

Game Development with Blender
and Godot

Leverage the combined power of Blender and Godot for
building a point-and-click adventure game

Kumsal Obuz

BIRMINGHAM—MUMBAI

Game Development with Blender and Godot
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar

Publishing Product Manager: Nitin Nainani

Senior Editor: Hayden Edwards

Senior Content Development Editor: Rashi Dubey

Technical Editor: Joseph Aloocaran

Copy Editor: Safis Editing

Project Coordinator: Sonam Pandey

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Nilesh Mohite

Marketing Coordinator: Teny Thomas

First published: September 2022

Production reference: 1080922

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-602-1

www.packt.com

http://www.packt.com

To my wife, Becky, for helping me during times when I didn’t even think I
needed it. To my parents, Hulya and Ilhan, for providing the opportunities that

played a big part in who I am.

– Kumsal Obuz

C o n t r i b u t o r s

About the author
Kumsal Obuz is a self-taught veteran web developer with more than 15 years of experience in two
different countries, leading teams and projects of various sizes.

After several years of preparation, he started his own game studio, Viroid Games, in August 2020.
He then launched a small puzzle-strategy game at the end of 2020 and is currently working on an
ambitious farming simulation game.

He also enjoys mentoring, which runs in the family since both of his parents are teachers. In 2019, he
founded and still organizes the Godot Toronto group on Discord.

In his spare time, he likes reading history (mostly medieval) and science-fiction.

I want to thank my friend and mentor, Gokhan Ercan, for generously sharing
his wisdom with me. Also, big thanks to the lovely people at Shmooz for their

pleasant snacks, coffee, and most importantly, their camaraderie.

About the reviewers
Anthony Cardinale is a software engineer who specialized in 3D and video game development for over
10 years. He has worked for large groups, notably on the development of 3D virtual reality experiences.

In parallel to his various missions, Anthony is an entrepreneur and shares his knowledge through
online video courses or books.

He has written many books in French on 3D modeling with Blender and video game development
with Unity and Godot.

Joseph B. Manley

Table of Contents
Preface	 xiii

Part 1: 3D Assets with Blender

1
Creating Low-Poly Models	 3

Technical requirements� 3
Understanding low-poly models� 4
Parts of a 3D model� 5
Low or hi, what’s the difference?� 5

Advantages of low-poly models� 6
Limitations of low-poly models� 8

Creating a low-poly barrel� 8
Starting with a primitive� 10

Editing the model� 12
Shaping the body� 13
Separating the lid� 15
Finishing the body� 17
Placing metal rings� 18
Finalizing the lid � 21

Automating with modifiers� 22
Summary� 25
Further reading� 25

2
Building Materials and Shaders	 27

Technical requirements� 28
Introducing materials� 28
Creating materials� 31
Assigning materials� 32

Discovering shaders� 34
Summary� 38
Further reading� 39

Table of Contentsviii

3
Adding and Creating Textures	 41

Technical requirements� 42
Understanding UVs and texture
coordinates� 42
Using the UV Editor� 43
Importing and applying a texture� 45
Creating textures procedurally� 49
Noise Texture� 52
Bump� 52
Emission� 53

ColorRamp� 53
Principled BSDF� 55
Mix Shader� 56

Exporting your textures� 56
Changing the rendering engine� 57
Baking a texture File� 57

Summary� 58
Further reading� 59

4
Adjusting Cameras and Lights	 61

Technical requirements� 61
Rendering a scene� 62
Understanding light types� 65
Types of light� 65
Basic properties of light� 67
Specific properties of each light type� 68
Wrapping up� 69

Introducing MatCap and Ambient
Occlusion � 69
MatCap� 70
Ambient Occlusion� 72

Summary� 74
Further reading� 75

5
Setting Up Animation and Rigging	 77

Technical requirements� 78
Where to build animations� 78
Animating in Godot Engine� 79
Animating in Blender� 79
Wrapping up� 79

Understanding the readiness of models�80
Topology and rigging� 80

Grabbing� 82

Creating animations� 83
Rigging� 84
Animating� 94

Getting animations ready for Godot� 98
Summary� 99
Further reading� 100

Table of Contents ix

Part 2: Asset Management

6
Exporting Blender Assets	 103

Technical requirements� 104
Getting ready to export� 104
Deciding what to do with n-gons� 104
Setting origin points� 106
Applying rotation and scale� 109
Naming things properly� 111
Wrapping up� 111

Exploring glTF and other export
formats� 111
Comparing gITF with other formats � 112

Introducing glTF� 113

Deciding what to export� 115
Include� 115
Transform� 116
Geometry� 116
Animation� 117
Creating presets� 117

Summary� 117
Further reading� 118

7
Importing Blender Assets into Godot	 119

Technical requirements� 120
Making a scene!� 120
Going between Blender and Godot � 123
Deciding what to do with materials � 125
Labeling Blender materials by purpose� 126
Labeling Blender materials by color� 126
Importing your models into separate folders� 127
Using a staging area in Godot� 127

Wrapping up� 128

Importing animations� 128
MeshInstance and Skeleton� 130
AnimationPlayer� 130
Separating actions� 131

Summary� 133
Further reading� 134

8
Adding Sound Assets	 135

Technical requirements� 136
Learning about different sound
formats� 136

Introducing WAV� 136
Introducing OGG� 137
Introducing MP3� 138

Table of Contentsx

Wrapping up� 138

Deciding on looping or not� 139
Turning the looping on and off� 140

Playing audio in Godot� 142

Playing background music� 143
Playing a sound effect on demand� 143
Increasing gameplay experience� 145

Summary� 145
Further reading� 145

Part 3: Clara’s Fortune – An Adventure Game

9
Designing the Level	 149

Technical requirements� 150
Creating the cave� 151
Erecting the walls� 157
Sinking the walls� 159
Placing the rocks� 159
Distributing props� 160
Finishing the rest of the level� 161

Constructing the missing materials� 162
Fixing the leaves� 163

Creating the water� 165

Laying models on a grid� 170
Taking advantage of MeshLibrary� 172
Using a mesh library with a grid map� 174
The necessity of using multiple grid maps� 175
Wrapping up� 176

Summary� 176
Further reading� 177

10
Making Things Look Better with Lights and Shadows	 179

Technical requirements� 180
Adding different types of light� 180
Lighting candles� 181
Introducing candles to the level� 183
Mimicking the sunlight� 185

Enabling and adjusting shadows� 187
Creating post-processing effects� 189
Background� 191
ToneMap� 192
Screen Space Reflections (SSR)� 193

Ambient Occlusion (SSAO)� 193
Glow� 194
Adjustments� 195
Wrapping up� 196

Using global illumination� 196
Turning on Light Baking� 198
Adjusting Indirect Energy� 198

Summary� 200
Further reading� 201

Table of Contents xi

11
Creating the User Interface	 203

Technical requirements� 204
Creating a simple button� 204
Wrapping in a panel� 206
Filling the panel with more control
nodes� 208
Adding a MarginContainer� 209
Styling the Label node� 210
Positioning the Close button� 212
Adding the close functionality� 213
Wrapping up� 214

Taking advantage of themes� 215
Creating a new theme� 216
Styling a CheckButton� 217
Changing a CheckBox and discovering radio
buttons� 218
Attaching a theme� 221
Altering a vertical slider component� 222
Wrapping up� 223

Summary� 224
Further reading� 224

12
Interacting with the World through Camera and Character
Controllers	 225

Technical requirements� 226
Understanding the camera system� 226
Tidying things up for interactivity� 228
Deciding on a type of projection � 229
Adjusting the camera settings for our game� 231

Detecting user input� 234
Knowing where the player interacts� 234
Distinguishing useful mouse events� 236

Moving the player around� 239
Creating walkable areas with a Navigation node�240
Introducing a basic player character� 242

Preparing a clickable area for raycasting� 244
Using Navigation node for pathfinding� 246
Moving the player to their desired spot� 247
Wrapping up� 248

Triggering animations� 249
Understanding how Clara looks around� 251
Adding a looking behavior to moving
functionality� 252
Playing the right action for Clara� 253
Blending animations or actions� 254

Summary� 255
Further reading� 256

13
Finishing with Sound and Animation	 257

Technical requirements� 258 Playing music and sound effects� 258

Table of Contentsxii

Setting background music� 259
Conditionally playing a sound� 260
Understanding the volume through decibels� 262

Creating reaction spots� 263
Placing trigger points in the world� 264
Getting to know a better collision detection
method� 266
Lighting the candles and sconces� 267
Adding the trigger for the backpack� 271
Interacting with the door� 272

Building simple animations in Godot� 274
Creating the door animation� 275

Playing the door animation on a condition� 277
Waiting for the door animation to trigger an
event� 278
Let there be flickering lights� 280
Wrapping up� 282

Loading another level� 282
Using an event bus� 283
Listening to the EventBus signal� 285
Discussing some of the choices we can all make�287

Summary� 288
Further reading� 289

14
Conclusion	 291

Technical requirements� 292
Exporting your game� 292
Preparing your project for export� 293
Creating a mechanism for turning the game off�294
Configuring Windows export settings� 295

Offering different gameplay

experiences� 297
Having an iterative creation process� 297

Discovering different genres� 298
Summary� 299
Further reading� 299

Index	 301

Other Books You May Enjoy	 310

Preface

Game Development with Godot and Blender is a comprehensive introduction for those who are new to
building 3D models and games, allowing you to leverage the abilities of these two technologies to create
dynamic, interactive, and engaging games.

This book will start by focusing on what low-poly modeling actually is, before diving into using Blender
to create, rig, and animate our models. We will also make sure that these assets are game-ready, making
it easy for you to import them into Godot and use your assets effectively and efficiently. Then, in Godot,
you will use the game engine to design scenes, work with light and shadows, and transform your 3D
models into interactive, controllable assets.

By the end of the book, you will have a seamless workflow between Blender and Godot that is specifically
geared towards game development and will have created a point-and-click adventure game following
our instructions and guidance. Beyond this point, you should be able to take these newly acquired skills
and create your own 3D games from conception to completion!

Who this book is for
This book is for game developers who are looking to make the transition from 2D to 3D games. You
should have a basic understanding of Godot, and be able to navigate the UI, understand the Inspector
panel, create scenes, add scripts to game objects, and so on. Previous experience with Blender is helpful
but not required.

What this book covers
Chapter 1, Creating Low-Poly Models, covers the creation of low-poly models in Blender. You’ll also
look at how to utilize modifiers to expedite the process.

Chapter 2, Building Materials and Shaders, shows you how to create and assign different materials to
your models, and understand where shaders come into play.

Chapter 3, Adding and Creating Textures, teaches you how to prepare your models for texturing.
Applying third-party textures and creating your own are also covered in this chapter.

Prefacexiv

Chapter 4, Adjusting Cameras and Lights, presents different light types and how to capture a shot of
your scene. You’ll be revisiting some of these notions in the Godot context later in Chapter 10, Making
Things Look Better with Lights and Shadows.

Chapter 5, Setting up Animation and Rigging, discusses the notion of animation and whether doing
it in Godot or Blender is the right choice. Once we settle the matter in Blender’s favor, you’ll rig and
animate a simple model.

Chapter 6, Exporting Blender Assets, tackles a most crucial and often ignored topic: exporting your
models from Blender. You’ll be specifically shown a format that is the most suitable for Godot Engine.

Chapter 7, Importing Blender Assets into Godot, conveniently shows how to import your models into
Godot. The transition between different applications is not always smooth, so you’ll also be presented
with shortcomings and workarounds.

Chapter 8, Adding Sound Assets, investigates the use of sound in Godot Engine. You’ll partake in a
short exercise to play a sound file after discovering different types of audio files the engine supports.

Chapter 9, Designing the Level, will be the beginning of a series of exercises for building a point-and-
click adventure game. To kick off the effort, you’ll be designing the level with the models that come
within the GitHub repository.

Chapter 10, Making Things Look Better with Lights and Shadows, presents different light types you
can deploy in your level to enhance the look and feel of the game. To complement the scene further,
you’ll also discover the use of global illumination and post-processing effects.

Chapter 11, Creating the User Interface, discusses the necessity of user interfaces. Then, you’ll utilize a
bunch of Godot UI components to compose a piece of note. Last but not least, you’ll investigate why
creating themes in Godot might be a time-saver.

Chapter 12, Interacting with the World through Camera and Character Controllers, presents different
camera types and settings on different gaming platforms. After attaining a basic view into the game
world, you’ll continue with detecting user input, which is essential for the type of game you are
building. To finish off, you’ll use this information to move a game character to their designated spot.

Chapter 13, Finishing with Sound and Animation, finishes the core mechanics of our little game. To
that end, you’ll be adding sound effects and animations to certain game objects. Also, you’ll create a
simple animation in Godot and create the necessary conditions for the player to meet in order to trigger
this animation. Once all the in-game requirements are finished, you’ll load a new level for the player.

Chapter 14, Conclusion, shows how to export your game to Windows, so you can share it with the
world. You’ll finish this chapter and the book off by getting to know what else Godot can offer to you.

To get the most out of this book xv

To get the most out of this book
You will need the Windows versions of Blender 2.93 and Godot 3.4.4 installed on your computer. All the
visual examples and code samples have been tested for these versions. If you have newer or older versions
installed, you might notice discrepancies.

Knowing how to use GitHub at a basic level might help. Alternatively, you can download the whole
repository and work with your local copy.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Game-Development-with-Blender-and-Godot. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/0KyZi.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “If you
increase the radius to 10.0, something interesting will happen.”

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/0KyZi

Prefacexvi

A block of code is set as follows:

extends AudioStreamPlayer

func _unhandled_key_input(event: InputEventKey) -> void:

    if event.is_pressed() and event.scancode == KEY_SPACE:

        stream_paused = false

    else:

        stream_paused = true

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “When you applied the Solidify modifier,
you must have seen that there are so many other modifiers.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Part 1:
3D Assets

with Blender

This part of the book provides you a detailed look into how to create models, textures, and animation
in Blender. By the end of this part, you’ll be able to create game-ready assets.

In this part, we cover the following chapters:

•	 Chapter 1, Creating Low-Poly Models

•	 Chapter 2, Building Materials and Shaders

•	 Chapter 3, Adding and Creating Textures

•	 Chapter 4, Adjusting Cameras and Lights

•	 Chapter 5, Setting Up Animation and Rigging

1
Creating Low-Poly Models

Blender is a sophisticated program that has gone through a lot of iterations to get to the point where
it is now. More and more professionals in different industries are investigating it as an alternative to
other well-known 3D applications out there, such as Maya, 3ds Max, ZBrush, and Modo. Also, Blender
happens to be a good starting point for hobbyists and people who can’t afford the licensing fees of the
aforementioned software. Additionally, Blender has a helpful and large community that creates courses
and tutorials. Blender Conference (BCON) is an annual event where you can meet professionals.

An important decision you must make before you start creating 3D content with any type of software
is where you are going to use your assets – this directly affects the style and workflow you will follow
to accomplish the task. One type of workflow is called low-poly modeling, with which you create 3D
assets that have a minimum number of details.

In this chapter, we’ll discuss why low-poly modeling might be beneficial compared to other workflows.
Following the advantages, you’ll learn how to create low-poly assets using different techniques. We’ll
conclude this chapter by introducing a few modifiers that might prove indispensable.

In this chapter, we will cover the following main topics:

•	 Understanding low-poly models

•	 Advantages of low-poly models

•	 Creating a low-poly barrel

•	 Automating with modifiers

Technical requirements
To follow the instructions in the chapters that involve Blender, you must install the necessary software
on your computer. The Blender website – more specifically, their download page at https://www.
blender.org/download/ – contains instructions and links for your platform. In this book,
we are using Blender 2.93. Although version 3.0 will offer interesting and exciting options to new

https://www.blender.org/download/
https://www.blender.org/download/

Creating Low-Poly Models4

and existing Blender users, the current version is more than capable of creating game assets for your
projects and the topics covered in this book.

This book uses GitHub to store the code that will be used in the Godot chapters. However, the same
repository (https://github.com/PacktPublishing/Game-Development-with-
Blender-and-Godot) also hosts the Blender files used throughout the relevant chapters. Where
it makes sense, the repository will be structured with Start and Finish folders inside each specific
chapter for you to start over or compare your work as you make progress.

Understanding low-poly models
Simply put, a 3D model is considered to be low-poly when it uses the minimum number of polygons
to make its most characteristic features, mainly its look and feel. However, let’s take a look at them
in a little more detail.

In real-time applications such as game engines, your computer’s central processing unit (CPU) and
graphics processing unit (GPU) are responsible for processing the visual information you see on the
screen. In the last two decades, the trend has been leaning heavily toward the GPU side since GPUs
are dedicated to one main task: processing graphics.

GPUs have an advantage over CPUs in that regard, and they don’t discriminate between 2D and 3D
graphics. However, whereas 2D images contain pixel information, 3D objects are represented by data
that holds the necessary coordinate information that defines the object.

Although a cube is still a bunch of pixels after it is rendered on your screen, the data that defines
the cube is essentially eight points, which are called vertices. For demonstration purposes, in the
following screenshot, Blender’s vertex size setting has been changed so that you can see where those
vertices are more easily:

Figure 1.1 – The eight vertices of a cube

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Understanding low-poly models 5

Both cubes are the same object, but it’s possible to render the same eight vertices and their relationship
with each other in two different ways: one that looks like a solid object (on the left) and another that
looks transparent (on the right). So, keep in mind that vertices are data points that define the shape
of the object, not how it looks. Later in this chapter, you’ll learn how to make objects look different,
similar to what’s shown in the preceding screenshot.

Before we discuss what makes a model low-poly, we must understand a few other essential parts.
You’ve already seen that the vertex is the most crucial component, but there are two more concepts
you must be aware of:

•	 Edge

•	 Face

Let’s see how these two relate to a vertex. By doing so, we’ll be on our way to understanding what
makes a model low-poly.

Parts of a 3D model

An edge is what connects two vertices. It’s as simple as that. If you look at Figure 1.1 again, you’ll
see that not all the vertices are connected. However, when they are connected, it’s called an edge and
depicted by Blender with a straight line going from one vertex to the other.

A face, as you may have deduced, is a logical outcome when you arrange vertices – or edges – in a
certain pattern. For example, a cube or a six-sided die has six faces. Although Figure 1.1 makes it
look like you need four edges to make a face, there is a simpler way – that is, three edges are enough
to form a face. So, a triangle is the simplest face, also known as a polygon.

Low or hi, what’s the difference?

When you are designing a model, you are creating polygons. The density of the polygons in a model
is what determines whether a model can be considered low-poly. The following figure displays one
low-poly and one high-poly work sample, courtesy of Sketchfab users MohammadRezae and DJS_05:

Figure 1.2 – An example of a low-poly versus high-poly model

Creating Low-Poly Models6

You can find a lot of examples of different polygon counts on websites such as Sketchfab.

In the industry, if you are asking for a model to be designed for you, you may want to mention that
you want it done in low-poly form. It’s often agreed that if you don’t mention this, people will assume
it’s going to have as many polygons as possible since you would want your models to be as detailed
as possible with plenty of polygons. So, the distinction is made when you are cutting those polygons
out, not when you are keeping them in.

Let’s focus on our default cube again. Is it low-poly or hi-poly? It might be both. Although we know
that only eight vertices are needed to create a cube, we could have had many more vertices along the
edges that connected the original corner vertices. However, it would not have made any difference
in the rendered result. That being said, it would have taken the computer a lot longer to render the
same visual result.

So, as mentioned previously, when your model has just enough polygons to make sense of the object
you’d like to design, you’ll have a low-poly model.

Although GPUs are fast and they do a fantastic job these days of rendering millions of polygons and
going low-poly may feel like you are cutting corners, there are good reasons why you may not want
to have that many polygons in your project.

Advantages of low-poly models
Here is a quick list of the benefits of following a low-poly modeling practice:

•	 Fewer polygons

•	 Small file size

•	 A certain artistic style

•	 Easy to prototype

•	 No or minimal texturing

Working with fewer polygons certainly means fewer things to change and worry about. Shortly, you’ll
learn how to create a barrel, and by the end of that exercise, your model will have close to a thousand
polygons. This number may seem high at first but imagine working with a hi-poly barrel model with
more than 10,000 polygons. So, if you are new to 3D modeling, low-poly modeling is a great place
to start.

Should you decide to alter your models, working with a higher number of polygons will force you
to be more careful. So, in essence, having fewer polygons is comforting since you will feel like you
have more control over your creation. Naturally, fewer polygons will result in a smaller file size too.

Advantages of low-poly models 7

The artistic style advantage is a non-technical item in the advantages list. Nevertheless, it might be an
important decision. Let’s focus on Figure 1.3, for example. You’ll see why lack of detail doesn’t always
mean lack of imagination:

Figure 1.3 – Low-poly model landscape

Here, you can see just enough details to figure out that there is a church. Perhaps this church is looking
onto a town square. The mountain tops have some snow. Is this a peaceful town that’s appealing to
tourists for winter sports? Perhaps the townspeople are currently hiding in the church from a villain?
Our imagination fills in the details. Whatever the case and the game genre is, the low-poly aspect of
the 3D models doesn’t induce a penalty for creativity. In fact, in the last few years, we’ve seen more
games with low-poly assets making headlines.

If you are working in a small game development team or if you are the only developer, you’ll sometimes
want to focus on game mechanics first to see if the idea is fun. In situations like these, you’ll want
to prototype objects quickly so that you can embed them into your code. When the model you are
working on has a generic shape of the object you would like to design and has enough details, then
you might be done. That’s why it’s a highly sought-after choice among indie developers since you
can move forward quickly to the next model, then to programming your game. In essence, low-poly
modeling is like prototyping but it’s a few steps more refined than placing a cone for a tree, a cylinder
for a barrel, or a cube for a crate.

Creating Low-Poly Models8

Last on the list is texturing. This is a process where you give a certain look and feel to your model. A
sandy beach usually looks yellow. If it’s a rocky beach, then the rocks will most likely have different tones
of gray. Thus, it’s about mainly applying color information to the surfaces of your model. Sometimes,
this color information will be complemented by additional data such as reflectivity, metallicity, and
roughness. We’ll discover all this in the next chapter.

It’s often said that most things in the computer world are a trade-off. Speed versus quality versus price
is a common example where you can most likely have two out of three but not all three. Despite all
the benefits a low-poly workflow provides, there are some limitations, but recognizing them will help
you to find workarounds or plan ahead.

Limitations of low-poly models

If your models need to show damage such as missing parts along an edge or some chunks blown out
of a face, then you need to introduce more polygons in those areas. This still won’t make it a high-poly
model, but you’ve got to consider additional polygons if you fancy some dynamic details.

Also, if you decide to animate your low-poly models, you’ll need to introduce more geometry by
adding more polygons in the areas where there will be bending and twisting (depending on the model
you are animating).

Additionally, since there are fewer polygons, you may have to be creative with the lighting of your scene
to give the illusion of detail. Although the color of the water in Figure 1.3 is the same throughout the
composition, the designer used a couple of clever methods to make the scene look more interesting.
First, the water’s surface looks fractured. This gives the illusion that there is some slight movement
in this water’s body. Perhaps there is a gentle breeze. Second, some of those fractures have a reflective
material applied. This makes the surface reflect the objects further ahead on the horizon.

We’ll look at ways to overcome these limitations in the following chapters, but for now, let’s learn how
to create a few low-poly models of our own.

Creating a low-poly barrel
Every discipline comes with a few conventions for beginners. If you are learning a new programming
language, writing “Hello World” to the screen is a classic example. Learning how to use 3D modeling
software is no different. For example, a barrel, a potion bottle, or a donut can be started with basic
shapes you are familiar with, such as a cylinder, a cone, or a torus, respectively.

In this section, you’ll learn how to design a barrel but, first, here are a few useful shortcuts that will
help you navigate around and accomplish the tasks we’ll cover in this section:

•	 Rotate: Middle mouse button + drag mouse

•	 Zoom: Scroll mouse wheel forward/backward

•	 Move: Shift + Drag Mouse

Creating a low-poly barrel 9

Blender is rich with so many shortcuts and it’s possible to change them to your liking once you gain
more experience. Speaking of shortcuts, this book only lists Windows shortcuts. However, when you
see the Ctrl key mentioned, it’s the Command key in macOS.

When you launch Blender for the first time, you’ll be presented with some options. One important
option is to decide which mouse button to use to select objects. Historically, the right mouse button
was the default, but you may find this uncommon. If you dismissed that initial screen, and you are
not happy with the mouse button assignment for the select operation, you can still change it by going
to the Edit menu and selecting Blender Preferences. In the Keymap section, expand the Preferences
section, as shown in the following screenshot; you’ll be able to change a bunch of settings, including
Select with Mouse Button:

Figure 1.4 – The Preferences window of Blender

Speaking of the select button, whichever side you choose, the other side will be reserved for moving
the 3D cursor to a new position. A 3D cursor is a visual marker you place in the world. When you add
new elements to your scene at a particular location, or things need to align to a certain point, the 3D
cursor will be that point. We’ll most likely keep the 3D cursor where it is for most exercises, but keep
in mind that if the left click is for selection, then the right click is for the 3D cursor, and vice versa.

Creating Low-Poly Models10

Official manual
Since this book is about game development, we’ll focus on a small and relevant portion of
Blender. However, sometimes, looking at the official manual might be a good idea, especially
for shortcuts. The Blender website has a decent user manual: https://docs.blender.
org/manual/en/2.93/.

Modeling is a multi-step process. It involves starting with the basics and adding more details as you
go. The following is what we’ll do to design a barrel:

•	 Start with a primitive

•	 Edit the model

•	 Shape the body

•	 Separate the lid

•	 Finish the body

•	 Place metal rings

•	 Finalize the lid

The list is merely an example workflow that highlights useful parts of Blender. When you gain more
experience and find a different order to accomplish what you have in mind, you can work in whatever
way works for you. However, you are likely to start with primitives.

Starting with a primitive

A new scene in Blender comes with a cube, a camera, and a light source. Since we are going to create
a barrel that is more like a cylinder, we should get rid of that cube:

1.	 Select the cube and press X on your keyboard to delete it.

2.	 Trigger the Add menu to the left of the Object menu.

3.	 Select Cylinder under the Mesh group.

The shortcut for adding new objects is Shift + A, which will bring up the same list of options. If you
feel like deleting the other default objects, feel free to do so since you can always add them later using
the Add menu. The following screenshot shows where you can find it:

https://docs.blender.org/manual/en/2.93/
https://docs.blender.org/manual/en/2.93/

Creating a low-poly barrel 11

Figure 1.5 – You can add many types of primitives to your scene

Once you add the cylinder to your scene, you’ll see that the cylinder comes with a lot of side faces; 32
to be exact. For a low-poly barrel, that’s a lot of faces that could be cut down by half and you would
still have a decent-looking barrel.

When you add a new object, a panel will appear at the bottom left of the screen. The title of this panel
will reflect what you are currently trying to accomplish. In this case, it should display Add Cylinder.
If it looks closed, click the title and it’ll expand to show the properties you can alter for your cylinder.

The default options are all fine except for the number of vertices. However, this is also a good chance
to play with the values and see the changes reflect instantly. While you are doing all this, that panel
may disappear if you click away from your cylinder. To bring it back, click Adjust Last Operation
under the Edit menu. When you feel like you’ve got the hang of editing a new object’s properties, you
can set the relevant values, as shown in the following screenshot:

Figure 1.6 – 16 faces will be enough for creating our barrel

Creating Low-Poly Models12

Adding a primitive such as a cylinder has introduced a new object to your scene. You’ve changed its
basic properties, such as the number of vertices. That number defines how many points are used to
make up the top and bottom circles, as shown in the preceding screenshot. This was all done at the
object level; hence, you’ve been working in Object Mode. Now, it’s time to dive deeper and edit the
finer details of this cylinder.

Editing the model

It may seem like every time you change the value of something, you are editing the model. However,
from Blender’s perspective, not all edits are the same. When you start with primitives, there are higher-
level operations you can perform such as changing the number of vertices that define the general shape
of the primitive. This is what you have seen and done so far – you’ve been editing objects.

When you want to have more control over the vertices, faces, and edges that make up the object, you
should switch to another mode that allows you to work with these properties so that you can have
much more refined control over the shape of the model.

Mac shortcuts
You can always use menus, buttons, and other interface elements to do your work, but you’ll
eventually depend on shortcuts. If the shortcuts that have been mentioned so far don’t work
for you, then you may want to check out Blender’s manual to find the right combination for
your platform: https://docs.blender.org/manual/en/2.93/interface/
keymap/introduction.html.

Select the barrel and press Tab. This will turn on Edit Mode. If you keep pressing the Tab key, you'll
go back and forth between Object Mode and Edit Mode. You’ll also see that Blender’s UI is either
hiding some of the buttons and menus or revealing some new ones, depending on which mode is
active. This means some options are only available in a certain mode. If you are wondering where that
thing you just saw disappeared, make sure you are in the right mode.

Then, in Edit Mode, press Ctrl + R to trigger Loop Cut and Slide. This is a context-sensitive operation,
so if you see nothing happening, it’s because the mouse is not over a face for this tool to operate. Hover
your mouse over different parts of the cylinder. You’ll see a yellow line going all the way around; the
direction of the line depends on where your cursor is on that face. While still over one of the side
faces, trigger your mouse wheel up twice to increase the number of cuts to 3. This is a preview of the
loop cuts, but they are not part of the cylinder yet.

A loop cut will require two mouse clicks, regardless of how many loops you would like to have. With
the first click, you are telling Blender that you want to introduce some cuts; in this case, 3. The second
click will finalize the position of these cuts, but you can change it by moving your mouse up and down
along the side of the barrel. So, in between the first and the second click, you have some freedom to
position the cuts. The following screenshot shows what we are after:

https://docs.blender.org/manual/en/2.93/interface/keymap/introduction.html
https://docs.blender.org/manual/en/2.93/interface/keymap/introduction.html

Creating a low-poly barrel 13

Figure 1.7 – Adding more edges with precise values

If you accidentally moved your cursor in between two clicks, which would have moved the baseline
of the cuts, do not worry. Once the edges have been added, the operation’s details will be displayed
so that you can fine-tune where the cuts appear in your model. The important part is to set Factor to
0 so that you have the perfect cut in the middle. If you made a last moment change before you made
the cuts, you can also adjust the number of cuts.

The main reason why you switched to Edit Mode is to have more control over the shape of your
objects. While still in Edit Mode, you’ll now learn how to use those loop cuts to give your object the
shape of a barrel.

Shaping the body

A barrel is such a generic concept. However, we have not discussed what kind of barrel we will be
working on. Technically, we are not too far off from an oil barrel since they usually look cylindrical
and have two rounded-off ridges. Then, there are plastic barrels that you see in gardens for collecting
rain. These tend to have a plain side with the top and bottom slightly tapered in or with the middle
section slightly bulging out, depending on which way you look at it.

We’ll go for a more classic one: a wooden barrel. Since we have the basic shape, we can now start
adding more details to our barrel. Two things come to mind easily. Most barrels have a few metal rings
– in the middle, near the bottom, and at the top – for enduring the stress of what they are holding.
Also, the lid is rarely flush with the side but more likely inset, so maybe we should treat that top part
separately. Let’s start tackling all these one at a time.

Are your 3D objects looking flat?
It’d be nice to have some life in all that gray! If the default look for 3D objects feels too flat and
you’d rather see the edges emphasized like you see them in pictures, here is a trick. There is a
button with a down-looking icon at the top-right corner of the 3D Viewport. If you click that
button and expand the Viewport Shading panel, you can switch Lighting to MatCap, and
turn on both the Shadow and Cavity options in the panel. Selecting Both for the Cavity type
may also be a good option. Investigate different values as you see fit so that you have an easier
time working with your models.

Creating Low-Poly Models14

Our barrel needs a belly. We need to make those loops we have just introduced wider to create a classic
shape for the barrel. With those three edges still selected, hit S, type 1.1, and press Enter to scale it
up by 10%. As usual, the last operation’s fine-tuning settings will be shown if you would like to adjust
your values after finishing the action. Now, we only need to make the middle ring slightly larger.

Although we have been in Edit Mode so far, we have not investigated what you can edit. In the top-left
corner of 3D Viewport next to the Edit Mode dropdown, you’ll see Vertex, Edge, and Face icons from
left to right. These buttons have 1, 2, and 3 as shortcuts, respectively.

Switch to Edge edit mode by pressing the middle icon or 2. To create the belly for the barrel, you need
to select and scale up all the edges that make up the middle ring, but you probably don’t want to do
that for each edge one by one. Thus, we need to look at how to select an edge loop.

There are two ways to select an edge loop. The first method uses a keyboard shortcut:

1.	 Hold the Alt key.

2.	 Click one of the edges.

This should select all the edges that are connected to the one you’ve just clicked, as shown in the
following screenshot:

Figure 1.8 – Selecting all the edges that make a loop is easy

The second way is as follows:

1.	 Select one edge.

2.	 Go to the Select menu.

3.	 Expand Select Loops and choose Edge Loops.

Creating a low-poly barrel 15

Whichever way you do this, after you select the middle edge loop, you must do the following:

1.	 Scale it by pressing S.

2.	 Type 1.05.

3.	 Hit Enter.

This should result in a classic barrel shape.

However, the top face still belongs to the cylinder. Although conceptually, a lid might be considered
an essential part of a barrel, from an editing perspective, it must be treated as a separate object. Let’s
learn how to separate parts to edit them individually.

Separating the lid

To create the lid, first, make sure you are still in Edit Mode. Switch to face select mode by clicking the
third icon next to the Edit Mode dropdown or by pressing 3. Then, do the following:

1.	 Select the top face.

2.	 Press P.

3.	 Choose Selection.

This will separate the top face and make it a separate object.

Alternatively, you can expand the Separate group under the Mesh menu. The following screenshot
shows where you can find this option if you are doing the separation with the menus:

Figure 1.9 – Separating things is sometimes necessary and, in fact, helpful

Creating Low-Poly Models16

Shortcuts
At this point, you must have noticed that Blender uses a lot of shortcuts. It might be difficult to
learn and remember all these at the beginning. If you have a rough idea about what you’d like
to do with the meshes, vertices, edges, and such, you should check out the appropriate menus
near the top to see what operations are available. Pressing a shortcut key will show you just
the relevant part of those menus, but investigating those menus and looking at the shortcut
might be a good exercise.

For example, the P key is used to separate things, but there are three types of separation, so
you’ll still have to make a final decision on the type. However, using the shortcut still takes a
shorter time than expanding the menus.

Now might be a good time to introduce you to Outliner in the top-right corner. The following
screenshot shows all the objects that exist in your scene right now:

Figure 1.10 – The lid and the body should be two separate objects

You can ignore the Camera and Light objects if you kept them in your scene since we’ll discover what
those two do later in this book. Over time, when you create more objects, you’ll want to label your
objects so that you can easily find them in Outliner.

Let’s try it now. Double-click the label for Cylinder in Outliner and type Body. Do the same thing
for Cylinder.001 and mark it as Lid. You’ll also notice that clicking labels in Outliner will select the
objects in 3D Viewport and vice versa. Finally, hit that eye icon to hide the lid for now. We’ll finalize
the lid once we deal with the body.

Creating a low-poly barrel 17

Finishing the body

What would you say is wrong or missing from the body? It looks paper-thin, doesn’t it? If only there
was a way to stretch each face out or in, and fill in the gaps so it looks solid! So far, you’ve been selecting
edges and faces. You can follow a similar workflow to select some faces, duplicate them, and move them
around to give thickness to the body. This is tempting, but let’s find an easy way to solidify the body.

For this, you need to enable the Modifiers panel. A modifier is a tool that offers a non-destructive way
to change your objects. You’ll get to read about a few of them in the Automating with modifiers section.

There is a wrench icon on the right-hand side near 3D Viewport that is going to let you add modifiers.
Here are the steps you must take to give substance to the barrel’s body:

1.	 Switch to Object Mode.

2.	 Select the Body object.

3.	 Open the Modifiers panel.

4.	 Choose Solidify from the Add Modifier dropdown.

Modifiers change objects, so even if you are in Edit Mode, working with a modifier will look as if
you are in Object Mode for the object you are editing. You’ll discover some of the modifiers in that
dropdown list later in this chapter. For now, the following screenshot shows what the Solidify modifier
is doing. Most things in Blender come with a lot of values to tweak, but you only need to change the
Thickness value in the Solidify options for the time being:

Figure 1.11 – Our barrel is starting to look more solid

How much Thickness is enough? 0.03 m or 0.04 m might be a good value. You could pick an
industry-standard thickness or choose a value that looks visually appealing. Depending on the type
of game you are working on or whether you are creating assets for a client, you can pick what works
best for the asset.

Creating Low-Poly Models18

A discussion about units
Most of the world is using the metric system these days. However, if either because it’s the
default option or a matter of preference, you may have Imperial units set up in your Blender
copy. Throughout this book, the Metric system will be utilized. You can find Units as a panel
inside the fifth tab from the top on the right-hand side. This tab contains an icon with a cone,
a sphere, and what looks like a dot.

Modifiers are very helpful, but you need to get your hands dirty sometimes. This means that there
is a limit to what modifiers can do for you. For example, we now need to put metal rings around the
body. There is no modifier to do this for you. Nevertheless, we can still take advantage of modifiers
as we go. But, first, let’s create some metal rings.

Placing metal rings

The barrel now has some substance, but it’s missing metal rings. Creating another cylinder and sizing
it up so that it looks like a ring is too much work and requires precision. There is a simpler method
that takes advantage of the barrel’s geometry. You’ll be using familiar methods you’ve already seen:
loop cuts, loop selection, and separation.

While in Edit Mode, create a loop cut between the bottom and the first edge loop of the body. For
the other loop cut, you’ll be creating the cut in between the top edges and the loop right below it. In
the end, you’ll be creating two loop cuts, as shown in the following screenshot

Figure 1.12 – Two separate cuts from both ends approaching the middle section

Creating a low-poly barrel 19

You’ve already seen how to select an edge loop: it involved holding the Alt key and clicking an edge.
You’ll do something very similar except it’ll be for selecting a face loop. For this, make sure the face
icon is clicked in Edit Mode. Alternatively, while in Edit Mode, you can press 3.

When you hold the Alt key and click an edge, you’ll be selecting the faces that are adjacent to that edge
you’ve just clicked. It’ll also keep selecting the other faces that are in a similar direction to complete
a loop. Try it a few times with horizontal and vertical edges to see how the loops’ direction changes
accordingly.

What you must do is select all the faces that make up the two rings that are close to the top and bottom
of the barrel. The following screenshot shows which faces should be selected so that you can separate
them to form the metal rings:

Figure 1.13 – You’ve got to have something selected so that you can separate it

Once you select the first loop, you can hold down Shift and repeat the previous operation to keep
adding more loops to your selection.

Now, you are ready to separate those faces. Hit P to bring up the Separate options and choose Selection.
Now, you can rename the newly created Ring object. If you go back to Object Mode, you’ll see that
you can select each object individually. Select the ring; you’ll see that the Solidify modifier still exists
for this new object too. Isn’t that handy?

Creating Low-Poly Models20

The thickness value in the modifier is the same, but what would happen if we changed the sign of
that value? If you click the Thickness field, it will let you type in a value. Adjust it so it shows -0.04
m. As you can see, it’s still the same thickness, but in the other direction – it looks like we have those
metal rings around the body of our barrel finally!

Now, let’s learn how to add another ring for the middle section. You can follow similar steps to create
two more loops, one above and one below the center loop. However, you can do better.

Select the middle edges by conducting an edge loop operation and then triggering the Offset Edge
Slide option under the Edge menu or pressing Shift + Ctrl + R. This is very similar to Loop Cut and
Slide but it has two major differences. First, this operation will consider an edge as its baseline and
move the new edges off in opposite directions. Second, you need to click just once when you are happy
with where the new edges will sit. Choosing 0.1 for the Factor value in the operation’s properties might
be a good number if you’re having sensitivity issues with your mouse.

We’ll follow a similar procedure: select and separate. In face edit mode, you will use a combination
of Alt + Shift by clicking one of the vertical edges sandwiched between your new loops. After you
separate the middle faces, you’ll be left with an important decision: should you rename your new
object and invert the direction of thickness in its modifier just like you did for the upper and lower
rings? In essence, you want your new object to join its fellows. That’s exactly what you’ll do next but
with a clever trick without repeating yourself.

Which mode?
During the modeling process, there are times when you’ll need to edit parts of your model. In
this case, being in Edit Mode will be necessary. However, when you separate chunks from your
models, you’ll most likely want to go back to Object Mode to do something with this new object.
So, going back and forth between these two modes will be necessary and feel natural after a while.

In Object Mode, first, you must select the middle ring you have just created. You don’t need to rename
it; you’ll see why shortly. You must add one more object to your selection by holding Shift and clicking
the ring in 3D Viewport. Make sure your last click is on the ring object you created a while ago. The
order of clicks matters at this point. The last object you interact with will be considered as the active
object by Blender. It will be marked with a yellow outline compared to orange outlined objects, which
are part of the selection but not considered active objects.

Once you have your rings selected in the correct order, you must join them by pressing Ctrl + J. Did
you notice what just happened? Let’s break it down:

•	 You can no longer see Body.001 in the Outliner

•	 The Ring object has accepted Body.001 into the fellowship

•	 The Ring object’s Solidify modifier has been applied to Body.001

There are no longer separate pieces since all those separate parts are now considered as one object,
as shown in the following screenshot:

Creating a low-poly barrel 21

Figure 1.14 – One ring to join them all

As you get more confident in Blender, you’ll find that you can follow different methods to achieve the
same result. There is no right or wrong way, but rather time-saving habits, and you’ll develop your own
since every designer has their preferred way of doing things. Sometimes, there are other concerns,
technical or artistic, that will limit your workflow. However, as a beginner, you should observe how
other artists are creating similar objects. Luckily, there are plenty of examples out there, so learn,
experiment, and divert as you go.

Earlier, you had to separate the lid. After that, you made changes to the body and even added rings.
Now, it’s time to put a lid on your barrel.

Finalizing the lid

If you hid the lid once you separated it, you can click the eye icon in Outliner to turn it on. You need
to do a basic scale operation to put the lid in its place. To achieve this, first, select the lid, and then
do the following:

1.	 Press S.

2.	 Type in 0.96.

3.	 Press Enter.

Creating Low-Poly Models22

Why such a precise value? Because we’ve been using 0.04 m in the Solidify modifier. So, we should
reduce the scale of the lid by 4%. This will save us from the trouble of lining up all the edges of the lid
so that they are flush with the inner side of the barrel. If you have been using a different value in your
modifier, you’ve got to compensate your scale value in this step so that both add up to 1 in the end.

You’ve done it! With the lid in the right place and looking just below the rim level, the barrel is complete.
Check out the following screenshot and compare it to your creation:

Figure 1.15 – A wooden – rather gray – barrel in its glory

If you decide to create this barrel from scratch again, perhaps you can place the upper ring close to
the lid, and the lower ring at the bottom. Placing five rings is also a possibility, but you may want to
adjust the height of each ring in case the composition looks busy.

So far, you have used one modifier, and it has served you well. Let’s dive into more modifiers and see
how powerful they can be.

Automating with modifiers
A modifier is a non-destructive way of applying an operation to change an object’s geometry. This is
often preferred when you don’t want to take repetitive steps or the operation is complex enough that
you don’t want to directly alter the object’s geometry.

Automating with modifiers 23

When you applied the Solidify modifier, you must have seen that there are so many other modifiers.
Could you imagine what you can do with each one? How about you use a few modifiers in a row?
Yes, you read that right. You can stack up many modifiers and create complex shapes with little effort.

However, there is an important detail you must pay attention to – their order matters! New modifiers
are always added at the bottom, and they work in conjunction with the previous modifiers in the stack.
Thus, the effect is compounding. If you logically stack your modifiers, you could create something
as complex as what’s shown in the following screenshot with only a few primitive objects in no time:

Figure 1.16 – Modifiers help you create something this complex easily

This object is using primitives such as cylinders and cubes, but the result looks interesting. This is
thanks to a hefty list of modifiers and the order that they’ve been used. Some of the modifiers have
been applied multiple times with different values, but here is a list:

•	 Subdivision

•	 Decimate

•	 Boolean

•	 Bevel

•	 Mirror

•	 Weighted Normal

Creating Low-Poly Models24

At the time of writing, Blender has over 50 modifiers. Describing each would fill a book. Most likely,
you’ll stick with the modifiers that are in the Generate category. Here is a set of modifiers you’ll use
most of the time:

•	 Boolean: This is one of those modifiers that is used a lot and it comes in three sub-modes:

	� Difference: Subtracts the value of one object from another

	� Union: Will combine both objects

	� Intersect: Will only keep what’s common in both meshes

•	 Bevel: Sometimes, you want to have more detail, especially along sharp edges so that they
don’t look too harsh – the more surface there is for the light sources to reflect on, the more
realistic it’ll look to the eye. This modifier will also work on vertices if you want to soften those
sharp corners.

•	 Array: This makes copies of the object it’s assigned to in different axes, with or without some
offset if you wish. You could have a fixed number of copies or fill a particular length with as
many copies as you can fit in that distance.

•	 Mirror: This is like the Array modifier except it creates one copy along the axis you select. You
can pick multiple axes. Thus, it’s possible to start with only a quarter of the object and mirror it
on the X and Y axis so that you have one whole object. This allows you to keep your changes to
a minimum in the original quarter so that you can mirror your changes to the rest of the mesh.

When you add your modifiers, it’s sometimes not obvious which order you should stack them in.
Luckily, it’s possible to change their order or temporarily disable them by using the buttons that are
part of the modifier’s header.

While creating rings for the barrel, you could have used a different technique to achieve the same
result: extrusion. This would require you to select what needs to be extruded – in this case, all the
faces that make up the ring – and extrude along each face’s outward-facing direction. Extrusion, in
essence, is a technical term for moving vertices, faces, or edges.

Modifiers have a big advantage compared to classic methods such as pushing and pulling vertices
and faces around. Wouldn’t it be convenient to come back later and fine-tune your changes further?
If you happen to select the lid now and come back to the Body object, the modifier will still be there.
You won’t have this kind of flexibility with permanent mesh modifying techniques such as extrusion.

Summary 25

Summary
In this chapter, you learned about the benefits of low-poly modeling. Then, you created a wooden
barrel from a primitive cylinder and incorporated modifiers. Although textures may give a more
realistic look to your models, you also know you can do without them.

As an exercise, feel free to create a potion bottle. You can start with a cylinder, just like you did for
the barrel. The loop cuts and the scaling down values will be different to give it a conical shape. This
is your chance to practice modifiers. A finished potion bottle is waiting for you in this book’s GitHub
repository if you want to see a finished example and compare yours.

Several shortcuts are commonly used by many professionals during the modeling process. Here is a
list you’ve used so far:

•	 Shift + A: Add an object

•	 Tab: Switch between Edit Mode and Object Mode

•	 Ctrl + R: Introduce loop cuts

•	 Ctrl + J: Join

•	 S: Scale

•	 P: Separate

In the next chapter, you’ll learn how to apply materials to your models so that parts of your model
can still have a different look and feel without textures.

Further reading
The section’s title suggests reading sources, but sometimes seeing is even better. Just as a picture is
worth a thousand words, a video might be worth a thousand pictures. So, here is a list of URLs for
video content that might be useful for all levels of Blender practitioners:

•	 https://www.youtube.com/c/JoshGambrell

•	 https://www.youtube.com/c/CurtisHolt

•	 https://www.youtube.com/c/GrantAbbitt

•	 https://www.youtube.com/c/SouthernShotty

https://www.youtube.com/c/JoshGambrell
https://www.youtube.com/c/CurtisHolt
https://www.youtube.com/c/GrantAbbitt
https://www.youtube.com/c/SouthernShotty

2
Building Materials and Shaders

According to Wikipedia, a material is a substance, or a mixture of substances, that constitutes an object.
This definition for real-life objects also stands true for the models you create electronically with some
extra technical details. Let’s look at the definition of a material in our context.

In Blender, materials are essentially containers that hold a bunch of numbers, colors, and textures,
besides other useful stuff, and most importantly the shader itself. A shader is a piece of code that
tells the rendering engine, either Blender’s or Godot Engine’s, what to do with a material’s properties.

In essence, a material is like a box full of little items, and it comes with a user manual (the shader) so
that the software you work with knows what to do with those little items.

You now know the raw definition of what materials and shaders are, but what are they used for?
The barrel you created in the previous chapter had metal rings and wooden slats that gave it its form.
However, everything in that model looked rather gray. Adding materials to your models will enhance
their form by showing colors and other properties you are familiar with from real life.

In this chapter, you’ll learn how to make your models look more real by applying materials. To that
end, we will cover the following topics:

•	 Introducing materials

•	 Creating materials

•	 Assigning materials

•	 Discovering shaders

By the end of this chapter, you’ll know how to create and assign different materials, and understand
where shaders come into play during this process.

Building Materials and Shaders28

Technical requirements
Although this chapter is about materials, you’ll need at least one 3D model. This can be your finished
work from Chapter 1, Creating Low-Poly Models. Alternatively, you can use the barrel model that
comes in the Start folder of the Chapter 2 folder in this book’s GitHub repository: https://
github.com/PacktPublishing/Game-Development-with-Blender-and-Godot.

Introducing materials
As we mentioned in the introduction, materials are assigned to objects. However, you can’t assign
materials to all objects. When you start up a new Blender file, it comes with a cube, a camera, and a
light object. Only one of these objects has substance from Blender’s perspective, and that’s the cube.
Let’s break this down a bit more to understand why it matters. Although a camera and a light source
have physical properties and they occupy space in real life, this isn’t the case in Blender. They are
conceptual objects.

A camera is a tool through which you see the world. So, you don’t get to see the visual properties of
the camera itself. It doesn’t matter if the camera is painted red or blue. Similarly, a light source shines
a bright or dim light, sometimes with a certain color, but it doesn’t take up space in a Blender scene.
Therefore, if there is no substance, we can’t apply a material to these two objects.

If only there was an easier way to know which objects can receive materials…

If you select each of the default objects one after another, you’ll see that some icons are popping in and
out of the view on the right-hand side of the screen. Different sets of options, represented by icons, are
stacked in the Properties panel. This panel will display the relevant properties of the selected objects.

When you select the cube, you’ll notice that the Properties panel introduces a lot of icons, different
than the ones for a camera or a light object. Either hover over the icons to see their title or simply click
the icons to take a quick look at what’s at your disposal. While doing that, you’ll eventually discover
the second-last icon, which should turn on the Materials panel (if you need to remember it later, it’s
the icon that looks like a sphere with a checkerboard pattern).

You haven’t created a material yet. However, Blender starts with a default cube, which comes with a
default material. Let’s learn how to change its color. After selecting the cube, follow these steps:

1.	 Open the Materials tab in the Properties panel.

2.	 Click the colored rectangle on the right-hand side of Base Color.

3.	 Pick a different color from the color wheel.

The following screenshot will help you find all this. Once you have chosen a color, the change will not
apply to the cube at first; you’ll find out why soon:

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Introducing materials 29

Figure 2.1 – Color is one of many things you can change for a material

While selecting a color, the color wheel will help you out. However, if you want to be more precise with
the color you are selecting, the three buttons (RGB, HSV, and Hex) under the color wheel can help
you. In the preceding screenshot, a value of E77EB6 was used in Hex mode. All these color modes
act like units, but the result will always be the same color when you switch between different modes.

Panels and settings
Working in Blender doesn’t always mean you have to directly modify the geometry (vertices,
edges, and faces) of your models; you will often find yourself looking for settings and altering
them in many panels. Later in this book, when you work with objects such as camera and light,
you’ll use the appropriate panels so that you can tweak the settings for these objects.

Let’s figure out why the last change you made didn’t reflect on the screen. By default, Blender shows
models as solid objects. Sometimes, just like an X-ray may help a doctor understand what’s going on, you
will need to see your model differently. The following are four different ways you can see your objects:

•	 Solid: The default option; you’ve been using this all along. It simply shows your model as a
solid object.

Building Materials and Shaders30

•	 Material Preview: You will mainly see the color you applied to the object, but you will also see
some of the other properties you have applied.

•	 Wireframe: The object will look like a metal wire has been bent and welded to create a frame that
defines the model. Since this mode only renders edges and vertices, it is useful when you want
to visualize polygons and detect overloaded areas so that you can easily optimize the models.

•	 Rendered: This is a more accurate view than Material Preview because it uses the rendering
engine of Blender to create the most accurate representation. It does this by considering the
lights and shadows in your scene. Naturally, it uses more GPU, so you’ll most likely work with
other view options most of the time.

The previous list shows all the options you have for Viewport Shading. The default view, Solid, is
fast but not accurate when you want to work with materials. Now that you’ve changed the properties
of your material, you must be in Material Preview to see it in effect. To switch to it, press Z and then
2. Alternatively, after you press Z, you can select the appropriate option with your mouse, as shown
in the following screenshot:

Figure 2.2 – Different Viewport Shading options presented in a radial menu

Creating materials 31

Now that you have a basic understanding of what materials are, we’ll go back to the barrel from
Chapter 1, Creating Low-Poly Models, and create materials for it.

Creating materials
So far, you’ve been editing the default Blender material, but creating new ones is easy enough. We’ll need
at least one object that has some substance. You can either continue with the barrel you’ve designed
or open the file in the Start folder in the Chapter 2 folder of this book’s GitHub repository. If
you go with your own file, you’ll most likely have the default material, labeled as Material, still in the
Material panel. Using the minus (-) button, you can remove that and start fresh. The aforementioned
file in this book’s GitHub repository has already removed this default material for you.

It might be tempting to click the plus (+) button right above that minus (-) button you may have just
clicked. Go ahead and do it. You’ll end up with an empty line appearing in the material list. Those two
buttons simply add and remove material slots to/from the objects, but not the materials themselves.
Once you have a slot ready, you can designate a material for that slot. We’ll investigate slots and different
materials as we move forward, but let’s create our first material by following these steps:

1.	 Select the body of the barrel.

2.	 Press the New button in the Material panel.

3.	 Change Base Color to a brown color.

4.	 Rename your new material Wood after double-clicking its title.

The following screenshot should help you compare your results with what’s expected to happen. While
selecting a color, you can hit the Hex button (shown in Figure 2.1) and type in AD8654 so that your
barrel is the same color as the one shown here:

Building Materials and Shaders32

Figure 2.3 – The body of the barrel looks more wooden

Now, let’s create another material – this time, a metallic one. But where did that New button go? In
this situation, when the New button is missing, you can do the following:

1.	 Click the button with the plus (+) sign.

2.	 Press the New button.

3.	 Rename your new material Steel.

4.	 Pick an appropriate color for it, such as 555E64.

So, this time, you have introduced a new slot and filled it with a new material. It would seem the Body
object now has two materials and only one of them is in effect. Furthermore, we don’t need that steel
material for the body part of our model anyway. So, we should remove it. While the Steel material is
selected, press the button with the minus (-) sign to remove it from the body.

Although you have created a new material and removed it, this doesn’t mean it was all a waste. The
material is still part of your Blender file but has been left unassigned. We’ll make use of it soon. This
means that you have used the Material panel like a workbench. Now, let’s learn how to assign existing
materials to objects.

Assigning materials
If you have your materials at the ready, then you can assign them to different objects easily. This saves
you from creating the same materials repeatedly. We’ll see how this is done in this section.

The Ring object has not been assigned any material, but you can assign the Steel material to it. Start
by selecting the Ring object, then expand the drop-down menu next to the New button, as shown in

Assigning materials 33

the following screenshot. Select the Steel material from the list. This will assign the selected material
to the object:

Figure 2.4 – Existing materials are listed in this drop-down menu

It’s a good idea to name your materials according to their function, such as Wood and Steel, as it will
be easier to find them later. You will also see that the color of the material is shown as a small icon
next to the material’s name; this helps to a certain extent, but it’s limiting if you have many materials
with similar colors.

The lid might use the same wood material but, maybe, we can change things up a bit. After selecting
the Lid object, do the following:

1.	 Assign the Wood material.

2.	 Click the New Material button (it looks like two sheets of paper).

3.	 Rename Wood.001 to Dark Wood.

4.	 Choose a darker color, such as 7E623D.

You have just created a copy of the original Wood material for the Lid object. If you expand the
materials list, you’ll see all the available materials. Feel free to add, remove, duplicate, and/or assign
as many materials as you wish for practice.

Additionally, you can assign materials not only to the whole object but also parts of that object. If
you select some faces in Edit mode, then you can also apply a material to those selected faces only.
In essence, the Material panel lists the materials associated with your model, regardless of whether
it’s applied to the whole model or parts of it.

Building Materials and Shaders34

Things must look a bit more colorful at this point. However, despite all your efforts, you can only go
so far by just changing colors. The metal rings still don’t look metallic enough. They should look more
reflective, so we are missing something here. We need to discover new ways to give extra qualities to
the base color. That’s what shaders are for and that’s what we’ll tackle next.

Discovering shaders
Shaders were defined as two things at the beginning of this chapter: a piece of code and a user manual.
Have you felt like you’ve been writing code so far? Most likely, no.

Nevertheless, behind that Material user interface, there is a code layer, which is the shader. For
example, the default shader you’ve been using so far has hundreds of lines of code. The following is
only a portion of the code that makes that shader:

metallic = saturate(metallic);

transmission = saturate(transmission);

float diffuse_weight = (1.0 - transmission) * (1.0 -

  metallic);

transmission *= (1.0 - metallic);

float specular_weight = (1.0 - transmission);

clearcoat = max(clearcoat, 0.0);

transmission_roughness = 1.0 - (1.0 - roughness) * (1.0 -

  transmission_roughness);

specular = max(0.0, specular);

Luckily for you, you don’t have to write a single line of code. More importantly, Blender interprets the
shader code so that it can offer UI elements such as color pickers to select colors, sliders to define a
range of values, and drop-down menus that come with more advanced options so that you can utilize
the shader easily.

The “user manual” aspect of shaders regards which properties of the material will be exposed to
the user. For example, color is an obvious setting we should be able to change. The shader code will
expose color and some of the other properties of a material to the outside world so that you can use
the material easily. This is very similar to the way you use any device. You usually interact with a
device via an interface by clicking buttons and turning some dials. A combination of these actions
triggers certain events internally, which are not revealed to you, but you get to experience the result
of these operations.

Going back to the original definition, you work with materials via a shader. These two go hand in hand.
Moreover, just as Blender introduces a default material, it also comes with a default shader assigned
to this material. It’s called Principled BSDF. You can see this name next to the Surface section of the
material’s details. If you click Principled BSDF (Principled from now on, for simplicity’s sake) in the

Discovering shaders 35

interface, you’ll see a list of other shaders. Selecting a different shader from that list will associate a
different shader with your material. Some of the other shaders in that list are as follows:

•	 Diffuse BSDF: A basic shader that is responsible for displaying color on a surface. When
objects are supposed to have a simple color – in other words, diffuse a certain color – this is
the right shader to use.

•	 Emission: If you are designing an object and you want it to act like a light source, such as a
fluorescent light, you can use this shader so that it looks like it’s glowing.

•	 Glass BSDF: A shader with which you can simulate a glass surface. It comes with an Index of
Refraction (IOR) setting so that you can decide how transmissive the glass is since there are
different types of glass out there.

•	 Glossy BSDF: This is used to add reflection, which is great for simulating metals or mirrors.

•	 Toon BSDF: When you need the surfaces and edges to have a cartoony effect.

When you want your objects to show different qualities, then you will want some of the simple shaders
to work together. For example, in a lot of science-fiction movies that show advanced machines and
such, it is common to see glowing force fields that are also transparent. If you use Glass BSDF only,
you’ll see through but without a glow. If you use Emission, there will be no see-through visibility.

So, the Principled shader is the best combination of commonly used shaders. It acts like an uber
shader that employs properties of different shaders under one roof. For that reason, at this point, it’s
best to stick with the default shader.

BSDF
You’ll notice that some shaders come with this abbreviation. BSDF is a technical term and stands
for bidirectional scattering distribution function. It is composed of BRDF and BTDF, which
are responsible for reflecting and transmitting the light, respectively. Altogether, this system
is responsible for how realistic the light will interact with your object. In layman’s terms, it
calculates how much of the light is soaked by the material, and how much of it will be reflected
by considering intensity, angle, and so on.

Now, let’s learn how to make modifications to the Steel material for our barrel. Unfortunately, there
isn’t just one setting you can turn on to give a surface a metallic look. It turns out that not all metals
are created equal. Some metal surfaces look more reflective or shiny, while some look rougher, and
so on. We’ll use a mixture of the following properties with different values to get the result we want:

•	 Metallic

•	 Specular

•	 Roughness

Building Materials and Shaders36

The dictionary definitions of these words might be good enough. That being said, in the context of
Blender, those three properties work in tandem to create different metal surfaces. Therefore, you
need to balance the intensity for each, similar to working with a recipe sometimes. When you are
changing these values, to see the effect, you need to be in Rendered mode. You can switch to it by
pressing Z and then 8.

Shader values
The numerical values you change for a shader don’t have units but act more like a percentage
or intensity. 0 means you want none of it. 1 means full scale. So, 0.5 means 50%.

Let’s analyze the results shown in the following screenshot. A default Blender material comes with
0, 0.5, and 0.5 as values for Metallic, Specular, and Roughness, respectively. So, the sphere in the
top-left corner has values very close to a default Blender material. This means that, by default, your
models will have some shine and roughness:

Figure 2.5 – The same spheres with the same color but with

different metallic, specular, and roughness values

Discovering shaders 37

In the top-right corner, you can see that only the metallic value has been increased. Even though the
specular value is the same, we get to see more light being reflected. This makes sense because metal
surfaces reflect more light. So, a surface that has more metallic qualities should reflect more light.
This is exactly the case for the bottom-left model.

Finally, the sphere at the bottom right is what happens when we have a fully metal surface with an
amplified roughness value. Notice how the shine is distributed more evenly on the sphere’s surface
because it’s rougher. When light hits a rough surface, all the nooks and crannies of the surface will reflect
much of the light in many different directions. When the surface is less rough or more polished, the
light will directly bounce back into your eyes – in this case, Blender’s camera. Hence, it will look shiny.

By the way, in all these cases, the base color is still the same, but the final look sure does feel different.
The user manual page for the Principled shader contains a few charts that depict how some of this
shader’s settings interact with each other. It’s similar to what’s shown in the preceding screenshot but
it comes with a lot more cases: https://docs.blender.org/manual/en/latest/
render/shader_nodes/shader/principled.html.

The following screenshot shows the difference between two materials that both use the same base color:

Figure 2.6 – As expected, the metal rings are reflecting some of the light

The barrel on the left uses the default metallic, specular, and roughness values Blender provides. The
barrel on the right has a material with 1.0, 0.5, and 0.2 set for its Metallic, Specular, and Roughness
values, respectively. In summary, chances are you’ll have to play with all three properties to get the
metal look you want.

https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html

Building Materials and Shaders38

Non-metallic objects
Playing around with these three properties is also true for non-metallic cases, such as bricks,
liquids, grass, and more. Let’s compare a brick and a liquid, for example. Both can have the
same base color – that is, blood red or some other tone. A brick is not a reflective object, so
it should have very low – perhaps 0 – metallic and specular values. Most likely, its roughness
value will be high. On the other hand, the liquid will need to be less rough and have a higher
specular value.

Playing with the properties of a shader can be fun but it can also feel like you don’t know what you
are doing half the time. There is nothing wrong with experimenting to achieve the look you want.
If you want to feel more confident about what you’re doing, you can start observing objects around
you. This may give you a better insight into choosing the properties that will give the result you’ve
imagined. The property names are helpful in that sense, but they rarely work alone, so mix-and-match
is necessary, even for professionals.

We’ll investigate materials and shaders again when we cover Godot Engine, but here, you’ve seen how
they work in Blender. Let’s summarize what we have learned so far.

Summary
Throughout this chapter, you learned how materials can be used to give objects a different look. To
create materials, you used the Material panel as a workbench to prepare many materials at once, and
later assign these materials to different objects.

Shaders are almost inseparable from materials, and you got a glimpse of how many options they come
with. You also saw that you can pick different shaders for your materials. However, most of the time,
Blender’s default shader, Principled BSDF, will be enough.

Using the default shader, you created a few materials that have different qualities, such as wood and
steel. Furthermore, you discovered ways to create different-looking metal surfaces by utilizing metallic,
specular, and roughness properties with varying intensities.

There is another topic that is usually covered alongside materials and shaders: textures. It was
intentionally omitted, but it’ll be covered in the next chapter with an explanation of why. For now, all
that matters is that textures are graphic files that may enhance a material’s visual impact. When you
are ready, turn to the next chapter so that you can get to know them better.

Further reading 39

Further reading
Blender’s official documentation provides a detailed enough explanation of how different shaders and
their properties work. The following URL lists many shaders you can investigate: https://docs.
blender.org/manual/en/latest/render/shader_nodes/shader/.

Sometimes, seeing more examples may help you in your creation process. BlenderKit is a useful
Blender add-on that you can use to access a whole bunch of materials and a lot more, such as models
and scenes. Visit https://www.blenderkit.com/ to read the installation instructions.

Since this book is about game development, we are only covering the basics of Blender in the context
of helping us build a game with low-poly models. This means we are also limiting the level of detail
that’s employed while creating materials for the game. However, many professionals use Blender for
different reasons, such as to create marketing material, product visualization, animation, and more.
So, should you want to dig deeper into creating materials in a different workflow, here are some of
the many great online courses out there:

•	 https://cgcookie.com/course/fundamentals-of-blender-materials-
and-shading

•	 https://www.udemy.com/course/become-a-material-guru-in-
blender-cycles/

•	 https://studio.blender.org/training/procedural-shading/

https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/
https://www.blenderkit.com/
https://cgcookie.com/course/fundamentals-of-blender-materials-and-shading
https://cgcookie.com/course/fundamentals-of-blender-materials-and-shading
https://www.udemy.com/course/become-a-material-guru-in-blender-cycles/
https://www.udemy.com/course/become-a-material-guru-in-blender-cycles/
https://studio.blender.org/training/procedural-shading/

3
Adding and Creating Textures

In a typical 3D workflow, one of the most common properties you would add to a material is texture.
A texture is an image file that is responsible for the textured look of a model so surfaces don’t show
just flat colors. Although objects you come across in real life have a perceived color, they also have a
characteristic look that is defined by this property in 3D applications. For example, both a flower and
a sandy surface may have a yellow color, but you know a flower’s petal would look smoother, whereas
grains of sand would look gritty.

Most day-to-day objects have wear and tear. Look around and you’ll see that most surfaces will either
have chipped paint, a slight deformation, or some scratches. Imagine the barrel you designed in the
first two chapters has been in use for some time. It’d naturally have a few scratches on the metal rings.
You can only go so far by applying colors to your materials and altering the roughness values. If you
want to achieve a more realistic look, you’ve got to apply textures to your models.

Some 3D professionals only focus and gain expertise on certain domains. Texturing is one of these
domains besides modeling, lighting, and animation. Typically, a texturing specialist will employ the
help of classic image editing applications such as Adobe Photoshop, GIMP, and so on to create textures.
Then, the artist will bring these textures into Blender so that they can be applied to surfaces. If you
are not skilled in creating textures from scratch, you will learn in this chapter how you can still rely
on existing textures out there created by other artists.

Preparing and using textures with the aforementioned workflow often sounds static because you need
access to the source file of these textures. Luckily, there is a dynamic way to create your own textures
within Blender, so you don’t have to go back and forth between Blender and other software.

This is not a “one is better than the other” situation because each method has its own place and merits.
You’ll get to know new parts of Blender to facilitate both methods so you can make an informed decision
about which texturing method to use. To that end, we are going to cover the following list of topics:

•	 Understanding UVs and texture coordinates

•	 Using the UV Editor

Adding and Creating Textures42

•	 Importing and applying a texture

•	 Creating textures procedurally

•	 Exporting your textures

By the end of this chapter, you’ll have learned how to prepare your models for texturing, apply available
textures, and create your own textures dynamically. The practice you’ll gain in this chapter will give
you insight into choosing the right method of texturing for your projects.

Technical requirements
This book’s GitHub repo (https://github.com/PacktPublishing/Game-Development-
with-Blender-and-Godot) will have a Chapter 3 folder with Start and Finish folders
in it for you to compare your work with as you go. These folders also contain other dependencies such
as the texture files necessary to follow and complete the exercises.

Although you worked on a barrel in the previous chapters, we’ll only use the standard Blender objects,
such as a cube and a plane, to keep things simple so you can focus on the texturing workflow.

Understanding UVs and texture coordinates
While you are modeling, you are altering the coordinates of the vertices of a model. Thus, you are
working with spatial coordinates. To apply a texture over your model, you need to work in a different
kind of coordinate system that is called texture coordinates or UVs. Let’s see how these two terms
relate to each other.

The spatial coordinate system is often described with the XYZ acronym since we often use X, Y, and
Z axes to define the position of 3D objects. Similarly, UV is another acronym but it is used in the
texturing workflow; the letters U and V were picked to describe the texture coordinate system. So,
UV doesn’t really stand for ultraviolet.

The process that maps UV coordinates to XYZ coordinates is called UV unwrapping. Via this
method, you tell Blender how a graphic file is mapped to XYZ coordinates. If unwrapping sounds
counterintuitive, you could try to reverse the process in your mind. What kind of texture would you
need so that if you wrapped it around your 3D model, it would fit perfectly? Let’s analyze the following
figure where a graphic file that is painted with a checkerboard texture is applied to a standard cube:

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Using the UV Editor 43

Figure 3.1 – A 2D checkerboard texture wrapping a 3D object

In Figure 3.1, you see a cube with a checkerboard texture on the left. In the middle part, you see the
cube as if gift wrap is being peeled off. Finally, the cube is fully unwrapped on the right side; its texture
is laid flat. The texture file is actually all of the checkerboard parts, and it exists as a 2D graphic file.

The reason we are using words such as unwrapping and 2D graphic files is because we are simulating
a real-life 3D object on a flat screen. In reality, that cube would occupy a space, have a volume, and it
would be full of the material it was made of. For example, a cube that might be a child’s toy made of
wood. Or, it might be a six-sided die, most likely made of acrylic. If you cut into it, you’d see the material.

To change the nature of the problem from a 3D volume problem to a 2D graphics problem, you
need a new tool. You’ve been working with Blender’s default interface, which is conveniently set up
to edit XYZ coordinates. For editing UVs, you need the UV Editor, which you will discover in the
following section.

Using the UV Editor
Blender comes with preset workspaces so you can focus on a particular workflow. So far, you’ve been
in the Layout workspace. You can see it as the active tab just under the header of the application, next
to the Help menu. You should create a new file and switch to the UV Editing workspace by clicking
the appropriate tab. Figure 3.2 is what you’ll see when you are in the UV Editing workspace.

Adding and Creating Textures44

Figure 3.2 – UV Editing is one of many default workspaces in Blender

In the UV Editing workspace, the application will mainly be divided into two sections: the left side,
which is called UV Editor, shows a bunch of squares laid out on a flat surface, and the right side
shows the default cube. The black dots you see in UV Editor are actually the vertices of the cube in
3D Viewport. You might notice that if you counted the dots in UV Editor, they don’t add up to the
number of vertices the cube has. There are more points in UV Editor because some of those points
will eventually merge once those squares in UV Editor are folded around the edges and wrapped
around your 3D object.

At this point, all of the vertices of the cube should be selected for you by Blender. However, if you
happen to select a vertex of the cube, you’ll see that the squares in UV Editor will disappear. That’s
because we haven’t turned on the sync mode yet. At the top-left corner of UV Editor, you’ll see a
button with an icon that looks like two diagonal arrows going in opposite directions. If you have that
button pressed, you’ll notice that selecting the vertices in either view will synchronize.

When you add a new cube, Blender unwraps that cube by default. The general layout of the vertices in
UV Editor resembles a T shape, like what you saw in Figure 3.1. Similar to 3D Viewport, the vertices
in UV Editor will form edges and faces, but it’s all 2D in UV Editor. As mentioned earlier, we have
converted the 3D-ness of the model to a 2D representation so we can work with graphics files.

Importing and applying a texture 45

UV Editor is where you can see how the points in the editor map or correlate to a texture file. To do
that, we need to bring a texture file as follows:

1.	 Open the Chapter 3 folder.

2.	 Open the Start folder.

3.	 Drag and drop pips.png into the UV Editor area.

If you open that PNG file in your computer’s default image viewing application, you’ll notice that it
has transparent parts. Its dimensions of 1024x1024 are not fully painted. It just happens that the file’s
non-transparent areas come right under the faces in UV Editor, therefore the faces in 3D Viewport.

Powers of two
Sooner or later, you’ll notice that most texture files come in certain standard dimensions such
as 512, 1024, 2048, and so on. Although these files don’t have to be square, which means you
could actually have 256x512 as dimensions, it’d still pay off to keep either dimension in powers
of two. This is due to algorithms that are employed by GPUs so that they run more efficiently.

So far, we have taken advantage of Blender’s default UV layout for a cube and have seen how UV
faces can overlap with the texture file we have been previewing in UV Editor. However, if you enable
Material Preview in 3D Viewport, you won’t see the die texture applied to the cube. That’s because
we haven’t yet told Blender to use the die texture in the material assigned to the cube. Let’s do that
in the following section.

Importing and applying a texture
When you've dragged the texture file into UV Editor, you have effectively imported it, but, in reality,
the material for the cube doesn’t know how to use that texture yet. That being said, the material has
all of the information it needs to map 3D vertices to 2D texture coordinates thanks to UV Editor. It
just needs to be told which texture to apply to the cube.

To accomplish this, we’ll switch to a new workspace so we can connect textures with materials. Also,
we’ll import another texture using a different method and assign it to the cube’s material to showcase
how you can use the same UV information with different texture files.

Just like when you switched to the UV Editing workspace, it’s now time to switch to a different workspace
for convenience. The sixth workspace, labeled as Shading, is the one you are looking for. We’ll do our
work in the lower half of the new workspace, which looks like a grid; it’s called the Shader Editor.
The upper part is still the same old 3D Viewport, but Material Preview is automatically turned on
so you can see your changes reflect immediately. So, the Shading workspace should look similar to
what you see in Figure 3.3.

Adding and Creating Textures46

Figure 3.3 – Shading is one of many convenient workspaces set up for you

As you discovered in Chapter 2, Building Materials and Shaders, Blender files come with a default
material. We’ll modify that default material to understand the texture workflow. The Shader Editor
area is already populated with two entities that make up the material as follows:

•	 Principled BSDF (Principled in short form)

•	 Material Output

These are called nodes. The node on the left, Principled, holds the properties you already saw in the
previous chapter. A lot of these properties have little circles on the left side. These circles, which are
called sockets, can connect to other nodes’ sockets. We don’t have enough nodes to create meaningful
connections yet but we will soon.

Speaking of connectivity, Principled has an output that is connected to the Material Output node. If
you hold your mouse down on the Surface input of Material Output and drag the connection away,
you’ll eventually break the connection between those two nodes. Then, the cube will look black since
there is no surface information. Try to reconnect those nodes by dragging the BSDF output to the
Surface input. The default gray color will be reestablished.

Importing and applying a texture 47

Nodes vs code
In the previous chapter, you were told that shaders are lines of code that instruct the GPU
what to display. When you use nodes in Shader Editor, you are actually writing code, but
you are coding visually. As the order of lines is important in conventional programming, the
nodes and the connections coming in and out of the nodes are also important. However, visual
programming is easier to conceptualize.

When we were modeling the barrel in Chapter 1, Creating Low-Poly Models, we needed to add 3D
objects to the scene. We did that by pressing Shift + A. We’ll do something similar. In this case, we’ll add
new nodes to Shader Editor. Blender is context-sensitive, which means the same shortcuts will yield
similar results if your mouse is over different workspaces, areas, and interfaces. If you press Shift + A
over Shader Editor, you’ll see a list come up and show entities that are relevant to Shader Editor.

When this pop-up menu opens, it’s positioned exactly so that the mouse cursor is right over the Search
button. To add a texture node, perform the following steps:

1.	 Click Search in the Add menu.

2.	 Type Image with your keyboard.

3.	 Select Image Texture in the filtered results.

4.	 Click anywhere near the other nodes.

This will introduce an Image Texture node to Shader Editor, just as you see in the following figure:

Figure 3.4 – An Image Texture node in Shader Editor

Adding and Creating Textures48

You have already imported the pips.png file when you were working with UV Editor, so there is
no need to import that file again. We’ll just recall it. As usual, the button to the left of the New button
in the Image Texture node will bring up a list; select pips.png from that list. Then, attach the Color
output of Image Texture to the Base Color input of Principled. This will apply the texture to the
cube’s faces. Voilà, the default cube now looks like a six-sided die as seen in Figure 3.5:

Figure 3.5 – The texture file is applied to the model via its material

A six-sided die has pips, usually marked with a variable number of circles on each side. What if you
wanted to have a different looking six-sided die, with the numbers represented by Roman numerals?
To import and apply a new texture, perform the following steps:

1.	 Create a new Image Texture node with the help of Shift+A.

2.	 Click the Open button.

3.	 Select roman.png in this chapter’s Start folder.

4.	 Connect this Image Texture node's Color to the Principled node’s Base Color.

Since the texture coordinates are already mapped in UV Editor, you can easily swap textures that
have similar shapes with different designs.

When you work with more complex models, you’ve got more work to do in adjusting the UVs; as long
as the UV coordinates are aligned with the right parts of the texture, you’re good. However, imagine a
different scenario. How would you go about modeling surfaces that look like they are showing a repeating
pattern with slight deviations? In the following section, we’ll look into a different texture workflow.

Creating textures procedurally 49

Creating textures procedurally
The word “procedural” has been used a lot in recent years, especially in the video game industry,
to describe different things. Although one might say everything we have done so far is following a
certain procedure, the word means something else in our context. When we imported the texture file
in the preceding section, it was already designed for us. In other terms, it was a static file. The word
“procedural,” on the other hand, is a fancy word that means dynamic.

In a dynamic or procedural texturing workflow, the goal is to expose certain parameters of the texture
so that the texture can be changed on the fly, instead of going back to a graphic editing application.
Since it’s all dynamic, you won’t have to import graphic files, and you’ll be able to change aspects of
the final texture. For example, if the six-sided die was using a procedural texture, it’d be like changing
the color and/or the size of the pips.

Procedural textures have another benefit besides their dynamism. Static texture files would need you to
do the prior UV work so that the vertices would be aligned with the parts of the texture. In a procedural
workflow, the pattern in the texture might be seamless, so you don’t need to worry about the UVs.
Seamless, in our context, means that the pattern repeats in a perfect way to wrap around the model.

We’ll create a procedural lava texture as you see in Figure 3.6 in Blender so you can change its parameters
to have a different looking texture.

Figure 3.6 – Hot lava flowing through solidified crust

Adding and Creating Textures50

In a new Blender scene, after deleting the default cube, perform the following steps:

1.	 Add a Plane.

2.	 Switch to the Shading workspace.

3.	 Bring up the default Material or create a new one.

4.	 Rename the material if you desire.

Nothing new or exciting so far, but we’ll utilize the following five new nodes very soon:

	� Noise Texture: Perlin noise is a mix of black and white values that are mixed together in
a gradual way, so the result looks like a soup of grayscale values. Blender’s noise texture is
similar to Perlin, but the values are not grayscale; they come with random colors.

	� Bump: It is used to simulate height fluctuations so surfaces could look bumpy.

	� Color Ramp: Another name for this node would have been color mapper, but since it’s using
a gradient, the word “ramp” implies that the transition is smooth.

	� Emission: Under normal light, hot objects have a glowing effect. This shader would help
you simulate a hot piece of steel coming out of an oven or a bright lightbulb.

	� Mix Shader: It’s a shader that mixes two shaders to create a combined shader.

Before we move on to how to mix and match the preceding list of nodes, which kind of look
like a recipe’s ingredients, here is a little bit of explanation as to why they were chosen. When
you want to create your own procedural textures, a similar process might help you pick the
nodes that are helpful instead of making wild guesses about which nodes to select. Also, after
the explanation, try to imagine which one will connect to which. So, here we go.

Noise Texture is quite literally a texture that comes with some noise; the color variation in this
noise texture is used in the Bump node to simulate different heights. So, Noise Texture is like
the data and the Bump node is its visual representation in a sense. Then comes Color Ramp,
shown as ColorRamp, which assigns color information to different height values. If you've
ever seen a miniature landscape, it’s like painting hilltops white because of snow and the lower
areas with different shades of green depending on the elevation.

Hence, the first three nodes are taking care of most of the work for simulating elevation. Let’s
assume this lava texture is portraying a recent formation, so we are not after just displaying
cooled-down lava. We would like to see steaming hot, glowing lava in between the blackened
and dried-out lava. So, we’ll need an Emission shader for that. Finally, since the elevation is
its own thing and we are adding the emission part, we’ll need Mix Shader to combine both.

While working with nodes, you can drag and drop the nodes to arrange a cleaner layout for
yourself to make sense of what’s going on. Without further ado, let’s continue.

5.	 Add the aforementioned five nodes.

Creating textures procedurally 51

6.	 Connect as follows:

	� Noise Texture’s Color to Bump’s Height

	� Noise Texture’s Fac to ColorRamp’s Fac

	� Bump’s Normal to Principled BSDF’s Normal

	� ColorRamp’s Color to Mix Shader’s Fac

	� Principled BSDF’s BSDF to Mix Shader’s first input Shader

	� Emission Shader’s Emission to Mix Shader’s second input Shader

	� Mix Shader’s Shader output to Material Output’s Surface

There is no left or right direction when it comes to connecting nodes. Some people consider a group
of nodes as a unit and arrange them close to each other. So, sometimes, the last output node from that
group connects almost vertically to another group of nodes. That being said, having a general flow of
left to right would fit the preceding instructions. Whichever way you arrange your nodes, the layout
might resemble what you see in Figure 3.7.

Figure 3.7 – Lava texture’s node arrangement

Let’s look at the values these nodes will have by following the original order of the node list as much
as possible.

Adding and Creating Textures52

Noise Texture

For Noise Texture, the following values were used:

•	 Type defines the dimensions that are used in the creation of the noise, which involves complex
operations. It’s used in more advanced cases, so we’ll leave the default 3D value.

•	 The Scale property works more like a zoom factor. Too low, and you are closer to the noisy
surface. Too high, and you are seeing a larger portion of the noisy landscape as if you are
climbing up in an airplane. In this case, we set Scale to 3.0.

•	 The Detail property is self-explanatory. Although having a lower value will certainly result in
a muddy look, having a higher number beyond a certain value won’t add much to the quality.
It will simply increase the calculation time. A value of 8.0 is chosen in our case.

•	 Roughness is not the same concept you saw in Chapter 2, Building Materials and Shaders. That
one affected the reflective properties of a surface. This one is about how rough the edges are,
in a sense. In other words, how roughly the noise values are blending into each other, and a
value of 0.5 is enough.

•	 The Distortion property creates swirls and wavy patterns. Perhaps a little might be necessary
for a flowing lava look. You could experiment with it, but beyond a certain value when there is
too much distortion, things will look too fragmented. So, 0.2 is good enough.

Bump

This node will use the data provided by Noise Texture so it can represent different color values as
different height values. This is why the Height input was connected to the Color output since there
can’t be just one height value for the whole surface, so we had to feed it a set of colors.

Leaving the Invert setting unchecked, the following are the other values used:

•	 The Strength value determines the effect of the mapping between color values and the final
bumps. It works like a percentage since the values can be anywhere between 0.0 and 1.0. We’ll
leave it at 1.0.

•	 The Distance property is a multiplier of some sort. It works in conjunction with the Strength
property. Setting either one of them to 0 will result in a totally flat surface. Perhaps the best
way to describe this property is that it keeps the details set in Noise Texture. Any value closer
to 1.0 will show a washed-out surface, whereas higher values will fill in more details. Thus, a
value of 3.0 will yield a detailed enough result.

Creating textures procedurally 53

Emission

This is a very simple node and it’s responsible for making surfaces look glowing. We’ll discover lights
in Chapter 4, Adjusting Cameras and Lights, but if you want your objects to act like they are emitting
or radiating light, then you can use this node. Examples might be a piece of hot iron or fluorescent
lightbulbs; in our case, lava.

Since this is such a simple node, we have only the following two properties:

•	 The self-explanatory Color property is for picking which color the surface will emit. For hot
lava, you can switch to the Hex values on the interface and choose FF8400.

•	 The Strength value, which is 100.0 in our case, defines the intensity of the emission. This is a
unit measured in Watts so you can be scientific about it, but picking arbitrary values for visual
fidelity works most of the time too.

ColorRamp

The ColorRamp node is used for mapping input values to colors with the help of a gradient that
works like a threshold. The description is deceptively simple, but there is a lot going on under the
hood. So, let’s unpack it.

Most of the time, you’ll be connecting both the input and output sockets of a node to other nodes.
However, there are times when it is totally acceptable to use only one type of socket. For example, in
the Emission shader, you didn’t have to use the input sockets to define the Color and Strength values.
Instead, you handpicked their values. So, the node acts like a source of information.

Then, there are some nodes where it makes much more sense to connect the input socket to another
node’s output socket. ColorRamp is one of those nodes, and it works like a modifier by factoring in
incoming values. Noise Texture’s data will be a factor (Fac for short) in creating a lava surface, so we
connect the two Fac sockets.

Once the data is factored in, we need a system to process it. This is done via the gradient in the
ColorRamp node. The concept of a gradient might sound weird at first. If you were to connect the
Color of Noise Texture directly to Material Output, you’d see that there are smaller and larger zones
of colors. If you do that, remember to undo it so that the nodes are connected correctly once again.
We need a way to turn these flat but colored zones to elevation.

The gradient is going to help us define which zones are higher or lower so we can assign the appropriate
color to different elevations later. In essence, the gradient is a tool to define and blend in those zones
with the help of color stops. By default, there are two color stops, but you can use the plus and minus
buttons above the gradient to add and remove more color stops. These stops have a square shape
with a little triangle right above them. It is possible to drag these stops, which will change the zone
transitions we mentioned earlier.

Adding and Creating Textures54

When you have a lot of stops, it’s sometimes difficult to click and drag them, so use active color stop
to step between them. When you add a fresh ColorRamp node, the active stop is marked as 0 and it
is to the left of the label that says Pos, which indicates the position of the active stop. Both the active
stop and the position fields show necessary UI elements for you to change the values once you hover;
also, you can click and enter a value. So, by using the active color stop and Pos, you can mark exactly
where the color stops are going to be if you don’t want to drag them around.

Last but not least, there is a color picker right above the Fac socket. You can use that to set the color
for the active stop.

Since this is not a straightforward node, we could benefit from some visual aid. Figure 3.8 is a zoomed-in
look at the ColorRamp node.

Figure 3.8 – A close-up look at the ColorRamp node

The preceding figure should help you see what we have talked about so far. Also, just like you are able
to zoom in and out with your mouse’s scroll functionality in the 3D view, you can do so in Shader
Editor. It will help you see some of the properties’ names and values more clearly.

Now, it’s time to use all of this information and mark our transitions; you’ll be interacting with all of
the elements just presented. To that end, perform the following steps:

1.	 Use the plus/minus buttons to have four color stops.

2.	 Set active color stop to 0, then do as follows:

I.	 Set Pos to 0.45.

II.	 Set color in the Hex mode to 000000.

Creating textures procedurally 55

3.	 Set active color stop to 1, then do as follows:

I.	 Set Pos to 0.53.

II.	 Set color in the Hex mode to FFFFFF.

4.	 Set active color stop to 2, then do as follows:

I.	 Set Pos to 0.94.

II.	 Set color in the Hex mode to FFFFFF.

5.	 Set active color stop to 3, then do as follows:

I.	 Set Pos to 1.00.

II.	 Set color in the Hex mode to 636363.

Notice that we are only picking grayscale values. In a real landscape, higher areas will be cooler lava,
and the lower areas will be hot pools of lava. So, to represent that idea, we are picking dark and white
colors. Usually, the whiter something is, the hotter it is. The proximity of the stops to each other
determines how smooth or sharp the transitions are.

Although we have been working with the ColorRamp node, the colors for our lava texture will be
defined in the Principled BSDF and Emission shaders and will be combined in Mix Shader. For the
time being, we have utilized the data from Noise Texture and transformed that data with the help
of a gradient and its carefully chosen values. We’ll revisit the factor concept again in the Mix Shader
section, but before that, let’s visit our trusty friend Principled BSDF.

Principled BSDF

We actually saw this node in Chapter 2, Building Materials and Shaders, but it was displayed as part
of the Material Properties interface. When you create a new material, it uses this shader by default.
It combines a great deal of other shaders in its body. For example, it has an emission socket, but
since we can’t do both the hot and cool part of the lava formation in one go, we are using a separate
Emission shader.

We’ll leave most options unchanged, but the following are the non-default values chosen for this exercise:

•	 Base Color is for picking the perceived color, such as green for grass and brown for dirt. You
can set 4A4A4A as the value in the Hex section of the color interface.

•	 The Specular property defines the reflectivity of the surfaces. Since dried lava is not a reflective
surface, we’ll pick a small value such as 0.2.

•	 Roughness is for specifying how rough the surface will be. Although it sounds like a simple
property, it’s functioning in conjunction with Base Color and Specular values. So, picking an
intuitive value is not always easy. You’d expect the dry lava to be rough, hence having a high
roughness value, but we’ll pick 0.2 in this exercise.

Adding and Creating Textures56

You can refer to Figure 2.5 in Chapter 2, Building Materials and Shaders, and read the explanation
in the Discovering Shaders section for a refresher in understanding how multiple properties work
together and affect the final look.

Mix Shader

It blends one shader into another determined by the value in Factor. For the Factor socket’s value, if
you pick 0.0, the first shader will be used entirely. If you choose 1.0, it means that the second shader
will be utilized.

The range of decimal values is between 0 and 1 but it’s hard to know what to choose since we can’t
just arbitrarily determine how much of which shader to use. This is why we connected the Color
output from ColorRamp as a factor so that the fluctuation in Noise Texture would trickle down and
affect this node. The effect is cascading. In other words, every single pixel that’s going to be painted
either dark (for dried lava) or orange (for hot lava) should be decided based on where ColorRamp
thinks it belongs in Noise Texture. Thus, the color stops act like thresholds and this is all factored
in, in Mix Shader.

Once all of the nodes have been set and attached, feel free to play with the values in all of them,
especially ColorRamp. You’ll notice that the hot lava parts are sort of cooler at the shore, and denser
and brighter in the middle. Try to approach the color stops close to each other and see how these hot
zones in the lava pools change.

Creating this kind of texture using conventional image editing applications such as Adobe Photoshop
might have been possible, but those applications are layer-based and it’s not always easy to keep things
non-destructive. The power you have with a node-based approach is quick iterations. One thing for
sure is you don’t have to reimport your texture to see the changes. It’s all happening live in front of
your eyes.

However, at the end of the day, since you are developing a game, you’ll have to export your texture
so the game engine of your choice can use it. In the following and final section, we’ll see how we can
export our lava texture to the file system.

Exporting your textures
In later chapters, when we get close to working with Godot Engine, we’ll look into asset and project
management in more detail. However, after all the hard work we have done with the lava material,
it’s now time to learn how to export the texture.

We’ll do a few interesting but necessary things in this section to export our texture. First, we’ll change
Blender’s rendering engine. Then, we’ll add an Image Texture node in the middle of our material
without connecting it to anything. Weird, right? Blender works mysteriously sometimes.

Exporting your textures 57

Changing the rendering engine

We have been using the default Eevee rendering engine so far. Eevee is a real-time rendering engine
that gives you really fast results. Most game engines have their own internal real-time rendering
engines that are responsible for calculating lights and shadows. So, Eevee is a good way to simulate in
Blender what you’ll most likely experience when you export your assets to a game engine. However,
the speed and convenience come with a few penalties.

Blender has another engine that is called Cycles. Cycles is a very accurate but slow rendering engine
compared to Eevee. Cycles’ accuracy is due to the fact that it tackles advanced lighting calculations,
which leads to quality results such as showing reflective and transparent surfaces much better, displaying
more accurate shadows, and even creating volumetric effects such as haze and fog. The following is a
link to an article that demonstrates both engines’ capabilities and differences with use cases: https://
cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-
real-time-rendering.

In this book, we are not covering advanced enough topics that would require us to make a hard
decision between Eevee and Cycles. So, Eevee has been fine for our purposes. However, when you
work with procedural textures, there is no way, at least with the version of Blender we’re using, for
Eevee to export the lava texture. We’ll have to switch to the Cycles engine. Luckily, it’s done just with
the click of a button.

In the Properties panel on the right, the second tab from the top, which looks like the preview display
of a DSLR camera, is going to open Render Properties. The drop-down list at the top will show Eevee;
let’s change that to Cycles. Also, if you have a decent graphics card, you might want to change the
third dropdown, Device, value to GPU compute so that your graphic card can do the heavy lifting
instead of your good old CPU.

Looking down in that long list of properties, you’ll see a panel with the header Bake. If you expand
the header, you’ll see a Bake button. We’ll click that button soon, but we need to prepare what we’ll
bake first.

Baking a texture File

When we worked with the cube and die textures, we used an Image Texture node to bind an existing
image from the file system. Our situation is different when the texture is procedural since this has
been happening live in the memory. We need to figure out a way to bake this information into a file.
Since there is no such file, we need to pretend that we have one, as follows:

1.	 Add an Image Texture node.

2.	 Click the New button.

3.	 Type lava in the name section.

4.	 Click the OK button.

https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering

Adding and Creating Textures58

We won’t be connecting Image Texture to anything. If you remember the definition of what a material
is from the early sentences in Chapter 2, Building Materials and Shaders, this new image we have just
labeled as lava will be packaged with the material. Blender will make an educated guess and will
bake the procedural texture parts into this image.

Now is the time to hit that Bake button in Render Properties. A progress bar at the bottom will
indicate that Blender is doing its thing. Once the process is finished, the bottom-left corner of the
Shading workspace will fill with the lava texture. That little section that displays the baked texture is
called Image Editor.

If you look at the baked image, you’ll notice that some details are lost. The pool of hot lava has warmer
and cooler spots in 3D Viewport, but the baked image has lost all of those details. This is because
the Emission strength is so high that it saturates the baked image. It’s like how digital cameras show
poor-quality images when the scene is over-exposed with light. To alleviate this problem, you can
bake again after setting the Emission node’s Strength to 1.0.

In the Image Editor interface, there is a button that has three stacked horizontal lines in it. If you click
that button, you’ll see a menu with two items: View and Image. If you expand the Image option, you
can click Save As to save lava.png in your file system. This file can now be imported into a new
Blender file and used in an Image Texture node. Then, you can apply this image in a material to a
Plane object just like you applied the pips.png to a cube.

Mission accomplished. If you chose the same values as those written in this chapter, you should have
the procedural lava texture you see in Figure 3.6. Additionally, you have created a static version of it.
Let’s summarize what else has been accomplished in this chapter.

Summary
This chapter started off with a brief discussion about what textures are and why they might be needed.
To recap, if you are fine with models that have just the color info on their surface, you are done as soon
as the modeling and material application process is finished. If you think you need to show distinctive
qualities on your models’ surfaces, you need to utilize textures.

To that end, you discovered how a new coordinate system—one that involves mapping spatial
coordinates to texture coordinates via a method called UV unwrapping—might be necessary. Once
the UV unwrapping is done, you can apply and swap different textures to your 3D models since the
mapping from 2D to 3D is established.

Although creating textures with image editing applications is quite possible, you also know how to
create textures procedurally in Blender. This is a powerful method, especially when it comes to surfaces
that are hard to UV unwrap, such as landscapes.

Last but not least, you learned how to change the rendering engine to be able to export your procedural
texture to your file system. Although this file is static and can no longer be updated automatically
(unless you overwrite it with a new export, of course), you have the benefit of sharing the file easily.

Further reading 59

You’ve been using Blender’s interface and your mouse to move around the scene and rotate the view
to have a better look at your models, materials, and so on. In the following chapter, you’ll learn how
to work with Camera and Light objects to create a composition where you can arrange objects in your
scene under the best light conditions possible.

Further reading
To read more about what each shader node does, you can refer to the official documentation at the
following link: https://docs.blender.org/manual/en/2.93/render/shader_nodes/.

For further practice, imagine where else the method for the lava texture could be used. Perhaps,
with carefully planned values and more color variations, the hot lava might be rust, and the cool lava
might be paint?

If you are curious and would like to investigate different software out there capable of producing
procedural textures, you can give Adobe Substance Designer a try. It’s a powerful program dedicated
solely to creating textures. Not all of the nodes are labeled the same, but there are a lot of similar nodes
to Blender’s. In fact, if you practice your skills there and look at other people’s creations, you might
gain insight into creating such textures in Blender.

https://docs.blender.org/manual/en/2.93/render/shader_nodes/

4
Adjusting Cameras and Lights

When you start a new scene, there are default camera and light objects in the Outliner. Although
they are part of the scene, when you are modeling a new object, rotating around it, and looking at a
material preview of it, you are still using Blender’s internal camera and lighting system. This default
behavior is good for working fast but doesn’t produce artistic and accurate results.

In this chapter, you’ll learn what a camera does and how to employ lights to get the look you want.
The premise is simple: you can’t see anything without a light, and you can’t record or capture anything
if you have no apparatus to do so.

Although it sounds like we are covering two distinct topics, we’ll talk about both cameras and lights
in this chapter. Between the two, we’ll prioritize lights over cameras; you’ll be provided with an
explanation of why.

Thus, just like in real life, a camera and light conditions work together, and they go a long way to get
the best shot you want. To that end, we will cover the following topics:

•	 Rendering a scene

•	 Understanding light types

•	 Introducing MatCap and Ambient Occlusion

After reading this chapter, you’ll know how to pick the correct light type and capture a shot of your
scene. You’ll also know why you may want to postpone setting up cameras and lights. However, we’ll
offer you a way to attain some semblance of visual fidelity.

Technical requirements
We’ll be entering new territory in this chapter, so it will be safer for you to rely on the files in this book’s
GitHub repository: https://github.com/PacktPublishing/Game-Development-
with-Blender-and-Godot.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Adjusting Cameras and Lights62

The appropriate filename will be mentioned when it’s relevant. These files have already been set up
for you so that you can focus on the material in this chapter.

Rendering a scene
In the computing world, the word render is similar to its other meanings in a dictionary. The rendering
process in Blender will take a raw scene and produce a refined result. In more advanced cases, where
your scene may have a physics or a particle object, this process will be responsible for calculating
the state of these dynamic objects too. However, for brevity, we’ll only look at what role the camera
and light objects play in renders.

Let’s create our first render by doing the following:

1.	 Start a new Blender scene.

2.	 Press F12.

Alternatively, you can use the Render menu near the application’s title at the top. This should give
you the following output:

Figure 4.1 – Your first render of a default cube with Blender’s default camera and light options

Rendering a scene 63

This is nothing exciting perhaps since this is pretty much the look you are used to seeing while working
within Blender. The render is displayed in a separate window that covers the Blender window you
were just working on. Therefore, you can close this window by pressing the operating system’s close
button or by pressing Esc to return to Blender.

If you take more renders and go back and forth, you’ll notice that the grid underneath the cube and
other objects, such as the camera and light, are no longer part of the render. This is expected. These
objects, called gizmos, will facilitate things for you but won’t be with you at the end of the journey.
They work like scaffolding during the construction of a building. Although they are helpful while
doing the work, they are taken away after the job is finished.

Let’s repeat the previous exercise by changing one thing. What would happen if there were no cameras
in the scene? Time to experiment:

1.	 Right-click Camera in the Outliner.

2.	 Delete this Camera object.

3.	 Press F12.

Did you expect to see a pitch-black render? Instead, you got an error stating that no camera was found
in the scene. No camera means there isn’t any instrument to render your scene, so Blender displays
an error message.

Let’s run a similar experiment by removing the Light object. After starting a new Blender scene,
follow these steps:

1.	 Right-click Light in the Outliner.

2.	 Delete this Light object.

3.	 Press F12.

Let’s speculate about what we expect to see. We have a camera to render the scene but no lights. Even
though the cube object is part of the scene, we should not be able to see it. And yet, if you look at the
following render, you will see a silhouette of the cube:

Adjusting Cameras and Lights64

Figure 4.2 – An unexpected render when there are no lights in the scene

Most software applications come with default settings for the sake of helping out the user. In this case,
Blender comes with a background color that contributes, unfortunately, to the result in the previous
render. If you were to change the color of this setting to black, for example, then you’d have a completely
black render. To achieve that, follow these steps:

1.	 Switch to the Shading workspace, as you did in Chapter 3, Adding and Creating Textures.

2.	 Switch from Object to World mode in the Shader Editor by using the dropdown near where
the four views meet.

3.	 Change the Background node’s Color property so that its Hex value is 000000.

The following screenshot shows the setup for changing the background color:

Figure 4.3 – We can also use the Shader Editor to change the scene’s background color

Understanding light types 65

If you take another render now, you’ll notice that it’s all black. There is neither direct nor indirect light
or color contributing to the result. So, although things are looking rather dark, this is the result we
expect to see. When would this be useful? If you would like zero surprises, which means you’d rather
control every single light source and how much they contribute, then picking a black color for the
background might be a good idea.

However, most Blender users are artists, not scientists. So, they often have multiple light sources and
adjust these objects’ settings to achieve visual fidelity, not scientific accuracy. Therefore, leaving the
background color alone might be something you’ll do as well.

Speaking of light sources and their settings, this is the right moment to segue into learning about the
different types of light Blender employs. We’ll light things up in the next section.

Understanding light types
So far, we have seen a render where the light object plays a role and another render when the light
object was missing. We haven’t discovered what this light object is. In this section, we’ll get to know
different types of lights. By the end of this section, you’ll have a good level of knowledge of each type
and why they matter.

We’ll do this discovery in the context of the Eevee render engine because it simulates what game
engines will do with your scene well. Since it’s enabled by default, you don’t need to make any changes
at this point. Hence, you first need good knowledge of lighting your scene with the basic types of light.
That’s what we are going to do next.

Types of light

Let’s look at the different types of light that are available:

•	 Point: This is the default light type you get when you start a new Blender scene. It’s also
called an omni light sometimes, short for omnidirectional, since it casts light in all directions.
Lightbulbs are a decent real-life example of this light. Of course, in reality, lightbulbs don’t cast
light through their base but it’s a good approximation.

•	 Sun: This type is used when you need a constant intensity of light. In other words, the light is
so powerful that it doesn’t lose any of its intensity along the way. Unlike the other light types,
Sun, just like the Sun, also sends light rays in one direction only. Thus, the light rays are coming
from an infinitely far away distance without losing their potency.

•	 Spot: When you need a flashlight-like light source, this is the light type you should use. It will
emit a cone-shaped beam of light in the direction you point it. Most shopping centers and
stores have lights of this type, usually hidden in the ceiling.

Adjusting Cameras and Lights66

•	 Area: If you want to have a light source that has a large surface such as a window, TV screen,
or office lights such as conventional fluorescent tubes, then Area lights are the way to go. You
can also define the shape of the area. Since it is a considerably larger source of light in contrast
to Point lights, the result, including the shadows, feels softer.

To get a much better feeling about what each light type does, you will open a file that’s prepared for
you so that you can quickly switch between different types of light. Follow these steps:

1.	 Open the Start folder inside the Chapter 4 folder. This can be found in this book’s GitHub
repository, which was mentioned in the Technical requirements section.

2.	 Open the Lights.blend file.

3.	 Hold Z and then press 8 to switch the visuals to Rendered mode.

The scene contains a cube and a large plane as a base to hold this cube. The four different basic light
types are all in the same position, all with their default settings. Only the Spot light is enabled in the
Outliner and you can see its effect in the following screenshot. By clicking the eye icon next to each
light type in the Outliner back and forth accordingly, you can see what each light does. Notice the
overall feeling each light creates by illuminating a certain spot or changing how the shadows appear:

Figure 4.4 – A light object’s, specifically Spot light’s properties

Now that we have seen what each light does, let’s learn about some of their properties.

Understanding light types 67

Basic properties of light

The sample file was set up so that when you open it, the Properties panel should already be switched
to the appropriate Light tab; this will display the five common properties that all the basic lights share:

•	 Color: This is the tint of the emitted light. If you are designing a fireplace, you may want to
pick an orange or red tint, for example.

•	 Power/Strength: This defines how powerful your light source is in Watts. Thus, the higher
the value is, the more powerful the light will be. In the Sun light’s case, the Power property
is labeled as Strength, but the concept is still the same. If you are designing a scene where
accuracy is paramount, and you would like your lights to be as realistic as possible, then you
are in luck. The Power of Lights section at the following URL lists values for some known light
sources: https://docs.blender.org/manual/en/2.93/render/lights/
light_object.html.

•	 Diffuse: In Chapter 2, Building Materials and Shaders, you worked with materials and set the
color for the materials you applied to the barrel parts. The Diffuse property of lights works
like a multiplier. So, keeping it as 1.0, which is the default value, won’t change the perceived
color of a material. Decreasing it will diminish the color’s effect on a material. In essence, this
value determines the impact a light source has on a material’s color.

•	 Specular: This is similar to the Diffuse property, except it affects the Specular quality.

•	 Volume: This is a bit of an advanced topic that involves more sophisticated settings when you
set up materials. We won’t cover advanced material settings in this book. However, like the
Diffuse and Specular properties of lights, which work as multipliers, this property determines
the light’s contribution over a volume.

Out of these five properties, you’ll most likely never touch Diffuse, Specular, and Volume. This is
because, most of the time, it makes sense to change diffuse and specular values in a material. Also,
volumetric light is an advanced case that can be handled via other means, similar to adjusting it via
a material’s properties.

More esoteric lights
If you are the curious type and read up on lighting, generally within the context of 3D applications,
you will hear of terms such as ambient light, global illumination, and others. Even though
those terms are relevant and important when producing a render, we won’t cover them in
this book for two reasons. First, basic light types are often enough because this will give you
a more direct result and feeling for your scene. Second, the advanced lighting systems rely on
and affect basic lights by making tweaks. So, understanding the basic types would be a better
investment as a beginner.

https://docs.blender.org/manual/en/2.93/render/lights/light_object.html
https://docs.blender.org/manual/en/2.93/render/lights/light_object.html

Adjusting Cameras and Lights68

Specific properties of each light type
Although you now have basic knowledge of what each light does, we haven’t investigated what kind
of setting contributes to the uniqueness of these lights. Now, let’s look at each light’s settings, which
give the light its characteristic look and feel.

Point

Radius is a setting that’s also used for Spot lights, but we’ll cover it under this section since there is
nothing else going on with Point lights. We’ve already considered a lightbulb as an analogy to Point
lights. In reality, lightbulbs come in different sizes. So, you can imagine the radius value, measured in
meters, as a mechanism to determine how big the lightbulb is.

The effect this value has is in the way the shadows are calculated. The default value, 0.1, will produce
a rather sharp shadow. Try to increase this value to 1.0. You’ll notice that there will be multiple
shadows overlapping each other, following a direction away from the light source.

If you increase the radius to 10.0, something interesting will happen. The bulb is large enough that
it will encompass the cube. It’s so large that it intersects with the plane too. The shadows for the cube
are no longer following a direction strictly away from the light source. The light source is so large it’s
as if there are multiple tiny point lights scattered inside a sphere with that radius value.

Sun

In some 3D modeling software and game engines, the Sun light is often labeled as directional light.
There is a good reason for that. In real life, the Sun is so far away but so powerful that it’s as if all light
rays are parallel to each other. So, the Angle property defines the direction of the rays.

What about the position of a Sun light? You could try to move its location, but the overall effect on
the scene won’t change because the light rays are assumed to have constant energy, regardless of where
they are coming from. So, the angle is the only meaningful factor for this light type.

Spot

A Spot light has the same Radius property as a Point light does. So, initially, they start as the same
thing, then a Spot light sheds its light while following a conic shape.

There is a collapsed section labeled as Spot Shape in the Properties panel for this light type. This
section houses two properties:

•	 Size: Measured in degrees, this value is the angle of the cone’s origin. The higher the value is,
the wider or larger the area will be once the light hits a surface. Similarly, lower values will
focus the light on a smaller area.

•	 Blend: Once you have defined the area of light via the Size property, you’ll have shaded areas
outside the illuminated zone. The Blend value, which will be between 0.0 and 1.0, works
like a percentage to adjust how smoothly these two contrasting zones blend into each other.
Lower values will have a sharper transition. So, having it as 0 means a very sharp separation.

Introducing MatCap and Ambient Occlusion 69

Area

For this light type to be more effective, deciding on its Shape setting is important. Four shapes exist:

•	 Rectangle

•	 Square

•	 Disc

•	 Ellipse

For all of these, you can customize the size of the shape. For example, the Rectangle shape will accept
two values, but the Square shape will only need one dimension. You won’t see much difference in the
test scene if you play with different values. However, rest assured that they make a real difference in
a much more complex scene where you distribute Area lights with different shapes.

Wrapping up

Adjusting light settings is only the beginning. Most 3D professionals dedicate themselves to certain
disciplines. Lighting is one of these disciplines where you work on topics such as global illumination,
bloom, volumetric effects, and many other advanced topics we won’t be covering in this book. With
that being said, using cameras and lights in Blender may still be useful to get a basic feeling about the
artistic direction you are taking. For example, if you are designing a car, the headlights will most likely
house a Spot light. If the model were a torch, a Point light might be appropriate.

Now, you may be thinking that we didn’t cover a lot about lighting, but we also covered even less
about the camera. This is because this book is about game development. In Part 3, Clara’s Fortune – An
Adventure Game, we mentioned that most of our work will be done in Godot, so you’ll see that there
will be many things we’ll set up and fine-tune in Godot. Some of that effort will be for the camera and
different light objects. Since we’ve been building individual models or constructing materials for our
models, which will all be imported into the game engine in the end, there is no need to do a meticulous
amount of work within Blender regarding cameras and lights. In other words, it’s practical to set up
cameras and lights in Godot because the settings in Blender won’t transfer.

Now that you know why you should generally ignore Blender’s cameras and lights, let’s look at two
helpful methods that will make your time more pleasant while still working in Blender.

Introducing MatCap and Ambient Occlusion
Since making more investment in a high-fidelity lighting setup in Blender no longer makes sense, we
should perhaps investigate different ways to make our scenes look better. What we’ll do next still means
what you see won’t be exported. However, it means you can look at models that no longer have the
default and boring gray look. Why not? Working with things that look nice sometimes feels nicer and
increases productivity. We’ll look at two techniques that will help you distinguish your models’ details.

Adjusting Cameras and Lights70

MatCap

MatCap stands for material capture. We won’t get into the technicalities of how a MatCap is
constructed but, suffice it to say, it’s a type of shader Blender uses internally to give a different look
to the models. Normally, you’d need to switch to Material Preview mode to see how your materials
would look on your models.

However, during the modeling process, you usually work in Solid mode because it’s more performant
for Blender to show you the changes you are making to your models. Thus, while still working in Solid
mode, if you want to have a better visual as if you are in Material Preview, you can instruct Viewport
Shading to use MatCap. So, it’s the best of both worlds.

To make sure you are using Solid mode, do the following:

1.	 Press Z.

2.	 Then press 6.

This will switch Viewport Shading to Solid mode. It’s also represented as a disc in the second icon at
the top-right corner of the 3D Viewport. We’ll make some changes to Viewport Shading so that your
models can have more pronounced details. If you click the down-looking arrow on the right-hand
side of those icons, you’ll expand a panel. This panel is shown in the following screenshot:

Figure 4.5 – The default Viewport Shading options

Introducing MatCap and Ambient Occlusion 71

The settings in that panel let you change the way the models are displayed while you are editing them.
You can already see a preview of the current settings as a sphere in the upper section. Let’s click the
second button, MatCap, under the Lighting title. This should already change the look of the preview
in that panel, as well as the model’s look in the scene.

We won’t be discovering the Color part but try out the Random option for the barrel from Chapter 1,
Creating Low-Poly Models. You’ll see that different parts of the barrel take random colors. This helps to
distinguish separate parts in your scene. Similarly, we will leave the Background setting set to Theme.

Let’s investigate the Options section and focus on the parts that will give us a decent result:

1.	 Enable the Shadow option.

2.	 Set its value to 0.5.

You won’t normally see the effects of the light sources in Solid mode, but the last operation will create
a shadow effect. It’s a cheap effect that efficiently creates depth.

Sometimes, your models will have parts that are away from the center of mass. These outer parts may
also create areas that would look deeper from your point of view. Hence, you’ll have cavities. To mark
these areas more clearly, do the following:

1.	 Enable Cavity.

2.	 Set its Type value to Both.

3.	 Set World Space like so:
I.	 Ridge to 0.5

II.	 Valley to 1.0

4.	 Set Screen Space like so:
I.	 Ridge to 0.75

II.	 Valley to 1.0

This should create a big change in the way your models look. The Cavity option, with Type set to
Both, will seek parts of your models that are at different elevation levels and accentuate them. In a
way, if your model was laid out like a landscape, the ridges and valleys would be emphasized so that
they would be more noticeable. The values we picked are a bit arbitrary, so feel free to alter them
according to your taste or the complexity of the models.

Last but not least, in the settings for MatCap, if you wish, you can pick a different material. After all,
we are still looking at a gray cube, even though we have improved its perception. For example, you
can do the following:

1.	 Click the sphere preview under the MatCap button in Viewport Shading.

2.	 Select the third sphere in the second row.

Adjusting Cameras and Lights72

If your version of Blender has the selection interface organized differently, we are looking for a sphere
that looks like brown clay. This will change the look of your cube to, well, muddy clay. The following
screenshot shows what we have done so far:

Figure 4.6 – Viewport Shading offers many ways to create a different look for your models

If the muddy color is too dark, then the second sphere in the first row is a nice alternative. However,
keep in mind that this is only for you to feel at ease while working with your models in Solid mode.
None of these changes will have any impact on the result when you render or export your models to
other software. These are, in a sense, throw-away materials that will make your experience in Blender
more pleasant.

So far, we have treated the Solid view as if it was Material Preview. This is useful when you want
a bit more visual clarity without previewing the model’s assigned materials since that makes extra
calculations by taking into account the lights too. Next, we’ll look into a way of doing something
similar in Rendered mode.

Ambient Occlusion

In this section, we’ll discover another handy visual tool that can help you have a bit more visual fidelity.
This tool is called Ambient Occlusion (AO), and it’s also a method that’s used in most games to create
a more realistic look. Let’s explore how and why this works.

Introducing MatCap and Ambient Occlusion 73

Let’s get the definition out of the way first. We have two names: ambient and occlusion. In the context of
Blender, as you may have guessed, ambient is a term that’s used to describe the overall light conditions.
We switched the background color to black to modify the ambient light near the end of this chapter’s
Rendering a scene section. So, we are already familiar with this concept.

Occlusion means to obstruct or block something. In our context, it means to obstruct light. So, we
want some light to be obstructed or occluded. But where exactly would we want this?

Take a look around wherever you are. You’ll notice that some areas, by having a flatter surface, will be
exposed to the natural or artificial lights coming off the ceiling or windows. Light – more specifically,
the photons that make up the light – will be bouncing off these surfaces. Wherever these flat surfaces
meet and make some sharper and some more moderate angles, they will be forcing the photons to
scatter in a zigzag manner. As a result, it’ll be harder for light to reach certain spots, so the geometry
of your models is going to occlude some of the light.

To see the effect of AO, open any of the following files from this chapter’s Start folder:

•	 Lights.Area.AO.blend

•	 Lights.Point.AO.blend

•	 Lights.Spot.AO.blend

•	 Lights.Sun.AO.blend

Also, remember to switch to Rendered mode by pressing Z followed by 8. Otherwise, the effect won’t
be visible. Do you notice the darker part where the cube meets the plane? That’s AO, as shown here:

Figure 4.7 – Ambient Occlusion visible where the cube touches the plane

Adjusting Cameras and Lights74

The example files have been prepared so that the Ambient Occlusion option should already be visible
on the right-hand side in the Properties panel. By switching it on and off, you can observe the behavior.
AO affects the edges as if there is an extra volume of shadow, where shadows naturally would occur.
This makes it look more realistic. We’ll look at how to take advantage of AO as a separate effort inside
Godot Engine later in this book.

Additionally, in the AO settings, if you pick a higher Distance value, it will sample a larger area from
the object’s contact zone. This may help you have smoother or sharper AO.

We’ve covered a great variety of topics in this chapter. Now, it’s time to summarize what we’ve learned.

Summary
We started this chapter by rendering a scene with and without a camera and lights. During this effort,
we utilized Shader Editor, which was introduced in the previous chapter to change the background
color, also known as ambient color.

Then, we looked at different light types and how each type can be used to simulate real-life cases.
We did this using the Eevee rendering engine. Should you switch to the Cycles render engine, the
lights will have additional and more advanced properties, but the concepts you learned about in this
chapter will hold.

We also discussed the fact that your rendering concerns will be left for later when we tackle things
in Godot. However, it’d be a much more pleasant experience if we could work with better-looking
things. To that end, you were introduced to two different methods.

The first method is MatCap, which you can use to change the way models look, despite not turning
on material previewing. The second method, Ambient Occlusion, involves getting a feeling of where
objects meet and how they behave under existing light conditions. You can use both methods at the
same time if you wish.

In the next chapter, we’ll move things a bit. You’ll be studying and preparing a model for animation.
For this effort, you’ll utilize a process called rigging and simulate a skeleton-like structure inside your
model so that you can animate it.

Further reading 75

Further reading
Although this chapter covered cameras and lights, such topics are usually covered under the Rendering
title in many publications. That’s because there are different rendering engines, and each one treats
lights and cameras differently. Also, post-processing and color management might be your concern
if you want to take on more advanced renders. So, cameras and lights are only a small portion of
the rendering process. To learn more, Blender’s official documentation page might be a good start:
https://docs.blender.org/manual/en/2.93/render/index.html.

Also, here are a few online resources that might help you dive deeper:

•	 https://cgcookie.com/courses/fundamentals-of-digital-lighting-
in-blender.

•	 https://cgcookie.com/courses/production-design-with-blender-2-
8-and-eevee.

•	 https://cgcookie.com/courses/fundamentals-of-rendering.

https://docs.blender.org/manual/en/2.93/render/index.html
https://cgcookie.com/courses/fundamentals-of-digital-lighting-in-blender
https://cgcookie.com/courses/fundamentals-of-digital-lighting-in-blender
https://cgcookie.com/courses/production-design-with-blender-2-8-and-eevee
https://cgcookie.com/courses/production-design-with-blender-2-8-and-eevee
https://cgcookie.com/courses/fundamentals-of-rendering

5
Setting Up Animation

and Rigging

In Chapter 4, Adjusting Cameras and Lights, you saw why you should ignore certain concepts in
Blender, specifically cameras and lights, because they don’t transfer easily to Godot. This chapter is
sort of an opposite case. You might be wondering whether a game engine can’t move objects around
for us, right? After all, we use a game engine to facilitate things such as displaying models, creating
environments with visually rich effects, and so on. It’s normal to expect a game engine to take care of
animating our models as well.

Although animating simple objects is perfectly possible in Godot, doing it for complex models such as
a human character (or any bipeds, such as a robot) or a lion (or any quadrupeds, such as a cow) will
take a lot of effort. Therefore, it makes much more sense to do most animations in Blender because
it offers a much more streamlined workflow. We’ll explain in detail why that is so you can apply a
similar reasoning process in your own projects.

Sometimes, you will have a model that looks nice and complete, but it won’t be suitable or ready to
be animated. In Chapter 1, Creating Low-Poly Models, we discussed vertices, faces, and edges. We will
revisit some of those concepts in the context of getting our models ready for animation.

Then, when we believe the model is ready, we’ll look at Blender’s animation capabilities. We’ll do this
by discovering two new things. First, we’ll utilize a new method called rigging and construct a rig that’s
ubiquitous in animating models. Second, we’ll switch to a new workspace dedicated to animations.
During this effort, you’ll get to know a whole different side of Blender.

After you see how rigging is done and how models can be animated, we’ll look into ways to prepare
and store more animations in Blender so that they can easily be used later in Godot. So, once you know
beforehand what will be required down the line, this knowledge might help you in setting things up
accordingly in Blender before it’s too cumbersome to change later.

Setting Up Animation and Rigging78

Despite the following section titles looking deceptively short, we have a lot to cover in this chapter:

•	 Where to build animations

•	 Understanding the readiness of models

•	 Creating animations

•	 Getting animations ready for Godot

In the end, you’ll know whether Blender or Godot is the right environment to tackle animations and
how to get models ready for animations so that you can rig them.

Technical requirements
There will be a lot of moving parts, figuratively and literally, in this chapter. Animation and rigging are
challenging topics for most people who start practicing 3D. Although we’ll take things step by step,
to give you extra help along the way, you might want to use some of the files that are in the interim
stages instead of doing it all at once.

As usual, the book’s repository will have the necessary files for this chapter at the following link:
https://github.com/PacktPublishing/Game-Development-with-Blender-
and-Godot.

Where to build animations
Both Blender and Godot Engine have animating capabilities. Therefore, you might be wondering which
software is better for creating animations. To answer this crucial question, we should be discussing
what we are animating. When it comes to animations, especially in game development, we will be
tackling the following two main concepts:

•	 Whole-body objects: Objects such as a bouncing ball, a boat, or a projectile thrown from a
source are all examples of objects that act like a solid system with no individually moving parts.
The system can move as a whole without depending on its individual parts.

•	 Connected systems: Some systems depend on individual parts to be in motion. These systems
have parts that are connected to each other and the individual parts work together to move the
system they are part of. For example, cats use their feet, birds use their wings, and a human body
moves in a certain direction using two appendages that are either in contact with a surface or
interact with the medium they are in.

Sometimes, some tools and gadgets in real life can do a similar job, and it’s possible to use one over
another for a quick solution. However, every so often, we would like to pick the best tool for the job.
We’ll discuss both Blender and Godot in the context of the concepts we have just pointed out to see
which option might be a better choice.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Where to build animations 79

Animating in Godot Engine

Godot has a component, AnimationPlayer, that helps you build animations. We’ll look at it more
closely in later chapters when we import our models to create a point-and-click adventure game.
Similar to other applications’ animation components, it depends on setting keyframes to mark the
changing points of an animated object. For example, to create a bouncing ball animation, you’d mark
the ball sitting still on a plane in the earlier frames of the animation and mark a higher position in
the world in the later frames.

This is quite easy to do with Godot. You just have to mark the important events as keyframes, and this
operation is called keying or inserting a key. Thus, the engine figures out how the object should move
in between the two keyframes. However, when the system is much more complicated than a simple ball,
and it has moving parts, you’d be expected to select these separate parts to key them. This is not easy
to do in Godot since the workflow is not constructed in a way to facilitate such complex operations
in an easy manner. Consequently, it’s best to use Godot Engine when the system is relatively simple.

Animating in Blender

As was just mentioned, when you are animating an object with parts that are responsible for creating
the overall motion, such as animating a human body by moving individual parts such as feet and
hands, then doing this kind of work in Blender will be the right choice thanks to a method called
rigging. Later, in the Creating animations section, we’ll explain what rigging is and discover how to
construct a rig for our models.

For now, it should be enough to know that individually moving parts for an animated body will require
rigging to expedite the animation process. This is where Blender shines because it offers tools and
custom interfaces to help you along the way.

Besides the ease of creating an animation, let’s point out another reason why Blender is a better choice
for animating complex systems. If you construct your animations in Godot, you can only use them
in Godot. On the contrary, a Blender animation will act as a source of truth so you can share it with
other applications.

Wrapping up

We’ll say one more thing about why Blender might be a better choice regardless of the complexity of
creating animations. If you ever want to create a trailer for your game and you’ve gone through the
trouble of creating accurate enough camera and light conditions similar to the ones you are going to
employ in your game, then you can take a render of your scene, composed of many frames, which
will utilize Blender’s animation system.

So, for simple objects that can be moved, utilize Godot Engine’s animation system. For systems that
have individually moving parts, it’s better to do it in Blender. After all, Blender has dedicated tools
to facilitate the creation of advanced animations. Now, let’s discuss when your models are ready to
be animated.

Setting Up Animation and Rigging80

Understanding the readiness of models
In Chapter 1, Creating Low-Poly Models, we started with primitive objects and altered their vertices,
faces, and edges. During that process, we were concerned with how the model would look. As corny
as it may sound, looks might be misleading sometimes. To be animated correctly, a model has to
respect certain conventions other than how it looks. In other words, you’ve got to be sure whether
your model is ready.

Topology and rigging

The readiness level of a model could be defined by the term topology, which sounds a bit technical.
In layman’s terms, it’s the distribution and arrangement of the vertices, edges, and faces of a model
that altogether mark how optimized the model is for animation.

Not all topologies are created equal. There are bad and good topologies. Let’s look at Figure 5.1 to
get a better idea about what we mean by topology or distribution, particularly as being bad or good.

Figure 5.1 – The same model with two different distributions of vertices

The preceding figure shows a model with the same shape, but the topologies are different. Simply put,
the left case is ready for animation, and the right one could use some work to straighten up those
vertices to form a good flow. Then, you’d have to fix some of the irregularities by evenly distributing
many of the faces that congregate. So, not only is the right case an eyesore, but it’s also detrimental
during the animation process.

Let’s briefly touch on the role of rigging to understand the importance of good topology. If you were
to model a human hand, you’d be designing fingers, knuckles, and the wrist. The model, or more
correctly, its volume, would be hollow. In other words, you’d only be creating the vertices that would
give the shape of a hand. However, in our minds, we know that this hand should have bones inside.
When you wiggle your fingers around or bend your fingers at the knuckles and joints, different parts

Understanding the readiness of models 81

of the skeleton start moving so that the outer structure that’s connected to the bone system can
move accordingly.

To simulate this, you take advantage of a practice called rigging, which involves introducing a skeleton
system and a series of constraints that manage how the skeleton system behaves. We’ll work on a
rigging example later in the chapter. For now, we are still concerned about our models being ready
for the rigging to take place. To emphasize the relationship between topology and rigging better, let’s
turn our attention to Figure 5.2.

Figure 5.2 – Different topologies for a hand model

Observe how the faces are aligned more naturally in the middle case, which certainly looks like an
improvement over the left one. Then, still for the middle case, look where the big thumb meets the
main part of the hand; that area could use a bit more detail so that when the thumb stretches out like
in the right case, there would be enough geometry to accommodate the skeleton’s behavior. Compare
the first and the third hands to see which one looks more natural to your eye when it comes to flesh
and skin in between fingers.

When a model is bending or stretching at certain points, it will be creating some creased and protruded
areas, similar to where the fingers meet the hand in the preceding figure. If vertices, hence faces, don’t
have a smooth flow, the model will look ripped or crushed in these weak spots. Having the correct
topology is a topic that’s hard to master and it throws off a lot of beginners when they want to get into
animation and rigging. You can find a few links that can help you understand the difference between
a good and bad topology in the Further reading section.

To satisfy a good topology, since it’s necessary to line up edges and faces correctly where the action
will occur, we need a mechanism to move problematic edges and faces around so that they will be in
the right place. For this, we are going to discover a new method, or rather, a shortcut.

Setting Up Animation and Rigging82

Grabbing
In Chapter 1, Creating Low-Poly Models, you got to know two methods that are very commonly used
among Blender fans. They were Rotate (R as a shortcut) and Scale (S as a shortcut). There is a third
common method that we intentionally omitted during that exercise. We depended on modifiers that
helped us move vertices around, so we got away without it; however, it’s now time to employ it.

If you are able to rotate and scale things, then why can’t you move things around? In fact, you can,
and this new method will help you move vertices, edges, and faces anywhere you want. There is only
one caveat. Although most people refer to this operation as Move, its shortcut is a bit bizarre; it’s G.
So, an easier way to think of this shortcut in the context of moving might perhaps be grabbing. You
grab a vertex and leave it somewhere, in a sense.

In most Blender tutorials, you may find people use grab and move interchangeably. They're one and
the same. So, throughout this book, when you see the word move, we mean the grab operation and
the G shortcut.

Let’s practice this new piece of knowledge with a series of simple steps. After you start a new file,
perform the following steps:

1.	 Press Tab to enter Edit Mode.
2.	 Select only one vertex of the default cube.
3.	 Press G and move your mouse around.

The vertex you selected is now being pulled around while you are moving your mouse. To terminate
the grabbing, you can click anywhere and this should rest the selected vertex at its last position.
Figure 5.3 is an example of what we want to achieve.

Figure 5.3 – A vertex grabbed out of its original place and moved somewhere else

You might have surmised that the vertex was moving freely in all three axes, and that would be correct.
If you want to limit the movement to a certain axis, and if you wish to move the vertex a precise
amount, you can do that too. While still in Edit Mode, perform the following steps:

1.	 Select another vertex.
2.	 Press G, then X.
3.	 Type 0.5.

Creating animations 83

You can pick any one of the other two axes if you want. Regardless, the value you type for any given
axis defines the movement amount. So, a negative value will still move the selected part in the axis
you choose, just in the opposite direction.

Additionally, sometimes you might want to move the selection in any but a certain direction. When
you initiate a grab shortcut, if you press Shift before you pick the axis, it’ll move the selection to the
other two remaining axes. So, Shift+X would move things anywhere but on the X axis.

Practice the grabbing operation a bit more by selecting edges or faces if you would like. Soon, we’ll
explore the building blocks of animation. During that effort, you’ll most likely utilize the grab operation.
So, when you are ready, let’s see how we can animate things.

Creating animations
As we mentioned in the Where to build animations section, the type of animation we’ll do in Blender
involves having individual parts of a system that move independently from each other or collaboratively
move together sometimes. We also said that we would need a method called rigging, so let’s give an
example to understand why rigging is useful.

When you talk, whether you are sitting or walking, the muscles and bones that are responsible for
the talking are generally not affected by or affecting the other parts of your body. However, when you
are walking, your legs rotate around the hip bones, and the rest of the system triggers other natural
actions, such as swinging your arms, moving your shoulders slightly forward and backward, and so on.

In both cases where you have a local or system-wide dependency, we eventually move some of the
vertices that make up a model. Since moving so many vertices is a lot of work, we use a structure
we place inside the model to tell the necessary vertices where to move. The process to create such a
structure is called rigging. In a way, rigging mimics what bones and muscles do in real life.

In this section, we’ll work on a simple rigging process and rig a low-poly snake. Through this process, you’ll
prepare the model for animation, but first, we'll get to know some of the essential components, as follows:

•	 Armature: An armature, in simple terms, is a set of bones, but a better definition might be
a framework serving as a control structure – what materials are to textures, armatures are to
bones. So, the same armature could have multiple bones. Furthermore, the rigging process
could involve many armatures if the system that’s animated requires so.

•	 Bone: This is the most essential part of a rigging system. Without bones, there would not be
armatures, therefore nothing to animate. In real life, when your bones move outside of their
zone of freedom, you feel pain, so your body keeps things intact. There are similar ways to
restrict a bone’s freedom digitally, so to speak, so it works in tandem with other bones.

We’ll first look at how to rig a model. For this effort, we’ll utilize one armature and many bones. After
adding constraints to some of the bones, the rigging process will be complete. So, in the end, we will
use our rig to animate the snake.

Setting Up Animation and Rigging84

Rigging

Now that the theoretical stuff is out of the way, we can focus on the practical aspects, mainly how to
set up armatures and bones. To focus on the rigging process, we’ll use a low-poly snake model. The
Snake.blend file in Chapter 5’s Start folder is a good starting point, and by the end of this
Rigging section, you’ll have reached what you see in the Snake.Rigged.blend file.

Besides these two files, we’ll mention other complementary files that show the interim phase. As
always, you can find all of these files at the URL mentioned in the Technical requirements section.

After you open the Snake.blend file, let’s add an armature by performing the following steps:

1.	 Press 3 on your numpad to switch to the Right Orthographic view.
2.	 Press Shift+A.
3.	 Select Armature.

You can also find the result of the preceding operations in the Snake.First Bone.blend file. If
your keyboard doesn’t have a numpad, then you can click on the X axis in the gizmo in the top-right
corner of 3D Viewport until you read Right Orthographic in the top-left corner. The following figure
should help you see what we have done so far:

Figure 5.4 – Beware the snake! On second thought, it doesn’t seem to have a mean bone in its body

We now have a new object type in our scene: an armature. You can see it in Outliner too with two
green stick figures next to its title. Right now, we have one bone in the armature. So, bone and armature

Creating animations 85

kind of mean the same thing at this point. Our goal, in rigging, will be to create and distribute a bunch
of bones inside the snake’s mesh. So, let’s add more.

We seem to have a problem, though. That bone we added earlier looks like it’s occluded by the snake’s
tail. So, if we keep adding more bones and laying them out so that they align with the snake’s body,
we won’t be able to see what we are doing. Luckily, the solution is a couple of clicks away. While the
armature is still selected, you can expand Viewport Display in the Armature settings in the Properties
panel and turn on the In Front option. This will make sure the armature is always visible.

Missing out on a numpad
Numpad shortcuts are helpful and they will make your life easier, especially during modeling
and rigging when you need to view your work from certain angles often on. The following
website offers eight different ways to mimic a numpad: https://essentialpicks.
com/using-blender-with-no-numpad/.

Meshes are composed of vertices, faces, and edges. Similarly, bones are made of three components: root,
body, and tip. The tip can be the root of another bone and vice versa. Just as we can go into Edit Mode
for a mesh to change its inner parts, we can do so with an armature. So, select the armature and press Tab.

You should be able to click on and select the root and tip separately. When you select the structure
in between the joints, it’ll automatically select the root and the tip since it’s all connected. Figure 5.5
shows only the tip selected.

Figure 5.5 – The tip of the bone is selected in Edit Mode

https://essentialpicks.com/using-blender-with-no-numpad/
https://essentialpicks.com/using-blender-with-no-numpad/

Setting Up Animation and Rigging86

Credit where credit is due
The snake model we are rigging in this section is an asset created by an artist known as Quaternius.
You can follow his work at https://quaternius.com. We’ll be using his other assets in
later chapters as well. So, thank you for your generosity.

Now, we are ready to add more bones to the armature. We’ll do that by first positioning that initial bone,
then we’ll add new bones coming off the tip. While still in Edit Mode, perform the following steps:

1.	 Select the root joint.

2.	 Press G and move the mouse so that the joint is somewhere in the middle of the snake’s chest.

3.	 Click to finish grabbing.

4.	 Select the tip joint.

5.	 Press G and move the mouse so that the joint is somewhere near the Y axis but inside the tail.

6.	 Click to finish grabbing again.

A figure might be extremely helpful since all of this moving and positioning sounds a bit arbitrary.
Figure 5.6 is an example of what we have achieved in the last few steps.

Figure 5.6 – A well-placed bone for our snake

https://quaternius.com

Creating animations 87

Since up, down, or right concepts lose their meanings in the 3D space, it’s important to have a simple
yet effective way to represent the natural flow of bones. If you compare Figure 5.5 and Figure 5.6,
which correspond to the Snake.First Bone.Editing.blend and Snake.First Bone.
Position.blend files, respectively, you’ll notice that the structure between the joints is going in
different directions. The broader part of the bone is closer to the root, and the narrower end of the
bone is approaching its tip. For example, imagine your kneecap as the root and your ankle as the tip
of one bone. Moreover, hip bone to kneecap, elbow to wrist, and so on.

We have to add a few more bones to our system. We’ll do that by extruding the original bone. While
still having the tip of the bone selected, perform the following steps:

1.	 Press E to start extrusion.

2.	 Move the mouse in the right and bottom direction so it follows the tail’s form.

3.	 Click to finish extrusion.

4.	 Repeat Steps 1 to 3 until you have four bones of roughly the same length.

The result is shown in Figure 5.7, and you can also open the Snake.Tail Bones.blend file to
compare your result.

Figure 5.7 – Four bones that make up the tail

Setting Up Animation and Rigging88

Importance of clicks
Similar to finishing a grabbing operation, extrusion needs a final click to solidify the position
of an extruded object. Hence, throughout the rest of this chapter, when you follow a step where
you see the word extrude, you are expected to click and finalize the extrusion when you are
happy with the object’s position. If you prematurely terminate the extrusion, you can always
hit G and grab this new object to move elsewhere and continue extruding if you wish. Thus,
click to finalize both grabbing and extrusion, and use these two handy methods as often as you
need. Also, if you change your mind while extruding, right-clicking will cancel this operation.

Extrusion helped us do a few things at once. We have created a new bone, positioned it correctly so
its root aligned with the previous bone’s tip, parented this new bone to the previous bone, and finally,
moved its tip to where we’d start the next bone.

We’re halfway through adding bones to the snake. That being said, now is a good time for a bit of
housekeeping. We’ll be referencing some of these bones later, so it would be prudent of us to rename
them now. If you have been paying attention to the new bones’ names after the extrusion, you must
have seen that they are labeled in a format that goes like Bone.00X where X is the succeeding bone’s
number. To rename all of the bones you have added so far, perform the following steps:

1.	 Select the original bone.

2.	 Press F2 and rename it to Tail.1.

3.	 Repeat the preceding two steps for the rest of the bones so that their names look like Tail.X.

Let’s move on to adding bones for the torso. For this, we are going to utilize the original bone, which
is now renamed Tail.1. Some of the decisions that you’ll make while rigging your models will depend
on the situation you are going to use the rig for. It would have been perfectly possible to start the
bones from the head and go all the way to the end of the tail. However, we know that this snake will
have an inclination point, mainly where the torso and tail bones meet. Therefore, you need to perform
the following steps:

1.	 Select the root of Tail.1.

2.	 Press E to extrude a new bone in the right and top direction, following the torso.

3.	 Repeat Step 2 twice more so that you have three bones in the end.

4.	 Select each new bone and rename them to look like Torso.X where X is a consecutive number
starting at 1.

Creating animations 89

The result is what you see in Figure 5.8 and in the Snake.Torso Bones.blend file.

Figure 5.8 – New bones have been added following the torso to the head

We can now plan the remaining bones. We’ll be concerned with only two bones for brevity’s sake: the
head and mouth bones. If you have been following all along, the tip of Torso.3 should still be selected.
If not, select it, then perform the following steps:

1.	 Press E to extrude a new bone to the end of the snake’s nose.

2.	 Select Torso.3’s tip again.

3.	 Press E to extrude a new bone to the end of the snake’s mouth.

Setting Up Animation and Rigging90

In the end, the fully constructed skeleton, which you can find in the Snake.Full Skeleton.
blend file, will look like what you see in Figure 5.9.

Figure 5.9 – The skeleton of our snake is complete

We are done with the skeleton. To complete the rigging, we need to add two more bones, which are
usually called control bones. The following is an explanation of why a simple skeleton, although
necessary, is still considered less than ideal. It has to do with the following two conflicting concepts:

•	 Forward Kinematics (FK): When you have a series of bones and you want to move the extremity
bones, for example, a thumb in a human’s hand, the motion would have to be calculated while
considering all of the position and orientation values for all of the interim bones starting from
the shoulder joint. Thus, the motion starts off at the root and goes forward.

•	 Inverse Kinematics (IK): This is a much more efficient method where, following the preceding
example, by moving a thumb, all of the connected bones determine their state in reverse order
one at a time, instead of calculating the overall system’s behavior. Thus, the moving bone dictates
how the bone behind should behave, and that bone behind does the same all the way to the root.

Creating animations 91

We prefer IK in our exercise since it’s much more convenient to use, and it is widely accepted in the
industry. If you would like to get more in-depth information, especially on the math aspect of FK and
IK, refer to the following two pages:

•	 https://www.sciencedirect.com/topics/engineering/forward-
kinematics

•	 https://www.sciencedirect.com/topics/engineering/inverse-
kinematics

To introduce IK to some of our bones, we need to create control bones that will propagate the motion
to the rest of the bones. Although these control bones will look like they are part of the skeleton
visually, they will be decoupled from the skeleton. Right now, all of the bones that have been extruded
have been automatically parented. So, we’ll need to unparent our two control bones once we extrude
them off the end bones.

It would seem one of these bones could be coming off the Head bone, and the other control bone, by
symmetry, could be coming off the Tail.4 bone. Assuming you are still in the Right Orthographic
view, in order to create these bones, you need to perform the following steps:

1.	 Extrude a bone in the left direction off the tip of the Head bone.

2.	 Rename this new bone as Head.IK.

3.	 Extrude a bone in the right direction off the tip of the Tail.4 bone.

4.	 Rename this new bone as Tail.IK.

We have created two new bones, but they are still attached to the skeleton. So, we need to separate
them. ALT+P is a shortcut you can use to clear the parent relationship, but we’ll do the decoupling
somewhere else since we’ll have to turn off another setting too. So, let’s do both at the same time, as
follows:

1.	 Select the Head.IK bone.

2.	 Turn on the Bone Properties tab (the green bone icon) in the Properties panel.

3.	 Expand the Relations section in that tab.

4.	 Clear the parent by clicking on X in the name field.

5.	 Turn off the Deform option.

6.	 Repeat Steps 3 to 5 for the Tail.IK bone.

The Snake.Full Skeleton.IK.blend file contains all of the progress you have made so far, but
let’s explain what we have done in the last several steps. We used to see the Armature properties, so we
asked the Properties panel to show another view to display bone properties. We broke the connection
of our control bones with their parent. Since there is no parent, the Connected checkbox automatically
switched itself off. Lastly, we turned off a setting that’s the crux of all this whole operation: Deform.

https://www.sciencedirect.com/topics/engineering/forward-kinematics
https://www.sciencedirect.com/topics/engineering/forward-kinematics
https://www.sciencedirect.com/topics/engineering/inverse-kinematics
https://www.sciencedirect.com/topics/engineering/inverse-kinematics

Setting Up Animation and Rigging92

If you recall what topology is and why we use a rigging system to animate systems that bend and
stretch, then you’ll know that deformation is the key. We want the skeleton of the snake to deform
the mesh it’s in. However, we wouldn’t want that for the control bones since we’ll use these to dictate
the overall motion. So, they should not be deforming anything.

That being said, they will be responsible for IK, which is the last missing piece to the rigging. To
complete the rigging, we need to add the IK ingredient, and we’ll do that in Pose Mode.

In Chapter 1, Creating Low-Poly Models, we went back and forth between Object Mode and Edit
Mode. In this chapter, we’ve been in Edit Mode all this time to move the parts of a bone and extrude
new ones. Bones can be in another mode, Pose Mode, with which you can define the relationship of
the bones with each other by introducing constraints. Consider this new mode as editing the behavior
of the armature, hence how the model will pose.

Assuming you are in Edit Mode already, press CTRL+Tab then press 2 to switch. Or, if you are in
Object Mode, then CTRL+Tab will take you directly to Pose Mode. Keep in mind that this works if
you have a bone or the armature selected. Alternatively, the dropdown in the top-left corner can help
you to be in the right mode. We’re now ready to add IK constraints as follows:

1.	 Select the Tail.4 bone.

2.	 Turn on the Bone Constraints Properties tab (the blue bone icon with a strap around it) in
the Properties panel.

3.	 Choose the Inverse Kinematics option in the Add Bone Constraint dropdown.

4.	 Repeat Step 3 for the Head bone.

We have added the missing IK component to two bones. Maybe you noticed that the constraint was
not added to the control bones but to the bones just before them. We’ll now map some of the IK
constraints' values to use the control bones. To do that, while the Head bone is selected, perform the
following steps:

1.	 Click on the square icon in the Target field of the IK constraint.

2.	 Select Armature in the options.

3.	 Click on the bone icon in the Bone field of the IK constraint.

4.	 Select Head.IK in the options.

This will designate Head.IK as the control bone for the Head bone. So, from now on, whenever you
interact with Head.IK, it will control the Head bone that is connected to the other bones all the way
to the root. That’s why you see a dotted yellow line going from the tip to the joint in between the
Torso.1 and Tail.1 bones.

Let’s associate Tail.4 and Tail.IK by following the preceding recipe so that interacting with Tail.IK
can dictate the tail bones’ behavior. Select Tail.4 then perform the following steps:

Creating animations 93

1.	 Select Armature in the options after clicking on the square icon in the Target field.

2.	 Select Tail.IK in the options after clicking on the bone icon in the Bone field.

3.	 Change the Chain Length value to 3.

The first two steps in the preceding set of instructions are pretty much exactly the same except that
we picked the appropriate bone. The last step introduced a new concept that tells the control bone
how far down the chain of bones the root bone is. The dotted line moved accordingly. The final result
is what you see in Figure 5.10.

Figure 5.10 – A fully rigged snake

We’ve been doing all of this work so that the armature would be part of the snake. However, if you
look at Outliner, you can still see that these two objects are separate. It’s time to really connect the
skeleton to the snake’s mesh as follows:

1.	 Switch to Object Mode.

2.	 First select the Snake mesh, then Armature by holding down the Shift key.

3.	 Press CTRL+P to bring up the Set Parent To menu.

4.	 Choose With Automatic Weights.

Setting Up Animation and Rigging94

When you parent the armature to the mesh, two things will happen. First, Snake in Outliner will be
moved as a child under the Armature item. Second, Snake will be assigned an Armature modifier
that will build the connection between these two objects.

In the end, the armature will designate its bones to nearby vertices so that when a bone moves, it
mobilizes the associated vertices. It’s as if some vertices that are closer to a particular bone weigh more
in terms of priority. Thus, you won’t see a tail bone move far away vertices that much.

Phew, the rigging is finally complete. As you may have noticed, all of this creating and separating
bones, adding constraints, adjusting settings, and so on could sometimes become a tricky business.
You get visual clues as to which bone is doing what and how they are connected, but the scene could
quickly get cluttered with gizmos. Like anything else, though, you get used to doing it with practice.
On that note, you’ll find links to more advanced rigging material in the Further reading section.

We have provided the Snake.Rigged.blend file both in the Start and Finish folders for you
to compare your results. You can also use this file as a starting point in the following section. Since
we deemed that rigging was necessary for animation and that our rig is done, we can now turn to a
new section where we’ll get to know the Animation workspace of Blender.

Animating

We’re about to animate our snake. We’ve prepared a skeleton and introduced two control bones to
construct a rig. In this section, we’ll use this setup to create an attack animation. Using the methods
presented in this section, you can create different animations for your models and store these animations
with the model in the same file.

Let’s switch to the Animation workspace to take advantage of a more suitable set of interfaces. The
layout will change to mainly two side-by-side 3D Viewport panels and what looks like a timeline
underneath. There are actually two panels at the bottom, as follows:

•	 Dope Sheet: We’ll work with keyframes soon to mark the defining points when parts of your
model move over time. For example, a frog can have one keyframe for its resting position, then
another keyframe defined as its highest jump level later in time.

•	 Timeline: This is a simpler version of Dope Sheet. It is represented with a clock icon and lets
you see things at a higher level. We won’t utilize this interface that much, but it’s useful to set
the Start and End keyframes of your animations.

Besides these two editors, there is also the Graph Editor, which you can access by clicking the icon
in the drop-down menu in the top-left corner of any panel. Actually, let’s do that by changing the left
3D Viewport into a Graph Editor. When you are done, you should see something like the following:

Creating animations 95

Figure 5.11 – We have further customized the Animation workspace

We have everything we need to animate the snake. We’ll start with an attack animation. For this,
we’ll move the head forward and raise the tail to depict a menacing pose. Start by switching the 3D
perspective to Right Orthographic by pressing 3 on the numpad and performing the following steps:

1.	 Go into Pose Mode.

2.	 Select the Head.IK bone.

3.	 Press I to insert a keyframe and select Location in the options.

This operation will add a key to the first frame in Dope Sheet as well as populating some elements
both in Dope Sheet and Graph Editor. So far, so good. Take a look at what’s added to the animation
editors and expand the Head.IK title in both editors to see what exactly is happening under the hood.
We are marking the location of the Head.IK bone.

For the next event in the snake’s attack animation, we need to move the snake’s head forward and key
(mark) its new location. For this, we need to select a new frame in the timeline as follows:

1.	 Change the frame value from 1 to 10 (just to the left of the Start section in Timeline).

2.	 Press G and move the head slightly to the left and up.

3.	 Press I to insert a keyframe and choose Location again.

Setting Up Animation and Rigging96

This should add more elements – more specifically, curved lines – to Graph Editor. This is good
because you can use those curves to fine-tune how the action will start and end—more abruptly or
smoothly, which can be used for more dramatic effects. We leave it to your artistic interpretation. What
we can do, for now, is finish the head’s motion so that it goes back to its original position, as follows:

1.	 Change the frame value from 10 to 25.

2.	 Press Alt+G to reset its position to the original values.

3.	 Press I to insert a keyframe and choose Location again.

Figure 5.12 shows our progress so far.

Figure 5.12 – We have animated the head bone via a control bone

In the end, we have moved the torso bones by animating the Head.IK bone. That’s why we have
implemented a control bone instead of moving the individual torso bones. Additionally, we haven’t
done anything special to the Mouth bone, but that’s also moving to keep up with the head.

Let’s do something similar with the tail, as follows:

1.	 Set the frame to 1.

2.	 Select the Tail.IK bone.

3.	 Press I to insert a keyframe and choose Location.

4.	 Set the frame to 10.

5.	 Press G and move the tail slightly to the top and left.

Creating animations 97

6.	 Press I to insert a keyframe and choose Location again.

7.	 Set the frame to 25.

8.	 Press Alt+G to reset the position.

9.	 Press I to insert a keyframe and choose Location again.

In this pose, the tail naturally looks angry, which accentuates the head’s motion. By the way, where
is your head? If you look in Dope Sheet, the keyframes for the head animation are gone. Blender
only displays the keyframes for the selected object to keep the interface clean and simple. You can
display everything by toggling off the Only Show Selected button, which looks like a select icon in
the header of Dope Sheet. There is a similar button in Graph Editor; if you disable both, you should
have something similar to what you see in Figure 5.13.

Figure 5.13 – Both the head and tail keyframes are visible in the editors

You can also refer to the Snake.Animated.blend file in the Finish folder.

We’ve completed our first animation. If you would like to create another animation, where would you
do it? It seems that we could keep adding more keyframes to the timeline. However, how would we
know which keyframes are responsible for a particular animation?

We can answer this question both in Blender and Godot contexts. Actually, once we understand
how to create separate animations in Blender for the same model, we’ll have practically prepared our
animations to be shipped to Godot. To do this, we’ll discover Action Editor in the following section.

Setting Up Animation and Rigging98

Getting animations ready for Godot
Creating separate Blender files for different animations would be extremely unwieldy. If only we had
a way to store multiple animations in the same file. Luckily, there is. We need to use a new interface
called Action Editor for that. Let’s see how we can use it to create another action for the snake.

There is a dropdown in the top-left corner of the Dope Sheet panel. Although that whole panel could
be considered as the Dope Sheet panel, we have been using its default view. This is similar to how
3D Viewport works. When we were switching between Object Mode and Edit Mode, we were still
working in the same 3D Viewport panel but in one of its specialized views. In other words, these
dropdowns customize the panel you are in. To switch the Dope Sheet panel to its Action Editor view,
perform the following steps:

1.	 Expand the dropdown that shows Dope Sheet.

2.	 Select Action Editor in the options.

This will reveal the title of our first animation, ArmatureAction, in the middle portion of the Action
Editor header. This is a lackluster action name. The snake deserves better. Let’s change it by clicking
its text and typing Attack. Now, you have just changed the default name to something you can easily
keep track of. Moreover, when we import this model into Godot and we want to trigger the correct
animation sequence, we’ll use this action name. Let’s create more actions as follows:

1.	 Click on the second icon next to the action title (the icon with stacked papers).

2.	 Change this new action’s title to Idle.

This will actually create a copy of the first animation. Except for its title, everything is the same, but
we can now change the features of the animation that match the title we just gave. In most games, the
idle state of characters usually looks calm, but they have a slight bobbing up and down motion that
indicates the character is alive but otherwise in a neutral state. Our idle action involves performing
the following steps:

1.	 Set the frame to 10.

2.	 Select the Head.IK bone and reset its position by pressing Alt+G.

3.	 Press G and move the bone ever so slightly downward.

4.	 Press I and choose Location.

5.	 Repeat Steps 2 to 5, but move the Tail.IK bone slightly upward.

Let’s do one more thing and test our new action. Change the End value in Timeline to 25 and click
the play button. This will let you see the action in a looped manner so that you get a sense of whether
the locations in the animation are good enough. Make more corrections to the location of the head
and tail control bones if you would like, but remember to set their values by pressing I.

Summary 99

Our snake is idling, up and down, perhaps waiting for a target to attack. By using the dropdown to
the left of the action’s title, you can switch between different actions.

Congratulations! You have officially created two animations. If, at times, it was difficult to follow the
instructions, you can find a fully finished example in the Finish folder in the Snake.blend file
for further studying.

We have done a lot in this chapter. It’s time to summarize our efforts.

Summary
This chapter started off with a discussion about which software (Blender versus Godot) would be
suitable for animations. We exemplified different cases of animation and determined that Blender is
the right choice for animating systems that have individually moving parts.

We then discussed the importance of good geometry, better known as topology, since not everything
that looks good is good enough from an animation perspective. Once the system is in motion, the
vertices, faces, and edges will act like a wrapper around a skeleton. If you know you’ll be animating
your model, you might be careful in how you create the geometry better ahead of time.

Nevertheless, if such an early option is not always possible, to prevent tearing and creasing that might
occur in certain areas of a model, we introduced the grab option. It can help you resolve problematic
parts by moving them to a different location.

As soon as the distribution of vertices is in a favorable place, then the rigging can start. This is, in fact,
one of the most advanced topics for most artists who are learning any 3D modeling software. It helps
sometimes to think of rigging as a bunch of strings that control a puppet. Like a puppet master, you
need to know which string controls which parts. To that end, we introduced IK, which has advantages
over a more direct, also known as FK, approach.

After we created a rig for a snake, we discovered the animation workspace. Since the rigging depended
on control bones via IK, our animation was done effortlessly. Along the way, we learned how to move
parts of a rig and keyframe their properties. In our simple case, it was only location, and we kept the
motion on one axis.

Lastly, we got to know how we could store two animations, rather actions, for the same model. Once
you have properly labeled actions, not only will it be easier for you to find them in Blender in the
future, but you will also see the benefit of this practice later in Godot chapters.

You have completed five chapters that took you from creating models to adding animations to your
models. Along the way, you’ve also learned how to construct and apply materials and textures. In the
following chapter, we’ll investigate how to export our work from Blender.

Setting Up Animation and Rigging100

Further reading
We mentioned the importance of topology, and it could be challenging to know what constitutes
good or bad topology. So, to see more examples and benefit from other people’s expertise, refer to
the following links:

•	 https://blender.stackexchange.com/questions/140963/do-i-have-
bad-topology

•	 https://www.reddit.com/r/blenderhelp/comments/speyjs/is_this_
bad_topology/

•	 https://www.pluralsight.com/blog/film-games/ngons-triangles-bad

Some 3D practitioners specialize only in animation. Although it’s possible to animate some Blender
objects without rigging them, for example, cameras and lights to move them around the scene, most
online courses usually cover rigging and animation topics together. The following is a list of online
courses and material for you to further your knowledge in both of these domains:

•	 CG Cookie: https://cgcookie.com/courses?sort_category=140,179

•	 Udemy:

	� https://www.udemy.com/course/rigging-fundamentals-blender/

	� https://www.udemy.com/course/rigging-and-animating-low-poly-
fps-arms-in-blender/

	� https://www.udemy.com/course/learn-3d-modelling-rigging/

	� https://www.udemy.com/course/blendercharacters/

Additionally, while you are browsing for more training content, you might come across a topic called
Weight Painting, which is helpful in determining how the rigging will prioritize the nearby vertices.
We left it out for brevity’s sake, but it’s a topic you’ll most likely want to cover if you want to be
more thorough.

In the following chapter, we’ll be slowly transitioning from Blender to Godot. So, this chapter was really
the last hands-on Blender chapter. If you want to know more about what Blender can do, there are
some really useful resources out there, in both written and video formats, offered by Packt Publishing,
such as the following resources:

•	 Blender 3D By Example by Oscar Baechler and Xury Greer

•	 Blender 3D Modeling and Animation: Build 20+ 3D Projects in Blender by Raja Biswas

•	 The Secrets to Photorealism: The PBR/Blender 2.8 Workflow by Daniel Krafft

https://blender.stackexchange.com/questions/140963/do-i-have-bad-topology
https://blender.stackexchange.com/questions/140963/do-i-have-bad-topology
https://www.reddit.com/r/blenderhelp/comments/speyjs/is_this_bad_topology/
https://www.reddit.com/r/blenderhelp/comments/speyjs/is_this_bad_topology/
https://www.pluralsight.com/blog/film-games/ngons-triangles-bad
https://cgcookie.com/courses?sort_category=140,179
https://www.udemy.com/course/rigging-fundamentals-blender/
https://www.udemy.com/course/rigging-and-animating-low-poly-fps-arms-in-blender/
https://www.udemy.com/course/rigging-and-animating-low-poly-fps-arms-in-blender/
https://www.udemy.com/course/learn-3d-modelling-rigging/
https://www.udemy.com/course/blendercharacters/

Part 2:
Asset Management

In this transitional part, you'll learn how to move from Blender to Godot. An essential part of this
workflow will be knowing which settings matter. By getting to know potential pitfalls and how to
apply workarounds, you can prepare yourself for scenarios where you have to use third-party assets.

In this part, we cover the following chapters:

•	 Chapter 6, Exporting Blender Assets

•	 Chapter 7, Importing Blender Assets into Godot

•	 Chapter 8, Adding Sound Assets

6
Exporting Blender Assets

Your journey in Blender has taken you to this point, where you want to take your creations in Blender
and deploy them in Godot Engine. We’ll cover importing these assets into Godot in the next chapter,
but first, we must make sure everything we have in Blender is up to Godot’s standard. So, we’ve got
to iron out a few kinks before exporting.

First, we are going to make sure the geometry of our models is fine. We have already talked about
polygons; we’ll dive deeper to understand them better to achieve models with better geometry. Origin
points are an important concept in both Blender and Godot. We’ll discuss why they are important
and learn how to alter the origin points.

We have not discussed the dimensions of our models so far. However, more important than the
dimensions of your models, we’ll investigate a concept called scale or scale factor, which is crucial
when you send your assets to not only Godot Engine but also to other game engines. The final part
of getting your models ready is an organizational practice: naming your assets.

After we finish making our preparations, we’ll need to convert our assets into a format Godot
understands. To that end, we’ll explore glTF and compare this format to a few others. Once Godot
imports this file type, it will understand how to make sense of vertices, materials, and animations
stored in a Blender file. We’ll look into importing in the next chapter, though.

Lastly, just because we can transfer assets out of a Blender file doesn’t mean we should be all-inclusive.
We’ll discuss which objects in a Blender scene are useful from a game development perspective. During
this exercise, we’ll also learn how to store our preferences for selecting the objects we want to export
under presets so that we don’t have to remember the export conditions every single time.

In this chapter, we will cover the following topics:

•	 Getting ready to export

•	 Exploring glTF and other export formats

•	 Deciding what to export

Exporting Blender Assets104

By the end of this chapter, you’ll know what to do to get your models ready for export, choose an
appropriate export format and configure it, and learn how to export only the stuff you want.

Technical requirements
This is a chapter about understanding some concepts rather than practicing, so you’ll do a minimum
amount of work, such as looking at the value of certain things and occasionally rotating some objects.
You’ll likely revisit this chapter later to remember how to export your work samples. So, it’s OK to do
a preliminary reading first and come back again for another read.

Wherever it’s relevant in this chapter, the appropriate filenames in the Start and Finish folders
will be mentioned. The files that contain the necessary assets have been provided for you in this book’s
GitHub repository: https://github.com/PacktPublishing/Game-Development-
with-Blender-and-Godot.

Getting ready to export
There are plans to make the transition between Blender and Godot Engine more seamless in future
versions. For example, you’ll be able to deploy your Blender file directly in a Godot project and start
accessing the elements from your Blender scene directly in Godot. However, we are not there yet, so
we need to do a bit of housekeeping before we send our stuff to Godot.

The following is not a complete list, but it covers the most common problems many artists face when
they go between Blender and Godot:

•	 Deciding what to do with n-gons

•	 Setting origin points

•	 Applying rotation and scale

•	 Naming things properly

Now, let’s discuss these topics (problems) and their solutions. We’ll start with more labor-intensive
topics and finish off with easier things to take care of before you hit the export button.

Deciding what to do with n-gons

Let’s give a formal definition of an n-gon and move on to its relevance in our work. Mathematically, a
closed plane with n edges is an n-gon, but we use friendlier names for some of these n-gons. For example,
a triangle is another name for a 3-gon. Moreover, for any number of edges equal to or more than five,
we generally use Greek prefixes to describe them – this includes pentagons, hexagons, heptagons,
and others. Lastly, a question for you to ponder on: what do you call a 4-gon, a square or a rectangle?

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Getting ready to export 105

Although nothing is stopping you from creating 3D objects with faces that can make up any type of
n-gon, you should avoid it in some circumstances. It’s not a hard rule but it’s something to keep in
mind. So, why is this important for us?

We briefly discussed the role of a Graphics Processing Unit (GPU) in Chapter 1, Creating Low-Poly
Models. Just as a reminder, a GPU takes a polygon and dissects it into the tiniest n-gon, namely a
triangle. So, when you throw a bunch of complex polygons such as a pentagon or worse at the GPU,
it processes these complex shapes to the best of its capability into triangles. This process is called
triangulation. The following figure shows a few examples of triangulation:

Figure 6.1 – The triangulation result could be different for the same polygon

Thus, when you leave the triangulation task to the GPU, it makes assumptions about which vertices
should connect. Keep in mind that we don’t want all the vertices to be connected, just the minimum
number without creating any overlapping edges. So, for a pentagon, we can have five different
triangulation cases. That’s a lot of guesswork for a GPU to know which one you’d prefer.

In Chapter 5, Setting Up Animation and Rigging, we discussed the role of topology, which mainly
involves distributing edges and faces. If you studied the content in more detail by following the URLs
provided in that chapter, you must have come across the notion of edge flow. If you have a rig that’s
supposed to bend the model, you’ll want the edges to follow a line as straight as possible into the bent
part. Consequently, it pays off to do your own triangulation to create a smooth edge flow or simply
avoid any n-gons altogether.

N-gons usually occur when you do loop cuts, but you can also create them accidentally while editing
other parts of your model without noticing it. A quick way to get rid of them, if you can’t avoid
creating them, is to connect some of the vertices manually. You’ll find an object with five vertices,
hence five edges sharing one face, inside the Ngons.blend file in the Start folder. That’s a 5-gon
or a pentagon right there. Let’s see how we can fix it:

1.	 Select the vertex at the top and one of the bottom vertices by holding Shift.

2.	 Press J to trigger the Connect Vertex Path operation.

Exporting Blender Assets106

This may not look much different, but you have added one more face by connecting those two vertices.
You must have two faces now. Let’s do something similar but pay attention to the number of faces
shown on the right-hand side of the status bar. It should show Faces: 0/3 after you do the following:

1.	 Select the vertex at the top and then the other bottom vertex by holding Shift.

2.	 Press J to connect these two vertices.

After your previous edits, your pentagon will look like the third case in Figure 6.1. If you fancy it, you
can undo your steps and connect another set of vertices. Which vertices you should connect depends
on your situation, so there is no hard rule.

Despite the number of vertices staying the same, you now have two more faces and two more edges
compared to the initial state. Speaking of the initial conditions, take a look at Tris in the status bar,
and reopen Ngons.blend without saving; you’ll see that Tris in the status bar will still show 3.
That’s because the GPU was implicitly triangulating the pentagon. You have now explicitly defined
which vertices should connect, hence where the edges and faces should be.

Now that we have covered why and when it is important to fix the n-gons, here is a situation where
you may not need to be concerned about n-gons at all. If you have a model that you know, for sure,
you won’t be animating (hence there is no rigging that would require a clean topology), then you can
do without fixing your n-gons. Professionals insist on fixing n-gons because chances are the models
will be animated, so they do it just in case. However, you now know you also have a choice.

Setting origin points

An origin point is a point where all your transformations start. This often sounds a bit technical,
so sometimes, it’s easier to think of it as the center of gravity. However, that might be a misleading
definition because you can change the origin point for your models, whereas the center of gravity
doesn’t normally change in real life.

We must open Origins.blend in the Start folder to get to the bottom of origin points. For now,
let’s just look at the following screenshot:

Figure 6.2 – These two barrels look very similar, but are they?

Getting ready to export 107

The Origins.blend file will contain two barrels, one painted in red and another painted in yellow.
If you select the red and yellow barrels back and forth, you’ll notice that an orange dot inside the
outlined shape is in a different spot for each barrel. To get a better view of what’s going on, you can
switch to the Right Orthographic view by pressing 3 and observing that orange dot after you select
either barrel. That dot is the origin point.

Follow these steps to understand the role of the origin point:

1.	 Select the red barrel.

2.	 Press R to rotate and then X to constrain the rotation axis. Then, type -45.

3.	 Select the yellow barrel.

4.	 Press R to rotate and then X to constrain the rotation axis. Then, type 45.

The values for the rotation were carefully selected to make these barrels tilt toward each other so
that you can compare their final conditions. Although both barrels rotated the same amount, the
yellow barrel seems to have leaned closer to the ground. To compare your results, you can refer to
Origins-1.blend in the Finish folder, or take a look at the following screenshot:

Figure 6.3 – Barrels rotated toward each other by the same amount around their origin point

Did you realize that both barrels were rotating around their origin point? We could take this a step
further and place the origin point at the bottom of one of the planks of the barrel’s body.

To make the barrel look like it’s leaning around a more accurate pivot point, follow these steps:

1.	 Select the yellow barrel and press Alt + R to reset the rotation.

2.	 Go to Edit Mode and select the left-most vertex. Alternatively, hold down the middle mouse
button to get a better view of the vertex that goes along the green Y axis.

Exporting Blender Assets108

We still need to complete a few more steps to set the new origin, but the following screenshot should
help you find this mysterious vertex:

Figure 6.4 – This vertex will be the new origin point soon

In Chapter 1, Creating Low-Poly Models, we briefly mentioned 3D cursors. You might be used to working
with other types of cursors, such as the ones you often see in a word processor or code editor. They
usually blink regularly and place the character right there when you type on the keyboard.

Well, this is a 3D cursor, and it doesn’t blink, but its role is similar. You can see it sitting where the X
and Y axes meet in the preceding screenshot. To move that 3D cursor to the selected vertex and set
a new origin, do the following:

1.	 Press Shift + S. A radial menu will appear and offer many choices for snapping.

2.	 Select Cursor to Selected or press 2.

The choice we selected snapped the 3D cursor to the vertex you have selected. We are not quite done
with moving the origin yet since we haven’t told the barrel object where the new origin is. For that,
we need to do the following:

1.	 Go back to Object Mode.

2.	 Right-click and choose Origin to 3D Cursor under Set Origin.

This will move the origin point of the barrel to the 3D cursor. That’s why we had to move the 3D cursor
to a specific vertex so that we could designate it as a new origin. The following screenshot shows the
context menu and where to find the origin options:

Getting ready to export 109

Figure 6.5 – Setting the origin is a common operation, so it’s part of the context menu

You can open Origins-2.blend in the Finish folder to see the yellow barrel applied with the
same rotation from before, but, this time, the rotation is happening around a different origin point.

In the end, in most situations, setting a new origin point involves going into Edit Mode to select
where you’ll move the origin, then shifting the 3D cursor to this point temporarily so that you can
set the origin in Object Mode. You could, of course, designate a completely arbitrary point outside
the volume of your objects as their origin too.

An origin point will be used in Godot later, similar to Blender. If you set the origin point for a door
at one of the hinges in Blender, rotating that door in Godot around the Y axis will use the hinge to
revolve the door so that everything will look correctly calculated and adjusted.

Applying rotation and scale

This is, by far, one of the most important topics to take care of before you export your Blender asset.
It has been mentioned several times in this book that looks can be deceiving. Applying rotation and
scale falls under the false looks category. Let’s understand this issue better by opening Scale.blend
in the Start folder.

You should see two cubes, as shown in the following screenshot, that are on either side of the X axis.
Also, the Transform panel is already expanded for you to look at the transform these cubes have, and
you can use the N shortcut to toggle it on and off in the future. An object’s transform is defined by its
location, rotation, scale, and dimensions, but we’re only interested in rotation and scale.

Those two cubes sure look the same, except one is green and the other is red, but they also are different
in another way. Start by selecting the red cube, then the green cube. Do this a bunch of times while
paying attention to what’s changing in the Transform panel.

Exporting Blender Assets110

The following screenshot also shows you where you can find this panel:

Figure 6.6 – The Transform panel is in the top-right corner of the 3D Viewport area

Both cubes’ dimensions are 4 x 4 x 4 meters. Their location, individually, indicates where they are
supposed to be. So far, so good. The scale and rotation values tell us a different story, though. So, how
did this happen? Simply, the author of this file did what even the most advanced users sometimes
do: they started modifying the properties of the red cube in Object Mode, whereas the green cube
received its changes in Edit Mode.

Making such a simple mistake is quite common, and in fact, it may not even be considered a mistake
because sometimes, you just want to select things and start editing without worrying too much about
which mode the object is in. However, once you are done, you need to reset the rotation and scale
back to 1 for game engines to do their job. This is one of the most common things people fix before
they deploy their models to any game engine, so the situation is export format-agnostic. So, if you
want to export your files as FBX so that you can import them into Unity, you’ll still need to do this.

Luckily, the fix is simple. You can select the object that has a transform you want to fix, then press
Ctrl + A. A popup menu will ask you what properties you would like to apply, which will reset the
object’s transform for the selected property. The fifth option, Rotation & Scale, is what we are looking
for. When you trigger that option, you’ll see that the red cube’s rotation and scale values will reset to
their default values.

After you import your models into Godot Engine, or another game engine for that matter, when your
models behave in a weird way, such as some faces are missing or the animations are acting up, often,
the rotation and scale are the culprits. So, make sure they are zeroed in before you export.

Exploring glTF and other export formats 111

Naming things properly

Phil Karlton, who worked at Netscape, now a disbanded company that paved the way for browsing
the internet with their web browser Netscape Navigator, famously uttered the following words:

“There are only two hard things in computer science: cache invalidation and
naming things.”

This quote is often passed around as a joke but, like most jokes, there is a hint of truth. If not in cache
invalidation, there certainly is for naming things. Seeing meaningful names will make it easier for the
future you or for a colleague to remember and understand what was done before.

When you start with primitive objects, Blender will label them for what they are: cube, plane, light,
and so on. Your models will eventually get more complex at some point, and they will most likely
have parts that will no longer look like a cube. So, keeping the original names will make your life
harder at some point, both while working in Blender and Godot and even in another application if
you use your exported assets.

So, give your objects names!

Wrapping up

You’ll likely do some of these fixes more regularly than others. It’s easy to forget to apply transformations,
for instance, but it’s an easy fix. Changing the origin point is a useful method during the modeling
process for you to scale and rotate things smartly. In the end, you’ll most likely leave it at its last
position, so it’s OK to come back to Blender to set it to its permanent position for your game to apply
correct transformations later. Peruse the list of topics presented in this section as often as you need,
and you’ll develop a habit over time.

If you would like to practice the notions presented so far, we have prepared a Fix-Me.blend file
in the Start folder. We wanted to design a simple heavyweight very fast, so that effort left the object
with its default name. Also, its rotation and scale values look premature. While you are at it, you can
also fix the n-gon and move the origin point to a different corner.

At some point, you’ll eventually want to transfer your files to Godot. To that end, we often use exchange
formats when both applications don’t share a common file format. That’ll be the case for us since we can’t
directly open and process Blender files in Godot. Therefore, we will discover a file format, glTF, that’s
been gaining popularity in recent years. It will help us transfer our work in Blender to Godot Engine.

Exploring glTF and other export formats
Compatibility between different software has always been a delicate matter. Actually, with most
physical things, it is still a common problem even in modern life. Electric plugs and sockets, for
example, come in different shapes and sizes in many countries. At the time of writing, 15 plug types

Exporting Blender Assets112

are used worldwide according to https://www.worldstandards.eu/electricity/
plugs-and-sockets/. You may want to make sure your devices are compatible before you leave
home for a long distance.

It seems there is no consensus on what type of plug is best. Similarly, when it comes to exchanging
data between different pieces of software, there are a plethora of options you could choose from. So,
in the next few sections, we will discuss different types of export formats to see why we should choose
glTF over other formats and how gITF is the better choice. Then, we will discuss gITF in detail.

Comparing gITF with other formats

Out of the dozen file formats Blender employs in its arsenal of export options, we’ll focus on glTF
because it works well with Godot Engine. That being said, let’s present a few popularly used formats
such as Collada, FBX, and OBJ first before we get to the good stuff:

•	 Collada: This format, which has DAE as its file extension, was conceived to be a data exchange
format between 3D applications. This sounds promising at first, but although a game engine
could be considered a 3D application, it’s not – at least regarding the way this format was
intended to be used. Collada was designed more for exchanging information between more
classic 3D authoring programs such as Blender, Studio Max, Maya, and others, but not so
much for game engines.

It’s based on XML, so you can open a Collada file with a text editor. This format fell out
of favor over time since the specifications were ambiguous and have been incorrectly
interpreted and implemented. For earlier versions of Godot, especially before glTF was out,
Collada used to be the preferred file type. Now, we have glTF as a much better option.

•	 FBX: This is a proprietary file format offered by Autodesk. Since there are no official format
specifications available to the public, and FBX’s license doesn’t let open source projects use FBX,
even if the specifications are privately acquired, there have been attempts to reverse-engineer
this format to write exporters for it. That’s how Blender implemented the FBX exporter to the
best of their guesses.

Additionally, Godot engineers did their best to implement an FBX importer. Nevertheless,
all this has been a bit of guesswork since the specifications are not open. To prevent hidden
surprises and for a more seamless transition over to Godot, we won’t use this format.

•	 OBJ: This is a simple plain text data format created by Wavefront Technologies. So, yes, this
too can be opened with a text editor. Plain text data formats offer ease of editing, but since they
are not compressed files, it’s often slow to parse and import them. OBJ suffers from a different
problem, though. It can’t store animations and light sources, but it’s a simple and good format
to primarily hold mesh information.

This also means it doesn’t store material and texture information. To achieve that, you need
to create an MTL file alongside the OBJ file you are creating. OBJ is an old and reliable
format and is considered an industry standard, but it’s not cut out for modern game engines.

https://www.worldstandards.eu/electricity/plugs-and-sockets/
https://www.worldstandards.eu/electricity/plugs-and-sockets/

Exploring glTF and other export formats 113

Now that we have seen which formats we won’t use, let’s focus on what makes glTF a better choice for
us. We’ll do this by providing a brief history of glTF, followed by presenting which settings we must
choose in Blender’s export settings for our efforts.

Introducing glTF

Short for Graphics Language Transmission Format, glTF was first released in 2015 by Khronos
Group, a member-driven non-profit consortium founded and empowered by many big corporations.
Not every member corporation is in the digital content creation business, but they have a stake in
the consortium because Khronos maintains other standards such as OpenGL and WebGL, two well-
known graphics APIs that serve many industries.

The discussion about the reliability of a file format might be important at this point, especially if
you are planning to reduce long-term maintenance problems and costs. For example, how many of
us remember the early internet days’ video file formats? Just to name a few, there was RealMedia,
QuickTime, DivX, and many others, for which we’d have to install codecs, plugins, and more just to
watch a few cat videos. Our desire to watch our furry companions never changed, thankfully.

Nevertheless, things coalesce eventually, and it gives way to better and more maintainable file formats.
Hence, guidance from a standards group such as Khronos is a good thing since they ensure that the
file format receives proper attention and stays up to date with the ever-changing needs of the industry.
glTF is one of these healthy cases, and the fact that it’s open source and many corporations would like
to support it is a good sign. It would be a terrible day if you had a bunch of assets sitting in your game
engine one day and you learned that you can no longer export in that file type. What would you do
with the existing assets – throw them out and convert them into a new format?

Now that we’ve had a brief history lesson, let’s get to know the relevant parts for us. We’ll utilize
Blender’s glTF implementation, which supports the following features:

•	 Meshes

•	 Materials (Principled BSDF) and Shadeless (Unlit)

•	 Textures

•	 Cameras

•	 Punctual lights (point, spot, and directional)

•	 Extensions

•	 Custom properties

•	 Animation (keyframe, shape key, and skinning)

We won’t use even half of this feature set. We discussed why we won’t fuss over cameras and lights in
Chapter 4, Adjusting Cameras and Lights, for we’ll set them up when we are building our game in Godot.

Exporting Blender Assets114

A quick note on what Blender’s glTF exporter does with meshes: n-gons will automatically be
triangulated. So, it won’t be left to the GPU’s mercy. The Deciding what to do with n-gons section of this
chapter covered how to split faces into triangles if you need a reminder on how to triangulate manually.

Let’s finish this section off by presenting three different flavors of glTF you can use. To access the list
of variations, you’ve got to choose the glTF 2.0 (.glb/.gltf) option after expanding the Export menu
item in the File menu. In the pop-up screen that appears, you’ll see a Format dropdown on the right-
hand side, which will show the variations that you can see in the following screenshot:

Figure 6.7 – Three possible variations you can use for a glTF export

These format variations will work the same, regardless of what settings you choose. We’ll cover these
in the next section, so first, let’s get to know what each variation does:

•	 glTF Binary: This is the default option that will create a file with the .glb file extension. We’ll
use this variation throughout this book, and you’ll most likely use it in your workflow as well
since it stores everything you need in one file, and it’s compressed. This makes it easy to share
with other people and transfer over the internet.

•	 glTF Embedded: This is similar to the binary option, except it converts all the data into a JSON
text format, similar to some of the other file formats we discussed earlier in this chapter. This
will result in a file with the .gltf file extension and will make the file size larger but open to
easy modifications with text editors if you wish. There is no practical reason why we should
choose this variation over the binary option.

•	 glTF Separate: This last option will create many files: one file with the .gltf file extension,
similar to the one you get if you choose the Embedded option, then a .bin file that holds
the data, and optionally all the textures you’ve used with either .jpg or .png extensions. So,
it likes to keep things separate. Since the data is stored in the .bin file, it keeps the .gltf
portion smaller, unlike the Embedded variation. Nevertheless, there is still no practical reason

Deciding what to export 115

for us to prefer this format. Also, if you had to send your model away, you’d have to remember
to send all the separate parts too.

Regardless of the variation, the importing software will follow the glTF instructions set by the Khronos
standards group to create your models, materials, animation, and others. So, choosing a variety may
only be needed when it’s necessary and for more advanced cases. For our work in this book, the binary
variation will satisfy our needs.

Now that we know which variation is best for us, we must reflect on our own needs so that we can tick
the right options in the exporter’s interface. That’s what we’ll cover in the next section.

Deciding what to export
Not everything in your scene should be exported. For example, as mentioned previously, we will
create the camera and light conditions for the game world inside Godot Engine. So, once that’s done,
there is no need to keep a camera and light object in your Blender scene. However, they might be
useful for you to take test renders to get a better feeling for your scene without constantly exporting
your models to Godot. In this section, we’ll determine the better export candidates and how to use
the export settings to facilitate that.

The export options are categorized, and we’ll go through some of the options where appropriate. We’ll
do this by discussing how these options relate to the objects you have in your scene. Note that the
export window is separate, so you don’t need to close it before you select your objects in the scene.
You can go back and forth between these two windows during this effort.

Include

Although the category’s title is straightforward, the implications of what to include might be very
important. By default, none of the options in this category are selected. So, it’s up to your workflow.
There are two groups you will see when you expand this section:

•	 Limit to: This is where you select what you want to include specifically as a mesh. We’ll discuss
this in more detail in the upcoming paragraphs.

•	 Data: Anything that is not a mesh could be considered data. For example, cameras and lights
are not physical objects with mesh information but complementary tools that help you render
a scene. We’ll leave everything under here unchecked.

By default, all the options for both groups come unchecked. We’ve already said to leave the data
untouched, but out of the four choices you can select under the Limit to section, the most important
one is Selected Objects.

If you leave this unchecked, then Blender will include everything in your scene. This means that at the
end of our exercise in the Setting origin points section, when we had two barrels, Blender would try
to export both of those barrels. That’s not something you’d most likely want. Chances are you’d want

Exporting Blender Assets116

to design a barrel and export only that to Godot. So, we’ve got to have the Selected Objects export
option checked first. Then, we need to go into our scene and select the object(s) we want to export.
There might be some inconvenience in doing this so easily, though.

We have been designing relatively small models with a few different parts. The greatest number of
separate parts we designed was with the three distinct parts of a barrel. In the future, during your
work, if you happen to have a dozen or more parts in your Blender scene, it will quickly get tedious
to select all these parts again and again before you hit the export button. If only we had an option
that would not export the camera and light but what we deem as important so that we can have the
best of both worlds…

That option is Visible Objects. Start by deselecting Selected Objects and keep the Visible Objects
option on. For this option to work for us, we need to hide the camera and light objects so that they
are no longer considered candidate objects to the exporter. You can do that by clicking the eye icon
in the Outliner area for any object you don’t want to export.

In the end, you have a mixed bag of solutions when it comes to what to include in your export. There
are no right or wrong answers here, but you must choose what’s efficient for you.

Transform

We’ll cover this category for the sake of completeness. You’ll rarely touch this category since it has one
and only one option, which is on by default. Let’s explain why, though, and learn what +Y Up means.

In Blender, the three axes or the coordinate system, XYZ, is set up, so the Z axis defines how tall or
elevated an object is. In some other applications, such as Godot Engine, the Y axis is used as the going
up axis. So, the higher the Y position of an object is in Godot Engine, the higher it sits in the game
world. Therefore, this Blender export option converts Blender’s Z axis into Godot’s Y axis. It’s a handy
thing, so you don’t have to arbitrarily rotate your models so that they match the correct direction.

Geometry

We’ll leave most of the options under this category as-is and only discuss what matters to us. These
options are as follows:

•	 Apply Modifiers: We first discovered modifiers in Chapter 1, Creating Low-Poly Models. We used
a few that helped us model a barrel in no time. The fact that you can stack modifiers and change
the order of operation is great. However, they are temporary additions to the core objects. So,
unless you turn this option on in the export settings, the base object will be exported without
any modifiers applied. This will make your objects look quite awkward and primitive in Godot.

•	 Materials: The default status of this option is to export all your materials. This might be a good
thing for a beginner or quick results. When we discuss materials again when we cover Godot,
and should you decide to make your own materials in Godot, you may want to pick the No
Export choice so that they are no longer included in the resulting file.

Summary 117

In more advanced export scenarios, you may want to enable the Loose Edges and Loose Points
options as well, so you can keep the loose geometry as a part of the exported file.

Animation

We won’t change any of the default options in this category. We discussed how to create multiple
animations in the Getting animations ready for Godot section of Chapter 5, Setting Up Animation and
Rigging. The default settings will take care of converting the animations – more specifically, actions.

Creating presets

If you find yourself turning some of the options on and off under certain scenarios and memorizing
the correct combination is becoming hard or monotonous, you can create a preset of export options.
The top part of the export options has a dropdown with two buttons next to it. Using that area, you
can create your own presets – perhaps one for a selected objects case and another one for a visible
objects case.

Choosing the correct export options depends on the different conditions your project requires. So,
you must experiment and find what works best for you. At some point, you’ll import the result into
Godot Engine to visualize the glTF file. However, that might be a lot of work to go in between two
applications if you want to get a quick feeling about your creation. The following are two options you
can use to preview glTF files:

•	 glTF Viewer at https://gltf-viewer.donmccurdy.com/

•	 Microsoft 3D Viewer

This concludes the investigation of the export options that are relevant to our case. Let’s see what other
discoveries you have made so far.

Summary
This chapter was mainly about making your work compatible with Godot Engine. To that end, we
needed to go over a few different topics.

Firstly, we wanted to make sure our models had received the correct final touches. This involved
getting rid of n-gons and converting these polygons into more manageable and ideal triangular faces.
After that, you learned how to set origin points for your models, which may also be helpful during the
modeling phase. Making transformations permanent is essential, so that’s something to remember if
your models, especially during animations, behave awkwardly. Then, we looked at the idea of naming
things meaningfully. This is something you’ll eventually find yourself needing more and more down
the line when you have more experience.

https://gltf-viewer.donmccurdy.com/
https://gltf-viewer.donmccurdy.com/
https://gltf-viewer.donmccurdy.com/

Exporting Blender Assets118

Then, out of the many formats Blender offers for exporting assets, we evaluated a few, such as
Collada, FBX, and OBJ. During that effort, we presented that glTF has become the de facto format
for communicating between Blender and Godot. Lastly, we discovered some options for the glTF
exporter and presented a few likely scenarios you may wish to employ. Finally, you learned how to
store the export options that work best for you.

Now, we’re ready to start importing our Blender assets into Godot. That’s exactly what we’ll do in the
next chapter. In a real-life scenario, chances are you’ll be conducting the operations presented in this
and the next chapter quite often in almost every phase of your game development journey. Let’s give
you a few more useful resources before we move on.

Further reading
Khronos Group is a maintainer of many other standards we use day-to-day. This is thanks to their
impressive list of members, which you can view at https://www.khronos.org/members/list.

We primarily used their glTF standard. The following links provide more technical information about it:

•	 https://docs.fileformat.com/3d/gltf/

•	 https://docs.fileformat.com/3d/glb/

•	 https://www.marxentlabs.com/gltf-files/

•	 https://www.marxentlabs.com/glb-files/

Thanks to its nifty specifications, the glTF exchange format has been gaining popularity not only in
the gaming industry but in other industries as well. Here is NASA’s famous Voyager spacecraft in all
its glory: https://solarsystem.nasa.gov/resources/2340/voyager-3d-model/.

You may have come across websites where Collada is still used for Godot projects. Perhaps you already
have access to a large repository of Collada files. If you would like to give it a try, but with a bit more
finesse, here is a GitHub repository that can help you: https://github.com/godotengine/
collada-exporter.

Last but not least, cleaning up your models and keeping them export-ready will be an ongoing task.
Blender’s user manual has a page on many tools and methods you can use to help you in your efforts:
https://docs.blender.org/manual/en/2.93/modeling/meshes/editing/
mesh/cleanup.html.

https://www.khronos.org/members/list
https://docs.fileformat.com/3d/gltf/
https://docs.fileformat.com/3d/glb/
https://www.marxentlabs.com/gltf-files/
https://www.marxentlabs.com/glb-files/
https://solarsystem.nasa.gov/resources/2340/voyager-3d-model/
https://github.com/godotengine/collada-exporter
https://github.com/godotengine/collada-exporter
https://docs.blender.org/manual/en/2.93/modeling/meshes/editing/mesh/cleanup.html
https://docs.blender.org/manual/en/2.93/modeling/meshes/editing/mesh/cleanup.html

7
Importing Blender Assets

into Godot

You’ve come a long way. Your models are ready. Their scale and rotation values are fixed. What’s left
to do? Import them into Godot, of course! Hopefully, you’ll find the importing process much more
straightforward. This is a transitional chapter that covers mostly Godot topics with a minimal amount
of Blender involvement.

We’ll start this chapter by showing you how to create game objects using your imported models with
the click of a button. This process will convert the glTF files into game objects – more specifically,
scenes in Godot terminology.

If you must fix something with your models or add detail, where can you do this? Since you are now
in Godot, it’s tempting to fix the models in Godot, but this is counterproductive. In this chapter, we’ll
show you how you can update your Blender file and reflect the changes in Godot.

In Chapter 2, Building Materials and Shaders, we learned how to work with materials in Blender.
We’ll revisit this topic in the context of Godot so that we can understand how materials work in both
applications. We’ll present the pros and cons of handling materials in either application so that you
can decide which one works best for you. Whether you are working alone or in a team, there are a few
decisions that can either save a lot of time or be frustrating down the line when you realize you’ve got
to make a fundamental change. A decent material pipeline is one of these topics.

In Chapter 5, Setting Up Animation and Rigging, we stored two actions in our snake model. We’ll
import that model to see how Godot handles the animations stored in a glTF file. This chapter will
only cover how to import animations; how to use imported animations will be covered later in this
book when we build our point-and-click adventure game.

Thus, you’ll be presented with some of the crucial building blocks and practices that will serve you
in later chapters and your game projects.

Importing Blender Assets into Godot120

In this chapter, we will cover the following topics:

•	 Making a scene!

•	 Going between Blender and Godot

•	 Deciding what to do with materials

•	 Importing animations

By the end of this chapter, you’ll be able to take your glTF files and convert them into usable Godot
assets, decide what to do with materials from a project pipeline perspective, and make sure you can
access the animations that come with a model file.

Technical requirements
As mentioned in the Preface section, we assume you already know your way around Godot for basic
things such as creating and composing scenes, adding scripts to nodes, using the Inspector panel to
change the conditions of your game objects, and more.

However, if you are a novice in Godot Engine, then you may want to start with the official learning
material at this address first: https://docs.godotengine.org/en/3.4/getting_
started/introduction/.

Throughout this book, we’ll be using Godot 3.4.4. There may always be something new or missing even
between minor versions. Should you be using a different version when you are reading this book, you
can either switch to the version this book is using or read the detailed changelog for different releases
for the appropriate version listed at https://godotengine.org/news.

This is still a transitional chapter; as is the previous and the next chapter. We’ll create a new Godot
project in Chapter 9, Designing the Level, and work within that Godot project in later chapters to make
a point-and-click adventure game. Until then, we can make do with temporary Godot projects. This
means that in this chapter and the next, we won’t be concerned at all with the structure of our files
and folders. However, the sections in this chapter have been laid out in a way that we assume you are
still working on the same Godot project.

As usual, this book’s GitHub repository at https://github.com/PacktPublishing/Game-
Development-with-Blender-and-Godot contains some files that are relevant to this chapter.

Making a scene!
In a typical 2D game built in Godot, using a sprite node is essential. You would then assign a texture
to your sprite nodes in Godot’s Inspector panel. The 3D version is essentially the same, but it involves
using a MeshInstance node and then assigning a mesh to it. So, what textures are to sprite nodes is
what meshes are to mesh instance nodes. Although creating a Godot scene that just has a sprite node
and instancing this scene in a bigger scene is possible, it’s overkill since you could easily attach the
sprite node itself to the big scene.

https://docs.godotengine.org/en/3.4/getting_started/introduction/
https://docs.godotengine.org/en/3.4/getting_started/introduction/
https://godotengine.org/news
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Making a scene! 121

This is where it makes sense to treat mesh instances differently and store them in their own scenes,
unlike sprites, since 3D models have a lot more going on than getting assigned just one texture.
Additionally, since a 3D model has a lot more moving parts, assigning individual meshes to mesh
instances could be tiresome too, so let’s do better. The goal of this section will be to create a scene out
of a 3D model and to automate how to assign meshes to mesh instances.

Adobe Animate
Godot’s scene concept incorporates a lot of notions you might be familiar with if you have
worked with Adobe Flash in the past, or Adobe Animate these days, which uses movie clips,
similar to what Godot does with its scenes. Creating nested movie clips and binding scripts
is very handy, which is pretty much how a Godot project goes. Despite this similarity, there
comes a moment in Godot when it makes sense to consider a 3D model its own scene, which
is what this section will cover.

We suggest that you start a fresh Godot project for this section. Once you’ve done that, you need to
find the Sconce.glb file in the Start folder for this chapter. You have two options at this point.
First, you can copy and then paste this file, using your operating system’s filesystem, into where your
Godot project folder is. Alternatively, you can drag the sconce file to the FileSystem panel of Godot.
When you make a glTF file as part of your project, you’ll have something similar to the following:

Figure 7.1 – The Sconce model is now part of your Godot project

Importing Blender Assets into Godot122

Did you have a red cross as an icon for your Sconce.glb entry too? This doesn’t happen all the time,
but that icon indicates there is a configuration problem; luckily, the fix is easy. Restarting Godot fixes
the issue most of the time. If that doesn’t work, then we’ll have to press a button to reimport the file
for Godot to configure it for us. The preceding screenshot also shows the Import panel in focus. You
can click the Reimport button at the bottom of that panel to make the file compatible with Godot.

Something else happened while we were discussing the icon issue. There are two material files in
our project:

•	 DarkMetal.material

•	 Fire.material

These materials came within the glTF file that was exported from Blender since we opted to keep the
materials. If you need a refresher on this, you can read the Deciding what to export section in Chapter 6,
Exporting Blender Assets. By default, Godot will place the materials next to the model file. You may
want to place your models and materials in separate folders for organizational reasons. We’ll discuss
something related to this in the Deciding what to do with materials section later in this chapter.

We’re now ready to make a scene using the sconce model. This effort will create all the necessary
bindings to display a Blender model in Godot. To achieve this, you must do the following:

1.	 Double-click the Sconce.glb entry in the FileSystem panel.

2.	 Click the New Inherited button on the pop-up screen.

The pop-up screen will display another button beside the one you’ve just clicked. There is also a
piece of information about what each button does but it might be confusing, so let’s explain it. In
layman’s terms, the Open Anyway button will let you see the contents of a glTF file, but this will be
read-only. Since you may want to make alterations, such as attaching scripts, you’ll often click the
New Inherited button.

If you bring up the Scene panel, you’ll see that your last effort has created two MeshInstance nodes
under one Spatial node. When you click either the Sconce or Flame mesh instance node, you’ll see
their mesh bindings in the Inspector panel. We didn’t have to create all this structure and bindings
manually; creating a scene out of a glTF file did it all for us.

When you have finished examining what’s changed so far, you can save your file as Sconce.tscn
since it is still a temporary construct as far as Godot is concerned. The following screenshot shows
our progress:

Going between Blender and Godot 123

Figure 7.2 – You have created a scene with a click of a button

You can now utilize Sconce.tscn in other scenes by creating more instances of it. For example,
in most 2D platformer games where there are enemies, you would have to create instances of scenes
that stored the enemy character sprites. This is similar. Hence, every time you need a sconce, you can
use the Sconce scene instead of the model file. We’ll create many more instances of this scene when
we work on our game later in this book.

Creating a scene out of a model file was easy, but how easy is it to change it? Either the sconce or the
flame could use a bit of touch. We’ll tackle how to update our models in our scenes next.

Going between Blender and Godot
In later versions of Godot, specifically starting with Godot 4.x, you’ll be able to directly import Blender
files into Godot and interact with them. Saving things in Blender will automatically update the situation
in Godot. We are not there yet. At the time of writing, we must resolve to an already tried and tested
method: re-exporting our assets. Let’s see how we can accomplish this easily.

While you are developing your game, you’ll likely want to make changes to your models. Perhaps
you’ve been working with a prototype that your 3D artist friend or contractor provided a while ago.
Now, they are ready to give you a more refined piece. So, let’s simulate a similar scenario by making
modifications to the sconce model we’ve been using. If you want to skip the Blender parts, you can
find the finished changes in the Sconce.blend file in the Finish folder. If you want to exercise

Importing Blender Assets into Godot124

some Blender muscles, then we suggest that you make two changes in the Sconce.blend file in
the Start folder. These changes are as follows:

•	 Move the tip of the flame so that it doesn’t look too pointy. (Hint: go into Edit Mode.)

•	 Replace the flame material with something that is bright yellow. You can pick a name such as
HotFire for it. (Hint: Remove the old material and add a new one.)

We’re applying two important changes to our model. First, we are changing the geometry of our model,
however minor it might be. Second, we are introducing a new material instead of changing the color of an
existing material. All there is left to do is re-export our model and overwrite the existing Sconce.glb
file in our Godot project. Chances are, if you were following along, the Sconce scene in Godot is still
open, and despite overwriting Sconce.glb in the project, it looks like nothing has changed.

If you restart Godot, switch to a different scene tab, or do any other thing that would refresh the
view, then you’ll see your updates. Otherwise, you may still have the same old look. There is a general
refreshing problem, it’d seem. Hopefully, little things like this will be fixed in future versions of Godot.

The following screenshot shows the updates you will see:

Figure 7.3 – The flame is hotter and straighter with our newest changes

While we successfully updated the Sconce scene, we also introduced a new material to the project. The
import process was smart enough to know there was a new material coming in, but it was judicious
enough to keep the old materials, just in case they might be needed and used sometime later in
your project.

Deciding what to do with materials 125

This could lead to having lots of unused files over time. That is not the worst of your problems, though.
There is a much more insidious thing waiting for you when you import more and more models and
eventually lose track of what’s happening due to the sheer number of files as your project grows.

In the next section, we’ll present a scenario where importing glTF files straightforwardly as we have
done so far may cause some problems.

Deciding what to do with materials
An important decision awaits you. When you were exporting your Blender assets in Chapter 6, Exporting
Blender Assets, we briefly discussed what the export options in the exporter’s UI meant. However, we
never really talked about the implications of keeping the materials or not. In this section, we’ll present
the pros and cons of handling materials in Blender versus Godot.

Let’s assume you are now ready to import another model. For example, the Vessel.glb file in the
Start folder is something you want to add to your game. If you take a look inside the associated
Vessel.blend file, you’ll notice that we are using a material labeled as DarkMetal. Ironically,
perhaps accidentally, someone has decided to pick a light color, but the name, regardless of what the
intentions are, is the same material name we used in the sconce model file.

So, what will happen when we import this file into Godot? To find out, follow these steps:

1.	 Add Vessel.glb to your Godot project.

2.	 Turn this vessel model into a scene. For familiarity’s sake, save it as Vessel.tscn.

The following screenshot shows the new scene, as well as the status of the FileSystem panel:

Figure 7.4 – Everything is kind of looking OK, but shouldn’t this vessel have a lighter color?

Importing Blender Assets into Godot126

Despite the mislabeling in Blender, we knew what we wanted for the vessel’s color. It was supposed
to be a lighter color but that’s not what we are seeing in Godot. While importing the vessel model,
since there was already a material with the same name in the project, Godot chose not to duplicate the
resources. This is efficient, perhaps, but not accurate. This kind of thing could easily happen, especially
if you are utilizing someone else’s files. Luckily, only the new stuff doesn’t look correct. In other words,
the incoming resources are not overwriting and messing up the existing resources.

So, what do we do to make the vessel show the color we want? We can offer a few suggestions that
are more organizational solutions. Thus, this is not a technical but a workflow or a pipeline type of
solution as it is often labeled in the industry. Therefore, the solution lies in how you want to treat
your files in your project, and whether you are working solo or in a group. These suggestions are to
do the following:

•	 Label Blender materials by purpose

•	 Label Blender materials by color

•	 Import your models into separate folders

•	 Use a staging area in Godot

None of these suggestions is a magic pill. You have to try and decide if they’re beneficial for you.
Also, sometimes, projects of different sizes make some of these solutions easy or difficult to apply.
The decision is yours after you learn what each one entails.

Labeling Blender materials by purpose

Naming materials in Blender by their shade, such as DarkMetal, can only go so far. How dark are
we talking about? Sooner or later, we will find ourselves playing a game of adjectives: dark, darker,
darkest, and likewise. It will get worse when we want to pick a lighter version of the dark tone we
have already picked.

Typically, a sconce’s base is wrought iron. Since it’s a metal, it makes sense to use the word metal in its
name, but it could easily get confusing. Instead, you could use the object’s name for its material title.
So, you’ll have Sconce.material once you import it into Godot.

Labeling Blender materials by color

If you want to go with color-like labels, then you can make this obvious and in a unique way without
leaving any room for Godot to interpret it in its own way. The Hex value in Blender for the DarkMetal
material is 393646. You could use that as a label. Hence, once imported, you’ll have this material as
393646.material.

Deciding what to do with materials 127

Keep in mind that you’ll often get busy and distracted while you are authoring your models and find
yourself fine-tuning a lot of things in your models, whether it’s geometry, materials, animations,
and much more. So, if you have already chosen a hex color as a name, and later alter the color of the
material, then you will have to remember to update the name.

Importing your models into separate folders

Some people organize their Godot projects so that they have separate folders for bigger concepts. This
includes materials, models, scenes, and scripts. If you want to make sure your materials are unique
to the model you are importing, a safer and easier way to do this is to create custom folders inside
a specific folder. For example, if you have a Models folder at the root of your project, instead of
dumping all the glTF files into this folder, you can create subfolders named after the model you are
importing. In our case, this is the structure you’d see:

•	 Models > Sconce > Sconce.glb

•	 Models > Vessel > Vessel.glb

Then, all the relevant materials for each glTF file will be contained in their own folder. This might
seem counter-productive at first since the same material file will be duplicated in different folders,
especially if the material’s names are color-coded. However, you’ll at least know what you are importing
is what you want in the first place.

This method might be advantageous in some scenarios. Maybe you are designing more than one
sconce style for your game. In this new style, despite the wrought iron part having a different shape,
it’ll most likely use the same material. Then, you can easily rename the folder as Sconces to store
multiple sconce files. This way, you’re intentionally agreeing with the fact that Godot will not create
duplicate materials but use the first imported model’s material.

Last but not least, let’s cover a caveat about this technique. If you are importing your files by dropping
them over the FileSystem panel, you’ve got to be careful since that panel is context-sensitive. This
means that you need to have the appropriate folder selected in the entry list. Otherwise, whichever
entry is selected will be the recipient. To be sure of where you are sending your files, you can do all this
by using your operating system’s filesystem. When you switch to Godot, your files will be processed
and, depending on the speed of your system, you might see a progress bar showing the progress of
the import.

Using a staging area in Godot

Last in our list of possible solutions to making sure models and materials are imported properly is
to use a staging area. This means, similar to using unique folders for models, you can designate a
folder to monitor what’s going on with a model. Perhaps this is a folder labeled as Staging inside
the Models folder.

Importing Blender Assets into Godot128

Using the search functionality in the FileSystem panel, you can even check if there are duplicate materials
in other folders. This is a safe way to compare materials because you can observe their properties
in the Inspector panel. If there are no obvious differences, and you deem it safe, you can just move
the relevant glTF file to its final place while ignoring the duplicate material file in this staging area.

This requires a bit of work, but it might be a necessary practice in larger teams so that you can decide
and even notify the artist if there are obvious labeling mistakes. For example, if there is a typo for the
same material that multiple similar models should use, you won’t end up with two separate materials.

Wrapping up

Out of all these options, and perhaps a few more you may find online, you must decide which one
works best for you. It’s a common thing that you’ll start one way and switch to an alternative method
as your project’s needs change. Although your choice might have technical ramifications, it’s rather a
business decision; so, weigh up the pros and cons while making it.

There is one more thing you can do regarding your materials and models, but since this chapter is
about importing, we’re intentionally leaving it for later. It’s when you decide to create your materials in
Godot and bind them to the meshes of a model manually because, sometimes, you find models with
just their meshes but with no material information. We’ll show you how to create materials in Godot
in Chapter 9, Designing the Level, in the Constructing the missing materials section.

Now that we seem to be done with material things, in the next section, we’ll learn how to import the
animations we created for our snake in Chapter 5, Setting Up Animation and Rigging.

Importing animations
The last thing we’ll cover about importing Blender assets is animation. Thus far, we have taken care
of importing the mesh and materials of a model. We even discussed workflow problems concerning
the default import workflow for materials. Hopefully, there won’t be a hidden surprise in importing
animations, but how do we do it? You’ll find out in this section.

You can start by moving the Snake.glb file in the Start folder of this chapter to your project.
Then, as shown in the Making a scene! section, you can create and save a scene out of this model. The
snake model will bring a lot of its materials, and your FileSystem panel will look a bit crowded, but
this is what we have so far:

Importing animations 129

Figure 7.5 – The snake has followed you to Godot Engine

This is a good time to introduce some of the 3D nodes Godot uses. We’ll utilize the snake scene for
this effort because it has a good sample of different nodes you’ll most likely use in your projects.

The root node is of the spatial type. Godot’s chosen color for all 3D nodes is red. If you’ve been using
Godot’s Node2D nodes, which have a blue circle icon, Spatial nodes are the equivalent of that, only in
3D, and they are red. Whereas a Node2D node will have coordinates only in the XY plane, a Spatial
node will have them in the XYZ plane. You usually employ this kind of node as a root container for
other nodes. For example, the Armature and AnimationPlayer nodes are the direct children of the
root Spatial node, which is labeled as Snake.

Node types versus labels
In the snake scene, the MeshInstance node has been renamed Snake, which is useful so that
you can differentiate if you have a lot of mesh instances. There is no built-in Snake node type
in Godot, but it’s okay to just say Snake node, even though it’s of the MeshInstance type.
The Inspector panel will figure out the type and only list the relevant properties. Therefore,
throughout the rest of this book, we’ll refer to the scene’s nodes either with their custom labeled
names or node types.

We’ll soon analyze the role of AnimationPlayer, but let’s finish looking at the MeshInstance and
Skeleton child nodes first.

Importing Blender Assets into Godot130

MeshInstance and Skeleton

We made an analogy between the MeshInstance and Sprite nodes in the Making a scene! section,
stating that they are responsible for holding visual elements in 3D and 2D spaces, respectively. So,
that leaves us with the Skeleton node.

In Chapter 5, Setting Up Animation and Rigging, we used bones and attached them so that we could
animate the snake. When the Snake.glb file was imported, the bones were imported as a single
unit. In other words, Godot grouped all your bones into a node of the Skeleton type. However, you
can still access each bone if you wish:

1.	 Select the Skeleton node.

2.	 Expand the Bones section in the Inspector panel.

3.	 Expand some of the entries, especially 9 and 10.

Do you recognize the names? These are the names you picked for the bones in Blender. Look at how
much preparation we require to construct a skeleton. The rigging process to create all this, however
complicated it may have looked initially, is still far too easy to do in Blender compared to Godot.

Now, let’s turn our attention to the last node type in the scene to further appreciate why doing the
animation in Blender was also a superior and preferred move. Enter AnimationPlayer.

AnimationPlayer

The last node in the Snake.tscn scene is AnimationPlayer. The color of this node is neither blue nor
red. This means you can use it in both 2D and 3D contexts. You may already be familiar with this
node if you have been building 2D games. If that’s the case, then you know that you need to place
keyframes in the player’s timeline to mark the changing points, just like we did in Blender. Regardless
of whether you have experience with AnimationPlayer or if this is the first time you are tackling it,
you’ll notice that creating so many keyframes, as shown in the following screenshot, is a lot of work:

Figure 7.6: You worked smart, not hard, to create all those keyframes in AnimationPlayer

Importing animations 131

Each orange diamond in the preceding screenshot is a keyframe and marks an important turning point
in the animation’s life cycle. This is the timeline for the Attack action we created in Blender. You can
see it in a dropdown in the top section. This is the main reason why we opted for Blender to create
all this for us – we were only concerned with the major events, not with what exactly happened in
between major events. Godot and Blender worked together to fill in the details. Also, updating your
animation in Blender is still a much better idea than fiddling with those diamonds.

As you can see, animations and actions are automatically imported, recognized, and organized in
AnimationPlayer for us. Despite how easy this was, there is currently a bug in Godot regarding the
animation imports. So, we need to do something about it that may not be necessary in the future.
We’ll discuss what the problem is and present a solution here. However, to follow the discussion
and updates on the problem, you can go to https://github.com/godotengine/godot/
issues/34394.

On the right-hand side of the Animation panel, there is an icon that looks like a recycling symbol.
At the time of writing, that loop button, which is supposed to play an action indefinitely, only works
while you are editing a scene. So, even though you can toggle the loop button on, the action will play
only once when you launch the game. Hopefully, soon, newer Godot versions will fix this looping
issue. Still, it makes sense to present a workaround for the time being.

Separating actions

Luckily, there is a solution to the problem we’ve just presented. We’ll instruct Godot to separate the
actions into separate files, similar to the way materials for a model are kept in the filesystem.

The default behavior for keeping animations for a model is to store them inside its file. In this case,
the Snake.glb entity is holding all its animations. To extract these animations, follow these steps:

1.	 Select Snake.glb in the FileSystem panel.

2.	 Switch on the Import panel and scroll down to the Animation section.

3.	 Choose Files (.anim) in the Storage drop-down options.

4.	 Click the Reimport button.

https://github.com/godotengine/godot/issues/34394
https://github.com/godotengine/godot/issues/34394

Importing Blender Assets into Godot132

The following screenshot shows the steps we have taken so far:

Figure 7.7 – The import settings for the Snake.glb file

This will extract the actions into the filesystem. In the end, you’ll have two more files in your project:

•	 Attack.anim

•	 Idle.anim

These are the actions you defined in Blender a while ago. Also, similarly named actions are listed in
Godot’s AnimationPlayer dropdown. For example, Figure 7.6 shows the Attack action selected. There
is one more step left for us to fix the looping issue – it’s to reintroduce these actions we’ve just separated
back to AnimationPlayer, even though it’s already listing them. To achieve this, follow these steps:

1.	 Switch the Scene panel on.

2.	 Select the AnimationPlayer node in the scene structure.

3.	 Click the Animation button in the Animation panel (the button to the left of the
Action dropdown).

4.	 Choose Load and select Attack.anim from the Open a File pop-up menu.

5.	 Repeat Step 4 to load Idle.anim.

This will replace the existing actions with the actions coming from your filesystem. The following
screenshot shows where you can find all these names since there have been a lot of similar words.
Here, the Animation button has already been pressed and is displaying the available commands:

Summary 133

Figure 7.8 – The Animation panel’s menu for loading, saving, and doing many other things

In the future, hopefully, you won’t have to separate and reimport your actions with newer versions of
Godot. For the time being, this will work, but we won’t see the effects of this until we get to the later
chapters of this book, where we will trigger these actions.

Summary
Since we took care of exporting Blender assets in the previous chapter, it was time to learn how to
import these into Godot. This is what we covered in this chapter.

First, we learned that once a glTF file is part of a Godot project, Godot automatically takes care of things
such as separating materials. That being said, since we’d most likely keep creating more instances of 3D
assets, we looked into creating dedicated scenes out of glTF files. Moreover, we learned how to make
modifications to our models in Blender and get the scenes using these models updated back in Godot.

Then, we covered materials, which is an enmeshed topic within the model workflow, and discussed
different ways of labeling the materials, and even keeping the models in separate folders to prevent
any material file from overlapping. You decided what works best for you since this kind of thing might
be team-size or project specific.

Finally, we tackled how easily animations can be imported. Creating a scene out of a model took care
of all the scaffolding. Even though we’ll learn how to trigger animations in later chapters, especially
for looped animations, we presented a problem that may occur. A workaround was presented, and
we hope you won’t need this in the future.

This was your first chapter on Godot and you’re now officially using Godot Engine. Importing 3D
assets into Godot is an essential operation, and we hope you have a seamless back-and-forth between
Blender and Godot for your games.

Importing Blender Assets into Godot134

In the next chapter, we’ll still work on a standalone topic, Adding Sound Assets, to keep things simple.
By the end of the next chapter, we’ll have covered the basics of setting up a project structure, which
means we can focus on building the game after that.

Further reading
You’ve already interacted with the Import panel of Godot. That area has a lot of settings that would
require us to write a chapter to investigate all possible combinations. The default settings work most
of the time but there is a Preset button in the top-right corner that lists the most used combinations.

Since the needs of a project, and thus the import requirements of a model, won’t be clear ahead of time,
we leave the task of discovering what those options entail to you. That being said, here is the official
resource that can guide you if you want to get more information: https://docs.godotengine.
org/en/3.4/tutorials/assets_pipeline/importing_scenes.html.

Similarly, you may want to import images instead of 3D assets. This is necessary when you are building
UI elements for a game. We’re mostly covering the 3D workflow throughout this book, so we won’t
emphasize the import settings for 2D assets. Nevertheless, if you want to be informed before we
tackle the UI topics, here is the official URL: https://docs.godotengine.org/en/3.4/
tutorials/assets_pipeline/importing_images.html.

https://docs.godotengine.org/en/3.4/tutorials/assets_pipeline/importing_scenes.html
https://docs.godotengine.org/en/3.4/tutorials/assets_pipeline/importing_scenes.html
https://docs.godotengine.org/en/3.4/tutorials/assets_pipeline/importing_images.html
https://docs.godotengine.org/en/3.4/tutorials/assets_pipeline/importing_images.html

8
Adding Sound Assets

Sound is often the most neglected part of game projects. While creating visual assets may seem hard
to do, a lot of us still tackle it because we get quick and reliable feedback, however, most people don’t
even know where to start when it comes to producing sound assets. Luckily, there are royalty-free
assets out there that you can use.

This chapter will not cover how to make sound assets but how to import them into your game. We
will focus on some of the technical aspects of sound management in Godot. This involves learning
about the different sound formats the engine supports. Picking the appropriate sound format is no
different than ironing out a topology for a 3D model for animation. Choose wisely and, even better,
know the benefits and limitations of each format.

Next, you will learn when and how some sound assets should be looped. We’ll investigate the import
options for different sound types and mention format-specific differences. We’ll also discuss scenarios
where it makes sense to have your sound assets looped.

Lastly, we’ll get to know different types of Godot nodes that are responsible for playing sound assets
in your scenes. This way, you can pick the appropriate audio player node for your project. To finish
off, we’ll play some sample sound assets to show the differences between these different nodes.

Needless to say, to make the best of this chapter, you may want to be in a quiet place where you can
practice some of the topics, especially in the later sections of this chapter.

In this chapter, we will cover the following topics:

•	 Learning about different sound formats

•	 Deciding on looping or not

•	 Playing audio in Godot

By the end of this chapter, you’ll know how to import sound assets, choose which file type is correct,
configure their settings, and play them in your project automatically or when it’s needed.

Adding Sound Assets136

Technical requirements
Unlike the other chapters, instead of a Finish folder with individual assets, we’ll give you the finished
Godot project with all the scenes and scripts set up. Nevertheless, we would like you to practice but
focus solely on the topics presented in this chapter. Thus, we suggest you start with a clean slate, import
the sound files from the Start folder, and follow along. Following tradition, the necessary resources
can be found in this book’s GitHub repository: https://github.com/PacktPublishing/
Game-Development-with-Blender-and-Godot.

Learning about different sound formats
Sound files come in different formats, just like graphics files can come in different formats including
JPG, GIF, PNG, and others. The industry, and sometimes the consumers, define the fate of these
formats. Let’s place the consumers in the right context here. Occasionally, the specifications laid
out by the creator of a file format are not welcome by the people who are using this very format to
produce the work. Then, the work is created but not accepted by the platforms that would disperse
such content due to technical reasons. It’s almost like a tug of war where the inconvenience or the cost
of maintaining a file type outweighs the benefits and the ease of use. At these times, we tend to hear
about newer formats, hence there being a multitude of file formats out there.

Most of the time, this kind of technical layer is not visible to an end user, especially if they are only
perusing the content, such as listening to music on Spotify or YouTube. However, since we are building
a game, even though we are not too concerned about the production of such assets, we should still be
knowledgeable on this topic since we’d like to pick the most appropriate file format for a certain scenario.

Distinguishing what sound means
This is a note on what we mean by sound. We’ll be using the word sound or audio, in this chapter
and the rest of this book, to cover all possible scenarios, such as the feedback you get when you
interact with UI elements, when a player character is notified by an in-game event, or ambient music.

The version of Godot, 3.4.4, that this book is covering currently supports three different audio file
formats. Each has different advantages and limitations. Although converting these files into each other
is possible, after we present their formal definitions, perhaps you’ll decide not to.

Introducing WAV

Pronounced wave, WAV files have been around since the early 90s. It’s the short form of Wavefront
Audio File Format, a file specification created by IBM and Microsoft. This is a popular format among
music and audio professionals, despite being uncompressed since it retains the quality of a sound
recording. Thanks to the improvements in file storage capacity and internet speed, the high file size
doesn’t seem to be a big issue anymore.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Learning about different sound formats 137

On the limitation side, as far as technical aspects go, a WAV file can’t exceed 4 GB. However, this
should not be a concern because that number is equivalent to almost 7 hours of audio. It is extremely
unlikely there will be one audio file in any video game of that size.

So, why should you choose this format? Since it’s an uncompressed file type, the CPU that is also
responsible for processing a sound file will have an easier time playing it. A likely scenario for using
this file type is for sound effects. Usually, these effects are short-lived, such as the creaking of a door,
the swing of a sword, and so on. The file size won’t matter that much because the duration will be short.

Conversely, this is not the best format for background music. Sure, there won’t be any need to decompress
the file to be able to play it, but the file size will be significantly larger.

In summary, if you want a quick reaction and would rather have a sound file play as quickly as
possible, such as effects, then this is the right format for you. After all, you wouldn’t want the CPU
to be dealing with the decompression of an effect file while your game characters are busy with the
next chain of events.

If you are willing to sacrifice a few hundred milliseconds to wait for a decompression, such as when
not having the background music play instantly is a big deal, then you can opt for compressed file
types. These come in two different flavors.

Introducing OGG

We should start by clarifying this format since the name could be confusing if you come across some
resources on the internet. Technically, OGG is a container file format that can hold file types such as
audio, video, text, and metadata. Its developer and maintainer, Xiph, is also responsible for another
audio file format known as Free Lossless Audio Codec (FLAC). So, according to OGG specifications,
a FLAC could be part of an OGG file. Historically speaking, most OGG files out there have contained
a different audio file format known as Vorbis. So, you may find some websites with Vorbis content
that are essentially complying with the OGG format’s specifications.

Here is an example to simplify all these names and how they relate to each other. Consider OGG as a
ZIP file that knows what to do with its content. An OGG file carrying a video and a subtitle file will
trigger the necessary settings in a video player so that the player knows where to find the subtitles
since they will be embedded in one file. Similarly, another OGG file with an audio and metadata file
will command an audio player to display the album and track, record, and play the audio.

Since the format is not just one thing, but rather a set of files, it is often confusing to associate a specific
need with one file extension. For example, the .ogg extension was used before 2007 as a multimedia
holder as that was its original intention. Since then, Xiph suggests we use the .ogg extension for
Vorbis audio files. Additionally, the company has created a new set of file extensions to simplify things:

•	 .oga for audio-only files
•	 .ogv for video

•	 .ogx for multiplexed cases

Adding Sound Assets138

Despite the naming conundrum, what you need to know is that the OGG audio format is compressed,
so it’s a lossy file format. Lossy in our context means that we could attain almost the same sound
quality by requiring less hard disk space. So, this is a good thing because this file format is a perfect
fit for playing background music. Keep in mind that since the CPU has to decompress this file type,
this is not the preferred format for playing quick sound effects.

Speaking of a lossy file format, our next candidate is another lossy file format that gained some
notoriety in the early 2000s.

Introducing MP3

When internet speed and disk storage were at a premium in the late 90s, MP3 filled an important
gap in transferring audio content just when a big audience needed it at the turn of the millennium.
Consumers flocked to websites to download copies of the tracks from their favorite bands. Sadly, so
many of these websites did not bother to have a legal license to distribute such content, so this led to
copyright infringements and, in the case of Napster, a lawsuit.

From a technical standpoint, MP3 files are somewhere in between WAV and OGG, compression-wise.
So, you’ll get smaller file sizes in OGG for the same quality of sound. That being said, decompressing
an MP3 file is faster than decompressing an OGG. Hence, this makes the MP3 format still useful,
especially where CPUs are challenged to the maximum, such as in mobile devices.

Despite disk space getting cheaper and cheaper, from a business point of view, it still makes sense to
prioritize WAV over MP3. For example, some websites that offer royalty-free sound files provide the
MP3 version but put the WAV version of a sound behind a paywall. Since an MP3 file has already
lost some of the original data due to its compression algorithm, editing with this file over and over
will yield more lossy results. So, having access to the original WAV file is always better if you want to
make modifications to it. However, if you don’t need to, then you might be fine with an MP3 version.

Wrapping up

In summary, WAV files are better for short sound effects whereas longer sound effects, especially
theme music, would be handled better with MP3 files. At the time of writing, most sound libraries
still don’t offer OGG commonly, despite being a good candidate. Nevertheless, if you have access to a
lot of WAV files and you want to be efficient in file size, then you can convert them into OGG using
online converters. Two examples are as follows:

•	 https://audio.online-convert.com/convert-to-ogg

•	 https://online-audio-converter.com/

https://audio.online-convert.com/convert-to-ogg
https://online-audio-converter.com/

Deciding on looping or not 139

In the case of music files, which are normally a few minutes long, if your original is in WAV format,
then uploading and processing these files online may take a long time since the file sizes will easily
be over 50 MB. Also, some of these online converters have file size limitations. To get around these
limitations, here is a link to a website that compares some offline converters that you can employ
in your efforts: https://www.lifewire.com/free-audio-converter-software-
programs-2622863.

Regardless of what file type you choose and whether it’s for a sound effect or music, there comes a
point in your game development journey when you will have to decide if your sound asset should loop
or not. In the next section, we’ll discuss the reasons why having the loop feature on or off is useful.

Deciding on looping or not
A loop, in literal terms, is a continuous motion or structure in which if you pick a random spot, you
could come back to it by traveling all the way through. In aural terms, this is similar, but we don’t start
anywhere; we usually start playing a sound file, but the player restarts the track once it reaches the end.

This definition is classic, and not that insightful, so let’s do a better job by discussing it in various
contexts inside Godot or any game projects. So, you can make informed decisions in your projects
since it’s situation-specific. We’ll do this by presenting different use cases:

•	 Background music: This is the most typical case where a music piece plays in the background
while the game is running. The composer creates this kind of piece with the intention that once
played back to back, there will be no abrupt end. The sound at the end of the file will seamlessly
match the beginning. Sure, if you pay attention to the ups and downs in the rhythm, you will
know where you are in the file, but so long as the loop setting is on, everything will sound
smooth and blend in so that you can focus on your game experience.

•	 Machine gun: Imagine that either the player or an enemy character is interacting with a machine
gun in your game. Although short bursts are possible, due to the nature of machine guns, the
gun might be fired continuously. So, instead of detecting if the sound file has reached the end
and instructing the player to restart the file, you may want to play the file once if the said file’s
loop feature is on. This way, the machine gun effect will play until a stop command is given.

•	 Doors: This one is a bit of an edge case. Let’s assume we have visuals and other sound effects
in our game that indicate that we’re in an outdoor scene on a windy day. Perhaps the door is
in poor condition with rusted hinges, and one of the hinges is even leaning out a bit. The artist
may have decided to have this door animated to match the wind’s effect on the door so that it
oscillates between a closed and an open state. Here, it would make sense to have a looped sound
file that contains most likely squeaks and creaks that are synchronized with the door’s animation.

However, if a door will be responding to a player character’s action such as it being opened or
closed, then it doesn’t make sense to have the sound file in a loop. This is going to be a one-off event.

https://www.lifewire.com/free-audio-converter-software-programs-2622863
https://www.lifewire.com/free-audio-converter-software-programs-2622863

Adding Sound Assets140

•	 User interface: The sound you hear when you interact with a user interface falls under this
category. These are usually not looped since they are event-based, similar to the one-off-door
action from the previous use case. However, let’s present a case that may seem like looping is
a good idea. Nevertheless, we’ll rule it out for a good reason.

Imagine that there is a UI component that’s helping the player set an amount. The interface has
two buttons that will increment and decrement the amount the player is seeing. Placing a UI
sound effect on either button is fine, and the sound will play only once, so long as the player
keeps clicking. What if we would like to give the player a chance to press and hold the button
down? After all, clicking a button ad nauseam to get to really high or low numbers may get
tedious quickly. So, how should we treat the looping condition in this case?

Human perception is sensitive during events like this. Players are usually busy during gameplay,
so they won’t perceive the delay while the CPU is busily decompressing a music file. However,
we are usually very perceptive in detecting the discrepancies at the end of a holding event for a
UI button. So, instead of treating repetitive UI events such as a machine gun, even though they
might feel similar, designers opt to trigger the sound effect individually instead of looping it.

In this section, we presented different use cases where the use of looping, or lack thereof, is common.
However, what you haven’t seen is how to turn the loop functionality on and off. We’ll show this by
revisiting our old friend, the Import panel.

Turning the looping on and off

So far, we have discussed what looping is and under which scenarios it may make sense to have it on
or off, but we haven’t seen how we can flip its status. In this section, we’ll put sound files of each type
in our project and study their settings in the Import panel.

We are going to use the Loop_Someday_03.wav file from the Freesound website, which was
created by a user called LittleRobotSoundFactory. The sound was originally in WAV format, but we
have converted it into OGG and MP3 versions as well. You can find all the versions in the Start
folder and compare their file sizes.

Once you’ve added the files to your project, let’s learn how Godot recognizes these files. So, switch
on the Import panel, and select either the OGG or MP3 version. Then, select the WAV version. The
interface differences are shown in the following screenshot:

Deciding on looping or not 141

Figure 8.1 – The MP3 and OGG versions have fewer import settings than the WAV version

As you can see, by default, the MP3 and OGG versions come with the loop setting on. Also, these
versions don’t seem to have that many settings. On the other hand, the WAV version’s loop is off by
default. Why is that?

If you remember what we introduced for different sound formats earlier in the Learning about
different sound formats section, Godot took the liberty of looping the compressed versions since these
will most likely be used for background music. On the contrary, if our example file was for a sound
effect, we’d most likely use a WAV file with no loop, since it’d be a quick one-off thing with minimal
CPU requirements.

Other WAV settings
Since we are currently working with the Import interface, let’s also point out that you can
reduce the file size of your WAV files by turning on some of the options in the Force section.
Figure 8.1 shows this and some other settings, such as trimming and normalizing your files.
The former of these will trim the silent part at the beginning and the end of files, which is
sometimes automatically added when exporting WAV files. This is especially important if you
want your sound effects to start right away without a delay.

Adding Sound Assets142

So, turning the loop feature for any given sound file on and off is as easy as a click and you know how
to do it. Perhaps it’s more important to decide whether a file should be looped or not. This is something
you’ll have to answer along the way.

Regardless, you still need a Godot node to play your sounds at some point. In the next section, we’ll
get to know the different audio players Godot uses, and attach our sound files to the appropriate player.

Playing audio in Godot
Since Godot uses nodes for almost everything, it is no different for playing sounds. To play an audio
file, there are nodes you can attach to your scene, and you can configure them according to whether
it’s for a 2D or 3D game. We’ll focus on different audio players Godot uses in this section.

No matter what audio file type you choose, you will be able to play it with the nodes we’ll present in
this section. The experience you’ll feel will be different, of course, based on the node type, but this is
something you have to decide, depending on the type of game you are making. So, let’s look at the audio
streamer nodes Godot uses so that you can pick the appropriate one. Your three choices are as follows:

•	 AudioStreamPlayer: This node’s official definition is somewhat dry; it plays audio non-positionally.
What this means is that you are not concerned with which direction the audio is coming from.
For an FPS game, it’s essential to know in which direction the enemy is firing at you. This involves
positional data. You don’t have any kind of positional information in this audio node. However,
this is the right candidate for playing background music. Find more about it at https://
docs.godotengine.org/en/3.4/classes/class_audiostreamplayer.html.

•	 AudioStreamPlayer2D: You guessed it – this node includes position information. So, the
farther away the camera is from this node, the quieter the sound will be. This node is useful
for 2D platformer games, for example. So, as soon as a game object enters the view, the stream
will be picked up by the camera. Also, objects that are on the right-hand side of the camera will
prioritize the right speakers and vice versa. More details are available at https://docs.
godotengine.org/en/3.4/classes/class_audiostreamplayer2d.html.

•	 AudioStreamPlayer3D: Last but not least is the 3D version of an audio streamer. This conveys
3D positional information to a listener. Therefore, this is the kind of audio streamer node
you’ll be using in 3D setups. Naturally, this type of streamer employs more advanced features,
such as attenuation, which controls how the sound will dampen over a distance, and Doppler
effects. Thus, it might be a good idea to examine its properties by visiting https://docs.
godotengine.org/en/3.4/classes/class_audiostreamplayer3d.html.

We could go over every property for each type of stream player, but we leave that task to you since
picking the right streamer and configuring its settings is a form of art. We’ll use the proper streamer
when we build our game later in this book and focus on the important settings in that context. In the
meantime, you can read what each one is capable of by going to the aforementioned URLs from the
official documentation.

https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer.html
https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer.html
https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer2d.html
https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer2d.html
https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer3d.html
https://docs.godotengine.org/en/3.4/classes/class_audiostreamplayer3d.html

Playing audio in Godot 143

That being said, we won’t leave this chapter just yet. Let’s play a few sounds to simulate some of the
examples we’ve enumerated so far.

Playing background music

Let’s practice some of the things we’ve covered in this chapter. We’ll start by playing a sound that’s
a good candidate for background music. We’ll use the MP3 version of the loop-someday-03
file we imported in the Deciding on looping or not section. To play this sound as background music,
follow these steps:

1.	 Create a new scene and save it as Background-Music.tscn.

2.	 Add an AudioStreamPlayer node to your scene and turn on its Autoplay property in the
Inspector panel.

3.	 Drag and drop loop-someday-03.mp3 from the FileSystem panel into the Stream property
in the Inspector panel.

4.	 Press F6.

This will launch your current scene and automatically play the MP3 file. Since the file’s loop setting is
set to true, the 9-second-long music will play endlessly. You can now add this scene to other scenes
where you want to have background music.

Playing a sound effect on demand

For this effort, we’ll return to the machine gun example from the Deciding on looping or not section.
The sound for the machine gun is also set to loop, but we wouldn’t want this to autoplay when a
scene is launched. It’s most likely that your player character will enter or approach an area where
enemy forces are pummeling you with machine gun fire. Let’s write some code to simulate this sort
of triggering behavior:

1.	 Create a new scene and save it as Machine-Gun.tscn.

2.	 Add an AudioStreamPlayer node to your scene and attach a script to it with the following
lines of code in it:

extends AudioStreamPlayer

func _unhandled_key_input(event: InputEventKey) -> void:

    if event.is_pressed() and event.scancode ==

      KEY_SPACE:

        play()

    else:

        stop()

Adding Sound Assets144

3.	 Drag and drop machine-gun.ogg from the FileSystem panel into the Stream property
in the Inspector panel.

4.	 Press F6.

Since we want the stream to play on demand, we are wiring it to a condition to be true – that is,
pressing the spacebar. Go ahead and press it once or twice; even hold it down for a brief period.
You’ll hear the machine gun sound going on or off, thanks to the play and stop commands of the
AudioStreamPlayer node.

The script we’ve implemented looks good enough, but it’s also a bit problematic. Maybe you’ve already
noticed it. Try to hold down the spacebar for long enough, such as 3 or 4 seconds, and you’ll hear a
jamming sound. This is because the script is firing too many play commands. So, after a while, the
CPU will be instructed to play the same asset too many times. We can do better by replacing the
script’s content with the following:

extends AudioStreamPlayer

func _unhandled_key_input(event: InputEventKey) -> void:

    if event.is_pressed() and event.scancode == KEY_SPACE:

        stream_paused = false

    else:

        stream_paused = true

Here, we have replaced the lines that had the play and stop commands with a different kind of command.
The new version will control whether the stream should be paused or not. For this script to work, we
need to turn on two things in the Inspector panel:

•	 Autoplay

•	 Stream Paused

This new setup will play the stream automatically, similar to what happened in the Playing background
music section, but then pause it right away. This seems counter-intuitive at first, but let’s analyze what
the new script is doing. When the spacebar is pressed, we resume the stream, and since the stream
was already playing, thanks to Autoplay being on, you get to hear the ta-ta-ta-ta sound! Also, when
you release the spacebar, hence the else case, the stream will be paused again. So, the new script
will not send consecutive play and stop commands, and thus will not clog the CPU.

We’ll conclude by discussing two more flavors of the machine gun firing in light of what we have
presented throughout this chapter.

Summary 145

Increasing gameplay experience

Did you notice that we used the same type of audio stream node for both the background music and
machine gun? In a way, we treated the machine gun as if it was background music. In other words,
we were not too concerned about where the sound was coming from.

To deliver a more enjoyable gameplay experience, you could use the AudioStreamPlayer2D and
AudioStreamPlayer3D nodes in 2D and 3D games, respectively. By tweaking the attenuation values
of these nodes, which define how sound travels over distances, your players can hear the sound of
the machine gun louder and louder as their characters get closer to the source. This would elevate the
sense of danger, and it’s a cheap and nice way to deliver immersion.

Summary
We started this chapter by presenting different types of files that Godot uses for playing sound. Knowing
the differences among these formats, when you work with composers, you can emphasize in which
format you want your sound files to be delivered. Chances are they might ask you about this, and they
might even deliver in all three possible formats.

Next, we discussed a few cases where looping a sound file might be a good idea. To facilitate this, we
investigated the options presented in the Import panel. However, the decision to loop or not is still
something you’ll have to decide.

Finally, to put our theoretical knowledge to use, we created two scenes that could play the sample files.
In the first case, we attached a sound file to an audio streamer and let it play automatically. For the
second case, we wrote a very simple script that let you start and stop the sound to mimic an enemy
character’s behavior, hence the sound effect it may make.

So far, we have been discovering some of the ingredients that are necessary for building games, such
as importing assets – whether it’s models from the previous chapter or sound assets in this one. In the
next chapter, we’ll dive right into building our point-and-click adventure game by designing our level.

Further reading
If you are into creating music and sound effects, here is a short list of software you can start with:

•	 LMMS: https://lmms.io

•	 Waveform Free: https://www.tracktion.com/products/waveform-free

•	 Cakewalk: https://www.bandlab.com/products/cakewalk

The aforementioned links will only cover the using a tool side of music production, so you may also
need to learn the artistic side of it, for which there are courses on multiple online training platforms,
such as Udemy.

https://lmms.io
https://www.tracktion.com/products/waveform-free
https://www.bandlab.com/products/cakewalk

Adding Sound Assets146

By the way, if you see a sound file out there and it looks like it is free to download, it doesn’t mean
you have the license to utilize the piece in your work. You may want to read the fine print if you don’t
want to get a surprise call from a lawyer someday. Nevertheless, the following are a few websites that
offer paid and free sound content:

•	 https://gamesounds.xyz

•	 https://freesound.org

•	 https://www.zapsplat.com

•	 https://opengameart.org

https://gamesounds.xyz
https://freesound.org
https://www.zapsplat.com
https://opengameart.org

Part 3:
Clara’s Fortune – An

Adventure Game

In this final part of the book, you'll be creating a point-and-click adventure game. Since it would be
too time-consuming to prepare all the game assets, you'll be provided with the necessary files.

In this part, we cover the following chapters:

•	 Chapter 9, Designing the Level

•	 Chapter 10, Making Things Look Better with Lights and Shadows

•	 Chapter 11, Creating the User Interface

•	 Chapter 12, Interacting with the World through Camera and Character Controllers

•	 Chapter 13, Finishing with Sound and Animation

•	 Chapter 14, Conclusion

9
Designing the Level

From this chapter on to the end of this book, you’ll be actively working on creating a point-and-
click adventure game. We’ll show you the necessary steps to create a game in which you’ll place and
command a character whose name is Clara. Players will be controlling her actions inside a cave that
will be initially dark, but you’ll be able to give controls to the player to change the conditions of the
lights. Once you figure out how to move her around in the world, you’ll also place trigger points in
this cave so that the world reacts to Clara’s actions to make things interesting but also challenging.
This part of this book will cover enough basic building blocks for you to start practicing building
small-scale adventure games.

Through all these efforts, you’ll learn how to utilize different parts of Godot Engine, especially the
ones that are pertinent to 3D workflow. Whenever it’s necessary, we’ll remind you of the previous
chapters, where you can revisit some of the basic principles. This is because this part of this book will
heavily rely on practical applications of what we have presented so far.

With that said, as every game has a narrative; this is ours:

“It was no more than a fortnight ago when Clara’s uncle had sent for her. Clara was sailing her boat to the
coordinates her uncle gave her when she noticed a glimmer in the distance. After she carefully approached
the spot where she noticed the flash, she saw that this was the entrance to a cave under the cliffs of a rock
formation jutting out of the sea. She cautiously maneuvered the sails on her boat and entered the cave
without a hitch. Luckily, there was enough sunlight for her to see a pier and she anchored the boat. She’s
excited to visit her uncle.”

Although there is a lot to do, from adjusting the lights in a cave environment to triggering sound and
animations, we should start building the world first. That’s what this chapter is about.

We’ll start by composing a scene by placing models from the project folder. This kind of scene structure,
where the players experience a particular part of the game world, is often called a level and often
signifies different levels of difficulty or a distinctive environment.

Designing the Level150

While we are arranging assets to build a level, we’ll look into creating and fixing materials in Godot
since, sometimes, some things are not perfectly transferred between applications. Chapter 6, Exporting
Blender Assets, and Chapter 7, Importing Blender Assets into Godot, covered the intricacies of how
exchanging information between Godot and Blender works if you need a refresher.

Although manually laying things out to create a level is alright, we could always benefit from using
tools that will make this kind of job easier on us. Godot’s GridMap is the right tool for placing objects
on a grid structure. For GridMap to work, it needs another Godot mechanism called a MeshLibrary.
We’ll show you how to construct one and use it as an alternative way of building levels.

In this chapter, we will cover the following topics:

•	 Creating the cave

•	 Constructing the missing materials

•	 Laying models on a grid

•	 Taking advantage of MeshLibrary

In the end, we’ll craft a level by arranging scenes/models, completing missing materials, and taking
advantage of GridMap and MeshLibrary for a faster workflow. By doing this, you’ll have the right
tools under your belt to design levels.

Technical requirements
Starting with this chapter, and continuing in the remaining chapters, you’ll be creating a point-and-
click adventure game. Since it’d be too time-consuming for you to prepare all the game assets, we are
providing them. We have already exported the glTF files from Blender. Should you need to access the
originals for any modifications, or when a specific file is mentioned, these files can be found in the
Blender Models.zip file in this book’s GitHub repository.

Unlike the previous chapters, which usually had Start and Finish folders with simple assets, we’ll
switch things up a bit. This chapter will have the usual folders too, but they will contain the content of
a Godot project. The Godot project in the Start folder will contain the barebone assets for you to
start building the level for the game. By the end of this chapter, your game will have reached a stage
where you can use the content from the Finish folder to compare what you have created.

Additionally, starting with the next chapter, you’ll only have the Finish folder since you can use the
finished stage in each chapter as the starting condition for the following chapter, and so on.

We suggest that you head to this book’s GitHub repository at https://github.com/
PacktPublishing/Game-Development-with-Blender-and-Godot to check out the
content we have prepared for you and help Clara out in her adventures.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Creating the cave 151

Creating the cave
For the first level in Clara’s adventures, we thought of a small place so that you don’t get overwhelmed
with building a large layout. Figure 9.1 should help you visualize what we are building. This is a Blender
render we’ll try to recreate in Godot:

Figure 9.1 – We’ll be building this small level for Clara to discover

Our world will consist of a dock inside a cave that has access to the sea. When Clara anchors her
boat, she sees inside the cave. There isn’t much light to begin with, but as little as she can see, the
dock leads to a pier with laid stone. She can also see that there are a bunch of boxes, barrels, and pots
distributed here and there. Though the sconces on the walls will start unlit when the game runs, as
shown in Figure 9.1, you can see that all the sconces on the walls are lit. This is because we want to
show you a later stage in the game so that you can see what we are aiming for. Otherwise, it would
have been a dark figure.

In Chapter 10, Making Things Look Better with Lights and Shadows, we’ll investigate how we can create
a more dramatic-looking level by utilizing appropriate light types and enabling shadows. We covered
some of this in the context of Blender in Chapter 4, Adjusting Cameras and Lights, but we’ll do it in
the context of Godot as well.

Designing the Level152

Level design versus game design versus visual design
If you are new to game development, then some of the names you come across might be
confusing. The word design is one such example since it usually implies what people see.
However, in actuality, it means a fashion, or a formula to do or conceive something. Let’s
discuss it in the right context.

We could have designed the level differently so that access to the door at the end of the pier
would be challenging. Perhaps the light conditions are so poor that Clara needs some help to
see an important clue. To make progress in the game, game design rules will define how the
player will interact with the world. Perhaps it’s enough for the player to click game objects in
the world, while other times, it’d be better to have an inventory and a crafting system.

Lastly, the visual design has nothing to do with the previous two design concepts. The cave
walls could still be cave walls but instead of having a low-poly and stylized look, they might
have looked ultra-realistic, where you could feel the stones were damp and covered with moss.
Would this have added anything to the game and been fun? So, all these design principles are
equally important and yet distinct.

The level, Level-01.blend, is available inside the Blender Models.zip file at the root of
this book’s GitHub repository. You’ll most likely need it open so that you can use it as a reference
when you are building the level in Godot.

We will start building the level by laying out different sections of it. Speaking of which, we must follow
these steps to structure our first level:

1.	 Create a new scene and save it as Level-01.tscn inside the Scenes folder.

2.	 Place a Spatial node as root and rename it Level-01.

3.	 Create more Spatial nodes inside the root node with the following node names:

	� Floor

	� Columns

	� Walls

	� Rails

	� SunkWalls

	� Props

	� Rocks

	� Sconces

	� Dock

Creating the cave 153

We’ll be using these child Spatial nodes to store different parts of the level since we’ll end up having a
lot of parts in this level, despite it being very small. The following screenshot shows the node structure
after our last effort:

Figure 9.2 – Different structures for the level are grouped under many Spatial nodes

Inside these Spatial nodes, we’ll place the relevant parts of the level. For example, the floor pieces will
go inside the Floor node. We can put down our first asset easily by doing the following:

1.	 Highlight the Floor node in the Scene tree.

2.	 Press the chain icon at the top to instance another scene inside your highlighted node.
Alternatively, you can press Ctrl + Shift + A.

3.	 Type Floor_Standard in the Search section of the pop-up screen.

4.	 Select Floor_Standard.glb from the Matches section, as shown in the following screenshot.

Designing the Level154

This will create an instance of Floor_Standard.glb inside the Floor node:

Figure 9.3 – You’ll want to use the search area to filter out the unwanted matches

You may have noticed that although we wanted to inherit a scene that should normally have a
.tscn file extension, instead, we instanced a glTF file. In Chapter 7, Importing Blender Assets into
Godot, we learned how to create scenes out of glTF files. So, we could have done that and created a
Floor_Standard.tscn scene, then instanced that scene inside the Floor node as well. We took
a shortcut instead. Creating scenes is useful when you are going to add additional elements besides
the model structure itself. We don’t need additional elements for the floor, so it’s alright to instance
just its glTF version.

On the other hand, there will come a moment when we create our level when directly instancing glTF
files won’t cut it. For example, when we tackle lights and shadows in the next chapter, it will make
much more sense to create a scene out of the sconce model and add a light object to the same scene.
Hence, the sconce scene will take care of displaying a glTF model as well as holding a light object so
that it can programmatically be turned on or off later. If you simply want to display models, but don’t
need anything more than that, instancing a glTF file is usually enough.

After you add the first piece, it will be automatically selected. If it’s not, you can click the floor piece
in the 3D view or highlight its node in the Scene tree. Once it’s been selected, you’ll see a gizmo at
the center of the model that will let you move and rotate the piece around. The directions of your
gizmo may look different if you have rotated your view. The following screenshot shows an example
of what we expect to see:

Creating the cave 155

Figure 9.4 – The gizmo for moving and rotating an object

The floor plan we are trying to lay out consists of more standard floor pieces. So, an easy way to get
extra pieces is to duplicate the existing pieces and move them aside, as follows:

1.	 Select the Floor_Standard node in the Scene tree.

2.	 Duplicate it by pressing Ctrl + D.

3.	 Move the new floor piece by dragging either the blue or the red axis in the gizmo.

This will add a new floor piece to the scene and move it around. We are intentionally ignoring the
green (Y) axis since we don’t want the floor to have any elevation at this point. However, for your
games, you can design levels with different height zones and connect them with stairs.

Designing the Level156

Since our floor plan looks like a grid, it would be nice to have the floor pieces snap to each other. We
can do this by moving the pieces in either direction on the XZ plane while limiting their movements
to precise increments. To simulate this, delete the most recent floor piece you created, and then do
the following:

1.	 Duplicate a new Floor_Standard node.

2.	 Hold down Ctrl and use either the X or Z gizmo arrow to move the piece two units.

Why did we move it by two units? Because the model is designed to fit in a grid that’s 2 x 2 meters in
size. You can open the relevant Blender file to observe the dimensions. We are not measuring things
in Godot but it’s still respecting the scale and unit aspects set in Blender. That’s why we made sure the
scale for the model was set to 1. If you need a reminder on this, we suggest that you read the Applying
rotation and scale section in Chapter 6, Exporting Blender Assets.

After implementing the latest instructions for moving pieces with the snap feature on, you’ll get the
following output:

Figure 9.5 – The new floor piece is right next to the old one

All there is left to do at this point is duplicate enough floor pieces and move them around by using the
snap feature. Also, you’ll need to instance and place two new models inside the Floor node:

•	 Floor_Standard_Curved_1.glb

•	 Floor_Standard_Curved_4.glb

These curved floor tiles will accommodate curved walls, which means we can keep the architecture
consistent. By duplicating enough floor tiles and adding the new curved pieces, and after moving the
pieces around, we’ll achieve the following output:

Creating the cave 157

Figure 9.6 – With the two newly added types, the floor is ready

All the floor pieces are now under the Floor node in the scene, and this effort completes our task of
constructing the floor. We’ll follow a similar approach to lay the other parts of the cave under separate
Spatial nodes.

Erecting the walls

The next order of business in constructing the level is putting up the wall sections. You can do so
by instancing wall pieces under the Walls node, similar to the way you did for the floor pieces. As a
substitute for providing you with very similar instructions, we’ll use this section to highlight a few
special cases you may come across.

For example, you’ll eventually want to place wall pieces that will connect at a corner. So, you need to
rotate one of the pieces around its Y axis by 90 degrees. You can do this either by using the gizmo or
by typing the exact value in the Inspector panel under Rotation Degrees in the Transform section.

Another situation is with the wall that has a hole in it, which lets a bunch of twigs creep into the dock
area. This is a detail you can see on the right-hand side of Figure 9.1. We suggest using Wall_Hole.
glb for that particular section of the level. Similarly, Curve.glb should be placed over the curved
floor pieces we have already established.

Designing the Level158

Although a door is technically not a wall, we could assume the arch and the door can get along with
the other wall pieces. After all, they conceptually belong to the same structure. So, for that section,
you can utilize the following pieces:

•	 Wall_ArchRound_Overgrown.glb

•	 Arch_Round.glb

•	 Doors_RoundArch.glb

Lastly, when you lay out all your wall pieces, you can duplicate them and pull them up two units on
the Y axis. This will make the walls the same height as the arch and the door. Once you’ve done this,
your floor should resemble what you can see in the following screenshot:

Figure 9.7 – The level is starting to look more like our reference picture

As you may have noticed there is a gap on the floor by the curved wall piece near the door. We’ll fill
that gap by cleverly placing two green plants soon. Otherwise, you’d have to prepare a floor piece
for edge cases like that. Either way is fine and going back and forth between Blender and Godot to
complete missing pieces is also part of the process.

Since we’ve been handling the walls, we can extend this effort by using additional wall pieces to simulate
the section of the level that meets the seawater in the cave.

Creating the cave 159

Sinking the walls

It seems the architect of this place went to great lengths to have stone bricks laid out to prevent mother
nature from tarnishing what’s under the floor. Smart!

To accomplish what the architect had in mind, you can utilize the standard wall pieces to create a curtain-
like structure right where the floor is connecting with the water. In the end, when you place these pieces
inside SunkWalls in your Scene tree, you’ll be looking at what’s shown in the following screenshot:

Figure 9.8 – The same wall pieces are used to prevent water from leaking under

The ebb and flow of the sea will now be kept at bay. Notice that we didn’t want the sunken wall parts to
go all the way around the floor. This is because you can always limit the camera angles to not show the
back parts of the structure. It’s a cheap way to keep the asset count low. However, if you want to give
full freedom to the player so that they can rotate around the whole structure, you may want to change
your level design to accommodate that. We’ll be investigating camera settings in Chapter 12, Interacting
with the World Through Camera and Character Controllers. For now, we still need to finish our level.

Placing the rocks

Since we are currently concerned about the parts near the water, let’s add some rocks to the scene.
In the Blender file for this level (Level-01.blend), you’ll see individual rocks. They have been
organized to give the illusion of a rock formation. It’s perfectly fine to follow a similar approach and
place specific rocks into your scene in Godot too, more specifically under the Rocks node.

Designing the Level160

However, there is an easier way. What if you exported the left and right rock formations as a single
object from Blender? This is entirely possible, and that’s why we have prepared two files for you:

•	 RocksLeft.glb

•	 RocksRight.glb

You can instance these two files and move the instances freely using the gizmo. This means you don’t
have to use the snap feature. Adjust the position of the rocks wherever you think is best.

Speaking of moving assets without using the snap feature, perhaps we can practice it a bit more. Since
the floor looks empty, it’s time we discuss complementary design elements such as props.

Distributing props

A prop is an object that serves as a support element. Props are also often called necessary clutter since
they complete a décor. Otherwise, when things look too sterile, it’s less pleasant to the eye and we start
paying attention to repeating patterns or unnecessary details.

Instead, we want the person who’s experiencing the scene to feel at ease. This is also a great way for
designers to hide important elements in plain sight. To that end, we will use the following list of props
and distribute these assets around the scene:

•	 Barrel.glb

•	 Backpack.glb

•	 Bush_Round.glb

•	 Candles_1.glb and Candles_2.glb

•	 Cart.glb

•	 Crate.glb

•	 DeadTree_3.glb

•	 Flag_Wall.glb

•	 Pot1.glb, Pot2.glb, Pot3.glb, and their broken versions

•	 Statue_Stag.glb

Creating the cave 161

Once you’ve finished moving the props, your scene will look as follows:

Figure 9.9 – The props have been distributed all over the dock

While you are at it, you may as well instance Column_Round.glb, make two more copies, and place
them under the Columns node. Also, Rail_Corner.glb and Rail_Straight.glb could be
placed along the edge and near the stag statue. You don’t have to be pixel-perfect with these objects,
but if you want to be precise, you can use Level-01.blend for reference.

Finishing the rest of the level

To finish off the level, we need to place the sconces and construct a pier. These assets are no different
than the other ones you have instanced and moved around the level.

However, placing the dock pieces may throw you off a bit as far as positioning goes. You may find that
the stairs piece looks slightly off dimension-wise. Sometimes, assets are designed to be generic, while
other times, assets will be designed so that they can fit or connect with the other models seamlessly.
Regardless, since it’s possible to adjust the final position in Godot, we can recover from these minor issues.

To simulate how we dealt with this issue, we’ll give you the Translation values we used for the positions
of both pieces:

•	 Dock_Long: 4, -1, 5.5

•	 Dock_Stairs: 4, -1.5, 8.9

Designing the Level162

Your values will most likely be different since you were undoubtedly moving your level pieces in
directions that felt natural to you. If your numbers don’t match our example, don’t worry. We would
like to point out the relative difference between the two structures. You’ll also most likely have one
number that’s the same in one of the axes, either X or Z. Also, an educated guess on our end, your
Y for the stairs will be 0.5 lower. This should result in a pier structure that looks like it was designed
as one piece. If you want to have a taller pier, then you can create a copy of the stairs and move it
accordingly. That’s the benefit of having separate pieces.

We suggest that you add the boat model under the Docks node in the Scene tree at this point since it
could be considered as part of the docks area. This concludes the construction of our level. It should
look as follows:

Figure 9.10 – The level has been reconstructed in Godot

Despite our claim that the level’s construction is finished, you may have noticed that there are a few
odd looking things. We have a dock area with no water – and what are those ugly round things doing
by the door? We’ll find out how we can remedy all this in the next section.

Constructing the missing materials
When we were placing the props, we covered the gap near the door by placing a bush prop (this can
be seen in Figure 9.10). However, there is something awkward about those bushes. Similarly, the arch

Constructing the missing materials 163

over the door has some weird-looking dangling things over the stone bricks. They should be showing
greenery and leaves but all we have is a bland, gray surface. We’ll fix these issues in this section.

In addition, while it made sense to export individual models from Blender and place them in a Godot
scene, it didn’t make sense to export the water body. Even in Blender, that object was a plane that has
been applied a shader that mimicked water. We’ll recreate that effect in Godot.

Fixing the leaves

First, let’s describe what the problem is with the gray leaves. All the other models seem to have
their materials displayed properly. Despite all intentions and efforts, certain things are never fully
transferred between applications. This is the case with the leaves. We need to get a bit technical for a
more thorough answer though.

How would you go about designing a leaf in 3D? Since a leaf has so many details around its edges, it’s
hard to display that much detail without using enough vertices. To be conservative, you can use an
object with the least number of vertices and apply a transparent leaf texture to this basic object. The
following screenshot shows an application of this method:

Figure 9.11 – A transparent file is used as a texture for a rectangle shape

The preceding screenshot shows a very simple shader. The alpha value of the texture is attached to
the Alpha socket of the shader. Also, Blend Mode under Settings for the material is set to Alpha
Clip. This means that the alpha parts of the texture will be clipped out of the result. We need to do
the equivalent of this in Godot.

Designing the Level164

Unfortunately, Godot doesn’t automatically understand and turn on transparency for imported
materials. We’ll have to do some manual work to display the leaves correctly. Luckily, this is also going
to get you familiarized with the materials and their settings in the Inspector panel.

Let’s start by finding the material for the bushes. The Models folder is structured in a way to keep
distinct models inside individual folders. Hence, expand the Bush folder in FileSystem panel and
double-click the Texture_Leaves.material item. This will populate the Inspector panel with
this material’s properties. There is a lot to look at, but we only need to tweak a few things:

1.	 Expand the Flags section.

2.	 Turn the Transparent setting on.

3.	 Expand the Albedo section.

4.	 Drag and drop Leaf_Texture.png from the Textures folder into the Texture field. As
an alternative, you can click the Texture field and Load the necessary file.

As you may have noticed, the texture for the material was missing, so there was no chance for the bushes
to display anything. Second of all, by turning the transparency on in the flags, we are asking Godot
to respect the transparent parts of the texture file. You can switch it on and off to see the difference if
you like. In the end, our scene will look as follows:

Figure 9.12 – Our bushes are starting to look healthier again

Constructing the missing materials 165

You can do the same thing for the arch model, which can be found in the Architecture folder inside
the Models folder. This may look like you are repeating yourself, and you are right about this. Since
we are keeping separate models that use the same Blender material inside their relevant folders, the
materials are duplicated as well. A detailed discussion about this was provided in the Deciding what to do
with materials section of Chapter 7, Importing Blender Assets into Godot. Since this is an organizational
issue, we leave the decision to you, but you now know how to enable transparency in materials.

Another missing piece in our material puzzle is the water object. We intentionally omitted the export
for that area. To most game developers out there, writing shader code is entering dangerous waters.
Nevertheless, that’s exactly what we’ll do. Hopefully, you’ll see that there is nothing to fear.

Creating the water

How do you model a body of water? The answer is not simple, and it even is a bit philosophical. The
following is a homage to Bruce Lee’s famous philosophical quote on martial arts, which uses water
as an analogy:

“… Be formless, shapeless, like water.

You put water into a cup, it becomes the cup.

You put water into a bottle, it becomes the bottle. …”

It’s hard to imagine what vertices we should create and organize for water in Blender or Godot. Instead,
we give qualities of water such as reflection, refraction, undulation, and murkiness to simple objects,
such as a plane or a cube.

Thus, for this effort, we usually rely on shaders instead of a 3D model. In this section, we are going
to write a very simple water shader. In the end, you can either use the shader from our example or
find another example on the internet. After all, there are a lot of examples out there, since creating
a decent water shader usually depends on your use case, and one solution sometimes doesn’t fit all.

Let’s start by creating a water object:

1.	 Place a MeshInstance node under the Dock node and rename it Water.

2.	 For this new object, assign a PlaneMesh to its Mesh property in the Inspector panel.

3.	 Click this PlaneMesh to expand its properties, and fill in the following values:

I.	 20 for both x and y in Size.

II.	 20 for both Subdivide Width and Subdivide Height.

Designing the Level166

We’ll explain what these numbers mean soon, but here is what your Inspector panel should look like:

Figure 9.13 – A rather gray-looking body of water so far

The preceding screenshot shows the properties of a PlaneMesh in the Inspector panel. We have chosen
a size that made sense as far as the level’s dimensions are concerned. Using the gizmo, as you did for
moving other objects, position the water object where it makes sense concerning the dock area and
the overall scene. Once we have written our shader to make this gray object look like water, you may
also want to adjust its Y position too.

Additionally, perhaps coincidentally, we chose 20 as the subdivision value. You can divide the plane
into finer pieces if you want, but a value such as 20 will introduce enough vertices. So, yes, you have
effectively created vertices in Godot as opposed to doing so in Blender.

We are now ready to change the look of this gray plane. For this, we’ll create a material for it:

1.	 Right-click the res:// item in FileSystem and choose New Folder.

2.	 Type Materials and confirm.

3.	 Right-click the Materials folder in FileSystem and choose New Resource.

4.	 Search for ShaderMaterial and confirm.

5.	 Save it as Water.tres in the upcoming Save Resource As screen.

Normally, a newly created item will be displayed in the Inspector panel, but if it doesn’t or if you
brought another object’s properties to the Inspector panel, find Water.tres in FileSystem and
double-click it. You’ll see a barebones material with a white sphere as a preview in the Inspector panel.
It needs a shader to get more water-like visual qualities. This is how you can create it:

Constructing the missing materials 167

1.	 Right-click the Materials folder in FileSystem and choose New Resource.

2.	 Search for Shader and confirm.

3.	 Save it as cave-water.tres in the upcoming Save Resource As screen.

In Chapter 2, Building Materials and Shaders, we discussed the relationship between shaders and
materials, and how they go hand in hand. That was done in Blender, but the concept is universal.
Hence, we’ve created a material and a shader in Godot. Now, we must associate the two:

1.	 Bring up the Water.tres file’s properties to the Inspector panel.

2.	 Drag and drop cave-water.tres into the Shader property in the Inspector panel.

The water material has now been assigned an empty shader. We’ll explain the shader code after you
complete the following steps:

1.	 Double-click cave-water.tres in FileSystem.

2.	 Type the following code in the newly expanded Shader panel:

shader_type spatial;

uniform sampler2D wave_pattern;

uniform vec4 color:hint_color = vec4(0.19, 0.71, 0.82,
0.44);

uniform float height_factor:hint_range(0,1.0) = 0.1;

void vertex(){

    vec4 wave = texture(wave_pattern, UV);

    float displacement = sin(VERTEX.x * wave.x * TIME)

      + cos(VERTEX.z * wave.z *  TIME);

    VERTEX.y += displacement * height_factor;

}

void fragment(){

    ALBEDO = color.rgb;

    ALPHA = color.a;

}

Designing the Level168

The shader code we have written exposes a few options to the Inspector panel, starting with the lines
that start with the uniform statement. This is so that you can modify the material’s properties, just
like you were able to change the settings of the leaf material earlier in the Fixing the leaves section.
That one was a very elaborate shader with lots of options. Ours is a very simple shader with only
three parameters:

•	 A wave pattern for creating randomness

•	 A color for the water (by default, this is a light blue color)

•	 A height factor to control the motion of the waves (by default, this is 0.1)

Two of the properties have their default values. We’ll show you what you can pick for the wave pattern
later in this section, but first, let’s explain the general idea behind all this since this might be the first
time you are writing shader code.

Built-in Godot shader functions
The two functions, vertex and fragment, are built-in shader functions. The former controls
what each vertex will do, while the latter takes care of how the overall object will look. Godot has
more default functions; we’ve provided a link in the Further reading section for you to discover.

Since the fragment function looks simple enough, we’ll cover that one first. One of the properties
we exposed, color, will be used in this function so that we can paint the object with the color we
want. Consequently, we are taking the red, green, and blue channels of the input color and applying
them to the ALBEDO property of the shader. Albedo is a scientific term for color. In some applications,
it’s also referred to as Diffuse or Base Color, such as in Blender.

Naturally, we would like to have some translucent qualities for our water object. For that, we are using
the input color’s alpha channel and binding it to the ALPHA property of the shader. It’s a simple but
effective way to create transparency. Speaking of which, if you comment out the vertex function, you
should still be able to see the transparency because each function is responsible for one major aspect.
However, they complement each other when used together. So, it’s now the vertex function’s turn.

It would be nice to have the body of water move up and down a bit. That’s the reason why we have
introduced more vertices to the plane mesh by subdividing it. The vertex function will take each
vertex and change its y value to create an up and down motion. The last line in the function is
responsible for that. How much should each vertex change though? Well, that depends on your use
case. However, we came up with a displacement value that seemed appropriate and yet exciting
enough to simulate a somewhat calm water feature in this cave.

While calculating displacement, we are using a texture and sampling some of its values. It’ll bring
randomness to the way the vertices will move. To that end, we are combining the x and z values of
each vertex with the x and z values of the incoming texture (wave). You could alter a combination of
some of those properties and still get a similar result. Perhaps what’s more important is the use of the

Constructing the missing materials 169

built-in TIME property, which is telling the GPU to change the result with each millisecond passed.
Remove TIME from the equation and everything will be displaced once and sit still.

Finally, we regulate the intensity of the displacement with a height factor that can be adjusted in the
material settings. This concludes our water shader. The shader and material have already been connected,
but we have yet to tell the Water node which material it should use. To do so, follow these steps:

1.	 Select the Water node in the Scene tree.

2.	 Expand the Material section in the Inspector panel. You’ll see a slot with a label of 0.

3.	 Drag Water.tres from FileSystem to the 0 slot.

Voila! The dock should now have a water object that’s modulating over time. Move and zoom your
viewport camera in to get closer to the sunk walls to notice the alpha effect too. This is looking nice
already, but we can take this a step further by applying the shader a noise texture, which will add more
variation to the way the vertices fluctuate:

1.	 Expand the Shader Param section in the material’s settings in the Inspector panel.

2.	 Attach a New NoiseTexture for the Wave Pattern property.

3.	 Expand this new texture and attach a New OpenSimplexNoise to its Noise property.

This will add more randomness to the way the vertices are displaced. When you are done with all the
code bits and tweakings, your Inspector panel should look as follows:

Figure 9.14 – Notice how the water is transparent and wavy along the sunk walls

Designing the Level170

It’s possible to fuss with the values of the noise to create more drastic effects, but we leave that to you.
By controlling the height factor and color, you can simulate calmer or stormier water conditions as
well. With that, you have created an important missing feature.

About keeping the shader separate
While creating the water material, you could have used an in-memory shader for the material
using the dropdown in the Inspector panel. Most Godot features usually start and stay this
way, but we followed a different approach by creating a resource first and then assigning it later.
Thanks to this method, you can create different water shaders and swap them as you need them.

With that, we have taken care of placing all the necessary elements and even completing missing parts,
such as fixing and/or creating new materials. However, while creating the layout, did it feel like you
were duplicating and moving so many of the same assets, especially with the wall and floor pieces?
We bet it did! So, let’s present a very helpful Godot tool with which you can lay things out easily if
your layout is grid-based.

Laying models on a grid
The main difference between placing objects such as candles, pots, and barrels, short props, and floor
and wall pieces is that you can distribute the former objects willy-nilly. They don’t have to follow
a pattern, whereas the floor and wall pieces must snap to each other. This kind of structure is also
referred to as a grid.

To speed things up, we even chose to duplicate an existing piece instead of instancing a fresh one
because when you create a new instance, it’d start at the scene origin, and you’d have to move this new
piece near your current area. You can even select multiple tiles in a row, duplicate them, and snap
these next to the old batch. Despite all these shortcuts, since all this sounds formulaic, perhaps there
should be a better tool. GridMap to the rescue!

If you have used Godot for 2D, you may already be familiar with the TileMap node. GridMap is the
same except it works in 3D. Thus, whereas TileMap will let you add sprites to your scene, GridMap
will use meshes. For those of you who have never used a TileMap node, both of these mechanisms
in Godot are responsible for using a set of tiles or meshes.

Benefits over manual placement
The GridMap solution we are offering is not just for you to expedite the creation of your levels.
Since the pieces are repeating, the GPU will optimize the rendering of said pieces and you’ll get
higher frame rates. This is usually a very sought-after result among game developers, particularly
when your levels grow and the number of objects you use in a scene starts to matter.

Laying models on a grid 171

In this section, we’ll present the general settings of a GridMap node. Although this node depends on
MeshLibrary to do its job, it makes sense to understand the individual settings at this point than mixing
both. We’ll learn how to create and utilize MeshLibrary in the Taking advantage of MeshLibrary section.

To conserve and compare what we have done so far, we’ll take things a bit slowly:

1.	 Save Level-01.tscn as Level-01-Gridmap.tscn. The root node could still stay as
Level-01.

2.	 Add a GridMap node and rename it FloorGridMap. You can drag this new node and make it
the first child right above the Floor node if you wish.

3.	 Turn off the Floor node by pressing the eye icon.

The last set of actions will introduce a GridMap node to the scene. It’s empty for now but we’ll fill it
with the floor pieces when we get to know mesh libraries. Your scene will look as follows:

Figure 9.15 – The missing floor pieces will soon be introduced with GridMap

Although we’re missing a mesh library, we have a GridMap node for which we can look at properties in
the Inspector panel. We suggest that you select FloorGridMap now and read along. The information
we’ll present here will lay the foundation for you to choose the settings of the future grids you’ll use.

GridMap works with a cell concept. A cell is a volume in which one of the meshes will fit. If you
expand the Cell section in the Inspector panel for the FloorGridMap node, you’ll see that we have a
value of 2 across the board for a cell. Fortunately, our floor pieces are 2 x 2 x 2 meters as well. So, we
don’t need to change those values in our case. In your future projects, you may have to match these
values to your models’ dimensions.

We’ll ignore the Octant Size setting in our efforts since it’s for more advanced cases where you can
further increase optimization. What’s much more important perhaps is the three on/off switches for
centering the meshes inside a cell on either axis. We’ll make use of this very soon, but the following
screenshot should help you see what we have been discussing so far:

Designing the Level172

Figure 9.16 – Each GridMap can have settings to define the dimension of the pieces it’ll use

The preceding screenshot also shows an expanded menu and its options when you click the Grid
Map button at the top of the viewport. Out of those options, Cursor Rotate Y with the S shortcut will
probably be the one you’ll use the most. The floor pieces we laid out earlier in the Creating the cave
section all follow the same direction. We tried to cover the floor with props to break the sameness but
rotating a floor piece 180 degrees around the Y axis would be another solution.

Now that the theoretical knowledge has been established, let’s move on to practical applications of
using GridMap. In the next section, we’ll create a mesh library that we’ll use in tandem with our
FloorGridMap to fill in the missing floor pieces.

Taking advantage of MeshLibrary
When you clicked FloorGridMap to investigate its properties, the Godot interface changed slightly,
and it informed you that you should assign a MeshLibrary since, without one, a GridMap is ineffective.
In this section, we’ll show you what goes into creating a MeshLibrary. We’ll also talk about possible
challenges you might face, not technically, but workflow-wise.

There are two ways to create a MeshLibrary. We’ll show you the most common way since the other
method involves keeping meshes separately in the filesystem, and our project has not been set up to
accommodate that scenario. Without further ado, this is how you create a mesh library:

1.	 Start a new scene and save it as Floor-MeshLibrary.tscn in Miscellaneous.

2.	 Choose a Spatial node as its root.

3.	 Instance Floor_Standard under the Spatial node in the Scene panel.

Taking advantage of MeshLibrary 173

4.	 Click the Scene button in Godot’s top menu.

5.	 Expand Convert To and choose MeshLibrary.

6.	 Save your mesh library as Floor-MeshLibrary.tres in Miscellaneous.

If you drag and drop the floor piece directly into the viewport, it will be placed somewhere in the
scene while considering the perspective of where your mouse cursor was. The floor may, for example,
look tiny because it will be far away from you. Zeroing the position should put the object in the center
of the world and bring it closer. If you dropped the piece into the Scene tree instead, you won’t have
this problem.

The following screenshot shows the state right before Godot converts your scene into a mesh library:

Figure 9.17 – We are converting a scene into a mesh library

Now that we have a floor piece in the library, we can add one more model to it. The goal here is to
pile up items that have similar dimensions. This may sound confusing, but let’s add the curved wall.
Why? Because although a wall is normally thinner and taller, if you think of the volume the curved
wall occupies, it’s no different than a floor piece. Its base is of similar dimensions.

So, assuming Floor-MeshLibrary.tscn is still open, here is how you can introduce another
model to the same library:

1.	 Find the Curve.glb wall piece in FileSystem.

2.	 Drag and drop it over Spatial.

3.	 Convert your scene into a MeshLibrary again and overwrite the existing file in Miscellaneous.

This operation will add the newly introduced piece alongside the old floor piece and update the mesh
library. Thus, an easy way to create a mesh library is to start a new scene, add as many models as you
want, and turn this scene full of models into a mesh library.

Designing the Level174

We haven’t concerned ourselves with where the pieces will go yet. We’ve just been selecting separate
pieces as candidates to decorate a grid. Now, let’s associate the mesh library with FloorGridMap and
start laying some models.

Using a mesh library with a grid map

So far, we have been preparing a mesh library to be used by FloorGridMap. We have two pieces
inside this library. We’ll use the floor piece first, and then see if it makes sense to use the curved piece.

For a GridMap to work, you need to fill its Mesh Library property in the Inspector panel. Let’s take
care of this first:

1.	 Select FloorGridMap in the Scene tree.

2.	 Drag and drop Floor-MeshLibrary.tres from Miscellaneous into the relevant
field in the Inspector panel.

This will display all the available models as thumbnails in the reserved GridMap interface, as shown here:

Figure 9.18 – The mesh library can now be used by FloorGridMap

All there is left to do is click one of those thumbnails – for example, Floor_Standard – and move your
mouse over the viewport. You should see a preview of the selected model under your cursor. If you
click where you can see the preview, you’ll make it permanent. Try this a few times.

Isn’t this a lot easier than laying out all the floor tiles by yourself? But wait a minute – you’ll most
likely notice that something looks slightly odd. It’s as if the floor pieces are not quite where they are
supposed to be. They snap to each other, but they don’t seem to quite respect the old coordinates.
They are either elevated, penetrating wall pieces, or situated off the walls.

This is something you’ll regularly come across when you work with grid maps. The solution is easy,
but keep in mind that this is not exactly a problem either. It depends on the origin points you set for
your models. So, yes, the origin points are something you may have to deal with even after you have
exported your models. As a result, you can either fix your origin points by going back inside Blender
and re-exporting your models or use some of the options available to you in the Inspector panel.

Taking advantage of MeshLibrary 175

For now, let’s try to turn the following Cell settings on and off:

•	 Center X

•	 Center Y

•	 Center Z

There is no set formula for whether these properties should be on or off. It depends on the models
that are used in a mesh library. For example, the Curve piece in the mesh library has its origin point
in one of the corners, whereas the floor piece has it, geometrically speaking, in the middle. Since there
is only one Cell setting for the whole grid map, you must have a standard way of dealing with all the
models of a mesh library. So, it’s not just about piling up a whole bunch of models haphazardly – it’s
about storing them in a way that respects cells, hence a grid structure.

To visualize what we are talking about, you can try to place a Curve piece from the mesh library onto
the scene. You’ll notice that you’ll have to reset the center settings but that this will also reset the floor
pieces back to their controversial positions. Therefore, this is something you’ve got to plan for and
make sure your objects share similar origin points, as well as similar dimensions.

Clearing a cell
You already know that clicking with the left button of your mouse will place the previewed
item from the mesh library. If you need to remove an existing cell from your scene, you can
right-click it and move your mouse around. If you happen to have the same model in preview
mode, removing the cell from the scene but not moving your cursor anywhere else may give
the impression that you didn’t remove anything. So, remember to wiggle your mouse after
you clear a cell.

The necessity of using multiple grid maps

Either for the reason that the dimensions of your models will be different, or the origin points won’t
necessarily align, you’ll eventually notice that you’re going to need to use different grid maps in your
scene. Since each grid map can have separate Cell settings, it’s entirely possible to use the same mesh
library among all these grid maps.

In this scenario, you’ll have the convenience of creating one mesh library to store all similar items –
for example, all the architectural elements – but only use some of the models for the right grid map.
This beats the hard work of creating individual mesh libraries.

Designing the Level176

Wrapping up

Using grid maps is a convenient way to distribute objects that follow a pattern. The decision to use it
is sometimes an organic process. Most people often start building their level by individually placing
items. This is usually when they aren’t using an already existing level design software. So, the process
of creating a level happens while you are moving stuff around in a natural way, similar to moving
furniture around instead of using a floor planner.

Thus, either you decide early on or feel the need to switch to it, using grid maps will make your life
easier. That being said, grid maps and mesh libraries are full of bugs in the current version of Godot.
For example, adding new models to your mesh library scene, then exporting it as a library, won’t
always update the existing library with new models. Sometimes, the earlier items within a library will
be swapped with the newer models. So, it’s quite inconsistent. Hopefully, the fourth version of Godot
will eradicate all these problems.

We wanted to be comprehensive about different ways to create your levels. So, it felt necessary to
introduce the GridMap node, however broken it might be. This way, when the community gets this tool
implemented bug-free in the future, you know that such a convenient tool will be available and useful.

Summary
This chapter was the first out of many chapters that will help you build a game. To kick things off, we
tackled the level design aspect of the game.

This effort involved placing many elements that make up the environment Clara will experience. For
structures that are next to each other, you learned how to take advantage of the snapping feature, but
you can also decorate your scene carefree if you wish, in the case of distributing props. In the end,
you had a clean scene structure with objects grouped under the relevant nodes in the Scene tree.

Along the way, you noticed that some of the materials were either misconfigured or simply missing.
To fix these issues, you had to dive deeper into the Inspector settings for materials with which you
remedied the transparency issue. Furthermore, you wrote a shader in Godot to simulate a body of water.

Considering what you have learned so far and the likelihood that you might be designing more levels
that have grid patterns, we presented Godot’s GridMap node. To be able to use this handy tool, you also
learned how to create a MeshLibrary. Despite its benefits, this last method is broken at the moment,
but it’s something you can employ in future versions of Godot.

With that, the level is complete to the point that you can start adding a few more elements down the
road as you need them. Despite that, everything looks a bit bland. In the next chapter, we’ll learn how
to make the level look fancier with lights, shadows, and environmental effects.

Further reading 177

Further reading
Level design doesn’t always involve placing physical elements inside the game world. Sometimes, it
means enticing sound design, hiding cute or interesting lore elements pertinent to the world and story,
and adding non-player characters your players can relate to or simply hate. There is a whole layer
of psychological factors to designing good levels so that you can evoke the emotions you desire in
your players. If you want to elevate your knowledge in this domain, you are going to have to examine
resources that are not necessarily game engine-specific. So, broaden your horizons! Here are a few
resources that will get you started:

•	 https://www.worldofleveldesign.com

•	 https://www.pluralsight.com/courses/fundamentals-professional-
level-design

•	 https://www.cgmasteracademy.com/courses/46-level-design-for-
games/

•	 https://www.edx.org/course/introduction-to-level-design-2

You had to write a water shader in this chapter. Working with shaders is often described as the least
entertaining or the most confusing experience among game developers. We’ll give you two links so
that you can familiarize yourself with this topic. The former is the official Godot documentation,
which should help you produce more direct results in your projects, while the latter should be useful
for more long-term needs:

•	 https://docs.godotengine.org/en/stable/tutorials/shaders/

•	 https://thebookofshaders.com/

https://www.worldofleveldesign.com
https://www.pluralsight.com/courses/fundamentals-professional-level-design
https://www.pluralsight.com/courses/fundamentals-professional-level-design
https://www.cgmasteracademy.com/courses/46-level-design-for-games/
https://www.cgmasteracademy.com/courses/46-level-design-for-games/
https://www.edx.org/course/introduction-to-level-design-2
https://docs.godotengine.org/en/stable/tutorials/shaders/
https://thebookofshaders.com/

10
Making Things Look Better

with Lights and Shadows

We have a simple and clean-looking level design, but it could use a good makeover. For example, the
sconces on the walls and the candles on the floor are just sitting there without adding much interest
to the scene. Also, there is the slight issue of having this level as an underground environment since
this is a cave. We must find a way to simulate the light from the exterior since Clara sailed her boat
in. Overall, we will have the level be lit just enough for the players to perceive things.

In this chapter, we’ll introduce lights and shadows to our workflow so that our scene looks visually
appealing. We covered lights earlier in Chapter 4, Adjusting Cameras and Lights, but we did that in the
context of Blender. While generic concepts still apply, we’ll have a chance to do things from a game
development perspective this time instead of taking an artistic render in Blender.

Shadows are not automatically available in Godot. Therefore, we’ll show you how to turn them on and
discover some of the shadow settings that balance quality and performance. Besides placing light objects
and enabling shadows, and altering their qualities, we will present a higher-level concept, creating
a WorldEnvironment. This is also referred to as post-processing and it’s a great tool to improve the
look and feel of your scenes.

Although we’ll be improving the level with each new addition of the topics we have listed so far, to tie
this all together, we’ll also tackle a somewhat advanced topic, global illumination, which will add a
realistic touch to the scene.

We have many steps to take before we will have created a handsome-looking level. In this chapter, we
will cover the following topics:

•	 Adding different types of light

•	 Enabling and adjusting shadows

•	 Creating post-processing effects

•	 Using global illumination

Making Things Look Better with Lights and Shadows180

Even though the purpose of this chapter is to understand how the lighting system works, we’ll introduce
a few complementary Godot topics along the way.

By the end of this chapter, you’ll be able to utilize lights and enable shadows, as well as to take advantage
of global illumination and post-processing effects that will further enhance the atmosphere in the level.

Technical requirements
We’ll add and change things from where we left off. You have two options at this point – you can
either keep working on your copy from the previous chapter or use the Finish folder mentioned
in Chapter 9, Designing the Level, which is available in this book’s GitHub repository: https://
github.com/PacktPublishing/Game-Development-with-Blender-and-Godot.

Adding different types of light
In Chapter 4, Adjusting Cameras and Lights, we discussed how different types of light worked – more
importantly, the kind of effect they bring to a scene. In this chapter, we’ll revisit the same topic but
pursue the effort in the context of Godot.

Blender uses four light types: Sun, Point, Spot, and Area. However, Godot has only three lights,
as follows:

•	 DirectionalLight: This is the equivalent of the Sun light in Blender. We stated directionality
in the Sun light’s description. The angle of this light type is the most important since it’s an
infinitely distant light source, so all its rays are considered to flow parallel to each other. So, in
Godot, this concept is part of the node’s name, hence making it easier to remember.

We’ll not be using this type of light in our scene since it’s an indoor environment. Despite
that, it may still be tempting to utilize it to give an overall light effect, but this light source
would overwhelm the whole scene. We need something else that can be fine-tuned as we go.
Therefore, we’ll focus on the two other light types.

•	 OmniLight: This is what the Point light is in Blender. Lightbulbs and, yes, the sconces on the
walls, are the right kind of objects for which this type of light is good. As a reminder, omni
means in every direction.

•	 SpotLight: This one is self-evident – it’s the Spot light in Blender. It’s good for simulating car
lights, flashlights, and any other light source that has a beam-like quality. We’ll be using this
light to simulate the exterior light creeping into the cave.

So, where is the Area light in Godot? It simply doesn’t exist. There are different mechanisms in
Godot that you can use to simulate the effect of an Area light in Blender. Often, this kind of light is
for mimicking the light coming in from a window, and it can be simulated with emissive materials.

Speaking of using different types of light, let’s start by lighting those candles.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Adding different types of light 181

Lighting candles

For this type of exercise, the OmniLight type is the right choice, but how many are we supposed
to have? If you look closely at the candle model, you’ll see that the model is composed of multiple
candles; some short, some tall. Does it make sense to place one OmniLight above each wick? It’s
entirely possible but it’s also an artistic decision to make, and we leave it to you.

In our case, we’ll assume that the overall light coming from this object could be reduced to a point
over the candles’ wicks. Thus, it’s perfectly fine to place one OmniLight for the whole model. It’s time
to demonstrate how this can be done:

1.	 Double-click Candles_1.glb in FileSystem to create a New Inherited scene. Save it as
Candles_1.tscn in its original folder (Models/Candles/).

2.	 Add an OmniLight to the Scene tree.

3.	 Adjust its Y position to 0.8, for example, so that it’s slightly over the wicks.

This will place a point light in your candle scene. Right now, with the default settings, it’s hard to see
the impact. If you get close to the light object and adjust your camera angle so that you no longer see
the horizon and the sky, you can get a better view. Perhaps turn the visibility of OmniLight on and
off in the Scene tree to see the light’s contribution.

We’ll leave most of the settings in the Inspector panel untouched for now, but you can change the
light’s color to, for example, d6d58e. This can be found under the Light section in the Inspector
panel. The result is as follows:

Figure 10.1 – An OmniLight with a yellow color right over the candles

Making Things Look Better with Lights and Shadows182

Let’s take a moment to discuss why we’ve added a light to a scene that we are constructing out of a
model instead of directly adding it to the level scene. After all, we already had several Spatial nodes
to hold items that were similar, such as walls, columns, and more. We could have created a Spatial
node called Lights and stuck a bunch of OmniLight nodes in there.

By introducing a light node to the model scene instead of the main level, you can utilize this candle
scene in other scenes as well. Hence, you don’t have to create more light objects and position them
over all the candles in the level. When you are decorating a level, and when you need candles, they
will arrive as a full-service package.

Overcoming the jagged edges
After adding lights to the scene, you may notice that some objects look jagged around the edges
since the details are popping up more. To eliminate this, you can turn on the anti-aliasing setting.
The hard edges will be smoothed out, objects will blend more seamlessly, and everything will
look easier on the eyes. To enable it, set the Msaa value to 2x. This setting can be found under
the Quality subsection of Rendering in Project Settings.

So far, so good, but will the lights always be on? It seems so, for now. Let’s see how we can complete
the full-service aspect of the candles by introducing a mechanism that will switch the lights off. To
do this, we need to add a short script:

1.	 Right-click the root node (Candle_1) and choose Attach Script.

2.	 Keep everything the same in the upcoming pop-up screen, but change the path so that it
shows /Models/Candles/Candles.gd.

3.	 Your script file should contain the following lines of code:

extends Spatial

export(bool) var is_lit = false setget switch

func switch(condition):

    is_lit = condition

func _process(_delta: float) -> void:

    $OmniLight.visible = is_lit

This will create a toggle state for OmniLight, and it’ll start its life off by default. Only when the player,
or you as a developer, change the value of is_lit will the light become visible again.

Adding different types of light 183

To test this without running the game, you can add the tool keyword at the beginning of the script
and see your changes live while you are still working on the level. Observe how the light’s visibility
changes in the Scene panel when you toggle the state of is_lit in the Inspector panel.

We have another candle model, Candles_2.glb, that could also benefit from all this. Instead of
starting from scratch, this is what we suggest you do:

1.	 In the Candles_1 scene, right-click the OmniLight node in the Scene tree and choose Copy.

2.	 Create a scene out of Candles_2.glb and save it in its original folder.

3.	 Right-click the root node of this new scene and choose Paste.

4.	 Select the root node and attach Candles.gd to the Script property in the Inspector panel.

This will minimize the number of steps you have to take to add an OmniLight, position it, then write
pretty much the same script for controlling it. Here, we are using the same script for both scenes since
the node references in the scene are the same. After making our most recent changes, the Godot editor
will look as follows:

Figure 10.2 – A new candle scene using the same script for switch functionality

Although we have been working on a smart way to add lights via attaching light objects to the candle
models, we haven’t made any changes to the level itself. We will discuss this next and share a few words
about workflow improvements that you can make in your future projects.

Introducing candles to the level

In Chapter 9, Designing the Level, we instructed you to instance glTF files directly to the level, which
kept the filesystem clean without creating redundant .tscn files. Otherwise, you’d have had one scene
file per model with no purpose at all. A simple workflow such as only adding the models to a scene is
often enough, especially in cases where you don’t have prior knowledge of where your project is headed.

On the other hand, in certain cases, such as where you have candles and sconces, you will most likely
have a light node beside a MeshInstance node, as well as a script attached to control the light’s behavior.
In that case, it pays off to convert the model into a scene and build up from there.

Making Things Look Better with Lights and Shadows184

The Scene tree for the level still holds the raw candle models. In Chapter 9, Designing the Level, we used
two types of candles but three models in total to decorate the level. It’s perfectly alright to remove these
models from the level so that you can instance the new candle scenes. You would have to reposition
these new items though. So, we’ll follow a different path to keep the position information:

1.	 Select Candles_1 in the Scene tree.

2.	 Instance Candles_1.tscn, which will result in a nested node.

3.	 Drag this nested node out of its parent and make it a sibling of its parent.

By nesting the candle scene inside the old model instance, we are appropriating the position. If you
added the candle scene directly into the Props node, you’d have to find the position of the model
instance and apply it to the new item.

You can repeat this process for the other two candles, which will eventually double the number of
visible candles in the level. That being said, our initial three candle model instances are no longer
necessary, so you can delete them. Also, notice how a script icon appears in the Scene tree when you
bring the candle scene versus keeping just the model itself. The following screenshot shows the result:

 Figure 10.3 – The new candles in the Scene tree have script icons

The preceding screenshot shows not only the more advanced candles that have been added to the level
but also the fact that you can turn these candles on and off via the Is Lit property in the Inspector
panel. Similar to what you’ve done for the candles, you can continue practicing point lights by creating
a scene out of the sconce model. In that case, the light object’s position in the scene will most likely
be higher since the model is taller, but the concept is the same. You can even bind the same script to
the root of this sconce scene.

This creates a bit of a dilemma though. So far, we have kept everything related to candles in their own
folder, with the script included. However, the light switch script is so generic that it could be used
within any scene that has a similar structure. Although it’s also possible to attach the Candles.gd
script inside the Candles folder to a scene in a different folder, if you want to generalize things, you
can move the script file into a separate Scripts folder at the root of the project.

Adding different types of light 185

This is one of many project management conundrums you’ll face, so it’s up to you how you want to go
with it. We’ve decided to keep things as generic as possible. Hence, the Finish folder of this chapter
will have both the candles and the sconce share the light script from the Scripts folder.

After swapping the sconce models with the sconce scenes, the level will have a bit more character, as
shown here:

Figure 10.4 – Three candles and four sconces are illuminating the level

We have the basic lights covered, but we still don’t have the kind of light effect you may see inside
a cave. The idea is that Clara used an opening to enter this structure, so it makes sense to get some
sunlight into the general area. We’ll achieve this by using a SpotLight node.

Mimicking the sunlight

The narrative in our game is that the dock area Clara secured her boat to wasn’t too far off from the
entrance. Hence, it makes sense to get some sunlight from the exterior. An easy way to get an effect
like this is to use a SpotLight node. Let’s also discuss an alternative.

Using a DirectionalLight node seems tempting at first, but that would brighten the whole scene. Also,
we want this cave to look as dark as possible, and only to be illuminated with artificial lights such as
candles and sconces. To achieve both goals, you’d have to position planes over the level, pretending
that they’re the cave’s ceiling, to block most of the light. So, since that kind of effort feels counter-
productive, we’ll try to light what we need instead of blocking the light.

Therefore, using a SpotLight node seems to be the best choice we have. We’ll describe the process we
used to place the light over the level so that it highlights the boat and a portion of the pier. Here we go:

1.	 Select the root node of the level (Level-01).

2.	 Add a SpotLight node and position it over the boat seven units or so in the Y direction.

3.	 Rotate it -70 degrees in the X and Y directions (hint: use Rotation Degrees under Transform
in the Inspector panel).

Making Things Look Better with Lights and Shadows186

4.	 Change its color to d6d58e.

5.	 Expand the Spot section in the Inspector panel and set the following values:

I.	 Set Range to 20.

II.	 Set Angle to 55.

We’ll provide you with a screenshot right after we explain what the intention with the light’s placement
is and give a disclaimer about the screenshot itself. Since the default environment settings in your
Godot project will result in a scene that’s too bright for you to see the impact of what you are doing, we
temporarily tweaked some settings to better highlight the contribution of the light you are working with.

We’ll study environment effects in the Creating post-processing effects section after we finish exploring
lights and shadows. For now, we still owe you an explanation about the settings of the SpotLight node.
Even when you’ve been following a similar layout, the coordinates you have picked for your floor tiles
might be so different that there is no easy way to ask you to place the light in a certain position. Hence,
we are giving you a mix of general and precise directions. This is what we have got so far:

Figure 10.5 – The SpotLight node simulating the sun in the cave

Enabling and adjusting shadows 187

The preceding screenshot shows the SpotLight node right above the boat’s back. We chose the top-down
view for you to see how far the light goes from this object. The Range and Angle properties you set in
the Inspector panel will configure this light source so that it reaches far and wide enough to illuminate
the entrance partially. Thus, if your layout necessitates different values so that you have an area lit just
enough, as shown in the reference picture, you may have to alter the rotation and position values.

If you fancy, you could create another SpotLight node and alter its values as if there is a secondary
opening in the rock formation that is letting more light through. Once you figure out the technical
parts, it’s up to you to push the envelope for an artistic result that pleases you.

So far, we’ve been analyzing different types of light and their impact on our level. With light, we usually
expect shadows. These are not enabled by default, so we’ll discover how to turn them on, as well as
adjusting a few settings in the context of our project.

Enabling and adjusting shadows
In some situations, such as in stage arts, engineers work hard to illuminate parts of a stage with lights
by casting their beams from so many angles that shadows can be eliminated. That’s an extreme case.
Normally, a shadow is something that occurs naturally when there is a nearby light source.

Despite this natural phenomenon, simulating shadows doesn’t automatically happen in computer
simulations just because there is a light object. The GPU has to know where the light is coming from
and how strong it is. So, it can create an area, starting from the base of the object the light is turned
to, and stretch this area out gradually in the opposite direction to the light by blending it into the
surface the object is standing on. This is approximately how shadows are calculated and simulated
by computers.

In Godot Engine, a light source is responsible for its own shadow. This means the shadow settings are
part of a light object, but since the effort is resource-intensive, Godot has this property turned off by
default. Let’s look at an example and see how we can enable it:

1.	 Double-click the Candles_1.tscn item in FileSystem to open it.

2.	 Select the OmniLight node and expand its Shadow section in the Inspector panel.

3.	 Turn the Enabled property on.

Making Things Look Better with Lights and Shadows188

The color of the shadow is irrelevant at this point, but it might be something you can tweak in your
projects to get the dramatic effect you wish. At this point, we advise you to open the Candles_2 and
Sconce scenes to enable the shadow for the OmniLight nodes they have. When you save all these
three files and go back to the Level-01 scene, you should see something similar to the following:

Figure 10.6 – Let there be shadows, and shadows you shall have

Notice how enabling shadows elevates the experience overall. The column, the crates, and the other
objects have started to come to life. There is one big missing piece in this picture, though: we still
haven’t enabled the shadows for the light source we are using to simulate the sun’s effect. Go ahead
and turn its shadow on; you’ll make the pier pop up, as shown here:

Figure 10.7 – The pier and the boat look more realistic thanks to the sun’s shadow effect

Creating post-processing effects 189

We are slowly improving the visual quality of the level. Our last effort introduced shadows. They are
nice and all, but sometimes, they can also create a few defects. Now, let’s talk about some of the settings
you can find in the Shadow section of light nodes in the Inspector panel:

•	 Bias: Some names you come across in game development will sound technical, and won’t always
give you a quick idea about what they control. This one certainly sounds like one of those. In
simple terms, this property controls where the shadows are going to start in comparison to an
object’s volume. A picture is worth a thousand words, so please refer to the following diagram
to see what different Bias values will lead to:

Figure 10.8 – Different bias values and their effects

•	 Contact: When you have a high Bias value, and it creates a gap between the shadow and the
object (as shown in the preceding diagram), this property will try to fill in that gap.

So, if you happen to have visual glitches due to enabling shadows, which may result in shadows not
always meeting an object or self-shadowing issues, as shown in the preceding diagram, we suggest
you explore using a combination of the Bias and Contact properties for your lights.

The level is starting to look like there is more life to it, thanks to lights and shadows. Still, everything
looks a bit too bright. If only we could dim the overall brightness… We certainly can, and that’s what
we are going to explore next.

Creating post-processing effects
Since we are pretending that Clara is visiting a cave that’s got some human traffic in its past that led
to having a pier built and sconces hung on the walls, it’s only normal to expect some areas of it to be
really dark. We have been placing lights and turning on shadows to improve the visual fidelity of our
scene, but we are fighting against the environment; it’s just too bright.

Making Things Look Better with Lights and Shadows190

In this section, we’ll study an interesting Godot node that will control the environment or world settings
so that you have a much better hold on how your world looks. This kind of process is also referred
to as post-processing since its effects are applied after the directly placed elements such as lights,
shadows, reflections, and others have been processed. It comes with a lot of settings, and hopefully,
this will be clearer after we explore some.

A node for everything
If you are coming from Unity, then the node system Godot uses might be confusing. In Unity,
you attach scripts to game objects to add or control the behavior of systems. Nodes are analogous
to scripts in Unity, but nodes are much more practical since you can also attach scripts to Godot
nodes. This is convenient since you can nest nodes and compose bigger node structures. In
Godot, you’ll most likely find a node that will do a crucial job. One such node is what we are
discussing in this chapter. Also, you can find more about the process behind using nodes in
the Godot’s design philosophy section at https://docs.godotengine.org/en/3.4/
getting_started/introduction/.

Godot has a nifty node, WorldEnvironment, that is responsible for the overall atmosphere in your
scenes. Although the node’s name is quirky, introducing it to the level is no different than adding
other nodes:

1.	 Open the Level-01.tscn scene.

2.	 Add a WorldEnvironment node to the Scene tree. For its Environment property, use
default_env.tres from FileSystem.

3.	 Double-click default_env.tres in FileSystem to populate the Inspector panel with
its properties.

Chances are nothing has changed, but we have effectively created a WorldEnvironment node and
attached an environment resource to it. When you create a new Godot project, it comes with a default
environment resource. Instead of creating a new resource, we are repurposing the default environment
resource that’s been sitting in the project folder all this time.

This opens up different possibilities for you. Your game may have different levels where you would
like to have the visual clues support the characteristics of a particular level. In a situation like that,
your project folder could store multiple environment resources and use them accordingly in the
WorldEnvironment node.

Although the WorldEnvironment node’s purpose may sound self-evident by its name, to fully take
advantage of it, it would be best if you practice using its properties. You can do this by looking at the
properties of the resource it’s using. There are quite a few and we’ll discover the ones that are relevant
to our goal.

https://docs.godotengine.org/en/3.4/getting_started/introduction/
https://docs.godotengine.org/en/3.4/getting_started/introduction/

Creating post-processing effects 191

Background

This part of the environment’s settings is responsible for simulating the background. Currently, the
mode is set to Sky, so the background is painted as if there is a dark ground portion that goes out far
enough to meet the sky. In this mode, you can further customize the properties of the sky you want
to depict. We won’t cover this since we are working with an indoor scene.

Thus, start by changing the mode to Custom Color. This will pick a black color by default, so the whole
background of your scene will be pitch black. This will surely accentuate the candles and the sconces.

If you would like to use Godot Engine to take in-game renders of your models, then you can set the
background to Clear Color, which will create a transparent color. We’re not using it in our case since
having a completely dark background suits our artistic needs better and also, the body of water looks
a bit awkward with transparency underneath. We’d need another similarly sized dark plane under it
to hide the effect of transparency.

Therefore, we’ll stick with a custom background color. This will result in the following output:

Figure 10.9 – The cave is starting to look more ominous

Just a quick discussion about the Ambient Light section before we move on to ToneMap. The arched
door seems to be hidden right now because there aren’t enough lights in the scene. So, to remedy this,
you could pick a lighter ambient color. However, this will make the overall scene brighter again, and
you’ll have some of the dark areas more lit. There is a much more judicious way to keep darker areas
still dark but have the effects of light sources spread out further. We’ll look into achieving this kind
of getting the best of both worlds later, in the Using global illumination section.

Making Things Look Better with Lights and Shadows192

ToneMap

This is something you can use as a quick solution for blending lights into darker areas, which will
make everything look a bit more homogeneous. It comes with a few properties of its own:

•	 Mode: The default mode is Linear, and this is what you’ve been experiencing all along. We
leave it to your taste, but we suggest you change it to Filmic or ACES Fitted. It’ll remap the
tones of the whole scene to the point that things will start to look more realistic.

•	 Exposure: Compared to Linear mode, the other modes may make your scene look really dark.
Changing Exposure will brighten the scene while still applying the tone mapping.

•	 White: Digital cameras have a setting similar to this one. You designate a tone as white so that
the other colors can be calculated according to this new baseline. Smaller values will blow out
the whole scene because it’ll start considering a lot more colors as white. Naturally, higher
values will exclude more colors, and make the scene darker.

We won’t mess with the Exposure and White values in our exercise, but this is what we have after
choosing ACES Fitted for ToneMap:

Figure 10.10 – Everything looks more pronounced thanks to tone mapping

Since we’ve touched on the concept of exposure, a quick word about enabling Auto Exposure. We
won’t use it in our work, but it is a helpful option for mitigating some of the problems you may face
when the camera transitions between indoor and outdoor areas.

Creating post-processing effects 193

Screen Space Reflections (SSR)

When some objects have reflective qualities due to their material settings, such as Metallic, Specular,
and Roughness, turning this environment setting on will create a more realistic effect.

To appreciate the impact of SSR, the level must have more light, so it may not look like much is
changing when you turn it on. The body of the statue has a reflective material. Thus, if you zoom
into that area, you should be able to see some reflection where the feet of the stag meet the pedestal.

Reflections will be more pronounced when there are more lights nearby. When we work on the player
character’s involvement in Chapter 12, Interacting with the World through Camera and Character
Controllers, and Clara walks by the statue with a torch in her hand, you may notice the effect even
better. Until then, we’ll simply have this feature enabled.

Ambient Occlusion (SSAO)

This isn’t the first time we have come across this term. We first got to know it in Chapter 4, Adjusting
Cameras and Lights, when we wanted to emphasize the edges of the objects where they connected.
Similarly, we’ll turn this setting on in Godot too, but we have to tweak a few properties:

•	 Light Affect: You won’t see the effect of Ambient Occlusion without the contribution of this
property, so we are describing it first. It’s for adjusting the role of light sources in the occlusion.
We’ll set it to 1.0.

It seems as if we are using it as an on/off switch in our current situation. However, since it
can be any value between 0.0 and 1.0, you can use it as a useful scale by controlling the
value with scripts. This works in cases where you don’t want to fully turn off the occlusions
but gradually decrease them.

•	 Radius: When objects are close to each other, the contact points will look occluded. This
setting is for adjusting the area that will be considered in the calculation for creating the correct
amount of occlusion. We picked 0.4 as our value, but you can set it to any value, depending
on your taste.

Additionally, the Intensity property can be used with Radius to create more accurate
occlusions. Also, with the help of a secondary set of radius and intensity, you can overlay
more details.

Making Things Look Better with Lights and Shadows194

As with most things in game development, adjusting the correct amount of Ambient Occlusion is
often an artistic endeavor. With the suggested values, the result will be as follows:

Figure 10.11 – The level after Ambient Occlusion has been turned on

The preceding screenshot may not be doing what we have achieved much justice. However, if you
compare the previous two screenshots, you can see the occlusion in between the bricks, and also where
the crates are making contact with the floor.

Glow

This feature is often referred to as the bloom effect in other applications. It’s used to exaggerate the
effect of colors, and especially light sources. While it has many properties, we’ll only focus on a couple:

•	 Bloom: A value such as 0.2 will be enough to accentuate the effect of the sconces and the
candles. In essence, while dark areas will stay relatively dark, lit areas will be glowing.

•	 Blend Mode: To increase the impact further, we suggest that you set this to Additive. It’ll give
the lights in the scene a real nice cozy effect since the light sources are open fires.

Creating post-processing effects 195

We won’t touch the rest of the settings. The following screenshot shows the final state of the level:

Figure 10.12 – Our light sources glow in the dark

In the Glow settings, there is a particular section called Levels. You can expand that area and decide
how far out the bloom and blur effect will emanate. It’s useful when you want to adjust the detail of
the bloom that’s engulfing an object.

Adjustments

While applying different environmental effects, some of the features will be competing against each
other. Even though we have more oomph for the lights, and more defined contours and shadows for
the models, after a while, you may end up with a scene that looks a bit washed out. You will employ
two properties of the Adjustments feature that will give your scene a decent touch:

•	 Brightness: Our main tool to remedy the washed-out look is increasing the contrast. However,
turning up brightness alongside contrast works better. Feel free to adjust it the way you like it,
but a value such as 1.1 or 1.2 might be enough.

•	 Contrast: This will tidy up the dull look and give the whole scene a more vibrant look. Using
a value such as 1.1 will make things look better in tandem with more brightness.

We could go on forever while changing so many of these settings. Depending on your taste, you may
prefer different effects. However, we are content with what we have so far.

Making Things Look Better with Lights and Shadows196

Wrapping up

Our level’s look has changed drastically since we first started laying out the floor and wall pieces.
Ordinary-looking brick surfaces now have character, and the scene looks more ominous, thanks to
lights, shadows, and finally, the environment settings. This can be seen here:

Figure 10.13 – The post-processing effects are all in place and working together

Depending on the atmosphere you want to create for your game, you can come up with a different
combination of post-processing effects. Also, you can adjust their values programmatically during a
game session to entice the player even more.

When one is too many
Post-processing effects are nice. You may feel like a kid in a candy store. However, keep in mind
that some effects will enhance each other, and some will outdo each other. At the end of the
day, you may end up having too many effects in play that are a burden on your computer. You
can hear the cost of it when your GPU is vehemently trying to cool off.

Despite our efforts to improve the look of our level, there is room for improvement. While we have
noticeably enhanced dark and bright areas, the scene is still missing another real-life quality that is
often referred to as global illumination in the industry.

Using global illumination
If you’ve ever used a digital camera, you may already be familiar with the concept we are going to
present in this section. Our brains, through expectation and familiarity with a similar environment, will
blend in the light with darker areas, and fill in the missing parts. A camera, on the other hand, doesn’t
have prior knowledge of how places must look, and it can’t process dark areas as well as our brains.
In other words, the human brain approximates the missing parts and paints a more complete picture.

Using global illumination 197

The rendering engine has worked like a camera so far. If you look at the level now, you’ll see that the
arched door is in the dark. It would be nice to have certain areas look more like what we would expect
them to look like. If we increased the intensity of the light sources, it would cast the light farther away.
However, we’d still end up with some areas darker than others. We need something that extends the
effects of the existing light sources similar to the way our brains process light.

To that end, we’ll introduce global illumination to achieve a more realistic look. Via this method, the
area near the arched door will look like it’s getting more light from nearby candles and sconces. If you
haven’t guessed it already, there is a node for this job. Let’s add it to our scene:

1.	 Select the root node of the level.

2.	 Add a GIProbe node.

3.	 Adjust Extents in the Inspector panel so that x is 12, y is 5, and z is 15.

4.	 Turn its Interior setting on.

5.	 Position this probe in your level so that it engulfs everything like an envelope.

GIProbe will resemble a green wireframe cube initially. After you place it so that it wraps around the
level, the Godot interface will look as follows:

Figure 10.14 – GIProbe is in place but it’s not functional yet

This node will probe the light sources in its volume. Then, it will interpolate this information to
darker areas so that the light can be distributed more evenly, just as our eyes would expect. Although
the probe is ready, we need to take care of two important things before we trigger the calculations.

Making Things Look Better with Lights and Shadows198

Turning on Light Baking

We have already seen some of the import settings relevant to 3D models. For example, we saw that
materials are imported automatically because it’s the default setting in the Import panel. Also, using the
Animation section in that panel, we were able to extract the actions from a model into the filesystem.
All this was covered in Chapter 7, Importing Blender Assets into Godot.

We’ll revisit the Import panel for a different need this time. We want some of the models to receive
more light. So, by turning Light Baking on, some models will receive extra lighting information
that’s been sent by GIProbe. As the name suggests, this technique will bake some of the light in the
scene into a model’s material once. Then, it’ll get updates as needed when the light conditions change.

So, we’ll pick a list of models that look like they could benefit from light baking since they have large,
uninterrupted surfaces:

•	 Wall (Wall_Hole)

•	 Curve

•	 Floor_Standard (Floor_Standard_Curved_1 and Floor_Standard_Curved_4)

•	 Column_Round

Smaller objects such as props are usually not good candidates for light baking, but technically, you
can turn the setting on for any model you import. For now, we’ll select the wall model and enable
light baking for it:

1.	 Select Wall.glb in FileSystem.

2.	 Bring up the Import panel and scroll down to find the Light Baking option (hint: this is the
last option in the Meshes section).

3.	 Change its value to Enable.

4.	 Click the Reimport button.

5.	 Repeat this process for the other aforementioned models.

Generally speaking, we are enabling light baking for the architectural models in the scene. This is one
part of the equation. Now that we have configured the models to accept light baking, we have to tell
the renderer how much light should be baked into the materials for these models. We’ll do that by
adjusting the energy levels of the light sources we have used so far.

Adjusting Indirect Energy

The second most important thing in having proper global illumination is to adjust the energy levels
of the light sources. Although this section’s title indicates that we’ll be adjusting indirect energy levels,
it would also be useful to talk about what direct energy means.

Using global illumination 199

In Blender, you changed the direct energy level for lights by adjusting their Power properties, which
were measured in Watts. That meant you could have typed in real-life lightbulb values to get an accurate
result. Godot’s energy values for lights don’t follow a unit system. So, it’s more of an artistic value you
can adjust based on your scene and liking.

While the Energy property, also known as direct energy, defines how intense the light will be, its
Indirect Energy value is used to calculate the natural effect we described earlier in the opening lines of
the Using global illumination section, where we made a comparison between human sight and cameras.

There is a simple way to observe this effect at home when it’s sufficiently dark. You can light a candle
and observe that there is going to be an adequately lit area near it. Then, the light will drop off gradually
into the distance, but you’ll still be able to notice some faraway objects. Their details won’t be quite
clear, but their most characteristic shapes will be apparent to the eye. It’s possible to simulate this kind
of effect with indirect energy using GIProbe.

For this effort, we have to adjust some of the OmniLight nodes we have used so far:

1.	 Open Sconce.tscn and select its OmniLight node.

2.	 Change its Indirect Energy to 2.5 under the Light section.

3.	 Change its Range to 8 under the Omni section.

This will increase the range of the light that’s emanating from the sconces so that it’ll reach farther.
The energy level of 1.0 has already been used, hence we’re only adjusting the indirect energy since we
want it to contribute to global illumination.

Let’s repeat this effort for the candles with different values:

1.	 Open Candles_1.tscn and Candles_2.tscn and select their OmniLight nodes.

2.	 Change Indirect Energy to 1.5 and Range to 3.

Compared to sconces, candles shouldn’t emit that much light. So, it makes sense to have lower values.
However, since there isn’t one candle but a group of candles, the values aren’t too far off. This is
something you may have to balance in your work too: artistic concerns versus realism.

We’ve been settings things up for GIProbe to do its job. It seems like we have increased the overall
light in the scene. We need it to be that way since some of this extra light will go toward calculating
a better light distribution. All there is left to do is trigger GIProbe:

1.	 Select GIProbe in the Scene tree.

2.	 Click the Bake GI Probe button in the header just above the 3D view.

Making Things Look Better with Lights and Shadows200

Godot Engine will calculate how light bounces off the surfaces of the models for which you have
enabled light baking. Depending on the intensity, range, and indirect energy of the lights, the darker
areas will receive more light. This will result in a more even distribution and give a more realistic look
that meets our expectations. Figure 10.15 shows the before and after of what global illumination does
for the area near the arched door:

Figure 10.15 – The door has become more noticeable thanks to more evenly distributed light

Depending on the size and layout of your levels, you may need to place multiple GIProbe nodes. For
example, if you were designing a dungeon with many rooms and hallways, it might be a better idea
to consider each room and hallway as a unique GIProbe node since the distribution of lights will be
achieved more accurately.

Also, when you have a level where an outdoor environment is connecting to an indoor environment,
it’s a good idea to create one GIProbe for each area and adjust the Interior settings accordingly.
Using one major node that encompasses the whole level will do an injustice to either environment,
so introduce as few and, sometimes, as many as necessary.

With that, we have improved the look of our level. Let’s summarize the steps we have taken to get here.

Summary
The level we took over from the previous chapter looked complete, and yet uninteresting. To give it
more life, we introduced a few instruments in this chapter.

First, we introduced two types of light nodes, OmniLight and SpotLight, to simulate candles, sconces,
and the sun’s effect in the cave. While accomplishing this, you also saw the reason why creating a scene
for a model might be useful, as well as necessary, compared to instancing the models directly in the
level. This effort was followed by adding a small script that can help you switch the lights if needed.
We’ll utilize this functionality later in this book.

Further reading 201

Though lights were an obvious tool for improving the visuals, we also investigated shadows. They
are resource-intensive, so you may want to turn them on for the lights that will have an important
impact on your scenes.

To truly appreciate the effect of lights and shadows, we applied a bunch of environment settings.
Although this helped the visuals a great deal, to elevate the realism to the next level, you’ve been
introduced to global illumination. By carefully choosing which models should receive more indirect
light and adjusting the setting of the lights in the scene, you’ve shed more light on certain areas, which
resulted in a more accurate representation.

In the next chapter, we’ll work on a different kind of visual system. It’s a useful mechanism with which
players can interact with the world: user interfaces.

Further reading
Out of all the topics we have presented in this chapter, global illumination is the most technical one.
Simulating real-life light is a challenging task, and professionals out there are still actively working
toward this goal. If you want to get a taste of it, here are a few links that should give you a better idea
about what it involves:

•	 https://ohiostate.pressbooks.pub/graphicshistory/chapter/19-5-
global-illumination/

•	 https://www.scratchapixel.com/lessons/3d-basic-rendering/global-
illumination-path-tracing

•	 https://developer.nvidia.com/gpugems/gpugems2/part-v-image-
oriented-computing/chapter-38-high-quality-global-illumination

On a more practical note, the official Godot documentation might be useful if you wish to learn more
about what we have covered in this chapter:

•	 https://docs.godotengine.org/en/3.4/tutorials/3d/lights_and_
shadows.html

•	 https://docs.godotengine.org/en/3.4/tutorials/3d/environment_
and_post_processing.html

•	 https://docs.godotengine.org/en/3.4/tutorials/3d/gi_probes.html

https://ohiostate.pressbooks.pub/graphicshistory/chapter/19-5-global-illumination/
https://ohiostate.pressbooks.pub/graphicshistory/chapter/19-5-global-illumination/
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing
https://developer.nvidia.com/gpugems/gpugems2/part-v-image-oriented-computing/chapter-38-high-quality-global-illumination
https://developer.nvidia.com/gpugems/gpugems2/part-v-image-oriented-computing/chapter-38-high-quality-global-illumination
https://docs.godotengine.org/en/3.4/tutorials/3d/lights_and_shadows.html
https://docs.godotengine.org/en/3.4/tutorials/3d/lights_and_shadows.html
https://docs.godotengine.org/en/3.4/tutorials/3d/environment_and_post_processing.html
https://docs.godotengine.org/en/3.4/tutorials/3d/environment_and_post_processing.html
https://docs.godotengine.org/en/3.4/tutorials/3d/gi_probes.html

11
Creating the User Interface

To start this chapter, let’s begin by asking a simple question: what was the first multiplayer game
you played?

If you are thinking of a PC or a console game, try thinking another way. Imagine a bunch of kids
holding their arms out, pretending to shoot and take down the bad guys invading their neighborhood.
Perhaps there was an evocative action movie the night before on TV. Now, these kids are bringing to
life what they think is possible within the realm of physics, mixed with a bit of fantasy and what they
remember from the movie. Some kids will even pretend they have been harmed along the way. Fallen
comrades will be avenged in the end, and good will once again prevail against evil. Who’s keeping the
score here – that is, who has how many hit points?

How about the servers, internet speed, and likewise? Did the kids even need a user interface (UI) to
play their game? No, because it was still easy for them to keep track of what was happening. But when
the number of things people need to pay attention to gets beyond a certain point, it gets overwhelming.
In other words, a UI is needed when using a system without one becomes impractical.

This is not unique to video games. In the real world, you use an ATM to access your bank accounts.
The information and functions you need will be presented in a clear, concise manner; checking your
accounts, sending e-transfers, and accessing the current interest rates are quick and easy to do all from
one place, thanks to a well-designed UI.

In our game, despite what Clara expected, her uncle was not there but had left a note on the pier. We
need a way for the player to access this information. Thus, in this chapter, we’ll present a few of the UI
components Godot has in its arsenal to convey this message. We’ll start with a simple Button node,
followed by a Panel component. In this panel, we will display some text via the Label component.

While you are adding more and more UI elements to the game, you’ll also learn how to apply styles
to these so that they look more like they belong to the game world. After all, the default ones have
that default gray look, which might be better suited for prototyping.

Styling Godot nodes may feel tiresome after you do it more than a few times, especially if you are
doing it for the same kind of button with different text. As a solution, we’ll demonstrate how to take
advantage of themes, which is a powerful tool that will help you in your styling efforts.

Creating the User Interface204

As usual, we’ll be discussing a few relevant side topics that are pertinent to the creation of UIs. With
that in mind, in this chapter, we will cover the following topics:

•	 Creating a simple button

•	 Wrapping in a panel

•	 Filling the panel with more control nodes

•	 Taking advantage of themes

By the end of this chapter, you’ll have learned how to exploit UI nodes to help the player read the note
that Clara’s uncle had left for her.

Technical requirements
If you think you don’t have enough artistic talent to create UIs, then rest assured for two reasons. First,
we’ll mainly focus on utilizing the UI components in Godot. Therefore, the graphic design aspect won’t
be our concern. Second, we are providing you with the necessary assets in the Resources folder
in Chapter 11 of this book’s GitHub repository. Inside it, you’ll find two folders: Fonts and UI.
Simply merge these two folders into your Godot project folder.

This book’s GitHub repository, https://github.com/PacktPublishing/Game-
Development-with-Blender-and-Godot, contains all the assets you need. Lastly, you can
either continue your work from the previous chapter or utilize the Finish folder from Chapter 10.

Creating a simple button
A UI is a collection of components you lay out in a coherent manner around the core visuals of your
game. The most essential UI component to start with may have been a Label node if we wanted it to
be similar to printing “Hello, world!” when we are learning a new programming language. However,
we’ll start with a Button node since the former case is so trivial, and we can also learn how to style a
Button during this effort.

Before we start throwing around a bunch of UI nodes willy-nilly, we should first mention the right
kind of structure to hold our UI nodes. We can use CanvasLayer similar to using a Spatial node to
nest other nodes such as MeshInstance, AnimationPlayer, and others.

We’ve already been creating scenes mainly to display 3D models. Let’s follow similar steps for the
sake of creating the UI:

1.	 Create a blank scene and save it as UI.tscn in the Scenes folder.

2.	 Choose CanvasLayer for its root node and rename it UI.

3.	 Attach a Button node to the root and rename it Close.

4.	 Type Close for its Text value in the Inspector panel.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Creating a simple button 205

There’s nothing fancy going on so far, but we now have a button aligned, by default, to the top left
of the viewport. The width of this button also expanded when you were typing the text it displays.

Control versus CanvasLayer
We mentioned that a Spatial node would be the root node for 3D nodes. So, for the sake of
keeping things familiar, we could have used a Control node to hold the Button node. Rest
assured, you could still inject a Control node inside a CanvasLayer. The real reason we used a
CanvasLayer as the root is for its Layer property in the Inspector panel. By changing the value
of this, you can change the draw order, which means you can decide which CanvasLayer will
render first. This is a useful mechanism when you have multiple UI structures that need to be
layered on top of each other in a precise order.

The button we have just added looks boring. It doesn’t quite fit the world we are creating. Now, let’s
use a custom graphic asset to style our button:

1.	 Expand the Styles subsection in the Theme Overrides section of the Inspector panel.

2.	 Using the dropdown for the Normal property, select the New StyleBoxTexture option.

3.	 Click the StyleBoxTexture title as it will populate the Inspector panel with its properties.

4.	 Drag button_normal.png from UI into the FileSystem panel and drop it in the
Texture property.

5.	 Expand the Margin section and type 8 for all the margin values.

6.	 Press F6 to launch the UI.tscn scene and try to interact with the button.

You have taken quite a few steps to style a simple button, so let’s break down what’s happened.

In step 1, you told Godot that you wanted to override the default theme, which was giving that gray
look to the button. Without user interaction, the button will be in its normal state; so, that’s what you
intend to change in step 2. We’ll discover how to change the other states very soon.

Step 3 was about defining the properties of this Normal state. For this, you used an aptly named
texture file in step 4. Then, in step 5, you adjusted the margin values so that the texture permitted
the text to have enough room without snapping to the edges. For example, try to change the text of
the Close button to Lorem ipsum dolor sit amet. Notice how the button is getting wider
without looking stretched and keeping the rounded corners intact. This needs a proper explanation.

Setting margins involves doing more than just accommodating text. Carefully selected values will
make sure the texture will enlarge or shrink as needed without losing some of its qualities, such as
rounded corners. When the asset has rounded corners, if the texture is stretched, you will end up
with a distorted look. The practice of conserving the core features of a texture and allowing it to
be resized properly without distortion is called 9-slice scaling. You can learn more about it here:
https://en.wikipedia.org/wiki/9-slice_scaling.

https://en.wikipedia.org/wiki/9-slice_scaling

Creating the User Interface206

When you launched the UI.tscn scene in step 6, the button must have shown its normal state as a
brown texture. If you move your mouse over it, you’ll see that the button will show the default look
again because you haven’t set the hover state yet. This can be seen in the following screenshot:

Figure 11.1 – The button only has its normal state styled

Similar to the way you assigned a texture to the normal state of the button, you can do so for the other
states. Let’s do this for the hover state:

1.	 Select the Close button in the Scene tree.

2.	 Assign a New StyleBoxTexture to the Hover state in the Styles subsection under Theme
Overrides and click this StyleBoxTexture to set its properties.

3.	 Drag button_hover.png from the UI folder and set the margins to 8.

4.	 Press F6 and move your mouse over the button.

We’ll repeat this effort for the pressed and disabled states as well. We won’t use disabled buttons in
our game, but why not be thorough? Also, in most scenarios, you can repurpose the pressed state for
the focus state. The different results are shown in the following screenshot:

Figure 11.2 – The normal, hover, pressed, and disabled states of a button with a custom texture

Before we move on to introducing more UI nodes, we suggest that you change the text of that button
back to Close since we’ll use this button to close a panel that will simulate a note from Clara’s uncle.
Speaking of which, it’s time to learn what was written in that note.

Wrapping in a panel
So far, we have created a button and styled it. However, it would be nice if it served some purpose,
especially since we gave it a meaningful label. We’ll write some code so that this button can close a
panel near the end of the Filling the panel with more control nodes section. Before we get to that point,
though, we need the panel.

As we are introducing more UI nodes, let’s remember why we are doing this within the game’s context.
Clara’s uncle had left a note. We’ll simulate that note with a combination of UI nodes in Godot so
that it looks as follows:

Wrapping in a panel 207

Figure 11.3 – Clara’s note

We’ve already taken care of the button, but it is currently sitting in the middle of nowhere. We’ll wrap
it in a Panel node in this section after we give a short disclaimer.

A Panel node is just another Control node in Godot that usually holds other components. There is
a similarly named node, PanelContainer, which might be confusing for beginners. The Panel node
derives from the Control class, whereas the PanelContainer node inherits from the Container
class. Also, the Container class inherits from the Control class. This kind of technical detail might
be important when you are doing more advanced work. We won’t, so either one would work fine for
our intents and purposes in this book. Therefore, we’ll stick with the Panel node.

At this point, we are ready to add a Panel node and style it:

1.	 Add a Panel node under the root UI node in the Scene tree.

2.	 Expand the Rect section in the Inspector panel.

3.	 For the Min Size property, set the following values:

I.	 Type 600 for X.

II.	 Type 400 for Y.

4.	 Assign a New StyleBoxTexture to the Panel property in the Styles subsection under
Theme Overrides.

5.	 Drag the Close button over the Panel node in the Scene panel so that the Close button is nested.

Creating the User Interface208

At this point, you should have the following output:

Figure 11.4 – The paper texture has been simulated with the help of a Panel node

We are getting closer and closer to the desired design we imagined for the note. The button in the panel
is still aligned to the top left. You can drag it to a position that makes sense, but it might be easier to
decide on that if you have some text within the panel. That’s what we’ll take care of next.

Filling the panel with more control nodes
The uncle’s note is slowly taking shape. We’ll introduce a Label node in this section for the text portion.
Additionally, we’ll have to figure out how to position all these elements so that the note resembles
the layout we’d like to have. Lastly, we’ll discuss a few complementary Control nodes you may want
to use in some other scenarios.

After all, we will still employ the most basic UI node: Label. If we had used it at the beginning, it
would have looked unimpressive with its default style and color. Since we now have a proper texture
over which this Label node can go, things will look more interesting. Follow these steps to do this:

1.	 Select the Panel node in the Scene panel.

2.	 Add a Label node and turn its Autowrap property on in the Inspector panel.

Filling the panel with more control nodes 209

3.	 Set its Text to the following:

My dear Clara,

A close friend of mine is in dire need of help. I must leave
immediately.

Check out the backpack by the decrepit cart. Inside, you will
find a key to upstairs. Make yourself at home.

Your uncle, Bert

Our last effort will result in an awkwardly tall text block. To remedy this, we could manually give
some width and height to the Label node we have just inserted. While we are doing that, we could
also change its position to make it look centered and have some margins off each edge. However, we
can do something smarter: we can wrap this Label inside a MarginContainer that will set margins
and automatically resize the text for us.

Adding a MarginContainer

At this point, adding new nodes to the Scene panel must be a common task for you. Nevertheless,
there are times, such as now, when deciding where to add a new node and what to nest in it might not
be obvious. The question is, where can we add MarginContainer? Outside the Panel node or inside?

A MarginContainer is a specialized container that’s responsible for introducing margins so that its
children look like they have padding. If we wrap the Panel node inside a MarginContainer, since the
Panel node is holding the text, the whole structure, including the button, will be padded. That’s not
good since we would like the text to have some space between its edges and the borders of the texture
that constitutes the Panel node. Thus, this is what you need to do to only pad the text:

1.	 Add a MarginContainer node inside the Panel node and nest Label inside this MarginContainer
node.

2.	 Set the following values in the Inspector panel for MarginContainer:

I.	 In the Anchor section, set both Left and Top to 0 and both Right and Bottom to1.

II.	 In the Margin section, set all its properties to 0.

III.	 In the Constants subsection under the Theme Override section, set both Margin Right
and Margin Left to 60.

Creating the User Interface210

We touched on a lot of terms in the preceding operation. The first two sets of actions, where we alter
the values of anchor and margin, are not specific to a MarginContainer. They exist for every type of
Control node. You can also see this fact as these properties were listed under the Control header in
the Inspector panel.

The anchor and margin values we chose are such special values that we could have used a shortcut to
achieve the same result. It would be selecting the Full Rect option in the expanded menu after you
click the Layout button in the header section of the 3D viewport. This Layout button is visible in the
following screenshot, just above the top-right corner of the paper texture.

We’ll use another option under that menu when we adjust the location of the Close button later. For
now, compare your work to what you can see in the following screenshot:

Figure 11.5 – The text now has padding, although it’s hard to read

What was essential in the properties of that MarginContainer was adjusting its content margin
values in the Constants subsection. That gave the text some room and positioned it correctly over
the paper texture.

It’s a bit difficult to read the text, though. So, let’s see how we can make it legible and, even better,
make it look like Figure 11.3.

Styling the Label node

Although MarginContainer is now occupying as much space as the Panel node, and it’s providing
margins to the text it’s holding, the text itself is hardly legible since it’s small and white over a lightly
colored surface. Also, the font choice is wrong because it’s using the default font provided by Godot
Engine. We’ll learn how we can fix all these issues in this section.

Filling the panel with more control nodes 211

Let’s start by selecting the Label node in the Scene panel so that we can make some changes under
Theme Overrides:

1.	 Turn on the Font Color option in the Colors subsection. The color can be left black.

2.	 Choose the New DynamicFont option for the Font property in the Fonts subsection and
expand this option’s properties right away by clicking its title. We need to edit the subsections:

I.	 Drag Kefario.otf from FileSystem to the Font Data property in the Font subsection.

II.	 Change Size to 28 in the Settings subsection.

We’ll discuss what’s happened shortly, but here is what we have done so far:

Figure 11.6 – The Label node now looks more like handwritten text

The default black color for the text seems to be fine, but you could pick a different color if you wish.
A much more drastic change happened when we introduced a font type. We did this in two steps.
First, we picked a DynamicFont type, which is slower than the other option, BitmapFont, but it lets
you change the properties of the font at runtime. However, this is not enough to render a font since
it works like a wrapper. So, you need to assign the font you would like to render. That’s what we did
when we assigned a font file to the FontData property.

Creating the User Interface212

There is an important caveat we think you should be aware of with fonts since they are made of
individual elements called glyphs. You can think of them as the letters in an alphabet. Not every
font supports the full spectrum of an alphabet. For example, in the note UI that we designed, if you
replace the text you will with its shortened form, you’ll, the apostrophe won’t render because
it doesn’t exist as a glyph in the font. Usually, paid fonts come with a bigger set of glyphs. Otherwise,
keep searching for free options with a more complete set.

Pixels versus points
When we chose 28 as the font size, that number was measured in pixels. In some graphics or
text editors, you’ll often find fonts measured in points. This is something you have to be cautious
about because if you transfer the numbers verbatim to Godot, your font will be rendered quite
differently. So, mind your units.

In the real world, a note from Clara’s uncle would only contain the text portion. Thus, it would be
absurd to expect a close button on top of an actual piece of paper. However, this is a game, and we’ve
already discussed how UIs mix reality with functionality. To complete the UI for the note, it’s time
we positioned that button.

Positioning the Close button

We used a nice trick to position the text concerning the piece of paper it’s on. Can we replicate this
for the Close button? Since a button can’t be considered a wide structure, we can’t stick it inside
MarginContainer. However, we can still position it relative to the Panel node.

In the Adding a MarginContainer section, we used a longer method to adjust the dimensions of that
component. We also mentioned that we would use a shortcut. This is how you can use it after selecting
the Close button in the Scene panel:

1.	 Expand the Layout menu and select the Bottom Right option.

2.	 Hold down Shift and press the left and up arrow keys on your keyboard four times for each.

This will position the Close button at the bottom right corner, then pull it up and move it left just
enough that it stays there. We mean it when we claim that it’ll be staying there. For example, select
the Panel node, then try to resize it using the handles in the viewport. Does the button stay nicely
tucked in that bottom right corner? Good! How about the Label node? Does the text flow to occupy
the extra space? Neat!

Filling the panel with more control nodes 213

Our efforts to develop what you saw in Figure 11.3 are coming to fruition, as shown here:

Figure 11.7 – Everything in the UI is positioned carefully

If you want to test your scene, go ahead and press F6. Depending on your setup, you may notice
that the Close button will not be functional since it’s behind MarginContainer. So, try to resort the
nodes in the Scene panel by dragging the nodes up and down. When you have the Close button after
MarginContainer, everything should be functional.

Speaking of functionality, we haven’t wired anything up for the Close button. Ideally, that
button should turn the visibility of the Panel off so that the note looks as if it’s been closed. Let’s do
that next.

Adding the close functionality

There are multiple ways we can attack this problem. We are going to show you one for brevity’s
sake so that you can see what’s involved. You may have to apply similar principles differently in your
future projects.

For example, the way we are treating the UI.tscn scene so far is to have one big Panel node as a
direct child. Your games may need a lot more UIs with elements permanently visible on the screen,
more notes to open and close, inventory screens with expanding parts to reveal more details, and
likewise. There are many possibilities, which is why there are different types of architectures you can
construct. There will always be a tradeoff between these different options, so we suggest you experiment
with the benefits of different UI structures if you have some spare time.

Without further ado, our suggestion for implementing the closing functionality is to add a small script
to the Close button. Select it and do the following:

1.	 Attach a script to the Close button and save it as ButtonClose.gd in the Scripts folder.

Creating the User Interface214

2.	 Make this script file look as follows:

extends Button

func _ready():

    connect("pressed", self, "on_pressed")

   

func on_pressed():

    get_parent().visible = false

This architecture assumes that the button will always be the direct child of a node, so once it’s pressed,
it will make its parent invisible. Ouch!

The benefit of this kind of simple structure is the convenience that the button doesn’t need to know
the node structure it’s in. There is also a more conventional way of attaching the pressed behavior by
using the Node panel and binding a signal. Either way is fine.

Constructing and improving UI elements may easily turn into a project by itself. You might be tempted
to create that perfect setup for all future possible scenarios but keep in mind that overoptimization
is a thing. Later, you may realize that you didn’t need all that preparation in the first place. We’ll talk
about a similar situation next, where the note might be longer.

Wrapping up

We now have a fully functional UI for displaying the note from Clara’s uncle, Bert. What if Bert had
more to say? For example, let’s say the message had an extra line after his name, as shown here:

Your uncle, Bert

P.S. I think I might have left my pet snake unattended. It might be
wandering around, so be careful!

If you were to add this extra text to the end of the Label node, the text would get uncomfortably close
to the top and bottom of the paper texture. Similarly, imagine that this text block needed to be even
longer, which is the case in some types of games where exposition is important. For instance, it is very
common when displaying the details of a quest or an item in role-playing games.

Currently, we can make do by adjusting the font size of the text or making the margins narrower to
allow more room for the new text. However, in more extreme situations, it might be better to use a
ScrollContainer node. Just like you wrapped the Label node inside MarginContainer, you can wrap
a ScrollContainer around the Label node, and tweak a few things to have a scrollable text block.

Coming up with the correct level of nestedness and deciding on the type and order of UI components
is sometimes an effort of trial and error. Consequently, there aren’t any set formulas. Therefore, you
may find yourself practicing and seeing what works best in your use case.

Taking advantage of themes 215

That being said, generalizing your efforts to maintain a consistent look and feel across your many UI
nodes might be helpful. We’ll tackle themes next to accomplish this.

Taking advantage of themes
Using or, more specifically, creating themes in your projects is smart on many accounts. First, we’ll
discuss their usefulness, show you a few visual examples, and then create one for practicing. Let’s start
with the reasons why you should use themes.

Firstly, using themes will save you from manually applying overrides to the components the way you’ve
done so far. It’s still possible to keep adding manual touches here and there, but what would happen if
you wanted to change a button’s artistic direction completely? This would trigger a chain reaction to
change the look of other components too. So, you’d have to restart the manual editing. Furthermore,
the ultimate worst-case scenario would be to revert your changes because, you know, we are human
and we kind of tend to stick with our first choices more often than not.

Secondly, you could have multiple themes at the ready in your game. Although a button is still just a
button, you could assign it one theme out of many. This will make that button look like it belongs to
a family of components. Thus, your UI elements will have a consistent style.

Lastly, changing themes at runtime is a possibility. This means that if, in your game or the application
you are building with Godot, you would like to swap themes for special occasions such as Christmas,
this is entirely possible. Also, more and more desktop applications are being built with Godot. These
could also benefit from theme swapping to offer their user the best choice. Godot Engine itself allows
you to change themes. You can access the existing themes by opening Editor Settings and trying out
a few themes. For example, try out the Solarized (Light) theme. Are you getting Unity vibes?

Changing a theme is not always about changing the colors of buttons or font sizes. For example,
https://365psd.com/psd/ui-kit-54589 and https://365psd.com/day/3-180 are
two UI kits we picked to show how drastically different your Godot UI nodes could look. Figure 11.8
presents these two UI kits side by side:

Figure 11.8 – Two distinct UI kits that are good candidates for themes

https://365psd.com/psd/ui-kit-54589
https://365psd.com/day/3-180

Creating the User Interface216

Since we have already seen how to change the look and feel of three types of nodes, Button, Panel,
and Label, we’ll focus on other types of Control nodes. We’ll accomplish this in the context of creating
a new theme.

Creating a new theme

Since game development is an iterative process, planning every single thing ahead of time may not
always be possible, and even be fruitless. That’s why it’s typical if you start by changing the UI nodes
manually. Still, starting with a new theme and changing the properties of this theme may also be a
good idea. Why? Because if your experiments for individually modifying the components yield a
successful result, you won’t have to repeat what you have done in the theme. By creating a theme at
the beginning, you’re building up as you go.

Also, creating a theme is like creating any other type of resource in Godot. We can do this by following
a few simple steps:

1.	 Right-click the UI folder in the FileSystem panel, choose New Folder, and type Themes
as its name.

2.	 Right-click Themes in FileSystem and select the New Resource option.

3.	 Choose Theme as the resource type and save it as Dark.tres.

This will create a Theme resource in your project. It should also enable a new panel in the bottom area
that will show the preview of this new theme. As you make changes to your theme, updates can be
previewed in this area since it might be faster to monitor your progress this way rather than adding
and removing test components to/from your scene.

If the preview area looks small, it’s possible to enlarge it by clicking an icon next to Godot’s version
number. This icon will look like two upward-facing arrows with a horizontal line above them. Press
that and the theme preview will occupy the viewport. In the end, your editor will look as follows:

Taking advantage of themes 217

Figure 11.9 – The theme preview has been expanded

By the way, the preview area is not static. You can interact with those UI components. It’s like a Godot
scene running inside Godot. Now, we will modify the theme for the CheckButton, CheckBox, and
VSlider components. We’ll also show a special state of the CheckBox node, also known as a radio
button, in web development. However, our first candidate is CheckButton.

Styling a CheckButton

The graphics assets we’ll be using to construct the new theme is the Dark UI Kit, which you can find
at https://365psd.com/psd/dark-ui-kit-psd-54778. We’ve already exported the
necessary parts into the UI folder for you.

The theme we created is still the default theme, so it still shows the default components. We’ll have to
pick the one we would like to change. This is how we do it:

1.	 Press the button with the plus (+) icon in it. This is in between the Manage Items and Override
All buttons in the top-right corner of the Theme preview area.

2.	 Select CheckButton in the upcoming pop-up menu. By doing this, you will see a list of this
component’s relevant properties separated by tabs on the right-hand side of the theme preview.

3.	 Switch to the fourth tab, which looks like a polaroid icon with a mountain in it. Press the plus
(+) icons for the off and on properties.

https://365psd.com/psd/dark-ui-kit-psd-54778

Creating the User Interface218

4.	 From the FileSystem panel, drag dark-ui-checkbutton-off.png to the off slot and,
similarly, drag dark-ui-checkbutton-on.png to the on slot.

5.	 Interact with CheckButton in the theme’s preview.

This will effectively change the look of CheckButton. Your Theme panel will look as follows:

Figure 11.10 – We have changed the look of the CheckButton component with custom assets

CheckButton is a simple component with two main states: on and off. We were not interested in
altering the disabled versions of its two states, simply because the UI kit does not have the assets for
that permutation. If you think you’ll never have this component in a disabled state, then you don’t
have to create and assign art either.

Let’s attack a different component this time. Although its name is similar, and it comes with states
similar to CheckButton, a somewhat disguised property of this node makes it function as two distinct
components. Enter CheckBox.

Changing a CheckBox and discovering radio buttons

This is going to be a similar effort, but we’ll utilize more assets and fill out more properties. Let’s keep
the momentum going and add a new item to the theme:

1.	 Using the plus (+) icon button again, choose CheckBox from the upcoming item list.

2.	 The fourth tab may still be active. If not, switch to it and do the following:

I.	 Assign dark-ui-checkbox-off.png to the unchecked property.

Taking advantage of themes 219

II.	 Assign dark-ui-checkbox-on.png to the checked property.

III.	 Assign dark-ui-radio-off.png to the radio_unchecked property.

IV.	 Assign dark-ui-radio-on.png to the radio_checked property.

When you prepare your assets, pick filenames that are close enough to the state the assets will be
assigned to. So, associating these files between the FileSystem and Theme panels would feel easy.
After making these changes, this is what we have:

Figure 11.11 – CheckBox is the latest item we have customized for our Dark theme

The preview area has the CheckBox component for you to test, but no radio button. There is no
RadioButton component in Godot. Despite adding the assets for it, we can’t simulate it yet. Nevertheless,
we can tweak a CheckBox component so that it acts like a radio button.

Since we need to physically place a CheckBox component in the scene, you can toggle off the button
that maximized the Theme panel. Alternatively, you can press Shift + F12, and follow these steps to
add a few components to the UI.tscn scene:

1.	 Turn the visibility off for the Panel node by clicking its eye icon in the Scene panel.

Creating the User Interface220

2.	 Select the root node, then add an HBoxContainer node. Select this new node right away so
that you can do the following:

I.	 Add a VBoxContainer, VSeparator, and another VBoxContainer to it.

II.	 Add two CheckBox nodes inside these two VBoxContainer nodes.

III.	 For the first two CheckBox nodes, change their text properties in the Inspector panel
to Multiple Choice 1 and Multiple Choice 2, respectively.

IV.	 For the last two CheckBox nodes, change their text properties in the Inspector panel to
Single Choice 1 and Single Choice 2, respectively.

We’re not done yet, but the following screenshot shows what’s happened so far:

Figure 11.12 – Four checkboxes organized in a questionnaire fashion

We are a few steps closer to turning two of those checkboxes into radio buttons – specifically, the last
two since we gave them some text that mentions a single choice. Thus, while you have CheckBox2 in
the VboxContainer2 node selected, do the following:

1.	 Assign a New ButtonGroup to its Group property in the Inspector panel.

2.	 Click the down arrow in that Group slot to expand a dropdown menu and select Copy.

3.	 Select the Checkbox node in VBoxContainer2 and choose the Paste option by expanding
its Group options. This will link the two checkboxes because they will be sharing the same
button group.

Taking advantage of themes 221

You should notice a drastic change between the two sets of checkboxes. Whereas the first two still look
like checkboxes, the last two have circular icons next to them, as shown in the following screenshot:

Figure 11.13 – Two checkboxes have been converted into radio buttons

By sharing the same button group, checkboxes turn into radio buttons. In this exercise, it was sufficient
to create and assign a generic ButtonGroup object. However, if you want to have a group of radio
buttons in one area of your application, then another collection somewhere else that governs a different
set of radio buttons, you may have to create named ButtonGroup objects and assign them accordingly.

We won’t cover that kind of scenario since we seem to be missing something more important that
we have wanted for a while. Neither the checkboxes nor the radio buttons we worked so hard for
are reflecting the artistic direction we defined in our theme. Let’s see how we can utilize our theme.

Attaching a theme

Previously, we mentioned that using themes would help you style components faster. It’s true, but
we haven’t tested this claim yet. Since we’ve already prepared the styles for the checkboxes and radio
buttons, all there is left to do is assign the theme to these components:

1.	 Select the HBoxContainer node in the Scene panel and expand the Theme section in the
Inspector panel.

2.	 Drag Dark.tres from FileSystem to fill the empty Theme slot.

There you have it! We didn’t even have to select each component and assign the themes one by one. A
higher-level structure such as HBoxContainer was enough to assign the theme to so that its children
could use the relevant parts.

Do you see the real potential here? Assigning a theme to a root element will be enough most of the
time. That being said, since each component can be assigned its own theme, but it doesn’t have to,
you can have all sorts of permutations. In its simplest form, assigning a theme to a root node will be
enough in most scenarios.

So far, we’ve been styling relatively simple UI nodes, such as CheckButton and CheckBox. Maybe we
could tackle another node that has a few moving parts, such as a VSlider.

Creating the User Interface222

Altering a vertical slider component

A vertical slider component, VSlider, is useful when you want to give your players an easy way to
adjust the ratio or quantity of things, such as tradeable items during a game session, music volume,
or the brightness level in the game’s settings. Likewise, you can use an HSlider node, which is the
horizontal version, but both accomplish similar tasks.

Since we only have the graphic assets for a VSlider, we’ll only cover this styling. If you desire, it’s
possible to convert the existing assets that are compatible with an HSlider. You’ll have to rotate each
part 90 degrees and save them accordingly. To do so, you must follow these steps:

1.	 Add VSeparator and VSlider nodes to HBoxContainer in the Scene panel.

2.	 Using the Inspector panel, type 75 for the Value property for VSlider.

3.	 Double-click Dark.tres in FileSystem to bring up its details. Add VSlider as a new type
using the good old button with the plus (+) icon.

4.	 Activate the fourth tab in this new type’s custom properties and assign dark-ui-vslider-
grabber.png to both grabber and grabber_highlight.

5.	 Switch to the fifth tab, which looks like a square rainbow.

6.	 Attach a New StyleBoxTexture to the grabber_area property. Click the slot to see its details
and do the following:

I.	 Assign dark-ui-vslider-grabber-area.png to the Texture property.

II.	 Expand the Margin section and type 6 for the Bottom property.

7.	 Bring up the theme preview again by double-clicking Dark.tres or switching to the Theme
panel at the bottom.

8.	 Instead of repeating the same effort for the grabber_area_highlight property, click the plus (+)
button near its slot, then grab and drop the grabber_area property’s style onto the grabber_
area_highlight slot. Alternatively, you can copy the slot from grabber_area and paste it into
grabber_area_highlight using the dropdown menus.

9.	 Attach a New StyleBoxTexture to the slider property. Click the slot to view its details and do
the following:

I.	 Assign dark-ui-vslider-slider.png to the Texture property.

II.	 Expand the Margin section and type 6 for the Bottom and Top properties.

III.	 Make the Expand Margin section visible and type 1 for all its properties.

10.	 Press F6 and admire your hard work.

We took many steps here, but there were only one or two new things. First, we repurposed one of
the styles to be used for a different property by dragging and dropping it. This is a shortcut method

Taking advantage of themes 223

instead of copying and pasting between slots. It’s useful when both slots are near each other. If you
are copying elements where the slots are on different panels, then you still have to resort to the copy
and paste method in dropdown menus.

Secondly, we adjusted a different type of margin, Expand Margin. The slider has two separate parts
that constitute its track where the scrolling occurs, so we had to adjust this special margin so that it
fits the blue part inside the outer part. Take a look at the following screenshot; you will see that there
is a blue filler under the grabber inside the track of VSlider:

Figure 11.14 – It took a few more steps but the VSlider component has been thematized

It’s easier to see the effect live than reading it. So, when you launch the UI.tscn scene, try to interact
with the grabber and see how the component fills its track with blue, depending on the position of
the grabber.

Wrapping up

This concludes our work in setting up a theme. Although we have styled only a handful of nodes,
feel free to practice with the rest of the same UI kit or pick another one from the website to try it on
other Control nodes.

All in all, working with themes or individually styling components entails two things. Primarily, you
can either assign textures directly to some of the properties or indirectly into the appropriate slot
by creating a StyleBoxTexture. Secondly, there are some numerical properties you can tweak. We
haven’t covered this latter case. For example, you can adjust the line height of components that deal
with text rendering. These cases are easy to comprehend and test. So, we opted to show you more
head-scratching cases.

Hopefully, by practicing what we have shown so far and discovering more on your own, you will be
able to apply beautiful graphic designs to your game.

Creating the User Interface224

Summary
We started this chapter by debating what UIs are. We did this via a brief philosophical and theoretical
explanation.

Assuming your games will require UIs, we investigated a practical use case such as constructing a
note left by Clara’s uncle. This work necessitated us to work with multiple Control nodes – that is,
the Button, Panel, and Label nodes.

During this effort, not only did we employ the components we needed, but we also styled them to
match a specific artistic style.

For the sake of not repeating ourselves and taking the styling to the next level, we presented how
using themes might be a time saver. To that end, we showed you how to utilize UI kits you could find
online by assigning these kits’ individually exported graphics assets to the properties of Control nodes.

UIs are, in a way, a tool for the player to interact with the game. That being said, in the next chapter,
we’ll discover a more direct way to interact with the game world without the help of UIs.

Further reading
In the introduction, we talked about when a UI is necessary. However, there are situations when the
best interface is no interface at all. There is an app – sorry, a book – for that by Golden Krishna: The
Best Interface Is No Interface: The simple path to brilliant technology. He talks about how introducing
more steps and elements disguised as a UI is nothing but interference.

We’ve already discussed the possibility of having games without a UI, but we’ll rest that argument for
now. It might be better for you to be exposed to as much information and examples as possible at this
point. So, the following are a few technical and practical resources:

•	 https://www.toptal.com/designers/gui/game-ui

•	 https://webdesign.tutsplus.com/articles/figma-ui-kits-for-
designers--cms-35706

•	 https://ilikeinterfaces.com/

•	 https://www.gameuidatabase.com/

This chapter also showed you how to assign fonts to components. There are a lot of freely available
fonts out there but be careful and read their licenses. They might be downloadable but some of them
can’t be used in commercial work. The same kind of warning goes for anything else too, especially
graphics assets.

https://www.toptal.com/designers/gui/game-ui
https://webdesign.tutsplus.com/articles/figma-ui-kits-for-designers--cms-35706
https://webdesign.tutsplus.com/articles/figma-ui-kits-for-designers--cms-35706
https://ilikeinterfaces.com/
https://www.gameuidatabase.com/

12
Interacting with the

World through Camera and
Character Controllers

You have been preparing little bits and pieces for the game world, especially in the last two chapters.
In Chapter 10, Making Things Look Better with Lights and Shadows, you added Light objects to sconces
and candles. You even placed a script to adjust these objects’ lit state. Then, in Chapter 11, Creating
the User Interface, you built a new scene by introducing Control nodes. This effort was for simulating
a note from Clara’s uncle, Bert.

Although we’ve been taking steps to make things more sophisticated, pretty much everything feels
static. In this chapter, we’ll show you a collection of practices that will build a connection between
game objects and the player. This will make the project look live and feel more like a game.

The first thing we’ll look at is the Camera node and its settings. Godot’s viewport has been letting
you see different scenes via a temporary construct so that you could work with the software. Such a
transitory concept won’t be enough, so we’ll work with our camera system.

Next, we’ll focus on building a connection between some of the game objects in the world and the
player. This involves detecting mouse events on a 2D surface and projecting these events into a 3D
space. There might be different interactions such as hovering, clicking, pressing, and likewise, so we’ll
look into ways to detect the action we want. For example, we will click a parchment left on the pier
to bring up the note we worked on in the previous chapter.

Similarly, if the click happens to be on one of the areas where we would want to move Clara, we need a
system that can do the pathfinding for us. To that end, we’ll investigate new Godot nodes, Navigation
and NavigationMeshInstance.

Interacting with the World through Camera and Character Controllers226

Lastly, why not add a bit of animation? After we discover how to move a game object between two
points in the world, we could instruct this object to trigger the appropriate animation cycle. In our
case, Clara will switch between her idle state to her walking state. As a result, we’ll revisit some of the
notions we got to know in the Importing animations section of Chapter 7, Importing Blender Assets
into Godot.

As you can see, we are going to utilize a lot of the topics we have already visited, yet there is still a lot
of new stuff to discover and learn. If we could enumerate it, it would look like this:

•	 Understanding the camera system

•	 Detecting user input

•	 Moving the player around

•	 Triggering animations

By the end of this chapter, you’ll have a much better understanding of camera settings in general, and
you’ll be able to detect your player’s intentions and relate them to actions in the game. Thanks to an
easy method of pathfinding, you’ll move Clara around the level to a location you want, and—finally—
trigger the appropriate action to simulate her walking.

Technical requirements
We’ll continue where we left off in the previous chapter. This means you can keep working on your
existing copy. Alternatively, you can start with the Finish folder of Chapter 12 in this book’s
GitHub repo: https://github.com/PacktPublishing/Game-Development-
with-Blender-and-Godot.

We have several new assets that are necessary to do the work in this chapter. These assets are in the
Resources folder next to the Finish folder. As usual, merge these with your project files.

Understanding the camera system
In Chapter 4, Adjusting Cameras and Lights, we briefly touched on the concept of a camera in Blender.
We learned that we couldn’t render a scene without one. Although we took a render in the end by
introducing a camera, we never talked about the different settings a camera can have. That was
done intentionally because the know-how we would attain in Blender would not directly transfer to
Godot. Fortunately, now is the right time to study in detail what a camera can do for enhancing the
gameplay experience.

Not only are we going to get to know how to set up a camera that suits our game, but we are also going
to discover different types of cameras Godot has in its inventory. As usual, or as it is something you
might hear as a joke on internet forums and memes, there must be a node for this type of thing in Godot.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Understanding the camera system 227

Yes, there is. In fact, there are four camera nodes, as outlined here:

•	 Camera: This is the core class that serves as the base for all the other camera types. Even though
you can have multiple Camera nodes in your scene, there can only be one active camera. And,
similar to Blender, no camera means nothing to see here.

•	 InterpolatedCamera: This is an enhanced version of the Camera node. It comes with three
extra properties that turn a regular Camera node into a mechanism that tracks and follows a
target. It’s quite handy if you are developing a game with an over-the-shoulder camera look. If
the game character is the target, when the target moves, the camera will catch up.

Unfortunately, this node will be removed in Godot 4. Luckily, it’s not difficult to recreate its
functionality by attaching a short script to a Camera node. In other words, if you remove the
fancy bits of an InterpolatedCamera node, you get the Camera node, hence the decision to
drop it in future versions.

•	 ClippedCamera: This is another type of special Camera node, and fortunately, it will be kept
in Godot 4 since it’s an advanced camera system. Our game is currently not using PhysicsBody
nodes that are responsible for determining which objects can pass through each other or bump
and bounce back when the bodies in motion connect with a colliding surface. For that reason,
we won’t investigate this type of camera, but you might want to check this one out if you don’t
want your cameras to travel through walls. It will behave like an object respecting physics rules.

•	 ARVRCamera: You might have guessed it: this is used for virtual reality (VR) projects. It isn’t
something you’d utilize as a standalone node since it depends on a lot of other nodes that have
augmented reality/virtual reality (ARVR) at the beginning of their names. Building a VR
project is an advanced topic that deserves probably a whole book dedicated to the subject. For
that reason, we’ll skip this node too.

Besides the camera nodes for 3D workflows, there is also the Camera2D node that is used in 2D
projects. Thus, there are five types of cameras in total.

Out of all these types we presented, the most promising candidate is the InterpolatedCamera node.
Why? Because an InterpolatedCamera node is essentially a Camera node with extra pizazz such as
target and track functionality. So, in your Godot 3 projects, you can start with InterpolatedCamera
and treat it like a Camera node until you need that extra functionality.

Since we are continuing our work from the previous chapter, it makes sense to tidy up some loose
ends. Let’s start with that first, then we can move on to introducing camera settings.

Interacting with the World through Camera and Character Controllers228

Tidying things up for interactivity

The last thing we did in the UI.tscn scene was skinning UI components. During that effort, we
had already turned off the visibility of the Panel node that was responsible for displaying the note
from Clara’s uncle. Then, we introduced a series of UI nodes, all grouped under an HBoxContainer
node. We’ll turn that container off too, but let’s run the project first by pressing F5. You might see
something like this:

Figure 12.1 – The first run of our game

The UI decisions we have made are visible in the top-left corner of the game. We don’t need those for
the moment. So, bring up the UI.tscn if you have it closed, turn off the HBoxContainer node,
and run the game again. We’ll look into some UI concerns in the Detecting user input section soon.

Perhaps you’ve already noticed from the screenshots we have used in previous chapters or simply by
looking at the project files that there has already been a Game.tscn scene configured as the main
scene for the project. That’s why Godot did not ask you to pick the main scene when you pressed F5
since we had already assigned one to the project for you.

Open Game.tscn, and let’s see how this scene is structured. Everything might look self-evident,
but there is the root node labeled as Game, then two child nodes labeled as Camera and Level-01.
Evidently, the level we created in Chapter 9, Designing the Level, is a child node in Game.tscn. The
other node, Camera, will be our main study area in this chapter.

Understanding the camera system 229

We’ll split the rest of our efforts in understanding how cameras work mainly into two distinct areas.
The most important topic is the projection type, which fundamentally changes the whole experience.
We suggest this be something you decide early on in your own projects since any other tweaking can
be done after this choice has been made. So, before we tackle individual camera settings, let’s see what
kinds of projections there are.

Deciding on a type of projection

If you took an art class on learning how to draw architecture, this might be a topic you are already
familiar with. The Godot version we are using comes with three types of projections. Although we will
mainly focus on the first two, we’ll give a brief definition of all projection types, as follows:

•	 Perspective: This is the default camera projection where the farther objects are from the camera,
the smaller they will look. Hence, two objects of the exact same dimensions will look like they
are differently sized when one of these objects is placed away from the camera. This is also how
human beings perceive the world, so if you don’t, get a check-up.

•	 Orthogonal: Also known as Orthographic, this type of projection renders objects of the same
dimensions without altering their size, regardless of the distance to the camera. This type could
give your game the dramatic look it needs. Also, there are some types of games—roleplaying
(Fallout series) and Explore, Expand, Exploit, Exterminate (4X) (Civilization)—where this
kind of projection is preferred.

•	 Frustum: This is a relatively new type of projection that has its uses in some types of games—for
example, to get that 2.5D look some old-school games used to have where the visuals looked
stretched. If you want to know more, https://zdoom.org/wiki/Y-shearing has
some information about this topic.

In most cases, the first two projections we listed here will be enough. Maybe it would be better if we
investigated their differences by experimenting. Since we’ve already seen the Perspective projection
type, it makes sense to try the Orthogonal projection type, so follow these next steps:

1.	 Select the Camera node in the Game.tscn scene.

2.	 Change its Projection setting to Orthogonal and set its Size value to 6.

3.	 Press F5 to run the game and notice a different artistic style.

https://zdoom.org/wiki/Y-shearing

Interacting with the World through Camera and Character Controllers230

After we make these changes, this is what we have:

Figure 12.2 – Orthographic camera view from the same location

We picked a Size value that would make the render look close enough to the example we had in
Perspective projection. The Size property is an interesting one because it takes into account many
factors. For example, if you change the Keep Aspect value from Keep Height to Keep Width, you
will have to double the Size value to 12. Most PC monitors, however, follow a landscape orientation.
That’s why Keep Height is the default option, but if you are working on a mobile game, you might
want to mix and match the correct Size value with the Keep Width option selected.

Camera-specific environment
While we are looking at different properties of the Camera node in the Inspector panel, now
might be a good time to get a refresher on the Environment topic. In the Creating post-processing
effects section of Chapter 10, Making Things Look Better with Lights and Shadows, we discovered
how to create an environment that changed the look of the level. If you want to override some
of the environment settings, you can do so by assigning a separate Environment object to the
camera. The effects of both the level-wide and camera-specific environments will be combined.

No matter which values you pick for the right platform, one thing is obvious. Even though we didn’t
move the camera’s position and rotation in the world, the effect we get is utterly different. Whereas we
used to see the door in the back of the cave in the Perspective projection as depicted in Figure 12.1,
the Orthographic view doesn’t permit us to see that far, as seen in Figure 12.2. When you compare
both screenshots, the near elements are pretty much the same, but the Orthographic view simulates
a more top-down look to the scene than looking far ahead.

Understanding the camera system 231

Altering stuff in the Inspector panel and hitting F5 to see your changes in effect might get tiring
quickly. While the Camera node is still selected, if you turn on the Preview checkbox, as seen in the
following screenshot, you can speed up your workflow when you are editing your camera’s attributes:

Figure 12.3 – Previewing what your camera sees is handy, and it’s one checkbox away

This will let you preview what your camera is seeing while you are still adjusting its settings. Mind
you, during preview, you cannot move around your scene freely. In fact, you can’t even select objects.
So, remember to turn it off when you want to go back to editing your scene.

In light of what we have presented so far, what kind of projection type should we choose? We’re
going to go with the Perspective mode. So, for now, revert your Camera node’s Projection setting
to its default value. Since Godot decorates the Inspector panel with the relevant properties, the Size
property will be replaced with the Fov property.

Let’s focus on this new property and some of the other changes we want to apply to the Camera node
in the next section.

Adjusting the camera settings for our game

In this section, we are going to discuss a new term you have just been introduced to, Fov, and show
which other settings we should apply to the camera. If you have been working on your own level design
since the beginning, then the position and rotation of the camera we mention here will be meaningless.
That’s why we’ll give you general directions to convey the spirit of the exercise. Also, hopefully, the
screenshots you’ll see will help you align our level’s conditions to yours better.

First, a quick definition of the new term. Field of view (fov) is the angle, measured in degrees, through
which a device perceives the world. Actually, if you consider your eyes as the device, your eyes also
have a fov value. This is a highly technical domain, so we’ll offer you a few links in the Further reading
section to discover it on your own.

For the time being, we’re much more interested in the practical applications of this subject since it’s
pertinent to whether your game is running in portrait or landscape mode, or whether the game is
for PC or consoles. The default value, 70, that Godot uses is a decent average value that will suit most
cases. However, this default value also assumes you are going to run your game in landscape mode as
it’s dictated by the Keep Aspect property, which is set to Keep Height.

Interacting with the World through Camera and Character Controllers232

Since players might have different monitor sizes and resolutions, the application has to pick either the
height or the width as the source of truth (SOT) and then apply the other necessary transformations
accordingly for the sake of not distorting the visuals. Sometimes, this practice will yield a result such
as having a black band above and below the visuals. This method, known as letterboxing, is also used
in the cinema industry for converting movies shot with a squarer aspect ratio to modern wider (from
4:3 to 16:9 or 16:10 ratio) screens.

If you hover over the Fov property in the Inspector panel and read the tooltip, you’ll see that there are
multiple values you can set for this property depending on the aspect ratio your game will use. Thus,
we’ll let you choose the best value for your condition. Nevertheless, we’re providing the following
screenshot to demonstrate the permutations of different Keep Aspect and Fov values:

Figure 12.4 – Same camera position with different aspect-ratio constraints and fov values

What a big difference! Without changing a single thing for the camera, different permutations will
yield lots of distinct results. Let’s wrap up the Fov topic by discussing what higher and lower values
for Fov means so that you can make better decisions in your own projects.

At the end of the day, the Fov value you should pick will depend on the player’s viewing distance,
which isn’t something you can really know ahead of time. However, there are conventions you can
follow. For example, console games use a lower Fov value since it provides a zoomed-in-like view that
compensates for the distance between the screen and the player. Most typically, a console game player
will be sitting on a couch a few meters away from a screen that is usually large.

On the other hand, a PC player is usually less than one meter away from a monitor, thus it might be
better to use higher Fov values. This increases immersion since players feel they get to see more of
the world by virtue of having this view a bit zoomed out compared to lower Fov values. That being
said, it’s known that really high Fov values also create motion sickness. When your brain is forced
to process too much of the world, you get that churning stomach feeling, especially in first-person
shooter (FPS) games.

Understanding the camera system 233

Fov calculator
There is a handy calculator for finding ideal Fov values: https://themetalmuncher.
github.io/fov-calc/. Select the aspect ratio and orientation of your screen, and the
calculator will eliminate some of the guesswork. Obviously, if you let your players change their
screen resolution in the game’s settings, you’ve got to programmatically update the Fov value
the game uses.

To finish off this section, we’ll stick with the value of 97 for Fov and choose Keep Width for the
aspect ratio since it works out better artistically. Also, since this level is so small, having the camera
follow the game character won’t be necessary. Still, we could try to pick the best angle and position
of the Camera node to see most of the scene. As already mentioned, our values won’t mean much.
However, try to change the Translation and Rotation Degrees values for the Camera node to match
what you see here:

Figure 12.5 – The camera’s final resting position

What this view will give us are a few things. First, it covers the most crucial angles. Clara can only
walk to certain spots on this level. Also, not every walkable location is important. Still, there doesn’t
seem to be anything significant left out from this perspective.

Second, referring to her uncle’s note, there is a backpack behind the broken cart. It’s hard to see it from
here because the sconce’s light in that corner is not enough to make the backpack all that obvious. All
of this is intentional because we’ll want Clara to hold a torch in her hand, so that extra bit of light will
be enough for her or the player to notice an important object.

Eventually, we expect the player to see and interact with the objects in the world, especially the backpack
since it holds the key to the upstairs. A common instrument game designers use for player-to-world
interaction is mouse events, which is what we’ll discover next.

https://themetalmuncher.github.io/fov-calc/
https://themetalmuncher.github.io/fov-calc/

Interacting with the World through Camera and Character Controllers234

Detecting user input
Mouse events are one of the many types of user input you can detect in a video game. Other most
common types are keyboard or game controller events, which won’t be covered in this book. Still, the
principles in detecting what the mouse is doing are similar to how you can treat other types of events.
The reason why we are focusing more on mouse events is that there is an extra layer of complexity
you’ve got to deal with, which is what this section will be about. Let’s dive right in.

In a conventional desktop application such as text- or video-editing software, the interface is usually
populated with a lot of buttons, menus, and likewise. The natural behavior you’d expect from the users
of such software is to click these designated spots, which is something the creators of the application
anticipate and prepare for you. How would you go about this in a 3D game, though?

See, when you click anywhere on your screen, you are essentially clicking on a 2D surface. Thus,
it originally makes sense to define the click’s coordinates based on the x and y axes. Let’s make the
case even simpler. We are not clicking anything fancy but just the middle of the screen. By knowing
the monitor’s resolution, we can do the calculation and come up with coordinates that are half the
resolution in both axes.

Let’s imagine, in this special case where we keep clicking right in the middle of the screen, we have the
game world we see in Figure 12.5. Where does that click correspond in our level? Even more interestingly,
if you implemented a camera that moved elsewhere, perhaps even rotated due to gameplay reasons,
how do you map the same x and y coordinates to a different position in the 3D space?

This is a challenging topic that is not always straightforward to resolve, but let’s see which techniques
we can use to discern mouse events.

Knowing where the player interacts

There is a common technique in the industry for detecting where the player is pointing in a 3D world.
It’s called raycasting, and YouTube is awash with tutorials dedicated to this particular topic, not just
for Godot Engine but for other game engines as well. It assumes that you are casting a ray from where
you clicked on your screen to a position in the 3D world. Since the game engine is already capable
of rendering the game by considering the game objects’ positions in relation to the camera, which
happens to be your screen, then the calculations are already done for you, to a certain extent.

Although this technique puts you in the right direction, you still have no idea which object in the
path of that ray is the one you want to select. Perhaps an unfortunate analogy for a ray might be a
strong enough bullet that’s traversing through all objects it connects with. So, if raycasting brings up
many results, you’ve got to eliminate the ones you don’t want. Fortunately, there is a more direct way.

Detecting user input 235

It would be convenient to only assign detection logic to the objects we want. For example, we can
introduce a new model to our scene—a parchment, to be specific—right on the wooden slats of the
pier. Once the player clicks this object, we’ll trigger the note currently hidden in the UI.tscn scene.
Via this effort, you will also practice some of the methods you used in earlier chapters too. Here are
the steps to take:

1.	 Make a new scene out of Parchment.glb and save it as Parchment.tscn in the
same folder.

2.	 Since there is a default environment in effect, the scene will be dark, and it will be hard to follow
the succeeding steps. To disable it, open Project Settings and clear the Default Environment
field in the Environment section under the Rendering header. Close Project Settings to go
back to Parchment.tscn.

3.	 Add a StaticBody node under the root node.

4.	 Add a CollisionShape node under this last node you introduced and assign a New BoxShape
to its Shape field in the Inspector panel.

5.	 Expand this new shape by clicking it. Type 0.15, 0.14, and 0.06 in the Extents section’s
X, Y, and Z fields respectively. This shape should encapsulate the model.

6.	 Still for the CollisionShape node, expand its Transform header, then type 0.05 in the Z field
under its Translation section.

We are not done yet with the parchment scene, but let’s take a break and explain what’s happened.

We have added our first PhysicsBody type of node to our workflow with a StaticBody node. There
are other types too, such as KinematicBody, RigidBody, and likewise, if you would like to offer
physics-based gameplay. Since the parchment object we will place in the world won’t go anywhere,
we chose StaticBody.

Then, we assigned a collision shape to the StaticBody node. Adding collision to game objects is
necessary if you want the engine to detect when your objects collide with each other. By doing so, the
game engine can determine these objects’ future trajectory and speed.

One type of collision the game engine can detect is when players interact with objects using input
devices. For instance, the player might move the mouse over an object, click this object, or even want
to drag and move it somewhere else. Out of all these possibilities, we are only interested in detecting
when the player clicks the parchment model. We’ll learn how to distinguish the exact event we want
in the next section.

Interacting with the World through Camera and Character Controllers236

Distinguishing useful mouse events

We’ve constructed all the necessary mechanisms to start detecting collisions. The basic shape we
wrapped the parchment model in will act like a sensor to know if collisions are occurring. Out of so
many different types of collisions, we are mainly interested in listening to mouse events, and—more
specifically—detecting mouse clicks.

We’ll treat this click on the parchment as a precursor to bringing up the currently hidden Panel node
inside the UI.tscn scene. Ultimately, we will build a communication line between the parchment
and the UI.tscn scene. First, let’s see how we capture a collision and filter out the right type so that
we can later trigger the chain of events we want. Here’s what to do:

1.	 Attach a script to the root node in Parchment.tscn and save it as Parchment.gd.

2.	 Select the StaticBody node and turn on the Node panel.

3.	 Double-click the input_event entry under the CollisionObject header.

4.	 Press the Connect button in the pop-up menu. This will add a few lines of temporary code, so
change the Parchment.gd script to what you see here:

extends Spatial

signal show_note

func _on_StaticBody_input_event(camera, event, position,
normal, shape_idx):

    if event is InputEventMouseButton and

      event.pressed:

        emit_signal("show_note")

We’re now, in theory, tracking the input event on the StaticBody node. However, in practice, since
the collision shape for generating this event is positioned precisely over the parchment, our setup will
behave as though you are detecting clicks on the parchment itself. The following screenshot shows
our progress in the editor:

Figure 12.6 – We are attaching input events to the parchment object

Detecting user input 237

The input event we are capturing is generic enough, but we are filtering it out so that it will be valid only
in mouse-click conditions. Then, we transformed the meaning of this click by emitting a show_note
signal, but who is listening to this call? Some construct out there could make sense of this signal—
more specifically, the Panel node inside the UI.tscn scene. Let’s connect them next, as follows:

1.	 Open UI.tscn and attach a script to the root. Save it as UI.gd and add the following line
of code:

export(NodePath) onready var note_trigger = get_
node(note_trigger) as Node

2.	 Open Level-01.tscn and create an instance of Parchment.tscn in the Props group.
Position this new node on the wooden slats of the pier so that it sits relatively close to the boat.

3.	 Select the UI node in the Scene panel. There is going to be a Note Trigger field for this node
in the Inspector panel. Press Assign… and select Parchment among the options that come
up in the pop-up menu.

4.	 Go back to the UI.gd script and add the following lines of code:

func _ready():

    note_trigger.connect("show_note", self,

                         "on_show_note")

func on_show_note():

    $Panel.visible = true

There is a lot going on here with a few lines of basic code. First, we prepared a field for the
UI node to accept another object as a trigger so that we could assign the Parchment node
using the Inspector panel. Then, we instructed the UI node to listen to a specific event—the
show_note signal—so that it could trigger the on_show_note function. When this
function runs as a result of the player’s click on the parchment, the Panel node, which is
essentially Bert’s note, will become visible.

Interacting with the World through Camera and Character Controllers238

When you were building the UI in Chapter 11, Creating the User Interface, if you didn’t center the
Panel perfectly, you can do so now by using the Layout button in the header of the 3D viewport. If
you prefer, you can position the Panel anywhere you want. Ultimately, when you press F5 and run
the game, after you click the parchment on the pier, you will see something like this:

Figure 12.7 – Bert’s note to Clara was opened when the player clicked the parchment

Remember that the Close button is already wired, so it’ll close the note when you press it. If you do
so, you can open the note again by clicking the parchment. Who knew that a simple mouse click could
mean different things? In one context, it’s pressing on a flat surface that translates to clicking a 3D
object, which then triggers other game systems. In another, it’s pressing a UI element like a button.

Sconces and candles
If the player is able to click the parchment, can’t they click the sconces and candles around the
level? They can, but they won’t get a reaction out of it right now since you have to construct
a collision structure, just as we did for the parchment. This is something you can work on as
an exercise.

We’re not planning to have an inventory system in our game. However, in games that employ that
kind of functionality, it’s common to see that parchment disappear from the world and find a place
for itself in the player’s inventory. Then, the player can later click an icon that represents the note in
their inventory to bring up the note UI again. In this extra case, your UI structure would also have to
listen to a show_note signal emitted from a different structure, but it’s a similar principle.

Not having an inventory system is not a real detriment to our workflow at this point since we have
more pressing issues such as helping the player move around. Although we have a level where there
is a solid floor, we have no game character that can stand on it. We’ll look at how to introduce one
and move it in the upcoming section.

Moving the player around 239

Moving the player around
You might have heard that context is important in real life because context can make an ordinary
word or statement look especially bad or fun. This is consistently true in most technical areas—more
specifically when we try to describe visual or artistic aspects. Sometimes, it’s alright to use words
interchangeably, but making a distinction might be crucial—even necessary every now and then. For
example, at the end of the last section, we claimed that we’d move a character. It might be an absurd
attempt to do mind-reading via the pages of a book, but would we be wrong if you imagined a biped
creature such as Clara walking around using her legs and swinging her arms?

Chances are you did think about it that way, but you’ll have to wait for that at this moment since we
haven’t even moved an object between two spots on the level. Referring to the analogy of context, not
every move has to involve a fully-fledged animation. Clara’s model, or an ordinary cube for that matter,
could also move by following a path. Therefore, it might be more appropriate to think of movement
and animation as two distinct topics. That’s why we will introduce animation into moving objects later
in the Triggering animations section after we first tackle movement in this section.

Now that you know there is a difference between an object traversing a scene and doing so with an
animation, the big question is: How to detect where to move an object? Let’s be more specific in terms of
our level design. We have a pier where we have just recently placed a parchment. The basic expectation
is that our player character will be standing right by this parchment. Once the player is done reading
the note, we expect them to reach the backpack to acquire a key to unlock the door that leads upstairs.
Therefore, we need a mechanism to do the following:

•	 Detect clicks

•	 Find a possible path

•	 Move the player to their desired spot

Before we can start working on these items, we first need two vital ingredients: Navigation and
NavigationMeshInstance. These two nodes work hand in hand to designate some areas in the level
to be walkable. After all, we wouldn’t want the player to walk everywhere or through objects, hence
the importance of some of the props we placed around the level.

Interchangeability for the sake of brevity
Although we’ve pointed out a major difference between movement and animation and claimed
that we can’t use these two concepts interchangeably, we are in luck when it comes to the
two nodes we are going to peruse in this section. You’ll soon see that a Navigation node is
practically incapable of doing its work without depending on NavigationMeshInstance. We’ll
use Navigation as a general concept (unless otherwise specified) to talk about navigation,
while technically, we might be describing the attributes of the NavigationMeshInstance node.

With that said, let’s create areas that are traversable by the player.

Interacting with the World through Camera and Character Controllers240

Creating walkable areas with a Navigation node

The level we started to design in Chapter 9, Designing the Level has some nice, but also troubling features.
From a visual perspective, the props and their placement in the world look organic. Even bulkier
objects such as the broken cart and the stag statue are out of the way but still in the line of sight when
a person walks between the pier and the door. There is an element of usefulness mixed with clutter.

Speaking of clutter, when we introduce a Navigation node and ask Godot to calculate traversable areas,
the location of the objects in your level may gain bigger importance. You may get a hint as to why this
is after we make changes to the level, so open Level-01.tscn and follow along with these steps:

1.	 Add a Navigation node in the root node. Then, add a NavigationMeshInstance node right
under this last node you’ve introduced.

2.	 Drag and drop the Floor, Columns, Rails, Props, and Dock groups under the
NavigationMeshInstance node.

3.	 Select the NavigationMeshInstance node and assign a New NavigationMesh to its Navmesh
field in the Inspector panel.

4.	 Click and expand this new property so that you can do the following:

I.	 Type 0.18 in the Size field and 0.1 in the Height field under its Cell section.

II.	 Type 0.4 in the Radius field and 0.2 in the Max Climb field under its Agent section.

III.	 Turn on the Ledge Spans option under its Filter section.

5.	 Press 7 on your numeric keypad to switch to the Top Orthogonal view.

6.	 Press the Bake NavMesh button at the top part of the 3D viewport.

If your level design is different than ours, please try to follow the steps we have presented in the spirit
they are given. This is especially important if you directly transfer our values to your system, which
might not fit. In the end, you’ll see something similar to this:

Moving the player around 241

Figure 12.8 – We have introduced a NavigationMeshInstance node and configured it

Notice the light-blue overlay introduced by the Navigation node. That is all walkable as far as the
engine is concerned. There is something awkward going on, though. When you dragged the Dock
group into the Navigation node, the Water node came with it. So, it was also considered a candidate.

If this were a Dungeons & Dragons game, your player might know the Water Walk spell and be able
to walk on the water mesh. There is no such spell in Clara’s world, but it’s something you might want
to consider if your game allows for such a mechanism and flavor. Therefore, instead of removing the
water altogether, it’s best if we changed its place in the hierarchy by doing the following:

1.	 Move the Water node somewhere other than the NavigationMeshInstance node—for example,
above the SpotLight node.

2.	 Similarly, drag and drop Parchment out of the Props group.

3.	 Select the NavigationMeshInstance node and press the Bake NavMesh button again.

Interacting with the World through Camera and Character Controllers242

With a different hierarchy, the newly baked traversable area should look like this:

Figure 12.9 – The water is no longer walkable thanks to being in a different hierarchy

By determining which areas should be included in the NavigationMeshInstance node and adjusting
values in the Inspector panel, you can come up with a more precise layout. Ultimately, if you can
throw a few obstacles in the player’s way before they reach important places instead of following a
perfectly straight line, you will create more engaging gameplay.

If the layout in your level doesn’t look traversable in some key areas, such as the backpack near the
cart, then move some of those props around and bake a new map. This is going to be important when
we introduce movement logic.

You might want to rotate the view to Perspective if you want to get a better feeling of which areas are
reachable. Speaking of which, who is going to walk these areas? Next, we should introduce the most
basic player character before we get into more advanced character models such as Clara.

Introducing a basic player character

Earlier in this chapter, in the Knowing where the player interacts section when we were inquiring
about how the player could interact with the parchment, we introduced a StaticBody node because
the object wasn’t going anywhere. We also mentioned that StaticBody was one of many PhysicsBody
options available to you besides two other commonly used nodes, as described here:

•	 RigidBody: Bodies that don’t have control over themselves fall under this category. The word
rigid might be confusing at first since it conveys a feeling of how strong or flexible an object is.
On the contrary, you can use a RigidBody node for simulating the motion of a soccer ball or
a cannonball. You usually apply forces to objects that have this node, which will instruct how
the physics engine will calculate their trajectory, collisions, and likewise.

Moving the player around 243

•	 KinematicBody: Bodies that actually have control over how they will behave in the world fall
into this category. Most typically, player characters use this node, but any system that creates
its own motion—such as an actual engine or rocket—needs to use this.

Consequently, the best option we have is to use a KinematicBody node to simulate a player character.
We’ll now follow the next steps to create a very simple one:

1.	 Create a new scene and save it as Player.tscn under the Scenes folder.

2.	 Start with a KinematicBody node as its root. Then, add a CollisionShape node and a MeshInstance
node under the root.

3.	 Select the MeshInstance node and do the following:

I.	 Assign a New CapsuleMesh to its Mesh field. Expand this new field and type 0.4 for
its Radius property.

II.	 Type 90 in the X field in Rotation Degrees under the Transform section.

4.	 Select the CollisionShape node and do the following:

I.	 Assign a New CapsuleShape to its Shape field. Expand this new field and type 0.4 for
its Radius property.

II.	 Type 90 in the X field in Rotation Degrees under the Transform section.

5.	 Select the KinematicBody node and type 0.9 in the Y field in Translation under the Transform
section. Rename this KinematicBody node Player.

This will create a capsule shape, which is a quick way to simulate player characters. Also, we picked a
collision shape that would go well with the mesh we created. Since there isn’t much to look at in the
Player.tscn scene, it may be best if we show you where to place it in the world. Create an instance
of it in Level-01.tscn, and position it as shown in the following screenshot:

Figure 12.10 – An upright pill-shaped player character

Interacting with the World through Camera and Character Controllers244

The player character, although it looks like a pill standing up right now, is now part of the world and
ready to move around. It just needs to be told where to go. How can we give it instructions before
even we know where it’s supposed to go? To solve this mystery, we will have to prepare a structure
to catch clicks. All this will eventually lead us to revisit a topic we dismissed earlier in the Detecting
user input section: raycasting. After all, it will help us know where the player clicked in the world.

Preparing a clickable area for raycasting

When you know exactly which objects should be interactive and receive mouse events, the method
we applied in the Distinguishing useful mouse events section is still valid. It entails anticipation on the
game designer’s end, so the essential bindings could be done early on, as we saw. However, what if it
wasn’t always possible to foresee this, or how viable would that method be on a larger scale?

For example, if we were to add a StaticBody node to each floor model we have used so far, we could
certainly detect mouse clicks. That being said, sometimes, it’s a bit too late for that. Right now, our
level has all the floor pieces as model instances instead of scene instances because, back then, it was
convenient to drop the models and be done with the level design. We could still try to create a scene
out of a floor model, but you’d still have to swap all the floor assets in the level. It’s a lot of work.

Since we already know that a StaticBody node is necessary to initiate an input response, we may yet
use it to our advantage. Instead of attaching it to every single floor piece, we could designate an area as
large as what all the floor pieces occupy, and detect the clicks on this large piece. Here’s how to do this:

1.	 Add a StaticBody node to the level and place a CollisionShape node inside this StaticBody node.

2.	 Assign a New BoxShape to the Shape field in the Inspector panel.

3.	 Expand this new property and adjust its Extents setting. We used values such as 9, 1, and 8
but you might want to adjust these values after you finish the next step.

4.	 Position the StaticBody node in the level so that the following applies:

I.	 Its Y coordinate is roughly -1.05. Adjust it to a value so that its top almost aligns with
the floor but just below the parchment. We’ll discuss this after we finish moving the player.

II.	 Its X and Z values are at a point where its child, CollisionShape, encompasses the floor
pieces and the walkable areas on the pier.

It might be easier to decide on the measurements if you switch to the Top Orthographic view. The
blue square in the following screenshot represents the area we want to use as a click detector:

Moving the player around 245

Figure 12.11 – The StaticBody node covers all walkable areas

You might be wondering if we overdid it with the detection area since Figure 12.11 clearly shows it
is way larger than the walkable areas. A short explanation is that when you click on areas outside the
traversable field, the pathfinding algorithm will take the player to a nearby spot but never to the exact
position the player clicked. For example, if you click in the water, then the player character will move
to the clicked spot as close as possible but still stay within the limits.

When you get to see the code, things might make more sense from a technical point of view. With
that said, let’s attach some code to the player character so that it can move around, as follows:

1.	 Open Player.tscn and select the root node.

2.	 Attach Player.gd from the Scripts folder to the Script field in the Inspector panel.

Let’s explain the most important parts of the code we have just applied. You can refer to this code
block at https://github.com/PacktPublishing/Game-Development-with-
Blender-and-Godot/blob/main/Chapter%2012/Resources/Scripts/Player.
gd. The first 10 lines are for storing some of the startup values and structures we are going to use.
Three of those variables are worth a thorough explanation since the rest is self-explanatory. Let’s look
at them in more detail here:

•	 camera: The player scene has no Camera node, but it needs to access a camera to do the
raycasting. So, we appropriate the currently used camera as a workaround.

•	 space_state: This is our entryway to Godot’s PhysicsServer node that monitors which
objects collide or intersect with each other. We’re going to use this variable to know if a click
connects with the floor.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2012/Resources/Scripts/Player.gd
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2012/Resources/Scripts/Player.gd
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2012/Resources/Scripts/Player.gd

Interacting with the World through Camera and Character Controllers246

•	 nav: Since the Player node will be part of the Level-01.tscn scene that also holds the
Navigation node, we use a mechanism like this to inject the Navigation node into the Player
node. This way, the Player node can query the Navigation node to find a possible path.

The rest of the script consists of four functions. Despite that, two of those functions are doing the
heavy lifting because the _input and _physics_process methods are essentially offloading
their tasks to two other functions: find_path and move_along respectively. We could have
ignored these latter functions, but when you are able to separate distinct functionality into their own
functions, you should do this to keep your code clean.

All of this was done so that we could do a raycasting that is implemented in the find_path function,
which is what we are going to study next.

Using Navigation node for pathfinding

The large StaticBody node we’ve added to the scene is still not enough to know at which point on the
floor the click happened. Having just that will only let us know that the player clicked somewhere in
that area. So, in the end, we are still going to use raycasting for finding the precise location so that we
can begin constructing a path toward this position.

To that end, the find_path function in the Player.gd script is going to use the following
two techniques:

•	 First is raycasting, to know exactly where the player clicked

•	 Second is whether there is a possible path toward that position

The first three lines of code in the find_path function, as shown here, are what raycasting is about:

var from = camera.project_ray_origin(event.position)

var to = from + camera.project_ray_normal(event.position) * 100

var result = space_state.intersect_ray(from, to)

Firstly, we ask the camera system to tell us from where the ray is going to originate. Hence, we store
it in the from variable. This happens to be where the mouse event happened. Keep in mind, though
that this event is still on our monitor’s 2D surface. There is still no notion of where we are clicking
in the 3D world.

Secondly, we ask the camera system to let us know where a ray would go if we projected it 100 units
from into the world. Now, we know where to stretch the ray. Still, there is no guarantee that this ray
will hit anything. Thus, we check if anything is intersecting the ray, and store it in the result variable.

So, in just three lines of code, we determined a line between where we clicked on our screen and a
position in the world. The result of this raycasting might be empty, so it would be prudent to check if
there is an object colliding with our ray. Only then can we proceed with finding a path.

Moving the player around 247

This is where the nav variable comes into play. Since it’s a reference to the Navigation node in the
level that knows the player’s position and where the player wants to go next, it calculates a simple
path between these two spots. Ultimately, a series of 3D coordinates are stored in the path array.

Separation issues
In a situation such as the pathfinding operation requiring a raycasting done in the find_path
function—in other words, when two systems are closely related to each other—it might be okay
not to separate the raycasting logic into its own function. We’ll revisit this concept later when
we work on a more advanced game character in the Triggering animations section.

Sooner or later, you’ll have a walkable path, although this doesn’t automatically make the player
character follow a path. We’ll need several more lines of code to do that.

Moving the player to their desired spot

We have used raycasting to detect a spot where the player wants to go and queried the Navigation
node to find the closest path to this desired spot. We are now ready to instruct the Player node to
move between different points along the path.

The move_along function in the Player.gd script receives a path and processes it one step at a
time. Since it’s unlikely to have a straightforward path between the start and end points, the path will
be composed of a series of midpoints before the player reaches their last stop. It’s like walking in real
life where you make course corrections before you arrive at your destination. Naturally, if the path is
empty or all of its steps have been processed, we terminate the function early.

Otherwise, we move the player between two stops by checking if the distance to the next step is within
a certain threshold. Speaking of this threshold, this might be a good moment to talk about a caveat.
During the writing and testing of this code, we had moments where the threshold value should have
been 3, or sometimes, 1. You might want to experiment with a different value if you notice the player
character is behaving awkwardly. This is something that will be remedied in later versions of Godot,
as is noted in the official documentation:

The current navigation system has many known issues and will not always return
optimal paths as expected. These issues will be fixed in Godot 4.0.

After all this hard work, we are now one step away from having the player character move around,
so let’s carry on with this, as follows:

1.	 Switch to Level-01.tscn and select the Player node.

2.	 Using the Inspector panel, click the Assign… button in its Nav field to select the Navigation
node in the upcoming pop-up screen.

3.	 Press F5 and click on different spots in the level.

Interacting with the World through Camera and Character Controllers248

When we test the scene and move the character away from the pier, this is what it looks like:

Figure 12.12 – The player character can now move in the world

You now must be able to move the player character around by pressing on the floor or even in the
water. The nearest spot will be picked as a destination. Also, while you are moving around, try to click
the parchment on the pier. If it is placed just so it’s below the catch-all StaticBody node, then you
won’t be able to trigger the note. If that’s the case, either adjust the Y position you set in the Preparing
a clickable area for raycasting section for the StaticBody node or move the Parchment node up in
the Y direction.

As long as the clicks are not competing, the parchment will trigger the note. If the player character is
away, it will then move near the parchment as soon as the note is open. You might notice odd behavior
at this point if you click the Close button. The note will close as expected, but the player character
will suddenly move just under where the Close button was. It’s as if the note UI is letting some of our
clicks through and the pathfinding logic picks up that call.

Fortunately, there is a quick fix for this kind of behavior. If you replace the _input function with
_unhandled_input, then all will be well. If these two look alike and unclear, you might want to
find their nuances in the manual: https://docs.godotengine.org/en/3.4/classes/
class_node.html. It might be worth remembering its use for quickly fixing a lot of UI headaches.

Wrapping up

If you have been developing video games for a while, you might already be familiar with the notion
of iterative and incremental workflow. For example, it’s been okay to have indestructible crates so far.
Let’s examine a scenario where you now want these crates to be destructible.

https://docs.godotengine.org/en/3.4/classes/class_node.html
https://docs.godotengine.org/en/3.4/classes/class_node.html

Triggering animations 249

Not only do you have to account for certain conditions to happen, such as if the player has the right
item to break the said crates, but you will also have to prepare animations to be triggered at the moment
of destruction. These are both programmatical and artistic changes, and they can definitely be done
with ease to a certain extent. When you baked the walkable areas, the Navigation node believed
the crates were solid obstacles. However, in this new dynamic situation, you also have to update the
NavigationMeshInstance node with the new conditions.

If a crate the player has just destroyed is no longer part of the world, and that particular area should
indeed be walkable, you have to update the walkable areas by baking a new map. Fortunately, it’s
possible to create multiple NavigationMeshInstance resources and save them on the disk so that you
can swap them to accommodate dynamic cases as needed.

Sometimes, it makes more sense to move ahead with prototypes. For instance, it was good enough
to have our player character look like a capsule to test movement logic. It would be nice to have our
avatar look more like a person than a white pill. Let’s see how we can accomplish that next.

Triggering animations
In Chapter 5, Setting Up Animation and Rigging, we tackled the creation of animations in Blender.
Then, in Chapter 7, Importing Blender Assets into Godot, we saw how to import a model into Godot
Engine and use the AnimationPlayer node to test the model’s different actions. The steps we’ll present
in this section should be enough to introduce Clara to the game, but if you need a reminder on how
to create and import animations, you might want to seek out those two chapters.

Since we are done with the player’s movement, what is missing is to introduce Clara to our workflow
and play the proper actions, such as idling while she’s standing and walking while she is moving around.

We’ve already created a basic player character when we constructed Player.tscn and attached a
script to this scene. It’s primitive but the scene structure is a good starting point. Follow these steps:

1.	 Click Clara.glb in FileSystem, then bring up the Import panel.

2.	 Select Files (.anim) in the Storage dropdown under the Animation header. Refer to the
Separating actions section from Chapter 7, Importing Blender Assets into Godot, to remember
the need for this step.

3.	 Press Reimport to set up Clara’s dependencies properly. Switch to the Scene panel.

4.	 Open Player.tscn and delete the MeshInstance node.

5.	 Drag Clara.glb from FileSystem onto the Player node. Thus, the old MeshInstance node
will be replaced with a Clara node.

6.	 Click the root node and zero its Translation values since the values that applied to the basic
capsule-shaped player are no longer valid.

7.	 Adjust the CollisionShape node’s Shape field in the Inspector panel so that it encapsulates
Clara. We haven’t changed the Radius setting but set its Height value to 1.2.

Interacting with the World through Camera and Character Controllers250

The main goal here is to replace the old MeshInstance node with Clara and adjust the CollisionShape
node so that collision detection is done correctly. The editor should now look like this:

Figure 12.13 – Clara has replaced the boring MeshInstance node

With this method, you can easily test your code for a player character, and then replace the test model
with the actual model later. This might be useful if you are the main developer and you are still waiting
for the artwork from your colleagues.

Improving the looks of the avatar was a good step forward. It’s looking much more appealing. We will
do the same for its movement because you might notice odd behavior if you run the game now. Clara
will be moving around like the old capsule mesh because it’s missing two major qualities, as follows:

•	 Looking in the direction it’s currently moving

•	 Showing signs of walking instead of looking like a stick sliding on surfaces

There is also another problem but it’s so minor you can fix it without needing much discussion and
explanation. The Player node, which used to hold the simple MeshInstance node, had to be moved
slightly higher in the world. You can lower this new Player node to the level of the pier so that Clara’s
feet are connecting with it. If you don’t make any changes, Clara will look like she’s hovering and then
moving diagonally as soon as her movement logic kicks in.

For the other two major concerns, we’ll have to dig deeper than just changing an object’s position. We’ve
got to first update the script we are using for the Player node, though, so here’s what we need to do:

1.	 Select the root node in Player.tscn.

2.	 Swap its script with Clara.gd from the Scripts folder.

3.	 Press F5 and enjoy seeing Clara walking around as a normal person should.

Rejoice—she’s walking!

Triggering animations 251

How did it happen so quickly? We will devote the rest of this section to discovering which changes
the Player.gd script has received to accommodate the new behavior we are experiencing and—
undoubtedly—enjoying.

Understanding how Clara looks around

An incremental and iterative workflow is the short and non-technical answer to understanding how
Clara looks around, and it’s something we advise you to keep in mind when tasks seem monumentally
big at first. For example, we were initially concerned with basic movement, which was achieved within
the Player.gd script. At some point, when you know basic test systems are working, it’s time to
take things to the next level. That’s what happened with the Clara.gd script.

We’ll now explain the steps we have taken to turn the basic sliding movement into a more elaborate
walking animation. As far as having new variables is concerned, we are using a simple flag: is_moving.
We keep track of this flag in order to understand whether Clara is moving or not. The use of this new
variable will soon be discussed in the context of some other changes we have made.

New term – flag
In the programming world, a flag is a variable that means a certain condition has been satisfied.
It’s often used to determine a system’s behavior, like an electric switch with a false/true or off/
on states, hence they are often called Boolean flags. However, it is possible for a flag to have
different kinds of predetermined values.

A natural behavior for Clara would be to look in the direction the mouse cursor is. Let us remind
you, once more, that although the cursor is moving over our monitor’s 2D surface, we need to do
essential projections into the 3D space to find the proper direction. We were already doing that in the
find_path function inside the Player.gd script. Since we now want a similar raycasting done
for determining where Clara is supposed to look, we extracted those common lines from find_path
to its own function, get_destination.

Hence, the more common uses and repetitions you can find in your code, the better it is to separate
them into their own functions. This was something we intentionally ignored in the Player.gd
case for simplicity’s sake. However, we now have both the find_path and turn_to functions
depending on get_destination.

Just as find_path is piggybacking on the _unhandled_input function, the turn_to
function is also using the same mouse event. Speaking of the turn_to function, let’s take a closer
look at it here:

func turn_to(event):

    if is_moving:

Interacting with the World through Camera and Character Controllers252

        return

   

    var direction:Vector3 = get_destination(event) *

    Vector3(1,0,1) + Vector3(0, global_transform.origin.y,

    0)

    look_at(direction, Vector3.UP)

First of all, although we haven’t yet seen where the moving flag is set, if Clara is moving, we wouldn’t
want her to keep looking around. So, we have an early return statement to terminate the turning
behavior. Then, once we determine a suitable direction via the get_destination function, we
trigger Godot’s built-in look_at method.

The logic is simple, but the math to determine the direction vector in turn_to might need
a bit more explanation. Normally, the value from get_destination would have been enough,
but we seem to be multiplying the return value with another vector and then adding it to another
vector. This is because the destination given by get_destination also includes the y axis in
the 3D space. We want Clara to keep her posture the same; in other words, we don’t want her to look
up or down. Those two vector operations are required so that she doesn’t rotate in an awkward way.

You can see the weird behavior yourself by removing the vector operations and only keeping the
get_destination function. When you move your mouse cursor near Clara’s body, she may
suddenly pivot around her feet and sometimes even flip upside down or sideways. The intricacies
due to projections between 2D and 3D are something you’ll have to account for in the future, and it’s
a common occurrence in controlling game characters.

It’s nice that Clara is facing where the mouse cursor is. It’s also a separate mechanism because she can
do so without moving, as you may have already tested with the preceding code block. It would be nice
if she kept looking where she was going while walking. This will be done in the enhanced version of
the move_along function. Let’s see how we improved it in this new version.

Adding a looking behavior to moving functionality

It is nice to see Clara looking around while she’s standing still, but we will also want her to face the
destination she’s walking to. For example, if you click near the crates by the wall (more like the right-
hand side of the screen), she should walk straight until she clears the pier, then turn and look right,
and then keep walking. Similarly, while she’s in this new spot, if you click somewhere far away such
as near the stag statue or the pier again, she should turn around and walk back in a natural way.

This kind of behavior can easily be added inside the move_along function. The way it is, that
function already determines how many steps there are left along the path Clara should take. As she’s
walking toward the point on the path, she may as well look at where she is going. That’s why we have
a simple look_at function call after move_and_slide in the move_along function.

Triggering animations 253

Other useful KinematicBody functions
We have been using the built-in move_and_slide function of the KinematicBody class.
There is a useful function in the same class that might be helpful in levels where the player would
like to reach an elevated location by following a slope: move_and_slide_with_snap.
Similarly, you might want to check whether the player should perform the next move. If that
is the case, the test_move method might be handy.

Also, the fate of is_moving gets decided in the following lines of code:

if !path or path_index == path.size():

    is_moving = false

    $Clara/AnimationPlayer.play("Idle")

    return

is_moving = true

Notice that, similar to how we do it in Player.gd, the if block checks whether there are steps left
along the path. It’s exactly at this point we can set the state of the is_moving flag. Consequently,
unlike the original version, the new move_along function’s if block is making sure the moving
logic is turned off when there is no path left for Clara to walk.

If the player clicks a different spot and there is a new path determined, then we turn on the moving flag.
As long as there are midpoints for Clara to follow, she’ll follow the same steps we’ve described—face
the right direction, walk the necessary distance, face the next direction, walk, rinse, and repeat—until
she no longer has any more steps to take.

Besides deciding on the state of the is_moving flag, there is something else going on in that if
block in regard to animations. Let’s focus on that in the next part.

Playing the right action for Clara

We’ve already seen how actions are related to animations in the Separating actions section of Chapter
7, Importing Blender Assets into Godot. They are like what atoms are to molecules. So, when we want
to trigger an animation for a model, we actually mean to trigger a particular action. We’ll finally utilize
this notion and put Clara in action.

We have seen how the improvements we made to the Player.gd script have added extra flavor to
Clara’s behavior. That being said, she could also benefit from a touch-up in the animation department.
That’s precisely what’s also happening inside the move_along function.

Interacting with the World through Camera and Character Controllers254

We already know how to determine whether Clara should move or not, and we are keeping track of
that with the is_moving flag. Subsequently, that’s the right moment to trigger the required action
for her. Thus, when she’s no longer supposed to move, we trigger her Idle action. Conversely, the Walk
action is activated when is_moving is set to true.

When we made Clara.glb part of the Player.tscn scene, and it turned into a Clara node,
an AnimationPlayer node already came within it with all of Clara’s actions set up. The code we have
written so far is aware of exactly where this AnimationPlayer node is in the internal structure. Should
you import a different model with a different Scene tree, then you might have to alter your code to
find the right path to the AnimationPlayer node.

It’s hard to convey an animation via the static pages of a book, but when we move Clara near the
column approaching our camera, this is what it looks like:

Figure 12.14 – Clara can now move around the level

Also, notice how the light conditions in the scene are affecting her model when she walks in darker
and brighter spots. In the next chapter, we’ll turn off some of the light sources. So, as she or the player
is walking around, we can use the torch she’s holding to illuminate the scene.

We couldn’t finish the animation topic without mentioning an advanced subject: blending animations.
We will not cover it in great detail, but it is worth mentioning it for more advanced cases of animations
you would like to use in your projects.

Blending animations or actions

After a while, the names that are used in most computer-related things may start to seem like they
have something to do with each other. We used Blender in the first several chapters to build assets,
textures, animations, and likewise. The blending we are now going to talk about has nothing to do
with Blender itself.

Summary 255

Our point-and-click adventure game is very simple so far. Clara plays the Idle action while she’s standing
still, and she uses the Walk action when she’s moving. Although her model contains other actions
such as Death, Run, and likewise, we aren’t going to use those. If you want to take this project and
move it further, you can accommodate different needs a player may have by improving the Clara.
gd script and incorporate these other actions.

At some point, when you have a much more complex system where the actions you are triggering
come to an end to give room to another action, you may notice that these actions abruptly start and
end. Then, imagine how the crossfade functionality in an audio player makes the whole experience
more pleasant when a song track changes to another. What if you had a way to transition the end of
an action smoothly to the beginning of the next action? You can easily achieve that for animations
with the AnimationTree node.

Unfortunately, the page count is limited for us to cover such an advanced topic. That being said, the
official documentation has a nice and long tutorial page dedicated to this very subject. It also comes
with plenty of animated GIFs that you can’t possibly experience on the static pages of a book. So, in
the end, you might be better off exploring how to blend animations by following the instructions at
https://docs.godotengine.org/en/3.4/tutorials/animation/animation_
tree.html.

Blending animations is heavily used in high-pace action games when transitioning between different
attack and run states should look more seamless. In our current situation, we are not missing out
much by not having this kind of functionality.

We have made great strides so far in our point-and-click adventure game. Let’s wrap up and count
our victories.

Summary
This chapter finally covered the long-due camera topic we’ve been waiting to tackle since Chapter 4,
Adjusting Cameras and Lights. You now have multiple options to choose from, from a simple Camera
type to an InterpolatedCamera type that follows a target. Should you want to get fancy and dip your
toes in VR, you also have ARVRCamera at your disposal.

As you now had a proper camera showing you the game world as opposed to seeing things within
the editor, it was the right time to investigate how to interact with the world itself. To that end, we
presented raycasting as a possible solution but quickly dismissed it in favor of using collision detection,
which provides more flexibility and precision. We used this technique to detect a click on a specific
game object: a parchment. During this effort, you used signals as a way of interpreting the player’s
click as a trigger to turn on the note.

https://docs.godotengine.org/en/3.4/tutorials/animation/animation_tree.html
https://docs.godotengine.org/en/3.4/tutorials/animation/animation_tree.html

Interacting with the World through Camera and Character Controllers256

Next, you looked into creating a simple game character and moving it around the level. Sometimes,
the game design is missing key elements, and other times, the level might need some more help. Once
you, as a solo developer or as a team, are happy with the direction the game is going, then you can up
the ante by introducing more complex systems.

That’s exactly what happened in between testing Player.gd and improving it with the more
advanced Clara.gd script. In the end, you were able to find a suitable position in the world for
Clara to move and do this by using the proper animation cycle. Since you’ve covered the essentials,
it’s now up to you to enhance the script if you want to use more actions and special conditions for
player interaction with the world.

In the next chapter, we’ll introduce a few more tools that will add to the interactivity we have been
building, such as playing sounds, conditionally triggering certain events, and switching to another level.

Further reading
Although we taught you how to technically set up a camera, there is a whole other artistic side to
picking the best camera settings. You might want to check out online courses and books that cover
topics such as composition and storytelling. A few examples are provided here:

•	 https://www.udemy.com/course/composition-and-perspective-
for-stunning-visual-art/

•	 https://www.learnsquared.com/courses/visual-storytelling

•	 https://www.learnsquared.com/courses/production-concept-art

•	 https://www.cgmasteracademy.com/courses/93-composition-for-
concept-art-and-illustration/

If the code in the Player.gd and Clara.gd files look very similar, and if it’s hard to compare
line by line, there is an online tool you can use that can help you see and highlight the differences:
http://www.tareeinternet.com/scripts/comparison-tool/.

Our game doesn’t involve enemy characters that follow our player, but it will follow a similar approach.
For example, once the enemy detects the player, it will also have to do pathfinding for finding the
player’s position and moving toward it. A lot of video-game AI books cover player detection and
seeking topics such as the example we gave. So, since most AI topics are generally universal, don’t shy
away from reading a wide variety of material. You can always apply the insight you gain elsewhere
later in your Godot projects.

https://www.udemy.com/course/composition-and-perspective-for-stunning-visual-art/
https://www.udemy.com/course/composition-and-perspective-for-stunning-visual-art/
https://www.learnsquared.com/courses/visual-storytelling
https://www.learnsquared.com/courses/production-concept-art
https://www.cgmasteracademy.com/courses/93-composition-for-concept-art-and-illustration/
https://www.cgmasteracademy.com/courses/93-composition-for-concept-art-and-illustration/

13
Finishing with Sound

and Animation

We’re in the home stretch. The effort we started back in Chapter 9, Designing the Level, was resumed
by making the level look more exciting in Chapter 10, Making Things Look Better with Lights and
Shadows, which led us to implement a basic user interface in Chapter 11, Creating the User Interface.
We built new mechanics in Chapter 12, Interacting with the World through Camera and Character
Controllers, so we could interact with the world we have created. As a result, Clara is now able to press
the parchment left by her uncle, and she can also walk around. This is all very nice, and we can take
it a step further by refining some rough edges.

It’s all quiet in here! As she’s walking, we should trigger an audio file that will simulate her footsteps.
While we are at it, we will also add background music and effects that will better reflect the qualities
of the environment Clara is in.

You must have noticed that, as Clara walks around, sconces and candles around the level illuminate
her. Can she do the same with the torch she is holding in her hand? Of course! It might help her see
the backpack behind the cart. In fact, she’s going to have to use her torch to see better because we’ll
turn off all of the light sources in this chapter.

We’ll discover a new node in Godot to know whether a player character entered an area. Via this
method, game designers usually trigger in-game events such as traps, a conversation with a quest
giver, and so on. Our event choice will be Clara lighting the sconces and candles as she goes near them.

Eventually, she’ll reach the backpack where she’ll pick up the key. We are not concerned with an
inventory system in this game, yet we will consider this key object as a requirement for opening the
door. So, once the condition is satisfied, we need that door to open for us. However, the door did not
come into Godot with its animation set up in Blender. This is our chance to see how basic animations
can be created inside Godot.

Finishing with Sound and Animation258

When all of the conditions are in place, including the door opening that simulates a clear path upstairs,
we’ll swap our current level with another one. That particular moment will signify the conclusion of
our little game, but you can take it wherever you want to take it.

This is going to be another chapter with lots of distinct topics used together. Speaking of which, the
following are the titles under which you’ll find us executing the plan we’ve presented so far:

•	 Playing music and sound effects

•	 Creating reaction spots

•	 Building simple animations in Godot

•	 Loading another level

By the end of this chapter, you’ll have finished the core mechanics of our point-and-click adventure
game. Not only will you construct and work with new systems, but you’ll also make these systems
conditional on world or character events.

Good luck and enjoy!

Technical requirements
It’s perfectly fine if you would like to continue where you left off in the previous chapter. However, there
are some extra resources you will need to finish the work in this chapter. You can merge these assets
with the rest of your project files. They are in the Resources folder next to the Finish folder in
this book’s repository that can be found at https://github.com/PacktPublishing/
Game-Development-with-Blender-and-Godot.

Playing music and sound effects
Music and sound effects sometimes can make or break the enjoyment people get out of movies, theatre
plays, and of course, video games. When done right, they will definitely add to the immersion. In this
section, we’ll tackle the use of music and sound effects from a technical point of view. In your own
free time, we suggest you investigate the artistic aspects of sound design in multimedia for which we’ll
mention a few resources later on in the Further reading section.

In Chapter 8, Adding Sound Assets, we discussed different nodes Godot uses to play sound in different
dimensions, as follows:

•	 AudioStreamPlayer3D for conveying 3D positional information to the player. It’s most
commonly used in FPS games where not only front and back directions matter, but an audio
stream coming from an elevated place is important as well.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot

Playing music and sound effects 259

•	 AudioStreamPlayer2D for games in which the direction the sound is coming from doesn’t
need to have depth information. Most platformer games are a good example of this kind.

•	 AudioStreamPlayer for background music since it may be considered one-dimensional.

Out of these three, two types seem to be the right candidates for our purposes. We want to play
background music, so we will use AudioStreamPlayer. Then, when Clara is walking around, it makes
sense to use AudioStreamPlayer3D.

The latter case may not seem obvious, and we can certainly use the regular AudioStreamPlayer as
well for the footsteps, but we will cross that bridge when we come to it. Our most immediate concern
is to set up the ambient music.

Setting background music

In the Understanding the camera system section of Chapter 12, Interacting with the World through
Camera and Character Controllers, we showed the use of an outer scene structure, such as Game.
tscn, to hold the level we built in Chapter 9, Designing the Level. A wrapper structure such as ours
is also a good place to place more global-scale constructs, such as audio streamers. Yet, we would like
to discuss an alternative before we move on with our initial plan.

Although a player character is part of the game world, we decided to place it inside the level via a
Player node. It was convenient to do so because we could easily see where to position Player inside
the coordinate system of the Level-01.tscn scene. If you place it inside Game.tscn, for the
sake of keeping things separate and sanitized, then you will have to figure out a way to connect both
the Player and the Level-01 nodes inside Game.tscn. This would not be impossible, but it would
make things less convenient.

Similarly, where should you place the node that will play the background music? Although we may
want every level to play its own thematic music, and this would guide us in the direction of using
an AudioStreamPlayer node inside each level, we’ll still place it in Game.tscn. When we attack
the topic of loading different levels in the Loading another level section, hopefully, the scheme we are
suggesting will make more sense.

Let’s see how we can execute the original plan. Open the Game.tscn scene and perform the
following steps:

1.	 Add an AudioStreamPlayer node to the root and rename it as BackgroundMusic.

2.	 Drag Native Dream.mp3 from FileSystem to the Stream property of this new node.

3.	 Turn on the Autoplay option in the Inspector panel.

4.	 Press F5 and relax.

Finishing with Sound and Animation260

The piece of music we are using is about 2 minutes long and it will be automatically looped by Godot.
Thus, it won’t feel too repetitive while Clara or the player is discovering the level.

Speaking of placing a background music structure at a higher level, there is one more approach
you can use: singletons, also known as AutoLoad. For absolute beginners, these are the ultimate
top-level structures you can use in your project. These will always be present when you launch
your game and loaded in the order you define them in the AutoLoad tab of Project Settings. Via
this method, you can use a dedicated scene as a single source of music. You can read more about
it at https://docs.godotengine.org/en/3.4/tutorials/scripting/
singletons_autoload.html.

Some players turn off game music for the sake of focusing on sound effects. In the following section,
we’ll introduce our first sound effect. We expect Clara’s walking to trigger a suitable sound effect,
namely footsteps.

Conditionally playing a sound

Let’s see how we can play a sound file conditionally in this section. There is actually nothing magical
nor special in the way of achieving this goal. It’s similar to knowing when Clara walks or stands idly.
In the Playing the right action for Clara section of Chapter 12, Interacting with the World through
Camera and Character Controllers, we implemented two extra lines of code inside the move_along
function to trigger the correct actions for Clara to show, animation-wise, the state she is currently in.

We could still take advantage of the same function by enabling the execution of the sound file for her
footsteps. That being said, now might be a good moment to discuss some of our practices. It would
seem that we are overloading the meaning of the move_along function. You might consider our
current efforts still a phase of building a prototype similar to, as is often said during a writing exercise,
writing a draft, then focusing on edits later.

Sometimes, good architecture might be deduced before you start the bulk of the work, perhaps because
you’ve done something similar before. Often, though, this may not be the case, and your discoveries,
thus your decisions into coming up with an efficient architecture, might have to wait for later. As
soon as you notice there are common parts you can extract out of the current structures, you should.
However, concerning yourself with the fine details of creating the most efficient code structure and
information flow might not be the best use of your time while you are still deciding on gameplay.

So, for now, we’ll add the footsteps sound as an extra element inside the move_along function
until we need a much more efficient way, as follows:

1.	 Open the Player.tscn scene and add AudioStreamPlayer3D under the root node. Rename
it as FootSteps.

https://docs.godotengine.org/en/3.4/tutorials/scripting/singletons_autoload.html
https://docs.godotengine.org/en/3.4/tutorials/scripting/singletons_autoload.html

Playing music and sound effects 261

2.	 Select FootSteps.wav and switch to the Import panel. Then do as follows:

I.	 Turn on both the Loop and Normalize options.

II.	 Press Reimport.

3.	 Drag Footsteps.wav from FileSystem to the Stream field in the Inspector panel.

4.	 Turn on both the Autoplay and Stream Paused properties.

5.	 In the Clara.gd script, do as follows:

I.	 Type $FootSteps.stream_paused = false after you trigger her walk action.

II.	 Type $FootSteps.stream_paused = true after you trigger her idle action.

The method we are using here was discussed in the Playing a sound effect on demand section of
Chapter 8, Adding Sound Assets, when repeatedly triggering a sound file in a loop might sound like
the sound is jammed.

Additionally, we turned on the loop feature and normalized the volume. The loop is self-explanatory
since we will want her footsteps to repeat ceaselessly as long as she’s walking. The Normalize option
deserves a few more words, though. The sound files we are using in this project have been collected
from multiple sources. This makes it hard to have all these files have a similar level of volume. Some
will be louder, some will be quieter. The feature we turned on adjusts the volume of the sound file, so
it would be at a similar level to the other files.

When you run the game now, you’ll hear the background music as usual. Then, click around and wait
for Clara to walk to the desired spot. Do you hear her footsteps? Most likely just barely. We’ll look into
adjusting audio volume later in the Understanding the volume through decibels section.

For the time being, it might be better if we presented a handy feature in Godot. There might come a
time when you would like to apply special effects to some of the sound files you are playing. Godot
offers multiple audio channels, also known as an audio bus, via which you can decide which files will
play on a specific channel so you can apply a particular effect only on select channels.

We’ll now pretend that there is a situation like this and play the footsteps sound in its own audio
channel. Let’s see how it is done as follows:

1.	 Expand the Audio panel at the bottom section of Godot Engine. Click on the Add Bus button
in the top right corner of the Audio panel.

2.	 Rename this New Bus as SFX.

3.	 Select the FootSteps node and choose the SFX option in the drop-down options for Bus.

Finishing with Sound and Animation262

The footsteps sound will now be played on a different audio channel in Godot. The interface that’s
reflecting the changes we have made is shown in Figure 13.1.

Figure 13.1 – We are playing the sound effect on its own bus

Via this method, a dedicated audio channel will play the sound you want. As you can see at the bottom
of the SFX bus in the Audio panel in Figure 13.1, the audio is sent to the Master channel. When all
the audio sources are merged and processed, it’s delivered to Speakers. Furthermore, by using the
Add Effect dropdown for an audio bus, you can apply and stack effects that go through this channel.

Although you hear both pieces of audio, they might be competing volume-wise. In the following
section, we’ll get a bit technical about how audio volume works.

Understanding the volume through decibels

Every vocation has its trade secrets and unique practices, and this is also true for sound engineers.
When they talk about volume as how loud a sound is, they use a unit called decibel, marked as dB.
If you are used to the metric system, this is one-tenth of a bel, similar to a decimeter as one-tenth of
a meter. However, what exactly is a bel?

Wikipedia has a page that provides a decent amount of technical information for the decibel. Therefore,
we’ll provide you with the practical aspects and/or pitfalls of working with decibels in your projects.

Similar to how earthquake magnitude is measured, a decibel is a relative scale where every time you
increase the sound level by 6 dB, you double the amplitude of the sound. Consequently, -6 dB means
you are halving the amplitude. As far as values go, 0 dB is the maximum amplitude a digital audio
system will use. Anything above this value, which means positive values, will be clipped. So, you might
still hear something above 0 dB, but it will be distorted the higher you go in decibels. Thus, you’ll be
using the negative range when it comes to picking values.

Creating reaction spots 263

Moreover, there are physical limits to human hearing. Sound is no longer audible between -60 dB and
-80 dB. So, in the end, you have from -60 dB to 0 dB as a workable range. If all of this is confusing,
there is perhaps one important fact you might want to keep in mind about decibels. 0 dB denotes
the normal amplitude of the sound when it was exported from an audio application. If the base level
at 0 dB is too quiet, you might have to fix it at the source rather than messing with it by choosing a
higher dB value in Godot.

That being said, we can decrease the amplitude easily. This is indeed what we are going to do with the
background music as follows:

1.	 Open Game.tscn and select the BackgroundMusic node.

2.	 Adjust Volume Db in the Inspector panel to -12, or even -18.

Since you are now able to discern the footsteps from the background music better, did you notice how
Clara’s footsteps get louder as she approaches the camera and quieter as she walks toward the end of
the cave? This is thanks to the AudioStreamPlayer3D node’s behavior of processing audio in 3D. If
you want to perceive this effect more clearly, feel free to temporarily turn off the background music
and focus on the directionality of Clara’s footsteps.

Who is listening?
The Camera node has a built-in Listener construct that makes it possible for us to identify
from which direction the sound is coming. In some cases, we may want the camera to be in
one corner of the world and the listener in another corner. Thus, creating a separate Listener
node is not only possible, but it will also be beneficial when you want to simulate a situation
where a microphone is placed away from the camera.

If you would like to practice more on playing sound files, we suggest you add a sound effect to the
Close button we used in the note user interface. You already know when the button is clicked since
we wait for that moment to close the interface. That is the right moment to play a sound effect such
as ButtonPress.wav in the Audio folder.

It seems the world is reacting to our actions by playing animations and sound files, which is nice. In
all of these efforts, we’ve had a direct involvement mainly by a mouse click. In the following section,
we’ll discover how the world can react to our player character without the player’s direct intervention.

Creating reaction spots
When the player clicks on the parchment, the game shows the content written on that parchment
via a user interface. When the player clicks on a particular location in the world, Clara walks to that
spot by playing a walking animation and playing a footsteps sound. These are all direct interactions
at the player’s end, which brings us to discuss cases when the game should react to indirect events.

Finishing with Sound and Animation264

Although not lit, Clara is holding a torch. You already know how to use the Light nodes in Godot.
So, it’s easy to place OmniLight near the torch mesh inside the Clara node. Our basic expectation is
that, when she walks by the candles on the floor and the sconces on the walls, she’ll be lighting those
up using her torch. Thus, the game needs to know when she’s near some objects.

Let’s first give Clara a torch she can carry around, then we can proceed to discuss how this torch can
affect other objects in the level, as follows:

1.	 Create a scene out of Clara.glb and place an OmniLight node under Torch002.

2.	 Position OmniLight according to the torch so it’s slightly above. 0.75 on the Y axis might
be enough.

3.	 Select d6d58e for Color and turn on Enable in the Shadow section.

Since OmniLight is a child of the torch mesh, whenever the AnimationPlayer node controls the torch,
the light will follow along. This is also a nice example of taking Blender animations and enhancing
them with Godot nodes.

We have a dedicated Clara.tscn scene, but the Player.tscn scene is still unaware of this
new development. It’s still using the old model reference. Therefore, you must delete the Clara node
in Player.tscn and instance Clara.tscn instead. The Scene panel won’t look that much
different but it’s now going to have Clara holding a lit torch. Test your scene and have Clara walk
around, especially near the door. The torchlight will synchronize with her walking cycle.

Clara seems to be carrying the right tool in her hand to light those candles and sconces. It’s time we
added the trigger zones so that the world can react to her presence. That’s what’s coming up next.

Placing trigger points in the world

We made use of a StaticBody node to detect user clicks in the Preparing a clickable area for raycasting
section of Chapter 12, Interacting with the World through Camera and Character Controllers, so we
could deduce where to move Clara. This is useful when you know that an agent, most likely the player,
will directly trigger a system. There are cases when game objects act freely on their own and they
should also initiate a response from systems that are waiting to be triggered. This section will cover
this kind of situation.

By now, you may have noticed an odd behavior regarding pathfinding and the player’s destination.
StaticBody that we set up goes as far as where the floor pieces meet the wall pieces. Therefore, it
successfully captures the clicks on the floor tiles. However, if you click anywhere far away or along the
walls, the pathfinding may give you an unexpected result. If you extend StaticBody further out, similar
to how it covers the water, it will be alright. You can refer to Figure 12.11 of Chapter 12, Interacting
with the World through Camera and Character Controllers, to observe the placement of StaticBody
and adjust it to account for extra space to catch faraway clicks.

Creating reaction spots 265

Once the destination is determined, Clara will move toward it by getting closer to the props. Some of
these objects are good candidates to trigger certain events. For this, we’ll use the Area node, which
is inheriting from the same internal structure as StaticBody. These are similar nodes since they both
originate from the same place but provide different results.

Although we could place and position an Area node per trigger zone in the level just as we did with
many other nodes, keeping in mind that we want to do this for lighting the sconces and candles, it
makes more sense to open the dedicated scenes we already have for these. To that end, you will do
as follows:

1.	 Open Candles_1.tscn and place an Area node under the root.

2.	 Bring up the Node panel and double-click the body_entered(body: Node) item.

3.	 Press the Connect button right away, which will automatically add an event handler to the
LightSwitch.gd script. Change it as follows:

func _on_Area_body_entered(body):

    print(body)

4.	 Place a CollisionShape node under the Area node you have just added.

5.	 Define New BoxShape for the Shape property in the Inspector panel.

The number from the print statement might look different in your machine, but you’ll see something
like StaticBody:[StaticBody:2025] in the Output panel when you run the game. We’ve just got a
collision result from the Area node we’ve added, but what is it that it hit? It is detecting the catch-all
area that covered all of the floor pieces and some portion of the water.

We need to exclude all unwanted candidates so that this trigger zone only responds to our player’s
activities. There are multiple ways to do this. We’ll explain an elaborate version right after we present
a very simple method. For now, swap the function you just saw with the following code:

func _on_Area_body_entered(body):

    if body.name == "Player":

        print("Hello, Clara!")

Finishing with Sound and Animation266

The changes we are making are in Candles_1.tscn, which holds the candle group by the barrel
when Clara turns right after she clears the docking area. So, press F5 to run the game and move her
near the candles as described. You’ll see the Output area display the print message only when she
enters the space of those candles. Figure 13.2 will help you see what’s expected.

Figure 13.2 – It’s as if the candles sensed Clara coming nearby and welcomed her

With this method, we are only interested in knowing whether name of the body that entered the Area
node’s space is equal to Player. If so, we can trigger the next chain of events. However, before we
start tackling our initial intentions, the following are a few words about a more advanced detection
method we mentioned.

Getting to know a better collision detection method

Godot’s PhysicsServer, a system that’s responsible for undertaking all of the calculations for the
objects that should be affected by physical rules (such as gravity, collision, intersection, and so on)
uses a layer system to keep track of where objects reside. This is not a visual layer as you might see
in a graphics editing application such as Adobe Photoshop. Nevertheless, it’s similar because if the
objects are on separate layers, then you can define how these layers will interact with each other. Aptly
so, the structure that allows this kind of functionality is called Layer in Godot.

Moreover, if all objects are always in the same layer, then you would have to resort to solutions such
as name checking. It’s simple and effective, but it could easily get unwieldy because who would want
to pick a unique name for each game object? Unquestionably, that if block we wrote earlier would
get longer and longer to filter which particular object entered the area. To eliminate such situations,
Godot has another construct that is called Mask.

Creating reaction spots 267

Through a clever way of creating multiple Layer and Mask options, and defining their relationship,
you can reduce the load of writing unnecessarily long and inconvenient if blocks where you check
what’s colliding with what. In a way, that sort of check will be done for you in PhysicsServer, so you
can only account for completely necessary if checks for controlling other less trivial cases.

The following figure shows where you can find the Layer and Mask options for the Area node we are
currently configuring:

Figure 13.3 – Using collision layers might be another detection method

While this method is effective and valuable, setting it up in our current situation and explaining it
via the pages of this book would be inefficient. Instead, we will use the available space to present
other practical applications. Still, it is a vital architectural choice you might have to rely on in your
future projects. So, we suggest you read about this by visiting the Collision layers and masks section
at https://docs.godotengine.org/en/3.4/tutorials/physics/physics_
introduction.html.

Our more immediate concern is what we do when Clara goes near those candles. Let’s see her influence
on the world.

Lighting the candles and sconces

We’ve been laying the groundwork for Clara to interact with the world around her. Our latest effort
involved proximity detection by Candles_1.tscn through the use of an Area node. The reaction
is not useful at this point since it’s just a silly print statement, but we are at a good spot to make it
more interesting.

https://docs.godotengine.org/en/3.4/tutorials/physics/physics_introduction.html
https://docs.godotengine.org/en/3.4/tutorials/physics/physics_introduction.html

Finishing with Sound and Animation268

To truly appreciate Clara’s impact on the world, we should start by turning off some of the lights on
the level. Switch to the Level-01.tscn scene and perform the following steps:

1.	 Select all instances of Candles_1.tscn and Candles_2.tscn.

2.	 Turn off the Is Lit property in the Inspector panel.

3.	 Repeat the first two steps for all sconces in the level.

4.	 Press F5 to run the game and move Clara around.

Atmospheric, isn’t it? When Clara goes to the same spot that triggered the message in the Output
panel, the level will look like the following:

Figure 13.4 – Clara is depending on the torch she’s holding in her hand

The torch she’s holding is enough for her to see where she’s going. However, it would be nice to light
those candles she’s just standing by. We’ve already done the hard work in Candles_1.tscn so all
there is left to do is to turn on OmniLight internally as follows:

1.	 Open the LightSwitch.gd script.

2.	 Replace the print statement in the _on_Area_body_entered function by typing
is_lit = true. The function will look like the following example after your changes:

func _on_Area_body_entered(body):

    if body.name == "Player":

        is_lit = true

3.	 Press F5 to run the game and move Clara first to the same area, then to a different location.

Creating reaction spots 269

When Clara goes near the same candles this time, those candles will be lit. It might be a bit difficult to
see the effect depending on exactly where she’s standing. So, when she walks away from those candles,
you’ll truly feel her mark on the world, as seen in Figure 13.5:

Figure 13.5 – Clara is getting some help from those candles she just lit

This was just one candle game object Clara interacted with. We have another candle scene, Candles_2.
tscn, and a separate scene for the sconces, Sconce.tscn. We could easily replicate what we have
done to this point for these other scenes, as follows:

1.	 Open Candles_1.tscn first, then right-click the Area node, and select Copy in the
context menu.

2.	 Open Candles_2.tscn next, then right-click the root node, and select Paste in the
context menu.

3.	 Bring up the Node panel and then do as follows:

I.	 Right-click the body_entered item in the list and select the Disconnect All option. Press
the OK button on the upcoming confirmation screen.

II.	 Double-click the body_entered item in the list. Press the Connect button on the
upcoming screen.

Normally, we shouldn’t have to do the third step. When you copy and paste nodes between scenes,
the signals are not transferred. So, we had to manually remove what seemed to be an active signal and
rebind it. Luckily, both candle scenes are using the same script and we already have the event handler.
That’s why we didn’t have to write the programming parts. When you transfer nodes between scenes
as we did, keep in mind to reconnect the signals. Godot 4 might have a fix for this behavior.

Finishing with Sound and Animation270

So, run the game and have Clara walk by all of the candles. They will be lit one after another as she
gets close, and the following is what you’ll experience when she does so:

Figure 13.6 – All of the candles were lit after Clara walked by them

We suggest you apply the same procedure to the Sconce.tscn scene. This time around though,
alter the Z axis of BoxShape for the CollisionShape node to simulate the extra distance the sconces
must have between the walls and Clara. We chose a value of 2, but you might want to adjust it to
something that suits your conditions. Alternatively, you could move the whole Area node a bit forward
to line it up with the two extensions of the sconce that connect to a wall. As long as there is enough
area extended out of sconces, Clara will trigger it.

So, where else can you take this idea? A simple case might be to introduce traps or enemies reacting to
the player’s position. In the case of enemies, they can also take advantage of pathfinding via the same
Navigation node we placed in the level. Also, it’s common, in a case like this, when enemies give up
after following the player for a certain period of time. If the distance is not getting any shorter and
the player is getting away fast enough, the enemy will usually return to their designated patrol zone
instead of trying to catch up with the player.

We aren’t going to introduce such mechanics in this game. However, it might be something you can
pursue as a more advanced game feature. If you are really interested in enemy versus player behavior,
then we suggest you read a few artificial intelligence books on game development. There are a plethora
of options out there and we’ll give you a brief list in the Further reading section.

There are two more trigger zones we should create. One is for the backpack behind the cart when
Clara goes near that area. The other one is when she approaches the door that leads upstairs. Let’s
start with the backpack.

Creating reaction spots 271

Adding the trigger for the backpack

This effort will be similar to the way we did it for the candles and sconces. Since you already know
that by using an Area node you can introduce interactivity, we’ll present something slightly new.

When players interact with the world, more specifically with the game objects, they feel that they have
agency over these items. For example, players have just discovered that walking near candles will light
them. This is part of the fun besides the narrative and story elements a game can have. At this point,
it’s up to the game designer to interweave another layer of complexity. Perhaps, being close to the
candles is only a precondition and the player is also expected to click on the candles.

Regardless of the conditions a game designer will expect the player to satisfy, giving feedback to
the player is quintessential. When players try things on their own, they will get negative or positive
feedback. This kind of harmless trial and error could easily be used in lieu of a tutorial. An easy and
reliable way to provide feedback is something we’ve already looked at. It is playing sound.

For the backpack exercise, we’ll combine both playing an audio file and reacting to an area effect.
Once Clara approaches the backpack as she did with the candles, the backpack will play a sound file
that will inform the player that she picked up the key. The following steps show you how you do it:

1.	 Create a scene out of Backpack.glb and save it as Backpack.tscn in its original folder.

2.	 Place an AudioStreamPlayer node under the root. Assign CollectItem.wav to its
Stream field.

3.	 Add an Area node with CollisionShape under the root, similar to how you did it for the candles.
Position it at -2 on both the X and Z axes. You may want to pick values that make sense in
your scene. As long as there is ample room for Clara to reach this zone, things should be fine.
Use Figure 13.7 as a reference.

4.	 Create a Backpack.gd script for the root node and save it in the same folder. Activate the
body_entered signal for the Area node, which will add a boilerplate function to the script.
Then, change the script as follows:

extends Spatial

signal key_collected

func _on_Area_body_entered(body):

    if body.name == "Player":

        $AudioStreamPlayer.play()

        emit_signal("key_collected")

5.	 Swap the Backpack node in Level-01.tscn with an instance of Backpack.tscn.

Finishing with Sound and Animation272

We are following the same principles we used in player detection for the candles. This time, instead of
enabling lights, we are playing a short sound effect. We chose the AudioStreamPlayer node instead
of its 3D version because we don’t want this sound effect to be affected by its distance to the camera.
However, this is a perfect situation for you to swap and try both to see the difference.

The sound effect command is followed by the emission of a custom signal. In simple terms, we have
converted the body_entered signal into a key_collected signal, which will be used in a more advanced
scenario in the Playing the door animation on a condition section.

As mentioned in the third step, Figure 13.7 shows the relative position of the Area node.

Figure 13.7 – The trigger area for the backpack is offset so Clara can reach it

As they are now, the sconces and candles don’t play a sound effect when they are lit. This might be
a short and nice exercise for which you can use the TorchWhoosh.ogg file. By default, the file’s
Loop feature will be on. So, remember to press the Reimport button after you turn the loop off in
the Import panel.

Last on the list of making some of the game objects interactive is the arched door. Our workflow will
be similar but additionally accounts for that key_collected signal we defined in this section.

Interacting with the door

You’ve been using the Area node quite liberally for a while. So, you must be used to it by now. In this
section, you will use it one last time to complete the topic of interactivity. It will be for the door where
you’ll also make use of that custom signal we have recently created.

Creating reaction spots 273

Since some of the steps will be so similar, we will give shorter instructions for the sake of focusing on
the unique parts, as follows:

1.	 Create a scene out of Doors_RoundArch.glb and save it in its original folder.

2.	 Attach the Doors_RoundArch.gd script from the Scripts folder to the root node.

3.	 Add two AudioStreamPlayer nodes under the root. Rename them as LockFiddling
and OpenDoor. For these two nodes, use LockFiddling.wav and OpenDoor.wav,
respectively, for their Stream property.

4.	 Add an Area node to the root with its dependencies and requirements, such as its collision,
signal, and position. Figure 13.8 should be helpful to show where we are placing Area.

5.	 Swap the existing door asset in the Level-01.tscn scene with this new scene. Also, assign
the backpack asset to the Backpack property in Inspector.

6.	 Press F5 and have Clara walk directly to the door.

We’ll pay closer attention to the script this new scene is using after you see how things look in the
editor with our most recent changes.

Figure 13.8 – This should be enough space in front of the door for Clara

The scene layout is pretty similar to the other examples you have created, but instead of one, there
are two audio stream nodes. Their names indicate the kind of functionality we are trying to achieve.
This time around, Clara standing in front of the door won’t be enough by itself because we expect her
to have found the key first.

Finishing with Sound and Animation274

Let’s analyze the Doors_RoundArch.gd script and see how we are working it out. You can refer to
this code block at https://github.com/PacktPublishing/Game-Development-
with-Blender-and-Godot/blob/main/Chapter%2013/Resources/Scripts/
Doors_RoundArch.gd.

We have a flag variable to keep track of whether the key has been collected. The value of this variable
becomes true only when the on_key_collected function is run. All of this relies on whether
the backpack variable emits the appropriate event, which is set up in the _ready function. That’s
why you are binding the backpack object to the door using the Inspector panel so that these two
can communicate.

In the body_entered function, we check whether the intruding object is the player. This is where the
flag variable comes into play. If the condition to open the door is satisfied, then we request the door
opening sound. Otherwise, the game engine will play a sound file that indicates Clara fiddling with
the lock.

One type of solution may not always cut it
The solutions we show you throughout this book may not always be ideal if your level or game
structure is different. Even the game we are building right now might benefit from a drastically
and much more efficient architecture. The concept of architecture means the hierarchy of game
objects you lay out in your scenes, how scripts share common variables, and ultimately how
your systems talk to each other. There is no golden solution, rather best practices that come
with more exposure to coding, perusing forums, and attending conferences where seasoned
developers share their battle scars.

We suggest you try both cases where Clara walks directly to the door to hear the no-go sound. Then,
have her pick up the key, which is already notifying the player with its pickup sound. Lastly, she can
go in front of the door again to hear the door creaking. That door sure needs some greasing!

Even though the squeaking sound makes us think the door is opening with some protest, we don’t see
it yet. So far, we’ve successfully mixed different disciplines we learned in the Playing music and sound
effects and Creating reaction spots sections. It’s time we added the missing animation component to
our workflow.

Building simple animations in Godot
Back in Chapter 5, Setting Up Animation and Rigging, we discussed variances between Blender and
Godot Engine for animation needs. In summary, we claimed that you’d be better off with Blender for
animating anything more complex than bouncing balls and simple rotating objects. To drive the point
home, we rigged and animated a snake model. Similarly, we have been using a humanoid character,
Clara, done in Blender as well.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2013/Resources/Scripts/Doors_RoundArch.gd
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2013/Resources/Scripts/Doors_RoundArch.gd
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot/blob/main/Chapter%2013/Resources/Scripts/Doors_RoundArch.gd

Building simple animations in Godot 275

However, there comes a time when it might be suitable to animate some of the models in the game
engine. The topic we have at hand is the opening animation of the arched door Clara is standing in
front of. If you prefer so, you could still open the model in Blender, implement the necessary steps
that represent the opening of the door, and reimport your work in Godot. It’ll be no different than
any other imported model that came with its animation.

For such a simple task, it’s a bit of an overkill, though. We’ll still use AnimationPlayer, but instead of
triggering imported actions, we’ll create our own by manually placing keyframes in the timeline to
match the creaking sound we play when the door opens.

Creating the door animation

Before you start tackling any kind of manual animation in Godot, we suggest you take a closer look
at the MeshInstance nodes the model uses. In our case, we are fortunate that there are only two.
However, this might also be a problem too.

The model’s mesh shows metal rings for grabbing and pulling to open such a heavy door. Sadly, they
are part of the same MeshInstance nodes. This means that they can’t be individually animated. To
be able to do it, you’d have to go to Blender and separate those pieces and reexport the model. Then,
you’ll have more MeshInstance nodes you can work with. Keep in mind, though, that any one of these
options is fine but comes with a trade-off. More individual objects often signal freedom, but they also
clutter the Scene panel if you don’t need them in the first place.

We’re not concerned about the rings on the door for the time being. Our goal here is to learn the basics
of animation in Godot, which starts by opening the Doors_RoundArch.tscn scene. After that,
you will perform the following steps:

1.	 Place an AnimationPlayer node under the root. This will automatically bring up the Animation
panel at the bottom. If not, press the Animation button in the bottom menu.

2.	 Press the Animation button in this panel’s top area to bring a context menu and select New
in the options. As a reminder, you used the Load option in that context menu in Chapter 5,
Setting Up Animation and Rigging.

3.	 Type Open and press the OK button to confirm.

4.	 Set the animation length to 2.3 by typing it in the area between the clock and loop icons on
the right side of the panel.

Finishing with Sound and Animation276

There are a lot of similar named buttons or options in the last set of steps. Thus, Figure 13.9 will help
you see what the editor will look like after your latest effort.

Figure 13.9 – Scaffolding for the open animation is done

The animation track is empty, but the groundwork is done. We need to tell AnimationPlayer how a
specific property of an object is changing over time. To that end, you should do as follows:

1.	 Select the Doors_RoundArch_L node in the Scene panel.

2.	 Expand the Transform section in the Inspector panel. Press the key icon for the Rotation
Degrees property. A confirmation popup will appear.

3.	 Press the Create button to accept the proposed changes.

4.	 Click and drag your mouse over the numbers in the timeline of the Animation panel. We want
to set the time to the end of the animation, which is 2.3. Alternatively, you can type it in the
area above the timeline to move the time marker.

5.	 Change the Y value in Rotation Degrees to -60 and press the key icon again. There won’t be
a confirmation popup this time.

If you scrub the timeline back and forth as you did to move the time marker, you’ll now see the door
pivot around its hinges. Speaking of which, this was covered in the Setting origin points section of
Chapter 6, Exporting Blender Assets.

Also, feel free to use the forward and backward play buttons to test the Open action. We’ll trigger
it programmatically soon, but we should take care of the other portion of the door first as follows:

1.	 Select the Doors_RoundArch_R node in the Scene panel.

2.	 Reset the time marker to 0 in the Animation panel.

3.	 Follow steps 2–5 from the preceding set of instructions with only one difference. Mark the Y
value as positive 60 this time since the directions are reversed.

Building simple animations in Godot 277

After the two sets of changes, the editor will resemble what you see in Figure 13.10:

Figure 13.10 – Two sections of the door model have been keyframed, hence animated

This will add the necessary keyframes to the timeline at points where changes occur. Since we want
the door to open in one go without any slowing down or stuck effect, we are not introducing more
keyframes other than those we are using. If you fancy more complex scenarios, you can position the
time marker along the track to where you want to introduce more keyframes.

The Open animation you have just created should run on a condition. We’ve already discussed and
even implemented the necessary condition to a certain extent. However, we didn’t really place the
animation part in the door script. Let’s do that right away.

Playing the door animation on a condition

Earlier in the Interacting with the door section, we attached a script to the door scene. This script had
all of the necessary rules to check whether the player satisfied the conditions to open this door. We’ve
also done a whole bunch of other things since then. So, let’s summarize what we’ve got so far.

The arched door scene has an Area node that reacts to the player’s presence. The door provides an
auditory effect either way, but if Clara has already claimed the key, we expect the door to open with
a creaking sound effect. Aptly named, we should trigger the Open animation. The change is simple
enough, and it requires you to do as follows:

1.	 Open the Doors_RoundArch.gd script.

2.	 Replace print(“Open Sesame!”) with $AnimationPlayer.play(“Open”).

3.	 Press F5 to run the game. Have Clara first go for the key and then stand in front of the door.

Voila! A big obstacle in the way of going upstairs has been eliminated.

Finishing with Sound and Animation278

Although it’s not possible to convey sound and visual effects via a still image, nevertheless, the following
is the fruit of your hard work in Figure 13.11:

Figure 13.11 – Clara opened the door only after she collected the key from the backpack

If you move Clara away and come back near the door, the animation and sound will trigger over and
over. Coming up with the necessary conditions to execute an event is important. However, it might
sometimes be equally important to stop it from happening again. You might have already noticed a
similar, and maybe annoying, repeating behavior with the candles as well. Some effects should only
fire once.

We still have quite a few things to do in this chapter. That’s why we will give you a quick guideline
for eliminating this kind of repeating behavior. By nesting or combining if blocks, not only can you
make sure the condition has been met just then, but also that it has been met before. For this, you
might want to take advantage of simple Boolean variables. If the solution doesn’t come to you, you
can always check the GitHub repository for the finished work.

What’s left for Clara to do at this point? Well, she’s currently standing there waiting to go upstairs.
In this context, upstairs means loading another level, which we will discover in the Loading another
level section later. For the time being, we still don’t know exactly when we are supposed to load the
next level. Let’s see how we can determine that.

Waiting for the door animation to trigger an event

It’s tempting to load the next level when we start opening the door. That being said, you’ve worked hard
to keep track of what Clara has been doing as a precondition to start the door’s opening animation.
If you switch to a new level right away, the animation will be for naught.

Building simple animations in Godot 279

Instead, we should wait for the Open animation to finish. Only after that does it make more sense to
switch things up. There are two common but equally awkward ways to do this. We’ll discuss both, so
you get to know them before we dismiss them for the sake of a better alternative, and they are as follows:

•	 yield: You can add yield($AnimationPlayer, “animation_finished”)
after you trigger the Open animation. Whatever comes after the yield line, such as loading
a new level, will have to wait for the animation to be finished. This is, in a way, like holding
the line. Nothing else will happen unless, well, the program yields. This concept will change in
Godot 4 in favor of the await command, which is a more permissive architectural choice than
blocking things during the execution of your code.

•	 Timer: An alternative to yield where you are still letting things run is introducing a Timer
node to your Scene tree. This is just like any other node you could add. Its Wait Time field
in the Inspector panel could be set to when you want it to go off, in our case, 2.3 seconds,
since that’s the length of our Open animation. Then, once the time is out, this node will fire a
timeout signal for which you can write a listener.

This method’s usage in our situation would be to start the timer as soon as you initiate the
Open animation. Since the timer’s Wait Time would be synced with the action you are
playing, it would look like loading a new level right after the action is finished.

We will not use either of these methods because why would you make your life more complicated
when there is already a way to accomplish something with the toolset you are familiar with? Instead
of switching gears, we’ll see how AnimationPlayer can still help us as follows:

1.	 Add the following function somewhere in the Doors_RoundArch.gd script:

func load_level():

    print("What level?")

2.	 Select the AnimationPlayer node and expand a context menu by pressing the Add Track button.

3.	 Choose Call Method Track among the options. You’ll be presented with a list of nodes to pick
from. So, select the root node, Doors_RoundArch, on the upcoming screen.

4.	 Move the timeline marker to 2.3 seconds. Right-click where the blue timeline marker meets
Functions for the Doors_RoundArch entry in the animation tracks. To get a better idea, refer
to Figure 13.12 to see the location we are talking about.

5.	 Search and choose load_level from the upcoming list. Press F5 to run the game and follow the
necessary steps as before to open the door.

Finishing with Sound and Animation280

Everything will be exactly the same, except when the door animation is finished playing the Open
sequence, the load_level function will run too. Since showing the door animation won’t make
sense, we’d rather show you the editor’s status as mentioned in the fourth step:

Figure 13.12 – The load_level function will be triggered when the timeline arrives at the keyframe we set

The last frame of the Open action is where we are firing the function responsible for loading the next
level. For now, it’s printing only a statement. We’ll be looking into swapping our current level with a
new one later in the Loading another level section.

While we are still working on building simple animations, we could take care of the light sources that
kind of look static.

Let there be flickering lights

The work we did with the sconces and candles for introducing the Light nodes to our game in Chapter
10 , Making Things Look Better with Lights and Shadows, didn’t include animations. Nevertheless, we’ve
been gradually improving everything else ever since.

Consequently, it would be nice to add some oomph to our light sources as follows:

1.	 Open Sconce.tscn and add an AnimationPlayer node to the root.

2.	 Introduce a new action. Choose Flicker for its name.

3.	 Set the length to 2 seconds. Also, turn on Animation Looping and Autoplay on Load.

4.	 Press the Add Track button and choose Property Track. Select OmniLight from the list that
pops up. This will display another list to pick from.

5.	 Pick omni_range. Right-click the track in the Animation panel at 0.0, 0.4, 1.3, and 1.9
seconds to open a context menu and select Insert Key.

Building simple animations in Godot 281

6.	 Select each one of these keyframes and enter 8, 6, 7, and 5, respectively, in their Value property
in the Inspector panel.

7.	 Press F5 and have Clara light the sconces. They should start to flicker.

Before we discuss a more refined and advanced version of what we have done, the following is what
we have in the Animation panel:

Figure 13.13 – The Flicker action has been defined for OmniLight in sconces

Things now must look more organic when you light the first sconce. Then, perhaps after the second
or the third one, the cozy flickering effect will look disturbingly repetitive, won’t it? If only there was
a delay between different sconces so they wouldn’t all fire the Flicker action at the same time.

Achieving that will be relatively easy, but we suggest you first copy the AnimationPlayer node inside
Sconce.tscn and paste it into both the Candles_01.tscn and Candles_02.tscn scenes.
It’ll be easier to notice the effect of randomness when we use the animation everywhere.

When all of the light sources are lit, the whole level will look like it’s pulsing. Let’s see how we can
break the unanimity and introduce some randomness to what we have, as follows:

1.	 Turn off AutoPlay on Load in AnimationPlayer for all of the three scenes you are using it for.

2.	 Open the LightSwitch.gd script and alter the _process function as follows:

func _process(_delta: float) -> void:

    $OmniLight.visible = is_lit

    if is_lit:

        yield(get_tree().create_timer(randf()*2.0),

              "timeout")

        $AnimationPlayer.play("Flicker")

Finishing with Sound and Animation282

All our light sources share this script. So, the changes will apply to all instances. While we were not
in favor of using the yield command, it was relatively harmless to do so in this case. The last three
lines tell the engine to create Timer on the fly and it randomly picks Wait Time for it between 0 and
2 seconds. When this timer goes off, the Flicker action plays.

Although you copied and pasted the same AnimationPlayer node that forced the light sources to
share the same length and keyframes with exactly the same values, since the Flicker action for each
light starts with a delay thanks to our latest change, it will induce enough visual differences.

Additionally, if you want to be really fancy, you could add another track such as light_energy to vary
the brightness of the light sources.

Wrapping up

Slowly but surely, you will have a more complete and believable feeling game by introducing small
variations here and there, either by placing them in the world in a non-repeating pattern or by animating
some of the game objects’ key features.

Sometimes the method to do this will be completely different. For example, the shader we are using
to simulate the body of water doesn’t use a node such as AnimationPlayer, but we still have motion.
That being said, it’s disillusive to have that boat look so still while the water is in motion. With the
knowledge you have gained in this section, we suggest you turn the boat model into a scene and
animate it to show an oscillating motion like a boat would do.

While you should feel confident that you know how to animate the basic properties of game objects,
you have left out something important: Clara was supposed to head upstairs. Let’s help her do that.

Loading another level
Before we started to animate the light sources in the Let there be flickering lights section, we were ready
to move Clara upstairs. To that end, we used a nifty feature of the AnimationPlayer node to fire the
load_level function, which printed a statement to the Output panel, a substitution for the real
thing. In this section, we’ll investigate how to swap the existing level with another.

Let us remind you that our current level, Level-01.tscn, is instanced inside the Game.tscn
scene, which is holding a Camera and an AudioStreamPlayer type of nodes. Godot has a built-in
function, change_scene, that can change the current scene to another scene. However, this might
be dangerous since it’ll replace the entire structure. In our case, this is not Level-01.tscn but
everything in Game.tscn because that’s the main scene.

The solution we’ll offer is a process that’s operational at a higher level than Level-01.tscn itself.
Ideally, your scenes should notify a higher authority of the changes they would like to introduce to
the overall system. As it happens, this could very well be the Game.tscn scene via which not only
can you use it to load a new level, but you could also be taking care of other stuff in your game such
as keeping a log file, contacting a database to store important changes, or even reaching to a third-
party service to show ads.

Loading another level 283

Now that we’ve established the importance of the Game.tscn taking over the task of loading a new
level, how are we going to let it know when to do it? You have used signals before to facilitate a way
between different game objects to know each other. This involved placing a reference of an object
inside another by exposing a script variable to the Inspector panel. Although we could still try this,
there is a better way.

Using an event bus

When we expose variables to the Inspector panel so that scripts can recognize other game objects to
be able to connect to their signals, we are coupling things, in a sense. When the number of objects
and signals grows, this method will be difficult to maintain. There is an alternative, a concept called
event bus, that might be helpful in an ever-growing list of dependencies.

We’ll revisit this concept in more detail in the Further reading section since the notion is part of a
much bigger family of options available to you. For the time being, we’ll be satisfied with a practical
application of it. This is what it entails:

1.	 Create an EventBus.gd script in the Scripts folder. Add the following line to it:

signal change_level(level)

2.	 Open Project Settings and switch to the AutoLoad tab.

3.	 Use the button with the folder icon to find the EventBus.gd script.

4.	 Press the Add button to add this script to the list underneath.

Figure 13.14 shows what the editor will look like.

Figure 13.14 – Our first singleton is set up and ready to use

Finishing with Sound and Animation284

We have just added a script to the AutoLoad list. A singleton is also another common name that
is used in the industry for this concept. It means that there can only be one instance of the script.
Besides the conventional description, in a Godot-specific context, as soon as you introduce it to the
AutoLoad tab, there will always be one and only copy of this script; it will also be loaded for you and
be made available to all of the constructs in your project.

So, who’s going to make use of this new script since it doesn’t seem to be attached to anything? After
all, it just exists there, but since AutoLoad makes it accessible at all times, we can use it when the
door animation is finished.

Let’s reassess our work from the Waiting for the door animation to trigger an event section. When we
run and wait for the Open action in the Doors_RoundArch.tscn scene, AnimationPlayer
eventually triggers the load_level function. There is currently a line of placeholder code in the
body of that function in the form of printing a short statement: What level?

That’s where we originally intended to load the next level. However, in light of the discussion we had
in the opening lines of the Loading another level section, we now want to delegate this to the Game.
tscn scene. To that end, we have created an EventBus.gd script that will communicate our
request to the relevant recipient. Therefore, you will have to make the following change:

1.	 Open the Doors_RoundArch.tscn scene.

2.	 Update the load_level function as follows:

func load_level():

    EventBus.emit_signal("change_level",

                         "Level-02.tscn")

In our earlier efforts, game objects were directly using the emit_signal command. For example,
the backpack was emitting a key_collected signal. Here, we generalize the idea. We no longer
care about knowing which object is emitting. We use a high-level construct such as EventBus to
do this for us. Figure 13.15 shows a diagram of the new architecture we are proposing.

Figure 13.15 – We no longer need to couple structures anymore thanks to EventBus

Loading another level 285

In the backpack example, the emitted signal was directly captured by the door so that the game could
decide whether the player has completed a necessary condition. So, similar to how communication
works in real life, there are two main parts to an event: an emitter and a receiver. We’ve made updates
to the emitting situation. Let’s see what we can improve at the receiver’s end.

Listening to the EventBus signal

Going back to the relationship the door and the backpack objects had, the backpack wasn’t aware of
the door, but the door had a field we set in the Inspector field to reference the backpack. So, when
the backpack emitted an event, the door was already keeping an eye on the backpack in a manner.

We are now trying to stay away from this type of architecture. Instead of directly using an object to
emit an event, we tell the EventBus to do it for us. However, who is the door in our new example?
In other words, who is listening to our event and how? The short answer is the Game.tscn scene.

Let’s implement some code first. Sometimes, it serves the purpose of showing instead of telling. Then,
we’ll explain the rationale behind it. The following steps show what you should do after you open
Game.tscn:

1.	 Create a new Spatial node under the root node. Rename it as Level.

2.	 Drag the Level-01 node into this new Level node.

3.	 Make a new script as Game.gd and attach it to the root node. You can save it alongside the
scene file. Then, you type in the following code:

extends Node

func _ready():

    EventBus.connect("change_level", self,

                     "change_level")

func change_level(level:String):

    var new_level = load("res://Scenes/" +

                         level).instance()

    

    $Level.remove_child($Level.get_child(0))

    $Level.add_child(new_level)

Do you see that _ready function where we make use of the EventBus architecture? That’s the
sweet part. This way, neither Game.tscn nor Doors_RoundArch.tscn need to know anything
about each other. They share and deal with their responsibilities through EventBus.

Finishing with Sound and Animation286

Somewhere, at some point, a structure may fire a change_level signal. That is all we care for, and
after we express our interest in it, we also prepare ourselves for what to do with it, in case the event
comes to fruition. If that’s the case, we handle it inside the change_level function.

Naming conventions
Some people keep their signal and event handler (function) names the same for the sake of
treating the function as an extension of the signal. Godot’s signal bindings will add an _on_
prefix, though. Keeping your own event handlers’ names the same as the signal name might help
you distinguish them from Godot’s own bindings. However, you could always follow Godot’s
naming convention in your bindings too.

Let’s now analyze what’s going on in the change_level event handler. When we fired the signal
in the arched door scene, EventBus was passed a parameter in the form of a string: Level-02.
tscn. The first line in the change_level function looks up and loads this string in the project’s
Scenes folder. After finding a match and creating an instance of it, we want to store this new scene
because we still have some work to do with the current scene. We should dispose of it before we add
the new scene.

Since we’ve made some changes to the Scene tree, the current level, Level-01, is now inside a Level
node that acts like a receptacle. Thus, we are instructing it to first find then remove its only child with
$Level.remove_child($Level.get_child(0)). Only after that do we add the new level.

There is only one thing left for you to do. Press F5 and have Clara go through all of the steps necessary
to trigger the door’s opening. As soon as the door is open, the game will take you upstairs to a new
level. You should expect to see what Figure 13.16 shows.

Figure 13.16 – Welcome to our new level

Loading another level 287

Congratulations! You have guided Clara to find her way in the darkness to collect a key that unlocked
the door to this new level. She can continue her adventures from here. Is that a chest over there?
There is a trapdoor right in front of it though, so watch out for that. Using the tools that we have
shown you, you can go on and create new conditions and obstacles for the player to tackle. It’s up to
your imagination.

We’ll now dedicate the rest of this chapter to discussing some of the choices you’ve made by following
our guidelines and what you could also do differently.

Discussing some of the choices we can all make

Our goal in this book is to teach you just the necessary parts of Godot Engine to build a simple point-
and-click adventure game. It’s a simple statement, and yet it entails two separate efforts. On one hand,
we should teach you as much as possible about the game engine without making it look like you are
reading documentation.

On the other hand, the game we planned to build must be advanced enough but also simple to the
point that you can easily follow its progress by reading as little as possible. Also, the fact is that there
are only so many pages in a book. Thus, some of the choices we made during the production of the
game were limited by these factors.

You might also face similar but different limitations and conundrums in your own projects. An early
plan, even the worst one, might often be better than not having a plan at all. Even then, some cases
might be really hard to nail and prepare beforehand, such as making your gameplay fun or achieving
a decent user experience.

For example, the level switch is technically done. However, the change is happening so abruptly that
the player might want to feel a moment of respite to collect their thoughts and savor their journey
throughout the level. You can easily achieve this by extending the animation length and pushing the
load_level function to later frames. It might look like there is a healthy pause between the door
animation and the loading of the next level.

Even better, having the screen fade out before the switch actually happens might be a good idea. In
fact, this might even be useful from a technical point of view. Our second level is so small, thus it’s
easy to load it from the disk. However, in more ambitious projects, your levels might be chuck-full of
game objects waiting to be loaded.

Furthermore, if your game loads previous sessions, you will have to reset your game objects’ states to
their last known values. A generic loading screen in between switching levels or loading a previous
game session might be a much better architecture. By following this practice, you’ll most likely find
yourself abstracting more and more systems from more directly implemented systems.

Thus, this is perhaps the most valuable piece of advice we can offer you: if you are feeling stuck or
unsure of how to tackle a topic, first focus on the special case and its implementation, then try to
generalize it if possible and necessary.

Finishing with Sound and Animation288

Summary
This was another chapter with a lot of moving parts that incorporated so many different aspects of
the game engine. Let’s break down some of your activities that helped to add the finishing touches on
so many things we carried over from the previous chapters.

First, you tackled background music and sound effects. You had already seen the usage of sound in
Chapter 8, Adding Sound Assets, which covered simple scenarios. In this chapter, you’ve learned how
to use sound assets in a proper context.

Next, you reexamined a topic you saw in Chapter 12, Interacting with the World through Camera
and Character Controllers – player detection. This time, you used Area nodes as trigger zones since
there would not be direct player interaction, such as mouse clicks and motion. Instead, Clara triggers
predetermined events when she’s in the right zone.

You were also able to communicate information between game objects, essentially separate and distant
systems, when an Area node was actively used. For instance, when the player reached the backpack,
the condition to open the door was satisfied. The backpack let the door know what was going on
through the use of a custom signal.

You symbolized the pickup of the key with a sound effect. Perhaps, a short piece of animation would
have been used to display a 3D key moving up and fading out. Sometimes, an icon appears at the
bottom of your monitor and finds its place in what’s called a quickbar in some games. Both approaches
are fine, but we didn’t want to do either one of them.

Since this chapter was supposed to teach the creation of animations in Godot, we wanted to show off
cases that were sufficiently complex, such as flickering light sources or opening two sections of an
arched door, rather than simply moving a key up in the game world. We believe our effort has a more
didactic value that you can transfer to other simple use cases.

After finishing simple animations, particularly the door’s opening action, it was time for Clara to
go upstairs. To achieve that, you looked into swapping the current level with a new one. Although
you could have achieved this by letting game objects pass information between each other, you were
introduced to a more generic way of doing this via an EventBus architecture.

Even though there is still one more chapter, this is the moment you should pat yourself on the back.
You have built a fully functional, however small, point-and-click adventure game. The following chapter
will show you how to export your game. We’ll also discuss what other options you can consider on
your game development journey.

Further reading 289

Further reading
As promised, we want to share with you a few words on the artistic aspects of sound management.
Sometimes, a piece of music will have a high tempo. It means it’ll have a higher value of beats per
minute (BPM). Depending on the game or the level you are building, you might want to select or
create your music with the most appropriate BPM value to convey the best emotions.

There are also situations where gameplay will ask for a mix between a higher and lower tempo. This
is common in role-playing or action games where players would like to feel they are under tension
when they get involved in a sticky situation. For example, it would absolutely break the immersion if
your burly, gun-toting player character is hiding behind a cover under heavy enemy fire when classic
or chillout music is playing in the background. Likewise, when all is supposed to look calm between
two action zones, if the game is playing a piece of high-tempo music, you will needlessly stress out
and confuse your players.

Luckily, there are plenty of courses on this topic on Udemy. Giving a list of courses here would do
injustice to all of the others we couldn’t mention since the list is long. We suggest you look it up on
their website by using the music for games keywords.

Last in the sound management topic is the use of supplemental technologies. Either of the following
two will help you create on-the-fly solutions to ever-changing circumstances if your game can’t make
use of prearranged sound assets:

•	 FMOD

•	 Wwise

We also briefly mentioned artificial intelligence in this chapter. This is a vast topic, but a pertinent list
of books would be the following:

•	 AI for Games by Ian Millington

•	 Behavioral Mathematics for Game AI by Dave Mark

•	 The Game AI Pro 360 series by Steve Rabin:

	� Game AI Pro 360: Guide to Character Behavior

	� Game AI Pro 360: Guide to Movement and Pathfinding

	� Game AI Pro 360: Guide to Architecture

	� Game AI Pro 360: Guide to Tactics and Strategy

Finishing with Sound and Animation290

The EventBus solution we presented in this chapter is frequently utilized in many programming
circles. It’s sometimes called a Publish/Subscribe model or an Observer pattern. Referring to Figure
13.15, imagine you replaced EventBus with the post office. When a magazine you are subscribed
to has its latest issue coming out, the publisher will notify the post office and you’ll be delivered your
subscription.

Since the inception of computer science, and more particularly software programming, developers
have noticed problems that exhibited a particular behavior or nature. Solutions to these common
problems are called design patterns. There are a lot of resources out there that deal with this topic
in the framework of classic software. However, game developers have also gotten some love in recent
years. Regardless of domain specificity, a few examples are the following:

•	 https://gameprogrammingpatterns.com

•	 https://www.udemy.com/course/design-patterns-for-game-
programming/

•	 Head First Design Patterns: Building Extensible and Maintainable Object-Oriented Software by
Eric Freeman

•	 Learn Design Patterns with Game Programming by Philippe-Henri Gosselin

https://gameprogrammingpatterns.com
https://www.udemy.com/course/design-patterns-for-game-programming/
https://www.udemy.com/course/design-patterns-for-game-programming/

14
Conclusion

Congratulations!

You have built a point-and-click adventure game that utilizes 3D assets, incorporates camera and
character controllers that respond to player inputs, triggers visual and sound effects for feedback,
follows player progress, and loads a new level.

This chapter will cover a topic that is usually covered when you come to the finish line. We will show
you how to export your game so that you can share it with the rest of the world. That being said, we’ll
also discuss reasons why you might want to export more frequently than just waiting until the end.

After that, we’ll be fully done with the technical parts of the engine. Hence, we’ll present a few pieces
of advice, more like guidelines you can follow in your development cycle to be efficient either before
you start your projects or during them.

Lastly, you will look at a few game genres for which you can use Godot Engine. Every game engine
is usually built around at least one strong and a few core needs. That being said, most engines worth
their salt also support the most expected features. You’ll see how some of the knowledge you have
gained throughout the book could be expanded upon in new areas.

This is going to be a relatively short and, most definitely, less technical chapter. Nevertheless, we still
have the following topics to tackle:

•	 Exporting your game

•	 Offering different gameplay experiences

•	 Discovering different genres

By the end of this chapter, you’ll have learned how to export your creation, evaluate different options you
can offer to your players, and – finally – find a list of genres you can consider using Godot Engine for.

Conclusion292

Technical requirements
There won’t be any new resources in this chapter. If you prefer, you can continue your own work from
the previous chapter or peruse the content we keep in this book’s repository at https://github.
com/PacktPublishing/Game-Development-with-Blender-and-Godot.

Exporting your game
So, you have a game. What now? You can keep running the game in the editor, as you’ve been doing
all along. At some point, though, you’ll most likely want to show it to your friends and family or even
deploy it somewhere public for everybody to look at it. This section will teach you how to export your
game so that you can share your creation with the rest of the world.

Although we’ll only cover how to do it for Windows, Godot Engine is also capable of exporting your
game to the following platforms:

•	 Android

•	 iOS

•	 HTML

•	 Linux

•	 macOS

•	 Universal Windows Platform (UWP)

Although exporting is usually a simple process, it would be wise to check the documentation since
updates that platforms receive sometimes change the steps you must take. You can find the most
comprehensive list of instructions here: https://docs.godotengine.org/en/3.4/
tutorials/export/.

What about consoles?
Consoles are not part of the aforementioned list because they lie in a somewhat gray area due to
licensing. As a developer, you need to be in touch with a console producer and sign agreements
to have access to their tools and kits. In essence, although there is still some technical aspect
to this, it also has some moving parts in the legal department.

Before we start tackling Windows-specific export settings, we need to add or change a few things in
our project.

https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://github.com/PacktPublishing/Game-Development-with-Blender-and-Godot
https://docs.godotengine.org/en/3.4/tutorials/export/
https://docs.godotengine.org/en/3.4/tutorials/export/

Exporting your game 293

Preparing your project for export

By default, Godot doesn’t launch your games in Fullscreen mode even though it’s something most
games use. While in the end, we will make our game cover the whole screen, it’s worth discussing
a few other options you will see when you open Project Settings. More specifically, you’ll see two
features when you visit the Window section under the Display group, as follows:

•	 Resizable: This option makes your game screen resizable, just as you would be able to resize
any other application that’s not in Fullscreen mode. This is on right off the bat, so turn it off.

•	 Borderless: When your game is not running in Fullscreen mode, it will have to have borders
defined by your operating system. Having this option on will remove those borders and the
header of the window. By the way, most modern desktop applications—such as Slack, Discord,
and likewise—use this feature these days.

We suggest you turn on the Fullscreen option and the other two that we just talked about off. After
that, this is what our Project Settings screen looks like:

Figure 14.1 – The project settings we are using before we export our game

So far, we’ve focused only on building the game itself without worrying about the intro, game settings,
or credits screens. These can be constructed just like any other Godot scene. Then, once you figure
out the flow between these scenes, you can use the change_scene function to transition to the
one the player is asking for. Alternatively, you can keep some of these screens as hidden scenes inside
the Game.tscn file and turn their visibility on as requested.

Since our game will now run in Fullscreen mode, you won’t be able to terminate it by using the
operating system’s buttons. In Windows, pressing the Alt + F4 key combination will exit the window.
We need to provide a far better way for the player to quit the game.

Conclusion294

Creating a mechanism for turning the game off

Movies end with the production companies’ logos and actors’ names on a theater screen. Unless you
are really intent on looking at the credits, you will consider this moment as your cue to get up and
leave the theater. Either this way or if you want to terminate your movie experience early on at any
moment you want, you have the freedom to leave the premises.

A similar situation would happen with the click of a button if you were consuming a movie with a
video player on your computer. When we run our little game in Fullscreen mode, since there won’t
be any button around to click, this is something you have to present to your players in different forms.

This is usually done by pressing Esc on the keyboard to reveal a screen—sometimes blocking the game
screen and sometimes as an overlay—so that the player can either go into the game’s settings or load
a different game session and obviously quit the game.

We will implement only the Esc press part in this section and treat it as the player’s desire to quit. To
that end, we suggest you open the Game.gd script and add the following lines of code to it:

func _input(event):

    if event.is_action_pressed("ui_cancel"):

        get_tree().quit()

You might have been expecting to see Esc in that if block. It’s there but as an identifier. If you go to
Project Settings and bring up the Input Map tab, you will see a list of shortcuts that are mapped to
easily comprehensible names. The following screenshot shows a portion of Input Map:

Figure 14.2 – The Input Map tab is part of Project Settings

Exporting your game 295

If you’re building games that allow your players to use multiple input devices, then configuring Input
Map will be tremendously helpful. For example, you could set it so that a game controller or a joystick’s
button press means the same thing if the player wishes to exert the same behavior with a keyboard.
It’s a neat way of consolidating different inputs under one name you can easily follow in your code.

We took care of screen sizes and letting the player quit the game, so we should be all set for exporting
our game.

Configuring Windows export settings

Godot’s download size is extremely small compared to other game engines. One of the reasons for
this is that it doesn’t come loaded with export packages. Platform requirements sometimes change
and Godot’s specific functionalities must conform to their guidelines, so it makes sense to download
and get updates on export packages as you go.

Since we’ve never exported a game, there is no export package in our setup. To get one, press the Editor
button in the top menu to access the Manage Export Templates setting. When you bring it up, you
will see an interface with which you can download and install the right package for the version you
are using. The following screenshot shows the current state of export templates:

Figure 14.3 – This screen will help us download export templates

You should press the Download and Install button and wait. Once that’s done, you could press the
Close button in that interface. Next in our export efforts is to work with the Export settings, so follow
these steps:

1.	 Press the Project button in the top menu and select Export among the options.

2.	 Press the Add button and choose Windows Desktop among the options.

3.	 Fill out the Export Path option by using the button with the folder icon. We chose to export
it to a Build folder outside the project files, so we defined it as ../Build/Clara.exe.

Conclusion296

4.	 Press the Export Project button in the bottom part of the Export interface.

5.	 Turn off the Export With Debug option near the bottom. Confirm your file path and press Save.

Before we move on to explaining things, here is a visual representation of some of the steps you had
to take for exporting:

Figure 14.4 – Some of the export settings for Windows

These steps, assuming your Windows is running on a 64-bit machine, will export your game to the
folder you defined. When you run the executable, you should be playing the game just as you were
while you were developing it in Godot. Pressing Esc will terminate the program and take you back
to the operating system.

You might have noticed an extra file with a PCK extension besides Clara.exe. If you want to keep
those two together, you can turn on the Embed PCK option in the Export settings, yet keeping things
separate might be a good idea too. Godot keeps your game’s resources in a separate package file and
uses it when you run the executable.

Why or when would this be useful? If you want to enhance your game with more content, you can
create only content packages and instruct the game executable to pull them in. Your next DLC might
be just around the corner, and this is a useful mechanism toward that goal.

Not only do you have a finished game, but you can also ship it! Exciting, indeed. Although we have
provided mostly technical instructions, we feel it would also be valuable to share a few words about
different gameplay experiences you can offer to your players.

Offering different gameplay experiences 297

Offering different gameplay experiences
Sometimes, it’s OK to use prototype assets or another artist’s creations so that you can focus on fun.
We are saying this with a word of caution because we’ll always advise you to be sure of the license of
the assets you are using. That being said, the topic we want to discuss is what you do with the assets
once you have access to them.

The Models folder contains extra assets that we didn’t use throughout the book. When you were
constructing the first level in Chapter 9, Designing the Level, we mentioned that you could use some of
those other assets. Maybe you did and had to follow the instructions in later chapters based on your
own conditions, especially with input detection, pathfinding, and likewise.

At some point, as with right now in the last pages of this book, you might find yourself at a loss for
coming up with what more to add to your game.

Having an iterative creation process

Some people find it much more empowering to have visual assets laid right in front of them. The
creative juices start flowing when they look at different objects’ size-and-shape relationships. Then,
there are others who find this inconvenient and getting in the way of drawing out a proper plan. If
they figure out what needs to be done, they can start altering assets or looking for new ones. Finally,
a mix of both of these approaches might work.

In the end—specifically, if you want to go commercial with your work—you’ve got to keep the player
in the center of your workflow. Quick iterations followed by early and frequent playtesting might be
what you need. The ramifications of some of your choices mixed with players’ expectations from the
game might create a lot of stress, so be aware of this. We’ll give you an example by using the assets
and layout of the second level.

There are currently two bookcases on that level: an upright one and a knocked-down one. This is a
relatively cheap and effective storytelling method. Why is one bookcase on the floor? Perhaps there
was a calamity, but we don’t know. Is it going to be moved out of the way? If you, as a developer, want
it or the playtesting shows it’s a strong request, then you have to spend more time in Blender or Godot
to come up with an animation plan for the bookcase. Clara will most likely need another action that
shows her lifting up and moving the bookcase. If she shouldn’t because it’s unlikely that she can lift
up such a heavy object, then you either need a tool or a companion that can help her.

One simple change or request, and you will be inundated with a series of tasks. Unfortunately, not all
these changes will be visual either. You’ll have to account for the programming parts where you have
to keep the state of the bookcase still on the floor or moved out of the way.

Ultimately, as the creator, you’ve got to ask yourself where this effort might be leading. If you could
take this idea to have Clara access another level or a secret used in the game—in other words, mix it
with something that already exists as a mechanic—you can replicate it with the minimum number
of steps; it might be worth it.

Conclusion298

So, it’s always a trade-off. As much as you should honor fun and your players’ requests, you should
approach it carefully and also consider what works best for you.

As we are wrapping up our book, let us discuss which other things you can do with Godot.

Discovering different genres
Even though Godot Engine is known for creating quality 2D games and other well-known engines
are preferred for building 3D games, you have seen that Godot is actually quite capable of building a
3D game. This is going to change for the better when Godot 4 comes out.

Until then, what else can you do with Godot? You can build any kind of game with it, to be honest.
There has also been a recent trend to build desktop applications using Godot Engine. However, we
will consider these cases as extraordinary and instead focus on some more commonly known genres
that employ 3D features, as follows:

•	 Simulation and strategy games: When you used raycasting to detect user input, it was done
so that Clara could move to a particular spot with pathfinding. In a simulation or strategy
game, either on a grid or free-move structure, your selected unit or units could move to their
designated destination in a similar way. You could even combine a turn-based feature on top
of this where you keep track of which side’s units have already moved.

•	 Racing games: Godot already has a VehicleBody node to simulate the behavior of a car. Isn’t
that nice! By appropriately placing a Camera node inside a MeshInstance node and combining
the mechanics of a VehicleBody node, you could be building the next awesome racing game.
Start your engine, Godot Engine, and vroom!

•	 First-person shooters: A classic example that could definitely be built with Godot Engine. You’ll
be using raycasting a lot in this type of game where you detect whether bullets connect with
objects. If they do, maybe a good mix of technical and creative problems lies ahead of you.
Should bullets penetrate or destroy every object the same way?

•	 Role-playing games: This is similar to First-person shooters, so it could be done. In this genre,
you generally have a lengthy narrative to present to your player. Also, you’ve got to keep track
of where the player is in the story and whether they have met some of the conditions to reveal
the following parts of the story or the outcome of a puzzle. We haven’t discovered this in this
book, but it would be wise to check out Resource as a useful Godot mechanism to facilitate
content-heavy games.

•	 Multiplayer/Co-op: This is not a genre by itself, since any genre can be made multiplayer or co-op.
However, there are some games where the experience won’t be the same without networking,
so we had to mention this separately. Godot has networking parts you can use to connect to
third-party services or have two computers in the same network connect to each other.

Summary 299

These are some of the genres that can most definitely be made with Godot. You can also include some
other genres such as puzzles or sports games, or any other subgenre that uses 3D assets.

Summary
As we are concluding our book in this chapter, your game project is also coming to an end. Hence, we
opened it by showing you the necessary steps for exporting your game. Even though it might seem
like you’d tackle this phase once your game is built, as was mentioned in the Iterative creation process
section, it might be wise to export your game often and share it with others for frequent feedback.

The rest of the chapter was dedicated to discussing different approaches you can take in your game
development efforts, best practices, general guidelines, and—finally—getting to know different genres
you can target.

You’ve come a long way in your game development journey. It started with Blender in the first five
chapters and continued with a few transitional chapters until you fully switched to building a game
with Godot Engine. Hopefully, you now have a much better opinion about how things work in both
applications. Also, if you have some prior experience, we hope that this book has increased your
confidence level in some areas.

As we are leaving you, we wish you the very best in your future efforts, and may your code compile
the first time!

Further reading
You might have noticed that the exported game is using Godot’s icon. It would be nice to have your
own custom icon. There are several moving parts to this, but it’s possible. The instructions are listed
at https://docs.godotengine.org/en/3.4/tutorials/export/changing_
application_icon_for_windows.html.

If you would like to deploy your game for feedback purposes instead of sending files over emails or
chat applications, you can use the following platforms:

•	 https://itch.io

•	 https://gotm.io

The latter URL is especially useful in our situation because that platform also hosts Godot game jams.
For PC games, Steam is a big marketplace, but the aforementioned places might work faster than
signing up and going through the application process on Steam.

https://docs.godotengine.org/en/3.4/tutorials/export/changing_application_icon_for_windows.html
https://docs.godotengine.org/en/3.4/tutorials/export/changing_application_icon_for_windows.html
https://itch.io
https://gotm.io

I ndex

Symbols

3D model
about 4
parts 5

9-slice scaling
about 205
reference link 205

A
Action Editor 97
actions

blending 254
playing, for player 253, 254

Adjustments feature
properties 195

Ambient Occlusion (AO)
about 72-74
properties 193

AnimationPlayer component 79
AnimationPlayer node 130
animations

actions, separating 131-133
AnimationPlayer node 130
blending 254
building 78

building, in Blender 79
building, in Godot 274
building, in Godot Engine 79
creating 83
creating, for Godot 98
importing 128, 129
MeshInstance node 130
Skeleton node 130
triggering 249-251

Area light
about 66
properties 69

armature 83
audio

gameplay experience, increasing 145
playing, in Godot 142

audio bus 261
audio file converters

references 138, 139
AudioStreamPlayer 142, 259
AudioStreamPlayer2D 142, 259
AudioStreamPlayer3D 142, 258
AutoLoad 260

Index302

B
background music

about 139
playing 143
setting 259, 260

Base Color 168
basic player character 242-244
bidirectional scattering distribution

function 35
BitmapFont 211
Blender

about 3
animating in 79
user manual, reference link 10

Blender Conference (BCON) 3
Blender materials

labeling, by color 126
labeling, by purpose 126

bone
about 83
body 85
root 85
tip 85

Boolean flags 251
Bump node 50-52
button

creating 204-206

C
camera

about 28, 226
settings, adjusting for game 231-233

camera nodes
ARVRCamera 227
Camera 227

ClippedCamera 227
InterpolatedCamera 227

candles
level 183-185
lighting 181-183, 267-270

CanvasLayer 204
cave, creating

about 151-156
level, finishing 161, 162
props, distributing 160, 161
rocks, placing 159, 160
walls, erecting 157, 158
walls, sinking 159

central processing unit (CPU) 4
CheckButton 218
clickable area

preparing, for raycasting 244-246
Close button

positioning 212, 213
code

versus nodes 47
Collada

versus gITF 112
collision detection method 266, 267
ColorRamp node 50, 53-55
connected systems 78
consoles 292
cube 4, 5
Cycles

about 57
versus Eevee 57

Cycles vs. Eevee
reference link 57

D
decibels 262, 263
Diffuse 168

Index 303

directional light 68
DirectionalLight 180
door

about 139
interacting with 272-274

door animation
creating 275-277
playing, on condition 277, 278
waiting, to trigger event 278-280

E
edge 5
Eevee

about 57, 65
versus Cycles 57

Emission shader node 50, 53
event bus

using 283-285
EventBus signal

listening to 285-287
export

project, preparing for 293
reference link 292

export options
about 115
Animation 117
Geometry 116
Include 115, 116
Transform 116

extrusion 24

F
face 5
FBX

versus gITF 112
field of view (fov) 231

Forward Kinematics (FK) 90
Fov calculator 233
Free Lossless Audio Codec (FLAC) 137

G
game

design 152
exporting 292

gameplay experiences 297
genres

discovering 298
gITF

about 113
comparing, with other formats 112
features 113
versus Collada 112
versus FBX 112
versus OBJ 112

gizmos 63
global illumination

Indirect Energy, adjusting 198-200
Light Baking, turning on 198
using 196, 197

Glow
properties 194

glTF Binary 114
glTF Embedded 114
glTF Separate 114
glTF Viewer

URL 117
Godot

animations, building 274
audio, playing 142

Godot Engine
about 292
animating in 79
animations, creating for 98

Index304

reference link 190
staging area, using 127

graphics processing unit (GPU) 4, 105
grid

models, laying on 170-172
grid map

mesh library, using with 174, 175

H
high-poly models

versus low-poly models 5, 6
HSlider node

using 222

I
identifier 294
Index of Refraction (IOR) 35
Indirect Energy

adjusting 198-200
Inverse Kinematics (IK) 90
iterative creation process 297, 298

K
keyframes 79
keying 79

L
Label node

styling 210-212
letterboxing 232
level

about 149
design 152
loading 282

Light Baking
turning on 198

lights
adding 180
Area 66
DirectionalLight 180
flickering lights 280-282
OmniLight 180
Point 65
properties 67
settings, adjusting 69
specific properties 68
Spot 65, 180
Sun 65
types 65
working with 66

looking behavior
adding, to moving functionality 252, 253

loop
about 139
turning off 140-142
turning on 140-142

low-poly barrel, creating
about 8, 9
body, finishing 17, 18
body, shaping 13-15
lid, finalizing 21, 22
lid, separating 15, 16
metal rings, placing 18-21
model, editing 12, 13
primitive, adding 10-12
steps 10

low-poly models
about 4, 5
advantages 6, 7
limitations 8
versus high-poly models 5, 6

Index 305

M
machine gun 139
MarginContainer

about 209
adding, to panel 209, 210

MatCap (material capture) 70-72
materials

about 27-29
assigning 32-34
creating 31, 32

mechanism, for turning game off
creating 294

mesh
assigning 120

MeshInstance node 130
mesh library

using, with grid map 174, 175
MeshLibrary

creating 172, 173
missing materials, constructing

about 162
leaves, fixing 163-165
water, creating 165-170

Mix Shader node 50, 56
modeling 10
models

grabbing operation 82
importing, into separate folders 127
laying, on grid 170-172
readiness level 80, 81
updating 123, 124

modifier
about 22
Array 24
automating with 23
Bevel 24

Boolean 24
Mirror 24

mouse events 236-238
Move operation 82
movie clips 121
moving functionality

looking behavior, adding to 252, 253
MP3 format 138
multiple grid maps

need for 175
music

playing 258

N
Navigation node

using, for pathfinding 246, 247
walkable areas, creating with 240-242

n-gons 104, 105, 114
nodes

Bump 52
ColorRamp 53-55
Emission node 53
Mix Shader 56
Noise Texture 52
Principled BSDF 55, 56
versus code 47

Noise Texture node 50, 52

O
OBJ

versus gITF 112
objects

naming 111
OGG format 137
OmniLight 180

Index306

origin point
about 106
setting 106-109

P
panel

Close button, positioning 212, 213
close functionality, adding 213
control nodes, adding 206, 207
filling, with control nodes 208
Label node, styling 210-212
MarginContainer, adding 209, 210
ScrollContainer node 214

pathfinding
Navigation node, using for 246, 247

PhysicsServer 266
player

moving 239
moving, to desired spot 247, 248

player interaction
detecting 234, 235

Plug & socket types
reference link 112

Point light
about 65
properties 68

polygon 5
post-processing effects

Adjustments 195
Ambient Occlusion (SSAO) 193, 194
Background 191
combination 196
creating 189, 190
Glow 194, 195
Screen Space Reflections (SSR) 193
ToneMap 192

presets
creating 117

Principled BSDF 34, 55, 56
Principled shader

reference link 37
procedural textures 49
project

preparing, for export 293
projection types

deciding 229-231
frustum 229
orthogonal 229
perspective 229

prop 160

Q
Quaternius

URL 86

R
RadioButton component 219
raycasting

about 234
clickable area, preparing for 244-246

reaction spots
creating 263, 264

rendering engine
modifying 57

rendering process 62
rigging

about 79-81, 84
implementing 84-94

Rotate operation 82
rotation

applying 109, 110

Index 307

S
scale

applying 109, 110
Scale operation 82
scene

creating 120-123
rendering 62-65

sconces
lighting 267-270

Screen Space Reflections (SSR) 193
ScrollContainer node 214
Shader Editor 45, 64
shaders

about 27
Diffuse BSDF 35
discovering 34-38
Emission 35
Glass BSDF 35
Glossy BSDF 35
Principled 35
Toon BSDF 35

shadows
adjusting 187-189
enabling 187-189

singleton 260, 284
Skeleton node 130
snake model

animating 94-97
rigging 84

sound
playing, conditionally 260-262

sound effects
playing 258
playing, on-demand 143, 144

sound formats
about 136
MP3 138

OGG 137
WAV 136

source of truth (SOT) 232
spatial type 129
Spot light

about 65
properties 68

SpotLight 180
sprite node 120
sunlight

mimicking 185-187
Sun light

about 65
properties 68

T
texture

about 41
applying 45-48
creating, procedurally 49-51
exporting 56
importing 45-48
rendering engine, modifying 57

texture coordinates 42, 43
texture File

baking 57, 58
texturing 8
themes

about 215
advantages 215
attaching 221
CheckBox, changing 218-221
CheckButton, styling 217, 218
creating 216
radio buttons, discovering 219
using 215, 216
vertical slider component, altering 222, 223

Index308

ToneMap
properties 192

topology 80, 81, 105
triangulation

examples 105
trigger

adding, for backup 271, 272
trigger points

placing, in world 264-266

U
units 18
user input

detecting 234
user interface

about 140, 204
button, creating 204-206

UV Editor
using 43-45

UVs 42
UV unwrapping 42

V
vertices 4
Viewport Shading 30
visual design 152
Vorbis 137
VSlider

about 222
altering 222

W
walkable areas

creating, with Navigation node 240-242
WAV format 136
whole-body objects 78
Windows export settings

configuring 295, 296

X
Xiph 137

Hi!

I am Kumsal Obuz, the author of Game Development with Blender and Godot. I really hope you
enjoyed reading this book and found it useful for increasing your productivity and efficiency in
Blender and Godot.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Game Development with Blender and Godot.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1801816026

Your review will help me to understand what's worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

Kumsal Obuz

https://packt.link/r/1801816026

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Godot Engine Game Development Projects
Chris Bradfield
ISBN: 978-1-78883-150-5

•	 Get started with the Godot game engine and editor

•	 Organize a game project

•	 Import graphical and audio assets

•	 Use Godot’s node and scene system to design robust, reusable game objects

•	 Write code in GDScript to capture input and build complex behaviors

•	 Implement user interfaces to display information

•	 Create visual effects to spice up your game

•	 Learn techniques that you can apply to your own game projects

https://www.packt.com/product/game-development/b09788-godot-engine-game-development-projects/

Other Books You May Enjoy312

Unreal Engine 5 Character Creation, Animation, and Cinematics

Henk Venter, Wilhelm Ogterop

ISBN: 978-1-80181-244-3

•	 Create, customize, and use a MetaHuman in a cinematic scene in UE5

•	 Model and texture custom 3D assets for your movie using Blender and Quixel Mixer

•	 Use Nanite with Quixel Megascans assets to build 3D movie sets

•	 Rig and animate characters and 3D assets inside UE5 using Control Rig tools

•	 Combine your 3D assets in Sequencer, include the final effects, and render out a high-quality
movie scene

•	 Light your 3D movie set using Lumen lighting in UE5

https://www.packt.com/product/business-other/b17871-unreal-engine-5-character-creation-animation-and-cinematics/

313

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
3D Assets
with Blender
	Chapter 1: Creating Low-Poly Models
	Technical requirements
	Understanding low-poly models
	Parts of a 3D model
	Low or hi, what’s the difference?

	Advantages of low-poly models
	Limitations of low-poly models

	Creating a low-poly barrel
	Starting with a primitive
	Editing the model
	Shaping the body
	Separating the lid
	Finishing the body
	Placing metal rings
	Finalizing the lid

	Automating with modifiers
	Summary
	Further reading

	Chapter 2: Building Materials and Shaders
	Technical requirements
	Introducing materials
	Creating materials
	Assigning materials
	Discovering shaders
	Summary
	Further reading

	Chapter 3: Adding and Creating Textures
	Technical requirements
	Understanding UVs and texture coordinates
	Using the UV Editor
	Importing and applying a texture
	Creating textures procedurally
	Noise Texture
	Bump
	Emission
	ColorRamp
	Principled BSDF
	Mix Shader

	Exporting your textures
	Changing the rendering engine
	Baking a texture File

	Summary
	Further reading

	Chapter 4: Adjusting Cameras and Lights
	Technical requirements
	Rendering a scene
	Understanding light types
	Types of light
	Basic properties of light
	Specific properties of each light type
	Wrapping up

	Introducing MatCap and Ambient Occlusion
	MatCap
	Ambient Occlusion

	Summary
	Further reading

	Chapter 5: Setting Up Animation
and Rigging
	Technical requirements
	Where to build animations
	Animating in Godot Engine
	Animating in Blender
	Wrapping up

	Understanding the readiness of models
	Topology and rigging
	Grabbing

	Creating animations
	Rigging
	Animating

	Getting animations ready for Godot
	Summary
	Further reading

	Part 2:
Asset Management
	Chapter 6: Exporting Blender Assets
	Technical requirements
	Getting ready to export
	Deciding what to do with n-gons
	Setting origin points
	Applying rotation and scale
	Naming things properly
	Wrapping up

	Exploring glTF and other export formats
	Comparing gITF with other formats
	Introducing glTF

	Deciding what to export
	Include
	Transform
	Geometry
	Animation
	Creating presets

	Summary
	Further reading

	Chapter 7: Importing Blender Assets into Godot
	Technical requirements
	Making a scene!
	Going between Blender and Godot
	Deciding what to do with materials
	Labeling Blender materials by purpose
	Labeling Blender materials by color
	Importing your models into separate folders
	Using a staging area in Godot
	Wrapping up

	Importing animations
	MeshInstance and Skeleton
	AnimationPlayer
	Separating actions

	Summary
	Further reading

	Chapter 8: Adding Sound Assets
	Technical requirements
	Learning about different sound formats
	Introducing WAV
	Introducing OGG
	Introducing MP3
	Wrapping up

	Deciding on looping or not
	Turning the looping on and off

	Playing audio in Godot
	Playing background music
	Playing a sound effect on demand
	Increasing gameplay experience

	Summary
	Further reading

	Part 3:
Clara’s Fortune – An Adventure Game
	Chapter 9: Designing the Level
	Technical requirements
	Creating the cave
	Erecting the walls
	Sinking the walls
	Placing the rocks
	Distributing props
	Finishing the rest of the level

	Constructing the missing materials
	Fixing the leaves
	Creating the water

	Laying models on a grid
	Taking advantage of MeshLibrary
	Using a mesh library with a grid map
	The necessity of using multiple grid maps
	Wrapping up

	Summary
	Further reading

	Chapter 10: Making Things Look Better with Lights and Shadows
	Technical requirements
	Adding different types of light
	Lighting candles
	Introducing candles to the level
	Mimicking the sunlight

	Enabling and adjusting shadows
	Creating post-processing effects
	Background
	ToneMap
	Screen Space Reflections (SSR)
	Ambient Occlusion (SSAO)
	Glow
	Adjustments
	Wrapping up

	Using global illumination
	Turning on Light Baking
	Adjusting Indirect Energy

	Summary
	Further reading

	Chapter 11: Creating the User Interface
	Technical requirements
	Creating a simple button
	Wrapping in a panel
	Filling the panel with more control nodes
	Adding a MarginContainer
	Styling the Label node
	Positioning the Close button
	Adding the close functionality
	Wrapping up

	Taking advantage of themes
	Creating a new theme
	Styling a CheckButton
	Changing a CheckBox and discovering radio buttons
	Attaching a theme
	Altering a vertical slider component
	Wrapping up

	Summary
	Further reading

	Chapter 12: Interacting with the
World through Camera and Character Controllers
	Technical requirements
	Understanding the camera system
	Tidying things up for interactivity
	Deciding on a type of projection
	Adjusting the camera settings for our game

	Detecting user input
	Knowing where the player interacts
	Distinguishing useful mouse events

	Moving the player around
	Creating walkable areas with a Navigation node
	Introducing a basic player character
	Preparing a clickable area for raycasting
	Using Navigation node for pathfinding
	Moving the player to their desired spot
	Wrapping up

	Triggering animations
	Understanding how Clara looks around
	Adding a looking behavior to moving functionality
	Playing the right action for Clara
	Blending animations or actions

	Summary
	Further reading

	Chapter 13: Finishing with Sound
and Animation
	Technical requirements
	Playing music and sound effects
	Setting background music
	Conditionally playing a sound
	Understanding the volume through decibels

	Creating reaction spots
	Placing trigger points in the world
	Getting to know a better collision detection method
	Lighting the candles and sconces
	Adding the trigger for the backpack
	Interacting with the door

	Building simple animations in Godot
	Creating the door animation
	Playing the door animation on a condition
	Waiting for the door animation to trigger an event
	Let there be flickering lights
	Wrapping up

	Loading another level
	Using an event bus
	Listening to the EventBus signal
	Discussing some of the choices we can all make

	Summary
	Further reading

	Chapter 14: Conclusion
	Technical requirements
	Exporting your game
	Preparing your project for export
	Creating a mechanism for turning the game off
	Configuring Windows export settings

	Offering different gameplay experiences
	Having an iterative creation process

	Discovering different genres
	Summary
	Further reading

	Index

