which planet card is recognized (by design, each card
image is prefixed with the planet's name; for example, Earth-MarkerCard). The script
will implement a serializable dictionary we can use to look up the planet prefab for each
planet name, using the Serialized Dictionary Lite Asset package (you already have this
package installed because ARFramework also requires it. See https://assetstore.
unity.com/packages/tools/utilities/serialized-dictionary-
lite-110992 for more information).

Begin by performing the following steps:

1.	 In your Project Scripts/ folder, create a new C# script named
PlanetsMainMode.

2.	 In the Hierarchy window, select the Main Mode game object (under
Interaction Controller).

3.	 In its Inspector window, remove the default Main Mode component using the
3-dot context menu and selecting Remove Component.

4.	 Drag the PlanetMainMode script from the Project window onto the Main Mode
object, adding it as a new component.

5.	 Double-click the PlanetMainMode script to open it for editing.
6.	 Begin by adding the following using assembly declarations at the top of the file:

using UnityEngine;

using RotaryHeart.Lib.SerializableDictionary;

using UnityEngine.XR.ARFoundation;

using TMPro;

using UnityEngine.UI;

https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992
https://assetstore.unity.com/packages/tools/utilities/serialized-dictionary-lite-110992

Building the app's Main-mode 283

7.	 When an image is tracked, we need to find which planet prefab to instantiate. At
the top of the file, define a PlanetPrefabDictionary as follows, and declare a
planetPrefab variable for it:

[System.Serializable]

public class PlanetPrefabDictionary :
SerializableDictionaryBase<string, GameObject> { }

public class PlanetsMainMode : MonoBehaviour

{

 [SerializeField] PlanetPrefabDictionary
 planetPrefabs;

8.	 When this mode is enabled, similar to the original MainMode script, we'll show the
Main UI panel:

 private void OnEnable()

 {

 UIController.ShowUI("Main");

 }

9.	 Likewise, we'll enter Main-mode after Scan-mode has determined it has started
tracking an image. So, OnEnable should also instantiate planets for the tracked
images. Add a reference to imageManager at the top of the class:

 [SerializeField] ARTrackedImageManager imageManager;

Then, update OnEnable:
 void OnEnable()

 {

 UIController.ShowUI("Main");

 foreach (ARTrackedImage image in
 imageManager.trackables)

 {

 InstantiatePlanet(image);

 }

 }

This loops through the trackable images and calls InstantiatePlanet for
each one.

284 Planets: Tracking Images

10.	 Implement InstantiatePlanet, as follows:

 void InstantiatePlanet(ARTrackedImage image)

 {

 string name =
 image.referenceImage.name.Split('-')[0];

 if (image.transform.childCount == 0)

 {

 GameObject planet =
 Instantiate(planetPrefabs[name]);

 planet.transform.SetParent(image.transform,
 false);

 }

 else

 {

 Debug.Log($"{name} already instantiated");

 }

 }

The InstantiatePlanet function determines the planet's name from the
tracked image filename (for example, Earth-MarkerImage) by assuming the
images follow our naming convention. It makes sure we don't already have the
planet object in the scene. If not, the planet prefab is instantiated and parented
to the tracked image object. (We pass false as a second parameter so that the
planet is positioned relative to the tracked image transform. See https://docs.
unity3d.com/ScriptReference/Transform.SetParent.html.)

11.	 Save the script.
12.	 Back in Unity, make sure you have the Main Mode game object selected in the

Hierarchy window.
13.	 Drag the AR Session Origin object from the Hierarchy window into the Inspector

window, dropping it onto the Image Manager slot.
14.	 In the Inspector window, click the + button at the bottom right of the Planets Main

Mode | Planet Prefabs list.

https://docs.unity3d.com/ScriptReference/Transform.SetParent.html
https://docs.unity3d.com/ScriptReference/Transform.SetParent.html

Expanding the project with multiple planets 285

15.	 Type the word Earth into the Id slot.
16.	 Unfold the item and, from the Hierarchy window, drag the Earth Prefab object on

the Value slot in the Inspector window.
17.	 Use File | Save to save your work.

If you Build and Run now, the app will behave much the same as it did before – after Scan-
mode detects an image, it enters Main-mode. But instead of AR Tracked Image Manager
instantiating the Earth Prefab, instantiation is performed in PlanetsMainMode when
it is enabled. Now, the code is ready to detect different planet card images and instantiate
different corresponding planet prefabs. We will start by adding Mars.

Expanding the project with multiple planets
To add another planet to the project, we need to add its planet card image to the Reference
Image Library, create its planet prefab, including a material for rendering the planet skin,
and add the reference to the planetPrefabs list in PlanetsMainMode. Then, we'll
update the script to handle tracking multiple planets. Let's walk through the steps for
adding Mars.

Adding the planet card image to the Reference Image
Library
Perform the following steps to add Mars to our Reference Image Library:

1.	 Locate and select your ReferenceImgeLibrary asset in the Project window. (If you've
been following along, then it should be located in the Image Library/ folder.)

2.	 In its Inspector window, click Add Image.
3.	 Locate and drag the Mars-MarkerCard image from the Project window and drop

it onto the empty image Texture slot in the Inspector window.
4.	 Check the Specify Size checkbox and enter the same Physical Size | X value you

used for the Earth one. Mine measures at 0.08 meters (8 cm).

286 Planets: Tracking Images

5.	 Also, check the Keep Texture At Runtime checkbox.

The Reference Image Library should now look as follows:

Figure 8.17 – Reference Image Library with the Mars-MarkerCard image added

Next, we'll create the Mars Prefab and material.

Creating the planet prefab
To create the planet prefab, we'll copy and modify the Earth Prefab assets. Perform the
following steps:

1.	 In the Project window, locate the Earth Prefab asset (this will probably be in your
Prefabs/ folder).

2.	 Select Edit | Duplicate (or use Ctrl-D on the keyboard) to duplicate it. Rename the
copy Mars Prefab.

3.	 Open Mars Prefab for editing. Select the child Planet game object.
4.	 In the Project window, right-click inside your Materials/ folder and select

Create | Material. Name it Mars Material.
5.	 Drag Mars Material onto the Planet object.
6.	 In the Project window, locate the mars texture file (in the Planet Textures/

folder) and drag it onto the Mars Material | Base Map texture slot.

Expanding the project with multiple planets 287

The Mars Prefab Planet should now look as follows:

Figure 8.18 – Mars Prefab with its Planet set to the Mars Material

7.	 Next, we'll set the Mars Planet metadata. In the Hierarchy window, select the root
Mars Prefab game object.

8.	 In the Inspector window, change the Planet component's parameters; that is,
Planet Name: Mars; Incline Degrees: 25.2; Rotation Period Hours: 24.7.
For its Description, you can add something similar to Mars is the fourth
planet from the Sun and the second-smallest planet in the
Solar System.

9.	 Save the prefab and return to the scene Hierarchy (using the < button at the top left
of the Hierarchy window).

Now, we can add the prefab to the Main-mode Planet Prefabs dictionary, as follows:

1.	 In the scene Hierarchy, select the Main Mode game object (under Interaction
Controller).

2.	 In the Inspector window, click the + button at the bottom right of the Planets Main
Mode | Planet Prefabs list.

3.	 Type the word Mars into the Id slot.
4.	 Unfold the item and, from the Hierarchy window, drag the Mars Prefab object onto

the Value slot in the Inspector window.

288 Planets: Tracking Images

The Planets Main Mode component should now look as follows:

Figure 8.19 – The Planets Main Mode component's Planet Prefabs dictionary with Mars added

If you Build and Run now, when in Scan-mode, point the camera at your Mars planet
card. The Mars 3D object will be added to the scene, rotating in all its glory!

Unfortunately, after doing this, if you move the camera to scan the Earth planet card,
nothing will happen. Let's fix that.

Responding to detected images
Your scripts can subscribe to events so that they're notified when an image
is being tracked, updated, or removed. Specifically, we can implement an
OnTrackedImageChanged function to handle these events. We can use this in the
PlanetsMainMode script, as follows:

1.	 Open the PlanetsMainMode script for editing again and add the following code:

 void OnTrackedImageChanged
 (ARTrackedImagesChangedEventArgs eventArgs)

 {

 foreach (ARTrackedImage newImage in
 eventArgs.added)

 {

 InstantiatePlanet(newImage);

 }

 }

Expanding the project with multiple planets 289

2.	 Add the following line to your OnEnable function, adding a listener to
imageManager:

 imageManager.trackedImagesChanged +=
 OnTrackedImageChanged;

3.	 Likewise, remove the listener in OnDisable:

 void OnDisable()

 {

 imageManager.trackedImagesChanged -=
 OnTrackedImageChanged;

 }

When ARTrackedImageManager detects a new image, the Main-mode script
will kick in. It contains a listener for the events and will call InstantiatePlanet
for any newly tracked images.

4.	 If the app completely loses image tracking, we should go back to Scan-mode and
display its instructional graphic, prompting the user to find a reference image. Add
this check to Update, as follows:

 void Update()

 {

 if (imageManager.trackables.count == 0)

 {

 InteractionController.EnableMode("Scan");

 }

 }

Tip – Tracking the State of Individual Trackables
AR Foundation also provides you with the current tracking state of each
trackable image individually. Given a trackable image (ARTRackedImage),
you can check its trackingState for Tracking – image is actively
tracking, Limited – image is being tracked but not reliably, or None –
the image is not being tracked. See https://docs.unity3d.com/
Packages/com.unity.xr.arfoundation@4.1/manual/
tracked-image-manager.html#tracking-state. In this
project, we will only go back to Scan mode when no images are being tracked,
so we don't necessarily need this extra level of status monitoring.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/tracked-image-manager.html#tracking-state
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/tracked-image-manager.html#tracking-state
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/tracked-image-manager.html#tracking-state

290 Planets: Tracking Images

OK – this is getting pretty robust. Build and Run the project again, this time scanning
either (or both) the Earth and Mars planet cards. We've got planets! The following screen
capture shows the app running, with the addition of the information UI at the bottom of
the screen, which we will add in the next section:

Figure 8.20 – Earth and Mars rendered at runtime

Go ahead and add the rest of the planets to your project by following these same steps. As
we mentioned earlier in this chapter, referencing the NASA data provided at https://
nssdc.gsfc.nasa.gov/planetary/factsheet/index.html, use their Length
of Day row for our Rotation Period Hours parameter, and their Obliquity to Orbit for our
Incline Degrees parameter. You'll notice that some planets rotate imperceptibly slowly
(for example, Venus has 2,802-hour days) and spin in a direction opposite to Earth (Venus
and Uranus have negative rotation periods), whereas Jupiter and Saturn rotate more than
twice as fast as Earth (9.9 and 10.7 hours per day, respectively). The Planet script already
includes an animation speed scalar, animationHoursPerSecond, that you can use to
modify the rotation rates that are visualized in the app.

Now that our application supports multiple planets, you might want to tell the user more
about the specific planet that they are looking at. Let's add this capability to Main-mode so
that it responsively updates the UI.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html

Making a responsive UI 291

Making a responsive UI
In this section, we'll add an info panel to the bottom of the screen (as shown in the
preceding screen capture). When you point the camera at one planet or another, we'll
show the planet's name, as well as an Info button, which will cause a text box to appear
that contains more information about that planet.

Creating the Main-mode UI
When the app is in Main-mode, the Main UI panel is displayed. On this panel, we'll show
the name of the current planet and an Info button for the user to press when they want
more details about that planet. Perform the following steps:

1.	 In the Hierarchy window, unfold the UI Canvas object and unfold its child Main
UI object.

2.	 The default child text in the panel is a temporary placeholder, so we can remove it.
Right-click the child Text object and select Delete.

3.	 Create a subpanel by right-clicking on Main UI and selecting UI | Panel. Rename
it Info Panel.

4.	 Use Anchor Presets to set Bottom-Stretch. Then, use Shift + Alt + Bottom-
Stretch to make a bottom panel. Then, set its Rect Transform | Height to 175.

5.	 I set my background Image | Color to opaque white with Alpha: 255.
6.	 Create a text element for the planet name. Right-click Info Panel and select UI |

Text – TextMeshPro. Rename the object Planet Name Text.
7.	 On the Planet Name Text TextMeshPro – Text component's Text Input, set the

content with a temporary string such as [Planet name].
8.	 Set the text properties; for example, Anchor Presets: Stretch-Stretch (and Shift +

Alt + Stretch-Stretch); Text Align: Left, Middle; Rect Transform | Left: 50; Text
Vertex Color: black; Font Size: 72.

9.	 Create an Info button. Right-click Info Panel and select UI | Button –
TextMeshPro. Rename it Info Button.

10.	 Set the button properties; for example, Anchor Presets: Right-Middle (and Shift
+ Alt + Right-Middle); Width and Height: 150, 150; Pos X: -20.

11.	 Unfold Info Button. On its child Text object, set Top: -50 and its text content to
Info.

12.	 Right-click Info Button and select UI | Text – TextMeshPro. On the new text
element, set its text value to a question mark, ?, Font Size to 72, Color to black,
Alignment to Center, Middle, and Pos Y to -15.

292 Planets: Tracking Images

13.	 We're going to use this button to toggle a details panel on and off. So, let's replace
its Button component with a Toggle instead. With the Info Button object selected
in the Hierarchy window, in the Inspector window, remove the Button component
using the 3-dot context menu and selecting Remove Component.

14.	 Select Add Component, search for toggle, and add a Toggle component.

My main Info Panel now looks as follows:

Figure 8.21 – Main UI's Info Panel with Planet Name Text and an Info Button

The Planet Name Text's content will be filled in at runtime. Let's add that code now.

Pointing the camera to show information
The plan is that with one or more virtual planets instantiated in the scene, the user can
point the camera at a planet so that it displays the planet's name in the Info Panel. This can
be implemented using a Physics Raycast. (Raycasts were introduced and explained
in the previous chapters. See https://docs.unity3d.com/ScriptReference/
Physics.Raycast.html). Recall that at the beginning of this chapter, we put the
Planet Prefab on a layer named PlacedObjects. We'll make use of that here.

Make the following changes to the PlanetsMainMode script:

1.	 Ensure the script file contains the following assembly references:

using TMPro;

using UnityEngine.UI;

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Making a responsive UI 293

2.	 At the top of the class, declare and initialize references to the AR camera and
layerMask variables, as follows:

 Camera;

 int layerMask;

 void Start()

 {

 camera = Camera.main;

 layerMask =
 1 << LayerMask.NameToLayer("PlacedObjects");

 }

3.	 Also, add references to the planetName and infoButton UI elements in the
Info Panel:

 [SerializeField] TMP_Text planetName;

 [SerializeField] Toggle infoButton;

4.	 We can initialize the UI settings when the mode is enabled. Please add the
following lines to the OnEnable function:

 planetName.text = "";

 infoButton.interactable = false;

5.	 Then, add the following highlighted code to the Update function:

 void Update()

 {

 if (imageManager.trackables.count == 0)

 {

 InteractionController.EnableMode("Scan");

 }

 else

 {

 Ray = new Ray(camera.transform.position,
 camera.transform.forward);

 RaycastHit hit;

 if (Physics.Raycast(ray, out hit,
 Mathf.Infinity, layerMask))

294 Planets: Tracking Images

 {

 Planet = hit.collider.
 GetComponentInParent<Planet>();

 planetName.text = planet.planetName;

 infoButton.interactable = true;

 }

 else

 {

 planetName.text = "";

 infoButton.interactable = false;

 }

 }

 }

6.	 Save the script. Back in Unity, select the Main Mode object in the Hierarchy window.
7.	 Drag the Planet Name Text game object from the Hierarchy window (under UI

Canvas / Main UI / Info Panel) into the Planets Main Mode | Planet Name slot.
8.	 Drag the Info Button object onto the Info Button slot.

Go ahead and Build and Run the project one more time. While viewing one or more
planets, as you point the device's camera at one of them, the planet's name will be shown
in the Info Panel at the bottom of the screen.

Lastly, let's set up the Info Button and description display.

Displaying information details
When the user is pointing their camera at a virtual 3D planet in the scene, we show the
name of the planet in the Info Panel. When the user clicks the Info button, we want to
show more information about the planet, such as its description text. Let's add a text panel
for that now by performing the following steps:

1.	 In the Hierarchy window, select the Main UI game object (under UI Canvas) and
right-click and select UI | Panel. Rename it Details Panel.

2.	 It has already been set to Stretch-Stretch, which is what we want. But let's adjust its
size. Set Left: 30, Right: 30, Top: 150, and Bottom: 200.

3.	 Right-click Details Panel and select UI | Text – TextMeshPro. Rename it
Details Text.

Making a responsive UI 295

4.	 Format the text area; for example, set its Anchor Presets to Stretch-Stretch (and
Shift + Alt + Stretch-Stretch), its Text Vertex Color to black, its Font Size to
48, its Rect Transform Left, Right, Top, Bottom to 30, 30, 30, 30, and its
Alignment: to Center, Middle.

Now, add control of this panel to the PlanetsMainMode script, as follows:

1.	 Add references to detailsPanel and detailsText at the top of the class:

 [SerializeField] GameObject detailsPanel;

 [SerializeField] TMP_Text detailsText;

2.	 Ensure the panel is hidden when the mode is enabled. Add the following line to
the OnEnable function:

 detailsPanel.SetActive(false);

3.	 Initialize the panel's content when a planet is being selected. That is, in Update,
we must set detailsText at the same time we set planetName:

 if (Physics.Raycast(ray, out hit,
 Mathf.Infinity, layerMask))

 {

 Planet = hit.collider.
 GetComponentInParent<Planet>();

 planetName.text = planet.planetName;

 detailsText.text = planet.description;

 infoButton.interactable = true;

 }

 else

 {

 planetName.text = "";

 detailsText.text = "";

 infoButton.interactable = false;

 }

Save the script. Back in Unity, we'll wire up the Info Button toggle.
4.	 With Info Button selected in the Hierarchy window, in the Inspector window,

click the + button at the bottom right of the Toggle | On Value Changed action list.
5.	 From the Hierarchy window, drag the Details Panel game object onto the On

Value Changed | Object slot.

296 Planets: Tracking Images

6.	 From the Function selection list, choose GameObject | Dynamic Bool | SetActive.
7.	 Save the scene.

Now, when you Build and Run the project and view a planet, then press the Info button,
the Details Panel will be displayed alongside the planet's description text, as shown in the
following screen capture from my phone:

Figure 8.22 – Displaying description text about Mars in the toggled Details Panel

In this section, we added a responsive UI to the scene. When the user points their device
camera at a virtual planet that's been instantiated in the scene, the name of the planet is
displayed in the Info Panel at the bottom of the screen. If the user taps the Info button, a
text panel is toggled, showing additional details about that specific planet.

Can you think of additional ways to improve this project?

Summary 297

Summary
In this chapter, you built an AR project that lets you visualize and learn about planets in
our Solar System. The scene uses AR image detection and tracks the planet cards that
you printed out from the PDF file provided with the files for this book. Each planet card
image includes a distinct marker with unique details, high contrast edges, and asymmetric
shapes, making them readily detectable and trackable by the AR system. You set up the
AR Session to track images using the AR Trackable Image Manager component and built
a Reference Image Library asset with the planet card images.

You then created a generic Planet Prefab with a Planet script that controls the rotation
behavior and metadata for a planet. Then, you created separate prefab variants for each
planet. You wrote a PlanetsMainMode script that instantiates the correct planet prefab
when a specific planet card image is detected. This allows multiple tracked images and
planets to be present in the scene. Then, you added a responsive UI where the user can
point their device camera to an instantiated planet and get additional information about
that virtual object.

In the next chapter, we'll explore another kind of AR application: flipping the device
camera so that it's facing the user to make selfie face filters.

9

Selfies: Making
Funny Faces

In this chapter, you will learn how to use Unity AR Foundation for face tracking in
order to make fun and entertaining face filters. I apologize in advance for showing my
handsome face throughout this chapter – it's a necessary evil when working with selfies!

We'll start with a brief explanation of how face tracking works, and then we will create
a new AR scene with face tracking enabled. We will use a couple of 3D head models
that track your head pose and to which you can add extra accessories, such as a hat and
sunglasses. We are going to build a main menu so that the user can select and change
models at runtime. We'll then work with dynamic face meshes and create several materials
to easily switch between them. In the last part, we'll look at more advanced features such
as eye tracking, face regions (ARCore), and blend shapes (ARKit).

We will cover the following topics:

•	 Understanding face tracking

•	 Configuring a new AR scene for face tracking

•	 Tracking the face pose with 3D models and accessories

•	 Controlling the app's main mode and building a main menu

•	 Making dynamic face meshes with a variety of materials

300 Selfies: Making Funny Faces

•	 Using eye-tracking (ARKit)

•	 Attaching stickers to face regions (ARCore)

•	 Tracking expressive face blend shapes (ARKit)

By the end of this chapter, you'll be familiar with many of the face tracking features in AR
Foundation, ARCore, and ARKit. You will also have a working Face Maker project you can
show off to your friends!

Technical requirements
To implement the project in this chapter, you need Unity installed on your development
computer and connected with a mobile device that supports augmented reality
applications (see Chapter 1, Setting Up for AR Development, for instructions). We also
assume that you have the ARFramework template and its prerequisites installed (see
Chapter 5, Using the AR User Framework). The completed project can be found in this
book's GitHub repository, available at the following URL: https://github.com/
PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation.

Understanding face tracking
Let's start with some background on face tracking and the technology that makes it work.
Face tracking is a kind of Augmented Reality that (usually) uses the front-facing camera
on your mobile device. Apps such as Snapchat, Instagram, and Animoji have popularized
face filter technology, and it has now become mainstream on mobile devices. It makes for
highly entertaining and creative experiences. The technology detects facial features and
expressions, and Unity AR Foundation enables you to write applications for attaching 3D
objects to specific facial features that are tracked.

Face tracking begins with a frame of the video from your device's camera. It analyzes
the pixels, looking for patterns that represent a face – for example, the bridge of the
nose is lighter than the pixels surrounding it, and the eyes are darker than the forehead.
Key points and regions are recognized and used to construct a 3D mesh, like a mask,
representing the face. Nodes of the mesh are "locked onto" key points in the image,
allowing the mesh to follow not just the pose of the face, but detailed changes that
correspond to human facial expressions, like a smile or a wink of the eye.

To learn more about how face tracking works, I encourage you to watch the seminal Vox
video (over 3 million views) How Snapchat's filters work, available at the following URL:
https://www.youtube.com/watch?v=Pc2aJxnmzh0.

https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://github.com/PacktPublishing/Augmented-Reality-with-Unity-AR-Foundation
https://www.youtube.com/watch?v=Pc2aJxnmzh0

Understanding face tracking 301

It's helpful to understand the distinction between face tracking and face identification,
and how to track a face with AR Foundation.

Face tracking versus face identification
A distinction should be made between face tracking and face identification. Face
tracking, in general, is limited to detecting a human face and tracking its pose (position
and rotation), facial features such as the forehead and nose, and changes representing
expressions, such as opening your mouth or blinking your eyes. Face identification,
on the other hand, adds recognition of the features that make your face unique and
different from other faces. Face recognition is used as a fingerprint. One example of
face recognition technology is for unlocking devices. More advanced (and creepy)
face identification is increasingly being used by authoritarian governments and law
enforcement to identify strangers in a crowd, using a large database of faces.

Using Unity AR Foundation, you can access the AR face-tracking capabilities of your
device. We are going to examine this next.

Tracking a face with AR Foundation
As you now know, a Unity project using AR Foundation and XR Plugins will have
a scene that includes an ARSession and an ARSessionOrigin object. The AR Face
Manager component is added to the AR Session Origin to enable face tracking. Like
most AR Foundation features, this component wraps the Unity AR subsystems, namely
the XR face subsystem (see https://docs.unity3d.com/Packages/com.
unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.
XRFaceSubsystem.html). This in turn interfaces with the underlying XR plugin,
such as ARCore or ARKit.

The AR Face Manager component references a face prefab provided by you. This prefab
will be instantiated and tracked with the detected face. The component also provides
a Maximum Face Count parameter, should you want the app to support multiple people
in the same camera view (depending on the capabilities of the underlying device). The
component is shown in the following screenshot:

Figure 9.1 – The AR Face Manager component on an AR Session Origin object

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFaceSubsystem.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFaceSubsystem.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFaceSubsystem.html

302 Selfies: Making Funny Faces

The face prefab should have an AR Face component on it that represents a face detected
by an AR device. It has properties including the face mesh vertices, facet normals,
and transforms for the left and right eyes. Like other AR trackables, your scripts can
subscribe to changes to know when faces have been added, updated, and removed. The
specific properties available will depend on the capabilities of the underlying device.
See the documentation available at the following URL: https://docs.unity3d.
com/Packages/com.unity.xr.arfoundation@4.2/api/UnityEngine.
XR.ARFoundation.ARFace.html. Also, see the following URL: https://
docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/
UnityEngine.XR.ARSubsystems.XRFace.html.

AR Foundation provides an interface for AR face tracking (not identification), using the
AR Face Manager component added to your AR Session Origin object. We can now get
started building a selfie face filter project.

Getting started
To begin, we'll create a new scene named FaceMaker using the ARFramework scene
template. If you're targeting iOS ARKit, there may be additional setup required, including
installing the separate ARKit Face Tracking package. Then we'll add a project title to the
UI before moving on to adding face tracking to the scene.

Creating a new scene using the ARFramework
template
Create a new scene in your Unity AR-ready project using the following steps:

1.	 Select File | New Scene.
2.	 In the New Scene dialog box, select the ARFramework template.
3.	 Click Create.
4.	 Select File | Save As. Navigate to the Scenes/ folder in your project Assets

folder, give it the name FaceMaker, and click Save.

The new AR scene already has the following setup from the template:

•	 AR Session game object with an AR Session component.

•	 An AR Session Origin rig with an AR Session Origin component, among others,
and a child main camera. We will replace its AR Plane Manager component with an
AR Face Manager one.

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/api/UnityEngine.XR.ARFoundation.ARFace.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/api/UnityEngine.XR.ARFoundation.ARFace.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/api/UnityEngine.XR.ARFoundation.ARFace.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFace.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFace.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arsubsystems@4.2/api/UnityEngine.XR.ARSubsystems.XRFace.html

Getting started 303

•	 UI Canvas is a screen space canvas with the child panels Startup UI, Scan UI, Main
UI, and NonAR UI that we built for the ARFramework. It has the UI Controller
component script that we wrote. We'll update this with the project-specific UI.

•	 Interaction Controller is a game object we built for the ARFramework, with an
interaction controller component script we wrote that helps the app switch between
interaction modes, including Startup, Scan, Main, and NonAR modes. It also has a
Player Input component configured with the AR Input Actions asset we previously
created. We are going to customize the main mode for our face tracking app.

•	 OnboardingUX is a prefab from the AR Foundation Demos project that provides
AR session status messages and animated onboarding graphics prompts.

Let's start by setting the app title now as follows:

1.	 In the Hierarchy, unfold the UI Canvas object, and unfold its child App
Title Panel.

2.	 Select the Title Text object.
3.	 In its Inspector, change its text content to Face Maker.

If you are targeting ARKit on iOS, there may be additional project setup required.

Setting up iOS ARKit for face tracking
To develop and build a project using face tracking with ARKit for an iOS device, you also
need to install the ARKit Face Tracking package via the package manager. Perform the
following steps:

1.	 Open the package manager using Window | Package Manager.
2.	 In the Packages filter selection at the top left, choose Unity Registry.
3.	 Use the search field at the top right to search for ar, and select the ARKit Face

Tracking package from the packages list.
4.	 Click Install at the bottom right of the window.

Then, configure ARKit XR Plugin for face tracking, as follows:

1.	 Open the Project Settings window, using Edit | Project Settings.
2.	 On the left-side tabs menu, select XR Plug-in Management | ARKit.
3.	 Check the Face Tracking checkbox.

304 Selfies: Making Funny Faces

Next, we will gather some assets that we'll be using in this chapter. Some of these are also
provided in this book's GitHub repository. Others are third-party assets that you must
download and import separately.

Importing assets used in this project
First, you should already have the AR Foundation Samples assets in your project (the ones
that we imported back in Chapter 1, Setting Up for AR Development). If you followed
along, these are in the Assets/ARF-samples/ folder. It contains some useful example
assets that we'll use and reference in this chapter that can give you additional insight into
the capabilities of AR Foundation face tracking, as well as how to use those capabilities.

We are also going to use the assets from the AR Face Assets package from Unity (available
in the Asset Store). These assets are also used in the Unity Learn tutorial, AR Face
Tracking with AR Foundation (https://learn.unity.com/project/ar-face-
tracking-with-ar-foundations). To import the package, follow these steps:

1.	 Using your internet browser, go to the following URL: https://assetstore.
unity.com/packages/essentials/asset-packs/ar-face-
assets-184187.

2.	 Click Add to My Assets (if necessary), then click Open In Unity.
3.	 In Unity, this should open the Package Manager window (or select Window |

Package Manager).
4.	 Select My Assets from the Packages filter at the top left.
5.	 Find the AR Face Assets package and click Download and/or Import (bottom

right). In the Import Unity Package window, click the Import button.
6.	 Convert the imported materials to the Universal Render Pipeline by selecting

Edit | Render Pipeline | Universal Render Pipeline | Upgrade Project Materials
to URP Materials.

Face accessories 3D models: I have found some free 3D models to use in this project. You
can also use them or substitute your own. If you wish to use them, they are included in the
following GitHub repositories:

•	 Sunglasses: https://free3d.com/3d-model/sunglasses-v1--803862.
html. OBJ format (submitted by printable_models, https://free3d.com/
user/printable_models)

•	 Top hat: https://free3d.com/3d-model/cartola-278168.html. FBX
format (submitted by zotgames, https://free3d.com/user/zotgames)

https://learn.unity.com/project/ar-face-tracking-with-ar-foundations
https://learn.unity.com/project/ar-face-tracking-with-ar-foundations
https://assetstore.unity.com/packages/essentials/asset-packs/ar-face-assets-184187
https://assetstore.unity.com/packages/essentials/asset-packs/ar-face-assets-184187
https://assetstore.unity.com/packages/essentials/asset-packs/ar-face-assets-184187
https://free3d.com/3d-model/sunglasses-v1--803862.html
https://free3d.com/3d-model/sunglasses-v1--803862.html
https://free3d.com/user/printable_models
https://free3d.com/user/printable_models
https://free3d.com/3d-model/cartola-278168.html.
https://free3d.com/user/zotgames

Configuring a new AR scene for face tracking 305

If you're downloading these yourself, unzip and drag the files into your project's Assets/
folder. We'll address the import settings and steps later in the chapter.

Face stickers 2D sprite images: For the ARCore-based face region stickers, I found some
free clipart at Creative Commons. You can use them or substitute your own. If you wish to
use them, they are included in the following GitHub repositories:

•	 Eyebrows: https://clipground.com/images/angry-eyebrows-
clipart-11.png

•	 Mustache: https://clipground.com/images/monocle-clipart-12.
jpg

•	 Licking lips: https://clipground.com/images/licking-lips-
clipart-12.jpg

I used Photoshop to adapt each of these images with a transparent background,
square-shaped canvas, and scaled to 512x512 pixels. These are imported as Texture Type:
Sprite (2D and UI).

For all the aforementioned assets, I also created button icons that we'll use in the UI. These
are also available on the GitHub repository in the icons/ folder and are imported as
Texture Type: Sprite (2D and UI).

We now have our basic scene created, as well as prerequisite assets imported into the
project. We used the ARFramework scene template created for this book when creating
the new scene, and updated the UI title text for this project. If you're working on iOS,
we also installed extra required packages into the project. Then, we imported other
graphic assets we're going to use, including the demo AR Face Assets pack provided by
Unity. Let's now configure the scene for face tracking.

Configuring a new AR scene for face tracking
There are a few simple steps required to configure an AR Foundation-based scene for face
tracking. Since we're going to do selfies, we'll set up the AR camera to use input from the
front-facing camera. Then we'll add an AR Face Manager component to the AR Session
Origin. If you want to use the Unity Onboarding UX animated graphic to prompt the user,
you can adapt the ScanMode script for that.

Let's get started!

https://clipground.com/images/angry-eyebrows-clipart-11.png
https://clipground.com/images/angry-eyebrows-clipart-11.png
https://clipground.com/images/monocle-clipart-12.jpg
https://clipground.com/images/monocle-clipart-12.jpg
https://clipground.com/images/licking-lips-clipart-12.jpg
https://clipground.com/images/licking-lips-clipart-12.jpg

306 Selfies: Making Funny Faces

Setting the AR camera for selfies
Use the following steps to set up the AR camera for selfies:

1.	 In the Hierarchy, unfold the AR Session Origin game object and select its child
Main Camera.

2.	 In the Inspector, set AR Camera Manager | Facing Direction to User.
3.	 We also need to set the AR Session tracking mode for rotation only. Select the AR

Session game object in the Hierarchy.
4.	 In the Inspector, set the AR Session | Tracking Mode to Rotation Only.

Next, we'll add the AR Face Manager component to the AR Session Origin.

Adding an AR Face Manager component
Using the scene provided by the ARFramework template, we will replace the given AR
trackable components with an AR Face Manager one. For the Face Prefab, we'll start
with the TriAxes prefab from the AR Samples project. If you examine this prefab,
you'll discover it has an AR Face component, so it can be used as a trackable.

To configure the AR Session to track faces, follow these steps:

1.	 In the Hierarchy window, select the AR Session Origin game object.
2.	 In the Inspector window, use the three-dot context menu (or right-click) on the

AR Plane Manager component, and select Remove Component.
3.	 Use the Add Component button, search for AR, and add an AR Face

Manager component.
4.	 In your Project window, locate the TriAxes prefab file (likely in the

Assets/ARF-samples/Prefabs/ folder), and drag it into the Inspector,
dropping it onto the AR Face Manager | Face Prefab slot.

5.	 Save the scene using File | Save.

The scene is now basically set up for face tracking. ARFamework includes a scan mode
that prompts the user to find a trackable object with their camera. We can now configure
that for face tracking.

Configuring a new AR scene for face tracking 307

Prompting the user to find a face, or not
Optionally, you can have your app prompt the user to scan for their face. This is less
necessary when using the selfie camera (with Facing Direction set to User) because when
you're holding your phone and looking at the screen, the camera is looking right back at
you! But if your app were using the world-facing camera instead, it might be necessary to
use an instructional prompt to tell the user to find a face.

To skip the scan mode and its instructional prompt, tell the startup mode to proceed
directly to the main mode, using the following steps:

1.	 In the Hierarchy, under the Interaction Controller game object, select the Startup
Mode object.

2.	 In the Inspector, enter the text Main into the Next Mode property.

Otherwise, if you want to use scan mode, you'll need to write a FaceScanMode script
as follows:

1.	 In your Project window's Scripts/ folder, right-click and select Create |
C# Script. Name it FaceScanMode.

2.	 Open the script for editing and replace its contents as follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class FaceScanMode : MonoBehaviour

{

 [SerializeField] ARFaceManager faceManager;

 private void OnEnable()

 {

 UIController.ShowUI("Scan");

 }

 void Update()

 {

 if (faceManager.trackables.count > 0)

 {

308 Selfies: Making Funny Faces

 InteractionController.EnableMode("Main");

 }

 }

}

The script shows the Scan UI panel and then, in Update, waits until a face is being
tracked before transitioning the app to the main mode.

3.	 In Unity, in the Hierarchy window, select the Scan Mode object (under
Interaction Controller).

4.	 Remove the old Scan Mode component using the three-dot context menu and then
choose Remove Component.

5.	 Drag the new FaceScanMode script onto the Scan Mode game object, adding it as
a component.

6.	 Drag the AR Session Origin game object from the Hierarchy onto the Face Scan
Mode | Face Manager slot.

7.	 In the Hierarchy, navigate and select UI Canvas | Scan UI | Animated Prompt.
8.	 In the Inspector, set the Instruction property to Find A Face.

With this latter setup, the app starts in startup mode. After the AR Session is running,
it goes to scan mode, prompting the user to find a face. Once a face is detected, the app
proceeds to main mode (as yet, this does nothing). You also have the option to skip the
scan mode prompt altogether by telling the startup mode to go straight to the main mode.

Let's make sure everything works so far. You're now ready to try to run the scene.

Build and run
Let's do a Build And Run on your device to ensure the project is set up correctly. Use the
following steps:

1.	 Save your work using File | Save.
2.	 Select File | Build Settings to open the Build Settings window.
3.	 Click Add Open Scenes to add the FaceMaker scene to Scenes In Build, and

ensure it is the only scene in the list with a checkmark.
4.	 Ensure your target device is plugged into a USB port and is ready.
5.	 Click Build And Run to build the project.

Tracking the face pose with 3D heads 309

In the following screen capture, you can see the face pose is visualized using the
TriAxes prefab. I have tilted my head to the side and back a little to make the three axes
more evident.

Figure 9.2 – Tracking the face pose, visualized with the TriAxes prefab

Note the direction of each of the axes. The axes are colored red, green, and blue,
corresponding to X, Y, and Z respectively. The positive Z direction is in the direction that
the device camera is facing, and thus, pointing towards my back.

Now that we have face tracking running, let's substitute this TriAxes prefab with
something more interesting – a whole 3D head model.

Tracking the face pose with 3D heads
The AR Face Assets package from Unity that we imported at the top of this chapter
contains a couple of 3D head models we can use in our project. We'll create prefabs of
each model and try them separately in the AR Face Manager Face Prefab property. In the
next section, we'll create a menu so that the user can pick which head to view at runtime.

310 Selfies: Making Funny Faces

Making a Mr. Plastic Head prefab
The first head prefab will use the Plasticscene Head assets given in the Unity AR
Face Assets package, and found in the Assets/AR face Assets/3D Head/
Plasticene Head/ folder. This folder contains an FBX model named Plasto_Head
and a material named PlasiceneHead (the typo is theirs). The model will require some
transform adjustments before it can be used as a face prefab. To create a prefab for this
model, use the following steps:

1.	 In the Project window, right-click in your Prefabs/ folder (create one first if
necessary) and choose Create | Prefab. Rename it MrPlasticHead.

2.	 Click Open Prefab to begin editing.
3.	 With the root object selected, in the Inspector, click Add Component. Then, search

and choose AR Face to add an AR Face component.
4.	 From the Project window, drag the Plastic_Head model to the Hierarchy and drop it

as a child of MrPlasticHead.
5.	 Select the Plasto_Head object in the Hierarchy. In the Inspector, set Rotation | Y

to 180, so it's facing the camera.
6.	 Set Scale to (0.6, 0.6, 0.6). Then set Position | Y to -0.2. I selected these

transform settings by trial and error and using a measuring cube (see the inset Tip).
7.	 If the default material (converted to URP) appears too dark, select the child

Plaso_Head/Plasto_Head object, and in the Inspector, under the Plasicene Head
material, set the Base Map color to white (from middle gray).

8.	 Save the prefab and exit back to the scene Hierarchy window using the < button in
the top left of the window.

Tip: Measuring faces using a cube object
A human head is approximately 0.125 meters (5 inches) wide. You can use this fact
for scaling 3D models used in your face prefabs. To help judge this, while editing
a face prefab, try adding a 3D cube object, set Position to (0, 0, 0), Rotation
to (0, 0, 0), and Scale to (0.125, 0.125, 0.125). This can help you
decide the transform parameters of other imported models you are using.

Let's see how this looks. Add the prefab to the AR Face Manager and build the project
as follows:

1.	 In the Hierarchy window, select the AR Session Origin game object.
2.	 From the Project window, drag the MrPlasticHead prefab into the Inspector,

dropping it onto AR Face Manager | the Face Prefab slot.

Tracking the face pose with 3D heads 311

3.	 Save the scene using File | Save.
4.	 Build the project using File | Build And Run.

Info: Material texture maps
You may note that the PlasticeneHead material uses three textures for
the Base (albedo), Normal, and Occlusion maps. The Base texture provides the
albedo coloring as if the surface of the mesh were painted with these pixels. The
Normal map (also known as the Bump map or Height map) lets the shader alter
the mathematical surface normal vector in more detail than given by the mesh
geometry itself, simulating surface textures that are especially noticeable with
lighting. Finally, the Occlusion map provides additional realism by darkening
deeper crevasses in the surface texture, creating higher contrast as occurs in
real-life materials. For a more detailed explanation, starting with Normal maps,
see the following URL: https://docs.unity3d.com/Manual/
StandardShaderMaterialParameterNormalMap.html.

A screen capture of me with a Mr. Plastic Head head is shown below, together with the
Mr. Facet Head model that we'll use next:

Figure 9.3 – Screen capture of myself with MrPlasticHead (right) and MrFacetHead (left)

Let's make the MrFacetHead prefab next.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html

312 Selfies: Making Funny Faces

Making a Mr. Facet Head prefab
There is a second model provided in the AR Face Assets package, Faceted Head,
found in the Assets/AR face Assets/3D Head/Faceted Head/ folder.
This folder contains an FBX model named FacetedHead, and a material also named
FacetedHead. As before, the model will require some transform adjustments to be used
as a face prefab. To create a prefab for this model, use the following steps:

1.	 In the Project window, right-click in your Prefabs/ folder and choose
Create | Prefab. Rename it MrFacetHead.

2.	 Click Open Prefab to begin editing.
3.	 With the root object selected, in the Inspector, click Add Component. Then, search

and choose AR Face to add an AR Face component.
4.	 From the Project window, drag the FacetedHead model to the Hierarchy and

drop it as a child of MrFacetHead.
5.	 With the FacetedHead object selected in the Hierarchy, in the Inspector, set

Rotation | X to -90 so that it's facing the camera. Set Scale to (1.1, 1.1, 1.1).
6.	 If the default material (converted to URP) appears too dark, select the FacetedHead

object, and in its Inspector under the FacetedHead material, set the Base Map
color to white.

7.	 Save the prefab, and exit back to the scene Hierarchy window, using the < button at
the top left of the window.

8.	 In the Hierarchy window, select the AR Session Origin game object.
9.	 From the Project window, drag the MrFacetHead prefab into the Inspector,

dropping it onto the AR Face Manager | Face Prefab slot.
10.	 Save the scene using File | Save.
11.	 Build the project using File | Build And Run.

When it runs, you now have a Mr. Faceted Head head, as shown in the preceding figure
(yes, those are my real eyes peering through the mask).

In this section, we created two prefabs, MrPlasticHead and MrFacetHead, using assets
from the Unity AR Face Assets package that we imported earlier. Each of these has an AR
Foundation AR Face component on its root GameObject and different imported models
for the two heads. We tried using one of these in our app by adding it to the AR Face
Manager component and running the scene.

Wouldn't it be nice to let the user choose a head at runtime, rather than manually setting
the AR Face Manager and rebuilding the project? Next, let's create a main menu, and
a changeable face prefab we can control from the menu buttons.

Building the Main mode and menu 313

Building the Main mode and menu
In this section, we will set up the main mode app to handle user interactions, including
face filter selections from a main menu. To do this, we first need to create a changeable
face prefab that can be told which facial features to display. We'll write a FaceMainMode
script that displays the main UI panel and passes change requests from the user to the face
object. Then, we'll make a main menu with a set of horizontally scrolling buttons that the
user can tap to change face filters.

Creating a changeable face prefab
To create a face prefab that we can use for dynamically changing filters during runtime,
we'll start with an empty game object with an AR Face component, and add a script for
setting the contained prefab object. Use the following steps:

1.	 In the Project window, right-click in your Prefabs/ folder and choose Create |
Prefab. Rename it Changeable Face Prefab.

2.	 Click Open Prefab to begin editing.
3.	 With the root object selected, in the Inspector, click Add Component. Search for

and choose AR Face to add an AR Face component.
4.	 In your Project window's Scripts/ folder, right-click and select Create |

C# Script, then name it ChangeableFace.
5.	 Open the script for editing and replace its contents as follows:

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class ChangeableFace : MonoBehaviour

{

 GameObject currentPosePrefab;

 GameObject poseObj;

 public void SetPosePrefab(GameObject prefab)

 {

 if (prefab == currentPosePrefab)

 return;

 if (poseObj != null)

314 Selfies: Making Funny Faces

 Destroy(poseObj);

 currentPosePrefab = prefab;

 if (prefab != null)

 poseObj = Instantiate(prefab, transform,
 false);

 }

}

The script exposes a public SetPosePrefab function that instantiates the
prefab argument as a child of the current object. If the requested prefab is already
instantiated, the request is ignored. If there was a previously instantiated object,
it is first destroyed. The function can be called with a null value for the prefab
argument that will only clear the existing instantiated object.

6.	 Save the script and, back in Unity, drag the ChangeableFace script onto the
Changeable Face Prefab root object.

7.	 Save the prefab and exit back to the scene hierarchy using the < button at the top left
of the window.

8.	 In the Hierarchy, select the AR Session Origin object. From the Project window,
drag the Changeable Face Prefab into the Inspector, dropping it onto the AR Face
Manager | Face Prefab slot.

We now have a Changeable Face Prefab asset with a ChangeableFace script. We are
planning to call its SetPosePrefab function from the main mode in response to a user
button click. We should set up the main mode now.

Writing a main mode controller script
In our ARFramework template, interaction modes are represented with game objects
under the interaction controller and are activated when a specific mode is enabled. The
default MainMode script from the template is simply a placeholder. We should replace
it now with a custom script for this project. To do so, follow these steps:

1.	 In the Project window, right-click and select Create | C# script, naming it
FaceMainMode.

2.	 In the Hierarchy, select the Main Mode game object (under Interaction Controller).
3.	 In the Inspector, remove the default Main Mode component using the three-dot

menu, then click Remove Component.

Building the Main mode and menu 315

4.	 Drag the new FaceMainMode script onto the Main Mode object, adding it as
a component.

5.	 Open the FaceMainMode script for editing, and start it as follows:

using UnityEngine;

using UnityEngine.XR.ARFoundation;

public class FaceMainMode : MonoBehaviour

{

 [SerializeField] ARFaceManager faceManager;

 void OnEnable()

 {

 UIController.ShowUI("Main");

 }

 public void ChangePosePrefab(GameObject prefab)

 {

 foreach (ARFace face in faceManager.trackables)

 {

 ChangeableFace changeable =
 face.GetComponent<ChangeableFace>();

 if (changeable != null)

 {

 changeable.SetPosePrefab(prefab);

 }

 }

 }

}

When the main mode is enabled, it shows the main UI panel. This will contain the main
menu buttons. When a menu button is clicked and it calls ChangePosePrefab, that in
turn will call SetPosePrefab for any trackable faces in the scene.

Let's create the menu UI next.

316 Selfies: Making Funny Faces

Creating scrollable main menu buttons
In our user framework, a mode's UI panel will be enabled by the corresponding
interaction mode. We'll now add a horizontally-scrolling main menu to the main UI panel
with buttons that can change the tracked face. Use the following steps:

1.	 In the Hierarchy, select the Main UI game object (under UI Canvas), then
right-click and select UI | Panel. Rename the new panel to MainMenu Panel.

2.	 In the Inspector, use the Anchor Presets option (at the upper left of Rect
Transform) to set Bottom-Stretch, then use Shift + Alt + left-click Bottom-Stretch.

3.	 Set Rect Transform | Height to 150.
4.	 Remove its Image component with the three-dot menu, then Remove Component

(we won't have a background on this menu).
5.	 In the Hierarchy, right-click the MainMenu Panel, and select UI | Scroll View.
6.	 Use Anchor Presets to click the Stretch-Stretch option, and then use Shift + Alt +

left-click Stretch-Stretch.
7.	 Remove the Image component.
8.	 In the Scroll Rect component, uncheck Vertical.
9.	 Delete the content of the Horizontal Scrollbar and Vertical Scrollbar fields, and

disable (or delete) the Scrollbar Horizontal and Scrollbar Vertical game objects in
the hierarchy.

10.	 In the Hierarchy, unfold the child Viewport game object, and select the child
Content game object.

11.	 Click Add Component, then search for and select Horizontal Layout Group.
12.	 Uncheck all of its checkboxes, including Child Force Expand | Width and Height.
13.	 Set Spacing to 5.
14.	 Click Add Component, then search for and select Content Size Fitter.
15.	 Set Horizontal Fit to Preferred Size.

We now have a MainMenu Panel under Main UI. It contains a horizontally-scrolling
content area, as shown in the following screenshot of the UI hierarchy with the Content
object selected:

Building the Main mode and menu 317

Figure 9.4 – Main UI hierarchy with content inspector shown

We can now add buttons to the Content container. For now, we'll create just two buttons,
for the two heads. Later, we'll expand it with more options. Each button will display an
image icon (if you don't have an icon for your own content, you can use text labels):

1.	 In the Hierarchy, right-click the Content game object and select UI | Button.
Rename it PlasticHead Button.

2.	 Set its Width, Height to (150, 150).
3.	 Remove its child Text object (unless you don't have an icon image for this button).
4.	 From the Project window, drag the plastichead icon image asset (perhaps

found in your /icons folder) onto the Image | Source Image slot.
5.	 In the Inspector, click the + button at the bottom right of the On Click area of the

Button component.
6.	 From the Hierarchy, drag the Main Mode object (under Interaction Controller),

into the Inspector, and drop it onto the On Click Object slot.
7.	 In the Function selection list, choose FaceMainMode | ChangePosePrefab.

318 Selfies: Making Funny Faces

8.	 From the Project window, drag the MrPlasticHead prefab (in your Prefabs/
folder) onto the empty parameter slot, as shown in the following screenshot:

Figure 9.5 – The PlasticHead button's On Click action will pass the MrPlasticHead prefab to the
FaceMainMode.ChangePosePrefab function

Tip: Creating button icons
To create many of the button icons used in this chapter, I sometimes start by
making a screen capture of the actual game object. Then, in Photoshop, I isolate
the shape by selecting its edges (using the Magic Wand tool) and make a cutout
with a transparent background. I then crop the image on a square-shaped
canvas and resize it to 256x256, before exporting it as a PNG file. Then, in
Unity, I import the image and, in Import Settings, set Texture Type to Sprite
(2D or UI), and click Apply. The asset can now be used as a UI sprite in an
image component like those on button objects.

We now have one button in the Main Menu. This is for selecting the MrPlasticHead
model. Let's make a second button, for the MrFacetHead prefab. To do that, we can
duplicate and modify the first button, as follows:

1.	 In the Hierarchy, select the PlasticHead Button game object.
2.	 From the main menu, select Edit | Duplicate (or press Ctrl + D). Rename the copy

to FacetHead Button.

Building the Main mode and menu 319

3.	 From the Project window, drag the facethead icon asset onto the Image |
Source Image slot.

4.	 From the Project window, drag the MrFacetHead prefab (in your Prefabs/
folder) onto the parameter slot (replacing the MrPlasticHead prefab already there).

The Main Menu now has two buttons. When the app runs, clicking one will show
MrPlasticHead on my face. Clicking the other will show MrFacetHead. It would also be
nice to offer a reset button that clears all the face filters.

Adding a reset face button
We can also add a reset button that sets the current pose object to null. Let's do this as
a separate function in the FaceMainMode script. Use the following steps:

1.	 Open the FaceMainMode script for editing, and add a ResetFace function:

 public void ResetFace()

 {

 foreach (ARFace face in faceManager.trackables)

 {

 ChangeableFace changeable =
 face.GetComponent<ChangeableFace>();

 if (changeable != null)

 {

 changeable.SetPosePrefab(null);

 }

 }

 }

2.	 In Unity, under Content in the main menu, right-click and select UI | Button -
TextMeshPro. Rename it as Reset Button.

3.	 Set its Width, Height to (150, 150). Remove its Image component.
4.	 On its child Text (TMP) object, change the text to say Reset, check the Auto Size

checkbox, and change the text Vertex Color, if you want.
5.	 Click the + button on the On Click list, drag the Main Mode object onto the Object

slot, and select FaceMainMode | ResetFace from the Function list.

320 Selfies: Making Funny Faces

My main menu, at the bottom of the screen, now looks like this with its three buttons:

Figure 9.6 – The Main Menu with three buttons

You're now ready to build and run the project. Save your work (File | Save) and build it
(File | Build and Run). You now have a little Face Maker app that lets you choose between
3D heads or resetting the scene!

In this section, we created a Changeable Face Prefab that you can set the child prefab
of at runtime so the user can select different head models for their selfie. We then created
a Main Menu panel with horizontally scrollable buttons, and added buttons that allow the
user to choose MrPlasticHead, MrFacetHead, or to reset the current model.

Next, let's add some 3D accessories to your face – sunglasses and a hat.

Attaching 3D Accessories
Suppose you now want to accessorize your face and head. The setup is very similar to
the pose prefabs we just used. For this, we will introduce a couple of third-party models
downloaded from the web (and imported into your project at the top of this chapter).
We'll also add an AddAccessory function to the Changeable Face Prefab that allows
the user to view more than one accessory at a time.

Wearing a hat
I found a 3D hat on the internet (https://free3d.com/3d-model/cartola-
278168.html), and we downloaded and installed it earlier in this chapter. Feel free
to use this model and/or find your own model to add to the project. I installed it in my
Assets/Models/TopHat/ folder. The model is an FBX file named CapCartola.
We'll also need to configure its materials.

https://free3d.com/3d-model/cartola-278168.html
https://free3d.com/3d-model/cartola-278168.html

Attaching 3D Accessories 321

If you select the CapCartola model in the Project window and unfold it, you'll notice it
has child Camera and Light objects. This is not unusual for models exported from some
3D modeling programs such as Blender, for example. We obviously do not need these in
our scene, so we'll also remove them from the imported model. Then we'll extract and set
up the materials, and then put them together as a prefab. Follow these steps:

1.	 In the Project window, select the CapCartola model (in the Assets/Models/
TopHat/ folder).

2.	 In the Inspector, you'll see Import Settings. Make sure the Model tab is selected at
the top of the window.

3.	 Uncheck the Import Cameras and Import Lights checkboxes. Then click Apply.
4.	 Select the Materials tab at the top of the Inspector window.
5.	 Click the Extract Materials button. This creates two new files, Material.001

(for the hat itself) and Material.002 (for its ribbon band). These are already
associated with the model.

6.	 In the Project window, right-click your Prefabs/ folder and select Create |
Prefab. Rename it TopHat. Then open the prefab for editing.

7.	 From the Project window, drag the CapCartola model into the Hierarchy,
creating a child instance under the root TopHat object.

8.	 With CapCartola selected in the Hierarchy, I found these Transform settings
work for me: Position: (0, 0.18, -0.02), Rotation: (-20, 0, 0), and Scale:
(0.077, 0.077, 0.077).

9.	 Unfold CapCartola in the Hierarchy and select its child Cylinder object.
10.	 In the Inspector, under Material.001 (for the hat itself), set the Base Map color

to a blackish color (I used #331D1D).
11.	 Likewise, under Material.002 (for the ribbon band), set the Base Map color to

a nice red (I used #FF1919).
12.	 If you add an AR Face component to the root object, you can test it out right away

by using it as the AR Face Manager | Face Prefab.
13.	 Save the prefab and exit back to the scene hierarchy.

You now have a TopHat prefab that you can use to accessorize your face. Let's also
add sunglasses.

322 Selfies: Making Funny Faces

Sporting cool sunglasses
I found a 3D sunglasses model on the internet (https://free3d.com/3d-model/
sunglasses-v1--803862.html), which we downloaded and installed earlier in
this chapter. I installed it in my Assets/Models/Sunglasses/ folder. The original
model is an OBJ file named 12983_Sunglasses_v2_l3. We'll also need to configure
its materials.

Extract and set up the materials, and then put the model together as a prefab using the
following steps:

1.	 In the Project window, navigate to the folder containing the 12983_Sunglasses_
v2_l3 model and select it.

2.	 In the Inspector, you'll see Import Settings. Select the Materials tab at the top of
the Inspector window and click the Extract Materials button. This creates two new
files, sunglasses_body and sunglasses_lens.

3.	 Select the sunglasses_body material and adjust it as you desire. I made mine
black. The lens material may be fine as is (dark with transparency).

4.	 In the Project window, right-click your Prefabs/ folder and select Create | Prefab.
Rename it Sunglasses.

5.	 Open the Sunglasses prefab for editing.
6.	 From the Project window, drag the 12983_Sunglasses_v2_l3 model into the

Hierarchy, creating a child instance under the root Sunglasses.
7.	 With 12983_Sunglasses_v2_l3 selected in the Hierarchy, I found these

Transform settings work for me: Position: (-0.08, -0.025, -0.058),
Rotation: (-90, 90, 09), and Scale: (0.0235, 0.0235, 0.0235).

8.	 If you also add an AR Face component to the root object, you can test it out right
away by using it as the AR Face Manager | Face Prefab.

9.	 Save the prefab and exit back to the scene hierarchy.

We now have two models we can use as face accessories. You can test them out by
manually adding one to the AR Session Origin | AR Face Manager | Face Prefab slot and
building and running the project. When you're done, don't forget to put the Changeable
Face Prefab back into the slot.

Next, we'll add support for these accessories in the scripts.

https://free3d.com/3d-model/sunglasses-v1--803862.html
https://free3d.com/3d-model/sunglasses-v1--803862.html

Attaching 3D Accessories 323

Updating the scripts for accessories
We need to update the ChangeableFace script to manage the accessory objects. It will
maintain a list of the current accessory objects, ensuring we create only one instance of
any prefab.

Instead of destroying an accessory object when it's removed from the scene, we'll disable
it, and then re-enable it if the user adds the same object again.

We also need to update the FaceMainMode script with a function that the menu buttons
can call. This in turn passes the requested prefab to ChangeableFace.

Use the following steps to update your scripts:

1.	 Begin by opening the ChangeableFace script for editing and add the following
declaration at the top of the class:

 Dictionary<GameObject, GameObject> accessories =
 new Dictionary<GameObject, GameObject>();

We're using a dictionary to maintain the list of instantiated accessory objects, keyed
by the prefab.

2.	 Then, add an AddAccessory function as follows:

 public void AddAccessory(GameObject prefab)

 {

 GameObject obj;

 if (accessories.TryGetValue(prefab, out obj) &&
 obj.activeInHierarchy)

 {

 obj.SetActive(false);

 return;

 }

 else if (obj != null)

 {

 obj.SetActive(true);

 }

 else

 {

 obj = Instantiate(prefab, transform, false);

324 Selfies: Making Funny Faces

 accessories.Add(prefab, obj);

 }

 }

AddAccessory instantiates the prefab as a child of the face and adds it to the
accessories list. However, if the prefab has already been instantiated, we remove
it from the scene by setting it as inactive. Likewise, if you try to add it again,
it is reactivated.

3.	 Next, we'll add a ResetAccessories function that removes all accessories,
as follows:

 public void ResetAccessories()

 {

 foreach (GameObject prefab in accessories.Keys)

 {

 accessories[prefab].SetActive(false);

 }

 }

Tip: Avoid garbage collection by using object caching
In this AddAccessory function, I could have called Destroy to remove
an existing instance, and then called Instantiate again if and when the
object was added a second time. Instead, I'm managing memory by simply
disabling existing objects when not wanted and reusing the same instances
when requested. Repeatedly instantiating and destroying objects at runtime can
cause memory fragmentation and require Unity to perform memory garbage
collection (GC). GC can be computationally expensive and cause glitches in
your frame rate updates (see https://docs.unity3d.com/Manual/
UnderstandingAutomaticMemoryManagement.html). Likewise,
you may want to refactor the other scripts in this chapter to not use Destroy.

4.	 Next, we can open the FaceMainMenu script for editing, and add an
AddAccessory function that will be called by the menu buttons, as follows:

 public void AddAccessory(GameObject prefab)

 {

 foreach (ARFace face in faceManager.trackables)

 {

 ChangeableFace changeable =
 face.GetComponent<ChangeableFace>();

https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html
https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html

Attaching 3D Accessories 325

 if (changeable != null)

 {

 changeable.AddAccessory(prefab);

 }

 }

 }

5.	 Next, add the following highlighted code to ResetFace:

 public void ResetFace()

 {

 foreach (ARFace face in faceManager.trackables)

 {

 ChangeableFace changeable =
 face.GetComponent<ChangeableFace>();

 if (changeable != null)

 {

 changeable.SetPosePrefab(null);

 changeable.ResetAccessories();

 }

 }

 }

We're now ready to add menu buttons for the TopHat and Sunglasses accessories.

Adding accessories to the main menu
To add new buttons to the main menu, we can duplicate an existing button and modify
it by following these steps:

1.	 In the Hierarchy, duplicate one of the menu buttons (found under Main UI |
MainMenu Panel | Scroll View | Viewport | Content), such as the FacetHead
Button game object. On the main menu, click Edit | Duplicate (or press Ctrl + D).
Rename the copy to HatAccessory Button.

2.	 From the Project window, drag the tophat icon asset onto the Image | Source
Image slot.

3.	 On the Button On Click action, change Function to FaceMainMode.
AddAccessory.

326 Selfies: Making Funny Faces

4.	 From the Project window, drag the TopHat prefab (in your Prefabs/ folder) onto
the parameter slot.

5.	 Likewise, repeat steps 1-4 for a SunglassesAcessory Button, using the
sunglasses icon image and the Sunglasses prefab asset.

Save the scene and build the project. When you tap the hat button, you're wearing a top
hat. Tap it again to remove it. In the following screen capture, I'm wearing the facet face,
top hat, and sunglasses. I've never looked so cool!

Figure 9.7 – Selfie with me wearing a top hat, sunglasses, and faceted face at the same time

In this section, we built upon the basic face pose tracking features by adding other models
to be tracked at the same time. We created prefabs for the TopHat and Sunglasses using
models download from the web. Then, we updated the ChangeableFace script to
handle multiple accessory objects. This implements good memory management practices
by avoiding duplicate instances of the same prefab and caching the spawned instances in a
dictionary list. After updating the FaceMainMode script with a public AddAccessory
function, we added new buttons to the main menu so that the user can accessorize their
head with a hat and/or sunglasses.

So far, all our faces are fixed-expression static models. AR Foundation also supports the
dynamic visualization of faces. Let's try that next.

Making dynamic face meshes with a variety of materials 327

Making dynamic face meshes with a variety of
materials
To show an augmented face that matches your real-life expressions, Unity AR Foundation
lets you generate a face mesh dynamically at runtime. On this mesh, you can apply
different materials, giving the effect of you wearing arbitrary face masks. To add this to
our project, we'll first look at the default face game object given by AR Foundation. Then
we'll create several different materials to use. To integrate this feature into our project,
we'll extend the ChangeableFace script to switch materials, add a similar function to
the FaceMainMode script to update the face trackables, and then add menu buttons to
switch materials.

Exploring AR Default Face
You can create a dynamic face game object for AR Foundation from the Unity menu at
GameObject | XR | AR Default Face. The object includes an AR Face Mesh Visualizer
component that generates a face mesh at runtime that matches your facial expressions,
including moving your mouth and raising your eyebrows. Let's quickly try it out before
we add this feature to our Changeable Face Prefab. Use the following steps:

1.	 From the Editor menu bar, select GameObject | XR | AR Default Face. This creates
an object named AR Default Face in the scene hierarchy.

Note that you won't see this object in your Scene window because the mesh is
dynamically generated at runtime, so there's nothing to render yet.

2.	 Replace the default material (the one included is not for URP): In the Project
window, right-click your Materials/ folder (create one first if necessary), and
name it DefaultFace Material. Set the Base Map color to your favorite color.
Drag the material onto the AR Default Face object.

3.	 Make it a prefab. Drag the AR Default Face object into the Project window's
Prefabs/ folder.

4.	 Then delete it from the Hierarchy.
5.	 Now, drag the prefab onto your AR Session Origin | AR Face Manager |

Face Prefab slot.

328 Selfies: Making Funny Faces

Here's a screen capture of me wearing the default mask, and smiling brightly, on the left.
On the right is a scene view of my face mesh generated at runtime:

Figure 9.8 – Me wearing an AR default mask (left) and a wireframe of my face mesh (right)

It's easy to replace this default material with other materials to make your own masks.

Creating face materials
For fun (and for the purposes of instruction), let's try using an arbitrary photo as
a face texture. I'll use a picture named WinterBarn.jpg (this was also used in
Chapter 6, Gallery: Building an AR App). Create a new material using the photo, with
the following steps:

1.	 Right-click in your Project window Materials/ folder and select Create |
Material, naming it PhotoFace Material.

2.	 Drag a photo from the Project window (for example, WinterBar.jpg) onto the
Base Map texture chip. Ensure the Base Map color is white.

3.	 Duplicate the AR Default Face prefab by selecting it in the Project window
and choosing Edit | Duplicate (or pressing Ctrl + D). Then rename it
PhotoFace Prefab.

Making dynamic face meshes with a variety of materials 329

4.	 Open the new prefab for editing and drag the PhotoFace Material onto it. Save the
prefab and return to the scene hierarchy.

5.	 To try it out, drag the PhotoFace Prefab onto AR Face Manager | Face Prefab
and run the scene.

This ought to give you a feeling of how a 2D texture image is mapped onto the face mesh.
This is called UV mapping. In the following figure, I'm wearing a mask with this ordinary
photo as a texture map. On the right is an actual UV texture map (PopFace_Albedo)
for the face mesh:

Figure 9.9 – Ordinary 2D image as face texture (left), and a UV mapped face texture (right)

In this way, you can use any 2D photograph or image that you want. Try others for
yourself, such as your national flag, the logo of your favorite sports team, and so on.

The PopFace_Albedo texture shown in the preceding figure is included in the AR
Face Assets package from Unity that we imported into our project at the beginning of
this chapter. Make a material for that now by repeating steps 1-5, naming the material
PopFace Material, and using PopFace_Albedo for the Base Map texture.

Likewise, the AR Face Assets package includes textures for a robot face. Again, repeat
steps 1-5 for a new RobotFace Material, using Robot_Albedo for the Base
Map texture. In this case, there are additional texture maps you should also add to the
material – Robot_Normal and Robot_Occlusion for Normal Map and Occlusion
Map, respectively.

When adding the Normal Map texture, you may be prompted with This texture is not
marked as a normal map. Click the Fix Now button to apply the required Import Settings.

330 Selfies: Making Funny Faces

The following figure shows me wearing the RobotFace and PopFace masks. Not obvious
in these screen captures is the fact that the face mesh follows my facial expressions in
real time:

Figure 9.10 – Selfies using the Robot PBR material (left), and the Pop albedo texture (right)

Info: Using Procreate to paint your own textures
If you're interested in painting your own UV mapped face textures (and have
an iPad), the Procreate app (https://procreate.art/) has a feature
for doing this (check out Dilmer Valecillos's video on this at https://
youtu.be/FOxhcRzDLx8).

With the materials made, we can add the face mesh visualizer to the changeable face
prefab, so it will generate the face mesh at runtime.

Adding a face mesh visualizer to the changeable
face prefab
To integrate a dynamic face mesh into our app, we should add it to our versatile
Changeable Face Prefab. We will need the same components as the AR Default Face
game object we generated earlier, and they need to be on the prefab's root object. Use the
following steps to add them manually:

1.	 Open Changeable Face Prefab for editing.
2.	 With the prefab root object selected, click Add Component in the Inspector.

https://procreate.art/
https://youtu.be/FOxhcRzDLx8
https://youtu.be/FOxhcRzDLx8

Making dynamic face meshes with a variety of materials 331

3.	 Search for and select the AR Face Mesh Visualizer component.
4.	 Search for and select a Mesh Filter component.
5.	 Search for and select a Mesh Renderer component.
6.	 Drag the DefaultFace Material from the Project window onto the Changeable

Face Prefab root object.
7.	 Save the prefab.
8.	 Back in the scene hierarchy, drag the Changeable Face Prefab asset onto the AR

Session Origin | AR Face Manager | Face Prefab slot.

If you build and run now, you'll see the default face mesh. All the menu buttons still work,
letting you add 3D head models and accessories.

We want to have buttons that let the user choose between face materials. For that, we need
to update our scripts.

Controlling the face material
We can hide or show the face mesh by toggling the AR Face Mesh Visualizer and Mesh
Render components. Use the following steps:

1.	 Open the ChangeableFace script for editing and add the following at the top of
the script:

using UnityEngine.XR.ARFoundation;

2.	 Add the following code to declare and initialize references to the
ARFaceMeshVisualizer and MeshRenderer components:

 ARFaceMeshVisualizer meshVisualizer;

 MeshRenderer renderer;

 private void Start()

 {

 meshVisualizer =
 GetComponent<ARFaceMeshVisualizer>();

 meshVisualizer.enabled = false;

 renderer = GetComponent<MeshRenderer>();

 renderer.enabled = false;

 }

We'll start the app with the face mesh not visible, so both components are disabled.

332 Selfies: Making Funny Faces

3.	 Then, add a SetMeshMaterial function as follows:

 public void SetMeshMaterial(Material mat)

 {

 if (mat == null)

 {

 meshVisualizer.enabled = false;

 renderer.enabled = false;

 return;

 }

 renderer.material = mat;

 meshVisualizer.enabled = true;

 renderer.enabled = true;

 }

When given a material, mat, the function sets it in the renderer and makes sure the
visualizer and renderer components are enabled. If you pass a null value for the
mat, then the components will be disabled.

4.	 Next, open the FaceMainMode script and add a ChangeMaterial function,
as follows:

 public void ChangeMaterial(Material mat)

 {

 foreach (ARFace face in faceManager.trackables)

 {

 ChangeableFace changeable =
 face.GetComponent<ChangeableFace>();

 if (changeable != null)

 {

 changeable.SetMeshMaterial(mat);

 }

 }

 }

Like the other functions in the script, it loops through any trackables and calls into
the changeable component.

Making dynamic face meshes with a variety of materials 333

5.	 Next, update the ResetFace function with the following highlighted line:

 changeable.SetPosePrefab(null);

 changeable.ResetAccessories();

 changeable.SetMeshMaterial(null);

The code is now written. We added a SetMaterial function to the ChangeableFace
script that enables the mesh visualizer and sets the material to render. To the
FaceMainMode script, we added a ChangeMaterial function that calls
SetMaterial on each trackable AR face.

We're now ready to add menu buttons for the various mesh materials.

Adding face materials to the main menu
To add new buttons to the main menu, we can duplicate an existing button and modify it,
as we did earlier. Use the following steps:

1.	 In the Hierarchy, duplicate one of the menu buttons (found under Main UI |
MainMenu Panel | Scroll View | Viewport | Content), such as the FacetHead
Button game object, using the main menu Edit | Duplicate options (or press Ctrl +
D). Rename the copy to DefaultFace Button.

2.	 From the Project window, drag the default face icon asset onto the
Image | Source Image slot.

3.	 On the button On Click action, change Function to FaceMainMode.
ChangeMaterial.

4.	 From the Project window, drag the DefaultFace Material (in your Materials/
folder) onto the parameter slot.

5.	 Likewise, repeat steps 1-4 three times, for PhotoFace Button (using the photo
face icon image, and the PhotoFace Material asset), for PopFace Button,
and for RobotFace Button.

334 Selfies: Making Funny Faces

Save the scene and build the project. When you tap one of the face material buttons,
it renders the face mesh. The following cropped screen capture shows the horizontally-
scrolled menu with the new buttons:

Figure 9.11 – Face mesh texture buttons on the main menu

In this section, we added an AR Face Mesh Visualizer component to our Changeable
Face Prefab so that face meshes will be generated at runtime. We created several materials
to apply when rendering the mesh, and then added buttons to the main menu that let the
user choose between materials. When a button is clicked, it sends the material asset to the
FaceMainMode. This then forwards it to the trackable face(s).

While the face visualizer can follow some of your expressions, including raised eyebrows
and opening your mouth, it does nothing for your eyes. Let's consider eye tracking next.

Using eye tracking (ARKit)
For eye tracking, as you might expect, you are given the pose transforms for each eye,
which you can use to update your own "eyeball" game objects. For this feature, I'll show
you how to do it, but leave the details of integrating it into the project up to you. Presently,
this feature requires an iOS device with a TrueDepth camera.

To learn more about eye tracking with AR Foundation, take a look at the EyeLasers
scene given in the AR Foundation sample assets (we installed these in the Assets/
ARF-samples/ folder).

The Face Prefab in the scene's AR Face Manager is the AR Eye Laser Visualizer prefab.
This has an AR Face component (as you would expect), plus an Eye Pose Visualizer. This
visualizer script, in turn, is given an eyeball prefab. In this specific scene, it is given the
Eye Laser Prefab. This simply contains a long thin cylinder that'll be rendered to look like
a laser beam. In summary, these dependencies could be depicted as the following:

EyeLasers scene -> AR Eye Laser Visualizer face prefab -> Eye Pose
Visualizer script -> Eye Laser Prefab

Using eye tracking (ARKit) 335

The EyePoseVisualizer script is an example script (not part of the AR Foundation
package itself). Briefly, you give it an eyeball prefab, which is instantiated twice and
parented by the ARFace, leftEye, and rightEye pose transforms. For example,
you'll find this line of code in the script's CreateEyeGameObjectsIfNecessary
function (line 45):

m_LeftEyeGameObject = Instantiate(m_EyePrefab, m_Face.leftEye);

As a child of the tracked eye transforms, the spawned objects appear to automatically
track with your detected eye movements.

The script also subscribes to the ARFace and update events, where it toggles the eyes'
visibility based on the trackable's tracking state, as shown in the following code:

 void OnUpdated(ARFaceUpdatedEventArgs eventArgs)

 {

 CreateEyeGameObjectsIfNecessary();

 SetVisible((m_Face.trackingState ==
 TrackingState.Tracking) &&
 (ARSession.state > ARSessionState.Ready));

 }

Tip: Using updated events with face tracking
This script illustrates another best practice for face tracking with AR
Foundation. By subscribing to the trackables' updated events, it toggles the
visibility of instantiated prefabs based on the trackable's trackingState,
as well as the overall ARSession.state. You might consider refactoring
the functions in our FaceMainMode class to handle updated events in
this way too.

Eye tracking is not available on all platforms. When the script is enabled, it first checks
the Unity eye tracking subsystem. If the feature is not supported, the component disables
itself, as highlighted in the following OnEnable function (lines 65-78):

 void OnEnable()

 {

 var faceManager =
 FindObjectOfType<ARFaceManager>();

 if (faceManager != null && faceManager.subsystem !=
 null && faceManager.descriptor.supportsEyeTracking)

 {

336 Selfies: Making Funny Faces

 m_FaceSubsystem =
 (XRFaceSubsystem)faceManager.subsystem;

 SetVisible((m_Face.trackingState ==
 TrackingState.Tracking) &&
 (ARSession.state > ARSessionState.Ready));

 m_Face.updated += OnUpdated;

 }

 else

 {

 enabled = false;

 }

 }

If you want to try this yourself with an eyeball instead of a laser beam, the following URL
contains a free eyeball 3D model you could use: https://free3d.com/3d-model/
eyeball--33237.html. Make it into a prefab and substitute it for the eye laser prefab
on the AR eye laser visualizer prefab's Eye Pose Visualizer | Eye Prefab slot.

This is fantastic! However, you can do so much more. For example, with ARCore, you can
attach graphics to specific regions of the face. Let's look into that now.

Attaching stickers to face regions (ARCore)
If your project is using ARCore XR Plugin and Android, you have access to
ARCore-specific features, including transforms for three important face regions: the nose
tip, left forehead, and right forehead. If you raise your left eyebrow, for example, that
transform will move independently of the rest of the face, providing some more detail to
the facial expressions in your app.

In addition to what we do here, you may also want to look at the ARCoreFaceRegions
scene in the AR Foundation Samples project (see the ARF-samples/ folder in your
project), and the ARCoreFaceRegionManager script it uses. The code we develop in
this section is considerably simpler and easier to follow.

To demonstrate ARCore face regions, we'll implement several 2D stickers and attach them
to the 3D face regions. We'll let you add eyebrows, a mustache, and licking lips using clipart
that we identified at the top of this chapter (and I edited in Photoshop). They've been
imported as Sprite (2D and UI). These are available in this book's GitHub repository.

We can start by creating the sticker prefabs.

https://free3d.com/3d-model/eyeball--33237.html.
https://free3d.com/3d-model/eyeball--33237.html.

Attaching stickers to face regions (ARCore) 337

Creating the sticker prefabs
To make prefabs of these clipart images, use the following steps:

1.	 Right-click in the Project window and select Create | Prefab. Rename it Mustache
Prefab. Then open it for editing.

2.	 From the Project window, drag the mustache image onto the root Mustache Prefab.
This creates a child object named mustache with a Sprite Renderer component.

3.	 Set the mustache object's Transform. The following values worked for me:
Position: (0, -0.02, 0) and Scale: (0,019, 0,019, 0,019).

4.	 Save the prefab.
5.	 Repeat steps 1-4, making Lips Prefab using the licking-lips sprite image.

Use Position: (0, -0.05, 0) and Scale: (0,019, 0,019, 0,019).
6.	 Again, repeat steps 1-4, making Eyebrow Left Prefab using the eyebrow-

left sprite image. Use Position: (0, -0.01, 0) and Scale: (0,019, 0,019,
0,019).

7.	 And likewise, one more time, make Eyebrow Right Prefab using the
eyebrow-right sprite image. Use Position: (0, -0.01, 0) and Scale:
(0,019, 0,019, 0,019).

We now have prefabs for a mustache, lips, and eyebrows. Let's write the scripts to attach
them using the ARCore face regions support.

Managing attachments' positions
We'll create a separate script, FaceRegionAttachments on Changeable Face Prefab.
It makes sense to keep it separate from the ChangeableFace script because the code is
ARCore-specific and is relatively long.

The lines of code that depend on ARCore are enclosed in #if UNITY_ANDROID
&&!UNITY_EDITOR compiler symbols, so they will not run in a non-Android
environment (including the desktop play mode). Use the following steps:

1.	 Create a new C# script named FaceRegionAttachments and open it for editing.
2.	 Start writing the script by replacing the content with the following code:

using System.Collections.Generic;

using UnityEngine;

using Unity.Collections;

using UnityEngine.XR.ARFoundation;

338 Selfies: Making Funny Faces

#if UNITY_ANDROID

using UnityEngine.XR.ARCore;

#endif

public class FaceRegionAttachments : MonoBehaviour

{

 ARFaceManager faceManager;

 ARFace face;

 Dictionary<ARCoreFaceRegion, GameObject> prefabs =
 new Dictionary<ARCoreFaceRegion, GameObject>();

 Dictionary<ARCoreFaceRegion, GameObject> objs =
 new Dictionary<ARCoreFaceRegion, GameObject>();

#if UNITY_ANDROID && !UNITY_EDITOR

 NativeArray<ARCoreFaceRegionData> faceRegions;

#endif

 private void Start()

 {

 faceManager = FindObjectOfType<ARFaceManager>();

 face = GetComponent<ARFace>();

 }

The script first declares that we're using the ARFoundation API as well as ARCore.
Then, at the top of the class, we declare variables for ARFaceManager and the
object's ARFace, and initialize these in Start. We also declare two dictionaries,
prefabs and objs, that will be indexed by the ARCore region identifier
(enum). We then declare a NativeArray of ARCoreFaceRegionData named
faceRegions that we'll be using in Update.

3.	 Add a SetRegionAttachment function (that will be called from
FaceMainMode) as follows:

 public void SetRegionAttachment(ARCoreFaceRegion
 region, GameObject prefab)

 {

 GameObject obj;

 if (objs.TryGetValue(region, out obj))

 {

Attaching stickers to face regions (ARCore) 339

 GameObject currentPrefab = prefabs[region];

 Destroy(obj);

 prefabs.Remove(region);

 objs.Remove(region);

 if (prefab == currentPrefab)

 return;

 }

 obj = Instantiate(prefab);

 prefabs.Add(region, prefab);

 objs.Add(region, obj);

 }

The function gets a region ID and a prefab, instantiates the prefab, and
records both the prefab and spawned object in the dictionaries. If there is already
a spawned object, it is first destroyed and removed from the lists. We check if the new
prefab was the same as the current one, so it won't be respawned again, effectively
allowing the menu button to toggle on and off as an attachment by clicking twice.

4.	 On each Update, we need to ask ARCore for the current list of face regions, and
update the spawned object transforms accordingly, as follows:

 private void Update()

 {

#if UNITY_ANDROID && !UNITY_EDITOR

 var subsystem =
 (ARCoreFaceSubsystem)faceManager.subsystem;

 if (subsystem == null)

 return;

 subsystem.GetRegionPoses(face.trackableId,
 Allocator.Persistent, ref faceRegions);

 for (int i = 0; i < faceRegions.Length; ++i)

 {

 GameObject obj;

 if (objs.TryGetValue(faceRegions[i].region,
 out obj))

 {

 obj.transform.localPosition =
 faceRegions[i].pose.position;

340 Selfies: Making Funny Faces

 }

 }

#endif

 }

5.	 We can also provide a public Reset function that destroys all the instantiated
objects and clears the dictionaries:

 public void Reset()

 {

 foreach (ARCoreFaceRegion region in objs.Keys)

 {

 Destroy(objs[region]);

 }

 objs.Clear();

 prefabs.Clear();

 }

6.	 Finally, it's good practice to dispose of the faceRegions native array when this
game object is destroyed, as follows:

 void OnDestroy()

 {

#if UNITY_ANDROID && !UNITY_EDITOR

 if (faceRegions.IsCreated)

 faceRegions.Dispose();

#endif

 }

}

7.	 Save the script, then, back in Unity, open the Changeable Face Prefab asset
for editing.

8.	 Drag the FaceRegionAttachments script onto the root Changeable Face
Prefab game object, then save the prefab.

Tip: Refactor to avoid garbage collection
As we did earlier, in the Attaching 3D Accessories section, you may want to
refactor this code to avoid garbage collection by reusing objects rather than
repeatedly calling Destroy and Instantiate for the same prefabs.

Attaching stickers to face regions (ARCore) 341

Now we'll update the FaceMainMode script to use it and provide public functions that
the menu buttons can call, as follows:

1.	 Open the FaceMainMode script for editing, and start by adding the following lines
at the top of the file (needed for the enum ARCoreFaceRegion definition):

#if UNITY_ANDROID

using UnityEngine.XR.ARCore;

#endif

2.	 Add a private SetRegionAttachment function that loops through the
trackables and calls SetRegionAttachment on them:

 private void SetRegionAttachment(ARCoreFaceRegion
 region, GameObject prefab)

 {

 foreach (ARFace face in faceManager.trackables)

 {

 FaceRegionAttachments regionAttachments =
 face.GetComponent<FaceRegionAttachments>();

 if (regionAttachments != null)

 {

 regionAttachments.
 SetRegionAttachment(region, prefab);

 }

 }

 }

3.	 Next, expose this capability via separate public functions we can call from the
menu button Unity actions, as follows:

 public void SetNoseAttachment(GameObject prefab)

 {

 SetRegionAttachment(ARCoreFaceRegion.NoseTip,
 prefab);

 }

 public void SetForeheadLeftAttachment(GameObject
 prefab)

 {

342 Selfies: Making Funny Faces

 SetRegionAttachment(
 ARCoreFaceRegion.ForeheadLeft, prefab);

 }

 public void SetForeheadRightAttachment(GameObject
 prefab)

 {

 SetRegionAttachment(
 ARCoreFaceRegion.ForeheadRight, prefab);

 }

4.	 Save the script.

Here, we created a new FaceRegionAttachments script that maintains dictionary
lists of prefabs and spawned objs for game objects attached to specific face regions.
On each frame Update, the objs transforms are updated based on the face region's pose
transform, so it tracks with its region. This implementation allows multiple attachments
on a face, but only one per region. Then, we updated the FaceMainMode script with
public functions that can be called by menu buttons to add attachments.

We can now make the menu buttons.

Adding region attachments to the main menu
As we did earlier, to add new buttons to the main menu, we can duplicate an existing
button and modify it. Use the following steps:

1.	 In the Hierarchy, duplicate one of the menu buttons (found under Main UI |
MainMenu Panel | Scroll View | Viewport | Content), such as the FacetHead
Button game object. Using the main menu, navigate to Edit | Duplicate (or press
Ctrl + D). Rename the copy to Mustache Button.

2.	 From the Project window, drag the mustache icon asset onto the Image |
Source Image slot.

3.	 On the button On Click action, change Function to FaceMainMode.
SetNoseAttachment.

4.	 From the Project window, drag the Mustache Prefab asset onto the parameter slot.
5.	 Repeat steps 1-4 for Lips Button, using the licking-lips icon image, and

the Lips Prefab asset. Use the same function as the mustache, FaceMainMode.
SetNoseAttachment.

Attaching stickers to face regions (ARCore) 343

6.	 Repeat steps 1-4 again for Eyebrows Button, using the eyebrows icon
image. This time, we'll have two On Click actions, one for each eye. The first calls
FaceMainMode.SetForeheadLeftAttachment with the EyebrowLeft Prefab.
The second calls FaceMainMode.SetForeheadRightAttachment with the
EyebrowRight Prefab, as shown in the following:

Figure 9.12 – The eyebrows button has two On Click actions, for both the left and
right regions and prefabs

Save the scene and build the project. When you tap one of the region attachment buttons,
it adds its sticker prefabs to the scene. The mustache and lips both set the nose attachment
so you can only view one at a time. The following screen captures show me all decked out,
including combining it with other face augmentations we created earlier (right):

Figure 9.13 – Selfie screenshots with multiple stickers, and (on the right) combined
with other augmentations

344 Selfies: Making Funny Faces

Because this feature is specific to ARCore, you will probably want to hide the sticker
buttons if you try building the project for iOS. We can add those next.

ARCore-only UI buttons
This face region stickers feature only runs on ARCore and Android. If you plan to build
the same project on iOS (as well as Android), we already account for code compilation
issues using conditional compile symbols. However, the menu buttons will still be visible.
You could disable them by hand in the editor before doing a build, or you could let a script
handle it.

Use the following ARCoreOnly script to hide buttons from the UI (unless you're
targeting Android). If you're targeting Android but using play mode in the editor (using
the AR Foundation remote tool), this script will disable the button so that it is visible but
not interactable:

using UnityEngine;

using UnityEngine.UI;

public class ARCoreOnly : MonoBehaviour

{

 private void Awake()

 {

#if !UNITY_ANDROID

 gameObject.SetActive(false);

#endif

#if UNITY_EDITOR

 Button button = GetComponent<Button>();

 button.interactable = false;

#endif

 }

}

Drag a copy of this script onto the mustache button, lips button, and eyebrows button
game objects so that they can only be used with ARCore.

Tracking expressive face blend shapes (ARKit) 345

To summarize, in this section, we created several sticker prefabs containing Sprite
Renderers. We wrote an ARCore-specific script, FaceRegionAttachments, that uses
the native ARCoreFaceRegionData (via ARCoreFaceSubsystem) to find the pose
transform of each face region (nose tip, left forehead, and right forehead), and track each
spawned game object with the given face region. We added menu buttons for each of the
stickers that call public functions in FaceMainMenu by passing the sticker prefab to
add. This in turn forwards the prefab to the trackable faces. Feel free to add more sticker
prefabs and buttons, using similar steps to the ones found in this section.

This is cool, but having just three face regions is kind of limited. Using ARKit, you have
access to much more refined detail about face geometry. This is achieved with the use
of blend shapes.

Tracking expressive face blend shapes (ARKit)
ARKit introduces additional advanced face tracking features available only on iOS
devices, including blend shapes. Blend shapes refer to morphing mesh geometries that are
commonly used for animating the faces of NPCs (non-player characters) in video games
and VR applications. Presently, they are an ARKit-specific feature. ARKit blend shapes
provide intricate details of facial expressions as separate features, such as a left or right eye
blink, looking down, eyes wide open, cheek puff, cheek squint, jaw left, mouth dimple, and
many more. Each feature is given a coefficient on a scale of 0.0 to 1.0. This shape data can
be forwarded to the Unity Skinned Mesh Renderer (https://docs.unity3d.com/
Manual/class-SkinnedMeshRenderer.html) that is used in character animation.
A good explanation and conversation can be found at the following URL: https://
www.quora.com/What-is-blendshape-exactly.

Building an animated rig (with bones and a skinned mesh) is beyond the scope of this
book. Instead, by way of explanation, I'll walk through the example assets given in the AR
Foundation samples project's ARKitFaceBlendShapes scene, found in the Assets/
ARF-samples/scenes/FaceTracking/ folder. To begin, you can try it yourself
(if you're set up for iOS development) by building the ARKitFaceBlendShapes scene.
Now, let's take a closer look.

Opening the scene in the Unity Editor, you will find AR Session Origin has an AR Face
Manager component, as you'd expect. This references the SlothHead prefab for the
Face Prefab.

https://docs.unity3d.com/Manual/class-SkinnedMeshRenderer.html
https://docs.unity3d.com/Manual/class-SkinnedMeshRenderer.html
https://www.quora.com/What-is-blendshape-exactly
https://www.quora.com/What-is-blendshape-exactly

346 Selfies: Making Funny Faces

Opening the SlothHead prefab, you will see that its root game object has an AR Face
component. It also has an ARKitBlenShapeVisualizer. This is an example script
provided with AR Foundation samples (it is not part of the AR Foundation package itself).
This component has a parameter for Skinned Mesh Renderer. This is on the Sloth_Head2
child object, as shown in the following screenshot:

Figure 9.14 – The SlothHead prefab has the sample ARKitBlendShapeVisualizer script that references
the skinned mesh render on the child Sloth_Head2

Open the ARKitBlendShapeVisualizer script in your code editor. You'll find
a function, CreateFeatureBlendMapping, that is called Awake. This maps
ARKit blend shape names (type ARKitBlendShapeLocation) with corresponding
indexes on the skinnedMeshRenderer. For the list of locations and descriptions,
see the following URL: https://docs.unity3d.com/Packages/com.
unity.xr.arkit-face-tracking@4.2/api/UnityEngine.XR.ARKit.
ARKitBlendShapeLocation.html.

The following screenshot shows the Sloth_Head2 object's Skinned Mesh Renderer,
with some of its BlendShapes visible in the Unity Inspector:

mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit-face-tracking@4.2/api/UnityEngine.XR.ARKit.ARKitBlendShapeLocation.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit-face-tracking@4.2/api/UnityEngine.XR.ARKit.ARKitBlendShapeLocation.html
mailto:https://docs.unity3d.com/Packages/com.unity.xr.arkit-face-tracking@4.2/api/UnityEngine.XR.ARKit.ARKitBlendShapeLocation.html

Summary 347

Figure 9.15 – Skinned Mesh renderer component with some of the blend shapes listed

The ARKit blend shape locations are mapped to the Skinned Mesh Renderer ones.

Then the ARKitBlendShapeVisualizer script, which subscribes to the ARFace
updated events with the OnUpdated function, in turn, calls its UpdateFaceFeatures
function. UpdateFaceFeatures gets the current blend shape coefficients from ARKit
(m_ARKitFaceSubsystem.GetBlendShapeCoefficients), and for each coefficient,
sets that coefficient value (scaled by a global scalar) to the skinnedMeshRender. From
there, Unity does its magic, deforming and animating the mesh geometry to be rendered on
the screen. This is not simple but does make sense if you can follow it correctly.

That's basically how blend shapes work. Developing your own models and code may
require a good familiarity with the parts of Unity in question, but all the information
you need is accessible. You will be successful if you know how to use it.

Summary
In this chapter, you built a face maker app that handles face tracking with the forward-
facing (user-facing) camera on a mobile device. You learned that the AR Face Manager
component takes a Face Prefab to instantiate when a face is tracked. You first used that
to visualize specific AR Face prefabs but then created a generic Changeable Face Prefab
with a ChangeableFace script that we could update from the FaceMainMode script.

348 Selfies: Making Funny Faces

You used this architecture to explore several ways of rendering tracked faces. First,
you used the face pose to render an instantiated 3D head model (MrPlasticHead and
MrFacetHead). Next, you used this technique to add accessories to the face, including
a TopHat and Sunglasses. Then, you added an AR Face Mesh Visualizer to generate
a face mesh dynamically at runtime, and then made several materials that can be
applied to the mesh to make a wide variety of face masks. If you're on ARCore, you also
implemented face region stickers using sprite images attached to ARCore face regions.
Finally, you learned about ARKit-specific face tracking features, including eye tracking
and blend shapes. In the process, you implemented a horizontally-scrolling main menu
button that lets users choose various combinations of face filters. All this was great fun!

You now have a working knowledge of how to build AR applications in Unity using AR
Foundation. If you followed along with each of the chapters of this book, you will have
learned how to set up your system for AR development with Unity configured to build on
your target platform and mobile device. You created a simple AR scene, learning the main
game objects required for AR, including the AR Session and AR Session Origin. You also
explored the sample AR projects provided by Unity. Next, you learned about improving
the developer workflow and troubleshooting your apps, considering situations unique to
AR development.

You created a user framework for developing an AR application that included onboarding
graphics, interaction modes, and UI panels. This was saved as a scene template for reuse.
You learned how to use the framework, first building a simple place-object scene with
a simple main menu.

In the third part of the book, you built several AR applications, including a picture gallery
that lets you place framed photos on your walls, with menus and user interactivity. You
improved the app, adding editing tools to move, resize, delete, and change the images
displayed in virtual pictures in the scene. In the next project, you used image tracking to
present 3D graphics and information about the planets using real-life printed flashcards.
Finally, in this chapter, you built a face tracking app with a scrolling menu containing
a variety of face heads, masks, and attachable accessories to make fun selfies.

This is just the start. AR Foundation and Unity provide even more support for augmented
reality applications, including object tracking and geotagging with GPS, as well as the
full richness of the Unity platform for the development of interactive 3D games and
applications. Go out and augment the world!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

350 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Game Development Patterns with Unity 2021 - Second Edition

David Baron

ISBN: 978-1-80020-081-4

•	 Structure professional Unity code using industry-standard development patterns

•	 Identify the right patterns for implementing specific game mechanics or features

•	 Develop configurable core game mechanics and ingredients that can be modified
without writing a single line of code

•	 Review practical object-oriented programming (OOP) techniques and learn how
they're used in the context of a Unity project

•	 Build unique game development systems such as a level editor

•	 Explore ways to adapt traditional design patterns for use with the Unity API

https://www.packtpub.com/product/game-development-patterns-with-unity-2021-second-edition/9781800200814

Why subscribe? 351

Unity 2020 Virtual Reality Projects - Third Edition

Jonathan Linowes

ISBN: 978-1-83921-733-3

•	 Understand the current state of virtual reality and VR consumer products

•	 Get started with Unity by building a simple diorama scene using Unity Editor and
imported assets

•	 Configure your Unity VR projects to run on VR platforms such as Oculus,
SteamVR, and Windows immersive MR

•	 Design and build a VR storytelling animation with a soundtrack and timelines

•	 Implement an audio fireball game using game physics and particle systems

•	 Use various software patterns to design Unity events and interactable components

•	 Discover best practices for lighting, rendering, and post-processing

https://www.packtpub.com/product/unity-2020-virtual-reality-projects-third-edition/9781839217333

352 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Packt is searching for authors like you 353

Share Your Thoughts
Hi!

I am Jon, author of Augmented Reality with Unity AR Foundation, and Unity 2020 Virtual
Reality Projects books. I really hope you enjoyed reading my book and found it useful for
getting started build AR and/or VR applications. I think you're now ready to go out and
augment your world!

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Augmented Reality with Unity AR Foundation.

Your review will help me to understand what's worked well in this book, and what could
be improved upon for future editions, so it really is appreciated.

Best Wishes,

Jon

Index

Symbols
3D accessories

attaching 320
3D heads

face pose, tracking with 309
3D model

finding 75-77
3D virtual object, placing in

SimpleAR scene
about 61
building 71, 72
PlaceObject input action,

setting up 62-64
PlaceObjectOnPlane script,

writing 67-71
running 71, 72
script, refactoring 72, 73

A
accessories

adding, to main menu 325, 326
ChangeableFace script,

updating for 323-325
adb tool 89

Add button
rerouting 219, 220

Android/ARCore development
project, setting up for 27-30

Android Environment Setup,
Unity Manual

reference link 27
AnimatedPrompt script

writing 148-150
Apple Developer Program

reference link 31
app's Main-mode

building 281
PlanetsMainMode script,

writing 282-285
AR Camera

setting, for selfies 306
using 56, 57

ARCore Cloud Anchors
reference link 257

AR Core developer guide
reference link 262

ARCore Fundamental Concepts
reference link 7

arcoreimg tool 262

356 Index

ARCore-only UI buttons 344, 345
ARCore Supported Devices

reference link 27
AR Default Face

exploring 327
AR Development, in Unity

reference link 7
AR development project

AR Foundation package,
installing 23, 24

input handler, selecting 25
preparing 18, 19
Universal Render Pipeline

(URP), adding 26
XR plugins, installing 20-22

AR device requisites, to register
virtual object in 3D

environmental understanding 6
face and object tracking 6
geolocation 5
image tracking 5
motion tracking 5

AR Face Manager component
adding 306

AR Foundation
face tracking 301, 302

AR Foundation Editor Remote tool
reference link 105

AR Foundation example
projects, from Unity

exploring 42, 43
AR Foundation game objects

scene, creating 119, 120
AR Foundation package 24
AR Foundation Samples project

building 43-46
running 43-46
sample assets, exporting for reuse 46, 47

ARFramework template
scene, creating 302, 303

ARGallery
creating, with ARFramework

scene template 188
AR image tracking

working 260-262
ARKit

reference link 7
ARKit ARWorldMap

reference link 257
ARKit XR Plugin

reference link 257
AR onboarding issues

about 174
AR-optional project, creating 174, 175
device, determining to support

specific AR feature 176, 177
localization, adding 178, 179

AR-optional project
creating 174, 175

AR Raycast Manager
adding, to SimpleAR scene 59, 60

AR scene
building 35, 36, 38-40
configuring, for face tracking 305
objects 189
running 35, 36, 38-40

AR Session object
using 52-54

AR Session Origin
using 54, 55

Art Gallery project UX
assets 185
business plan 185
key features 184
project objectives 186
project overview 184

Index 357

project plan 185
specifying 184
technical plan 185
use cases 184, 186
user experience (UX) design 185-87
user stories 188

AR Tracked Image Manager
adding 266

AR user framework
main menu, adding 160, 161
scene, creating 158, 159

AR user framework project
building 168, 169
planning 157, 158
running 168, 169

assets
about 13
importing 304, 305

augmented reality (AR)
defining 4
required characteristics 5

Augmented Reality (AR) applications
interaction flow 115-117

B
blend shapes 345
Build And Run

performing, on device 308

C
changeable face prefab

creating 313, 314
ChangeableFace script

updating, for accessories 323-325
collision

versus trigger detection 239

Console logs
using, on mobile device 86

Console window
about 13
simulating, in app 90-98

coroutine
about 135
reference link 135

D
debugging

on remote devices 102, 103
Debug.Log

using 84, 85
detected images

responding 288-290
DOTween

installing 117, 118
reference link 117

downloadable content (DLC) 193
dynamic face meshes

making 327

E
edit menu UI

creating 225, 226
Edit mode

creating 224
object, selecting from 237, 238

editor remote tool
using, for testing 104-106

Editor window 13
EditPicture mode

creating 226, 227
encapsulation 73
equirectangular images 274-276

358 Index

expressive face blend shapes (ARKit)
tracking 345, 346, 347

eye tracking (ARKit)
using 334-336

F
face identification 301
face materials

adding, to main menu 333
controlling 331, 332
creating 328-330

face mesh visualizer
adding, to changeable face

prefab 330, 331
face pose

tracking, with 3D heads 309
face recognition 301
FaceRegionAttachments

position, managing 337-342
face regions (ARCore)

stickers, attaching to 336
face tracking

about 300
AR scene, configuring for 305
iOS ARKit, setting up for 303
versus face identification 301
with AR Foundation 301, 302

frame
replacing 246

framed photo prefab
creating 194
FramedPhoto script, writing 197, 198
prefab hierarchy, creating 194-196
picture's shape, scaling 198, 199

G
Game Design Document (GDD) 184
GameObjects 74, 75
Game view window 13
generic Planet Prefab

creating 273, 274

H
hat

wearing 320, 321
heads-up display (HUD) 5
Hierarchy window 13
High Definition Render

Pipeline (HDRP) 10
Hyper-Reality

reference link 6

I
image

importing, into project 189, 190
pixel dimensions, obtaining 192
replacing, of picture 242-246

image aspect ratio
adjusting 220-222

Image Button prefab
creating 215

ImageButtons script
writing 216-218

image data
adding, to scene 190-192
collecting 189

image select menu
creating 211

Index 359

Inspector window 13
Interaction Controller mode

creating 132
hierarchy, creating 132
writing 133-137

interaction modes behavior
creating 138
MainMode script 141
NonARMode script 141, 142
ScanMode script 140, 141
StartupMode script 138, 139

interaction, to edit picture
about 247
drag-to-move feature, using to

move picture 249-252
FramedPhoto objects, ensuring

to receive Input Action
messages 247, 248

interaction components,
adding 248, 249

pinch-to-resize, implementing 253-257
interactive development

environment (IDE) 99
intersected objects

avoiding 238-241
iOS ARKit

setting up, for face tracking 303
project, setting up for

development 30-32
iOS Development, Unity Manual

reference link 31

J
JetBrains Rider 99
Jira

URL 188

L
layermask 232
LIDAR depth sensors 207
Light Estimation

adding, to SimpleAR scene 60, 61
localization

adding 178, 179
logcat

using, with Android devices 87-89
log messages

used, for troubleshooting errors 82, 83
long-term support (LTS) version 8
Lunar Mobile Console

reference link 98

M
Magic Leap

references 35
main menu

accessories, adding to 325, 326
adding 160, 161
region attachments, adding to 342-344

Main Menu window 13
main mode app

setting up, to handle user
interactions 313

main mode controller script
writing 314, 315

MainMode script 141
Main-mode UI

camera, pointing to display
information 292-294

creating 291
information details, displaying 294-296

Main Toolbar window 14

360 Index

marker images 261
markers 261, 262
MARS Companion app

reference link 108
using, to capture real-world data 108

menu buttons
wiring 166, 167

Merge Cube
reference link 261

Microsoft Mixed Reality
reference link 34

Mixed Reality Toolkit (MRTK)
about 34
reference link 34

mobile development
project, setting up for 27

MonoBehaviour class
about 64-66
reference link 66

N
Namespace UnityEngine.

XR.ARSubsystems
reference link 177

NonARMode script 141, 142

O
object

selecting, from Edit mode 237, 238
onboarding 143
onboarding graphics

integrating 151, 152
OnboardingUX package

importing 148
OnDisable

calling 171

OnEnable
calling 171

Overview of Features, ARCore Unity
reference link 27

P
Package Manager 24
personas 184
picture

deleting 242
image, replacing of 242-246

picture, selecting to edit
about 228
Done Edit button, setting up 233
MainMode script, replacing 229
object, selecting from Main-

mode 230-233
SelectObject input action, defining 228

pictures list
loading, at runtime 193

pixel dimensions
obtaining, of image 192

PlaceObject input action
setting up 62-64

PlaceObject mode
adding 162
creating 163-166

PlaceObjectOnPlane script
writing 67-71

PlaceObject UI panel
creating 162, 163

plane detection 207
Plane Manager

adding, to SimpleAR scene 57-59
planet card image

adding, to Reference Image
Library 285, 286

Index 361

planet metadata
adding 278

planet prefab
creating 286, 287

PlanetsMainMode script
writing 282-285

Planets project
planet cards, preparing 263, 264
planet textures and data, collecting 265
specifying 262
user workflow 263

planet's rotation
animating 279, 280

PlanetsScene
working with 265, 266

play mode 14
Point Cloud Manager

adding, to SimpleAR scene 57-59
pose tracking 5
prefab

about 13, 36
adding, to SimpleAR scene 77, 78
creating, for placing in

SimpleAR scene 74
Mr. Facet Head prefab, creating 312
Mr. Plastic Head prefab,

creating 310, 311
prefab variants

reference link 273
prerequisite assets

about 118
DOTween 117, 118
installing 117
Serialized Dictionary Lite 118
TextMeshPro 117

programs
debugging, with Visual Studio

debugger 99-101
project

developing, for wearable
AR glasses 33-35

setting up, for Android/ARCore
development 27-30

setting up, for iOS/ARKit
development 30-32

setting up, for mobile development 27
project assets

organizing 17, 18
Project assets window 13

Q
Quaternion

about 208
reference link 208

R
refactoring 72
Reference Image Library

creating 267, 268
planet card image, adding to 285, 286

reference images
scanning 269-271
tracking 266

region attachments
adding, to main menu 342-344

reset face button
adding 319, 320

responsive UI
creating 291

Rigidbody 238

362 Index

S
ScanMode script 140, 141
scene

creating, from scene template 158
creating, with ARFramework

template 302, 303
image data, adding to 190-192

SceneManager
reference link 175

scene template
creating, for new scenes 152

Scene view window 13
screen space canvas

app title, adding 121, 122
creating 121

ScriptableObjects
reference link 192
using 192

Scriptable Render Pipeline (SRP) 10
scrollable main menu buttons

creating 316-319
selected picture

highlighting 234-37
SelectImage mode

creating 211, 212
Select Image UI panel

creating 212-215
selfies

AR camera, setting for 306
Serialized Dictionary Lite

installing 118
SimpleAR scene

AR Camera, using 56, 57
AR Raycast Manager, adding 59, 60
AR Session object, using 52-54
AR Session Origin, using 54, 55

building 48, 61
Light Estimation, adding 60, 61
Plane Manager, adding 57-59
Point Cloud Manager, adding 57-59
project, creating 48, 49
running 61
sample assets, importing

into project 49-51
starting 51, 52

Simultaneous Localization and
Mapping (SLAM) 5

singleton 125
Singleton class script

creating 125, 126
Software Design Document (SDD) 184
sporting cool sunglasses 322
stack trace 83
StartupMode script 138, 139
state machine 116
sticker prefabs

creating 337
stickers

attaching, to face regions (ARCore) 336
storyboard 185
Struct XRPlaneSubsystemDescriptor.Cinfo

reference link 177

T
target device

scene, building 271, 272
scene, executing 271, 272

testing
with editor remote tool 104-106

TextMeshPro
installing 117

third-party virtual consoles 98

Index 363

trackables
disabling, by modifying plane

detection mode 173
tracked objects

hiding 169-173
Transforms 74, 75
Trello

URL 188
TriAxes prefab 309
trigger detection

versus collision 239

U
UI canvas

creating 120
UI controller script

creating 125
Singleton class script, creating 125, 126
UI panels, fading 130, 131
writing 127-130

UI panels
creating 120-124
fading 130, 131

Unity
about 7
URL 7

Unity ARCore Extensions Installation
reference link 27

Unity ARCore Plugin
reference link 27

Unity ARCore XR Plugin
reference link 173

Unity ARKit Plugin
reference link 31

Unity AR onboarding UX assets
about 143-45

AnimatedPrompt script,
writing 148-150

components 144, 145
dependency packages,

installing 146, 147
onboarding graphics,

integrating 151, 152
OnboardingUX package, importing 148
preparing 145, 146
using 143

Unity Cloud Build, for iOS
reference link 31

Unity C# programming 64-66
Unity Editor

basics 15-17
installing 8, 9

Unity Editor interface 12-14
Unity, for Windows Mixed Reality

reference link 34
Unity Hub

installing 7, 8
Unity Localization package

reference link 178
Unity MARS

about 107
reference link 107
using, for simulations 107, 108

Unity projects
creating 10-12
managing 10-12
upgrading, tips 11

Unity Remote 5 104
Unity Windows XR Plugin

reference link 34
Universal Render Pipeline

(URP) 10, 26, 145

364 Index

user
prompting, to find face 307, 308

user interaction modes
configuring 269

User Interface (UI)
adding 162
configuring 269

V
view-controller 116
virtual Earth prefab

creating 273-277
generic Planet Prefab, creating 273, 274
instantiating 273
planet metadata, adding 278
planet's rotation, animating 279, 280

virtual photo, hanging on wall
about 200
AddPicture Mode object,

creating 203, 204
AddPictureMode script,

completing 208-210
AddPicture UI panel, creating 200, 201
Build And Run 206, 207
initial AddPictureMode script,

writing 201, 202
main menu Add button,

creating 204-206
tracked planes, displaying in

AddPicture mode 210
vertical planes, detecting 200

Virtual Reality (VR) 43
Visual Studio debugger

used, to debug programs 99-101
VS Code 99

X
XR face subsystem

reference link 301
XR plugins

installing, for AR devices 20-22

	Cover
	Title
	Copyright and Credits
	Table of Contents
	Section 1 –
Getting Started with Augmented Reality
	Chapter 1: Setting Up for AR Development
	Technical requirements
	Defining Augmented Reality
	Getting started with Unity
	Installing Unity Hub
	Installing a Unity Editor
	Creating and managing Unity projects
	Introducing the Unity Editor interface
	Basics of using the Unity Editor
	Organizing your project assets

	Preparing your project for AR development
	Installing XR plugins for AR devices
	Installing the AR Foundation package
	Choosing an input handler
	Adding support for the Universal Render Pipeline

	Setting up for mobile development
	Setting up for Android/ARCore development
	Setting up for iOS/ARKit development
	Developing for wearable AR glasses

	Building and running a test scene
	Summary

	Chapter 2: Your First AR Scene
	Technical requirements
	Exploring the AR Foundation example projects from Unity
	Building and running the Samples project
	Exporting the sample assets for reuse

	Building the SimpleAR scene in your own project
	Creating a new project
	Importing the Sample assets into your own project

	Starting a new, basic AR scene
	Using AR Session
	Using AR Session Origin
	Using the AR Camera
	Adding Plane and Point Cloud managers
	Adding AR Raycast Manager
	Adding Light Estimation
	Building and running the scene

	Placing an object on a plane
	Setting up a PlaceObject input action
	Introducing Unity C# programming and the MonoBehaviour class
	Writing the PlaceObjectOnPlane script
	Building and running the scene
	Refactoring your script

	Creating a prefab for placing
	Understanding GameObjects and Transforms
	Finding a 3D model
	Completing the scene

	Summary

	Chapter 3: Improving the Developer Workflow
	Technical requirements
	Troubleshooting with log messages
	Using Debug.Log
	Using the Console with a mobile device
	Simulating a Console window in your app

	Debugging with a debugger
	Debugging on a remote device

	Testing with an editor remote tool
	Simulating with Unity MARS
	Capturing with the MARS Companion app

	Summary

	Section 2 –
A Reusable AR User Framework
	Chapter 4: Creating an AR User Framework
	Technical requirements
	Understanding AR interaction flow
	Installing prerequisite assets
	TextMeshPro
	DOTween
	Serialized Dictionary Lite
	Other prerequisite assets

	Starting with a new scene
	Creating the UI canvas and panels
	Creating the screen space canvas
	Adding an app title
	Creating the UI panels

	Creating the UI controller
	Creating a Singleton class script
	Writing the UIController script
	Fading the UI panels

	Creating an Interaction Controller mode
	Creating the interaction mode hierarchy
	Writing the Interaction Controller

	Creating the interaction modes behavior
	The StartupMode script
	The ScanMode script
	The MainMode script
	The NonARMode script

	Testing it out
	Using the Unity onboarding UX assets
	Introducing the onboarding assets
	Preparing the Unity AR onboarding assets
	Installing dependency packages
	Importing the OnboardingUX package
	Writing the AnimatedPrompt script
	Integrating the onboarding graphics

	Creating a scene template for new scenes
	Summary

	Chapter 5: Using the AR User Framework
	Technical requirements
	Planning the project
	Starting with the ARFramework scene template
	Adding a main menu
	Adding PlaceObject-mode with instructional UI
	Creating the PlaceObject UI panel
	Creating the PlaceObject mode

	Wiring the menu buttons
	Performing a Building and Run
	Hiding tracked objects when not needed
	Advanced onboarding issues
	Making an AR-optional project
	Determining whether the device supports a specific AR feature
	Adding localization

	Summary

	Section 3 –
Building More AR Projects
	Chapter 6: Gallery: Building an AR App
	Technical requirements
	Specifying the Art Gallery project UX
	Project objectives
	Use cases
	UX design
	User stories

	Getting started
	Collecting image data
	Importing photos to use
	Adding image data to the scene
	Obtaining the pixel dimensions of an image
	Loading the pictures list at runtime

	Creating a framed photo prefab
	Creating the prefab hierarchy
	Writing a FramedPhoto script
	Scaling the picture's shape

	Hanging a virtual photo on your wall
	Detecting vertical planes
	Creating the AddPicture UI panel
	Writing the initial AddPictureMode script
	Creating the AddPicture Mode object
	Creating a main menu Add button
	Build And Run
	Completing the AddPictureMode script
	Showing tracked planes in AddPicture mode

	Selecting an image to use
	Creating the SelectImage mode
	Creating the Select Image UI panel
	Creating an Image Button prefab
	Writing an ImageButtons script
	Reroute the Add button

	Adjusting for image aspect ratio
	Summary

	Chapter 7: Gallery: Editing Virtual Objects
	Technical requirements
	Creating an Edit mode
	Creating an edit menu UI
	Creating EditPicture mode

	Selecting a picture to edit
	Defining a SelectObject input action
	Replacing the MainMode script
	Selecting an object from Main-mode
	Wiring the Done edit button

	Highlighting the selected picture
	Selecting an object from Edit mode
	Avoiding intersecting objects
	Deleting a picture
	Replacing the picture's image
	Replacing the frame

	Interacting to edit a picture
	Ensuring FramedPhoto objects receive Input Action messages
	Adding the interaction components
	Using our finger to move the picture
	Pinching to resize the picture

	Summary

	Chapter 8: Planets: Tracking Images
	Technical requirements
	Understanding AR image tracking
	Specifying the Planets project
	User experience flow
	Preparing the planet cards
	Collecting planet textures and data

	Getting started
	Tracking reference images
	Adding AR Tracked Image Manager
	Creating a reference image library

	Configuring the user interaction modes and UI
	Scanning for reference images
	Build and run

	Creating and instantiating a virtual Earth prefab
	Creating the generic Planet Prefab
	Understanding equirectangular images
	Creating the Earth prefab
	Adding planet metadata
	Animating the planet's rotation

	Building the app's Main-mode
	Writing the PlanetsMainMode script

	Expanding the project with multiple planets
	Adding the planet card image to the Reference Image Library
	Creating the planet prefab
	Responding to detected images

	Making a responsive UI
	Creating the Main-mode UI
	Pointing the camera to show information
	Displaying information details

	Summary

	Chapter 9: Selfies: Making Funny Faces
	Technical requirements
	Understanding face tracking
	Face tracking versus face identification
	Tracking a face with AR Foundation

	Getting started
	Creating a new scene using the ARFramework template
	Setting up iOS ARKit for face tracking
	Importing assets used in this project

	Configuring a new AR scene for face tracking
	Setting the AR camera for selfies
	Adding an AR Face Manager component
	Prompting the user to find a face, or not
	Build and run

	Tracking the face pose with 3D heads
	Making a Mr. Plastic Head prefab
	Making a Mr. Facet Head prefab

	Building the Main mode and menu
	Creating a changeable face prefab
	Writing a main mode controller script
	Creating scrollable main menu buttons
	Adding a reset face button

	Attaching 3D Accessories
	Wearing a hat
	Sporting cool sunglasses
	Updating the scripts for accessories
	Adding accessories to the main menu

	Making dynamic face meshes with a variety of materials
	Exploring AR Default Face
	Creating face materials
	Adding a face mesh visualizer to the changeable
face prefab
	Controlling the face material
	Adding face materials to the main menu

	Using eye tracking (ARKit)
	Attaching stickers to face regions (ARCore)
	Creating the sticker prefabs
	Managing attachments' positions
	Adding region attachments to the main menu
	ARCore-only UI buttons

	Tracking expressive face blend shapes (ARKit)
	Summary

	Index

