

Introduction to Java
Through Game
Development

Learn Java Programming Skills by
Working with Video Games

Victor G. Brusca

Introduction to Java Through Game Development: Learn Java Programming Skills
by Working with Video Games

ISBN-13 (pbk): 978-1-4842-8950-1 ISBN-13 (electronic): 978-1-4842-8951-8
https://doi.org/10.1007/978-1-4842-8951-8

Copyright © 2023 by Victor G. Brusca

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Kate Laine on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.apress.com/
source- code.

Printed on acid-free paper

Victor G. Brusca
Edison, NJ, USA

https://doi.org/10.1007/978-1-4842-8951-8

I’d like to dedicate this book to my Mom and
Dad and to my Uncle Jimmy and Tianti. I love you all very much.

v

About the Author ��� xi

Introduction ��� xiii

Chapter 1: Introduction��� 1

About This Text �� 1

Notes on Formatting ��� 2

Notes on Conventions ��� 4

Objectives ��� 6

Java Fundamental Topics �� 6

Java Advanced Topics �� 7

Game Development Topics �� 8

Setting Up Your Environment �� 9

Getting the Game Projects Setup��� 13

Checking Out the Games ��� 20

Conclusion �� 26

What We Covered �� 27

Chapter 2: What Is Java Programming ��� 29

Computers and Programming ��� 29

Programming Computers �� 30

Programming Languages �� 30

Types of Programs/Programming �� 32

The Java Programming Language �� 33

The JRE ��� 34

The JDK ��� 35

Table of Contents

https://doi.org/10.1007/978-1-4842-8951-8_1
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_1#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_2
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec7

vi

Syntax and Semantics �� 35

Basic Syntax Rules �� 36

Keywords/Reserved Words �� 37

Game Programming �� 38

The Main Game Loop ��� 39

Program Structure ��� 40

Overview of Included Games ��� 40

Conclusion �� 41

What We Covered �� 42

Chapter 3: Variables ��� 43

Data Types ��� 43

Basic Data Types ��� 44

Using Basic Data Types ��� 46

Challenge: Basic Data Types �� 49

Challenge Solution ��� 51

Advanced Data Types �� 52

The var Keyword and Dynamic Typing ��� 52

Arrays �� 54

Using Arrays �� 56

Challenge: Arrays ��� 63

Challenge Solution ��� 65

Lists ��� 66

Using Lists ��� 69

Challenge: ArrayLists ��� 72

Challenge Solution ��� 73

Conclusion �� 73

What We Covered �� 74

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8951-8_2#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec14
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec15
https://doi.org/10.1007/978-1-4842-8951-8_2#Sec16
https://doi.org/10.1007/978-1-4842-8951-8_3
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec14
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec15
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec16
https://doi.org/10.1007/978-1-4842-8951-8_3#Sec17

vii

Chapter 4: Expressions and Operators, Flow Control, and More on Variables �������� 75

Expressions and Operators ��� 76

Numeric Expressions �� 80

Boolean Expressions ��� 82

Assignment Expressions ��� 83

Increment/Decrement Expressions ��� 84

Bitwise Expressions �� 85

Bit-Shift Expressions ��� 86

Operators and Operator Precedence ��� 87

Flow Control �� 88

If-Else Statements ��� 89

Switch Statements �� 91

Try-Catch Statements �� 93

Challenge: Flow Control ��� 95

Challenge Solution ��� 96

More on Variables ��� 98

Enumerations �� 98

Very Basic Java Classes �� 100

Casting and Conversion ��� 101

Challenge: Enumerations ��� 106

Challenge: Solution �� 107

Conclusion �� 109

What We Covered �� 109

Chapter 5: More Data Structures �� 111

Multidimensional Arrays ��� 112

Declaring Multidimensional Arrays �� 112

Using Multidimensional Arrays �� 113

Hashes �� 116

Declaring Hashtables��� 117

Using Hashtables ��� 119

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8951-8_4
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec14
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec15
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec16
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec17
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec18
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec19
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec20
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec21
https://doi.org/10.1007/978-1-4842-8951-8_4#Sec22
https://doi.org/10.1007/978-1-4842-8951-8_5
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec6

viii

Stacks ��� 122

Declaring Stacks ��� 123

Using Stacks �� 124

Queues �� 128

Parameterized Types and Data Structures �� 130

Challenge: Stacks�� 131

Challenge Solution �� 132

Conclusion �� 134

What We Covered �� 134

Chapter 6: Looping and Iteration �� 135

For Loops �� 136

Basic For Loop ��� 136

For-Each Loop �� 140

While Loops ��� 142

Basic While Loop ��� 142

Main Game Loop �� 144

Do-While Loops ��� 151

Basic Do-While Loop ��� 151

Break and Continue ��� 152

Challenge: For-Each Loops �� 153

Challenge Solution �� 153

Conclusion �� 154

What We Covered �� 155

Chapter 7: Objects, Classes, and OOP ��� 157

Classes �� 158

Fields ��� 160

Methods ��� 163

Static Members ��� 169

Constructors �� 172

Challenge: The MmgBmp Class ��� 174

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8951-8_5#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec14
https://doi.org/10.1007/978-1-4842-8951-8_5#Sec15
https://doi.org/10.1007/978-1-4842-8951-8_6
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_6#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_7
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec6

ix

Challenge Solution �� 176

Challenge: The ScreenGame Class �� 177

Challenge Solution �� 178

Advanced Class Topics �� 178

Access ��� 178

Class Design �� 179

Static Main Entry Point �� 179

Challenge: Dungeon Trap’s Static Main ��� 181

Challenge Solution �� 183

Conclusion �� 185

What We Covered �� 186

Chapter 8: Encapsulation, Inheritance, and Polymorphism ���������������������������������� 189

Encapsulation ��� 190

Inheritance �� 191

Challenge: Inheritance ��� 193

Challenge Solution ��� 194

Polymorphism ��� 195

Challenge: Polymorphism �� 202

Challenge Solution ��� 204

Importing Class Libraries �� 205

Video Game Project Structure ��� 207

Challenge: Create a New Game Project ��� 209

Challenge Solution ��� 210

Conclusion �� 221

What We Covered �� 222

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8951-8_7#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec12
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec13
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec14
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec15
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec16
https://doi.org/10.1007/978-1-4842-8951-8_7#Sec17
https://doi.org/10.1007/978-1-4842-8951-8_8
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec9
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec10
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec11
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec18
https://doi.org/10.1007/978-1-4842-8951-8_8#Sec19

x

Chapter 9: Debugging Techniques �� 223

Output Trace �� 223

IDE Debugging Features �� 224

Exceptions ��� 228

Handling Exceptions �� 228

Defining Exceptions ��� 231

The Stack Trace ��� 233

Conclusion �� 234

What We Covered �� 234

Chapter 10: Conclusion ��� 237

Accomplishments ��� 237

Acknowledgments �� 240

Where You Go from Here ��� 242

Saying Goodbye �� 242

Index ��� 243

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8951-8_9
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec4
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec5
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec6
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec7
https://doi.org/10.1007/978-1-4842-8951-8_9#Sec8
https://doi.org/10.1007/978-1-4842-8951-8_10
https://doi.org/10.1007/978-1-4842-8951-8_10#Sec1
https://doi.org/10.1007/978-1-4842-8951-8_10#Sec2
https://doi.org/10.1007/978-1-4842-8951-8_10#Sec3
https://doi.org/10.1007/978-1-4842-8951-8_10#Sec4

xi

About the Author

Victor Brusca is an experienced software developer specializing in building cross-

platform applications and APIs. He regards himself as a self-starter with a keen eye for

detail, an obsessive protection of systems/data, and a desire to write well-documented,

well-encapsulated code. With over 14 years' software development experience, he has

been involved in game and game engine projects on J2ME, T-Mobile SideKick, WebOS,

Windows Phone, Xbox 360, Android, iOS, and web platforms.

xiii

Introduction

In this book, “Learning Java Through Game Development,” you will learn the

fundamentals of the Java programming language through a detailed review of the

language’s features, including data structures and OOP, reenforced by coding challenges

throughout the text. Get started today by downloading the book’s projects and source

code here: http://github.com/apress/introduction-to-java-through-gamedev/

Using the associated game projects along with topic specific coding challenges you

will gain experience and knowledge working with the Java programming language, the

NetBeans IDE, a 2D game engine, and three different 2D games! This introductory text

will give you a solid foundation of experience in Java and video game programming for

you to build on.

http://github.com/apress/introduction-to-java-through-gamedev/

1

CHAPTER 1

Introduction
In this book, Introduction to Java Through Game Development, you will learn the

fundamentals of the Java programming language through hands-on game development

tasks. Through the completion of topic-specific coding challenges, focused on a

particular aspect of one of the three games included with the text, you will gain

experience and knowledge working with the Java programming language, the NetBeans

IDE, a 2D game engine, and three different 2D games. And without further ado, allow me

to provide some details about this book starting with information on the structure and

conventions used in this text.

 About This Text
This text will guide you through the basics, and some advanced topics, of the Java

programming language. As we proceed through the different topics involved, you will

be challenged to alter, fix, write, and/or debug a copy of one of the three games included

with the text:

• Pong Clone

• Memory Match

• Dungeon Trap

Each game is written in a proprietary 2D game engine included with the text. The

engine is open source and can be accessed here if you want to take a look at the code

involved:

github.com/apress/intro-java-through-game-dev

The source code associated with this game project can be found in the same repo.

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_1

https://doi.org/10.1007/978-1-4842-8951-8_1#DOI

2

Each project includes a fully functioning version of the game with full source code as

well as coding challenges. As you progress through this text, you will be given challenges that

apply certain Java programming language knowledge to the game project at hand. There will

be specific copies of the game project preconfigured for the current chapter’s challenge.

Generally speaking, this text will not require you to be connected to the Internet for

prolonged periods of time outside of downloading a copy of this text and its associated

code and programs. You will need only a small amount of computing resources to run

the associated software and games. You should have a computer with resources at least

equal to the following minimum requirements:

• Dual core CPU

• 4GB of system RAM

• 2GB of storage space

Any relatively modern computer should be able to handle the workload without

a sweat. When working with any modern programming language, a decision must be

made as to how to code in that language. Oftentimes, you can just use Notepad and a few

command-line tools to write and build programs. In our case, however, we would like to

use more advanced tools, so we’ll require the use of an IDE.

An IDE is an Integrated Development Environment and is a fairly complex program

whose job it is to make some of the tasks of the software developer easier so they can

take on larger projects and focus on the coding at hand. Games are complex programs

that often have a lot of moving parts, literally. As such, we stand to benefit greatly by

using an IDE, so we chose the NetBeans IDE for our purposes.

Each example game in this text is written for a simple Java 2D game engine. The

experience gained from working through the coding challenges in this text will go a long

way to giving the reader a solid foundation to create some of their own 2D games in Java

using the included game engine.

 Notes on Formatting
Throughout the text there are some consistent formatting patterns I would like to

discuss. First off, each chapter follows a similar, general structure, listed as follows:

• Chapter Introduction

• Topic #1

Chapter 1 IntroduCtIon

3

• Topic #2

• Challenge Description

• Challenge Solution

• Chapter Conclusion

The “Topic” and “Challenge” sections are repeated as necessary to touch upon all

the chapter’s topics and will sometimes vary slightly in their construction. In general,

though, each chapter will have a structure close to that outlined previously. In addition

to the text, each chapter will have a namespace entry in the associated game project for

each challenge in that chapter.

There will be more on this to come. For now, the main takeaway is that each

challenge will have a little sandbox copy of the game for you to work with and a

completed example to look at. The structure of the code challenges themselves is present

in the chapter outline, but in any case, let’s discuss them a little bit before we move on.

• Challenge Description

• Challenge Solution

The general structure of the coding challenges presented in the text is listed

previously. The challenge will be presented with a detailed description and a clue,

if any is provided. Of course, there will be variations in the sections and section

titles. The challenges themselves are designed to apply the knowledge learned in the

current programming language topic. Challenges can vary but will always be a small

development task using the Java programming language topic at hand.

Following every challenge section will be an explanation of the correct way to solve

the challenge including screenshots or other resources to demonstrate the proper

functionality. We’ll also indicate clearly where to look for the completed challenge’s

code, so you don’t have to worry about not understanding how a problem was solved.

That sums up the general structure of the chapters and challenge sections of the

text. The overall cadence of the text starts with the fundamental aspects of the Java

programming language and works toward more advanced topics and language features.

Chapter 1 IntroduCtIon

4

 Notes on Conventions
There are a few conventions in the text we should also discuss before getting further into

the text. First off, we have lists of items:

• Item 1

• Item 2

• Item 3

In most cases, these will be simply shown in-line with the text and not be adorned

with any special header or caption text. In rare cases where the list has some kind of

special significance, it may appear with its own header and caption similar to the way

code and images are shown. Code snippets in the text will be presented with a header

and caption in the following format:

Listing 1-1. Code Listing Example – SomeClass.java

1 int test = 0;

Caption for the example code listing from the SomeClass.java file.

Information about what code the snippet is showing can be found in the header text

and/or the caption text or the context associated with the code snippet. Line numbers

in code snippets are relative to the starting line of the code and are not absolute. The

starting line of code is determined by the context of the text, what example the text is

currently working with, and always starts at line 1 unless the code is split across multiple

listings. Images are presented in a similar fashion, as shown subsequently.

Chapter 1 IntroduCtIon

5

Image 1-1. Screenshot – Dungeon Trap Main Menu

A screenshot of the Dungeon Trap game’s main menu.

Lastly, there will be places in the text where a tip or aside is listed. There are two

types of side notes in the text: notes about game development and notes about the Java

programming language. These entries are formatted as follows:

**Game Development Note: A note about Java game development or game engine use.

**Java Programming Note: A detailed note about Java programming.

This listing type will be used to present extended or advanced information on a topic

as it’s associated with game development or the Java programming language.

Chapter 1 IntroduCtIon

6

 Objectives
There are a few objectives that this book hopes to accomplish. The first is a complete review

and demonstration of the Java programming language’s base features. The second is an

introduction to select advanced features of the Java programming language. Lastly, this text is

designed to give you experience working directly with game code using the NetBeans IDE and

a set of included video game projects. Let’s take a look at these objectives in little more detail.

 Java Fundamental Topics
The fundamental Java programming language topics covered in this text are listed as

follows with a brief description:

• Overview: Programming Computers: A brief overview of

programming computers

• The Java Programming Language: A brief history of the Java

programming language

• Overview – Game Programming: A brief overview of game

programming

• Basic Data Types: Basic data types in Java

• Advanced Data Types: Advanced, custom data types in Java

• Enumerations: Enumeration data types in Java

• Using Variables: Working with variables

• Numeric Expressions: Working with numeric expressions

• Boolean Expressions: Working with Boolean expressions

• If, Else, Else-If Statements: Flow control, if-else statements

• Switch Statements: Flow control, Switch statements

• Using Arrays: Working with arrays in Java

• Basic For Loop: Working with for loops

• While Loops: Working with while loops

• Importing Classes/Libraries: Working with Java classes and libraries

Chapter 1 IntroduCtIon

7

This text will provide you with a solid foundation of experience working with

fundamental aspects of the Java programming language. In the next section, we’ll look at

the advanced Java programming topics that are addressed in this text.

 Java Advanced Topics
This text does address some of the more advanced Java programming topics without

getting too deep into very advanced programming. You may find these topics a little

bit more challenging as they are inherently more complex. We’ll provide you with solid

information and challenges to help you grasp the material. The advanced topics that are

addressed in this text are as follows:

• Custom Data Types: Working with classes and enumerations

• Try-Catch Statements: Using try-catch statements to control flow

• Data Structures Lists: Simple example of using List data structures

• Data Structures Dictionaries: Simple example of using Dictionary

data structures

• Generic vs. Specialized Data Structures: Brief introduction to generic

and specialized data structures

• For-Each Loop: Using for-each loops

• Overview – Object Oriented Programming: Brief introduction to OOP

design and implementation

• Classes: Brief introduction to classes

• Fields: Using class fields

• Methods: Using class methods

• Constructors: Using class constructors

• Static Members: Working with static class members

• Class Access: Talking points on class member access

• Class Design: Talking points on class design and implementation

• Encapsulation: Examples of encapsulation in a Java game project

Chapter 1 IntroduCtIon

8

• Polymorphism: Examples of using polymorphism in a Java

game project

• Inheritance: Brief review of inheritance

• Project Structure: Brief review of project structure

• Debugging: Using debugging to trace program errors and issues.

Java programming advanced topics can often lead to a tremendous amount of

material to review and discuss. That is outside the scope of this text, so we’ll keep our

topic discussions and challenges associated with advanced programming topics brief so

that we can cover as many topics and material as possible.

 Game Development Topics
Due to the introductory nature of this text, we won’t cover game development topics

directly, but because each challenge in the text is focused on applying the Java

programming language knowledge that you learn to an actual video game, you will gain

some knowledge and exposure to the following game development topics:

• Project Structure: Experience working with three different games and

their classes, project structure.

• Game Resources: Experience working with game resources.

• Game Engines: A full game engine is included with the text and is

used by all the example games.

• Main Game Loop: Experience working with and understanding the

importance of the main game loop.

That brings us to the conclusion of this section. We’ve quickly outlined the different

topics that we’ll cover in the text both directly via topics and challenges, and indirectly by

working with parts of a larger more complex project. In the next section, we’ll set up your

development environment and get the latest copy of the book’s code.

Chapter 1 IntroduCtIon

9

 Setting Up Your Environment
In this section, we’ll get your development environment up and running so that you

can take the included game projects for a little test run and see them in action. This will

give you an idea of what the projects are all about. First off, we’ll need to get the IDE

installed and set up. This text uses the NetBeans IDE for Java project management and

development.

First off, we need to install a copy of the Java Development Kit (JDK). You can

download versions of the Oracle JDK from the www.oracle.com/java/technologies/

downloads/ website. You may need an account to download certain versions of the

development kit. If you already have a JDK installed, that’s fine; however, you should try

installing and working with the version of the JDK that the included games were coded

against.

At the time of this writing, Java SE 18 is the latest version of the JDK. The included

projects were written against Java SE 11 LTS. I recommend using Java SE 11 LTS when

working with the included game projects, but you can try working with whatever Java

version you like and fall back to Java SE 11 LTS if you run into any issues. You can find the

Java 11 JDK here:

www.oracle.com/java/technologies/downloads/#java11

Let’s install the JDK first, then the NetBeans IDE. I’m working on a Windows

computer, so I downloaded the JDK corresponding with my hardware. Double-click the

JDK 11 installer you just downloaded. The process should be very straightforward. If you

run into any issues during the installation, use the following URL to troubleshoot the

process.

https://docs.oracle.com/en/java/javase/11/install/installation-jdk-

microsoft-windows-platforms.html

Once the JDK is installed, we’re going to move on and setup the NetBeans IDE and

the included game project. Navigate your favorite browser to the https://netbeans.

apache.org website and download the latest LTS release. At the time of this writing,

the NetBeans IDE download link is on the website’s main page. Click it, then locate the

latest LTS version of the IDE for your computer’s OS. The process is depicted in Images

1-2 to 1-5.

Chapter 1 IntroduCtIon

http://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/downloads/#java11
https://docs.oracle.com/en/java/javase/11/install/installation-jdk-microsoft-windows-platforms.html
https://docs.oracle.com/en/java/javase/11/install/installation-jdk-microsoft-windows-platforms.html
https://netbeans.apache.org
https://netbeans.apache.org

10

Image 1-2. Screenshot – NetBeans IDE Download 1

A screenshot depicting the NetBeans IDE download link at the time of this writing.

Locate the installation binary for your OS. I’m using a 64-bit Windows machine, so

I’ll choose the appropriate installation binary as shown in the subsequent image.

Chapter 1 IntroduCtIon

11

Image 1-3. Screenshot – NetBeans IDE Download 2

Make sure to choose the installer that is right for your computer architecture and

operating system.

Open the NetBeans IDE installer you downloaded for your target development

computer. You should see something similar to that shown in Image 1-4.

Chapter 1 IntroduCtIon

12

Image 1-4. Screenshot – NetBeans IDE Installation 1

Apache NetBeans IDE 13 main installation screen.

We’re going to be working exclusively with Java so we can accept the default

installation options. Feel free to adjust settings as you see fit, but we recommend just

following the default installation options. Before you hit the install button, make sure the

“Check for updates” check box is checked (Image 1-5).

Chapter 1 IntroduCtIon

13

Image 1-5. Screenshot – NetBeans IDE Installation 2

Apache NetBeans IDE 13 installation process, about to install. Make sure to check for

updates.

When the installation completes, open up NetBeans and follow any software update

prompts. In the next section, we’ll install and configure the book’s associated game

projects.

 Getting the Game Projects Setup
Now that you have the JDK and the NetBeans IDE properly installed, you’ll need to

download a copy of the project associated with this text. You can do so at the following

URL: github.com/apress/intro-java-through-game-dev. Download the project ZIP

Chapter 1 IntroduCtIon

http://github.com/apress/intro-java-through-game-dev

14

file and decompress it into the directory where you plan to keep your NetBeans projects.

Once this step is complete, open the NetBeans IDE and select “File” ➤ “Open Project”.

Navigate to the directory where you unzipped the project code. There are three projects

that you have to open and configure. One for each game that we’ll be working with in this

text. Locate and open the following projects:

• Pong Clone

• Memory Match

• Dungeon Trap

You should see something similar to Image 1-6.

Chapter 1 IntroduCtIon

15

Image 1-6. Screenshot – NetBeans IDE Opened Projects

A screenshot of the NetBeans IDE with the game projects opened.

Now that we have the projects loaded, we need to configure them. The first thing

we’re going to check is that each project has the correct JDK and build directory set. To

do so, right-click on each project and select “Properties”. We’ll check the “Packaging”

configuration first. Select the “Build” option’s “Packaging” entry on the left-hand side of

the properties dialogue (Image 1-7).

Chapter 1 IntroduCtIon

16

Image 1-7. Screenshot – NetBeans IDE Packaging Property

A screenshot of the Packaging properties for the Pong Clone project.

For this property, we just want to check that the “JAR File” path includes the “./dist/”

directory. Next, select the “Run” option from the “Categories” list. Remember, we want to

check this for each game project (Image 1-8).

Chapter 1 IntroduCtIon

17

Image 1-8. Screenshot – NetBeans IDE Run Property

A screenshot showing the Run property of the Pong Clone project.

For this project property, we want to make sure that the “Working Directory” is set

to the directory where the project JAR file will be built. By default, this is the “./dist”

directory. Lastly, select the “Sources” entry in the “Categories” list (Image 1-9).

Chapter 1 IntroduCtIon

18

Image 1-9. Screenshot – NetBeans IDE Sources Property

A screenshot showing the Sources project settings with JDK 11 selected.

The “Sources/Binary Format” field should be set to “JDK 11”. If you were planning

to try running the games against a different JDK, this is where you would change the

project settings. Again, make sure you perform these project settings checks for each

game project. The last thing we need to do before we can play the games is make sure

the project libraries are properly mapped. To do so, select the “Libraries” option in the

“Categories” list of the project properties dialogue (Image 1-10).

Chapter 1 IntroduCtIon

19

Image 1-10. Screenshot – NetBeans IDE Libraries Property

A screenshot showing the libraries category of the project settings with three libraries

properly configured.

Each game project should have the same three libraries configured. I’ll list

them here:

• jinput: ./lib/jinput/jinput-2.0.9.jar

• jutils: ./lib/jutils/jutils-1.0.0.jar

• MmgGameApiJava: ./lib/MmgGameApiJava.jar

To add a library, select the “+” button adjacent to the “Classpath” label and locate

the JAR file listed previously. Each game has its own local “lib” folder with a copy of the

required JAR files. Once the libraries are properly mapped, we can move on to the fun

part and test the different games. Close the project properties dialogue if it’s still opened

and right-click the first game project, Dungeon Trap; select “Clean and Build” from the

Chapter 1 IntroduCtIon

20

context menu. Watch the project build process and ensure that it completes without

error. Perform the clean and build process on the two remaining game projects. Ensure

each can be built without error.

 Checking Out the Games
Now let’s take a moment to run each game project and play around with it a little bit. If

you expand each project and expand the source code entry in the project tree, you’ll see

a main namespace for each project. The main project namespaces are as follows:

• net.middlemind.DungeonTrap

• net.middlemind.PongClone

• net.middlemind.MemoryMatch

In each project’s main namespace lies all the Java classes that power the final version

of the game. For each namespace, there will be a main file that is the static entry point

into the program. This Java class will have the same name as the project. The main

project files are as follows:

• DungeonTrap.java

• PongClone.java

• MemoryMatch.java

You’ll notice a number of namespaces with names like “PongClone_Chapter1_

Challenge1”. These are the sandbox environments for handling the different challenges

throughout the text. We can ignore those namespaces for now. For each game project,

right-click the main file and select the “Run” option. You should see the main menus

corresponding with each game (Image 1-11).

Chapter 1 IntroduCtIon

21

Image 1-11. Screenshot – NetBeans IDE Game Demos

Chapter 1 IntroduCtIon

22

Image 1-11. (continued)

Chapter 1 IntroduCtIon

23

Image 1-11. (continued)

Chapter 1 IntroduCtIon

24

Image 1-11. (continued)

Chapter 1 IntroduCtIon

25

Image 1-11. (continued)

Chapter 1 IntroduCtIon

26

A series of screenshots depicting the main menu of each sample game included with

the text.

That wraps up the game demonstration section. I hope you enjoyed the little games

and are excited to start learning the Java programming language and trying some coding

challenges!

 Conclusion
To conclude this introductory chapter, I’d like to point out that what we just did was

pretty remarkable. We went from 0 to 60 in just a few seconds. Installing the JDK,

installing the IDE, followed by downloading, configuring, and running three game

projects. That is an example of the power of Java. You’ll be sure to see more examples

as you take on different coding challenges designed to apply your Java programming

language knowledge. Let’s take a moment to review the chapter’s material.

Image 1-11. (continued)

Chapter 1 IntroduCtIon

27

 What We Covered
In this brief introductory chapter, we managed to cover quite a lot of ground:

• Basic Java Topics Covered: We listed and described the basic topics

we’ll cover throughout the text.

• Advanced Java Topics Covered: We also listed and described the

advanced topics we’ll cover in this text.

• The JDK: We learned about the Java Development Kit and the target

JDK 11 LTS that’s used by the book’s associated game projects.

We also learned that the NetBeans IDE may use its own JRE that’s

different than the one included in JDK 11.

• The IDE: We learned about the NetBeans IDE, downloaded and

installed it.

• Configuring the Game Projects: We took a deep dive into the world of

Java game development and prepared three game projects for use in

our development environment.

• Games, Games, Games: We got to build and demo three game

projects of varying complexity as an introduction to the games we’re

going to be working with throughout this text.

That brings us to the end of the introduction chapter. In the next chapter

we’ll start our Java programming education with an overview of what it means to

“program” a computer followed by a brief history of the Java programming language and

a few other interesting topics.

Chapter 1 IntroduCtIon

29

CHAPTER 2

What Is Java
Programming
If you’ve decided to start learning how to program in Java and you’ve read this far, it’s

probably a good idea to talk about what Java programming actually is. In this chapter,

we’ll take a brief stroll down memory lane and talk, at a high level, about programming

computers and what it means to program in Java. We’ll also talk about game

programming and discuss the venerable main game loop.

Before we get into the origin story behind the Java programming language, let’s take

a moment to talk about programming computers in general. In the next few sections,

we’ll explore programming computers using different tools and work our way up to the

modern, IDE-based approach. Let’s have a look.

 Computers and Programming
In this section, we’re going to discuss what programming a computer actually means. If

you search the phrase online, you might find a definition similar to the following:

“Computer programming is the process that professionals use to write code that

instructs how a computer, application, or software program performs1. At its most basic,

computer programming is a set of instructions to facilitate specific actions.”

Although it is fairly accurate, I have one issue with this statement. The use of the

word “professionals.” One doesn’t need to be a “professional” to program computers;

anyone can do it! Let’s explore this idea a little further and discuss some different ways

one can program a computer.

1 https://www.snhu.edu/about-us/newsroom/stem/what-is-computer-programming#:~:
text=Computer%20programming%20is%20the%20process,instructions%20to%20facilitate%20
specific%20actions.

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_2

https://www.snhu.edu/about-us/newsroom/stem/what-is-computer-programming#:~:text=Computer%20programming%20is%20the%20process,instructions%20to%20facilitate%20specific%20actions
https://www.snhu.edu/about-us/newsroom/stem/what-is-computer-programming#:~:text=Computer%20programming%20is%20the%20process,instructions%20to%20facilitate%20specific%20actions
https://www.snhu.edu/about-us/newsroom/stem/what-is-computer-programming#:~:text=Computer%20programming%20is%20the%20process,instructions%20to%20facilitate%20specific%20actions
https://doi.org/10.1007/978-1-4842-8951-8_2#DOI

30

 Programming Computers
Programming computers can take on a few different forms. I want to focus on a specific

aspect of computer programming and use it to illustrate the importance of Java. We

stated previously that a program was a “set of instructions to facilitate specific actions”

on a computer. Cleverly hidden in this statement is the concept of a programming

language.

The “set of instructions” referenced in the definition is the programming language

the software developer is using to write the specific “set of instructions” to solve the given

problem with a computer program. One such fundamental set of instructions is the

CPU’s assembly instruction set. At one point in time, software was written using these

archaic tools. An example of assembly programming is shown in Listing 2-1.

Listing 2-1. Assembly Source Code Example

1 label_ ;branch label

2 LSL R0, R1, #0 ;5.1

3 LSL R0, R1, #31

4 LSR R0, R1, #0

5 LSR R0, R1, #31

6 ASR R0, R1, #0

An example snippet of assembly source code.

The example snippet of assembly source code shows a piece of a larger program.

Programming in this medium has its benefits, but it also has its drawbacks. One

such drawback is the time it takes to write a program using pure assembly. Assembly

source code isn’t very intuitive, and this leads to difficulties when programming with

it. The language is not very expressive, as you can see. There is little in the way of

contextual meaning that can be derived from the lines of assembly in Listing 2-1. This

makes it difficult to write complex, abstract, or complicated software using assembly

programming.

 Programming Languages
In order to address the shortcomings of assembly programming software, developers

began creating programming languages. These “languages” were text-based encodings that

could be converted into assembly source code and, subsequently, associated binary code.

Chapter 2 What Is Java programmIng

31

The benefit of this approach is that the software generated with higher-level

languages was easier to read and understand. Writing programs became more

expressive, and complex programs became easier to manage than with assembly alone.

An example of a higher-level language, C, is shown in Listing 2-2.

Listing 2-2. C Programming Language Example

1 #include <stdio.h>

2 int main()

3 {

4 printf("Hello World");

5 return 0;

6 }

An example C program.

Higher-level programming languages offered increased capabilities in code reuse,

code sharing, and project management. At this point in the history of computers, circa

1983, the C++ programming language became the de facto “set of instructions” used to

program computers. While this language provided great power in its object-oriented

software design support, it also created a fairly pervasive and troublesome issue.

One core issue that caused many C++ developers hours and hours of debugging

time is the concept of memory leaks. Listing 2-3 depicts a very simple C++ program that

creates a memory leak.

Listing 2-3. C++ Programming Language Memory Leak Example2

1 int main() {

2 //safe use of memory

3 int * p = new int;

4 delete p;

5 //unsafe use of memory

6 int * q = new int;

7 //no delete, memory leaked

8 }

2 https://stackoverflow.com/questions/7242493/how-to-create-a-memory-leak-in-c

Chapter 2 What Is Java programmIng

https://stackoverflow.com/questions/7242493/how-to-create-a-memory-leak-in-c

32

A snippet of source code from a C++ program showing a memory leak.

This simple example program demonstrates how easy it is to leak memory in C++,

and memory leaks can cause all types of issues. This is where Java comes to the rescue.

One of the main features of the Java programming language is that it has a built-in

garbage collector that takes care of deleting unused objects, freeing up memory,

preventing any costly memory leaks, and saving tons of debugging time.

We’ll spend a little bit more time talking about Java technology and the history of the

language, but for now, I’d like to switch directions just a bit and talk about some of the

different types of programs software developers write and where Java fits in.

 Types of Programs/Programming
There are a lot of different computer programs you can write. Some are very low level

and are written in assembly or a system programming language like C, Rust, or Go. Some

are higher-level programming languages that support object-oriented programming

(OOP) design like C++, Java, or Python.

Furthermore, there are languages designed for very specific programs like JavaScript

for web programming, or R for programming statistical computations. Different

programming languages have different attributes about them, just like any tool. Some

languages are compiled, while some are interpreted. A compiled language usually

results in an executable file that contains a binary representation of the original program.

Other languages are interpreted programming languages. An interpreted

programming language is compiled but not into machine code. Instead, an interpreted

programming language is compiled into an intermediary form that is understood by the

programming language’s interpreter. The interpreter is a special program that will run

the intermediary code and subsequently execute the program.

There are a lot of important aspects of a programming language, but we’ll only touch

upon the most important ones. The main attributes of the Java programming language

are that it’s a strongly typed, interpreted programming language with OOP support. We’ll

cover what it means for Java to be strongly typed when we cover variables in Java. For

now, it’s enough to understand what this means in a simple way.

Java keeps track of and cares about the data type of any given variable in a program

and doesn’t let you store data in a variable that is of a different type. Some languages, like

JavaScript, have dynamic typing. This means that in JavaScript, you can store any data

type in any variable you want without doing a redeclaration. There will be more on this

to come during the programming language review.

Chapter 2 What Is Java programmIng

33

Just like any tool, different programming languages have different best uses. The Java

programming language is good for a number of different things, from applications to

web servers and even games. Now, to be fair, Java isn’t usually the first go-to language for

building games. This is generally because the interpreted nature of the language takes up

some small overhead that game developers do not like. The vast majority of games won’t

miss this small overhead and would probably benefit from the order and simplicity that

using Java provides.

However, it remains that Java is a solid programming language and its interpreted

nature and inherent support for garbage collection make it a great choice for learning

how to program and in particular learning how to program games. The design of a video

game is different than that of most other programs. Game programming requires you to

build a program that responds in real time to user input while at the same time handling

all of the game’s video, audio, collision detection, enemy AI, etc., to maintain the illusion

of the game. All the while doing so without losing any frames and keeping a smooth

animation.

Game programming stands apart from other types of software development due to

the specific and sometimes extreme requirements that games have. All that being said,

Java is a great language to learn and a great language to learn by working on video games!

That brings us to the end of this section. In the next section, we’ll take a quick stroll down

memory lane and talk a bit about the history of the Java programming language.

 The Java Programming Language
Java was born at Sun Microsystems in 1991 when a team of Sun engineers, James

Gosling, Mike Sheridan, and Patrick Naughton, sought to create a new programming

language that was independent of the processor and could easily run on smaller

electronic devices. This is an important oversight of the history of Java and perhaps the

reason why Java became a fundamental part of the Android project.

The team created a programming language with a similar C++ like syntax that could

run on a small digital remote and control electronic elements like buttons and screens. The

project, the “Green Project” meant to explore the convergence between digitally controlled

home electronic devices and computers, ultimately failed, but before the Java language

was forever lost to time, there was a potentially new application for it, the World Wide Web.

Chapter 2 What Is Java programmIng

34

In 1993, the HTTP protocol and one of the first browsers, Mosaic, arrived on the

technology scene. During this time, the Java team realized that the Internet would be

perfect for the hardware-agnostic attributes of the Java programming language, and

in 1995, James Gosling unveiled a browser called WebRunner that supported HTML

content and embedded Java applets.

That solidified Java’s popularity, and as the early Internet took off, so did Java. Long

before flash, the only way you could really create an interactive experience online was by

using Java applets. In fact, when I first started out in college, Java applets using AWT were

one of the first things they taught us in computer science.

Applets are no longer a supported feature of most browsers. But Java has found its

way into many other aspects of modern cloud-based technology both on the server side

using Java EE/Jakarta and on the client side with Android, which is based on an open

source clone of the Java programming language.

The ability of Java to be written once and “run everywhere” seems almost magical.

How can Java run on all these different devices and in all the different places that it

seems to? The answer is the Java Runtime Environment (JRE) and the Java virtual

machine (JVM).

 The JRE
The JRE, and more specifically the Java virtual machine, is responsible for actually

executing the Java byte code that is the result from compiling Java source code.

Remember, Java is an interpreted language, meaning that a compiled Java program is

not in a binary form that can be run by the given CPU. Rather, a virtual CPU, a.k.a. virtual

machine, runs the byte code and drives the underlying hardware.

A definition for what the JRE is can be found on the Amazon Web Services (AWS)

website. It reads as follows:

The Java Runtime Environment (JRE) is software that Java programs
require to run correctly. Java is a computer language that powers many
current web and mobile applications. The JRE is the underlying technology
that communicates between the Java program and the operating system. It
acts as a translator and facilitator, providing all the resources so that once
you write Java software, it runs on any operating system, with a JRE, with-
out further modifications.

—From the Amazon Web Services site

Chapter 2 What Is Java programmIng

35

I find this definition to be very concise and accurate. The last sentence is where the

magic really happens. Once “you write Java software, it runs on any operating system,

with a JRE, without further modifications”; this is extremely powerful and the second

major selling point of the Java programming language, in my humble opinion.

Notice that Java not only includes a programming language and libraries, it also

includes/requires a runtime environment to execute Java byte code. This is very different

from previous development environments using languages like C and C++ where great

care had to be taken to make sure that the language, its data types, and core libraries all

performed the same on different computer hardware.

Now with the power of the JRE at your fingertips, you can leverage it to run your Java

programs on any operating system, including different hardware architectures like ARM,

so long as there’s a JRE for that OS. In the next section, we’ll take a look at the second

most important piece of the Java programming language, the JDK.

 The JDK
The Java Development Kit (JDK) is a fundamental aspect of developing software with

the Java programming language. The JDK is a collection of software tools that you need

to develop Java applications. You can download the JDK and start writing Java programs

with just a text editor. In fact, we already installed the JDK, Java 11 SE LTS, and an IDE,

NetBeans, so we’re ready to start coding.

Now that we’ve covered the main aspects of Java software development in more

detail, let’s take a very high-level view of the syntax and semantics of Java programming.

You can expect to get a fair amount of experience working with syntactically correct Java

code through the completion of the challenges throughout the text.

 Syntax and Semantics
What is the correct syntax? In the world of software development, syntax is the set

of rules that defines the combinations of symbols that are considered to be correctly

structured statements or expressions in that language3. Sounds simple enough. We deal

with syntax a lot in our everyday lives. Language and grammar all have a syntax. This is

often the analogy that is used to explain the syntax of programming languages.

3 https://en.wikipedia.org/wiki/Syntax_(programming_languages

Chapter 2 What Is Java programmIng

https://en.wikipedia.org/wiki/Syntax_(programming_languages

36

Did I use the correct semantics? Well… maybe? Semantics with regard to

programming languages becomes a bit of a complicated topic. Let’s explore the idea of

semantics a little further. If syntax refers to the grammar of a language, then semantics

refers to meaning expressed by the syntactically correct statements in that language.

In human languages, this roughly translates to you saying something that makes

sense. Of course, you could obey all the rules of grammar and still not say anything

coherent or sensical. The same can be said for computer languages. But in this case, the

concept of semantics becomes slightly fuzzy as there are certainly many ways to express

one solution correctly. Just as there are many ways to convey the same meaning in

human languages.

While you will have to learn and master syntax first in your Java programming

language development, you can’t compile a program with a syntax error. You can, and

will, write programs that are semantically incorrect. Over time you will develop the skill

necessary to define the problem you are trying to solve in a correctly structured Java

program. Think of it as learning the idiomatic expressions of a new human language you

have mastered the grammar, syntax, of. It will take you some time to express yourself

fluently in that language.

The same applies to programming languages. You have to learn the correct way

to structure programs and approach problems, and that’s a skill that you’ll develop

and refine over time. For now, let’s take a look at the core syntax rules of the Java

programming language.

 Basic Syntax Rules
In this section, we’ll briefly review the Java programming language’s basic syntax rules.

We’ll focus on the fundamentals of the language. The following points are important to

keep in mind when writing Java code4:

• Case Sensitivity: Java is case sensitive, which means the identifiers

Hello and hello would have different meanings in a Java program.

• Class Names: For all class names, the first letter should be uppercase.

If several words are used to form a name of the class, each inner

word’s first letter should be uppercase, referred to as upper camel-

case, that is, SomeClassName.

4 https://www.tutorialspoint.com/java/java_basic_syntax.htm.

Chapter 2 What Is Java programmIng

https://www.tutorialspoint.com/java/java_basic_syntax.htm

37

• Method Names: All method names should start with a lowercase

letter. If several words are used to form the name of the method, then

each inner word's first letter should be uppercase, camel-case, that is,

someMethodName.

• Program File Name: The name of the program file should exactly

match the class name. In fact, the Java compiler will complain if there

isn’t a public class that matches the current Java file’s name.

• Classes5: Each class should be in a separate file with a .java extension.

Class files are usually grouped into folders. These folders are called

packages.

• Programs: The beginning of Java program processing always starts

in the main method: public static void main(String[] args).

A static main method is a required part of any Java program but not

necessarily for a Java library.

• Blocks and Statements: In Java syntax, there are delimiters "{...}" that

denote a block of code and a new area of code. Each code statement

must end with a semicolon.

• Keywords/Reserved Words: These are special words that cannot

be used by the software developer to name symbols like classes,

methods, variables, etc.

Syntax is something you’ll learn with experience. The IDE will go a long way to detecting

any syntax errors before you even hit the compile button. One other thing we want to touch

upon before we move on is the set of reserved words in the Java programming language.

This is listed as the last point in the summarized list of basic syntax rules.

 Keywords/Reserved Words
As with any programming language, Java has a set of words used explicitly by Java

itself, and as such, you aren’t allowed to use them to create symbols, classes, methods,

variables, etc., in your programs. The keywords of the Java programming language are

shown in Listing 2-4. There are two reserved words that aren’t currently in use by Java

but are, however, restricted from use in the same way as keywords.

5 https://codegym.cc/groups/posts/java-syntax

Chapter 2 What Is Java programmIng

https://codegym.cc/groups/posts/java-syntax

38

Listing 2-4. The Java Programming Language Keywords/Reserved Words6

abstract continue for new switch

assert default goto* package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const* float native super while

Words adorned with an Asterix, *, indicate reserved words.

You aren’t expected to memorize these words right now. You’ll get to know them as

you gain experience with the language. The main takeaway here is that there are reserved

words that you can’t use, as is, in your program as symbols, classes, methods, variables, etc.

That brings us to the end of this section. Before we wrap up the chapter, I want to talk

a little bit about game programming. We’ll be working with three different games to learn

about Java programming, so we should have a little background on game programming

in general as well as the games we’ll be working with.

 Game Programming
I’d be remiss in my duty if I didn’t spend a little bit of time talking about game

programming. After all, we will be using three different games in our challenges as we

explore the Java programming language. As I mentioned earlier, video games are a

rather unique and challenging type of program. They often require real-time response,

intelligent computer opponents, complex input, video, music, sound effects, and

multiplayer/network support. That requires a video game developer to master the APIs

necessary to do just about everything a computer can do.

Fear not, game engines can help take much of that responsibility off of your

shoulders. The games that are included in this book actually incorporate a compact

2D game engine. Each game is a self-contained project including a full engine source

6 https://stackoverflow.com/questions/7242493/how-to-create-a-memory-leak-in-c

Chapter 2 What Is Java programmIng

https://stackoverflow.com/questions/7242493/how-to-create-a-memory-leak-in-c

39

code all running in a little Java program. You’ll gain experience programming games

in challenges designed to demonstrate understanding of Java programming language

features.

While we won’t attempt to build a game from scratch in this introductory text, you

will get some solid game programming experience. Furthermore, you’ll gain experience

working with the Application Programming Interface (API) of a game engine, and you

can use this knowledge to write your own games.

An important piece of introductory information, with regard to game programming,

is the main game loop. The main game loop is a common attribute of games and game

engines alike; it is a special structure that occurs in almost every game. It is fundamental

to game programming, and as such, we’ll talk about the main game loop in a little bit

more detail in the next section. We’ll also encounter this topic again, a little later in the

text, and in much more detail.

 The Main Game Loop
The main game loop is a common structure that occurs in just about every video game

around. The code that makes a video game interactive and dynamic runs in the main

game loop but is separated into different main responsibilities. The loop itself is a

controlled infinite loop that makes a game run in real time; it's the place where all the

objects in your game will be updated and subsequently drawn on the screen7.

The basic responsibilities of a game loop can be broken down into the following steps,

initialize, update, and draw. The initialize step can occur at different times in the life cycle

of a game, but it must occur at some point. The update step is where all the game logic

runs. This is the code where things like collision detection, hits, sound effects, enemy AI,

etc., are handled. Lastly, now that the game state has been updated, it’s time to draw the

new game state on the screen. That’s where the draw step comes in. Also keep in mind that

depending on the game in question, networking could be added into the update step.

The main game loop will contain a sync with network objects in the case of a

networked multiplayer game. That’s the structure of the main game loop, and it’s

something you should keep in mind when working on game programming. In the next

section, we’ll talk about the general structure of the included game projects. This will

give us a hand when we start navigating around the different project’s classes.

7 https://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-is-the-
game-loop--gamedev-2469

Chapter 2 What Is Java programmIng

https://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-is-the-game-loop--gamedev-2469
https://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-is-the-game-loop--gamedev-2469

40

 Program Structure
The three games included with the text (Dungeon Trap, Memory Match, and Pong

Clone) all use the same game engine. The Java version of the MmgGameApi 2D game

engine. The entire engine exists in the included MmgGameApiJava.jar file. In general,

the increasing complexity of the projects is as follows:

• Pong Clone: Easy

• Memory Match: Moderate

• Dungeon Trap: Expert

Each project contains a custom version of the following Java classes along with

proprietary supporting classes:

• Static Main Class: Has the same name as the game itself. Each

package, including each challenge package, has a static main for

executing that version of the game.

• MainFrame.java: The parent of the GamePanel class that represents

the main window frame that holds the game panel.

• GamePanel.java: The main class responsible for drawing, processing

input, switching screens, and much more.

• ScreenGame.java: The screen class that runs the game.

• ScreenMainMenu.java: The screen class that runs the game’s

menu screen.

The game classes are a bit complex, so don’t try to edit them on your own just yet.

By the end of the book, you should be able to work with them just fine, but we have a

bit of ground to cover before then. In the subsequent section, we’ll describe the games

included with the text in a little more detail.

 Overview of Included Games
Even though you got a chance to check out the actual games in the first chapter, let’s take

a look at a brief description of each game.

Chapter 2 What Is Java programmIng

41

 1. Pong Clone: A simple two-player clone of the “Pong” video game.

Players use different controls to move paddles up and down in

order to keep a ball in play. The game uses AI enemy logic when

playing in single-player mode. This is the simplest of the three

games and includes only five Java classes.

 2. Memory Match: A simple solitaire-style memory game that also

supports two-player mode to share in the memory matching fun.

The game supports three modes of increasing difficulty using

more memory cards. This is the second most complex game in

the set.

 3. Dungeon Trap: A unique mini game where players are stuck in

a dungeon room that is flooded with waves of enemies. Fight to

stay alive and collect different power-ups to stay in the fight. You

can even throw the furniture across the room to send enemies

flying. This is the most complex of the three games and includes

a number of Java classes. Despite the complexity, it follows the

same basic structure as the other games, and the extra code logic

is mainly used in the Java classes that actually run the game.

That brings us to the conclusion of this section and the end of this chapter. I hope the

game descriptions piqued your curiosity just a bit if the actual games did not. Let’s wrap

up the chapter with a summary of the main topics that we’ve covered before moving on

to our first chapter on the Java programming language.

 Conclusion
In this chapter, we took a look at what it means to program computers and more

specifically what it means to program using the Java programming language. We got to

look at some high-level aspects of the language and focused on some key features of

the types of programs we’re going to be working with. Let’s summarize the material we

covered.

Chapter 2 What Is Java programmIng

42

 What We Covered
A fair number of important, albeit high-level, topics were covered in this chapter, setting

up a solid foundation for us to build up our knowledge of Java as we begin to explore the

language. A summary of this chapter’s main topics follows:

• Programming Computers: We talked briefly about programming

computers with special instructions designed to solve certain

problems.

• Programming Languages: We introduced the ideas of programming

in languages like C and C++ including some of the difficulties created

by managing memory in those languages.

• Types of Programs/Programming: A brief discussion about the

different types of programs you can create with Java.

• The Java Programming Language: A brief history of the Java

programming language.

• The JRE: We talked about the Java Runtime Environment and spoke

of the version we installed in Chapter 1.

• The JDK: We talked about the requirements to Java software

development and discussed the Java Development Kit.

• Basic Syntax Rules: A listing of some of the Java programming

language’s base syntax rules.

• Keywords/Reserved Words: A listing of the keywords and reserved

words of the Java programming language.

• The Main Game Loop: A discussion about the main programming

loop and its responsibilities.

• Program Structure: We reviewed the core, shared, structure of the

three included video games.

• Overview of Included Games: We described the different games and

categorized them based on complexity.

Now that we’ve got that foundational material out of the way, we’re ready to start working

with the Java programming language. In the next chapter, we’ll look at variables in Java.

Chapter 2 What Is Java programmIng

https://doi.org/10.1007/978-1-4842-8951-8_1

43

CHAPTER 3

Variables
Our first foray into learning the Java programming language will be the exploration of

variables! Variables are vitally important to any program, and indeed, no useful program

could exist without relying on them, all sorts of them. Variables represent data and are

often used to track a value throughout a program or method. Sometimes, variables

are used as an indicator, a flag, to mark when some important data or event has been

encountered. There are many different uses for variables in a Java program, and you’ll

encounter them as you solve different problems with Java.

We’ll be reviewing a few different aspects of variables in this chapter including

declaring them and assigning values to them. We’ll get some experience with variables

that have an Object data type. We won’t go into too much detail on classes until we

cover that aspect of Java later on in the text so some of the material you will have to

take for granted for the time being. Let’s take a look at how variables work in the Java

programming language.

 Data Types
What is a data type? Recall from our previous discussions about programming languages

and Java. We specified that Java was a strongly typed language and that this meant Java

“cared” about the type of each variable and doesn’t allow us to arbitrarily change the

type of a variable or assign a value of an incompatible type to that variable.

That’s a really complicated way of saying that a given variable will only hold one

type of data. Now, even as I say this, there are features of Java that allow you to have

dynamically typed variables that accept different types of data sort of similar to the way

variables work in JavaScript. Once you understand how statically typed variables work,

you can easily begin working with dynamic typed variables using the var keyword. We’ll

cover them in the advanced section.

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_3

https://doi.org/10.1007/978-1-4842-8951-8_3#DOI

44

But what is a type of data? Well, this is a more complicated question to answer. A

type of data is just that, data that has certain characteristics. In our case, we’re talking

about data that could be a single value like an account number or a complex object that

holds multiple pieces of information using different data types. You could also define a

series of values using an array data type. We’ll begin by looking at the Java programming

language’s basic data types.

 Basic Data Types
One of the fundamental building blocks of any Java program is variables. Variables in

Java, as we mentioned earlier, are typed, and as such, there are a set of data types that are

considered to be the basic data types of the Java programming language.

They are only basic in the sense that they are fundamental to the language and not

class based. Mainly they are used to represent simple data like numeric values, totals,

sums, words, names, descriptions, etc. A good analogy when thinking about variables is

to think of them as the input on a web form. We’ve all filled out countless forms online.

When you enter your name into a text field on a web page, you can think of this as

assigning the value of your name to a variable meant to store that name. Since your

name is a series of characters (in Java, we call this a string), we would expect to use a

variable of type String to store the data. Listing 3-1 shows how this variable would be

expressed in Java.

Listing 3-1. Example of a String Variable

1 String name;

An example of a string variable that could hold a person’s name.

With that concept in mind, let’s take a look at the different basic data types available

to us in the Java programming language.

We’ll also include some information about each data type and an example variable

declaration. All of this is shown subsequently in Table 3-1.

Chapter 3 Variables

45

Table 3-1. The Basic Data Types of the Java Programming Language

Name Type Min Max (Inclusive) Example

boolean a binary, true/false, value n/a (0 or false) n/a (1 or true) boolean b;

byte an 8-bit whole number

value

-128 127 byte b;

short a 16-bit whole number

value

-32,768 32,767 short s;

int a 32-bit whole number

value

-2 e 31 2 e 31 – 1 int i;

long a 64-bit whole number

value

-2 e 63 2 e 63 – 1 long l;

float a real number with ieee

754 32-bit precision

1.4 e -45 3.4028235 e 38 float f;

double a real number with ieee

754 64-bit precision

4.9 e -324 1.7976931348623157 e 308 double d;

char a single Unicode character ‘\u0000’ (0) ‘\uffff’ (65,535) char c;

string a series of Unicode

characters

0 (empty string) Max string length supported by

the Jre on the given system or

2147483647 characters

string s;

The set of basic data types in the Java programming language.

Don’t allow the table of data to overwhelm you. There’s really not too much going

on here. Think of these as the basic tools you have for describing data in your programs.

Some you will use more often than others. At times many may seem like a good choice.

It will take some experience solving problems with Java before you will be able to quickly

and confidently decide what data type your variable should be. And even then, it can be

difficult to decide. In general, I would suggest using a data type that supports the data

you expect to store in the given variable and no more.

For instance, if you were storing bank account values, you could probably get away

with using floats. Very few people will achieve the kind of wealth that would require a

double data type. Let’s work through a general thought process when determining what

data type to use. Do you need decimal-level precision? If not, then you can ignore float

Chapter 3 Variables

46

and double. If you aren’t storing a character or a string, then you can ignore char and

string data types. That leaves you with byte, short, int, and long.

Chances are long is too big, in very few cases do we need to work with numbers this

large. Byte is very small. You only need to work with bytes when you’re working with

binary data; shorts and ints will suffice in most cases. However, shorts have a small max

value that’s kind of limiting. It’s not so large so it can’t be easily overcome numerically

speaking.

That would put us in an awkward position because our variable would cease to do

its job properly. It would not be able to track numbers outside the range of a short. In

this little thought experiment, we would most likely settle on using an int. If you had

a reason to choose another basic data type, you would have come to that point when

factoring the use of that data type, as we’ve done here.

Boolean data types come in handy when you want to track the occurrence of

something. There are many occasions in a program, video games included, where you

will set a Boolean variable to true or false to indicate the existence of some situation,

value, state, etc. The use of these variables stands out because you only need to indicate

a change with a value. If you can replace the variable with an integer and use 0 and 1 to

represent false and true, respectively, then that variable should probably use a Boolean

data type.

That’s all I want to cover for the introduction to basic variables. We’ll get some

experience using them in just a moment when we encounter the chapter’s coding

challenges. Let’s take a look at how to use basic data-typed variables.

 Using Basic Data Types
Although they are basic data types, as I mentioned earlier, they are fundamental to any

Java program. We’ve seen, in the previous section, how to declare variables using the

basic data types. I’ll summarize the use of the basic data types in variable declaration in

Listing 3-2.

Listing 3-2. Variable Declaration and the Basic Data Types

1 boolean b;

2 byte b;

3 short s;

4 int i;

Chapter 3 Variables

47

5 long l;

6 float f;

7 double d;

8 char c;

9 String s;

An example of a variable declaration using Java’s basic data types. In its simplest

form, variable declaration is the data type keyword followed by the variable name.

**Java Programming Note: Take the time to give your variables meaningful names
when they are important higher-level variables. Use short names, like those shown
previously, for temporary variables.

The pattern for basic variable declaration is the data type keyword followed by a

valid variable name. Next, let’s cover initialization of a declared variable. Notice that the

data must match the data type. Some casting, conversion, is allowed between similar

data types, but we won’t cover this advanced topic here. Let’s take a look at Listing 3-3.

Listing 3-3. Variable Declaration with Initialization and the Basic Data Types

01 boolean b;

02 b = true;

03

04 byte b;

05 b = 0;

06

07 short s;

08 s = 256;

09

10 int i;

11 i = -1;

12

13 long l;

14 l = 32000000;

15

16 float f;

Chapter 3 Variables

48

17 f = 1.3f;

18

19 double d;

20 d = 2e15;

21

22 char c;

23 c = ‘c’;

24

25 String s;

26 s = "some string here";

An example of a variable declaration and initialization using Java’s basic data types.

**Java Programming Note: When initializing variables, it’s best to follow the same
paradigm set out by the current code in the program, if any. If the program is new,
then keep a consistent approach to variable declaration and initialization.

There is also a shorter form of declaration and initialization referred to as

instantiation. Normally, this notion would only apply to objects and classes but the

syntax for basic data types is similar, so I loosely refer to it as instantiation. An example of

instantiation with all the basic data types is shown in Listing 3-4.

Listing 3-4. Variable Instantiation and the Basic Data Types

1 boolean b = true;

2 byte b = 0;

3 short s = 256;

4 int i = -1;

5 long l = 32000000;

6 float f = 1.3f;

7 double d = 2e15;

8 char c = ‘c’;

9 String s = "some string here";

An example of a variable instantiation using Java’s basic data types.

Chapter 3 Variables

49

As you can see, the use of variables, of the basic data type, in Java is very

straightforward. Don’t be disarmed by this simplicity; it’s very powerful. You can do

quite a lot with variables of this type alone. But there are still more data types we must

look at. Java is a robust language with a full set of features. Before we get to this though,

let’s tackle a coding challenge to reinforce the material we’ve covered on variables and

basic data types.

 Challenge: Basic Data Types
Welcome to your first coding challenge. Each coding challenge will involve some

introduction or setup and involve a special copy of one of the included video games

specifically configured with a code challenge on the given Java programming topic.

This copy of the game will exist in a special package that indicates the chapter and the

number of the challenge in that chapter.

Following the package that holds the coding challenge will be one that holds the

solution. We’ll also cover the solution in the text, but it’s always best to look at the code

and get experience reading and interpreting Java statements. Here is your first challenge:

Packages Involved:

net.middlemind.PongClone_Chapter3_Challenge1

net.middlemind.PongClone_Chapter3_Challenge1_Solved

Description:

Find the package, net.middlemind.PongClone_Chapter3_Challenge1, and open the

PongClone.java file. This version of the game accidentally had a bug introduced after

testing. An inadvertent key strike has altered a variable value and broken the game. Your

challenge is to find the variable that has the incorrect value and fix it. You must run this

file – PongClone.java – right-click and select Run File to test the game.

Chapter 3 Variables

50

Image 3-1. The Broken Version of This Challenge’s Game

A screenshot of the copy of the game used in this challenge. It crashes on the

loading screen.

Clue:

The Pong Clone video game uses a game “engine config file,” this is a hint, to data

drive some aspects of the game’s configuration. The null pointer exception that the game

throws when loading is caused by a game engine configuration error.

Take a moment to try out the challenge. Hint, tracing the exception won’t help you in

this case because the resource not being loaded doesn’t cause an exception at the source

of the problem. It seems tricky, but it is perhaps deceptively simple. Give it a try before

moving on to read the solution. Remember that the challenges take place in their own

sandbox, a special package for the challenge.

In order to run this package’s specific version of the game, you have to click on

the static main class contained in the package and select “Run File” from the context

menu. Otherwise, the project’s default game will execute. If you’ve solved the challenge

correctly, the game should run properly.

Chapter 3 Variables

51

 Challenge Solution
The solution to the challenge can be found in the following package:

net.middlemind.PongClone_Chapter3_Challenge1_Solved

Specifically in the PongClone.java file. You can search for the text, “CHAPTER 3

CHALLENGE 1 SOLUTION”, to find the solution code and an explanation. I will also

briefly discuss the solution here. In this case, almost the exact name of the variable that

needs to be adjusted is given in the description of the challenge, “engine config file”,

which becomes “ENGINE_CONFIG_FILE”. The word “file” also gave us a clue because

there are not many file names in the variable declaration section.

To correct the issue, all you need to do is adjust the value of the ENGINE_CONFIG_FILE

variable so that it matches the name of the file on the file system. In this case, the name

should be “engine_config_mmg_pong_clone.xml” instead of “engine_config_mmg_png_

clone.xml”, which is missing an “o”. This may seem like a silly example for a challenge, but

it actually has some interesting attributes to it.

Image 3-2. The Working Version of This Challenge’s Game

Chapter 3 Variables

52

A screenshot of the fixed version of the game for this challenge.

**Game Programming Note: Games and game engines frequently have complex
subsystem responsible for loading different resources. It’s often important to take
the time to get to know these systems so that you can competently triage any
related bugs during development.

For one, the error was not directly tied to the solution. It took some knowledge of

the game engine to understand what the error really meant. From the perspective of the

JRE, there is a null value, and an exception should be thrown. But from the perspective

of the video game, there is a null value because a resource didn’t load. Either the missing

resource was not specified properly or it doesn’t exist. Barring the nonexistence case, we

are left with a configuration-driven, resource-loading issue.

This points us directly at the game engine config file where we would look to see

what configuration exists for the given game. That brings us to the conclusion of this

section. In the next section, we’ll take a look at some of Java’s more advanced data types

and their use.

 Advanced Data Types
You can do a lot with just the basic data types, but Java has even more power to offer

you as a developer. There are a few advanced data types that we should look at. These

include a dynamic data type, as opposed to the static typing, we are used to. There are

even some data types that help us define sets of data which we’ll also take a look at here.

 The var Keyword and Dynamic Typing
Despite all my tough talk about Java’s rigorous, strong typing, the language actually

supports dynamic typing. The var keyword, introduced in Java 10, uses data type

inference in which it automatically detects the data type of a variable based on the

surrounding context. This is a fairly advanced use of Java. We won’t go into too much

detail here. There are a number of rules governing the use of the var keyword in the Java

programming language.

Chapter 3 Variables

53

For simplicity’s sake, I’m going to generalize and oversimplify its use. If you feel

comfortable exploring further, you can find more information here:

www.geeksforgeeks.org/var- keyword- in- java/

As I stated earlier, the var keyword allows you to use dynamic typing with a variable.

You can declare a variable of type var in a few places, but for our purposes, we’ll limit its

use to inside a method. I should also mention that variable data type redefinition is not

supported. This means that Java will detect the data type for the var variable only the

first time it is initialized. Subsequent assignments must adhere to the first detected data

type. Allow me to advance this notion with an example shown in Listing 3-5.

Listing 3-5. Variable Instantiation and the var Data Type

01 public static void main(String[] args) {

02 //int

03 var x = 100;

04

05 //double

06 var y = 1.90;

07

08 //char

09 var z = 'a';

10

11 //string

12 var p = "tanu";

13

14 //boolean

15 var q = false;

16 }

An example showing the use of the var data type with variable instantiation.

I’d also like to take a moment and demonstrate an incorrect usage of the var data

type. In Listing 3-6, we’ll demonstrate redefining the data type of a var variable, which

will cause an exception to be thrown. Let’s take a look.

Chapter 3 Variables

http://www.geeksforgeeks.org/var-keyword-in-java/

54

Listing 3-6. Variable Data Type Redefinition and the var Data Type

1 //the compiler interprets the variable as an int

2 var id = 0;

3

4 //error thrown because of incompatible data types

5 id = "34";

An example showing the use of the var data type with variable data type

redefinition error.

You can see from the example that the var keyword sort of acts as a placeholder for

an unknown basic data type that is inferred when the variable is initialized. It sounds

complicated, but if you think about it for a moment, it’s just like using the other basic

data types, only in a roundabout way. You’re letting the data drive the variable’s data

type instead of explicitly setting it when the variable is declared. Pretty neat!

Ok, so after that whole section on the var data type and its use, I’m sad to inform

you that we won’t be doing a challenge with this material. It’s just that I personally don’t

use this feature very much and I rather enjoy the stricter approach to variables that the

traditional data types offer. In the next section, we’ll take a look at another advanced data

type and our first “data structure”: the array.

 Arrays
Up until this point, we’ve been working with variables that are used to keep track of one

value, and we’ve mainly been using basic data types. A common occurrence in problem

solving is the concept of sets of data. Any series of tests will give a series of scores. It

becomes arduous to have to name and define a new variable to track each and every

value in cases like this.

Allow me to further this notion with another example, the results from a test given

to a group of students in a classroom. In this case, we have two sets of data to track: the

students and the test results. Now, using the knowledge we currently have about the Java

programming language, we could add a new variable for each student and one for each

student’s test results.

This would be possible but would quickly become an untenable program to use

and/or manage. You would have so many variables to keep track of that it would quickly

become a self-defeating solution. Fear not, we have the array to rely on to streamline this

type of data representation, namely, groups of similar data of a known size.

Chapter 3 Variables

55

An array is a special type of variable that contains other variables. It can be thought

of as an object that holds a fixed number of values of a single data type. The length of an

array is set when the array is created and remains fixed. You can manually resize an array

by reinitializing it, but there is no automatic process for doing so. There are other data

types to use in those circumstances. We’ll take a look at some of them soon.

Let’s take a look at how to declare an array. In Listing 3-7, we’ll demonstrate the code

necessary to declare an array of the basic data types we’ve just finished reviewing.

Listing 3-7. Array Declaration and the Basic Data Types + 1

01 boolean[] arrayOfBooleans;

02 byte[] arrayOfBytes;

03 short[] arrayOfShorts;

04 int[] arrayOfInts;

05 long[] arrayOfLongs;

06 float[] arrayOfFloats;

07 double[] arrayOfDoubles;

08 char[] arrayOfChars;

09 String[] arrayOfStrings;

10 Object[] arrayOfObjects;

An example showing the code used to declare an array of the basic data types and

one additional data type, the Object type.

As you can see, it’s not much different from the variable declarations we’ve seen

previously. Notice the use of the brackets, []; these indicate that the variable is going

to be an array of the type listed. The reason for this is because brackets are also used to

reference a particular element in an array. In this way, they are sort of synonymous with

arrays in the Java programming language, so using them to indicate that the declared

variable is an array of a specified type is intuitive.

You may have noticed that the last entry in the listing isn’t an array of a basic data

type. This is an early introduction to an object. Java is an object-oriented programming

language that supports the creation of custom objects by creating a class definition for

that object. All of this is a bit much to discuss this early on. For now, think of the Object

data type as the parent of all objects that are created in Java. In the next section, we will

look at how you initialize and use arrays.

Chapter 3 Variables

56

 Using Arrays
Using arrays is a little bit more complicated than the basic data types we’ve worked with

thus far, but there are strong similarities in how you use them, in fact, in how you use any

variable in Java. In the previous section, we saw how you can declare an array. This is

similar to the declaration of a variable of a basic data type with the exception that arrays

are data structures.

Previous variables we looked at were variables that stored a single value. Arrays,

however, are designed to hold many values. But as you might expect, this requires some

initialization. For instance, you may be asking how many values does an array hold?

Good question. It’s your choice up to the maximum value of the integer data type or until

you run out of memory, whichever comes first.

In any case, you should create arrays with a size designed to work with the data

that the array is intended to hold. If you’re creating a representation of the days of the

week, then you could use an array of length seven. You get the idea. Let’s take a look at

declaration and instantiation of different arrays of basic data types and the Object data

type. Why not. Take a look at Listing 3-8 for the demonstration code.

Listing 3-8. Array Declaration and Initialization of the Basic Data Types + 1

01 boolean[] arrayOfBooleans;

02 arrayOfBooleans = new boolean[10];

03

04 byte[] arrayOfBytes;

05 arrayOfBytes = new byte[10];

06

07 short[] arrayOfShorts;

08 arrayOfShorts = new short[10];

09

10 int[] arrayOfInts;

11 arrayOfInts = new int[10];

12

13 long[] arrayOfLongs;

14 arrayOfLongs = new long[10];

15

16 float[] arrayOfFloats;

Chapter 3 Variables

57

17 arrayOfFloats = new float[10];

18

19 double[] arrayOfDoubles;

20 arrayOfDoubles = new double[10];

21

22 char[] arrayOfChars;

23 arrayOfChars = new char[10];

24

25 String[] arrayOfStrings;

26 arrayOfStrings = new String[10];

27

28 Object[] arrayOfObjects;

29 arrayOfObjects = new Object[10];

An example showing the code used to declare and initialize an array of the basic data

types and one additional data type, the Object type.

There’s a slightly shorter way to accomplish the same thing, shown in Listing 3-9.

Listing 3-9. Array Instantiation of the Basic Data Types + 1

01 boolean[] arrayOfBooleans = new boolean[10];

02 byte[] arrayOfBytes = new byte[10];

03 short[] arrayOfShorts = new short[10];

04 int[] arrayOfInts = new int[10];

05 long[] arrayOfLongs = new long[10];

06 float[] arrayOfFloats = new float[10];

07 double[] arrayOfDoubles = new double[10];

08 char[] arrayOfChars = new char[10];

09 String[] arrayOfStrings = new String[10];

10 Object[] arrayOfObjects = new Object[10];

An example showing the code used to instantiate an array of the basic data types and

one additional data type, the Object type.

There may be certain circumstances where you have all of the data you need for the

array right at the start. This often happens with short arrays of static, common data like

the days of the week, months of the year, etc. Let’s take a look at this version of array

instantiation next in Listing 3-10.

Chapter 3 Variables

58

Listing 3-10. Array Instantiation with Element Initialization of the Basic Data

Types + 1

01 boolean[] bools = new boolean[]{false, true};

02 byte[] bytes = new byte[]{0, 1, 2, 3};

03 short[] shorts = new short[]{1024, 2048};

04 int[] ints = new int[]{10, 20, 30};

05 long[] longs = new long[]{2e24, 2e18};

06 float[] floats = new float[]{1.01, 1.02};

07 double[] doubles = new double[]{1.03, 1.04};

08 char[] chars = new char[]{'a', 'b', 'c'};

09 String[] strings = new String[]{"hello", "world"};

10 Object[] objects = new Object[]{new Object()};

An example showing the code used to instantiate an array with element initialization

of the basic data types and one additional data type, the Object type.

**Java Programming Note: You should only use this type of array declaration with a
small amount of data. If you have more than just a few items, think about how you
could data drive loading the array elements instead.

**Game Programming Note: While arrays can be thought of as antiquated and error
prone when building games, using tightly controlled arrays can be much faster
than other data structures. But the speed comes at the cost of static length and an
increased potential for errors.

In this case, we know what values we want to set for the array, so when we

instantiate the array, we can list those elements explicitly. In this way, not only

are we initializing the array, we are also initializing the array’s elements. This is an

important distinction to make between the code shown in Listing 3-10 and previous

two listings, Listings 3-8 and 3-9. So what exactly is going on? We’re initializing an

array and its elements. What does that mean?

Well let me explain by going back a little bit. When you declare a variable, you don’t

necessarily have to set its value. This is the distinction between declaration, initialization,

and instantiation. We use the term “instantiation” here loosely. It actually applies more to

the use of objects, but I like to maintain this distinction with all data types.

Chapter 3 Variables

59

Declaration: Basic variables are ready to use with a default value, while objects are

null and not ready to use.

 int i; //default value set to 0

 Object o; //default value set to null

Declaration followed by initialization: Basic variables are ready to use and are

initialized to a specific value. For Variables with an Object data type, a new instance of

the object is created and initialized by using the “new” keyword.

 int i;

 i = 2; //ready to use

 Object o;

 o = new Object(); //ready to use

Instantiation: Basic variables are ready to use and initialized to a specific value.

Variables with an Object data type, a new instance of the object is created and

initialized by using the “new” keyword.

 int i = 2; //ready to use

 Object o = new Object(); //ready to use

With regard to arrays, the same rules apply, but you must stop and think about what

an array is. It’s a data structure that stores a series of values all of the same data type. It

has a fixed length, and you can access each element in the array by using its index. The

array indexing starts at 0 and ends at array length – 1. Let’s look at what declaration,

initialization, and instantiation look like for arrays.

Declaration: The array is null and not ready to use.

 int[] i; //default value set to null

 Object[] o; //default value set to null

Declaration followed by initialization: The array is ready to use. Arrays of basic data

types are ready to use with each element set to a default value, while arrays of objects are

not ready to use as each array element is still null. This is an important distinction.

 int[] i;

 i = new int[10]; //ready to use

 Object[] o;

 o = new Object[10]; //ready to use

Chapter 3 Variables

60

Instantiation: The array is ready to use. Arrays of basic data types are ready to use

with each element set to a default value, while arrays of objects are not ready to use as

each array element is null.

 int[] i = new int[10]; //ready to use

 Object[] o = new Object[10]; //elements set to null

Explicit array instantiation: The array is ready to use. Arrays of basic data types are

ready to use with each element set to a specific value. Arrays of objects are ready to use

as each array element is set to a new instance of an object.

 int[] i = new int[]{10, 20, 30}; //ready to use

 Object[] o = new Object[]{new Object(), new Object()}; //ready to use

It is important to realize when it may be dangerous to use an array element

because it has not been initialized. Now that we’ve seen how to declare and initialize

an array, let’s take a look at how you can access, get and set, the elements of an array

(Listing 3-11).

Listing 3-11. Array Element Access – Get and Set

1 boolean[] bools = new boolean[]{false, true};

2

3 //flip the values

4 bool b = bools[0];

5 bools[0] = bools[1];

6 bools[1] = b;

A small code snippet showing how to get and set elements of an array by their index.

That was pretty easy. As long as you know the index of an array element, you can get

or set its value. You have to always use a value of the same, or compatible, data type as

that of the array or you will get an error. One aspect of arrays that is particularly useful is

the length of the array. Now, you could keep track of the array’s length in a variable:

 int len = 10;

 int[] a = new int[len];

This can get a bit cumbersome, so the array object in Java has an attribute to help

you with this; the length attribute is shown in Listing 3-12.

Chapter 3 Variables

61

Listing 3-12. Array Length Attribute

//code

1 int[] i = new int[10];

2 System.out.println("Array Length Is: " + i.length);

//output

1 Array Length Is: 10

A tiny snippet of code that demonstrated using the array’s length attribute.

You will see the length attribute a lot when we take a look at looping in Java. It comes

in handy when iterating over the contents of an array. You might be wondering how do

you copy an array? Well, you might think that the following would do the trick:

 int[] a = new int[] {0, 1, 2};

 int[] b = new int[] {4, 5, 6};

 b = a;

This is more of a topic to be discussed during the review of Java’s object-oriented

programming support. We may as well touch upon it since we’re here. Java uses a

concept called a reference. These are applied to all objects including arrays in the

language. In this way, a and b are variables, but they are references to array objects.

When you try to copy a reference, it simply changes what the new variable points to.

So while it may seem as if you’ve made a copy of integer array a, you’ve actually created

two variables that reference the same array in memory, a and b. We can demonstrate this

in Listing 3-14.

Listing 3-13. Array Copy – Creating a Reference to an Array

//code1 int[] a = new int[] {1, 2, 3};

2 int[] b = new int[] {4, 5, 6};

3

4 b = a;

5 System.out.println("Array b Element 0: " + b[0]);

6

7 a[0] = -1;

8 System.out.println("Array b Element 0: " + b[0]);

Chapter 3 Variables

62

//output

1 Array b Element 0: 1

2 Array b Element 0: -1

An example of creating two variables that reference the same array.

We can tell that b is a reference to the same array as variable a because when we change

the first element of a, line 7, and print out the first element of b, the value changes. Again,

we’ll cover this in more detail when it’s the proper time. For now, though, I’d like to show

you two techniques that you can use to copy arrays, which actually work, in Listing 3-14.

Listing 3-14. Array Copy – Creating an Independent Copy of an Array

//code

01 int[] a = new int[] {1, 2, 3};

02 int[] b = new int[] {4, 5, 6};

03

04 //old copy

05 //b = a;

06

07 //new copy

08 for(int i = 0; i < b.length; i++) {

09 if(i >= 0 && i < a.length) {

10 b[i] = a[i];

11 //for objects you would use something like this

12 //b[i] = a[i].clone();

13 //to create a unique copy of the elements

14 }

15 }

16

17 System.out.println("Array b Element 0: " + b[0]);

18

19 a[0] = -1;

20 System.out.println("Array b Element 0: " + b[0]);

//output

01 Array b Element 0: 1

02 Array b Element 0: 1

Chapter 3 Variables

63

An example of creating an independent copy of an array of type int.

You can also use the System class’ arraycopy method to copy data from one array to

another. The signature for the method is as follows:

 public static void arraycopy(Object src, int srcPos, Object dest, int

destPos, int length)

Notice that the src and dest method arguments are of the Object data type and not

one of the array data types we’ve seen thus far. The reason for this is because an array is

an instance of an Object. We’ll discuss this more when we cover objects and classes. I

feel like I’m saying that a lot.

But in all seriousness, this solution to copying arrays shows that an array, int[], is

an instance of an Object in the Java programming language. Then you can perform the

same array copy as the code in Listing 3-14 like so:

 System.arraycopy(a, 0, b, 0, 3);

Lastly, in order to use an array properly, you need to know how to delete one. In its

simplest form, you can clear out an array with the following line of code:

 some_valid_array = null;

However, if you are working with an array of objects and you want to make sure those

objects are also deleted, you can explicitly set each array element to null like so:

 for(int i = 0; i < b.length; i++) {

 b[i] = null;

 }

That brings us to the conclusion of the section. There are many more ways that

you can use an array in terms of the logic of certain algorithms, but as far as Java

programming is concerned, you have all the basics covered and some insight into

advanced topics. In the next section, we’ll take on our second coding challenge. Let’s

jump into some code!

 Challenge: Arrays
The second challenge in this chapter requires you to make three small changes to

the specified Java file. Using your new knowledge of arrays, you should be able to

accomplish the requirements of this challenge. Here are the details:

Chapter 3 Variables

64

Packages Involved:

net.middlemind.PongClone_Chapter3_Challenge2

net.middlemind.PongClone_Chapter3_Challenge2_Solved

Description:

Find the package, net.middlemind.PongClone_Chapter3_Challenge2, and open

the ScreenGame.java file. In this challenge, the second one in this chapter, we’ll look at

a version of the Pong Clone game that needs a slight adjustment. The lead developer

doesn’t like so many Switch statements in the DrawScreen method.

They would like to remove the Switch statements for the SHOW_COUNT_DOWN_IN_GAME

and SHOW_COUNT_DOWN game states and replace them with if-else statements that test

an array value. The new code is ready in the DrawScreen method, but it is currently

commented out. You need to define and initialize a new integer array called “numbers”

with a length of 4. This array should be initialized with each value in the NumberState

enumeration. Use the following statements to get the integer values for the elements of

the array:

• NumberState.NONE.ordinal()

• NumberState.NUMBER_1.ordinal()

• NumberState.NUMBER_2.ordinal()

• NumberState.NUMBER_3.ordinal()

You can initialize the array in any way that works, but it is recommended you use the

LoadResources method. You must run this package’s file - PongClone.java; right-click

and select Run File to test the game.

Clue:

Here are some clues to help you with the challenge. If you are unsure about what

values to set for the numbers array, take a look at the commented-out new code in the

DrawScreen method. If you’re concerned about where to place your initialization code in

the LoadResources method, use a spot near the end of the method.

In order to run the package’s specific version of the game, you have to click on

the static main class contained in that package and select “Run File” from the context

menu. Otherwise, the project’s default game will execute. If you’ve solved the challenge

correctly, the game should run properly.

Chapter 3 Variables

65

 Challenge Solution
The solution to this challenge requires you to make three small changes to the challenge

package’s ScreenGame.java file. The first change is to declare a new array of integers with

the name “numbers.” This is usually done at the top of a Java file, but you should follow

the convention already in place in the file if any. The second change to the file you must

make is to initialize the array. It is recommended to add this code to the LoadResources

method so that we follow the convention of initializing objects in the same place.

The last change you have to make to the file is to remove the comments around the

new code and add multi-line comments, /* */, to the old code. Once this is done, you

can run the PongClone.java class for this challenge package and test your changes. This

challenge is a little anticlimactic in that a correct solution would show no change from

the previous implementation. It turns out this is a common occurrence in the real world.

A screenshot showing the refactored countdown code working properly.

If you run into trouble, you can check out the solution code and comments in the

associated solution package. In the next section, we’ll take a sneak peek at another data

type: the List data structure.

Chapter 3 Variables

66

Image 3-3. A Correct Solution with Working Countdown

 Lists
It is perhaps a bit premature to start dealing with data structures of any complexity,

but I want you to be a functional Java developer at the completion of this text. To this

end, I would like to quickly review Lists in a simple and direct way that demonstrates

a common use case: the dynamic array. When working with data structures other than

arrays, you’ll most likely need to include Java’s data structures package, like so:

import java.util.*

This will give you access to Java’s data structure classes in your program. You

don’t have to understand everything that’s going on here with regard to objects and

methods, but you should understand what’s going on with regard to using a list as a

dynamically sized replacement for an array. Let’s take a look at some ways to declare a

list (Listing 3-15).

Chapter 3 Variables

67

Listing 3-15. Declaring Lists – Basic Data Types + 1

1 ArrayList<Boolean> listBooleans;

2 ArrayList<Byte> listBytes;

3 ArrayList<Short> listShorts;

4 ArrayList<Integer> listIntegers;

5 ArrayList<Long> listLongs;

6 ArrayList<Float> listFloats;

7 ArrayList<Double> listDoubles;

8 ArrayList listObjects1;

9 ArrayList<Object> listObject2;

An example of declaring lists of the basic data types plus the object type. Note the

different ways to use an Object as the List data type on lines 8 and 9.

Note that we’re using Java’s ArrayList class, which is an implementation of a List.

Also, notice that the declaration of lists doesn’t use the actual basic data types. It uses an

object version of them. Defining the data type of the list is done with the angle bracket

operator, <>. When no data type is specified, the default, Object, is used. Next, let’s take a

look at the long form of initialization for the ArrayList class.

Listing 3-16. Declaring and Initializing Lists – Basic Data Types + 1

01 ArrayList<Boolean> listBooleans;

02 listBooleans = new ArrayList();

03

04 ArrayList<Byte> listBytes;

05 listBytes = new ArrayList();

06

07 ArrayList<Short> listShorts;

08 listShorts = new ArrayList();

09

10 ArrayList<Integer> listIntegers;

11 listIntegers = new ArrayList();

12

13 ArrayList<Long> listLongs;

14 listLongs = new ArrayList();

15

Chapter 3 Variables

68

16 ArrayList<Float> listFloats;

17 listFloats = new ArrayList();

18

19 ArrayList<Double> listDoubles;

20 listDoubles = new ArrayList();

21

22 ArrayList listObjects1;

23 listObjects1 = new ArrayList();

24

25 ArrayList<Object> listObjects2;

26 listObjects2 = new ArrayList();

An example of the long form of declaring and initializing lists of the basic data types

plus the object type.

You can instantiate a new instance of a list using the following Java statements. This

is a more concise version of the declare and initialize code we just looked at.

Listing 3-17. Instantiating Lists – Basic Data Types + 1

1 ArrayList<Boolean> listBooleans = new ArrayList();

2 ArrayList<Byte> listBytes = new ArrayList();

3 ArrayList<Short> listShorts = new ArrayList();

4 ArrayList<Integer> listIntegers = new ArrayList();

5 ArrayList<Long> listLongs = new ArrayList();

6 ArrayList<Float> listFloats = new ArrayList();

7 ArrayList<Double> listDoubles = new ArrayList();

8 ArrayList listObjects1 = new ArrayList();

9 ArrayList<Object> listObjects2 = new ArrayList();

An example of the short form of declaring and initializing lists of the basic data types

plus the object type.

This code should be familiar. It’s very similar to the array code we reviewed

previously. In the next section, we’ll take a look at how you actually use a list. Keep in

mind that at no point in the initialization code did we set a size for the lists. One of the

main features of lists is that they can grow in size as needed. Awesome! Let’s explore

further.

Chapter 3 Variables

69

 Using Lists
The first thing we’ll look at in this section is how to get and set elements in a list,

specifically Java’s ArrayList object. Let’s look at the same code we used in the section on

using arrays except we’ll adjust the code to work specifically for ArrayLists. Let’s take a

look at Listing 3-18.

Listing 3-18. ArrayList Element Access – Get and Set

1 ArrayList<Boolean> bools = new ArrayList();

2 bools.add(Boolean.FALSE);

3 bools.add(Boolean.TRUE);

4

5 //flip the values

6 Boolean b = bools.get(0);

7 bools.set(0, bools.get(1));

8 bools.set(1, b);

Code snippet showing an ArrayList having two elements flipped demonstrating how

to get and set values.

Notice that the code is very similar, except that we use explicit methods, get and

set, to interact with the list elements instead of array index notation, []. Also take a

moment to note how we use the object version of the boolean basic data type. Because

lists require objects for elements, we are forced to use the Java objects that “box” their

corresponding basic data types.

Converting between basic data types and their corresponding object equivalents

is referred to as boxing and unboxing. More on this to come. Let’s take a look at some

important methods of the ArrayList class in Listing 3-19.

Listing 3-19. ArrayList – Important Methods

//code

1 ArrayList<Boolean> bools = new ArrayList();

2 bools.add(Boolean.FALSE);

3 bools.add(Boolean.TRUE);

4

5 System.out.println("ArrayList Size: " + bools.size());

6 System.out.println("ArrayList IsEmpty: " + bools.isEmpty());

Chapter 3 Variables

70

//output

1 ArrayList Size: 2

2 ArrayList IsEmpty: false

Code snippet showing some important ArrayList methods in use.

Another useful action to perform with ArrayLists is to copy them. The code is a bit

different than with arrays:

 ArrayList<Boolean> newBools = new ArrayList(bools);

Using the array, bools, from the previous listing, we can create a copy of it by

initializing a new ArrayList and using the previous one as an argument. You could also

manually copy the ArrayList elements as shown in Listing 3-20.

Listing 3-20. ArrayList – Copy List Using Initialization

//code

01 ArrayList<Boolean> bools = new ArrayList();

02 bools.add(Boolean.FALSE);

03 bools.add(Boolean.TRUE);

04

05 System.out.println("Bools ArrayList Size: " + bools.size());

06 System.out.println("Bools ArrayList IsEmpty: " + bools.isEmpty());

07

08 ArrayList<Boolean> newBools = new ArrayList(bools);

09 System.out.println("NewBools ArrayList Size: " + newBools.size());

10 System.out.println("NewBools ArrayList IsEmpty: " + newBools.isEmpty());

//output

Bools ArrayList Size: 2

Bools ArrayList IsEmpty: false

NewBools ArrayList Size: 2

NewBools ArrayList IsEmpty: false

An example of how to copy an ArrayList using initialization.

There’s more than one way to copy an ArrayList. Listing 3-21 demonstrates copying

one using an explicit approach.

Chapter 3 Variables

71

Listing 3-21. ArrayList – Copy List Using Explicit Add

//code

01 ArrayList<Boolean> bools = new ArrayList();

02 bools.add(Boolean.FALSE);

03 bools.add(Boolean.TRUE);

04

05 System.out.println("Bools ArrayList Size: " + bools.size());

06 System.out.println("Bools ArrayList IsEmpty: " + bools.isEmpty());

07

08 ArrayList<Boolean> newBools = new ArrayList();

09 for(int i = 0; i < newBools.size(); i++) {

10 if(i < bools.size()) {

11 newBools.add(bools.get(i));

12 }

13 }

14

15 System.out.println("NewBools ArrayList Size: " + newBools.size());

16 System.out.println("NewBools ArrayList IsEmpty: " + newBools.isEmpty());

//output

01 Bools ArrayList Size: 2

02 Bools ArrayList IsEmpty: false

03 NewBools ArrayList Size: 2

04 NewBools ArrayList IsEmpty: false

An example of how to copy an ArrayList using explicit add.

The second approach gives you more control over how you copy the list elements.

Notice that we’re using the same code as before; we’ve just replaced the part that handles

copying the list. This last little snippet of code shows us how to delete an ArrayList

(Listing 3-22).

Listing 3-22. Deleting an ArrayList

//code

1 ArrayList<Boolean> bools = new ArrayList();

2 bools.add(Boolean.FALSE);

3 bools.add(Boolean.TRUE);

Chapter 3 Variables

72

4 bools.clear();

5 bools = null;

A code snippet demonstrating how to delete an ArrayList by clearing it before setting

it to null.

**Java Programming Note: Take the time to properly manage your data structures
and elements. Just because Java has a garbage collector that cleans up unused
memory for us doesn’t mean we have to give it a lot of work to do.

When we were dealing with arrays, there was a concept of keeping track of both

the initialization of the array and that of its elements. The same applies when using

ArrayLists. In the next section, we’ll tackle one last challenge that’ll test our knowledge

of ArrayLists.

 Challenge: ArrayLists
In this challenge, the last one in this chapter, we’ll gain some more experience working

with the Pong Clone game’s main screen, ScreenGame.java. In this challenge, we’ll be

tasked with refactoring the current code while maintaining the functionality of the game.

We’ll be using our newly acquired ArrayList knowledge to do so. Let’s take a look.

Packages Involved:

net.middlemind.PongClone_Chapter3_Challenge3

net.middlemind.PongClone_Chapter3_Challenge3_Solved

Description:

Find the package, net.middlemind.PongClone_Chapter3_Challenge3, and open

the ScreenGame.java file. After reviewing the changes made in the last challenge, some

members of the development team want to use a data structure with a dynamic length as

opposed to an array. This challenge starts with the solution from the previous challenge, so

make sure you have the correct solution in place. Your challenge is to refactor the working

code in this file so that the “numbers” variable is an ArrayList as opposed to an array.

You’ll also have to adjust how the variable is initialized and comment out the old

code while uncommenting the new code in the class’ DrawScreen method. If you’ve done

everything correctly, the game should run without error. You must run this package’s

file – PongClone.java; right-click and select Run File to test the game.

Chapter 3 Variables

73

Clue:

Aside from commenting out the current code in the DrawScreen method that

handles the SHOW_COUNT_DOWN_IN_GAME and SHOW_COUNT_DOWN game states, all you have

to do is convert the numbers variable from an array to an ArrayList.

 Challenge Solution
The solution to this challenge requires you to make three small changes to the challenge

package’s ScreenGame.java file. This file is the solution to the previous challenge, so

you’re working with an array of integers already. That means the code is in a state that is

close to what we need. The first change to make is to alter the data type of the numbers

variable from an int[] to an ArrayList.

This change will trigger a number of syntax errors at the location of the numbers

variable’s initialization. This code needs to be adjusted to work with lists instead of

arrays. For example, "numbers[0] =" becomes “numbers.add(". This is a great example

of something that will come up again and again in software development, refactoring

code. It just so happens that the first implementation isn’t always the best and some

adjusting is needed.

Refactoring isn’t an indication of a mistake or error. It’s simply an indication that

you’re getting better at programming and have come up with a slightly different, slightly

better, way of doing something. The last change to solve the challenge is to comment out

the current code and uncomment the new code in the DrawScreen method.

When in doubt, check the solution package and look at the challenge file. That brings

us to the end of this topic. In the next section, we’ll conclude the chapter and review the

material we’ve covered.

 Conclusion
We covered a lot of material in this chapter, and we’ve only scratched the surface of the

variable topic. We’ll encounter more information as we cover more material, but this

chapter constitutes a solid foundation for which to build. You already have a decent

set of tools to model data in a Java program. Combine this with your ability to work

with arrays and dynamic length data structures like lists and you’re well on your way to

mastering the language.

Chapter 3 Variables

74

 What We Covered
In this chapter, we reviewed the following topics on Java variables. You also got a chance

to take on three challenges in this chapter, and I’ll note what topics the challenges were

associated with in the following list:

• Basic Data Types: In this section, we talked about the Java

programming language’s basic data types and how to declare variables.

• Using Basic Data Types: We got some experience working with

variables and saw some examples of how to initialize variables.

• Challenge: Basic Data Types: Our first challenge which required us to

fix a broken copy of the Pong Clone game.

• The var Keyword and Dynamic Typing: In this section, we explored

Java’s dynamic typing support via the var keyword.

• Arrays: An introduction to arrays and their declaration.

• Using Arrays: We explored how to initialize arrays and their elements

and covered useful topics like copying and deleting arrays.

• Challenge: Arrays: An interesting challenge that required us to

refactor the code on a copy of the Pong Clone game.

• Lists: We took it a little further than usual for an introductory text and

introduced a second data type that is a data structure similar to an

array: the list.

• Using Lists: We reviewed the ways in which you initialize an

ArrayList and how to populate it with elements. We also covered

useful topics like copying and deleting a list.

• Challenge ArrayLists: An interesting challenge that required us

to refactor the solution to challenge #2 so that the code uses an

ArrayList as opposed to an array.

We covered quite a bit of ground in this chapter. I hope that the use of challenges as

opposed to boring example programs is an efficient way for you to get experience not

only learning Java but working with the NetBeans IDE and taking on some real-world

coding problems. In the next chapter, we’ll take a look at the ways that we can control the

flow of a program in Java.

Chapter 3 Variables

75

CHAPTER 4

Expressions
and Operators, Flow
Control, and More
on Variables
In the previous chapter, we got a fair amount of experience working with variables in

Java and even took a look at more complex variables, data structures, like arrays and lists.

Although our ability to model data using Java data types has increased, there’s not much

we can do programming-wise at this point. We need some more tools to work with.

In this chapter, we’ll expand our knowledge of the Java programming language, and

by doing so, we’ll incorporate some more tools into our coding toolbox, as we review

expressions, operators, and flow control. Using these new language features, we’ll be

able to combine variables and values with different operators to create expressions,

and we’ll also be able to control the flow of the program by combining flow control

statements with Boolean expressions.

Lastly, before we conclude the chapter, we’ll swing back around to the topic of

variables and cover a few of the finer points on the subject like casting and custom

data types. Let’s jump into things and start with expressions and operators in the Java

programming language!

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_4

https://doi.org/10.1007/978-1-4842-8951-8_4#DOI

76

 Expressions and Operators
As we mentioned earlier, the Java programming language has inherent support for a

few main types of expressions and associated operators. Let’s take a look at what the

language has to offer.

• Numeric: Formulas or other numeric combinations of variables and

numeric operators used to generate a number value

• Boolean: A logical expression combining variables and Boolean

operators to generate a true/false value

• Assignment: Expressions used to apply an adjustment to a variable

while assigning it a new value

• Increment/Decrement: A set of expressions to streamline

incrementing or decrementing a variable

• Inline If-Else: An inline If-Else operator that can be used to control

the variable initialization among other things

• Bit: Expressions using Java’s bitwise and bit-shift operators to adjust

data values and make comparisons at the bit level

In general, the operators used in expressions of these main types fall into the

following categories, separated by complexity:

• Unary Operator: An operator that requires one value. Examples are the

increment/decrement operators and the negative numeric operator.

• Binary Operator: An operator that requires two values. Examples are

the numeric operators (+, -, /, *, %) and the Boolean operators (==, !=,

<, >, <=, >=).

• Ternary Operator: A ternary operator requires three values. An

example of a ternary operator is the in-line If-Else operator, “? :”,

which we will talk about again when we get to flow control.

Note that in Java, the “!” character is the logical complement. It converts a true value

to a false value and vice versa. Another operator you might not be familiar with is the

modulo operator, “%”. The modulo operator is used to return the remainder after integer

division. Expressions can also be categorized by their use of multiple operators, values,

and even other expressions.

Chapter 4 expressions and operators, Flow Control, and More on Variables

77

• Simple Expression: A basic expression that doesn’t include extra

operators, variables, etc. For instance, a simple expression involving a

unary operator should have only that operator and the required value

it’s operating on.

• Compound Expression: An advanced expression that includes

the use of multiple operators, variables, method calls, or other

expressions.

That’s a decent amount of material to take in, so before we get into the details,

let’s explore this topic further and discuss what exactly is an expression in the Java

programming language in terms of its definition. According to the Java documentation:

“An expression is a construct made up of variables, operators, and method
invocations, which are constructed according to the syntax of the language,
that evaluates to a single value.”

—From the official Java documentation1

An expression, by definition, is a construct made of lower-level language features

like variables, operators, and method calls that are syntactically correct and that can

be processed to provide a single result. Let’s support this concept with some examples,

shown in Listing 4-1. I’ll provide some examples from each of the main expression types

listed previously.

Listing 4-1. Examples of Different Expressions and Operators in Java

01 //preparation

02 ArrayList<Integer> listIntegers;

03 listIntegers = new ArrayList();

04 listIntegers.add(10);

05

06 //Simple numeric expressions

07 int i = 5;

08 i = 10;

09 i = 5 + 5;

1 https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

Chapter 4 expressions and operators, Flow Control, and More on Variables

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

78

10 i = 11 - 1;

11 i = 11 + -1;

12 i = 100 / 10;

13 i = 100 % 3;

14 i = (1 * 10);

15

16 i = 5;

17 i = i + 5;

18 i = i - +5;

19 i = i / 5;

20 i = i % 5;

21 i = (i * 5);

22

23 //simple boolean expressions

24 boolean b;

25 b = i == 5;

26 b = (j != d); //! is the logical complement operator

27 b = (j < d);

28 b = j > listIntegers.get(0);

29 b = (j <= i);

30 b = j >= d;

31

32 //increment/decrement, negation, method use expressions

33 i = 5;

34 i++;

35 i--;

36 i = 5;

37 i = -i;

38 i = listIntegers.get(0) + 256;

39

40 //simple string expressions

41 String s;

42 s = "Hello";

43 s = s + " ";

44 s += "World";

Chapter 4 expressions and operators, Flow Control, and More on Variables

79

45

46 //compound numeric expressions

47 int j;

48 double d;

49 float f;

50 i = 0 + 10 - 5;

51 j = listIntegers.get(0) + 256;

52 s = "Hello" + " " + "World!";

53 d = 10 / 2.5 + 3;

54 d = 10 * 2.5 - 3;

55 f = (float)(12.7 / 10);

56 listIntegers.set(0, 125 + j + i);

57

58 //compound boolean expressions

59 b = i + 1 == 5 + j;

60 b = (j + listIntegers.get(0) != d);

61 b = j < d + 100;

62 b = j / 2 > (listIntegers.get(0) * 2);

63 b = (j <= i++);

64 b = j >= -d;

65

66 //assignment expressions

67 i = 5;

68 i += 5;

69 i -= 5;

70 i /= 5;

71 i %= 5;

72 i *= 5;

73

74 //ternary operator, ? :, in-line If-Else

75 s = b ? "b is true" : "b is false"; //if ? then : else

76

77 //simple bit-wise expressions

78 int x, y, z; //multi-variable declaration

79 x = 5;

Chapter 4 expressions and operators, Flow Control, and More on Variables

80

80 y = 7;

81 z = x | y; //bitwise OR, z = 7

82 z = x & y; //bitwise AND, z = 5

83 z = x ^ y; //bitwise XOR, z = 2

84 z = ~x; //bitwise complement, z = 10

85

86 //simple bit-shift expressions

87 byte a = 64, g;

88 i = a << 2; //i = 256

89 g = (byte)(a << 2); //i = 0 due to overflow

An example of each of the main expression types with associated operators. Some

are shown in both a compound and a simple form.

** Java Programming Note: You’ll notice on line 89 and line 55 that there’s a data
type in parentheses directly to the left of the given expression. This is called a cast,
and it’s used to convert the data on the right to the type specified in parentheses, if
possible.

** Game Programming Note: Compound expressions are fine, but if you can
consolidate terms and simplify the expression, do so. A complex expression is
less efficient than a simplified version of that same expression, and in game
programming, it’s important to strive for efficiency.

The use of class methods in expressions is a slightly more advanced topic that

belongs to the discussion on Java classes. In the previous listing, we used method calls

from the ArrayList class that you’re familiar with from the review of lists in Chapter 3,

but we could have used any method call that returned a valid data type.

 Numeric Expressions
The first type of expressions, numeric, is perhaps the most familiar to the average person.

We’ve seen countless formulas when we weren’t paying attention in math class, and this

is essentially how you write formulas in Java. Numeric expressions can be compound

expressions and use numeric operators to connect multiple simple expressions together.

Chapter 4 expressions and operators, Flow Control, and More on Variables

https://doi.org/10.1007/978-1-4842-8951-8_3

81

Listing 4-2. Examples of Numeric Expressions

01 //preparation

02 ArrayList<Integer> listIntegers;

03 listIntegers = new ArrayList();

04 listIntegers.add(10);

05

06 //simple numeric expressions

07 int i = 5;

08 i = 10;

09 i = 5 + 5;

10 i = 11 - 1;

11 i = 11 + -1;

12 i = 100 / 10;

13 i = 100 % 3;

14 i = (1 * 10);

15

16 i = 5;

17 i = i + 5;

18 i = i - +5;

19 i = i / 5;

20 i = i % 5;

21 i = (i * 5);

22

23 //compound numeric expressions

24 int j;

25 double d;

26 float f;

27 i = 0 + 10 - 5;

28 j = listIntegers.get(0) + 256;

29 s = "Hello" + " " + "World!";

30 d = 10 / 2.5 + 3;

31 d = 10 * 2.5 - 3;

32 f = (float)(12.7 / 10);

33 listIntegers.set(0, 125 + j + i);

Chapter 4 expressions and operators, Flow Control, and More on Variables

82

A set of simple and compound numeric expressions.

Numeric expressions are used frequently in variable initialization and in flow control

statements like If-Else statements. In the next section, we’ll discuss the second most

integral form of expressions in Java: the Boolean expressions.

 Boolean Expressions
The second type of expressions we’ll discuss is the Boolean expressions. Boolean

expressions, both simple and compound, are shown in the previous listing, Listing 4-1.

These are mainly used in the initialization of Boolean variables and If-Else statements.

Boolean expressions are an important part of just about every program as they are

integral to the main flow control statement: the If-Else statement. We’ve seen a version of

this before on line 71 with regard to the ternary operator that performs a function similar

to an inline If-Else statement.

Listing 4-3. Examples of Boolean Expressions

01 //preparation

02 ArrayList<Integer> listIntegers;

03 listIntegers = new ArrayList();

04 listIntegers.add(10);

05

06 //simple boolean expressions

07 boolean b;

08 b = i == 5;

09 b = (j != d);

10 b = (j < d);

11 b = j > listIntegers.get(0);

12 b = (j <= i);

13 b = j >= d;

14

15 //compound boolean expressions

16 b = i + 1 == 5 + j;

17 b = (j + listIntegers.get(0) != d);

18 b = j < d + 100;

Chapter 4 expressions and operators, Flow Control, and More on Variables

83

19 b = j / 2 > (listIntegers.get(0) * 2);

20 b = (j <= i++);

21 b = j >= -d;

A set of simple and compound Boolean expressions.

One more aspect of Boolean expressions I should mention is the concept of Boolean

logic. It’s beyond the scope of this text to cover Boolean logic, but you should spend

some time reading up on it as it will greatly improve your use of Boolean operators in

If- Else statements.

 Assignment Expressions
The Java programming language has a full set of assignment expressions that combine

numeric operators and assignments into one convenient step. For instance, the long

form of the assignment expressions you’ll see next is in Listing 4-4.

Listing 4-4. Long-Form Equivalent of Assignment Expressions

1 i = 5;

2 i = i + 5;

3 i = i - 5;

4 i = i / 5;

5 i = i % 5; //modulo operator returns the remainder of integer division

6 i = (i * 5);

A set of example long-form equivalent assignment expressions.

The short form of the previous expressions uses Java’s convenient assignment

operators.

Listing 4-5. Examples of Assignment Expressions

1 i = 5;

2 i += 5;

3 i -= 5;

4 i /= 5;

5 i %= 5;

6 i *= 5;

Chapter 4 expressions and operators, Flow Control, and More on Variables

84

A set of example assignment expressions.

It may seem like overkill to have this level of specificity in our assignment operators,

but use them a few times and you’ll be hooked. In the next section, we’ll take a look at

some convenience operators that make incrementing and decrementing a value more

efficient.

 Increment/Decrement Expressions
The Java language has some shortcuts when it comes to the common practice of

incrementing or decrementing a value. This happens so frequently in programming that

there is literally a special operator just for it. First, let’s take a look at the ways we can

increment/decrement a variable using our current set of tools.

 i = i + 1;

 i += 1;

 i = i – 1;

 i -= 1;

To make things just that much easier, you also now have the following options

available to you for incrementing and decrementing a variable by 1:

 i++;

 i--;

I should mention that you can also use the forms ++i and --i, which are only

different in the sense that the order of operations is different. In one case, you have

increment then assign; in the other case, you have assign then increment. Let’s look at a

subtle result of this distinction in Listing 4-6.

Listing 4-6. Examples of Assignment Expressions

//code

01 int q; //declare

02

03 q = 5; //init

04 int q1 = q++;

05

06 q = 5; //init

Chapter 4 expressions and operators, Flow Control, and More on Variables

85

07 int q2 = ++q;

08

09 System.out.println("q++: " + q1);

10 System.out.println("++q: " + q2);

//output

01 q++: 5

02 ++q: 6

An example of the distinction between using ++q, --q and q++, q--.

Can you see the distinction in the example code in Listing 4-6? In one case, the

value is assigned, and then it is incremented, line 4, while in the second case, the value

is incremented and then assigned, line 7. The resulting output shows the difference in

the assigned value. That’s all I want to cover on this topic. In the next section, we’ll take a

look at the bitwise operations that you can perform on integer-based variables.

 Bitwise Expressions
Bitwise expressions aren’t used that often. In fact, you can probably program in Java for

years without using them once. This is because they are rather low level and as such only

come in handy when working with bytes and binary data. However, that’s not an excuse

not to have some level of familiarity with them, so let’s take a look.

Listing 4-7. Examples of Bitwise Expressions

01 //preparation

02 int x, y, z;

03

04 //simple bitwise expressions

05 x = 5;

06 y = 7;

07 z = x | y; //bitwise OR, z = 7

08 z = x & y; //bitwise AND, z = 5

09 z = x ^ y; //bitwise XOR, z = 2

10 z = ~x; //bitwise compliment, z = 10

11

Chapter 4 expressions and operators, Flow Control, and More on Variables

86

12 //compound bitwise expressions

13 z = ++x | y--;

14 z = x * y & y + 10;

15 z = x ^ y / 256;

16 z = ~(x * 2);

An example of simple and compound bitwise expressions.

To go over the bit-level operations is beyond the scope of this text. Take a moment

to look up the Boolean operations AND, XOR, and OR and bitwise complement to learn

more about them. Again, this is a somewhat erudite area of the Java programming

language. It may be enough to have a passing familliarity with the material. In the next

section, we’ll take a look at some of the other bit-level expressions Java supports.

 Bit-Shift Expressions
The last main set of expressions we’ll discuss is also bit level; they are the bit-shift

expressions. While you might think that these are useless to you as you will not be

doing any binary programming, think again. Bit shifting is a very fast way to multiply or

divide by 2.

This happens to be an adjustment that is made very frequently in certain situations

and is worth being aware of. If you find yourself multiplying or dividing by 2 with any

frequency, you might want to look into using a bit-shift operator. Let’s take a quick look

at some bit-shift expressions.

Listing 4-8. Example of Bit-Shift Expressions

//code

1 byte a = 64, g;

2 i = a << 2;

3 g = (byte)(a << 2);

4 System.out.println("a: " + a);

5 System.out.println("i and g: " + i + ", " + g);

//output

1 a: 64

2 i and g: 256, 0

Chapter 4 expressions and operators, Flow Control, and More on Variables

87

An example of a simple bit-shift expression with comparison between integer and

byte variable assignment of the shifted value.

Notice that in the previous listing, the original value 64 is now 256, which is 64 * 4.

What does that tell us about the nature of shifting a value left two positions? Well, it tells

us that a two-position bit shift to the left is the same as multiplying by 4. Similarly, a

one position bit shift to the left is the same as multiplying by 2 and so on. In the reverse,

when bit shifting to the right, we are dividing. For example, starting with a value of 256

and performing a two-position bit shift to the right divides 256 by 4, resulting in a value

of 64, the original value.

The difference between the signed right shift, >>, and the unsigned right shift, >>>,

is that with the signed shift, the bit values are pushed to the right and a new bit, with the

same value as the number’s sign, is added on the left of the number. With an unsigned

shift, the new bit always has a value of zero.

Again, bit operations aren’t for everyone, and if you don’t need or want to use

them, simply don’t. But you should be aware the functionality exists even if you’re not

entirely comfortable using it. You can always look up some examples before you start

coding. Next up we’ll summarize the language’s entire set of operators and sort them by

precedence.

 Operators and Operator Precedence
Now that we’ve covered all the main categories of expressions that Java supports, we

should take a complete look at all of the operators involved and sort them by operator

precedence. What is operator precedence? Operator precedence is the order in which

the operators are processed as part of an expression.

The subsequent list shows Java operators from the most important, first processed,

to the least important, last processed. Next to the text description of each operator is the

symbol for it.

• Array index [], member access ., method call ., post-decrement --,

post-increment ++

• Bitwise complement ~, cast (), logical complement !, object

creation new, pre-decrement --, pre-increment ++, unary minus -,

unary plus +

• Division /, multiplication *, remainder %

Chapter 4 expressions and operators, Flow Control, and More on Variables

88

• Addition +, string concatenation +, subtraction -

• Left shift <<, signed right shift >>, unsigned right shift >>>

• Greater than >, greater than or equal to >=, less than <, less than or

equal to <=, type checking instanceof

• Equality ==, inequality !=

• Bitwise AND &, logical AND &&

• Bitwise exclusive OR ^, logical exclusive OR ^ (on Boolean
operators)

• Bitwise inclusive OR |, logical inclusive OR ||

• Conditional AND && (on Boolean operators)

• Conditional OR || (on Boolean operators)

• Conditional ?: (ternary operator)

• Assignment =, compound assignment +=, -+, *=, /=, %=, &=, ^=, /=,

<<=, >>=, >>>=

This isn’t something you need to necessarily memorize, but it’s something you

should be aware of. In most cases, I would recommend using parenthesis to group the

operators and values and control precedence explicitly. That brings us to the conclusion

of this section. In the next section, we’ll take a look at different ways that we can control

the flow of a Java program.

 Flow Control
While you’ve learned a considerable amount up to this point, we still only know how to

declare variables and model our data. We don’t have much in the way of controlling how

the program executes. Flow control is an essential part of any program. Without it, we

wouldn’t be able to execute an alternate branch of code based on the value of a variable.

You can’t write many interesting programs without flow control.

We’ll take a look at three different ways that you can control the flow of a Java

program. The first is the traditional If-Else statement including the Else-If clause. The

second is a statement that is used to support separating into many different branches

Chapter 4 expressions and operators, Flow Control, and More on Variables

89

of code: the Switch statement. Lastly, we have a method of flow control that allows us

to alter the course of the program in response to exceptions, unexpected errors, in the

program using Try-Catch statements. Let’s take a look!

 If-Else Statements
If-Else statements (this also includes the Else-If clause, but we’ll exclude explicitly

listing it for brevity) are the primary way you will control the flow of execution in a Java

program. An If-Else statement takes a Boolean expression and conditionally executes

certain code depending on the result of the expression. Boolean expressions of this type

are referred to as conditionals. Let’s take a look at a basic If-Else statement without an

explicit condition expressed.

Listing 4-9. Example of Basic If-Else Statement

1 if(conditional expression) {

2 //then clause

3 } else {

4 //else clause

5 }

An example of a basic If-Else statement without an explicit conditional expression.

Let’s further this concept with a simple example where we use an If-Else statement to

control the initialization of a variable.

Listing 4-10. Example of If-Else Statement and Variable Initialization

1 boolean b = true;

2 int i = 0;

3 if(!b) {

4 //then clause

5 i = 5;

6 } else {

7 //else clause

8 i = 10;

9 }

An example of using an If-Else statement to control variable initialization.

Chapter 4 expressions and operators, Flow Control, and More on Variables

90

Something about this use of the If-Else statement should seem familiar, no? Can

you think of another way to do the same thing using something we already have in our

toolbox? Here’s a hint: it’s also a form of conditional. If you thought about the ternary

operator, then you thought right.

Listing 4-11. Example of If-Else Statement and Variable Initialization

1 boolean b = true;

2 int i = !b ? i = 5 : i = 10;

An example of using a conditional to do the same variable initialization as an If-Else

statement.

Of course, there’s more to it If-Else statements that just the basic form, and the

initialization of variables. Let’s look at an example from the Pong Clone game’s

ScreenGame.java class. You can find this Java class in the net.middlemind.PongClone

package.

Listing 4-12. Example of Complex If-Else Statement from ScreenGame.java

01 public boolean ProcessKeyPress(char c, int code) {

02 if(state == State.SHOW_GAME && pause == false) {

03 if(gameType == GameType.GAME_TWO_PLAYER) {

04 if(c == 'x' || c == 'X') {

05 paddle1MoveUp = false;

06 paddle1MoveDown = true;

07 return true;

08 } else if(c == 's' || c == 'S') {

09 paddle1MoveUp = true;

10 paddle1MoveDown = false;

11 return true;

12 }

13 }

14 }

15 return false;

16 }

A complex example of the If-Else statement in use to process keyboard input for the

Pong Clone game.

Chapter 4 expressions and operators, Flow Control, and More on Variables

91

Let’s focus on the If-Else statement on lines 4–13. We’ll pull this If-Else statement out

and adjust its structure a little bit.

Listing 4-13. Example of Expanded If-Else Statement

01 if(c == 'x') {

02 paddle1MoveUp = false;

03 paddle1MoveDown = true;

04 return true;

05 } else if(c == 'X') {

06 paddle1MoveUp = false;

07 paddle1MoveDown = true;

08 return true;

09 } else if(c == 's') {

10 paddle1MoveUp = true;

11 paddle1MoveDown = false;

12 return true;

13 } else if(c == 'S') {

14 paddle1MoveUp = true;

15 paddle1MoveDown = false;

16 return true;

17 }

An example of an expanded If-Else statement where each case has its own Else-

If clause.

Notice that we can use If-Else statements, well technically If-Else-If statements

but you get the idea, to check a bunch of different related conditions. The syntax is a

bit redundant in that we have to check the value of the same variable over and over

again, once for each branch. Think about this for a minute. This sounds like a common

occurrence in programming. While, clearly, we can handle this using an If-Else

statement, there’s a slightly cleaner way to do it using a Switch statement.

 Switch Statements
Switch statements are another flow control tool in the Java programming language, and

they come in handy mainly when there are multiple, different, actions that must be taken

based on the value of a certain variable. In the preceding example, that variable is the

Chapter 4 expressions and operators, Flow Control, and More on Variables

92

character variable c. Let’s take a look at an equivalent snippet of code that replaces the

If-Else statement with a Switch statement.

Listing 4-14. Example of Switch Statement

01 switch(c) {

02 case 'x':

03 paddle1MoveUp = false;

04 paddle1MoveDown = true;

05 return true;

06 case 'X':

07 paddle1MoveUp = false;

08 paddle1MoveDown = true;

09 return true;

10 case 's':

11 paddle1MoveUp = true;

12 paddle1MoveDown = false;

13 return true;

14 case 'S':

15 paddle1MoveUp = true;

16 paddle1MoveDown = false;

17 return true;

18 }

An example of a Switch statement where each case has replaced an If-Else or Else-

If clause.

Take a moment to look over the Switch statement’s structure. Each Else-If statement

is replaced by a case statement entry that checks a specific value. Normally, a Switch

statement’s case clause is concluded with a break statement, but a return statement

works just fine in certain circumstances. Let’s take a look at a slightly re-structured

Switch statement that more closely matches the first If-Else statement we looked at, and

we’ll replace the return statement with a break statement.

Listing 4-15. Example of Switch Statement with Break and Default Case

01 switch(c) {

02 case 'x':

03 case 'X':

Chapter 4 expressions and operators, Flow Control, and More on Variables

93

04 paddle1MoveUp = false;

05 paddle1MoveDown = true;

06 break;

07 case 's':

08 case 'S':

09 paddle1MoveUp = true;

10 paddle1MoveDown = false;

11 break;

12 default:

13 paddle1MoveUp = false;

14 paddle1MoveDown = false;

15 break;

16 }

An example of a Switch statement where each case has replaced an Else-If clause.

As we mentioned earlier, this is a slightly adjusted Switch statement. Notice that the

“x” and “X” conditions evaluate to the same case branch code. This is an example of using

the Switch statement’s case clause without an exit statement, break or return, to group up

similar branches of code. For instance, the same code is run when the user presses the “x”

key as when they have Caps Lock on and press “X”. This is the same structure that’s in the

original If-Else statement we looked at earlier. Lastly, the Switch statement has a default

case. This is similar to the Else clause of an If-Else-If statement. The default case executes

in the case there isn’t a direct match on a previous Switch statement case.

For the most part, Switch statements are really straightforward. They closely

follow the logic of If-Else statements but provide a cleaner syntax in certain scenarios.

Switch statements can only be used with certain data types – byte, short, char, int – and

enumerated data types like arrays and enumerations. In the next section, we’ll take a

look at a different form of flow control: error handling with Try-Catch statements.

 Try-Catch Statements
Up until this point, the flow control statements we’ve reviewed are explicit statements

where we check the value of a variable and make a decision as to which branch of code

to execute. The If-Else statement is very good at handling this in most cases. Every now

and then you will need to use a Switch statement to take advantage of the cleaner syntax

when comparing the same variable’s value for multiple different branches of code.

Chapter 4 expressions and operators, Flow Control, and More on Variables

94

There are some cases where you need to control the flow of the program but not

in the normal scenarios we’ve looked at prior. In this circumstance, we’re interested in

controlling the flow of the program when an error occurs. For this particular situation,

Java provides us with the Try-Catch statement. Let’s take a look at a basic example.

Listing 4-16. Example of Try-Catch Statement

//code

1 try {

2 int t;

3 String u = "test";

4 t = Integer.parseInt(u);

5 } catch (Exception e) {

6 e.printStackTrace();

7 }

//output

1 java.lang.NumberFormatException: For input string: "test"

An example of a Try-Catch statement being used to control program flow around

an error.

In the previous listing, on line 3, the initialization of the String u is incorrect. The

variable is initialized to a word and not a number string. Normally, this would be a

perfectly fine choice, but on line 4, we’re using the string variable as the source value to

convert to an Integer. Now, this code will fail and throw a NumberFormatException – that

we can catch!

For our purposes, we’re catching the more general, Exception. This is fine for our

demonstration, but you should keep your Try-Catch statements aligned to the type of

exceptions they are meant to handle. Now, in this example, all we do is report the error,

line 6, but we could have taken any number of measures in the catch clause to correct

the exception encountered or we could report the issue and gracefully exit the program.

In either case, we’re able to control the flow of the program after encountering

an exception because we employed the Try-Catch statement around code that could

potentially be the source of an error, that is, throw an exception. In this way, we can

make our own Java programs very stable by using Try-Catch statements to protect code

that could generate an error while responding to the error accordingly.

Chapter 4 expressions and operators, Flow Control, and More on Variables

95

That brings us to the conclusion of this section. In the next section, we’ll reinforce

our knowledge on program flow control with a challenge on the subject. Let’s check out

the challenge and jump into some code!

 Challenge: Flow Control
In our first challenge for this chapter, we’ll use our knowledge of flow control to alter a

copy of the Pong Clone game. This challenge will require us to alter the game’s input

handling to support more keyboard keys. Let’s take a look at the details.

Packages Involved:

net.middlemind.PongClone_Chapter4_Challenge1

net.middlemind.PongClone_Chapter4_Challenge1_Solved

Description:

Find the package, net.middlemind.PongClone_Chapter4_Challenge1, and open the

ScreenGame.java file. Some of the testers are reporting that it's kind of difficult to control

the paddles when playing a two-player game. We'll have to map two new sets of two keys

each to add new paddle down and up controls for players 1 and 2.

Find the ProcessKeyPress and ProcessKeyRelease methods of the ScreenGame

class. You'll have to use your knowledge of Java flow control statements to add support

for two new sets of keyboard keys: one for player1 to move the paddle up and down

and a set for player2 to do the same. Use the code that's already in place for player1 as a

template. You must run this package's file – PongClone.java; right-click and select Run

File to test the game.

Clue:

You'll have to set the following variables to true or false depending on the keyboard

key used and if the key is being pressed or released:

• paddle1MoveUp

• paddle1MoveDown

• paddle2MoveUp

• paddle2MoveDown

Remember, you have to reset the Boolean variable in the key release method,

ProcessKeyRelease; otherwise, the player's paddle will be stuck, moving either up

or down.

Chapter 4 expressions and operators, Flow Control, and More on Variables

96

In order to run the package’s specific version of the game, you have to click on

the static main class contained in that package and select “Run File” from the context

menu. Otherwise, the project’s default game will execute. If you’ve solved the challenge

correctly, the game should run properly and allow you to control the player1 and player2

paddle using the new keyboard mappings you just made.

 Challenge Solution
The solution to this challenge requires you to make two changes to the challenge

package’s ScreenGame.java file, specifically in the ProcessKeyPress and

ProcessKeyRelease methods. The first part of the solution requires us to follow the

example in the ProcessKeyPress method so that we can support new keys in the same

way as the original control keys. Let’s take a look at one example of a valid solution to this

challenge.

Listing 4-17. A Possible Solution to Challenge 1

01 public boolean ProcessKeyPress(char c, int code) {

02 if(state == State.SHOW_GAME && pause == false) {

03 if(gameType == GameType.GAME_TWO_PLAYER) {

04 if(c == 'x' || c == 'X' || c == '1' || c == '!') {

05 paddle1MoveUp = false;

06 paddle1MoveDown = true;

07 return true;

08

09 } else if(c == 's' || c == 'S' || c == '2' || c == '@') {

10 paddle1MoveUp = true;

11 paddle1MoveDown = false;

12 return true;

13 }

14

15 if(c == '9' || c == '(') {

16 paddle2MoveUp = false;

17 paddle2MoveDown = true;

18 return true;

19

Chapter 4 expressions and operators, Flow Control, and More on Variables

97

20 } else if(c == '0' || c == ')') {

21 paddle2MoveUp = true;

22 paddle2MoveDown = false;

23 return true;

24 }

25 }

26 }

27 return false;

28 }

29

30 public boolean ProcessKeyRelease(char c, int code) {

31 if(state == State.SHOW_GAME && pause == false) {

32 if(gameType == GameType.GAME_TWO_PLAYER) {

33 if(c == 'x' || c == 'X' || c == '1' || c == '!') {

34 paddle1MoveDown = false;

35 return true;

36

37 } else if(c == 's' || c == 'S' || c == '2' || c == '@') {

38 paddle1MoveUp = false;

39 return true;

40 }

41

42 if(c == '9' || c == '(') {

43 paddle2MoveDown = false;

44 return true;

45

46 } else if(c == '0' || c == ')') {

47 paddle2MoveUp = false;

48 return true;

49 }

50 }

51 }

52 return false;

53 }

An example of a possible solution to challenge 1.

Chapter 4 expressions and operators, Flow Control, and More on Variables

98

One important thing that should stand out to you is the separation of the player1 and

player2 key event handler into two different If-Else statements. Why do you think that is?

Well, if you think about how we converted an If-Else statement into a Switch statement,

what would happen if both player1 and player2 inputs were handled by the same Switch

statement?

If you’re thinking that both players would not be able to process key presses at the

same time due to the nature of a Switch statement only processing one case clause,

you’d be right. The same thing would happen if we only used one If-Else statement. If we

want both players’ input to function independently, we need to make the input handling

code function independently by using two separate If-Else statements.

 More on Variables
We covered a fair amount of material in this chapter so far, but I wanted to swing back

around to the subject of variables and briefly discuss a few finer points to really round

out our review of the subject. Now that we have experience working with different Java

expressions and have explicitly covered Boolean expressions and If-Else statements,

there are a few more things I want to cover on the subject of variables.

I would like to briefly explore the topics of custom data types and data type casting,

conversion with regard to variables in Java. First up, we’ll tackle custom data types with

an introduction to Enumerations.

 Enumerations
The Java programming language has the concept of an Enumeration. An Enumeration is

a list of named constants. In Java, an Enumeration defines a class type. An Enumeration

can have constructors, methods, and instance variables. It is created using the enum

keyword. Each enumeration constant is public, static, and final by default.

The information on class features like constructors, methods, and field access, public

or static, will be explained in more detail when we cover Java classes. You’ll get some

very basic exposure to classes in this chapter. For now, simply follow along and keep

these concepts at the back of your mind. Don’t fret if you don’t quite understand them

yet. Let’s look at a basic, but common, use of the enum keyword to create an enumeration.

Chapter 4 expressions and operators, Flow Control, and More on Variables

99

Listing 4-18. Example of Basic Enumeration Use

01 private enum State {

02 NONE,

03 SHOW_GAME,

04 SHOW_COUNT_DOWN,

05 SHOW_COUNT_DOWN_IN_GAME,

06 SHOW_GAME_OVER,

07 SHOW_GAME_EXIT

08 };

09

10 public State gameState = State.NONE;

An example of basic enumeration use including variable declaration and

initialization.

Once you have an Enumeration declared and initialized, you can refer to its

members using Java’s member operator, . , like so:

 if (gameState == State.SHOW_GAME) { ... }

This makes using enumerations clean and intuitive. You could accomplish the same

thing in another way. Let’s say you use a set of integers to do the job.

 int NONE = -1;

 int SHOW_GAME = 0;

 int SHOW_COUNT_DOWN = 1;

 int SHOW_COUNT_DOWN_IN_GAME = 2;

 int SHOW_GAME_OVER = 3;

 int SHOW_GAME_EXIT = 4;

This implementation is not so bad. It’s intuitive and also clean. One issue though is

that we have to explicitly define a unique value for the integers representing the different

variables. Whereas prior, the enumeration took care of this for us. Let’s see what this

approach looks like in practice.

 if (gameState == SHOW_GAME) { ... }

Chapter 4 expressions and operators, Flow Control, and More on Variables

100

The difference is subtle, but in the prior example, we lose the concept of “State”.

This is slightly less important in the example because the variable we’re using is

properly named, gameState. Still, without too much investigation, we can see the use of

enumerations makes the code a little cleaner and a little more intuitive. Enumerations

are a very powerful tool in the Java programming language. Keep them in mind when

you’re coding up your next project.

 Very Basic Java Classes
It’s clear that while enumerations have their use and can be easily customized creating

a new data type for you to use in your programs, they also have their limitation. For

one thing, the members have to be integers. That limitation alone will make us look

elsewhere for other approaches to data type customization. Following along the same

thread of discovery, we come to another way to create custom data types: the plain old

Java class.

Listing 4-19. Example of a Basic Java Class

1 public class GameData {

2 public State gameState = State.NONE;

3 public int numberOfPlayers = 1;

4 public boolean gameOver = false;

5 public String playerName = "AAA";

6 }

7

8 public GameData gameMetaData;

9 gameMetaData = new GameData();

An example of a custom data type defined through a Java class.

The code in the previous listing should look somewhat similar to that of Listing 4-18.

What we have here is a very simple Java class that is designed to hold a few different

pieces of information. We have referred to these as variables before, but in this context,

we shall call them class fields or more generally class members.

Notice that we can now create variables of this data type as shown on lines 8–9. This

is very similar to the way we used enumerations, but in this case, we are able to create

classes that hold fields of different types including other classes and enumerations. This

gives us a lot of power in the type of data we can model. Think about that for a moment.

Chapter 4 expressions and operators, Flow Control, and More on Variables

101

That brings us to the conclusion of this section. In the next section, we’ll focus

more on variables of the basic data types and how they can be converted to/from other

different basic data types.

 Casting and Conversion
Casting and conversion as we’re discussing it here will be limited to the conversion of the

basic data types – byte, char, short, int, long, float, double, String, boolean – to and from

other basic data types. String conversion is unique, so let’s get that one out of the way

first. The following code snippet shows how to convert a String value to the other basic

data types. Let’s have a look!

Listing 4-20. Example of Converting from a String to the Basic Data Types

01 //prep

02 String u;

03

04 //byte

05 u = "128";

06 try {

07 byte tB;

08 tB = Byte.parseByte(u);

09 } catch (Exception e) {

10 //error, exit the program

11 return;

12 }

13

14 //char

15 u = "c";

16 try {

17 char tC = u.toCharArray()[0];

18 } catch (Exception e) {

19 //error, exit the program

20 return;

21 }

22

Chapter 4 expressions and operators, Flow Control, and More on Variables

102

23 //short

24 u = "1024";

25 try {

26 short tS;

27 tS = Short.parseShort(u);

28 } catch (Exception e) {

29 //error, exit the program

30 return;

31 }

32

33 //int

34 u = "10";

35 try {

36 int tI;

37 tI = Integer.parseInt(u);

38 } catch (Exception e) {

39 //error, exit the program

40 return;

41 }

42

43 //long

44 u = "2048";

45 try {

46 long tL;

47 tL = Long.parseLong(u);

48 } catch (Exception e) {

49 //error, exit the program

50 return;

51 }

52

53 //float

54 u = "100.05";

55 try {

56 float tF;

57 tF = Float.parseFloat(u);

58 } catch (Exception e) {

Chapter 4 expressions and operators, Flow Control, and More on Variables

103

59 //error, exit the program

60 return;

61 }

62

63 //double

64 u = "200.10";

65 try {

66 double tD;

67 tD = Double.parseDouble(u);

68 } catch (Exception e) {

69 //error, exit the program

70 return;

71 }

72

73 //boolean

74 u = "true";

75 try {

76 boolean tBl;

77 tBl = Boolean.parseBoolean(u);

78 } catch (Exception e) {

79 //error, exit the program

80 return;

81 }

A block of code showing conversion between a String and other basic data types.

It looks a bit complicated, so we’ll talk about what’s going on here. Converting from

a String data type to another basic data type isn’t that straightforward. There’s a bit of

an encoding involved. For instance, if the string value that we’re converting isn’t a “true”

or “false” value, then we won’t be able to accurately convert it to a Boolean, and an

exception will be thrown.

To perform the actual conversion, we rely on the “boxed” version of the data types

 – Byte, Short, Integer, Long, Float, Double, and Boolean. For the char conversion,

we simply use the first character value in the string. This could be null or otherwise

nonexistent, so we are prepared to catch an exception during this conversion as well. For

the remaining basic data types, we use a parse method, which is a static method of the

object version of the basic data types.

Chapter 4 expressions and operators, Flow Control, and More on Variables

104

A static method is a method that is defined for the class itself, not an instance of

the class. For instance, to convert a String, s, to an int, j, you would use the following

method call:

 j = Integer.parseInt(s);

And be prepared to catch an exception in case the string doesn’t contain an integer

in string form. Let’s look at how we would convert from the other basic data types to the

String data type.

Listing 4-21. Example of Converting from the Basic Data Types to a String

01 //prep

02 String u;

03

04 u = (tB + ""); //byte

05 u = (tC + ""); //char

06 u = (tS + ""); //short

07 u = (tI + ""); //int

08 u = (tL + ""); //long

09 u = (tF + ""); //float

10 u = (tD + ""); //double

11 u = (tBl + ""); //boolean

A null-safe way to convert from basic data type to the String data type. It continues

from the code in Listing 4-20.

In Listing 4-21, which continues from the code in Listing 4-20, we can see a null-safe

way to convert each of the basic data types to the String data type. What makes this

a null-safe way to convert the variable’s value? Notice that no method call is made to

convert the values. Instead, we’re relying on the Java language itself, which converts an

Object; in this case, it automatically boxes the basic data type converting it to an object

of type – Byte, Short, Integer, Long, Float, Double, Boolean. Then it calls the internal

toString method returning a string that can then be concatenated with the empty

string. In this way, we can return a string value without calling a method.

Chapter 4 expressions and operators, Flow Control, and More on Variables

105

Now that we have got converting a String to and from the basic data types down,

we can talk about converting some of the numeric basic data types to and from other

numeric basic data types. It turns out that without any concern, we can convert from

smaller data types to larger data types in some cases. For instance, the following

conversions are allowed.

Listing 4-22. Example of Implicit and Explicit Variable Conversion

01 //implicit conversion

02 byte b = 8;

03 //char c = b; //cannot convert to char implicitly

04 int i = b;

05 long l = b;

06 float f = b;

07 double d = b;

08

09 //explicit conversion

10 f = (float)d;

11 l = (long)d;

12 i = (int)d;

13 c = (char)d;

14 b = (byte)d;

An example demonstrating the conversion of numeric basic data types to other

numeric basic data types.

The implicit conversions are done automatically by the compiler without so much as

a complaint. The reason is that we’re converting from a smaller data type to a larger data

type so there’s no possibility of data loss, lines 1–7. When converting data types in the

other direction, though, we’ll get an error unless we tell the compiler that we’re aware

the conversion we’re doing could possibly cause a loss of data. Why would data be lost?

Well, it’s literally a matter of space. The amount of information used to

describe a long could not fit into a byte. When converting from a long to a byte,

we face the possibility of data loss because a byte can’t hold numbers as large as

a variable of data type long. In order to perform this type of conversion, we have

to let the compiler know that we are aware of the danger. We do so by adding the

destination data type surrounded by parenthesis in front of the assignment operator.

Try applying explicit and implicit casting to variables of other basic data types.

Chapter 4 expressions and operators, Flow Control, and More on Variables

106

 Challenge: Enumerations
The second challenge for this chapter is a bit more complex than previous challenges,

but don’t worry, you can use existing code as a template for all the changes required to

solve this challenge.

Packages Involved:

net.middlemind.PongClone_Chapter4_Challenge2

net.middlemind.PongClone_Chapter4_Challenge2_Solved

Description:

Find the package, net.middlemind.PongClone_Chapter4_Challenge2, and open the

ScreenGame.java file. One of the lead programmers on the project wants to test making

the countdown longer. Your challenge is to increase the countdown from three to five

seconds. You’ll also update the images used for the countdown so that they don’t have

the blue border. This will make our changes stand out a bit.

In order to accomplish this challenge, you have to do a few things. I’ll list the general

steps here.

 1. Update the countdown enumeration to support numbers 4 and 5.

Use the existing enumeration entries as a basis for your change.

 2. Update the class to include variables number4 and number5. Use

the existing variables – number1, number2, and number3 – as a basis

for your change.

 3. Locate the LoadResources method in the ScreenGame class and

find where the variables number1, number2, and number3 are

initialized. Add number4 and number5 to the variables initialized.

Use the existing code as a basis for the new variables.

 4. Change the files used to initialize the number 1–5 variables by

adding a 2 before the “.png”. For instance, the file name “num_1_

lrg.png” becomes “num_1_lrg2.png.”

 5. Locate the DrawScreen method and uncomment the new code

that draws five numbers during the countdown and comment out

the old code that only supported drawing three numbers.

Once those steps are complete, you should be able to run the package’s PongClone.

java class and play the game. You’ll notice a five-second countdown to start the game

and in-between points. Also, none of the number images have a blue outline.

Chapter 4 expressions and operators, Flow Control, and More on Variables

107

Clue:

The best clue to give you for this challenge is to look at the code that is already in

place and use it as a template.

In order to run the package’s specific version of the game, you have to click on

the static main class contained in that package and select “Run File” from the context

menu. Otherwise, the project’s default game will execute. If you’ve solved the challenge

correctly, the game should run properly and display a five-second countdown with no

blue borders around the numbers. Make sure to take your time with this challenge. It’s

easy to make a mistake due to the similarity between variable names.

 Challenge: Solution
The solution to this challenge requires you to make four changes to the ScreenGame.java

file. The first change is to add the new entries in the state tracking enumeration for the

countdown timer. There are already entries for numbers 1 through 3, so you just have to

use the existing code as a template and add numbers 4 and 5.

The second change you must make is to add new MmgBmp variables, number4 and

number5, to represent the 4th and the 5th second of the countdown. Again, in this case,

you have code present for declaring variables numbers 1–3. Use the existing code as a

template and create variables for numbers 4 and 5. Similarly, find where these variables

are initialized in the LoadResources method and add in the necessary code for numbers

4 and 5.

This step can seem somewhat daunting, but if you give yourself some space, just

paste in a copy of one of the existing code initialization snippets and customize it for

numbers 4 and 5, respectively. I’ll show an example of the snippet of code for initializing

a number variable.

Listing 4-23. Example of the Initialization of a Number Variable

01 //Load number three config

02 key = "bmpNumberThree";

03 if(classConfig.containsKey(key)) {

04 file = classConfig.get(key).str;

05 } else {

06 file = "num_3_lrg2.png";

07 }

Chapter 4 expressions and operators, Flow Control, and More on Variables

108

08

09 lval = MmgHelper.GetBasicCachedBmp(file);

10 number3 = lval;

11 if(number3 != null) {

12 MmgHelper.CenterHorAndVert(number3);

13 number3 = MmgHelper.ContainsKeyMmgBmpScaleAndPosition("numberThree",

number3, classConfig, number3.GetPosition());

14 number3.SetIsVisible(false);

15 AddObj(number3);

16 }

An example demonstrating the initialization of a number variable.

Remember, you also have to adjust the names of the image resources used to load

numbers 1–3. Use file names that end in "2.png". If everything goes to plan, then you

should see clean numbers in the new five-second countdown timer.

Image 4-1. Screenshot of the Pong Clone Game with Five-Second Countdown Timer

Chapter 4 expressions and operators, Flow Control, and More on Variables

109

A screenshot showing the modified countdown timer in action. No blue outlines and

a five-second countdown.

That brings us to the end of the second challenge and the conclusion of the chapter.

We’ll take a look at the material we’ve covered and wrap things up in the remaining

sections.

 Conclusion
That brings us to the end of this chapter on expressions, operators, flow control, and

variables. We covered a decent amount of material and expanded our coding toolbox

to include some very useful tools like If-Else and Switch statements. We’re going to

continue our exploration of the Java language by introducing you to a few more very

useful data structures in the next chapter. Before we say farewell to this chapter, let’s take

a look at what we covered here.

 What We Covered
The Java language features we covered in this language are as follows:

• Numeric Expressions: We took a look at one of the main types of

expressions and associated operators: the numeric expressions.

• Boolean Expressions: The next most important type of expression in

Java is the Boolean expression, and it’s used to create conditionals

that, when combined with flow control statements, allow us to

control the execution of our program.

• Assignment Expressions: We took a moment to look at the different

assignment expressions including the convenience of compound

assignment operators.

• Increment/Decrement Expressions: This is a small but important

topic. We quickly covered the different ways you can accomplish

incrementing and decrementing a variable including some very

efficient increment/decrement operators.

• Bitwise Expressions: Bitwise expressions are used to perform bit-level

logic on numeric information like AND, OR, and XOR operations.

Chapter 4 expressions and operators, Flow Control, and More on Variables

110

• Bit-Shift Expressions: A second erudite section of Java expressions;

the bit-shift expressions are used to quickly multiply or divide a value

and can be a faster replacement for certain multiplication.

• Operator Precedence: We briefly outlined the full spectrum of operator

precedence including bitwise and ternary operators in the listing.

• If, If-Else, If-Else-If Statements: Our first look at flow control

statements introduced us to If-Else statements and branching code.

• Switch Statements: We learned a second way to branch code but one

that is more suitable for multiple branches of code based on a single

variable.

• Try-Catch Statements: We learned a form of flow control that is

triggered by an exception being thrown.

• Challenge: Flow Control: We took on an interesting challenge that

asked us to create new key mappings in the Pong Clone game allowing

player1 and player2 to control their paddles using the new keys.

• Enumerations: As part of our review of Java variables, we swung back

around after the review on flow control and took a look at how to

create custom data types through the use of enumerations.

• Very Basic Java Classes: The second technique we reviewed when

creating custom data types in Java is by using very simple classes.

We took a look at an example of a new, custom, data type that stored

information about an executing game.

• Challenge: Enumerations: The last challenge of the chapter asked us

to expand the current countdown timer implementation and add two

seconds to it by supporting enumeration entries for numbers 4 and

5. We also had to adjust some class variables, their initialization, and

the DrawScreen method’s code to complete the challenge.

We have a decent set of tools to work with now. Not only can we use all the basic

data types to write a solution in Java, we can also use flow control statements, casting,

conversion, and custom data types, among other things. We’ll pick up even more

experience and knowledge as we look at some of the more advanced features that Java

has to offer in the coming chapters!

Chapter 4 expressions and operators, Flow Control, and More on Variables

111

CHAPTER 5

More Data Structures
Welcome to Chapter 5! In this chapter, we’ll spend some more time exploring some

common data structures provided by the Java programming language. A brief summary

of the data structures we’ll cover in this chapter is as follows:

• Multidimensional Arrays: Similar to the arrays you worked with

prior to this chapter, just with more dimensions, allowing us to map

tabular data, etc.

• Hashes: A very useful data structure that can be thought of as a

dictionary. Hashes store key-value pairs. Hashes are sometimes

referred to by their actual Java class name, Hashtable, or the

colloquial term, dictionary.

• Stacks: An important data structure that allows push and pop access

to a stack of values. These are the first data structures we’ve seen that

remove their elements when they are accessed. They also have the

property that they return the element for you with a method call.

• Queues: Last but not least, the queue is a data structure you should

be familiar with if you’ve ever had to wait in line for something. A

queue provides add or remove access to a list of values.

**Java Programming Note: All the data structures used in the text are either core
features of the Java programming language or are contained in the java.util
package. Add the line import java.util.* to use these classes in your programs.

Recall from our review in Chapter 3 that data structures are more advanced data

types that hold other variables. Normally, data structures would be considered outside

the scope of an introductory programming language text, but I feel that a gentle

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_5

https://doi.org/10.1007/978-1-4842-8951-8_5
https://doi.org/10.1007/978-1-4842-8951-8_3
https://doi.org/10.1007/978-1-4842-8951-8_5#DOI

112

introduction to them will help you greatly when you further explore the topic. We’ve had

some experience working with arrays and lists in Java, so we’ll start the discussion with

multidimensional arrays. You’ll find the syntax and usage familiar. Let’s take a look!

 Multidimensional Arrays
Multidimensional arrays are an array of arrays. Let’s think of arrays in Java as a row in

a spreadsheet. Each column in the row represents an array index and holds some data.

Now, with regard to a multidimensional array of two dimensions, let’s think of this as an

entire spreadsheet of rows and columns. One index into the array will specify the row to

find the data, while the second index will define the column.

 Declaring Multidimensional Arrays
The process for declaring multidimensional arrays should be familiar to you from your

previous review of Java arrays. Let’s take a look.

Listing 5-1. Multidimensional Array – Declaration Examples

1 int[] oneDimension = new int[10];

2 int[][] twoDimensions = new int[10][10];

3 int[][][] threeDimensions = new int[10][10][10];

An example demonstrating the declaration of arrays of 1, 2, or 3 dimensions.

Let’s talk a little bit about what’s going on in this example. The first line shows the

declaration of a one-dimensional array, as you well know. The second line shows the

declaration of a two-dimensional array. Note that a new set of brackets, [], is added for

each new array index.

**Java Programming Note: Be careful when using multidimensional arrays as you
can eat up quite a bit of memory rather quickly. For instance, a three-dimensional
array with 1000 elements in each array has 1 billion entries, not a paltry amount by
any means.

Chapter 5 More Data StruCtureS

113

 Using Multidimensional Arrays
Now that we understand how to declare multidimensional arrays, let’s take a look at a

few use cases for getting and setting array values.

Listing 5-2. Multidimensional Array – Use Case Examples 1

01 int[] dim1 = new int[10];

02 int[][] dim2 = new int[10][10];

03 int[][][] dim3 = new int[10][10][10];

04

05 //simple array index set

06 dim1[0] = 10;

07

08 //2-dimensional array index set

09 dim2[0] = new int[10];

10 dim2[0][0] = 11;

11

12 //3-dimensional array index set

13 dim3[0] = new int[10];

14 dim3[0][0] = new int[10];

15 dim3[0][0][0] = 12;

An example demonstrating setting a value using arrays of different dimensions.

Take a moment to look over the get/set code for multidimensional arrays in

Listing 5-2. Notice that as the dimension of the array increases, we have more

initialization to perform. We must initialize each dimension of the array explicitly

before we can use those array indexes to get or set a value. In the subsequent listing,

we’ll take a look at how to get values out of a multidimensional array.

Listing 5-3. Multidimensional Array – Use Case Examples 2

//code

01 int[] dim1 = new int[10];

02 int[][] dim2 = new int[10][10];

03 int[][][] dim3 = new int[10][10][10];

04

Chapter 5 More Data StruCtureS

114

05 //simple array index set

06 dim1[0] = 10;

07

08 //2-dimensional array index set

09 dim2[0] = new int[10];

10 dim2[0][0] = 11;

11

12 //3-dimensional array index set

13 dim3[0] = new int[10];

14 dim3[0][0] = new int[10];

15 dim3[0][0][0] = 12;

16

17 System.out.println("Dim1 Index: 0 Value: " + dim1[0]);

18 System.out.println("Dim2 Index: 0 Value: " + dim2[0]);

19 System.out.println("Dim2 Index: 0,0 Value: " + dim2[0][0]);

20 System.out.println("Dim3 Index: 0 Value: " + dim3[0]);

21 System.out.println("Dim3 Index: 0,0 Value: " + dim3[0][0]);

22 System.out.println("Dim3 Index: 0,0,0 Value: " + dim3[0][0][0]);

//output

01 Dim1 Index: 0 Value: 10

02 Dim2 Index: 0 Value: [I@50f8360d

03 Dim2 Index: 0,0 Value: 11

04 Dim3 Index: 0 Value: [[I@13c78c0b

05 Dim3 Index: 0,0 Value: [I@12843fce

06 Dim3 Index: 0,0,0 Value: 12

An example demonstrating getting a value from arrays of different dimensions.

Listing 5-3 adds some output to the previous listing so we can get an idea of how to

get values from a multidimensional array. If you draw your attention to lines 1–6 of the

output section, you’ll see the values stored in the specified array at the specified index.

Wait a minute, what are all those funny values in the output? Care to venture a guess?

Well, before I go ahead and answer, look back to the initialization code and see what is

being assigned to that array index.

If you thought that the strange looking values in the output, “[I@50f8360d,” are a

representation of the array value at that index, then you’d be right. Those are a form of

memory location in the Java virtual machine and indicate to us that an object of some

Chapter 5 More Data StruCtureS

115

kind is stored in that array index. In a similar fashion, take a moment to look at the array

indices that actually print out a value. Can you spot the distinction between the two? In

one case, we’re getting a value from an array index that holds an entire other array. In the

other case, we’re getting a value from an array element at the specified multidimensional

index that specifies a basic data type value.

Let’s take a quick look at how you can clear out and delete a multidimensional array

in Listing 5-4.

Listing 5-4. Multidimensional Array – Deletion

01 int[] dim1 = new int[10];

02 int[][] dim2 = new int[10][10];

03 int[][][] dim3 = new int[10][10][10];

04

05 //simple array index set

06 dim1[0] = 10;

07

08 //2-dimensional array index set

09 dim2[0] = new int[10];

10 dim2[0][0] = 11;

11

12 //3-dimensional array index set

13 dim3[0] = new int[10];

14 dim3[0][0] = new int[10];

15 dim3[0][0][0] = 12;

16

17 //zero a simple array index value

18 dim1[0] = 0;

19

20 //delete the array

21 dim1 = null;

22

23 //zero a multi-dimensional array index value

24 dim2[0][0] = 0;

25

26 //delete the array at the specified index

Chapter 5 More Data StruCtureS

116

27 dim2[0] = null;

28

29 //zero a multi-dimensional array index value

30 dim3[0][0][0] = 0;

31

32 //delete the array at the specified index

33 dim3[0][0] = null;

34

35 //delete the array at the specified index

36 dim3[0] = null;

37

38 //delete all arrays

39 dim1 = null;

40 dim2 = null;

41 dim3 = null;

An example demonstrating zeroing an array index value and deleting

multidimensional arrays.

It should be enough to simply set the array variable to null to properly delete an

array. However, if you have an array of objects (references are important in this case),

then you may want to delete individual parts of a multidimensional array. In the

previous listing, Listing 5-4, example code demonstrates how to delete different parts of

a multidimensional array.

You might have noticed that the array indices that are set to null to clear a row or

column of a multidimensional array are the same indices that required us to initialize

a new instance of an array. Multidimensional arrays are a new powerful data structure

we’ve added to our coding toolbox. We’ll continue on this thread of discussion, as

promised, and take a look at another very useful data structure Java has to offer: hashes.

 Hashes
Hashing is the process of employing a function to map a key to a value storing the

data in a hash table. Hashes are another important data type that functions much like

a dictionary. Let’s explore that idea for a moment. Can you think of a data structure

Chapter 5 More Data StruCtureS

117

we’ve learned about that almost acts like a dictionary? Think about arrays for a

moment. What do you use to look up a value in an array? You use an index value that is

an integer to find the data stored in that array index.

That sort of sounds like we’re using a dictionary to look up a word except we’re using

numbers instead of words. As it turns out, you can use an array to implement a hash, but

that’s a little outside of the scope of this text. Java, as it so happens, has a very convenient

implementation of the hash data structure called the Hashtable.

 Declaring Hashtables
Hashes are a powerful tool to add to our coding toolbox. Now that we’ve had a brief

introduction to the concept of hashes, let’s take a look at how we can use them in the

Java programming language. Let’s have a look at how we declare and instantiate a hash

table in Java.

Listing 5-5. Hashtables – Declaration Examples

1 //simple hashtable declaration, using default key, value data type as

Object implicitly

2 Hashtable ht1 = new Hashtable();

3

4 //advanced hashtable declaration specifying key, value data type as

Object explicitly

5 Hashtable<Object, Object> ht2 = new Hashtable<Object, Object>();

6

7 //advanced hashtable declaration specifying key, value data types as

Integers and short form of initialization

8 Hashtable<Integer, Integer> ht3 = new Hashtable<>();

An example of declaring different hash tables using implicit and explicit data type

specifications for the key and value pair.

At first glance, this might seem a bit complex. Let’s talk through it and see what’s

going on. A quick thought before we continue, let’s remember that the data structures

we’re looking at here are more advanced than basic data types and even some of the

data structures we’ve reviewed earlier. When we define a Hashtable, we are setting up a

mapping between keys and values.

Chapter 5 More Data StruCtureS

118

That means given some key, you can look up a value. But both the key and value, in

this case, also have their own data types. For instance, you could use a String for both

and your Hashtable would function exactly like a little dictionary. Let me further the

concept with an example.

Listing 5-6. Hashtables – String Key, Value Data Types

//code

1 String key = "Java";

2 String value = "Java is a computer programming language.";

3 Hashtable<String, String> ht = new Hashtable<>();

4

5 ht.put(key, value);

6 System.out.println("The value for key: " + key + " is: '" +

ht.get("Java") + "'");

//output

1 The value for key: Java is: 'Java is a computer programming language.'

An example of declaring a Hashtable, initializing it and setting, and getting a value.

Take a look at Listing 5-6. Notice the use of basic data type, String, in the key and

value pair definition, <String, String>, when declaring the hash table. We’ve seen

these angled brackets before when we reviewed ArrayLists. They are used to configure

certain data structures by setting their internal data types. In this case, they are used to

set the data type of the Hashtable’s key and value.

Diverting our attention back to Listing 5-5, take a look at line number 2. Notice that

we didn’t specify a data type for the key or value of the hash table. No worries, Java takes

care of it for us and will simply use a default data type, the Object data type. The Object

data type is the parent of all classes defined in the Java programming language, even

the ones you haven’t created yet. We’ll cover more on Objects when we cover object-

oriented programming.

For now, it’s safe to think of them as a placeholder for a less generic Object defined

by you. For instance, you could choose to use a String object, like we did in Listing 5-6.

On line 4 of Listing 5-5, we’ve used a form of Hashtable declaration that explicitly

defines the data type of the key and value used by the hash table. Notice that we’ve

explicitly defined the same data types that would have been used by default.

Chapter 5 More Data StruCtureS

119

Next, on line 8 of Listing 5-5, we have a Hashtable declared with boxed basic data

types, Integers as opposed to ints, for the table’s keys and values. Don’t worry if it’s a bit

confusing right now. We’ll look at using hash tables next, and this will help refine your

understanding of the data structure.

 Using Hashtables
In this section, we’ll take our new coding tool, Hashtables, for a spin and investigate

some use cases like getting/setting values, clearing, and deleting Hashtables. Let’s build

on the example from Listing 5-6. Remember, when reading through these code samples,

the data types of the key and value pair can be configured.

Try to focus on the use of the Hashtable itself and how methods are used to

manipulate data in the table. We’ve seen how to declare and initialize Hashtable in the

previous section. Next, let’s take a look at how we can get/set values in a Hashtable.

Listing 5-7. Hashtables – Getting and Setting Values

//code

01 //prepare

02 String key = "Java";

03 String value = "Java is a computer programming language.";

04 Hashtable<String, String> ht = new Hashtable<>();

05

06 //set

07 ht.put(key, value);

08 ht.put("JRE", "Java Runtime Environment");

09 ht.put("JDK", "Java Development Kit");

10

11 //get

12 System.out.println("The value for key: " + key + " is: '" +

ht.get("Java") + "'");

13 System.out.println("The value for key: JRE is: '" +

ht.get("JRE") + "'");

14 key = "JDK";

15 System.out.println("The value for key: JDK is: '" + ht.get(key) + "'");

Chapter 5 More Data StruCtureS

120

//output

01 The value for key: Java is: 'Java is a computer programming language.'

02 The value for key: JRE is: 'Java Runtime Environment'

03 The value for key: JDK is: 'Java Development Kit'

An example of setting and getting values in a Hashtable using variables and

constants as keys and values.

Notice that we can use variables to specify the key and value pair of a Hashtable’s

put method as shown on line 7 of the listing. In this case, because we’re working with

Strings as our key and value data type, we can also explicitly set the value we want to

store by using String constants.

Subsequently, on lines 12–15, we use the Hashtable’s get method to pull values from

the data structure and append them to our output message. Next up, let’s take a look at

how we can clear out a Hashtable’s values. There are a few ways we can do this. Let’s

jump into some code!

Listing 5-8. Hashtables – Clearing Values Part 1

01 //prepare

02 String key = "Java";

03 String value = "Java is a computer programming language.";

04 Hashtable<String, String> ht = new Hashtable<>();

05

06 //set

07 ht.put(key, value);

08 ht.put("JRE", "Java Runtime Environment");

09 ht.put("JDK", "Java Development Kit");

10

11 //explicitly remove all entries

12 ht.remove(key);

13 ht.remove("JRE");

14 ht.remove("JDK");

15

16 //implicitly remove all entries

17 ht.clear();

Chapter 5 More Data StruCtureS

121

An example of clearing values from a Hashtable using explicit and implicit

approaches.

As you can see from the listing, in most cases, you’ll want to know the key that you

used to store your data. Without them, you could always clear the entire data structure,

as shown on line 17, but what if you want to remove a specific entry and you don’t have

the key for it? Turns out there is a nifty little way to get all the keys stored in the hash

table and store them in an ArrayList; recall from our review of ArrayLists in Chapter 3.

Let’s take a look at this approach next.

Listing 5-9. Hashtables – Clearing Values Part 2

//code

01 //prepare

02 String key = "Java";

03 String value = "Java is a computer programming language.";

04 Hashtable<String, String> ht = new Hashtable<>();

05

06 //set

07 ht.put(key, value);

08 ht.put("JRE", "Java Runtime Environment");

09 ht.put("JDK", "Java Development Kit");

10

11 ArrayList<String> keys = (ArrayList<String>)ht.keys();

12 for(String name : keys) {

13 ht.remove(name);

14 }

An example of clearing values from a Hashtable using an ArrayList as an

enumeration.

The first few lines of code in Listing 5-9 are the same as the prior listing. The

differences start on line 11. Notice that we’re calling the Hashtable class’ keys method

that returns a value that we can cast as an ArrayList. Because the hash table’s data type

for its keys is a String, we need an ArrayList of Strings to store the information.

Chapter 5 More Data StruCtureS

https://doi.org/10.1007/978-1-4842-8951-8_3

122

As we’ve seen before, angled brackets, <>, in the list declaration are used to specify its

data type. Our list can hold the keys from the hash table, and in doing so, we can iterate

over the keys and access each value stored in the hash table. Keep in mind we don’t have

to have any knowledge of what’s inside the hash table; we can now, in a data-driven way,

iterate through and see what value each key is mapped to.

Notice in the example on line 13 that we specifically remove each entry from the

hash table using this approach. With more advanced data structures, there’s usually a lot

more to talk about, and hash tables are no exception. For our purposes here, you have a

solid foundation to build on and a powerful new tool in our coding toolbox. In the next

section, we’ll take a look at another data structure: the stack.

 Stacks
Stacks are another fundamental data structure that is very useful in programming. It

comes up frequently in different situations and in different algorithms. A stack is a bit

more of an abstract data structure. It’s based on the concept that the last item pushed

into the stack is the first item popped out of it.

The reason why I would describe this data structure as abstract is that it can easily

be implemented using some of the other data structures we’ve reviewed thus far.

For instance, we could use an array or a list to implement a stack fairly easily. This is

something to keep in mind when working with data structures because the way they are

implemented can impact their performance in different ways.

**Game Programming Note: Not all data structures are created equally. They each
have different attributes regarding their performance during common operations
like retrieval, search, sort, etc. Take the time to choose the best data structure for
your use case.

In the next section, we’ll take a look at how to declare and initialize a stack in Java.

We won’t get into the underlying implementation of the stack, but we’ll learn the basics

of how to use one. Let’s take a look!

Chapter 5 More Data StruCtureS

123

 Declaring Stacks
Java, being a mature and complete programming language, has an implementation of

a stack already for us to use: the Stack class. In Listing 5-10, we’ll take a look at how to

declare and initialize one.

Listing 5-10. Stacks – Declaring Stacks

1 //basic stack declaration using the default data type, Object

2 Stack stck1;

3

4 //stack declaration using the String data type

5 Stack<String> stck2;

6

7 //stack declaration using the Object data type

8 Stack<Object> stck3;

An example of declaring a stack configured to hold different data types.

Simple enough, declaring a stack looks a lot like working with the other data

structures we’ve reviewed thus far. Let’s further the discussion with an example showing

us how to instantiate a stack in different ways.

Listing 5-11. Stacks – Instantiating Stacks

01 //basic stack instantiation using the default data type, Object

02 Stack stck1;

03 stck1 = new Stack();

04

05 //stack instantiation using the String data type

06 Stack<String> stck2 = new Stack<String>();

07

08 //stack instantiation using the Object data type

09 Stack<Object> stck3;

10 stck3 = new Stack<>();

An example of instantiating a stack configured to hold different data types.

Chapter 5 More Data StruCtureS

124

Declaring a stack is very similar to the other data structure declarations we’ve

reviewed throughout the text. Take note of the use of angled brackets to customize the

stack’s data type. A shortcut is to use only the brackets, <>, excluding the data type when

instantiating the variable. It is enough in Java to specify the data type in the declaration

of the variable carrying that through to the instantiation is not mandatory. An example of

this can be seen in the previous listing on lines 9–10. Now that we know how to declare a

Stack, let’s take a look at how we can use them.

 Using Stacks
Stacks, as mentioned previously, have a specific property such that the first item

pushed into the stack is always the last item removed from the stack. Let’s start off the

exploration by taking a look at how we initialize a stack. In the example in Listing 5-12,

we’ll look at an example using a stack configured to use Integers. Let’s take a look at

some code!

Listing 5-12. Stacks – Initializing Stacks

01 //prep

02 Stack<Integer> stck;

03 stck = new Stack<>();

04

05 //initialize

06 stck.push(0); //example of automatic boxing of int

07 stck.push(new Integer(1));

08 stck.push(Integer.valueOf(2));

09 stck.push(3);

10 stck.push(4);

An example of declaring and initializing a stack configured to hold Integers. Notice

the automatic boxing of an int value on line 6.

When working with stacks, when we want to add a new piece of data into the Stack,

we “push” it onto the stack. You’ll notice in the previous listing that although the stack

was configured to hold Integers, we got away with using just an int, line 6. This is

because Java will automatically take care of converting the basic data type, int, to an

object form, an Integer.

Chapter 5 More Data StruCtureS

125

After initializing the stack, we have the following list of data elements at the following

positions in the stack:

• Position: 4 Value: 0

• Position: 3 Value: 1

• Position: 2 Value: 2

• Position: 1 Value: 3

• Position: 0 Value: 4

This seems slightly counterintuitive since we added the 0 value to the stack first. If

we were working with a list, the last element in the list would have a value of 4, because

it was added first, not a value of 0. This has to do with the nature of a Stack; by design, it

returns values using a first in, last out approach. By extension of this idea, the last value

in would be the first value out.

As it turns out, that’s exactly what we get. Let’s further this discussion with an

example demonstrating the get/set use case. Pay special attention to the order of the

values returned. I will use simple, increasing values as data to make things that much

clearer.

Listing 5-13. Stacks – Getting/Setting Values Part 1

//code

01 int val = 0;

02 stck.push(val);

03 System.out.println("Push #1 Value: " + val);

04

05 val = new Integer(1);

06 stck.push(val);

07 System.out.println("Push #2 Value: " + val);

08

09 val = Integer.valueOf(2);

10 stck.push(val);

11 System.out.println("Push #3 Value: " + val);

12

13 val = 3;

14 stck.push(val);

Chapter 5 More Data StruCtureS

126

15 System.out.println("Push #4 Value: " + val);

16

17 val = 4;

18 stck.push(val);

19 System.out.println("Push #5 Value: " + val);

20

21 System.out.println("Pop #1 Value: " + stck.pop());

22 System.out.println("Pop #2 Value: " + stck.pop());

23 System.out.println("Pop #3 Value: " + stck.pop());

24 System.out.println("Pop #4 Value: " + stck.pop());

25 System.out.println("Pop #5 Value: " + stck.pop());

//output

01 Push #1 Value: 0

02 Push #2 Value: 1

03 Push #3 Value: 2

04 Push #4 Value: 3

05 Push #5 Value: 4

06 Pop #1 Value: 4

07 Pop #2 Value: 3

08 Pop #3 Value: 2

09 Pop #4 Value: 1

10 Pop #5 Value: 0

An example of declaring and initializing a stack configured to hold Integers followed

by a demonstration of getting and setting stack values.

**Java Programming Note: Although you’ve seen a few different ways you can
convert to/from boxed versions of the basic data types, boxed meaning Integer
instead of int, Float instead of float etc. You should only do this manually if you
must. Java will do it for you in most cases.

Putting it all together in one place really makes the pattern emerge, doesn’t it? There

are a lot of uses of this pattern in programming; recursion is one of them. Keep in mind

that popping a value off of the stack removes it from the stack. If you want to iterate over

Chapter 5 More Data StruCtureS

127

the same stack multiple times, you must store and re-push the popped-off values. Can

you think of a really simple use of the properties of the stack? Take a look at the next

listing for an answer.

Listing 5-14. Stacks – Getting/Setting Values Part 2

01 Stack<Character> stck4 = new Stack<>();

02 char c = '!';

03

04 stck4.push(c);

05 System.out.println("Push #1 Value: " + c);

06

07 c = 'k';

08 stck4.push(c);

09 System.out.println("Push #2 Value: " + c);

10

11 c = 'c';

12 stck4.push(c);

13 System.out.println("Push #3 Value: " + c);

14

15 c = 'a';

16 stck4.push(c);

17 System.out.println("Push #4 Value: " + c);

18

19 c = 'B';

20 stck4.push(c);

21 System.out.println("Push #5 Value: " + c);

22

23 System.out.println("Pop #1 Value: " + stck4.pop());

24 System.out.println("Pop #2 Value: " + stck4.pop());

25 System.out.println("Pop #3 Value: " + stck4.pop());

26 System.out.println("Pop #4 Value: " + stck4.pop());

27 System.out.println("Pop #5 Value: " + stck4.pop());

//output

01 Push #1 Value: !

02 Push #2 Value: k

Chapter 5 More Data StruCtureS

128

03 Push #3 Value: c

04 Push #4 Value: a

05 Push #5 Value: B

06 Pop #1 Value: B

07 Pop #2 Value: a

08 Pop #3 Value: c

09 Pop #4 Value: k

10 Pop #5 Value: !

In this example, we’ve used the properties of the Stack data structure to reverse a word.

In Listing 5-14, we can see a quick and dirty use of the Stack data structure. It’s not

the most interesting piece of code, but it will actually reverse words, so why not? As you

can see, using a Stack has inherent properties that you should keep in mind when you’re

coding. This is an important tool in any programmer’s toolbox but not one that gets as

much use, still it is important to have a working familiarity with the stack. In the next

section, we’ll take a quick look at our next data structure: the Queue.

 Queues
Queues are very similar to Stacks in many ways; as such, we won’t have as detailed a

discussion about them. Instead, we’ll talk briefly about the difference between Stacks

and Queues and reinforce our review with an example.

A Queue is similar to a Stack except it operates using a first in, first out method. Much

like Stacks, Queues are abstract data structures, meaning they can be implemented using

other data structures. They have the same type of interaction, namely, calling a method

to add a value to the data structure and calling a method to pull a value from it.

Without further ado, let us motivate the discussion with an example. We’re going to

look at the code from Listing 5-14.

Listing 5-15. Queues – Example of Queue Refactored from Listing 5-14

//code
01 LinkedList<Character> ll = new LinkedList<>();

02 char c = '!';

03

04 ll.add(c);

Chapter 5 More Data StruCtureS

129

05 System.out.println("Add #1 Value: " + c);

06

07 c = 'k';

08 ll.add(c);

09 System.out.println("Add #2 Value: " + c);

10

11 c = 'c';

12 ll.add(c);

13 System.out.println("Add #3 Value: " + c);

14

15 c = 'a';

16 ll.add(c);

17 System.out.println("Add #4 Value: " + c);

18

19 c = 'B';

20 ll.add(c);

21 System.out.println("Add #5 Value: " + c);

22

23 System.out.println("Poll #1 Value: " + ll.poll());

24 System.out.println("Poll #2 Value: " + ll.poll());

25 System.out.println("Poll #3 Value: " + ll.poll());

26 System.out.println("Poll #4 Value: " + ll.poll());

27 System.out.println("Poll #5 Value: " + ll.poll());

//output

01 Add #1 Value: !

02 Add #2 Value: k

03 Add #3 Value: c

04 Add #4 Value: a

05 Add #5 Value: B

06 Poll #1 Value: !

07 Poll #2 Value: k

08 Poll #3 Value: c

09 Poll #4 Value: a

10 Poll #5 Value: B

Chapter 5 More Data StruCtureS

130

Compare the output of this listing with that of Listing 5-14. Can you see the

difference between first in, last out and first in, first out?

As you can see from the output of Listing 5-15, the Queue behaves much like a line

at the bathroom; the first person in line is the first person to leave the line and use

the restroom. You must also remember that just like a queue for the bathroom, when

someone leaves the line, they leave the queue. When you pull data out of a queue, it is

removed from the queue.

That wraps up round two of our introduction to Java data structures! Well not quite,

I wanted to spend a little bit of time talking about those angled brackets we use to

configure the data type(s) our data structures use.

 Parameterized Types and Data Structures
We’ve encountered them a number of times throughout our review of different

data structures. They are the angled brackets, <>, we use to configure the given data

structure’s internal data types. Why do we need to do this you ask? Well let’s think about

this for a moment.

Although you haven’t had a formal review on Java classes, you have had some

exposure to them so far. In the Java programming language, the Object is the super-class

of all other classes in Java. This means that the Object class is the most general of all the

classes, and a variable of the Object data type can store an instance of a String, Integer,

ArrayList, and any other class.

That sounds powerful. But it also sounds a little insecure. That means that if you

don’t specify a data type for your data structure, and the default data type, Object, is

used, then any object can be stored in that data structure. That’s just not good coding. It’s

error prone because you don’t know what object you can expect from the data structure.

This puts the responsibility on the programmer, not the compiler, to make sure you

use the data structure consistently. I don’t know about you, but I’d rather rely on the

compiler. By defining a specific data type to use with a given data structure, the compiler

will ensure no variables of another data type are stored in that data structure, giving you

one less thing to worry about.

Chapter 5 More Data StruCtureS

131

 Challenge: Stacks
This challenge is a bit more difficult than previous challenges because you have to not

only adjust a variable’s data type but also refactor its use by tracking down and replacing

method calls from the ArrayList class with method calls from the Stack class. You also

have to be aware of the caveat that iterating over a Stack removes the elements from it.

You have seen both data structures in use in a few examples from Chapters 3 and 5,

so you have the tools to do the job. If you get stuck, re-read the challenge description and

the clue.

Packages Involved:

net.middlemind.MemoryMatch_Chapter5_Challenge1

net.middlemind.MemoryMatch_Chapter5_Challenge1_Solved

Description:

Find the package, net.middlemind.MemoryMatch_Chapter5_Challenge1, and open

the ScreenGame.java file. The data structure used to track clicked cards is an ArrayList.

Some of the game programmers wanted to see how it would look to use a Stack instead.

Refactor the code in the ScreenGame.java class to use a Stack as requested. You'll need

to adjust code in a few places throughout the file. The variable used to track the clicked

cards is called clickedCards.

Keep in mind when using the pop method, the value that was stored in the Stack is

removed. This means that you'll have to keep track of popped values and restore them if

you want to loop over a Stack multiple times. You can keep the MemoryItems popped off

of the stack in another data structure and add them back in using the Stack class’ addAll

method. You must run this package's file – MemoryMatch.java; right-click and select

Run File to test the game. Good luck!

Clue:

There are a few ways to find all the places in the file where you have to adjust some

code. One way is to change the data type of the variable and look for the errors caused by

this change. You could also perform a text search on the name of the variable or right-

click the variable and select the "Find Usages" option. You'll have to change the class

methods used to get/set values in the data structure from those used by an ArrayList

to those used by a Stack. You’ll have to create a new Boolean class field to track when a

match has been found so you can decide if you need to add the elements popped off of

the Stack back in.

Chapter 5 More Data StruCtureS

https://doi.org/10.1007/978-1-4842-8951-8_3
https://doi.org/10.1007/978-1-4842-8951-8_5

132

 Challenge Solution
The solution to this challenge is fairly straightforward but requires you to search

through the file to find the locations where you have to change an ArrayList method, or

constructor, to an equivalent method, or constructor, in the Stack class. Looking at the

solution package will show you the exact locations of the changes you need to make.

The idea is to change these method calls:

 clickedCards.add(itm);

 clickedCards.get(i);

with:

 clickedCards.push(itm);

 clickedCards.pop();

You’ll also need change the declaration and initialization of the variable. And

you’ll also have to make sure you don’t lose data when popping values off of the

stack. After you finish making the changes, run the local package version of the

MemoryMatch.java file by right-clicking it and selecting the “Run File” option.

You should see no disruption in the functionality of the game as the Stack will

functionally replace the ArrayList in this case.

Chapter 5 More Data StruCtureS

133

Image 5-1. MemoryMatch with Stack-Based Click Tracking

A screenshot showing the refactored code managing the clicked cards.

If you run into an error where only one of your cards resets, you need to look at the

CheckForMatches method and make sure you are storing the popped elements and

returning them to the clickedCards stack. Otherwise, the MemoryItem would be lost

and won’t be available to be reset in case no match is found. This means you also have

to track if a match has been found in a class field and use it to decide to restore values

back to the stack. That brings us to the conclusion of this chapter; let’s take a look at what

we’ve accomplished.

Chapter 5 More Data StruCtureS

134

 Conclusion
In general, data structures are really outside the scope of introductory programming

language texts. However, we’re learning by working with full game projects, and it’s

important to have a basic level of knowledge with regard to them. You really do need

data structures to build advanced programs like games, and I want you to be able to

build your own games at the conclusion of the text.

 What We Covered
In our second foray into the world of data structures, we traversed a fair amount of

ground. Let’s take a look at a summary of the material.

• Multidimensional Arrays: We took a look at multidimensional arrays

even touching about third dimensional arrays and the concept of

how fast its memory usage can grow. We saw some examples of how

to declare and use the data structure.

• Hashes: Really one of the most powerful tools in programming,

hashes allow you to quickly look up data using a key instead of an

array index. One use of this data structure is to make dictionary style

lookups where a key returns information of some kind.

• Stacks and Queues: A very important set of data structures that

maybe aren’t used as often as some of the others we’ve reviewed.

Nevertheless, they are a very important tool in any programming

language. Similarly, we took a look at basic use cases and

functionality.

• Parameterized Types and Data Structures: We took a moment to talk

about the configuration we’ve been doing with the different data

structures and their internal data types.

• Challenge: Stacks: We took on one of the most difficult challenges yet,

refactoring an entire variable’s implementation in the ScreenGame.

java file of the MemoryMatch class.

Sadly, we won’t be reviewing anymore data structures in this text, but we will be

taking a look at looping in Chapter 6 and learn different ways we can iterate over the

elements of a data structure.

Chapter 5 More Data StruCtureS

https://doi.org/10.1007/978-1-4842-8951-8_6

135

CHAPTER 6

Looping and Iteration
You’ve built up your coding toolbox, and you have a good selection of powerful tools,

including data structures, at your fingertips. One thing that we’ve looked at in a few code

listings but haven’t reviewed in detail is how to run code over and over again in a loop.

Looping and iteration, much like flow control, are integral to many Java programs.

In fact, we couldn’t really have games without them. I’ll elaborate on this further when

we cover main game loops, in depth, later on in the chapter. For now, let’s focus on

the fundamentals of looping. The Java programming language gives us three different

techniques we can use to employ looping and iteration in our programs. Let’s see what

we have to work with.

• For Loops: We’ve seen these a few times in the example listings and

coding challenges.

• For-Each Loops: Much like their close counterpart, the for loop,

for-each loops follow the same logical structure but are expressed

differently.

• Do-While Loops: The outlier in the set of looping constructs,

although very useful in certain cases.

I’ve also mentioned the concept of iteration, and we’ll explore this a bit further

when we talk about the for-each loop. As it turns out, Java, being a full featured and

mature programming language, has the concept of Interfaces. An interface is exactly as

it sounds, a set way to interact with something. When applied to data structures, we can

define a set way to iterate over them. That is, ask the data structure for the next element

in the series if there is one. Next up, we’ll take a look at for loops in Java.

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_6

https://doi.org/10.1007/978-1-4842-8951-8_6#DOI

136

 For Loops
For loops, in my opinion, are the workhorse of looping constructs in Java. They tend to

be the go-to solution for most situations that require repeated execution of code in a

loop. We’ll start the discussion on looping with an introduction to basic for loops.

 Basic For Loop
The for loop has two versions. In this section, we’ll take a look at the basic version of

the for loop, which takes a number of arguments to define the constraints of the loop.

Keeping control of loops in your programs is very important. For loops are inherently

safer, though you can still abuse them, because they require you to define the starting

point and ending point of the loop’s iteration. Let’s take a look at an example.

Listing 6-1. Example of a Basic For Loop

//code

1 for(int i = 0; i < 10; i++) {

2 System.out.print(i + ", ");

3 }

//output

1 Loop Output: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

An example of a basic for loop with internal index variable, constant length, and

simple increment. Notice the elements numbers 0 to 9 and not 1 to 10.

We’ve encountered the basic for loop a few times in the course of the text, so it

should look familiar to you. Let’s break down what’s actually going on here. The for loop

statement has three parts to it and a body. The first part of the for loop is ended by the

first semicolon. This space is for initializing loop variables. Variables declared here are

only available in the scope of the loop’s body, meaning you can’t refer to them outside of

the loop. For instance, the example shown in Listing 6-2 would cause an error.

Listing 6-2. Example of the Loop Control Variable’s Scope

1 for(int i = 0; i < 10; i++) {

2 System.out.print(i + ", ");

3 }

4 System.out.println("The last index of the loop was " + i + ".");

Chapter 6 Looping and iteration

137

An example of erroneously accessing the loop control variable outside the scope of

the loop.

The second part of the for loop declaration is the definition of the testing condition.

This is the condition you set to cause the loop to stop running. Needless to say, this is an

important part of the loop’s declaration. This part is ended by the second semicolon. The

last part of the declaration is the increment/decrement statement. This determines how

the loop control variable is adjusted after each loop iteration.

Now that you know all about the different parts of the for loop’s declaration, I can tell

you that none of them are required. Let’s further the discussion with an example.

Listing 6-3. Example of an Empty For Loop

1 for(; ;) {

2 System.out.print("Still running...");

3 }

An example of an empty for loop. The Java compiler will complain about this loop

but only if there is code after it.

What do you think the result of running the for loop from Listing 6-3 will be? If you

thought about infinite looping, then you’re right. This loop will run infinitely, not a good

thing. We like to keep control of our loops when working on games. In general, when

programming, you should not have an infinite loop by design. There’s no reason why you

can’t include an escape condition, like so.

Listing 6-4. Example of a For Loop with Escape Condition

1 boolean exit = false;

2 for(; exit == true;) {

3 System.out.print("Still running...");

4 }

An example of a for loop with only an escape condition defined.

We’ve covered the basics of for loops at this point, but there are a few subtle details

about them that I want to review before we move on to for-each loops. Take a look at the

example code in Listing 6-5.

Chapter 6 Looping and iteration

138

Listing 6-5. A Set of For Loop Examples Using Different Techniques

//code

01 System.out.print("Loop #1: ");

02 for (int h = 0; h < 10; h++) {

03 System.out.print(h + ", ");

04 }

05 System.out.println("");

06

07 System.out.print("Loop #2: ");

08 int i;

09 for (i = 0; i < 10; i++) {

10 System.out.print(i + ", ");

11 }

12 System.out.println("");

13

14 System.out.print("Loop #3: ");

15 int j = 0;

16 int len = 10;

17 for (; j < len; j++) {

18 System.out.print(j + ", ");

19 }

20 System.out.println("");

21

22 System.out.print("Loop #4: ");

23 int k = 0;

24 for (; k < len; k++) {

25 System.out.print(k + ", ");

26 }

27 System.out.println("");

28

29 System.out.print("Loop #5: ");

30 int l = 100;

31 int delta = 5;

32 for (; l > 0; l -= delta) {

33 System.out.print(l + ", ");

Chapter 6 Looping and iteration

139

34 }

35 System.out.println("");

//output

01 Loop #1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

02 Loop #2: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

03 Loop #3: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

04 Loop #4: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

05 Loop #5: 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30,

25, 20, 15, 10, 5,

An example of different for loops using different initialization and exit condition

variables.

**Java Programming Note: Always double-check your loop’s exit condition. It
is a common source of error and can cause your program to crash or behave
unexpectedly.

Take a moment to review the previous listing. There are some important subtle

points that adjust how we can utilize for loops. The first example, loop #1 on line 1, is

your run-of-the-mill basic for loop. Nothing too interesting going on here. Moving on to

loop #2, this loop has a slight adjustment that moves the declaration of the loop control

variable outside of the loop. The variable is still initialized in the for loop’s declaration,

but we can now check to see what value the loop ended on. This actually comes in handy

quite often in game programming, so keep it in mind.

Loop #3, line 14, takes this concept a bit further. In this example, we’ve used a

variable in the loop’s condition statement instead of using a constant value as in previous

examples. That’s very interesting. Rarely will you work with loops such that using a

constant value in the condition makes sense. Much more often you’ll want this to be data

driven, and using a variable accomplishes that for us.

Turning your attention to loop #4, the only aspect of this example that is interesting

is the fact that the loop control variable is declared and initialized outside of the loop.

In this case, we’ve moved the entire statement out. At this point, moving initialization

of the loop control variable may just be a matter of style. It’s not functionally different

from declaring the variable outside of the loop but initializing it as part of the loop’s

declaration.

Chapter 6 Looping and iteration

140

Lastly, we have loop #5. There are actually two things we’ve never seen before in

this for loop. Can you spot them? The first one is that we’ve declared the loop’s delta, the

increment/decrement value, outside of the loop. This is in-line with the concept of data

driving these values. The second is that this loop counts down, not up. Needless to say,

there are a number of permutations of the basic for loop implementation. For the most

part though, they are just slight adjustments from the most basic for loop statement. In

the next section, we’ll take a look at a different kind of for loop: the for-each loop.

 For-Each Loop
We spent a fair amount of time reviewing for loops, a new powerful tool in your coding

toolbox. In this section, we’ll take a look at a cousin of the for loop: the for-each loop.

In Java, a common occurrence is to iterate, loop, over the contents of a data structure.

This occurs frequently in games to check the state of the game’s objects for things like

collisions, etc. This is a fairly common occurrence in Java game programming, so let’s

take a look at an example of iterating over a data structure using a basic for loop and an

array, shall we?

Listing 6-6. Example of Iterating over an Array with a For Loop

1 int[] ar1 = new int[] { 0,1,2,3,4,5 };

2 int len = ar1.length;

3 for(int i = 0; i < len; i++) {

4 int val = ar1[i];

5 System.out.println("Index: " + val);

6 }

An example of using a basic for loop to iterate over an array.

It’s not the most interesting example, but there are a few points I’d like to discuss.

The first one is that when iterating over the array, we’re keeping track of the array index

we’re looking at by using the loop control variable to pull data out of the array. Notice

that we decided to set the value of the len variable to the length of the array and use it in

the loop’s condition statement.

Chapter 6 Looping and iteration

141

**Game Programming Note: When iterating over data structures, you often have to
get a length or count of items to loop over. In some cases, you might simply add
the method call that returns the size of the data structure right in the for loop’s
declaration. It may be much more efficient to store that value once in a local
variable than to calculate it every loop iteration. This depends greatly on the data
structure you are using, but it is something you should be aware of.

Now, let’s look at the same code, but we’ll use a for-each loop instead. A few things

should stand out to us. Let’s take a look at some code!

Listing 6-7. Example of Iterating over an Array with a For-Each Loop

1 int[] ar1 = new int[] { 0,1,2,3,4,5 };

2 for(Integer val : ar1) {

3 System.out.println("Index: " + val);

4 }

An example of using a basic for-each loop to iterate over an array. The array can be of

any data type; we chose integers to simplify the listing.

I should take a moment to note that the array could contain other data types like String,

Object, or other classes. At first look, it seems like a bit of a cleaner implementation of the

basic for loop. There are a few important differences. We don’t have a loop control variable,

nor do we have an exit condition. Because we are iterating over the array directly, using

the Enumeration interface, we no longer take direct control of the process. Another small

difference is that we’re using Integers as opposed to ints, and we’ve moved the declaration

of the variable we use to hold each array element, val, into the loop’s declaration itself.

Why do we need a for-each loop if we can do the same thing with a for loop you

ask? Well, for-each loops certainly have their place. They are a bit more intuitive when

working with data structures, but you have to give up a little bit of control to use them. In

any case, they are an important tool for your coding toolbox; keep them in mind when

working with data structures. That brings us to the conclusion of the review on for loops.

In the next section, we’ll take a look at a very important type of loop: the while loop.

Chapter 6 Looping and iteration

142

 While Loops
The next type of loop we’ll look at is the while loop. Just like many languages before

it, Java supports the while loop, and in our particular case, it is a very important loop

indeed. This is because the while loop is the Java looping statement used in a game’s

main loop. More on that in just a bit. While loops are much lighter than for loops in

terms of complexity to declare one. You only have to supply a condition for the loop to

exit and a body, if you so choose. Let’s take a look at the basic while loop.

 Basic While Loop
The basic while loop is leaner declaration than the for loop, but it has some major

differences. I’ve refactored the code from Listing 6-1 to use a while loop.

Listing 6-8. Example of a Basic While Loop

//code

1 int i = 0;

2 while(i < 10) {

3 System.out.print(i + ", ");

4 i++;

5 }

//output

1 Loop Output: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

An example of using a basic while loop to iterate over an array.

You may be asking yourself why do we have while loops if they are just more manual

and abstract than for loops. While you can convert between them in probably all cases,

for loops lend themselves to indexed iteration over a set of elements. While loops,

although they can be configured to accomplish the same task as for loops, are much

more suited to running code repeatedly in response to a given state.

Listing 6-9. Example of a Condition-Based While Loop

1 while(gameIsRunning) {

2 //place game code here

3 }

Chapter 6 Looping and iteration

143

An example of using a while loop to run code in response to a certain condition.

Another example that really reinforces when a while loop is a better choice than a for

loop is when you have to wait for a certain amount of time to pass.

Listing 6-10. Example of a Time Sink While Loop

1 long t = System.getCurrentTimeMillis();

2 long end = t + 2000; //2 seconds

3

4 //wait for 2 seconds to pass

5 while(t < end) {

6 t = System.getCurrentTimeMillis();

7 }

An example of using a while loop to wait for a certain amount of time to pass.

Notice how strange it would be to express waiting for two seconds using a for loop.

The while loop is a much cleaner and intuitive implementation. One last thing before we

move on to discuss the most famous while loop of them all: the main game loop. While

loops are notorious for causing infinite loops in programs. Always be aware of what

causes your while loop’s condition to trigger, and double-check your code to avoid any

infinite loops.

** Java Programming Note: It’s a good idea to place an escape clause into your
while loops if you aren’t sure they will work properly the first time. To do this,
simply create a variable to track loop iterations and a variable set to the maximum
number of iterations. Then, not relying the while loop’s exit condition, add an if
statement to the end of the while loop checking if the current iteration is greater
than the maximum. If so, exit out of the loop with a break statement.

That’s really all I wanted to say about basic while loops. They are elegant, a bit

dangerous, and a powerful tool to add to our coding toolbox. In the next section, we’ll

talk a little bit about a very important while loop, the main game loop, and its role in

video games.

Chapter 6 Looping and iteration

144

 Main Game Loop
The main game loop is just what it sounds like; it’s the main loop running the key

processes of a video game. Just about every video game has one so I’d be remiss in my

duty if we didn’t talk about it a bit. There are a few different versions of the main game

loop; let me list them here. Let me prefix this topic by saying that the discussion gets a bit

advanced. It’s more important for me to review this information accurately than to try to

simplify it. This is a section you should come back to from time to time.

• Implicit Frame Rate: I know it sounds surprising but why bother

adding the extra assembly code to control the frame rate when the

hardware is capped at a 25MHz clock frequency? Am I right? In this

case, the FPS is set by the limits of the hardware itself.

• Explicit Frame Rate: In this version of the main game loop, you keep

track of how much time it took to complete the current frame’s work.

If there is time left over from the allotted time per frame, then the

game waits until this time passes. By waiting, the frame rate is kept

near the target FPS instead of increasing to the hardware-supported

maximum FPS.

• Frame Rate Independent: With this version of the main game loop,

you don’t enforce a frame rate at all; it is FPS independent, but you

still maintain control over the speed at which the game runs. Instead

of an implicit or explicit frame rate, pixels per frame, you look at

things in the context of time, pixels per second. To do so, you have to

calculate a time delta for the current frame, which I’ll show you how

to do in just a bit. More on this soon.

We can’t really talk about main game loops without talking about frames and

frame rates. A frame, in a video game, is one iteration of the game loop. The main

responsibilities of the main game loop are as follows:

• Update: Poll hardware for the state of input, update the enemy AI,

update the enemy positions, etc. This step in the game loop is where

we process the game logic and give it life.

• Draw: Sometimes referred to as “render,” the draw step is where all

the calculations necessary to represent the game on the screen are

performed.

Chapter 6 Looping and iteration

145

The actual code used to power the game engine’s main game loop, used by all the

associated game projects, is as follows. We won’t review it in depth here, but can you

spot where the update and draw work are performed? Here’s a hint: look for those words

in the code listing and you’ll find the associated method calls.

Listing 6-11. MmgGameApiJava Game Engine’s Main Game Loop – Game

Panel Class

01 if (PAUSE == true || EXIT == true) {

02 //do nothing

03 } else {

04 UpdateGame();

05 }

06

07 //update graphics

08 bg = GetBuffer();

09 g = backgroundGraphics;

10

11 if (currentScreen == null || currentScreen.IsPaused() == true ||

currentScreen.IsReady() == false) {

12 //do nothing

13 } else {

14 //clear background

15 g.setColor(Color.DARK_GRAY);

16 g.fillRect(0, 0, winWidth, winHeight);

17

18 //draw border

19 g.setColor(Color.WHITE);

20 g.drawRect(MmgScreenData.GetGameLeft() - 1, MmgScreenData.

GetGameTop() - 1, MmgScreenData.GetGameWidth() + 1, MmgScreenData.

GetGameHeight() + 1);

21

22 g.setColor(Color.BLACK);

23 g.fillRect(MmgScreenData.GetGameLeft(), MmgScreenData.GetGameTop(),

MmgScreenData.GetGameWidth(), MmgScreenData.GetGameHeight());

24

Chapter 6 Looping and iteration

146

25 p.SetGraphics(g);

26 p.SetAdvRenderHints();

27 currentScreen.MmgDraw(p);

28

29 if (MmgHelper.LOGGING == true) {

30 tmpF = g.getFont();

31 g.setFont(debugFont);

32 g.setColor(debugColor);

33 g.drawString(GamePanel.FPS, 15, 15);

34 g.drawString("Var1: " + GamePanel.VAR1, 15, 35);

35 g.drawString("Var2: " + GamePanel.VAR2, 15, 55);

36 g.setFont(tmpF);

37 }

38 }

An example of a main game loop’s workload. Can you see the place where the frame

rate data is updated for display?

Let’s start things off with an example of the most basic main game loop, one that has

an implied frame rate.

Listing 6-12. Controlling Loop Time and Frame Rate

1 while (RunFrameRate.RUNNING == true) {

2 if (RunFrameRate.PAUSE == false) {

3 Update();

4 Redraw();

5 }

6 }

An example of a very simple main game loop with frame rate limited by the

hardware only.

As you can see in the most basic form of the main game loop, we don’t do any work

to control the speed of the loop’s execution. We simply let it run as fast as it can go. This

version of the main game loop isn’t as useful as the next two implementations, but it does

deserve a spot on our list. There was a time when computer resources were very sparse and

using everything you had was barely enough to get the job done and certainly not more so.

Chapter 6 Looping and iteration

147

Taking the concept of frames and extending the idea, we have the concept of frames

per second or how many frames the game or game engine can run in one second. Using

seconds is not very efficient when working with times that are always much less than

one second, so we’ll introduce the use of milliseconds. In almost all cases for smaller, 2D

games, ms will suffice as a time measurement metric. Let’s take a look at a formula for

calculating ms per frame.

Listing 6-13. Calculating Milliseconds per Frame

1 long msPerSec = 1000;

2 long targetFrames = 30;

3 long msPerFrame = msPerSec/targetFrames;

An example of calculating the ms per frame for a target frame rate, FPS, of 30.

The simple calculation shown in Listing 6-13 is very useful when working with games

that expect an explicit frame rate and work with a “pixels per frame” model. In this

model, you move objects and perform your updates on the expectation that the game

will run a set number of frames a second. Using this approach, you can control how your

game performs across different hardware and ensure a consistent user experience.

Let me guess; you’re wondering how you control the timing of the game loop. Let me

show you how it’s done in the included video games. Because they all run on the same

Java game engine, they all use the same lower-level library code for their main game

loops. It’s a subtle point, but the main game loop is sometimes a part of the game engine

you’re working with and not directly in your control.

Nevertheless, you should be proficient enough in Java programming and game

programming in particular to craft all three main game loop types. Let’s look at how to

soak up some time to control the speed of a game loop.

Listing 6-14. Controlling Loop Time and Frame Rate

01 while (RunFrameRate.RUNNING == true) {

02 frameStart = System.currentTimeMillis();

03

04 if (RunFrameRate.PAUSE == false) {

05 mf.Redraw();

06 }

07

Chapter 6 Looping and iteration

148

08 frameStop = System.currentTimeMillis();

09 frameTime = (frameStop - frameStart) + 1;

10 aFps = (1000 / frameTime);

11

12 frameTimeDiff = tFrameTime - frameTime;

13 if (frameTimeDiff > 0) {

14 try {

15 Thread.sleep((int) frameTimeDiff);

16 } catch (Exception e) {

17 MmgHelper.wrErr(e);

18 }

19 }

20

21 frameStop = System.currentTimeMillis();

22 frameTime = (frameStop - frameStart) + 1;

23 rFps = (1000 / frameTime);

24 mf.SetFrameRate(aFps, rFps);

25 }

An example of using Java’s Thread class to sleep for a set time, allowing for the

control of the loop’s timing.

The are some subtle points in Listing 6-14 I’d like to discuss. First, look at the while

loop on line 1; notice the condition of the loop. It’s the game’s main loop so it’s designed

to exit when the game ends. Next on line 2, we capture the frame’s start time in ms,

frameStart. On line 8, we capture the frame’s stop time in ms, frameStop. Lines 4–6 are

responsible for updating and redrawing the current screen if the game is not paused.

The total time it took to process the frame is calculated on line 9. The core value

is incremented by 1 to prevent the inconvenient value of 0. To determine the actual

frames per second of the current frame, line 10, we divide 1000ms by the frame time. The

timeFrameDiff variable stores the difference between the allotted time for each frame

and the actual time. If that value is greater than zero, then we have some extra time on

our hands.

To kill some time, we sleep the current thread for the extra time, line 15. The last

calculation is to determine the real frame rate, after the time sink. The actual frame rate

is based on letting the game run as fast as possible, while the real frame rate measures

the rate the game is trying to maintain. Lastly, on line 24, the frame rate values are

Chapter 6 Looping and iteration

149

updated for the current program. You can see these values every time you run an

associated game project. From the example main game loop in the previous listing, you

can see that this approach tries to control the game’s performance by controlling the

amount of work done each frame in milliseconds. By controlling the number of frames

run each second we control the speed of the game.

This is the “pixels per frame” approach I mentioned earlier. What happens if we let

go of the idea of trying to control the frame rate of the game. Well, you’d say that would

be a bad idea as the game will run differently on different hardware. Let’s come up with

a calculation that tells us, given no limit on the loop’s execution time, what percentage

of a second passed between the current frame time and the last frame time. Let me

demonstrate with some code.

Listing 6-15. Calculating the Delta Time Between Frames

1 float deltaTime = (frameStart - lastFrameStart) / 1000.0f;

An example of calculating the delta time of the current frame. This small factor has to

be applied to all update metrics to synchronize them to the same timing.

The delta time or change in time is the difference between the start of this frame

and the moment before work started on the last frame. Essentially, we’re capturing the

time it took to complete an update and dividing it by 1000ms or 1 second. That gives

us a small factor that represents a tiny slice of a second. Think about this. We’re not

controlling frames here. The game can run as fast as it wants. That will result in a very

small deltaTime. The calculation is simple enough, but looking at it out of context isn’t

doing wonders for us. Let’s take a look at a full implementation.

Listing 6-16. Example of a Frame Rate Independent Main Game Loop

1 while (RunFrameRate.RUNNING == true) {

2 frameStart = System.currentTimeMillis();

3

4 float deltaTime = (frameStart - lastFrameStart) / 1000.0f;

5 lastFrameStart = System.currentTimeMillis();

6

7 Update(deltaTime);

8 Draw(deltaTime);

9 }

Chapter 6 Looping and iteration

150

An example implementation of a frame rate independent main game loop. Using this

approach requires the consistent use of the deltaTime factor to synchronize timing and

movement.

**Game Programming Note: It’s probably not a good idea to declare a variable
in your main game loop if you really don’t have to. We left this declaration in the
listing to enforce the fact that the deltaTime, float, variable is a real number.

Notice that in the full version of the frame rate independent main game loop, we can

see where the timing values are set in relation to the work done on update. In this case,

we’ve included both the update and the draw methods in the timing calculation. That

should result in the value of

 (frameStart - lastFrameStart)

being a small number, just a few milliseconds. Dividing a small number by 1000.0ms

results in an even smaller number, and this is the delta time value that we now have to

apply to all movement, animation, and timing values for the current frame. Basically,

anything that changes a certain amount each second now changes only the amount

associated with a small portion of a second.

What we’ve done is change the way the main game loop runs so that we’re making

small adjustments each game frame in response to the time it took to process the

previous frame. This requires making all our update logic time based and not frame

based. Let’s see what the difference might look like.

Listing 6-17. Example of Frame- and Time-Based Object Movement

//frame based

int targetFPS = 60;

int movementPerSecond = 600; //600 pixels

int movementPerFrame = movementPerSecond/targetFPS;

enemy1.moveXY(movementPerFrame);

//time based

movementPerFrame = (int)(movementPerSecond * deltaTime);

enemy2.moveXY(movementPerFrame);

Chapter 6 Looping and iteration

151

An example demonstrating frame-based and time-based movement calculations.

Note the use of the deltaTime factor.

That brings us to the conclusion of our discussion on main game loops. I hope you

found it interesting and a good application of our while loop knowledge. In the next

section, we’ll wrap up our review of loops in the Java programming language with the

lesser used, but still important, do-while loop.

 Do-While Loops
The last loop for us to review in the Java programming language is a bit peculiar. The

do-while loop is not used as often as its for and while loop counterparts because it has a

certain attribute, which makes it very useful in only a narrow band of circumstances. The

do-while loop will always execute at least once. This loop is very similar to the while loop

you just reviewed, so we’ll cover it quickly.

 Basic Do-While Loop
The syntax of the basic do-while loop is demonstrated in Listing 6-18.

Listing 6-18. Example of a Do-While Main Game Loop

//basic do-while loop

do {

 //work to do each frame

} while (RunFrameRate.RUNNING == true);

An example of a do-while loop–based main game loop. This will get you kicked out

of some places.

Although I would actually never use one, I do intend for my game to run at least

once, so maybe it’s not so crazy to use a do-while loop as your main game loop. Nope,

it’s crazy; stick to the while loop. There’s really nothing more to it. Just keep in mind that

this loop will execute once before the condition is checked. Otherwise, you can think of it

exactly like you would a while loop.

Chapter 6 Looping and iteration

152

 Break and Continue
We can’t talk about looping without talking about the break and continue statements.

These are loop control statements that allow you to explicitly exit a loop or jump to the

next iteration of the loop if the condition allows for one. It’s much easier to demonstrate

this than to describe it, so let’s motivate this discussion with a code sample.

Listing 6-19. Example of Using Break and Continue for Loop Control

01 //basic while loop with loop control

02 while (RunFrameRate.RUNNING == true) {

03 if (PAUSE == true) {

04 continue;

05 } else {

06 UpdateGame();

07 DrawGame();

08 }

09

10 if(EXIT == true) {

11 break;

12 }

13 }

An example of a while loop with loop control using the break and continue

statement.

As you can see from the example, we can use the break and continue statements

to control how the while loop behaves. In this case, we’re skipping to the next iteration

of the loop if the PAUSE Boolean is set to true. The continue statement does this for us.

Similarly, the break statement is used to exit the loop in the case that the EXIT Boolean is

set to true.

We could have accomplished the same behavior with some variables and a slightly

different structure of the loop’s body. The benefit here is how quick and intuitive it is to

control your loop using these statements. Keep these in mind when you need to skip a

loop iteration or to escape one. Don’t abuse them; just like anything else, use them in

moderation.

Chapter 6 Looping and iteration

153

 Challenge: For-Each Loops
In this chapter’s only coding challenge, you’ll have to rely on your newly gained

knowledge and coding tools to accomplish the request. Take a look at the following

description and clue. Refer back to the text if you have any questions working with for-

each loops. Good luck!

Packages Involved:

net.middlemind.PongClone_Chapter6_Challenge1

net.middlemind.PongClone_Chapter6_Challenge1_Solved

Description:

One of the senior programmers noticed the use of a basic for loop in the MmgDraw

method. Refactor the code in this method to use a for-each loop. If done correctly,

the game should function normally without error. You must run this package’s file –

MemoryMatch.java; right-click and select Run File to test the game.

Clue:

Recall from our review of for loops that a for-each loop is similar to a for loop except

that it declares its own temporary variable and is only used to loop over the contents of

a data structure. Try and write the declaration for the new for-each loop right above or

below the existing loop so that you can compare the two as you code. As an added hint,

there is a specific listing in the text that demonstrates converting a for loop to a for-each

loop. Search for “CHAPTER 6 CHALLENGE 1 SOLUTION” to find all the solution text in

the solved project’s file.

 Challenge Solution
The solution to this challenge takes place in the MmgDraw method, and it requires a

standard for to for-each loop conversion plus a little extra care to make sure the Boolean

flag is set properly. That’s all there is to it. Take your time when working on these

challenges, and as always, run the local version of the game’s static main, MemoryMatch.

java, to test your work. If you converted the loop but your cards aren’t flipping back over,

check that you’re setting the flipped field properly in the MmgDraw method.

Chapter 6 Looping and iteration

154

Image 6-1. Memory Match with a Refactored For Loop in the MmgDraw Method

A screenshot of the copy of the game used in this challenge. After refactoring the

code, the game runs as expected.

That brings us to the conclusion of this section. Take a moment to play the game

once you’ve successfully completed the coding challenge. Make sure the game functions

as expected.

 Conclusion
That brings us to the end of the chapter on looping and iteration. There’s actually a

fair amount of more material to cover on the subject of looping. For instance, why

were we able to plug in just about any data structure into a for-each loop declaration?

I might have made some small mention of this, but we couldn’t cover it in detail here.

You’ll get an understanding of what’s happening behind the scenes when you review

object-oriented programming in Java over the next two chapters. For now, let’s look at a

synopsis of the material reviewed in this chapter.

Chapter 6 Looping and iteration

155

 What We Covered
During our exploration of looping and iteration in the Java programming language, we

managed to look at all three standard looping mechanisms in Java – the for, while, and

do-while loops. We took care to review the most famous loop of all: the main game loop.

And we even got to look at the three most common implementations of main game

loops. Let me briefly summarize the topics.

• Basic For Loops: We looked at how to declare basic for loops and how

the subtle use of variables declared outside of the loop can change

how we interact with counting and loop control variables.

• Basic For-Each Loops: We juxtaposed for loops with for-each loops

refactoring some earlier code to use the new looping construct. We

got to see how clean and intuitive for-each loops can be.

• Basic While Loops: We worked with basic while loops looking at the

difference between them and for loops and indicating the different

use cases that require a while loop as opposed to a for loop.

• Main Game Loops: In this chapter, we reviewed three of the most

common types of main game loops: implicit frame rate, explicit frame

rate, and frame rate independent.

• Do-While Loops: Although many might consider it an antiquated

feature of the language, if you happen to be working in a solution

space where loops iterate at least once, it can be a life saver. Our brief

review coupled with the sections on while loops should give you a

solid foundation to build on.

• Break and Continue Statements: No review on Java looping would

be complete without a discussion about the break and continue

statements. We quickly reviewed this topic and exemplified their use.

Now that we’ve covered looping and added a whole new set of tools to our

coding toolbox, we’re ready to take on one of the more advanced aspects of the Java

programming language: object-oriented programming. You have a good amount of

experience and a solid foundation to build on; consider object-oriented programming

just one more tool to add to your toolbox. Enjoy!

Chapter 6 Looping and iteration

157

CHAPTER 7

Objects, Classes,
and OOP
You’ve increased your experience working with the Java programming language over

the last few chapters, and now we’ve reached the more advanced topic of OOP, object-

oriented programming. Java is, first and foremost, an object-oriented programming

language. Whether you were aware of it or not, you have been using classes and OO,

object-oriented, programming throughout almost the entire text, essentially starting with

data structures.

That fact right there should put you at ease if you find the subject matter too

intimidating. Let’s take a shot at a simple definition of OOP in Java. First, you define

your class in a Java class file of the same name. For instance, if you created a new class to

manage a spaceship, the file might be named

 SpaceShip.java

And you would use this class in the most basic way, like so:

 SpaceShip testShip = new SpaceShip();

That’s really all there is to it. At the most basic level, classes are a way for you to

model something. How do we model something on a computer? We collect and track

data. Sometimes, that data is an image that actually looks like a spaceship; sometimes,

it’s just numbers that describe the attributes of a spaceship; and sometimes, it’s both.

The main takeaway here is that the classes you define when used in a program

become instances of classes or objects. Not to be confused with the super-class of all

Java classes: the Object class. Now, think about all the different data structures we’ve

reviewed together. Recall the angled brackets that are used to define the internal data

type of the data structure. Using the SpaceShip class to further the discussion, let’s look

at using it with a data structure:

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_7

https://doi.org/10.1007/978-1-4842-8951-8_7#DOI

158

 //the ArrayList class from the java.util package

 ArrayList<SpaceShip> enemyShips = new ArrayList<>();

That’s interesting. By using our custom classes with classes that come with Java,

we can create new combinations that help us model all sorts of different problems. For

instance, in the previously shown code snippet, we could be trying to find a way to track

the current level’s enemy ships in a new 2D space shooter we’re working on. Now that

you have the basic understanding of what a class is and how it might be used in a Java

program, let’s take a look at how to properly define a class in Java.

 Classes
To start our discussion on Java classes, let’s take a look at the definition of a class from

Java’s documentation1:

“A class is a blueprint or prototype from which objects are created.”

The definition brings up some interesting concepts. For one thing, it alludes to the

idea that the classes you define are used to create something, objects. We’ve talked

about objects a bit before, but let’s start thinking of them as an instance of a class and

let’s keep in mind that a class has a file somewhere, with the same name as the class and

with a .java file extension. That is the general nature of classes in the Java programming

language. Let’s understand a bit more about them and how to start defining our own. In

general, the definition for a class in Java can contain the following pieces of information:

• Access Modifiers: A class can be public or private, or use the default

access modifier.

• Class Keyword: The class keyword is used to create a class.

• Class Name: The name should begin with a letter, and in Java, the

letter is usually capitalized.

• Superclass (optional): The name of the class’ parent (superclass),

if any, preceded by the keyword extends. A class can only extend

(subclass) one parent.

1 https://docs.oracle.com/javase/tutorial/java/concepts/index.html

Chapter 7 ObjeCts, Classes, and OOp

https://docs.oracle.com/javase/tutorial/java/concepts/index.html

159

• Interfaces (optional): A comma-separated list of interfaces

implemented by the class, if any, preceded by the keyword

implements. A class can implement more than one interface. Think of

the Enumerable interface we mentioned earlier.

• Body: The class body is surrounded by braces, {}. This is where the

class’ members – including fields, methods, and constructors – are

defined.

Let’s focus on how to declare a class. As such, we’ll look at class extension and

interfaces in the next chapter. For now, we’ll focus on access modifiers and the basic

class declaration. Let me show you a few versions of a standard class declaration, and

we’ll review their differences afterward.

Listing 7-1. Example of Simple Class Declarations

01 package org.learn_java.classes;

02

03 //class #1, public access

04 public class SimpleClassPublic { ... }

05

06 //class #2, default access

07 class SimpleClassDefault { ... }

08

09 //class #3, error not allowed for top-level classes

10 protected class SimpleClassProtected { ... }

11

12 //class #4, error not allowed for top-level classes

13 private class SimpleClassPrivate { ... }

A listing showing a few correct, simple class declarations followed by two incorrect

declarations. You cannot use the protected or private modifier on a top-level class.

In Listing 7-1, there are a number of example, simple class declarations. The first two

are valid declarations because they specify default or public class access. The last two

are invalid; you’ll get a compiler error and use access modifiers protected and private.

Java doesn’t like it if you use those access modifiers on a top-level class declaration. Let

me summarize the modifiers you can use for a top-level class declaration here:

Chapter 7 ObjeCts, Classes, and OOp

160

• public: The class is accessible by any other class.

• default: The class is only accessible by classes in the same package.

This is used when you don't specify a modifier. Packages are provided

as a way for you to organize your classes. In general, classes that are

related belong in the same package.

The default access modifier is also called package-private, which means that all

members are visible within the same package but aren't accessible from other packages.

Now that we know how to declare a class, in the most basic form, let’s take a look at

how we can customize the class. In general, classes are a means to create a model of

something. As such, you need to be able to associate certain data with an instance of

your class. Class fields give you a way to do just that. Let’s take a look!

 Fields
In Java, fields are variables of a certain data type that are associated with a class. An attribute

is another name sometimes given to them, but it’s usually reserved for public class fields

specifically. A brief demonstration will go a long way to furthering your understanding of

class fields. Let’s bring back a listing from Chapter 4, an example of a basic Java class.

Listing 7-2. Example of a Basic Java Class – Originally Listing 4-18

01 public class GameData {

02 public State gameState = State.NONE;

03 public int numberOfPlayers = 1;

04 public boolean gameOver = false;

05 public String playerName = "AAA";

06 }

07

08 public GameData gameMetaData;

09 gameMetaData = new GameData();

An example of a custom data type defined through a Java class. Notice the use of

fields to hold data associated with the class.

In Listing 7-2, the GameData class has four fields of varying data types. All the fields

have the public access modifier, so they can be accessed by any other class. In Java,

all code is contained in a class at some level, so all access control is class based. Let’s

Chapter 7 ObjeCts, Classes, and OOp

https://doi.org/10.1007/978-1-4842-8951-8_4

161

demonstrate using the class’ fields before we discuss the other access modifiers available

to us when defining a class. In the next listing, I’ll adjust the modifiers used with the class

and its fields. See if you can figure out the access levels defined by the declaration.

Listing 7-3. Example of a Basic Java Class with Various Access Modifiers

01 class GameData {

02 State gameState = State.NONE;

03 public int numberOfPlayers = 1;

04 protected boolean gameOver = false;

05 private String playerName = "AAA";

06 }

07

08 public GameData gameMetaData = new GameData();

An example of a Java class that uses various access modifiers for both the class itself

and the class’ fields.

Listing 7-3 uses the default access modifier for the GameData class. This is a slight

adjustment from Listing 7-2, which used the public access modifier. Similarly, the

class fields have been updated to use the default, public, protected, and private

access modifiers, respectively. Sure, we could have set them all to public and left the

responsibility up to the programmer to make sure the class fields were used properly.

This is another example of leaving a responsibility to the developer that could be

managed by the Java compiler. For instance, why worry about correct and consistent use

of the class’ variables when we can enforce the desired use in the class definition itself.

Let’s say that the player’s name is sacred. In our game, once the player’s name is set, we

don’t want it changing.

To enforce this, we use the private access modifier on the playerName variable on

line 5. Now the variable can’t be changed by just any code. Because it’s private, it can

now only be changed by the GameData class itself using a class method, constructor, or

variable default, as shown in Listing 7-3. The protected access modifier, line 4, is used to

allow access to fields that meet the following criteria:

• Any code within the enclosing class

• Other classes in the same package as the enclosing class

• Subclasses, classes that extend this class, regardless of packages

Chapter 7 ObjeCts, Classes, and OOp

162

Remember, packages are Java’s way of organizing classes. Declaring what package

your class belongs to is as simple as adding the following line to the top of your class’

java file:

 package org.learn_java.classes;

This means that the Java class’ source file can be found in the following directory

structure local to the Java project’s source directory. The package and the location of the

file are connected. Keep this in mind when you’re trying to track down classes in your

project.

./src

-> org

 -> learn_java

 -> classes

 -> GameData.java

**Java Programming Note: Not all Java IDEs will use the same project structure.
Take the time to get to know the structure of the projects that your Java IDE
creates and have a clear understanding of where your packages and Java class
files reside.

Think about how you might use this access modifier in your own programs. What

situations can you imagine where you want to limit access to package classes, etc.?

There’s no right or wrong answer here, just food for thought. Moving on to the next

variable on line 3, numberOfPlayers. This variable has a public access modifier and can

be accessed from any other class.

Listing 7-4. Example of Accessing a Public Field of a Basic Java Class

//code

1 public GameData gameMetaData = new GameData();

2 System.out.println("Number of Players: " + gameMetaData.numberOfPlayers);

//output

1 Number of Players: 1

Chapter 7 ObjeCts, Classes, and OOp

163

When accessing public fields, you only need to specify the properly instantiated class

instance, gameMetaData in this case, and use the dot operator, “.”, to specify the public

field you want to access.

**Game Programming Note: Using simple classes with public fields is perfectly
normal in a Java game implementation. Start worrying about controlling field
access more when you need to know that a field’s value is changing. Then you can
define methods to interact with the field and refactor your existing code if need be.

As you can see, the public access modifier is very simple and offers unrestricted

access to a class’ variable. In most cases, and if you’re not sure what access you really

need, you can start off using the public access modifier. Look how easy it is to reference

a value using a field of this type, line 2 in the code section of the previous listing. The last

access modifier we have to discuss is the case where none is provided, the default access

modifier. The default modifier allows access under the following conditions:

• Any code within the enclosing class

• Other classes in the same package as the enclosing class

This is not too different than the protected access modifier except that it doesn’t

allow access to subclasses, or classes that extend the current class unless they are in the

same package. That brings us to the conclusion of the section on class fields. They are a

powerful tool to add to your coding toolbox as you will now be able to create classes that

not only support tracking certain data but can also control access to that data by using

Java’s access modifiers. In the next section, we’ll take a look at another very important

part of a class, its methods.

 Methods
Methods are another type of class member, meaning they are always defined within

the context of a class definition. Methods in Java are similar to functions in other

programming languages, like C and C++. They are blocks of code that only run when

called. They can receive parameters and can return a value.

Up until now, I’ve avoided discussing the concept of scope as it’s a more advanced

programming concept that has less to do with the nuances of the language itself than

more to do with the structure of the language elements in any given case. Variables in

Chapter 7 ObjeCts, Classes, and OOp

164

Java have a scope. The scope of a variable is the block, or blocks of code, where that

variable is valid and accessible.

Fields in Java have a scope just like other variables do, and you can access them not

only from outside the class, as we saw in Listing 7-4, but also inside the class in methods.

This allows you to create reusable blocks of code that work with the class’ fields, and

any parameters passed to the method, to generate a return value, if need be. Methods

can in fact take no parameters and return no data. Let’s further this discussion with a

few examples of different method declarations. We’ll keep working with the fictional

GameData class we’ve used in the previous two listings. Let’s jump into some code!

Listing 7-5. Example of Different Class Method Declarations

01 class GameData {

02 public enum State {

03 NONE,

04 GAME_ON,

05 GAME_OFF

06 }

07

08 State gameState = State.NONE;

09 public int numberOfPlayers = 1;

10 protected boolean gameOver = false;

11 private String playerName = "AAA";

12

13 State getGameState() {

14 return this.gameState;

15 }

16

17 void setGameState(State newState) {

18 this.gameState = newState;

19 }

20

21 public int getNumberOfPlayers() {

22 return numberOfPlayers;

23 }

24

Chapter 7 ObjeCts, Classes, and OOp

165

25 public void setNumberOfPlayers(int p) {

26 numberOfPlayers = p;

27 }

28

29 protected boolean getGameOver() {

30 return gameOver;

31 }

32

33 protected Boolean getGameOver2() {

34 return gameOver;

35 }

36

37 public void setGameOver(boolean b) {

38 gameOver = b;

39 }

40

41 public void setGameOver2(Boolean b) {

42 gameOver = b;

43 }

44

45 public String getPlayerName() {

46 return this.internalGetPlayerName();

47 }

48

49 public void setPlayerName(String pName) {

50 this.internalSetPlayerName(pName);

51 }

52

53 private String internalGetPlayerName() {

54 return this.playerName;

55 }

56

57 private void internalSetPlayerName(String pName) {

58 this.playerName = pName;

59 }

60 }

Chapter 7 ObjeCts, Classes, and OOp

166

A complete listing of the fictional GameData class showing the State enumeration,

fields, and class get/set methods.

Take a close look at the listing and make sure to identify which access modifier is used

where; we’ll go over the class and each method in detail now. As you can see from the class

declaration, the default access modifier is used. This means that the class is package-private.

On line 2, the State enumeration is public. Recall from our review of data types that an

enumeration is a type of custom data type that is specialized for a list of unique values.

In this case, we have a very simple implementation with only three values: NONE,

GAME_ON and GAME_OFF. The class variables are declared on lines 8–11; note that they

are assigned explicit default values. If none were explicitly expressed, Java will provide

a language default. The first method for us to look at starts on line 13. It uses the default

access modifier and takes no arguments. The naming convention used by the method

indicates that it’s a “get” method.

It is a common convention in Java to write get/set methods to open up access to

protected class fields. This gives you the benefit of centralization, and you can track,

trace, and debug access to the field easily via its get and set methods. This method

returns the value of the class’ gameState variable. In the next method, we provide a

means for setting the value of the gameState variable, line 17. This class method also

uses the default access modifier and returns no value.

To indicate that a method does not return a value, we use the void keyword in place

of a return data type. There’s a subtle new Java feature hidden in these two methods.

Can you spot it? Direct your attention to the gameState variable and how it is referenced

in each method body. The keyword, this, is used to reference the current instance of

the class. The actual class instance doesn’t exist yet, but when this class is used in a Java

program, the this keyword will resolve to the current instance of the class.

It's common to use the this keyword in class methods as it intuitively indicates

which variables are in fact class fields. The next pair of methods for us to look at is the

get and set methods for the numberOfPlayers variable, on lines 21–27. In this case, the

methods have a slight variation in their declaration as they are both explicitly set to

public and do not use the this keyword when referencing variables.

If you haven’t guessed by now, class methods can have the same access modifiers as

class fields. The getNumberOfPlayers and setNumberOfPlayers methods are publically

available; then any class can access them. The next two methods we’ll look at are slightly

different versions of the same method, but their difference is important. Can you spot

the subtle nuance I’m referring to? If you were about to say the use of the Boolean data

type instead of boolean, then you’re correct.

Chapter 7 ObjeCts, Classes, and OOp

167

This is an example of the automatic “boxing” and “unboxing” that Java does for you

with regard to the basic data types and their boxed counterparts. And here you thought

this section would only have information about class methods. Many things in the

Java programming language are tied together or have interesting little overlaps. Both

the getGameOver and getGameOver2 methods have the protected access modifier and

specify boolean return types.

Take a moment to look over the setGameOver and setGameOver2 methods. Notice

the same nuance with regard to the use of Boolean and boolean data types in the

method parameters. The last two methods are another special case for us to review. The

playerName variable, line 11, is private, and as such, it cannot be accessed outside of the

current class. In this case, we’ve created a public pair of get and set methods that handle

providing access to the private class field.

Note that these methods use a pair of private, internal, class methods –

internalGetPlayerName and internalSetPlayerName – to do the actual work of

updating the class field. This is an example of using private methods to control access to

certain class functionality, which consequently falls under encapsulation. That brings

us to the end of the method review of Listing 7-5, but there’s still a fair amount I’d like to

discuss on this topic. Let’s take a look at a few more methods of the GameData class. These

examples will demonstrate some new concepts with regard to defining class methods.

Listing 7-6. More Examples of Different Method Declarations – GameData Class

//code

01 public void setAll(State state, int playerCount, boolean gameOverFlag,

String name) {

02 gameState = state;

03 numberOfPlayers = playerCount;

04 gameOver = gameOverFlag;

05 playerName = name;

06 }

07

08 public void testVariableScope() {

09 int numberOfPlayers = 2;

10 System.out.println("Local variable number of players: " +

numberOfPlayers);

Chapter 7 ObjeCts, Classes, and OOp

168

11 System.out.println("Class field number of players: " + this.

numberOfPlayers);

12 }

13

14 //example of using the vararg method parameter feature

15 public void setAll(Object ... objs) {

16 if(objs.length >= 4) {

17 gameState = (State)objs[0];

18 numberOfPlayers = (Integer)objs[1];

19 gameOver = (Boolean)objs[2];

20 playerName = (String)objs[3];

21 } else {

22 System.err.println("Incorrect number of parameters found!");

23 }

24 }

//output

01 Local variable number of players: 2

02 Class field number of players: 1

A number of new method declarations demonstrating an aspect of class methods

such as multiple method parameters, method variable scope, and the Java language’s

vararg feature.

In Listing 7-6, I’ve shown some of the subtle details of declaring class methods. On

line 1, the setAll method takes a number of parameters of different data types and uses

them to initialize the class’ fields. Next, on line 8, the testVariableScope method is used

to demonstrate declaring a local method variable that hides a class field. In this case, the

numberOfPlayers variable is declared both locally and as a class field.

In situations like this where the variable is referenced without the “this” keyword,

the local variable is used; otherwise, the class field is used. This method and its output

demonstrate how a local method variable can hide a class field. Make sure the output

makes sense to you before moving on. The last method in this group, line 15, is an

example of a little used feature of the Java programming language feature: the vararg

modifier.

Chapter 7 ObjeCts, Classes, and OOp

169

Adding an ellipsis, ..., after a method parameter tells the Java compiler that the

parameter will be passed in as an array of the given data type, in this case, an array of

Objects. Notice how we check the length of the array parameter, and if enough values

exist, we cast them out of the array and set the class fields. While this is a powerful

feature of the Java programming language that has its place with certain methods, this is

a tool you shouldn’t find yourself using too often.

If you are using it frequently, you should ask yourself what it is you’re trying to do

and think about another implementation strategy. At this point in our review, you should

be comfortable with declaring classes and defining different class fields and methods.

But all of these class members require a valid instance of a class to use them. How can

we create an attribute of the class that is shared by all instances of the class?

This is where the static keyword comes in handy.

 Static Members
The Java programming language supports defining class members that exist, uniquely,

for each instance of the class. We’ve seen these before; they are class fields. Java also

supports defining class members that exist for the class itself and for each instance of the

class. Let me quickly review the concepts of declaration and instantiation with regard to

classes so that we can see the importance of static class members.

Listing 7-7. Declaring and Instantiating Class Instances

01 GameData gameData1;//declaration

02 gameData1 = new GameData();//initialization

03 gameData1.setAll(State.NONE, 0, true, "");

04

05 GameData gameData2 = new GameData();//instantiation

06 gameData2.setAll(State.NONE, 0, true, "");

07

08 GameData gameData3;//uninitialized

09 gameData3.setAll(State.NONE, 0, true, "");//error this class instance

isn't initialized

10

11 //setting a static class field

12 GameData.MAX_NUM_PLAYERS = 2;

Chapter 7 ObjeCts, Classes, and OOp

170

13

14 //calling a static class method

15 GameData.SetMaxNumPlayers(2);

An example demonstrating declaring, initializing, and instantiating classes. Note that

we can use static class members without any declaration, initialization, or instantiation.

In Listing 7-7, we have three examples of working with class methods followed by

two examples that demonstrate using static class members. On lines 1–3, we can see

the declaration and initialization of the gameData1 variable. Once the class instance,

object, is ready, we can then call its setAll method with some parameters. In a similar

fashion, on lines 5–6, we have a slightly more condensed version of the same process.

The variable gameData2 is instantiated, declared, and initialized in one line, on line 5,

leaving the variable ready to use. A call to the setAll method is made on line 6. In both

cases, we could only use the method once an instance of the class had been properly

declared and initialized. Lines 8–9 are a demonstration of what not to do. This code will

throw an error; you can’t call the method of an uninitialized object.

Now we get to the really interesting part. On line 12, we have an example of a static

class field. They are very similar to the class fields you have reviewed thus far except that

they are prefixed with the static keyword. The static keyword makes the new field

a member of the class itself and not of a class instance. What does this mean? Well, it

means that you can access the field without any prior code.

As you can see on line 12, we’re setting the value of a static class field, but we aren’t

using a variable; we haven’t declared or initialized anything. In this case, we’re using

the name of the class itself. A static class field belongs to the class and can be accessed

from the name of the class itself. Just like with class fields, there is a static version of class

methods. Together they constitute the pair of static class members supported by the Java

programming language.

On line 15 of Listing 7-7, you can see the use of a static class method. In general,

static fields and methods should be capitalized to show that they are different from

normal fields and methods, but this is just a convention. I recommend sticking to it

though; it will make your code that much more intuitive. We’ve seen how we can use

static class members and how they are different from the normal class members we’ve

worked with thus far, but we haven’t seen exactly how we declare them. Let’s take a look

at how to define static class members by adding some to our fictional GameData class.

Chapter 7 ObjeCts, Classes, and OOp

171

Listing 7-8. Example of Static Class Members – GameData Class

1 class GameData {

2 public static int MAX_NUM_PLAYERS = 5;

3 public static void SetMaxNumPlayers(int i) {

4 GameData.MAX_NUM_PLAYERS = i;

5 }

6

7 ...

8 }

A static class field and a static class method added to the GameData class. The

remainder of the fictional GameData class has been abridged in this listing.

**Java Programming Note: It’s good practice to not only use capitalized variable
names for a class’ static fields, you should also place them at the very start of your
class’ definition. With regard to static methods, there isn’t as strong a precedence,
although using capitalized method names is common. There isn’t an equivalent
practice with regard to the placement of static methods, but I like to keep them
grouped together and near the start of the class’ body.

Static class members, fields and methods, are very similar to normal class fields and

methods, and as such, you can use all the same access modifiers. The only caveat there

is pertains to the use of static class methods. You cannot directly access other class fields

or methods unless they are also static, or you have an instance of the class at hand.

What does this mean? Well, it means that if you’re accessing a static method, that static

method can only access other static methods and fields because it is associated with the

class itself, not a class instance. Let me further this discussion with a brief example.

Listing 7-9. Example of Static Class Method Usage

1 public static void SetMaxNumPlayers(int i) {

2 this.numberOfPlayers = i; //incorrect

3 GameData.MAX_NUM_PLAYERS = i; //correct

4 }

Chapter 7 ObjeCts, Classes, and OOp

172

This listing has an error. You cannot access a class field, numberOfPlayers, because

no class instance is present when accessing a static class member.

Can you spot the issue with the code in Listing 7-9? If you thought that accessing the

class field from a static method might be an issue, you thought right. That brings us to

the conclusion of the section on static class members. They are an important tool in your

coding toolbox and especially come in handy when setting up information associated

with the class itself and not an instance.

 Constructors
Up to this point in the text, we’ve used very basic class initialization. For the most part,

we’ve seen declaration and initialization, or instantiation followed by directly setting the

class fields or using class methods to do so. While this is certainly a direct and intuitive

way to configure our class instances, it can get a bit cumbersome. Imagine working with

a class that has 10 or 20 fields that need to be properly initialized?

We could do it with the tools we have in a few different ways. One way would be to

explicitly set each class field to the desired value. Another way would be to call some

sort of initialization method, not unlike the setAll method we experimented with when

working with the fictional GameData class. Let’s explore that idea a bit more. Requiring

a developer to call a specific method to properly initialize a class doesn’t sound too

terrible.

Again, we’re at a point where we’ve pushed the responsibility onto the developer,

who probably has enough to worry about. Instead, let’s push that responsibility onto Java

and not worry about it. Let’s take a look at a feature of the Java programming language

we’ve been using without really knowing: the class constructor. I’ll provide an example to

motivate the discussion.

Listing 7-10. Example of Using Class Constructors for Initialization

1 GameData gameData1 = new GameData();

2 gameData1.setAll(State.NONE, 0, true, "");

3

4 GameData gameData2 = new GameData(State.NONE, 0, true, "");

A listing demonstrating the use of a custom constructor to initialize a class upon

instantiation as opposed to the setAll class method.

Chapter 7 ObjeCts, Classes, and OOp

173

There is a subtle but powerful distinction between the two ways we’ve initiated the

fictional GameData class in the previous listing. In one case, lines 1–2, we’re requiring

the developer to know they have to use the setAll method and when. In the second

example, line 4, we’re using a custom constructor to set the required data for this

instance of the GameData class, gameData2. The benefit of this approach is that it’s more

intuitive and requires less special knowledge on how to configure the class. As the

developer, you’ve provided a constructor that will configure the class for the developer.

Let’s take a look at how to define custom constructors for our classes.

Listing 7-11. Example of Using Default vs. Custom Class Constructors

//class definitions

01 class SimpleClass1 {

02 public int simpleField1;

03 }

04

05 class SimpleClass2 {

06 public int simpleField1;

07 public boolean simpleField2;

08

09 public SimpleClass2() {

10 simpleField1 = 0;

11 simpleField2 = false;

12 }

13

14 public SimpleClass2(int i, boolean b) {

15 simpleField1 = i;

16 simpleField2 = b;

17 }

18 }

//class usage

01 //default constructor is always available

02 SimpleClass1 simp1 = new SimpleClass1();

03

04 //explicitly declared simple constructor

05 SimpleClass2 simp2 = new SimpleClass2();

Chapter 7 ObjeCts, Classes, and OOp

174

06

07 //re-initialization using the custom constructor

08 simp2 = new SimpleClass2(1, true);

A demonstration of using default constructors and custom constructors in a class

definition.

In Listing 7-11, we’re introduced to two simple classes. The first class has only a field

and no constructor defined. When we create an instance of this class, line 2, we are using

the default constructor. Java takes care of providing a default constructor when you don’t

explicitly declare one. What happens if we do define a custom constructor? Take a look

at the second class definition, SimpleClass2, on line 5. Note that this class defines two

constructors.

The first constructor is a re-creation of the default constructor. We have to do this if

we decide to define a custom constructor because Java will no longer provide the default

constructor once a custom constructor is defined. The use of a default constructor could

lead to an incorrectly configured class and errors, so in order to support it, in this case,

you have to explicitly create it yourself. You can see our implementation on lines 9–12

and the custom constructor on lines 14–17.

We can now use SimpleClass2’s custom constructor, which lets us provide values

for the class’ fields, or we can use an empty constructor that will mimic the default

constructor, line 5 of the class usage section. Keep in mind that you can create as many

custom constructors as you need for your class, but don’t overuse this capability. You’ll

end up with very confusing classes to instantiate. That brings us to the end of this

section. Time for a coding challenge to reinforce the material we’ve covered so far.

 Challenge: The MmgBmp Class
In this coding challenge, we’ll use our newly acquired Java class skills and get to know a

little bit more about the game engine and drawing images in the book’s included games.

Because they are all built on the same game engine, any knowledge you learn with

regard to it can be applied equally to all included games.

One of the core aspects of a 2D game engine is the ability to draw images on the

screen. Our game engine uses the MmgBmp class to handle this task. In this challenge,

we’ll get to know this class a bit more and see it in action. Keep in mind all the aspects of

class definitions and object-oriented programming that we’ve covered here as you work

through the challenge. Enjoy!

Chapter 7 ObjeCts, Classes, and OOp

175

Packages Involved:

net.middlemind.MemoryMatch_Chapter7_Challenge1

net.middlemind.MemoryMatch_Chapter7_Challenge1_Solved

Description:

Find the package, net.middlemind.MemoryMatch_Chapter7_Challenge1, and

open the ScreenGame.java file. In this challenge, you won’t be solving any problems

for someone else; you’ll be having a little fun adding a graphic to the video game that

displays at a certain position on the screen and only on certain game states. You can

provide your own image, or you can use one of the included images. The images for this

game project are stored in the following folder:

 .\ MemoryMatch\cfg\drawable\MemoryMatch

You can use a png or jpg image of your own. The image should be around 200×200

pixels if you’re providing one. Simply copy and paste the image into the directory

mentioned previously and make sure to remember the name of the image file. If you don’t

have one of your own, just pick an image out of the directory and keep its name in mind.

Locate the LoadResources folder and find an example of the code used to load

your own image into an MmgBmp class field in one of the initialization methods. Add

your own image variable named myImg to the class and initialize it near the bottom

of the LoadResources method. You’ll also need to set the image’s position using the

SetPosition method and add the image to a container, MmgContainer, in the class so

that it can be properly configured for display. You’ll get to know the MmgBmp class and

some of its fields and methods as you complete this challenge.

In order to display the new image, you must add code to the SetState method for

the SHOW_GAME game state. Take a look at the code in the method and specifically how

images are shown and hidden depending on the current game state. Add your new

image into the mix and follow the precedent set by the current code. Lastly, you’ll need

to clean things up. Find the UnloadResources method and make sure to clean up your

resources by setting the myImg class field to null. You must run this package's file –

MemoryMatch.java; right-click and select Run File to test the game.

Clue:

If you run into trouble, stop and take a moment to clear your mind. Look for an

existing class field of the MmgBmp data type and trace how it’s used in the methods listed

in this coding challenge. You can follow the same example except using your chosen file

name when loading the image.

Chapter 7 ObjeCts, Classes, and OOp

176

 Challenge Solution
This solution required you to add code to five places in the ScreenGame.java class and

potentially to add a new image to the project. It is by far the most complex solution yet,

and it requires you to understand class fields and methods involved. What is more, it

gives you more experience working with the MmgBmp class. The locations where you have

to add new code are as follows:

 1. Class header: A new class field, myImg, of the MmgBmp data type

has to be added to the class at the bottom of the current list of

class fields.

 2. LoadResources: A new block of code has to be added near the

bottom of the LoadResources method. This code should be based

on existing image loading code that’s in the method but should be

adjusted to load your chosen image and store it in the myImg field.

 3. Positioning and Container: You must set a position for the image

using the SetPosition method, and the image must be added to

one of the MmgContainer fields in the class. You can experiment

with different containers to see how it affects the visibility of

the image.

 4. SetState: In this method, you have to make two adjustments. One

at the beginning of the method when cleaning up the SHOW_GAME

state. The second change is lower down in the method, and it

requires you to make your image visible when changing to the

SHOW_GAME state.

 5. UnloadResources: The last change you have to make is to clean up

after yourself by setting the myImg field to null in this method.

While the list of changes seems daunting, it’s actually very attainable, and there is a

lot of example code you can use as a basis for your code changes. The end result of this

coding challenge should be a visible image, of your choice, displayed on the in-game

screen. There is a fair amount of room for interpretation here, so have some fun with it!

Chapter 7 ObjeCts, Classes, and OOp

177

 Challenge: The ScreenGame Class
In order to make your own games using the game engine, you’ll need to understand how

to load image resources; we’ve got that covered; you’ll also need to understand how to

animate the image and how to respond to user input; to that end, we’ll be working with

the ScreenGame class in this coding challenge.

In this challenge, we’ll build off of the work we did in the previous challenge. This

is the second time the code base for our challenge will be the solution to the previous

challenge. Make sure you’ve completed the previous challenge successfully and double-

check the solution if need be. You’ve added a new image to the game screen, and now

we’re going to wire up some controls for it. Let’s take a look at the challenge!

Packages Involved:

net.middlemind.MemoryMatch_Chapter7_Challenge2

net.middlemind.MemoryMatch_Chapter7_Challenge2_Solved

Description:

Find the package, net.middlemind.MemoryMatch_Chapter7_Challenge2, and open

the ScreenGame.java file. We’ll continue on the same track and implement our own code

to experiment with animating, moving an image in response to user input. Choose four

different keyboard keys that aren’t used by the game. Two of these keys will be used to

toggle your new image’s visibility. The other two will be used to move your image left

and right.

In order to handle user input, you’ll need to check for your target keys in the

following methods:

• ProcessKeyPress

• ProcessKeyRelease

It’s up to you to use the GetPosition, SetPosition methods of the MmgBmp class to

control the image’s position. You’ll also need to use the GetIsVisible, SetIsVisible

methods to control the image’s visibility. You should be familiar with the keyboard

methods and the MmgBmp class methods from your experience using the class in previous

challenges.

Chapter 7 ObjeCts, Classes, and OOp

178

Clue:

You can rely on existing code in the ProcessKeyPress and ProcessKeyRelease

methods to figure out how to support input for your four chosen keyboard keys. You can

figure out how to use the MmgBmp class’ methods by researching their use in other parts of

the ScreenGame class. Perform a text search to figure out how to use the class’ methods.

You can add more class fields, if need be, to help manage the movement and positioning

of your image.

 Challenge Solution
A simple solution to this coding challenge requires you only to make adjustments to

the keyboard input handlers: the ProcessKeyPress and ProcessKeyRelease methods.

If the target key for left movement is pressed, decrease the X position of our image by

one. If the target key for right movement is pressed, increase the X position by one. Use

if statements to check that you don’t go out of visual range if you so desire. Make sure to

turn movement off when a key is released.

That should take care of the first part of the coding challenge. The next part requires

us to make our image visible or invisible depending on the target key pressed. In

this case, we check to see when the key is released and in response call our image’s

SetIsVisible method with a Boolean value to show or hide the image. In the next

section, we’ll begin our discussion of some more advanced topics regarding Java classes.

 Advanced Class Topics
Classes are an extremely powerful and important new tool in our coding toolbox. We can

now create all manner of classes to use in our games and other Java programs. I wanted

to talk about a few high-level, advanced, aspects of OOP. In the next few sections, we’ll

talk about access, class design, and the static main entry point.

 Access
Access in this regard refers to the access modifiers you use to define your classes. In

my opinion, it’s fine to use the public or default modifier while you’re designing your

software. The need to make aspects of your classes protected or private will become

more pronounced to you as your software matures.

Chapter 7 ObjeCts, Classes, and OOp

179

You can always refactor your code and tighten up the design by using more

appropriate access modifiers in your class designs. In the next section, we’ll explore this

concept further as we discuss a few points on class design.

 Class Design
Class design refers to the structure of the classes you build. What class fields you use,

what methods you define, etc. In general, you should keep your class design simple.

Add complexity as you need it or if you expect it. For instance, if you often use the same

few lines of code when working with your classes, you might want to move it into a

class method.

Similarly, don’t go overboard with the functionality you support in the classes you’re

designing. For instance, if you’re adding new functionality in the form of class methods,

you should ask yourself whether or not that code belongs in the given class, is your class

responsible for it, or is another class. It may turn out a new class is in order to handle the

functionality you desire.

 Static Main Entry Point
We’ve covered a lot of material on Java classes, but we haven’t talked about how you

actually execute a Java program. In order to do so, you must have at least one class that

has a static main method that matches a specific method signature. Let’s look at the

signature of a static main method.

 public static main(String[] args) { ... }

The static main entry point for each of the associated video game project has the

same name as the project itself. The copy of the game setup for each coding challenge

uses the same approach. When you build a project in the NetBeans IDE, you can

configure it to have a default class, with a static main, to run when the program is

executed.

To set this value, right-click on your Java project in the NetBeans IDE and select the

properties option. From the pop-up window, select the “Run” option from the left-hand

side of the window.

Chapter 7 ObjeCts, Classes, and OOp

180

Image 7-1. Screenshot of a Project’s Run Settings in the NetBeans IDE

A screenshot of the NetBeans IDE’s Run settings.

Once you’ve set the desired static main class, when you build your project, you can

execute it by using the following code on the command line. On Windows, you can use

a command prompt to execute the commands. On Mac or Linux, you can use a terminal

window. Search online for the steps to launch the correct console for your operating

system. You can run your newly built Java programs by running a command similar to

the following:

 java -jar MemoryMatch.jar

Usually, the newly created JAR file is located in the dist folder of your project’s root

directory. That would be the best location to run a console command like that shown

previously. Before we move on to the next section, a new code challenge, I want to list a

very simple class with a static main method.

Chapter 7 ObjeCts, Classes, and OOp

181

Listing 7-12. A Basic Java Class with a Static Main Method

01 public class SimpleExecutableClass {

02 public int myField = 0;

03

04 public static main(String[] args) {

05 System.out.println("The SimpleExecutableClass has received "

args.length + " arguments.");

06 }

07 }

An example of a simple executable class in Java.

You can use this example as a template for any future executable classes you intend

to write. For the most part, you should only have one class with a static main method in

your project, but every now and then, you may have more than one. In that case, you can

use the following command to specify which static main method you want to run:

 java -cp MemoryMatch.jar com.test.project.newExecClass

If we were testing a new copy of the Memory Match game’s main executable, we’d

have to run the following command:

 java -cp MemoryMatch.jar net.middlemind.MemoryMatch.MemoryMatch2

In both cases, we’re specifying the class to use as the main executable by providing

the full class path, package name and class name, as an argument to the -cp command.

Think about how the class package factors in here and keep in mind how classes are

organized in Java. It’ll come in handy when we review libraries in the next chapter. Next

up, we’ll try another coding challenge and explore static main entry points, project

settings, and resources while we’re at it.

 Challenge: Dungeon Trap’s Static Main
In this challenge, the chapter’s third and last, we’ll take a look at the static main entry

point for the Memory Match game. We’ll learn a bit more about how a project and its

resources are configured, and we’ll create a project that has two static main entry points

so we can get some experience running select executable classes. Let’s take a look at the

challenge!

Chapter 7 ObjeCts, Classes, and OOp

182

Packages Involved:

net.middlemind.MemoryMatch_Chapter7_Challenge3

net.middlemind.MemoryMatch_Chapter7_Challenge3_Solved

Description:

Find the package, net.middlemind.MemoryMatch_Chapter7_Challenge3, and open

the MemoryMatch.java file. Some of the graphic artists on the project wanted to try out

a new set of assets with the Memory Match game but don’t want to create a big drain on

the developer’s time. Your challenge is to create a copy of the MemoryMatch.java static

main class and change the game engine configuration file it uses. Point it to this new file

instead:

 engine_config_mmg_memory_match_test.xml

This will connect the game to a new set of resources stored in the following directory:

 .\MemoryMatch\cfg\drawable\MemoryMatchTest

You’ll need to change the project settings to use the new static main file, run the

specific file directly when testing, or use the correct console command to run the new

static main executable you just made.

Clue:

Recall from your very first coding challenge where you fixed a version of the Pong

Clone game that was accidentally broken after testing. This challenge explored the

connection between the Java game project and its resources. Essentially, each game

project uses a configuration file that sets the name of the video game and determines

which folder to look for game resources.

By creating a new static main for the Memory Match game, you can specify a new

game engine configuration file that will in turn specify a new set of resources to use for

the game. Take your time to trace through any of the included video game projects to get

a better idea of how they are configured.

Chapter 7 ObjeCts, Classes, and OOp

183

 Challenge Solution
This challenge was an interesting one. In terms of the actual work needed to complete it,

it’s an easy challenge. However, knowing exactly what to do is not very clear and relies on

prior knowledge from previous coding challenges. Let’s talk about the steps needed to

solve this problem. The first thing you may have noticed is that the challenge asks you to

alter the game’s configuration file and gives us some new resources to use.

A cursory exploration of the project’s directory structure reveals the new

configuration file mentioned. Let me point out one important entry in the file:

 <entry key="NAME" val="MemoryMatchTest" type="string"

from="GameSettings" />

This line in the game configuration file is used to find the game’s resources in the

local configuration folder.

 ./MemoryMatch/cfg/

Take a moment to look through the project’s cfg directory and keep an eye out for

any folders named “MemoryMatchTest”. You should have found a folder with that name

in the project’s drawables resource directory. This folder is marked by its different image

resources for the game’s logo, board, and countdown numbers.

To solve this challenge, simply copy the static main, MemoryMatch.java, to a new file,

MemoryMatchTest.java. Make sure to select the “Refactor Copy” option by right- clicking

on the challenge’s package and selecting “Paste ➤ Refactor Copy”; specify the correct

name, MemoryMatchTest, when refactoring. Now that you have the file set up, you’ll want

to open it and change the XML configuration file specified in the following class field:

 public static String ENGINE_CONFIG_FILE = "../cfg/engine_config_mmg_

memory_match_test.xml";

Now that you’ve completed those steps, you should be able to alter the project’s

settings to use the new static main executable by default. Or you can simply run the

target file either in the IDE, by right-clicking it and selecting “Run File”, or by using the

correct console command. The choice is yours. The main takeaway here is to understand

the importance of the static main entry point and to get more experience working with

the game engine. You should see the version of the game with grayscale images for a few

key resources as opposed to color images (Image 7-2).

Chapter 7 ObjeCts, Classes, and OOp

184

Image 7-2. Screenshot of the Modified Memory Match Clone

Chapter 7 ObjeCts, Classes, and OOp

185

A set of screenshots showing the cloned version of the Memory Match game with

altered configuration file that points to an alternate game resource folder with some

grayscale resources replacing color images.

That brings us to the conclusion of this section. Take your time and work through the

chapter’s code challenges with care. If you get stuck, use the solution package to figure

out where you went wrong.

 Conclusion
That brings us to the conclusion of the first chapter on Java classes. In this chapter,

we took the time to talk about some of the OOP of the Java programming language.

We even took the time to explore some subtle points of class design and took on three

coding challenges. Not too shabby. Let’s take a look at a summary of the material we’ve

covered here.

Chapter 7 ObjeCts, Classes, and OOp

186

 What We Covered
Let’s take a look at the object-oriented programming topics and coding challenges we

encountered in this chapter:

• Class Declarations: We took a look at some basic class definitions and

talked about access modifiers at this level.

• Fields: We discussed adding fields to our classes and using access

modifiers to control how those class fields are used.

• Methods: We furthered our exploration of Java classes by reviewing

class methods, access modifiers, method parameters, and more.

• Static Members: We managed to refine our understanding of classes

further by reviewing static class members like static fields and

methods.

• Constructors: Class initialization never got easier. We took a look at

class constructors and differentiated between default and custom

constructors.

• Challenge: The MmgBmp Class: This challenge gave us some direct

experience modifying a game by adding our own image to it. We

got some more experience working with game engine classes like

MmgBmp and ScreenGame. We also got to add our own image to the

game screen!

• Challenge: The ScreenGame Class: This challenge gave us more

experience with user input. We got to configure the ScreenGame class

to handle new keyboard input to animate, show, and hide our new

game image. In this way, we added a little unnecessary game feature,

but it’s the same process when adding similar new game features.

• Access: A slightly more advanced topic; we discussed some finer

points about access modifiers in our classes.

• Class Design: We discussed some class design concepts. Higher-level

ideas that you should have in mind when designing your classes.

Chapter 7 ObjeCts, Classes, and OOp

187

• Static Main Entry Point: A very important topic; you can’t run your

programs without a static main entry point. We covered this topic

and demonstrated how to create a static main class and how to

execute both a package default and a target executable Java class.

• Challenge: Dungeon Trap’s Static Main: The last challenge in the

chapter; we got more experience with the game engine, game engine

configuration files, game resources, and static main entry points by

creating a new executable Java class for the Memory Match game that

uses a different set of game resources.

Java classes are an extremely powerful tool to add to our coding toolbox. You will use

classes every time you sit down and write a Java program. Knowing how to create classes

and define their use via access modifiers, custom constructors, and class methods opens

up a whole universe of new possibilities for you as a Java developer. In the next chapter,

we’ll take things even further as we review some powerful language features that let us

use classes in even more ways.

Chapter 7 ObjeCts, Classes, and OOp

189

CHAPTER 8

Encapsulation,
Inheritance,
and Polymorphism
This chapter is all about advanced Java OOP topics like encapsulation, inheritance, and

polymorphism. Together they constitute three of the four main theoretical principles of

object-oriented programming. The fourth principle, abstraction, is beyond the scope of

this text, so we won’t be covering it here. Let’s set the stage for the discussion by defining

each of these features of the Java, object-oriented, programming language.

• Encapsulation: The process of wrapping code and data together into

a single unit usually expressed as a Java class with highly controlled

field access via class methods.

• Inheritance: A key feature of OOP that allows us to create a new

class from an existing class. The new class that is created is known

as the subclass (child or derived class), and the existing class, from

which the child class is derived, is known as a super-class (parent or

base class).

• Polymorphism: Polymorphism works with inheritance by allowing

us to use inherited class methods differently than the super-class’

implementation.

We’ll take a close look at each of these advanced topics in turn as we complete our

review of Java’s object-oriented programming support, and we’ll get to work with a new

game as we do it: Dungeon Trap! Enjoy!

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_8

https://doi.org/10.1007/978-1-4842-8951-8_8#DOI

190

 Encapsulation
Encapsulation is the first principle of object-oriented programming that we’ll explore.

Encapsulation in Java refers to the strategic protection of data, class fields, through the

use of access modifiers and class methods. Let’s motivate the review with an example of

basic encapsulation in a Java class.

Listing 8-1. Example of Encapsulation in a Simple Java Class

01 public class BasicEncapClass {

02 private int field1 = 0;

03

04 public BasicEncapClass(int i) {

05 this.field1 = i;

06 }

07

08 public int getField1() {

09 return this.field1;

10 }

11

12 public void setField1(int i) {

13 this.field1 = i;

14 }

15 }

An example of a simple Java class employing basic encapsulation.

**Java Programming Note: I like to take the notion of encapsulation a bit further
than just the protection of class data with get and set methods. I like to think
of proper encapsulation as also including the proper exposure of complex class
functionality through a simple set of class methods.

In a well-encapsulated class, by definition, we protect access to the class fields by

making them private. Then open up controlled access to said fields by using get and

set methods. I know it’s a little bit anticlimactic. The actual implementation of this

Chapter 8 enCapsulation, inheritanCe, and polymorphism

191

OOP philosophy is not difficult at all. In my opinion, you can over-encapsulate when

designing a game or other Java program. And you can add some unnecessary extra

overhead to your game if you do.

For instance, should all your simple game classes use strict encapsulation? This

would make all field access to those classes require a method call, and method calls are,

in most cases, less efficient than a direct public field access. There’s not much more to

discuss on the topic. It boils down to applying strict control of class fields using a class’

get and set methods and field access modifiers. In the next section, we’ll discuss class

inheritance in Java and discover how to create classes based on other, existing, classes.

 Inheritance
Inheritance, in Java, is one of the key features of OOP that allows us to create a new class

from an existing class. The new class that is created is known as a subclass, and the existing

class from where the child class is derived is known as the super-class. Let’s see how we

can actually declare a subclass in Java. We’re going to build off of the class we used in

Listing 8-1. Keep an eye out for how encapsulation and inheritance work together.

Listing 8-2. Example of Encapsulation and Inheritance Using Java Classes

//class declarations

01 public class BasicEncapClass {

02 private int field1 = 0;

03

04 public BasicEncapClass(int i) {

05 this.field1 = i;

06 }

07

08 public int getField1() {

09 return this.field1;

10 }

11

12 public void setField1(int i) {

13 this.field1 = i;

14 }

15 }

Chapter 8 enCapsulation, inheritanCe, and polymorphism

192

16

17 public class BasicSubClass extends BasicEncapClass {

18 private int newField1 = 1;

19

20 public BasicSubClass(int i) {

21 super(i);

22 this.newField1 = i;

23 }

24

25 @Override

26 public int getField1() {

27 return this.newField1;

28 }

29

30 @Override

31 public void setField1(int i) {

32 this.newField1 = i;

33 }

34 }

An example of a set of simple Java classes using encapsulation and inheritance.

Notice the use of inheritance in the example classes in Listing 8-2. The class

BasicSubClass extends the class BasicEncapClass. You can declare a new subclass

using the extends keyword. You can only have one super-class in Java, meaning you

can only extend one other class at a time. In this example, the subclass declares a new

class field, constructor, and get/set methods. In the new constructor, there is a special

keyword I want you to take a look at, super, on line 21.

The super keyword allows you to access the super-class of the current class to

call available methods and access available fields. It has another use in the case of

the subclass constructor. The first line in the constructor, and only the first line, can

call a super-class constructor. In this case, when you create a new instance of the

BasicSubClass class, it will call the constructor of the BasicEncapClass. Also, note that

the subclass keeps the same methods, getField1 and setField1, except that it redefines

their functionality to work with a new class field.

The @Override keyword is a special method annotation that indicates the current

method overrides, replaces, a super-class method of the same name. Did you see how

Chapter 8 enCapsulation, inheritanCe, and polymorphism

193

encapsulation and inheritance work together in Java OOP programming? By hiding class

fields and exposing functionality via class methods, subclasses can maintain and extend

the functionality of their super-classes in a controlled way. In the next section, we’ll take

on a coding challenge that incorporates our new knowledge of Java OOP programming.

 Challenge: Inheritance
In this coding challenge, the chapter’s first, you’ll have to rely on your knowledge of class

inheritance to add a new weapon to the Dungeon Trap game. Let’s jump into a coding

challenge!

Packages Involved:

net.middlemind.DungeonTrap_Chapter8_Challenge1

net.middlemind.DungeonTrap_Chapter8_Challenge1_Solved

Description:

Find the package, net.middlemind.DungeonTrap_Chapter8_Challenge1, and open

the MdtWeaponSpear.java file. You’ve been tasked with completing some work on the

Dungeon Trap game. The task you’ve been given is to explore adding a flame spear to the

game as the default weapon for both players. The graphics for the new weapon asset can

be found in the game project’s image resources directory:

 ./cfg/drawable/DungeonTrap

You also must plug the new weapon into the game. Since there is already a spear

weapon in the game, the lead programmer has asked you to use inheritance to create

the new Java class. Keep everything the same except the images used and make the

new weapon more powerful and slightly slower. Make sure the weapon is the default

weapon for both players. This will require changing the MdtCharInter.java class, the

super-class for player and enemy characters in the game. You must run this package’s

file – DungeonTrap.java; right-click and select Run File to test the game.

Clue:

If you get stuck, take a close look at how the MdtWeaponSpear.java class is used in

the MdtCharInter.java class. If you change the images and attack properties of the default

spear, you can make it look and act like a flame spear. Think about that. Then think about

inheritance in Java and using copy and paste to create a quick copy of an existing class.

One last hint, the default weapon for players and enemies is set in the constructor of the

MdtCharInter.java class.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

194

 Challenge Solution
This challenge is one of the more advanced ones in the text, but if you carefully read

through the description and the clue, I think there’s enough information there for you to

get it. The entire solution really rests on your use of Java inheritance. The goal here is to

use an existing weapon class, the MdtWeaponSpear.java, to create a new version of the

spear. There are four adjustments to the code, including the creation of the new flame

spear Java weapon class, you must make in order to add the new weapon to the game as

the default player weapon. Let’s go through them in detail now.

As we mentioned earlier, the first adjustment you have to make is to refactor copy

the MdtWeaponSpear.java class and rename to something that resembles a flame spear

class. We chose to call it the MdtWeaponSpearFlame.java class. Next, we have to alter

the image resources used to display the weapon so that it looks more like a flame spear

and less like a regular spear. The image assets are already included for you in the game’s

resource folder.

Find them and use the name of the image files, including the extension to change

the image resources used by the new flame spear class. Next, we were asked to make the

weapon perform differently, a stronger but slower attack. To this end, we increased the

attack strength from 1 point to 2 and slowed the weapon down by 100ms by decreasing

the weapon time from 250ms to 350ms.

Lastly, we need to set the flame spear as the default weapon for all players in the

game. To accomplish this, we have to look at the MdtCharInter.java class. This is the

super-class for all characters in the game and as such has the code that sets the default

weapon. Follow the example set by the existing code to add the new weapon to the list of

the character’s supported weapons and then set it as the equipped weapon. If you make

all the appropriate adjustments, you should end up with a red spear like the one shown

in Image 8-1.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

195

Image 8-1. A Screenshot Showing the New Flame Spear in Action

A screenshot depicting the new flame spear in action in the Dungeon Trap game.

That brings us to the conclusion of this section of the chapter. We’ll pick things back

up in our review of advanced class topics with a discussion on polymorphism in Java.

If you could not get your coding changes to work properly for this challenge, take a

moment to review the solution package’s code.

 Polymorphism
Polymorphism, defined outside of the context of computer programming, means

"many forms," and it occurs when we have classes that are related to one another by

inheritance. In fact, we’ve seen an example of it earlier in this chapter; we just didn’t

know it yet. Let me present to you the same listing we looked at earlier, Listing 8-2, which

we’ll now discuss with regard to polymorphism in Java OO programming.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

196

Listing 8-3. Example of Encapsulation, Inheritance, and Polymorphism Using

Java Classes

//class declarations

01 public class BasicEncapClass {

02 private int field1 = 0;

03

04 public BasicEncapClass(int i) {

05 this.field1 = i;

06 }

07

08 public int getField1() {

09 return this.field1;

10 }

11

12 public void setField1(int i) {

13 this.field1 = i;

14 }

15 }

16

17 public class BasicSubClass extends BasicEncapClass {

18 private int newField1 = 1;

19

20 public BasicSubClass(int i) {

21 super(i);

22 this.newField1 = i;

23 }

24

25 @Override

26 public int getField1() {

27 return this.newField1;

28 }

29

30 @Override

31 public void setField1(int i) {

32 this.newField1 = i;

Chapter 8 enCapsulation, inheritanCe, and polymorphism

197

33 }

34 }

An example listing, the same as Listing 8-2, which demonstrates basic inheritance

and polymorphism. Notice how encapsulation factors into the super-class definition.

What? We’re looking at the same class listing but using it to review a different topic.

What gives? Well, I used the same listing for a reason. I wanted you to notice that the

concepts of encapsulation, inheritance, and polymorphism go hand in hand and are

closely tied to one another. Without a well-encapsulated class, inheritance becomes less

useful and almost chaotic, relying on class fields and access modifiers to control usage.

With good encapsulation comes good inheritance, and that brings us to

polymorphism. Take a moment to look over the two overridden methods, getField1

and setField1, on lines 26 and 31 respectively. Methods with the same names exist in

the BasicEncapClass but are now being redefined in the BasicSubClass class. This is an

example of polymorphism as the name of the method stays static, but its meaning and

usage can change.

This topic can be a bit confusing and seem almost circular in some ways, so let’s

take a moment to look at it from a slightly different angle. Instead of using meaningless,

fictional classes, let’s try to demonstrate these programming features using classes and

concepts we’re more familiar with: fish. Let’s look at some code!

Listing 8-4. Example of Encapsulation, Inheritance, and Polymorphism by

Modeling Fish

//class declarations

01 class Fish {

02 private int avgLen;

03 private int avgWeight;

04 private String color;

05

06 public Fish() {

07 }

08

09 public int getAvgLen() {

10 return this.avgLen;

11 }

12

Chapter 8 enCapsulation, inheritanCe, and polymorphism

198

13 public void setAvgLen(int i) {

14 this.avgLen = i;

15 }

16

17 public int getAvgWeight() {

18 return this.avgWeight;

19 }

20

21 public void setAvgWeight(int i) {

22 this.avgWeight = i;

23 }

24

25 public String getColor() {

26 return this.color;

27 }

28

29 public void setColor(String s) {

30 this.color = s;

31 }

32

33 public String getName() {

34 return "Fish";

35 }

36

37 public String getFoodSource() {

38 return "Worms";

39 }

40

41 @Override

42 public String toString() {

43 return "This fish, " + this.getName() + ", eats '" + this.

getFoodSource() + "'.";

44 }

45 }

46

Chapter 8 enCapsulation, inheritanCe, and polymorphism

199

47 class Trout extends Fish {

48 public Trout() {

49 super.setAvgLen(25);

50 super.setAvgWeight(8);

51 super.setColor("Brown");

52 }

53

54 @Override

55 public String getName() {

56 return "Trout";

57 }

58

59 @Override

60 public String getFoodSource() {

61 return "Worms and insects";

62 }

63 }

64

65 class RainbowTrout extends Trout {

66 public RainbowTrout() {

67 super.setAvgLen(30);

68 super.setAvgWeight(10);

69 super.setColor("Rainbow");

70 }

71

72 @Override

73 public String getName() {

74 return "Rainbow Trout";

75 }

76 }

//code

01 Fish fish = new Fish();

02 System.out.println("fish - toString: " + fish);

03 System.out.println("");

04

Chapter 8 enCapsulation, inheritanCe, and polymorphism

200

05 Trout trout = new Trout();

06 System.out.println("trout - toString: " + trout);

07 fish = trout;

08 System.out.println("fish = trout - toString: " + fish);

09 System.out.println("");

10

11 RainbowTrout rbTrout = new RainbowTrout();

12 System.out.println("rbTrout - toString: " + rbTrout);

13 trout = (Trout)rbTrout;

14 System.out.println("trout = rbTrout - toString: " + trout);

15 fish = (Fish)trout;

16 System.out.println("fish = trout - toString: " + fish);

17 fish = (Fish)rbTrout;

18 System.out.println("fish = rbTrout - toString: " + fish);

//output

01 //fish

02 fish - toString: This fish, Fish, eats 'Worms'.

03

04 //trout

05 trout - toString: This fish, Trout, eats 'Worms and insects'.

06 fish = trout - toString: This fish, Trout, eats 'Worms and insects'.

07

08 //rainbow trout

09 rbTrout - toString: This fish, Rainbow Trout, eats 'Worms and insects'.

10 trout = rbTrout - toString: This fish, Rainbow Trout, eats 'Worms and

insects'.

11 fish = trout - toString: This fish, Rainbow Trout, eats 'Worms and

insects'.

12 fish = rbTrout - toString: This fish, Rainbow Trout, eats 'Worms and

insects'.

An example of a properly encapsulated class, Fish, extended by the Trout class,

which is extended by the RainbowTrout class. Notice that each extended class is also an

instance of its super-class. Certain classes override method behavior in a demonstration

of polymorphism.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

201

**Game Programming Note: Class inheritance is a very powerful tool to use
when designing the class structure of your game. Quite often in games, you’ll
have enemies, weapons, and items that are more specific instances of a general
classification. Class inheritance works very well when modeling this structure.

Listing 8-4 is a rather long one; take your time to read over it carefully before moving

on. This example shows the three key aspects of OO programming we’ve covered here

all working in tandem. Let’s review what’s going on and cover some finer points as we

do so. First of all, the Fish class is an example of a well-encapsulated class. It has three

fields – avgWeight, avgLen, and color. It also defines two methods that provide specific

information about the fish: the getName and getFoodSource methods.

The last method in the class needs a bit of explanation. The toString method

is prefixed with the override annotation, which indicates that it replaces an existing

method. But which one? We haven’t defined a toString method. Well, it turns out in

Java, as we’ve mentioned before, that every class is a subclass of the Object super-class,

and this super-class defines a toString method that provides a string representation of

the class.

By overriding it, we are customizing the method to return a specific value. In this

case, the following statement:

This fish, [fish name], eats ‘[food source]’

This is an example of polymorphism as the toString method has now been

redefined specifically for the Fish class. In the next example, the Trout class, a

trout being a specific type of fish, extends the Fish class. The class definition relies

on inheritance to extend the super-class, Fish, and polymorphism to redefine

certain super- class methods. In this case, the Trout class redefines the getName and

getFoodSource methods to provide a trout-specific implementation.

To motivate the example further, a third class, RainbowTrout, is defined, which

extends the Trout class. This class, being a specific type of trout, only has to customize

some class methods, already defined from the Trout and the Fish class. In this case, all

we have to do is override the getName method to specify the class is a rainbow trout class.

Notice that each class that extends the Fish class, or a subclass of the Fish class, inherits

its overridden toString method.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

202

Take a look at the output text provided and trace how each class instance is being

cast up to its super-class: the Fish class. Notice that the output remains customized

even though we’re interacting with the object as an instance of a Fish class. This is an

example of polymorphism as the class is an instance of itself and all of its super-classes.

It also exemplifies method polymorphism in Java.

The @override method annotation is used to indicate that a method is a replacement

for a method defined by a super-class. In this way, new, custom, functionality can be

defined, on a method-by-method basis, for the inheriting class. This allows inheriting

classes to extend super-class functionality. Polymorphism in Java not only applies to

the overriding of class methods to customize functionality, it also applies to the fact that

subclasses are also an instance of their super-class.

In this way, an instance of the Trout class is also an instance of the Fish class,

which is also an instance of the Object class and so on. This aspect of polymorphism

is demonstrated in the casting of subclasses to super-classes on lines 13–17. In the

next section, we’ll take a look at a coding challenge involving polymorphism and the

Dungeon Trap game.

 Challenge: Polymorphism
The second coding challenge for this chapter will test your ability to leverage Java’s

polymorphic capabilities to change how the flame spear you implemented in the

previous challenge functions in the game. This is the third challenge in the text that starts

off from the solution to the previous challenge. As such, it’s vitally important that you

have the correct solution to the previous challenge before proceeding. Take a moment to

double-check and make sure. As always, enjoy the challenge!

Packages Involved:

net.middlemind.DungeonTrap_Chapter8_Challenge2

net.middlemind.DungeonTrap_Chapter8_Challenge2_Solved

Description:

Find the package, net.middlemind.DungeonTrap_Chapter8_Challenge2, and open

the MdtWeaponSpearFlame.java file. This challenge is another of the more complicated

challenges, and as such, you’ll need to look at code in the following Java classes:

• MdtWeaponSpearFlame.java

• MdtWeapon.java

Chapter 8 enCapsulation, inheritanCe, and polymorphism

203

• ScreenGame.java

• MdtWeaponAxe.java

Some of the developers like the new spear but think it’s too similar to the original

spear. They want to test out making the spear shoot out, like a throwing weapon, instead.

In order to implement this change, you’ll need to make a few adjustments to the code.

There’s a weapon that exists as a throwing weapon, the MdtWeaponAxe.java class. There

are a few methods that we need to use from this class to make our weapon throwable.

First, you’ll need to copy and paste the following methods from the MdtWeaponAxe.java

file to the MdtWeaponSpearFlame.java file:

• GetX()

• SetX(int i)

• GetY()

• SetY(int i)

• SetPosition(MmgVector2 v)

• SetPosition(int x, int y)

This will allow the new flame spear to handle setting its X, Y coordinate or position

in the same way the axe, a throwable weapon, does. Next, we’ll need to adjust the super-

class of all weapons, the MdtWeapon.java class, to support the new throwable spear.

Find the following methods in this class:

• GetWeaponRect()

• MmgDraw(MmgPen p)

There are special branches of code to handle a throwing axe; expand the two if

statements to support throwable spears as well. A similar change must be made to the

ScreenGame.java class’ ProcessAClick method. Find the two places in the method

where you have to alter an if statement to include throwable spears, not just axes. Making

these adjustments will make the new spear fly out and rotate, if implemented properly.

You must run this package’s file – DungeonTrap.java; right-click and select Run File to

test the game.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

204

Clue:

This is a tough challenge, and there’s not much in the way of a clue to guide you if

you run into trouble. Carefully read through the classes and methods provided in the

description. Keep an eye out for the different behavior of the axe in the code and keep in

mind you’re making a throwing spear, so it will function the same way as the axe.

 Challenge Solution
The solution to this challenge, as we mentioned earlier, requires the correct solution

to this chapter’s first challenge on inheritance. If you ran into trouble but want to keep

moving forward, you can use the solution to challenge 1 in Chapter 7 as the starting

point for this challenge by copying and pasting in the marked code changes. This

solution requires you to make five changes to the game’s code in order to successfully

solve the challenge.

This solution requires making changes in five different places. Let me list the

locations of the adjustments and the order we’ve assigned them. You could have done

things in a different way, and that’s just fine.

• MdtWeaponSpearFlame.java and MdtWeaponAxe.java: In this case,

we need to copy the methods that override positioning functionality,

allowing the weapon to move independently of the wielder.

• MdtWeapon.java: An adjustment is necessary in the

GetWeaponRect method.

• MdtWeapon.java: An adjustment is necessary in MmgDraw method.

• ScreenGame.java: An adjustment is necessary in the ProcessAClick

when firing the weapon.

Let’s review the adjustment made in sequence and in some details. The first change

that we need to make uses polymorphism to override the functionality of the super-

class positioning methods. The adjustment we’re making here allows the weapon to

now move independently of the player holding it. We can get away with reusing the

code from the MdtWeaponAxe class because it is also throwable. Next, we move on to the

MdtWeapon.java class and take a look at the GetWeaponRect method. This method is

used to calculate the rectangle that describes where the weapon should be drawn on

the screen.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

https://doi.org/10.1007/978-1-4842-8951-8_7

205

For stabbing weapons that aren’t thrown, the method calculates the rectangle based

on how far into the stab animation the weapon is. For thrown weapons, the axe and now

the flame spear, we return the rectangle that describes where the projectile is on the

screen and what direction it’s facing. The if statements need to be adjusted to include the

SPEAR weapon type. You have all the tools you need in your coding toolbox to get it done.

A similar change needs to be made to the MmgDraw method to include the spear when

drawing thrown weapons.

Notice that this class, MdtWeapon, is the super-class of the MdtWeaponAxe,

MdtWeaponSpear, and MdtWeaponSpearFlame classes. That’s why changing the code

here affects all extended classes. The centralization gives us leverage but also increases

complexity as we have to support different weapons, throwing and stabbing, at this level.

The last change we need to make is to support adding a new copy of the weapon to the

game’s drawable objects. This is accomplished in the ScreenGame class’ ProcessAClick

method. When the player fires the weapon, a clone of it is added to the game. Because

of all the changes we’ve made, this clone can fly off on its own and rotate while doing so

until it collides with something.

Those are the changes we needed to make to solve this coding challenge. Not an

easy task by any means and it definitely took a few tools from our coding toolbox to do

it. Don’t worry if you didn’t get it; as long as you learn by reviewing the solution, you’re

doing a great job. In the next section, we’ll wrap up our review of classes by talking about

how to share them and include them in our programs.

 Importing Class Libraries
Now that you have a good understanding of Java classes and OOP concepts like

encapsulation, inheritance, and polymorphism, you need to develop a good

understanding of how to package up your code and use it in other programs. To do this,

you’ll need to build a Java project and get the resulting JAR file. In most cases, these types

of projects do not contain a static main method and only contain Java classes.

This is commonly referred to as a library. You can share your libraries by sharing

your project’s JAR file. To add a library to a project in the NetBeans IDE, right-click on a

project and select “Properties” from the context menu. In the properties popup, select

the “Libraries” option from the left-hand categories section. When using a local JAR file,

we’ll add a new entry to the “classpath” section. Click the “+” button and select “Add JAR/

Folder” from the available options. A screenshot of this process is shown in Image 8-2.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

206

Image 8-2. Screenshot of a Project’s Libraries Settings in the NetBeans IDE

A screenshot showing the “Libraries” section of the project’s properties popup.

This process is the same process you used in Chapter 1 to set up the video game

project with their local library files. Now that you have a library added to your project,

you’ll need to include that package in your Java program before you can use it. To do so,

you use Java’s import keyword. An example of importing the video game engine’s main

packages is as follows:

 import net.middlemind.MmgGameApiJava.MmgCore.*;

 import net.middlemind.MmgGameApiJava.MmgBase.*;

When using the wildcard feature of the class import process, you will get access to all

classes in the specified Java package. This is convenient but isn’t intuitive, and it hides

which classes actually belong to which packages. Let’s take a look at how to import just

one Java class. In this case, we’re adding access to the MmgBmp class.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

https://doi.org/10.1007/978-1-4842-8951-8_1

207

 import net.middlemind.MmgGameApiJava.MmgCore.MmgBmp;

Notice that all Java classes are imported by their package name. Keep this in mind

as you work with Java. Take the time to get to know the most commonly used packages

in Java’s included framework of classes. Two important ones that you’ll use quite often

are java.io and java.util. You can find out more about the classes available in the Java

framework at this address:

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

That brings us to the conclusion of this section on importing and accessing libraries

of classes. In the next section, we’ll take a look at the general, shared, structure of the

video game projects.

 Video Game Project Structure
Because all of the included video game projects are based on the same game engine,

they share a similar setup and configuration. The following three Java classes set up the

static main entry point and two key classes that plug the game engine’s screen into a

window and panel. I’ll list the classes here:

Game’s Static Main Entry Point: Usually named after the game itself, PongClone.

java, MemoryMatch.java, and DungeonTrap.java. This part of the project provides the

executable class for the game. It also, as you’ve seen in a few coding challenges, sets

up the connection between the video game and its resources via the game engine’s

config file.

MainFrame.java: This class sets up the window of main frame where the

GamePanel class will render itself. This class is mainly set up to maintain the super-class

functionality. Note that it inherits from the game engine’s library of classes.

GamePanel.java: This class is responsible for handling events from the loading and

splash screens and for switching between game screens depending on the game state.

Much of the functionality of this class comes from its super-class.

Using these three classes with minor adjustments, refactoring the executable class

and pointing the game to a new game engine configuration file, is the basis for setting

up a new game. A very important class field in the game’s executable class is the ENGINE_

CONFIG_FILE. I’ve listed the class field from the Pong Clone game.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

208

 /**

 * Base engine config files.

 */

 public static String ENGINE_CONFIG_FILE = "../cfg/engine_config_mmg_

pong_clone.xml";

The game engine configuration file is used to specify a few key game engine

settings. The main one we need to worry about is the NAME entry. The file uses an XML

encoding, but it should be simple enough for you to edit without any research. Simply

change the value in the “val” attribute of the name entry. This value has to be the same

name as the folder that contains the game’s resources.

 <entry key="NAME" val="MemoryMatch" type="string"

from="GameSettings" />

which corresponds to the following directory structure local to the NetBeans

project folder:

./cfg

-> class_config

 -> MemoryMatch

-> drawable

 -> MemoryMatch

 -> MemoryMatchTest

-> playable

 -> MemoryMatch

-> engine_config_mmg_memory_match.xml

-> engine_config_mmg_memory_match_test.xml

Some aspects of the game engine are beyond the scope of this text, but I want you

to be able to create a new game and a video game project using the game engine. There

are four supported resources in the cfg folder. The class_config directory contains

configuration files used to adjust resources in a given game’s specific classes. The entries

in this file provide data at runtime to set up a game screen’s image resources among

other things.

The drawable directory is used to hold image resources, and the following image

file types are supports: PNG and JPG. Any image placed in the game’s folder will be

loaded automatically and accessible by its full file name, including extension. We’ve also

Chapter 8 enCapsulation, inheritanCe, and polymorphism

209

seen the image loading process before from previous coding challenges. The playable

directory is similar to the drawable directory except that it is used to load sound files. We

recommend using WAV files for your sound effects and music.

Lastly, there are a few XML files in the base of the cfg folder. These are the game

engine config files for specific copies of the game. Multiple projects can point to the

same resources. This is exemplified in how the coding challenges are set up. Each

challenge is a package in the game project itself and is configured, for the most part, to

access the same resource and configuration files. You’ll notice that there is an auto_load

folder in the drawable and playable directories. Any resources found in these folders are

loaded by default and available to you in your game by its full file name.

That brings us to the conclusion of this section on configuration and setup of the

video game projects included with the text. In the next section, you’ll be challenged to

create a new video game project on your own. Enjoy!

 Challenge: Create a New Game Project
In this, the third challenge of the chapter, we’ll explore setting up a new game project.

There’s not much more to it than that. This is a tough challenge; you may not make it

through on your first try; don’t worry. You can always reference an existing project to see

how it’s set up and copy the configuration.

Projects Involved:

PongClone

MyNewGameSolved

Description:

This challenge is all about you. We won’t be doing any development tasks for anyone

or anything like that. In this challenge, you’re going to explore the configuration of the

video game project by creating a new game project that is a functioning clone of an

existing project. I should mention that this is the first challenge where the solution is a

project and not a package.

Your goal is to use your knowledge about the NetBeans IDE, the game engine, and

the project configuration from all the preceding chapters to clone the Pong Clone game

into a new project named “MyNewGame”. I’ll outline the general steps needed to solve

this challenge and leave it up to you. We’ll review the process in detail in this challenge’s

solution section.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

210

 1. Create a new NetBeans IDE project with the name “MyNewGame”.

 2. Add and configure the library files for jutils, jinput, and the

MmgGameApiJava libraries.

 3. Copy the PongClone project’s cfg directory to the local directory of

the new MyNewGame project.

 4. Copy all the Java class files from the PongClone project’s net.

middlemind.PongClone package and “refactor copy” them into

the new project. Name the refactored package whatever you

would like.

 5. Configure the project’s settings including the default static main

class, the output directory, the Java version, and the working

directory.

 6. Execute the project and verify that the Pong Clone game runs

correctly.

Give it your best shot, good luck!

Clue:

You can use any of the associated video game projects as an example of how to

configure your new NetBeans project. Use the PongClone project as an example of

the actual classes and game resources to use. Remember, you want to create a copy of

the Pong Clone game as a starting point for a new video game by cloning it into a new

NetBeans project.

 Challenge Solution
The solution to this challenge isn’t obvious. You have to work through a number of

configuration steps in order to create new video game project with a functioning copy of

the Pong Clone game as the seed configuration of the project. Let’s go over each step in

the process in detail.

 Step 1: Create a New Project to Customize

Select “File ➤ New Project” from the NetBeans menu. Choose “Java Application” for the

project type.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

211

Image 8-3. Screenshot of the New Project Dialog – Choose Project Type

Select the Java Application option from the Java with Ant project category.

Set the “Project Name” to “MyNewGame” and select the location of the project.

Don’t select the Create Main Class option as we’ll use a copy of one from the PongClone

project.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

212

Image 8-4. Screenshot of the New Project Dialog – Name and Location

A screenshot showing the second step in the new project creation dialog. Remember

NOT to check the Create Main Class checkbox.

Complete the project creation process and expand its entry in the NetBeans

project list.

 Step 2: Add the Default Project Libraries

Once the new project is set up, now you have to configure the base set of libraries like we

did in Chapter 1. Feel free to refer back in to review the process in order to complete this

step. A screenshot showing the added Java libraries is shown in Image 8-5.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

https://doi.org/10.1007/978-1-4842-8951-8_1

213

Image 8-5. Screenshot of the Project’s Properties with Configured Libraries

A screenshot showing the MyNewGame project with configured set of base libraries.

Use Chapter 1 as a reference on how to set up the project’s libraries.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

https://doi.org/10.1007/978-1-4842-8951-8_1

214

Image 8-6. Screenshot of the New Project with Configured Libraries

A screenshot of the new game project with configured libraries.

The new NetBeans project and the libraries are set up so we can add the Pong Clone

game’s resource folder.

 Step 3: Copy Over the Resource Folder

The resource folder, cfg, is located on the root directory of each game’s NetBeans project

folder. It contains all the game resources and configuration information. Copying it

to a new project makes it available as a source of game resources and configuration

information for the new project.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

215

Image 8-7. Screenshot of the New Project with Game Resource Folder – cfg

A screenshot showing the new game project with the copied-over configuration and

resource folder, cfg.

Simply copy and paste the folder from the Pong Clone game’s project folder into the

new game’s project folder. We’ll want to customize the game’s configuration file a little

so that we can tell it’s a different version of the game. Find and open the game’s XML

configuration file located here:

 ./MyNewGame/cfg/ engine_config_mmg_pong_clone.xml

We want to change the TITLE and COMPANY_NAME entries to new string values so

we can tell our version of the game apart.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

216

Image 8-8. Screenshot of the New Project’s engine_config_mmg_pong_clone
Config File

A screenshot of the new game project’s game engine configuration file with TITLE

and COMPANY_NAME entries changed to indicate a new copy of the game.

You can open and edit the file right in the NetBeans IDE by locating it in the “Files”

tab. Expand the entry for the new game project and locate the file in the cfg directory.

 Step 4: Copy Over the PongClone Java Classes

We’ll populate our new project with Java classes from the Pong Clone game. You can

copy and paste them from project to project directly in the NetBeans IDE.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

217

Image 8-9. Screenshot Showing the Selection of the Pong Clone Class Files

A screenshot showing the selection of the PongClone project’s Java class files.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

218

Image 8-10. Screenshot Showing the Refactor Copy Dialog

A screenshot showing the refactor copy dialog. Click the refactor button to refactor

copy the classes into the new game project.

You should rename the main executable class from “PongClone.java” to

“MyNewGame.java” by right-clicking the file and selecting “Refactor ➤ Rename” from

the context menu, as shown in Image 8-11.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

219

Image 8-11. Screenshot Showing the Renaming of the PongClone Main Class

A screenshot showing the rename file refactoring dialog.

You’re almost ready to run the game. You have the classes copied into place, the

libraries set up, and you’ve plugged in the resource folder. Next up, we’ll fine-tune some

project settings.

 Step 5: Configure Project Settings

There are a few project settings you should see to before running the game. The first

is to set the “Working Directory” for the project. Because the game needs to find the

cfg directory in an expected location, we set the “Working Directory” field to “./dist” as

shown in Image 8-12. You should also set the “Main Class”. The image depicts a default

class; make sure yours is set to the MyNewGame.java class.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

220

Image 8-12. Screenshot Showing the New Project’s Run Settings

A screenshot showing the new project’s settings configured with working directory

and main class.

Finally, we can run the game!

 Step 6: Execute the Pong Clone Copy

Make sure the project is freshly built by right-clicking on the project and selecting “Clean

and Build” from the context menu. Now run the project by clicking on the PongClone.

java file and selecting “Run File” from the context menu.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

221

Image 8-13. Screenshot Showing the New Project in Action

A screenshot showing the new game in action. Notice the title with different value

than the default Pong Clone game.

Congratulations! You can now create new game projects using the simple Pong Clone

game as a starting point. You can clean out the code or alter it as you see fit. Combine

this knowledge with your experience modifying games by editing the ScreenGame class

and you can start building your own simple games.

 Conclusion
That brings us to the conclusion of the chapter and the end of our discussion on Java

classes. We got to take a look at a lot of different features of the Java programming

language in action and took on a few difficult code challenges. Let’s summarize the

material we covered in this chapter subsequently.

Chapter 8 enCapsulation, inheritanCe, and polymorphism

222

 What We Covered
You made your way through some advanced concepts and a gauntlet of difficult coding

challenges. You’ve earned your stripes. Let’s review what we’ve covered.

• Encapsulation: We discuss the concept of encapsulation in OOP and

how to further that concept in certain advanced cases.

• Inheritance: We talked about class inheritance in Java and

demonstrated it with a few examples.

• Challenge: Inheritance: You took on a tough challenge using

inheritance to add a new weapon, the flame spear, to the Dungeon

Trap game.

• Polymorphism: We discussed the concept of polymorphism in Java

OOP and demonstrated it at the class and method level.

• Challenge: Polymorphism: You were tasked with modifying the new

flame spear weapon further to make it throwable. This took a lot of

skill and knowledge. Congratulations for taking it on!

• Importing Class Libraries: Wrapping up our review on classes with a

discussion on how to wrap up your code into libraries called JAR files.

We concluded the section by discussing how to include JAR files in a

project and access the new Java classes in your code using the import

statement.

• Video Game Project Structure: One of the more important chapters

on applied Java programming, specifically the structure of projects

that use the included game engine.

• Challenge: Create a New Game Project: One of the most difficult

challenges you’ve encountered thus far. This one is very specific to

the game engine and the project structure. It’s ok if you didn’t get this

one; there are a lot of steps.

We’ve mastered Java classes and learned how to create our own fresh new copy of the

Pong Clone game for use as a new game’s starting project. You’re ready to start building

a game. Look back to the different coding challenges and remember how to add new

images to the ScreenGame class and how to control them. You’re well on your way to

making your next great game!

Chapter 8 enCapsulation, inheritanCe, and polymorphism

223

CHAPTER 9

Debugging Techniques
No matter how hard you try, chances are your first implementation of a software solution

is rarely perfect. Most of the time we need to debug our code to figure out what it’s doing

and, more importantly, what it’s doing wrong. In order to be a successful programmer in

any language, we need to be able to competently debug a program, so we’ll cover a few

basic ideas on the subject.

 Output Trace
One of the most basic and effective debugging techniques requires no special software,

IDE, or libraries. The output trace uses output statements to mark what code is executing

and what values certain variables have. Let’s motivate the discussion with an example.

Listing 9-1. Example of Using Output Statements to Debug a Program

//code

01 public void CheckForMatches(MemoryItem itm) {

02 System.out.println("CheckForMatches: START");

03 if(clickedCards != null) {

04 int len = clickedCards.size();

05 Stack<MemoryItem> tmp = new Stack();

06 System.out.println("CheckForMatches: AAA: " + len);

07

08 for(int i = 0; i < len; i++) {

09 MemoryItem tItm = clickedCards.pop();

10 ProcessMatchCheck(tItm, itm);

11 tmp.push(tItm);

12 }

13

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_9

https://doi.org/10.1007/978-1-4842-8951-8_9#DOI

224

14 System.out.println("CheckForMatches: BBB: " + clickFreeze);

15 if(!clickFreeze) {

16 clickedCards.addAll(tmp);

17 }

18

19 System.out.println("CheckForMatches: CCC: " + clickedCards.

size());

20 }

21 System.out.println("CheckForMatches: STOP");

22 }

//output

01 CheckForMatches: START

02 CheckForMatches: AAA: 1

03 CheckForMatches: BBB: true

04 CheckForMatches: CCC: 2

05 CheckForMatches: STOP

An example of using simple standard output statements to trace and debug a

program.

You might remember this snippet of code from the Memory Match game’s

coding challenges. In this listing, we’re using output statements to trace through the

functionality of the method. Notice that key information like the start and end of the

method call and the size of the clickedCards data structure are tracked. Debugging like

this can help you visualize what happens when a block of code executes. This can greatly

aid in fixing any bugs in your code implementation.

That brings us to the conclusion of the basic debugging technique of output tracing.

In the next section, we’ll take a look at the more advanced technique of using the IDE

to debug your programs. Let’s take a look at the tools available in the NetBeans IDE for

debugging our Java games!

 IDE Debugging Features
Another slightly more advanced approach to debugging your Java programs is to rely

on the tools available in the NetBeans IDE. This has the advantage of being a bit more

advanced, efficient, and powerful at the cost of requiring the IDE to accomplish your

Chapter 9 Debugging teChniques

225

debugging tasks. This is fine, but if you’re doing some “on-device” debugging, you won’t

have the luxury of accessing the IDE’s tools. You’ll have to fall back to the more basic

output trace technique.

Let’s take a moment to talk about the debugging features in the NetBeans IDE. We’ll

keep it high level and focus on the features that are designed to help us find and fix

bugs in our code. We won’t get into more project-level debugging in this chapter. The

debugging button bar in the NetBeans IDE is shown in Image 9-1.

Image 9-1. An Image Depicting the NetBeans Debugging Bar

You can find this bar of buttons at the top center of the NetBeans IDE after entering

debugging mode, Ctrl+F5. The buttons shown are stop, pause, continue, step over, step

over expression, step into, and step out.

To see the debugging button bar, you must be in project debugging mode. Click

the debug project button from the top of the IDE window or press Ctrl+F5 on your

keyboard to start debugging the current program. In the previous image, you can see

the debugging bar before the trace has begun, inactive buttons, and, afterward, active

buttons. The NetBeans IDE debugger is meant to work with break points. You can set a

break point at any line in your code by clicking near the line numbers, at the edge of the

text editor. This will create a red highlight on the selected line to indicate it has been set

as a debugging break point.

What is a break point you ask? Well, a break point tells the debugger to stop

executing the program at that point in the code so you can look around and see what’s

happening with different variables at that point in the code. Let’s take a look at what a

break point looks like in the NetBeans IDE.

Chapter 9 Debugging teChniques

226

Image 9-2. An Image Depicting a Break Point in the NetBeans IDE

A screenshot showing what a break point looks like in the NetBeans IDE.

Let’s look at what happens when we start debugging the program after setting a

break point in the code before we talk about what the different debugging buttons

actually do.

Chapter 9 Debugging teChniques

227

Image 9-3. An Image Depicting Stopping at a Break Point During Debugging

An image depicting NetBeans IDE in debugging mode stopping at a break point.

Notice that the debugging button bar is now fully active.

When the debugger reaches a break point, in this case, the break point is set in a

copy of the Memory Match game from Challenge 1 in Chapter 5. This particular break

point is reached when two cards have been clicked on the Memory Match game board.

The debugger will detect the break point and stop to await our instructions. We can use

all the buttons on the debugging bar to adjust the next executed line of the program.

This feels like a good time to talk about what each button on the debugging button

bar does. I’ll list them here with a brief description of their use.

• Debug Project (Ctrl+F5): Used to start a project debugging session.

• Finish Debugging Session (Shift+F5): Used to end the project

debugging session.

• Pause: A button used to pause the current debug session.

• Continue (F5): Used to continue the debugger. The program will

execute until another break point is hit.

Chapter 9 Debugging teChniques

https://doi.org/10.1007/978-1-4842-8951-8_5

228

• Step Over (F8): When a break point is reached, use this button to

execute the next line of code.

• Step Over Expression (Shift+F8): This button lets you proceed

through each method call in an expression and view the input

parameters as well as resulting output values of each method call. If

there are no further method calls, Step Over Expression behaves like

the Step Over command.

• Step Into (F7): Use this button to step into a method call to see the

method parameters and return values and to continue debugging

through the method execution.

• Step Out (Ctrl+F7): Use this command to execute the rest of the

current function and it breaks when the function return is completed.

As you can see from the options available, it’s very easy to explore the variables,

parameters, and return values of your Java program when using NetBeans’ built-in

debugger. It may take you some time to gain experience and really get the most out of

the debugging tools, but that’s fine, you were going to be coding anyway. That brings us

to the conclusion of this section. In the next section, we’ll take a look at exceptions in the

Java programming language.

 Exceptions
We’ve had a little bit of exposure to the Exception class, and Java error handling in

general, when we talked about Try-Catch statements during our discussion on flow

control in the Java programming language. We’re going to revisit the topic and talk about

a few finer points regarding using exceptions in your Java programs.

 Handling Exceptions
Exceptions are generated when a line of Java code is unable to execute properly for some

reason. When this happens, an exception is generated with information about the error

and a trace of the current execution stack. In order to respond to these errors, we have to

use Try-Catch statements in our code.

Chapter 9 Debugging teChniques

229

The Try-Catch statement, as we’ve seen previously, allows us to attempt to run a

piece of code and respond to any errors that might arise when doing so. This can lead to

certain implementation decisions that can have broader impacts on your program and

deserve some discussion. Let’s take a look at some examples of Try-Catch statements.

Keep an eye out for some subtle differences in the code, and we’ll talk about them next.

Listing 9-2. Example of Try-Catch Statements Catching Different Exceptions

//code

01 System.out.println("Exception #1:");

02 try {

03 String s = null;

04 int l = s.length();

05 } catch (Exception e) {

06 e.printStackTrace();

07 }

08

09 System.out.println("Exception #2:");

10 try {

11 String s = null;

12 int l = s.length();

13 } catch (NullPointerException e) {

14 e.printStackTrace();

15 }

16

17 System.out.println("Exception #3:");

18 try {

19 String s = null;

20 int l = s.length();

21 l = Integer.parseInt("not an integer");

22 } catch (NullPointerException | NumberFormatException e) {

23 e.printStackTrace();

24 }

25

26 System.out.println("Exception #4:");

27 try {

Chapter 9 Debugging teChniques

230

28 String s = null;

29 int l = s.length();

30 l = Integer.parseInt("not an integer");

31 } catch (Exception e) {

32 e.printStackTrace();

33 }

//output

01 Exception #1:

02 java.lang.NullPointerException

03 at net.middlemind.PongClone.NewClass.main(NewClass.java:290)

04

05 Exception #2:

06 java.lang.NullPointerException

07 at net.middlemind.PongClone.NewClass.main(NewClass.java:298)

08

09 Exception #3:

10 java.lang.NullPointerException

11 at net.middlemind.PongClone.NewClass.main(NewClass.java:306)

12

13 Exception #4:

14 java.lang.NullPointerException

15 at net.middlemind.PongClone.NewClass.main(NewClass.java:315)

An example demonstrating the use of different Try-Catch statements designed to

catch different exceptions.

Looking at exception examples #1 and #2, on lines 1–15, we have two seemingly

identical Try-Catch statements. Can you spot the difference between the two? If you

thought that the exceptions being caught are different, then you thought right. The first

example uses the Exception class; this is the super-class of all other Java exceptions.

Catching an exception of this type doesn’t give us any information about what went wrong.

The following Try-Catch statement, exception #2, is similar, but it is designed to catch

a NumberFormatException, which is a more specific exception class. This version of the

Try-Catch statement is more intuitive because you can clearly see what type of error the

code is designed to handle. In general, I agree with this approach. Sometimes, however, I

go against the grain and implement the more general Try-Catch statement. Why?

Chapter 9 Debugging teChniques

231

Well, there are many cases you’ll encounter when writing Java programs and games

of different sorts where you really don’t care what the error was. All you really care about

was that there was an error at all. This is perfectly fine if you don’t derive value from

using more specific exception classes. Just keep in mind that best practices recommend

that we do.

The last two examples in the code snippet, exceptions #3 and #4, present a new

version of the Try-Catch statement. One that is able to catch multiple types of exceptions.

Direct your attention to line 23; notice that the catch clause of the Try-Catch statement

is designed to catch both a NullPointerException and a NumberFormatException.

Juxtapose this with the last exception example where only the super-class, Exception, is

caught. In this case, we have a lot less information about the code in the Try-Catch look.

We don’t know what exceptions it might throw. Note that the code must be adjusted to

throw each type of exception since whichever exception that is encountered first will exit

the Try clause.

This comes back to the same point of form vs. function. If knowing the type of

exception is beneficial to you and it makes your code more intuitive and reusable, then

use that approach. If you are simply concerned with knowing when something failed and

not why, then don’t use more specific exceptions in your Try-Catch statements. In the

next section, we’ll talk a little bit about how to define our own exceptions to use in our

Java programs.

 Defining Exceptions
Exceptions, like everything else in Java, are based on classes. As I’ve alluded to

previously, all exceptions in the Java programming language are subclasses of the

Exception super-class. As such, you can define your own exceptions to use in your code.

Let’s take a look at an example.

Listing 9-3. Example of Defining a Custom Exception Class

1 public class MyException extends Exception {

2 public MyException(String errorMessage) {

3 super(errorMessage);

4 }

5 }

An example demonstrating the creation of a custom exception class.

Chapter 9 Debugging teChniques

232

As you can see from the previous listing, we’ve used inheritance, a powerful OOP

tool in our coding toolbox, to create a new exception class based on the main one. Now

that we’ve designed a custom exception, we can use it in specific places where we see fit.

Let’s motivate the discussion with another example employing the exception class we

just created: MyException.

Listing 9-4. Example of Using a Custom Exception Class

//code

1 public void ProcessImage(MmgBmp image) throws MyException {

2 if(image.GetWidth() < 10 || image.GetHeight() < 10) {

3 throw new MyException("Image resource is too small!");

4 }

5 }

//output

1 net.middlemind.PongClone.MyException: Image resource is too small!

2 at net.middlemind.PongClone.NewClass.main(NewClass.java:302)

An example demonstrating the use of a custom exception class.

In the previous listing, we can see the use of the MyException class. In this example,

we use the exception in a fictional ProcessImage method. This method takes an MmgBmp,

image resource argument, and returns no value. The purpose of this method is to check

the passed-in image argument and make sure its dimensions are larger than 10 pixels in

width and height. If not, an exception is thrown.

Note that the method declares what exceptions are thrown in the body of the method

using the throws keyword in the method declaration. There can be multiple, comma-

separated entries here. When we want to throw an exception, we use the throw keyword

followed by the instance of the exception class that we want to throw. In this example,

we’re using our fictional MyException class and providing a descriptive error message.

Why is this implementation not ideal?

The reason why it isn’t an ideal implementation is because the exception class is not

indicative of the error it is designed to represent. This is not as intuitive as say naming

our exception class ImageResourceException as opposed to MyException. Again,

being intuitive and clear is the better implementation choice. In the next section, we’ll

briefly look at the information that comes back from a thrown exception, namely, the

stack trace.

Chapter 9 Debugging teChniques

233

 The Stack Trace
An important aspect of programming in Java is being able to handle unforeseen errors.

These will manifest to you as exceptions and crash your program in the worst way when

you least expect it. When you get an exception, you usually get a message and stack trace

printed to standard error.

Sometimes, the environment you’re executing your programs in will not give you

access to output streams. You may have to try to capture and indicate errors in the

program itself. In this case, it is wise to implement a very high-level catch-all Try-Catch

that prevents the program from crashing completely. This will give you a chance to

display some information about the error that you can use to address the issue.

In any case, you should have access to exception stack traces most of the time.

NetBeans takes care of displaying any output during project execution right to a panel in

the IDE. Let’s take a look at an example stack trace so we can get a better understanding

of the information it provides us and how we can use it to fix bugs.

Listing 9-5. Example of a Simple Exception Stack Trace

1 net.middlemind.PongClone.MyException: Image resource is too small!

2 at net.middlemind.PongClone.NewClass.main(NewClass.java:302)

An example of a simple stack trace resulting from a Java exception.

This stack trace should be familiar. We saw this earlier in our review of exception

handling. We’re using it again here because it’s so simple. This code that threw an error

was in the static main execution method of the project. This means that the stack trace

has only one entry in it. The message provided to us by the exception object is as follows:

 net.middlemind.PongClone.MyException: Image resource is too small!

It tells us the exception class and the message associated with the exception. The

next entry is the line number and the class method where the exception originated from.

Let’s take a look.

 net.middlemind.PongClone.NewClass.main(NewClass.java:302)

Chapter 9 Debugging teChniques

234

In the PongClone project, in a class called NewClass – this is my personal test class –

in the static main method, there was an error, specifically at line 302. I’ll illustrate the

“stack” by moving the exception into a new static method, ExceptionTest. Recall that

only static class members can be accessed from a static method without an object

instance. Now let’s run the program and see what the exception stack trace looks like.

 net.middlemind.PongClone.MyException: Image resource is too small!

 at net.middlemind.PongClone.NewClass.ExceptionTest(NewClass.java:302)

 at net.middlemind.PongClone.NewClass.main(NewClass.java:339)

Take a moment to look over the stack trace and think about what’s happening. There

is a second line in the trace now because there is a second entry on the execution stack

as the exception causing code now resides in the ExceptionTest method. By extension,

this tells us that the first line number in the stack trace is the location of the error

causing line of code, while the last line number is the location of the first method in the

execution stack. That’s really all I wanted to go over with regard to the stack trace print-

out. You should have more confidence now when dealing with a very long null pointer

exception stack trace!

 Conclusion
That brings us to the conclusion of the chapter on debugging techniques. I hope you

learned a thing or two about how to debug your Java programs. Let’s take a look at the

material we covered in this chapter.

 What We Covered
This chapter was a short and sweet one. We still managed to cover a fair amount of

important material. Let’s take a look at a summary of the chapter’s main topics.

• Output Trace Debugging: We detailed a simple approach to

debugging a program where we use output statements to outline the

execution path of a certain method or block of code.

• IDE Debugging Features: We also took a look at the more advanced

NetBeans IDE debugged that supports break points and a number of

actions to take regarding execution of code at break points.

Chapter 9 Debugging teChniques

235

• Handling Exceptions: We revisited the Try-Catch statement and

talked about some of the philosophies involved with implementing

Try-Catch statements in your code.

• Defining Exceptions: We looked at how we can define and use our

own exceptions.

• The Stack Trace: A brief overview of a Java exception’s stack trace.

This chapter should give you all the tools you need in your coding toolbox to triage

even the most difficult Java exceptions. You’ll even be able to define your own custom

exceptions to use in your programs to capture certain events or conditions and respond

by throwing an exception.

Chapter 9 Debugging teChniques

237

CHAPTER 10

Conclusion
Welcome to the concluding chapter of the text! If you’ve made it this far, then you’ve

completed a fairly detailed review of the Java programming language including taking

on a number of coding challenges designed to get you working with slightly more

mature projects and code. That’s something to be proud of. You’ve gained a lot of good

experience and built up a solid set of tools for your coding toolbox. Let’s take a moment

to review some of the things we’ve accomplished together.

 Accomplishments
We’ve covered a lot of ground together in this text. We started at the beginning and

learned about the origins of the Java programming language and then moved on to look

at variables, data structures, and even object-oriented programming. Let me outline

some of the more notable topics we’ve explored together while learning about Java.

• Chapter 1:

• Setting Up Your Environment: A quick overview of how to prepare

your Java game development environment and NetBeans IDE.

• Checking Out the Games: We got to take the associated game

project for a test drive.

• Pong Clone: The simplest project, a clone of the classic

game Pong.

• Memory Match: The next most complicated project, a memory

card selection game.

• Dungeon Trap: The most complicated game implementation,

battle enemy waves and survive for as long as you can.

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8_10

https://doi.org/10.1007/978-1-4842-8951-8_1
https://doi.org/10.1007/978-1-4842-8951-8_10#DOI

238

• Chapter 2:

• Basic Syntax Rules: A detailed review of the basic syntax rules of

the Java programming language.

• Keywords/Reserved Words: A review of the language’s

reserved words.

• The Main Game Loop: An introduction to the concepts

associated with the main game loop.

• Program Structure: A review of the structure of the associated

Java game projects.

• Chapter 3:

• Basic Data Types: A review of the Java language’s basic data types.

• Challenge: Basic Data Types: A coding challenge to test your

knowledge of basic data types involving coding changes to a copy

of a game project.

• Advanced Data Types: An introduction to more advanced data

types in Java like arrays.

• Challenge: ArrayLists: A coding challenge to test your knowledge

of the advanced data type: the ArrayList.

• Chapter 4:

• Expressions and Operators: A detailed review of the different

types of expressions and operators in the Java programming

language.

• Flow Control: A review of the flow control statements available to

you like Switch statements, if statements, etc.

• Challenge: Flow Control: A coding challenge designed to test your

knowledge of Java’s flow control statements.

• More on Variables: A deeper look into certain key aspects of Java

variables like enumerations and classes.

• Challenge: Enumerations: A coding challenge to apply your

knowledge of enumerations in Java.

Chapter 10 ConClusion

https://doi.org/10.1007/978-1-4842-8951-8_2
https://doi.org/10.1007/978-1-4842-8951-8_3
https://doi.org/10.1007/978-1-4842-8951-8_4

239

• Chapter 5:

• More on Data Structures: A review of the most common data

structures and their use cases.

• Parameterized Types and Data Structures: We took a moment to

discuss the concept of parameterized data structures.

• Challenge: Stacks: One of the more difficult challenges involving

refactoring code to use a Stack instead of a List.

• Chapter 6:

• For Loops: We reviewed the different types of for loops in Java.

• While Loops: A review of the while loop construct.

• Main Game Loop: Our second discussion on the main game

loop where we review in detail a few different types of main

game loops.

• Challenge: For-Each Loops: A coding challenge that tasks you

with refactoring a for loop into a for-each loop.

• Chapter 7:

• Classes: We revisited the concept of classes again and in detail as

we covered the most important aspects of Java classes.

• Challenge: The MmgBmp Class: An interesting coding challenge

that is designed to get you more experience working with some of

the game engine’s classes. Specifically, the image class, MmgBmp.

• Challenge: The ScreenGame Class: A follow-up challenge that

ties in user input to control the image configured in the previous

challenge.

• Advanced Class Topics: We took a moment to talk about some

more advanced class topics like class member access and static

main entry points.

• Challenge: Dungeon Trap’s Static Main: A coding challenge that

will help you understand the concept of the static main entry

point in Java.

Chapter 10 ConClusion

https://doi.org/10.1007/978-1-4842-8951-8_5
https://doi.org/10.1007/978-1-4842-8951-8_6
https://doi.org/10.1007/978-1-4842-8951-8_7

240

• Chapter 8:

• Encapsulation: We took a look at a few key concepts of OOP

including encapsulation in this chapter.

• Inheritance: A review of class inheritance in Java.

• Polymorphism: The last of the advanced OOP topics that we

covered in this text; we reviewed the concepts of polymorphism

in the Java programming language.

• Importing Class Libraries: A brief but informative review of how

to create and use class libraries.

• Challenge: Create a New Game Project: A very important coding

challenge where you are tasked with creating a new seed project

for a game that includes a functioning copy of Pong Clone.

• Chapter 9:

• Basic Debugging: We quickly reviewed a basic technique

for tracing through your Java code to find bugs and trace the

execution path.

• Advanced Debugging: We also took a look at more advanced

debugging techniques that use the NetBeans IDE to step

through code.

• Exceptions: A quick review of exceptions in Java explaining how

to create and use your own exceptions.

Even just listing the higher-level topics, the most important ones for each

chapter we’ve clearly covered a lot of material. There are very few aspects of the Java

programming language that you haven’t been exposed to in some way, but there are

some. I encourage you to further your exploration of the Java programming language

and learn more about advanced topics like referencing, abstract classes, and interfaces.

 Acknowledgments
I’d like to take a moment to make some important acknowledgments regarding the

creation of this text and the associated game projects. First off, I’d like to mention two

people who helped me get this project finished.

Chapter 10 ConClusion

https://doi.org/10.1007/978-1-4842-8951-8_8
https://doi.org/10.1007/978-1-4842-8951-8_9

241

Gabriel Szabo: A consummate IT professional who provided an expert technical

review of this book.

Katia Pouleva: A fantastic artist who created all of the Memory Match Pro game art

and also cleaned up all of the screenshots in this text.

With regard to the associated game projects, I’d like to make the following mentions.

I’d like to thank Pipoya for creating some great, low-cost, 2D video game art. You can

access Pipoya’s free RPG character sprites at the following URL. Be sure to support and

check out all of the great work this artist has to offer.

Pipoya’s Free RPG Character Sprites 32x32

The next content creator I’d like to thank is O_lobster. I used one of O_lobster’s free

dungeon tilesets to build the DungeonTrap board. You can access O_lobster’s work at

the following URL:

Simple Dungeon Crawler 16x16 Pixel Art Asset Pack

I’d like to thank Robinhood76 and Leszek_Szary for the sound effects they shared on

freesound.org. The two small sound effects are the only sounds used in the game jams

within and can be found at the following URLs:

FreeSound Sound Effect 1

FreeSound Sound Effect 2

I would also like to thank Chasersgaming and Zintoki, both from itch.io, for their

artwork that was used in the MmgTestSpace API’s game engine demo application. All of

the source artwork along with their original download URLs can be found in the “cfg/

asset_src” folder found in the game engine’s project directory.

With regard to the Memory Match game, I would like to make the following

mentions. First off, the cloud convert website for providing a solid service that comes in

handy when trying to convert audio resources between formats:

https://cloudconvert.com/

Secondly, I would like to thank the creators of the following free resources that were

used to create the game:

Food Icons

Memory Match Logo Source Imagery

Game Board Imagery 1

Game Board Imagery 2

Without the talented and gracious work of those listed here, I would not have

been able to get the associated game projects created for this text. Among the various

acknowledgments, mentions, and links are some solid resources for video game images

and audio. Keep an eye out for them!

Chapter 10 ConClusion

https://pipoya.itch.io/pipoya-free-rpg-character-sprites-32x32
https://o-lobster.itch.io/simple-dungeon-crawler-16x16-pixel-pack?download
https://freesound.org/people/Robinhood76/sounds/95557/
https://freesound.org/people/Leszek_Szary/sounds/146726/
https://cloudconvert.com/
https://ghostpixxells.itch.io/pixelfood
https://static.vecteezy.com/system/resources/previews/000/694/128/original/geometric-seamless-pattern-with-colorful-squares-vector.jpg
https://www.pexels.com/photo/brown-wood-surface-172289/
https://www.pexels.com/photo/macro-shot-of-wooden-planks-326333/

242

 Where You Go from Here
It’s really up to you what direction you will move in after completing this text. Permit me

to make a few suggestions.

• Further your exploration of the Java programming language and

learn to use some of the remaining, advanced topics that we haven’t

covered here like interfaces, abstract classes, and object referencing.

• Make changes to the included video game project. You’ve had a lot of

experience working with the associated game projects throughout the

text’s coding challenges. Take it one step further and start implementing

your own new game features in any of them. Have fun with it!

• Build your own video game from the Pong Clone seed project up.

You’ve learned how to create a new seed project for a video game so

why not try to create your own game.

• Continue programming in Java and learn more about the classes

included in the Java framework of standard classes.

• Make a version of the Memory Match game that uses the secret

Memory Match Pro images created by Katia Pouleva. Look around in

the MemoryMatch project’s folders to find it.

The sky is the limit. Take the coding tools you’ve learned here and apply them to

any other language you know, your next Java program, or even your next great game. If

you are serious about learning more about Java game programming, then perhaps you’d

like to learn more about the game engine that powers all of the included video game

projects; please visit this GitHub repository:

https://github.com/Apress/introduction- video- game- engine- development

The text is a detailed review of the game engine code and can provide you with the

next step in your game programming journey.

 Saying Goodbye
Well, it’s time for me to say goodbye. I hope that this book provides you with some

amount of knowledge and/or experience working with the Java programming language

so that you can start writing your own programs and even games. Wishing you the best of

luck in all that you do. Ciao!

Chapter 10 ConClusion

https://github.com/Apress/introduction-video-game-engine-development

243

Index

A, B
Advanced Programming Interface (API),

38, 39, 241
Arrays

copy creation, 61
data representation, 54
declaration and initialization,

55, 56, 59
element initialization, 58
elements, 63, 64
explicit array instantiation, 60
get and set access, 60
independent copy, 62
initialization, 58
instantiation, 57, 59, 60
length attribute, 60, 61
lists

ArrayLists, 72, 73
data structures, 66
declaration, 67
delete option, 71
explicit approach, 70
get and set elements, 69
important methods, 69
initialization, 67, 68, 70
solution, 73

multidimensional arrays, 112–116
problem solving, 54
reference code, 61
requirements, 63, 64
signature method, 63

solution, 65
variables, 56, 59

C
Casting/conversion

data types, 101, 103, 104
implicit/explicit variable

conversion, 105
object types, 104
string value, 101–103
toString method, 104

Classes, 178, 239
access modifiers, 158, 160, 161, 178
class design, 179
configuration file, 183–185
Dungeon trap’s static main, 181–182
declarations, 159
default modifier, 163
definition, 158
directory structure, 162
fields, 160–163
java file, 162
memory match game, 184, 185
NetBeans IDE, 180
package-private, 160
private/protected access

modifier, 161
public access modifier, 162, 163
static main entry point, 179–181
superclass/interfaces, 158
XML configuration, 183

© Victor G. Brusca 2023
V. G. Brusca, Introduction to Java Through Game Development, https://doi.org/10.1007/978-1-4842-8951-8

https://doi.org/10.1007/978-1-4842-8951-8#DOI

244

Computer programming
computers, 30
definition, 29
programming languages, 30–32
source code, 30
system programming language, 32, 33

Constructors, 172–174
C programming language, 31
C++ programming language, 31, 32, 163

D
Data structures, 111

data types, 111
hashing, 116–122
multidimensional arrays, 112–116
parameterized types, 130
stacks, 122–128, 131–133
queues, 128–130

Data types, 238
array (see Arrays)
boolean data types, 46
broken version, 50
bytes/floats, 45
casting and conversion, 101
challenges, 74
characteristics, 44
coding challenges, 49, 50
definition, 43
fundamental building blocks, 44
initialization, 47–50
solution, 51, 52
string variable, 44
var keyword/dynamic typing, 52–54
variable declaration, 44–49
working version, 51

Debugging techniques
NetBeans IDE

break point, 226
button bar, 225
description, 227
features, 224–228
stopping mode, 227

output statements, 223, 224

E
Encapsulation, 222, 240

class libraries, 205–207
definition, 190
features, 189
inheritance (see Inheritance)
Java class, 190
polymorphism (see Polymorphism)
principle, 190
video game projects, 207–221

Enumerations, 238
challenges, 106
class features, 98
definition, 98–100
implementation, 99
initialization, 107
looping, 141
Pong Clone game, 108
solution, 107
steps, 106

Exceptions, 240
definition, 231, 232
exception class, 228, 230
ExceptionTest method, 234
handling execution, 228–231
MyException class, 232
PongClone project, 234
ProcessImage method, 232
stack trace, 233, 234
try-catch statements, 229, 230

INDEX

245

Expressions/operators, 238
assignments, 83, 84
bit shifting, 86, 87
bitwise, 85, 86
boolean, 82, 83
categories, 76
class methods, 80
definition, 77
increment/decrement, 84, 85
lower-level language features, 77–80
modulo operator, 76
numeric types, 80–82
operator precedence, 87, 88
types, 76
unary/binary/ternary operators, 76

F
Flow controls

challenge, 95, 96
If-Else statements, 89–91
initialization, 89
keyboard keys, 95
solution, 96–98
switch statements, 91–93
try-catch statement, 94–96
variable declaration, 88

G, H
Game development tasks

code challenges, 3
conventions, 4, 5
development process, 8
Dungeon trap main, 5
environment, 9
files/namespaces, 20–26
formatting patterns, 2, 3

game project, 1
general structure, 3
programming language, 38

classes, 40
description, 40, 41
engine source code, 38
game loop, 39
program structure, 40
responsibilities, 39

requirements, 2
source code, 4
text information, 1

I
Inheritance, 222, 240

class declaration, 191
coding challenge, 193
features, 189, 191
flame spear, 195
solution, 194, 195
super keyword, 192

Integrated Development
Environment (IDE), 2, 9

debugging techniques, 224–228
Iteration, loop, See Looping

J, K
Java Development Kit (JDK), 35, 42

download versions, 9
NetBeans IDE, 9

Java programming language, 29, 237
advanced information, 7, 8
classes, 100, 101
data (see Data types)
detailed review, 242
data structures, 111

INDEX

246

encapsulation/inheritance/
polymorphism, 189

enumeration, 98–100
expressions/operators, 76–88
fundamentals, 1, 6, 7
game (see Game development tasks)
history, 33
HTTP protocol, 34
JDK, 35
JRE programs, 35, 36
keywords/reserved words, 38, 39
learning process, 237–240
looping/iteration, 135
objectives, 6
object-oriented programming, 157
resources, 241
semantics, 36
syntax rules, 35–37
URLs, 241
variables, 98

Java Runtime Environment (JRE),
34, 35, 42

L
Libraries, 222

framework, 207
JAR file, 205
main packages, 206
MmgBmp class, 206
NetBeans IDE, 206
properties popup, 206

Looping, 239
break/continue statements, 152
do-while loop, 151
for each loops

coding challenge, 153

MmgDraw method, 154
solution, 153

flow control, 135
implementations, 155
for loops

control variable’s scope, 136
data types, 141
declaration, 137
different techniques, 138
escape condition, 137
for-each loop, 140, 141
go-to solution, 136
initialization, 139
source code, 136
versions, 136

while loop, 142
calculation, 147
condition, 142
controlling loop, 146
declaration, 142
delta time, 149
explicit frame rate, 147
frame/time based movement, 150
implicit/explicit frame rate, 144
main game loop, 144, 149
panel class, 145, 146
pixels per frame approach, 149
responsibilities, 144
timeFrameDiff variable, 148
time sink, 143

M
Methods

access modifier, 166
class declarations, 163–165
GameData class, 164, 167
gameState variable, 166

Java programming language (cont.)

INDEX

247

getNumberOfPlayers/setNumber
OfPlayers methods, 166

testVariableScope method, 168
vararg modifier, 168

Multidimensional arrays
declaration, 112
definition, 112
deletion, 115, 116
get/set values, 113, 114

N
NetBeans IDE

classes, 180
computer architecture/operating

system, 11
debugging techniques, 224–228
installation process, 9, 12, 13
libraries, 205
project setup

directories, 13
libraries properties, 19
packaging properties, 16
Pong Clone project, 17
projects, 14
sources project settings, 17, 18

screenshot, 10, 15

O
Object-oriented programming

(OOP), 32, 190
classes, 157, 158 (see also Classes)
coding challenge, 174, 175
constructors, 172–174
data structure, 157
encapsulation/inheritance/

polymorphism, 189

methods, 163–169
MmgBmp class, 174
ProcessKeyPress and ProcessKey

Release methods, 178
ScreenGame class, 177, 178
SetIsVisible method, 178
SetState method, 175
solution, 176, 178
static class members, 169–172

Operators/operator precedence, 87, 88

P, Q, R
Polymorphism, 222, 240

class declarations, 196
classes, 202
coding challenge, 202–204
definition, 195
features, 189
getName/getFoodSource

methods, 201
MdtWeaponSpearFlame.java file, 203
methods, 203
modeling fish code, 197–201
override method, 197, 202
ProcessAClick method, 203, 205
solution, 204, 205
super-class definition, 197
toString method, 201

S, T
Stacks

abstract data, 122
ArrayList method, 132
challenges, 131
CheckForMatches method, 133
data elements, 125

INDEX

248

declaration, 123, 124
get/set values, 125–127
initialization, 124
instantiation, 123, 124
MemoryMatch, 133
solution, 132

U
Queues, 111, 128–130

V, W, X, Y, Z
Variables, See Data types
Video game projects, 222

coding challenge, 209, 210

configuration file, 208, 214
drawable directory, 208
execution process, 220, 221
GamePanel.java, 207
libraries, 213–215
MainFrame.java, 207
MyNewGame project, 213
NetBeans project folder, 208
Pong Clone class files, 217–220
Pong Clone game, 207, 221
project configuration, 219, 220
project dialog, 211–213
refactor copy dialog, 218
resource folder, 215–217
setup/configuration, 207
solution, 210
static main entry point, 207

Stacks (cont.)

INDEX

	Table of Contents
	About the Author
	Introduction
	Chapter 1: Introduction
	About This Text
	Notes on Formatting
	Notes on Conventions
	Objectives
	Java Fundamental Topics
	Java Advanced Topics
	Game Development Topics

	Setting Up Your Environment
	Getting the Game Projects Setup

	Checking Out the Games
	Conclusion
	What We Covered

	Chapter 2: What Is Java Programming
	Computers and Programming
	Programming Computers
	Programming Languages
	Types of Programs/Programming

	The Java Programming Language
	The JRE
	The JDK

	Syntax and Semantics
	Basic Syntax Rules
	Keywords/Reserved Words

	Game Programming
	The Main Game Loop
	Program Structure
	Overview of Included Games

	Conclusion
	What We Covered

	Chapter 3: Variables
	Data Types
	Basic Data Types
	Using Basic Data Types
	Challenge: Basic Data Types
	Challenge Solution

	Advanced Data Types
	The var Keyword and Dynamic Typing
	Arrays
	Using Arrays
	Challenge: Arrays
	Challenge Solution
	Lists
	Using Lists
	Challenge: ArrayLists
	Challenge Solution

	Conclusion
	What We Covered

	Chapter 4: Expressions and Operators, Flow Control, and More on Variables
	Expressions and Operators
	Numeric Expressions
	Boolean Expressions
	Assignment Expressions
	Increment/Decrement Expressions
	Bitwise Expressions
	Bit-Shift Expressions
	Operators and Operator Precedence
	Flow Control
	If-Else Statements
	Switch Statements
	Try-Catch Statements
	Challenge: Flow Control
	Challenge Solution

	More on Variables
	Enumerations
	Very Basic Java Classes
	Casting and Conversion
	Challenge: Enumerations
	Challenge: Solution

	Conclusion
	What We Covered

	Chapter 5: More Data Structures
	Multidimensional Arrays
	Declaring Multidimensional Arrays
	Using Multidimensional Arrays

	Hashes
	Declaring Hashtables
	Using Hashtables

	Stacks
	Declaring Stacks
	Using Stacks

	Queues
	Parameterized Types and Data Structures
	Challenge: Stacks
	Challenge Solution
	Conclusion
	What We Covered

	Chapter 6: Looping and Iteration
	For Loops
	Basic For Loop
	For-Each Loop

	While Loops
	Basic While Loop
	Main Game Loop

	Do-While Loops
	Basic Do-While Loop

	Break and Continue
	Challenge: For-Each Loops
	Challenge Solution
	Conclusion
	What We Covered

	Chapter 7: Objects, Classes, and OOP
	Classes
	Fields
	Methods
	Static Members
	Constructors

	Challenge: The MmgBmp Class
	Challenge Solution
	Challenge: The ScreenGame Class
	Challenge Solution
	Advanced Class Topics
	Access
	Class Design
	Static Main Entry Point

	Challenge: Dungeon Trap’s Static Main
	Challenge Solution
	Conclusion
	What We Covered

	Chapter 8: Encapsulation, Inheritance, and Polymorphism
	Encapsulation
	Inheritance
	Challenge: Inheritance
	Challenge Solution

	Polymorphism
	Challenge: Polymorphism
	Challenge Solution

	Importing Class Libraries
	Video Game Project Structure
	Challenge: Create a New Game Project
	Challenge Solution
	Step 1: Create a New Project to Customize
	Step 2: Add the Default Project Libraries
	Step 3: Copy Over the Resource Folder
	Step 4: Copy Over the PongClone Java Classes
	Step 5: Configure Project Settings
	Step 6: Execute the Pong Clone Copy

	Conclusion
	What We Covered

	Chapter 9: Debugging Techniques
	Output Trace
	IDE Debugging Features
	Exceptions
	Handling Exceptions
	Defining Exceptions
	The Stack Trace

	Conclusion
	What We Covered

	Chapter 10: Conclusion
	Accomplishments
	Acknowledgments
	Where You Go from Here
	Saying Goodbye

	Index

