
Programming
for Game
Design

A Hands-On Guide with Godot
—
Wallace Wang
Tonnetta Walcott

Programming for
Game Design

A Hands-On Guide with Godot

Wallace Wang
Tonnetta Walcott

Programming for Game Design: A Hands-On Guide with Godot

ISBN-13 (pbk): 979-8-8688-0189-1 ISBN-13 (electronic): 979-8-8688-0190-7
https://doi.org/10.1007/979-8-8688-0190-7

Copyright © 2024 by Wallace Wang, Tonnetta Walcott

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Miriam Haidara
Development Editor: James Markham
Editorial Assistant: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

Wallace Wang
San Diego, CA, USA

Tonnetta Walcott
El Cajon, CA, USA

https://doi.org/10.1007/979-8-8688-0190-7

iii

Table of Contents

About the Authors ��ix

About the Technical Reviewer ���xi

Chapter 1: Why Learn Programming with the Godot Game Engine? ������1

Chapter 2: Getting to Know Godot ��5

Creating and Opening a Godot Project ��7

Creating a Scene and Nodes ���13

Viewing and Modifying a Scene ��23

Rotating and Scaling a Node ���28

Summary���30

Chapter 3: Writing Scripts ��33

Creating a Script ���35

Writing a Script ���38

Viewing the GDScript Documentation ���42

Summary���51

Chapter 4: Storing Data in Variables ��53

Creating a Variable ��54

Storing and Retrieving Values in a Variable ��56

Understanding Data Types ��59

Understanding Variable Scope ��65

Constants and Enumerations ��70

Comments ���74

iv

Exercise: Seeing Variables Change ���75

Summary���82

Chapter 5: Mathematical Operations ��85

Mathematical Operators ���86

Creating Constants ��89

Understanding Precedence ���91

Using Math Functions ���94

Creating Random Numbers ���96

Manipulating Strings ���99

Exercise: Randomizing an X and Y Position ��101

Summary���107

Chapter 6: Branching Statements ���109

Working with Comparison Operators ��110

Working with Logical Operators ��113

The if Statement ���115

The if-else Statement ���117

The if-elif Statement ���119

The match Statement ��122

Exercise: Reacting to Different Boolean Values ��126

Summary���130

Chapter 7: Looping Statements ��133

Using a For Loop ���134

Using a For Loop to Count with Different Values ���136

Using the For Loop with Strings and Arrays ��140

The While Loop ��143

Comparing For and While Loops ���146

Table of ConTenTs

v

Exercise: Repeating Code with Loops ���150

Summary���153

Chapter 8: Understanding Arrays ���155

Using Arrays ��156

Creating and Adding Items to an Array ���161

Getting Information About Arrays ��163

Retrieving Data from Arrays ��166

Manipulating Arrays ��170

Searching for Data in an Array ��173

Deleting Data from an Array ��175

Exercise: Using Arrays ���176

Summary���181

Chapter 9: Understanding Dictionaries ���183

Creating Dictionaries ���184

Retrieving Data from a Dictionary ���186

Getting Information About Dictionaries ���189

Changing and Deleting Data in Dictionaries��191

Exercise: Using Dictionaries ��194

Summary���198

Chapter 10: Functions ��199

Understanding Functions ��200

Creating Functions ��204

Using Parameters with Functions ���206

Optional Parameters ���211

Returning Values with Functions ��215

Exercise: Using Functions ���218

Summary���222

Table of ConTenTs

vi

Chapter 11: Object-Oriented Programming ��������������������������������������223

Creating a Class ��224

Initializing Properties ��228

Inheriting Classes ���232

Polymorphism ���237

Exercise: Understanding How Object- Oriented Programming
Works in Godot ��241

Summary���250

Chapter 12: Getting Input from the User ���251

Detecting Keyboard and Mouse Input ���252

Defining an Input Map ���256

Detecting Modifier Keys in an Input Map ��265

Summary���272

Chapter 13: Shooting Projectiles ��273

Creating a Projectile Scene ���274

Changing the Name of a Node ��275

Adding a Projectile Image ���278

Adding a Collision Shape ��279

Making the Projectile Move ��282

Summary���285

Chapter 14: Adding Projectiles to a Player ���������������������������������������287

Creating a Player Scene ��288

Changing the Name of a Node ��290

Adding a Player Image and Collision Shape ��292

Using the Marker2D Node to Define the Projectile Location �����������������������������293

Defining Ways to Control the Player ��295

Writing GDScript Code to Control the Player ���302

Table of ConTenTs

vii

Firing a Projectile ��307

Removing Projectiles ��313

Summary���316

Chapter 15: Hitting Enemies with Projectiles �����������������������������������319

Creating an Enemy Scene ���320

Changing the Name of a Node ��321

Adding an Enemy Image and Collision Shape ���323

Creating a Main Scene ��326

Detecting Collisions ��330

Summary���335

Chapter 16: Displaying a User Interface ���337

Inputting and Displaying Text ��338

Using Signals ��342

Working with TextEdit and Buttons ���347

Using Option Buttons and Item Lists ���351

Working with CheckButtons ��361

Working with Sliders ���365

Summary���367

Chapter 17: Adding Physics ���369

Playing with Gravity ��369

Adding Damping ��376

Working with Static and Rigid Bodies ���378

Working with Polygons ���385

Using Layers and Masks ���389

Restricting Movement ���397

Summary���402

Table of ConTenTs

viii

Chapter 18: Playing Audio ��403

Audio Formats in Godot ���403

Starting and Stopping Audio ���408

Pausing Audio ���412

Looping Audio ���417

Playing Audio When Detecting a Collision ���420

Summary���431

Chapter 19: Creating and Using Scenes ���433

Automatically Adding Objects in Scenes ���433

Modifying Instances of a Scene ��440

Automatically Moving and Rotating a Scene ��448

Following the Player with a Camera ���454

Summary���460

Chapter 20: Using Signals ��463

Calling Down to a Function ���464

Signaling Up ��472

Summary���487

Chapter 21: Creating a Simple Tic-Tac- Toe Game �����������������������������489

Detecting Clicks on the Board ���491

Displaying Player Moves ���493

Summary���502

Index ���503

Table of ConTenTs

ix

About the Authors

Wallace Wang has been writing computer books

for over 30 years, including Steal This Computer

Book, Microsoft Office for Dummies, Beginning

Programming for Dummies, Beginning iPhone

Development with SwiftUI, and The Structure

of Game Design, to name just a few. He created

the board game “Orbit War” for Steve Jackson

Games, which simulated satellite warfare in the

near future. He also writes screenplays and won

first place in Scriptapalooza’s 2023 screenwriting

competition.

Tonnetta Walcott is a writer, podcaster, gamer,

and programmer who is passionate about

video games and technology. She graduated

from San Diego State University with a

bachelor’s in English and has a certificate in

computer programming. After being offered

an internship at Sony Online Entertainment,

Tonnetta learned computer programming

(C++ and Java), web development, and

game design using the Unity and Godot

game engines. Tonnetta has programmed a

simulation to chess, Battleship, and a matching concentration game and is

currently working on a game called NinChibi, where tiny chibi ninjas play

tag in single-player and multiplayer modes. The NinChibi game is built

with the Godot game engine.

xi

Massimo Nardone has more than 27 years

of experience in security, web/mobile

development, and cloud and IT architecture.

His true IT passions are security and Android.

He has been programming and teaching how

to program with Android, Perl, PHP, Java, VB,

Python, C/C++, and MySQL for more than 27

years. He holds a Master of Science degree

in Computing Science from the University

of Salerno, Italy. He has worked as chief

information security officer (CISO), software

engineer, chief security architect, security executive, and OT/IoT/IIoT

security leader and architect for many years.

About the Technical Reviewer

1© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_1

CHAPTER 1

Why Learn
Programming
with the Godot Game
Engine?
Many people want to learn programming because the idea of creating a

program can be fun and exciting. Although programming is a skill that

anyone can learn, far too many beginner programming books and courses

forget about making programming fun right from the start.

Programming appeals to people because they want to create projects

that are interesting and show off their programming skills. Unfortunately,

the time for novices to gain the necessary skills to achieve their dreams can

take way too long. The end result is that too many programming students

give up because they fail to see how the skills that they gradually learn can

be useful in achieving the dreams that they want to achieve.

It doesn’t have to be that way. Persistency and patience are key.

Programming is about trial and error; however, it comes with the reward of

successfully completing a task.

https://doi.org/10.1007/979-8-8688-0190-7_1

2

That’s why this book is different. All beginning programming books

and courses must start with the basics. Unfortunately, those basics

provide minimal feedback to make programming interesting. That’s why

this book teaches the principles of programming using the Godot game

engine. Besides Unity and Unreal Engine, Godot is a top upcoming game

engine used to make mobile games, PC games, and any type of video game

overall.

Learning to program through a game engine can offer greater

motivation. Rather than learn programming in isolation, it’s far better to

use a student’s interest and familiarity with video games to learn the basics

of programming while also learning how video games work. By visually

seeing, changing, and controlling simple video game elements using

their fledging programming skills, beginners can get instant feedback in a

meaningful way. This can help motivate students to keep learning more.

While there are plenty of game engines students can use, the Godot

game engine is unique for several reasons. First, the Godot game engine

runs on the three major operating systems for personal computers:

Windows, macOS, and Linux. That means the Godot game engine is

accessible to the greatest number of students than most other game

engines.

Second, the Godot game engine is open source and completely free.

There are no licensing fees or restrictions for anyone to use the Godot

game engine. This makes Godot available to everyone.

Third, and most importantly, the Godot game engine is far smaller

than most of the major game engines on the market today. The Godot

game engine can run just fine on older and slower computers with

minimal storage that cannot run many other game engines. This makes the

Godot game engine especially suitable for most people who do not have

access to the latest, fastest, or most expensive computers on the market

that most other game engines require before you can use them. Godot

also excels in building 2D platforms and has recently been updated to also

support 3D games.

Chapter 1 Why Learn programming With the godot game engine?

3

Because the Godot game engine is free, runs on all the major platforms

(Windows, macOS, and Linux), and runs on older, slower computers, the

Godot game engine offers a perfect introduction to both programming and

video game development.

You won’t learn how to develop the next massively multiplayer AAA

game title from this book, but you will learn programming principles

and basics in a fun and engaging manner. Although Godot uses its own

proprietary programming language called GDScript, it’s based on Python

and C. That means learning GDScript will prepare students to learn other

programming languages in the future.

So if you’re interested in both programming and video games, this

book is for you. We’ll start with the basics of a video game, then focus

on programming principles common in all programming languages.

Finally, we’ll focus on the specifics to making 2D video games. By the

time you complete this book, you should have a solid understanding of

programming principles and video game development.

This book will make programming fun by teaching video game design

in an accessible, fun, and interesting step-by-step manner. When you

finish this book, you’ll be well on your way to creating more sophisticated

programs and more complex video games. This book can help open

the doors to the fun and excitement of programming and video game

development. After this book, the entire world of programming and video

game development will be open to you no matter what programming

language or game engine you choose next.

As the Chinese proverb states, “A journey of a thousand miles begins

with a single step.” Let this book be your first step and you’ll find that

programming can be just as fun and exciting as you always thought it

should be.

Chapter 1 Why Learn programming With the godot game engine?

5© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_2

CHAPTER 2

Getting to Know
Godot
The best way to learn any new skill is to start practicing it and not be

afraid of making a mistake. To learn programming, you need to spend

time practicing on your computer, so before you go any further, download

and install the Godot game engine (https://godotengine.org) on your

computer. Once you’ve installed Godot, you won’t need to install any

other programs to write programs in Godot. Remember, practicing takes

time and patience in order to be good at something. Learning Godot is a

fresh start!

The main steps to using Godot involve creating, editing, and running a

project. A project represents a complete video game. Each time you want

to create a different video game, you’ll need to create a separate project.

Godot isolates projects by storing them in different folders. The more

projects that you create, the more you’ll understand the mechanisms of

Godot. Still, it would be wise to focus on one project at a time to avoid

overload.

Although projects represent a complete video game, you may want to

create projects to test out different ideas. For example, you might want to

create a project to test out a combat system and another project to test out

an inventory system. Separate projects let you experiment with different

ideas in isolation, making them easier and faster to test without worrying

about integrating with the rest of an existing project.

https://doi.org/10.1007/979-8-8688-0190-7_2
https://godotengine.org

6

While you can create as many projects as you wish, you’ll most likely

spend the bulk of your time editing an existing project rather than creating

new projects. Editing a project involves several tasks. The first way to edit

any project is to add assets such as graphic items to represent players,

obstacles, or background images. The best part of the project is that you

can be as creative as you want with your assets to your game. There are

different ways to create or obtain assets with enough research, so you don’t

have to make everything yourself.

Once you’ve added assets to a project, a second way to edit a project is

to modify the assets such as defining their position on the game field, their

size, their orientation, and their appearance. Assets have both a physical

appearance and a spatial location that you can define. Take as much time

as you need to modify and position your assets in order to build a fun,

playable, and functional game.

The appearance and position of assets create a static image. To make

a project interactive, you’ll need to write scripts that define how an asset

should behave when your project runs. A script is a code or program

that gives instructions to make assets function in a certain way. You will

learn more about scripts later on throughout this book. For example, a

cartoon car might need to avoid running into trees, telephone poles, and

other cars. If that should happen, then the cartoon car needs to change its

appearance to show the results of the crash. In addition, the cartoon car

should also behave differently after it’s been damaged.

In Godot, such scripts are written in a proprietary language called

GDScript, which resembles the Python programming language. Scripts

let assets in a project respond to user control through a keyboard or touch

screen and interact with other game assets.

A cartoon spaceship might fire lasers that can destroy asteroids in

the way. This might require a script to control and fire lasers from the

spaceship and another script for the asteroid to detect when it’s been hit

by a laser. Essentially, scripts make assets interactive and controllable by

the user.

Chapter 2 GettinG to Know Godot

7

Editing a project lets you change the way the project looks and

behaves. To test if your project looks and works the way you want, you’ll

need to run the project periodically. These three steps (creating a project,

editing a project, and running a project) define the main actions you’ll take

while using Godot.

 Creating and Opening a Godot Project
When you use a word processor, you create an empty document that

you can fill with words that you can rearrange and format to change its

appearance. Likewise, when you use a game engine like Godot, you create

a bare-bones video game that you can fill with graphics and audio that you

can rearrange and modify to change their appearance.

Before you can use Godot, you must first know how to create a Godot

project. Every Godot project must be stored in a folder. To avoid mixing

Godot files with any existing files, it’s best to create a new, empty folder to

hold your Godot project.

To create a new Godot project, follow these steps:

 1. Start Godot. Godot displays a Project Manager

window. The Project Manager window lists any

previously opened Godot projects as well as gives

you options to create a new project as shown in

Figure 2-1.

Chapter 2 GettinG to Know Godot

8

Figure 2-1. The Project Manager window

 2. Click New in the upper left corner. A Create New

Project dialog box appears as shown in Figure 2-2.

Godot requires that you create a new folder for each

project.

Chapter 2 GettinG to Know Godot

9

Figure 2-2. The Create New Project dialog box

 3. Click the Browse button in the Project Path. A dialog

box appears, showing all the folders available.

 4. Click a folder where you want to store your Godot

project and click Select Current Folder.

 5. Click the Project Name text field and type a folder

name to store your project. (The default folder/

project name is New Game Project.)

 6. Click the Create Folder button.

 7. (Optional) Click the Option button to choose a

renderer version. For this project, it doesn’t matter

which renderer option you choose.

Chapter 2 GettinG to Know Godot

10

 8. Click the Create & Edit button. Godot creates

an empty project in the folder that you selected

in step 4.

Once you’ve created at least one Godot project, you can open

that project at a later time. To open an existing Godot project, follow

these steps:

 1. Start Godot. Godot displays a Project Manager

window (see Figure 2-1).

 2. Click the Import button. An Import Existing Project

dialog box appears as shown in Figure 2-3.

Figure 2-3. The Import Existing Project dialog box

 3. Click the Browse button. A Directories & Files dialog

box appears as shown in Figure 2-4.

Chapter 2 GettinG to Know Godot

11

Figure 2-4. The Open a File dialog box

 4. Double-click the folder that contains the Godot

project file that you want to load. (You may need to

repeat this process until you find the project.godot

file that you want to load as shown in Figure 2-5.)

Chapter 2 GettinG to Know Godot

12

Figure 2-5. Look for the project.godot file stored in your Godot
project folder

 5. Click the project.godot file and then click the Open

button. Godot loads your chosen project.

If you had created or opened a project recently, the name of your

project may appear in the Project Manager window (see Figure 2-1).

In that case, you can skip all of the preceding steps and simply double-

click the Godot project you want to open that appears in the Project

Manager window.

Chapter 2 GettinG to Know Godot

13

 Creating a Scene and Nodes
Whether you create a new project or open an existing project, you’ll see the

Godot editor window where you can add, delete, and modify the different

parts of your project. The main window in the center of the screen, called

the viewport, is where you can create and modify data.

The viewport can display two types of project data:

• Graphic elements that define the visual appearance of a

scene (2D or 3D)

• GDScript code that defines how to respond to an action

such as the user pressing a key or the objects colliding

(Script)

In Godot, a project consists of one or more scenes. One scene might

define a game level or playing field, a second scene might define the player

in the level or playing field, and a third scene might define a weapon that

the player can hold. Godot stores scenes in files that end with the .tscn file

extension as shown in Figure 2-6.

Chapter 2 GettinG to Know Godot

14

Figure 2-6. Every Godot scene gets stored in a file with the .tscn file
extension

A single scene consists of one or more nodes where nodes provide

additional features for customizing the appearance or behavior of a scene.

One node might define an area to detect collisions, while another node

might define the graphic images to display on the screen as shown in

Figure 2-7.

Chapter 2 GettinG to Know Godot

15

Figure 2-7. A scene can consist of multiple nodes

To design the visual appearance of your Godot project, you’ll need

to create one or more scenes and then customize each scene with one or

more nodes.

To see how to create a scene and add a node, follow these steps:

 1. Create a new Godot project and give it a descriptive

name. Until you add a scene, Godot displays a menu

of the different types of scenes you can add as the

initial or root node as shown in Figure 2-8.

Figure 2-8. Choosing an initial scene for a project

Chapter 2 GettinG to Know Godot

16

 2. Click Other Node. A Create New Node window

appears as shown in Figure 2-9.

Figure 2-9. The Create New Node window

 3. Click the Search text field at the top of the Create

New Node window and type node. The Create New

Node window only displays those options that

contain the word “node” as shown in Figure 2-10.

Chapter 2 GettinG to Know Godot

17

Figure 2-10. Typing in the Search text field filters out the list
of options

 4. Click Node2D and click the Create button. Godot

displays the Node2D in the Scene dock, a cross

representing the Node2D in the viewport, and all the

different properties you can change in the Node2D

in the Inspector pane as shown in Figure 2-11.

Chapter 2 GettinG to Know Godot

18

Figure 2-11. The Node2D in the Godot editor

 5. Click the Node2D in the Scene dock to select it. To

display a graphic image on the Node2D, we need

to attach another node, called a child node, to

the Node2D.

 6. Attach a child node to the Node2D using one of the

following methods as shown in Figure 2-12:

• Click the Add Child Node icon that appears as

a + icon.

• Press Ctrl+A (Windows/Linux) or Command+A

(Macintosh).

• Right-click, and when a pop-up menu appears,

choose Add Child Node.

Chapter 2 GettinG to Know Godot

19

Another Create New Node window appears (see

Figure 2-9).

 7. Click the Search text field at the top of the Create

New Node window and type sprite.

 8. Click Sprite2D and click the Create button. The

Scene dock displays the Sprite2D node as a child

attached to Node2D as shown in Figure 2-13.

Figure 2-12. Adding a child node

Chapter 2 GettinG to Know Godot

20

Figure 2-13. The Sprite2D child node attached to Node2D

 9. Click Sprite2D in the Scene dock to select it. Notice

that the Inspector dock now displays properties you

can modify.

 10. Click <empty> in the Texture property in the

Inspector dock. A pop-up menu appears as shown

in Figure 2-14.

Chapter 2 GettinG to Know Godot

21

Figure 2-14. The Texture pop-up menu in the Inspector dock

Chapter 2 GettinG to Know Godot

22

 11. Choose Load or Quick Load. A dialog box appears as

shown in Figure 2-15.

Figure 2-15. The Load and Quick Load dialog boxes

 12. Click icon.svg and click Open. Godot displays the

icon.svg graphic image in the viewport as shown in

Figure 2-16.

Figure 2-16. The icon.svg graphic file displayed in the viewport

Chapter 2 GettinG to Know Godot

23

 13. Choose Scene ➤ Save Scene or choose Ctrl+S

(Windows/Linux) or Command+S (Macintosh).

A Save Scene As dialog box appears. The default

name is node_2d.tscn, but you can give it a more

descriptive name if you wish.

 14. Click Save. Godot saves your changes to the

project. It’s generally a good idea to save your scene

periodically to avoid losing data if your computer

crashes.

At this point, we’ve created a scene (Node2D). Since the Node2D

doesn’t look like anything, we attached a child node to it (Sprite2D). Using

this Sprite2D node, we could then display a graphic image through the

Sprite2D’s Texture property to load the icon.svg file.

 Viewing and Modifying a Scene
After creating a scene, attaching child nodes, and modifying the different

properties of these nodes, you can test what the scene looks when it’s

actually running. To run a project, follow these steps:

 1. Click the Run icon at the top of the screen as shown

in Figure 2-17. The first time you run a project, it

may ask you to define the main scene, which is the

first scene to appear.

Figure 2-17. The Run icon

Chapter 2 GettinG to Know Godot

24

 2. (Optional) If a dialog box appears, asking for you to

choose a main scene, click the Select Current button

to use the currently open scene. When a project

runs, it appears in a (DEBUG) window. Notice that

the image, stored in the Sprite2D node, appears

partially cut off in the upper left corner of the

window as shown in Figure 2-18.

Figure 2-18. The icon.svg image appears partially cut off

 3. Click the close icon in the (DEBUG) window to stop

running the project.

You may wonder why the graphic image appears partially cut off in the

upper left corner of the (DEBUG) window. That’s because the upper left

corner is the default position every time you create a node. To see how to

view the contents of a scene, follow these steps:

 1. Click the Node2D in the Scene dock to select it.

Notice that the icon.svg graphic image appears at

the origin of an x axis (red horizontal line) and y axis

(green vertical line) as shown in Figure 2-19.

Chapter 2 GettinG to Know Godot

25

Figure 2-19. Displaying the Node2D in the viewport

 2. Click the Distraction Free Mode icon in the upper

right corner of the viewport window twice. This icon

toggles between expanding the viewport window

to fill the entire screen or shrinking it down to also

display the Scene, FileSystem, and Inspector docks

on the left and right side of the screen.

 3. Click the – and + Zoom icons in the upper left corner

of the viewport window. The – icon decreases the

magnification of the viewport window, while the +

icon increases magnification.

Chapter 2 GettinG to Know Godot

26

 4. Click the – Zoom icon until the magnification

displays 50%. At 50% magnification, Godot displays

a faint outline that defines the size of the project

window as shown in Figure 2-20. Notice that 50%

magnification makes it easy to see the entire project

window boundary and how the icon.svg appears cut

off in the upper left corner of the window when you

run the project.

Figure 2-20. At 50% magnification, the viewport displays the faint
outline of the project window

 5. Choose Project ➤ Project Setting. A Project Settings

window appears.

 6. Click Window under the Display category. Notice

that you can now change the Viewport Width and

Height as shown in Figure 2-21.

Chapter 2 GettinG to Know Godot

27

Figure 2-21. The Project Settings window lets you change the size of
the window when your project runs

 7. (Optional) Change the Viewport Width and

Viewport Height values.

 8. Click the Close button. The Project Settings window

goes away. Let’s move the position of Node2D

so it doesn’t appear in the upper left corner of

the window.

 9. Click the Node2D in the Scene dock to select it.

Chapter 2 GettinG to Know Godot

28

 10. Click the Move icon (see Figure 2-19). Godot

displays a right-pointing arrow (red) and a

downward-pointing arrow (green) as shown in

Figure 2-22.

Figure 2-22. The Move icon displays an x axis and y axis arrow on
the selected node

 11. Drag the red and green arrows to position the

Node2D in the middle of the window outline.

 12. Click the Run icon. The (DEBUG) window appears,

but notice that the icon.svg image now appears

near the middle of the window where you dragged

the Node2D.

 13. Click the close icon of the (DEBUG) window to stop

running the project.

 Rotating and Scaling a Node
By using the Move icon, you can change a node’s position from the upper

left corner of the project window (where it got partially cut off) to the

middle of the project window. In addition to the Move icon, you can also

use the Rotate and Scale icons to modify the appearance of the Node2D.

Chapter 2 GettinG to Know Godot

29

The Rotate icon lets you rotate a node in different positions, while the

Scale icon lets you shrink or enlarge an icon. To see how to use the Rotate

and Scale icons, follow these steps:

 1. Click the Node2D in the Scene dock to select it.

 2. Click the Rotate icon near the top of the viewport.

 3. Move the mouse pointer over the icon.svg image

and drag the mouse clockwise and counterclockwise

to rotate the image.

 4. Press Ctrl+Z (Windows/Linux) or Command+Z

(Macintosh) to undo any rotation you added to

the image.

 5. Click the Scale icon near the top of the viewport.

A red line and square (x axis) and green line and

square (y axis) appears on the selected node as

shown in Figure 2-23.

Figure 2-23. The Scale lines and squares

 6. Drag the red square right and left. Notice that

this expands and shrinks the width of the

selected image.

Chapter 2 GettinG to Know Godot

30

 7. Press Ctrl+Z (Windows/Linux) or Command+Z

(Macintosh) to undo any scaling you added along

the x axis to the image.

 8. Drag the green square up and down. Notice

that this expands and shrinks the height of the

selected image.

 9. Press Ctrl+Z (Windows/Linux) or Command+Z

(Macintosh) to undo any scaling you added along

the y axis to the image.

 10. Hold down the Shift key and drag either the red or

green square. Notice that when you hold down the

Shift key, both the width and the height of the image

expand or shrink at the same time.

 11. Press Ctrl+Z (Windows/Linux) or Command+Z

(Macintosh) to undo any scaling.

When you want to keep the proportion of the width and the height

constant, hold down the Shift key before dragging one of the scaling

squares. By using the Rotate and Scale icons, you can modify the

appearance of an image displayed in the viewport.

 Summary
You should store every Godot project in a separate folder. That will keep

files from one project from accidentally interfering with files used in a

different project. While each project creates a complete video game, don’t

be afraid to create projects to test ideas out or to learn different features

of Godot.

Chapter 2 GettinG to Know Godot

31

A Godot project consists of one or more scenes where a scene can

represent a playing field, a single object, or parts of an object such as the

separate tires of a cartoon car. Scenes define what users see when they run

your project.

Scenes are made up of one or more nodes. Nodes contain properties

that you can modify in the Inspector dock. You may need to add multiple

nodes to include all the features you need for a particular object in your

project. A common node for displaying graphics is the Sprite2D node.

There are many types of nodes to work with, so do not be afraid to test out

different nodes that you may find suitable for your project.

Once you’ve created a scene, you can arrange objects in that scene

using the Move, Rotate, or Scale icons. The Move icon lets you place an

object on the screen. The Rotate icon lets you change the angle of an object

so that it appears tilted or on its side. The Scale icon lets you change the

height and width of an object.

The main steps to using Godot are creating and opening projects.

Once you open a project, you can edit it by adding, deleting, and changing

scenes through nodes that add additional features. Modifying a project

defines what users will see when your project runs.

Chapter 2 GettinG to Know Godot

33© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_3

CHAPTER 3

Writing Scripts
When you create a project with at least one scene that displays graphic

images on the screen, that scene will appear static no matter what the user

does. To make a project interactive, you need to write scripts that respond

when something happens to a specific node. Two common ways to make

a project interactive are to let the user control an object in a project and to

let the computer change the appearance of a project when collisions occur

between objects.

Scripts are essentially mini-programs written in one of two

programming languages:

 1. C#

 2. GDScript

C# is a programming language developed by Microsoft and heavily

used to create Windows programs. Because C# is so popular, many game

engines have adopted the language as well including Unity and Godot.

One problem with C# is that it was designed as a general purpose,

safer version of the C++ programming language. As a result, C# was never

designed for creating video games. Because of this, the developers of

Godot have created a proprietary language called GDScript, specifically

designed for creating games.

Although you can create a Godot project using both C# and GDScript,

it’s far more common to use one language. For the purposes of this book,

all script examples will focus on GDScript. One difference between C# and

GDScript is the way they define blocks of code.

https://doi.org/10.1007/979-8-8688-0190-7_3

34

In C#, you use curly brackets to define the start and ending of a block

of code such as follows:

if x > y

 {

 print("X is bigger than Y");

 }

In GDScript, you use a colon followed by indentation to define the start

and ending of a block of code such as follows:

if x > y:

 print(“X is bigger than Y")

A second difference between C# and GDScript is that C# requires a

semicolon (;) at the end of each statement, while GDScript does not. Also,

there is a difference when declaring variables. In C#, for example, you

may use “String” or “int” to establish a variable. For example, “String car;

or int car = 2.” With GDScript, variables are established by simply stating

“var” then the name of the variable such as “var health = 100” or “var

car.” There are many types of variables that can be defined when working

with GDScript that one will learn later the further they work with Godot.

Because of these differences, GDScript code can often be shorter and

easier to write than equivalent C# code. If you’re familiar with the Python

programming language, you’ll find GDScript very similar.

Because GDScript is simpler to write, this book will focus on GDScript

exclusively. Once you get familiar with GDScript, you should have little

trouble learning another programming language. Programming in general

is universal.

Chapter 3 Writing SCriptS

35

 Creating a Script
When you create a Godot project, you need to create scenes and build

those scenes using nodes. Nodes are the basic building blocks used to

define a scene. You will add nodes as soon as you open up a scene. To

make a scene responsive, you need to attach scripts to nodes that make up

your scene. A node does not need a script, but if you do attach a script, you

may only attach one script to one node.

To attach a script to a node, you must select a node and then attach a

script to that selected node. Godot stores scripts in files that end with the

.gd file extension.

To see how to attach a script to a node, follow these steps:

 1. Make sure you have opened the Godot project that

you created from Chapter 2. This project should

display the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Attach a script to the Sprite2D node in one of the

following ways as shown in Figure 3-1:

• Click the script icon.

• Right-click the Sprite2D node, and when a pop-up

menu appears, choose Attach Script.

An Attach Node Script dialog box appears as shown

in Figure 3-2.

Chapter 3 Writing SCriptS

36

Figure 3-1. Attaching a script to a node

Chapter 3 Writing SCriptS

37

Figure 3-2. The Attach Node Script window

 4. (Optional) Type a descriptive name for your script

in the Path text field. By default, Godot names your

script using the name of the node that it’s attached

to such as Sprite2D.

 5. Click the Load button to attach the script to the

node. Initially, every script will be empty except

for some functions that will contain “pass,” which

means they don’t do anything until you add your

own code in them.

Chapter 3 Writing SCriptS

38

 Writing a Script
Once you’ve created a script that’s attached to a node, you can then write

GDScript code to make that script work. Every script file contains one or

more functions where each function runs when a certain event occurs.

To see how a script works in a Godot project, follow these steps:

 1. Make sure you have created and attached a script to

the Sprite2D node. A script icon appears to the right

of a node in the Scene dock to show that a script is

attached to that node as shown in Figure 3-3.

Figure 3-3. A script icon identifies nodes that have a script attached

 2. Click the script icon that appears to the right of the

node in the Scene dock. The viewport displays the

contents of the attached script. Notice that within

the viewport, Godot displays a separate menu bar

that contains commands just for editing code as

shown in Figure 3-4.

Figure 3-4. The GDScript menu bar for editing code

Chapter 3 Writing SCriptS

39

 3. Edit the script as follows:

extends Sprite2D

func _ready():

 print("Ready function here")

func _init():

 print("Init function here")

Both the ready() and the init() functions will run

exactly once when the project runs.

 4. Click the Run icon. Godot displays the icon.svg

graphic in the window.

 5. Click the close icon in the Godot window to make it

go away. The Godot editor window appears. Notice

that an Output pane appears at the bottom of the

screen and displays “Init function here” followed by

“Ready function here” as shown in Figure 3-5.

Figure 3-5. All print commands display text in the Output pane
when a project runs

Notice that even though the ready() function appears first in the script,

the init() function actually runs first, and then the ready() function runs

second. The order you store functions in a script doesn’t matter. Functions

only run when certain events occur. In this case, the init() function

runs first, and then the ready() function runs next, but both only run

exactly once.

Chapter 3 Writing SCriptS

40

The init() and ready() functions are useful for performing tasks when a

scene runs such as initializing a game by resetting the score to zero. Godot

offers several built-in functions that run when certain events occur. One of

the most common functions you’ll often use when creating video games is

the process(delta) function.

The process(delta) function runs continuously instead of just once like

the init() and ready() functions. This function can be useful for performing

repetitive tasks such as checking if the user presses a key or clicks

the mouse.

To see how the process(delta) function works, follow these steps:

 1. Click the script icon next to Sprite2D in the

Scene dock. Godot displays the script in the

viewport window.

 2. Edit the script as follows:

extends Sprite2D

var speed = 2

func _process(delta):

 rotation += speed * delta

The second line declares a variable called “speed”

and stores the number 2 in that variable. Then

the third line defines the process(delta) function.

Indented underneath that function is the code

rotation += speed * delta.

The rotation variable defines the rotation of the

Sprite2D, which will rotate the icon.svg graphic.

The += symbols mean that the rotation variable

constantly adds a new value to the existing value.

That makes the icon.svg graphic image rotate

constantly in a clockwise direction.

Chapter 3 Writing SCriptS

41

The speed * delta code multiples the value stored

in the “speed” variable (2) with the value stored

in “delta,” which is the time that has elapsed since

the previous frame. Remember, video games

display graphics like movies, measured in frames

per second, so the “delta” value, multiplied by the

“speed” variable, calculates a numeric value to

rotate the icon.svg graphic at a constant rate.

 3. Click the Run icon. The (DEBUG) window appears.

Notice that the icon.svg graphic rotates at a constant

speed in a clockwise direction.

 4. Click the close icon of the (DEBUG) window.

Notice that the process(delta) function runs the rotation += speed *

delta code continuously, which makes the icon.svg graphic rotate. What

if you delete the process(delta) function and replace it with the ready()

function like this:

extends Sprite2D

var speed = 2

func _ready():

 rotation += speed

Since the ready() function only runs once, the preceding code would

rotate the icon.svg just once and stop. By understanding when certain

functions run, you can put code in the right functions to make your project

interactive.

Chapter 3 Writing SCriptS

42

 Viewing the GDScript Documentation
The key to writing scripts is knowing which functions are available (such as

ready() or process(delta)) and then writing code within each function. To

help you learn which functions are available and what they do, you need to

read the GDScript documentation.

The upper right corner of the viewport displays two icons where you

can view documentation as shown in Figure 3-6.

Figure 3-6. Documentation icons appear in the upper right corner of
the viewport

The Online Docs icon opens your default browser to view the

documentation stored on the Godot website (https://docs.godotengine.

org). You can also access this online documentation by choosing Help ➤

Online Documentation from the Godot menu bar.

The Search Help icon opens a Search Help window to help you view

the different properties and methods available for each type of node as

shown in Figure 3-7. A property is a predefined variable for storing data,

and a method is a predefined function for performing a specific task.

Chapter 3 Writing SCriptS

https://docs.godotengine.org
https://docs.godotengine.org

43

Figure 3-7. The Search Help window

To see how to use the Search Help window, follow these steps:

 1. Click the script icon next to Sprite2D in the

Scene dock. Godot displays the script in the

viewport window.

 2. Click Search Help in the upper right corner of the

viewport (or choose Help ➤ Search Help from the

main Godot menu bar). The Search Help window

appears (see Figure 3-7). One way to use the Search

Help window is to scroll and click the topics you

want to view. A faster way is to type in part or all of a

topic you want to view.

 3. Click the Search text field at the top of the Search

Help window and type “sprite.” The Search Help

window now shows only information that matches

the word “sprite” as shown in Figure 3-8.

Chapter 3 Writing SCriptS

44

Figure 3-8. Searching for specific topics in the Search Help window

 4. Click Sprite2D and click the Open button. The

viewport window now displays help related to the

Sprite2D node as shown in Figure 3-9. Notice that

the Sprite2D documentation file now appears in the

left pane of the viewport. This lets you quickly view

the information at a later time.

Chapter 3 Writing SCriptS

45

Figure 3-9. Information about the Sprite2D node

 5. Click any underlined link such as texture to view

more information. The viewport displays your

chosen information.

 6. Click the Back arrow in the upper right corner of the

viewport window to go back to the Sprite2D page.

The Back/Forward arrows in the upper right corner

act like the Back/Forward arrows in a browser to let

you go back and forth between previously viewed

information.

 7. (Optional) Right-click the Sprite2D documentation

file that appears in the left pane, and when a pop-up

menu appears, choose Close to remove this file from

the left pane as shown in Figure 3-10.

Chapter 3 Writing SCriptS

46

Figure 3-10. The Close command will remove a documentation file
from the left pane

Rather than type in a term in the Search text field of the Search Help

window, another option is to move the cursor in a GDScript command that

you want more information about. Then choose Search ➤ Contextual Help

as shown in Figure 3-11.

Chapter 3 Writing SCriptS

47

Figure 3-11. The Search menu displays the Contextual
Help command

To see how to use Contextual Help, follow these steps:

 1. Click the script icon next to Sprite2D in the

Scene dock. Godot displays the script in the

viewport window.

 2. Edit the script file to look like this:

extends Sprite2D

var speed = 2

func _process(delta):

 rotation += speed * delta

Notice that Godot color codes certain words. This

color coding can help you identify when you’ve

typed certain GDScript commands correctly (or

incorrectly).

Chapter 3 Writing SCriptS

48

 3. Move the cursor inside the term “_process,” which

should appear in light blue to let you know it

represents a GDScript command.

 4. Choose Search ➤ Contextual Help. The Search

Help window appears. Notice that Godot displays

“_process” in the Search text field at the top of the

Search Help window automatically, so you don’t

have to type it in yourself.

 5. Click the Open button. Godot displays help for your

chosen GDScript command.

At this point, you most likely won’t understand all the information

displayed in the documentation. Just be aware that you can search for

documentation within the Search Help window or on the documentation

web pages of the Godot website.

Oftentimes you may know what you want to do but have no idea how

to do it. That’s why Godot offers a special Questions and Answers web page

that you can access by choosing Help ➤ Questions and Answers.

This Questions and Answers page, as shown in Figure 3-12, lists

common problems that people run into while using Godot. By accessing

this page, you can find answers to common problems and even contribute

your own answers to problems that others might have.

Chapter 3 Writing SCriptS

49

Figure 3-12. The Questions and Answers page

One fast way to get help on specific Godot keywords and predefined

functions is to hold down the Ctrl (Windows/Linux) or Command

(Macintosh) key and then move the mouse pointer over a Godot keyword

or function. If Godot recognizes a keyword or function, it will appear

underlined as shown in Figure 3-13.

Chapter 3 Writing SCriptS

50

Figure 3-13. Godot underlines keywords and functions when holding
down the Ctrl/Command key

Clicking an underlined keyword or function then displays help as

shown in Figure 3-14. By holding down the Ctrl/Command key and

moving the mouse pointer over different parts of your GDScript code, you

can let Godot identify keywords and functions.

Chapter 3 Writing SCriptS

51

Figure 3-14. Godot underlines keywords and functions when holding
down the Ctrl/Command key

 Summary
This chapter introduced you to the basics of attaching a script to a node

and then writing GDScript code to respond to some event. You can

only attach one script to a node at a time. Scripts consist of one or more

functions that respond to specific events. The init() and ready() functions

run exactly once when the project starts. The process(delta) function

runs continuously. By storing GDScript code in functions, you can make a

project interactive.

Since you can’t memorize all possible commands available, Godot

provides help that you can access at any time. If you get stuck trying to

solve a particular problem, Godot offers a questions and answers section

where you can post a question and offer solutions to other people’s

problems.

Chapter 3 Writing SCriptS

52

When you create a video game in Godot, you use nodes to define

the visual part of your game. Then you use the GDScript language

to write scripts to make those nodes respond to specific events. The

GDScript programming language is optimized to help you create projects

using Godot.

Now that you have a brief idea how scripts work, the next step is to

start learning basic programming principles so you can learn to control

different game objects on the screen.

Chapter 3 Writing SCriptS

53

CHAPTER 4

Storing
Data in Variables
The whole purpose of programming is to solve problems. To solve any

problem, you need to know the facts of the problem so you can figure out

how to use those facts to solve that problem. In computer programming,

facts represent data and the steps needed to solve a problem are called

algorithms. Computer programming and problem-solving are essential to

creating video games in Godot.

Suppose you wanted to convert a temperature from Celsius to

Fahrenheit. First, you need to know the temperature in Celsius, so let’s

assume it’s 20 0C. Once you know the temperature in Celsius, you can use

the following formula to convert that Celsius temperature to its equivalent

Fahrenheit temperature:

Fahrenheit temperature = (Celsius temperature * 9/5) + 32

In this problem, the known data is the Celsius temperature (20 0C), and

the algorithm is the conversion formula. To convert 20 0C to Fahrenheit,

you can just plug in 20 0C into the conversion formula like this:

Fahrenheit temperature = (20 0C * 9/5) + 32

Fahrenheit temperature = (180/5) + 32

Fahrenheit temperature = (36) + 32

Fahrenheit temperature = 68

© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_4

https://doi.org/10.1007/979-8-8688-0190-7_4

54

Problem-solving involves listing out the facts of the problem and then

making step-by-step instructions to find an answer. Once you know how

to solve a problem, the next step is to tell a computer how to solve that

problem by converting your instructions using a programming language.

In computer programming, a computer program is just that: a list of

instructions to perform certain tasks to solve a problem.

To store facts about a problem, programming languages temporarily

hold data in memory. To make it easy to retrieve data later, these memory

locations are given descriptive names and called “variables.”

 Creating a Variable
Until you create (also called “declaring”) a variable, you can’t store any

data in your program. It is important to name and declare all variables

within a program; otherwise an error will occur, and the program may not

run. The two steps to creating or declaring a variable are

• Use the “var” keyword to tell Godot you want to create

a variable.

• Define a unique name for your variable.

In Godot, the GDScript language creates variables by using a keyword

called “var,” which is short for “variable.” Immediately following this, “var”

keyword must be the name of your variable.

Variables get their name because the data they hold can vary at any

given time. One moment a variable might hold the number 4 and the next

it might hold the number -73. Some examples of creating variables in

GDScript include the following:

var x

var age

var first_name

var lastName

Chapter 4 Storing Data in VariableS

55

You can give a variable any name you wish, but it’s best to use

descriptive names to make your code easier to understand. In the

preceding examples, a variable named “age” would likely contain a

number such as 37 or 24, while another variable named “first_name”

would likely contain text such as “John” or “Mary.”

Variable names can be as short as a single character (“x”) or consist

of multiple words smashed together. When combining multiple words to

make a variable name, Godot uses a convention known as “snake case”

where individual words are written in all lowercase and separated by an

underscore:

var snake_case_variable_name

When you create a variable, it initially has no value. If you try to use

that variable without a value stored in it, then your program will likely

crash. So when creating a variable by giving it a name, it’s common to also

store a value in that variable at the same time like this:

var age = 46

Assigning an initial value to a variable prevents you from trying to

use a variable when it doesn’t contain anything. Trying to use a variable

that doesn’t contain a value will simply crash your project when you try

to run it.

To see the dangers of declaring a variable without giving it a value,

follow these steps:

 1. Make sure you have created a Godot project that

consists of a Node2D with a Sprite2D child node.

 2. Make sure the Sprite2D node displays the icon.svg

graphic in its Texture property. Position the Sprite2D

node so that it appears in the middle of the window.

Chapter 4 Storing Data in VariableS

56

 3. Edit the script attached to the Sprite2D node and

edit it as follows:

extends Sprite2D

var age

func _process(delta):

 print(age)

With this script, we’re declaring a variable called

“age,” but it does not contain a value. Then within

the process(delta) function, we try to print the value

of the age variable. Since this age variable does not

contain a value, Godot will simply print <null>.

 4. Click the Run icon at the top of the window. The

Godot window briefly appears, then disappears

when your project crashes.

The general rule is that whenever you create a variable, never use it

until you actually store a value in that variable.

 Storing and Retrieving Values in a Variable
When you create a variable, it’s usually best to store a value in that variable

right away such as follows:

var age = 0

GDScript stores (or assigns) a value to a variable using the equal sign.

Whatever appears on the right of the equal sign gets stored in the variable

name that appears to the left of the equal sign.

Although you can assign values to a variable as often as you want, a

variable can only hold one value at a time. Each time you store a new value

in a variable, it erases the currently stored value. The following code stores

Chapter 4 Storing Data in VariableS

57

three different values in the same variable, but by the end, only the last

value remains in the variable:

 var age = 0

 age = -15

 age = 25

 age = 137

The first line in the preceding code creates a variable called “age” and

stores an initial value of 0. The second line replaces the value of 0 with -15.

The third line replaces the value of -15 with 25. Finally, the last line replaces

the value of 25 with 137.

To retrieve the value stored in a variable, just use the variable name.

The simplest way to do that in GDScript is to use the print statement to

print the data out like this:

 print(age)

This print command tells Godot to retrieve the value stored in the

“age” variable and print it out. To see how to store values in a variable and

retrieve those values, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var age = 0

func _init():

 print("First value = ", age)

 age = -15

Chapter 4 Storing Data in VariableS

58

 print("Second value = ", age)

 age = 25

 print("Third value = ", age)

 age = 137

 print("Last value = ", age)

Notice that we created the “age” variable and gave

it an initial value of 0. Then we used the init()

function, which only runs once. Inside this init()

function, we print the value stored in age (0), store

 -15 in the “age” variable and print it out again, store

25 in the “age” variable and print it out, then store

137 in the “age” variable before printing it out.

Also note how the print command works. We can

define multiple items to print by separating them

with a comma.

 4. Click the Run icon at the top of the window. The

Godot project window appears.

 5. Click the close icon of the project window to make it

go away. Notice that the Output pane at the bottom

of the Godot window displays the results of the print

command like this:

First value = 0

Second value = -15

Third value = 25

Last value = 137

Experiment with storing different values in the “age” variable to see

how you can store different values in a variable, but each time you store a

new value, it deletes the currently stored value in that variable.

Chapter 4 Storing Data in VariableS

59

 Understanding Data Types
A variable can hold different types of data, but the most common types

of data are numbers and text. Numbers can be whole numbers (9, -37,

71) or decimal numbers (-0.36, 24.6, 172.38). Text is called “strings” and

represents anything that appears within double quotation marks such as

“Hello,” “This is a string,” or “1239.45.” In Godot, a string or number may be

used to track objects, nodes, and sprites in the game such as the player, the

player’s health, enemies, and the enemies’ health.

Each time you create a variable, that variable can hold any type of data.

One moment it might store a whole number, the next it might store text,

and the next it might store a decimal number.

To see how a variable can hold different types of data, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var age = 0

func _init():

 print("First value = ", age)

 age = "This is a string"

 print("Second value = ", age)

 age = 25.127

 print("Third value = ", age)

 age = 137

 print("Last value = ", age)

Chapter 4 Storing Data in VariableS

60

 4. Click the Run icon at the top of the window. The

Godot project window appears.

 5. Click the close icon of the project window to make

it go away. The Output pane at the bottom of the

Godot window displays the results of the print

command like this:

First value = 0

Second value = This is a string

Third value = 25.127

Last value = 137

Notice that the “age” variable initially contains a whole number (0),

then stores text (“This is a string”). Then it stores a decimal number

(25.127), and finally, it stores a whole number again (137).

Letting a variable contain all types of data (whole numbers, text, or

decimal numbers) can be convenient, but sometimes you may want to

restrict a variable to hold only certain types of data. For example, if you

create a variable to store someone’s name, you don’t want that variable to

hold non-text data such as -45.2 or 83 since a number wouldn’t make any

sense for someone’s name.

To restrict a variable to hold only one type of data, you need to

understand the different data types available as follows:

• Whole numbers (int)

• Decimal numbers (float)

• Text (String)

GDScript calls whole numbers “int” (short for integer) and decimal

numbers as “float” (short for floating-point numbers). Text is called

“String” for text string. To restrict a variable to contain only one specific

type of data, you need to follow the variable name with a colon and the

data type you want to use such as follows:

Chapter 4 Storing Data in VariableS

61

var age: int

var weight: float

var name: String

The first line creates a variable called “age” and specifies that it can

only hold integers (int). The second line creates a variable called “weight”

and specifies that it can only hold decimal numbers (float). The third line

creates a variable called “name” and specifies that it can only hold text

strings. Notice that all the data types (int and float) use lowercase letters

but String starts with an uppercase letter.

To see how declaring a specific data type works when creating a

variable, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var age: int = 0

func _init():

 print("First value = ", age)

 age = "This is a string"

 print("Second value = ", age)

 age = 25.127

 print("Third value = ", age)

 age = 137

 print("Last value = ", age)

Chapter 4 Storing Data in VariableS

62

Notice that Godot won’t even let you run this program because it’s

trying to store a text string (“This is a string”) into the age variable as

shown in Figure 4-1.

Figure 4-1. Godot warns you when a variable tries to store a data
type it’s not designed to hold

To avoid problems in your code, it’s a good idea to assign initial values

to your variables when you create those variables. This prevents problems

trying to use a variable before it has a value in it.

A second way to avoid problems is to define variables to hold specific

data types. This helps ensure that your code doesn’t try to store the wrong

type of data in a variable, such as a number into a variable meant to

hold names.

Chapter 4 Storing Data in VariableS

63

GDScript offers two ways to define specific data types for a variable.

One way is to define the variable name followed by a colon and the data

type it can hold like this:

var legs: int = 4

var height: float = 18.25

var first_name: String = "John"

A second way to declare a variable and define its data type at the same

time looks like this:

var legs := 4

var height := 18.25

var first_name := "John"

These two variable declarations are equivalent. The combination :=

symbols assign a value to a variable, and then based on the data type of

that value, Godot infers the data type. So the number 4 is an integer, which

means GDScript infers that the “legs” variable must be an int data type.

Likewise, 18.25 is a decimal number, so GDScript infers that the

“height” variable must be a float data type. The name “John” is a string, so

GDScript infers that the “first_name” variable is a String data type.

To see how data types work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var age := 0

var weight := 102.03

Chapter 4 Storing Data in VariableS

64

var first_name := "John"

func _init():

 print("Age = ", age)

 print("Weight = ", weight)

 print("Name = ", first_name)

 4. Click the Run icon at the top of the window. Godot

displays your project (DEBUG) window.

 5. Click the close icon of the (DEBUG) window.

Notice that the Output pane at the bottom of the Godot window

displays the print command’s output:

Age = 0

Weight = 102.03

Name = John

For clarity and readability, it’s often better to specify the data type

when declaring a variable like this:

var amount: float = 1258.47

For typing efficiency, many programmers prefer the shorter version of

declaring a variable and inferring the data type like this:

var amount := 1258.47

Programming is often a trade-off between greater clarity (and more

typing) vs. greater efficiency due to less typing (but more potential for

confusion). In general, it’s better to make sure your program works first

before worrying about making it run more efficiently. Efficiency means

nothing if your program doesn’t work.

Chapter 4 Storing Data in VariableS

65

Making code clear and understandable is crucial because most

programs are modified over time to add new features or eliminate

problems (known as “bugs”). If a program is hard to read and understand,

it won’t be easy to fix or modify in the future, so strive for clarity as much as

possible.

 Understanding Variable Scope
Variables are meant to store data that can be used and retrieved at a later

time. However, one problem with variables is that any part of a program

can potentially store new data in a variable. In a small program, it’s easy to

see what parts of a program might store new data in a variable that could

change its contents. However, in a large program consisting of thousands

of lines of code, finding what part of a program may be storing incorrect

data in a variable can be nearly impossible.

For that reason, programming languages limit the visibility or “scope”

of a variable. The smaller the variable scope, the fewer places where code

might change a variable by mistake. The two main options for variable

scope are called

• Global

• Local

The scope of a variable depends on where you create a variable. If

you declare a variable outside of every function, it’s a global variable

that can be accessed by any function. If you declare a variable inside of a

function, it’s a local variable that can be accessed only within that function.

Figure 4-2 shows that a global variable, declared outside of all functions,

can be accessed by all functions while a local variable, declared inside of a

function, can only be accessed within that function.

Chapter 4 Storing Data in VariableS

66

Figure 4-2. Local variables can only be accessed within a function,
while global variables can be accessed anywhere

To see the difference between local and global variables, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var global_variable = -56

func _init():

 var local_variable = 79

 print("Can access global variable in init

function = ", global_variable)

 print("Can access local variable in init

function = ", local_variable)

Chapter 4 Storing Data in VariableS

67

func _ready():

 print("Can access global variable in ready

function = ", global_variable)

 4. Click the Run icon at the top of the window. Godot

displays the (DEBUG) window.

 5. Click the close icon on the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the window displays the following:

Can access global variable in init function = -56

Can access local variable in init function = 79

Can access global variable in ready function = -56

Because the global variable is declared outside of both functions, it’s

actually accessible to both functions. However, the local variable is only

declared inside the init() function, which means it cannot be accessed

within any other part of the program such as the ready() function. If the

ready() function tries to access the local variable (declared inside the init()

function), Godot will display an error message, warning you that this is not

possible as shown in Figure 4-3.

Chapter 4 Storing Data in VariableS

68

Figure 4-3. The ready() function cannot access the local_variable
declared inside the init() function

When naming variables, give each variable a descriptive, unique name.

In other words, you can’t declare the same variable name like this:

var x: int = -3

var x: int = 41

If you try to give two variables the exact same name, Godot won’t run

your program and will display an error message as shown in Figure 4-4.

Chapter 4 Storing Data in VariableS

69

Figure 4-4. You cannot give two variables the same name in the
same scope

However, Godot will allow two variables to have identical names if

those two variables have different scopes such as one variable declared

as a global variable and the second variable declared as a local variable

like this:

extends Sprite2D

var x: int = -3

func _init():

 var x: int = 41

 print(x)

Chapter 4 Storing Data in VariableS

70

In this example, the first x variable is declared as a global variable with

a value of -3. Then the second x variable is declared as a local variable

within the init() function. Since the print(x) statement occurs within the

init() function, it looks for the x value declared as a local variable. Thus,

this program would print the value of 41 (and not -3).

Although using duplicate variable names can be allowed if one

variable is a global variable and the second variable is a local variable,

notice how the duplicate variable names can make the code harder to

understand. For that reason, it’s always best to avoid using duplicate

variable names even if it may be technically allowed.

In general, it’s usually best to create local variables to limit the

code that can access and change that variable. Global variables can be

convenient, but it can be difficult to know which part of a program might

be accessing and changing a variable, especially if changing a global

variable’s value causes a problem.

 Constants and Enumerations
A variable can store one chunk of data at a time, but when you store new

data in a variable, that new data overwrites any data already stored in that

variable. Rather than use a variable, you could use a fixed value such as

0.08, but using fixed values (called literals) in code can be confusing since

it’s not clear what that value represents.

To solve this problem of using fixed values but giving them a

descriptive name, you can use constants. A constant looks like a variable

except you can only store data in it once. Unlike a variable that can store

new data over and over again, once a constant gets a value, it can never

change its value again. That ensures that a constant’s value will always be

predictable.

Chapter 4 Storing Data in VariableS

71

To create a constant, use the “const” keyword followed by a descriptive

name and assign an initial value like this:

const sales_tax = 0.08

This stores a value of 0.08 in a constant named “sales_tax.” Now

instead of using the value of 0.08 throughout a program, you can just use

the constant “sales_tax” to represent 0.08. Not only is “sales_tax” more

descriptive of what 0.08 represents, but if you need to change its value, you

just need to change the constant value once, and any code that uses that

constant value will use the updated value.

One limitation of constants is that they can only hold one value. To get

around this limitation, GDScript also lets you create enumerations, which

let you define a list of valid options. If you’re creating a racing video game,

you might have three types of vehicles: cars, trucks, and motorcycles.

An enumeration lets you define these valid options in a list in two

different ways. In the first way, you store everything on a single line

like this:

enum Vehicles {CAR, TRUCK, MOTORCYCLE}

This uses the “enum” keyword to define an enumeration, which is

followed by the actual name of the enumeration such as Vehicles. Within

curly brackets are the valid options, which are typically listed in uppercase

to make them easier to recognize as part of an enumeration. A second way

to declare an enumeration takes up multiple lines to make it clearer what

all the options in the enumeration might be like this:

enum Obstacles {

 ROCK,

 SIGN,

 POTHOLE

}

Chapter 4 Storing Data in VariableS

72

An enumeration essentially acts like a data type, which means you can

assign an enumeration option to a variable like this:

var player: Vehicles = Vehicles.CAR

The preceding code declares a variable called “player” that can only

hold data types defined by the Vehicles enumeration. Then it assigns that

data, which is defined by the enumeration name (Vehicles) followed by a

period and the actual enumeration option such as CAR.

As a shortcut, you could also declare the preceding variable without

defining the data type like this:

var player = Vehicles.CAR

The options listed in an enumeration actually represent integer values

where the first item in the list is 0, the second is 1, the third is 2, and so on.

You can even assign any integer value to the options in an enumeration by

defining it within the enumeration declaration like this:

enum Obstacles {

 ROCK,

 SIGN = 45,

 POTHOLE

}

To see how to use constants and enumerations, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

Chapter 4 Storing Data in VariableS

73

extends Sprite2D

const hard = 3

enum Vehicles {CAR = 78, TRUCK, MOTORCYCLE}

enum Obstacles {

 ROCK,

 SIGN,

 POTHOLE = 64

}

func _ready():

 var player = Vehicles.CAR

 var enemy = Obstacles.POTHOLE

 print("Player value = ", player)

 print("Enemy value = ", enemy)

 print("Number of obstacles = ", hard * 2)

 4. Click the Run icon at the top of the window. Godot

displays the (DEBUG) window.

 5. Click the close icon on the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the window displays the following:

Player value = 78

Enemy value = 64

Number of obstacles = 6

Notice that the two enumerations define a unique integer value for

CAR and POTHOLE. That means Vehicle.CAR actually represents the

integer 78 and Obstacles.POTHOLE actually represents the integer 64.

Assign the “player” variable to Vehicles.TRUCK and the “enemy” variable

to Obstacles.SIGN, and both of their values will be 1 since they appear as

the second item listed in the enumeration.

Chapter 4 Storing Data in VariableS

74

Experiment with changing the “hard” constant value to a different

number, and you’ll see that the code uses this new value. By using

constants and enumerations, you can make code more descriptive and

understandable.

 Comments
Descriptive names for variables, constants, and enumerations can make

your code easier to understand, but sometimes you may need to add more

explanation. To make sure anyone looking at your code can understand

how your program works, GDScript lets you type comments directly into

your code.

A comment lets you add explanatory text, either on a separate line or

sharing the same line as code. To create a comment, type the # symbol

like this:

This is a comment

Anything that appears to the right of the # symbol will be ignored by

the computer. That way you can type explanations in your code to explain

who wrote the code, when it was last modified, what assumptions the code

expects, what it’s doing, and why. The more comments you add to your

code, the easier it will be for you or someone else to understand your code,

so they can fix problems later or add new features.

Longer programs often result in “spaghetti code” making it hard to

process and containing more errors. Therefore, it is best to make the

program simple to follow and use comments to explain how a program

works. Comments are grayed out. They do not compile when running the

program but are simply used to help clarify what a program is doing and

how it works.

Chapter 4 Storing Data in VariableS

75

To see how comments look within code, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

This is a comment that appears on a separate line

func _ready():

 print("Hello, world!") # This is a comment that

appears to the right of valid code

 4. Click the Run icon at the top of the window. Godot

displays the (DEBUG) window.

 5. Click the close icon on the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the window displays “Hello, world!” Also

notice that the comments don’t affect the code in

any way and exist solely for humans to read while

the computer completely ignores them.

A fast way to comment out (or remove comments) on multiple lines of

code is to select multiple lines of code and then press Ctrl/Command+K.

 Exercise: Seeing Variables Change
Once you have written some GDScript code to create and use a variable,

it’s time to visually demonstrate how variables work by using the values

of variables to change the position of an image on the screen. The most

common way to access variables is to modify the GDScript code and run

Chapter 4 Storing Data in VariableS

76

your project again. However, a more convenient way to access and change

variables is to make those variables appear in the Inspector dock. That way

you can type in a different value and see how that changed value affects

the appearance of a project.

In GDScript, you can display a variable on the Inspector dock by

adding an @export in front of the variable declaration like this:

@export var x_position: int = 0

In the preceding example, the variable is called “x_position”; it’s

declared to hold only integer (int) data types, and its initial value is set

to 0. (Defining the data type is optional.) When you add @export in front

of a variable, it becomes accessible within the Inspector dock as shown

in Figure 4-5.

Figure 4-5. An @export variable appears in the Inspector dock

To see how @export variables work within a Godot project, follow

these steps:

 1. Create a new Godot project. By default, the

FileSystem dock includes the icon.svg image.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field and type node2d. The

Create New Node dialog box displays Node2D as

shown in Figure 4-6.

Chapter 4 Storing Data in VariableS

77

Figure 4-6. Finding the Node2D node in the Create New Node
dialog box

 4. Click the Create button. Godot displays the Node2D

in the Scene dock.

 5. Click the + (Attach Child Node icon) as shown

in Figure 4-7. The Create New Node dialog box

appears again.

Chapter 4 Storing Data in VariableS

78

Figure 4-7. The Attach Child Node icon in the Scene dock

 6. Type sprite2d. The Create New Node dialog box

displays Sprite2D.

 7. Click Sprite2D and click the Create button. Godot

displays the Sprite2D as a child of the Node2D in the

Scene dock.

 8. Click Sprite2D in the Scene dock and then click the

Inspector tab in the Inspector dock on the far right

side of the screen.

 9. Drag the icon.svg file from the FileSystem dock into

the <empty> Texture field in the Inspector dock

as shown in Figure 4-8. The icon.svg image now

appears in the viewport.

Figure 4-8. The Texture property of the Sprite2D can display the
icon.svg image

Chapter 4 Storing Data in VariableS

79

 10. Click Node2D in the Scene dock.

 11. Click the Attach Script icon, or right-click Node2D

and choose Attach Script from the pop-up menu as

shown in Figure 4-9. An Attach Node Script dialog

box appears.

Figure 4-9. The Attach Script icon in the Scene dock

 12. Click the Create button to create a script.

 13. Edit the script as follows:

extends Node2D

@export var x_position: int = 0

@export var y_position: int = 0

Chapter 4 Storing Data in VariableS

80

func _process(delta):

 $Sprite2D.position.x = x_position

 $Sprite2D.position.y = y_position

The function (func) _process(delta) runs repetitively

and assigns the x and y position of the Sprite2D

node to the x_position and y_position variables.

Initially, both variables are set to 0 within the

GDScript code, but these initial values will be

changed by whatever value you type into the

Inspector dock for the x_position and y_position

variables. Because the Sprite2D node displays

the icon.svg image, changing the position of the

Sprite2D node changes the position of the icon.svg

on the screen.

 14. Choose Scene ➤ Save Scene. A Save Scene As dialog

box appears.

 15. Click Save.

 16. Click the Node2D in the Scene dock. Notice that the

two @export variables (x_position and y_position)

now appear in the Inspector dock (see Figure 4-5).

 17. Click the Run icon as shown in Figure 4-10. A dialog

box appears, asking you to choose a main scene.

Figure 4-10. The Run Project icon

Chapter 4 Storing Data in VariableS

81

 18. Click Select Current. Notice that the (DEBUG)

window displays the icon.svg image in the upper left

corner of the window.

 19. Click the close icon on the (DEBUG) window.

 20. Click the X Position property in the Inspector dock

and type 550. (Positive x values increase toward

the right.)

 21. Click the Y Position property in the Inspector dock

and type 250. (Positive y values increase downward.)

 22. Click the Run Project icon (see Figure 4-10). Notice

that the icon now appears away from the left edge

(x_position = 550) and down from the top edge

(y_position = 250).

 23. Repeat steps 20–22 with different values for the

X Position and Y Position variables. By typing

in different values for each variable within the

Inspector dock and running the project again, you

can change the icon’s x and y position within the

(DEBUG) window.

In this simple exercise, you learned

• How to create a variable that appears in the Inspector

dock (by using @export)

• How to display an image in a Sprite2D node (by

dragging and dropping an image in the Texture

property in the Inspector dock)

• How the Godot x and y axis work (positive x values

increase to the right and positive y values increase

downward) as shown in Figure 4-11

Chapter 4 Storing Data in VariableS

82

Figure 4-11. The Godot x and y axis

 Summary
To solve problems, you need to identify the facts of that problem

(data). Then using those facts, you can create step-by-step instructions

(algorithms) to find a solution. Finally, you need to translate the known

facts and instructions into a programming language so a computer can

solve that problem.

In programming, storing facts about a problem involves creating

variables to hold and retrieve data. To create a variable, you must use the

“var” keyword followed by a name for a variable. In GDScript, long names

typically consist of multiple words separated by an underscore such as

variable_name_here. Ideally, give each variable name a descriptive name.

A variable without a value may cause a program to crash, so it’s best to

give a variable an initial value. Since variables can hold any type of data,

this can cause problems if you want a variable to only hold certain types of

data such as numbers or text. For safety, variables can be defined to hold

only certain types such as integers (int), decimal numbers (float), or text

(String).

Chapter 4 Storing Data in VariableS

83

When creating variables, be aware of the scope. A global variable can

be accessed anywhere in a program, while a local variable can only be

accessed within that function. When naming variables, make sure you

always give each variable a distinct name to avoid confusion.

Constants can only be assigned a value once and then can never

change their value ever again. Enumerations let you define your own data

types along with a list of valid options, which all represent integer values.

The first option listed in an enumeration is considered 0, the second is

considered 1, and so on, unless you explicitly define a different integer

value for that particular option.

Ultimately, variables, constants, and enumerations are meant to

give data descriptive names so your code will be easier to understand

and modify in the future. By adding comments, you can add additional

explanations about your code that can clarify how it works.

To make variables accessible within the Inspector dock, define them

using the @export keyword. This will let you change variables by typing

new values from the Inspector dock rather than editing GDScript code.

Chapter 4 Storing Data in VariableS

85© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_5

CHAPTER 5

Mathematical
Operations
Nearly every nontrivial program needs to store data in variables. Once a

program stores data, it needs to manipulate that data to create a useful

result. Three ways to change data involve adding new data, deleting

existing data, or modifying existing data.

For example, a word processor lets you delete words, add new words,

or edit existing text. A spreadsheet lets you delete numbers, add new

numbers, edit existing numbers, or perform calculations on numbers. A

database lets you delete data, add new data, edit existing data, and search

and sort the data. Manipulating data and calculating new results from

existing data are two common ways programs use data to provide a useful

function.

So two common types of data that most programs store and

manipulate are

• Words (Strings)

• Numbers (integers and floating-point decimal

numbers)

https://doi.org/10.1007/979-8-8688-0190-7_5

86

 Mathematical Operators
Every computer only understands binary numbers (0 and 1), so

manipulating numeric data is a common task for computers. A video

game, such as in Godot, needs to calculate where to move a player’s

character based on the player’s movement of a joystick or mouse, while

an accounting program needs to calculate financial formulas based

on money. Since the most common ways to manipulate data involve

numbers, every programming language offers mathematical operators

such as the following:

• + (addition)

• - (subtraction)

• * (multiplication)

• / (division)

• % (modulo)

• ** (exponentiation)

The addition operator (+) adds two numbers together like this:

var x = 4

x = x + 6

The first line stores 4 in the “x” variable. The “4” that is stored is the

declaration of an integer or int variable. The second line may look a bit

odd since the “x” variable appears on both sides of the equal sign. This

essentially means add 6 to the value stored in “x” (4) and calculate 10.

Then store the value of 10 in the “x” variable, replacing (and erasing)

whatever current value may be stored in the “x” variable. Whatever

product comes after the “=” sign will usually be a String or integer of

some kind.

Chapter 5 MatheMatiCal OperatiOns

87

Rather than list the “x” variable twice on both sides of the equal sign,

GDScript offers a shortcut that looks like this:

x += 6

The += sign means “add 6 to the current value stored in x and store the

total sum as the new value in x.”

The subtraction operator (-), multiplication operator (*), and division

operator (/) work the same way like this:

var x = 4

x = x – 6 (or x -= 6)

var y = 4

y = y * 6 (or y *= 6)

var z = 4

z = z / 6 (or z /= 6)

The modulo (%) operator divides two numbers and returns the

remainder such as follows:

var a = 39

a = a % 5 (or a %= 5)

In this case, the % operator divides 39 by 5 which is 7 with a remainder

of 4, so the % operator returns a value of 4.

The exponentiation (**) operator multiplies one number several times

such as 2 ** 3, which means multiply 2 three times (2 * 2 * 2 = 8).

Besides adding two numbers together, the + operator can also be used

to combine two strings together such as follows:

“John” + “Doe”

Chapter 5 MatheMatiCal OperatiOns

88

When using the + operator to combine two strings, make sure you put

a space between the two strings or else the + operator will smash them

together.

To see how to use these different operators, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var x = 39

var y = 5

var first_name = "John "

var last_name = "Doe"

func _init():

 print("Addition = ", x + y)

 print("Subtraction = ", x - y)

 print("Multiplication = ", x * y)

 print("Division = ", x / y)

 print("Modulo = ", x % y)

 print("Exponentiation = , x ** 2)

 print("String concatenation = ", first_name +

last_name)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 5 MatheMatiCal OperatiOns

89

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

Addition = 44

Subtraction = 34

Multiplication = 195

Division = 7

Modulo = 4

Exponentiation = 1521

String concatenation = John Doe

 Creating Constants
When creating mathematical formulas, it’s common to use variables and

numbers such as this formula to calculate the circumference of a circle if

you know the circle’s diameter:

Circumference = 3.1415 * diameter

When code contains specific data such as numbers like 3.1415, these

are called “literals.” While there’s nothing wrong with using specific data

in a calculation, the meaning of that data may not be clear. To solve this

problem, programming languages allow you to create something called

“constants.”

A constant looks like a variable because you can give it a descriptive

name and assign it a value. The main difference is that you can store new

values in a variable over and over again, but with a constant, you can only

store a value in a constant exactly once.

Chapter 5 MatheMatiCal OperatiOns

90

As soon as you store a value in a constant, you can never change

its value again. This makes constants perfect for storing data, such as

specific numeric values, that your program may need to use multiple

times. Because a constant can never change its value once it’s assigned an

initial value, you never have to worry that some part of your program may

accidentally change the value of a constant, which is a problem you need

to worry about with variables.

To create a constant, you need three parts:

• The “const” keyword

• The name of the constant

• A value stored in the constant

To create a constant to hold the value of pi, we could do the following:

const pi = 3.1415

For extra clarity, you can also define the data type of the constant

like this:

const pi: float = 3.1415

To see how constants work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var diameter: float = 3

var circumference: float = 0

Chapter 5 MatheMatiCal OperatiOns

91

const pi: float = 3.1415

func _init():

 circumference = pi * diameter

 print ("Circumference = ", circumference)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

Circumference = 9.4245

Notice that the pi constant makes it easy to understand what the

number 3.1415 represents. By using descriptive constant names, literal

values (such as ordinary numbers) can be easy to understand. Plus if you

need to use the same value multiple times, you can just type the constant

name instead of the actual value it represents.

Then if you need to change the value of a constant, you only need

to change its value once (in the constant declaration). If you used literal

values multiple times, you’d have to search and replace all literal values

throughout your program.

 Understanding Precedence
When calculating simple formulas, you may only use one mathematical

operator such as 4 + 57 or 9.12 / 4.3. However, if you create more

complicated mathematical formulas that involve two or more operators,

you may run into a problem on how the computer calculates an answer.

Consider the following:

x = 5 + 3 * 2

Chapter 5 MatheMatiCal OperatiOns

92

Does the computer first add 5 + 3 (8) and then multiply it by 2 to get

16? Or does the computer first multiply 3 * 2 (6) and then add this to 5

to get 11?

The order that calculation occurs is known as precedence. Precedence

defines which operators should be calculated first (higher precedence).

The following shows the highest to lowest precedence in operators:

• ** (exponentiation)

• *, /, and % (multiplication, division, and modulo)

• + and – (addition and subtraction)

When two operators have equal precedence, the operator furthest to

the left has higher precedence and gets calculated first.

Consider the following calculation: 2 ** 3 + 1 - 4 / 2

This is the way precedence determines how to calculate these

operators:

• Calculate exponentiation first (2 ** 3 = 8).

• Calculate division next 4/2 = 2.

• Now the entire calculation looks like this: 8 + 1 – 2.

• Calculate addition next (8 + 1 = 9).

• Calculate subtraction last (9 – 2 = 7), so the final answer

is 2 ** 3 + 1 - 4 / 2 = 7.

Because identifying precedence among multiple operators can be

confusing, it’s much better to use parentheses to define how to calculate

operations. For example, consider the following calculation:

2 * 8 / 4

Since both multiplication (*) and division (/) have equal precedence,

the operator that appears first (furthest left) calculates first. That means

2 * 8 = 256, then 256 / 4 to calculate 64.

Chapter 5 MatheMatiCal OperatiOns

93

However, if you use parentheses, you could change the way this

calculation occurs like this:

2 * (8 / 4)

Now the parentheses tell the computer to calculate 8/4 first (2) and

then multiply this value to get 2 ** 2 which is 4.

To see how precedence works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _init():

 var result1 = 2 ** 8 / 4

 var result2 = 2 ** (8 / 4)

 print (result1)

 print (result2)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

64

4

Chapter 5 MatheMatiCal OperatiOns

94

 Using Math Functions
By using mathematical operators (*, /, +, -), you can create any formula.

However, some types of calculations are so common that you probably

don’t want to write your own code to calculate these results. That’s why

GDScript includes several built-in mathematical functions that you

can use.

Some common mathematical functions include

• abs (absolute value)

• cos (cosine)

• log (logarithm)

• max (returns the maximum value from a list of numbers)

• min (returns the minimum value from a list of numbers)

• sin (sine)

• sqrt (square root)

• tan (tangent)

To see how these mathematical functions work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _init():

 print("Absolute value = ", abs(-248))

 print("Cosine = ", cos(1))

Chapter 5 MatheMatiCal OperatiOns

95

 print("Logarithm = ", log(3))

 print("Maximum = ", max(23, -5, 7))

 print("Minimum = ", min(23, -5, 7))

 print("Sine = ", sin(1))

 print("Square root = ", sqrt(25))

 print("Tangent = ", tan(1))

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

Absolute value = 248

Cosine = 0.54030230586814

Logarithm = 1.09861228866811

Maximum = 23

Minimum = -5

Sine = 0.8414709848079

Square root = 5

Tangent = 1.5574077246549

By using built-in mathematical functions, you can calculate common

formulas without having to write these formulas yourself. This makes

calculating common formulas easy and more reliable.

Chapter 5 MatheMatiCal OperatiOns

96

 Creating Random Numbers
One unique feature of video games in particular is calculating random

numbers. Surprisingly, there is no such thing as truly random numbers.

That’s because calculating random numbers does not give all possible

numbers an equal chance of occurring.

In the real world, dice, cards, roulette wheels, and spinners have

physical imperfections that make some numbers more likely to occur

than others. Even if those odds may seem miniscule, they still exist. In the

computer world, the way programs calculate random numbers also favors

certain numbers over others.

The way random number algorithms work is that they require an initial

seed value. This seed value determines which random numbers occur.

However, if you give the same seed value to a random number algorithm,

it will calculate the exact same list of random numbers in the exact

same order.

So before calculating random numbers, it’s important to capture a

random seed value. In GDScript, you need to use the randomize() function

within the ready() function first. This randomize() function captures a seed

value based on the computer’s clock. Since the exact time the randomize()

function retrieves the time can never be predicted, this essentially creates

a random seed value.

As an alternative, you can specify a seed value. However, if you use the

same seed value, GDScript will calculate the same random numbers in the

same order each time.

Whether you define a specific seed value or use the randomize()

function to use the time as a seed value, you can create random numbers

using the rand() function like the following:

randf()

Chapter 5 MatheMatiCal OperatiOns

97

This returns a random floating-point number between 0 and 1. If you

want to return a random integer, use the randi() function with the modulo

operator to define a range such as follows:

randi() % 10

This would return a random integer between 0 and 9. If you want a

random integer between 0 and 249, you could use this:

randi() % 250

To see how to create random numbers, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 seed(123)

 print(randf())

 print(randi() % 10)

 print(randi() % 10)

 print(randi() % 10)

 print(randi() % 10)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 5 MatheMatiCal OperatiOns

98

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

random numbers.

 6. Repeat steps 4 and 5 as often as you want. Notice

that no matter how many times you run this

program, the random number functions create the

exact same numbers. That’s because the seed value

(123) is always identical each time.

 7. Delete the seed(123) line and replace it with

randomize() like this:

extends Sprite2D

func _ready():

 randomize()

 print(randf())

 print(randi() % 10)

 print(randi() % 10)

 print(randi() % 10)

 print(randi() % 10)

 8. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 9. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

random numbers.

 10. Repeat steps 8 and 9 as many times as you wish.

Notice that each time the random numbers are

never the same. That’s because the randomize()

function uses the time you run the program as its

seed value, which can never be predictable.

Chapter 5 MatheMatiCal OperatiOns

99

Unless you have a specific reason to create the same list of random

numbers over and over again, it’s best to use the randomize() function first

before calculating a random floating-point or integer number.

 Manipulating Strings
It’s easy to understand mathematical operations on numbers, but

GDScript also offers different ways to manipulate strings as well. The most

common way to manipulate strings is concatenation, which simply adds

two strings together like this:

 print ("Jake" + "Unger")

The preceding concatenation operator (+) would combine “Jake” and

“Unger” together as “JakeUnger.” In most cases, scrunching two strings

together is not what you want, so you’ll have to make sure spaces appear

between concatenated strings like this:

 print ("Jake" + " " + "Unger")

When working with strings, one common operation is to determine

the number of characters in a string, including spaces, symbols, and

punctuation marks. To do this in GDScript, simply include the string to

count followed by the .length command like this:

print ("Hello everyone!".length())

This would print 15 because there are 13 letters, 1 space, and 1

exclamation mark.

Chapter 5 MatheMatiCal OperatiOns

100

Three other ways to manipulate strings involve converting a string

to uppercase, converting a string to lowercase, and converting a string to

snake case where text appears in all lowercase but uses an underscore to

separate words like this:

print ("Frank Parker Katz".to_lower()) # Prints "FRANK

PARKER KATZ"

print ("Frank Parker Katz".to_upper()) # Prints "frank

parker katz"

print ("Frank Parker Katz".to_snake_case()) # Prints "frank_

parker_katz"

To see how to manipulate strings, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name = "Frank Parker Katz"

 print (name.length())

 print (name.to_upper())

 print (name.to_lower())

 print (name.to_snake_case())

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 5 MatheMatiCal OperatiOns

101

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

17

FRANK PARKER KATZ

frank parker katz

frank_parker_katz

 Exercise: Randomizing an X and Y Position
In a 2D project, everything displayed on the screen can be defined by its

x and y position where the upper left corner of the Godot game window

represents (0,0). In this exercise, you’ll learn how to get the game window’s

size, randomly choose an x and y position, and move a Sprite2D node to

different random x and y positions.

To see how to randomly move an image within a window, follow

these steps:

 1. Create a new Godot project with a Node2D as the

parent (root) node and a Sprite2D as a child node so

that the Scene dock looks like Figure 5-1.

Figure 5-1. Node2D as the parent node and Sprite2D as its
child node

Chapter 5 MatheMatiCal OperatiOns

102

 2. Click the Sprite2D and drag the icon.svg image into

the Texture property displayed in the Inspector dock

on the right side of the screen. Godot displays the

icon.svg in the viewport.

 3. Click Node2D and click the Attach Child Node icon.

A Create New Node dialog box appears.

 4. Click the Search text field and type button. The

Create New Node dialog box displays a Button as

shown in Figure 5-2.

Figure 5-2. Searching for a Button in the Create New Node
dialog box

Chapter 5 MatheMatiCal OperatiOns

103

 5. Click Button and then click the Create button. Godot

adds a Button as a child node to Node2D in the

Scene dock.

 6. Resize and move the Button to the bottom of the

window, defined by boundaries. Notice that the

Button will be blank.

 7. Click Button in the Scene dock and then click the

Text property in the Inspector dock as shown in

Figure 5-3.

Figure 5-3. The Text property of a Button in the Inspector dock

Chapter 5 MatheMatiCal OperatiOns

104

 8. Type text in the Text property such as Choose
random position.

 9. Click Node2D in the Scene dock and click the

Attach Script icon. An Attach Node Script dialog box

appears.

 10. Click Create. Godot displays a GDScript

editor window.

 11. Click Button in the Scene dock and then click the

Node tab in the Inspector dock.

 12. Click Signals as shown in Figure 5-4.

Figure 5-4. The Node tab appears next to the Inspector tab

Chapter 5 MatheMatiCal OperatiOns

105

 13. Double-click the pressed() option under the

BaseButton category. A Connect a Signal to a

Method dialog box appears as shown in Figure 5-5.

Figure 5-5. Connecting a signal (pressed) to a node

 14. Click Node2D and click the Connect button. Godot

adds a func _on_button_pressed() function.

 15. Edit the _on_button_pressed() function as follows:

func _on_button_pressed():

 var window_size = DisplayServer.window_get_size()

 randomize()

Chapter 5 MatheMatiCal OperatiOns

106

 $Sprite2D.position.x = randi() % window_size.x

 $Sprite2D.position.y = randi() % window_size.y

DisplayServer.window_get_size() retrieves the

current size of the (DEBUG) window when your

project runs. The randomize() function then

chooses a seed value to generate unpredictable

random numbers. Then the code randomly selects

a value up to the window size for both the x and y

positions of the Sprite2D node.

 16. Click the Run icon. A dialog box asks if you want to

make the current scene the main scene.

 17. Click Select Current. The (DEBUG) window appears.

 18. Click the Button. Notice that each time you click

the Button, Godot displays the image at a random

position within the window as shown in Figure 5-6.

Figure 5-6. The Button lets you choose a random x and y value to
move the icon

Chapter 5 MatheMatiCal OperatiOns

107

 19. Click the close icon of the window to stop running

your project.

 Summary
Since computers only understand numbers, one of the most common

purposes for computer programs is to calculate a numeric result. You

can use common mathematical operations (addition, subtraction,

multiplication, and division), but for convenience, you can also use

built-in mathematical functions such as sqrt or sin to calculate common

mathematical results.

When using mathematical operators, be aware of precedence, which

defines which operators calculate first. For clarity, use parentheses to

define which operations you want to calculate first. Parentheses help

make your code easier to read while also clarifying how calculations work

as well.

In video games, random numbers are especially useful. To create

truly random numbers, you must understand that random numbers

require a seed value. If you define a fixed seed value, you’ll create the

same random numbers in a fixed order every time. That’s why it’s better to

use the randomize() function to calculate a seed value based on the time

the program runs. Since this will always be unpredictable, it will create

numbers that are as close to random as possible.

Mathematical calculations form the heart of most programs, so be sure

you know how to calculate results, use constants to represent fixed values,

and use built-in math functions. Calculating numeric results represents

the foundation of nearly every program you’ll need to write.

Chapter 5 MatheMatiCal OperatiOns

109

CHAPTER 6

Branching Statements
What makes every game fun to play are the choices players must make

to get closer to winning. The challenging yet intriguing part to making a

game fun is making choices that count and testing to see if the player made

the right choice. Since every video game offers choices, every program

controlling a video game must know how to offer choices and make

decisions based on what the user does. In the programming world, you

can create choices in a program through something called a branching

statement.

To make a decision, a branching statement needs to check if

something happened or not, such as the user pressing the space bar or

if a player’s character in a game has its strength reduced to 0 or less. To

make decisions, branching statements rely on another data type known as

Booleans. Branching statements and Boolean data types can make a game

respond to different situations.

A Boolean data type holds either a true or false value. Based on this

true or false value, a branching statement can make a decision on what to

do next. Godot can apply Boolean statements to determine if two objects

have collided, such as a player running into an obstacle. If a player did run

into an obstacle, then the game needs to determine what to do next such

as subtract a life from the player. To work with Boolean data types, you

need to know

© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_6

https://doi.org/10.1007/979-8-8688-0190-7_6

110

• How to declare a variable as a Boolean data type

• How to use comparison operators to define a true or

false value

• How to use logical operators with Boolean values

 Working with Comparison Operators
When creating a variable to hold a Boolean data type, you can assign it a

true or false value like this:

 var alert = true

 var flag = false

To make sure a variable can only hold a Boolean value (either true or

false), you can declare a variable to hold Boolean data types like this:

 var alert: bool = true

 var flag: bool = false

While it’s possible to store a true or false value in a variable, it’s far

more common to calculate a true or false value instead using a comparison

operator. Essentially a comparison operator compares two values to

determine if the comparison is true or false.

The comparison operator is most effective when working with integers

or numbers. For example, if a variable to check a character’s health in a

game has been declared at “100,” a comparison operator can compare how

much health a player has before the health is depleted. If a player’s health

is less than 100, then the player loses health, and if it is below 0, then the

player dies and must respawn.

This is just an example of how comparison operators could be used

when working with games in Godot. Operators can also be used to

determine how far a player moves or the amount of items or weapons

used. The most common comparison operators are as follows:

Chapter 6 BranChing StatementS

111

• > (greater than)

• < (less than)

• == (equal to)

• >= (greater than or equal to)

• <= (less than or equal to)

• != (not equal to)

Comparison operators could compare two literal values that could

calculate a Boolean value such as follows:

6 > 2 (true)

47 < 5 (false)

29 == 29 (true)

7 != 7 (false)

When comparing two fixed values, a comparison operator will evaluate

to the exact same Boolean value (true or false) every time, which makes

them no different than simply assigning a true or false value to a variable

instead. For more flexibility, it’s better to compare a fixed value to a

variable or compare two different variables like this:

x > 5

y >= x + 42

z != 4

x <= y * z

Now depending on the value of each variable, a comparison operator

might calculate true or false. In a video game, a comparison operator might

check if a player-controlled car has hit an obstacle or not. Sometimes this

will be true and sometimes it will be false, which lets a video game react to

Chapter 6 BranChing StatementS

112

events within a game. Some events may include the player losing health

or losing their life depending on how the game is programmed or other

events in a story-based game.

To see how these different comparison operators work, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

var x = 8

var y = 4

var z = 2

func _ready():

 print("x > y = ", x > y)

 print("x < y = ", x < y)

 print("x == y = ", x == y)

 print("x >= z = ", x >= z)

 print("x <= z = ", x <= y)

 print("x != z = ", x != z)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

Chapter 6 BranChing StatementS

113

x > y = true

x < y = false

x == y = false

x >= z = true

x <= z = false

x != z = true

Change the value of the x, y, and z variables and rerun the program

again to see how your changes alter the comparison operator calculations.

 Working with Logical Operators
Imagine playing a video game where the game needs to determine if a rock

you threw at a bird hit the bird or not. Now depending on the bird’s health,

the game next needs to know if the bird is hurt or knocked unconscious.

In these situations, you need to check if multiple situations may be true

or false.

To calculate a single Boolean value from multiple Boolean values, you

can use one of the following logical operators:

• and

• or

• not

Both the “and” and “or” logical operators compare two Boolean values

to calculate a single Boolean value. The “not” operator simply changes a

single Boolean value to its opposite.

The “and” logical operator only evaluates to true if both Boolean values

are true. Otherwise, the “and” logical operator evaluates to false like this:

• true and true = true

• true and false = false

Chapter 6 BranChing StatementS

114

• false and true = false

• false and false = false

The “or” logical operator works always evaluates to true unless both

Boolean values are false like this:

• true or true = true

• true or false = true

• false or true = true

• false or false = false

The “not” logical operator simply converts a true value to false (and a

false value to true) like this:

• not false = true

• not true = false

To see how logical operators work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 print("true and true = ", true and true)

 print("true and false = ", true and false)

 print("false and true = ", false and true)

 print("false and false = ", false and false)

 print("true or true = ", true or true)

Chapter 6 BranChing StatementS

115

 print("true or false = ", true or false)

 print("false or true = ", false or true)

 print("false or false = ", false or false)

 print("not false = ", not false)

 print("not true = ", not true)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

true and true = true

true and false = false

false and true = false

false and false = false

true or true = true

true or false = true

false or true = true

false or false = false

not false = true

not true = false

 The if Statement
Every programming language offers multiple types of branching

statements, but the simplest one is called the if statement, which evaluates

a Boolean value. If this Boolean value is true, then it follows one or more

Chapter 6 BranChing StatementS

116

commands. If this Boolean value is false, then nothing happens. The if

statements, and its variations, are helpful to simplify writing a program to

check conditions. The if statement looks like this:

 If Boolean value == true:

 commands

The key feature of the if statement is that it either runs one or more

commands (if its Boolean value is true) or does nothing at all (if its

Boolean value is false).

To see how the if statement works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as follows:

extends Sprite2D

func _ready():

 var x = 10

 if x > 5:

 print("x is greater than 5")

 if x < 5:

 print("x is less than 5")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

x is greater than 5

Chapter 6 BranChing StatementS

117

Change the value of the “x” variable to -10 and run the program again.

Each time you change the value of the “x” variable, only one of the if

statements will run, depending on whether x > 5 is true or if x < 5 is true.

 The if-else Statement
The if statement only runs if its Boolean value is true, but what if you

want to do something if the Boolean value is false? You could create two

separate if statements like this:

if x == 3:

 commands

if x != 3:

 other commands

While two separate if statements will work, it’s clumsy because it’s not

obvious that the second if statement will run only if the first if statement

does not run. A better solution is to use an if-else statement that offers two

different commands that can run. Depending on the Boolean value, either

the first set of commands will run or the second set of commands will run.

Unlike the if statement that only offers one set of commands that may

or may not run, the if-else statement offers exactly two sets of commands

where one set of commands will always run, depending on its Boolean

value. The if-else statement looks like this:

 if Boolean value == true:

 Commands

 else:

 Alternate commands

Chapter 6 BranChing StatementS

118

To see how the if-else statement works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var x = 1

 if x > 5:

 print("x is greater than 5")

 else:

 print("x is less than 5")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

x is less than 5

Because the Boolean value of x > 5 is false (1 > 5), the else part of the

if-else statement runs. Change the value of the “x” variable to 10 and run

the program again. This will make the Boolean value of x > 5 (10 > 5) true,

so only the first command will run and print “x is greater than 5.”

Chapter 6 BranChing StatementS

119

 The if-elif Statement
The if-else statement offers exactly two choices. The first set of commands

runs if the Boolean value is true, but the second set of commands runs

if the Boolean value is false. So what if you need to check multiple

Boolean values?

One option is to use multiple if statements, but this can be clumsy

and doesn’t make it clear that the separate if statements are related in any

way. As an alternative to multiple if statements, GDScript offers an if-elif

statement. The if-elif statement can check multiple Boolean values, but it’s

still possible that it may not run any commands at all. The if-elif statement

looks like this:

 if x > 15:

 print("x is greater than 15")

 elif x <= 15:

 print("x is less than or equal to 15”)

Notice that the if-elif statement checks two Boolean values. First, it

checks if x > 15 is true. If so, then it prints “x is greater than 15.” If x > 15 is

false, then it checks the second Boolean value to see if x <= 15 is true or

not. If so, then it prints “x is less than or equal to 15.”

An if-elif statement can check multiple Boolean values such as follows:

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

Chapter 6 BranChing StatementS

120

Notice that it’s possible that none of the Boolean values in the if-elif

statement will be true. In that case, no commands will run. To make sure

that at least one set of commands will run, it’s common to add a final else

part to the if-elif statement like this:

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

 else:

 print("No Boolean value was true")

To see how to use an if-elif statement, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var x = 15

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

Chapter 6 BranChing StatementS

121

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at

the bottom of the Godot window displays “x is

equal to 15.”

 6. Change the value of the “x” variable to 7 and run

the program again. Notice that this time, nothing

prints out.

 7. Edit the program to change the value of the “x”

variable to 7 and to include an else part at the end

like this:

extends Sprite2D

func _ready():

 var x = 7

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

 else:

 print("No Boolean value was true")

Chapter 6 BranChing StatementS

122

 8. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 9. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays “No Boolean

value was true.”

 10. Change the value of the “x” variable and repeat

steps 8 and 9 as many times as you wish to see how

the if-elif statement works.

 The match Statement
The if-elif statement can check multiple Boolean values until it finds

one that’s true. If none of them are true, then a default else part can run

commands instead. While the if-elif statement can be more versatile than

the if or if-else statements, they can get clumsy to write if you need to

check a large number of Boolean values.

For that reason, GDScript offers a match statement. (The match

statement in GDScript is similar to the switch statement in other languages

like Swift, C#, and Java.) The match statement is essentially identical to the

if-elif statement except it’s easier to write and understand.

Consider the following if-elif statement:

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

Chapter 6 BranChing StatementS

123

 else:

 print("No Boolean value was true")

An equivalent match statement would look like this:

 match x:

 5: print("x is equal to 5")

 10: print("x is equal to 10")

 15: print("x is equal to 15")

 20: print("x is equal to 20")

 _: print("No Boolean value was true")

The “match x” part of the match statement defines a variable to use. In

the preceding example, the match statement checks the value stored in the

“x” variable and tries to match it to 5, 10, 15, and 20. If x exactly matches

one of those values, then the match statement runs the code linked to the

matched value.

The underscore character (_) is similar to “else” in an if-elif statement.

The underscore means if nothing else matches, then run the code linked

to the underscore character. The underscore character ensures that at least

one set of commands will run.

To see how the match statement works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var x = 15

Chapter 6 BranChing StatementS

124

 if x == 5:

 print("x is equal to 5")

 elif x == 10:

 print("x is equal to 10")

 elif x == 15:

 print("x is equal to 15")

 elif x == 20:

 print("x is equal to 20")

 else:

 print("No Boolean value was true")

 match x:

 5: print("x is equal to 5")

 10: print("x is equal to 10")

 15: print("x is equal to 15")

 20: print("x is equal to 20")

 _: print("No Boolean value was true")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays “x is equal

to 15” twice. The first time it prints this message is

from the if-elif statement and the second time is

from the match statement. That’s because the if-elif

and match statements are equivalent.

 6. Change the value of the “x” variable and repeat

steps 4 and 5. Notice that no matter what value

you store in the “x” variable, the if-elif and match

statements print the same message.

Chapter 6 BranChing StatementS

125

Compared to the if-elif statement, the match statement is shorter and

much simpler to read. When you only need to check a handful of Boolean

values, the if-elif statement is fine, but when you need to check three or

more Boolean values, the match statement is often a better choice.

A match statement must exactly match a specific value. However, you

can list multiple values to match such as the following:

match x:

 1, 3, 5, 7, 9: print("Odd number")

 0, 2, 4, 6, 8: print("Even number")

 _: print("Less than 0 or greater than 10")

If the number is less than 0 or greater than 10, the default (underscore)

part of the match statement will run, which will print “Less than 0 or

greater than 10.” In case you want to get the exact value that did not match

any of the earlier values, you can create a new variable like this:

match x:

 1, 3, 5, 7, 9: print("Odd number")

 0, 2, 4, 6, 8: print("Even number")

 var new_variable: print("The value = ", new_variable)

To see how the match statement works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var x = 94

Chapter 6 BranChing StatementS

126

 match x:

 1, 3, 5, 7, 9: print("Odd number")

 0, 2, 4, 6, 8: print("Even number")

 var new_variable: print("The value = ",

new_variable)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at

the bottom of the Godot window displays “The

value = 94.”

 6. Change the value of the “x” variable and repeat steps

4 and 5. As long as you type a number that’s less

than 0 or greater than 10, the match statement will

print out the exact value stored in the “x” variable.

 Exercise: Reacting to Different
Boolean Values
Video games constantly make decisions based on the player’s actions and

the game’s current state. If a player starts out with three lives and dies a

third time, then the game ends. If a player shoots at a flying saucer, the

game must react if the player hits that flying saucer or not. Boolean values,

along with decision statements like the if and match statements, let any

project react to changing conditions.

In this exercise, you’ll see how to use comparison operators to

determine a true or false value. Based on that value, your program will use

an if-else statement to display two possible options within a RichTextLabel

that lets you display text on the user interface.

Chapter 6 BranChing StatementS

127

To see how to react to different situations using Boolean values and

branching statements, follow these steps:

 1. Reuse the Godot project you created in Chapter 5

that lets you click a button to randomly move an

image within the Godot window.

 2. Click Node2D in the Scene dock and click the Attach

Child Node icon (+). A Create New Node dialog box

appears.

 3. Click the Search text field and type RichTextLabel.

The RichTextLabel appears as shown in Figure 6-1.

Figure 6-1. Adding the RichTextLabel as a child of Node2D

Chapter 6 BranChing StatementS

128

 4. Click RichTextLabel and click Create. Godot adds

the RichTextLabel as a child node of Node2D.

 5. Click the 2D tab at the top middle of the Godot

editor window. Godot displays the user interface of

your project.

 6. Click RichTextLabel in the Scene dock and drag and

resize it so that it appears underneath the button as

shown in Figure 6-2.

Figure 6-2. Resizing and placing the RichTextLabel on the user
interface

 7. Click the script icon that appears to the right of

Node2D in the Scene dock. Godot displays the

GDScript editor.

 8. Modify the code as follows:

Chapter 6 BranChing StatementS

129

extends Node2D

func _process(delta):

 var window_size = DisplayServer.window_get_size()

 if $Sprite2D.position.y > window_size.y / 2:

 $RichTextLabel.clear()

 $RichTextLabel.append_text("In bottom half")

 else:

 $RichTextLabel.clear()

 $RichTextLabel.append_text("In top half")

func _on_button_pressed():

 var window_size = DisplayServer.window_get_size()

 randomize()

 $Sprite2D.position.x = randi() % window_size.x

 $Sprite2D.position.y = randi() % window_size.y

The function _process(delta) runs constantly. The

if-else statement checks if the current y position is

greater than the windows’s height. If so, then that

means the image currently appears in the bottom

half of the window (since the value of y increases

downward). Otherwise, the image currently appears

in the top half of the window.

To display a message in the RichTextLabel involves

first clearing anything currently displayed then

appending new text in the RichTextLabel.

 9. Click the Run icon and then click the button to

randomly move the image around the window.

Notice that each time the image moves to a different

location, the RichTextLabel either displays “In

bottom half” or “In top half.”

 10. Click the close icon of the (DEBUG) window to stop

running the project.

Chapter 6 BranChing StatementS

130

This exercise lets you see how different values can change a Boolean

value. Based on whether a Boolean value is true or false, an if-else

statement can decide to run one set of commands or an alternate set of

commands. In addition, you also learned how to display text on the user

interface by using a RichTextLabel node.

 Summary
To make decisions, programs need to use Boolean data types that can hold

either a true or false value. One way to create a true or false value is by

using comparison operators to compare two values such as a variable with

a value or two variables. Depending on the value stored in the variable, the

value of the comparison operator will either be true or false.

The most common comparison operators are < (less than), > (greater

than), == (equal to), != (not equal to), <= (less than or equal to), and >=

greater than or equal to).

Another way to calculate a Boolean value is to use logical operators

that combine two Boolean values to calculate a single Boolean value. The

three logical operators are

• and

• or

• not

The “and” operator evaluates to true only if both Boolean values are

true such as x > 0 and x < 10 where x is 5. That means 5 > 0 is true and 5 < 10

is also true.

The “or” operator evaluates to false only if both Boolean values are

false such as x > 0 or x >= 80 where x is -7. That means -7 > 0 is false and -7

>= 10 is also true.

The “not” operator simply turns a false value to true and a true value

to false.

Chapter 6 BranChing StatementS

131

By using Boolean values, you can create branching statements so a

program can make a decision. The four types of branching statements are

• if

• if-else

• if-elif

• match

The if statement checks a Boolean value, and if it’s true, then it runs

commands. If the Boolean value is false, it does nothing.

The if-else checks a Boolean value, and if it’s true, then it runs one set

of commands. If the Boolean value is false, then it runs the second set of

commands.

The if-elif statement checks multiple Boolean values until it finds one

that’s true. If none of these Boolean values are true, the if-elif statement

won’t do anything unless it includes an else part at the end.

The match statement is a shorter way to write an if-elif statement. A

match statement can match a single value or multiple values separated by

a comma.

Chapter 6 BranChing StatementS

133© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_7

CHAPTER 7

Looping Statements
A loop repeats one or more commands multiple times. When you play

a video game, the entire game represents a loop because as soon as you

finish (or die in the game), the game gives you a chance to play again.

That’s a loop. Within a game, you have smaller loops. Enemies may pop

up and move in a predictable pattern, which represents a loop. Whenever

a random enemy pops up, that is called spawning, and a program can run

a loop to spawn more enemies. Fighting a single enemy represents a loop.

Repeating the same game animation to fight an enemy is a loop. Any time

you have repetitive action, that’s a loop.

Looping statements let you repeat code. That way you can write

smaller programs that are easier to write and understand. In GDScript,

there are two types of loops:

• For loops

• While loops

The main difference between these two loops is that the for loop is

used most often when you know exactly how many times you want a loop

to repeat. On the other hand, a while loop is used most often when the

number of times the loop may repeat can vary, so it’s never a fixed number.

https://doi.org/10.1007/979-8-8688-0190-7_7

134

 Using a For Loop
A for loop counts how many times to repeat. The simplest for loop defines

a fixed number like this:

 for x in 5:

 print(x)

As simple as this for loop might look, there are actually several parts to

understand:

• The “x” variable counts, starting from 0.

• The for loop increases the value of the “x” variable by 1

each time it repeats.

• The fixed number, 5, defines when to stop

the loop, which is when x is exactly equal to 4

(counting five times from 0, 1, 2, 3, and 4).

To see how a for loop works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in 5:

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 7 Looping StatementS

135

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the for loop as follows:

0

1

2

3

4

 6. Change the value from 5 to another positive integer

value and rerun the program again. No matter what

integer value you choose, the for loop will always

start counting at 0 and stop at the defined number

minus one (such as 5 – 1 = 4).

To make it clearer that the for loop is repeating over

a range of values, starting with 0, you can also define

the upper value of a for loop like this:

 for x in range(5):

 print(x)

This is equivalent to

 for x in 5:

 print(x)

Chapter 7 Looping StatementS

136

 Using a For Loop to Count with
Different Values
An ordinary for loop always starts counting at 0 and stops at the upper

limit value – 1. However, what if you want to start counting from a nonzero

value? In that case, you can define a range of values that define the starting

number and an upper limit value like this:

 for x in range(5, 11):

 print(x)

The preceding code starts counting at 5 and stops at the upper limit – 1

(11 – 1 = 10). To see how this for loop works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in range(5, 11):

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the for loop as follows:

Chapter 7 Looping StatementS

137

5

6

7

8

9

10

 6. Change the starting value from 5 to another positive

integer value and change the ending value from 11

to another positive integer value larger than 6. Then

rerun the program again. No matter what integer

value you choose, the for loop will always start

counting at the starting value and stop at the ending

value minus one (such as 11 – 1 = 10).

So far, we’ve created for loops that count from a lower value to a higher

value, incrementing by one. Rather than increment by 1, you can define a

number to increment by such as 2 or 3 like this:

 for x in range(5, 13, 2):

 print(x)

The preceding code starts counting at 5 but increments by 2. So the

second number is 7, the third number is 9, the fourth number is 11, and

then it stops because the upper limit minus the increment value (13 – 2 =

11) has been reached or exceeded.

To see how a for loop can increment by values other than 1, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 7 Looping StatementS

138

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in range(5, 13, 2):

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

5

7

9

11

 6. Change the starting value from 5 to another positive

integer value and change the ending value from

13 to another positive integer value larger than

6. Change the increment value from 2 to another

positive number such as 3 or 4. Then rerun the

program again. No matter what integer value you

choose, the for loop will always start counting at the

starting value and stop at the ending value minus

the increment value (such as 13 – 2 = 11).

So far, we’ve been counting from a lower value to a higher value by

increments of 1 or another value we choose. A for loop can also count

down from a higher value to a lower value by a negative increment such as

 -1 or -3. To do that, just switch the numbers defined in the range like this:

Chapter 7 Looping StatementS

139

 for x in range(13, 5, -1):

 print(x)

This for loop starts counting at 13 then decrements by 1 (or increases

by -1) until it reaches the second limit of 5 – -1 = 6. To see how this for loop

works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in range(13, 5, -1):

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

13

12

11

10

9

8

7

6

Chapter 7 Looping StatementS

140

 6. Change the starting value from 13 to another

positive integer value and change the ending value

from 5 to another positive integer value. Change

the increment value from -1 to another negative

number such as -2 or -3. Then rerun the program

again. No matter what integer value you choose,

the for loop will always start counting at the starting

value and stop at the ending value minus the

increment value (such as 5 – -1 = 6).

 Using the For Loop with Strings and Arrays
The for loop normally repeats based on numeric values that define the

starting and ending values. However, a for loop can repeat based on the

number of items in a string or an array. (Arrays are a data structure that

you’ll learn about in Chapter 8.)

A string can be a single word (such as “Hello”) or multiple words

separated by spaces or punctuation marks (such as “Hello, world!”). Every

character in a string, including spaces and punctuation marks, counts as

1 character, so the string “Hello” consists of 5 characters, while the string

“Hello, world!” consists of 13 characters.

Because every string contains one or more characters, a for loop can

use the total number of characters to define how many times it repeats

like this:

 for x in "Hello":

 print(x)

Since the string “Hello” contains five characters, the preceding for loop

repeats five times. Besides defining how many times a for loop repeats, a

string can also define what value the for loop can retrieve. In the preceding

example, the for loop retrieves and prints each character of the string.

Chapter 7 Looping StatementS

141

To see how a for loop can work with a string, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in "Hello":

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

H

e

l

l

o

 6. Change the string “Hello” to another string, even

one containing spaces and punctuation marks.

Then run the program again. Each time you change

the length and contents of the string, the for loop

will repeat based on the number of characters in the

string and print each character in that string.

Chapter 7 Looping StatementS

142

Besides looping through a string, a for loop can also loop through an

array where the number of items in an array determines how many times

the for loop repeats and the contents of the array determine what a for loop

variable can retrieve like this:

 for x in ["Hello", "Bye", "Cat", "Dog", "Bird"]:

 print(x)

The array contains five strings (["Hello", "Bye", "Cat", "Dog", "Bird"]), so

it repeats five times. Then it prints each item in the array.

To see how a for loop can use an array to define how many times to

repeat, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 for x in ["Hello", "Bye", "Cat", "Dog", "Bird"]:

 print(x)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Chapter 7 Looping StatementS

143

Hello

Bye

Cat

Dog

Bird

 6. Change the strings stored in the array by adding new

strings. Then run the program again. Each time you

change the length and contents of the string, the for

loop will repeat based on the number of items in the

array and print each item in that array.

A for loop can repeat a fixed number of times or over a range where

that range can be two numeric values, a string, or an array. When you

know exactly how many times a loop should repeat, use a for loop. When

you don’t know how many times a loop should repeat, use a while loop

instead.

 The While Loop
The for loop repeats until it reaches a numeric limit. On the other hand,

the while loop repeats as long as a Boolean value remains true. The

moment this Boolean value becomes false, the while loop stops repeating.

To use a while loop, you must include the following:

• A variable that will change within the while loop

• A Boolean value that uses this variable with a

comparison operator to check if it’s true or false

• A way to change this variable within the loop so that the

Boolean value will eventually become false

Chapter 7 Looping StatementS

144

A while loop looks like this:

 var x = 0 # A variable that will change within

the loop

 while x < 5: # A Boolean value that will eventually

be false

 print(x)

 x += 1 # A way to change the variable within

the loop

If you don’t create and store an initial value in a variable before the

while loop, the while loop’s Boolean value won’t be able to evaluate to

either true or false.

If you create a Boolean value that never evaluates to true, the while

loop will never run. If this Boolean value never evaluates to false, the while

loop will never stop running, creating an endless loop.

If you never change the variable within the while loop, the Boolean

value can never evaluate to false, creating an endless loop.

To see how the while loop works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var x = 0 # A variable that will change

within the loop

 while x < 5: # A Boolean value that will

eventually be false

Chapter 7 Looping StatementS

145

 print(x)

 x += 1 # A way to change the variable

within the loop

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

0

1

2

3

4

 6. Change the value of “x” from 0 to 9 and repeat steps

4 and 5. Notice that nothing happens because the

Boolean value (9 < 5) is false, so the while loop

never runs.

 7. Change the value of “x” back to 0 and delete the

“x += 1” line, so the variable never changes. Then

repeat steps 4 and 5. Notice that the program keeps

printing 0 and never stops running because the

while loop’s Boolean value (x < 5) is always true

and never changes. This creates an endless loop.

To stop Godot from running, you’ll need to Force

Quit Godot.

Chapter 7 Looping StatementS

146

 Comparing For and While Loops
A for loop is best for counting, but a while loop can do that too. A while

loop is best for running until a Boolean value becomes false, but a for loop

can do that too. In programming, there are often multiple ways to do the

same task, but some ways are shorter and easier than others.

Consider the following for loop that runs exactly five times:

 for x in 5:

 print(x)

This for loop starts counting at 0, counts 1, 2, 3, and 4, then stops. An

equivalent while loop might look like this:

 var x = 0

 while x < 5:

 print(x)

 x += 1

Both loops count from 0 to 4, but the for loop is shorter and easier to

understand. On the other hand, the while loop is longer and harder to

understand with more ways the loop can work incorrectly. If you fail to

initialize a variable before the while loop, the while loop’s Boolean value

(x < 5) may never be true, so the loop never runs at all. If you fail to change

the “x” variable within the loop (x += 1), then the loop risks never stopping.

To see how to create equivalent for and while loops, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

Chapter 7 Looping StatementS

147

extends Sprite2D

func _ready():

 for x in 5:

 print("for loop = ", x)

 var y = 0

 while y < 5:

 print("while loop = ", y)

 y += 1

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

mathematical operations as follows:

for loop = 0

for loop = 1

for loop = 2

for loop = 3

for loop = 4

while loop = 0

while loop = 1

while loop = 2

while loop = 3

while loop = 4

The while loop is best for repeating until a Boolean value becomes

false. Video games often use a loop to continue playing the game until the

user quits. So a while loop might look like this:

 var play_game: bool = true

 var games_played = 0

Chapter 7 Looping StatementS

148

 while play_game == true:

 games_played += 1

 print("Play game ", games_played)

 if games_played == 5:

 play_game = false

This while loop runs until the number of games played equals 5. Then

it changes its Boolean value to false, so the while loop eventually ends.

To duplicate this in a for loop, we need to use a “break” command

like this:

 for games in range(1, 100):

 print("For loop game ", games)

 if games == 5:

 break

This for loop would normally continue looping 100 times, but the if

statement combined with the break command prematurely exits this for

loop after 5 times. Although the for loop may look shorter, there’s one huge

problem.

The while loop can continue looping indefinitely until its Boolean

value changes to false. With the for loop, we must choose an arbitrarily

large value (100) to make the for loop keep repeating. If this arbitrary value

is too low, the for loop could end too soon.

If the for loop controlled a video game, there’s no way of knowing how

many times someone might want to play a video game before stopping. No

matter what arbitrarily large value we define for the for loop, it may not be

high enough. In this case, the while loop does not need an arbitrary value

to define how many times to loop because a while loop repeats endlessly

until someone chooses to quit the game.

To see how the while and for loops compare when stopping when a

Boolean value changes, follow these steps:

Chapter 7 Looping StatementS

149

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var play_game: bool = true

 var games_played = 0

 while play_game == true:

 games_played += 1

 print("While loop game ", games_played)

 if games_played == 5:

 play_game = false

 for games in range(1, 100):

 print("For loop game ", games)

 if games == 5:

 break

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at

the bottom of the Godot window shows the while

loop and the for loop both ending after five times as

follows:

While loop game 1

While loop game 2

Chapter 7 Looping StatementS

150

While loop game 3

While loop game 4

While loop game 5

For loop game 1

For loop game 2

For loop game 3

For loop game 4

For loop game 5

When creating loops, choose between the for loop and the while loop.

Both have their advantages and disadvantages, so use the loop that’s best

for your particular needs.

 Exercise: Repeating Code with Loops
Writing multiple, often repetitive commands can clarify what a program

does at the expense of taking up a lot of space. On the other hand, loops

take up much less space but can be harder to understand. Ultimately,

programming is a trade-off between clarity (takes time to write) and

efficiency (harder to understand).

In this exercise, you’ll create a simple loop to see how to rotate an

image and eventually stop at a specific angle to keep the loop from running

endlessly.

To see how to use a loop, follow these steps:

 1. Create a new Godot project and create a Node2D in

the Scene dock.

 2. Click Node2D in the Scene dock and click the Attach

Child Node icon (+). A Create New Node dialog box

appears.

 3. Click the Search text field and type sprite2d.

Chapter 7 Looping StatementS

151

 4. Click Sprite2D in the Create New Node dialog box

and click Create. Godot creates a Sprite2D as a child

node under Node2D.

 5. Click Sprite2D. Notice that the Inspector dock

displays an empty Texture property.

 6. Drag and drop the icon.svg image from the

FileSystem dock to the Texture property of the

Sprite2D node. The icon.svg appears on the user

interface.

 7. Drag the Sprite2D node so that it appears within the

borders of the user interface window.

 8. Click Node2D in the Scene dock and then click the

Attach Script icon. An Attach Node Script dialog box

appears.

 9. Click Create. Godot displays a GDScript.

 10. Edit the GDScript code as follows:

extends Node2D

var degrees = 0

@export var final_angle = 0

func _process(delta):

 while degrees <= final_angle:

 $Sprite2D.rotation_degrees = degrees

 degrees += 10

The final_angle variable appears in the Inspector

dock for Node2D. This lets you type in a value, and

then the while loop will rotate the icon.svg image to

the angle you chose.

Chapter 7 Looping StatementS

152

 11. Click Node2D in the Scene dock. Notice that the

final_angle variable is visible in the Inspector dock

as shown in Figure 7-1.

Figure 7-1. The final_angle variable appears in the Inspector dock

 12. Click the Final Angle property in the Inspector dock

and type an angle such as 45 and press Enter. The

while loop will use this value to rotate the image to

your defined Final Angle value.

 13. Click the Run icon. A dialog box asks for you to

choose a main scene.

 14. Click Select Current. A dialog box appears, asking

you to save your files.

 15. Click Save. Godot runs your project. Notice that the

image appears rotated at the angle you defined in

the Final Angle property in the Inspector dock.

 16. Click the close icon of the (DEBUG) window to stop

your project.

Chapter 7 Looping StatementS

153

The while loop keeps rotating the image until it has rotated the image

beyond the value stored in the final_angle variable. Although we can’t see

the while loop running, we can see the results when the while loop finishes

running when it displays a rotated image in the (DEBUG) window.

 Summary
A loop repeats one or more commands multiple times. This can make

programs more compact but also harder to understand. The two types of

available loops are for loops and while loops.

A for loop can run a fixed number of times. A while loop may never

run, but once it starts running, it keeps running until a Boolean value

changes to false.

When creating a for loop, you can define a fixed number to define how

many times to repeat the for loop, a range of values, and an increment

value. A for loop can also use a string or an array to define how many times

it repeats.

When creating a while loop, make sure you define a variable before the

loop and then change that variable somewhere inside the loop to make a

Boolean value change from true to false eventually. Failure to do this could

create an endless loop that freezes or hangs the program and keeps it from

working.

Both a for loop and a while loop can work identically although in most

cases, one loop will be simpler and easier to use than the other. Loops

simply give you a way to repeat code.

Chapter 7 Looping StatementS

155© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_8

CHAPTER 8

Understanding Arrays
Every program needs to store data, and that data usually gets stored in one

or more variables. However, the more data a program needs to store, the

more variables you need to create. Rather than create multiple variables,

it’s much easier to use an array.

An array essentially acts like a single variable but with the ability

to store any number of items. A number of items are grouped together,

making arrays handy for storing data in one place that share a common

characteristic. A video game might use one array to store a list of supplies

such as a medical kit, ammunition for a rifle, and food and a second array

to store a list of weapons the player can use.

Another array can even be used to store the characteristics of a player

in an RPG-type game such as hair, torso, legs, etc. You can use an array for

just about anything when it comes to making a game. It just depends on

the type of game that you are making. Arrays are especially useful when

dealing with multiple variables.

Arrays represent the most commonly used way to store data besides

single variables. So it’s important to understand how to create arrays, fill

them with data, and retrieve data from them.

https://doi.org/10.1007/979-8-8688-0190-7_8

156

 Using Arrays
A variable acts like a single box that can hold exactly one chunk of data.

To access the value in a variable, you just have to use the variable name.

The main limitation of a variable is that it can only hold one chunk of data

at a time.

To create a variable, just define three parts as shown in Figure 8-1:

• Variable name

• (Optional) Data type

• (Optional) Initial value

Figure 8-1. The three parts of creating a variable

To create an array, you just need two parts:

• Array name

• (Optional) One or more initial values

Unlike variables that can be defined to hold a specific data type,

arrays can hold any data type such as integers, strings, and floating-point

numbers. The variables stored in an array are ordered by index. The first

index of an array begins at 0 then continues onward. Arrays consist of a list

of data enclosed by square brackets as shown in Figure 8-2.

Chapter 8 Understanding arrays

157

Figure 8-2. The two parts of creating an array

Where a variable can only hold one chunk of data at a time, arrays can

hold multiple chunks of data in a single variable name. A variable acts like

a single box, but an array acts like a collection of boxes where each box can

hold a different chunk of data as shown in Figure 8-3.

Figure 8-3. The difference between a variable and an array

To retrieve data stored in a variable, just use the variable name

like this:

 var x = 4

 print("The value in x = ", x)

However, to retrieve data stored in an array, you need both the variable

name and its position (also called an index value) within the array. The

leftmost position in an array is index value 0, the second position is index

value 1, and so on as shown in Figure 8-4.

Chapter 8 Understanding arrays

158

Figure 8-4. An array stores data in specific positions identified by an
index number

Suppose you needed to track the health of two different characters. You

could create two separate variables like this:

var healthPerson = 40

var healthDog = 15

The problem with creating separate variables is that there is no visible

relationship between similar variables. Using an array, you can group

related data together such as follows:

var healthArray = [healthPerson, healthDog]

An array can hold multiple elements in a single location. To access a

specific item in an array, we need to define the array name plus the index

position. The first item in an array is at index 0, the second at index 1, and

so on. Suppose we ran the following code:

print(healthArray[0])

The first item in the healthArray is healthPerson, which has a value of

40. So the preceding command would print 40.

If we want to print out all the elements within an array, we could omit

the index value and only specify the array name like this:

print(healthArray)

Chapter 8 Understanding arrays

159

Arrays can be versatile. For example, we could create a character

creation menu in a game that stores the different elements of the character,

such as the legs, torso, and head, in an array. There are multiple ways to

get creative with strings, arrays, and integers when programming in Godot,

so take the time to discover different functions to make your game.

To see how to create an array and retrieve data from that array, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name_array = ["Tom", 42, 3.1415, "Pat"]

 print("Index 2 = ", name_array[2])

 print("Index 0 = ", name_array[0])

 print("Index 3 = ", name_array[3])

 print("Index 1 = ", name_array[1])

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

Index 2 = 3.1415

Index 0 = Tom

Index 3 = Pat

Index 1 = 42

Chapter 8 Understanding arrays

160

To retrieve data from an array, you must specify the array name

followed by an index value enclosed in square brackets. So if you want to

retrieve the first item in an array, you would specify the array name with an

index value of 0 like this:

 array_name[0]

When retrieving data, be careful to specify an index value that actually

contains data. For example, suppose you had an array like this:

var name_array = ["Tom", 42, 3.1415, "Pat"]

The index numbers correspond to each chunk of data like this:

Index value Data

0 “tom”

1 42

2 3.1415

3 “pat”

If you use the index value of 3, you’ll retrieve the data stored in the

index 3 position, which is “Pat.” However, if you use an index value of 4

or greater, there is no data stored in those index positions in the array, so

trying to retrieve nonexistent data will cause an error.

To see what happens if you try to retrieve nonexistent data in an array,

follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 8 Understanding arrays

161

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name_array = ["Tom", 42, 3.1415, "Pat"]

 print("Index 32 = ", name_array[32])

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to make

it go away. Notice that the program crashes. Any

time you try to retrieve data using an index value

that doesn’t exist, your program will always crash.

 Creating and Adding Items to an Array
The simplest way to create an array is to define an array name and assign it

an initial array by using square brackets such as follows:

 var pet_array = ["Dog", "Cat", "Bird", "Fish", Turtle"]

If you want to create an array but don’t want to define initial values,

you have two options:

• var pet_array = Array()

• var pet_array = []

Both methods create an empty array. Whether you start with an empty

array or with an array containing one or more items, you can always add

new data to an array at any time. Two ways to add items to an array include

• append

• insert

Chapter 8 Understanding arrays

162

The append command always adds a new item at the end of an array.

The insert command lets you define the position (index value) where you

want a newly added item to appear. This index value must be an existing

value, which means it already contains data. When you use the insert

command, it moves all existing data to the right as shown in Figure 8-5.

Figure 8-5. The insert command pushes existing data to the right,
increasing their index value by 1

To see how both the append and insert commands can add items to an

array, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var number_array = [14, 23, 8]

 number_array.append(75)

 print("Append ", number_array)

 number_array.insert(2, 61)

 print("Insert ", number_array)

Chapter 8 Understanding arrays

163

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the append and insert commands as follows:

Append [14, 23, 8, 75]

Insert [14, 23, 61, 8, 75]

Notice that the append command puts 75 at the end (rightmost) side

of the array while the insert(2, 61) commands puts 61 at the third position

(index value 2) and pushes everything else to the right.

When using the insert command, be careful to only specify index

values that exist. If you try to insert an item into an array using an invalid

index number, the program will crash.

 Getting Information About Arrays
Once you’ve created an array and stored items in them, you may need to

get information about the array such as whether it’s empty, how many

items it may hold, what’s the largest item stored, and what’s the smallest

item stored in the array.

To get information about an array, GDScript offers the following

commands:

• is_empty

• size

• max/min

The is_empty command lets you know if an array is empty. The size

command returns the total number of items in an array. The max and min

commands retrieve the maximum or minimum items stored in an array.

Chapter 8 Understanding arrays

164

For numeric values, the max command retrieves the largest value, and the

min command retrieves the smallest value.

To see how these commands work with arrays, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var number_array = []

 print("Is_empty = ", number_array.is_empty())

 number_array.append(40)

 print("Is_empty = ", number_array.is_empty())

 number_array.append(25)

 number_array.append(37)

 number_array.append(94)

 print(number_array)

 print("Maximum value = ", number_array.max())

 print("Minimum value = ", number_array.min())

 print(number_array)

 print("Size = ", number_array.size())

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the is_empty, commands as follows:

Chapter 8 Understanding arrays

165

Is_empty = true

Is_empty = false

[40, 25, 37, 94]

Maximum value = 94

Minimum value = 25

[40, 25, 37, 94]

Size = 4

Notice that initially, the array is empty, so the is_empty command

returns true. Then the append command stores 40 in the array, so the

second time the is_empty command returns false.

Multiple append commands add 25, 37, and 94 to the array. That

means the maximum value in the array is 94 and the minimum value is 25.

Finally, the size command returns the size or total number of items stored

in the array, which is 4 (40, 25, 37, 94).

When working with strings, the max and min commands use

alphabetical order to determine a minimum and maximum value. Strings

that begin with “a” are considered lower, while strings that begin with “z”

are considered higher.

To see how to use the min and max commands with strings, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

Chapter 8 Understanding arrays

166

 var name_array = ["Fred", "Barney", "Wilma",

"Betty"]

 print("Max = ", name_array.max())

 print("Min = ", name_array.min())

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the max and min commands as follows:

Max = Wilma

Min = Barney

 6. Experiment with different names in the array and

repeat steps 4 and 5.

 Retrieving Data from Arrays
After you’ve stored data in an array, you can retrieve that data by specifying

the index value of the data you want to retrieve such as follows:

 var name_array = ["Fred", "Barney", "Wilma", "Betty"]

 print(name_array[1])

The preceding code creates an array with four strings and then prints

the string stored at index 1, which is “Barney.” One trouble with arrays

is that if you add or delete items from an array, the index values of the

data will constantly change. To make retrieving data from an array easier,

GDScript offers three commands:

Chapter 8 Understanding arrays

167

• front

• back

• pick_random

The front command retrieves the first item in an array, which is always

at index 0. The back command retrieves the last item in an array. Since an

array can be of any size, trying to specify the index value of the last item

in an array can be dangerous since it will change when you add or delete

items from an array.

The pick_random command simply chooses an item from the array

at random. This can be handy for video games that use an array to store

playing card values or need to create other forms of random activity.

To see how to use these commands, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name_array = ["Fred", "Barney", "Wilma",

"Betty"]

 print("Front = ", name_array.front())

 print("Back = ", name_array.back())

 print("Pick random = ", name_array.pick_random())

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 8 Understanding arrays

168

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the is_empty, commands as follows:

Front = Fred

Back = Betty

Pick random = Barney

Note that if you run the program again, the front (“Fred”) and back

(“Betty”) results will always be the same, but the pick_random command

will likely retrieve a different name.

The front and back commands retrieve an item from an array but do

not remove it from the array. Three other commands not only retrieve an

item from an array but remove it as well:

• pop_at

• pop_back

• pop_front

The pop_at command retrieves and removes an item from a specific

index value. The pop_back and pop_front commands retrieve and remove

an item from the back and front of an array, respectively.

To see how these three pop commands work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

Chapter 8 Understanding arrays

169

extends Sprite2D

func _ready():

 var name_string = ""

 var name_array = ["Fred", "Barney", "Wilma",

"Betty"]

 print(name_array)

 name_string = name_array.pop_front()

 print("Pop front = ", name_string)

 print(name_array)

 name_string = name_array.pop_back()

 print("Pop back = ", name_string)

 print(name_array)

 name_string = name_array.pop_at(1)

 print("Pop at = ", name_string)

 print(name_array)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the is_empty, commands as follows:

["Fred", "Barney", "Wilma", "Betty"]

Pop front = Fred

["Barney", "Wilma", "Betty"]

Pop back = Betty

["Barney", "Wilma"]

Pop at = Wilma

["Barney"]

Chapter 8 Understanding arrays

170

Notice that each time a pop command runs, it retrieves and removes

an item from the array. Thus the array gradually shrinks each time another

pop command runs.

If a pop command tries to retrieve an item from an array that does not

exist, it will only return a <null> value. Change the array in the preceding

code to an empty array [] like this:

var name_array =[]

Then run the program again. The Output pane will display the

following:

[]

Pop front = <null>

[]

Pop back = <null>

[]

Pop at = <null>

[]

Remember that all pop commands retrieve and remove items from an

array. If you only want to retrieve an item without removing that item from

the array, use the front or back command, or access the name of the array

and an index value such as name_array[2].

 Manipulating Arrays
You can store data in any order in an array, so two arrays can contain the

exact same data but arranged in different order. This chaotic way of storing

data can make arrays difficult to use since you never know where data

might be stored at any given time.

To change the order of data in an array, you can use the following

commands:

Chapter 8 Understanding arrays

171

• Sort

• Reverse

• Shuffle

Sort rearranges the order of an array in alphabetical or numeric order

from lowest to highest. Reverse rearranges the order of an array in reverse

alphabetical or numeric order from highest to lowest. Shuffle randomly

rearranges the order of an array.

To see how these commands work to change the order of data stored in

an array, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name_array = ["Fred", "Barney", "Wilma",

"Betty"]

 name_array.sort()

 print(name_array)

 name_array.reverse()

 print(name_array)

 name_array.shuffle()

 print(name_array)

 var number_array = [5, -21, 47, 68, 13]

 number_array.sort()

 print(number_array)

Chapter 8 Understanding arrays

172

 number_array.reverse()

 print(number_array)

 number_array.shuffle()

 print(number_array)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

["Barney", "Betty", "Fred", "Wilma"]

["Wilma", "Fred", "Betty", "Barney"]

["Betty", "Barney", "Fred", "Wilma"]

[-21, 5, 13, 47, 68]

[68, 47, 13, 5, -21]

[68, 47, -21, 5, 13]

Notice how the reverse command does the complete opposite of

the sort command. Also note that the shuffle command will return a

different result each time you run the program, so the results of the shuffle

command on your computer won’t likely exactly match the results listed

earlier.

By sorting data, you can make the position of data more predictable on

where it’s stored in the array. The shuffle command is good for scrambling

data in random order, which can be handy for listing items a player might

encounter in a video game such as different types of treasures or enemies.

Chapter 8 Understanding arrays

173

 Searching for Data in an Array
When an array contains multiple items, you may want to know if an array

contains certain data and if so, where that data might exist. To do this,

GDScript offers two commands:

• has

• bsearch

The has command checks if a certain item is in an array and returns a

true or false value. The bsearch command must always work with a sorted

array (created using the sort command). Then it can search a sorted array

to return the index value of a specific item. (If you try to use the bsearch

command on an unsorted array, the results can be unpredictable and

unreliable.)

To see how to search for specific items in an array, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var index_value = 0

 var name_array = ["Fred", "Barney", "Wilma",

"Betty", "Daphne", "Shaggy"]

 name_array.sort()

 print(name_array)

 if name_array.has("Shaggy"):

Chapter 8 Understanding arrays

174

 index_value = name_array.bsearch("Shaggy")

 print("Shaggy is in the array at index = ",

index_value)

 else:

 print("Shaggy is not in the array")

 if name_array.has("Melvin"):

 index_value = name_array.bsearch("Melvin")

 print("Melvin is in the array at index = ",

index_value)

 else:

 print("Melvin is not in the array")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

["Barney", "Betty", "Daphne", "Fred", "Shaggy",

"Wilma"]

Shaggy is in the array at index = 4

Melvin is not in the array

The sort command first sorts the array. Then the first if statement uses

the “has” command to see if “Shaggy” is in the array. If so, then it uses

the bsearch command to find the index value of “Shaggy,” which is 4. The

second if statement also uses the ”has” command to see if “Melvin” is in

the array. Since “Melvin” isn’t stored in the array, the else part of the if-else

statement runs and prints “Melvin is not in the array.”

Chapter 8 Understanding arrays

175

 Deleting Data from an Array
After storing data in an array, another common task is to delete items. One

way to delete and retrieve values from an array is through the various pop

(pop_at, pop_front, and pop_back) commands. If you just want to delete

items in an array, you can use these commands:

• clear

• erase

• remove_at

The clear command completely empties an array no matter how many

items might be stored. The erase command lets you specify the data you

want to remove without knowing its index value. The remove_at lets you

specify which item to delete, based on its index value.

The erase command searches for data to delete, but if that data does

not exist in the array, the erase command does nothing.

To see how these commands work to delete items from an array, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var name_array = ["Fred", "Barney", "Wilma",

"Betty", "Daphne", "Shaggy"]

 name_array.erase("Betty")

Chapter 8 Understanding arrays

176

 print(name_array)

 name_array.remove_at(1)

 print(name_array)

 name_array.clear()

 print(name_array)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

["Fred", "Barney", "Wilma", "Daphne", "Shaggy"]

["Fred", "Wilma", "Daphne", "Shaggy"]

[]

 Exercise: Using Arrays
Arrays can be useful for storing multiple chunks of data in a single location.

Once that information has been stored in an array, you can retrieve that

information later. In this exercise, you’ll use an array to store the x and y

position of an image that appears in random positions on the screen. Each

time the image moves to a different location, the array will keep track of all

previous locations and list them at the top of the screen.

To see how to store the location data of an image in an array, follow

these steps:

 1. Create a Godot project that consists of a Node2D

as the parent node and the following nodes as its

children nodes: Sprite2D, Button, and Label.

Chapter 8 Understanding arrays

177

 2. Rename the Label node as ArrayLabel.

 3. Click the Sprite2D node in the Scene dock and

create a Label as its child node. The structure of the

scene should look like Figure 8-6.

Figure 8-6. The scene should consist of a Node2D, Sprite2D, Button,
and two Labels

 4. Click Node2D and click the Attach Script icon. An

Attach Node Script dialog box appears.

 5. Click Create. Godot displays a GDScript file.

 6. Click the Sprite2D node and drag the icon.svg image

from the FileSystem dock to the Texture property in

the Inspector dock.

 7. Click Button in the Scene dock. Resize and move the

button so that it appears near the bottom middle

of the user interface window (defined by a faint

rectangle border).

 8. Click the Text property in the Inspector dock and

type Random Position.

Chapter 8 Understanding arrays

178

 9. Click the Node tab in the Inspector dock on the right

side of the window.

 10. Double-click pressed(). A Connect a Signal to a

Method dialog box appears.

 11. Click Node2D and click Connect. Godot creates a

_on_button_pressed() function.

 12. Click 2D and then click Sprite2D in the Scene dock

and move it near the middle of the user interface.

 13. Click the Label child node underneath Sprite2D and

move it underneath the icon.svg image displayed by

the Sprite2D node as shown in Figure 8-7.

Figure 8-7. The position of Label and ArrayLabel on the user
interface

 14. Move the ArrayLabel to the upper left corner of the

user interface window.

Chapter 8 Understanding arrays

179

 15. Click the script icon that appears to the right of

Node2D in the Scene dock. Godot displays the

GDScript editor.

 16. Modify the code as follows:

extends Node2D

var array_position = []

func _on_button_pressed():

 var window_size = DisplayServer.window_get_size()

 var format_string = "(%d, %d)"

 randomize()

 $Sprite2D.position.x = randi() % window_size.x

 $Sprite2D.position.y = randi() % window_size.y

 var actual_string = format_string % [$Sprite2D.

position.x, $Sprite2D.position.y]

 $Sprite2D/Label.text = actual_string

 array_position.append(actual_string)

 $ArrayLabel.text = (array_join(array_position))

func array_join(my_array: Array, glue: String = ", ")

-> String:

 var string: String = ""

 for index in range(0, my_array.size()):

 string += str(my_array[index])

 if index < my_array.size() - 1:

 string += glue

 return string

Each time the user clicks the button, the code

randomly moves the Sprite2D (with the icon.svg

image) to a new random position on the screen.

This x and y position gets stored in an array. Since

Chapter 8 Understanding arrays

180

the ArrayLabel can only hold a text string, the

array_join function takes each item from the array,

separates each item with a comma, and creates one

long string so it can appear in the ArrayLabel at the

top left of the user interface window.

 17. Click the Run icon. A dialog box appears, asking you

to select a main scene.

 18. Click Select Current. A dialog box appears, asking to

save the current scene.

 19. Click Save. The user interface of your project

appears.

 20. Click the Random Position button several times.

The image moves to a random position and displays

its current x and y position underneath. Notice that

the top of the screen also displays a list of all the

positions the image has been as shown in Figure 8-8.

Chapter 8 Understanding arrays

181

Figure 8-8. The child node Label underneath Sprite2D displays the
current location of the image

 21. Click the close icon of the (DEBUG) window.

 Summary
Arrays let you store multiple items in a single variable name. The number

of items an array can hold can constantly expand or shrink. When storing

items in an array, you can identify that data by the array’s name and the

index value of that item where the first item in an array is stored at index 0,

the second at index 1, and so on.

Each time you add, delete, or rearrange items in an array, the index

values of data may change. Normally you can retrieve data by specifying

the array name and an index value, but you can also use the various pop

commands (pop_at, pop_front, and pop_back) to retrieve and remove data

from an array at the same time.

Chapter 8 Understanding arrays

182

Data can be stored in an array in any order. To organize data in an

array, you can sort the array in alphabetical or numeric order. Once you’ve

sorted an array, you can search for specific items in an array without

knowing its index value.

Arrays represent one of the most commonly used data structures in

any program. By understanding how to add, sort, retrieve, and delete

data from an array, you can store related data together in an array instead

of creating multiple, separate variables. Using arrays can save up some

time when working with multiple variables and help with writing a

simpler program for the game that you would want to create. After all,

programming anything, especially a video game, is all about creativity.

Chapter 8 Understanding arrays

183© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_9

CHAPTER 9

Understanding
Dictionaries
Every program needs to store data and that data usually gets stored in one

or more variables. However, the more data a program needs to store, the

more variables you need to create. Even worse, multiple variables make it

hard to know which variables might be related to one another. This is why

it is important to declare variables early on and to make your program as

simple as possible.

Two ways to avoid using multiple variables are to use an array or a

dictionary. The main drawback of an array is that data can be stored in any

order, making it difficult to find and retrieve specific data.

A dictionary overcomes this drawback of arrays by using keys. Like

an array, dictionaries also store data in any order, but dictionaries always

store data with a key, known as a key-value pair. The value is the data you

want to store, and the key represents a way to identify the data so you can

retrieve it later.

Because you can always retrieve data using a key, the unordered state of

the dictionary doesn’t matter. Thus dictionaries are handy for retrieving data

quickly that’s not as simple to do with arrays. Two arrays can contain the

same data, but the index used to retrieve identical data can greatly differ. On

the other hand, the order that you store data in a dictionary doesn’t matter.

As long as you know the key associated with the data you want to retrieve,

you’ll always be able to retrieve that data from a dictionary at any time.

https://doi.org/10.1007/979-8-8688-0190-7_9

184

 Creating Dictionaries
One advantage of a dictionary is that it can store data that can be related to

each other. Suppose a program needs to store someone’s name and phone

number. A phone number by itself means nothing without a name, but if

you store this data in two separate variables, it’s not clear they’re related to

each other like this:

var first_name: String = "Frank"

var phone_number: String = "555-1234"

Separate variables don’t make it clear which data is related to other

data. Even though we may know that “Frank” has the “555-1234” phone

number, the computer does not because each data chunk is stored in a

separate variable.

Dictionaries can store related data together in a pair known as a key-

value pair. The value is the data you want to save and the key is any related

data that you want to use to help find and retrieve the value as shown in

Figure 9-1.

Figure 9-1. Dictionaries store data as a key-value pair

To create a dictionary, you need to define just three parts:

• Dictionary name

• Curly brackets to enclose one or more key-value

pairs of data

• One or more key-value pairs of data separated by a

colon (:)

Chapter 9 Understanding diCtionaries

185

A dictionary stores data in key-value pairs where the key is used to

retrieve data and the value is the actual data itself like this:

“Frank” : “555-1234”

In the preceding example, the key is “Frank” and the value is

“555-1234.” The key and value can be any data type such as follows:

3.1415 : “Pi”

In this example, the key is 3.1415 and the value is “Pi.” When creating

a dictionary, you need to define a name for the dictionary and set it equal

to one or more key-value pairs enclosed within curly brackets, where each

key-value pair is separated by a comma like this:

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

In the preceding code, the name of the dictionary is “contacts,” and it

contains three key-value pairs enclosed within curly brackets. Each key-

value pair consists of two values separated by a colon. Then each key-value

pair must be separated with a comma except the last key-value pair.

Make sure every key in a dictionary is unique because dictionaries

use these keys to find data. If you had duplicate keys, then the dictionary

wouldn’t know which data you wanted to retrieve.

To see how to create a dictionary, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 9 Understanding diCtionaries

186

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

 print(contacts)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

{ "Frank": "555-1234", 3.1415: "Pi", "Amount": 12.25 }

This code creates a dictionary, stores three key-value pairs, and then

prints out the whole dictionary.

 Retrieving Data from a Dictionary
Once you’ve stored data in a dictionary, the next step is retrieving that

data. The simplest way to retrieve data is to use the dictionary name

followed by the key linked to the data that you want. Suppose you had a

dictionary like this:

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

Chapter 9 Understanding diCtionaries

187

 "Amount" : 12.25

 }

In each key-value pair, the key comes first, followed by a colon and

its associated value. So to retrieve “555-1234,” you could reference the

dictionary name and the key linked to the data you want like this:

contacts["Frank"]

Rather than retrieve individual data from a dictionary, you can also

use a for loop to retrieve everything stored in a dictionary. Such a for loop

defines a variable that will retrieve each key-value pair from a dictionary.

Then the number of key-value pairs automatically defines how many times

the for loop repeats.

Inside the for loop, you can access each individual key-value pair by

specifying the dictionary name followed by the key inside square brackets

such as follows:

for x in contacts:

 print(contacts[x])

To see how to retrieve data from a dictionary, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var contacts = {

 "Frank" : "555-1234",

Chapter 9 Understanding diCtionaries

188

 3.1415 : "Pi",

 "Amount" : 12.25

 }

 print(contacts["Frank"])

 print(contacts[3.1415])

 print(contacts["Amount"])

 print("Now using a for loop")

 for x in contacts:

 print(contacts[x])

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the append and insert commands as follows:

555-1234

Pi

12.25

Now using a for loop

555-1234

Pi

12.25

The first three values appear by retrieving the data from the dictionary

using the key of each value. The second three values appear using a

for loop.

Chapter 9 Understanding diCtionaries

189

 Getting Information About Dictionaries
Once you’ve created a dictionary and stored key-value pairs in them, you

may need to get information about the dictionary such as whether it’s

empty, how many items it may hold, what are all the keys, and what are all

the values.

To get this type of information about a dictionary, GDScript offers the

following commands:

• is_empty

• size

• keys

• values

The is_empty command lets you know if a dictionary is empty. The

size command returns the total number of key-value pairs stored in the

dictionary. The keys command returns an array of all the keys in the

dictionary, while the values command returns an array of all the values in

the dictionary.

To see how these commands work with dictionaries, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var key_array = Array()

 var value_array = []

Chapter 9 Understanding diCtionaries

190

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

 print(contacts)

 if contacts.is_empty() == true:

 print("Empty dictionary")

 else:

 print("Number of key-value pairs = ",

contacts.size())

 key_array = contacts.keys()

 value_array = contacts.values()

 print(key_array)

 print(value_array)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results of

the is_empty, commands as follows:

{ "Frank": "555-1234", 3.1415: "Pi", "Amount": 12.25 }

Number of key-value pairs = 3

["Frank", 3.1415, "Amount"]

["555-1234", "Pi", 12.25]

This code creates two empty arrays using two different methods:

Array() and []. Both methods are equivalent. After creating two empty

arrays, the code then creates a dictionary and stores three key-value pairs,

which prints out to display all three key-value pairs in the dictionary.

Chapter 9 Understanding diCtionaries

191

The size command returns the number of key-value pairs in the

dictionary (3), and then the keys() command retrieves all the keys in the

dictionary and stores them in an array. Finally, the values() command

retrieves all the values in the dictionary and stores them in another array.

Notice that the number of keys and values must be exactly equal since

every key in a dictionary must be linked to a single value.

 Changing and Deleting Data in Dictionaries
After you’ve stored data in a dictionary, you can change data by using that

data’s key. To do this, you must specify the dictionary name and the key

where you want to store new data. Then you store new data that erases the

current data like this:

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

If we wanted to change the value 12.25, we notice it’s linked to the key

“Amount.” Therefore, we just need to assign the dictionary name (contacts)

and the “Amount” key with new data like this:

contacts["Amount"] = 987

Since the “Amount” key originally contains the value 12.25, this value

gets replaced by 987. Now the “Amount” key is linked to the value 987. By

assigning new data to an existing key, you can replace data with new data

much like storing new data in a single variable.

When you want to delete data stored in a dictionary, you need to

use the key. If you don’t know the key but only know the data you want

to delete, you can use the data to find the key by using the find_key()

Chapter 9 Understanding diCtionaries

192

command. Once you know the key linked to the data you want to delete,

you can then use the erase command to delete the key and its linked data

from a dictionary.

To see how to change and delete data in a dictionary, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

 print(contacts)

 contacts["Amount"] = 987

 print(contacts)

 print("The key is ", contacts.find_key(987))

 contacts.erase("Amount")

 print(contacts)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 9 Understanding diCtionaries

193

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

{ "Frank": "555-1234", 3.1415: "Pi", "Amount": 12.25 }

{ "Frank": "555-1234", 3.1415: "Pi", "Amount": 987 }

The key is Amount

{ "Frank": "555-1234", 3.1415: "Pi" }

This code works by creating a dictionary called contacts and storing

three key-value pairs, which it prints out so you can see the entire contents

of the dictionary. Then it stores 987 to replace the current data (12.25)

linked to the “Amount” key and prints the contents of the dictionary again

so you can see that 987 is now linked to the “Amount” key.

The find_key(987) command searches the contacts dictionary for

the value 987. When it finds it, it returns the key linked to 987, which is

“Amount.” Finally, the code uses the erase command to erase the key

“Amount” and the data it’s linked to (987). The last print command prints

out the dictionary’s contents to show that the “Amount” : 987 key-value

pair has been deleted from the dictionary.

If you want to completely empty a dictionary, use the clear command.

To see how the clear command works, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

Chapter 9 Understanding diCtionaries

194

 var contacts = {

 "Frank" : "555-1234",

 3.1415 : "Pi",

 "Amount" : 12.25

 }

 print(contacts)

 contacts.clear()

 print(contacts)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

{ "Frank": "555-1234", 3.1415: "Pi", "Amount": 12.25 }

{ }

The first print command shows the entire contents of the dictionary.

Then the clear command runs before the second print command. Since

the clear command deleted everything out of the dictionary, the second

print command reveals the dictionary is completely empty.

 Exercise: Using Dictionaries
In this exercise, you’ll use a dictionary to store a location name (such as

“Top” or “Middle”) and link each location name to a specific value. Then

the project will randomly select a location, retrieve an actual value from a

dictionary, and move an image to that location on the screen.

Chapter 9 Understanding diCtionaries

195

To see how to store location data in a dictionary, follow these steps:

 1. Create a Godot project that consists of a Node2D

as the parent node and the following nodes as its

children nodes: Sprite2D, Button, and Label.

 2. Click Sprite2D in the Scene dock and drag the

icon.svg from the FileSystem dock into the Texture

property of the Sprite2D node in the Inspector dock.

 3. Move the Sprite2D node in the middle of the user

interface.

 4. Click Button and type Random Position in the Text

property in the Inspector dock.

 5. Move the Button near the bottom, middle of the

user interface.

 6. Click Label and move it above the Button as shown

in Figure 9-2.

Figure 9-2. The design of the user interface

Chapter 9 Understanding diCtionaries

196

 7. Click Node2D in the Scene dock and click the

Attach Script icon. An Attach Node Script dialog box

appears.

 8. Click Create. Godot displays a GDScript file.

 9. Click Button in the Scene dock and then click the

Node tab in the Inspector dock.

 10. Double-click pressed(). A Connect a Signal to a

Method dialog box appears.

 11. Click Node2D and click Connect. Godot creates an

_on_button_pressed() function in the GDScript file.

 12. Edit the GDScript file as follows:

extends Node2D

var window_size = DisplayServer.window_get_size()

var x_dictionary = {

 "Left" : 0,

 "Middle" : window_size.x / 2,

 "Right" : window_size.x

}

var y_dictionary = {

 "Top" : 0,

 "Middle" : window_size.y / 2,

 "Bottom" : window_size.y

}

func _on_button_pressed():

 var random_x = 0

 var random_y = 0

 var direction_x = ""

 var direction_y = ""

 randomize()

Chapter 9 Understanding diCtionaries

197

 random_x = randi() % 3

 random_y = randi() % 3

 match random_x:

 0: direction_x = "Left"

 1: direction_x = "Middle"

 _: direction_x = "Right"

 match random_y:

 0: direction_y = "Top"

 1: direction_y = "Middle"

 _: direction_y = "Bottom"

 $Sprite2D.position.x = x_dictionary[direction_x]

 $Sprite2D.position.y = y_dictionary[direction_y]

 $Label.text = direction_x + ", " + direction_y

Notice that this code creates two dictionaries that

define three different x and y positions (left, middle,

and right for the x axis and top, middle, and bottom

for the y axis). When the user clicks the Button, the

code randomly selects a value between 0 and 2.

Using that value, the code then retrieves a specific

location from the two dictionaries.

 13. Click the Run icon. A dialog box appears, asking you

to select a main scene.

 14. Click Select Current. A dialog box appears to save

your scene.

 15. Click Save.

Chapter 9 Understanding diCtionaries

198

 16. Click the Random Position button to move the icon.

svg image to different parts of the user interface

window. Notice that each time the image moves, the

label above the Button describes where the image

appears such as left, bottom, middle, or top.

 17. Click the close icon in the (DEBUG) window.

 Summary
Dictionaries let you link data with a unique key in a key-value pair. By

using this key, you can retrieve the data you want. Unlike an array that

uses an index value to identify data, dictionaries use a key to identify data.

Therefore, key-value pairs can be more useful than arrays at times. Arrays

are sometimes nice for grouping variables together, but they have no

relation to each other. The main drawback is that the index value of data in

an array can constantly change as you add or delete items from that array.

On the other hand, data is always linked to a unique key in a dictionary.

To create a dictionary, define a dictionary name and store one or more

key-value pairs within curly brackets. Make sure each key-value pair is

separated by a colon and each key-value pair is separated from the other

key-value pairs by a comma (except for the last key-value pair).

The keys and the data can be of any data type such as integers, floating-

point numbers, or strings. The only restriction is that every key must

be unique.

Dictionaries give you another way to store data beyond arrays or

individual variables. While not as commonly used as arrays, the unique

key-value link makes dictionaries useful for storing related data together.

Chapter 9 Understanding diCtionaries

199© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_10

CHAPTER 10

Functions
You can attach a script to any item in Godot to make it interactive. To avoid

creating one massive script of code, it’s better to divide a large program

into smaller ones that work together. Such small programs that make up a

larger program are called functions.

Ideally, a function should perform one task and take up no more than

one page or screen. By keeping a function small, it’s easy to understand

how it works. Large amounts of code can be difficult to search to find

errors. Therefore it’s best to make code as small and simple as possible.

By making a function perform a single task, it makes it easy to know

what a function is supposed to do, so you know whether it’s working

correctly or not.

In the old days, computer programs were often simple and small

enough to understand. As programs got larger and more complicated,

understanding how an entire program worked became difficult. That’s why

programmers started dividing large programs into collections of smaller

ones called functions.

Functions act like building blocks. Each function should be as

independent as possible from the rest of a program. That way you can

modify a function without accidentally affecting any other part of a

program. Once a function proves it works, you can reuse it in another

project. Ultimately, this lets you create a library of proven functions that

you can reuse and create other programs faster.

https://doi.org/10.1007/979-8-8688-0190-7_10

200

 Understanding Functions
You can create as many functions as you need, but Godot provides several

functions for every script you create. You can also access a function to a

node within a Godot project by selecting the node and then searching for

the function under the “Nodes” category under the Inspector. Some of

these built-in functions are

• _init()

• _ready()

• _process(delta)

All of these functions already exist, so you just need to add your own

custom code to make them work. The _init() and _ready() functions

automatically run every time a script starts running. The _init() function

runs first and is often used to load data.

The _ready() function runs second and starts only when the node that

its script is attached to has completely loaded.

The _process(delta) function runs continuously to respond to user

input such as pressing a key or clicking the mouse.

To see how these three built-in functions work, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 print("Ready function here")

Chapter 10 FunCtions

201

func _init():

 print("Init function here")

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

Init function here

Ready function here

This shows that the _init() function runs before the

_ready() function.

 6. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _ready():

 print("Ready function here")

func _init():

 print("Init function here")

func _process(delta):

 print("Process(delta) function here")

 7. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 10 FunCtions

202

 8. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

Init function here

Ready function here

Process(delta) function here

Process(delta) function here

Process(delta) function here

Process(delta) function here

The Output pane should show multiple “Process(delta) function here”

messages because this _process(delta) function runs continuously until

you stop running the project.

If you examine the names of these three functions, you’ll notice how

functions are defined in three parts:

• func keyword

• A function name

• A parameter list enclosed in parentheses

The func keyword (short for “function”) creates a function. In the

Godot editor, all GDScript keywords appear in magenta to make them easy

to recognize. If a keyword does not appear in magenta, that’s a visual clue

that you may have typed something wrong.

Function names can be anything, but it’s best to choose a descriptive

name that helps explain what the function does. Godot’s built-in function

names all start with an underscore (_) character to identify them easily.

When making a game, make functions related to that game.

For example, if you want to attack an enemy or shoot, you could

name your function “func shoot()” or “ func attack().” If you want to have

an inventory and drop items, you could also have a function such as “

func dropItem()” or “func drop_item().” There are many ways to name

Chapter 10 FunCtions

203

a function when creating a game for Godot. Just make sure that your

functions are relative to the game so that it is easy to track what each

function does for the game to work. When you name your own functions,

it’s more common to omit an underscore character at the beginning of the

function name.

The parameter list is enclosed in parentheses and identifies any data

the function expects to receive. In both the _init() and _ready() functions,

this parameter list is empty, which means these functions can work

without receiving any outside data.

The _process(delta) function runs continuously, but it runs based on

frames displayed on the screen, which appear at slightly irregular intervals,

which is measured in seconds by the “delta” parameter.

To see how this delta value constantly changes each time the _process

function runs, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _process(delta):

 print("Delta = ", delta)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

Chapter 10 FunCtions

204

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Delta = 0.01666666666667

Delta = 0.01111111111111

Delta = 0.00277555555556

Delta = 0.00833333333333

Delta = 0.00833333333333

Delta = 0.00833333333333

The actual values for delta will likely be different on your computer,

but you should see slight variations that show how the _process() function

runs continuously but at slightly irregular intervals.

 Creating Functions
To create your own function, you must define a unique function name,

an optional parameter list, and code within the function to make it do

something. The simplest function has an empty parameter list and one

line of code such as follows:

 func my_function():

 print("My function running now")

Godot’s built-in functions run when certain events occur, but functions

that you create won’t run until they’re specifically called by name. To call

or run a function, you must specify the function name followed by its

parameter list like this:

my_function()

Chapter 10 FunCtions

205

Any code stored in that function now runs. Without functions, you

would have to type code throughout your program in multiple locations. If

you later needed to change that code to fix a problem or add new features,

you would have to modify it everywhere you used it in your program.

Any time you duplicate code that performs identical tasks, you risk

omitting one copy of the code that needs to be fixed. Over time, you could

wind up with several different versions of the same code.

By storing frequently used code in a function, you create a single copy

of the code. Now if you need to fix or modify that code, you change it in one

place, and those changes automatically appear throughout your program

wherever that function might be used. This saves time to correct a code in

one place rather than in multiple locations.

To see how to create and call a function, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func my_function():

 print("My function running now")

func _init():

 print("Init function")

 my_function()

func _ready():

 print("Ready function")

 my_function()

Chapter 10 FunCtions

206

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Init function

My function running now

Ready function

My function running now

In the preceding code, the init() function runs first and runs two lines

of code. The first line of code prints “Init function.” Then the second line of

code calls my_function(). Now in the code within my_function(), the code

prints “My function running now.”

Then the ready() function runs its two lines of code. The first line of

code prints “Ready function.” Then the second line of code also calls my_

function(), which prints “My function running now.”

Notice that my_function() does the exact same thing each time it runs,

which is to print “My function running now.” In most cases, you want a

function to run slightly differently each time, and to do that, you need to

accept parameters.

 Using Parameters with Functions
When a function has an empty parameter list, its code can only do the

same thing over and over again. In most cases, you want a function to

behave slightly differently based on new data. To accept new data, a

parameter list can contain one or more variable names like this:

func my_function(new_data):

Chapter 10 FunCtions

207

Each variable name within the parameter list can contain one chunk of

data. The preceding parameter list displays a variable (new_data). To call

this function and pass data, you have to use the function name and include

data to send to the function, listed within parentheses, like this:

my_function("Passed data")

This example passes a string (“Passed data”) to the function, but you

could also pass an integer or a floating-point number as well. If you want

to limit the parameter variable to a specific data type, you could do the

following:

func my_function(new_data: String):

The preceding code specifies that any data passed to the function must

be a String data type. If you wanted, you could also define an int or float

data type instead. Rather than pass one chunk of data, you can pass two

or more chunks of data by defining two or more variables in a function’s

parameter list like this:

func another_function(x: int, y: int):

To call this function, you would use the function name (another_

function) and pass in two integers like this:

another_function(-24, 95)

To see how to use parameters in a function, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 10 FunCtions

208

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func my_function(new_data: String):

 print("Called from this function = ", new_data)

func another_function(x: int, y: int):

 print ("The x value you sent = ", x)

 print ("The y value you sent = ", y)

func _init():

 my_function("Init")

 another_function(-24, 95)

func _ready():

 my_function("Ready")

 another_function(74, -827)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Called from this function = Init

The x value you sent = -24

The y value you sent = 95

Called from this function = Ready

The x value you sent = 74

The y value you sent = -827

Chapter 10 FunCtions

209

This code creates two functions called my_function and another_

function. The my_function can accept one string, which gets stored in its

new_data variable. The another_function can accept two integers. The first

integer gets stored in the x variable, and the second gets stored in the y

variable.

In the preceding example, the init() function runs first and sends the

string “Init” to my_function, which prints out “Called from this function =

Init.” Then it calls another_function and sends -24 and 95, which prints out

“The x value you sent = -24” and “The y value you sent = 95.”

The ready() function runs next and calls my_function, passing the

string “Ready.” This prints out “Called from this function = Ready.” Then

it calls another_function and sends 74 and -827, which prints out “The x

value you sent = 74” and “The y value you sent = -827.”

Because my_function and another_function accept parameters, they

can receive data when they’re called, which allows them to change their

behavior slightly.

In the preceding example, another_function accepts two parameters

(x and y), which are both integer data types. You can have multiple

parameters where each one can be a different data type.

To see how multiple parameters can be of different data types, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func big_function(my_name: String, age: int,

weight: float):

Chapter 10 FunCtions

210

 print("Hello, ", my_name, ". You are ", age, "

years old and weigh ", weight, " pounds.")

func _init():

 big_function("Randy", 38, 134.5)

func _ready():

 big_function("Sally", 25, 124.8)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Hello, Randy. You are 38 years old and weigh

134.5 pounds.

Hello, Sally. You are 25 years old and weigh

124.8 pounds.

The big_function accepts three parameters: my_name, age, and

weight. When using multiple parameters, you must always call that

function using the exact number of parameters it expects and make sure

each parameter is the correct data type.

If you pass too many (or too few) parameters, the function call won’t

work. If you try to pass a string into a parameter that’s expecting a number

(or vice versa), you’ll get an error as shown in Figure 10-1.

Chapter 10 FunCtions

211

Figure 10-1. Passing the wrong data type to a function will cause
an error

 Optional Parameters
When functions define one or more parameters, calling that function must

provide the exact number of values in the right order. If a function expects

two different parameters, every function call must pass exactly two values.

Suppose you had a function like this:

func my_function(x: int, y: String):

To call this function, you must include an integer and a string inside a

parameter list like this:

my_function(34, "Hello")

Chapter 10 FunCtions

212

Since this function expects two parameters (an integer and a string),

it would not work if you only called the function with one value (either

an integer or a string), three or more values, or even two values but in the

wrong order (the integer must be first and the string must be second).

If you want the option of calling a function without specifying the exact

number of parameters, you can use something called optional parameters.

An optional parameter defines a default value for a parameter. That way

you can either call the function using all parameters or only the non-

optional parameters.

To define an optional parameter, set a default value to that parameter

like this:

func my_function(x: int, y: String = "Bye"):

Since this function defines its second parameter as an optional

parameter, you can call the function in one of two ways:

• my_function(25, “Hello”)

• my_function(25)

The first method calls the function and passes it two parameters (25

and “Hello”). The second method calls the function but passes it only one

parameter (25). Since the second parameter is missing, the function will

use its default value (“Bye”).

When defining optional parameters, the optional parameters must

be last, so the following is invalid because a non-optional parameter

appears last:

func my_function(x: int = 0, y: String):

You can also have two or more optional parameters as well such as

follows:

func my_function(x: int = 0, y: String = "Hello"):

Chapter 10 FunCtions

213

The general rule is that when you use an optional parameter, all

parameters afterward must also be optional parameters.

To see how to use optional parameters, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func _init():

 my_function(15, "Hello")

func my_function(x: int = 0, y: String = "Default"):

 print("Integer = ", x)

 print("String = ", y)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Integer = 15

String = Hello

Because the function call includes two parameters (15 and “Hello”),

the function uses both parameters. Edit the function call as follows and

rerun the program:

my_function(-99)

Chapter 10 FunCtions

214

Notice that this function call omits the second parameter. As a result,

the function uses its default value for that second parameter, which is

“Default.” The result in the Output pane is now:

Integer = -99

String = Default

It’s possible to have a function consisting of nothing but optional

parameters such as the following:

func my_function(x: int = 0, y: String = "Default"):

To call this function with two optional parameters, you have three

options:

Function call Result

my_function(3, “Frank”) Completely overrides all optional parameter values.

my_function(3) passes a value for the first parameter only but uses the

default value for the second optional parameter.

my_function() passes no values so the function uses both default values.

The preceding three function calls are the only valid options for calling

a function with two optional parameters. If you do not pass a value to the

first parameter, you cannot pass values to any other parameters as well.

That’s because the function won’t know which default value to use for its

optional parameters. That’s why the following function call is invalid:

my_function("Frank")

With the preceding function call, GDScript misinterprets the function

call as sending “Frank” to the first parameter, which expects an integer.

Since “Frank” is a string, this causes an error.

Chapter 10 FunCtions

215

The general rule is to put all non-optional parameters first in a

function’s parameter list. Then when calling the function, send specific

values. The moment you omit a specific value to use a default value, all

remaining parameters to the right must also use default values. Optional

parameters are just one way to make functions more flexible.

 Returning Values with Functions
At the simplest level, a function performs a single task using one or more

parameters. However, you can also create a function that returns a single

value. This allows functions to calculate a useful result and send this

result back to another part of the program. Essentially, this lets functions

represent a single, calculated value.

One example of a function that returns a value is Godot’s square root

function that looks like this:

sqrt(x)

When you want to calculate the square root of a number, you can just

pass that number into the sqrt function. After the sqrt function calculates

the result, it stores that result in the function name, which represents that

single value. So if we wanted to calculate the square root of 9, we could call

the sqrt function and pass it a parameter of 9 like this:

sqrt(9)

To use this value, we’d have to assign it to a variable or treat it like a

value like this:

print(sqrt(9))

This code sends 9 to the sqrt function, which calculates an answer of

3. Then it prints 3. The main idea behind a function that returns a value is

that it calculates a useful result that another part of a program can use.

Chapter 10 FunCtions

216

If you want a function to return a value, you must place the “return”

keyword on the last line in the function, followed by the data you want to

return. So if you wanted a function to return a string, the entire function

might look like this:

func greeting(my_name: String):

 var salutation: String

 salutation = "Hello, " + my_name

 return salutation

To call a function that returns a value, treat that function name as if it

were a single value such as a string or a number. To see how to create and

call a function that returns a value, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

func greeting(my_name: String, income: float):

 const tax_bracket = 0.25

 var tax_owed : float

 tax_owed = income * tax_bracket

 return "Hello, " + my_name + ". You owe " +

str(tax_owed) + " in taxes."

func _init():

 print(greeting("Oliver", 125000))

func _ready():

 print(greeting("Elsa", 79000))

Chapter 10 FunCtions

217

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Hello, Oliver. You owe 31250 in taxes.

Hello, Elsa. You owe 19750 in taxes.

This code creates a function called “greeting,” which accepts two

parameters called “my_name” (that can hold a String data type) and

“income” (that can hold a float data type). Within the “greeting” function is

code that multiplies a constant by the income parameter and then creates

a string that it sends back.

The init() function calls the greeting function by sending it “Oliver”

and 125000. Then the greeting function calculates the taxes owed and uses

this value in a string that it returns. Thus the init() function prints “Hello,

Oliver. You owe 31250 in taxes.”

The ready() function runs next and calls the greeting function by

sending it “Elsa” and 79000. Then the greeting function returns the string

“Hello, Elsa. You owe 19750 in taxes.”

If you want to define the data type that a function returns, you can

add this symbol -> followed by the data type the function returns such as

follows:

func greeting(my_name: String, income: float) -> String:

When a function returns a value, you can call that function by treating

it as if it were a single value. When a function does not return a value, you

can call that function as if it were a command.

Chapter 10 FunCtions

218

 Exercise: Using Functions
Godot provides functions to respond to a variety of different events such

as when the mouse appears over an object or when an object changes

size. Godot’s built-in functions let you respond to different types of events.

However, you can write your own functions to perform specialized tasks

unique to your particular project.

In this exercise, you’ll get a chance to use both types of functions: the

built-in functions to respond to the user and the specialized functions that

you create yourself.

To see how to use functions, follow these steps:

 1. Create a Godot project that consists of a Node2D

as the parent node and the following nodes as

its children nodes: Sprite2D, Button, Label, and

ColorRect.

 2. Click Sprite2D in the Scene dock and drag the

icon.svg from the FileSystem dock into the Texture

property of the Sprite2D node in the Inspector dock.

 3. Click Button in the Scene dock, click the Text

property in the Inspector dock, and type Reset.

 4. Move all the nodes so they look like Figure 10-2.

Chapter 10 FunCtions

219

Figure 10-2. Designing the user interface

 5. Click Node2D in the Scene dock and click the

Attach Script icon. An Attach Node Script dialog box

appears.

 6. Click Create. The GDScript editor appears.

 7. Click Button in the Scene dock and then click Node

and Signals in the Inspector dock. A list of signals

appears.

 8. Double-click pressed(). A Connect a Signal to a

Method dialog box appears.

 9. Click Node2D and click Connect. Godot creates

an _on_button_pressed() function in the

GDScript editor.

 10. Click ColorRect in the Scene dock and then click

Node and Signals in the Inspector dock. A list of

signals appears.

Chapter 10 FunCtions

220

 11. Double-click mouse_entered(). A Connect a Signal

to a Method dialog box appears.

 12. Click Node2D and click Connect. Godot creates an

_on_color_rect_mouse_entered() function in the

GDScript editor.

 13. Double-click mouse_exited(). A Connect a Signal

to a Method dialog box appears.

 14. Click Node2D and click Connect. Godot creates

an _on_color_rect_mouse_exited() function in the

GDScript editor.

 15. Edit the GDScript as follows:

extends Node2D

func _on_button_pressed():

 $Sprite2D.rotation = 0

 $Label.text = ""

func _on_color_rect_mouse_entered():

 $Label.text = "Mouse entered the color rectangle"

 rotate_me(20)

func _on_color_rect_mouse_exited():

 $Label.text = "Mouse exited the color rectangle"

 rotate_me(-40)

func rotate_me(radians: float):

 $Sprite2D.rotate(radians)

The Button function resets the image and clears the

Label. The _on_color_rect_mouse_entered() and

_on_color_rect_mouse_exited() functions respond

when the mouse pointer appears over or outside of

Chapter 10 FunCtions

221

the ColorRect boundaries by displaying a message

in the Label and calling a rotate_me function.

This rotate_me function is a function that accepts a

float value and uses that value to rotate the Sprite2D

node that displays the icon.svg image.

 16. Click the Run icon. A dialog box appears, asking you

to select a main scene.

 17. Click Select Current. A dialog box appears to save

your scene.

 18. Click Save.

 19. Move the mouse pointer over the ColorRect. The

“Mouse entered the color rectangle” text appears in

the Label and the Sprite2D node rotates to the right.

 20. Move the mouse pointer away from the ColorRect.

The “Mouse exited the color rectangle” text appears

in the Label and the Sprite2D node rotates to

the left.

 21. Click the Reset Button. The Label clears all text and

the Sprite2D straightens itself.

 22. Click the close icon in the (DEBUG) window.

This example used several built-in functions (on_button_pressed(),

on_color_rect_mouse_entered(), and on_color_rect_mouse_exited())

along with a separate user-defined function called rotate_me that accepts

a float data type. In general, functions should perform a single task and fit

within one screen, so it’s easy to see all the code at a glance.

Chapter 10 FunCtions

222

 Summary
A function lets you divide a large program into multiple smaller programs

like building blocks. Ideally, a function should be as completely

independent from the rest of the program as possible. That way it will be

easy to modify in the future without worrying if any changes might affect

the way another part of a program works.

A function consists of a name, a parameter list, and one or more lines

of code that do something. The simplest function has an empty parameter

list, so the function does the same thing over and over again. A more

flexible function accepts one or more parameters that can be defined to

hold only certain data types such as strings, integers, or floating-point

numbers.

Godot comes with built-in functions that run automatically, but when

you define your own functions, you’ll need to call them by name and pass

any values to their parameter list to make these functions run. A function

can run and complete a task, or a function can run and return a value by

using the “return” keyword on the last line of the function.

Ultimately, functions let you reuse and isolate code to help you write

more reliable programs.

Chapter 10 FunCtions

223© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_11

CHAPTER 11

Object-Oriented
Programming
The main idea behind object-oriented programming is to help write more

reliable software. Smaller programs are easier to write and understand

than larger programs, which is why programmers divide large programs

into multiple, smaller functions. Every program consists of data to

manipulate and algorithms that provide step-by-step instructions for

manipulating that data.

One problem with functions is that they isolate algorithms, but each

function can potentially access data used by other functions. This can

make programs less reliable because you never know when data might

change. To fix this problem, computer scientists have created object-

oriented programming.

The idea behind object-oriented programming is to isolate both data

and the algorithms that manipulate them into self-contained, isolated

objects. Where functions isolated algorithms, objects isolate algorithms

and the data those algorithms directly affect.

Because data and the algorithms that manipulate them are stored

together, it’s easy to see which code might change data. Grouping together

data and the algorithms that change them is called encapsulation, which

represents one key advantage of object-oriented programming.

https://doi.org/10.1007/979-8-8688-0190-7_11

224

 Creating a Class
The basis of object-oriented programming is classes. A class defines

variables (called properties) and functions (called methods) that are

related. Properties are simply variables defined in a class, and methods are

functions defined in a class.

To create a class, simply use the “class” keyword followed by a

descriptive name that usually begins with an uppercase letter such as

follows:

class GameObjects:

A class is meant to contain properties and methods that are common

to multiple items in your program. In a video game, a class often defines

objects in a game such as cars, planes, and birds since they all share

common characteristics of a location and the ability to move. When a class

is accessed, you have the ability to access all the characteristics, properties,

and methods of that class.

When designing user interfaces, programmers often use classes to

define the size, appearance, and position of an object on the screen such

as a button, slider, or text field. A class defines the shared characteristics of

multiple items. Then each multiple item can add additional features that

are unique such as a button that can detect clicks or touches or a text field

that can hold text.

When creating a class, start with the basic characteristics shared

among multiple items. For this example, we’ll pretend to design a class for

a video game object that has an x and y position along with code to make

it move.

To add properties (variables), just declare one or more variables and

an optional data type like this:

class GameObjects:

 var x: int

 var y: int

Chapter 11 ObjeCt-Oriented prOgramming

225

To add a method (function), declare a function name and a parameter

list along with the code to run when that method is called like this:

class GameObjects:

 var x: int

 var y: int

 func move(x_position: int, y_position: int):

 x += x_position + 2

 y += y_position

A class by itself acts like a data type, so you need to create a variable to

create an object by specifying a new class like this:

var car = GameObjects.new()

In this example, the “car” variable creates an object from the

GameObjects class using the new() method. Now the “car” object has all

the properties and methods defined by the GameObjects class such as an x

and y property and a move method. To access these x and y properties, you

need to specify the object name followed by the property you want to use

such as car.x or car.y.

To run the move method, you have to specify the object name

followed by the method name such as car.move with two integers in the

parameter list.

To see how to define a class and create an object from this class, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 11 ObjeCt-Oriented prOgramming

226

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class GameObjects:

 var x: int

 var y: int

 func move(x_position: int, y_position: int):

 x += x_position + 2

 y += y_position

func _init():

 var car = GameObjects.new()

 car.x = 0

 car.y = 0

 print("Car x position = ", car.x, " Car y

position = ", car.y)

 car.move(3, 1)

 print("Car x position = ", car.x, " Car y

position = ", car.y)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the following:

Car x position = 0 Car y position = 0

Car x position = 5 Car y position = 1

The init() function first creates an object using the GameObjects class

and the new() command. The next two lines define the x and y properties

as 0. Then it prints 0 for both the x and y positions of the car.

Chapter 11 ObjeCt-Oriented prOgramming

227

Then the car.move(3,1) command calls the move method (function)

inside the car object, passing 3 and 1. The 3 value gets stored in the

x_position parameter, and the 1 value gets stored in the y_position

parameter. The x property then gets set to the x_position parameter added

to 2 for a total of 5. This gets added to the current value of x, which is 0.

The y property adds the y_position value to the current value of y,

which is 0. So now y equals 1. Then the last line in the init() function prints

out the car’s x and y position again to show that it changed based on the

move method defined in the GameObjects class.

Suppose we create another object from the GameObjects class

like this:

 var bird = GameObjects.new()

This bird object would have x and y properties that you could access

by referencing the object name followed by the property you want such as

follows:

bird.x = 12

bird.y = 35

Then you could call the move method for that bird object like this:

bird.move(2, 5)

When creating multiple objects from the same class, objects will share

the same properties and methods defined by the class. The object name

(car or bird) helps define the specific property and method you want to

access. So the combination of the object name (which should always be

unique) and the property or method name lets you access properties and

methods.

Since the name of the object is always separated from the property or

method name by a period or dot, the appearance of code like car.x or bird.

move(2, 5) is known as “dot-syntax.” Any time you see this dot-syntax in

code, chances are good that you’re looking at objects defined by a class.

Chapter 11 ObjeCt-Oriented prOgramming

228

 Initializing Properties
When you create a class, you need to define one or more properties that

can hold specific data types. The simplest way to define properties is to

declare a name and the data type it can hold such as follows:

var strength: int

However, such properties are initially undefined, which means if you

try to use them, your program will crash. As a safer alternative, it’s better to

initialize all properties using a special constructor method, which works in

one of two ways:

• Assign a default initial value to each property.

• Assign a value to each property when creating

an object.

To assign initial values to properties, you need to create an init()

function, called a constructor, in a class like this:

class GameObjects:

 var x: int

 var y: int

 func _init():

 x = -999

 y = -111

Each time you create an object from this class, the x and y properties

will always start with these defined initial values (-999 for x and -111 for y).

To see how to assign initial values to properties, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 11 ObjeCt-Oriented prOgramming

229

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class GameObjects:

 var x: int

 var y: int

 func _init():

 x = -999

 y = -111

func _init():

 var car = GameObjects.new()

 print("Car x position = ", car.x, " Car y

position = ", car.y)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Car x position = -999 Car y position = -111

Defining initial values for each property prevents your code from trying

to access a property that has no value at all, which will crash the program.

However, initial values likely won’t be useful, so you’ll need to take a

second step to assign valid values to each property. Each time you create

another object from the same class, this new object will always start with

the same initial values, which may not be what you want.

Chapter 11 ObjeCt-Oriented prOgramming

230

A better solution is to use the init() constructor method to assign

values to each property when you create the object. If you notice in the

previous code, creating an object from a class used the new() method

where the new parameter list is empty.

When creating a new object from a class, it’s better to assign initial

values to that object when it’s created. To do this, you need to create an

init() constructor method like this:

class GameObjects:

 var x: int

 var y: int

 func _init(x_value, y_value):

 x = x_value

 y = y_value

This init() constructor method accepts two integer values and assigns

them to the x and y properties when creating an object. To create an object,

you must declare an object using the new command but also pass in values

for the x_value and y_value parameters like this:

var car = GameObjects.new(123, 456)

This creates an object called “car,” based on the GameObjects class.

The new method creates an object and defines initial values (123 and 456)

at the same time. In this way, every time you create an object, you can

define different initial values for that object.

To see how to assign initial values to properties, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 11 ObjeCt-Oriented prOgramming

231

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class GameObjects:

 var x: int

 var y: int

 func _init(x_value, y_value):

 x = x_value

 y = y_value

 func move(x_position: int, y_position: int):

 x += x_position + 2

 y += y_position

func _init():

 var car = GameObjects.new(123, 456)

 print("Car x position = ", car.x, " Car y

position = ", car.y)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Car x position = 123 Car y position = 456

When defining a class, you have three options as shown in Figure 11-1:

• Define properties but do not assign any initial values.

• Define properties that always have an initial value.

• Define initial values for properties when creating

an object.

Chapter 11 ObjeCt-Oriented prOgramming

232

Figure 11-1. Three ways to define properties in a class

If you do not initialize properties or if you do give properties an initial

value, you can create a class from that object by using the new method

with an empty parameter list such as GameObjects.new(). If you create

an init() constructor method that accepts parameters to assign to each

property, then you must create that object by passing in initial values such

as GameObjects.new(123, 456).

 Inheriting Classes
A class lets you define common features shared among different items. A

video game might need to define the x and y positions of every item in the

game. However, a tree would be stationary, but a car would be mobile. So

even though both a tree and a car would need to define an x and y position,

a car would need additional code to make it move around.

You could create two separate classes, one for a plant and one for a car,

that define their x and y properties like this:

class Plant: class Car:

 x: int x: int

 y: int y: int

Chapter 11 ObjeCt-Oriented prOgramming

233

However, creating two separate classes creates duplicate x and y

properties. If you need to change the x or y properties in the future, you’ll

have to change them in each class. If you duplicated this code through a

dozen separate classes, you’ll need to revise this code in every location.

Duplicate code causes two problems. First, duplicate code takes up

space. Second, duplicate code increases the risk of introducing bugs. If

you need to fix problems in your code, you must update every copy of that

code. Failure to do so means you risk having two or more different versions

of the code.

Inheritance avoids duplication. Instead of physically copying code,

inheritance lets you define code in one class that you can virtually copy

into another class. Now this second class gets all the code defined in the

first class without physically creating duplicate code. If you need to change

this code, you change it in one class, and those changes automatically

change everywhere that code is used.

To copy or inherit code from an existing class, you just need to use the

“extends” keyword followed by the class you want to copy code from such

as follows:

class Car extends Plant:

The preceding code tells the computer to copy all code defined in the

Plant class and reuse them in the Car class. Now whatever code is defined

in the Plant class can also be used in the Car class.

To see how to use parameters in a function, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

Chapter 11 ObjeCt-Oriented prOgramming

234

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class Plant:

 var x: int

 var y: int

 func _init():

 x = 55

 y = 66

class Car extends Plant:

 pass

func _init():

 var ford = Car.new()

 print("Ford x position = ", ford.x)

 print("Ford y position - ", ford.y)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Ford x position = 55

Ford y position = 66

Notice that the Plant class defines an x and y property along with an

init() method that sets an initial value of 55 for x and 66 for y. Then the Car

class inherits from the Plant class. Even though the Car class is completely

empty (the “pass” command does nothing), the Car class inherits

everything defined in the Plant class. That means the Car class inherits a

value of 55 for its x property and a value of 66 for its y property.

Chapter 11 ObjeCt-Oriented prOgramming

235

The init() function creates a new object (ford) from the Car class. Then

it prints the x and y properties of the ford object to show that it inherited

the value of 55 for x and the value of 66 for y even though the Car class itself

does nothing. The Car class simply copied everything in the Plant class.

Simply inheriting everything defined in one class isn’t useful since you

might as well just use the class that defines everything. The more common

use for inheritance is to extend (hence the keyword “extends”) a class by

inheriting code from one class but adding new code as well.

Suppose you wanted to define a Car class with an x and y property to

define a location but also a speed property to define how fast it’s going.

A clumsy way would be to create a class that defines an x and y property

like this:

class Plant:

 var x: int

 var y: int

 func _init():

 x = 55

 y = 66

Then you could copy that class and add a speed property like this:

class Car:

 var x: int

 var y: int

 var speed: int

 func _init():

 x = 55

 y = 66

Chapter 11 ObjeCt-Oriented prOgramming

236

As you can see, this duplicates code. A far better solution is to use

inheritance to define the Car class only with the properties and methods

that are unique to that class such as follows:

class Car extends Plant:

 var speed: int

Notice that the Car class just adds a new speed property, but it inherits

all the properties and methods defined in the Plant class. By inheriting

code from one class while adding new code, a class can define custom

properties and methods quickly and easily.

To see how inheritance lets you create custom classes, follow

these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class Plant:

 var x: int

 var y: int

 func _init():

 x = 55

 y = 66

class Car extends Plant:

 var speed: int

Chapter 11 ObjeCt-Oriented prOgramming

237

func _init():

 var ford = Car.new()

 ford.speed = 123

 print("Ford x position = ", ford.x)

 print("Ford y position = ", ford.y)

 print("Ford speed = ", ford.speed)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Ford x position = 55

Ford y position = 66

Ford speed = 123

Notice that the Car class defined a custom property (speed) that is

not available in the Plant class. If you create an object from the Plant class

and try to use the speed property, you’ll get an error because the speed

property is not defined in the Plant class.

 Polymorphism
Inheritance lets one class virtually copy code from another class while also

adding its own unique code. One problem with inheritance is that it copies

all methods defined in one class. Polymorphism lets you rewrite code in a

method so that way you can use the same method name but replace it with

entirely different code.

Chapter 11 ObjeCt-Oriented prOgramming

238

For example, a video game might create an Animal class that defines

an x and y property along with a move method like this:

class Animal:

 var x: int

 var y: int

 func move(x_position: int, y_position: int,

z_position: int):

 x += x_position

 y += y_position

This Animal class defines an x and y property along with a move

method. Now we can create a new class that inherits from this Animal class

like this:

class Bird extends Animal:

 var z: int

 func move(x_position: int, y_position: int,

z_position: int):

 x += x_position + 3

 y += y_position + 4

 z += z_position + 2

Notice that this Bird class inherits the x and y properties from the

Animal class while adding its own z property as well. Also notice that the

move method contains a different code. Polymorphism lets you change

the code within a method, but you must keep the function name and

parameter list exactly the same. That’s why the Animal class defines

a move method with three parameters since that third parameter (z_

position) will be needed for the Bird class.

Chapter 11 ObjeCt-Oriented prOgramming

239

To see how to use polymorphism, follow these steps:

 1. Make sure you have a Godot project that consists of

a Node2D and a child node Sprite2D that displays

the icon.svg image in a window.

 2. Click the Sprite2D node in the Scene dock.

 3. Edit the script attached to the Sprite2D node as

follows:

extends Sprite2D

class Animal:

 var x: int

 var y: int

 func move(x_position: int, y_position: int,

z_position: int):

 x += x_position

 y += y_position

class Bird extends Animal:

 var z: int

 func move(x_position: int, y_position: int,

z_position: int):

 x += x_position + 3

 y += y_position + 4

 z += z_position + 2

func _init():

 var dog = Animal.new()

 dog.move(2, 3, 4)

 print("Dog x position = ", dog.x, " Dog y

position = ", dog.y)

Chapter 11 ObjeCt-Oriented prOgramming

240

 var bird = Bird.new()

 bird.move(2, 3, 4)

 print("Bird x position = ", bird.x, "

Bird y position = ", bird.y, " Bird z

position = ", bird.z)

 4. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 5. Click the close icon of the (DEBUG) window to

make it go away. Notice that the Output pane at the

bottom of the Godot window displays the results as

follows:

Dog x position = 2 Dog y position = 3

Bird x position = 5 Bird y position = 7 Bird z

position = 6

Notice that the dog.move(2,3,4) command is identical to the bird.

move(2,3,4) command yet creates different results. That’s because the

dog.move(2,3,4) method is defined by the code in the Animal class while

the bird.move(2,3,4) method has rewritten the code to calculate different

results.

Polymorphism lets you rewrite code in methods and reuse method

names. While you can completely modify the code within a method using

polymorphism, you cannot change the parameter list of that method.

That’s why the move method in both the Animal class and the Bird class is

identical like this:

func move(x_position: int, y_position: int, z_position: int):

Polymorphism lets you reuse method names and parameter lists while

replacing them with completely different code. That way you don’t get

stuck inheriting methods you don’t need.

Chapter 11 ObjeCt-Oriented prOgramming

241

 Exercise: Understanding How
Object- Oriented Programming Works
in Godot
Each time you create a scene by adding nodes, you’re using object-

oriented programming without even knowing it. That’s because the base

class is a Node, and from that class, Godot derives variations of a Node

such as Node2D and Node3D. Within both Node2D and Node3D are

further variants based on the Node2D and Node3D classes.

The main idea behind Godot is that most nodes inherit properties

from an existing node. Once you understand the properties you can

modify in one node, you’ll know how to modify those same properties in

another node.

Object-oriented principles can be especially useful when you want to

create duplicate nodes such as multiple trees, rocks, or enemies within a

video game. While you could create a single node, customize it, and then

duplicate it, this creates completely separate and isolated nodes. If you

later change one node, you’ll need to change all duplicate copies of that

same node. So if a video game contains 100 trees and you want to change

their color or size, you’ll need to change all 100 of them individually.

Obviously, this can be tedious to do, so the solution is to rely on object-

oriented programming, specifically the idea of inheritance. That way

you can define a single node file (.tscn), customize it, and place it in your

video game. Then you create duplicate copies of that node within your

video game.

Now if you want to customize the appearance of all nodes, you change

it once in its separate .tscn file, and those changes automatically change

all copies placed elsewhere in your video game. Instead of making 100

changes to 100 individual nodes, you make a single change to one node,

and those changes get inherited (copied) to all copies of that node.

Chapter 11 ObjeCt-Oriented prOgramming

242

To see how Godot uses objects to create the various nodes used to

define a scene, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node. A Create New Node dialog box

appears as shown in Figure 11-2.

Figure 11-2. The list of nodes in the Create New Node dialog box

 3. Click Node in the Create New Node dialog box. A

description of that node’s purpose appears at the

bottom of the Create New Node dialog box.

 4. Click the disclosure triangle that appears to the left

of Node2D. A list of nodes that inherit from Node2D

appears as shown in Figure 11-3.

Chapter 11 ObjeCt-Oriented prOgramming

243

Figure 11-3. The list of nodes derived from Node2D

 5. Click Node2D and then click Create. Godot makes

Node2D the parent node.

 6. Choose Scene ➤ Save Scene. A Save Scene As dialog

box appears.

 7. Click the File text field and type Main.tscn. Then

click Save.

 8. Click the + (Attach Child Node) icon. A Create New

Node dialog box appears.

Chapter 11 ObjeCt-Oriented prOgramming

244

 9. Click the Search text field and type Sprite2D. Then

click Create. Godot makes the Sprite2D a child node

of Node2D in the Scene dock.

 10. Click Sprite2D in the Scene dock. Then drag and

drop the icon.svg image file from the FileSystem

dock into the Texture property in the Inspector

dock. The icon.svg image now appears in the

Sprite2D node.

 11. Right-click Sprite2D in the Scene dock. A pop-up

menu appears.

 12. Click Save Branch as Scene as shown in Figure 11-4.

A Save New Scene As dialog box appears.

Chapter 11 ObjeCt-Oriented prOgramming

245

Figure 11-4. The Save Branch as Scene command in the
pop-up menu

Chapter 11 ObjeCt-Oriented prOgramming

246

 13. Click the File text field and type Player.tscn.

Then click Save. Notice that your Player.tscn file

now appears in the FileSystem dock as shown in

Figure 11-5.

Figure 11-5. Godot creates a new scene file in the FileSystem dock

 14. Double-click the Main.tscn file in the FileSystem

dock. This displays the Main.tscn file, which is the

main scene for the project.

 15. Drag and drop the Player.tscn file in the FileSystem

dock into the viewport three times as shown in

Figure 11-6.

Chapter 11 ObjeCt-Oriented prOgramming

247

Figure 11-6. Dragging and dropping the Player.tscn file into the
Main.tscn file three times

 16. Double-click the Player.tscn file in the FileSystem

dock. Godot displays the contents of the Player.tscn

file, which displays the icon.svg image. Notice that

Sprite2D is the parent node in the Scene dock.

 17. Click Sprite2D in the Scene dock. The Inspector

dock displays all the properties available to

customize.

Chapter 11 ObjeCt-Oriented prOgramming

248

 18. Click the disclosure triangle to the left of the

Visibility property under the CanvasItem category as

shown in Figure 11-7.

Figure 11-7. The Visibility property under the CanvasItem category
in the Inspector dock

 19. Click the Modulate property (that appears as a white

rectangle). A color dialog box appears.

Chapter 11 ObjeCt-Oriented prOgramming

249

 20. Click the various color options to choose a color

as shown in Figure 11-8. This color will change the

appearance of the icon.svg image file displayed in

the Sprite2D node.

Figure 11-8. The Color dialog box

Chapter 11 ObjeCt-Oriented prOgramming

250

 21. Choose Scene ➤ Save Scene (or press Ctrl/

Command+S) to save your changes.

 22. Double-click the Main.tscn file in the FileSystem

dock. Notice that all the icon.svg images now

display the color changes you selected earlier. By

changing one node, you changed multiple nodes

automatically using inheritance.

 Summary
Object-oriented programming is a way to group data, and the algorithms

that manipulate that data, in one place. The first step to using object-

oriented programming is to create a class that defines one or more

properties (variables) and one or more methods (functions). After creating

a class, the second step is to create an object based on that class.

Three advantages of object-oriented programming include

encapsulation, inheritance, and polymorphism. Encapsulation means that

a class represents a self-contained entity that’s as independent as possible.

This lets you modify a class without affecting the rest of a program.

Inheritance lets one class virtually copy code from another class.

In this way, you can avoid physically duplicating code so only one copy

of code exists. That way you can modify this code, and the changes

automatically affect any other classes.

Polymorphism means that a class can inherit code from another class

but rewrite an inherited method to contain a completely different code.

This prevents a class from inheriting methods that aren’t needed.

Object-oriented programming is just one way to help write software

that’s easy to modify without affecting the rest of a program. In addition,

object-oriented program can make it easy to reuse code without physically

duplicating that code. Reusing tested code makes a program more reliable

and faster to write.

Chapter 11 ObjeCt-Oriented prOgramming

251© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_12

CHAPTER 12

Getting Input
from the User
All programs, such as word processors, spreadsheets, and databases, must

accept input from the user. In video games, players commonly control a

game object through the keyboard, mouse, joystick, or touch screen. By

defining how specific keys on the keyboard function, how different buttons

on a mouse or joystick work, and how to detect different types of touch

gestures, you can detect user input for your game’s particular needs.

Godot offers two ways to get input from input devices:

• Detect specific hardware interactions such as pressing

the space bar.

• Assign your own hardware interactions for

common events.

In the first approach, your code must detect specific hardware

interactions. So your game might let you shoot a missile by pressing the

space bar or clicking the left mouse. That means whenever your code

needs to detect if the user wants to shoot a missile, your program must

detect when the user presses the space bar or clicks the left mouse button.

Unfortunately, just detecting if the user presses the space bar or clicks the

left mouse button doesn’t make it clear exactly what event your code is

responding to.

https://doi.org/10.1007/979-8-8688-0190-7_12

252

In the second approach, you define an arbitrarily named input

category such as “fire missile” and then assign one or more hardware

interactions to trigger that action. Now your code just needs to identify

when the user triggers the “fire missile” action and not exhaustively check

for all hardware actions such as pressing the space bar or clicking the left

mouse button.

In most cases, this second approach is preferable because it makes

your code easier to understand and write. The drawback is that you must

define an Input Map that defines all possible actions to respond to and the

hardware actions that trigger that action.

 Detecting Keyboard and Mouse Input
The GDScript command for detecting when specific keys are pressed is as

follows:

Input.is_key_pressed()

In parentheses, you must specify the exact key to detect such as

KEY_F1, KEY_TAB, or KEY_A. (For a complete list of keys Godot can

detect, visit https://docs.godotengine.org/en/stable/classes/

class_%40globalscope.html#enum-globalscope-key.)

To see how to detect keyboard input by detecting specific keys, follow

these steps:

 1. Create a new Godot project and make Node2D the

parent node and Sprite2D a child node.

 2. Drag and drop the icon.svg image into the Texture

property of Sprite2D.

 3. Click Sprite2D in the Scene dock and click

the Attach Script icon. Godot displays the

GDScript editor.

Chapter 12 GettinG input from the user

https://docs.godotengine.org/en/stable/classes/class_@globalscope.html#enum-globalscope-key
https://docs.godotengine.org/en/stable/classes/class_@globalscope.html#enum-globalscope-key

253

 4. Edit the GDScript file as follows:

extends Sprite2D

var speed = 300

func _process(delta):

 var velocity = Vector2.ZERO

 if Input.is_key_pressed(KEY_RIGHT) or Input.

is_key_pressed(KEY_D):

 velocity = Vector2.RIGHT * speed

 if Input.is_key_pressed(KEY_LEFT) or Input.is_

key_pressed(KEY_A):

 velocity = Vector2.LEFT * speed

 if Input.is_key_pressed(KEY_UP) or Input.is_key_

pressed(KEY_W):

 velocity = Vector2.UP * speed

 if Input.is_key_pressed(KEY_DOWN) or Input.is_

key_pressed(KEY_S):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

This code checks if certain keys are pressed such

as the right arrow (KEY_RIGHT) or the S key

(KEY_S). Since many games use the WASD keys as

alternatives to the up/down, right/left arrow keys,

the preceding code checks if the user pressed either

one of the WASD keys or one of the equivalent arrow

keys. Most games use WASD or arrow keys to detect

player movement.

Chapter 12 GettinG input from the user

254

Then it multiples a direction (such as Vector2.

DOWN) with a speed to calculate a velocity, which

gets multiplied by the delta variable to define the

Sprite2D’s position. Notice that the beginning of the

_process(delta) function sets the velocity variable to

Vector2.ZERO. Without this Vector2.ZERO value, the

Sprite2D will keep moving in the direction the user

last selected such as up, down, left, or right.

 5. Click the Run icon. A dialog box appears, asking you

to select a main scene.

 6. Click Select Current. A dialog box appears to save

your scene.

 7. Click Save.

 8. Press the WASD or up/down, right/left arrow keys to

move the image around the window. Notice that as

soon as you release a key, the image stops moving.

 9. Click the close icon in the (DEBUG) window when

you’re done.

Detecting the left or right mouse button is just as easy. The GDScript

command for detecting when a mouse button is pressed is as follows:

Input.is_mouse_button_pressed()

Inside the parentheses, you can define MOUSE_BUTTON_LEFT,

MOUSE_BUTTON_RIGHT, or MOUSE_BUTTON_MIDDLE. To see how to

detect mouse buttons, follow these steps:

 1. Click the script icon that appears to the right of

Sprite2D in the project you created previously.

Chapter 12 GettinG input from the user

255

 2. Modify the GDScript as follows:

extends Sprite2D

var speed = 300

func _process(delta):

 var velocity = Vector2.ZERO

 if Input.is_key_pressed(KEY_RIGHT) or

Input.is_key_pressed(KEY_D):

 velocity = Vector2.RIGHT * speed

 if Input.is_key_pressed(KEY_LEFT) or

Input.is_key_pressed(KEY_A):

 velocity = Vector2.LEFT * speed

 if Input.is_key_pressed(KEY_UP) or

Input.is_key_pressed(KEY_W):

 velocity = Vector2.UP * speed

 if Input.is_key_pressed(KEY_DOWN) or

Input.is_key_pressed(KEY_S):

 velocity = Vector2.DOWN * speed

 if Input.is_mouse_button_pressed

(MOUSE_BUTTON_RIGHT):

 velocity = Vector2.RIGHT * speed

 if Input.is_mouse_button_pressed

(MOUSE_BUTTON_LEFT):

 velocity = Vector2.LEFT * speed

 if Input.is_mouse_button_pressed

(MOUSE_BUTTON_MIDDLE):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

Chapter 12 GettinG input from the user

256

This additional code detects when the user presses

the left, right, or middle mouse button.

 3. Click the Run icon.

 4. Hold down the right mouse button. The image

moves to the right.

 5. Hold down the left mouse button. The image now

moves to the left.

 6. Hold down the middle mouse button. The image

now moves down.

 Defining an Input Map
Checking for specific keys or mouse buttons pressed can be fine, but many

times a game may offer multiple ways to perform the same task such as

letting the user move an object by pressing the WASD keys, the arrow keys,

a joystick, or a mouse. Checking multiple types of input can be tedious, so

Godot offers an input map instead.

With an input map, you define event categories to detect such as

“move_right” or “move_down.” Within each category, you can then define

all the different ways to accomplish that task such as through a keyboard,

mouse, or joystick. In Figure 12-1, there’s a move_left event that can be

triggered in four ways:

• Press the A key

• Press the left arrow key

• Press the joystick button

• Pull the joystick to the left

Chapter 12 GettinG input from the user

257

Figure 12-1. An Input Map can assign multiple input devices to the
same action

Once you’ve defined one or more ways to detect input (such as through

a keyboard, mouse, or joystick), you can assign equivalent inputs to the

same category. Now instead of checking for multiple pressed keys, mouse

buttons, or joystick buttons, your code can just check if the user selected a

specific input event such as move_left. This makes your code easier to read

and understand while also being shorter to write.

To see how to create and use an input map, follow these steps:

 1. Create a new Godot project and make Node2D the

parent node and Sprite2D a child node.

 2. Drag and drop the icon.svg image into the Texture

property of Sprite2D.

Chapter 12 GettinG input from the user

258

 3. Choose Project ➤ Project Settings. A Project Settings

dialog box appears.

 4. Click the Input Map tab.

 5. Click the Show Built-in Actions switch in the upper

right corner of the Project Settings dialog box.

A list of predefined actions appears as shown in

Figure 12-2.

Figure 12-2. The Built-in Actions available in the Input Map

 6. Click the Show Built-in Actions switch again to hide

all built-in actions since we want to create our own

event categories.

Chapter 12 GettinG input from the user

259

 7. Click the Add New Action text field and type move_
left. Then click Add. Godot creates a new action

category.

 8. Click the Add New Action text field and type move_
right. Then click Add.

 9. Click the Add New Action text field and type move_
up. Then click Add.

 10. Click the Add New Action text field and type move_
down. Then click Add. The Input Map displays four

categories as shown in Figure 12-3.

Figure 12-3. The Input Map with four empty categories displayed

Chapter 12 GettinG input from the user

260

 11. Click the + icon that appears to the right of move_

left. An Event Configuration dialog box appears as

shown in Figure 12-4.

Figure 12-4. The Event Configuration dialog box

 12. Click the disclosure triangle to the left of Keyboard

Keys and then click Left to define the left arrow key.

Then click OK. Godot adds the Left key to the move_

left event. As an alternative to choosing a key from a

list of options, you can also press the key you want to

represent an event category.

 13. Click the + icon to the right of move_left. The Event

Configuration dialog box appears (see Figure 12-4).

 14. Press the A key and click OK. Godot now assigns

the A key to the move_left event as shown in

Figure 12-5.

Chapter 12 GettinG input from the user

261

Figure 12-5. The Event Configuration dialog box listing two ways to
represent the move_left event

 15. Click the + icon that appears to the right of move_

right. The Event Configuration dialog box appears

(see Figure 12-4).

 16. Press the D key and click OK.

 17. Click the + icon that appears to the right of

move_right again to open the Event Configuration

dialog box.

 18. Click the disclosure triangle that appears to the left

of Keyboard Keys, click Right, and click OK.

Chapter 12 GettinG input from the user

262

 19. Click the + icon that appears to the right of move_

down to open the Event Configuration dialog box.

 20. Press the W key and click OK.

 21. Click the + icon that appears to the right of

move_down again to open the Event Configuration

dialog box.

 22. Click the disclosure triangle that appears to the left

of Keyboard Keys, click Down, and click OK.

 23. Click the + icon that appears to the right of move_up

to open the Event Configuration dialog box.

 24. Press the S key and click OK.

 25. Click the + icon that appears to the right of move_up

again to open the Event Configuration dialog box.

 26. Click the disclosure triangle that appears to the left

of Keyboard Keys, click Up, and click OK. The Input

Map tab in the Project Settings dialog box should

now display an arrow key (Up, Left, Down, or Right)

and a letter key (W, A, S, or D) for each event as

shown in Figure 12-6.

Chapter 12 GettinG input from the user

263

Figure 12-6. The Input Map tab in the Project Settings dialog box
listing two ways to represent each event

 27. Click Close to make the Project Settings dialog box

go away.

 28. Click Sprite2D in the Scene dock and click

the Attach Script icon. Godot displays the

GDScript editor.

 29. Edit the GDScript file as follows:

extends Sprite2D

var speed = 400

func _process(delta):

 var velocity = Vector2.ZERO

Chapter 12 GettinG input from the user

264

 if Input.is_action_pressed("move_left"):

 velocity = Vector2.LEFT * speed

 if Input.is_action_pressed("move_right"):

 velocity = Vector2.RIGHT * speed

 if Input.is_action_pressed("move_up"):

 velocity = Vector2.UP * speed

 if Input.is_action_pressed("move_down"):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

 30. Click the Run icon at the top of the window. The

(DEBUG) window appears.

 31. Press the left/right, up/down arrow keys to move the

icon.svg image around the screen.

 32. Press the WASD keys to move the icon.svg image

around the screen. Notice that the code no longer

looks for specific keys but looks for specific events

(move_down).

 33. Click the close icon of the (DEBUG) window to

make it go away.

When assigning keys to an event, Godot gives you two choices. First,

you can select a key from the list of available options displayed in the Event

Configuration dialog box. Second, you can press a key. Either method lets

you choose all available keys to detect.

Besides letting you detect keys, the Input Map can also detect mouse

buttons and joystick actions. Any time you want to modify an action,

click the Edit icon (it looks like a pencil). Any time you want to remove

an action, click the Delete icon (it looks like a trash can) as shown in

Figure 12-7.

Chapter 12 GettinG input from the user

265

Figure 12-7. Editing or deleting an Input Map

 Detecting Modifier Keys in an Input Map
So far we’ve detected physical keys that the user can press such as the

left arrow key or the W key. However, Godot’s Input Map can also detect

modifier keys such as Control, Alt (Windows/Linux), Option (Macintosh),

and Shift. Being able to detect modifier keys with other keys lets Godot

detect keystroke combinations such as Ctrl+P or Shift+F2.

Detecting modifier keys involves selecting a check box while choosing

a specific key. So if you selected the A key, you could choose a Shift,

Control, or Alt/Option key modifier. If you choose a single modifier, the

keystroke combination might look like Control+A. If you choose two

modifiers, the keystroke combination might look like Control+Shift+A.

Chapter 12 GettinG input from the user

266

To see how to use modifiers, follow these steps:

 1. Open the Godot project you created and edited in

the previous section.

 2. Choose Project ➤ Project Settings to open the

Project Settings dialog box.

 3. Click the Input Map tab.

 4. Click the Add New Action text field and type

rotate_left. Then click Add.

 5. Click the Add New Action text field and type

rotate_right. Then click Add.

 6. Click the + icon that appears to the right of rotate_

left. An Event Configuration dialog box appears.

 7. Press the left arrow key. A list of modifier keys

appears at the bottom of the Event Configuration

dialog box as shown in Figure 12-8.

Chapter 12 GettinG input from the user

267

Figure 12-8. The modifier keys appear at the bottom of the Event
Configuration dialog box

 8. Select the Shift check box and click OK.

 9. Click the + icon that appears to the right of rotate_

right. An Event Configuration dialog box appears.

 10. Press the right arrow key. A list of modifier keys

appears at the bottom of the Event Configuration

dialog box (see Figure 12-8).

 11. Select the Shift check box and click OK.

 12. Click Close to make the Event Configuration dialog

box go away.

Chapter 12 GettinG input from the user

268

 13. Click the script icon that appears to the right of

Sprite2D in the Scene dock. Godot opens the

GDScript editor.

 14. Edit the GDScript as follows:

extends Sprite2D

var speed = 400

var spin_speed = 5

func _process(delta):

 var velocity = Vector2.ZERO

 spin_speed = 0

 if Input.is_action_pressed("move_left"):

 velocity = Vector2.LEFT * speed

 if Input.is_action_pressed("move_right"):

 velocity = Vector2.RIGHT * speed

 if Input.is_action_pressed("move_up"):

 velocity = Vector2.UP * speed

 if Input.is_action_pressed("move_down"):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

 if Input.is_action_pressed("rotate_left"):

 spin_speed = -5

 if Input.is_action_pressed("rotate_right"):

 spin_speed = 5

 rotation += spin_speed * delta

The rotation code works similar to the movement

code where the beginning of the _process(delta)

function sets the spin_speed variable to 0.

Otherwise, the image would keep rotating even

after we let go of the Shift+left arrow or Shift+right

arrow key.

Chapter 12 GettinG input from the user

269

Then the code checks to see if the rotate_left or

rotate_right event occurs, which can only happen if

the user presses the Shift+left arrow or Shift+right

arrow. If that occurs, then the if statement sets

spin_speed to either 5 or -5, depending on which

arrow key the user pressed.

 15. Click the Run icon. The (DEBUG) window appears.

 16. Press the left/right and up/down arrow keys to move

the icon.svg image around the screen.

 17. Hold down Shift and press the left arrow key. Notice

that the icon.svg image rotates to the left. The image

appears to roll to the left because the Shift+Left

arrow key rotates it but the Left arrow also moves it

to the left at the same time.

 18. Hold down Shift and press the right arrow key.

Notice that the icon.svg image rotates to the right.

 19. Click the close icon in the (DEBUG) window.

You can also use the modifier keys for non-keyboard input devices

such as with the mouse. To see how to use modifier keys with the mouse,

follow these steps:

 1. Open the Godot project that contains the code that

can move and rotate the icon.svg image.

 2. Choose Project ➤ Project Settings. The Project

Settings dialog box appears.

 3. Click the Input Map tab. The rotate_left and

rotate_right events should already be defined.

 4. Click the + icon to the right of rotate_left. An Event

Configuration dialog box appears.

Chapter 12 GettinG input from the user

270

 5. Click the disclosure triangle to the left of mouse

buttons.

 6. Click Left Mouse Button. A list of modifiers appears

at the bottom of the Event Configuration dialog box

(see Figure 12-8).

 7. Select the Shift check box and click OK.

 8. Click Right Mouse Button. A list of modifiers

appears at the bottom of the Event Configuration

dialog box (see Figure 12-8).

 9. Select the Shift check box and click OK.

 10. Click Close to make the Event Configuration dialog

box go away. The rotate_left and rotate_right

categories should now display a Shift+Left Mouse

Button and a Shift+Right Mouse Button action as

shown in Figure 12-9.

Chapter 12 GettinG input from the user

271

Figure 12-9. The Shift+Left Mouse Button and Shift+Right Mouse
Button actions added to the Input Map

 11. Click Close to make the Project Settings window

go away.

 12. Click the Run icon.

 13. Hold down the Shift key and hold the left mouse

button. The icon.svg image rotates to the left.

 14. Hold down the Shift key and hold down the right

mouse button. The icon.svg image rotates to

the right.

 15. Click the close icon of the (DEBUG) window.

Chapter 12 GettinG input from the user

272

 Summary
Every video game needs to let the user control objects within the game

through the keyboard, mouse, joystick, or touch screen. You could write

code to detect specific input actions such as when the user presses the K

key or clicks the left mouse button. However, it’s more convenient to create

an Input Map instead.

An Input Map lets you define one or more event categories that

represent a particular type of movement such as up, down, left, or right.

Then within each category, you can detect multiple inputs through

different keys, the mouse, or a joystick.

Besides detecting individual keys, the Input Map can also detect

keystroke combinations through one or more modifiers such as the Shift,

Control, or Alt/Option modifier keys. By combining two or more modifiers

together, you can create keystroke combinations such as Control+Shift+F1

or Shift+Option+Left mouse button.

Once you know how to detect input from the user through a variety of

input devices (keyboard, mouse, joystick), you’ll be able to create a game

that can respond to the user in the way players like best.

Chapter 12 GettinG input from the user

273© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_13

CHAPTER 13

Shooting Projectiles
Moving is one of the most common tasks in any video game. The second

most common task is shooting a projectile to attack enemies. Even though

a player can move around in the game, it makes the game boring over

time. Therefore making more interactions such as shooting projectiles,

unlocking items, or other options can make a game more interesting.

Firing a projectile involves creating another object, aiming it, and

moving it in the direction it was aimed. Later, shooting a projectile also

means detecting if it collides with anything. It is important to check for

collision, or else shooting a projectile is void. If it hits something, then the

game must make the projectile disappear and respond to the projectile

hitting an object.

First you must create a projectile as a separate scene. This scene

defines the projectile’s appearance and must also include GDScript code

to make it move.

After you’ve created a projectile as a separate scene, the second step

is to link the projectile scene with the scene that defines your player in a

video game such as an airplane, tank, or gun. Once you’ve connected the

projectile scene with your player scene, you’ll need to write GDScript to

create the projectile at a specific location and a direction using a Marker2D

node. Wherever you place this Marker2D node is where your projectile will

appear, such as shooting out of the mouth of a cartoon dragon or out of the

tip of a laser cannon.

https://doi.org/10.1007/979-8-8688-0190-7_13

274

 Creating a Projectile Scene
A projectile scene consists of three nodes as shown in Figure 13-1:

• Area2D (parent)

• Sprite2D (child) – Defines the image of the projectile in

the Texture property

• CollisonShape2D (child) – Defines the shape and size

of the collision boundaries of the projectile

Figure 13-1. The scene structure of a projectile

The Area2D node can detect collisions, which can be useful if

the projectile hits another object such as an enemy. However, by

itself, the Area2D node cannot detect collisions without the help of a

CollisionShape2D child node. When you add the CollisionShape2D node,

you can then define the Shape property.

The Shape property lets you define the physical shape of the collision

boundaries such as a rectangle or ellipse. You can move and resize the

Shape boundary to closely match the visible image of the projectile. You

want to match the Shape boundary as close to the image as possible in

order to detect collisions better.

The Sprite2D node lets you choose an image for the projectile. Ideally,

you should create custom images for your projectile, but any image file

will work.

Chapter 13 Shooting projeCtileS

275

To see how to create a projectile, follow these steps:

 1. Create a new Godot project and click Other Node

when the new project loads. A Create New Node

dialog box appears.

 2. Click the Search text field, type Area2D, and click

Create. Godot makes the Area2D node the parent

node in the Scene dock.

 3. Click the + (Add Child Node) icon. The Create New

Node dialog box appears.

 4. Click the Search text field, type Sprite2D, and click

Create. Godot makes the Sprite2D a child node

underneath Area2D.

 5. Click Area2D in the Scene dock and click the + (Add

Child Node) icon. The Create New Node dialog box

appears.

 6. Click the Search text field, type CollisionShape2D,

and click Create. Godot makes the

CollisionShape2D a child node of Area2D (see

Figure 13-1).

 Changing the Name of a Node
Each time you create a scene out of multiple nodes, Godot uses the default,

generic name for that node such as Area2D or Sprite2D. However, it’s often

better to give specific, descriptive names for your nodes. That way you

can better understand what they actually represent. If you want to give a

specific name to a node such as “Player” for Sprite2D, you simply double-

click the name of the node and type in your preferred name. Giving nodes

specific names will better help you track each object used in the game and

help you indicate how you will let the objects function.

Chapter 13 Shooting projeCtileS

276

In our project, the scene consists of an Area2D node with a Sprite2D

and CollisionShape2D node as two child nodes. However, it’s not clear

exactly what Area2D represents. In this particular case, the Area2D

represents a projectile, so it might be better to rename Area2D with a more

descriptive name such as “Bullet” or “Missile.”

To see how to rename a node, follow these steps:

 1. Make sure you have created a Godot project where

a scene consists of an Area2D node with two

child nodes: Sprite2D and CollisionShape2D (see

Figure 13-1).

 2. Double-click Area2D in the Scene dock. Godot

highlights the entire node name.

 3. Edit the Area2D name to Bullet as shown in

Figure 13-2.

Figure 13-2. Changing the name of Area2D to Bullet

 4. Press Enter.

You can rename any node to give it a more descriptive name. For our

projectile, it’s enough just to change the Area2D name to Bullet, so it’s

easier to see what this scene represents in the game.

 1. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears. Since you changed

the root node to Bullet, Godot assumes you want to

save your scene using that root node name such as

Bullet.tscn as shown in Figure 13-3.

Chapter 13 Shooting projeCtileS

277

Figure 13-3. Saving a scene for the first time

 2. Click Save. Godot saves your scene using the .tscn

file extension in the FileSystem dock as shown in

Figure 13-4.

Figure 13-4. A saved scene’s file name appears in the FileSystem dock

Chapter 13 Shooting projeCtileS

278

 Adding a Projectile Image
A projectile needs an image to make it visible within a game. Ideally, you

(or an artist) should create a custom projectile image, but for our purposes,

we can use the icon.svg image that appears in every Godot project.

Since we’re going to use the icon.svg image to represent our player

that we control as well, we need to change the appearance of the icon.svg

image to represent our projectile. One simple way to do that is to change

the scale of the image.

By changing the scale, we can shrink (or expand) an image beyond its

original size. For a project, we want to shrink the icon.svg image. We could

change its scale manually by dragging the mouse, but it’s more precise to

use the Scale properties in the Inspector dock instead.

To see how to create and scale an image for a projectile, follow

these steps:

 1. Click Sprite2D in the Scene dock to select it.

 2. Drag and drop the icon.svg image into the Texture

property of Sprite2D.

 3. Click the disclosure triangle that appears to

the left of the Transform category that appears

under Node2D.

 4. Click the x field under the Scale property and

type 0.25. Then press Enter. Notice that Godot

automatically scales the y property to 0.25 as shown

in Figure 13-5.

Chapter 13 Shooting projeCtileS

279

Figure 13-5. Changing the Scale properties of the Sprite2D node

 Adding a Collision Shape
At this point, you might notice a yellow warning icon that appears to

the right of the CollisionShape2D node in the Scene dock as shown in

Figure 13-6.

Chapter 13 Shooting projeCtileS

280

Figure 13-6. A warning about the CollisionShape2D node

Godot displays warnings whenever it detects incomplete tasks. In

this case, we’ve added a CollisionShape2D node to define the collision

boundaries around our projectile. However, we haven’t defined this

collision boundary yet. To do this, we’ll need to modify the Shape property

in the CollisionShape2D node.

To see how to define a collision shape, follow these steps:

 1. Open the Godot project you created and edited in

the previous section.

 2. Click CollisionShape2D in the Scene dock to

select it.

 3. Click the <empty> field that appears in the Shape

property. A list of options appears in a pull-down

menu as shown in Figure 13-7.

Chapter 13 Shooting projeCtileS

281

Figure 13-7. Choosing the shape of a collision boundary
around a node

 4. Click New RectangleShape2D. Godot displays a

rectangular box with orange handles around the

sides and corners as shown in Figure 13-8.

Chapter 13 Shooting projeCtileS

282

Figure 13-8. Resizing the shape of a collision boundary

 5. Drag the orange handles until the collision

boundary rectangle covers the icon.svg image.

Notice that the yellow warning icon no longer

appears in the Scene dock.

At this point, we’ve created a projectile out of three nodes (Area2D,

Sprite2D, and CollisonShape2D). The Sprite2D node defines the

appearance of the projectile, and the CollisionShape2D node defines a

collision boundary around the image.

 Making the Projectile Move
The Sprite2D node defines the appearance of the projectile, but it won’t

move. To make it move, we need to write GDScript code. Because we want

the entire projectile to move, we need to attach a script to the root node

(Bullet) in the Scene dock.

The GDScript code needs to change the position of the entire scene

along either the x or y axis. The exact axis you choose doesn’t matter

because it simply defines the projectile to move in a straight line. The

direction that the projectile will actually move within a game depends

entirely on where you define the projectile to appear and in which

direction the x or y axis appears. This will be defined in the next chapter

when we create a player and define how to shoot the projectile.

Chapter 13 Shooting projeCtileS

283

To see how to write GDScript code to make the projectile move, follow

these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Click the Bullet node in the Scene dock and click the

Attach Script icon. An Attach Node Script dialog box

appears. Notice that the default script name is the

name of the root node (Bullet) followed by the .gd

file extension such as bullet.gd.

 3. Click Create. Godot displays the contents of the

newly created GDScript.

 4. Edit the bullet.gd file as follows:

extends Area2D

@export var speed = 700

func _process(delta):

 position += transform.x * speed * delta

 5. Press Ctrl/Command+S to save your GDScript code.

The first line in the preceding code (extends Area2D) simply inherits

all code associated with the Area2D node. One particular property we want

to use from the Area2D node is the position property, which defines the

node’s position on the screen.

The second line (@export var speed = 700) defines a variable called

“speed” and sets its value to 700. The @export keyword in front of “var

speed” means this variable (speed) appears in the Inspector dock. That

means we can change the value of the speed variable either by modifying

the GDScript code or by changing the speed variable within the Inspector

dock as shown in Figure 13-9.

Chapter 13 Shooting projeCtileS

284

Figure 13-9. The @export keyword makes a variable accessible
through the Inspector dock

The third line (func _process(delta)) defines a function that runs

every time the game displays another frame. Since every computer runs at

different speeds, the delta variable represents how much time has passed

since the previous frame appeared. By using this delta variable, we can

create smoother movement regardless of the speed of the computer that

the project runs on.

The fourth line changes the position of the Bullet node. In this case, we

want to move along the x axis (transform.x) based on the speed variable

(speed = 700) and the delta variable.

To see how this code works, follow these steps:

 1. Click the Run icon. A dialog box appears, asking if

you want to use the current scene as the main scene.

 2. Click Select Current. After a while, you should

see the icon.svg move along the top of the Godot

(DEBUG) window.

 3. Click the close icon of the (DEBUG) window.

Chapter 13 Shooting projeCtileS

285

Each time you click the Run icon, you’ll see the icon.svg image move

to the right across the top of the (DEBUG) window. This lets you see that

the projectile looks and behaves the way we want. In the next chapter, we’ll

create a player and write GDScript code to make the projectile shoot out of

the player image as it moves and rotates around the screen.

 Summary
Many video games create flying projectiles from the player (to hit enemies)

or from enemies (to hit the player). Shooting objects that fly across the

screen is a common mechanic used in nearly every video game, so it’s

important to know how to create a flying projectile.

A projectile consists of a single scene with an Area2D node as its root

node. Attached to this Area2D node are two child nodes: a Sprite2D node

and a CollisionShape2D node. The Sprite2D node lets you choose an

image to represent the projectile. The CollisionShape2D node lets you

define a collision boundary around your projectile.

To make a projectile move, you need to write GDScript code that

changes the position of the projectile along the x or y axis. Once you’ve

defined a projectile and made it move, you’ll be ready to add it to a player

scene. Creating separate scenes, made out of different nodes, and putting

them together to build larger scenes is what makes the Godot game engine

easy to use for creating all types of video games. Once you understand the

key concepts of shooting projectiles at enemies, you can also add health or

a scoreboard. Be as creative as you want when making a game.

Chapter 13 Shooting projeCtileS

287© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_14

CHAPTER 14

Adding Projectiles
to a Player
Creating a projectile and making it move is the first step. The second step

is making that projectile appear when and where you want it during a

game. In most cases, you want a projectile to appear where you aim, so

this chapter is about adding a projectile to a player that you can move

and rotate. No matter how you move or rotate the player, you can fire a

projectile from the top of the player image. This chapter focuses on adding

projectiles in case you want to make a simple 2D shooter game.

In Godot, a game consists of multiple scenes made up of nodes. You

can have as many scenes and modes as you want, but it’s best to keep the

project simple. Nodes act like building blocks to create scenes, and scenes

act as much larger building blocks to create more complex scenes. Once

you create a projectile as a scene, you need to create a new scene that

defines a player that you can control.

The most important part about shooting a projectile is defining

where it appears and what direction it will go. To do this, you need to

link a projectile to a special Marker2D node that defines the position and

direction where you want a projectile to appear around a player. In simpler

terms, the Marker2D will help with aiming and shooting at enemies in the

game that you are making.

https://doi.org/10.1007/979-8-8688-0190-7_14

288

 Creating a Player Scene
Before you can shoot a projectile, you need to create a player that people

can move, rotate, and aim. A player scene can consist of the following

nodes as shown in Figure 14-1:

• CharacterBody2D (parent)

• Sprite2D (child) – Defines the image of the player in the

Texture property

• CollisonShape2D (child) – Defines the shape and size

of the collision boundaries of the player

• Marker2D (child of Sprite2D) – Defines the location

and direction where the projectile will appear

and move

Figure 14-1. The scene structure of a player

The CharacterBody2D node is a node designed for creating objects

in a game that GDScript code can control and move within a game. Most

importantly, GDScript code must create a link to the projectile scene so

that it can fire and move in the direction defined by a Marker2D node.

Chapter 14 adding projeCtiles to a player

289

The Sprite2D node lets you choose an image for the player. Ideally,

you should create custom images for your projectile, but any image

file will work. More importantly, the Marker2D node must be a child of

Sprite2D. This Marker2D node defines the position and direction where a

projectile will appear and move.

The CollisionShape2D node defines a collision boundary around the

player. This is useful for detecting when the player runs into objects or gets

hit by flying projectiles fired by enemy objects.

To see how to create a player, follow these steps:

 1. Make sure you have opened the previous Godot

project where you created a projectile scene called

bullet.tscn.

 2. Choose Scene ➤ New Scene. Godot creates a

new scene.

 3. Click 2D at the top of the Godot window to view

your newly created scene.

 4. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 5. Click the Search text field, type CharacterBody2D,

and click Create. Godot makes the CharacterBody2D

node the parent node of the newly created scene.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and click

Create. Godot makes the Sprite2D node the child

node of the CharacterBody2D parent node.

 8. Click Sprite2D in the Scene dock and click the +

(Attach Child Node) icon. A Create New Node dialog

box appears.

Chapter 14 adding projeCtiles to a player

290

 9. Click the Search text field, type Marker2D, and click

Create. Godot makes the Sprite2D node the child

node of the Sprite2D node.

 10. Click CharacterBody2D in the Scene dock and click

the + (Attach Child Node) icon. A Create New Node

dialog box appears.

 11. Click the Search text field, type CollisionShape2D,

and click Create. Godot makes the

CollisionShape2D node the child node of the

CharacterBody2D node (see Figure 14-1).

 Changing the Name of a Node
When we created the projectile scene, the parent node was Area2D. We

changed this name to “Bullet” to make it more descriptive of what that

scene actually represents. Likewise, our current player scene displays a

CharacterBody2D node as its parent node, so we’ll need to rename this

node to something more descriptive such as “Player.”

To see how to rename a node, follow these steps:

 1. Make sure you have created a Godot project where a

scene consists of a CharacterBody2D node with two

child nodes: Sprite2D and CollisionShape2D (see

Figure 14-1).

 2. Double-click CharacterBody2D in the Scene dock.

Godot highlights the entire node name.

 3. Edit the CharacterBody2D name to Player as shown

in Figure 14-2.

Chapter 14 adding projeCtiles to a player

291

Figure 14-2. Changing the name of CharacterBody2D to Player

 4. Press Enter.

 5. Press Ctrl/Command+S to save your scene. A Save Scene

As dialog box appears. Since you changed the root node

to Player, Godot assumes you want to save your scene

using that root node name such as Player.tscn.

 6. Click Save. Godot saves your scene using the .tscn

file extension in the FileSystem dock as shown in

Figure 14-3.

Figure 14-3. A saved scene’s file name appears in the FileSystem dock

Chapter 14 adding projeCtiles to a player

292

 Adding a Player Image and Collision Shape
The Sprite2D node contains a Texture property where you can add an

image that represents the player in a game. Ideally, you should create

multiple images to represent a player as it moves where each image

appears in rapid succession to create a simple animation. In another

chapter, we will discuss more about sprites and animations to add some

flare to your game. For our purposes, we’ll use a simple static image to

represent the player using the icon.svg image.

To see how to create and scale an image for a player, follow these steps:

 1. Click Sprite2D in the Scene dock to select it.

 2. Drag and drop the icon.svg image into the Texture

property of Sprite2D.

 3. Click CollisionShape2D in the Scene dock to

select it.

 4. Click the <empty> field that appears in the Shape

property. A list of options appears in a pull-

down menu.

 5. Click New RectangleShape2D. Godot displays a

rectangular box with orange handles around the

sides and corners.

 6. Drag the orange handles until the collision

boundary rectangle covers the icon.svg image.

Chapter 14 adding projeCtiles to a player

293

 Using the Marker2D Node to Define
the Projectile Location
To fire a projectile, we need to define where it starts and which direction

it should move. The way to do that is through the Marker2D node that’s

attached as a child node to the Sprite2D node. The Marker2D node lets

you define

• Where the projectile should appear

• Which direction the projectile should move

The position of the Marker2D defines where the projectile appears.

The orientation of the Marker2D defines which direction the projectile

will move.

To see how to customize the Marker2D node to define the projectile

location and direction, follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Click the Marker2D node in the Scene dock to select

it. Godot highlights the Marker2D node, which

should look like an orange cross.

 3. Click the Move Mode icon. Godot displays an x and

y axis arrow on the Marker2D node.

 4. Drag the Marker2D to the top middle of the icon.svg

image (the Sprite2D node) as shown in Figure 14-4.

The red arrow represents the x axis and the green

arrow represents the y axis.

Chapter 14 adding projeCtiles to a player

294

Figure 14-4. Using the Move Mode icon to position a Marker2D node

 5. Click the disclosure triangle to the left of Transform

in the Inspector dock and then double-click the

Rotation text field.

 6. Type -90 and press Enter. This rotates the x axis (red

arrow) to point vertically as shown in Figure 14-5.

This will define the direction that the projectile

will move.

Chapter 14 adding projeCtiles to a player

295

Figure 14-5. Rotating the Marker2D orients its x axis

 7. Press Ctrl/Command+S to save your scene.

 Defining Ways to Control the Player
Now that we’ve created a player out of multiple nodes, the next step is

to define ways to control the player by moving it, rotating it, and firing a

projectile by pressing various keys on the keyboard. To define the actions

of certain keys, we need to identify the actions we want (such as rotate_left

or shoot) and then assign specific keys to each action. The seven actions

we need to detect are as follows:

• Up

• Down

• Left

Chapter 14 adding projeCtiles to a player

296

• Right

• Rotate left

• Rotate right

• Shoot

To see how to define keys to control specific actions on the player,

follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Choose Project ➤ Project Settings. A Project Settings

window appears.

 3. Click the Input Map tab as shown in Figure 14-6.

Figure 14-6. The Input Map tab in the Project Settings window

 4. Click the Add New Action text field, type up, and

press Enter.

 5. Click the Add New Action text field, type down, and

press Enter.

 6. Click the Add New Action text field, type left, and

press Enter.

 7. Click the Add New Action text field, type right, and

press Enter.

 8. Click the Add New Action text field, type rotate_left,
and press Enter.

Chapter 14 adding projeCtiles to a player

297

 9. Click the Add New Action text field, type rotate_
right, and press Enter.

 10. Click the Add New Action text field, type shoot, and

press Enter. You should now have defined seven

different actions as shown in Figure 14-7.

Figure 14-7. Defining seven actions to detect

At this point, we’ve defined seven different actions. Now we need to

define specific keys to trigger each action. To move up/down, left/right,

games typically use both the arrow keys and the WASD keys as well. To

rotate left and rotate right, we can use the comma and period keys. To

shoot a projectile, we can use the space bar.

When you want to assign specific keys to an action, you have two

choices. First, you can simply press the key you want to assign to each

action. Second, you can click the list of all available keys to choose the key

to assign to each action. The first method is faster and more intuitive, so

that’s the method we’ll use.

To assign specific keys to each action, follow these steps:

 1. Click the + (Add Event) icon that appears to the right

of the up action. An Event Configuration window

appears as shown in Figure 14-8.

Chapter 14 adding projeCtiles to a player

298

Figure 14-8. The Event Configuration window

 2. Press the up arrow key and click OK. The Event

Configuration window displays the Up (Physical)

key under the up action.

 3. Click the + (Add Event) icon that appears to the right

of the up action. An Event Configuration window

appears (see Figure 14-8).

 4. Press the W key and click OK. The Event

Configuration window displays the W (Physical) key

under the up action.

 5. Click the + (Add Event) icon that appears to the right

of the down action. An Event Configuration window

appears (see Figure 14-8).

Chapter 14 adding projeCtiles to a player

299

 6. Press the down arrow key and click OK. The Event

Configuration window displays the Down (Physical)

key under the down action.

 7. Click the + (Add Event) icon that appears to the right

of the down action. An Event Configuration window

appears (see Figure 14-8).

 8. Press the S key and click OK. The Event

Configuration window displays the S (Physical) key

under the down action.

 9. Click the + (Add Event) icon that appears to the right

of the left action. An Event Configuration window

appears (see Figure 14-8).

 10. Press the left arrow key and click OK. The Event

Configuration window displays the Left (Physical)

key under the down action.

 11. Click the + (Add Event) icon that appears to the right

of the left action. An Event Configuration window

appears (see Figure 14-8).

 12. Press the A key and click OK. The Event

Configuration window displays the A (Physical) key

under the left action.

 13. Click the + (Add Event) icon that appears to the right

of the right action. An Event Configuration window

appears (see Figure 14-8).

 14. Press the right arrow key and click OK. The Event

Configuration window displays the Right (Physical)

key under the down action.

Chapter 14 adding projeCtiles to a player

300

 15. Click the + (Add Event) icon that appears to the right

of the right action. An Event Configuration window

appears (see Figure 14-8).

 16. Press the D key and click OK. The Event

Configuration window displays the D (Physical) key

under the right action.

These steps let you move the player up/down and left/right using

either the arrow keys or the WASD keys. Now the final steps involve

defining keys to rotate the player left and right and shoot the projectile.

To define keys to rotate left, rotate right, and shoot the projectile, follow

these steps:

 1. Click the + (Add Event) icon that appears to the right

of the rotate_left action. An Event Configuration

window appears (see Figure 14-8).

 2. Press the comma key and click OK. The Event

Configuration window displays the Comma

(Physical) key under the rotate_left action.

 3. Click the + (Add Event) icon that appears to the right

of the rotate_right action. An Event Configuration

window appears (see Figure 14-8).

 4. Press the period key and click OK. The Event

Configuration window displays the Period (Physical)

key under the rotate_right action.

 5. Click the + (Add Event) icon that appears to the right

of the shoot action. An Event Configuration window

appears (see Figure 14-8).

Chapter 14 adding projeCtiles to a player

301

 6. Press the space bar and click OK. The Event

Configuration window displays the Space (Physical)

key under the shoot action. The entire Input Map

should look like Figure 14-9.

Figure 14-9. Physical keys assigned to every action on the Input Map

 7. Click Close to make the Project Settings window

go away.

Chapter 14 adding projeCtiles to a player

302

 Writing GDScript Code to Control the Player
The Input Map defines actions to detect and specific keys to trigger those

actions. The next step is to write GDScript to detect when the user presses

specific keys associated with specific actions. This involves attaching

scripts to different nodes and then writing GDScript code within each

script file that ends with a .gd file extension.

To see how to create a script and write GDScript code, follow

these steps:

 1. Double-click the player.tscn file in the FileSystem

dock to select it. This should display the Player,

Sprite2D, Marker2D, and CollisionShape2D nodes

that make up the player scene.

 2. Click Sprite2D in the Scene dock and click the

Attach Script icon. An Attach Node Script window

appears as shown in Figure 14-10.

Chapter 14 adding projeCtiles to a player

303

Figure 14-10. The Attach Node Script window

 3. Click Create. Godot displays the GDScript editor.

 4. Edit the GDScript code as follows:

extends Sprite2D

var spin = 5

func _process(delta):

 spin = 0

 if Input.is_action_pressed("rotate_left"):

 spin = -5

Chapter 14 adding projeCtiles to a player

304

 if Input.is_action_pressed("rotate_right"):

 spin = 5

 rotation += spin * delta

 5. Press Ctrl/Command+S to save your changes.

This code constantly checks if the user has pressed any of the keys

associated with the “rotate_left” or “rotate_right” actions defined in the

Input Map. To test this script out, we need to first make this player.tscn the

main scene.

To define the player.tscn file as the main scene, follow these steps:

 1. Choose Project ➤ Project Settings. The Project

Settings window appears.

 2. Click the General tab.

 3. Click Run under the Application category. The Main

Scene option appears.

 4. Click the folder icon that appears on the far right

of the Main Scene option. An Open File dialog box

appears.

 5. Click player.tscn and click Open. The Main Scene

option should now display player.tscn as shown in

Figure 14-11.

Chapter 14 adding projeCtiles to a player

305

Figure 14-11. The Main Scene option defines the player.tscn
scene to use

 6. Click Close.

To test if you can rotate the player using the comma and period keys,

follow these steps:

 1. Click the Player node in the Scene dock and click

2D near the top middle of the screen. By default, the

player node appears in the upper left corner of the

Godot game window.

Chapter 14 adding projeCtiles to a player

306

 2. Click the Move Mode icon and drag the icon.svg

image down and to the right so that it appears

within the boundary of the Godot game window.

 3. Press Ctrl/Command+S to save the scene.

 4. Click the Run icon. The Godot game window

appears.

 5. Press the comma and period keys to rotate the icon.

svg image left and right.

 6. Click the close icon in the (DEBUG) window.

Once you’re able to rotate the icon.svg image left and right, the next

step is to move the icon.svg image up/down and left/right along with

shooting a projectile.

To move the player, follow these steps:

 1. Click the Player node in the Scene dock.

 2. Click Player in the Scene dock and click the Attach

Script icon. An Attach Node Script window appears

(see Figure 14-10).

 3. Click Create. Godot displays the GDScript editor.

 4. Edit the GDScript code as follows:

extends CharacterBody2D

const SPEED = 300.0

func _physics_process(delta):

 velocity = Vector2.ZERO

 if Input.is_action_pressed("left"):

 velocity = Vector2.LEFT * SPEED

 if Input.is_action_pressed("right"):

 velocity = Vector2.RIGHT * SPEED

Chapter 14 adding projeCtiles to a player

307

 if Input.is_action_pressed("up"):

 velocity = Vector2.UP * SPEED

 if Input.is_action_pressed("down"):

 velocity = Vector2.DOWN * SPEED

 position += velocity * delta

 5. Press Ctrl/Command+S to save your changes.

 6. Click the Run icon. The Godot game window

appears.

 7. Press the up/down, left/right arrow keys (or the

WASD keys) to move the icon.svg image around

the screen.

 8. Press the comma and period keys to rotate the icon.

svg image left and right.

 9. Click the close icon in the (DEBUG) window.

 Firing a Projectile
Now that we can control the player (icon.svg image) by pressing the arrow

keys and the comma/period keys to rotate the image, it’s time to shoot a

projectile. Remember, when we defined different actions in the Input Map,

we also defined a “shoot” action that gets triggered by the space bar.

Firing a projectile involves several steps. The first and most important

step is to link the bullet.tscn within the player.tscn file. This involves

defining a variable using the @export keyword and declaring it to hold a

PackedScene data type like this:

@export var bullet_scene : PackedScene

Chapter 14 adding projeCtiles to a player

308

The @export keyword lets the variable appear within the Inspector

dock where we need to drag and drop the bullet.tscn file. This allows us to

access the bullet.tscn file through the bullet_scene variable.

The second step is to detect when the user presses the space bar to

trigger the “shoot” action using the Input.is_action_just_pressed command

like this:

if Input.is_action_just_pressed("shoot"):

Notice that this is different from the Input.is_action_pressed()

command (note the word “just”). The Input.is_action_just_pressed

command will run once, while the Input.is_action_pressed can run

multiple times. When firing a projectile, we just want to fire it once each

time we press the space bar.

Finally, we need to create a function to fire a projectile. This code looks

like this:

func shoot():

 var b = bullet_scene.instantiate()

 get_tree().root.add_child(b)

 b.transform = $Sprite2D/Marker2D.global_transform

This code creates (instantiates) the bullet_scene variable, which links

to the bullet.tscn file. Then it adds that bullet_scene to the root (parent)

node, which is Player. Finally, it places the bullet_scene at the location of

the Marker2D node, which is a child of Sprite2D.

To see how to link the bullet.tscn file to the player.tscn file, follow

these steps:

 1. Make sure the Godot project that you edited

previously is open.

 2. Click the Player node in the Scene dock.

Chapter 14 adding projeCtiles to a player

309

 3. Double-click the script icon that appears to

the right of the Player node. Godot displays the

GDScript code.

 4. Add the following above const SPEED = 300.0:

@export var bullet_scene : PackedScene

 5. Click Player in the Scene dock. Notice that the

Inspector dock now displays an <empty> Bullet

Scene property as shown in Figure 14-12.

Figure 14-12. The @export keyword displays the bullet_scene
variable in the Inspector dock

 6. Drag and drop the bullet.tscn file from the

FileSystem dock to the Bullet Scene property in the

Inspector dock as shown in Figure 14-13. (As an

alternative, you can also click the downward-

pointing arrow that appears to the right of the Bullet

Scene property to display a pull-down menu. Then

choose Load and when an Open a File dialog box

appears, click bullet.tscn and click Open.)

Chapter 14 adding projeCtiles to a player

310

Figure 14-13. The @export keyword displays the bullet_scene
variable in the Inspector dock

Once we’ve linked the bullet.tscn file to the player.tscn through the

Inspector dock, we now need to write GDScript code to detect when the

user presses the space bar to trigger the “shoot” action. We need to write a

function to create the bullet.tscn file.

To write GDScript code to create a projectile from the bullet.tscn file,

follow these steps:

 1. Make sure the Godot project that you edited

previously is open.

 2. Click the Player node in the Scene dock.

 3. Double-click the script icon that appears to

the right of the Player node. Godot displays the

GDScript code.

Chapter 14 adding projeCtiles to a player

311

 4. Add the following code to the end of the func

_physics_process(delta) function:

if Input.is_action_just_pressed("shoot"):

 shoot()

 5. Add the following code at the end and indent all the

way to the left:

func shoot():

 var bullet = bullet_scene.instantiate()

 get_tree().root.add_child(bullet)

 bullet.transform = $Sprite2D/Marker2D.global_

transform

The entire player.gd file should look like this:

extends CharacterBody2D

@export var bullet_scene : PackedScene

const SPEED = 300.0

func _physics_process(delta):

 velocity = Vector2.ZERO

 if Input.is_action_pressed("left"):

 velocity = Vector2.LEFT * SPEED

 if Input.is_action_pressed("right"):

 velocity = Vector2.RIGHT * SPEED

 if Input.is_action_pressed("up"):

 velocity = Vector2.UP * SPEED

 if Input.is_action_pressed("down"):

 velocity = Vector2.DOWN * SPEED

 position += velocity * delta

 if Input.is_action_just_pressed("shoot"):

 shoot()

Chapter 14 adding projeCtiles to a player

312

func shoot():

 var bullet = bullet_scene.instantiate()

 get_tree().root.add_child(bullet)

 bullet.transform = $Sprite2D/Marker2D.global_

transform

 6. Press Ctrl/Command+S to save your changes.

 7. Click the Run icon.

 8. Press the up/down, left/right arrow keys to move the

icon.svg image around.

 9. Press the space bar. Notice that tiny versions of the

icon.svg image shoot out from the top of the player

node, which is where the Marker2D node is located.

 10. Press the comma and period keys to rotate the icon.

svg image.

 11. Press the space bar. Notice that the icon.svg image

shoots out from the top of the player node no matter

which way it’s rotated.

 12. Click the close icon in the (DEBUG) window.

If you have your own images, add them to the FileSystem dock and

substitute those images for the player and bullet. Depending on the size of

your images, you may need to adjust the collision boundaries around the

player and projectile. Then run your project again to make sure you can

still move, rotate, and shoot projectiles.

Chapter 14 adding projeCtiles to a player

313

 Removing Projectiles
One problem with creating and shooting a projectile is that it still exists

even after it exits off the edge of the game window and can no longer be

seen. Each projectile takes up memory and processing resources, so the

more projectiles created, the greater the load on the computer. Create too

many projectiles, and you risk slowing down the entire game.

The solution is to remove a projectile the moment it exits the game

window. To do this requires several steps:

• Attach a VisibleOnScreenNotifier node to a projectile.

• Create a screen_exited signal to detect when the

projectile exits the game window.

• Use the queue_free() function to remove the projectile.

To see the problem with not removing a projectile after creating it,

even after it’s no longer visible, follow these steps:

 1. Make sure the previous Godot project is loaded,

which lets you shoot projectiles by pressing the

space bar.

 2. Double-click player.tscn in the FileSystem dock

to display the player.tscn node hierarchy in the

Scene dock.

 3. Click the Run icon. Notice that a Remote tab

appears in the Scene dock.

 4. Click the Remote tab.

 5. Press the space bar multiple times. Each time you

press the space bar to fire a projectile, that projectile

disappears from view but remains displayed within

the Scene dock under the Remote tab as shown in

Figure 14-14.

Chapter 14 adding projeCtiles to a player

314

Figure 14-14. The Remote tab lets you view when scenes get created
(instantiated)

 6. Click the close icon in the (DEBUG) window.

To remove a projectile when it exits the game window, we need to

attach a VisibleOnScreenNotifier node to the projectile’s parent node. To

detect when the projectile exits the game window, we just need to create

an on_exit() function, and within that function, write GDScript code to

remove the projectile completely using the queue_free() function.

To make a projectile disappear when it exits the game window, follow

these steps:

 1. Make sure the previous Godot project is loaded.

 2. Double-click bullet.tscn in the FileSystem dock to

make it appear in the Scene dock.

 3. Click bullet (the parent node of the bullet.tscn

scene) to select it.

Chapter 14 adding projeCtiles to a player

315

 4. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 5. Click the Search text field, type

VisibleOnScreenNotifier2D, and click

Create. (Be careful since there is also a

VisibleOnScreenEnabler2D node that

looks nearly the same.) Godot makes the

VisibleOnScreenNotifier2D node the child node of

the Bullet parent node.

 6. Click the Node tab in the Inspector dock and then

click Signals.

 7. Double-click screen_exited() as shown in

Figure 14-15. Godot displays a Connect a Signal to a

Method dialog box.

Figure 14-15. The screen_exited() function can detect when a scene
exits the game window

Chapter 14 adding projeCtiles to a player

316

 8. Make sure Bullet is selected and click Connect.

Godot creates an _on_visible_on_screen_

notifier_2d_screen_exited() function in the bullet.

gd file.

 9. Edit the bullet.gd file as follows:

extends Area2D

@export var speed = 700

func _process(delta):

 position += transform.x * speed * delta

func _on_visible_on_screen_notifier_2d_screen_exited():

 queue_free()

 10. Click the Run icon.

 11. Click the Remote tab in the Scene dock.

 12. Press the space bar to fire a projectile. Notice that

the projectile appears briefly in the Scene dock

until it exits the game window. Then it’s removed

from the Scene dock to show it’s no longer taking up

memory or processing resources.

 13. Click the close icon in the (DEBUG) window.

 Summary
Creating a player involves several nodes: a CharacterBody2D parent node,

a Sprite2D node for defining an image to display, and a CollisionShape2D

to define the collision boundaries of the player. To fire projectiles, the

Sprite2D node also needs a child node defined by the Marker2D node.

This Marker2D node defines where a projectile appears and the direction

it travels.

Chapter 14 adding projeCtiles to a player

317

You must define a projectile in a separate scene and then link it into

the scene that defines the player using GDScript code. To do this, you

need to use the @export keyword to define a variable that can hold a

PackedScene data type like this:

@export var bullet_scene : PackedScene

The @export keyword displays the variable name in the Inspector

dock. Through the Inspector dock, you must load the .tscn file that

represents the projectile you want to display.

Once you’ve defined a variable that represents a projectile scene, you

need to detect when the user presses a key to trigger an action to create

and fire a projectile. Creating and firing a projectile involves instantiating

that scene, adding it as a child of the parent node, and placing it at the

location of the Marker2D node.

The GDScript code of the projectile then makes it move on its own in

the direction it’s aimed at. Adding a projectile to a game involves building

separate scenes for the projectile and player. Once the player and projectile

scenes are created, you are now ready to build your 2D shooter game.

Chapter 14 adding projeCtiles to a player

319

CHAPTER 15

Hitting Enemies
with Projectiles
Once you have a player you can control and a way to fire projectiles, the

next step involves hitting enemies with a projectile. This involves creating

an enemy, detecting when a collision occurs between a projectile and an

enemy, and then removing both the projectile and the enemy afterward.

By removing the enemy, the enemy is eliminated in the game.

First, you must create an enemy as a separate scene, which consists of

multiple nodes. One node defines the collision boundaries of the enemy,

while a second node defines the image used to represent the enemy.

Second, you must write GDScript code to detect when the projectile

hits an enemy and what to do when it detects a collision between a

projectile and an enemy. Typically, the game needs to remove the

projectile from the screen after a collision and then determine how much

damage the projectile caused on the enemy. In the simplest case, the

projectile removes the enemy after one hit, but in some games, you might

want to keep track of how many times an enemy gets hit before the game

finally removes it from the screen.

© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_15

https://doi.org/10.1007/979-8-8688-0190-7_15

320

 Creating an Enemy Scene
Before you can shoot a projectile at an enemy, you need to create an

enemy as a separate scene. That way you can add that enemy scene within

another scene later. An enemy scene can consist of the following nodes as

shown in Figure 15-1:

• CharacterBody2D (parent)

• Sprite2D (child) – Defines the visual appearance of

the enemy

• CollisionObject2D (child) – Defines the physical

boundaries of the enemy to detect when a

collision occurs

Figure 15-1. The scene structure of a player

To see how to create an enemy, follow these steps:

 1. Make sure you have opened the previous Godot

project where you could move and rotate a player

while also shooting a projectile.

 2. Choose Scene ➤ New Scene. Godot creates a

new scene.

Chapter 15 hitting enemies with projeCtiles

321

 3. Click 2D at the top of the Godot window to view

your newly created scene.

 4. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 5. Click the Search text field, type CharacterBody2D,

and click Create. Godot makes the CharacterBody2D

node the parent node of the newly created scene.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and click

Create. Godot makes the Sprite2D node the child

node of the CharacterBody2D parent node.

 8. Click CharacterBody2D in the Scene dock and click

the + (Attach Child Node) icon. A Create New Node

dialog box appears.

 9. Click the Search text field, type CollisionShape2D,

and click Create. Godot makes the

CollisionShape2D node the child node of the

CharacterBody2D node (see Figure 15-1).

 Changing the Name of a Node
When we created the projectile scene, the parent node was Area2D. We

changed this name to “Bullet” to make it more descriptive of what that

scene actually represents. Likewise, our current enemy scene displays a

CharacterBody2D node as its parent node, so we’ll need to rename this

node to something more descriptive such as “Enemy.”

Chapter 15 hitting enemies with projeCtiles

322

To see how to rename a node, follow these steps:

 1. Make sure you have created a Godot project where a

scene consists of a CharacterBody2D node with two

child nodes: Sprite2D and CollisionShape2D (see

Figure 15-1).

 2. Double-click CharacterBody2D in the Scene dock.

Godot highlights the entire node name.

 3. Edit the CharacterBody2D name to Enemy as

shown in Figure 15-2.

Figure 15-2. Changing the name of CharacterBody2D to Player

 4. Press Enter.

 5. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears. Since you changed the

root node to Enemy, Godot assumes you want to

save your scene using that root node name such as

Enemy.tscn.

 6. Click Save. Godot saves your scene using the .tscn

file extension in the FileSystem dock as shown in

Figure 15-3.

Chapter 15 hitting enemies with projeCtiles

323

Figure 15-3. A saved scene’s file name appears in the
FileSystem dock

 Adding an Enemy Image
and Collision Shape
The Sprite2D node contains a Texture property where you can add an

image that represents the player in a game. We’ve used the same icon.

svg image to represent both the player and the projectile by making the

projectile smaller. Now we’re going to use the same icon.svg image to

represent an enemy except we’ll make it appear visually different and

smaller than the player.

Chapter 15 hitting enemies with projeCtiles

324

To see how to create and scale an image for an enemy, follow

these steps:

 1. Double-click the enemy.tscn in the FileSystem and

click 2D near the top of the Godot window to select

and display the enemy.tscn scene.

 2. Click Sprite2D in the Scene dock to select it.

 3. Drag and drop the icon.svg image into the Texture

property of Sprite2D.

 4. Click the disclosure triangle that appears to the left

of Transform, under Node2D, in the Inspector dock.

A list of different transform options appears.

 5. Click the X field underneath the Scale category and

type 0.75. Godot changes both the X and Y fields to

0.75. This shrinks the enemy image slightly.

 6. Click the disclosure triangle that appears to

the left of Visibility, under CanvasItem, in the

Inspector dock.

 7. Click the white rectangle that appears to the right

of Modulate as shown in Figure 15-4. A color dialog

box appears.

Chapter 15 hitting enemies with projeCtiles

325

Figure 15-4. The Inspector dock for the Enemy.tscn scene

Chapter 15 hitting enemies with projeCtiles

326

 8. Click a color. Then click away from the color dialog

box to make it go away. At this point, you’ve added

a color to the enemy and scaled it to make it slightly

smaller.

 9. Click CollisionShape2D in the Scene dock to

select it.

 10. Click the <empty> field that appears in the Shape

property. A list of options appears in a pull-

down menu.

 11. Click New RectangleShape2D. Godot displays a

rectangular box with orange handles around the

sides and corners.

 12. Drag the orange handles until the collision

boundary rectangle covers the icon.svg image.

 13. Press Ctrl/Command+S to save your scene.

 Creating a Main Scene
When building a game in Godot, you have to create scenes. In our previous

project, we created a scene to represent a player we could control (player.

tscn), and then we created a second scene to represent a projectile (bullet.

tscn) we could shoot from the player.

Now we’ve created an enemy scene (enemy.tscn), so we need to

display all of these separate scenes within a main scene. That means we

need to create a main scene and also make sure this main scene appears

first when the project runs.

Chapter 15 hitting enemies with projeCtiles

327

To create a main scene, follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Choose Scene ➤ New Scene.

 3. Click 2D Scene in the Scene dock. Godot creates a

Node2D parent node in the Scene dock.

 4. Double-click Node2D and change the name of the

node to MainScene. Then press Enter.

 5. Press Ctrl/Command+S to save the scene. A Save

Scene As window appears.

 6. Click Save. This saves the scene using the name

of the parent node, which is MainScene, so Godot

saves this scene as main_scene.tscn. Now we need

to fill it with other scenes.

 7. Drag the player.tscn scene from the FileSystem dock

into the viewport of the main_scene.tscn.

 8. Drag the enemy.tscn scene three times from the

FileSystem dock into the viewport of the main_

scene.tscn. This should display the player.tscn and

three enemy.tscn scenes in the viewport as shown in

Figure 15-5.

Chapter 15 hitting enemies with projeCtiles

328

Figure 15-5. Adding the player.tscn and enemy.tscn scenes into the
main_scene.tscn

Once we’ve created a main scene to represent the game’s playing

field and filled it with both the player and enemy scenes, the last step is to

define this main scene as the scene to appear when the project runs.

To define the scene to run, follow these steps:

 1. Choose Project ➤ Project Settings. A Project Settings

window appears.

 2. Click the General tab and then click Run under

the Application category. The Main Scene option

appears as shown in Figure 15-6.

Chapter 15 hitting enemies with projeCtiles

329

Figure 15-6. Defining the Main Scene for a project

 3. Click the folder icon that appears on the far right of

Main Scene. An Open a File dialog box appears.

 4. Click main_scene.tscn and click Open.

 5. Click Close to make the Project Settings window

go away.

 6. Click the Run icon. Godot displays the main_scene.

tscn file that contains the player.tscn and the three

enemy.tscn scenes in a window.

Chapter 15 hitting enemies with projeCtiles

330

You should be able to use the arrow keys (left/right,

up/down) to move the player around and press the

comma and period keys to rotate the player. If you

press the space bar, you should also be able to shoot

a projectile from the player.

However, the projectile simply flies through each

enemy, so the next step is to write GDScript code to

make the projectile detect a collision with an enemy

and make both the projectile and enemy disappear

when such a collision occurs.

 7. Click the close icon in the (DEBUG) window.

 Detecting Collisions
To detect collisions, both the projectile and enemy scenes have a

CollisionShape2D node that defines the boundaries of each object. Once

we’ve defined a CollisionShape2D node on every object that can collide

with the projectile, the next step is to take action when a projectile does

collide with an enemy.

Since our game will display multiple enemies, we need to detect when

a projectile hits any of those enemies. The simplest way to do this is to first

assign the enemy.tscn scene to a specific group name. Then we can use

GDScript code to detect whenever the projectile collides with any object

within a specific group.

To define the enemy.tscn scene in a group, follow these steps:

 1. Double-click the enemy.tscn scene in the

FileSystem dock.

 2. Click 2D near the top of the Godot window to

display the contents of the enemy.tscn scene.

Chapter 15 hitting enemies with projeCtiles

331

 3. Click the Enemy parent node in the Scene dock to

select it.

 4. Click the Node tab and then click the Groups tab.

 5. Click the empty text field and type Enemy. Then

click Add. This assigns the group name “Enemy” to

the enemy.tscn scene as shown in Figure 15-7.

Figure 15-7. Defining a group name for a scene

By assigning the enemy.tscn scene to a group, we can now use

GDScript to detect whenever the projectile collides with this “enemy”

group name.

To see how to write GDScript code to detect collisions with an enemy.

tscn scene, follow these steps:

 1. Double-click the bullet.tscn scene in the

FileSystem dock.

 2. Click 2D near the top of the Godot window to

display the contents of the bullet.tscn scene.

 3. Click the Bullet parent node in the Scene dock.

 4. Click the Node tab in the Inspector dock and then

click Signals as shown in Figure 15-8.

Chapter 15 hitting enemies with projeCtiles

332

Figure 15-8. The Node tab in the Inspector dock

 5. Double-click body_entered(body: Node2D).

A Connect a Signal to a Method window appears as

shown in Figure 15-9.

Chapter 15 hitting enemies with projeCtiles

333

Figure 15-9. The Connect a Signal to a Method window

 6. Click Connect. Godot creates an empty function in

the bullet.gd file like this:

func _on_body_entered(body):

 pass # Replace with function body.

Edit this function as follows:

func _on_body_entered(body):

 if body.is_in_group("Enemy"):

 body.visible = false

 hide()

Chapter 15 hitting enemies with projeCtiles

334

In the preceding GDScript code, the (body)

parameter represents the object that the projectile

hit. So the if statement checks if body.is_in_

group(“Enemy”). If so, that means the projectile hit

an enemy.

The first line within this if statement sets the visible

property of the body to false, which means the

enemy.tscn scene no longer is visible. Then the

second line, hide(), removes the projectile itself.

The entire bullet.gd file should look like this:

extends Area2D

@export var speed = 700

func _process(delta):

 position += transform.x * speed * delta

func _on_body_entered(body):

 if body.is_in_group("Enemy"):

 body.visible = false

 hide()

 7. Press Ctrl/Command+S to save the changes to the

bullet.gd file.

 8. Click the Run icon to run your project.

 9. Move and/or rotate the player and press the space

bar to aim at the enemy.tscn scenes. Notice that

each time the projectile hits an enemy, both the

enemy and the projectile disappear.

 10. Click the close icon of the (DEBUG) window to stop

the project.

Chapter 15 hitting enemies with projeCtiles

335

 Summary
The first step to detecting collisions is to add a CollisionShape2D node to

every scene that might collide with another scene. The CollisionShape2D

node lets you define the physical boundaries that trigger a collision around

an object.

Once you’ve added a Collisionshape2D boundary around an object,

the second step is to include one or more scenes to a group. A group is

simply an arbitrary name that you can define for one or more scenes. Once

you’ve defined a scene as part of a group, you can later detect if a collision

between two scenes includes a scene defined within a particular group.

The third step is to define an _on_body_entered(body) signal that

creates a function within the GDScript file of a scene to detect when it

collides with another scene.

Finally, within the _on_body_entered(body) function, you can define

what action to take when a collision occurs between a specific scene. The

most common action to take includes hiding both objects that collide.

Chapter 15 hitting enemies with projeCtiles

337© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_16

CHAPTER 16

Displaying a User
Interface
One of the most important features of any project is the user interface. The

user interface is the visual display of a game. Every user interface serves

two purposes, depending on the needs of the program at the time:

• Accept data from the user

• Display data to the user

To accept data, a user interface can let the user type in data such as text

or numbers or manipulate user interface controls that represent choices

such as sliders or lists of items. To display information back to the user, the

user interface can display text (either words or numbers) or other visual

images such as a health bar that lists a player’s current strength.

The main purpose of a user interface is to let users control a program

by giving it new data to accept and manipulate. After using this new

data to calculate a different result, the user interface then displays new

information to help the user determine what to do next.

https://doi.org/10.1007/979-8-8688-0190-7_16

338

 Inputting and Displaying Text
Godot offers two ways to input text:

• LineEdit

• TextEdit

The LineEdit control is designed for entering a single line of text, such

as a name. The TextEdit control works more like a text editor or word

processor, letting you type and edit multiple lines of text.

If you just want to display text without the ability to edit text, Godot

offers a Label control. By using a LineEdit or TextEdit to edit text and a

Label to display text, you can create a simple user interface to edit and view

text. You may want to use either LineEdit, TextEdit, or Label in Godot if you

would like to create something like a main menu or to display the player’s

name above a health bar.

To see how to store and display text using the LineEdit and Label

controls, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the text field and type control as shown in

Figure 16-1.

Chapter 16 Displaying a User interfaCe

339

Figure 16-1. Selecting a Control node

 4. Click Create. Godot creates a Control node in the

Scene dock and displays the boundaries of the

Control in the viewport as shown in Figure 16-2.

Figure 16-2. The boundaries of the Control node

Chapter 16 Displaying a User interfaCe

340

 5. Drag the handles of the Control node boundaries

to make it match the size of the project window as

shown in Figure 16-3.

Figure 16-3. Expanding the boundaries of the Control node

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type LineEdit, and click

Create. Godot makes the LineEdit node the child

node of the Control parent node.

 8. Drag and resize the LineEdit control so it appears

near the top middle of the window.

 9. Click Control in the Scene dock and click the +

(Attach Child Node) icon. A Create New Node dialog

box appears.

Chapter 16 Displaying a User interfaCe

341

 10. Click the Search text field, type Label, and click

Create. Drag and resize the Label near the bottom

middle of the window as shown in Figure 16-4.

Figure 16-4. The LineEdit and Label controls

 11. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears and uses the parent

node name for the scene name (control.tscn).

 12. Click Save.

 13. Click the Run icon. A dialog box appears, asking you

to choose a scene to display.

 14. Click Select Current. The (DEBUG) window appears.

Notice that the LineEdit control appears visible

as a rectangle but that the Label control appears

invisible (even though it’s there but empty).

Chapter 16 Displaying a User interfaCe

342

 15. Click the LineEdit control and type some text.

Notice that you can type and edit text in the LineEdit

control but nothing appears in the Label control.

 16. Click the close icon of the (DEBUG) window to

make it go away.

 Using Signals
Even though we can type and edit text in the LineEdit control, none of that

text appears in the Label control. Both the LineEdit and Label controls

store data in a text property, so we need to send the data stored in the

LineEdit’s text property into the Label’s text property.

One way to send data from the LineEdit to the Label is through a signal

where a signal detects when something happens within the LineEdit.

In this example, we’re going to use the text_changed signal that detects

whenever the text inside the LineEdit control changes. Each time the

LineEdit text property changes, it will send the contents of the LineEdit

control to the Label control.

A signal detects an event that occurs from a user interface control

(such as LineEdit) and creates a GDScript function to handle that event,

stored in a separate .gd file. That means before we can create a signal, we

must create at least one .gd file to store that Signal function.

To see how to use a signal to run each time the contents of the LineEdit

control changes, follow these steps:

 1. Make sure you have created a Godot project from

the previous section that displays a LineEdit and a

Label control on the user interface.

 2. Click Control in the Scene dock.

 3. Click the Attach Script icon. An Attach Node Script

dialog box appears as shown in Figure 16-5.

Chapter 16 Displaying a User interfaCe

343

Figure 16-5. The Attach Node Script dialog box

 4. Click Create. Godot creates a file called control.gd.

 5. Click LineEdit in the Scene dock to select it.

 6. Click the Node tab in the Inspector dock, and then

click Signals. Godot displays a list of signals as

shown in Figure 16-6.

Chapter 16 Displaying a User interfaCe

344

Figure 16-6. The list of signals available in the Node tab of the
LineEdit control

 7. Double-click text_changed(new_text: String). A

Connect a Signal to a Method dialog box appears as

shown in Figure 16-7.

Chapter 16 Displaying a User interfaCe

345

Figure 16-7. The Connect a Signal to a Method dialog box

 8. Click Connect. Godot creates the following function

inside the control.gd file:

func _on_line_edit_text_changed(new_text):

 pass # Replace with function body.

 9. Edit the function so that it looks like this:

func _on_line_edit_text_changed(new_text):

 $Label.text = new_text

Chapter 16 Displaying a User interfaCe

346

This code says that each time the contents of the

LineEdit control changes, send the changed text as

the new_text parameter. Then store this changed

text into the text property of the Label control. (Note

that if you change the name of the Label control, you

would use the changed name of the Label and not

use $Label.)

 10. Press Ctrl/Command+S to save your GDScript file.

 11. Click the Run icon. The user interface window

appears displaying the LineEdit control at the top

and the Label at the bottom.

 12. Click the LineEdit control and type text. Notice that

as you type, those changes automatically appear in

the Label control.

 13. Press the Backspace key. Notice that each time you

delete text, the changed contents of the LineEdit

control also get sent to the Label control.

 14. Click the close icon of the (DEBUG) window to

make it go away.

A signal works in three steps as shown in Figure 16-8:

• Detect an event within a node such as a user interface

control.

• Create a link to a function stored in a separate .gd file.

• Run GDScript code stored in that Signal function.

Chapter 16 Displaying a User interfaCe

347

Figure 16-8. The three steps for triggering a signal

 Working with TextEdit and Buttons
In the previous example, we created a LineEdit control that would

trigger a signal every time its contents changed. While Signals can work

automatically, you can also use GDScript code to transfer data into a Label

control. In addition, the LineEdit control only let us view and edit a single

line of text. The TextEdit control lets us view and edit multiple lines of text.

Signals can work automatically, but we want to change text manually.

To do that, we can use another user interface control known as a Button. A

Button simply represents a single command, so clicking this Button runs

one or more lines of GDScript code.

For this simple project, we’ll create a TextEdit control, add and edit

text, and then use a Button to transfer the contents of the TextEdit control

into the Label control.

Chapter 16 Displaying a User interfaCe

348

To see how to create and use both a TextEdit and Button control, follow

these steps:

 1. Make sure you have the Godot project you created

in the previous section that contains a LineEdit and

Label control.

 2. Click 2D near the top of the Godot window to view

the user interface that contains the LineEdit and

Label controls.

 3. Click Control in the Scene dock.

 4. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 5. Click the Search text field, type TextEdit, and click

Create. Godot makes the TextEdit node the child

node of the Control parent node.

 6. Drag and resize the TextEdit control so it appears

underneath the LineEdit control.

 7. Click Control in the Scene dock.

 8. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 9. Click the Search text field, type Button, and click

Create. Godot makes the Button node the child

node of the Control parent node.

 10. Drag and resize the Button control so it appears

above the Label control as shown in Figure 16-9.

Chapter 16 Displaying a User interfaCe

349

Figure 16-9. The appearance of the user interface controls

 11. Click Button in the Scene dock.

 12. Click the Inspector tab in the Inspector dock.

 13. Click the Text property and type Send Text as shown

in Figure 16-10.

Chapter 16 Displaying a User interfaCe

350

Figure 16-10. The Text property lets you display text on a Button

 14. Click the Button in the Scene dock to select it,

click the Node tab in the Inspector dock, and then

click Signals to view a list of Signals available for

the Button.

 15. Double-click pressed(). A Connect a Signal to a

Method dialog box appears.

 16. Make sure Control is selected and click Connect.

Godot creates an on_button_pressed() function

inside the control.gd file like this:

func _on_button_pressed():

 pass # Replace with function body.

 17. Edit the on_button_pressed() function as follows:

func _on_button_pressed():

 $Label.text = $TextEdit.text

Chapter 16 Displaying a User interfaCe

351

 18. Press Ctrl/Command+S to save your GDScript code

changes.

 19. Click the Run icon.

 20. Click the TextEdit control and type some text. Notice

that unlike the LineEdit control, changes do not

automatically appear in the Label control.

 21. Click the Send Text Button. Notice that the contents

of the TextEdit control now appear in the Label

control.

 22. Click the close icon in the (DEBUG) window to

make it go away.

Where the LineEdit control used a text_changed(new_text) Signal to

send the contents of the LineEdit control to the Label control, the TextEdit

control does not use any Signals. Instead, a Button uses a signal to detect

whenever the user clicks on it. This pressed() Signal then allows us to

transfer the contents of the TextEdit control to the Label control.

The main idea is that if you create a signal directly to a control, any

changes can occur automatically, while if you create a signal to a separate

control like a Button, changes won’t occur until the user triggers the signal

on another control like clicking on a Button.

 Using Option Buttons and Item Lists
A LineEdit or TextEdit control lets users type text into a program. However,

this means that the user can type anything into a LineEdit or TextEdit

control. If you want to give users an option of valid choices to select, you

can use either Option Buttons or Item Lists.

An Option Button displays a downward-pointing arrow as shown in

Figure 16-11.

Chapter 16 Displaying a User interfaCe

352

Figure 16-11. The appearance of an Option Button

Clicking an Option Button displays a list of options as shown in

Figure 16-12. No matter how many options an Option Button shows, its

initial appearance always remains the same size. For that reason, Option

Buttons are useful to display a large number of choices to the user without

taking up much space.

Figure 16-12. A list of options appears only if the user selects the
Option Button

One problem with the Option Button is that you can’t see the list of

available choices until you first select the Option Button. To get around

this problem, an Item List displays all choices at all times as shown in

Figure 16-13.

Chapter 16 Displaying a User interfaCe

353

Figure 16-13. An Item List displays all choices at once

This makes it easy to see all possible choices, but the size of the Item

List expands to display every possible choice. If an Item List contains too

many choices, it will take up too much space.

To see how to use an Option Button, follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Click Control in the Scene dock.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type OptionButton, and

click Create. Godot makes the OptionButton node

the child node of the Control parent node.

 5. Drag and resize the OptionButton control so it

appears near the left edge of the window.

 6. Click OptionButton in the Scene dock to select it.

The Inspector dock should display all the properties

available for the OptionButton.

Chapter 16 Displaying a User interfaCe

354

 7. Click the disclosure triangle that appears to the left

of Items. An Add Element button appears as shown

in Figure 16-14. Initially, the OptionButton is empty,

so you need to click the Add Element button for

each item you want to display in the OptionButton.

Figure 16-14. The Add Item in the OptionButton Inspector dock

 8. Click the Add Element. A list of additional properties

appears as shown in Figure 16-15. The most

important one is the Text property, which defines

each item that appears in the OptionButton.

Chapter 16 Displaying a User interfaCe

355

Figure 16-15. The list of properties for adding an item to an
OptionButton

 9. Click the Text property, type some text such

as Kitten, and then click the Add Element

button again.

 10. Click the Text property, type some text such

as Puppy, and then click the Add Element

button again.

Chapter 16 Displaying a User interfaCe

356

 11. Click the Text property, type some text such as

Chick, and then click the Add Element button again.

 12. Click the Text property and type some text such as

Tadpole.

 13. Click the Run icon.

 14. Click the downward-pointing arrow of the

OptionButton. The list of your choices appears.

 15. Click the close icon of the (DEBUG) window to

make it go away.

At this point, we’ve just added choices to appear in the OptionButton.

Now we need to detect which option the user selects so it can appear in the

Label control.

To make the OptionButton work, follow these steps:

 1. Click OptionButton in the Scene dock.

 2. Click the Node tab in the Inspector dock and click

Signals.

 3. Double-click item_selected(index: int). A Connect

a Signal to a Method dialog box appears.

 4. Click Connect. Godot creates an on_option_button_

selected(index) function in the control.gd file.

 5. Edit the on_option_button_selected(index) function

as follows:

func _on_option_button_item_selected(index):

 $Label.text = $OptionButton.get_item_text(index)

Chapter 16 Displaying a User interfaCe

357

An OptionButton stores a list of choices where the

topmost choice is represented as index position 0,

the second topmost choice is at index position 1,

and so on. So whatever choice the user selects in

the OptionButton, the index value of that item gets

stored in the index parameter.

Then the code uses this index parameter to retrieve

the actual text of each choice using .get_item_

text(index). This retrieves the choice the user

selected and sends this text to the Label control’s

text property.

 6. Press Ctrl/Command+S to save your GDScript code.

 7. Click the Run icon. Godot displays the user interface

in a window.

 8. Click the OptionButton. A list of choices appears.

 9. Click any option. Notice that whatever option you

choose, that option appears in the Label control.

 10. Click the close icon of the (DEBUG) window to

make it go away.

The main advantage of an OptionButton is that it takes up a minimal

amount of space no matter how many choices it may display. The

drawback is that the user must go through a two-step process to use an

OptionButton. First, the user must click the OptionButton to display a list

of choices. Second, the user must then select one of the available choices.

To provide a list of choices that the user can select in one step, you

can display a list of choices in an ItemList instead. The drawback is that

the more choices stored in the ItemList, the more space it takes up on

the screen.

Chapter 16 Displaying a User interfaCe

358

To see how to use an ItemList, follow these steps:

 1. Make sure the previous Godot project is open,

which contains the OptionButton, LineEdit, and

TextEdit controls.

 2. Click Control in the Scene dock.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type ItemList, and click

Create. Godot makes the ItemList node the child

node of the Control parent node.

 5. Drag and resize the ItemList control so it appears

near the right edge of the window.

 6. Click ItemList in the Scene dock to select it. The

Inspector dock should display all the properties

available for the ItemList.

 7. Click the disclosure triangle that appears to the left

of Items. An Add Element button appears. Initially,

the ItemList is empty, so you need to click the Add

Element button for each item you want to display in

the ItemList.

 8. Click the Add Element button. The Inspector

dock displays multiple properties including a Text

property.

 9. Click the Text property and type an option

such as Cat.

 10. Click the Add Element button to create

another choice.

Chapter 16 Displaying a User interfaCe

359

 11. Click the Text property and type an option

such as Dog.

 12. Click the Add Element button to create

another choice.

 13. Click the Text property and type an option such

as Parrot.

 14. Click the Add Element button to create

another choice.

 15. Click the Text property and type an option such

as Frog.

 16. Press Ctrl/Command+S to save your scene.

 17. Click the Run icon. The user interface window

appears. Notice that the ItemList displays the four

items you added in a list.

At this point, we’ve just added choices to appear in the ItemList. Now

we need to detect which option the user selects so it can appear in the

Label control.

To make the ItemList work, follow these steps:

 1. Click ItemList in the Scene dock.

 2. Click the Node tab in the Inspector dock and click

Signals.

 3. Double-click item_clicked(index: int, at_position:
Vector2, mouse_button_index: int). A Connect a

Signal to a Method dialog box appears.

 4. Click Connect. Godot creates an on_item_list_item_

clicked(index, at_position, mouse_button_index)

function in the control.gd file.

Chapter 16 Displaying a User interfaCe

360

 5. Edit the on_item_list_item_clicked(index, at_

position, mouse_button_index) function as follows:

func _on_item_list_item_clicked(index, at_position,

mouse_button_index):

 $Label.text = $ItemList.get_item_text(index)

An ItemList stores a list of choices where the

topmost choice is represented as index position 0,

the second topmost choice is at index position 1,

and so on. So whatever choice the user selects in the

ItemList, the index value of that item gets stored in

the index parameter.

Then the code uses this index parameter to retrieve

the actual text of each choice using .get_item_

text(index). This retrieves the choice the user

selected and sends this text to the Label control’s

text property.

 6. Press Ctrl/Command+S to save your GDScript code.

 7. Click the Run icon. Godot displays the user interface

in a window.

 8. Click any option displayed in the ItemList as shown

in Figure 16-16. Notice that whatever option you

choose, that option appears in the Label control.

Chapter 16 Displaying a User interfaCe

361

Figure 16-16. The ItemList displays all choices at once

 9. Click the close icon of the (DEBUG) window to

make it go away.

 Working with CheckButtons
OptionButtons let you display a list of valid choices, but you can only select

one option at a time. If you want to display exactly two options, you can

use a CheckButton instead.

A CheckButton has two states: toggled or not toggled as shown in

Figure 16-17.

Figure 16-17. The two states of a CheckButton

Chapter 16 Displaying a User interfaCe

362

When a CheckButton appears toggled, its button_pressed property

is set to true. When a CheckButton is not toggled, its button_pressed

property is false. By checking a CheckButton’s button_pressed property,

we can determine whether the CheckButton is toggled or not.

To see how CheckButtons work, follow these steps:

 1. Make sure the previous Godot project is open, which

contains the OptionButton, LineEdit, ItemList, and

TextEdit controls.

 2. Click Control in the Scene dock.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type CheckButton, and

click Create. Godot makes the CheckButton node

the child node of the Control parent node.

 5. Drag and resize the CheckButton control so it

appears near the bottom right corner of the window.

 6. Click the CheckButton in the Scene dock to display

its properties in the Inspector dock.

 7. Click the Text property in the Inspector dock and

type First Check Button.

 8. Click Control in the Scene dock.

 9. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 10. Click the Search text field, type CheckButton, and

click Create. Godot makes the CheckButton2 node

the child node of the Control parent node.

Chapter 16 Displaying a User interfaCe

363

 11. Drag and resize the CheckButton2 control so it

appears near the bottom right corner of the window.

 12. Click the CheckButton2 in the Scene dock to display

its properties in the Inspector dock.

 13. Click the Text property in the Inspector dock and

type Second Check Button.

At this point, we’ve created two CheckButtons. If you run this project,

you’ll be able to click each CheckButton to toggle it from an off to an on

state. However, we still need to write GDScript code to make both of these

CheckButtons actually do something.

To see how to write GDScript code to make the CheckButtons work,

follow these steps:

 1. Make sure you have the Godot project open that

contains the two CheckButtons.

 2. Click CheckButton in the Scene dock.

 3. Click the Node tab and then Signals in the

Inspector dock.

 4. Double-click toggled(toggled_on: bool). A Connect

a Signal to a Method dialog box appears.

 5. Click Connect. Godot creates an on_check_button_

toggled(toggled_on) function.

 6. Edit this function as follows:

func _on_check_button_toggled(toggled_on):

 if toggled_on:

 $Label.text = "First check button selected"

 else:

 $Label.text = ""

Chapter 16 Displaying a User interfaCe

364

 7. Click CheckButton2 in the Scene dock.

 8. Click the Node tab and then Signals in the

Inspector dock.

 9. Double-click toggled(toggled_on: bool). A Connect

a Signal to a Method dialog box appears.

 10. Click Connect. Godot creates an on_check_

button_2_toggled(toggled_on) function.

 11. Edit this function as follows:

func _on_check_button_2_toggled(toggled_on):

 if toggled_on:

 $Label.text = "Second check button

selected"

 else:

 $Label.text = ""

 12. Press Ctrl/Command+S to save the changes to the

control.gd file.

 13. Click the Run icon to run your project.

 14. Click the first check button. Notice that “First check

button selected” appears in the Label control.

 15. Click the first check button again to toggle it off.

Notice that the Label control now appears empty.

 16. Click the second check button. Notice that “Second

check button selected” appears in the Label control.

 17. Click the second check button again to toggle it off.

Notice that the Label control now appears empty.

 18. Click the close icon of the (DEBUG) window to stop

the project.

Chapter 16 Displaying a User interfaCe

365

 Working with Sliders
If a game needs the user to input numeric data, it could display a LineEdit

control for the user to type in a number. Unfortunately, the LineEdit

control would store any number as text, which is a String data type. Even

worse, users could type in “twenty” instead of 20 or type in a completely

outrageous number such as -937 for someone’s strength.

To restrict users to a valid range of numbers, use an HSlider or VSlider,

which lets you define the following properties:

• The minimum value the slider can represent

(Min Value)

• The maximum value the slider can represent

(Max Value)

• The current value that the slider represents (Value)

The HSlider creates a horizontal slider, while the VSlider creates a

vertical slider. Other than the orientation, both sliders work identically.

To see how sliders work, follow these steps:

 1. Make sure the previous Godot project is open, which

contains the OptionButton, LineEdit, CheckButtons,

ItemList, and TextEdit controls.

 2. Click Control in the Scene dock.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type HSlider, and click

Create. Godot makes the HSlider node the child

node of the Control parent node.

 5. Drag and resize the HSlider control so it appears

near the bottom left corner of the window.

Chapter 16 Displaying a User interfaCe

366

 6. Click the HSlider in the Scene dock to display its

properties in the Inspector dock.

 7. Click the Node tab and Signals in the

Inspector dock.

 8. Double-click value_changed(value: float). A

Connect a Signal to a Method dialog box appears.

 9. Click Connect. Godot creates an on_h_slider_value_

changed(value) function in the control.gd file.

 10. Edit the on_h_slider_value_changed(value) function

as follows:

func _on_h_slider_value_changed(value):

 $Label.text = "The value of the slider = " +

str($HSlider.value)

The value parameter represents the current value

that the slider represents, defined by the Min Value

and Max Value properties. Since the value property

of a slider represents a float data type (decimal

number), we need to convert this float data type

into a string by using the str() command. Then this

converted string gets stored in the text property of

the Label control.

 11. Press Ctrl/Command+S to save the changes to the

control.gd file.

 12. Click the Run icon to run your project.

Chapter 16 Displaying a User interfaCe

367

 13. Drag the slider left and right. Notice that as you drag

the slider, the text in the Label control displays the

current value of the slider.

 14. Click the close icon of the (DEBUG) window to stop

the project.

 Summary
A user interface can accept data from the user and display information to

the user. The LineEdit and TextEdit controls can accept text data where the

LineEdit control is meant for short amounts of text and the TextEdit control

is meant for multiple lines of text.

Since users can type anything into a LineEdit or TextEdit control,

Godot offers two ways to offer choices for the user to select. An

OptionButton displays a pull-down menu of items the user can select,

while an ItemList displays all options in a list. The OptionButton takes up

the same amount of space no matter how many options it may contain,

while the ItemList expands in size the more options it displays.

A CheckButton can be toggled or not toggled. By using multiple

CheckButtons, users can select one or more options.

For inputting numeric data, Godot offers a slider. An HSlider appears

horizontally, while a VSlider appears vertically. Both types of sliders let

you define a minimum value and a maximum value. By dragging the

slider, users can define a numeric value that falls within the range of the

minimum and maximum values.

User interface controls rely on GDScript code to make them actually

work. By creating Signals for each user interface control, you can create

functions that respond to specific events that occur.

Chapter 16 Displaying a User interfaCe

369© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_17

CHAPTER 17

Adding Physics
Physics in a video game lets objects collide, bounce, slide, or ricochet off

each other. In addition, physics lets objects work with gravity that forces

objects to fall down or even fall upward if you reverse gravity as a negative

number. By learning how to add physics to a game, you can create barriers,

platforms, walls, and collisions between different objects.

Physics can make any game more interactive and realistic. Gravity

creates downward (or upward) movement automatically, so there’s no

code needed to define this behavior. Collisions allow obstacles that force

players to avoid and move around to achieve their goals. Physics simply

makes objects on a screen behave as if they were physical objects in the

real world.

 Playing with Gravity
In Godot, each node serves a specific purpose. A Sprite2D node lets

you display an image, while a CollisionBody2D node lets you define the

physical boundaries of an object. To create an object that’s affected by

gravity, you need to use the RigidBody2D node.

One of the RigidBody2D node’s properties is the Gravity Scale, which

lets you define the strength of gravity as an integer as shown in Figure 17-1.

Positive values represent gravity pulling an object down. Negative values

https://doi.org/10.1007/979-8-8688-0190-7_17

370

represent gravity pushing an object up. The Gravity Scale can range

from -128 to 128 where you can either choose a value by dragging the slider

left or right or by typing in a value.

Figure 17-1. The Gravity Scale in the Inspector dock of a
RigidBody2D node

To see how gravity can affect an object, follow these steps:

 1. Create a new Godot project.

 2. Click 2D Scene in the Scene dock. Godot creates a

Node2D in the Scene dock.

Chapter 17 adding physiCs

371

 3. Click the Add Child Node (+) icon. A Create New

Node window appears.

 4. Click the Search text field, type RigidBody2D, and

then click Create. Godot creates a RigidBody2D

node as a child of Node2D.

 5. Click RigidBody2D in the Scene dock and click

the Add Child Node (+) icon. A Create New Node

window appears again.

 6. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of RigidBody2D.

 7. Drag the icon.svg image from the FileSystem dock

into the Texture property in the Inspector dock.

 8. Drag the Sprite2D node (displaying the icon.svg

image) from the upper left corner of the Godot

window outline to the middle of the window outline.

 9. Click Rigidbody2D in the Scene dock to select it.

 10. Click the Add Child Node (+) icon. A Create New

Node window appears.

 11. Click the Search text field, type CollisionBody2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of RigidBody2D.

 12. Click CollisionShape2D in the Scene dock.

 13. Click Shape in the Inspector dock. A pull-down

menu appears.

Chapter 17 adding physiCs

372

 14. Choose New RectangleShape2D. Godot displays

an orange rectangle to define the boundaries of the

collision shape.

 15. Move and resize the collision body shape to cover

the Sprite2D node that displays the icon.svg image.

The Scene dock should look like Figure 17-2.

Figure 17-2. The structure of nodes in the Scene dock

 16. Click RigidBody2D in the Scene dock to select

it. Notice that the Gravity Scale property in the

Inspector dock displays a default value of 1.

 17. Click the Run icon at the top of the window. The

(DEBUG) window appears. Notice that the icon.svg

image drops down because of gravity.

 18. Click the close icon of the (DEBUG) window to

make it go away.

 19. Click RigidBody2D in the Scene dock to select it.

Change the Gravity Scale property in the Inspector

dock to -1.

Chapter 17 adding physiCs

373

 20. Click the Run icon at the top of the window. The

(DEBUG) window appears. Notice that the icon.svg

image now rises up because of negative gravity.

 21. Click the close icon of the (DEBUG) window to

make it go away.

 22. Click RigidBody2D in the Scene dock to select it.

Change the Gravity Scale property in the Inspector

dock to 0.

 23. Click the Run icon at the top of the window. The

(DEBUG) window appears. Notice that the icon.

svg image now remains stationary because a

Gravity Scale property of 0 means there is no gravity

affecting the object.

 24. Click the close icon of the (DEBUG) window to

make it go away.

 25. Change the Gravity Scale property back to 1 again.

When the Gravity Scale is a positive number, objects fall downward like

in the real world. When the Gravity Scale is a negative number, objects fall

upward. This can be useful for creating floating objects such as balloons,

clouds, or birds. Objects falling downward can apply to a ball or items

needed for a game inventory.

Experiment with different values for the Gravity Scale, both positive

and negative numbers, so you can see how it affects the way an object falls

or rises. The greater the Gravity Scale value, the faster the object will move

downward (for large positive numbers) or upward (for small negative

numbers).

You can also define the strength of gravity and its direction as well. By

default, the strength of gravity is defined as 980 that pulls in the positive

y axis direction (down). However, you can change both the strength and

direction of gravity if you wish.

Chapter 17 adding physiCs

374

To change gravity’s settings, follow these steps:

 1. Make sure the previous Godot project is loaded,

which displays an icon.svg image that falls

downward under the influence of gravity.

 2. Choose Project ➤ Project Settings. A Project Settings

window appears.

 3. Click 2D under the Physics category. The Project

Settings window displays a Default Gravity and

Default Gravity Vector properties as shown in

Figure 17-3.

Figure 17-3. Default gravity settings

Chapter 17 adding physiCs

375

 4. Change the Default Gravity value to 100, which will

create weaker gravity.

 5. Change the x value of the Default Gravity Vector to

1. This will make gravity affect objects horizontally.

Because the value is a positive number, gravity will

pull objects to the right.

 6. Change the y value of the Default Gravity Vector to 0.

 7. Click Close.

 8. Click the Run icon at the top of the window. The

(DEBUG) window appears. Notice that the icon.

svg image now moves slowly to the right because

the Default Gravity value is 100 (much less than

the default value of 980) and because the Default

Gravity Vector x value is 1 while the y value is 0.

 9. Click the close icon of the (DEBUG) window to

make it go away.

 10. Choose Project ➤ Project Settings, change the

Default Gravity property back to 980 again, and

change the x value of the Default Gravity Vector to 0

and the y value of the Default Gravity Vector to 1.

By changing the default gravity settings, you can create unique ways

individual objects interact within your game. Changing gravity settings

can be perfect for settings in outer space where gravity might be weaker

or different, but in most cases, you’ll probably never need to modify the

default gravity settings.

Chapter 17 adding physiCs

376

 Adding Damping
When the Gravity Scale value is extremely high or low for an object, that

object will move much faster up or down. To alter the speed that an object

moves under the effect of gravity, you can change its Damp property. By

default, the Damp property is set to 0, which means there’s no effect on an

object moving under gravity.

The Damp property can vary from -1 to 100. When set to -1, any object

moves rapidly up or down under the influence of gravity. When the Damp

property is a nonzero positive number, the greater the value, the slower an

object will move.

To see how to damp the way an object moves under the influence of

gravity, follow these steps:

 1. Make sure you have created a Godot project from

the previous section that displays the icon.svg image

that falls under gravity.

 2. Click RigidBody2D in the Scene dock to select it.

 3. Make sure the Gravity Scale property value is 1 in

the Inspector dock.

 4. Drag the horizontal slider in the Damp property

under the Linear category all the way to the left so

that it displays a value of -1 as shown in Figure 17-4.

Chapter 17 adding physiCs

377

Figure 17-4. The Damp property in the Inspector dock

 5. Click the Run icon. The (DEBUG) window appears.

The icon.svg image should drop rapidly downward.

 6. Click the close icon of the (DEBUG) window to

make it go away.

Chapter 17 adding physiCs

378

 7. Drag the horizontal slider in the Damp property

to the right so a large positive number (such as 30)

appears as the Damp property value.

 8. Click the Run icon. The (DEBUG) window

appears. Notice that the icon.svg image now drops

much slower.

 9. Click the close icon of the (DEBUG) window to

make it go away.

 Working with Static and Rigid Bodies
Gravity affects RigidBody2D nodes where we can change the Gravity Scale

value from -128 to 128. If you set the Gravity Scale of a RigidBody2D node

to 0, then that object will simply float on the screen. However, if bumped

by another RigidBody2D node, it will move. With its Gravity Scale value set

to 0, such a node will float around the screen.

Setting a RigidBody2D node to a Gravity Scale value of 0 makes it

initially motionless until hit. If you want an object to stay motionless

even after being hit, you can use a StaticBody2D node instead. The

StaticBody2D node can be used to create barriers and obstacles within a

game that do not move but allow other objects to bounce off them.

To see how to create and use a RigidBody2D without gravity, follow

these steps:

 1. Make sure you have the Godot project you created

in the previous section that contains the icon.svg

that falls down under the influence of gravity.

 2. Click Node2D at the top of the Scene dock to

select it.

Chapter 17 adding physiCs

379

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type RigidBody2D, and

click Create. Godot makes the RigidBody2D node

the child node of the Node2D parent node.

 5. Click this newly added RigidBody2D in the

Scene dock.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and click

Create. Godot makes the Sprite2D node the child

node of the newly added RigidBody2D node.

 8. Drag the icon.svg image into the Texture property of

the Sprite2D node in the Inspector dock.

 9. Click the Modulate property under the Visibility

category as shown in Figure 17-5. A Color wheel

appears.

Chapter 17 adding physiCs

380

Figure 17-5. The Modulate property in the Inspector dock

 10. Click a color to make the icon.svg image

look unique.

 11. Resize the Sprite2D node so it’s smaller and move it

underneath the other RigidBody2D object.

 12. Click the newly added RigidBody2D in the Scene

dock to select it again.

 13. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

Chapter 17 adding physiCs

381

 14. Click the Search text field, type CollisionShape2D,

and click Create. Godot makes the

CollisionShape2D node the child node of the newly

added RigidBody2D node.

 15. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 16. Click New RectangleShape2D. Godot displays the

orange outline of the rectangle shape.

 17. Drag and resize this orange rectangle shape so it

appears around the second icon.svg object that

already appears as shown in Figure 17-6.

Figure 17-6. The second RigidBody2D object should appear
underneath the first RigidBody2D object

 18. Click the recently added RigidBody2D in the

Scene dock to select it. This should select the

RigidBody2D node that appears underneath the

other RigidBody2D node.

 19. Change the Gravity Scale property to 0. By making

this Gravity Scale value 0, the RigidBody2D node

won’t move until hit by another RigidBody2D node.

Chapter 17 adding physiCs

382

 20. Click the Run icon. Notice that the top icon.svg

image drops because its Gravity Scale property is 1,

but the second icon.svg image remains stationary

because its Gravity Scale property is 0. The moment

the two icon.svg images collide, the top one keeps

falling, while the second one ricochets away

depending on the angle that they collide.

 21. Click the close icon in the (DEBUG) window to

make it go away.

Experiment with moving the second icon.svg image in different

positions underneath the top icon.svg image to change the way they

collide and how the second icon.svg image bounces away after being hit.

A RigidBody2D node can be affected by gravity, but if its Gravity Scale

property is set to 0, then it will appear stationary until hit. After a collision,

it will then move around. If you want an object to remain stationary after

being hit, then you need to use a StaticBody2D node instead.

To see how to create and use a StaticBody2D node, follow these steps:

 1. Make sure you have the Godot project you created

in the previous section that contains the icon.svg

that falls down under the influence of gravity and

hits another icon.svg image.

 2. Click Node2D at the top of the Scene dock to

select it.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type StaticBody2D, and

click Create. Godot makes the StaticBody2D node

the child node of the Node2D parent node.

Chapter 17 adding physiCs

383

 5. Click StaticBody2D at the top of the Scene dock to

select it.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and click

Create. Godot makes the Sprite2D node the child

node of the StaticBody2D node.

 8. Drag the icon.svg image into the Texture property in

the Inspector dock.

 9. Resize the Sprite2D node and move it underneath

the two previous icon.svg images.

 10. Click the Modulate property in the Inspector dock. A

color dialog box appears.

 11. Click a color to change the appearance of the icon.

svg image.

 12. Click StaticBody2D in the Scene dock to select it.

 13. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 14. Click the Search text field, type CollisionShape2D,

and click Create. Godot makes the

CollisionShape2D node the child node of the

StaticBody2D node.

 15. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 16. Click New RectangleShape2D. Godot displays the

orange outline of the rectangle shape.

Chapter 17 adding physiCs

384

 17. Drag and resize this orange rectangle shape so it

appears around the bottom icon.svg object so that

it looks like Figure 17-7. Make sure all three objects

appear in a nearly vertical line so that way when the

top object falls, it will hit the other two objects.

Figure 17-7. Two RigidBody2D nodes appear above a
StaticBody2D node

 18. Click the Run icon. Notice that the bottom icon.svg

image in the StaticBody2D node remains stationary

even after other objects collide with it.

 19. Click the close icon in the (DEBUG) window to

make it go away.

When a RigidBody2D node has a nonzero Gravity Scale value, it will

automatically move up or down. When a RigidBody2D node has a zero

Gravity Scale value, it will remain stationary until hit by another object.

Then it will bounce away. However, when a StaticBody2D node appears, it

always remains stationary no matter how many objects hit it.

Chapter 17 adding physiCs

385

 Working with Polygons
If you create a RigidBody2D node and set its Gravity Scale to 0, that object

won’t move. If you use a StaticBody2D node, that object also won’t move.

However, both the RigidBody2D and StaticBody2D node creates a single

object. If you need to create larger barriers such as walls, you’ll need to use

polygons instead.

Polygons let you draw lines to create an object. The Polygon2D node

lets you draw a polygon, and the CollisionPolygon2D node lets you draw

the physical boundaries so other nodes (such as the RigidBody2D) will

bounce off.

To see how to use polygons, follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Click Node2D (the parent node) in the Scene dock

to select it.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type StaticBody2D, and

click Create. Godot makes the StaticBody2D node

the child node of the Node2D parent node.

 5. Click this newly created StaticBody2D node to

select it.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

Chapter 17 adding physiCs

386

 7. Click the Search text field, type

CollisionPolygon2D, and click Create. Godot makes

the CollisionPolygon2D node the child node of the

StaticBody2D parent node.

 8. Click the Select icon on the far left (it looks like an

arrow) or press Q to select it.

 9. Click the Create Points icon that appears near

the top middle of the Godot screen as shown in

Figure 17-8.

Figure 17-8. The Create Points icon

 10. Click underneath the existing icon.svg images that

already appear. Each time you click, Godot draws

a point and connects it with a line. Draw multiple

lines and double-click the first point you created to

finish defining a polygon collision shape as shown

in Figure 17-9.

Chapter 17 adding physiCs

387

Figure 17-9. Creating a CollisionPolygon2D shape

 11. Click the Run icon. Notice that the icon.svg

images fall downward under the influence of

gravity and then bounce off the boundaries of the

CollisionPolygon2D node. However, we can’t see

these boundaries.

 12. Click the close icon of the (DEBUG) window to

make it go away.

The boundaries of a CollisionPolygon2D node are invisible but still

affect other nodes such as RigidBody2D nodes. Ideally, you should create

a Polygon2D node that matches the boundaries of the CollisionPolygon2D

node. Creating a shape for a Polygon2D node is identical to defining the

boundaries of a CollisionPolygon2D node.

Chapter 17 adding physiCs

388

To add a Polygon2D node, follow these steps:

 1. Click the StaticBody2D node that has the

CollisionPolygon2D node as its child node.

 2. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 3. Click the Search text field, type Polygon2D, and

click Create. Godot makes the Polygon2D node the

child node of the StaticBody2D parent node.

 4. Click the Select icon on the far left (it looks like an

arrow) or press Q to select it.

 5. Click the Create Points icon that appears near the

top middle of the Godot screen (see Figure 17-8).

 6. Click the points that match the shape of the

boundaries defined by the CollisionPolygon2D

node. Double-click the last point to complete

creating the polygon.

 7. Click the Color property in the Inspector dock. A

color dialog box appears. By default, the color of a

polygon is white.

 8. Click a different color for your newly created

polygon.

 9. Click the Run icon. Notice that the Polygon2D

node makes it easy to see the boundaries of the

CollisionPolygon2D node as shown in Figure 17-10.

Chapter 17 adding physiCs

389

Figure 17-10. A Polygon2D shape makes the boundaries of the
CollisionPolygon2D node easy to see

 10. Click the close icon of the (DEBUG) window to

make it go away.

 Using Layers and Masks
Having objects collide and bounce off each other can be useful in most

cases. However, sometimes you may not want certain objects to collide

with other objects. For example, a swarm of enemies charging toward a

player shouldn’t bump and interfere with each other so enemy objects

should ignore collisions with each other.

Another example might be a treasure that the player can pick up.

However, you wouldn’t want enemy objects to pick up the treasure if they

bump into it. So to define which objects can collide with one another,

Godot offers layers and masks, which is another way to detect collisions

between objects instead of using group names (described in Chapter 15).

Godot offers up to 32 different layers. The main idea is that you can

assign objects to different layers. Then you can use masks to define which

layers an object can recognize. For example, a game might put a player

object on Layer 1, a treasure object on Layer 2, and an enemy object on

Layer 3.

Chapter 17 adding physiCs

390

Thus you would want the player object (on Layer 1) to interact with a

treasure object and an enemy, so its mask would include Layers 2 and 3.

On the other hand, an enemy object (on Layer 3) would never interact with

a treasure object, so its mask would include only Layer 1. The Inspector

dock, under the CollisionObject2D category, defines the Layer and Masks

for an object as shown in Figure 17-11.

Figure 17-11. The Layers and Masks under the CollisionObject2D
category in the Inspector dock

A node can appear on more than one Layer but often only appears on

a single layer. Nodes can list multiple numbers in the Mask category to

define all the different objects (Layers) it can interact with in a collision.

By default, Godot puts every node on Layer 1 with Mask 1. This means

that every node appears on Layer 1 and can interact with every node that

also appears on Layer 1. Since Godot offers up to 32 Layers and identifying

Layers by number can confusing, you can also give Layers a more

descriptive name such as “Player” or “Walls.”

Chapter 17 adding physiCs

391

To see how to use layers and masks, follow these steps:

 1. Make sure the Godot project you created earlier

is open.

 2. Move the two RigidBody2D nodes above and

over the two StaticBody2D nodes as shown in

Figure 17-12. You want each RigidBody2D node to

fall and hit the StaticBody2D node and then fall to

hit the polygon that represents the ground at the

bottom of the screen.

Figure 17-12. The RigidBody2D nodes should appear above the two
StaticBody2D nodes

 3. Click the Run icon. Notice that the two RigidBody2D

nodes fall, bounce off the StaticBody2D node, and

then land on the second StaticBody2D node.

Chapter 17 adding physiCs

392

 4. Click the close icon of the (DEBUG) window to

make it go away.

 5. Click the StaticBody2D node that represents the

stationary icon.svg image as shown in Figure 17-13.

Figure 17-13. Selecting the StaticBody2D node that represents the
stationary icon.svg image

 6. Click Layer 1 (to clear it) under the Collision

category in the Inspector dock.

 7. Click Layer 2 under the Collision category in the

Inspector dock. This puts the StaticBody2D node

only on Layer 2. That means the two RigidBody2D

nodes can only interact with nodes on Layer 1, so

they won’t recognize the StaticBody2D node on

Layer 2.

Chapter 17 adding physiCs

393

 8. Click the Run icon. Notice that the two RigidBody2D

nodes fall through the StaticBody2D node (on Layer

2) and then land on the second StaticBody2D node

(still on Layer 1).

 9. Click the close icon of the (DEBUG) window to

make it go away.

 10. Click the top RigidBody2D node to select it.

 11. Click Mask 2 under the Collision category in the

Inspector dock. Both Mask 1 and Mask 2 should be

highlighted as shown in Figure 17-14. This means

that the top RigidBody2D node can now interact

with nodes on Layer 2 (the StaticBody2D node

representing the stationary icon.svg image).

Figure 17-14. Mask 1 and 2 selected

Chapter 17 adding physiCs

394

 12. Click the Run icon. Notice that the top RigidBody2D

nodes bounce off the StaticBody2D node (on Layer

2) and then land on the second StaticBody2D node

(still on Layer 1). However, the middle RigidBody2D

node falls through the StaticBody2D node (on

Layer 2).

 13. Click the close icon of the (DEBUG) window to

make it go away.

Placing nodes on separate Layers can make it easy to define how

different objects interact. However, using generic Layer 1 or Layer 3 can

be confusing. That’s why Godot also lets you create descriptive names for

each Layer. These descriptive names are for your benefit only. Godot still

treats each Layer as a number such as Layer 2.

To see how to give descriptive names to Layers, follow these steps:

 1. Make sure the previous Godot project is loaded.

 2. Choose Project ➤ Project Settings. A Project Settings

window appears.

 3. Click the General tab.

 4. Select 2D Physics under the Layer Names category.

The Project Settings window displays all the

different layers as shown in Figure 17-15.

Chapter 17 adding physiCs

395

Figure 17-15. Creating descriptive layer names in the Project
Settings window

 5. Click the text field that appears to the right of Layer 1

and type FallingNodes.

 6. Click the text field that appears to the right of Layer 1

and type StaticNodes.

 7. Click Close.

Chapter 17 adding physiCs

396

To see another way to give a Layer a descriptive name, follow

these steps:

 1. Make sure the previous Godot project is loaded.

 2. Click RigidBody2D to select it. (It doesn’t matter

which one you select.)

 3. Right-click Layer 1 under the Collision category in

the Inspector dock. A Rename layer pop-up menu

appears as shown in Figure 17-16.

Figure 17-16. Right-clicking a Layer number displays a Rename
layer option

 4. Click Rename layer. A Renaming layer dialog box

appears as shown in Figure 17-17.

Figure 17-17. The Renaming layer dialog box

Chapter 17 adding physiCs

397

 5. Click the Name text field and type a name for your

chosen layer.

 6. Click Rename.

 Restricting Movement
When creating a video game, you may want to restrict the movement of the

player within the boundaries of the game window. Otherwise, the player

could move off the screen and disappear. To restrict the movement of any

object within specific boundaries, Godot offers the clamp function that

looks like this:

clamp(position, minimum, maximum)

The clamp function accepts the current position of a node and

compares it to a minimum and maximum value. This keeps the current

position within the range defined by the minimum and maximum values.

So if the minimum value is 0 and the maximum value is 500, the position

of a node can only be moved within the range of 0–500 in both the x and y

axis. If you want to limit the clamp function to float (decimal numbers) or

integers, you can use a variation of the clamp function such as follows:

clampf(position, minimum, maximum) # clampf for float values

clampi(position, minimum, maximum) # clampi for

integer values

Godot assigns the origin (0,0) to the upper left corner of the screen

where a positive x value moves to the right and a positive y value moves

down. Since every computer has different resolutions, you need to identify

the total size of a game window by using the following property:

get_viewport_rect().size

Chapter 17 adding physiCs

398

The get_viewport_rect().size property retrieves the size of the game

window. You can create a variable to hold this value and then use it in the

clamp function like this:

var screen_size

screen_size = get_viewport_rect().size

position.x = clamp(position.x, 0, screen_size.x)

position.y = clamp(position.y, 0, screen_size.y)

To see how to use the clamp function to restrict movement of a player,

follow these steps:

 1. Make sure the previous Godot project is loaded.

 2. Click Node2D in the Scene dock to select it.

 3. Click the Add Child Node (+) icon. A Create New

Node window appears.

 4. Click the Search text field, type CharacterBody2D,

and then click Create. Godot creates a

CharacterBody2D node as a child of Node2D.

 5. Click CharacterBody2D in the Scene dock to

select it.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of CharacterBody2D.

 8. Drag the icon.svg image into the Texture property of

the Sprite2D node in the Inspector dock.

 9. Click the Modulate property under the Visibility

category (see Figure 17-5). A Color wheel appears.

Chapter 17 adding physiCs

399

 10. Click a color to modify the Sprite2D node.

 11. Click CharcterBody2D in the Scene dock to select it.

 12. Click the Add Child Node (+) icon. A Create New

Node window appears.

 13. Click the Search text field, type CollisionBody2D,

and then click Create. Godot creates

a CollisionBody2D node as a child of

CharacterBody2D.

 14. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 15. Click New RectangleShape2D. Godot displays the

orange outline of the rectangle shape.

 16. Drag and resize this orange rectangle shape so it

appears around the bottom icon.svg object (see

Figure 17-7). The CharacterShape2D node should

now have two children nodes (Sprite2D and

CollisionShape2D) as shown in Figure 17-18.

Figure 17-18. The CharacterBody2D node with a Sprite2D and
CollisionBody2D node as children

 17. Click the CharacterBody2D node in the Scene dock

and then click the Add Script icon. An Attach Node

Script dialog box appears.

Chapter 17 adding physiCs

400

 18. Click Create. Godot creates a GDScript file called

CharacterBody2D.gd.

 19. Edit this CharacterBody2D.gd file as follows:

extends CharacterBody2D

const SPEED = 300.0

var screen_size

func _ready():

 screen_size = get_viewport_rect().size

 position.x = 400

 position.y = 250

func _physics_process(delta):

 var x_direction = Input.get_axis("ui_left",

"ui_right")

 if x_direction:

 velocity.x = x_direction * SPEED

 else:

 velocity.x = move_toward(velocity.x, 0,

SPEED)

 var y_direction = Input.get_axis("ui_up",

"ui_down")

 if y_direction:

 velocity.y = y_direction * SPEED

 else:

 velocity.y = move_toward(velocity.y, 0,

SPEED)

 move_and_slide()

 position.x = clampi(position.x, 0, screen_size.x)

 position.y = clampi(position.y, 0, screen_size.y)

Chapter 17 adding physiCs

401

 20. Press Ctrl/Command+S to save your GDScript file.

 21. Click the Run icon. The two RigidBody2D nodes

should fall and hit the StaticBody2D node that

represents a polygon shape.

 22. Press the up/down, left/right keys to move the

CharacterBody2D node around. Try moving

the CharacterBody2D node off the screen. The

clampi function should keep it from completely

moving out of sight. Also notice that by default, the

CharacterBody2D node is on Layer 1 and has Mask

1, which means it can interact with anything on

Layer 1.

 23. Move the CharacterBody2D node into the

StaticBody2D node that represents the stationary

icon.svg. This StaticBody2D node is on Layer 2, so

the CharacterBody2D node won’t collide with it.

 24. Click the close icon of the (DEBUG) window to

make it go away.

Experiment with changing the Layer and Mask of different items to see

how this changes the way the different nodes collide. The clampi function

keeps the CharacterBody2D node from exiting the boundaries of the game

window, but part of it can still disappear from sight. Play with different

values in the clampi function to define the minimum and maximum

so no part of the CharacterBody2D node can disappear off the window

boundaries.

Chapter 17 adding physiCs

402

 Summary
Gravity is one way to move items in a game. When objects hit one another,

they need to bounce off each other like in real life, which creates greater

realism. In Godot, the RigidBody2D node allows objects to interact with

gravity where gravity is defined within the 2D Physics category in the

Project Settings window.

Gravity typically pulls objects down, but you can define the strength

of gravity to make it stronger or weaker or have it affect objects in other

directions besides down. When objects fall, they collide with other objects

and bounce off them. If you don’t want this behavior, you can adjust a

node’s Layer and Mask.

Nodes can appear on one or more layers. Masks define the layer

that a node can identify. If a node does not recognize a layer and a node

appears on that layer, the two nodes will ignore each other. By using Layers

and Masks, you can define how different nodes can collide (or ignore)

each other.

Godot offers up to 32 Layers and Masks for each node. For your

convenience, you can give descriptive names to specific Layers to make it

easier to understand what nodes on each Layer represent.

Finally, use the clamp function to restrict movement within a game

window. The clamp function defines a minimum and maximum x and y

value where a node can move. By restricting movement, you can ensure

that a game object can’t accidentally disappear off the edge of the screen.

Chapter 17 adding physiCs

403© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_18

CHAPTER 18

Playing Audio
While video games are largely a visual medium, don’t overlook the

importance that sound can play in your project. Sometimes sound is

essential in a video game such as hearing enemies nearby to alert the

player or set the tone of a horror game. One type of sound might be

background noise such as the wind blowing, rain falling, or background

music playing. A second type of sound can give feedback such as when

a player picks up a treasure where a beep confirms that the player

successfully grabbed the treasure.

There can also be spoken dialogue between characters or explanatory

dialogue to help you better understand the game settings. Audio can

be music, sound effects, dialogue, or any noise that helps create greater

immersion into the game.

Although audio might seem unnecessary in a game, play your favorite

game with the sound turned completely off. Even without background

sound effects or music, the lack of sound can detract from a game and

make playing it less enjoyable.

 Audio Formats in Godot
Godot can use audio stored in one of three audio file formats:

• WAV

• Ogg Vorbis

• MP3

https://doi.org/10.1007/979-8-8688-0190-7_18

404

The WAV file format offers the greatest sound quality but at the

expense of storage space. Because a WAV file does not compress audio

in any way, which can reduce sound quality, WAV files are best when

you need the best sound quality possible. Just be aware that even simple

sounds, stored as a WAV file, can take up a large amount of storage space.

The Ogg Vorbis file format is a completely free and open source

standard for compressing audio into smaller files than WAV files. The main

drawback with compression is that the greater the compression (and the

smaller the audio file), the lower the audio quality.

Although the Ogg Vorbis file format is technically superior to the

MP3 audio compression file format, MP3 files are far more common

and popular. The main drawback with MP3 files is that the compression

standard is a proprietary format. This proprietary format of MP3 audio files

is the reason programmers created the alternative Ogg Vorbis file format.

Both the Ogg Vorbis and MP3 file formats are best for compressing

audio files to take up less space than a WAV file. The drawback is that the

greater the compression, the lower the audio quality.

It’s possible to convert sound from one audio file format to another.

While there are plenty of commercial audio software available for

recording and editing audio, one popular option is Audacity (https://

www.audacityteam.org), which runs on Windows, macOS, and Linux.

Even better, Audacity is completely free and easy to use, so anyone can

record and edit audio in multiple file formats including WAV, Ogg Vorbis,

and MP3.

To see how to play an audio file, follow these steps:

 1. Create a new Godot project.

 2. Drag a WAV, Ogg Vorbis, or MP3 file into the

FileSystem dock.

 3. Click 2D Scene in the Scene dock. Godot creates a

Node2D in the Scene dock.

Chapter 18 playing audio

https://www.audacityteam.org
https://www.audacityteam.org

405

 4. Click the Add Child Node (+) icon. A Create New

Node window appears.

 5. Click the Search text field, type AudioStreamPlayer,

and then click Create. Godot creates an

AudioStreamPlayer node as a child of Node2D.

 6. Click the Stream property in the Inspector dock.

A pull-down menu appears so you can choose the

type of audio to use as shown in Figure 18-1.

Figure 18-1. The Stream property of the AudioStreamPlayer node

 7. Choose New AudioStreamWAV, New

AudioStreamOggVorbis, or New AudioStreamMP3,

depending on the type of audio file you placed in

the FileSystem dock in step 2.

Chapter 18 playing audio

406

 8. Click AudioStreamPlayer in the Scene dock to

select it.

 9. Drag the audio file from the FileSystem dock into the

Stream property in the Inspector dock. The Stream

property displays the name of your audio file as

shown in Figure 18-2.

Figure 18-2. The Stream property displaying an audio file

 10. Click the Autoplay check box as shown in

Figure 18-3.

Chapter 18 playing audio

407

Figure 18-3. The Autoplay check box

 11. Click the Run icon. The (DEBUG) window appears.

Because the Autoplay property has been turned

on (in step 10), the audio file stored in the Stream

property starts playing automatically and stops

when the audio has played once.

 12. Click the close icon of the (DEBUG) window to

make it go away.

 13. Click AudioStreamPlayer in the Scene dock to

select it

 14. Change the Pitch Scale property in the Inspector

dock (see Figure 18-3). The Pitch Scale property

can range from 0.01 to 4. The lower the Pitch Scale,

the slower the audio will play. The higher the Pitch

Scale property, the faster the audio will play.

 15. Change the Volume dB property in the Inspector

dock (see Figure 18-3). The Volume dB property

can range from -80 to 24. The lower the value, the

quieter the audio. The higher the value, the louder

the audio.

Chapter 18 playing audio

408

 16. Click the Run icon. The (DEBUG) window appears

and your audio plays based on the settings

you chose.

 17. Click the close icon of the (DEBUG) window to

make it go away.

Try the preceding steps using all three types of audio files (WAV,

Ogg Vorbis, and MP3) so you can see that they work identically. The

main difference is the trade-off between higher quality vs. larger storage

space. For the best audio quality, use WAV files. For large audio files,

use the compressed audio formats Ogg Vorbis or MP3. You may want to

experiment with your particular audio files to see whether they sound

better and compress more using Ogg Vorbis or MP3.

 Starting and Stopping Audio
When you set the Autoplay property to on for an AudioStreamPlayer node,

the audio stored in the Stream property plays as soon as your game starts

running. This can be fine for background music, but in some cases, you

may want to control when the audio starts and stops.

To start and stop audio, you can write GDScript code. To play audio,

you need to identify the AudioStreamPlayer node followed by the .play()

method. To stop audio, you also need to identify the AudioStreamPlayer

node followed by the .stop() method.

To see how to start and stop audio, follow these steps:

 1. Make sure the previous Godot project is loaded,

which plays an audio file when the project runs.

 2. Click AudioStreamPlayer in the Scene dock to

select it.

 3. Clear the Autoplay check box in the Inspector dock.

Chapter 18 playing audio

409

 4. Click Node2D in the Scene dock to select it.

 5. Click the Add Child Node (+) icon. A Create New

Node window appears.

 6. Click the Search text field, type Button, and then

click Create. Godot creates a Button node as a child

of Node2D.

 7. Resize and move this Button on the user interface.

 8. Press Ctrl/Command+D to duplicate the Button.

The Scene dock displays a Button2 node.

 9. Move this duplicate Button underneath the

first Button.

 10. Click the first Button, click the Text property in the

Inspector dock, and type Start.

 11. Click the second Button, click the Text property in

the Inspector dock, and type Stop. The two Buttons

should look like Figure 18-4.

Figure 18-4. Creating two Buttons on the user interface

Chapter 18 playing audio

410

 12. Click Node2D in the Scene dock and click the

Attach Script icon. An Attach Node Script dialog box

appears.

 13. Click Create to create a Node2D.gd file.

 14. Click the Button labeled Start in the Scene dock to

select it.

 15. Click the Node tab in the Inspector dock and click

Signals. A list of different signals appears.

 16. Double-click pressed(). A Connect a Signal to a

Method dialog box appears as shown in Figure 18-5.

Figure 18-5. The Connect a Signal to a Method dialog box

Chapter 18 playing audio

411

 17. Make sure Node2D is selected and click Connect.

Godot adds an _on_button_pressed() function in

the Node2D.gd file.

 18. Click the Button labeled Stop in the Scene dock to

select it.

 19. Click the Node tab in the Inspector dock and click

Signals. A list of different signals appears.

 20. Double-click pressed(). A Connect a Signal to a

Method dialog box appears (see Figure 18-5).

 21. Make sure Node2D is selected and click Connect.

Godot adds an _on_button_2_pressed() function in

the Node2D.gd file.

 22. Edit the Node2D.gd file as follows:

extends Node2D

func _on_button_pressed():

 $AudioStreamPlayer.play()

func _on_button_2_pressed():

 $AudioStreamPlayer.stop()

This code assumes that the AudioStreamPlayer

exists. The .play() method starts playing the

audio file stored in the Stream property of the

AudioStreamPlayer node, and the .stop() function

stops playing the audio file.

 23. Click the Run icon. The Godot window appears.

 24. Click the Start Button. This runs the _on_button_

pressed() function to start playing the audio file.

Chapter 18 playing audio

412

 25. Click the Stop Button. This runs the _on_button_

2_pressed() function to stop playing the audio file.

 26. Click the close icon of the (DEBUG) window to

make it go away.

 Pausing Audio
To start or stop the audio, we can just use the .play() and .stop() methods,

respectively, on the AudioStreamPlayer. However, what if we want to pause

the audio and start playing it again from the location where we last paused,

we need to take additional steps.

First, we need a float variable to store the location where an audio file

has paused. To get this location, we can use the .get_playback_position(),

which returns a decimal number defining the location where the audio

file paused.

After storing the position where the audio paused, we can then play it

back. Instead of using the ordinary .play() method, we need to include the

position in the audio file to start playing from such as .play(paused) where

“paused” represents a decimal value retrieved using the .get_playback_

position() method.

To see how to pause audio, follow these steps:

 1. Make sure you have created a Godot project from

the previous section that displays a Start and Stop

Button that can start and stop playing an audio file.

 2. Click Node2D in the Scene dock to select it.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

Chapter 18 playing audio

413

 4. Click in the Search text field, type Button, and click

Create. Godot makes the Button node the child

node of the Node2D parent node.

 5. Drag and resize the Button so it appears underneath

the two existing Buttons (Start and Stop).

 6. Change the Text property of this newly created

Button to Pause. You should now have three

Buttons (Start, Stop, and Pause) on the user

interface as shown in Figure 18-6.

Figure 18-6. The three Buttons on the user interface

 7. Click the Pause Button to select it. Then click Node

and Signals in the Inspector dock.

 8. Double-click pressed(). A Connect a Signal to a

Method dialog box appears.

Chapter 18 playing audio

414

 9. Make sure Node2D is selected and then click Create.

Godot creates a func _on_button_3_pressed()

function in the Node2D.gd file.

 10. Edit the Node2D.gd file as follows:

extends Node2D

var save_position: float

var paused: bool = false

func _on_button_pressed():

 if paused == false:

 $AudioStreamPlayer.play()

 else:

 $AudioStreamPlayer.play(save_position)

 paused = false

func _on_button_2_pressed():

 $AudioStreamPlayer.stop()

func _on_button_3_pressed():

 save_position = $AudioStreamPlayer.get_playback_

position()

 paused = true

 $AudioStreamPlayer.stop()

 11. Click the Run icon. The (DEBUG) window appears.

 12. Click the Start Button. The audio file defined in the

Stream property of the AudioStreamPlayer node

starts playing.

 13. Click the Pause Button. The audio file stops playing.

Chapter 18 playing audio

415

 14. Click the Start Button again. The audio file should

now start playing again where it left off.

 15. Click the close icon of the (DEBUG) window to

make it go away.

To better understand this code, start with the two variables. The

“paused” variable is defined as a Boolean data type and initially set to false.

The “save_position” variable is defined as a float data type and initially has

no value:

var save_position: float

var paused: bool = false

The _on_button_3_pressed() function runs when the user selects the

Pause Button on the user interface. This function uses the .get_playback_

position() method to get the location in the audio where the user paused

the sound. Then the function sets the “paused” variable to true and tells

the AudioStreamPlayer to stop playing audio:

func _on_button_3_pressed():

 save_position = $AudioStreamPlayer.get_playback_

position()

 paused = true

 $AudioStreamPlayer.stop()

The code for the Start Button uses an if-else statement to determine

whether to play from the start of the audio file (.play()) or if the “paused”

variable is true to play from the location stored in the “save_position”

variable (.play(save_position)):

func _on_button_pressed():

 if paused == false:

 $AudioStreamPlayer.play()

Chapter 18 playing audio

416

 else:

 $AudioStreamPlayer.play(save_position)

 paused = false

Essentially, pausing audio must let your code know where the audio

paused and if paused, where to start playing the audio again. Notice that

once the audio starts playing from the last paused position (save_position),

the code resets the “paused” variable to false.

For an even simpler solution, we can just use the stream_paused

property, which automatically stores the location of where an audio file

paused. The drawback is that we won’t know the exact location in the

audio file where it paused, but if that’s not important, then the stream_

paused property is much easier and more straightforward to use.

To see how to use the stream_paused property, follow these steps:

 1. Make sure you have created a Godot project from

the previous section that displays a Start and Stop

Button that can start and stop playing an audio file.

 2. Double-click the Node2D.gd in the FileSystem dock.

Godot opens the Node2D.gd file.

 3. Edit the Node2D.gd file as follows:

extends Node2D

func _on_button_pressed():

 $AudioStreamPlayer.play()

func _on_button_2_pressed():

 $AudioStreamPlayer.stop()

func _on_button_3_pressed():

 $AudioStreamPlayer.stream_paused = not

$AudioStreamPlayer.stream_paused

Chapter 18 playing audio

417

Notice how much simpler the code looks. Also

notice that the on_button_3_pressed() function

toggles the stream_paused property.

 4. Click the Run icon. The audio file, defined in the

Stream property of the AudioStreamPlayer, starts

playing automatically.

 5. Click the Pause Button. This pauses the audio.

 6. Click the Pause Button again. This starts the audio

playing again starting from the location where

it paused.

 7. Click the close icon of the (DEBUG) window to

make it go away.

 Looping Audio
Most of the time, you want an audio file to play once such as the sound of

a gunshot, a lion roaring, or a glass window shattering. However, in some

cases, you want an audio file to keep playing in an endless loop such as

background music or background sound effects such as birds chirping.

The looping of sounds can indicate the type of environment taking place.

To loop audio, you need to follow three steps:

• Add an AudioStreamPlayer node to a project.

• Add an audio file (WAV, Ogg Vorbis, or MP3) to the

Stream property of the AudioStreamPlayer.

• Use the finished() signal to create a function to run the

.play() method again.

Chapter 18 playing audio

418

To see how to loop audio, follow these steps:

 1. Create a new Godot project.

 2. Click 2D near the top of the Godot window to create

a Node2D node.

 3. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 4. Click the Search text field, type AudioStreamPlayer,
and click Create. Godot makes the

AudioStreamPlayer node the child node of the

Node2D parent node.

 5. Drag and drop an audio file (WAV, Ogg Vorbis, or

MP3) into the FileSystem dock. Make sure this audio

file is fairly short so it will be easy to tell when it ends

and starts repeating again.

 6. Drag the audio file into the Stream property of the

AudioStreamPlayer in the Inspector dock.

 7. Select the Autoplay check box.

 8. Click Node2D in the Scene dock to select it.

 9. Click the Attach Script icon. An Attach Node Script

dialog box appears.

 10. Click Create. Godot creates a Node2D.gd file.

 11. Click the AudioStreamPlayer in the Scene dock to

select it.

 12. Click the Node tab and then Signals in the

Inspector dock.

 13. Double-click finished() as shown in Figure 18-7. A

Connect a Signal to a Method dialog box appears.

Chapter 18 playing audio

419

Figure 18-7. The finished() signal in the Inspector dock

 14. Make sure Node2D is selected and then click

Connect. Godot creates a _on_audio_stream_

player_finished() function in the Node2D.

gd file. This function will run as soon as the

audio file, stored in the Stream property of the

AudioStreamPlayer, ends.

Chapter 18 playing audio

420

 15. Edit the _on_audio_stream_player_finished()

function as follows:

extends Node2D

func _on_audio_stream_player_finished():

 $AudioStreamPlayer.play()

 16. Press Ctrl/Command+S to save your GDScript code

changes.

 17. Click the Run icon. Notice that as soon as your audio

file ends, it repeats again.

 18. Click the close icon in the (DEBUG) window to

make it go away.

 Playing Audio When Detecting a Collision
One common use for audio is to provide feedback when something

happens in a game such as when a player picks up a treasure or hits an

obstacle that causes them to lose health or lose a life altogether. In our

previous examples, we stored audio in an AudioStreamPlayer. However,

when you want audio to play based on the actions of a moving object,

you’ll need to attach an AudioStreamPlayer2D node instead.

In this project, we’ll create one scene to define an obstacle and a

second scene to define a player that we can move around the screen by

using the cursor keys (up/down and left/right). The main node will be an

Area2D node with a Sprite2D and CollisionShape2D node as child nodes.

The player node will also contain an AudioStreamPlayer2D node that will

hold the audio file to play when the player and a stationary object collide.

Chapter 18 playing audio

421

To see how to play audio when detecting a collision, follow these steps:

 1. Create a new Godot project.

 2. Drag and drop a WAV, Ogg Vorbis, or MP3 file into

the FileSystem dock. Ideally, use an audio file that’s

short such as a beep or crashing sound because this

audio will play when two objects collide, so a long

playing audio will feel distracting.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as the

parent in the Scene dock.

 5. Double-click Area2D and edit the node name

to Player.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of the Player (Area2D) node.

 8. Drag and drop the icon.svg image into the Texture

property in the Inspector dock.

 9. Click Player to select it.

 10. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 11. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of the Player

(Area2D) node.

Chapter 18 playing audio

422

 12. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 13. Choose New RectangleShape2D. Godot displays a

collision shape rectangle.

 14. Resize this collision shape so it covers the entire

icon.svg image.

 15. Click Player (Area2D) in the Scene dock to select it.

 16. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 17. Click the Search text field, type

AudioStreamPlayer2D, and then click Create. Godot

creates an AudioStreamPlayer2D node as a child of

the Player (Area2D) node.

 18. Drag and drop the audio file into the Stream

property in the Inspector dock.

 19. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears.

 20. Click Save. Godot saves the scene under the name

player.tscn.

At this point, we’ve created a player scene consisting of the following:

• Area2D (parent node)

• Sprite2D (child node that displays the icon.svg image in

the Texture property)

• CollisionShape2D (child node that defines the collision

boundaries of the scene)

• AudioStreamPlayer2D (child node that holds the

audio file)

Chapter 18 playing audio

423

Now we need to create an obstacle scene so that way when the player

scene collides with the obstacle scene, it plays an audio file:

 1. Choose Scene ➤ New Scene.

 2. Click Other Node in the Scene dock.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as the

parent in the Scene dock.

 5. Double-click Area2D and edit the node name to

Obstacle.

 6. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of the Obstacle (Area2D) node.

 8. Drag and drop the icon.svg image into the Texture

property in the Inspector dock.

 9. Click the Modulate property under the Visibility

category in the Inspector dock. A color dialog box

appears.

 10. Click a color to modify the appearance of the icon.

svg image.

 11. Click Obstacle in the Scene dock to select it.

 12. Click the + (Attach Child Node) icon in the Scene

dock. A Create New Node dialog box appears.

Chapter 18 playing audio

424

 13. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of the Obstacle

(Area2D) node.

 14. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 15. Choose New RectangleShape2D. Godot displays a

collision shape rectangle.

 16. Resize this collision shape so it covers the entire

icon.svg image.

 17. Click Obstacle in the Scene dock to select it.

 18. Click the Node tab in the Inspector dock and then

click Groups.

 19. Click the text field under Manage Groups, type

obstacle, and press Enter. This defines the Obstacle.

tscn scene as an “obstacle” group as shown in

Figure 18-8.

Figure 18-8. Defining the Obstacle.tscn scene as an “obstacle” group

Chapter 18 playing audio

425

 20. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears.

 21. Click Save. Godot saves the scene under the name

obstacle.tscn.

At this point, we’ve created a player scene consisting of the following:

• Area2D (parent node)

• Sprite2D (child node that displays the icon.svg image in

the Texture property)

• CollisionShape2D (child node that defines the collision

boundaries of the scene)

At this point, we have two scenes: player.tscn and obstacle.tscn. Now

we need to create a main scene:

 1. Choose Scene ➤ New Scene.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type Node, and then click

Create. Godot creates a Node as the parent in the

Scene dock.

 4. Double-click Node and edit the node name to Main.

 5. Drag and drop player.tscn from the FileSystem dock

into the viewport. Make sure you drop the player.

tscn scene inside the boundaries of game window.

 6. Drag and drop obstacle.tscn from the FileSystem

dock into the viewport. Make sure you drop the

obstacle.tscn scene inside the boundaries of game

window as shown in Figure 18-9.

Chapter 18 playing audio

426

Figure 18-9. Placing the Scene.tscn and Obstacle.tscn scene within
the game window boundaries

 7. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears.

 8. Click Save. Godot saves the scene under the name

main.tscn.

 9. Choose Project ➤ Project Settings. A Project Settings

window appears.

 10. Click Run under the Application category.

 11. Click the folder icon that appears to the right of

Main Scene. A dialog box appears.

 12. Click main.tscn and click Open.

 13. Click Close to make the Project Setting window

go away.

Chapter 18 playing audio

427

This project is almost complete. All we need to do is write GDScript to

detect a collision between the Player.tscn scene and the Obstacle.tscn. So

we need to write GDScript to move the Player.tscn around and then detect

a collision by following these steps:

 1. Make sure you have the Godot project open that

includes a Player.tscn, Obstacle.tscn, and Main.tscn

scene files.

 2. Double-click Player.tscn in the FileSystem dock. All

the nodes that make up the Player.tscn scene appear

in the Scene dock.

 3. Click Player in the Scene dock to select it.

 4. Click the Attach Script icon. An Attach Node Script

dialog box appears.

 5. Click Create. Godot creates a GDScript file called

player.gd.

 6. Edit the Player.gd script as follows:

extends Area2D

var speed = 300

func _process(delta):

 var velocity = Vector2.ZERO

 if Input.is_key_pressed(KEY_RIGHT):

 velocity = Vector2.RIGHT * speed

 if Input.is_key_pressed(KEY_LEFT):

 velocity = Vector2.LEFT * speed

Chapter 18 playing audio

428

 if Input.is_key_pressed(KEY_UP):

 velocity = Vector2.UP * speed

 if Input.is_key_pressed(KEY_DOWN):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

 7. Press Ctrl/Command+S to save the player.gd file.

 8. Click the Run icon. The game window appears.

 9. Press the up/down, left/right arrow keys to move the

player.tscn around.

 10. Click the close icon in the (DEBUG) window to

make it go away.

We can now move the player around the screen, so the final step is to

detect a collision between the player and the obstacle. When that collision

occurs, we can then play the audio file stored in the Stream property of the

AudioStreamPlayer2D node.

To detect collisions and play audio, follow these steps:

 1. Double-click player.tscn in the FileSystem dock.

Godot displays all the nodes that make up the

player.tscn scene in the Scene dock.

 2. Click Player in the Scene dock.

 3. Click the Node tab in the Inspector dock and then

click Signals.

 4. Double-click area_entered(area: Area2D). A

Connect a Signal to a Method dialog box appears as

shown in Figure 18-10.

Chapter 18 playing audio

429

Figure 18-10. Double-clicking area_entered(area: Area2D) displays
a Connect a Signal to a Method dialog box

 5. Click Connect. Godot adds an on_area_

entered(area) function.

 6. Edit this on_area_entered(area) function as follows:

func _on_area_entered(area):

 if area.is_in_group("obstacle"):

 $AudioStreamPlayer2D.play()

Chapter 18 playing audio

430

The entire player.gd file should look like this:

extends Area2D

var speed = 300

func _process(delta):

 var velocity = Vector2.ZERO

 if Input.is_key_pressed(KEY_RIGHT):

 velocity = Vector2.RIGHT * speed

 if Input.is_key_pressed(KEY_LEFT):

 velocity = Vector2.LEFT * speed

 if Input.is_key_pressed(KEY_UP):

 velocity = Vector2.UP * speed

 if Input.is_key_pressed(KEY_DOWN):

 velocity = Vector2.DOWN * speed

 position += velocity * delta

func _on_area_entered(area):

 if area.is_in_group("obstacle"):

 $AudioStreamPlayer2D.play()

 7. Press Ctrl/Command+S to save the player.gd file.

 8. Click the Run icon. The game window appears.

 9. Press the up/down, left/right arrow keys to move the

player.tscn around. Notice that when the player.tscn

touches the obstacle.tscn, the audio stored in the

AudioStreamPlayer2D node plays.

 10. Click the close icon in the (DEBUG) window to

make it go away.

Chapter 18 playing audio

431

 Summary
Audio can add background music or sound effects to a game. Audio can

also give feedback such as when players get die or pick up a treasure. The

next time you play a video game, turn off the sound, and then play it with

the sound turned on. You should notice that even if you’re not conscious of

the sound, you suddenly notice it when it’s missing.

The AudioStreamPlayer node can play sound, while the

AudioStreamPlayer2D node is useful for attaching sound to a game object

such as a player or enemy. You can play, pause, and stop audio as well as

change the volume and pitch of audio. By controlling sound through the

Inspector dock and through GDScript code, you can control how audio

works within your game.

Chapter 18 playing audio

433© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_19

CHAPTER 19

Creating and Using
Scenes
Every video game consists of objects such as a player, enemies, and fixed

obstacles such as walls, floors, or ceilings. To create anything in Godot, you

use nodes that work together to create a scene. A scene can represent a

single object. However, you can also place scenes inside of another scene

where a scene can represent a single object or an entire playing field. The

scene then displays all your objects in the graphic interface.

In previous projects, we learned how to create a scene out of nodes

where each node serves a specific purpose. For example, a Sprite2D node

defines an image to display, while a CollisionShape2D node defines the

physical boundaries of an object that can collide with other objects. The

combination of nodes working together can create a scene. By using

existing scenes, you can create complex games one step at a time.

 Automatically Adding Objects in Scenes
In a video game, you’ll typically need to add a player object along with

enemies or obstacles. While you could drag and drop game objects into a

scene, it’s often more convenient to let GDScript code place enemies and

obstacles in random locations on the screen.

https://doi.org/10.1007/979-8-8688-0190-7_19

434

To do this, you must first create scenes that define the enemies or

obstacles you want to place inside a bigger scene. Once you’ve created an

enemy or obstacle, you need to follow several steps:

• Create a .tscn scene to hold the objects (such as

enemies or obstacles) that you want to add.

• Create a variable to hold the .tscn scene that you

want to add.

• Create a variable that holds a copy (instantiation) of the

.tscn scene.

• Use the randi_range function to randomly define an x

and y position to place the object within the scene.

To see how to use GDScript code to add objects to a scene, we’ll first

need to create two .tscn scenes. One .tscn scene will represent the objects

to add, and the second .tscn scene will display the different objects on

the screen.

To create these two .tscn scenes, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as

parent node in the Scene dock.

 4. Double-click Area2D in the Scene dock and change

the name to Obstacle.

 5. Click the Add Child Node (+) icon. A Create New

Node window appears.

Chapter 19 Creating and Using sCenes

435

 6. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Obstacle (Area2D).

 7. Drag and drop the icon.svg image into the Texture

property in the Inspector dock.

 8. Click Obstacle in the Scene dock and then click

the Add Child Node (+) icon. A Create New Node

window appears.

 9. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of Obstacle

(Area2D).

 10. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 11. Choose New RectangleShape2D.

 12. Resize the collision boundaries to cover the icon.

svg image.

 13. Press Ctrl/Command+S to save the scene as an

obstacle.tscn file.

The preceding steps have created a simple scene that we can randomly

place within a video game playing field. Now the next step is to create that

playing field by following these steps:

 1. Make sure you have created and loaded the Godot

project from the previous section.

 2. Choose Scene ➤ New Scene.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

Chapter 19 Creating and Using sCenes

436

 4. Click the Search text field, type Node, and then click

Create. Godot creates a generic Node as the parent

node in the Scene dock.

 5. Double-click Node in the Scene dock and rename

it Main.

 6. Press Ctrl/Command+S to save your scene as

main.tscn.

 7. Choose Project ➤ Project Settings. A Project Settings

dialog box appears.

 8. Click Run under the Application category.

 9. Click the folder icon that appears to the right of

Main Scene. An Open a File dialog box appears.

 10. Click main.tscn and click Open.

 11. Click Close to make the Project Settings dialog box

disappear.

 12. Click the Attach a Script icon (+). An Attach Node

Script dialog box appears that will create a main.

gd file.

 13. Click Create.

 14. Edit the main.gd file as follows:

extends Node

@export var obstacle_scene: PackedScene

The @export part of the code creates a property in

the Inspector dock. In this case, the property is the

arbitrarily named “obstacle_scene,” but you can use

any name you wish.

Chapter 19 Creating and Using sCenes

437

The more important part is PackedScene, which

creates a property in the Inspector dock as shown

in Figure 19-1. This Inspector property will let us

drag and drop a .tscn file, so our GDScript code can

access it.

Figure 19-1. The @export keyword creates a property in the
Inspector dock

 15. Click 2D at the top of the screen.

 16. Drag and drop the obstacle.tscn from the FileSystem

dock into the Obstacle Scene property in the

Inspector dock as shown in Figure 19-2. Now we can

access the obstacle.tscn scene through the

obstacle_scene variable name.

Chapter 19 Creating and Using sCenes

438

Figure 19-2. Dragging a .tscn file from the FileSystem dock into the
Inspector dock

 17. Edit the main.gd file as follows:

extends Node

@export var obstacle_scene: PackedScene

var screensize

func _ready():

 const total_number = 10

 screensize = get_viewport().get_visible_rect().size

 for x in total_number:

 var new_obstacle = obstacle_scene.instantiate()

 add_child(new_obstacle)

 new_obstacle.position = Vector2(randi_range(0,

screensize.x), randi_range(0, screensize.y))

Chapter 19 Creating and Using sCenes

439

The screensize variable first gets declared and

then retrieves the total game window size that’s

returned by the get_viewport().get_visible_rect().

size property. Inside a for loop that repeats ten times

(defined by a constant called total_number), the

GDScript code does three tasks:

• Creates or instantiates a new object based on the

.tscn scene stored in the Obstacle Scene property

defined by the @export var obstacle_scene:

PackedScene line

• Adds the newly instantiated object to the main.tscn

scene using the add_child command

• Randomly places this new object using the randi_

range functions that create a random number

between 0 and the screensize in the x and y direction

 18. Click the Run icon. The (DEBUG) window appears

and displays ten (10) objects randomly scattered

around the game window.

 19. Click the close icon of the (DEBUG) window to

make it go away.

 20. Repeat steps 11 and 12. Notice that each time you

run the project, the exact location of each of the ten

objects changes because the randi_range function

calculates a different random number each time for

both the x and y positions.

Chapter 19 Creating and Using sCenes

440

 Modifying Instances of a Scene
When you add a scene into another scene, that’s called instancing a scene

by essentially making a copy of a scene. In the previous project, you wrote

GDScript code to randomly place ten objects within a scene where every

object is defined by the same .tscn file. Instantiating a scene is another

way to load one scene into another without dragging a sprite or node into

the scene.

One advantage of instancing a scene is that you can define it once and

have Godot create as many exact duplicates as you need. However, there

may be times when you want to customize one or more instances of a

scene without changing all of those scenes.

So in this part, you’ll learn how to change a .tscn scene once to change

it everywhere and how to customize specific instances of a scene.

To see how changing a single .tscn scene can change the appearance of

multiple objects, follow these steps:

 1. Make sure you have created and loaded the Godot

project from the previous section that randomly

places ten objects within a scene.

 2. Double-click the obstacle.tscn file in the FileSystem

dock. Godot displays all the nodes that make up the

obstacle.tscn scene in the Scene dock as shown in

Figure 19-3.

Chapter 19 Creating and Using sCenes

441

Figure 19-3. The nodes that make up the obstacle.tscn scene

 3. Click the Sprite2D child node under Obstacle.

 4. Click the Modulate property under the Visibility

category in the Inspector dock. A color dialog box

appears.

 5. Choose a color to change the appearance of the

icon.svg image.

 6. Click the Run icon. The (DEBUG) window appears

and displays ten (10) objects randomly scattered

around the game window. Notice that all ten objects

now appear in the color you chose in step 5.

 7. Click the close icon of the (DEBUG) window to

make it go away.

By changing a single .tscn file, you can automatically change all

instances of that scene. However, sometimes you may create a scene and

want to customize one or more copies differently than the settings defined

by its .tscn file. In that case, you’ll need to modify each instance of that

scene individually.

Chapter 19 Creating and Using sCenes

442

To see how to modify individual copies of a .tscn file, follow

these steps:

 1. Create a new Godot project.

 2. Click 2D Scene in the Scene dock. Godot creates a

Node2D as the parent node in the Scene dock.

 3. Double-click Node2D and change its name

to Enemy.

 4. Click the Add Child Node (+) icon. A Create New

Node window appears.

 5. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Node2D.

 6. Drag and drop the icon.svg image file from the

FileSystem dock into the Texture property in the

Inspector dock.

 7. Click the Modulate property under the Visibility

category in the Inspector dock. A color dialog box

appears.

 8. Pick a color to change the appearance of the icon.

svg image.

 9. Press Ctrl/Command+S to save your scene. A Save

Scene As dialog box appears.

 10. Click Save to save it as enemy.tscn.

Chapter 19 Creating and Using sCenes

443

At this point, we’ve created an enemy.tscn that we can duplicate

within another scene. Now we need to create a main scene where we place

multiple copies of the enemy.tscn:

 1. Choose Scene ➤ New Scene.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type Node, and then click

Create. Godot creates a Node as the parent.

 4. Double-click Node and rename it Main.

 5. Press Ctrl/Command+S and click Create to save the

scene as main.tscn.

 6. Choose Project ➤ Project Settings. A Project Settings

window appears.

 7. Click Run under the Application category and click

the folder icon that appears to the right of Main

Scene. An Open a File dialog box appears.

 8. Click main.tscn and click Open.

 9. Click Close.

We’ve now created an enemy.tscn scene and a main.tscn. Now we just

need to add the enemy.tscn scene into the main.tscn:

 1. Double-click the main.tscn file in the FileSystem

dock to make sure Main appears in the Scene dock.

 2. Drag and drop the enemy.tscn three times from

the FileSystem dock into the viewport as shown in

Figure 19-4.

Chapter 19 Creating and Using sCenes

444

Figure 19-4. Placing three enemy.tscn objects into the main.
tscn scene

 3. Press Ctrl/Command+S to save the scene with the

three objects added.

 4. Double-click the enemy.tscn file in the FileSystem

dock to make its nodes appear in the Scene dock.

 5. Click Sprite2D to select it.

 6. Click Modulate under the Visibility category in the

Inspector dock. A color dialog box appears.

 7. Click a different color.

 8. Press Ctrl/Command+S to save the new colors.

 9. Double-click the main.tscn file in the FileSystem dock.

All three instances of the enemy.tscn file should now

display the new color you selected in step 7.

Chapter 19 Creating and Using sCenes

445

Any time you change the .tscn file, all instances of that file also change.

However, now we only want to change one instance of the enemy.tscn

file. To change just one instance without changing all of them, we need to

follow several steps:

• Select the instance of the enemy.tscn file that we want

to modify.

• Expand that enemy.tscn’s nodes so we can edit them.

• Edit the node that we want to change.

The main.tscn Scene dock should contain three instances of the

enemy.tscn file (named Enemy, Enemy2, and Enemy3) as shown in

Figure 19-5.

Figure 19-5. Three instances of the enemy.tscn file stored in the
main.tscn file

To see how to edit just a single instance, follow these steps:

 1. Make sure the Godot project is loaded, which

displays the three enemy.tscn scenes in the main.

tscn (see Figure 19-5).

 2. Right-click Enemy. A pop-up menu appears as

shown in Figure 19-6.

Chapter 19 Creating and Using sCenes

446

Figure 19-6. Right-clicking in the Scene dock displays a pop-up menu

 3. Choose Editable Children. Godot now expands the

Enemy instance to display its nodes as shown in

Figure 19-7.

Chapter 19 Creating and Using sCenes

447

Figure 19-7. Editable Children expands an instance to view its
node tree

 4. Click Sprite2D underneath Enemy. The Sprite2D

properties appear in the Inspector dock.

 5. Click the Modulate property under the Visibility

category in the Inspector dock. A color dialog box

appears.

 6. Choose a different color.

 7. Click the Run icon. Notice that the changes you

made to that one enemy.tscn object does not affect

the appearance of the other two enemy.tscn objects.

 8. Click the close icon of the (DEBUG) window to

make it go away.

Chapter 19 Creating and Using sCenes

448

 Automatically Moving and Rotating a Scene
In many games, you may need objects to constantly move on their own

such as asteroids flying around or spiked traps rotating in circles. To move

or rotate an object, Godot offers two functions:

• apply_force(Vector2(x, y))

• apply_torque_impulse(value)

The apply_force function lets you define an x and y direction to move

an object using a Vector2 to define the force in both the x and y directions.

A positive x value moves an object to the right. A positive y value moves an

object down.

The apply_torque_impulse function rotates an object where a positive

value rotates it clockwise and a negative value rotates it counterclockwise.

The higher the value, the faster the object rotates.

To see how to use both the apply_force and apply_torque_impulse

functions, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click in the Search text field, type Node, and then

click Create. Godot creates a Node as the parent.

 4. Double-click Node in the Scene dock and rename it

to Main.

 5. Press Ctrl/Command+S to save the scene as main.tscn.

 6. Click the Run icon. When a dialog box appears

asking to select a scene, click Select Current.

 7. Click the close icon in the (DEBUG) window to

make it go away.

Chapter 19 Creating and Using sCenes

449

At this point, we’ve just created a main scene and set it as the default

scene to run. Now we need to create two scenes. We’ll use the apply_force

function on one scene to make it move across the screen. Then we’ll use

the apply_torque_impulse function on the second scene to make it rotate

in place:

 1. Choose Scene ➤ New Scene. Godot creates a

new scene.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type RigidBody2D, and

then click Create. Godot creates a RigidBody2D as

the parent node.

 4. Double-click RigidBody2D and change the name

to MoveMe.

 5. Click the Gravity Scale property in the Inspector

dock and set its value to 0 to turn off gravity.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Node2D.

 8. Drag and drop the icon.svg image file from the

FileSystem dock into the Texture property in the

Inspector dock.

 9. Click MoveMe (parent node) to select it.

 10. Click the Add Child Node (+) icon. A Create New

Node window appears.

Chapter 19 Creating and Using sCenes

450

 11. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of MoveMe

(RigidBody2D).

 12. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 13. Choose New RectangleShape2D.

 14. Resize the collision boundaries to cover the icon.

svg image.

 15. Press Ctrl/Command+S to save the scene as a

move_me.tscn file.

 16. Click MoveMe in the Scene dock to select it.

 17. Click the Attach a Script icon. An Attach Node Script

dialog box appears.

 18. Click Create. Godot creates a move_me.gd file.

 19. Edit the move_me.gd file as follows:

extends RigidBody2D

var x_speed = 100

var y_speed = 45

func _physics_process(delta):

 apply_force(Vector2(x_speed, y_speed))

 20. Press Ctrl/Command+S to save the move_me.gd file.

 21. Double-click the main.tscn file in the FileSystem

dock and click 2D at the top of the screen to display

the main.tscn scene.

Chapter 19 Creating and Using sCenes

451

 22. Drag and drop the move_me.tscn file from the

FileSystem dock to the upper left corner of the main.

tscn scene as shown in Figure 19-8.

Figure 19-8. Placing the move_me.tscn scene inside the main.
tscn scene

 23. Press Ctrl/Command+S to save the modified main.

tscn scene.

 24. Click the Run icon. Notice that the icon.svg image

moves diagonally down to the right.

 25. Click the close icon in the (DEBUG) window to

make it go away.

Chapter 19 Creating and Using sCenes

452

Now let’s create a scene that will use the apply_torque_impulse

function to rotate another copy of the icon.svg image in place:

 1. Choose Scene ➤ New Scene. Godot creates a

new scene.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type RigidBody2D, and

then click Create. Godot creates a RigidBody2D as

the parent node.

 4. Double-click RigidBody2D and change the name to

RotateMe.

 5. Click the Gravity Scale property in the Inspector

dock and set its value to 0 to turn off gravity.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Node2D.

 8. Drag and drop the icon.svg image file from the

FileSystem dock into the Texture property in the

Inspector dock.

 9. Click RotateMe (the parent node) in the Scene dock

to select it.

 10. Click the Add Child Node (+) icon. A Create New

Node window appears.

Chapter 19 Creating and Using sCenes

453

 11. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of RotateMe

(RigidBody2D).

 12. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 13. Choose New RectangleShape2D.

 14. Resize the collision boundaries to cover the icon.

svg image.

 15. Press Ctrl/Command+S to save the scene as a

rotate_me.tscn file.

 16. Click RotateMe in the Scene dock to select it.

 17. Click the Attach a Script icon. An Attach Node Script

dialog box appears.

 18. Click Create. Godot creates a rotate_me.gd file.

 19. Edit the rotate_me.gd file as follows:

extends RigidBody2D

var rotation_speed = 100

func _physics_process(delta):

 apply_torque_impulse(rotation_speed)

 20. Press Ctrl/Command+S to save the rotate_

me.gd file.

 21. Double-click the main.tscn file in the FileSystem

dock and click 2D at the top of the screen to display

the main.tscn scene.

Chapter 19 Creating and Using sCenes

454

 22. Drag and drop the rotate_me.tscn file from the FileSystem

dock to the lower left corner of the main.tscn scene.

 23. Press Ctrl/Command+S to save the modified main.

tscn scene.

 24. Click the Run icon. Notice that this newly added

icon.svg image rotates clockwise while the other

icon.svg image moves diagonally down to the right.

 25. Click the close icon in the (DEBUG) window to

make it go away.

 Following the Player with a Camera
In many video games, the game boundary is not limited to the size of the

game window. That means the player can move across the boundaries of

the game window to explore more of the game world. To do this, the game

must follow the player’s movement and that involves using a Camera node.

Without a Camera node (such as Camera2D), the player can move

beyond the game window boundaries and disappear. By using a Camera

node, the player always remains visible, allowing the player to explore

multiple areas of the game world.

To see how to use the camera to follow a player’s movement, follow

these steps:

 1. Create a new Godot project.

 2. Click 2D Scene in the Scene dock. Godot creates a

Node2D as the parent node.

 3. Click the Add Child Node (+) icon. A Create New

Node window appears.

 4. Click the Search text field, type Polygon2D, and then

click Create. Godot creates a Polygon2D node as a

child of Node2D.

Chapter 19 Creating and Using sCenes

455

 5. Click the Create Points icon that appears at the top

middle of the screen as shown in Figure 19-9.

Figure 19-9. The Create Points icon

 6. Click the upper left corner of the game window

boundary.

 7. Click the lower left corner of the game window

boundary.

 8. Click the lower right corner of the game window

boundary as shown in Figure 19-10.

Figure 19-10. Clicking the four corners of the game window
boundary to define a polygon

Chapter 19 Creating and Using sCenes

456

 9. Click the upper right corner of the game window boundary.

 10. Click the upper left corner of the game window

boundary. Godot fills the polygon with a white color.

 11. Click the Color property in the Inspector dock. A

color dialog box appears.

 12. Click a color. Godot displays your chosen color

inside the polygon you just created. This colored

polygon defines the background of the game

playing field.

 13. Click Node2D in the Scene dock to select it.

 14. Click the Add Child Node (+) icon. A Create New

Node window appears.

 15. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as a

child of Node2D.

 16. Click Area2D to select it and then click the Add

Child Node (+) icon. A Create New Node window

appears.

 17. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Area2D.

 18. Drag and drop the icon.svg from the FileSystem

dock into the Texture property in the Inspector dock.

 19. Click Area2D to select it and then click the Add Child

Node (+) icon. A Create New Node window appears.

 20. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of Area2D.

Chapter 19 Creating and Using sCenes

457

 21. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 22. Choose New RectangleShape2D.

 23. Resize the collision boundaries to cover the icon.

svg image.

 24. Press Ctrl/Command+S to save the scene as a

node2d.tscn file.

 25. Click Area2D in the Scene dock to select it.

 26. Click the Attach Script icon. Godot creates an

Area2D.gd file.

 27. Edit the Area2D.gd file as follows:

extends Area2D

func _process(delta):

 var velocity = Vector2.ZERO

 var speed = 500

 if Input.is_key_pressed(KEY_RIGHT):

 velocity.x += speed

 if Input.is_key_pressed(KEY_LEFT):

 velocity.x -= speed

 if Input.is_key_pressed(KEY_DOWN):

 velocity.y += speed

 if Input.is_key_pressed(KEY_UP):

 velocity.y -= speed

 position += velocity * delta

Chapter 19 Creating and Using sCenes

458

 28. Click the Run icon and choose Select Current

to make the current scene the main scene. The

(DEBUG) window appears.

 29. Press the up/down, left/right keys to move the icon.

svg image around. Notice that if you move off the

game window boundary (top, bottom, left, or right),

the icon.svg image disappears.

 30. Click the close icon in the (DEBUG) window to

make it go away.

The icon.svg image disappears from off the game window boundary

because we don’t have a camera to follow the player. With a camera, we

can follow the player wherever it moves.

To add a camera, follow these steps:

 1. Make sure the previous Godot project is loaded,

which lets you move an icon.svg image against a

colored background.

 2. Click Area2D in the Scene dock to select it.

 3. Click the Add Child Node (+) icon. A Create New

Node window appears.

 4. Click the Search text field, type Camera2D, and then

click Create. Godot creates a Camera2D node as a

child of Area2D.

 5. Click the Run icon. The (DEBUG) window appears.

 6. Press the up/down, left/right keys to move the icon.

svg image around. Notice that no matter where you

move, the icon.svg image always appears in the

center of the game window, even if you move past

the original game window boundary, defined by the

colored polygon.

Chapter 19 Creating and Using sCenes

459

 7. Click the close icon in the (DEBUG) window to

make it go away.

The Camera2D node offers several properties you can modify to

change the way the camera works. The two most useful camera properties

are Enabled (selected by default) and Anchor mode (Drag Center by

default) as shown in Figure 19-11.

Figure 19-11. The properties of the Camera2D node

Turning Enabled off simply turns the camera off. The Drag Center

option in the Anchor Mode property keeps the player object in the center

of the game window at all times. The other option for the Anchor Mode

property is Top Left, which keeps the player object in the upper left corner

of the game window at all times. In most cases, you won’t need to change

either the Enabled or Anchor Mode properties.

Chapter 19 Creating and Using sCenes

460

One particularly useful property is the Zoom property, which is set to

1 for both the x and y properties. A higher Zoom property x and y value

zooms in, showing less of the game playing field. A smaller Zoom property

x and y value zooms out, letting you see more of the game playing field as

shown in Figure 19-12.

Figure 19-12. A lower Zoom property value shows more of the game
playing field

 Summary
Nodes represent building blocks, and a hierarchy of nodes defines a scene.

When creating a game, you’ll likely create separate scenes to represent

different parts of the game such as a player, enemies, obstacles, and the

user interface. By using GDScript code, you can make various objects

move or rotate.

A scene can define a single object such as a player or an obstacle, but

you can combine multiple scenes together to create larger items such as

Chapter 19 Creating and Using sCenes

461

the main game playing field along with enemies and obstacles. The main

idea behind Godot is that nodes offer specific features such as the Sprite2D

node used to define an image and the CollisionShape2D node used to

define the boundaries.

By combining nodes, you can create a scene to define a single object.

Then you can combine multiple scenes to create more complex scenes

such as a game playing field. By dividing a large project into multiple

smaller objects, Godot makes it easy to create a game one piece at a time.

Chapter 19 Creating and Using sCenes

463© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_20

CHAPTER 20

Using Signals
No matter what programming language you use, the main goal is to break

a large program into smaller parts known as functions. If the project is not

broken down, then the program will be difficult to follow. At the simplest

level, you can attach a GDScript to a node and divide that code into one

or more functions. Some functions can run automatically when certain

events occur, such as when the game starts. Other functions will only run

when specifically called from other GDScript codes stored in the same file.

Calling functions within the same file is easy since you just have to

specify the function name to run. However, one file may need to call a

function stored in a different file. To call functions stored in another file,

there are two possibilities as shown in Figure 20-1:

• A parent node calls down to a function stored in a

child node.

• A child node signals up to a function stored in a

parent node.

https://doi.org/10.1007/979-8-8688-0190-7_20

464

Figure 20-1. Two ways to call a function attached to a different node

To call down to a function stored lower in a node hierarchy, you must

specify the node that contains the function you want followed by the

function name.

To signal up to a function stored higher in a node hierarchy, you must

use signals. First, you must specify the function name you want to call.

Then you must connect that function into a GDScript file attached to a

node higher in the node hierarchy.

 Calling Down to a Function
Since Godot lets you create scenes in isolation from other scenes, any

GDScript code you attach to a node won’t know of the existence of any

other GDScript code. So before you can call down to a function stored in

a node lower in a hierarchy, you must first add a scene to a bigger scene

where each node represents a complete scene.

In the following project, we’ll create two separate scenes. One scene

will define a simple user interface to display a number. The second scene

will contain this user interface and display a Button that lets us increment

the number on the user interface.

Chapter 20 Using signals

465

To see how to call down to a function, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click the Search text field, type Control, and then

click Create. Godot creates a Control node as the

parent node in the Scene dock.

 4. Double-click Control in the Scene dock and change

the name to HUD.

 5. Click the Add Child Node (+) icon. A Create New

Node window appears.

 6. Click the Search text field, type Label, and then click

Create. Godot creates a Label node as a child of

HUD (Control).

 7. Resize the Label to make it larger.

 8. Click the Text property in the Inspector dock and

type 0. A 0 appears in the Label. Notice that the 0

appears small.

 9. Click the Label Settings property in the Inspector

dock. A pull-down menu appears as shown in

Figure 20-2.

Chapter 20 Using signals

466

Figure 20-2. The Label Settings menu in the Inspector dock

 10. Choose New LabelSettings. The Label Settings

property now displays LabelSettings.

 11. Click LabelSettings in the Label Settings property.

Godot displays a list of additional properties as

shown in Figure 20-3.

Figure 20-3. The additional properties displayed in Label Settings

Chapter 20 Using signals

467

 12. Click the arrow to the left of Font. A list of Font

properties appears as shown in Figure 20-4.

Figure 20-4. The additional Font properties

 13. Click the Size property and change it to a larger

value such as 32. Notice that the 0 in the Label now

looks bigger.

 14. Press Ctrl/Command+S to save the hud.tscn file.

 15. Click HUD in the Scene dock to select it.

 16. Click the Attach Script icon to create a hud.gd file.

 17. Edit this hud.gd file as follows:

extends Control

func update_score(score):

 $Label.text = str(score)

Chapter 20 Using signals

468

The hud.gd file receives a number (score) and

converts it into a string (str) to display it in the text

property of the Label node.

 18. Press Ctrl/Command+S to save the hud.gd file.

This completes the hud.tscn scene that displays a simple user

interface. Now let’s create another scene to display a Button that will

increment the number displayed in the hud.tscn scene.

To create another scene, follow these steps:

 1. Make sure the previous Godot project is loaded,

which contains a hud.tscn file.

 2. Choose Scene ➤ New Scene.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Node, and then click

Create. Godot creates Node as the parent node in

the Scene dock.

 5. Double-click Node in the Scene dock and change

the name to Main.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Button, and then

click Create. Godot creates a Button node as a child

of Main (Node).

 8. Resize the Button and move it away from the upper

left corner of the game window.

 9. Click the Text property in the Inspector dock and

type Increment.

Chapter 20 Using signals

469

 10. Press Ctrl/Command+S to save the main.tscn file.

 11. Click the Main parent node in the Scene dock to

select it.

 12. Click the Attach Script icon to create a main.gd file.

 13. Click the Button in the Scene dock to select it.

 14. Click the Node tab in the Inspector dock.

 15. Double-clicked pressed(). A Connect a Signal to a

Method dialog box appears as shown in Figure 20-5.

Figure 20-5. Connecting the pressed() function to the Main node

Chapter 20 Using signals

470

 16. Make sure Main is selected and click Connect.

Godot adds an _on_button_pressed() function in

the main.gd file.

 17. Press Ctrl/Command+S to save the main.gd file.

At this point, we’ve created two separate scenes. Now it’s time to

combine the hud.tscn into the main.tscn and call the update_score

function stored in the hud.gd file:

 1. Make sure the previous Godot project is loaded,

which consists of two scenes: hud.tscn and

main.tscn.

 2. Click 2D near the top middle of the screen.

 3. Double-click the main.tscn file in the FileSystem

dock. Godot displays the main.tscn scene in the

Scene dock.

 4. Drag and drop the hud.tscn from the FileSystem

dock on to Main in the Scene dock. This makes the

hud.tscn scene a child of the Main node as shown

in Figure 20-6. Notice that since HUD is a child of

Main, the main.gd file (attached to the Main node)

can call down to the function stored in the hud.gd

file (attached to the HUD node).

Figure 20-6. The node hierarchy of the main.tscn scene after adding
the hud.tscn scene

Chapter 20 Using signals

471

 5. Double-click the main.gd file in the FileSystem

dock. Godot displays the main.gd file.

 6. Edit the main.gd file as follows:

extends Node

var score: int = 0

func _on_button_pressed():

 score += 1

 $HUD.update_score(score)

This code creates a variable called “score,” which

is defined as an integer with an initial value of 0.

Within the _on_Button_pressed() function, the code

increments the value of score by 1 (score += 1). Then

it calls down to the $HUD node to call the update_

score function, which is stored in the hud.gd file

that’s attached to the HUD parent node.

 7. Click the Run icon and choose Select Current when

Godot asks which scene to set as the main scene. A

(DEBUG) window appears.

 8. Click the Increment Button. Notice that each

time you click the Increment Button, the number

increments in the upper left corner where the Label

node appears.

 9. Click the close icon of the (DEBUG) window to

make it go away.

Chapter 20 Using signals

472

 Signaling Up
In the previous example, we saw how to call down to run a function

stored in a node lower in the hierarchy. However, sometimes you may

need to call a function stored in a node higher in the hierarchy. You can’t

simply specify the node name and function name such as $HUD.update_

score(score) because nodes lower in a hierarchy can’t directly access

nodes that are higher in the hierarchy.

Instead, we have to use signals. First, we need to define the function

name we want to access using the Signal keyword. Second, we need to

call that function by using the emit_signal command. Third, we need to

connect the signal from one .gd file to another higher up in the hierarchy.

Signals are sometimes needed to track certain events within a game.

To see how to use signals, we’ll create a simple game that keeps track of

collisions. If a player collides with treasure, they get a point. Then the game

displays the number of collisions on the screen.

Tracking collisions involves several steps:

• Detecting the collision

• Counting the collision

• Displaying the results on the user interface

Detecting collisions can occur by assigning objects to a group name

and then detecting whether the player collided with any item in a specific

group. Each time a collision with a specific object occurs, the GDScript

code needs to increment a variable. Finally, the user interface must update

to display the latest results. In many games, collisions can be used to detect

enemies or other objects so that if the player collides, there will be different

interactions.

Chapter 20 Using signals

473

Our project will consist of the following scenes:

• Main.tscn that will hold all other scenes as children

• HUD.tscn that will display a Label on the user interface

• Player.tscn that will define a player object that

can move

• Treasure.tscn that will act as treasures for the player to

hit and get points that will appear in the Label of the

HUD.tscn file

To see how to use signals, follow these steps:

 1. Create a new Godot project.

 2. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 3. Click in the Search text field, type Node, and then

click Create. Godot creates a Node as the parent

node in the Scene dock.

 4. Double-click Node in the Scene dock and change

the name to HUD.

 5. Click the Add Child Node (+) icon. A Create New

Node window appears.

 6. Click the Search text field, type Control, and then

click Create. Godot creates a Control node as a child

of HUD (Control).

 7. Click the Add Child Node (+) icon. A Create New

Node window appears.

 8. Click the Search text field, type Label, and then click

Create. Godot creates a Label node as a child of

Control as shown in Figure 20-7.

Chapter 20 Using signals

474

Figure 20-7. The node hierarchy of the HUD.tscn scene

 9. Click the Text property and type 0.

 10. Click the Label Settings property in the Inspector

dock. A pull-down menu appears.

 11. Choose New LabelSettings. Godot displays

LabelSettings in the Label Settings property.

 12. Click LabelSettings. Godot displays a list of

additional properties such as Font, Outline, Shadow,

and Resource.

 13. Click the arrow that appears to the left of Font. A

new list of additional Font properties appears.

 14. Click the Size property and type a large number

such as 32.

 15. Press Ctrl/Command+S to save your scene as

hud.tscn.

 16. Click HUD in the Scene dock to select it.

 17. Click the Attach Script icon. Godot creates a hud.

gd file.

Chapter 20 Using signals

475

 18. Edit the hud.gd file as follows:

extends Node

func update_score(score):

 $Control/Label.text = str(score)

 19. Press Ctrl/Command+S to save the hud.gd file.

We created a simple scene to display a user interface along with a

function called update_score(score). Now the next step is to create a

treasure scene by following these steps:

 1. Make sure you have created and loaded the previous

Godot project that contains a single hud.tscn scene.

 2. Choose Scene ➤ New Scene.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as

parent node in the Scene dock.

 5. Double-click Area2D in the Scene dock and change

the name to Treasure.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Treasure (Area2D).

 8. Drag and drop the icon.svg image into the Texture

property in the Inspector dock.

Chapter 20 Using signals

476

 9. Click the arrow that appears to the left of Visibility

in the Inspector dock. A list of visibility properties

appears.

 10. Click the Modulate property. A color dialog box

appears.

 11. Choose a color.

 12. Click Treasure in the Scene dock and then click

the Add Child Node (+) icon. A Create New Node

window appears.

 13. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of Treasure

(Area2D).

 14. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 15. Choose New RectangleShape2D.

 16. Resize the collision boundaries to cover the icon.

svg image.

 17. Click Treasure in the Scene dock to select it

and then click the Node tab and Groups in the

Inspector dock.

 18. Click the text field, type treasure, and press Enter.

 19. Press Ctrl/Command+S to save the scene as a

treasure.tscn file.

Chapter 20 Using signals

477

The preceding steps have created a simple scene that we can randomly

place within a video game playing field. Now the next step is to create a

player scene that we can move around. To create a player scene, follow

these steps:

 1. Make sure you have created and loaded the previous

Godot project that contains a hud.tscn scene and a

treasure.tscn scene.

 2. Choose Scene ➤ New Scene.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Area2D, and then

click Create. Godot creates an Area2D node as

parent node in the Scene dock.

 5. Double-click Area2D in the Scene dock and change

the name to Player.

 6. Click the Add Child Node (+) icon. A Create New

Node window appears.

 7. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Player (Area2D).

 8. Drag and drop the icon.svg image into the Texture

property in the Inspector dock.

 9. Click Player in the Scene dock and then click the

Add Child Node (+) icon. A Create New Node

window appears.

Chapter 20 Using signals

478

 10. Click the Search text field, type CollisionShape2D,

and then click Create. Godot creates a

CollisionShape2D node as a child of Player

(Area2D).

 11. Click the Shape property in the Inspector dock. A

pull-down menu appears.

 12. Choose New RectangleShape2D.

 13. Resize the collision boundaries to cover the icon.

svg image.

 14. Press Ctrl/Command+S to save the scene as a player.

tscn file.

At this point, we have three scenes: hud.tscn to create the user

interface, treasure.tscn to create a treasure, and player.tscn to create a

player we can move around. Now it’s time to create a main scene that

contains one player object and three treasure objects.

To create a main scene, follow these steps:

 1. Make sure you have created and loaded the Godot

project from the previous section.

 2. Choose Scene ➤ New Scene.

 3. Click Other Node in the Scene dock. A Create New

Node dialog box appears.

 4. Click the Search text field, type Node, and then click

Create. Godot creates a generic Node as parent node

in the Scene dock.

 5. Double-click Node in the Scene dock and rename

it Main.

Chapter 20 Using signals

479

 6. Press Ctrl/Command+S to save your scene as

main.tscn.

 7. Click the Attach a Script icon (+). An Attach Node

Script dialog box appears that will create a main.

gd file.

 8. Click Create.

 9. Edit the main.gd file as follows:

extends Node

var score: int = 0

 10. Press Ctrl/Command+S to save the main.gd file.

 11. Click 2D near the top middle of the screen to display

the contents of the main.tscn scene.

 12. Drag and drop the player.tscn file from the

FileSystem dock into the main.tscn scene.

 13. Drag and drop the hud.tscn file from the FileSystem

dock on to Main in the Scene dock.

 14. Drag and drop the treasure.tscn file from the

FileSystem dock into the main.tscn scene. Do this

three times, so there should be one player object

and three treasure objects in the main.tscn scene as

shown in Figure 20-8.

Chapter 20 Using signals

480

Figure 20-8. Adding a player and three treasures into the main.
tscn scene

At this point, we have a hud.gd file and a main.gd file. We need to

create a player.gd file to move the player around. Plus within this player.gd

file, we need to create a signal to run a function that we’ll store in the main.

gd file.

To create a player.gd file, follow these steps:

 1. Make sure you have created and loaded the Godot

project from the previous section.

 2. Double-click the player.tscn file in the FileSystem

dock to display it in the Scene dock.

 3. Click Player in the Scene dock to select it.

 4. Click the Attach Script icon to create a player.gd file.

 5. Edit the player.gd file as follows:

extends Area2D

func _process(delta):

 var velocity = Vector2.ZERO

 var speed = 500

Chapter 20 Using signals

481

 if Input.is_key_pressed(KEY_RIGHT):

 velocity.x += speed

 if Input.is_key_pressed(KEY_LEFT):

 velocity.x -= speed

 if Input.is_key_pressed(KEY_DOWN):

 velocity.y += speed

 if Input.is_key_pressed(KEY_UP):

 velocity.y -= speed

 position += velocity * delta

 6. Click Player in the Scene dock to select it and then

click the Node tab in the Inspector dock.

 7. Double-click area_entered(area: Area2D). A

Connect a Signal to a Method dialog box appears as

shown in Figure 20-9.

Chapter 20 Using signals

482

Figure 20-9. Connecting the area_entered signal to the player.gd file

 8. Make sure Player is selected in the Connect a Signal

to a Method dialog box and click Connect. Godot

creates an _on_area_entered(area) function.

 9. Edit this _on_area_entered(area) function as follows:

func _on_area_entered(area):

 if area.is_in_group("treasure"):

 area.hide()

 emit_signal("update_display")

Chapter 20 Using signals

483

 10. Add the following underneath “extends Area2D”:

signal update_display

The entire player.gd file should look like this:

extends Area2D

signal update_display

func _process(delta):

 var velocity = Vector2.ZERO

 var speed = 500

 if Input.is_key_pressed(KEY_RIGHT):

 velocity.x += speed

 if Input.is_key_pressed(KEY_LEFT):

 velocity.x -= speed

 if Input.is_key_pressed(KEY_DOWN):

 velocity.y += speed

 if Input.is_key_pressed(KEY_UP):

 velocity.y -= speed

 position += velocity * delta

func _on_area_entered(area):

 if area.is_in_group("treasure"):

 area.hide()

 emit_signal("update_display")

 11. Press Ctrl/Command+S to save the player.gd file.

Notice that by adding the “signal update_display”

line near the top of the player.gd file, the update_

display function now appears in the Signals group in

the Inspector dock as shown in Figure 20-10.

Chapter 20 Using signals

484

Figure 20-10. The update_displays function appears in Signals

We’ve created a separate main.gd, hud.gd, and player.gd file. Within

the player.gd file, we defined a signal called update_display. Now we need

to connect this update_display signal to the main.gd file.

To connect a signal from the player.gd file to the main.gd file, follow

these steps:

 1. Make sure you have created and loaded the Godot

project from the previous section.

 2. Double-click the main.tscn file in the FileSystem

dock to display it in the Scene dock.

 3. Click Player in the Scene dock to select it. The Player

scene, three Treasure scenes, and the HUD scene

should all be children of the Main scene as shown in

Figure 20-11.

Chapter 20 Using signals

485

Figure 20-11. The hierarchy of the main.tscn scene

 4. Click the Node tab in the Inspector dock and then

click Signals.

 5. Double-click update_display(). A Connect a

Signal to a Method dialog box appears as shown in

Figure 20-12.

Chapter 20 Using signals

486

Figure 20-12. The Connect a Signal to a Method dialog box

 6. Make sure Main is selected in the Connect a Signal

to a Method dialog box and click Connect. Godot

adds an _on_player_update_display() function

inside the main.gd file.

 7. Edit the main.gd file as follows:

extends Node

var score: int = 0

Chapter 20 Using signals

487

func _on_player_update_display():

 score += 1

 $HUD.update_score(score)

This _on_player_update_display() function

connects to the signal defined in the player.gd file.

This function increments the score variable by one

and sends the result to the update_score(score)

function stored in the hud.gd file.

 8. Click the Run icon and choose Select Current when

Godot asks which scene to set as the main scene. A

(DEBUG) window appears.

 9. Press the up/down, left/right arrow keys to move

the player object around the screen. Notice that

each time the player collides with a treasure object,

the treasure object disappears, and the score gets

updated by 1 in the Label displayed in the upper left

corner of the screen.

 10. Click the close icon of the (DEBUG) window to

make it go away.

 Summary
Functions can be stored in separate files. When calling a function within

the same .gd file, you just need to use the function name. When you want

to call a function stored in a separate file, you have two options:

• Call down – If the function is stored in a .tscn scene

file that’s a child of the node doing the calling, call the

scene file by name and then the function name such as

$HUD.update_score().

Chapter 20 Using signals

488

• Signal up – If the function is stored in a .tscn scene file

that’s a parent of the node doing the calling, use signals.

Define the function name in the child node, and

connect it to the parent node.

By keeping functions separated in different files, you can keep related

code together and isolate them from other code. By calling functions

stored in other files, you can reuse code.

Chapter 20 Using signals

489© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7_21

CHAPTER 21

Creating a Simple
Tic-Tac- Toe Game
So far, you’ve learned some of the important elements used to make a

basic video game such as shooting projectiles and writing GDScript to

make those projectiles possible. With Godot, making any game is possible,

even the game Tic-Tac-Toe.

Tic-Tac-Toe is a classic game that was created in 1884. Traditionally,

the game is played on paper with a 3x3 grid for two players. One player

is an “X,” while the other is an “O.” The goal of Tic-Tac-Toe is for one

of players to either get three Xs or three Os in a row, in a column, or

diagonally. Tic-Tac-Toe plays quick, yet it’s simple and fun at the same

time. Though it is usually played on paper, it can also be played online by

computer. In this chapter, you’ll learn how to make a Tic-Tac-Toe game

using Godot.

To make the Tic-Toe-Game through Godot, you’ll need three images as

shown in Figure 21-1:

• An image of a Tic-Tac-Toe 3 by 3 grid

• An image of an “X” Tic-Tac-Toe symbol

• An image of an “O” Tic-Tac-Toe symbol

https://doi.org/10.1007/979-8-8688-0190-7_21

490

Figure 21-1. The three images needed to make a Tic-Tac-Toe game

You can create these three images using a graphics editor such as

Photoshop, or simply search the Internet for a 3 by 3 grid, an X and an O or

any other images you want to use.

To see how to display the Tic-Tac-Toe grid, follow these steps:

 1. Create a new Godot project.

 2. Drag and drop the three images (grid, X, and O) that

you created or downloaded from the Internet into

the FileSystem dock.

 3. Click 2D Scene in the Scene dock. Godot creates a

Node2D node as the parent node in the Scene dock.

 4. Double-click Node2D and change its name

to Board.

 5. Click the Add Child Node (+) icon. A Create New

Node window appears.

 6. Click the Search text field, type Sprite2D, and then

click Create. Godot creates a Sprite2D node as a

child of Board (Node2D).

Chapter 21 Creating a Simple tiC-taC- toe game

491

 7. Drag your grid image into the Texture property in

the Inspector dock. Godot displays the grid in the

upper left corner of the game window as shown in

Figure 21-2.

 8. Press Ctrl/Command+S to save your scene as a

board.tscn file.

 Detecting Clicks on the Board
Since this version of Tic-Tac-Toe runs on a computer, we’ll need to make

the board functional by making the positions on the board clickable. Once

we can click around on the board, we can place the X and O symbols in

specific locations.

Figure 21-2. The default location of the playing board in the
game window

Chapter 21 Creating a Simple tiC-taC- toe game

492

To see how to detect the position of a mouse click, follow these steps:

 1. Make sure the previous Godot project is loaded,

which displays the Tic- Tac- Toe board.

 2. Click Board (Node2D) in the Scene dock to select it.

 3. Click the Attach a Script icon. Godot creates a board.

gd file.

 4. Edit the board.gd file as follows:

extends Node2D

func _input(event):

 if event is InputEventMouseButton:

 if event.button_index == MOUSE_BUTTON_LEFT and

event.pressed:

 print(event.position)

 5. Press Ctrl/Command+S to save the board.gd file.

 6. Click the Run icon and choose Select Current when

Godot asks which scene to set as the main scene. A

(DEBUG) window appears.

 7. Click anywhere inside the game window. Notice that

Godot prints the x and y coordinates in the Output

dock as shown in Figure 21-3.

Figure 21-3. Displaying the location of mouse clicks

Chapter 21 Creating a Simple tiC-taC- toe game

493

 8. Click the close icon of the (DEBUG) window to

make it go away.

Functions do something specific within a program. For example, the

ready() function runs automatically every time the node loads. So “func

_ready():” generally runs certain commands to initialize variables or set up

a game before it starts running.

Godot provides many functions that respond to certain events. This

project uses “func _input(event) to respond to the user’s input and trigger

a certain event. Because we want players to click the board, the code

checks to see if the event is using a mouse with the phrase:

if event is InputEventMouseButton

Then “func _input(event)” checks if the left mouse button has been

pressed or clicked:

if event.button_index == MOUSE_BUTTON_LEFT and event.pressed

This line specifically makes the board clickable. The “print(event.

position)” command simply prints the position where you clicked on the

board that consists of an x and y value.

 Displaying Player Moves
In the previous example, we were able to click around on the board. Now

it’s time to display the “X” and “O” symbols on the board. To display the

symbols, we’ll create a function to place a symbol on the board whenever it

is clicked.

In previous projects, we created scenes separately, but Godot also

lets you create nodes and turn them into separate scenes. We’ll use this

technique as just another way to create separate scenes in a project.

Chapter 21 Creating a Simple tiC-taC- toe game

494

To see how to create symbols for our game, follow these steps:

 1. Make sure you have loaded the previous Godot

project that displays a game grid on the screen and

prints the location of where the user clicked the

mouse. You should also have a graphic image for the

X and O symbols stored in the FileSystem dock.

 2. Click Board as the parent node in the Scene dock.

 3. Click the Add Child Node (+) icon. A Create New

Node window appears.

 4. Click in the Search text field, type Sprite2D, and then

click Create. Godot creates a second Sprite2D node

as a child of Board.

 5. Drag and drop the image for the X symbol into

the Texture property. Godot displays the X symbol

image on the screen.

 6. Double-click Sprite2D node that displays the X

symbol image and rename it as x.

 7. Right-click the x (Sprite2D) node. A pop-up menu

appears as shown in Figure 21-4.

Chapter 21 Creating a Simple tiC-taC- toe game

495

Figure 21-4. Right-clicking a node displays a pop-up menu

 8. Choose Save Branch as Scene. A Save New Scene As

dialog box appears.

 9. Click Save to save the node as a scene called x.tscn.

Chapter 21 Creating a Simple tiC-taC- toe game

496

 10. Right-click the x (Sprite2D) node, and when a pop-

up menu appears, choose Delete node(s). A dialog

box appears to confirm deleting the node.

 11. Click OK.

 12. Repeat steps 2–11 except use the O image and

rename the Sprite2D node as o to save it as an

o.tscn file. You should now have an o.tscn and an

x.tscn file stored in the FileSystem dock as shown in

Figure 21-5.

Figure 21-5. An o.tscn and an x.tscn file in the FileSystem dock

We created two separate scenes (x.tscn and o.tscn). The Scene dock

should contain nothing but Board as the parent node and Sprite2D that

displays the playing board. Now we need to make the X and O symbols

appear when we click the board.

Chapter 21 Creating a Simple tiC-taC- toe game

497

To see how to display symbols on our game board by writing GDScript

code, follow these steps:

 1. Make sure you have loaded the previous Godot

project that displays a game grid on the screen and

prints the location of where the user clicked the

mouse. You should also have an x.tscn and o.tscn

file stored in the FileSystem dock.

 2. Click the script icon that appears to the right of

Board as the parent node in the Scene dock. (Or

double-click board.gd in the FileSystem dock).

Godot displays the contents of the board.gd file.

 3. Add the following function in the board.gd file as

follows:

func createSymbol(next_player, new_position):

 if next_player == 1:

 var createX = preload("res://x.tscn")

 var getX = createX.instantiate()

 add_child(getX)

 getX.position = new_position

 else:

 var createCircle = preload("res://o.tscn")

 var getCircle = createCircle.instantiate()

 add_child(getCircle)

 getCircle.position = new_position

This code loads the X or O symbol and places it

on the game board. The createSymbol function

passes the values of “player” and “position.” Notice

that we can load a .tscn scene by using the preload

command. Once we load a .tscn file, we instantiate

that file, which makes a copy of that .tscn scene.

Chapter 21 Creating a Simple tiC-taC- toe game

498

The add_child() method takes the .tscn file, and

then the position property places it on the screen.

Right now the createSymbol function never gets

called, so we need to call it within the _input(event)

function.

 4. Edit the board.gd file as follows:

func _input(event):

 if event is InputEventMouseButton:

 if event.button_index == MOUSE_BUTTON_LEFT

and event.pressed:

 # print(event.position)

 createSymbol(player, event.position)

 updatePlayer()

This code calls the createSymbol function along

with another function called updatePlayer(0, which

we’ll need to create.

 5. Edit the board.gd file to add the updatePlayer()

function as follows:

func updatePlayer():

 if player == 1:

 player = 2

 else:

 player = 1

This code simply alternates between player 1 and

player 2. Notice that this updatePlayer() function

uses a variable called “player,” which doesn’t exist

yet. So we need to declare a “player” variable in the

next step.

Chapter 21 Creating a Simple tiC-taC- toe game

499

 6. Edit the board.gd file to add the following

underneath the “extends Node2D” line:

var player: int = 1

This code defines a “player” variable as an integer

data type and sets its initial value to 1.

 7. Click the Run icon. Notice that the game board

still appears in the upper left corner of the game

window. We could manually move it, but it’s more

accurate to move it to the center of the game

window using GDScript code.

 8. Click the close icon of the (DEBUG) window to

make it go away.

First, we need to move the board to the center of the

game window. We can do that by simply placing the

board in the center.

 9. Edit the board.gd file as follows:

extends Node2D

var player: int = 1

var screensize: Vector2

var offset: Vector2

func _ready():

 screensize = get_viewport().get_visible_rect().size

 position = screensize/2

 offset = position

Chapter 21 Creating a Simple tiC-taC- toe game

500

 10. Edit the createSymbol function in the board.gd file

as follows:

func createSymbol(next_player, new_position):

 if next_player == 1:

 var createX = preload("res://x.tscn")

 var getX = createX.instantiate()

 add_child(getX)

 getX.position = new_position - offset

 else:

 var createCircle = preload("res://o.tscn")

 var getCircle = createCircle.instantiate()

 add_child(getCircle)

 getCircle.position = new_position - offset

Notice that we need to subtract the value of “offset”

for the X or O symbol’s position. That’s because the

board has been moved to the center of the game

window, and without subtracting the offset variable,

the placement of the X and O symbols wouldn’t

appear in the grid where the user clicked.

The entire board.gd file should look like this:

extends Node2D

var player: int = 1

var screensize: Vector2

var offset: Vector2

func _ready():

 screensize = get_viewport().get_visible_rect().size

 position = screensize/2

 offset = position

Chapter 21 Creating a Simple tiC-taC- toe game

501

func _input(event):

 if event is InputEventMouseButton:

 if event.button_index == MOUSE_BUTTON_LEFT and

event.pressed:

 print(event.position)

 createSymbol(player, event.position)

 updatePlayer()

func updatePlayer():

 if player == 1:

 player = 2

 else:

 player = 1

func createSymbol(next_player, new_position):

 if next_player == 1:

 var createX = preload("res://x.tscn")

 var getX = createX.instantiate()

 add_child(getX)

 getX.position = new_position - offset

 else:

 var createCircle = preload("res://o.tscn")

 var getCircle = createCircle.instantiate()

 add_child(getCircle)

 getCircle.position = new_position - offset

 11. Click the Run icon.

 12. Click the board. Notice that each time you click,

the game alternates between displaying an X and

O image.

 13. Click the close icon of the (DEBUG) window to

make it go away.

Chapter 21 Creating a Simple tiC-taC- toe game

502

 Summary
Godot lets you make any game that you like from RPG, shooter, and

fighting games to card games like UNO and Go Fish! This chapter showed

how to create a simple Tic-Tac-Toe game with Godot and demonstrated

several features of Godot:

• Right-clicking a node in the Scene dock lets you choose

the “Save Branch as Scene” command, which lets you

save a node as a separate scene.

• The input(event) function can detect a left mouse click.

• The preload command can load a .tscn file.

As a beginner, learning to code can seem difficult. However, by

combining your interest in video games with programming, this book

can help you learn the basics to programming that will apply to any

programming language. Since programming and creating video games

in particular can seem like massive projects, it’s important to take small

baby steps at a time. If you ever become stuck on a project, take breaks in

between. Better yet, take a deep breath, and think of all the simple projects

you’ve already created such as Tic-Tac-Toe.

The more you program and complete projects similar to Tic-Tac-Toe,

the more you will learn about programming in general and Godot in

particular. Tic-Tac-Toe is only the beginning of your game development

journey. If you want to make games, go for it! The only limitations are your

own imagination.

Chapter 21 Creating a Simple tiC-taC- toe game

503© Wallace Wang, Tonnetta Walcott 2024
W. Wang and T. Walcott, Programming for Game Design,
https://doi.org/10.1007/979-8-8688-0190-7

Index

A
addition operator (+), 86
another_function, 209
apply_force function, 448, 449
apply_torque_impulse function,

448, 449, 452
Area2D node, 274–276, 283, 285,

420, 434, 475, 477
Arrays

create and retrieve
data, 159–161

creating/adding items, 161–163
data structures, 182
deleting data, 175, 176
exercise, 176–180
get information, 163–166
manipulating, 170–172
retrieving data, 166–170
searching data, 173, 174
variable, 156–158
video game, 155

Audio
background noise, 403
detecting collision, 420–430
feedback, 403
file formats, Godot, 403–405,

407, 408

looping, 417–420
pausing, 412–416
starting/stopping, 408–411

AudioStreamPlayer2D node, 420,
422, 428, 430, 431

AudioStreamPlayer node, 405, 408,
411, 417, 418, 431

B
big_function, 210
Boolean data types, 109, 110,

130, 415
Booleans, 109
Branching statements

boolean data type, 109
boolean values, 126–131
comparison operators, 110–112
if-elif, 119, 121, 122
if-else statement, 117, 118
if statement, 115, 116
logical operators, 113–115
match statement, 122–126

C
C#, 33
Camera2D node, 458, 459

https://doi.org/10.1007/979-8-8688-0190-7

504

CharacterBody2D node, 288, 290,
321, 322, 398, 399, 401

clamp function, 397, 398, 402
“class” keyword, 224
clear command, 175, 193, 194
CollisionPolygon2D node, 385–389
CollisionShape2D node, 289, 316,

330, 335, 420, 433, 461
“const” keyword, 71, 90

D
Data storing, in variables

comments, 74, 75
constants/enumerations, 70–73
convert temperature, 53
creating variable, 54–56
data types, 59–64
memory, 54
retrieving values, 56–58
variable change, 76, 78–82
variable scope, 65–70

Dictionary
changing/deleting data, 191–193
creating, 184–186
exercise, 194, 196–198
get information, 189, 190
key-value pairs, 183, 198
retrieve data, 186–188

E
emit_signal command, 472
“enum” keyword, 71

erase command, 175, 192, 193
exponentiation (**) operator, 87
@export keyword, 83, 283, 284,

307–310, 317, 437

F
find_key() command, 191
Functions

built-in functions, 200–203
code, 199
creating, 204–206
exercise, 218–221
library, 199
optional parameters, 211–214
parameters, 206–211
_process function, 203, 204
returning values, 215–217

G
GDScript, 3, 6, 34, 54, 56, 57, 60, 63,

75, 82, 83, 133, 282, 283, 463
GDScript command, 163, 173,

189, 252
.get_playback_position() method,

412, 415
Godot

assets, 6
combat system, 5
creating/opening project, 7, 9–12
editing project, 6, 7
GDScript, 6
inventory system, 5

INDEX

505

rotating/scaling node, 28–31
scene/nodes, creating, 13, 15,

17–19, 21, 23
script, 6
video game, 5
viewing/modifying, scene, 23–28

Godot game engine, 2, 5, 285

H
Hitting enemies, projectile

changing name of
node, 321–323

CollisionShape2D node, 335
creating enemy scene, 320, 321
creating main scene, 326–330
detecting collisions, 330–333
enemy image/collision shape,

324, 326
GDScript code, 319

HSlider, 365, 367

I, J
init() constructor method, 230, 232
_init() function, 200, 201
init() function, 39, 51, 58, 68, 206,

217, 227
Input Map

arbitrarily named input
category, 252

built-in actions, 258
create and use, 257, 258
definition, 256

detecting modifier
keys, 265–272

editing/deleting, 265
empty categories, 259
event configuration, 260–262
keyboard/mouse input, 252–256
project settings, 263, 264
touch gestures, 251

is_empty command, 163–165, 169,
189, 190

K
keyboard function, 251
keys() command, 191
Key-value pair, 183–187, 189–191,

193, 198

L
Label Settings property, 465, 474
Label’s text property, 342
LineEdit control, 338, 340–342,

346–348, 351, 365, 367
Looping statements

count different values, for
loop, 136–140

for loop, 134, 135, 153
for vs. while loops, 146, 147,

149, 150
loops types, 133
repetitive commands, 150–152
strings/arrays, for loop, 140–143
while loop, 143–145, 153

INDEX

506

M
Marker2D node, 273, 287–289,

293–295, 308, 316, 317
Mathematical operators

built-in math functions, 107
constants, creating, 89–91
manipulate strings, 99–101
math functions, 94, 95
+ operator, 88
precedence, 92, 93
randomizing X/Y

position, 101–106
random numbers, creating, 96, 98
spreadsheet, 85

modulo (%) operator, 87
my_function(), 206

N
new() method, 225, 230
“not” logical operator, 114

O
Object-oriented programming

advantages, 250
creating class, 224–227
Godot work

color dialog box, 249
FileSystem dock, 246
modulate property, 248
Node2D/Node3D, 241
nodes, 242–244, 246
player.tscn file, 247
visibility property, 248

inheritance, 250
inheriting class, 232–237
initializing properties, 228–231
nodes, 243
polymorphism, 237, 238, 240
smaller programs, 223

Objects isolate algorithms, 223
Ogg Vorbis file format, 404
_on_body_entered(body)

function, 335
_on_button_3_pressed()

function, 415
on_button_3_pressed()

function, 417
_on_button_pressed() function,

178, 411
on_button_pressed() function, 350
_on_player_update_display()

function, 487

P
Pane, 46
Physics

adding damping, 376–378
gravity, 369–375, 402
layers/masks, 389–397, 402
polygons, 385–389
restricting movement, 397–401
static/rigid bodies, 378–384

Pitch Scale property, 407
Player, adding projectiles

changing name node, 290, 291
control player, 295–301
creating player scene, 288–290

INDEX

507

firing projectile, 307–311
GDScript, 302–307
image/collision shape, adding

player, 292
Marker2D node, 287,

293–295, 317
removing projectile, 313–316

play() method, 408, 411, 417
Polygon2D node, 387
pressed() function, 469
pressed() Signal, 351
_process(delta) function, 200, 203
_process() function, 204

Q
queue_free() function, 313, 314

R
rand() function, 96
randomize() function, 96, 98, 107
_ready() function, 200, 203
ready() function, 39, 41, 51, 96,

206, 493
“return” keyword, 216, 222
RigidBody2D node, 369, 382, 384,

385, 402

S
Scene

adding objects, 433–439
definition, 460

following player, with
camera, 454–459

modifying instances,
440–445, 447

moving/rotating, 448–453
object, 433

screen_exited() function, 315
Scripts

C#, 33, 34
creating, 35, 37
GDScript, 34
GDScript

documentation, viewing
contextual help

command, 47
Ctrl/Command key, 50, 51
Online Docs icon, 42
questions/answers page, 49
Search Help icon, 42
search help window, 43, 44
Sprite2D node, 45

programming languages, 33
writing, 38–40

Shape property, 274, 280, 292, 326,
383, 399, 422, 425, 435, 450

Shooting projectiles
adding projectile image, 278
Area2D node, 285
changing name node, 275–277
collision shape, 279–282
CollisionShape2D node, 285
creating projectile scene,

274, 275
GDScript code, 273

INDEX

508

Marker2D node, 273
projectile move,

making, 282–285
Sprite2D node, 285

Shuffle command, 172
Signals

call functions, 487, 488
calling down to

function, 464–471
calling functions, 463, 464
signaling up

create player scene, 477, 478
create treasure scene,

475, 476
detecting collisions, 472–474
function, 472
player.gd file, 480, 482–484,

486, 487
tracking collisions, 472
treasure objects, 478–480

Sprite2D node, 31, 35, 274, 293,
369, 433, 461

StaticBody2D node, 385, 391
.stop() function, 411
subtraction operator (-), 87

T
TextEdit control, 338, 348, 351,

362, 367
Text property, 465, 474
Texture property, 425, 435
Tic-Tac-Toe game

detecting clicks on
board, 491–493

displaying plaer
moves, 494–501

Godot, 489
Godot features, 502
images, 490, 491

U
update_score function, 470, 471
User interface

CheckButtons, 361–364, 367
display information, 337
inputting/displaying

text, 338–342
OptionButton, 367
option buttons/item

lists, 351–361
signals, 342–345, 347
sliders, 365, 366
TextEdit/Buttons, 347–351
user signals, 346

V
values() command, 191
“var” keyword, 54, 82
Volume dB property, 407
VSlider, 365, 367

W, X, Y, Z
WASD keys, 253, 256, 264, 297, 300

Shooting projectiles (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Why Learn Programming with the Godot Game Engine?
	Chapter 2: Getting to Know Godot
	Creating and Opening a Godot Project
	Creating a Scene and Nodes
	Viewing and Modifying a Scene
	Rotating and Scaling a Node
	Summary

	Chapter 3: Writing Scripts
	Creating a Script
	Writing a Script
	Viewing the GDScript Documentation
	Summary

	Chapter 4: Storing Data in Variables
	Creating a Variable
	Storing and Retrieving Values in a Variable
	Understanding Data Types
	Understanding Variable Scope
	Constants and Enumerations
	Comments
	Exercise: Seeing Variables Change
	Summary

	Chapter 5: Mathematical Operations
	Mathematical Operators
	Creating Constants
	Understanding Precedence
	Using Math Functions
	Creating Random Numbers
	Manipulating Strings
	Exercise: Randomizing an X and Y Position
	Summary

	Chapter 6: Branching Statements
	Working with Comparison Operators
	Working with Logical Operators
	The if Statement
	The if-else Statement
	The if-elif Statement
	The match Statement
	Exercise: Reacting to Different Boolean Values
	Summary

	Chapter 7: Looping Statements
	Using a For Loop
	Using a For Loop to Count with Different Values
	Using the For Loop with Strings and Arrays
	The While Loop
	Comparing For and While Loops
	Exercise: Repeating Code with Loops
	Summary

	Chapter 8: Understanding Arrays
	Using Arrays
	Creating and Adding Items to an Array
	Getting Information About Arrays
	Retrieving Data from Arrays
	Manipulating Arrays
	Searching for Data in an Array
	Deleting Data from an Array
	Exercise: Using Arrays
	Summary

	Chapter 9: Understanding Dictionaries
	Creating Dictionaries
	Retrieving Data from a Dictionary
	Getting Information About Dictionaries
	Changing and Deleting Data in Dictionaries
	Exercise: Using Dictionaries
	Summary

	Chapter 10: Functions
	Understanding Functions
	Creating Functions
	Using Parameters with Functions
	Optional Parameters
	Returning Values with Functions
	Exercise: Using Functions
	Summary

	Chapter 11: Object-Oriented Programming
	Creating a Class
	Initializing Properties
	Inheriting Classes
	Polymorphism
	Exercise: Understanding How Object-Oriented Programming Works in Godot
	Summary

	Chapter 12: Getting Input from the User
	Detecting Keyboard and Mouse Input
	Defining an Input Map
	Detecting Modifier Keys in an Input Map
	Summary

	Chapter 13: Shooting Projectiles
	Creating a Projectile Scene
	Changing the Name of a Node
	Adding a Projectile Image
	Adding a Collision Shape
	Making the Projectile Move
	Summary

	Chapter 14: Adding Projectiles to a Player
	Creating a Player Scene
	Changing the Name of a Node
	Adding a Player Image and Collision Shape
	Using the Marker2D Node to Define the Projectile Location
	Defining Ways to Control the Player
	Writing GDScript Code to Control the Player
	Firing a Projectile
	Removing Projectiles
	Summary

	Chapter 15: Hitting Enemies with Projectiles
	Creating an Enemy Scene
	Changing the Name of a Node
	Adding an Enemy Image and Collision Shape
	Creating a Main Scene
	Detecting Collisions
	Summary

	Chapter 16: Displaying a User Interface
	Inputting and Displaying Text
	Using Signals
	Working with TextEdit and Buttons
	Using Option Buttons and Item Lists
	Working with CheckButtons
	Working with Sliders
	Summary

	Chapter 17: Adding Physics
	Playing with Gravity
	Adding Damping
	Working with Static and Rigid Bodies
	Working with Polygons
	Using Layers and Masks
	Restricting Movement
	Summary

	Chapter 18: Playing Audio
	Audio Formats in Godot
	Starting and Stopping Audio
	Pausing Audio
	Looping Audio
	Playing Audio When Detecting a Collision
	Summary

	Chapter 19: Creating and Using Scenes
	Automatically Adding Objects in Scenes
	Modifying Instances of a Scene
	Automatically Moving and Rotating a Scene
	Following the Player with a Camera
	Summary

	Chapter 20: Using Signals
	Calling Down to a Function
	Signaling Up
	Summary

	Chapter 21: Creating a Simple Tic-Tac-Toe Game
	Detecting Clicks on the Board
	Displaying Player Moves
	Summary

	Index

