

Godot From Zero to Proficiency
(Foundations)

First Edition

––––––––

A step-by-step guide to creating your first 3D game environment in Godot.

Table of Contents

Title Page

Godot from Zero to Proficiency (Foundations)

Chapter 1: The Benefits of Using Godot

Chapter 2: Installing Godot and Becoming Familiar with the Interface

Chapter 3: Creating and Exporting your First Scene

Chapter 4: Transforming Built-in Objects to Create an Indoor Scene

Chapter 5: Creating an Outdoor Scene with Godot’s Built-in Terrain Generator

Chapter 6: Frequently Asked Questions

Chapter 7: Thank you

Sign up for Patrick Felicia's Mailing List

Patrick Felicia

Godot From Zero to Proficiency
(Foundations)

Copyright © 2020 Patrick Felicia

All rights reserved. No part of this book may be reproduced, stored in retrieval

systems, or transmitted in any form or by any means, without the prior written per-

mission of the publisher (Patrick Felicia), except in the case of brief quotations

embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accu-

racy of the information presented. However, the information contained in this book

is sold without warranty, either expressed or implied. Neither the author and its

dealers and distributors will be held liable for any damages caused or alleged to be

caused directly or indirectly by this book.

• First published: March 2021.

Published by Patrick Felicia

Credits
Author: Patrick Felicia

About the Author
Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology,

where he teaches and supervises undergraduate and postgraduate students. He

obtained his MSc in Multimedia Technology in 2003 and PhD in Computer Sci-

ence in 2009 from University College Cork, Ireland. He has published several

books and articles on the use of video games for educational purposes, including

the Handbook of Research on Improving Learning and Motivation through Educa-

tional Games: Multidisciplinary Approaches (published by IGI), and Digital Games

in Schools: a Handbook for Teachers, published by European Schoolnet. Patrick is

also the Editor-in-chief of the International Journal of Game-Based Learning

(ĲGBL), and the Conference Director of the Irish Symposium on Game-Based

Learning, a popular conference on games and learning organized throughout Ire-

land.

Support and Resources for this Book
To complete the activities presented in this book you need to download the

startup pack on the companion website; it consists of free resources that you will

need to complete your projects. To download these resources, please do the fol-

lowing:

• Open the page http://www.learntocreategames.com/books.

• Click on your book (Godot From Zero to Proficiency (Foundations))

• In the new page, please click the link that says “Please Here Click to Down-

load Your Resource Pack”

This book is dedicated to Mathis & Helena

Table of Contents
Chapter 1: The Benefits of Using Godot

What is a game engine and should you use one?

Advantages of using Godot

Novelties introduced in Godot 3.

Level roundup

Chapter 2: Installing Godot and Becoming Familiar with the Interface

Downloading Godot

Understanding and becoming familiar with the interface

The Viewport

Discovering and navigating through the scene

The scene tree (or scene dock)

The filesystem dock

The inspector

The bottom panel

Level roundup

Chapter 3: Creating and Exporting your First Scene

Creating a new project and a new scene

Adding and combining simple built-in objects to your scene

Adding colors and textures

Creating a simple staircase

Saving the scene

Building and exporting our scene

Level roundup

Chapter 4: Transforming Built-in Objects to Create an Indoor Scene

The plan

Creating a scene and importing the necessary assets

Changing the texture of the ground (removing the image template)

Adding a ceiling to the maze

Adding light to the scene

Level roundup

Chapter 5: Creating an Outdoor Scene with Godot’s Built-in Terrain Generator

The plan

The island outline

Downloading necessary material

Importing necessary assets

Creating the outline of the island

Adding water

Painting the island with realistic textures

Adding a lake and a mountain

Adding a car to the 3D environment

Level roundup

Chapter 8: Frequently Asked Questions

Chapter 9: Thank you

Preface
This book will show you how you can very quickly start using Godot, a light-

weight engine that makes it possible to create games.

Although it may not be as powerful as Unity or Unreal yet, it offers a wide range

of features for you to create your own video games. More importantly, this game

engine is both Open Source and lightweight which means that even if you have (or

you are teaching with) computers with very low technical specification, you should

still be able to use Godot, and teach or learn how to code while creating video

games.

This book series entitled Godot From Zero to Proficiency gives you the oppor-

tunity to play around with Godot’s core features, and essentially those that will

make it possible to create interesting 3D and 2D games rapidly. After reading this

book series, you should find it easier to use Godot and its core functionalities.

This book series assumes no prior knowledge on the part of the reader, and it

will get you started on Godot so that you quickly master all the wonderful features

that this software provides by going through an easy learning curve.

By completing each chapter, and by following step-by-step instructions, you

will progressively improve your skills, become more proficient in Godot, and create

a survival game using Godot’s core features in terms of programming (i.e.,

GDScript), game design, and drag and drop features.

In addition to understanding and being able to master Godot’s core features,

you will also create a game that includes many of the common techniques found in

video games, including: level design, object creation, textures, collision detection,

lights, weapon creation, character animations, particles, artificial intelligence, and

menus.

Throughout this book series, you will create a game that includes both indoor

and outdoor environments where the player needs to finds its way out of the for-

mer through tunnels, escalators, traps, and other challenges, avoid or eliminate

enemies using weapons (i.e., gun or grenades), and drive a car or pilot an aircraft.

You will learn how to create customized menus and simple user interfaces

using Godot’s UI system, and animate and give (artificial) intelligence to

Non-Player Characters (NPCs) that will be able to follow your character using path

finding.

Finally, you will also get to export your game at the different stages of the

books, so that you can share it with friends and obtain some feedback as well.

Content Covered by this Book
Chapter 1, The Benefits of Using Godot, provides general information on game

engines and explains why you should use such software, and how, by using Godot

more specifically, you can create games seamlessly.

Chapter 2, Installing Godot and Becoming Familiar with the Interface, takes you

through the very first steps of installing Godot and becoming familiar with the

interface. It will also show you the different shortcuts necessary to navigate

through scenes and projects in Godot.

Chapter 3, Creating and Exporting your First Scene, gets you to create and export

your first scene by combining built-in objects. You will learn how to manage ob-

jects, apply textures and colors, and transform objects to create a simple scene.

Chapter 4, Transforming Built-in Objects to Create an Indoor Scene, explains how

you can create an indoor scene (i.e., a maze) with built-in shapes. You will also

work with and manage lights in your scene to set the atmosphere and navigate

through the scene with a First-Person Controller.

Chapter 5, Creating an outdoor Scene with Godot's Built-in Terrain Generator, ex-

plains how you can create an outdoor scene with water, hills, sandy beaches, and

palm trees using Godot’s built-in assets. You will also be able to add and control a

car and a plane.

Chapter 6 provides answers to frequently asked questions based on specific

themes and topics (e.g., asset creation or transformations).

Chapter 7 summarizes the topics covered in this book and also provides useful

information if you would like to progress further with this book series.

What you Need to Use this Book
To complete the project presented in this book, you only need Godot 3.2 (or a

more recent version), and to also ensure that your computer and its operating sys-

tem comply with Godot’s requirements. Godot can be downloaded from the offi-

cial website (http://www.godotengine.org/download), and before downloading,

you can check that your computer fulfills the requirements for Godot on the same

page.

At the time of writing this book, the following operating systems are supported

by Godot for development: Windows, Linux and Mac OS X.

In terms of computer skills, all knowledge introduced in this book will assume

no prior programming experience from the reader. This book does not include any

programming, as this will be introduced in the second book in the series. So for

now, you only need to be able to perform common computer tasks such as down-

loading files, opening and saving files, be comfortable with dragging and dropping

items, and typing.

Who this Book is for
If you can answer yes to all these questions, then this book is for you:

1. Are you a total beginner in Godot?

2. Would you like to become proficient in the core functionalities offered by

Godot?

3. Would you like to teach students or help your child to understand how to

create games?

4. Would you like to start creating great 3D games?

5. Although you may have had some prior exposure to Godot, would you like

to delve more into Godot and understand its core functionalities in more de-

tail?

Who this Book is not for
If you can answer yes to all these questions, then this book is not for you:

1. Can you already easily create a 3D game with Godot with built-in objects,

controllers, cameras, lights, and terrains?

2. Are you looking for a reference book on Godot programming?

3. Are you an experienced (or at least advanced) Godot user?

If you can answer yes to all three questions, you may instead look for the next

books in the series. To see the content and topics covered by these books, you can

check the official website (www.learntocreategames.com/books/).

How you will Learn from this Book
Because all students learn differently and have different expectations of a

course, this book is designed to ensure that all readers find a learning mode that

suits them. Therefore, it includes the following:

• A list of the learning objectives at the start of each chapter so that readers

have a snapshot of the skills that will be covered.

• Each section includes an overview of the activities covered.

• Many of the activities are step-by-step, and learners are also given the op-

portunities to engage in deeper learning and problem-solving skills through

the challenges offered at the end of each chapter.

• Each chapter ends-up with a quiz and challenges through which you can put

your skills into practice, and see how much you know.

• The book focuses on the core skills that you need. Some sections also go

into more detail. However, once the concepts have been explained, links are

provided to additional resources, if and where necessary.

Format of each Chapter and Writing Conventions
Throughout this book, and to make reading and learning easier, text formatting

and icons will be used to highlight parts of the information provided and to make it

more readable.

Special Notes

Each chapter includes resource sections so that you can further your under-

standing and mastery of Godot. These include:

• A quiz for each chapter: these quizzes usually include 10 questions that test

your knowledge of the topics covered throughout the chapter. The solutions

are provided on the companion website.

• A checklist: it consists of between 5 and 10 key concepts and skills that you

need to be comfortable with before progressing to the next chapter.

• Challenges: each chapter includes a challenge section where you are asked to

combine your skills to solve a particular problem.

The author’s notes appear as described below:

Author’s suggestions appear in this box.

Checklists that include the important points covered in the chapter appear as

described below:

• Item1 for check list

• Item2 for check list

• Item3 for check list

How Can You Learn Best from this Book
• Talk to your friends about what you are doing.

We often think that we understand a topic until we have to explain it to friends

and answer their questions. By explaining your different projects, what you

just learned will become clearer to you.

• Do the exercises.

All chapters include exercises that will help you to learn by doing. In other

words, by completing these exercises, you will be able to better understand

the topic and you will gain practical skills (i.e., rather than just reading).

• Don’t be afraid of making mistakes.

I usually tell my students that making mistakes is part of the learning process.

The more mistakes you make and the more opportunities you have for learn-

ing. At the start, you may find the errors disconcerting, or that the engine does

not work as expected until you understand what went wrong.

• Export your games early.

It is always great to build and export your first game. Even if it is rather simple,

it is always good to see it in a browser and to be able to share it with you

friends.

• Learn in chunks.

It may be disconcerting to go through five or six chapters straight, as it may

lower your motivation. Instead, give yourself enough time to learn, go at your

own pace, and learn in small chunks (e.g., between 15 and 20 minutes per

day). This will do at least two things for you: it will give your brain the time to

“digest” the information that you have just learned, so that you can start fresh

the following day. It will also make sure that you don’t “burn-out” and that you

keep your motivation levels high.

Feedback
While I have done everything possible to produce a book of high quality and

value, I always appreciate feedback from readers so that the book can be improved

accordingly. If you would like to give feedback, you can email me at

learntocreategames@gmail.com.

Downloading the Solutions for the Book
To complete the activities presented in this book you need to download the

startup pack on the companion website; it consists of free resources that you will

need to complete your projects. To download these resources, please do the fol-

lowing:

• Open the page http://www.learntocreategames.com/books.

• Click on your book (Godot From Zero to Proficiency (Foundations))

• In the new page, please click the link that says “Please Here Click to Down-

load Your Resource Pack”

Improving the Book
Although great care was taken in checking the content of this book, I am

human, and some errors could remain in the book. As a result, it would be great if

you could let me know of any issue or error you may have come across in this

book, so that it can be solved and the book updated accordingly. To report an

error, you can email me (learntocreategames@gmail.com) with the following infor-

mation:

• Name of the book.

• The page where the error was detected.

• Describe the error and also what you think the correction should be.

Once your email is received, the error will be checked, and, in the case of a

valid error, it will be corrected and the book page will be updated to reflect the

changes accordingly.

Supporting the Author
A lot of work has gone into this book and it is the fruit of long hours of prepa-

ration, brainstorming, and finally writing. As a result, I would ask that you do not

distribute any illegal copies of this book.

This means that if a friend wants a copy of this book, s/he will have to buy it

through the official channels or the book’s official website:

www.learntocreategames.com/books.

If some of your friends are interested in the book, you can refer them to the

book’s official website (http://www.learntocreategames.com/books) where they

can either buy the book, enter a monthly draw to be in for a chance of receiving a

free copy of the book, or to be notified of future promotional offers.

- -

Chapter 1: The Benefits of Using Godot

This chapter is an introduction to game engines and to Godot, and it explains the

benefits brought by game engines, and more specifically how Godot can help you

to create games seamlessly. The most recent features are explained, and examples

of games created in Godot are also given so that you can evaluate the potential of

this game engine.

If you already know of the benefits of Godot and game engines in general, you

can skip this chapter.

After completing this section, you should be able to:

• Understand the concept of game engines.

• Know the features introduced by Godot 3.

• Understand the benefits of using Godot.

What is a game engine and should you use one?

Godot makes it possible to create video games without knowing some of the

underlying technologies of game development, so that potential game developers

only need to focus on the game mechanics and employ a high-level approach to

creating games using programming and scripting languages such as C# or Python.

The term high-level here refers to the fact that when you create a game with a game

engine, you don’t need to worry about how the software will render the game or

how it will communicate with the graphics card to optimize the speed of your

game. So using a game engine would generally offer the following features and

benefits:

• Accelerated development: game engines make it possible to focus on the

game mechanics. Because built-in libraries are available for common

mechanics and features, these do not need to be rebuilt from scratch, and

programmers can use them immediately and save time (e.g., for the user

interface or the artificial intelligence).

• Integrated Development Environment (IDE): an IDE helps to create, compile,

and manage your code, and includes some useful tools that make devel-

opment and debugging more efficient.

• Graphical User Interface (GUI): while some game engines are based on li-

braries, most common game engines make it possible for users to create ob-

jects seamlessly and to perform common tasks such as transforming, tex-

turing, and animating assets, through drag and drop features. Another advan-

tage of such software is that you can understand and preview how the game

will look without having to compile the code beforehand (e.g., through

scenes).

• Multi-platform deployment: with common game engines, it is possible to

easily export the game that you have created to several platforms (e.g., for the

web, iOS, or Android) without having to recode the entire game.

Advantages of using Godot

There are several game engines available out there. However, Godot, which is a

relatively recent game engine has proven to be a very good game engine, and more

importantly, it is lightweight and very easy to install and use.

With Godot, you can create 2D or 3D games and produce several types of game

genres including First-Person Shooters (FPS), Role Playing Games (RPG), casual

games, adventure games, and much more.

In addition to being able to create a wide range of video games with an easy-

to-use interface, Godot makes it possible to export games to a wide range of plat-

forms, including mobile platforms including Android, iOS, Windows, MacOS or

Linux.

Godot includes all the necessary tools that you need to create great games and

it also simplifies the application of useful techniques to improve the quality of your

game.

Finally, in order to control the game, you can use high-level programming and

scripting languages such as C# or GDScript (similar to Python). This is useful for

those who have already been exposed to similar languages to transfer their skills to

game programming in Godot.

Novelties introduced in Godot 3.

Currently, Godot is in version 3.0. While the Godot team is consistently working

hard to improve the features and functionalities included within, the software has

gone through a steady pace of changes and improvements since its first launch.

Bugs are being fixed quickly and the Godot team is always looking into making this

software easier to use and more efficient.

While subsequent versions will, without a doubt, introduce interesting new fea-

tures, most of the skills and knowledge that you will acquire in this book should

still be relevant.

The first version of Godot, Godot 1, was released in 2014. It included many of

the features found in game engines including light mapping, shaders or navigation.

Godot 2 was released in 2016 and has brought significant additions such as:

scene instancing, inheritance and a better debugger.

Godot 3 was released in 2018 and built on the strengths of Godot 2 to include

more features that made the development process even more seamless. This is

especially true for C# support (the ability to code in C# in the engine), visual

scripting, VR support, and support for WebAssembly.

As you can see, there is much to learn in Godot and we will focus on Godot’s

core technologies in this book series.

Level roundup

Summary

This chapter has described some of the reasons why you should use Godot

and some of its core functionalities. You have also discovered the concept of game

engines, the benefits brought by game engines, and how Godot can specifically

make it easier for you to get started with game development.

Chapter 2: Installing Godot and Becoming Familiar with the
Interface

This chapter helps you to progressively become familiar with Godot by explaining

and illustrating how to install this software, and how the different views and core

features can be employed. You will also learn to create your first project and scene,

using predefined objects such as boxes. After learning the features of the different

views available in Godot, you will learn how to navigate through a scene (to look at

objects), before creating your very first game environment with built-in objects,

and applying colors and textures.

After completing this section, you should be able to:

• Be more comfortable with Godot’s interface.

• Understand the role and location of the different views in Godot.

• Understand the role of colliders.

• Add and configure cameras and lights.

• Know and use shortcuts to manipulate objects (e.g., move, scale, resize,

duplicate, or delete) and move the view accordingly (e.g., pan or rotate).

• Create and apply colors and textures to objects.

• Create and combine simple built-in shapes.

• Know how to search for and organize assets in your game efficiently.

• Navigate through your scene.

Downloading Godot

Now that you have had an overview of Godot and game engines, it is time for

us to start using Godot. However, before you can install and use Godot, you will

need to download and install Godot using the following steps:

1. Please open the following link: https://godotengine.org/download/.

2. A new page will automatically load depending on your operating system; for

example, if you are using Mac OS, the page https://godotengine.org/

down- load/ osx will open, and if you are using Windows, the page https://

godotengine.org/ download/windows will open instead.

3. Please check the requirements for installing Godot on your computer listed

on that page.

4. Once you have checked the requirements, we can start to download Godot:

you will have the choice to download the Standard Version or the Mono Ver-

sion (C# support). Because we will be using GSScript in this book series,

please click on the link for the Standard Version.

5. After clicking on the button for the Standard Version of Godot, the download

should start and the application should be downloaded to your computer.

6. After a few seconds, depending on your connection speed, a zip file con-

taining the application should have been downloaded.

7. You can then unzip this file and run Godot by double clicking on the file that

has just been unzipped.

Launching Godot

• After launching Godot, a new window will be displayed as follows.

This window includes two tabs: a tab called Projects that lists a default project

called “Platformer 3D” and your current projects (if any), and a tab called

“Templates” where you will be able to find demo projects and templates for dif-

ferent game genres and their associated features.

For now, we will create a new project to become familiar with the interface.

• Please click on the button labelled New Project.

• A new window will appear as illustrated in the next figure:

As we will see in the next steps, this window will make it possible for you to

provide a name and a location for your project.

• Please enter a name for your project in the field labelled “Project Name”, for

example “My First Project”.

• By default, your project will be saved in your home folder; this being said, if

you prefer to save it in a different location, please click on the button labelled

“Browse” to select the location of your choice.

• This will open a new window where you will be able to select a folder for your

project.

Let’s create a folder called “Godot” on our desktop (you can create a folder in

another location if you wish) so that the project can be saved within.

• Please select the folder of your choice from the list (in my case this the folder

called Desktop) by double clicking on it.

• Click on the button labelled “Create Folder” to create a folder within the

folder called “Desktop” that you have just selected. This will open a new win-

dow where you can specify the name of the new folder.

• Please type the name of the new folder and click on the button labelled “OK”.

• Once this is done, you can click on the button labelled “Select Current

Folder” so that the folder that you have just created is used for your project.

• In the new window, you can then click on the button labelled “Create and

Edit”.

• At this stage Godot should open.

• If the following message appears, please click “OK”.

That’s it, you have now installed and launched Godot. In the next section, we

will start to familiarize ourselves with the different windows available in Godot.

Godot provides links to official forums and documentation from the main (i.e.,

top) menu: Help | Online Docs

Understanding and becoming familiar with the interface

After launching Godot, you will notice that it includes several windows orga-

nized in a (default) layout. Each of these windows includes a label in their top-left

corner. These windows can be moved around and rearranged, if necessary, by ei-

ther changing the layout (using the menu Editor | Editor Layout | ...) or by dragging

and dropping the corresponding tab for a window to a different location. This will

move the view/panel (or window) to where you would like it to appear onscreen. In

the default layout, the following views appear onscreen.

1. The top tabs: theses workspaces are used to visualize a 3D scene, or a 2D

scene, the scripts included in your scene, and the different assets that you

can avail of for your project.

1. The Scene tab: this window or view lists all the nodes currently present in

your scene. These could include, for example, basic shapes, 3D characters,

or terrains. This view also makes it possible to identify a hierarchy between

nodes, and to identify, for example, whether an object has children or parents

(we will explore this concept later).

1. The FileSystem tab: this window includes all the assets available and used

for your project, such as 3D models, sounds, or textures.

1. The bottom tabs: these tabs include information related to your actions in

Godot, as well as compile errors, amongst other things. More specifically

information will be related to animation, audio, compilation, messages from

your code, and actions in Godot.

1. The Inspector tab: this tab displays information (i.e., the properties) on the

object or the node that is currently selected.

1. The Play-Test buttons (located in the top right corner): these buttons make it

possible to play/pause/stop/build the current project or scene.

1. The View port: this tab located in the middle of the screen displays the con-

tent of a scene (or the item listed in the Hierarchy view) so that you can visu-

alize and modify them accordingly (e.g., move, scale, etc.).

––––––––

The Viewport

We will use this view to create and visualize the scene for our game. When

you create a project, you can include several scenes within. A scene is comparable

to a level, and scenes that are included in the same project can share similar re-

sources, so that assets are imported once and shared across (or used in) all

scenes.

Discovering and navigating through the scene

So that you can navigate easily in the current scene, several shortcuts and navi-

gation modes are available. These make it possible to navigate through your scene

just as you would in a First-Person Shooter or to literally “fly” through your scene.

You can also zoom-in and zoom-out to focus on specific areas or objects, look

around (i.e., using mouse look) or pan the view to focus on a specific part of the

scene. The main modes of navigation are provided in the next table. However, we

will look into these in more detail in the next section as we will be experimenting

with them to explore (and modify) an existing scene.

In the 3D workspace, the workspace that we will mainly be working with in this

book, you can navigate as follows:

• Rotate the view: Middle Mouse Button (MMB) + Drag and Drop.

• Pan the view: Middle Mouse Button (MMB) + Drag and Drop + SHIFT.

• Zoom-in and out: Mouse Wheel (MW) Forward or back.

To activate the 3D workspace, you can click on the button called 3D, at the top

of the window.

As you can see, all these navigation features are very useful to navigate through

your scene and to visualize all its elements. In addition, you can also choose to

display the scene along a particular axis (i.e., x, y, or z) using the gizmo that is dis-

played in the top-right corner of the Scene view as described on the next figure.

Figure 0-1: Gizmo

The gizmo available in the Scene view includes three axes that are color-coded:

x (in red), y (in green) and z (in blue). By clicking on any of these axes (or corre-

sponding letters), the scene will be seen accordingly (i.e., through the x-, y-, or z-

axis).

If you are not familiar with 3D axes: x, and z usually refer to the width and

depth, while y refers to the height. By default, in Godot, the z-axis is pointing to-

wards you if the x-axis is pointing to the right and the y-axis is pointing upwards.

This is often referred as a right-handed coordinate system.

In addition to the navigation tools, Godot also offers ways to focus on a partic-

ular node by selecting the object in the Scene Tree, and then pressing the key F.

While the shortcuts and keys described in this section should get you started

with Godot and make it possible for you to navigate through your scene easily,

there are, obviously, many more shortcuts that you could use, but that will not be

presented in this book. Instead, you may look for and find these in the official doc-

umentation that is available both offline using the following link:

https://docs.godotengine.org/en/stable/getting_started/editor/default_key_mapping.html.

Alternatively, you can open the online help (Help | Online Docs) and choose:

Getting Started | Step by Step | Editor Manual | Default Editor Shortcuts.

The scene tree (or scene dock)

As indicated by its name, this dock lists and displays the name of all nodes in-

cluded in the scene (in alphabetical order, by default) along with the type of rela-

tionship or hierarchy between them.

In Godot each scene is a combination of nodes organized in a tree-like struc-

ture whereby each node (except from the root node) has either a parent and/or

children, and also properties that you can modify.

The Scene Tree offers several advantages when we need to manage all the

nodes present in the scene quickly and to perform organizational changes. For

example, we could use this view to find nodes based on their name, to duplicate

nodes, to amend the name of nodes, to amend the properties of several nodes, or

to change the hierarchy between nodes.

For example, on the following figure, we can see that:

• The scene includes seven several nested nodes: the node called house in-

cludes two nodes called room1 and room2.

• The node called room1 includes a node called chair.

• In this case the node called house is the parent of the nodes called room1 and

room2, and room1 and room2 are the children of their parent node called

house.

Figure 0-2: Creating a hierarchy between nodes

To change the hierarchy of the scene and make some nodes children of a par-

ticular node, we only need to drag these nodes atop the parent object.

The filesystem dock

This dock includes and displays all the assets employed in your project (and

across scenes), including: audio files, textures, scripts (e.g., scripts written in C#),

materials, 3D models, or scenes, or packages. All these assets, once present in the

FileSystem dock, can be shared across scenes.

In other words, if we create a project and then a scene, and import assets for

our game, these assets will be available from any other scene within the same

project.

As for the Scene Tree, search capabilities are included to ease the management

of all your assets.

By default, the FileSystem tab will list the files and folders included in your

project along with a search field that can be used to find files and assets within

your project.

The inspector

This dock displays the properties of the node currently selected (e.g., the node se-

lected in the Scene Tree) and it makes it possible to modify the attributes of a node

accordingly.

By default, all nodes present in the scene have a name; if they are spatial nodes,

they also include attributes such as Transform (for their position, rotation and

scale attributes), a Matrix (another way to specify the node’s location, translation

and scale attributes), and Visibility (to specify whether they should be seen in the

scene).

The bottom panel

The bottom panel includes tabs with information related to your actions in Godot,

animation, audio, compilation, messages from your code, and actions in Godot.

• The Output tab will list all your actions in Godot and is comparable to a log.

This tab can also be used to display messages from your code.

• The Debugger tab will be useful to see any compilation errors when you cre-

ate and compile your scripts.

The asset library

This window, which is not displayed by default when you open Godot, con-

nects you to the Asset Library, an online repository where you can search for and

find assets for your game. All these assets are free of charge which makes it similar

to a software repository.

Level roundup

Summary

In this chapter, we have become familiar with the different views and windows

available in Godot. We also looked at how to navigate through scenes and how to

change the layout of our working environment. In the next chapter, we will harness

these skills to be able to create and navigate through our own 3D environment.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are TRUE or FALSE. The answers are available on the next page.

1. To install Godot, you need to launch an installer.

2. Godot is a premium software.

3. With Godot you can create both 2D and 3D games.

4. In Godot, you can specify where your project will be saved.

5. Once an asset has been downloaded in the scene, it is not available in other

scenes within the same project.

6. It is possible to make some nodes invisible in Godot.

7. To make some nodes children of other nodes, you can select a node and

drag and drop it atop its parent.

8. Godot is using a right-hand coordinate system.

9. Help on Godot is available online.

10. To rotate the current view in the 3D mode you can use the Middle Mouse

Button and drag and drop your mouse.

Solutions to the Quiz

1. FALSE.

2. FALSE.

3. TRUE.

4. TRUE.

5. FALSE.

6. TRUE.

7. TRUE.

8. TRUE.

9. TRUE.

10. TRUE.

Checklist

If you can do the following, then you are ready to go to the next chapter:

• Install Godot.

• Navigate through a scene easily.

• Pan or rotate the view in a 3D mode.

• Answer at least 7 out of 10 of the questions

correctly in the quiz.

Chapter 3: Creating and Exporting your First Scene

In this chapter, we will create our first scene and start to include, combine, and

apply textures to basic shapes such as boxes. This chapter explains how to use

basic transformations and how to apply them to objects. It will also explain how to

manage and group objects.

After completing this section, you should be able to:

• Create a scene.

• Add basic objects.

• Create and apply colors and textures to objects.

• Group shapes.

• Search for particular objects or assets using shortcuts.

• Export your first scene.

Creating a new project and a new scene

Now that we have covered the main features for the interface, we will create a sim-

ple scene that you can navigate through and that includes textures and colors for

some of these objects.

After completing this section, you will be able to:

• Add basic objects to your scene.

• Apply basic texturing and coloring to objects.

• Transform objects (i.e., move, scale, and rotate objects).

• Add a character controller to the scene to be able to walk around the level.

• Add and configure lights.

• Group objects and apply attributes to several objects at a time.

––––––––

Adding and combining simple built-in objects to your
scene

As we will see later, we can create our game environment using a wide range of

primitive shapes (e.g., cylinders, spheres, boxes, etc.), lights (e.g., directional

lights or point lights), cameras, and other built-in assets (e.g., character con-

trollers). Once these objects have been added to the current scene, Godot makes it

possible to modify their attributes.

First let’s configure our scene so that we can create 3D content.

• In the Scene Tree tab, you should see a message asking you to create a Root

Node.

• Please click on the option “3D Scene” as we will be creating a 3D scene for

now.

After selecting this option, the Scene Tree should display a node called Spatial.

This node will be the basis for the rest of our scene.

Next, let’s create a cube that will be used for the ground

• Please right-click on the node called Spatial.

• From the contextual menu, please select the option Add Child Node.

• In the new window, please type the word box in the search field.

• You can then select (double click) on the node type called CSGBox.

• This will create a box that will be, by default, located at the position (0, 0, 0)

with a size of 1. This means that the height, depth, and width of this object are

equal to 1.

• Please rename the cube myCube: to rename the cube, we can (1) select it in

the Scene Tree and then press CTRL + ENTER simultaneously, or (2) select it

in the Scene Tree and double click on it, or (3) right-click on the object in the

Scene Tree window and select the option Rename from the contextual menu.

Once you have renamed the cube, we can change some of its properties and

see how this affects its appearance. For example:

• In the Inspector window, please locate the attribute called Transform, and

change the x, y, and z scale properties to 2 and see how it affects the size of

the cube.

Note that you can use the search box locate at the top of the Inspector window

to look for a specific attribute

• Change its y rotation attributes to 45 (i.e., a rotation around the y-axis ex-

pressed in degrees), and see how its orientation has changed. Note that for

any of these parameters, you can use the Inspector window to either change a

value in the corresponding text fields, or click on one of the parameters and

drag and drop the mouse: this will either increase or decrease the value in the

corresponding field. It is usually an easier way to amend the attributes of an

object.

Once you are comfortable with modifying the transform properties of the cube

using the Inspector, let’s look at other interesting ways to observe the objects and

the scene to modify their attributes.

You will notice a toolbar located in the top-left corner of the viewport, as illus-

trated on the next figure.

This toolbar includes, amongst other things, three distinct buttons that are

shortcuts to (from left to right) (1) move the object currently selected, (2) rotate

the object currently selected, or (3) scale the object currently selected. These three

buttons can also be accessed using the key shortcuts W, E, and R.

Before we transform this object, let's experiment with the Panning and rotating

the view:

• Rotating around the object: please press the Middle Mouse Button and drag

and drop the mouse; you should see that you are effectively rotating the view

around the selected object.

• Panning the view: please press the Middle Mouse Button and the SHIFT key,

and drag and drop the mouse; you should see that you are effectively panning

the view.

• Focusing the view on the object currently selected: please press the key F and

you should see that the view is now re-focused on the current object selected.

• Zooming: please move the mouse wheel and check that you can zoom in and

out

Before we look at how to transform our cube, let’s look at a useful widget called

a gizmo. This widget, illustrated on the next figure, is located in the top-right corner

of the Scene view and makes it possible to view the scene from several axes and

perspectives.

Figure 0-1: Using the gizmo

Using this gizmo, and by clicking on its x, y, or z arms, we can see the scene

from the corresponding axis. Let’s experiment with it:

• We can successively click on the x, y, and z arms of the gizmo, and see how

the view changes.

• Note that by clicking on the button labelled Perspective (top-left corner), you

can switch between the perspective and orthographic (or isometric) views.

• To readjust the view, we can press the Middle Mouse Button and drag and

drop the mouse, so that we can rotate around the object accordingly.

After this short distraction, let’s come back to our top-left toolbar and exper-

iment with the three buttons dedicated to transform nodes.

First, let’s experiment with the Move tool:

• Select the Move tool from the toolbar or use the corresponding shortcut (W).

• You should now see three arrows from the cube. These arrows are handles

that you can drag and drop to move the selected object in a particular direc-

tion (e.g., along the x-, y- or z-axis).

As you successively drag the blue, red, and green handles, please observe how

you can move your object along the corresponding axes.

Now, let’s experiment with the Rotation tool:

• Select the object called “myCube” in the Scene Tree, and press the key F to

focus the view on this object.

• Select the Rotation tool from the toolbar (third icon from the left) or use the

corresponding shortcut (E).

You should now see a combination of green, red, and blue circles around the

object. These are handles that you can drag and drop to rotate the object currently

selected around a particular axis (e.g., around the x-, y- and z-axis).

The color of the handle indicates the axis around which the object will be ro-

tated. For example, by dragging and dropping the green handle, we can rotate the

object around the y-axis. The same applies to the blue and red handles for a rota-

tion around the z-axis or x-axis, respectively.

As we drag these handles, we can see that the values for the corresponding

Rotation attributes in the Inspector also change.

Now, let’s experiment with the Scale tool:

• Select the Scale tool from the toolbar (fourth icon from the left) or use the

corresponding shortcut (R).

• You should now see a combination of green, red, and blue lines and handles

around the object. These are handles that you can drag and drop to scale the

selected object along a particular axis (e.g., along the x-, y-, and z-axis).

The color of the handle indicates the axis along which the object will be scaled.

For example, by dragging and dropping the green handle, we can scale the object

along the y-axis. The same applies to the blue (z-axis) and red (x-axis) handles.

Also note that by dragging the middle white square, the transformation will be uni-

form. In other words, the amount of scaling will be the same on all three axes (x-,

y-, and z-axis).

At this stage, we have performed several transformations on the new cube, and

we may want to reset its attributes so that it is the same as when it was initially cre-

ated. We can do so by using the round arrow located to the right of the attributes

Translation, Rotation and Scale, as described on the next figure.

For more information and tips on how to use Godot’s interface, you can check

Godot’s official documentation.

Adding colors and textures

At this stage we have a box in our scene that we can see through the viewport; this

being said, it would be great to add two other objects to our scene: a camera so

that we can preview our scene, and also lights.

Before we start adding colors and texture, let’s reset the box to its original size

and set its scale attribute to (1, 1, 1):

• Please select the box in the Scene Tree.

• Using the Inspector, locate the attribute called Transform.

• Set the Translation attribute to (0, 0, 0) and the Scale attribute to (1, 1, 1).

• Note that to reset one of these attributes, you can also click on the revolving

arrow to the right of each attribute, as illustrated in the next figure.

Now that we have reset the transform attributes of the box, let’s add a camera:

• Please select the node called Spatial in the Scene Tree.

• Right-click on it and select Add Child Node from the contextual menu. This

means that the new camera that we have created will be a child of the root

node called Spatial.

• In the new window, type the word camera in the search field, and then select

(i.e., double click on) the node type Camera from the list.

• This will create a new node called Camera in the Scene Tree.

• Now that this camera has been added, you should see an option called Pre-

view in the view port, as illustrated in the next figure.

• This option makes it possible to see the scene through the lenses of the cam-

era as a preview.

• Please click on the tick box to the right of the Preview icon, this should dis-

play the preview as illustrated in the next figure.

This is how your game will look like. At the moment, we can only see a blue sky

within the preview window, as the camera is not pointing at the box that we have

created earlier. We can also see that the Inspector window, which is located to the

right of the screen, displays the attributes of this camera.

Amongst other things, we see that the camera is located at the position (x=0,

y=0, z=0) and that it has not been rotated yet.

Please note that it is possible to simultaneously display the viewport and the

view from one camera present in the scene by either selecting View | 2 ViewPorts or

by pressing CMD/CTRL + 2, as illustrated in the next figure.

Next, we can add a light to our scene:

• Please deactivate the Preview mode by unticking the box to the left of the Pre-

view icon.

• Please create a new node of type DirectionalLight that is a child of the node

called Spatial: right-click on the node Spatial, select Add Child Node from the

contextual menu, type directionallight in the search field, and select the type

DirectionalLight from the contextual menu.

• Please rename this light myLight.

Once this is done, we will change the orientation and position of the light so

that it is above the cube and pointing downwards.

• Please check that its Translation and Rotation parameters are set to (0, 0, 0).

• We can now move the light along the y-axis so that it is above the cube (e.g.,

by using the Move tool), for example, at the position (0, 3, 0).

• We can also rotate the light -90 degrees around the x-axis using the

Inspector: please set the Rotation attribute to (-90, 0, 0).

• If we use the gizmo to see the scene along the x-axis, we can clearly see that

the light is effectively pointing downwards, as illustrated in the next figure.

Once you are happy with the position of the light, you can rotate the view to see

this object from different angles, and also look at the scene from the preview.

At this stage, our light is set-up as well as the cube. However, we would like the

camera present in our scene to look at the cube from above. We will, accordingly,

change the attributes of the camera to implement this feature using the Inspector.

Note that, we could also add multiple cameras to the scene, and display the image

captured by these in different areas of the screen, and we will see this feature later

in this book.

• Please select the Camera in the Scene Tree dock, as described on the next fig-

ure.

Figure 0-2: Selecting the default camera

So that it is above the cube and pointing downwards, let’s change its transform

settings as follows:

• Translation: (0, 4, 0): we raise the camera four meters above the ground.

• Rotation: (-90, 0, 0): we rotate the camera -90 degrees around the x-axis.

Once these changes have been made, the scene should look as illustrated on

the next figure. You may notice that, in the main viewport, the camera object is

symbolized by a camera, and that its field of view is symbolized by what looks like

a pyramid, which encompasses the cube in our scene. This means that the cube is

in the field of view of the camera. We can check this in the camera preview window

located in the bottom-right corner of the ViewPort.

Once the camera has been configured, let’s modify the attributes of the light.

We will essentially change its color as well as its intensity, so that you can see how

these can be amended:

• Please select the light called myLight in the Scene Tree.

• In the Inspector, you may notice an attribute called Light, which includes all

the attributes (except for the Transform attributes) of the light. Click on the

rectangle to the right of the label Color. This will make it possible to modify

the color of the light. This may be useful when you need to set the atmos-

phere in your game and add lights of different colors.

• Once you have clicked on this rectangle, a window labeled Color appears.

This window is similar to the one used in image manipulation software, such

as Gimp or Photoshop, whereby you can pick or define a color based on its

RGB code.

For those not familiar with the RGB code, its stands for Red, Green, and Blue

and it can be perceived as a palette where we specify the amount of red, green, and

blue that will be used to create a new color. In this window, the amount of each

color is a number that ranges between 0 and 255. Which means that if we use

(R=255, G=0, B=0) we will obtain red.

• If we click inside the color window, and choose a color, we can see how the

RGB components change accordingly. You can choose a color of your

choice, for example a light blue.

Once you have changed the color of the light, you should see that the box will

turn to blue. The same will apply if we switch to the Preview window.

Creating the ground from a box

So far, we have a cube, a camera, and a (slightly blue) light in our scene. How-

ever, we would like to build a scene where a character walks on the ground and

possibly jumps on boxes or walks up the stairs. The first step in creating this envi-

ronment will be to create the ground. To do so, we can recycle the box that we have

already created by modifying both its size and its appearance as follows:

• Please select the box labeled myCube.

• Change its scale properties to (40, 1, 40). This means that we scale it up

along the x- and z-axes by 40.

• Rename this box ground using the Scene Tree.

Now that we have resized the ground, it would be great to texture it for more

realism. For this, we will set a new material for this box based on a texture that is

included in your resource pack.

• Please select the object called ground.

• Using the Inspector, locate the section called CSGBox, and click on the

downward arrow to the right of the attribute called Material.

• From the contextual menu, please select New Spatial Material; this means

that we will create a new material that will be applied to a 3D object (i.e., a

Spatial Material).

• You should now see a sphere, displayed in that section, as illustrated on the

next figure.

• Once you see this sphere, please click on it, this should display a list of the

properties for the material that you have created.

• Please click on the parameter called Albedo, this will display a white rectangle

to the right of the parameter along with an option to add a texture. This gives

you the choice to select a new color or a texture for the ground.

• For now, we will specify a texture for the ground, so please drag and drop the

texture called tile from the resource pack to the FileSystem dock.

• Once the texture called tile.jpg appears in the FileSystem dock, it means that

it has been imported in your project.

• Please drag and drop this texture from the FileSystem dock to the attribute

called texture for the box, as illustrated in the next figure.

• Looking at the viewport, you should now see that the texture has been ap-

plied to the ground object.

• If you look closely, you will see that this texture is repeated only once on the

surface of the ground.

To change this and so that the pattern is repeated (or tiled) more often, we can

do the following:

• Please select the object called ground in the Scene Tree.

• In the Inspector, locate the section called CSGBOX.

• Click on the sphere to the right of the label Material.

• Locate the section called Uv1.

• Change the scale property to (5, 5, 5).

• After making these modifications, we can zoom-in to look closer at the

ground.

• You should now see, in the ViewPort, that the pattern is tiled more often.

Adding multicolour boxes and stairs

Before we add new objects to the scene, let’s modify the attributes of the light,

so that it illuminates the scene:

• Select the light labeled myLight.

• Change its energy attribute (within the Light section) to 6 using the Inspector

window.

• Change its y coordinate to 10.

Once this is done, we will add a succession of boxes using essentially dupli-

cations to speed-up the process:

• Please create a new cube: right-click on the node called Spatial, then select

Add Child Node, type the word box in the search field and select the node

type CSGBox.

• Rename this cube redBox (e.g., in the Scene Tree window or in the

Inspector).

• Change the y coordinate (position) of this cube so that it is above the

ground; for example, you can use the position (0, 2, 0).

We will now add a color to this cube, using a similar process as for the ground

texture:

• Using the Inspector, locate the section called CSGBox, and click on the

downward arrow to the right of the attribute called Material.

• From the contextual menu, please select New Spatial Material; this means

that we will create a new material that will be applied to a 3D object (i.e., a

Spatial Material).

• You should now see a sphere, displayed in that section, as illustrated on the

next figure.

• Once you see this sphere, please click on it, this should display a list of the

properties for the material that you have created.

• Please click on the parameter called Albedo, this will display a white rectangle

to the right of the parameter along with an option to add a texture. This gives

you the choice to select either a new color or a texture for the ground;

• Click on the white rectangle to the right of the label called Color.

• As the color window appears, select a red color and close the Color window.

• If we zoom-in to look at the object labeled redBox in detail, we can see that

the red color has been applied to all sides of the cube.

Now that we have created our first colored cube, we can create similar cubes

using successive duplications to speed-up the process:

• In the Scene Tree window, select the object labeled redBox.

• Duplicate this object: we can right-click on this object and select Duplicate

from the contextual menu or press CTRL+D.

• We can then rename the new cube (i.e., the duplicated object) greenBox, and

move it along the x-axis (i.e., using the red handle).

Figure 0-3: Adding a new cube using duplication

As for the previous section, we will create a new green color:

• Please select the object called greenBox in the Scene Tree.

• Using the Inspector, locate the section called CSGBox

• You may notice that a red material is already allocated to this cube and this is

normal since it has been duplicated from the red box.

• So at this stage, we just need to create a new material for this specific cube

because we want it to be green (instead of red).

• Pleas click on the downward arrow to the right of the attribute called Material.

• From the contextual menu, please select New Spatial Material; this means

that we will create a new material that will be applied to a 3D object (i.e., a

Spatial Material).

• You should now see a sphere, displayed in that section, as illustrated on the

next figure.

• Once you see this sphere, please click on it, this should display a list of the

properties for the material that you have created.

• Please click on the parameter called Albedo, this will display a white rectangle

to the right of the parameter along with an option to add a texture. This gives

you the choice to select a new color or a texture for the ground;

• Click on the white rectangle to the right of the label called Color.

• As the color window appears, select a red green and close the Color window.

• You should now see that the green color has been applied to the second box.

We can, again, duplicate this green cube (by default, it will be called greenBox2)

and move this duplicate along the x-axis.

So at this stage we have three boxes using different colors; we can now try to

see our scene through the camera’s lenses so please change the camera position

to (0, 10, 0) and activate the preview mode by ticking the box to the left of the pre-

view icon on the main view port; you should now see the scene from above.

––––––––

Creating a simple staircase

As we have learnt how to create objects, there are a few shortcuts that we could

learn to speed-up the process of creating a scene. To do so, we will go through a

simple example of creating a staircase with boxes:

• Please deactivate the Preview mode.

• Please deactivate (hide) the objects greenBox2 and redBox for the time being.

To do so, you can select both objects and then click on the icon that looks

like an open eye.

• After clicking on these icons, the objects should be hidden, and the eyes

icons should now look like closed eyes.

• Select the object labeled greenBox.

• Change its scale settings to (1.5, 0.2, 1).

• Duplicate it three times. This will create three other objects named

greenBox3, greenBox4 and greenBox5.

• Move the duplicates along the x- and y-axes so that they form a staircase.

• For example, the object greenBox could be at the position (3, 2, 0), the object

greenBox3 at the position (6, 2.5, 0), the object greenBox4 at the position (9,

3, 0), and the object greenBox5 at the position (12, 3.5, 0).

Managing and searching for assets and objects

As we have seen in the first sections of the book, it is possible to look for spe-

cific assets and objects in your project and in your scene using a search window

and keywords. Let’s experiment with these search features in the Scene Tree:

• If you look at the Scene Tree, you may notice a search window located in its

top-left corner. It can be used to look for items in your scene based on their

names.

• If we type the word box in this search field, it will list all the objects with a

name that includes the word box, as illustrated in the next figure.

In a similar way, if we type the word green for example, it will list all the objects

which names include the word green.

Let’s see how we can perform searches in the FileSystem dock:

• If we select the FileSystem dock, you may notice a search window located in

its top-left corner.

• After typing the word tile, Godot will show all the assets with a name that in-

cludes this word. In our case, it includes the texture that we have imported

earlier (i.e., tile.jpg).

We can also perform searches in the Inspector tab, to look for a node’s prop-

erty:

• Please select the bode called greenBox in the Scene Tree.

• In the Inspector window, please locate the search field and type the word mat.

• This will list the attribute for which the name includes the word mat; in our

case, Godot is listing the attribute called Material.

Another interesting feature is the ability to group nodes. As it is, for example,

we have built a staircase. However, we may need to move all the stairs as a whole,

rather than moving each of these steps individually. In Godot, it is possible to

group all of these steps by creating a parent node, which, in the Scene Tree view, is

often used or referred as a Spatial Node (for 3D scenes). Let’s see how this can be

done:

• Please empty the search field in the Scene Tree.

• Right-click on the node called Spatial Node that is already in the scene.

• From the contextual window, type the text “Spatial” in the search field.

• Select the node called Spatial from the list.

• This will create a new child node called Spatial.

• Rename this object container-parent.

• Next, select the object called greenBox in the Scene Tree.

• Then press the CTRL key and click successively on all the other boxes that

make-up the staircase, that is, the objects greenBox3, greenBox4 and

greenBox5.

• Make sure that the container-parent object is not selected and then drag all of

the selected objects on the object container-parent.

• You should then see a downward arrow to the left of the object container-

parent in the Scene Tree and all the previous objects should be listed under

this object, as illustrated on the next figure.

Figure 0-4: Grouping objects

• If we select the object container-parent in the Hierarchy view and if we use

the Move tool, you should see that by moving this object, all its children are

also moved accordingly.

Saving the scene

At this stage, we can save the scene:

• Please select: Scene | Save Scene

• Choose a name for your scene, for example scene1.

• Press Save.

By default, the scenes are saved in the current project. You can see all the

scenes included in your project by looking at the FileSystem dock or by using the

search field in the same window.

Building and exporting our scene

In this section, we will export our scene so that it can be visualized outside Godot.

The process will involve importing the necessary Godot package to export our

scene and configuring our Export Settings.

So let’s get started:

• Please select the menu Project | Export.

• In the new window, click on the button labelled Add.

• This should display a list of possible platforms to export your game.

• If you have a Mac OS then please select the option Mac OSX otherwise, use

Window Desktop or Linux/X11 depending on your operating system.

• In the new window, your platform should be displayed on the left-hand side,

as illustrated in the next figure.

• You should also notice a message, at the bottom of the window, saying that

you are missing export templates.

This message appears because Godot needs export templates to be installed

before it can export your scene, and these can be installed using the following

steps:

• Please click on the link to the text “Manage Export Templates”.

• This should open the Export Template Manager. You can also open this win-

dow by selecting Editor | Manage Export Templates.

• As illustrated in the next figure, Godot will let you know that you are missing

a template for your current version.

• Please click on the button labelled “Download” to download the relevant tem-

plate.

• A new window will appear, and you can click on one of the links (e.g., Official

3.2.2 [HTTPS]).

• After clicking on one of the links, you will start to download the template on

your computer.

• You can save the file to your computer.

• Please take note of where it has been saved.

• Once the download is complete, you can switch back to Godot, open the

Template Export Manager (if it is not already open by selecting Editor | Man-

age Export Templates), and select the option to “Install from file”.

• Select the file that you have downloaded, and then click on the button la-

belled Open.

• Once this done, the Export Template Manager should now display that a tem-

plate has been installed.

Once this is done, we just need to do one more thing before we export our

scene, that is, specifying which scene should be used for the exported game:

• Select: Project | Project Settings.

• In the tab called General, select the option called Run, and then click on the

folder icon to the right of the label Main Scene.

• In the new window, please select the scene that you have just created (e.g.,

scene1) and then press Open.

• In the new window, scene1 should now be listed as the Main Scene for the

project.

Once the main scene has been specified, we can now export our project.

• Please select Project | Export from the main menu.

• In the new window, please click on the button labelled Export Project.

• In the new window, give a name to your exported file, for example

“demo1.dmg” and then click on “Save”.

• Once the export is complete, and if you navigate to the folder that you have

created for your exported game, you should see that it includes an executable

file; in my case this file is demo1.dmg.

• Please double click on this file and check that the application opens; it

should show the scene viewed from above.

Please note that it is also possible to export for the web; however, because the

files are exported as Web Assembly, and that these need to be hosted on a server,

this option, while feasible, will not be explored in this chapter.

Level roundup

Summary

In this chapter, we have learned about several core features available in Godot.

We became more comfortable with the interface and we learnt how and why to use

the different views. We learned how to add and transform built-in assets, including

cubes, lights, and cameras. We also looked into how to modify the appearances of

each box by importing or creating materials.

Building on this knowledge, we created a simple level with a staircase and a

ground. We looked at different ways to manage the assets included in our project

by grouping them (using Spatial Nodes) and by searching for them with corre-

sponding search windows.

Finally, we have learned how to export our scene as an executable.

Quiz

It is now time to test your knowledge. Please specify whether the following

statements are TRUE or FALSE. The answers are available on the next page.

1. In Godot, all files and scenes are, by default, saved in the FileSystem dock.

2. All objects are usually represented as nodes.

3. It is possible to apply a texture or color to a cube.

4. The RGB code is used for colors.

5. The key W is the shortcut for the Move tool.

6. The key E is the shortcut for the Scale tool.

7. The key R is the shortcut for the Rotate tool.

8. It is possible to preview the scene when a camera has been added.

9. It is possible to preview the scene when no camera has been added.

10. A transformation applied to a Spatial node will also be applied to all its

child nodes.

Solutions to the Quiz

1. TRUE.

2. TRUE.

3. TRUE.

4. TRUE.

5. TRUE.

6. TRUE.

7. TRUE.

8. TRUE.

9. FALSE.

10. TRUE.

Checklist

You can move to the next chapter if you can do the following:

• Add and combine built-in objects to your scene.

• Add a color or a texture to your objects.

• Manage and search for assets in your projects

using relevant search windows.

• Group objects, and create a parent object, so that

transformations are applied to all of the children (rather than individual transfo

• Change the layout of your project’s windows to suit

your workflow.

Challenge 1

Now that you have managed to complete this chapter and that you have gath-

ered interesting skills, let’s put these to the test. This particular challenge will get

you to become more comfortable with shortcuts.

Create a robot that does not have to be animated, as follows:

• Use built-in shapes (e.g., spheres, boxes, or cylinders).

• Combine these shapes to create the different parts of the robot.

• Group these shapes for the arms and legs, for example.

• Use duplication to speed-up your workflow (e.g., duplicate the left leg or the

left arm).

Challenge 2

Create a scene that could be used for a platform game, as follows:

• Create a new scene.

• Add, move, and resize boxes.

• Add textures to these boxes.

• Test the scene.

Chapter 4: Transforming Built-in Objects to Create an Indoor
Scene

This chapter helps you to create an indoor scene using basic shapes and textures.

It will also show you how you can navigate this scene. Following the previous

chapter, you will use your skills to modify objects (e.g., move, scale, rotate). You

will also learn to configure lights, and textures.

After completing this section, you should be able to:

• Be more comfortable with manipulating and transforming objects.

• Understand how a texture can be tiled over an object.

• Configure the intensity of a light.

• Understand how to set-up ambient lights.

The plan

When you start creating a game, and although there are many resources available

out there, you may just want to create a quick prototype to test the key features be-

fore you can (or hire someone who can) create a more polished level. Although

you may have a 3D modeling background, many beginners who don't have this

skill may need to be able to create their level quickly with basic shapes. This chap-

ter will help you to do just that: to create a functional level with relatively simple

shapes. For our first level, we will create a scene with the following features:

• An indoor maze with lights, textured walls, a ground, and a ceiling.

• Areas with lights.

• Dark areas where the player could be exposed or trapped.

To create this environment, we will be going through the following process:

• Use a template to create the maze (i.e., an image).

• Use this map to add objects to our scene.

• Remove this map.

• Add textures and colors to all objects in the scene.

Without a predefined map, it may be difficult to know where to add the different

objects that will make up your scene. You can, of course, place the object based on

a list of predefined coordinates. However, a map can help to visually and easily as-

sess whether an object is at the right location. In our case, we will be texturing the

floor with the map, then add objects on the floor, based on the outline of the maze,

and then replace this outline with tiles, once all the objects have been added.

The layout of our level is illustrated on the next figure. It essentially consists of

a succession of corridors.

As you can see, this is a rather simple black and white image that was created

in Photoshop. It consists of a white background, which symbolizes empty spaces,

and black rectangles of different sizes that symbolize walls. You can create a map

of your choice very easily using other software such as Paint or Gimp. The idea of

this map is to simplify the creation of the maze in Godot by specifying, even ap-

proximately, the location of the different parts of the maze. This way, we can follow

our initial layout instead of guessing where to add objects. For the purpose of this

chapter, this image was created using Photoshop. Its size is 100 by 100 pixels, and,

if you are using Photoshop, you can also activate the grid lines every 5 pixels to ob-

tain a subdivision every second pixel.

Creating a scene and importing the necessary assets

Before we start to design this environment, we will create a new scene, and a

corresponding folder where all the assets that we need will be stored. We will also

import some of the textures required for this level.

First, let’s create a new scene:

• Assuming that the project we have created in the previous chapter is open

(otherwise, you can open it using Project | Quit to Project List), create a new

scene (Scene | New Scene). Once this is done, you should have a blank scene

with no nodes in the Scene Tree.

• Please click on the button 3D scene, in the Scene tab.

• This will create a new 3D scene with a root node called Spatial.

• You can now save your scene, and name it maze, or any name of your choice.

We can now create a folder for our scene. While this is not compulsory, it helps

to organize our project and to include and save all the relevant assets used for this

scene in a dedicated folder.

• In the FileSystem tab window, please right-click on the folder labelled res://,

and then select New Folder from the contextual menu.

• When prompted to enter a name for the scene, please name this folder

“maze”.

• Click on the button labelled OK.

• This will create a new folder labeled maze within the folder res://.

At this stage, you have already downloaded the resources for this book from

the companion website. For this chapter we will need to import the images

bricks.jpg, ceiling.jpg, and gameMap.png:

• Please click on the folder named maze, that you have created in Godot.

• Locate the folder that you have downloaded and unzipped from the com-

panion website, in your file system.

• Drag-and-drop the images bricks.jpg, ceiling.jpg, and gameMap.png to the fold-

er maze in Godot.

• These files should now appear within the folder called maze, as illustrated in

the next figure.

using objects that we can collide with

In the previous chapter, we used primitives such as boxes to create a staircase;

however, at that stage, there was no navigation involved, and hence, no need to

test for collisions between the player and the environment; however, because in

this chapter we will use a controller that will make it possible to navigate through

our environment, and to collide with the walls and the ground, we will need to cre-

ate objects that include collision detection an colliders; in other words, we will

need to make sure that if the player walks into a wall that s/he stops progressing.

For this purpose, we will construct our scene slightly differently; instead of cre-

ating the walls directly from primitives, we will instead combine the primitives that

we have used previously with nodes that are called CollisionShape and StaticBody.

While CollisionShape nodes are used to define a shape that will determine

whether a node is in collision (these consist of several types of shapes including

capsules, boxes, or spheres), StaticBody nodes are subject to the laws of physics,

including collision, except that they are static; this is relevant for walls in our case,

because they are not moving objects, and this is designed so that collision detec-

tion for these objects don’t use much resources compared to moving nodes sub-

ject to the laws of physics.

Defining the outline of the maze

At this stage, we are ready to start creating our maze. First, we will create a cube

that will be used for the ground and this cube will be associated to a StaticBody

node and a CollisionShape node:

• Please create a new StaticBody node: right-click on the Spatial Node already

present in the scene, select the option “Add Child Node”, type StaticBody in

the search field, select the mode StaticBody and click “Create”.

• This will create a new node called StaticBody.

• Please select this node, and create a new child node of type CollisionShape

(i.e., right-click on StaticBody and select Add Child Node from the contextual

menu).

• At this stage, you should see three nodes in the Scene tab as illustrated in the

next figure.

You may notice a warning sign for the CollisionShape node: this is because we

need to specify a type of shape for the CollisionShape node. In other words, we

need to specify the shape of the collider for our node.

• Please click once on the node called CollisionShape.

• In the Inspector, click on the downward facing arrow that is located to the

right of the field called empty in the section Collision Shape | Shape, as illus-

trated in the next figure.

• Select the option New BoxShape from the contextual menu.

• Finally, please select the node called CollisionShape and add a new child of

type CSGBox to it (i.e., right click on the node CollisionShape, then select

Add Child Node, type CSGBox in the search field, select the type CSGBox,

and click on Create).

So at this stage, we have a box that can be collided with:

• The StaticBody node will ensure that it can be collided with.

• The CollisionShape node will determine the boundary that will be applied for

collision detection.

• The CSGBox node will give an appearance to our box (i.e., shape and color).

Please note that because the CollisioShape and CSGBox nodes are children of

the node called StaticBody, any transformation applied to the parent node

(StaticBody) will also be applied to the child.

Creating the maze

At this stage we have all the components that we need to create the ground for

our maze, so let’s start to change its shape and appearance.

• Please rename the object StaticBody to ground.

• Using the Inspector, ensure that the position of this object is (0, 0, 0).

• Using the Inspector, change the scale properties of this object to (100, 1, 100)

so that it is scaled-up along the x- and z-axes.

We will now apply a texture to the ground, and because the child node called

CSGBox is responsible for the appearance of this ground, we will focus and that

node for now:

• To make it easier to see the changes, we can look at the scene from the y-axis.

This can be achieved, as previously, by using the Gizmo located in the top-

right corner of the ViewPort, and by clicking on its y-axis.

• Please click on the object CSGBox in the Scene Tree.

• Using the Inspector, navigate to the section CSGbox.

• Click on the arrow to the right of the attribute called Material, and select the

option New Spatial Material from the contextual menu.

• Click on the white sphere displayed in that section.

• This will list several attributes for the Material component.

• Select the option called Albedo.

• At this stage, we want to specify a texture for the ground.

• Once this is done, we can navigate to the folder that includes the texture that

we have just imported, including the image for the ground, using the FileSys-

tem tab (i.e., the folder res:// | maze). Once you have located this folder, as

well as the texture that we need to use for the outline (i.e., the file

gameMap.png), please drag and drop this texture from the FileSystem win-

dow to the empty slot. This will, as we have seen in the previous section,

apply the texture to the ground object, as illustrated on the next figure.

You should then see that the texture has been applied to the ground (CSGBox)

as illustrated in the next figure.

If, using the Inspector tab, we click on the attribute called Uv1, you will see that

the scaling properties are (1, 1, 1), which means that the texture is tiled only once on

all axes, and that’s exactly what we need because the texture is supposed to repre-

sent the entire level.

Adding walls using simple transformations

Now that the ground has been defined and that the template has been applied

to the ground, it is time to create walls and other rooms, based on cubes. Because

the node called ground already includes a StaticRigidbody and a CollisionShape

node, we will use it as a template for our walls by duplicating it and applying trans-

formations to it.

Let’s create our first room:

• Please duplicate the node called ground and called the duplicate room1.

• It will create a new node called room1 that includes a child of type

CollisionShape, which itself as a child of type CSGBox.

• Position this node (room1) just above the ground, for example at the position

(4, 1, 1).

• You may also change the view (if you have not already done so) to a top view

using the gizmo, so that you can see the scene from the y-axis.

We will now perform a series of transformations on this cube so that it fits one

of the black rectangles on the ground texture:

• Select the node room1.

• So that it is easier to tell it apart from the actual ground, we will change the

texture for this room.

• Please select the node CSGBox that is a child of the node room1.

• Using the Inspector, in the CSGBox section, click on the downwards arrow to

the right of the attribute called Material, and select the option New

SpatialMaterial, from the contextual menu; this will change the node room1 to

a white box.

We can now resize and move the cube by alternatively using the Scale (R) and

Move (W) tools so that it matches the designated black rectangle on the outline

(i.e., the map defined by the texture on the ground).

• Please select the object room1 and modify its shape or move it, along the x

and z axes so that it matches one of the dark areas.

After successive iterations, we have managed to create the first room by match-

ing the texture on the ground, as illustrated on the next figure.

At this stage, we have managed to rescale the first room along the x- and z-

axes. However, we also need to modify its height. We would like the ceiling to be

2.5 meters high. Let’s apply some changes in the Inspector window:

• Please check that the object room1 is selected.

• In the Inspector window, modify the y scale attribute to 2.5 and the y position

attribute to 3.5

• This is because the ground already has a height of 1 meter and the wall has a

height of 2.5 meters.

Once this is done, we can apply a texture to this room:

• Please select the node called CSGBox that is a child of the object room1.

• Using the Inspector, in the Material section, click on the white sphere.

• In the next window, select the Albedo section and drag and drop the texture

bricks located in the folder res:// | maze, to the empty slot in the Inspector.

• We now need to change the tiling of this texture by modifying the Uv1 at-

tribute in the Inspector to (x=3, y=2, z = 1). This setting is arbitrary and you

may use different scaling properties based on the texture that you have ap-

plied if you wish. To make sure that the tiling looks realistic, you may first

zoom-in on the object, and then modify the tiling properties, so that you can

observe and apply the x, y or z scaling values that work best for you.

Once you are happy with the look of the room, we can duplicate this room and

resize it to create another room:

• Please duplicate the object room1 in the Scene Tree view and call the dupli-

cate object room2.

• Move the duplicate object near another black rectangle on the outline, and re-

size it so that it matches the area perfectly (i.e., at this stage, only the x and z

position and scale attributes need to be modified). You can use the Move tool

to move the new object, and the Scale tool to resize it.

You can repeat this process to complete the entire maze.

Creating the external walls

Once you have created all the different rooms, the maze should look as de-

scribed in the following figure.

Figure 0-1: The maze almost completed (without external walls)

You may notice that the texture that we used for the rooms differs depending

on the room it was applied to. This is because the tiling was based on the length of

the initial room. We can leave this option as it is for now. However, if you wanted

to improve the appearance of some of the rooms, you could define specific mate-

rials for each of them so that the tiling is set accordingly (since the tiling is linked

to the material, a change in the tiling settings involves changing or creating a new

Spatial Material).

So at this stage, our maze is almost complete, it only needs three more ele-

ments: four external walls, a roof, and some light.

So let’s create the external walls. To create the external walls, we can start by

duplicating any of the existing rooms, and then resizing this duplicate. For exam-

ple, we could, as illustrated in the next screenshots:

• Select and duplicate any of the existing rooms.

• Rename this duplicate northWall.

• Change its scale property to (1, 1, 100) and its transform property to (0, 3.5,

-100).

As you can see, the process is rather easy, and we can repeat it to create the

three other external walls:

• Duplicate the node northWall and rename it southWall.

• Change its transform property to (0, 3.5, 100).

• Duplicate the node northWall and rename it westWall.

• Change its transform property to (-100, 3.5, 0) and its rotation property to (0,

90, 0).

• Finally, Duplicate the node westWall and rename it eastWall.

• Change its transform property to (100, 3.5, 0).

Adding a first-person controller to navigate through the scene

At this stage, we have managed to create the floor, several rooms, and the exter-

nal walls for our maze, and it would be great to be able to navigate through the

maze. To do so, we will add Character Controller to the scene so that we can walk

through the maze and see how it will appear to the player. So let’s do the following:

• Please open the AssetLib window (top workspace).

• Enter the text “First person Controller” in the search field.

• Double click on the result labelled “Simple First Person Controller”.

• In the new window, click on Download.

• Then, click on Install.

• After a few seconds Godot will let you know that the package has been down-

loaded successfully.

• Looking at the FileSystem dock, you should now see a folder called player

(i.e., res://assests/player) and within this folder, an asset called Player.tscn.

• You can now drag and drop this file (Player.tscn) on the node called Spatial,

in the SceneTree dock; this will create a node called Player that is a child of

the node called Spatial.

• Using the Move tool, you can move this node so that it not inside a wall;

please also ensure that the y coordinate is 1.

Before we can use this controller, we just need to reassign the keyboard keys to

the movement:

• From the top menu, please select: Project | Project Settings | Input Map.

• In the new window, enter the text “player_forwards” in the top field and then

press the button labelled Add (to the right of your screen).

• Once the key has been added, click on the + button to the right of the key and

select “Key” from the contextual menu, as per the next figure.

• Press the Up Arrow on your keyboard and then press OK.

Please repeat the previous steps to add the following settings:

• player_backwards using the Down Arrow.

• player_left using the Left Arrow.

• player_right using the Right Arrow.

• player_jump using the Space Bar.

At this stage, you can test the scene by pressing CTRL + R, and you should be

able to navigate the scene without going through the walls by pressing the arrow

keys on your keyboard and the mouse to navigate.

Changing the texture of the ground (removing the image template)

At this stage, our level is pretty much ready to be viewed, except for the ground.

If you remember, the texture used for the ground has been, until now, a template

with white and black boxes that indicated where to add the cubes that defined the

rooms. Because we have completed the layout for the maze, we don’t need this tex-

ture anymore. We can, instead, use a more realistic texture for the ground, such as

the tile texture that we had initially applied to the ground in the previous chapter.

So let’s make this change:

• In the SceneTree tab, locate the object labeled ground.

• Click on the node called CSGBox that is a child of the node called ground so

that we can see its properties in the Inspector window.

• In the Inspector, locate the section called CSGBox, and click on the textured

sphere to the right of the label called Material.

• After clicking on this icon, a new window will appear with a list of attributes;

please expand the attribute called Albedo, by clicking on the arrow to the left

of the label Albedo.

• We can now replace the current texture by dragging and dropping the texture

called tile.jpg from the FileSystem tab to the attribute called Texture.

As soon as you have dropped the texture, you will see that the ground has

changed color and is now featuring the texture tile.jpg; however, at this stage we

also need to modify the way the texture is repeated over the surface (i.e., the tiling),

and this will be done through the attribute called UV1.

• Please select the attribute called UV1 for the current texture, and change the

scaling properties to (20, 20, 20) as illustrated in the next figure.

• As you make these changes, you will see that the tile texture is repeated more

frequently over the ground surface.

After this change, it is now time to play our scene and navigate around it:

• Please press the Play button (or CTRL + R).

• Navigate through the scene, using the arrow keys and the mouse.

• It should look as described on the next figure.

Adding a ceiling to the maze

Once you have checked that the environment looks as expected, we can stop

playing the scene. At this stage, the level is functional; however, as mentioned ear-

lier, it would be great to also include a ceiling. This can be done easily by copying

the ground, moving it up, and changing the associated texture. We will use the

same techniques as before (by using the Move tool and changing textures in the

Inspector):

• Using the SceneTree window, search for the object called ground.

• Once you have located this object, duplicate it (CTRL + D or right-click +

duplicate).

• Rename the duplicate ceiling.

• Using the Inspector, please change its position to (0, 7, 0).

Once this is done, we just need to apply a texture to this ceiling:

• If you have not already done so, please import the texture called ceiling from

the folder downloaded from the companion website and save it in a folder of

your choice within Godot (e.g., maze | textures).

• In Godot, in the Scene Tree tab, locate the node called ceiling and click on

the node called CSGBox that is a child of this node.

• In the Inspector, locate the section called CSGBox, and click on the down-

ward facing arrow to the right of the attribute called Material.

• In the new contextual menu, please select the option called New

SpatialMaterial.

• You can now click on the white sphere featured to the right of the label called

Material.

• This will open a new window that will make it possible to modify the texture

associated to this node.

• In the new window, expand the section called Albedo (by clicking on the

corresponding arrow), and then drag and drop the texture called ceiling from

the FileSystem tab to the empty slot to the right of the label Texture.

• You should see that the texture of the ceiling node has now changed.

Finally, we will change the tiling properties of this new material by expanding

the attribute called UV1, and setting its scaling property to (20, 20, 20).

When looking back at the Scene view, you can now see that the tiling of the tex-

ture for the ceiling has changed, as illustrated on the next screenshot.

We can now play our scene to see how this new texture looks like, and you may

notice that the ceiling looks extremely dark, and this will be solved in the next sec-

tions by adding nodes related to light and the environment.

As you navigate through the maze, we may well discover areas that are bright,

where the light from outside the maze shines through, indicating that the ceiling is

probably not covering the maze entirely. But you can always readjust the size and

position of the ceiling at a later stage to ensure that this is fixed.

You may be wondering why you can still see the walls if the environment is per-

fectly closed. We will see this in more detail later on, but in a nutshell: your scene

has default attributes, and some of these are related to the amount of ambient light

in the scene. By default, even if no lights have been added to the scene, there will

be some ambient light. This, of course, can be modified, and we will do so in the

next section.

Adding light to the scene

Once you have amended the maze, we will start adding light to it, to create

some dark and bright areas. In your game, this could be used to conceal areas or

to highlight rooms or corridors where the player should go.

Before we can add any lights, we will also need to set the properties of the

scene’s environment, in terms of default lighting and this can be done using the

node called WorldEnvironment.

• Please select the node called Spatial in the Scene Tree.

• Add a child of type WorldEnvironment to this node, as we have done previ-

ously (i.e., select the node, right-click and select Add Child Node).

• This will create a node called WorldEnvironment.

• Please select this node, and, using the Inspector window, locate the section

called WorldEnvironment.

• Click on the arrow to the right of the label called Environment, and select the

option New Environment from the contextual menu, as illustrated in the next

figure.

You should now see that the scene is completely dark, and this is normal.

Now that we have added a WorldEnvironment node, we can modify its prop-

erties to add ambient light.

• Using the Inspector, please click to the right of the label Environment to dis-

play the properties of the environment.

• Expand the section called Ambient Light.

• Click on the rectangle to the right of the label Color, and select a white color.

• Once this is done you should see that your scene is brighter, as illustrated in

the next figure.

You can now play the scene (CTRL + R) and see how the scene looks like now.

The scene is fine as it is; however, it would be great to set the scene in com-

plete darkness, to conceal some areas, and also add some lights in places.

So first, we will first set the ambient light to full darkness:

• Please select the node called WorldEnvironment.

• Using the Inspector, please click to the right of the label Environment to dis-

play the properties of the environment.

• Expand the section called Ambient Light.

• Click on the rectangle to the right of the label Color, and select a black color.

• Once this is done you should see that your scene is dark again, as illustrated

in the next figure.

Next, we will add some lights. There are many different types of lights in Godot,

and for the time being, we will just use Point Lights to simulate the light created

from a bulb, or a torch light, that shines from a specific point in all directions.

Because the ceiling is now the top-most object when looking at the scene from

the y-axis, we can temporarily deactivate it so that it is easier to add and move ob-

jects within the maze. To do so:

• In the Scene dock, please select the object labeled ceiling in the Scene Tree.

• Toggle its visibility to invisible using the eye icon that appears to the right of

the node.

Once this is done, we can start to add lights to the scene:

• Select the node called Spatial.

• Right-click on this node and add a new node of type Omni Light.

• Change its y coordinate to 7.5.

• You can move this light near the player so that you can see the impact it has

on the scene immediately.

• In the Inspector, locate the section called Omni, and change the range to 20.

• Similarly, locate the section called Light, and change the energy to 5.

• You should now see a new object labeled Omni Light in the SceneTree as

well as a new light in the ViewPort.

• You can also reactivate the ceiling.

• You can play the scene that should now look like the following figure.

Figure 0-2: Navigating the scene without external light

After checking the scene, we can reproduce the last steps to include more

lights, by either duplicating and moving the Omni Light that we have created, or by

adding more Omni Light nodes as children of the node Spatial as follows:

• Please temporarily deactivate the ceiling: this will make it easier to move the

lights.

• Duplicate the node Omni Light that you have created previously several times

to locations of your choice, making sure that most corridors are lit up prop-

erly.

• Move the duplicates to different locations in the maze.

• Modify the settings for each light and amend their Range, Energy, or Color to

create special effects of your choice (e.g., each with a different color and

intensity).

• Reactivate the ceiling, play the scene and see how it looks like.

As you can see on the next picture, the lights can be used to highlight points of

interest.

Level roundup

Summary

In this chapter, we have become more comfortable with the creation of an in-

door environment and we learned how to create a maze from built-in objects such

as boxes, point lights, or cameras. We also used the skills acquired in the previous

sections to transform objects and to create a fully functional level.

Quiz

It is now time to test your knowledge. The solutions are on the next page.

1. The shortcut to move an object is Q.

2. The shortcut to rotate an object is R.

3. The Ambient Lighting can be modified using the menu Project Settings.

4. Energy is an attribute of OmniLights.

5. If no lights have been added to the scene, the scene will be completely dark.

6. New objects are always created at the position (0, 0, 0).

7. UV1 is one of the attributes of texture materials used in a scene.

8. Once a texture has been applied to an object it cannot be replace later.

9. A scaling property of (1, 1, 1) means that the picture will be repeated once on

all the x-, y and z-axes.

10. The shortcut CTRL +D is used to delete an object.

Solutions to the Quiz

1. FALSE.

2. FALSE

3. TRUE.

4. TRUE.

5. FALSE (ambient light can be used instead).

6. TRUE.

7. TRUE.

8. FALSE.

9. TRUE.

10. FALSE.

Checklist

You can move to the next chapter if you can do the following:

• Apply a template to create a scene.

• Duplicate objects.

• Move and transform objects to create a maze.

• Change the tiling property of a texture.

• Add lights to a scene.

• Modify the intensity/energy and the color of the

default ambient light for a scene.

Challenge 1

For this challenge, you will need to create a new maze based on a new template

as follows:

• Import the texture gameMap2.png from the folder that you have downloaded

from the companion site.

• Apply the techniques covered in this chapter to recreate the maze based on

this outline.

• Add lights at locations of your choice.

Challenge 2

For this challenge, you will need to create your own outline using the image

manipulation tool of your choice and then apply it to create a totally new maze of

your own design!

You could proceed as follows:

• Create a new image with a size of 100 pixels by 100 pixels.

• Set the background colour to white and the foreground colour to black.

• Create the maze using a brush of size 1.

• Save your image in the png or jpg format.

• Import this image into Godot.

• Create a new scene and use this new template to create your own new maze.

Chapter 5: Creating an Outdoor Scene with Godot’s Built-in
Terrain Generator

In this chapter, we will start to use Godot’s built-in packages to create an outdoor

scene and to navigate through it using different types of vehicles.

After completing this section, you should be able to:

• Create a realistic landscape from a template.

• Create a terrain and modify it to produce hills and valleys.

The plan

For this chapter, we will create an island trough which you will be able to navi-

gate. So the plan is quite straight-forward, and we will do the following:

• Import a template that we will use to draw the outline of the environment.

• Create a terrain based on this template.

• Paint over the template.

• Create hills and valleys.

• Add trees and other types of foliage.

• Add buildings based on boxes.

The next screenshot is a preview of what you will have accomplished after com-

pleting this chapter.

––––––––

The island outline

For this level, we will be creating an island. As per the previous chapter, we will be

using an image created in Photoshop to define its outline and the main features.

Figure 0-1: The outline of the island

As you can see, this is a rather coarse outline, but it gives an idea of the shape

of the island. You may notice the following:

• Water surrounding the island in blue.

• Sand for most of the island.

• Brown patches to highlight paths.

• Green dots to identify the location of the trees.

• Black rectangles to indicate the position of buildings.

• A lake symbolized by a blue circle in the middle of the island.

This image is 500 pixels by 500 pixels and it will be mapped so that 1 pixel

roughly equates to 1 meter in Godot. If you want to create your own outline, you

can do so easily using these settings. The map does not have to be extremely de-

tailed because, as you will see later, we will be able to paint over it and to also

remove (or erase) some of its elements. What is important for now is that you have

an outline that you can use directly in Godot.

Downloading necessary material

To complete the activities presented in this book you need to download the startup

pack on the companion website; it consists of free resources that you will need to

complete your projects. To download these resources, please do the following:

• Open the page http://www.learntocreategames.com/books.

• Click on your book (Godot From Zero to Proficiency (Foundations))

• In the new page, please click the link that says “Please Here Click to Down-

load Your Resource Pack”

Importing necessary assets

At this stage, we are ready to start with our island. If you remember well, we will be

adding trees and a terrain that will mimic the shape of the island. For this purpose,

we need to import specific packages to be able to complete these tasks. These

packages include a terrain asset.

• In Godot, create a new scene (Scene | New Scene).

• Open the AssetLib window by clicking on the button labelled AssetLib in the

top menu.

• In the search field, please type “terrain” and select (i.e., double-click on) the

asset called Heightmap terrain.

• In the next window, please click on the button labelled Download.

• Once the library has been downloaded please click on the button labelled

“Install ...”.

• Then, please click again on the button labelled “Install” in the new window.

• Once the installation is complete, you should see a folder called addons in

the FileSystem window.

We now need to activate this plugin; to do so, please select Project | Project Set-

tings | Plugins and set the status of this plugin to Active, by clicking on the Enable

option, as illustrated in the next figure.

Now that the plugin is active, we can start to create our terrain.

• Please select the 3D view/workspace by clicking on the button labelled “3D”

in the top menu.

• In the Scene dock, click on 3D Scene, this will create a new node called

Spatial.

• Press CTRL + A (to add new node), type terrain in the search field and select

the node type HTerrain from the list.

• This will create a new object called HTerrain in the Scene Tree.

As you will see, a warning sign will appear to the right of the node HTerrain. So

that we can store the data generated by the terrain, we need to create a folder and

to associate it with the new terrain, so please do the following:

• Using the FileSystem dock, create a new folder: right-click on res://, select

the option New Folder from the contextual menu, and give this new folder a

name, for example terrainData.

• Select the node HTerrain in the Scene Tree.

• Using the Inspector, locate the attribute called Data Directory in the section

HTerrain.

• Click on the folder logo to the right of the attribute Data Directory.

• Choose the folder that you have just created (e.g., terrainData); this folder is

necessary to save the terrain’s data.

• Click on the button labelled “Select this Folder”

Once this is done, we can start to create hills and valleys for this terrain.

If you select the HTerrain object in the Scene Tree, you will notice a window at

the bottom of the screen that includes tools that can be used to modify the terrain,

as illustrated in the next figure.

Amongst other things, this window will make it possible to apply textures to the

terrain and to lower or raise areas within.

So, at this stage we have all the necessary assets to create our island, except

from the outline map. So let’s import it:

• Please switch to your file system (e.g., explorer or Finder).

• Locate the folder where you have downloaded the resource pack at the start

of this book.

• Select the file labeled gameMapOutline.png.

• Drag and drop this file inside the FileSystem dock in Godot.

Creating the outline of the island

At this stage, we have most of the assets that we require to start. So let’s create

the terrain:

• Select the node called HTerrain in the Scene Tree.

• Click on the button called Edit located at the bottom of the window.

In the new window, click on the + button located on the left-hand side of the

scree to create a new texture.

• This will create a texture called Texture 0.

• Next, click on the button labelled “Load”, just below the section called

Albedo.

• In the new window, please select the texture that we have imported previously

called gameOutline.png and then click on Open.

• You should see in the next window that this texture has been selected and

you can now the press the button labelled Close.

If you now look at the ViewPort, you should see that his texture is repeated sev-

eral times over the terrain.

However, we want it to be displayed only once; so we will need to modify the

tiling of this texture:

• Please select the object HTerrain.

• In the Inspector, locate the section called scriptVariables, and set the attribute

Shader | Shader Params | U Ground UV Scale to 500.

• Once this is done, you should now see that the texture is applied only once to

the terrain.

Now that we have the outline we can start to raise or lower parts of the terrain.

To do so, we will be using some of the tools available in the top-right corner of the

viewport.

Giving depth to the terrain

So far, we have managed to apply the outline of the island, and that’s great. It is

now time to add some depth to the terrain.

Please do the following:

• Make sure that the node HTerrain is selected.

• Using the top tool bar, select the Lower Height tool (second from the left).

• You can switch to a more convenient view so that we can see the scene from

the y-axis: locate the Gizmo in the ViewPort view and click on its y-axis. This

should switch the view accordingly.

Figure 0-2: The island viewed from the y-axis

• You might as well zoom-in on the bottom right corner of the terrain using

successively the mouse wheel and the Pan tool (SHIFT + drag and drop).

Figure 0-3: Zooming-in on the southeast coast

• In the ViewPort, start to drag and drop your mouse on the blue area and

modify the brush size to 11 if necessary (to cover a wider area). As you do so,

you will notice chunks of the terrain disappearing, as described in the next

figure.

• Carry on until you have covered most of the water area around the island.

Once you have completed the entire outline for the island, we can smooth out

the edges to make it look a bit neater and polish-up our work.

• After ensuring that the node HTerrain has been selected, select the Smooth

Height tool (third from the left).

• Select a brush of your choice and set the brush size to 15.

• After adjusting these settings, you can apply the brush to the edges created

from the previous tool, and you will notice that these are nicely smoothed

out.

The island before the Smooth tool

Adding water

At this stage, the outline has been applied and the boundary between the island

and the water is clearly defined. So we can now introduce the Water asset. In the

next steps, we will successively add the water asset to the scene and adjust it to en-

sure that the scene is realistic:

• Open the AssetLib window.

• Type the word water in the search field.

• Select the library entitled “Basic Water Material” (i.e., click once on it).

• Click on the button labelled “Download”.

• Once the library has been downloaded, a new labelled “Basic Water Material”

tab will appear at the bottom of the window.

• Please click on Install.

• Click on the button labelled “Install” in the new window.

• After pressing this button, Godot should have created a folder called

maujoe.basic_water_material, that you should see in the FileSystem dock, as

illustrated in the next figure

This folder includes textures that will apply to the water to give it a blue and

transparent look.

This being said, we need to create an object on that represents the water and on

which the texture will be applied. So let’s go ahead and create this object.

• Please create a new node of type CSGCylinder as a child of the HTerrain node

(i.e., right-click on the node HTerrain and select Add Child Node).

• This should create a new node labelled CSGCylinder.

• Please change its position to (250, -1, 250) and its scale to (400, 1, 400).

• Using the FileSystem, navigate to the folder

res://assets/maujoe.basic_water_material/materials/, you should see a mate-

rial file called basic.water.material.material.

• Drag and drop this material to the empty slot for the attribute CSGCylinder |

Material for the node CSGCylinder.

• You should see that the cylinder that represents the water is now transparent.

• Using the Move tool, move this object up or down so that it appears at the

boundary that you have just smoothed-out previously (see the boundary

highlighted on the next figure): this will take some readjusting and you don’t

need to have it right the first time. In fact, if some blue color (from the texture

of the ground) still appears above the water, we will be able to erase it later

on, and replace it by a texture that is similar to the sand instead.

Painting the island with realistic textures

At this point, the water has been added. This being said, while the original de-

sign is great, it would be good to be able to paint the terrain using additional tex-

tures or to even erase some of the green circles or the other textures included in

the outline. Thankfully, Godot includes a Texture Paint tool that makes it possible

to literarily paint on the terrain using a wide range of textures. For the Texture Paint

tool, we avail of a wide range of brushes and settings (e.g., opacity). So let’s jazz-

up the look of the island and add some textures to it:

• Please select the node HTerrain in the Scene Tree view.

• Select the Texture Paint tool from the top toolbar.

Again, we will need to add a specific texture to this paint brush.

• Using the tab located at the bottom of the window, please click on the Edit

button.

• Then click on the + button located in the left panel to create a new texture.

• This will create a new texture called Texture 1.

• Click on this texture in the left panel and then click on the button labelled

Load.

• In the new window, select the file grass.jpg.

• Click on the button labelled “Open” to choose this texture.

• Click Close in the next window.

• Once this is done, you should now see that the texture has been added to the

available textures for the terrain.

At this stage, you have added a new texture to be used for the terrain.

Please reproduce the last steps to add a new texture based on the file

sandy_color.png.

You should now see three slots, each with the outline of the island, the grass

texture, and the sandy texture, respectively in the slots 0,1 and 2.

At this stage, we are ready to paint textures over the island. We could use the

second texture to paint some grass areas on the map or delete part of the map by

painting a sandy color over; for example:

• Select the sand texture to paint, as illustrated on the next figure.

• Select the Paint Texture tool.

• Start to paint over the Terrain, for example on the path, and you should no-

tice that it disappears progressively, as illustrated on the next figure.

• Using this method, you can delete any of the textures introduced by the map

overlay.

• After deleting some of the original path, you can then apply, instead, textures

that you have already defined in Godot.

Please note that you can also use the Color Paint tool to apply a color (rather

than a texture) on the terrain; for this purpose, just select this tool from the top

toolbar, and then select the color that you wish to use.

Adding a lake and a mountain

One of the last elements that we need to add is the lake that is located in the

middle of the map as well as a mountain. For both elements, we will need to either

carve into the terrain (to lower the terrain) or to raise the terrain, and we will be

using the tool Raise/Lower Terrain for this purpose.

• Please select the Terrain object in the Hierarchy view.

• Select the Lower Height Tool.

• Locate the lake area on the map and zoom-in.

• Select a brush size of 34 and set its opacity to 100.

• Drag and drop your mouse (i.e., move) on top of the blue area that defines

the lake.

• Using the Smooth Height tool, smooth out the boundary of the lake (e.g., you

can use a brush size equal to 16).

Once this is done, we will now create a simple hill using Raise Height tool. This

hill will be close to the lake in the area highlighted on the next figure.

Once this is done:

• Please select the Raise Height tool.

• Select a brush size of 31 and set the opacity to 80.

• Drag and drop the mouse to the right of the blue area, highlighted by the two

red arrows in the previous figure.

After these modifications, you can pan your view to check that you have man-

aged to raise the ground properly, and it should look as follows (although this

could take many iterations, so it’s perfectly ok if it does not look exactly like the

next image).

Viewing the hill from above

At this stage, we just need to apply a texture to the mountain to make it look

more realistic. As for the ground, we will be using the paint tool after selecting an

appropriate texture:

• Select the node labeled HTerrain

• Using the toolbar located atop, select the Texture Paint tool.

• Select the second texture in the list (i.e., grass).

• Use the following settings: brush size= 14, Opacity = 26.

• You can now paint the hill. You can either keep the default view in the Scene

view or switch to a top-down view by clicking on the y-axis of the gizmo.

• To paint the edges of the mountain, you can use different settings for the

brush (e.g., Opacity = 64).

• Once you have finished painting the hill, it should look like the one illustrated

on the next figure.

The hill viewed from above

Before we can preview our scene, please create a new camera node, and sets its

translation and rotation to (220, 40, 220) and (0, 110, 0) respectively. You can now

either preview the scene using the preview mode for the camera or play the scene

(CTRL + R).

Of course, the hill that you have created may look slightly different, and that is

perfectly ok.

Note that you can always undo any of your design using CTRL + Z or by low-

ering the areas that you have previously raised.

Adding a car to the 3D environment

So at this stage, we have a great environment with water, and hills. However, due

to the size of the island, it may be more convenient for the player to navigate using

a car rather than walking. Luckily, the AssetLib includes vehicles that are ready to

be used without too much tweaking, except from the addition of a camera.

• Please open the AssetLib window, and enter the text “car” in the search win-

dow, this should return several results, including a library called 3D Car with

Settingspanel.

• Please click on the asset called 3D Car with Settingspanel.

• In the new window, please press the button labelled Download.

• Once the download is complete, you can click on the button labelled

“Install”.

• This should open the Package Installer where you will need to press the In-

stall button.

• Once the install is complete, please press OK when you see the “Success”

box.

At this stage, you should have a folder in the FileSystem dock called

3d_car_customizable, and within this folder, you will see an asset called car.tscn,

as illustrated in the next figure.

• Please drag and drop the asset car.tscn to the scene, this will create a new ob-

ject called Car, and modify its position so that it is just above the ground, for

example using the position (282, 5, 190).

Once this is done, we just need to add a camera that will follow this car:

• Please deactivate the camera that is already present in the scene.

• Right-click on the object called Car in the Scene dock, and add a child node

of type Camera to this object.

• Select the camera (that is a child of the object Car) and change its Translation

property to (0, 2, -5) and its Rotation property to (-30, 180, 0). This is so that

the camera is slightly above and behind the car, and also looking towards the

car.

That’s it; you can now play the scene and you should be able to drive the car

using the arrow keys.

Adding buildings to the island

We have, at this stage, added all the necessary elements to our island, based on

our outline, except from the buildings. These can be created very easily using the

same techniques covered in the previous chapters, as you will need to:

• Create new boxes.

• Place and resize these boxes so that they cover the black areas on the outline.

• Scale these boxes on the y-axis, using a height of your choice (for example

40).

Finally, we can add a texture to the buildings. As for previously, you can import

a texture, from the resources previously downloaded, called buildings.jpg, and then

create a new texture for the buildings based on this image (as we have done previ-

ously for other objects). You can then modify the tiling for this texture to (1, 5) by

accessing its corresponding material. This being said, you can use any texture of

your choice, including the texture that you have already applied to the tiles for the

indoor environment.

• While we have only created the buildings for the first island, you can easily

duplicate them twice and position the duplicates on the two additional is-

lands. After adding the buildings, you can play the scene and check how each

of them looks like.

––––––––

Level roundup

Summary

In this chapter, we have become more comfortable with the creation of indoor

and outdoor environments and we learned how to use Godot and the Asset Library

to create a realistic island. We delved into the different tools available in Godot to

create, transform, and texture basic shapes. Well, from finding your way around

Godot to creating a realistic island, you can see that you have already made some

considerable progress since the start of the book. You have managed to combine

your skills, yet with no programming knowledge, to create a truly realistic and inter-

active environment.

Quiz

It is now time to test your knowledge. Please state whether the following ques-

tions are TRUE or FALSE; the solutions are on the next page.

1. The AssetLib window makes it possible to download assets and plugins for

Godot.

2. Once a library has been downloaded it needs to be installed.

3. The Heightmap terrain library makes it possible to create terrains in Godot.

4. The Heightmap doesn’t need to be activated before it can be used in Godot.

5. Before using the Heightmap library a data folder needs to be created.

6. Only one texture can be applied to a Height Map created with the

Heightmap library.

7. The Heightmap terrain library makes it possible to raise or lower part of a

terrain.

8. It is possible to create a terrain with hills and valleys from a simple box ob-

ject.

9. A camera can’t be the child of another object.

10. The 3D Car Settings Panel plugin makes it possible to add a car to a 3D

scene in Godot.

Solutions to the Quiz

1. TRUE.

2. TRUE.

3. TRUE.

4. FALSE.

5. TRUE.

6. FALSE.

7. TRUE.

8. FALSE.

9. FALSE.

10. TRUE.

Checklist

If you can do the following, then you are ready to go to the next chapter:

• Create a terrain.

• Raise and lower parts of the terrain.

• Add textures to the terrain.

• Add (and track with a camera) a car that

includes an embedded camera.

Challenge 1

For this challenge, you will need to create a new outdoor environment, based

on a new template as follows:

• Import the texture gameMapOutline2.png from the folders that you have

downloaded from the companion site.

• Create a new scene.

• Apply the same techniques as before to recreate the island.

• Add a car.

Challenge 2

For this challenge, you will need to create your own outline, using the image

manipulation tool of your choice, and then apply it to create a new island of your

own design!

You could proceed as follows:

• Create a new image with a size of 500 pixels by 500 pixels.

• Set the background to white.

• Create the outline of the island using a brush of size 1.

• Add green, blue, or brown areas to identify the position of trees, water, or

paths.

• Save your image in the jpg or png format.

• Import this image into Godot.

• Create a new scene.

• Use this new template to create your new outdoor scene.

Chapter 6: Frequently Asked Questions

This chapter provides answers to the most frequently asked questions about the

features that we have covered in this book.

Navigation
How do I navigate through my scene?

Import and install the libraries 3DCar with SettingsPanel or Simple First Person

Controller.

After importing my Simple First Person Controller I still can’t move around the

scene.

Make sure that you have configured the Input map so that the arrow keys are

linked to the proper keywords (e.g., player_forwards).

––––––––

Transformations and Assets
How do I import assets in my scene?

Import the asset (e.g., texture, image or sound) by dragging and dropping this

asset inside the FileSystem dock in Godot.

How can I transform objects?

You can select the object and then either use the key shortcuts (i.e., W, E, R,

and T) or modify the object’s transform properties in the Inspector window.

Creating, Organising and Searching for Objects and
Assets

How do I create an object?

Select the node Spatial Node, and press CTRL + A (or right-click).

How do I add a texture?

Click on the downward facing arrow to the right of the attribute called Material

for the object. You can then, in the new contextual menu, select the option called

New SpatialMaterial.

How do I group objects?

Create an empty object (parent) and drag-and-drop the objects to be grouped

on the parent.

How do I look for objects in my project?

Use the project search window and search by name.

If I import an asset in my project, can I access it from any scene within this

project?

Yes, and that’s a very interesting feature that will save some space on your hard

drive.

Chapter 7: Thank you

I would like to thank you for completing this book. I trust that you are now com-

fortable with Godot and that you can create interactive 3D environments.

This book is the first in a series of four books on Godot, and while you have

learned a lot in this book, you will need to learn more to be able to master Godot,

create a wide range of games and get to learn GDScript.

While a sequel to this book is in the pipeline, you can always email me and let

me know if you would like to see a sequel to this book and what features you’d like

to learn (e.g., GD Script).

Before you do so, please leave an honest review on the e-book store of your

choice.

So that the book can be constantly improved, I would really appreciate your

feedback and hear what you have to say. So, please leave me a helpful review let-

ting me know what you thought of the book and also send me an email

(learntocreategames@gmail.com) with any suggestion you may have. I read and

reply to every email.

Thanks so much!!

- Pat

- -

Don't miss out!

Click the button below and you can sign up to receive emails whenever Patrick

Felicia publishes a new book. There's no charge and no obligation.

https://books2read.com/r/B-A-NXXC-WYUMB

Connecting independent readers to independent writers.

