’ I
I "] 154 [!
L Y qedny 1] il |

fr'*;{hi hllE.-H”

|r:ra -1|.¢:

R 7 u.,,

'HH-L Irskdudsne of | EEM UNSﬂLﬂIN

Enginesring and Technology) H DENIZ EURHAN

Programmable Microcontrollers with
Applications

Programmable Microcontrollers with
Applications

MSP430 LaunchPad with CCS and Grace

Cem Unsalan

H. Deniz Giirhan

New York Chicago San Francisco
Athens London Madrid Mexico City Milan

New Delhi Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-183004-1
MHID: 0-07-183004-9

®

e-Book conversion by Cenveo ™~ Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-183003-4, MHID: 0-07-
183003-0.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or
for use in corporate training programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of
a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no
intention of infringement of the trademark. Where such designations appear in this book, they have been printed with
initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this
work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill
Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE
ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do
not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
Education has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

Cem Unsalan, Ph.D., has worked in signal and image processing for 15 years. After
getting a Ph.D. from The Ohio State University in 2003, he started working at Yeditepe
University, Istanbul, Turkey, where he established the DSP Laboratory and has been
teaching microprocessor and digital signal processing courses for 7 years. Dr. Unsalan has
published 16 journal articles and 4 international books. He holds one patent.

H. Deniz Giirhan received his B.Sc. from Yeditepe University. He is pursuing a Ph.D. in
digital signal processing and embedded systems at the same university and works in the
DSP Laboratory.

Preface

Acknowledgments
1 Introduction

1.1 The TI MSP430 LaunchPad
1.2 Topics to Be Covered in This Book
2 Review of Digital Circuits

2.1 Transistor as a Switch

2.2 Logic Gates from Transistors
2.3 Combinational Circuits from Gates

2.4 Sequential Circuits from Gates

2.5_ Summary
2.6 Problems
3 Data Types

3.1 Number Representations
3.2 Negative Numbers

3.3 Fixed- and Floating-Point Representations
3.4 The Word Size and Overflow

3.5__ Little and Big Endian Representations
3.6__ ASCII Characters
3.7 Summary
3.8 Problems
4 MSP430 Architecture

4.1 General Layout

4.2 Central Processing Unit

4.3 Memory

4.4 _ Input and Output Ports
4.5 Clocks, the Timer, and Watchdog Timer Modules
4.6 ADC and Comparator Modules

4.7 The Digital Communication Module
4.8 Other Modules

4.9 The Pin Layout of the MSP430G2553

4.10__ Summary
4.11 Problems

5 Code Composer Studio

5.1 Setup
5.2 Creating a C Project

5.3 Creating an Assembly Project
5.4 Program Execution

5.5__ Observing Hardware under CCS

5.6 Terminating the Debug Session and Closing the Project

5.7 Graphical Peripheral Configuration Tool (Grace)
5.8 The Terminal Window

5.9 Summary
5.10__ Problems
6 MSP430 Programming with C
6.1 Memory Management
6.2 C Data Types

6.3 Arithmetic and Logic Operations
6.4 Control Structures

6.5__ Arrays and Pointers

6.6 Miscellaneous Issues
6.7 Summary
6.8 Problems
7 __MSP430 Instruction Set

7.1 Introduction

7.2___Anatomy of an Instruction
7.3 MSP430 Addressing Modes
7.4___ The Stack

7.5___ Assembly Program Structure

7.6__ Sample Programs on Instruction Set Usage

7.7 Summary
7.8 Problems

8 Digital Input and Output
8.1 Pin Layout for Digital I/O

8.2 Digital I/O Registers

8.3 Digital I/0 Hardware Issues

8.4 Coding Practices for Digital 1/0
8.5 Digital I/O in Grace
8.6__ Digital Safe Application

8.7 Summary
8.8 Problems

9 Interrupts

9.1 What Happens When an Interrupt Occurs?

9.2 Types of Interrupts
9.3 Interrupt Flags

9.4 Interrupt Vectors

9.5 Interrupt Service Routines

9.6__ Port Interrupts

9.7 Coding Practices for Interrupts
9.8 Interrupts in Grace

9.9 Washing Machine Application

9.10_ Summary
9.11 Problems

10 __ Oscillators, Clocks, and Timers
10.1__ Oscillators
10.2_ Clocks
10.3_ BCM+ in Grace
10.4 Low-Power Modes
10.5__The Watchdog Timer
10.6_ WDT+ in Grace
10.7__Timers
10.8__The Pin Layout for the BCM+ and Timer A Modules
10.9 Timer A in Grace

10.10_Chronometer Application

10.11 Summary
10.12 Problems

11 Mixed Signal Systems

11.1_ Analog and Digital Signals
11.2_The Comparator

11.3 Comparator A+ in Grace

11.4__Analog-to-Digital Conversion

11.5_ Digital-to-Analog Conversion
11.6__ ADCI10 in Grace

11.7_ Non-Touch Paper Towel Dispenser Application
11.8_ Summary
11.9 Problems

12 Digital Communication

Universal Serial Communication Interface

[

2.

[y
[y

Universal Asynchronous Receiver/Transmitter

2.2
2.3 UART in Grace
2.

12.4__ Serial Peripheral Interface
2.5 SPI in Grace

2.6__ Inter Integrated Circuit

[

= [

12.7 12C in Grace
12.8 Digital Communication Application
12.9 Summary

12.10_ Problems
13 Flash Memory
13.1 MSP430 Flash Memory

13.2 Flash Memory Programming

13.3__Coding Practices for Flash Memory
13.4 Flash Memory in Grace

13.5_ Summary
13.6_ Problems

14 Applications
14.1 Car Door Alarm

14.2 Car Window Control
14.3 _Car Park Tollgate
14.4 Digital Lock System

14.5__Air Freshener Dispenser
14.6_ Traffic Lights
14.7__Sound Detector

14.8__ Obstacle-Avoiding Tank

14.9__ Car Parking Sensor System
14.10_Fire Alarm
14.11 Wave Generator
14.12_Sports Watch
15 Appendix

15.1 MSP430 Intrinsic Functions
15.2 MSP430G2553 Header File

References

Index

Smart systems have become inevitable parts of our lives. Every smart system needs an
information processing unit. A microcontroller is a good candidate for such an operation.
Therefore, a professional engineer or a fresh graduate should know how a microcontroller
works. This book aims to introduce the working principles of a current-model
microcontroller through applications. To do this, we need a specific microcontroller
platform. The recently introduced Texas Instruments MSP430 LaunchPad is an excellent
choice for this purpose. It is a compact platform with an MSP430 microcontroller on it.

The first step in understanding a microcontroller is to examine its construction. We
devote three chapters to this issue. In Chap. 2, we start with a review of digital logic. Here
we emphasize that the microcontroller is composed of logic gates in its basic form. In
Chap. 3, we introduce data types used in a digital system. In this chapter, we provide the
ways to represent positive and negative, fixed- and floating-point numbers in a
microcontroller. We also explain what a word size and overflow mean. Then we consider
the endian representations. In Chap. 4, we focus on the hardware of the MSP430
microcontroller. Therefore, we look at the central processing unit, memory, input and
output ports, clocks and the timer modules, ADC and comparator modules, and the digital
communication module. This chapter summarizes the properties of the MSP430
microcontroller to be considered throughout the book.

The second step in understanding a microcontroller is learning how to program it. To
do so, we introduce Code Composer Studio (CCS) in Chap. 5. CCS is the unique
environment in which to program TI microcontrollers and digital signal processors (DSP).
We will use it to program the MSP430 in both C and assembly languages throughout the
book. CCS is not only a programming environment. Using it, we can observe the status of
the hardware components while the program is running. Therefore, it will be of great help
in understanding the MSP430 in action. We also introduce the recent graphical peripheral
configuration tool (Grace) under CCS. It will be of great help in the following chapters. In
Chap. 6, we introduce the C programming techniques for our microcontroller. Here we
first consider memory management and data types. Then we briefly overview basic C
concepts. Although the C language may be sufficient for most applications, learning the
assembly language is a must to understand the microcontroller. Therefore, we introduce
the instruction set of the MSP430 in Chap. 7. We also look at the addressing modes and
the usage of the stack in this chapter.

The third step in understanding a microcontroller is using it through different
applications. To do so, we should know its properties in detail. In Chap. 8, we start with
the digital input and output concepts. Therefore, we consider the configuration and usage
of the input/output ports of the MSP430. At the end of the chapter, we pick the digital safe
application and implement it step-by-step in both hardware and software. In Chap. 9, we
focus on the interrupt concept, which is extremely important in event-driven
programming. Therefore, we consider the occurrence of interrupts as well as the ways to
handle them. To explain the interrupt concept further, we pick the washing machine
application and implement it step-by-step at the end of the chapter. After interrupts, we

consider time-based operations in Chap. 10. These concepts are also extremely important
in applications. In this chapter, we start with the oscillators since they are the building
blocks of the clocks. The MSP430 has more than one clock. We explore all these clocks
and their usage areas. Another important topic in time-based operations is low-power
modes. Effectively using them helps energy savings in applications. Therefore, we
consider them next. In the same chapter, we also consider the usage of the watchdog timer
and the timer modules. We pick the chronometer as the end-of-chapter application; we
implement it step-by-step. In Chap. 11, we consider the processing of mixed signals. To do
so, we start with the properties of analog and digital signals. Then we focus on the analog-
to-digital conversion modules in the MSP430 microcontroller. Next, we focus on the
digital-to-analog conversion. Since the MSP430 we are using does not have such a
module, we use pulse width modulation instead. At the end of the chapter, we pick the
non-touch paper towel dispenser as an application. As in all previous applications, we
implement it step-by-step in both hardware and software. In Chap. 12, we focus on the
digital communication module of the MSP430. Under this module, we consider the SPI,
UART, and I’C communication modes. As in the previous chapters, we pick a specific
application and implement it step-by-step. In Chap. 13, we explore the flash memory of
the MSP430. In Chap. 14, we provide sample applications on all topics considered. We
picked these applications from real-life problems to show how a microcontroller can be
used to solve them. In this final chapter, we provide the problem statement, equipment list,
and circuit layout of each application. We expect the reader to implement these
applications to master his or her knowledge in microcontroller-based system design.

In this book, we try to make all of these microcontroller concepts understandable to
an undergraduate engineering student. Therefore, a professional engineer may also benefit
from the book. Since we pick the MSP430 LaunchPad with the MSP430 microcontroller,
the reader may find a wide variety of applications besides the ones considered in this
book. However, the ones mentioned here will be the benchmark applications for the
future. As a result, we expect the reader to become familiar with the microcontroller
concepts in action.

Cem Unsalan
H. Deniz Giirhan

The authors gratefully acknowledge the support of Texas Instruments in the framing and
execution of this work through the European University Program. Most of the figures used
in this book are the property of TI. They are used here with TI’s permission.

1 Introduction

Chapter Outline
1.1 The TT MSP430 LaunchPad
1.2 Topics to Be Covered in This Book

Microcontrollers are extensively used in our daily lives. Although they belong to the larger
family of microprocessors, microcontrollers have certain distinctions. According to the
consensus, a microprocessor does not contain a peripheral unit. On the other hand, a
microcontroller should contain its peripherals to interact with the outside world. This
property allows them to be used in most applications.

There are excellent books on microprocessors or microcontrollers. One type explains
the theoretical and practical microcontroller concepts for a hypothetical system or for a
microcontroller family (instead of a specific microcontroller). The idea here is to be less
specific and more general. Therefore, the authors aim to explain the general concepts and
ask the reader to apply them to the specific microcontroller he or she picks. Since a
microcontroller family has a longer lifespan than a specific microcontroller, books in this
group aim to be used over a longer time period.

The other type picks a specific microcontroller and explains its concepts. By default,
the concepts explored in these books will be specific to the microcontroller at hand. As a
result, they will not be general. In this book, we follow this approach and pick the TI
MSP430 LaunchPad with an MSP430 microcontroller [12]. This may seem odd, but the
focus of this book is explaining the microcontroller’s concepts through applications.
Therefore, it is must to pick a specific microcontroller and implement all the applications
using it. We are aware that the digital electronics industry is dynamic and, most probably,
a microcontroller will be obsolete within five or ten years. However, the newer members
of the same microcontroller family will be based on the previous ones. Therefore, the
current information about applications will be a valuable background for future
microcontrollers. Also, other MSP430 microcontroller family members have similar
properties. Therefore, the concepts considered in this book may be applied to them with
minor modifications.

1.1 The TI MSP430 LaunchPad

There are several microcontroller platforms under different brands with various properties.
In this book, we will focus on the TI MSP430 LaunchPad with an MSP430G2553
microcontroller. As we are writing this book, there are two versions of the TI MSP430
LaunchPad. These are revisions 1.4 (Rev.1.4) and 1.5 (Rev.1.5). We will cover both
versions in the following chapters.

Throughout the book, we will refer to our microcontroller in two different ways.
When we call it MSP430, this indicates that the explained concept is common to the other

MSP430 family members also. We will call our microcontroller MSP430G2553 when we
explain properties specific to it.

MSP430G2553 is a 16-bit microcontroller with 16 kB of memory. It has 16 general-
purpose pins which can be used for digital input and output, timer applications, Analog-to-
Digital Conversion (ADC), and digital communications. The MSP430 microcontroller
family is designed to have ultralow power consumption. If these details do not mean much
to you, do not worry. This book is written to explain these concepts.

We specifically picked the MSP430 LaunchPad platform shown in Fig. 1.1. TI
introduced this platform as a unique coding and debugging environment for their value-
line microcontrollers. There is a USB connection on the MSP430 LaunchPad to
communicate with the host PC. The coding environment is Code Composer Studio (CCS).
CCS is the general environment for all TI devices. A code size-limited version of CCS is
freely distributed by TI (at the time we are writing this book). The MSP430 LaunchPad
platform is around $5, which is a reasonable price for such a microcontroller. C or
assembly language may be preferred for coding. Throughout this book, we use both
approaches to explain the concepts in detail.

107 104108 TP TD? - puy

i:ﬂ.ﬁﬂ_'.ﬁl-’!‘nt "l oa . --'l.‘n- . - - . |)

e e EL‘, Wi s
/i ‘ﬁ? 752 ot |

AT

=
™

AT
T
|
R

BRRRAAY

& W

-
ARRRLRRRRRRLRRL
oo
o Ry

1T

T
LD

RS
R

a
-
-
.
-
L
-

-
-
L]
-
-
-

D43 €| F A-Y
L. 'n..tu-a.-'

CUART)

S o ki TEXAs
- INSTRUMENTS
H3 -l-_it....l.'.;;,;- L—y N'EH.'-I_

7 LEDLWY N L ED2 La_unchpad

Figure 1.1 The TI MSP430 LaunchPad platform.

1.2 Topics to Be Covered in This Book

The microcontroller is constructed from digital logic elements which are constructed from
transistors. Therefore, Chap. 2 is a brief review of digital electronics. It emphasizes the
physical properties of the microcontroller. Chapter 3 deals with the data types considered
in this book. In a way, Chaps. 2 and 3 provide the background of the chapters to follow.
Chapter 4 explores the hardware of the MSP430 microcontroller. Chapter 5 introduces the
CCS environment. Also in this chapter, the graphical peripheral configuration tool (Grace)
under CCS will be considered. Chapter 6 deals with the C programming concepts for the
MSP430 microcontroller. This chapter serves two purposes. First, it is a review of the C
programming language. Second, it gives insight on the C programming issues pertaining
to hardware (since we can observe it through CCS). Chapter 7 deals with the MSP430
instruction set. With this chapter, we will start programming the MSP430 microcontroller
via assembly language. Chapter 8 discusses digital input and output issues. We will
introduce the concepts of how the microcontroller interacts with the outside world.
Chapter 9 is on interrupts. This chapter will introduce the event-based programming
concept. Chapter 10 is on timing-based operations. It will focus on the oscillators, clocks,
low power modes, watchdog timer, and the timer module of the MSP430 microcontroller.
Chapter 11 is on mixed-signal systems. Analog-to-digital and digital-to-analog conversion
will be the main focus of this chapter. Therefore, analog signals can be processed on the
digital MSP430 platform after mastering the concepts in this chapter. Chapter 12
introduces the basic digital communication methods through the MSP430 microcontroller.
Chapter 13 is on flash memory programming. This book is on microcontrollers in action.
Therefore, every concept explained in these chapters will have their related applications.
Finally, Chap. 14 is on applications in which more than one concept is used.

Sample codes in this book are available for readers on the companion website,
www.mhprofessional.com/ProgrammableMicrocontrollers. Course slides for readers and
instructors are available on the same website. The solution manual for instructors is also
available on the companion website.

http://www.mhprofessional.com/ProgrammableMicrocontrollers

2 Review of Digital Circuits

Chapter Outline

2.1 Transistor as a Switch

2.2 Logic Gates from Transistors

2.3 Combinational Circuits from Gates

2.4 Sequential Circuits from Gates

2.5 Summary
2.6 Problems

Digital circuits are the essential parts of a microcontroller. Although the end user will
never see them, all operations will be performed using these circuits. Hence, it is essential
to know their physical properties. This chapter is a brief review of digital circuits and
systems. A more detailed coverage of this topic can be found in [3, 5]. To note here, the
circuits given in this chapter are not unique. There may be other circuits doing the same
job. For consistency, we will take one subset and stick with it throughout the chapter.

2.1 Transistor as a Switch

A transistor is an active circuit element with three or four terminals. It can be used either
as an amplifier or as a binary switch. For a digital circuit, the latter property is extremely
important since all binary logic operations can be performed this way. Related to this, in a
digital circuit the lowest level of information representation is done using a bit (binary
digit). When we talk about the value of a bit (being either O or 1), we mean the voltage
level on a transistor terminal is either high (V) or low (ground).

There are two types of transistors: bipolar junction transistor (BJT) and metal oxide
semiconductor field effect transistor (MOSFET). The BJT has three terminals: emitter (E),
base (B), and collector (C). The current through the emitter and collector terminals is
controlled by the current at the base terminal. On the other hand, the MOSFET has four
terminals: gate (G), drain (D), source (S), and bulk. A voltage applied to the gate terminal
forms a conducting channel between the drain and source terminals. A voltage applied
between these terminals conducts the current on this channel. The bulk terminal is
generally connected to the source in digital applications. Therefore, it is not shown in
digital MOSFET representations. MOSFETs are preferred in digital systems due to their
low power consumption and operation speed.

There are two MOSFET types based on their construction, N-channel MOSFET
(NMOS) and P-channel MOSFET (PMOS). When the voltage between the gate and the
source (V) is 0, NMOS acts like an open switch and cannot conduct current between the

source and drain terminals. Under the same setup, PMOS acts like a closed switch and
conducts the current between the source and drain terminals. When V¢ equals V., PMOS

acts like an open switch. Here, NMOS acts like a closed switch. Therefore, by applying a

suitable voltage level to the gate, the current flow between the drain and gate can be
controlled. These scenarios are shown in Fig. 2.1. In this figure, PMOS is distinguished
from the NMOS by a bubble in its gate terminal.

S S
9# ‘ G |
S
D D
oO—7F0 o— o
(a) VGS =0
5 5
G ‘ ‘ G
N
D D
O 0 o o©
(b) Vigs = Ve

Figure 2.1 NMOS and PMOS MOSFETs used as a switch.

Complementary metal oxide semiconductor (CMOS) is a special technology that uses
NMOS and PMOS transistors on the same substrate. Digital circuits are generally built
using CMOS technology due to their minimal power consumption. For consistency, we
will only consider CMOS-type logic gates in this chapter.

2.2 Logic Gates from Transistors

As mentioned in Sec. 2.1, by applying a suitable voltage to the gate of a transistor, the
current flow (hence the voltage) between its drain and source can be controlled. This will
lead to the development of digital logic gates: NOT, NAND, AND, NOR, OR, XOR, and
the transmission gate. To eliminate any confusion, from now on we will only mention
binary levels 0 and 1. The reader should remember that they correspond to voltage levels
ground (low) and V. (high), respectively.

2.2.1 NOT Gate

The NOT gate is actually an inverter. It has a single input and output. When the input of
the NOT gate is 0, its output is 1. When its input is 1, the output is 0. The symbol for the
NOT gate is given in Fig. 2.2.

Input Output

Figure 2.2 The NOT gate symbol.

The NOT gate consists of one NMOS and one PMOS transistor as shown in Fig.
2.3a. In the same figure, the working principle of the NOT gate at the transistor level is
given. In the first scenario (Fig. 2.3b), the logic level 1 (V) is applied to the input. In the
NOT circuit, the NMOS transistor turns on and the PMOS transistor turns off. As a result,
the NMOS transistor sinks current from the output node. Therefore, it goes to the logic
level 0 (ground). In the second scenario (Fig. 2.3¢), the logic level 0 (ground) is applied to
the input. Now, the NMOS transistor turns off and the PMOS transistor turns on. As a
result, the PMOS sources current to the output node. Therefore, it goes to the logic level 1
(Vo). These two scenarios clearly show the NOT operation at the transistor level.

Vee 1 I

% L _# q — |

|
Input Output I 0 ol _r
T i i 0 1
'> Il
|
II
V V| vV
Ground 0 0
(a) The Circuitry (b) Input is 1 (c) Input is O

Figure 2.3 The NOT gate circuitry at the transistor level.

2.2.2 NOR, OR Gates

The NOR (NOT-OR) is the next logic gate to be considered. Its symbol is given in Fig.
2.4. The truth table for the NOR gate is given in Table 2.1. As can be seen in this table, the
NOR gate gives logic level 1 when all its inputs are logic level 0. For all other input
combinations, the output is 0.

Inputl i
Output
Inp ut2

Figure 2.4 The NOR gate symbol.

Table 2.1 The truth table for the NOR gate.

Inputl Input2 Output
0 0 1
0 1 0
1 0 0
1 1 0

The transistor-level circuitry of the NOR gate is given in Fig. 2.5. As can be seen in
this figure, the CMOS NOR gate is constructed by serially connected PMOS and parallel
connected NMOS transistors. When the inputs of the NOR gate are at logic level 0, the
PMOS transistors are open. They source current to the output node. Therefore, the output
goes to logic level 1. But when one of the inputs is at logic level 1, one of the PMOS
transistors is closed and the other is open. Therefore, the current is sinked from the output
node and it goes to logic level 0.

Inputl

Input2 C‘

o Output

L

v

Ground

Figure 2.5 The NOR gate circuitry at the transistor level.

The OR gate is just the NOR with a NOT connected to its output. Its symbol is given
in Fig. 2.6. The truth table for the OR gate is given in Table 2.2. As can be seen in this
table, the OR gate gives logic level 0 when all its inputs are at logic level 0. For all other
input combinations, the output is 1.

Inputl E -

Output
Input2 |.|

&

Figure 2.6 The OR gate symbol.

Table 2.2 The truth table for the OR gate.

Input1 Input2 Output

—_— e £
N o T

Based on the preceding definition, the transistor level circuitry of the OR gate is
given in Fig. 2.7. As can be seen in this figure, to obtain the OR gate only one inverter is
added to the output of the NOR gate.

Vee

re

Inputl . #

4 [[
il mepm
HE L HE

-

Ground

Figure 2.7 The OR gate circuitry at the transistor level.

2.2.3 NAND, AND Gates

The NAND (NOT-AND) is the next logic gate to be considered. Its symbol is given in Fig.
2.8. The truth table for the NAND gate is given in Table 2.3. As can be seen in this table,
the NAND gate gives logic level 0 when all its inputs are at logic level 1. For all other
input combinations, the output is 1.

Inputl N
»Qutput
Input2 S

Figure 2.8 The NAND gate symbol.

Table 2.3 The truth table for the NAND gate.

Inputl Input2 Output
0 0 1
0 1 1
1 0 1
1 1 0

The transistor-level circuitry of the NAND gate is given in Fig. 2.9. As can be seen in
this figure, the CMOS NAND gate is constructed by parallel connected PMOS and
serially connected NMOS transistors. When the inputs of the NMOS transistors are at
logic level 1, they are open and sink current from the output node. Therefore, the output
goes to logic level 0. But when one of these inputs is at logic level 0, one of the NMOS
transistors is closed and one of the PMOS transistors is open. Hence, the current is sourced
to the output node. Therefore, the output goes to logic level 1.

&
.Dutput
| |
Inputl | A
[
Input2 |
Ground

Figure 2.9 The NAND gate circuitry at the transistor level.

The AND gate is just the NAND with a NOT connected to its output. Its symbol is
given in Fig. 2.10. The truth table for the AND gate is given in Table 2.4. As can be seen
in this table, the AND gate gives logic level 1 when all its inputs are at logic level 1. For
all other input combinations, the output is 0.

Inputl \

'| Output

Input2 | J

Figure 2.10 The AND gate symbol.

Table 2.4 The truth table for the AND gate.

Input1 Input2 Output

- Y
-
B - R e R e

Based on the preceding definition, the transistor-level circuitry of the AND gate is
given in Fig. 2.11. As can be seen in this figure, only one inverter is added to the output of
the NAND gate to obtain the AND gate.

Vv

cC

+

L L

T Eutput

. | 4{
Inputl |

Input2

Ground

Figure 2.11 The AND gate circuitry at the transistor level.

2.2.4 XOR Gate

The logic gate to be considered in this section is XOR (Exclusive-OR). It gives logic level
1 when its inputs have different logic levels. When the inputs of the XOR gate are the
same, it gives logic level 0. The symbol for the XOR gate is given in Fig. 2.12. The truth
table for this gate is given in Table 2.5.

Inputl }i
Output
InputZ .'

Figure 2.12 The XOR gate symbol.

Table 2.5 The truth table for the XOR gate.

0 0 0
0 1 1
0 1
1 0

The transistor-level circuitry of the XOR gate is given in Fig. 2.13. As can be seen in
this figure, if both inputs are the same, the output is at logic level 0. Let’s consider two
examples. In the first example, both inputs are at logic level 0. Only the rightmost NMOS
pair will be open. They will sink current from the output node. Hence, the output will go
to logic level 0. In the second example, the Inputl is at logic level 1 and the Input?2 is at
logic level 0. In this situation, only the leftmost PMOS pair will be open. They will source
current to the output node; hence, the output will go to logic level 1.

7
V..

IHPII[LC(Inputl

Ve
2 2
—C‘ Input# Input2

Inputx | Inputx ¢+ Output
Input 1_{ }in putl
¥ Input2 Input2
Ground

Ground

Figure 2.13 The XOR gate circuitry at the transistor level.

2.2.5 The Transmission Gate

The transmission gate is a complementary CMOS switch constructed by parallel
connected NMOS and PMOS transistors as shown in Fig. 2.14. This gate either passes or
stops the current between its input and output terminals (source and drain), depending on
the control terminal (the gate). The symbol for the transmission gate is given in Fig. 2.15.

A

B .

InpuL{ ' | Output

——
A

Figure 2.14 The circuitry of the transmission gate.

Input Output

Figure 2.15 The symbol for the transmission gate.

2.3 Combinational Circuits from Gates

Logic gates introduced in Sec. 2.2 can be used to construct combinational circuits. In
these, the output is not affected by previous input values. In other words, there is no
memory in combinational circuits. In this section, we will consider the decoder,
multiplexer, and adder as combinational circuits.

2.3.1 The Decoder

The basic function of a decoder is to decode its input and give a specific output
corresponding to its input. In general, a decoder has N inputs and 2" outputs to cover all
input combinations. The symbolic representation of a two-to-four decoder is given in Fig.
2.16. Its truth table is given in Table 2.6.

Inputl Input2

— Output]

2.to-4 — Output
Decoder | — Output3
— Outputd

Figure 2.16 The two-to-four decoder symbol.

Table 2.6 The truth table for the two-to-four decoder.
Inputl Input2 Outputl Output2 Output3 Outputd

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 1 0
1 1 0 0 1

The decoder can be constructed by AND and NOT gates. For the two-to-four
decoder, the circuit diagram at the logic gate level is given in Fig. 2.17. As can be seen in
this figure, the two-to-four decoder is constructed by using two NOT and four AND gates.
If we consider Outputl, it gives logic level 1 only when Inputl and Input2 are 0. This
input combination sets all other output pins to logic level 0.

g —
) o b}
e
- _/} Output 1
-
. — Output2
{0 L
" .
_,— Output3
[e
Inputl —e B e
Input2 —e L — Outputd

Figure 2.17 Circuit diagram of the two-to-four decoder at the gate level.

2.3.2 The Multiplexer

The multiplexer (MUX) is a combinational logic circuit that transfers data coming from
several inputs to a single output. Therefore, it can be used to select a specific input from a
group of inputs and feed it to output. To perform this task, the multiplexer has N select
pins, 2V input pins, and one output pin. The symbol for a multiplexer with two select pins
is given in Fig. 2.18. The truth table for this MUX is given in Table 2.7.

Selectl

lSclcctﬁ

o |
Inputl 00]
Input2 01

— Output

Input3 10
Inputd ld..]

Figure 2.18 The MUX symbol with two select pins.

Table 2.7 The truth table for the MUX with two select pins.

Select1 Select2 Output

0 0 Inputl
0 1 Input2
1 0 Input3
1 1 Input4

A four-to-one multiplexer (with two select pins) at the gate level is given in Fig. 2.19.
It can be easily seen that only one AND gate is enabled for each select input sequence. For
instance, the first AND gate is enabled when Selectl and Select?2 are 0. All other AND
gates are disabled for this sequence. Hence, only Inputl appears at Output.

Inputl

Input2

Output

Input3

Input4

Select] >Q
-

Select2 &
»> y

L~

JUJU

Figure 2.19 Circuit diagram of the four-to-one multiplexer built from basic logic gates.

2.3.3 Adders

Addition is the most important arithmetic operation in a digital system since all other
arithmetic operations can be performed using it. There are two basic adder types, half and
full. The half adder (for single-bit addition) has two inputs and two outputs. It adds the
input bits and gives the sum and carry bits as output. The symbol for the half adder is
given in Fig. 2.20. The truth table for this half adder is given in Table 2.8.

— B Cnut =

Figure 2.20 Symbol for the half adder (for single-bit addition).

Table 2.8 The truth table for the half adder (for single-bit addition).

A B) Cu

0O 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

As can be seen in Table 2.8, the carry bit is logic level 1 when both input bits are at
logic level 1. This corresponds to the AND operation. The sum bit (X) has logic level 1
when input bits have different logic levels. This corresponds to the XOR operation. Based
on these observations, the gate-level representation of the half adder can be constructed as

given in Fig. 2.21.
\ }z

A R
B . — Comt
.

Figure 2.21 Circuit diagram of the half adder at the gate level.

The half adder does not take the carry bit into account in addition. This causes
problems when adding binary numbers with more than one digit. The full adder is
introduced to overcome this problem. Besides having two input pins, the full adder also
has a carry-in pin. The symbol for the full adder (for adding one digit only) is given in Fig.
2.22. The truth table for this full adder is given in Table 2.9.

Figure 2.22 Symbol for the full adder (for single-bit addition).

Table 2.9 The truth table for the full adder (for single-bit addition).

A B G 3 Cu

0

- - -
- O e O e D e O
_ e - O O O O
- -R -

0

I T . S TR S

As in the half adder, the gate-level circuit diagram for the full adder can be
constructed by analyzing Table 2.9. The final constructed circuit diagram for the full adder

is given in Fig. 2.23.

A |
Eo-/ﬂ

P

Cin

1)

C‘DU[

Figure 2.23 Circuit diagram for the full adder at the gate level.

To add binary numbers with more than one digit, full adders can be used in parallel.
The most popular setup for this operation is the 4-bit parallel adder. Its block diagram is
given in Fig. 2.24. As can be seen in this figure, every digit of the two binary numbers is
added separately from the least significant digit (A1, B1) to the most significant digit (A4,

B4).

— A

9 ’
Blg Cout €l B2p Cout €2

[E]

21 A2f, 2

1 Cin
% 5 4
A3, g 127 Ad], 5 124
B_3 B CL‘JL][T B i::"'i'llll E
Cin Cin
Figure 2.24 Block diagram of the 4-bit parallel adder.

2.4 Sequential Circuits from Gates

In contrast to combinational circuits, the output of a sequential circuit depends not only on
the current inputs, but also on the previous inputs (or outputs). This dependence on the
past requires data storage. As we will see in the following sections, data storage can be
achieved by feedback loops added to combinational circuits.

2.4.1 Latches from Gates

A latch is a basic storage element which can store 1 bit of data. An SR latch formed with
two cross-coupled NAND gates is shown in Fig. 2.25. This setup is called an active-low
input SR latch. As can be seen in this figure, the SR latch has two inputs, Set (S) and
Reset (R). It has two outputs, Q and Q. In fact, Q and Q are complements of each other.

- b’Q

H“x. 3/’#
/ HH‘H.

Figure 2.25 The SR latch at the gate level.

The truth table for the SR latch is given in Table 2.10. In this table, U stands for
undefined. As can be seen in this table, when the input S has logic level 0 and R has logic
level 1, the output Q will be at logic level 1. When S has logic level 1 and R has level 0, Q
will be at logic level 0. When both S and R have logic level 1, the SR latch stays in its
previous state. In other words, it stores the previous bit level. When S and R are at logic
level 0, a contradiction occurs. In this case, both Q and Q should be at logic level 1.
However, as mentioned before, Q should be the complement of Q. Therefore, in this input
combination the output will be undefined due to the race conditions in the circuit [5]. In
order to prevent this undesired condition, the D latch is introduced.

Table 2.10 The truth table for the SR latch.

The D latch has one input and two outputs. Its circuit diagram at the gate level is
given in Fig. 2.26. As can be seen in this figure, a NOT gate is added between the S and R
inputs. Therefore, they can never be at logic level 0 at the same time. Hence, the
contradiction can be avoided.

it “HRH
\D—L Q
P

Figure 2.26 The D latch at the gate level.

The truth table for the D latch is the same as that for the SR latch without the
undesired contradiction condition. In summary, when D has logic level 0, Q will be at
logic level 0. When D has logic level 1, Q will be at logic level 1. Therefore, the D latch
simply stores 1 bit of information. The symbol for the D latch is given in Fig. 2.27.

Figure 2.27 Symbol for the D latch.

Latches are sensitive to their inputs all the time. Hence, sometimes disabling inputs is
a desired property. A gated latch (latch with an enable input) is used for this purpose. This
latch cannot be used until the enable input activates the latch. The circuit diagram of a
gated D latch is given in Fig. 2.28. The symbol for the gated D latch is given in Fig. 2.29.

_ | ’ Q
D!
N /f E—e Hx“‘a,{f/ g

/”’ s

D

Figure 2.28 Gated D latch at the gate level.

Figure 2.29 Symbol for the gated D latch.

2.4.2 Flip-Flops from Gates

The flip-flop is also a 1-bit storage element. The difference between the flip-flop and the
latch is the method for changing states. Flip-flop changes its state only at the rising or
falling edge of the clock signal. Even if the input changes after the clock edge, its state
still remains unchanged. There are basically four main types of flip-flops: SR, D, JK, and
T.

The D-type flip-flop can be constructed by connecting two gated D latches as shown
in Fig. 2.30. The first and second latches are called master and slave in this setup.
Therefore, this configuration is called a master-slave D flip-flop. The symbol for the D-

type flip-flop is given in Fig. 2.31.

—D Q D Q—

clk

Figure 2.30 Block diagram of the master-slave D flip-flop.

clk —>

ol
|

Figure 2.31 Symbol for the master-slave D flip-flop.

2.4.3 Counters from Flip-Flops

The counter is the basic building block of timer modules in a microcontroller. As the clock
signal is fed to the counter, it changes its state. The number of flip-flops used in a counter
indicates its capacity. For example, a 3-bit counter is built by three flip-flops. Hence it has
eight states. In other words, it can count from zero to seven. The symbol for a counter is

given in Fig. 2.32.

N

75Q

Counter

clk —>

Figure 2.32 Symbol for a counter.

There are two counter types, asynchronous (ripple) and synchronous. In the ripple
counter, the clock signal is fed only to the first flip-flop. The remaining flip-flops are
clocked in a chain. A block diagram of a 3-bit ripple counter is given in Fig. 2.33. On the
other hand, in the synchronous counter all flip-flops are clocked with the same clock
signal. A block diagram of a 3-bit synchronous counter (with T flip-flops) is given in Fig.
2.34.

clk —> -—> n—>

2
Ol
2

Q0 Ql Q2
(LSB) (MSB)

Figure 2.33 Block diagram of a 3-bit ripple counter.

Count — ~
Enable \j_‘, J]

clk
(f)

Qo Q! 2
(f/2) (f/4) (f/8)

Figure 2.34 Block diagram of a 3-bit synchronous counter.

The synchronous counter can also be used as a frequency divider. This operation can
be seen in Fig. 2.34. The input clock frequency, f, is divided by a power of two in each
flip-flop. Hence, the output of each flip-flop becomes QO = /2, Q1 = f/4, and Q2 = {/8.
This property will be extensively used in the timer module of the microcontroller.

2.4.4 Register from Flip-Flops

Register is an N-bit storage element constructed by N flip-flops. A block diagram of a 4-
bit register is given in Fig. 2.35. As can be seen in Fig. 2.35, in the register every flip-flop
changes its content by a trigger from the clock. Therefore, the 4-bit data is stored to this
register sequentially. The symbol for an N-bit register is given in Fig. 2.36.

D3 D2 DI DO

[o Y P

P D> e

clk

Q3 Q2 Q1 Qo

Figure 2.35 Block diagram of a 4-bit register.

N N

Dir/\, Register i>(;)
clk —>

Figure 2.36 Symbol for an N-bit register.

2.4.5 Shift Register from Flip-Flops

There are four shift register types: serial in/serial out, parallel in/serial out, parallel
in/parallel out, and serial in/parallel out. A block diagram of the serial in/serial out shift
register is given in Fig. 2.37. As can be seen in this figure, the serial in/serial out shift
register is constructed by a group of flip-flops connected as a chain. Hence, the output of
one flip-flop is connected to the input of the next flip-flop. In this setup, all flip-flops are
driven by the same clock source.

Data
Input

LD Q D Q |D Q ——D QF
> > f |*>

clk

Data
Output

Figure 2.37 Block diagram of the serial in/serial out shift register.

As can be seen in Fig. 2.37, the new data bit is received from the Data Input pin. The
last data bit is shifted out from the Data Output pin with every clock signal. Therefore, this
generates a delay of N clock cycles for the data. Here, N is the number of flip-flops in the
shift register. Similarly, parallel in/serial out and serial in/parallel out shift registers are
also commonly used for the communication between serial and parallel interfaces.

2.4.6 Memory from Registers

Registers can be combined to form memory blocks. Therefore, the memory can be called
as a collection of addressable register locations. In fact, recent memory systems are
constructed by a different technology (as in flash, to be considered in Chap. 13). However,
to briefly explain the working principles of a general memory block, the discussion in this
section is necessary.

A memory block consists of three key parts: address decoder, memory cells
(registers), and output selector (MUX). A block diagram of a simple memory (with four
registers) can be seen in Fig. 2.38. In this setup, each register can store a block of bits
(such as 8, 16, 32 bits). This also shows the number of parallel flip-flops used in the
register. When the write enable (WE) signal is at logic level 1, only one of the AND gates
is enabled. The data is written to the specific register selected by the address decoder.
When the WE is at logic level 0, the MUX chooses one address line and the data is read
from that register.

Write
Enable D II|1]Jllt
G{}Lﬂ_j— WE Register Qo \
[
0197 % WE Register 2 0
2-to-4 = g

I __
R 3 Output
Decoder]{}"II::‘,— WE Register Q :

111 »—WE Register Qj(
. l

Figure 2.38 Block diagram of a simple memory with four registers.

The symbol of a generic memory block is given in Fig. 2.39. As can be seen in this
figure, the memory block has N address wires, which can be used to reach 2V separate
address locations inside the memory block. Here, N represents the address to be reached
within the memory. D represents the data (with length M) to be written to the memory. Q
is the data to be read from the memory.

WE

g
N
Address | / >
M Memory M
D7) —75Q

Figure 2.39 Symbol for a generic memory block.

2.5 Summary

Digital circuits are the basic building blocks of a microcontroller. Although the user will
not deal with them in a practical application, he or she should know them to understand
the working principles (as well as limitations) of the microcontroller. Therefore, we
reviewed digital circuits in this chapter. We started with transistors and formed binary
logic gates using them. We then used these to form combinational and sequential digital
circuits. These will be the basic building blocks of the microcontroller modules such as the
arithmetic logic unit, timer, and analog-to-digital converter.

2.6 Problems
2.1 What is the minimum switching time for a recent CMOS transistor?
2.2 What is the value of V. for the recent CMOS transistor-based gates?
2.3 Construct an SR latch with NOR gates.
2.4 How can we make
a. a multiplication operation, if we only have a full adder at hand?
b. a division operation, if we only have a full adder at hand?
2.5 How can we construct a counter with range 0—FFFFh?
2.6 Give an example of binary multiplication by 2 using a shift register.
2.7 Give an example of binary division by 4 using a shift register.

2.8 How can we form a frequency divider (with division of 2° to 27) using
flip-flops?

2.9 What does address space mean in a memory block?

2.10 Construct a 16-bit memory space using gated D latches as the basic building
blocks. Do not forget to add control circuitry for WE.

3 Data Types

Chapter Outline

3.1 Number Representations

3.2 Negative Numbers

3.3 Fixed- and Floating-Point Representations
3.4 The Word Size and Overflow

3.5__Little and Big Endian Representations
3.6 ASCII Characters

3.7 Summary
3.8 Problems

In this chapter, we review the basic data types and representations in MSP430. We first
consider the binary representation. Then, we explore the fixed- and floating-point
representations of binary numbers. We next focus on the word size and overflow issues.
The next topic we consider is the endian representation. We also consider the American
Standard Code for Information Interchange (ASCII) characters and the MSP430 data
types. The representations considered in this chapter will be used extensively in the
following chapters.

3.1 Number Representations

In our daily lives, we use the decimal number system. This representation associates the
weight (powers of 10 here) of the digit with its location. Here, the least significant digit

gets the weight 10, the next one gets 10!, and so on. Using this form, we can represent an
entity in a systematic way. Therefore, a decimal number 255 means we have 2 x 102 + 5 X

10 + 5 x 10°. If we want to represent a decimal number with fractional parts, we follow
the same strategy. Now, the weights of the digits in the fractional part become 107!, 1072,
and so on starting from the dot (separating the integer and fractional parts) from left to

right. As an example, the decimal number 1.25 corresponds to 1 x 10° + 2 x 1071 + 5 x
102

The binary number representation is more suitable for digital systems, since they only
use two levels, 0 and 1 (represented by two voltage values in the transistor level as
explained in Chap. 2). Here, each binary level is called a bit (binary digit). Eight bits
correspond to 1 byte, 1024 bytes to 1 kilobyte (kB), 1024 kilobytes to 1 megabyte (MB),
and 1024 megabytes to 1 gigabyte (GB).

The binary number representation has weights in powers of two: 29, 2%, 22,..., 2N, For
the fractional parts, the weights become 271, 272, 2 and so on, starting from the dot
separating the integer and fractional parts. In a binary number, the bit with the highest
weight is called the most significant bit (MSB). The bit with least weight is called the least

significant bit (LSB).

In this book, if we want to represent a number different from the decimal
representation, we will add an appropriate suffix to it. For binary numbers, this suffix will
be “b.” For hexadecimal numbers, this suffix will be “h.” Finally, for the octal numbers,
this suffix will be “q.”

Conversion between decimal and binary numbers can be done using successive
division and multiplication operations. For detailed information, please see [5]. Here, we
provide two examples. We can represent the decimal number 255 in binary form as
1Xx27+1 X264+ 1% 2541 x244+1%x23+1%22+1x214+1x2°, Or in short form 11111111b. Similarly, for
the decimal number 1.25, we have the binary representation 1x2°+0x27'+1x22, In short,
the binary representation becomes 1.01b.

Although binary numbers are natural for digital systems, their representation may not
be practical. Hexadecimal numbers can be used instead for a more compact representation.
Here, there are 16 digits as (0, 1, 2, 3,4, 5,6, 7, 8,9, A, B, C, D, E, F). The binary number
11111111b can be represented in hexadecimal form as FFh. The decimal number 1.25 can
be represented in hexadecimal form as 1.4h. For conversions between binary and
hexadecimal representations, please see [5].

3.2 Negative Numbers

There may be negative numbers in operations. Although in ordinary arithmetic we put a
negative sign in front of the number, we do not do so in a digital system. Three methods
are available for representing both positive and negative numbers in a digital system.
These are: signed bit, one’s complement, and two’s complement representations.

The first representation mimics the ordinary practice (negative sign in front of the
number) by a sign bit in the MSB of the number. In this representation, a positive number
will have a sign bit of 0. A negative number will have a sign bit of 1. Hence the name
signed bit representation. Although this method seems straightforward, it is not very
effective since addition and subtraction operations may need extra circuitry.

The second representation is based on the bit complement operation. Here, the
negative number is represented by the bit complement of the corresponding positive
number. Therefore, this representation is called the one’s complement. In this
representation, no extra bit is assigned to the sign bit. However, the arithmetic operations
are not straightforward in this representation. For a more detailed explanation, please see

[5].

The third form of negative number representation is based on two’s complement.
Here, the negative number is first represented in one’s complement form. Then the result
is incremented by 1. Two’s complement representation is used for representing negative
numbers in the MSP430. Let’s say we have the binary number 01001100b. We can obtain
its negated version in two’s complement form in two steps. First, we obtain its one’s
complement representation, 10110011b. Adding 1 to the result gives us the two’s
complement of this number, 10110100b.

Two’s complement representation has a major advantage. Subtracting two binary
numbers can be rephrased as adding the first number to the two’s complement of the

second. Therefore, only one adder circuit (introduced in Chap. 2) is needed for both
addition and subtraction operations. The resulting representation also keeps the sign
information. Therefore, the need for an extra sign bit is also eliminated.

Let’s consider two subtraction examples. The first one is subtracting the binary
number 00111111b from 01000000b. First, we obtain the two’s complement of 00111111b
as 11000001b. Adding 11000001b to 01000000b gives 100000001b. As can be seen, the
result can be represented by 9 bits. In other words, an overflow occurred. We will explore
the overflow issue in Sec. 3.4. If the overflow occurs, we should discard it and the result is
final. That is, the subtraction operation results in 00000001b. If we subtract the number
01000000b from 00111111b, we follow the same steps and obtain 11111111b. There is no
overflow. Therefore, the result is negative and represented in two’s complement form. We
can check it by obtaining the two’s complement of the first subtraction result, 00000001b.
As can be seen, the two’s complement representation simplifies life for us.

3.3 Fixed- and Floating-Point Representations

The binary numbers to be processed may also have fractional parts. In Sec. 3.1, we
distinguished the integer and fractional parts of such numbers by a dot. In a digital system,
this is not possible. Instead, there are two different methods to represent binary numbers
with integer and fractional parts. These are fixed- and floating-point representations.

3.3.1 Fixed-Point Representation

The number of bits assigned to the integer and fractional parts is fixed in this
representation. Hence the name fixed-point representation. This has various advantages.
This method is easy to implement since the number of bits assigned to the integer and
fractional parts is fixed. Also, the numbers in this form can be processed faster.

Following TI’s representation, we can show an unsigned (no sign bit) fixed-point
number as UQp.q. Here, U represents the unsigned bit notation, p+q = n shows the
number (p and q being the integer and fractional parts) [2]. We provide some fixed-point
representation formats in Table 3.1.

Table 3.1 Fixed-point, unsigned number representation formats.

No. bits No. bits No. total

Format Minimum Maximum Resolution forp forgq bits

uQl1e6. 0 2l6 1 | 16 0 16
UQ.16 0 Jug—ie =10 0 16 16
UQ16.16 0 216 _ 1 i 16 16 32

As an example, let’s consider the decimal number 255.25. The first step to represent
this number in fixed-point representation is finding the binary (or hexadecimal)
representation of the integer and fractional parts separately. The integer part can be
represented as FFh. The fractional part can be represented as 4h. Assume that we would
like to represent this number in UQ16 form. Therefore, there will be no fractional part.

The number of bits to be assigned to the integer part will be 16. The resulting number will
be O0FFh. Zeros added to the left of the number will not affect its value. They will satisfy
the fixed-point representation format. If the UQ16.16 fixed-point representation is used for
the same number, then the integer part of 255.25 will be the same as O0FFh. The fractional
part will be 4000h. Here, zeros are added to the right of the number so that the value of the
fractional part will not be affected. The fixed-point representation of the number will be
O00FF4000h. As can be seen, there is no separator between the integer and fractional part
of the number. Knowing that the number is in UQ16.16 format, we can easily extract the
integer and fractional parts (since we know the number of bits assigned to each).

In a similar manner, we can also represent signed numbers. In this form, the MSB is
reserved for the sign bit. We provide three signed bit formats for the fixed-point
representation in Table 3.2. Similar to the unsigned bit representation, the fixed-point
number will be in the form Qp.q.

Table 3.2 Fixed-point signed number representation formats.

bits # bits # total

Format Minimum Maximum Resolution forp forq bits

Q15. = i) | 15 0 16
Q.15 = | g g—1a 0 15 16
Q15.16 1% P g=in 15 16 32

3.3.2 Floating-Point Representation

The fixed-point representation is easy to implement and process. However, it has a major
drawback. The number of bits assigned to the integer and fractional parts is always fixed.
This causes limitations both in the range of numbers to be represented and their resolution.
The floating-point representation can be used to overcome these problems. As the name
implies, the number of bits assigned to the integer and fractional parts is not fixed in this
representation. Instead, the assigned number of bits differs for each number, depending on
its significant digits. Therefore, a much wider range of values can be represented by this
form.

In floating-point representation, a binary number with fractional parts will be shown
as N = (—1)° x 2E x F. Here, S stands for the sign bit, E represents the exponent value, and
F stands for the fractional part. The floating-point number N is saved in the memory as X
= SEF.

To represent the floating-point number N = (-1)° x 2F x F, the number should be
normalized such that the integer part will have one digit. For ease of binary representation,
the exponent will be biased by 2¢"V — 1, where e is the number of bits to be used for E in
the given format. Finally, a certain number of bits will be assigned to the S, E, and F,
depending on the standard format used for representation. The IEEE 754 standard is used
by most digital systems in floating-point representation. This standard is summarized in
Table 3.3.

Table 3.3 The IEEE 754 standard for floating-point representation.

Exponent No. bits No. bits No. bits No. total

bias for § for E for F
Half 15 I 5 10 16
Single 127 1 8 23 32
Double 1023 I 11 52 64
Quad 16383 I 15 112 128

Let’s take three examples to explain the floating-point representation. In the first
example, we will have 255.25. We will follow the following itemized procedure to obtain
its floating-point representation.

* Decide on the format: Let’s pick the Half format for this example.

 Represent the integer and fractional parts of the decimal number in binary form: Our
number becomes 11111111.01b.

- Decide on the sign bit S: Since the number is positive, (-1)° =1, S = 0b.

* Normalize the number such that the integer part will have one digit: Our number
becomes 1.111111101 x27b.

+ Find the exponent value: For the half format, the exponent bias is 15. Therefore, the
exponent will become E = 15 + 7 = 22 with bias. Or in binary form, E = 10110b.

* Find the fractional part: Our fractional part (after normalization) was 111111101b. Since
10 bits should be used to represent the fractional part of the number in half format, F =
1111111010b. Remember, since this is the fractional part, we add the extra zero to its
right so that the value of the number will not be affected.

 Construct X = SEF: Finally, X =0101101111111010b. Or in hexadecimal form, X =
5BFAh.

The next example is representing —255.25 in single floating-point format. Again, the
itemized conversion is as follows:

* Decide on the format: Let’s pick the Single format for this example.

* Represent the integer and fractional parts of the decimal number in binary form: Our
number becomes 11111111.01b.

* Decide on the sign bit S: Since the number is negative, (-1)! = -1, S = 1b.

* Normalize the number such that the integer part will have one digit: Our number
becomes 1.111111101 x 27b.

+ Find the exponent value: For the single format, the exponent bias is 127. Therefore, the
exponent will become E = 127 + 7 = 134 with bias. Or in binary form, E = 10000110b.

* Find the fractional part: Our initial fractional part (after normalization) was 111111101b.

Since 23 bits should be used to represent the fractional part of the number in single
format, F = 11111110100000000000000b. Remember, since this is the fractional part,
we add extra zeros to its right so that the value of the number will not be affected.

 Construct X = SEF: Finally, X = C37F4000h in hexadecimal form.

The last example is representing 8751.135 in half format. The itemized conversion is
as follows.

* Decide on the format: Let’s pick the Half format for this example.

 Represent the integer and fractional parts of the decimal number in binary form: Our
number becomes 10001000101111.001000101000b.

 Decide on the sign bit S: Since the number is positive, (—-1)° =0, S = Ob.

* Normalize the number such that the integer part will have one digit: Our number
becomes 1.0001000101111001000101000 x 213p,

+ Find the exponent value: For the half format, the exponent bias is 15. Therefore, the
exponent will become E = 15 + 13 = 28 with bias. Or in binary form, E = 11100b.

* Find the fractional part: Our initial fractional part (after normalization) was
0001000101111001000101000b. Since 10 bits should be used to represent the fractional
part of the number in half format, it becomes F = 0001000101b. Unlike previous
examples, we had to discard some bits in the fractional part at this step. This is due to
the number of bits that can be used.

» Construct X = SEF: Finally, X = 0111000001000101b. Or in hexadecimal form, X =
7045h.

3.4 The Word Size and Overflow

The number of bits that can be processed by a microcontroller at once is called its word
size. The word size is 16 bits or 2 bytes for MSP430. If an arithmetic operation results in
more than 16 bits, an overflow occurs. The overflowed bit should be saved somewhere in
the microcontroller. Under the MSP430 it will be saved in the carry bit of the status
register (to be explained in Chap. 4). Therefore, the exact result of the operation will not
be lost (until the next operation). The overflow should be taken into account especially in
assembly programming to be explored in Chap. 7.

3.5 Little and Big Endian Representations

Sometimes, the data to be saved in the microcontroller’s memory may be larger than its
word size. Hence, the large data must be partitioned and saved in successive memory
locations. For such cases, there are two representations: little endian and big endian. The
least significant bits of the data are saved first in the little endian representation. In the big
endian representation, the most significant bits are saved first.

As an example, let’s consider the floating-point representation of —255.25 in the
previous section. In single format, the representation was X = C37F4000h, which needs 4
bytes (or two words). Let’s label two successive memory locations I and II. In the little
endian representation, I will hold 4000h and II will hold C37Fh. In the big endian
representation, I will hold C37Fh and II will hold 4000h. As a reminder, the endian

representation for each microcontroller is fixed. The little endian representation is
preferred for the MSP430. We will observe its effect in the following chapters.

3.6 ASCII Characters

We do not only process numbers in microcontrollers. For some applications, we may need
to handle characters and symbols as well. As we know, everything in the microcontroller
is represented in binary form. The ASCII code is introduced to represent characters and
symbols in binary form. ASCII stands for the American Standard Code for Information
Interchange. The ASCII code for characters and symbols is given in Table 3.4. In this
table, LSB stands for least significant byte and MSB stands for most significant byte. To
represent a specific character (or a symbol), its corresponding code should be given. Let’s
assume that we would like to represent the @ symbol. The ASCII code for the symbol @
can be obtained as 40h from Table 3.4.

Table 3.4 ASCII code table.

LSB
o 1T 2 3 4 § 6 7 &8 9 A B CDE F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS G5 RS US

2 ! ” # b % & ! (| B T R |
M3 0 | 2 3 4 5 6 7 g8 9 TR - S
sS4 @ A B C D E F G H I J KULMNO
B5 P Q R 5§ T U V W Y Z [V1 ° -

6 a b C d e f g h i] k 1 m n o

7 p q r. -8 t u vV W X ¥y z { | } ~ DEL

3.7 Summary

The data to be stored in the microcontroller will be in binary form. In this chapter, we
focused on the representations of binary numbers. First, we focused on the methods to
represent negative binary numbers. We explored the sign bit, one’s complement, and two’s
complement representations for negative numbers. Then, we considered the problem of
representing binary numbers with fractional parts. We explored the fixed- and floating-
point representations. We also provided examples on converting decimal numbers (with a
fractional part) to these forms. Then we explored the word size and overflow issues. The
word size for the MSP430 is 16 bits. Related to this, we focused on the little and big
endian representations. They help us to save data larger than the word size. Finally, we
looked at the ASCII table to represent characters in binary form.

3.8 Problems

3.1 The MSP430 microcontroller uses two’s complement representation in
subtraction operations. Calculate the following (using pencil and pen) in binary
arithmetic:

3.10

3.11

3.12

3.13

a. FFFFh+0005h
b. FFFFh-0005h
c. 0005h-FFFFh
3.2 Is MSP430 a fixed- or a floating-point microcontroller?

3.3 Find the fixed-point representation of the number 315.2342 in formats

a. uQle.
b. UQ.16.
c. UQle6.16.

3.4 Find the fixed-point representation of the numbers —315.2342 and
315.2342 in formats

a. QIb5.
b. Q.15.
c. Ql5.16.

3.5 You are given four numbers: 13.25, 15.50, 17.50, and 19.25. Find the
hexadecimal representation of these numbers in fixed-point UQ16.16 format.

3.6 Find the floating-point representation of the numbers —315.2342 and
315.2342 in formats

a. half.
b. single.
c. double.

3.7 We will only have an approximation in representing the number 8751.135
in half floating form. What is the difference between the actual number and this
approximation?

3.8 Find the floating-point representation of the number 8751.135 in single
form. Will there be an approximation here?

3.9 Find the floating-point representation of the number 7 in half form.

Pick two numbers and calculate their sum in binary arithmetic. Make sure that
there is an overflow.

Pick two numbers and calculate their difference in binary arithmetic. Make sure
that there is an overflow.

We want to save the hexadecimal number CBBCh in a microcontroller with the
word size of 2 bytes. How do we write this number

a. if the memory organization is in little endian form?
b. if the memory organization is in big endian form?

Which endian representation does MSP430 use?

3.14 We want to store the numbers considered in Prob. 3.5 (in UQ16.16 format) in the
memory of the MSP430G2553. Let’s assume that the lowest possible memory
location to be used is 0200h. Start filling these numbers (in hexadecimal form)
from the lowest possible memory address allowed. Take into account the
microcontroller’s endian representation.

3.15 The MSP430 microcontroller keeps a floating-point number (in single format) in
two successive memory locations (let’s say 0200h and 0202h for this problem)as
522Bh and 449Ah. What is this number in decimal form?

3.16 The ASCII codes given in Table 3.4 are called regular. What happens if we want to
represent regional characters like i, 1, and ¢?

4 MSP430 Architecture

Chapter Outline

4.1 General Layout

4.2 Central Processing Unit

4.3 Memory

4.4 Input and Output Ports

4.5 Clocks, the Timer, and Watchdog Timer Modules
4.6 ADC and Comparator Modules

4.7 _The Digital Communication Module

4.8 Other Modules

4.9 The Pin Layout of the MSP430G2553

4.10_ Summary
4.11 Problems

The aim in this chapter is to familiarize you with the hardware architecture of the MSP430
microcontroller. Modules in this architecture will be explored in the following chapters in
detail. We will start with the general layout of the MSP430G2553 architecture. Then we
will focus on the central processing unit (CPU), memory, input and output ports, clocks
and the timer module, analog-to-digital conversion (ADC) and comparator modules,
digital communication module, and other modules.

4.1 General Layout

The functional block diagram of the MSP430G2553 microcontroller is given in Fig. 4.1.
We will use this representation in grouping blocks. As can be seen in this figure, the
MSP430G2553 has a 16-MHz CPU. It has 16 kB flash and 512 bytes of RAM. It has two
input and output ports named P1 and P2. It has a clock system, two timer modules, and a
watchdog timer. It has ADC and comparator modules. It has a digital communication
module with universal serial communication interface (USCI). It has a brownout
protection module, the memory address bus (MAB) and the memory data bus (MDB), and
interface modules (JTAG, spy-bi-wire, emulation).

DVCC DVSES j |
XIN XOUT 1 J g/f H/i/

R e e e e e e st e .
1 A
i —= ACLK Port P1 Port P2 i
E Clock E
| Sysiem ADC 810 810 |
: —= SMCLK Flash RAM 10-bit I.ntr:rrlulpl. Enlcn'_u_rrt. E
. 16 KB 512 B 3 Ch. capability capability :
! MCLK Avtoscan pull up/ pull up/ !
i ' down down]
: resislors resislon E

(3% | § [1 [] B i i E
| CPU MAB [!
1 1 1
: Includes | i
' 16 I MDB |] ' Li J .
| Registers [|]] i :
1]
i | i
! I ' | I | ' L ' .. :
i Emulation [* USCI_AD i
! 2BP &= UART/ i
! I Watchdog || Timer(_A3 | | Timerl_A3 i
| ITAG e Brownout CU]TL".I_A + WDT+ LIN‘;; LTIDF'I.. !
1 . 1
| i Protection & Channels ICC 30C i
| Interinie gt 15 bits Registers Registers |
i Spy-Bi- USCI_jEii‘J :
| Wice SPLPC | |
|

RST/NMI

Figure 4.1 Functional block diagram of the MSP430G2553 microcontroller.

4.2 Central Processing Unit

The MSP430 CPU has a 16-bit reduced instruction set computing (RISC) architecture,
with 27 physical and 24 emulated instructions. We will explore this instruction set in
Chap. 7 in detail. The CPU is based on Von-Neumann architecture such that the data and
instructions are treated the same through the MAB and MDB. More detail on this
architecture can be found in [6]. The block diagram of the MSP430G2553 CPU is given in
Fig. 4.2. The CPU can be further divided into the following submodules based on this
diagram.

MDB — Memory Data Bus Memory Address Bus — MAB
15 0

RO/PC Program Counter |0 _>

R 1/SP Stack Pointer 0 _>

R2/SR/CG]1 Status _>

R3/CG2 Constant Generator

g UUUUgy

R4 General Purpose :>
| m
R5 General Purpose _>
® ®
® ®
@ ®
R15 General Purpose :>
N2 s \
/ Zero, Z — dst \ [sre [\
Carry, C — / N
Overflow, V— [6-bit ALU /~—MCLK
16 Negative, N — / 16

o~

Figure 4.2 Block diagram of the MSP430G2553 CPU.

4.2.1 Arithmetic Logic Unit

The arithmetic logic unit (ALU) performs the arithmetic and logical operations. The two
arithmetic operations in this module are addition and subtraction. Subtraction is done
using two’s complement form as explained in Sec. 3.2. Comparison of two numbers can
be performed by the ALU also. Logical operations AND, OR, and XOR can be done
bitwise within the ALU. There is neither multiplication nor division operation defined in
the MSP430 instruction set. Therefore, the programmer should form suitable algorithms
for this purpose in assembly language. Besides providing the result of an operation, the
ALU also sets the status bits (flags) based on the operation. This will be explained next.

4.2.2 CPU Registers

The MSP430 has 16 registers, each having 16-bit storage capacity. Four of these registers
(RO, R1, R2, R3) have dedicated usage. The remaining 12 registers are general purpose.
All of these 16 registers can be directly accessed through software. Next, we explain the

registers with dedicated usage in detail.

The RO register is called the program counter (PC). It points to the next instruction
to be read from memory and executed by the CPU. In storing the instructions to the
memory, even-numbered locations are always used. Therefore, the PC is always
incremented by multiples of two. The first instruction to be executed is special. As a reset
occurs (either at the startup or during operation), the CPU goes to the reset vector address
(to be explained in Chap. 9). This address keeps the address of the first line of the code.

The R1 register is called the stack pointer (SP). It is mainly used to handle stack
operations (to be explained in Sec. 7.4). It is also used in the interrupt and function calls.
As in the PC, SP also keeps a memory address (of the stack). The SP should be defined at
the beginning of the assembly programs.

The R2 register is called the status register (SR). It stores the status and control bits
as given in Table 4.1.

Table 4.1 The status register bits.

Bits 15-9 8 7 6 5 4 3 210
Reserved forCGl V SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

In Table 4.1, CG1 stands for the constant generator (to be explained next). The V bit
(flag) represents the overflow. This bit is set when an overflow occurs in the ALU. The
SCG1, SCGO, and OSCOFF bits are used for clock operations. These will be explored in
detail in Chap. 10. Similarly, setting the CPUOFF bit disables the CPU. The GIE bit
should be set to enable general interrupts (to be explored in Chap. 9). The N bit (negative
flag) is set when the ALU operation gives a negative result. The Z bit (zero flag) is set
when the ALU operation gives zero. Finally, the C bit (carry flag) is set when a carry
occurs in the ALU operation.

Register R3 and the most significant seven bits of register R2 (SR) are reserved for
constant generators (CG1/CG2). These are responsible for generating six constants
(0004h, 0008h, 0000h, 0001h, 0002h, FFFFh) used in the microcontroller. These constants
are used in emulated instructions (to be explored in Sec. 7.1).

The remaining registers R4-R15 are general purpose. They can be used to store data,
address pointers, or index values. They can be accessed with byte or word instructions. It
is advantageous to use them in assembly programming since they are on the CPU. We will
explore these issues in Chap. 7 in detail.

4.3 Memory

The MSP430G2553 has a 16-bit address bus (MAB). Therefore, it can map 64 kB of
memory space. A 16-bit address bus allows direct access and branching throughout the
entire memory range. The MSP430G2553 also has a 16-bit data bus (MDB). This allows
direct manipulation of word-based arguments. To note here, each memory location is
formed by 1 byte of data, and the CPU is capable of addressing the data value either at the

byte or word level. Words are always stored and retrieved from even addresses. This even
address keeps the least significant byte. The following odd address keeps the most
significant byte. This is the little endian representation explained in Sec. 3.5. The data can
be accessed from either an even or an odd address in byte operations.

The MSP430G2553 has two types of memory. These are RAM and flash. The RAM
is used for temporary storage. Hence it is suitable for keeping variables. The flash is a
nonvolatile memory. It can still keep the data when power goes off. Hence, it is primarily

used to store the code to be executed. We will further explore the flash memory in Chap.
13.

4.3.1 The Memory Map

The memory map does not just represent the RAM and flash in the MSP430 architecture.
It also represents the interrupt and reset vector table, special function registers (SFRs), and
peripheral modules. Therefore, the input and output ports (to be considered in Chap. 8) are
treated as memory addresses. Based on these definitions, the memory map of the
MSP430G2553 is given in Table 4.2.

Table 4.2 MSP430G2553 memory map.

Address Size (Bytes) Type Usage
FFFFh-FFCOh 64 Flash Interrupt and reset vector table
FFBFh-C000h 16320 Flash Code memory
10FFh-1000h 256 Flash Information memory
03FFh-0200h 512 RAM Data memory
01FFh-0100h 256 Peripheral 1 6-bit registers
(00FFh-0010h 240 Peripheral 3-bit registers
000Fh-0000h 16 Peripheral 8-bit SFR

As can be seen in Table 4.2, the highest 64 bytes of address space (between FFFFh
and FFCOh) are used for interrupt and reset vector tables. These will be explored in detail
in Chap. 9. The next 16320 bytes of address space (between FFBFh and C000h) are used
for code memory. Here, constants are also saved. We will discuss this issue in Chap. 6.
The 256 bytes (between 10FFh and 1000h) are used for information memory. The
calibration data for peripherals are stored in this memory area. These were all in the flash
area of the memory. The 512 bytes between 03FFh and 0200h of the memory are reserved
for the data. Hence, the local and global variables are saved here. This area is also used for
the stack operations to be explained in Sec. 7.4. This part of the memory is from the RAM.
The next 256 bytes of address space (between O1FFh and 0100h) are used for 16-bit
peripheral registers. The next 240 bytes of memory space (between 00FFh and 0010h) are

used for 8-bit peripheral registers. The lowest 16 bytes of memory space (between 000Fh
and 0000h) are used for 8-bit SFRs. These will be explored next.

4.3.2 Peripheral and Special Function Registers

In the following chapters, we will study the digital input and output, interrupts, timers,
analog-to-digital conversion, and digital communication modules of the MSP430
microcontroller. For all these, some parameters should be adjusted through their control
registers. In fact, all these control registers are kept in the lowest 512 bytes of memory as
peripheral registers (16- and 8-bit) and SFRs. Interrupt enable 1 (IE1), interrupt enable 2
(IE2), interrupt flag 1 (IFG1), and interrupt flag 2 (IFG2) are defined under SFRs. We will
explore all these peripheral registers and SFRs in later chapters. Here, we would like to
emphasize that these control registers are also kept in the memory.

4.4 Input and Output Ports

The microcontroller can interact with the outside world through its input and output ports.
Here, the processed data can be analog or digital. MSP430G2553 has 16 pins (arranged in
two ports as port P1 and P2) to be used for input and output. All the pins can be used as
input or output. They can also be used for both analog and digital signals. Therefore, they
are called general purpose input and output (GPIO). We will consider these in detail in the
following chapters. Here, we would like to mention one important issue. The input and
output ports will be simply taken as memory addresses through peripheral registers
mentioned in the previous section. This is generally called memory mapped input-output
(memory mapped 1/O). Therefore, reading or writing data to input-output ports is simply
like reading or writing data to a specific memory address.

4.5 Clocks, the Timer, and Watchdog Timer Modules

The MSP430G2553 has one clock, two timers, and a watchdog timer module. We will
explore their properties in detail in Chap. 10. Here, we briefly overview them.

4.5.1 Clocks

As mentioned in Chap. 3, the ones and zeros in the code level correspond to the two
different states of the transistor at the physical level. There is a certain time needed to
switch from one state to the other. Therefore, the operations within the microcontroller are
done in clock cycles to prevent transition problems. With each clock cycle, the processor
performs an action that corresponds to an instruction phase. Besides, timers and peripheral
modules may also need other clock signals to operate. Therefore, the MSP430G2553 has
more than one clock source. These are called the master clock (MCLK), sub-main clock
(SMCLK), and auxiliary clock (ACLK). These clocks are also based on different
oscillators. We will consider all these in Chap. 10 in detail.

4.5.2 The Timer and Watchdog Timer Modules

MSP430G2553 has two timers on it. These can be programmed for timing and
capture/compare operations. In fact, the timer is a counter. There is also a watchdog timer
module which needs specific consideration. It resets the CPU in periodic time intervals to
eliminate any unexpected program failures (causing infinite loops). This module can also
be used as a timer. We will explore all timer modules in detail in Chap. 10. Till then, we

will have a code line to disable the watchdog timer in all our programs.

4.6 ADC and Comparator Modules

MSP430 can process analog signals as well. This is done in two ways. First, the
comparator can be used such that the analog input voltage is compared with a reference
voltage. Depending on the comparison, the output of the comparator will be either zero or
one. This can be represented by 1 bit. Second, the ADC module can provide the digital
form of the analog signal fed to the microcontroller. MSP430G2553 has a 10-bit ADC
module. We will explore both the comparator and the ADC modules in detail in Chap. 11.

4.7 The Digital Communication Module

The MSP430 has a digital communication module called the USCI. This module supports
universal asynchronous receiver/transmitter (UART), serial peripheral interface (SPI), and
inter integrated circuit (I°C) communication modes. We will explore these issues in detail

in Chap. 12.
4.8 Other Modules

In this section, we summarize the MSP430 modules that we will not explore in detail in
the following chapters. These are the brownout protection module, emulation logic with
spy-bi-wire interface module, and the JTAG interface module. The brownout protection
module provides the proper internal reset signal to the device during power on and off.
The interface modules provide the communication link between the microcontroller and
the host computer. More detail on these modules can be found in [17].

4.9 The Pin Layout of the MSP430G2553

The pin layout of the MSP430G2553 microcontroller is given in Fig. 4.3. The general
usage area of the GPIO pins in this figure is explained in Table 4.3. As can be seen in this
table, each pin can be used for various purposes. We will explore each property separately
in the following chapters. In this table, we only summarize the usage areas of the pins to
be considered in this book. Other usage areas of the mentioned pins can be found in [17].

1= GND 22
— Ipto XIN ——
— Ip11 XOUT ——
— Ip12 TEST ——
— p13 MSP RST ——

430

— Ip1s PlL6l—
— Imo P2sI—
P21 o4l
101ps2 paall

Figure 4.3 Pin layout of the MSP430G2553.

Table 4.3 Pin usage table for MSP430G2553.

Pin Port Name Usage Area

| Vee Source voltage

2 P10 Digital 1/O, Interrupt, Timer, ADC

3 P1.1 Digital 1/O, Interrupt, Timer, ADC, Digital Commmunication
4 P12 Digital I/O, Interrupt, Timer, ADC, Digital Commmunication
5 Pl3 Digital 1/O, Interrupt, ADC

§) Pl.4 Digital I/O, Interrupt, Timer, ADC, Digital Commmunication
7 P1.5 Digital I/O, Interrupt, Timer, ADC, Digital Commmunication
8 P20 Digital I/O, Interrupt, Timer

9 P2.1 Digital I/O, Interrupt, Timer

10 P2.2 Digital 1/O, Interrupt, Timer

Il P Digital I/O, Interrupt, Timer

12 P24 Digital I/O, Interrupt, Timer

13 P2.5 Digital I/O, Interrupt, Timer

14 Pl.6 Digital 1/O, Interrupt, Timer, ADC, Digital Commmunication
15 .7 Digital I/O, Interrupt, ADC, Digital Commmunication

16 Reset Non-maskable interrupt

J#

18 P27 Digital /O, Interrupt, External Crystal

19 P2.6 Digital I/O, Interrupt, Timer, Extemnal Crystal

20 Vs Ground voltage

4.10 Summary

We explored the architecture of the MSP430 microcontroller in this chapter. Here our
focus was on hardware modules. Although we will explore each module in detail, seeing
all together with their interactions provides for better insight. Therefore, we considered the
CPU first. We explored the arithmetic logic unit and registers in it. Then, we considered
the memory. The most important point here is the memory map of the microcontroller.
Therefore, we explored it in detail. Next, we considered the ports of the MSP430. Then,
we briefly reviewed the clock, timer, and watchdog timer modules. These will be the main
focus of time-based operations. We next considered the ADC and comparator modules.
We then briefly reviewed the digital communication module. Finally, we provided the pin
layout of the MSP430. Our aim was to summarize the usage of each pin by different
modules.

4.11 Problems

4.1 Pick another microcontroller and compare it with the MSP430 in
terms of architecture.

4.2 What do program counter, status register, and stack pointer mean?
Where are they kept in the MSP430 microcontroller?

4.3 What do flash and RAM mean? In the MSP430G2553, what is the
size of the flash and RAM?

4.4 How many clocks does the MSP430G2553 microcontroller have?

4.5 What is the size of the MAB for the MSP430? What is the the
maximum addressable memory location with this MAB?

4.6 What should be the size of the MAB to address 4 gigabytes of
memory (with word size of 64 bits)?

4.7 What does memory mapped input and output mean?

4.8 According to the memory map of the MSP430G2553
microcontroller,

a. What can be the maximum code size to be processed? Here,
assume that 100 bytes are kept for storing the data.

b. What can be the maximum stack size?

c. What can be the maximum data size to be stored? Here, assume
that the code to process this data needs 512 bytes.

5 Code Composer Studio

Chapter Outline

5.1 Setup
5.2 Creating a C Project

5.3 Creating an Assembly Project
5.4 Program Execution

5.5 Observing Hardware under CCS

5.6 Terminating the Debug Session and Closing the Project
5.7 Graphical Peripheral Configuration Tool (Grace)
5.8 The Terminal Window

5.9 Summary
5.10 Problems

Code Composer Studio (CCS) is the unique environment for TI’s embedded processors.
Although a new version of CCS is introduced every year, we believe that the reader should
become familiar with at least one CCS version. Therefore, we pick the most recent version
of CCS (version 5.3) in this book [11]. We believe that, even if a new version of CCS is
introduced in the future, it will not be totally different from this version. We will start with
the setup of CCS. Then, we will deal with creating C and assembly projects under CCS.
On these, we will explore CCS properties during code execution. We will also explore the
new Graphical Peripheral Configuration Tool (Grace) in this chapter. Grace will allow us
to configure the hardware of the MSP430 graphically.

5.1 Setup

The official version of CCS for the MSP430 is freely available on the TI website (as we
are writing this book). Although this is a code size limited version, it is sufficient for our
purposes. Next, we will explain how to download and install it. To note here, the
following steps are for a Windows 7-based PC. For Linux installation, please see the TI
website.

5.1.1 Downloading and Installing CCS

Before starting to download CCS, you need to have a TI account. You can get it from
http://www.ti.com. After you register, you will be eligible to download the latest version
of CCS through the website http:/processors.wiki.ti.com/index.php/Download CCS.
There are two options in the download website. You can select either the website or the
off-line installer. In the first option, you can install CCS with required configurations from
the Internet directly. If you select the second option, all the installation documents will be
downloaded to your computer. Then, you can install CCS from these. The following steps
are the same for both installing options.

http://www.ti.com
http://processors.wiki.ti.com/index.php/Download_CCS

1 Click on the executable file and start the installation.
2 Accept the license agrement then click Next in the first window.

3 A window asking for the installation directory will appear. Use the default
location or create a new folder.

4 1In the Setup Type window, select Custom to arrange the setup configuration
(instead of installing the complete set).

5 In the Processor Support window, select the only MSP430 Low Power MCUs.
6 In the Select Components window, click Next without changes.
7 In the Select Emulators window, un-select MSP430 Parallel Port FET.

8 The CCS Installation Options window will appear. It will provide a list of
documents that will be installed. Click Next and start the installation.

5.1.2 Hardware Setup

The MSP430 LaunchPad comes with the MSP430G2553 microcontroller on it. This
microcontroller is programmed with a demo software which toggles the onboard red and
green LEDs in a sequence. When the MSP430 LaunchPad is connected to the PC through
the USB, the driver installation starts first. After installation, the demo starts
automatically. This indicates that the hardware is working properly.

5.1.3 Starting CCS, Opening a Workspace, and Choosing the License

When CCS starts for the first time, a window appears so that the location of a workspace
folder can be configured. Either use the default workspace folder or change the location by
clicking the Browse button. This workspace folder keeps the project and settings files after
CCS is closed. Therefore, the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed. The Licence
Setup Wizard window appears as the workspace settings are done. Select CODE SIZE
LIMITED (MSP430). Then click Finish. Now, CCS is ready to run. A window should
appear as given in Fig. 5.1.

we CCE Edit - 11 Resource Eaplorer - Code Corposer Studia e 1)

- - R . - o [Eocsrm |

- Proact Bapla h "B NRuseures Expless =H

F‘nclmgeul-'\l'tk:mq = Devices Tegice

Welcome to Code Composer Studio vS

Yoir Cavy Dviinng 0TS Doge Ui b any ke by sedecting Welcoume Froum Lhe Halp ireimu

L0 New Project Highlights

= » i i
1.5 . Addwisor
Loasniis » Resource Lxplorer

s Woelcomae o Grace

Tassawrret Frislart FrabFimes CFarcbed
[

....... il 0 itermy mlected

Figure 5.1 The CCS window.

5.1.4 CCS Perspectives

There are two perspectives for CCS. These are the CCS Edit and CCS Debug. CCS opens
in the Edit perspective every time it starts. This perspective is used for creating projects,
building them, and observing errors in them. The CCS Edit perspective is switched to the
CCS Debug perspective automatically when the created project is debugged. This
perspective is used for debugging projects. It can also be used for observing the hardware
(such as registers and memory) or software (such as variables and disassembly) during
code execution. The user can switch between these two perspectives using the small icons
in the upper right corner of the main CCS window.

5.2 Creating a C Project

A C project contains source, header, and include files. CCS generates an executable output
file (with extension .out) from these. This file is used by the MSP430. This section is
about creating a C project starting from the beginning.

5.2.1 A New C Project

To create a new project in CCS, click File -~ New — CCS Project. A new window will
pop up as in Fig. 5.2. In this window, write a project name and select Variant as shown in
Fig. 5.2 for the MSP430G2553 microcontroller. Finally, select Empty Project (with
main.c) and click Finish. After these steps, the project will be created with the source file
named main.c. The generated project should be seen in the Project Explorer window.

r 1 = 1
inei New CCS pm—@ﬂw

| €CS Project .

i |
Create a new CCS Project, /. J

!
| Froject name Demo Project

Output type: | Executable *l

[¥] Use default Incatinn

Cialkers\unzalan\weorkccpace vd_3\Deme Project Browse...
Device
Family | MsPean -
Yariant: < celect or type filker texds = | M5P430G2553 -
|
Connection: | TIMSP43 USBL [Default -

b Advanced settings

* Project templates and exzrmples

type filter taet Creates an empty project fully intialized -
for the selected device, The project will
4 |i=] Ernply Projects contain an emphy ‘main.c’ source-file
& Empty Project
[= Empty Project (with main.c)
iy Empty Assembly-enby Project |7
[Empty Grace (MSPA3D) Project
& Empty RTSC Project |
[Z] Basic Examples
|'= Blink The LED — -

o,

P
.
(s]
:
]

Finish | Cancel

Figure 5.2 Creating a C project.

When the project is created, an information window about The Ultra-Low-Power
Advisor (ULP Advisor) appears. Low power consumption is crucial for MSP430 devices.
The ULP Advisor gives valuable information on how to use this property most effectively.
The information can be seen from Infos in the Problems window.

When the project is created, the compiler optimization runs automatically. This can
remove unused variables and statements. Therefore, it can affect the debugging process.
There are two options to prevent this. If compiler optimization is necessary, variables must
be declared as volatile. If compiler optimization is unnecessary, the optimization can be
disabled by the following steps. In the Project Explorer window, right-click on the Project
and select Properties. In the pop-up window, select Optimization and set Optimization
Level to off as shown in Fig. 5.3.

= Prooerties for Derro Project - [_I:Iﬁ

type filer text Optimization oo - -
Respurce
General v
& Build Configuraton |UEW9 [Axtive] - {N-amge(orrfiwmm...
a WEPA3D Compiles
Processor O ptions
Optimization :
Decbug Dptions Optirmizanon level [--opt_bevel, -0) |-:|rf -

Inchude Dptions
ULP Advivor
Achvanced Dptions

KISPAD Linkes

Dby

Tack Tags

Comtrol ypemd . wze teademedfs (0= sise, 5= upeed] (mopt_lar_spes, i) | -

’ ___l:.'I_K || Cancel

Figure 5.3 Disabling optimization.

After writing the C code in main.c, save it by clicking the Save button in the upper
left corner of the CCS menu. In this section, we will use the code given in Listing 5.1.
Here, the included header file is msp430.h. Through it, the compiler automatically selects
the header file for the MSP430 version. We provide the header file for the MSP430G2553
in the Appendix.

Listing 5.1 The first C program for MSP430.

#include =msp430.h=
int d = 0;

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

int a = 1;

flocat b = -255.25;
char ¢ = 'c';

d = d+1;

while(1l);

5.2.2 Creating a Header File

For some projects, a header file may be needed. To add it to the project, right-click on the
project in the Project Explorer window and select New — Header File; or click File —
New — Header File. Give the generated header file a name like header.h and click Finish.
An empty window will open for the header file. As this header file is added to the project,
do not forget to add a line #include “header.h” in the main C code.

5.2.3 Building and Loading the Project

There are two buttons on the horizontal toolbar of CCS for code generation. The first one
is the Build button with a hammer shape. The second one is the Debug button with the
green bug shape.

The build operation is basically used for error detection. When the Build button is
clicked, the main source code is linked with all other source and header files. The running
steps can be observed in the Console window. The warnings (in yellow), errors (in red),
and infos (in blue) can be observed in the Problems window. As the code is built, code
sections with warnings and errors can be reached by double-clicking on them in the
Problems window. Do not forget that sometimes one mistake can generate multiple errors.
Double-clicking on the error may direct the user to an error-free code line. For such cases,
examine the code carefully to find the mistake.

The debug operation includes the build. When the Debug button is clicked, first the
build operation is performed. Then, CCS loads the code to the target device (here
MSP430G2553). To perform this operation, the MSP430 LaunchPad should be connected
to the host computer. After the debug operation is complete, the CCS Edit preference
switches to the CCS Debug preference. The code is run until the beginning of the main
function.

5.3 Creating an Assembly Project

To create a new assembly project, click on the File - New — CCS Project on the main
CCS menu. In the pop-up New CCS Project window, select Empty Assembly-only Project
and click Finish. After these steps, the project will be created with the source file named
main.asm. The generated project should be seen in the Project Explorer window. We will
use the sample code given in Listing 5.2. We will see the instructions and directives used
here in Chap. 7.

Listing 5.2 The first assembly program for MSP430.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END, SP

mov.b #11h,R4
mov.w #00AAh,R5
and.w R4,R5

jmp $

.global __STACK_END
.sect .stack

.sect RESET VECTOR
.short RESET
.end

5.4 Program Execution

As the main code (either written in C or assembly) is debugged, the next step is its
execution. The buttons for the program execution are placed in the Debug window as
shown in Fig. 5.4. The name of each button can be observed by moving the cursor over it.
These buttons and their functions are explained briefly in the list below.

ﬁ"‘Debug &5 =
(= - r.:'ii‘ j"‘. L --.I{: * - {¢:.| {“‘T:}_,} A

4 &'« Demo Project [Code Composer Studio - Device Debugging]
4 o7 TIMSP430 USB1/MSP430 (Suspended - HW Breakpoint)
= main() at main.c:6 0xCOBC
_c_int00_noexit() at boot.c:184 0xCOF6 (the entry point was reached)

Figure 5.4 Program execution menu.

- Resume: Resumes the execution of code from last location of the program counter.

When it is pressed, execution continues until a breakpoint or a suspend button press.

Suspend: Halts the execution of the code. All windows used to observe software and
hardware parts are updated with recent data.

Step Into: Executes the next line of the code. If this line calls a subroutine, the compiler
just executes the next line in the subroutine then stops.

Step Over: Executes the next line of the code. If this line calls a subroutine, the
compiler executes the whole subroutine then stops.

Assembly Step Into: Executes the next assembly instruction. If this instruction calls a
subroutine, the compiler just executes the next instruction in the subroutine then stops.

Assembly Step Over: Executes the next assembly instruction. If this instruction calls a
subroutine, the compiler executes the whole subroutine then stops.

Step Return: Completes the execution of the subroutine.

Reset CPU: Resets the target microcontroller. It works similar to the reset pin. When it
is clicked, registers of the device return to their default states.

Restart: Returns the program counter to the beginning of the loaded program.

5.4.1 Inserting a Breakpoint

To stop the execution of the program in a specific code line, a breakpoint should be added.
Right-click on the code line to place the breakpoint and select Breakpoint (Code
Composer Studio). There are three types of breakpoint options under this item: Breakpoint
(Software Breakpoint), Hardware Breakpoint, and Watchpoint as shown in Fig. 5.5.

int d=8;

{ Svoid main(void)

{

 WOTCTL=WOTPW|WDTHOLD;
ir-ﬂ- - 1 .

a F1 Breakpoint (Code Composer Studio) L Breakpoint
cl
. Open Declasation 3 Hardware Breakpoint

Watchpoint
El Cong . LM+ A [‘

Figure 5.5 Adding a breakpoint.

A software breakpoint is an instruction which is placed at the breakpoint address to

halt the code execution. A hardware breakpoint is an address value which halts the code
execution when the PC matches this value. A watchpoint is actually a special kind of
hardware breakpoint. It is based on a specified data value. The program halts when the
code generates it during execution.

There are two ways to alter the inserted breakpoint. First, the breakpoint can be

deleted by toggling it. To do so, right-click on the breakpoint. Then, select the Toggle
Breakpoint from the pop-up window. Second, the breakpoint can be disabled. To do so,
select the Disable Breakpoint from the same pop-up window.

5.4.2 Adding a Watch Expression

In CCS, the Expressions window (as shown in Fig. 5.6) can be used to observe selected
variables. In order to add a variable to it, select the variable to be observed and right-click
on it. Then, click Add Watch Expression. Also the Add new expression can be clicked in
the Expressions window and the name of the variable can be entered in the box. Do not
forget to halt the execution process to observe the changes in the selected variables.

(9= Variables | & Expressions £2 | ilif Registers

=

Expression Type Value Address
(=)= a int 1 0x03F6
(9= b float -255.25 0:03F8
()= unsigned char ¢ 0x03FC

s Add ne

Figure 5.6 Adding a Watch Expression.

Global variables can also be observed in the Expressions window either by using the
Add new expression button or by right-clicking on the Expressions window then selecting
Add Global Variables. However, defining a global variable alone is not enough to arrange
a memory location for the compiler. The global variable must be used in the main code.

Local variables can also be observed in the Variables window as in Fig. 5.7. They are
already listed. Both Expressions and Variables windows are opened automatically after the
debugging process. In case of their absence, they can also be opened from the View menu.

(9= Variables 23 & Expressions| §iii Registers

MName Type Value Location
¢)=a int 1 Ox03F6
G- b float -255.25 0x03F8
(= ¢ unsigned char ¢ 0x03FC

Figure 5.7 Observing local variables in the Variables window.

5.5 Observing Hardware under CCS

CCS is not a simple C or assembly compiler. Through it, we can also observe the
hardware status of the microcontroller. In this section, we explore how to observe the key
hardware elements of the MSP430.

5.5.1 Registers

As we mentioned in Chap. 4, MSP430 registers include the program counter, stack
pointer, status register, and general-purpose registers. All other registers to control
peripherals and special functions are listed separately. To observe the status of these
registers, the Registers window (under the View menu) can be used. This is shown in Fig.
5.8.

(9= Variables |6 Expressions | i3] Registers 3

Name Value Description

. % Core Registers
. ot Special_Function
. &% ADC10
,'?f;‘,‘ System_Clock
& Comparator_A
&% Flash
A4 Port 1.2
, &2 port 3 4
. o3 Timer0_A3
. o Timerl_A3
. et USCLAD__UART_Mode
. RS USCLAD_SPI_ Mode
&% JSCI_BO__SPI_Mode
&% JSCI_BO_I2C_Mode
, B Watchdog_Timer
. B4 Calibration_Data

Figure 5.8 Observing registers.

5.5.2 Memory

To observe the memory contents, click View — Memory Browser. Write the starting
address of the memory location to be observed in the empty box as shown in Fig. 5.9. The
machine language equivalent of the code can also be observed by using the memory
browser window.

ﬂMunoxmem 33| T
v e Feprim”
DxCOBC - |6o] INmTab}
OxcObe - 0xCOBC <Memory Rendering 1> £2 |
| Hex 16 Bit - T1 Style Hex + |

@xCBBC main -
FPER] 4082 SAS0 9120 4391 0000 40B1 4000
@xCOCC @092 40B1 C37F GOA4 40F1 BO63 BEO6 5392
@xCeDc 8200

@xCODE $CHDWSLImain$2$B, $CHL1

@xCeDE 3FFF

@xCOE® _c_int@@_noexit, $CIOWELImain$2$E, c i
OXCOE@ 4031 0400 1280 C134 930C 2402 1266 COSE
@xCeF@ 438C 12B@ COBC 12B@ C138

@xCeFA _ TI decompress_nocne

@xCOFA 4COF 4DBC 483D 8003 5FED 4F1E @001 40830
8xC1eA (16C

@xC1eC memcpy

m

Figure 5.9 Observing memory.

5.5.3 Disassembly

CCS also allows observing the assembly code corresponding to the compiled C code. To
do so, the disassembly window should be opened by clicking the View — Disassembly.
The Disassembly window will open as shown in Fig. 5.10.

(0 Memory Browser | 2= Disassembly &3 L)

Enter location here v |2 .
main: -
® cBbc: 8231 SUB.W #8,5P
7 WOTCTL=WDTPW|WDTHOLD;
c@be: 46682 SAZe @120 MOV.W #0x5a80,8Watchdog_Timer WOTCTL
9 int a=1;
clcsd: 4391 eeee MOV . W #1,&!3&&9(5P}
1@ float b=-255.25;
cBcd: 4861 4066 6682 MOV . W #Ox4006 , 9xBed2 (SP)
céce: 4881 C37F eeed MOV . W #Bxc37T ,0xB804(5P)
11 char c="¢c";
cBd4: ABF]1 eec3 eees MOV.B #EKBBEB,BNB@BE{SF‘} =
12 d=d+1;
clda: 5392 e2ee INC.W &d
13 while(1);
$CDWSLSmaing248, $CdL1:
céde: 3FFF IMP ($C5L1)
$C3OWSLSmain$2%E, ¢ int®@, c int®0 noexit:
cBeld: 4831 edee MOV. W #oxe4e8,5P
cled: 126@ C134 CALL # system pre init
ceed: 93eC TST.W R12
cl@ea: 2482 JEQ ($CHL2)
clec: 12B@ CBSE CALL # auto_init
$CHL2:
cefe: 438C CLR.W R12 -

Figure 5.10 Disassembly window.

There are four buttons in the vertical column of the Disassembly window. These are:
Link with Active Debug Context, Show Source, Assembly Step Into, and Assembly Step
Over. Assembly Step Into and Assembly Step Over buttons are already explained in Sec.
5.4. When the Link with Active Debug Context button is pressed, a blue arrow will appear
at the left horizontal column of the Disassembly window to follow assembly code
execution. The Show Source button may be used to link every C code line with the
corresponding assembly line.

5.6 Terminating the Debug Session and Closing the Project

Clicking Terminate in the Debug window will terminate the active debug session and
switch the CCS Debug preference to the Edit preference. Right-click on the project in the
Project Explorer window and select Close Project to close the project. This project can be
reopened by selecting Open Project.

5.7 Graphical Peripheral Configuration Tool (Grace)

Grace is a user-friendly graphical user interface (GUI) tool to enable and configure
peripherals visually. In this book, we use Grace version v2.0. In order to create a Grace-
based project, click File -~ New — CCS Project. In the pop-up New CCS Project window,
select Empty Grace (MSP430) Project. All other steps are the same as those for creating a

C project.

When the project is created, it is opened in the main.cfg configuration window with a
Welcome preference. When the Device Overview button at the top of this window is
clicked, the peripheral interface opens as in Fig. 5.11. In this figure, there are white and
blue boxes. White boxes represent inaccessible blocks. Blue boxes represent accessible
peripheral blocks. Some blue boxes have green check marks on them. This indicates that
these blocks are enabled and configured without error.

Grace (MSP430) - MSP430G2553 ?
Welcome

XIN XOUT |18V ~|DvcC DVSS Pl [P2x Py

GPIO

Port P1 Port P2 Port P3
16kB gluo Bl B0
P SHCLK | 5148 | |8 Channels 'Wﬁ "W-!f Pullunt
sl s fasoucan Mwmn?m Pullwuozm down
B 1chDMA d&n’ﬁus resigtors resistors

L]

L]

L]

L]

L]

1]

L]

L]

L]

L]

L]

L]

1]

L]

]

L]

L]

L]

L]

L]

L]

L]

L]

:

' 'Y A 1; F'y F'y 'y
H 16MHz MAB ' |

P | oy 1 j —_—
L]

] .}MH | i * I¢ | %
L]

L]

' A
‘ |
L]

L]

L]

L]

L]

: v
L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

L]

Ll

-

— - ACLK Flash ADCI0
RAM 1081t

a
-
=]
F

Regigers | & moe ; T A I | & T
A 4 A 4 #\L A 4 \d

Emulation |4 TR
BP 1,_._'_._, L
il UARTAIN,

| Comp_»A+ Watchdog | | TimerD_A3 | | Timer1 _A3 IrDA, SPI
Jgas |4 Brownout WDT+
Irterface e Protection B 3cc 30C
Channsls 158it Regisers Registers uscl Bo

Spy-Bi 7,

P ———

Figure 5.11 Grace, the Device Overview window.

All peripheral blocks work synchronously under Grace. Therefore, a change in one of
them affects the others. If a change in one block is not feasible (due to a conflict with
another block), then Grace gives a warning with a red cross mark. When the cursor is
moved over the red cross mark, a yellow line pops up and explains the reason for the
conflict. An example of such a case is given in Fig. 5.12. In this figure, a conflict exists on
P1.0. Therefore, Grace put a red cross on it.

Grace (MSP430) * GPIO - Pinout 20-TSSOP/20-PDIP

Overview Pinout 32-0FN Pinout 28-TSSOP Power User P1/P2 P3
pvee [[11 O 20 [T] DVSS

GPIO Input * @1.0 [T] 2 19 [T] P2.6 ¥ XIN
GPIO Input ¥ P1.1 [T} 3 18 [P2.7 ~ XOUT
GPIO Input ¥ P1.2 [T] 4 3 Texas 17 [I] TESTISBWTCK
GPIO Input ¥ P1.3[[]5 INSTRUMENTS 46 [T) RST/NMUSBWTDIO
GPIOInput ¥ P1.4[T]6 MSP430G2553 15 [T]P1.7 v GPIO Input
GPIO Input ¥ P1.5[T]7 14 [T} P1.6 = GPIO Input
GPIO Input + P2.0[T]8 13 [[) P2.5 ~ GPIO Input
GPIO Input + P21 [T]9 12 [T] P2.4 = GPIO Input
GPIO Input + P2.2[T]10 11 [[) P2.3 * GPIO Input

Figure 5.12 An example of a conflict on P1.0.

The supply voltage for the microcontroller can be changed under Grace. To do so, the
user should select the desired voltage value from the drop-down menu on the left of the
DVCC. In this menu, voltage values ranging from 1.8 V to 3.6 V can be selected based on
the application. Generally, 3.6 V is picked to prevent any undesired problems.

In the Device Overview View, clicking a peripheral directs the user to the peripheral’s
window. In this window, the “enable the name of the peripheral in my configuration”
check box should be checked. Otherwise, Grace assumes that the peripheral will not be
used. After this operation, four modes will show up on the top of the window: overview,
basic user, power user, and register controls. The overview mode gives brief information
and basic examples about the usage of Grace for this peripheral. The basic user mode is
very useful for beginners. Most of the configurations can be done in a simple way with
this mode. The power user mode contains detailed configuration settings. These are for
advanced users. Finally, the register controls mode provides direct access to the peripheral
registers. In the following chapters, we will deal with each peripheral (and its Grace
modes) in detail.

As we mentioned previously, Grace is just a GUI. When the Grace project is created,
a main.c file is also formed under the project. When all the peripherals are configured
under Grace, the user can run debug. CCS wraps up all the configuration settings under a
function Grace_init() and adds it to main.c. The header file Grace.h containing the
Grace-related definitions is also included in main.c. CCS also indicates where the code
should be added under the main.c. The user can add his or her codes in this area. An
example of such a main file generated by Grace is given in Listing 5.3.

Listing 5.3 The main.c file generated by Grace.

* ======== Standard MSP430 includes ========
*y

#include <=msp430.h=

/*
* ======== (race related includes ========
*y

#include <ti/mcu/msp430/Grace.h=

/*
* ======== maln =s=======
*/

int main(wvoid)

{

Grace_init();
// Activate Grace-generated configuration

// >>>>> Fill-in user code here <«<<<<

return (0):

}

5.8 The Terminal Window

CCS has an internal terminal program to communicate with the MSP430 Launch-Pad
through the universal asynchronous receiver/transmitter (UART) communication mode.
We will use this property in Chap. 12. The terminal window can be accessed by clicking
on the View — Other — Terminal. The terminal window will open as shown in Fig. 5.13.

A2 Terminal &3 NyBEEE &-E~ -0
Mo Connection Selected

Figure 5.13 The terminal window.

To establish a serial communication link, the configuration settings should be done

first. To do so, the Terminal Settings window will be used as shown in Fig. 5.14. The
communication type should be selected as Serial first. Then the desired baud rate, data
bits, stop bits, and parity values can be set. The flow control and timeout settings can be
left unchanged.

r N
»'+ Terminal Settings &J

View Settings:

View Title: Terminal

Encoding: 150-8859-1 -

Connection Type:

‘Serial -
Settings:

Port: COM11 -

Baud Rate: 9600 v|
DataBits: |8 - |

Stop Bits: |1 s
Parity: Mone "
Flow Control: | None v|

Timeout (sec): 5

[QK | | Cancel

Figure 5.14 Terminal settings.

The port number used by the MSP430 LaunchPad can be found under Windows 7
using the following steps. First, right-click on the computer icon. Select the properties
option from the list. This will open up a new window. In this window, open the Device
Manager. The Ports(COM&LPT) in the list gives the port number MSP430 LaunchPad is
using.

After checking these settings, the link between the terminal and the MSP430
LaunchPad can be established by clicking the green Connect mark in the terminal window.
The code on the MSP430 must be debugged and run to use the terminal window. Let’s
assume that the code can send and receive data. Data sent from the MSP430 LaunchPad
can be observed in the terminal window. It can be cleared anytime by right-clicking and
selecting the Clear Terminal option. Data can also be sent from the terminal in two
different ways. In the first option, the user can click anywhere in the terminal window.

Then, any character pressed on the keyboard can be sent as soon as the key is pressed. In
the second option, the toggle command input field can be used. To do so, the user should
right-click on the terminal window and select the Toggle Command Input Field. A
subwindow appears below. The text to be sent can be entered here. It will be sent as the
Enter key is pressed. The link can be terminated by clicking on the red Disconnect mark.

5.9 Summary

Knowing its hardware is not enough to use a microcontroller. The coding environment
with all its properties should also be mastered. In this chapter, we introduced the CCS as
the coding environment of the MSP430 microcontroller. We started with installing CCS.
Then, step by step we explored its usage in debugging and executing C and assembly
programs. We also introduced Grace (GUI environment of CCS) in this chapter. The
information provided in this chapter will be extensively used in the rest of this book.
Therefore, we strongly suggest you master it.

5.10 Problems

5.1 Download the latest version of CCS to your computer and install it.
5.2 Create an empty C project.

a. Add the code block given in Listing 5.1.
b. Debug the code and run it.

o

Observe the local and global variables.

i

Add breakpoints and observe their effects.
e. Obtain the assembly code corresponding to the C code.

5.3 Create an empty assembly project.

a. Add the code block given in Listing 5.2.

b. Debug the code and run it.

c. Observe the register values before and after the program is run.
d. Add breakpoints and observe their effects.

6 MSP430 Programming with C

Chapter Outline
6.1 Memory Management
6.2 C Data Types

6.3 Arithmetic and Logic Operations
6.4 Control Structures

6.5 Arrays and Pointers

6.6 Miscellaneous Issues

6.7___ Summary
6.8 Problems

In this chapter, we consider the C programming issues for MSP430. Therefore, we
strongly suggest you refresh your knowledge of C concepts [1]. Here, we will briefly
review the basic C concepts from the microcontroller perspective. In other words, we will
see how Code Composer Studio (CCS) acts while compiling C code. Therefore, we will
first deal with memory management issues. Then we will consider C data types. Next we
will briefly cover the arithmetic and logic operations. Then we will consider the control
structures. We will also focus on arrays and pointers. Finally, we will consider
miscellaneous issues that we will see in later chapters.

6.1 Memory Management

As we saw in Table 4.2, the memory locations for both code and the data are well defined
for the MSP430 microcontroller. In this chapter, we will consider these issues on actual
examples. Since we are using CCS as the compiler, we will see how it manages memory
for both code and data.

6.1.1 The Code

After compiling the C code, CCS places the main code block in the flash memory starting
from the memory address CO00h up to FFBFh. Therefore, the C code written for the
MSP430G2553 cannot be larger than 16,320 bytes. Let’s consider the sample C code
given in Listing 6.1. After following the steps given in Chap. 5, we can generate a C
project under CCS from this code block.

Listing 6.1 The sample C program.

#include <msp430.h=>
int a = 1:

void main(veoid)

{

WDTCTL = WDTPWWDTHOLD;

int b = 2:
int c:
c = atb:

while(1l);

The user can observe how the C code given in Listing 6.1 is placed in memory by
using the Disassembly window. We provide the Disassembly window from CO000h to
C02Ch and COE8h to C106h in Fig. 6.1 for this sample code. As can be seen in this figure,
CCS places the initialization data for the code starting from memory location C000h. The
actual code is placed starting from memory location COE8h.

0 Memory Browser {3 ol m
Oxc0q O BnEE) 32

__TI_decompress_rle_core: a

coea: 1204 PUSH Rle

ce2: 12e9 PUSH R9

c8dd4: 4C7A MOV.B @R12+,R10

c@e6: 3CIE mp ($C5L9) =
$csL1: b=

ceea: 531C INC.W R12

cea: 938E T5T.W Rl1l4

ceec: 24eD JEQ ($C5L4)

cBfe: 983F elee CMP.W ®HOx8100,R15

cel12: 2ceA IHS ($C5L4)

cBla: 4329 MOV.W #2,R9
$ciL2:

cBle: 4F4F MOV.B R15,R15

c@l8: 188F SWPB R15

cBla: 4C78 MOV.B @R12+,R11

cllc: DBeF 8IS.W R11,R1S

c@le: 8319 DEC.W R9

cB2e: 23FA INE ($C3L2) -
E ¥

(a) Memory map from C000h to C02Ch

0 MemorySowsr 5 Dbl =E

OxcOed] - & DR > 3t
main: - -
[coed: 8221 SUB.W #4,5P
7 int b=2;
cBea: 43A1 eeee MOV.W #2,8x0000(SP)
10 c=ath;
cBee: 412F MOV.W @5P,R15
cefe: 521F 8264 ADD.W Ba,R1S
cof4: 4FB1 9882 MOV . W R15,8x0002(5P)

12 while(1);
$CHOMSLSmain$ 298, $CSL1:

cofs: 3IFFF M (SCSL1)
$CIONSLImain$23E, memcpy:
cefa: acer MOV.W R12,R15 —
cofc: 930E TST.W R14 E|
cofe: 2485 JEQ (3C5L2)
$cfL1:
cled: S31F INC.W R1S
c1@2: ADFF FFFF MOV.B @R13+,0xfFFf(R1S)
cle6: 831E DEC.W R14 -
L ¥

(b) Memory map from COESh to C106h

Figure 6.1 Memory contents (from CO00h to C106h) observed in the Disassembly
window.

11

13

® Ccl5e:

cB62:

c@bb:

cBba:
cB6c:
cB78:
c@74:

cB78:

cB7a:
cBle:
c@sl:
cBid:

0 Memory Browser == Disassembly 2

=l m

OxcOed & BEE) »2 =T
main: -
EB31 ee8t SUB.W #OxBOes, 5P
int a=1;
4391 eeee MOV.W #1,execea(5P)
int b=2; |3
43A1 8002 MOV.W #2,0x8002(5P) T
c=sum(a,b);
412¢ MOV.W @5P,R12
4110 0082 MOV.W @x8ee2(5P),R13
1288 (894 CALL #sum
40381 ooe4 MOV . W R12,exe@e4(5P)
while(1);
$CSowsLImain$ 288, $CHL1:
IFFF P (5C5L1)
$CiOWELSmain$28E, c_int@@, _c_intOO noexit:
4831 8aee MOV.W #0xB488,5P
1288 CBBE CALL # _system_pre_init
938C TST.W R12
2482 JEQ ($C3L2) -

i

{a) Memory map from CO5Eh to CO84h

(0 Memory Browser | == Disassembly £3 =0
OxcOed & BB 292"

16 int sum(int s1, int s2){ -
sum:

c@s4: 8@31 ee8s SUB.W #0x08806,5P

c@98: 4DB1 0ea2 MOV.W R13,6x80082(5P)

cB9c: 4C81 eeee MOV.W R12,6xeeee(5P)

17 int s=5l4s52;

cBad: 4DeC MOV.W R13,R12

cBal: 512C ADD.W @5P,R12

céad: 4C81 eee4 MOV.W R12,0x00084(5P)

19

clal: 5831 eees ADD.W £0x0806,5P

c@ac: 4138 RET
__mspabi_func_epilog, _ mspabi_func_epilog 7: |

cBae: 4134 POP.W R4 E
__mspabi_func_epilog_6:

c@ba: 4135 POP.W RS
__mspabi_ func_epilog 5:

ceb2: 4136 POP.W RG 1
__mspabi_func_epilog_4: =

(b) Memory map from C094h to COB2h

Figure 6.2
window.

Memory contents (from CO5Eh to COB2h) observed by the Disassembly

We can arrange the sample code in Listing 6.1 such that the addition operation is
done in a function. We provide the modified C code in Listing 6.2. We provide the
memory map from CO5Eh to C084h and C094h to COB2h for this code block. As can be
seen in this example, the function is placed in memory after the main code.

Listing 6.2 The sample C program, with a function.

#include <msp430.h=>
int sum(int d, int e);

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

int a = 1:
int b 21
int c:

c = sum({a,b);
while(1l);
}

int sum(int sl,int s2){
int 5 = sl4+s52:
return s:

}

6.1.2 Local and Global Variables

We can define a variable either as local or global in the C language. As the name implies,
the global variable is available to all program blocks. However, the local variable is only
available to the function it is defined in. CCS keeps local and global variables in two
different memory locations. The global variables are kept starting from the lowest possible
memory address (0200h) in the RAM. As a new global variable is added, the memory
address is incremented and the new variable is saved. On the other hand, local variables
are kept in the stack (0400h). Based on the definition of the stack, local variables are
saved from top to bottom. Here, it is important to note that the C language takes the
main() as a function. Hence, the variables defined within the main function are also
treated as local. Therefore, a global variable should be defined before the main().

We reconsider the sample code given in Listing 6.1 to show the difference between
local and global variables. Here, the variable a is defined as global. The variables b and c
are defined as local. We show the Expressions window in Fig. 6.3. As can be seen in this
figure, the global variable a is kept in 0200h (the lowest data address). The local variables
b and c are kept in 03FAh and 03FCh (in the stack) as expected.

9= Variables G5 Expressions £3 i1l Registe

Expression Type Value Address

(=)= a int 1 0x0200
=)= b int 2 0x03FA
(=)= c int 3 0x03FC
aF Add ne

Figure 6.3 Observing local and global variables in the Expressions window.

6.2 C Data Types

A variable declaration in the C language means a memory location. Therefore, the first
issue in a declaration is deciding the size of the memory to be used. The second issue is
the format to be used in this assigned memory location. These two issues are handled by
predefined data types for variables. We provide the C data types under CCS in Table 6.1.

Table 6.1 C data types under CCS.

Representation
signed char 8 ASCH —128 127
char, unsigned char 8§ ASCIH 0 255
short, signed short 16 Two’s complement —32768 32767
unsigned short 16 Binary 0 65535
int, signed int 16 Two's complement —32768 32767
unsigned int 16 Binary 0 65535
long, signed long 32 Two's complement —2147483648 2147483647
unsigned long 32 Binary 0 4294967295
float, double, long double 32 IEEE 32-bit 1.175495e-38 3.40282346e+38

As can be seen in Table 6.1, there are three main data types under CCS. The first
group consists of characters. They can be represented in either signed or unsigned form.
The number of bits assigned to them is eight. The ASCII characters corresponding to these
numbers are given in Table 3.4. The second group includes short, int, and long (signed and
unsigned). These data types need 16 or 32 bits. While saving the 32-bit data type long, the
little endian representation should be used, since the MSP430 has a 16-bit word length.
The data types in this group cannot represent numbers with fractional parts. The third
group consists of float and double. These are the only possible representations for
numbers with fractional parts. For these, the floating-point representation with the single
format (given in Table 3.3) is used. Here also the little endian representation is used.

We provide examples for the mentioned C data types in Listing 6.3. Here, we define
five global variables with different types having positive or negative values. To note here,
we redefine the character a within the program for the compiler to run properly. Besides
this there is no other purpose.

Listing 6.3 The C program for data types.

#include <msp430.h=

char a = '@"';
gshort b = -1:

int ¢ = 2:

long d = 3;

float e = 12.3:
float £ = -255.25;

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;
a - 1 @ 1 ;

while(l);
|

As we run the C code in Listing 6.3, we get the memory map given in Fig. 6.4. This
memory map provides us with valuable information. First, the character @ (in variable a)
is saved in memory by its ASCII code 0040h (as given in Table 3.4). The negative short
variable b (with value —1) is kept as FFFFh, which is the two’s complement representation
of —1. The integer variable ¢ with value 2 is saved as is. All the previous variables were
occupying 2 bytes (one word). Hence, the endian representation is not used for them.
However, the variable d is defined in long type. This requires 4 bytes (two words). As can
be seen in the memory map, the variable d with value 3 is kept in two parts. The first part
0003h is kept in memory location 0206h and the second part 0000h in memory location
0208h. The little endian representation can be clearly seen here. This is also the case for
the float variable e (with value —12.3). The hexadecimal representation (in terms of the
single floating format) for this number is 4144CCCDh. This is kept in 4 bytes in the little
endian format such that CCCDh is kept in memory location 020Ah and 4144h is kept in
memory location 020Ch. Finally, the float variable f is specifically set as —255.25. The
hexadecimal representation obtained here justifies the result in Sec. 3.3.2.

[Memory Browser £3 == Disassembly| — O

0x0200 v |Go| | New Tab]|
05200 - 0:0200 <Memory Rendering1> 3 .
| Hex 16 Bit - T1 Style Hex ~ |

Bxe2e8 a -
axe2ee 4040

Bx8282 b

8x8282 FFFF

BxB284 c

BxB2ed BBE2

Bx8286 d

@xe2e6 G083 Be0e

BxB28A e

Bxe28A CCCD 4144

Bx828E T

8xB268E 4060 C37F 4060 2016 7548

m

Figure 6.4 The memory map for the program showing C data types.

6.3 Arithmetic and Logic Operations

We have addition, multiplication, subtraction, division, mode, and remainder arithmetic
operations in C language. These may seem straightforward. However, in Chap. 7, we will
observe that besides addition and subtraction, none of the other operations can be
performed in the MSP430 assembly language. Therefore, the C language simplifies life
for us.

It is important to mention that in the C language, the overflow cannot be observed
directly. Therefore, the programmer should take the overflow into account. In a similar
manner, the result of an arithmetic operation is converted to the assigned variable type.
The other important point is that we can define hexadecimal numbers by a prefix 0x in the
C language. In Listing 6.4, we provide such examples.

Listing 6.4 Arithmetic operations.

#include <msp430.h=

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

int a = 32767:

int b:

unsigned int ¢ = 0xFFFF;
unsigned char d = 0x00;
int e = 10:

float £ 10.1;

int g = 0;

float h 0.0:

[=T |

4
Il

1;

17/2;

+ = 0x0001;
0x01:
/= 0;

/= g;

/= h;

)a A0 o0 oW
-
I
o

while(1l);
|

After the C code in Listing 6.4 is run, the variables can be observed in the
Expressions window as given in Fig. 6.5. As can be seen in this figure, adding 1 to the
integer variable a (which was initially 32767) caused an overflow. Therefore, we see
—32768 for a instead of 32768 in the Expressions window. The overflow bit in the status
register has changed. However, we should use implicit functions for the MSP430 to
observe it. We will see this in Sec. 6.6. For the integer variable b, we assigned a float by a
division operation. Here, only the integer part is saved as can be seen in the Expressions
window. The variables ¢ and d keep hexadecimal values. The first one is defined as an
unsigned integer. Hence it can keep 2 bytes (one word) of data. The second one is defined
as an unsigned char. It can keep 1 byte of data. To observe these values in the Expressions
window, we should adjust the format of the number by right-clicking on the variable and
selecting the “number format” option. The overflow can also be observed for the variables
c and d. The variables e and f indicate what happens when a division by zero occurs. The
result is zero for the integer variable e. Therefore, the programmer cannot detect division
by zero. However, the result becomes 1.#QNAN for the float variable. This indicates
division by zero under CCS. After a 0/0 division, the integer variable g becomes —1.
Again the result becomes 1.#QNAN for the float variable h. As can be seen, detecting
division by zero or 0/0 is easier for the float variables.

(9= Variables |G’ Expressions £3 1% Registers

Expression Type Value Address
(=)= a int -32768 0x03EA
=)= b int 8 OD3EC
)= unsigned int 0 0x03EE
()=d unsigned char OxFF (Hex) 0x03F0
)= e int 0 0w03F2
=)= f float 1. #0QMNAMN 0x03F4
=)= g int -1 0:03F8
)= h float 1.#QNAN (Ox03FA
oe Add ne

Figure 6.5 The expressions window after arithmetic operations.

We can perform bitwise logic operations (and, or, xor, not) in C. In performing these,
only byte (or word) level operations can be done. We provide examples on the usage of
logic operations in Listing 6.5.

Listing 6.5 Logic operations.

#include =msp430.h=

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

unsigned char a = 0x02;
unsigned char b 0xFF;

unsigned char c,d,e,f;

= alb;
= a&b;
= a“b;

H O L O

= a;

while(1l);
i

After the C code in Listing 6.5 is run, the variables can be observed in the
Expressions window as given in Fig. 6.6. As can be seen in this figure, all the logic
operations are done on a bit basis. It is also possible to observe a variable in binary form in
the Expressions window by adjusting its number format. This representation may help the

programmer to observe the result of the logic operation in a more descriptive manner.

()= Variables |5 Expressions 23 | i}l Registers

Expression Type Value Address
()= a unsigned char (02 (Hex) (0:03F8
9= b unsigned char OxFF (Hex) 0:03F9
9= ¢ unsigned char OxFF (Hex) 0:03FA
9= d unsigned char (02 (Hex) 0:03FB
0= e unsigned char 0xFD (Hex) hd03FC
9= f unsigned char 11111101 (Binary) (:03FD

Figure 6.6 The Expressions window after logic operations.

6.4 Control Structures

We have the condition check and loop operations under control structures. However, we
will not explore these in detail. As we mentioned previously, the reader should consult C
books for them.

6.4.1 Condition Check

There are two options if a condition is to be checked within a program. The first one is the
if or if else statement. The usage of these is straightforward. One of the two options is
selected based on a binary decision. The second one is the switch statement. It should be
used if more than two options are available. The condition checks will be inevitable in our
applications. Either we will check the status of a switch, or we will observe the analog
voltage level in a pin. We will perform appropriate actions based on the obtained values.
We will need condition check statements for these and similar cases.

6.4.2 Loops

If we want to execute a code block more than once, we can use loop operations. We have
three options for loop operations in the C language: for, while, and do while. They differ
in terms of their starting and stopping conditions. We suggest the reader check them in a C
book.

We will use loop statements in various applications. However, we have one standard
usage which may seem odd. We will have an infinite loop line at the end of most our
codes, or the main program block will be kept in an infinite loop. This can be performed
by a code line while(1) or for(; ;). The main reason for using such an infinite loop is as
follows: For almost all microcontroller applications, the code should run indefinitely. In
other words, the program should not end after the first run. To perform this, we will let the
microcontroller stay in an infinite loop without exiting the program.

6.5 Arrays and Pointers

Arrays and pointers deserve specific consideration in the C language. When an array is
defined in C, it is treated like a pointer. Therefore, in this section we consider arrays and

pointers together.

Pointers and pointer arithmetic are one of the most confusing topics in C. Fortunately,
in our case we can observe the memory map of the MSP430 directly under CCS. This will
help us to understand the usage of the pointers and their arithmetic.

Let’s start with the pointer definition. In Listing 6.6, we define a global integer
variable a and initially assign 3 to it. Next, we define a global pointer named a_pointer
with integer type. We provide the Expressions window (after the code is run) in Fig. 6.7.
As can be seen, the variable a with value 3 is stored in the memory address 0200h. The
address of the variable a is stored in the pointer a_pointer with the code line a_pointer
= &a;. Therefore, the pointer keeps the memory address. In the following line, we change
the entry of this memory address to *a_pointer = 5;. As can be seen in the Expressions
window, this changes the value of the variable a.

69= Variables &5 Expressions £3 1! Registers

Expression Type Value Address

0)- a int 5 00202
®» a_pointer int* 00202 00200

Figure 6.7 The Expressions window for the pointer example.

Listing 6.6 Pointer usage example.

#include <=msp430.h=

int a = 3:
int *a pointer;

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

a-pointer = &a;
*a pointer = 5;

while(l);
i

Let’s consider an array with five integers and observe the operations on it. We
provide such a code in Listing 6.7. We first define a global integer array a with entries {1,
2, 3, 4, 5}. We provide the Expressions window (after the code is run) in Fig. 6.8. As can

be seen, the a array is in fact saved by its starting address 0200h. We assign this address to
the pointer a_pointer in the code line a_pointer = a;. Then, we reach the fourth
element of the array and change it to zero by incrementing the pointer value by 3. There
are two important issues here. First, the array can be processed as if it is a pointer as
mentioned above. Second, increments and decrements are done relative to the pointer type
in pointer arithmetic. Therefore, the code line a_pointer + =3; incremented the pointer
value by 6 (3 x 2 bytes), since each integer occupies 2 bytes.

Listing 6.7 Array usage example.

#include <msp430.h=>

int af[5]) = 1,2,3,4,5;
int *a pointer;

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

apointer = a;
apointer + = 3;
*a_pointer = 0;

while(1l);
i

9= Variables ‘515': Expressions o i Registers

Expression Type Value Address
4 (=2 int[5] 00200 00200
9= [0] int 00200
9= [1] int 0x0202
9= [2] int 00204
(= [3] int 00206
(9= [4] int 00208
® a_pointer int* 0:0206 O:020A

th © W k=

Figure 6.8 The Expressions window for the array and pointer example.

Finally, we consider dynamic arrays formed by pointers. In Listing 6.8, we form a
dynamic array using a pointer. Here, we first define the global integer variable a and the
integer pointer a_pointer. We fill the successive memory locations starting from the
address of the variable a by using a for loop. We provide the memory map (after the code
is run) in Fig. 6.9. As can be seen in this example, initially we did not define the size of

the array (formed by the pointer). We can adjust the array size on the fly since we are
using pointer arithmetic. The only disadvantage here is that the programmer is responsible
for memory management (allowable memory size and other memory entries).

Listing 6.8 The dynamic array using a pointer.

#include =msp430.h=

int a = 0;
int *a pointer;

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;
int count;
a_pointer = &a;

for(count = 1; count<=10; count++)

{

a_pointer++;

*a pointer = count;
}
while(1l);
}
@’ Memory Browser i3 == Disassembly i m
@ Férid”
00200 v |Go| | NewTab|

05200 - 0x0200 <Memory Rendering 2> £3 |
| Hex 16 Bit - T1 Style Hex ~ |

@x02068 a_pointer -
Bx82868 0214

BxB202 a

Bx8262 ©G0b 600l bbe2 6065 0b4 BOBS BBE6 BEB7 BBBE BBBO
Bx8216 7546 CFo4 AB20 8C60 3160 0829 2064 BBE8 (028 2825
Bx822A 42EB 5455 0800 D664 0200 2008 144A E6BS 1082 9600
Bx@823E @OOF FFIF 4ESE FSAY 37FF A3FD BED7 FF67 FFFB BSFD
ox8252 F8ED F9eD F7EF 7FB6 EFFD 5BDF DDFF FF37 1DFD FFFA
oxB266 7FFD B7D7 ASFD CFEE DFFF FFF7 DFBF FD5F FEFB D7EF
Bx827A (CFDD 3FBE BDVF 4806 o418 6463 6620 AD46 |ABB4 6C10
BxB28E 0610 4418 6262 1142 1629 0212 60862 61C8 C2C 5663
Bx82A2 0ABD (183 4800 (822 35985 8900 2006 8204 8895 49(1

|

Figure 6.9 The memory map for the dynamic array using a pointer.

6.6 Miscellaneous Issues

In this section, we briefly summarize some miscellaneous issues in the C language for the
MSP430. The first issue is the define statement and the const declaration. When a
constant is defined by the # define keyword, CCS converts all the affected code lines to
the final value in the compiling process. Therefore, no more calculations are done during
execution. In a similar manner, if a global variable is defined as constant by the const
keyword, the data it contains is saved in the code memory block.

In this and the following chapters, we may need to reach the lowest hardware
components such as registers. In the C language this is not directly possible. However, TI
provides a set of intrinsic functions for this purpose in the header files in 430.h and
msp430g2553.h. We provide the intrinsic functions used for the MSP430G2553 in the
Appendix.

We provide the sample code in Listing 6.9 to give examples of the topics considered
in this section. We provide the Expressions window in Fig. 6.10(a). To observe how the
define statements are handled during the compiling process, we provide the first
Disassembly window in Fig. 6.11(a). As can be seen in this figure, for the C code lines a
= 2*CONST and b = 4*CONST the assembly codes are given directly. In other words, the
values 2*CONST and 4*CONST are calculated during the compiling process. The end result is
directly assigned. We provide the second Disassembly window in Fig. 6.11(b) to show that
the global const int variable c is in fact saved in the code memory. Finally, in Fig. 6.10(b
we provide the bits of the status register. This is to show that the intrinsic function
_get_SR _register() actually assigned the bit values of the status register to the integer
variable SR_bits.

Listing 6.9 The sample code for miscellaneous issues.

#include =msp430.h=
#define CONST 4

int a = 0,b = 0;
const int c[] = {1,2,3,4};
int d = 32767;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

int SR bits;

a = 2*CONST:
b = 4*CONST;
d = d+c[1l];

SR bits = _get_ SR register();

while(1l);

Name Value

4 i SR 00104
el V 1
il SCGL 0
- sar SCGO 0
8- Variables [SCERISRIRIRNERY W Registers| it OSCOFF 0
Expression Type Value Address e CPUOFF 0
- a int 8 0:0200 oiei GIE 0
(= b int 16 00202 atei N 1
6= d int -32767 00204 ator Z 0
()= SR_bits int 00104 (Hex) 0x03FC aol 0

i{a) The Expressions window ib) The Registers window

Figure 6.10 The Expressions and Registers windows for the miscellaneous C concepts.

0 Memory Browser E"_-'-'* Disasser Sdim!

oo S R

11 void main(void) { (4]
main:

c@d6: 8321 DECD.W SP

15 a=2"CONST;

c@eds: 4282 8200 MOV.W #B,8a

16 b=4*CONST;

cldc: 4882 eale 8282 MOV.W #Ox8e1e,8b

18 d=d+c[1];

cBel: 5292 C132 e204 ADD.W &Bxcl32,&d |E|

20 SR_bits = _get SR_register(); W

cBed: 4281 eeeo MOV.W SR,@xeeee(sP)

22 while(1);
$CsOWSLImaing298, $CHL1:

[» céec: 3FFF MNP ($C5L1)
$C3DNELImain$29E, TI decompress none:
cBee: 4COF MOV.W R12,R15 =
4 |] 3

(a) The first Disassembly window

a Memnry Browser Z=" Disassen 33 i ==

Oxcl2e ..__ m-| . 2[4t

clle: 3FFF JHP {CL1] -
c:

cl3e: geel word Bxeeel

cl32: Bea2 word Bxeea2

cl34: eee3 Jword @x@ees3

cl36: ey .word Bxeesd

c138: 2081 .word Bxeeel

cl3a: eees Jword Bx00e6

cl3c: epBe word Ox0000

cl3e: eeee .word Oxeeee

cl4g: 7FFF C122 SUBC.B @R15+,@xcl122(R15)

clad: CeEE C138 BIC.B @PC,@xcl38(R14) ~

c148: 0200 word 8x8200 E

cl4a: FFFF FFFF AND.B @R15+,exffff(R15)

cl4e: FFFF FFFF AND.B @R15+,exffff(R15)

c152: FFFF FFFF AND.B @R1S+,0xffff(R15) ~
< | m ; | '

(b} The second Disassembly window

Figure 6.11 The Disassembly windows for the miscellaneous C concepts.

The header file math.h can be used for advanced mathematical operations in the
MSP430 in the C language. In Listing 6.10, we use the sin() function, defined under this
header file, to fill the sine_arr array with one period of the sine wave. The Expressions
window can be used to see the sine_arr array entries after the program is run.

Listing 6.10 The C code for the usage of the math.h header file.

#include <msp430.h=
#include "math.h”

#define M 20
#define PI 3.1415

float sine_arr[M];

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

int count:
for(count = 0;count<M;count++)
sine_arr[count] =sin(2*PI*count/M);

while(1l);
i

In Chap. 9, we will use the pragma keyword extensively. This will force the compiler
to include the following code block in the compiling process. We will see why this option
is crucial in Chap. 9.

6.7 Summary

The MSP430 can be programmed in both assembly and C languages. In this chapter, we
considered the latter approach. Although we focused on the C programming of the
MSP430, we assumed that the user has a basic knowledge of C. Here we extend this basic
knowledge on the MSP430. Therefore, we first explored the memory management issues
and C data types. Since CCS allows us to observe the memory map of the MSP430, we
were able to see how local and global variables are handled. Then we looked at the result
of division by zero in the C language. We also practiced on array and pointer operations.
Finally, we provided an example of using the math.h header file for advanced
mathematical operations.

6.8 Problems

6.1 Write a program in the C language such that:

a. It contains a function which calculates the third power of a given
integer.

b. Your program should calculate the third powers of numbers between 1
and 10 using your function. The results should be saved in an array.

c. Take the overflow possibility into account.

6.2 Write a C program to calculate the first 10 elements of the Fibonacci
series. The user only provides the first two entries of the series. The rest will be
calculated by the program. The result will be saved in an array.

6.3 What is the calculated value y in Listing 6.117?
Listing 6.11 The C code for Prob. 6.3.

#include <msp430.h=>

void main (veoid)

{

WDTCTL = WDTPW|WDTHOLD;

int count:
int y[5];
int x[] = {1,1,0,1,1};
int h[] = {1,-1,0,0,0};

for(count =0; count<5; count++)

{

yv[count] = X[count]*h[4-count];

i
while(l);

Note: This program is similar to the discrete convolution operation in signal processing.

6.4 Write a complete C program which calculates the difference between a
given number (out = 10.3, in this problem) and the reference value (ref = 8.2, in
this problem). The difference will be assigned to the variable err. Your program
should also produce the control signal (cont, in this problem) as +1 if the variable
err is less than zero and —1 if it is greater than zero.

Note: This program is similar to a basic feedback application in digital control.

6.5 Find the first four values of the variable y as the code in Listing 6.12 is
run.

Listing 6.12 The C code for Prob. 6.5.

#include <msp430.h=

void main (veoid)

{

WDTCTL = WDTPW|WDTHOLD;

int a = 4;
int mask = 0x0003;
int y = 0xFFFF;

while(a)

{

a —=1;

y = (y " mask)é&a;
}

while(1l);

6.6 What will be the entries of the array arr as the code in Listing 6.13 is
run?

Listing 6.13 The C code for Prob. 6.6.

#include <msp430.h=

void main()

{

WDTCTL = WDTPW|WDTHOLD;

fleoat arr(] {2.56,4.88,6.93,0.0,0.0};
fleoat *ptr = arr,sum = (;
ghort i;

for(i=0; i<3; i++)

{

sum + = *ptr++;

J
*ptr++ = sum;
*ptr = sum/3;

while(1l);

6.7 Using a suitable intrinsic function, change the contents of the status
register. Observe the result in the Registers window.

/ MSP430 Instruction Set

Chapter Outline

7.1 Introduction

7.2 Anatomy of an Instruction
7.3 MSP430 Addressing Modes
7.4 The Stack

7.5 Assembly Program Structure

7.6 Sample Programs on Instruction Set Usage

7.7 Summary
7.8 Problems

We explored the architecture of the MSP430 microcontroller in Chap. 4. In fact, the
architecture also contains the instruction set of the microcontroller. This chapter is about
the instruction set and the addressing modes of the MSP430. Related to these, we will also
consider the stack here. We have devoted a separate chapter to the instruction set due to its
importance.

7.1 Introduction

The MSP430 has 27 instructions based on its reduced instruction set computing (RISC)
architecture. We will explore these in groups as double operand, single operand, and jump
instructions. As you know, every operation to be performed on the microcontroller should
be represented in binary form (ones and zeros). The instruction set is no exception to this.
This is called machine language. We will consider machine language in detail in Sec. 7.2.
Since reading and decoding patterns of zeros and ones is nearly impossible for the user,
the assembly language is used. Here each instruction is represented by a mnemonic. In the
following sections, we will describe the MSP430 instruction set in terms of mnemonics.

7.1.1 Double-Operand Instructions

There are 12 double-operand instructions. These can be separated into arithmetic, logical
and register control, and data instructions. In these, the operation is done by two operands
called source (src) and destination (dst). The result is written to the destination.

Double-operand instructions may work on both word and byte levels. This is set by
attaching a suffix to the mnemonic, either .w (word) or .b (byte). The default is word-level
processing. We provide the mnemonic, operation, and a brief description of the operation
for double-operand instructions in Table 7.1.

There are several issues to be considered in Table 7.1. As can be seen, there is neither
a multiplication nor a division operation for the MSP430. Also, the subtraction operation
is done in two’s complement form. In this table .not, .and, .or, .xor words stand for binary
logical operations. In the cmp instruction, the result is not written to the destination. Only

the appropriate status bits are affected by this operation. Although the mov command is
almost always called move, it only copies the source to the destination. This may cause
confusion. However, this usage originates from historical roots.

Table 7.1 Description of double-operand instructions.

Mnemonic Operation
Arithmertic instructions
sre+dst — dst

sre+dst + C — dst

add src, dst
addc sre, dst
dadd sre, dst sroc 4 dst = dst (dec)
dst + .not.src4+ 1 — dst
dst + .not.sre 4+ C — dst

sub src, dst

subc sre, dst

Logical and register control instructions
and sre, dst sre.and.dst — dst
hic src, dst Jnot.src.and.dst — dst
his src, dst sre.ordst — dst
bit src, dst src.and.dst
xor src, dst srcxordst — dst
Data instructions
cmp sre, dst dst —src

moy src, dst src — dst

Brief Description

Add source to destination

Add source and carry to destination
Decimal add source and carry o
destination

Subtract source from destination
Subtract source and not carry from

destination

And source with destination
Clear bits in destination

Set bits in destination

Test bits in destination

Xor source with destination

Compare source to destination

Copy source to destination

In Table 7.2, we provide the effect of the instructions on the status register (SR) bits.
In this table, the signs have the following meanings: +, the corresponding bit is affected; -,
the corresponding bit is not affected; 0, the corresponding bit is reset; 1, the corresponding
bit is set. We will use the same notation in the following sections.

Table 7.2 The effect of the double-operand instructions on the status register bits.

Mnemonic

add sre.dst + +* SR
addc srcdst + o+ o+ o+
dadd src dst + + o+ o+
sub src dst + 4+ + o+
subc src dst + + + <+
and sre.dst 0 + + +
bic sre dst L oL BE
bis src.dst o m=
bit srcdst 0 + g
xor srcdst + 4+ + o+
cmp srcdst + + + o+

mov src.dst - - = =

7.1.2 Single-Operand Instructions

The MSP430 has seven single-operand instructions. These may also work on both word
and byte levels. This is set by, suffix to the mnemonic either .w (word) or .b (byte). The
default is adding a word-level processing. The only exception to this dual operation is sxt
and swpb. These instructions can only work on word level. Single-operand instructions
are described in Table 7.3.

Table 7.3 Description of the single-operand instructions.

Mnemonic Operation Brief Description

Logical and register control instructions

rra dst MSB — MSB — ---LSB — C Roll destination right

rre dst C—- MSB—.---LSB—C Roll destination right
through carry

swpb dst Swap bytes Swap bytes in destination

sxt dst bit7 — bit8 - -- bitl5 Sign extend destination

push dst SP—-2— 8P, sre — @§P Push source on stack

Program flow control instructions

call dst SP-2—=SP,PC+2— @SP, Subroutine call to destination
dst = PC

reti @SP4+ — SR, @5P+ — @S P Return from interrupt

In Table 7.3, SP stands for the stack pointer and SR for the status register. As in the

previous section, we show the effect of single-operand instructions on the status register
bits in Table 7.4.

Table 7.4 The effect of the single-operand instructions on the status register bits.

SR Bit

Mnemonic V N Z C

rra dst 0 + 4+ 4+
rre dst + + 4+ o+
swpb dst - - - -
sxt dst 0 + 4+ 4+
push dst - - - -
call dst - - - -
reti + + + +

7.1.3 Jump Instructions

Jump instructions are given in Table 7.5. In this table, C, Z, and N represent status register
bits or flags (as mentioned in Sec. 4.2.2). Jump instructions redirect the program execution
flow based on these bits. In other words, jump instructions alter the program counter.

Table 7.5 Description of the jump instructions.

Mnemonic Condition Brief Description
jc/jhs label C=1 Jump to label if the carry bit is set
Jump if higher or same
Jjee label (N .xor V) =0 Jump to label if greater than or equal
Jjl label (N xorV)=1 Jump to label if less than
jmp label NONE Jump to label unconditionally
jn label N= Jump to label if the negative bit is set
jncijlo label C=0 Jump to label if the carry bit is reset / Jump if lower
jnzfjne label Z=0 Jump to label if the zero bit is reset / Jump if not equal
j#/jeq label Z=) Jump to label if the zero bit is set / Jump if equal

The jump instruction jmp $ deserves special consideration. Using $ as a label
indicates that the program will jump to the current address. Hence, an infinite loop will be
formed. Therefore, the execution of the program will not end. We will use this structure in
our assembly code samples for this purpose.

7.1.4 Emulated Instructions

The MSP430 has 24 emulated instructions in addition to the 27 instructions mentioned
above. These are given in Table 7.6. To note here, the emulated instructions only help the
readability of the assembly code written. Besides, they are automatically replaced by the
original instructions (or their pairs) during the compiling step.

Table 7.6 Emulated instructions.

Mnemonic Operation Emulation Brief Description

Arithmetic instructions
adedst dst +C — dst adde #0, dst Add carry to destination
dade dst dst 4+ C — dsr (decimal) dadd #0. dst Decimal add carry 1o

destination
decdst dsr—1 — dsr sub #1, dst Decrement destination
decd dst dst — 2 — dst sub #2, dst Decrement destination twice
incdst dst 41 — dst add #1, dst Increment destination
incd dst dst 42 = dst add #2, dst Increment destination twice
shedst dst+FFFFh — dst sube #0, dst Subtract source and borrow
Logical and register control instructions
invdst .mortdst — dst xor #FFFFh, dst Invert bits in destination

rladst € «— MSB —..-L5SB <0 add dst, dst Roll left arithmetically
rlecdst € «— MSB «— ... LSB « C addcdst, dst Roll left through carry

Program flow conmrol instructions

br dst dst — PC maoy dst, PC Branch to destination

dint 00— GIE bic #8, SR Disable (general) interrupts
cint |l = GIE bis #8, SR Enable (general) interrupts
nop None mov R3, R3 No operation

ret @SP — PC.SP+2— SP mov @5P+4, PC Return from subroutine

Dara instructions

cledst 0 — dst muov #0, dst Clear destination

clre 0—C bic #1, SR Clear the carry flag

clrn b—= N bic #4, SR Clear the negative flag

clrz 0= Z hic #2. SR Clear the zero flag

popdst @SP — temp,.SP + 2 — SP mov @SP+ dst Pop word/byte from
temp — dst destination

sele | = C his #1. SR Set the carry Mag

setn 1= N bis #4. SR Set the negative flag

setz | = Z bis #2, SR Set the zero flag

tst dst dsi+FFFFh+1 cmp #0, dst Test destination

There are some important points on the usage of emulated instructions. In the sbc
instruction, the constant FFFFh will be replaced by FFh for the byte-level operation. This
is also the case for the inv instruction. We provide the effect of emulated instructions on

the status register bits in Table 7.7.

Table 7.7 The effect of the emulated instructions on the status register bits.

Mnemonic

adce dst + + + +
dadc dst + + + +
dec dst + + + +
decd dst + + + +
inc dst + + + +
incd dst + + + +
she dst + + + +
inv dst + + + +
rla dst + + + +
rlc dst + + + +
br dst - - = =
dint - - = =
eint - - = =
nop - = = =
ret T
clr dst - - = =
clre - = =0
clrn - 0 - -
clrz - - 0 -
pop dst — = e
setc - = = I
setn — | - =
setz - = 1 —
tst dst 0 + + I

7.2 Anatomy of an Instruction

As we have mentioned in the previous sections, the information in a microcontroller is
represented in binary form (as ones and zeros). Instructions are no exception. In this
section, we provide the format for double, single, and jump instructions in Table 7.8 in
machine language.

Table 7.8 Format for instructions.

Bits 15 12 11 9 7 6 5 3 0

Double operand Op-code S-reg Ad b/w As D-reg
Single operand Op-code biw Ad D/S-reg
Jump Op-code Condition 10-bit two’s complement PC offset

In Table 7.8, As represents the addressing bits used to define the addressing mode
used by the source operand. S-reg represents the register used by the source operand. Ad
represents the addressing bits used to define the addressing mode used by the destination
operand. D-reg represents the register used by the destination operand. Finally, b/w
represents word- or byte-level selection bit.

We provide three instructions from three groups (double operand, single operand, and
jump) in Listing 7.1. We obtain the Disassembly window as given in Fig. 7.1 after
executing the assembly code. As can be seen in this figure, the assembly code line mov.w
R5,R4 (double-operand instruction) has the hexadecimal representation 4504h. The
assembly code line rrc R5 (single-operand instruction) has the hexadecimal
representation 1005h. Finally, the assembly code line jmp Mainloop (jump instruction) has
the hexadecimal representation 3FFCh. These are the machine language representations of
the sample code lines given. For more detailed information on this issue, please see [2].

: [Memory Browser | == Disassembly 2 | o= Outline = 0|
| coa |8 aEE) 22t T
Mainloop: -
cBBa: 4315 MOV.W #1,R5 _
14 mov.w R5,R4 |
cedc: 4584 MOV . W R5,R4
15 rrc RS
cObe: 1685 RRC RS
16 jmp Mainloop
cBl1e: 3FFC IMP (Mainloop) »

< | m ’

Figure 7.1 Disassembly window for the anatomy of an instruction example.

7.3 MSP430 Addressing Modes

The MSP430 has seven addressing modes. These can be used by all instructions given in
the previous section. We briefly list these addressing modes in Table 7.9. In this table,
ADDR1 and ADDR?2 represent symbols for the memory locations. Each addressing mode
is explained below with examples.

Table 7.9 Addressing modes.

Immediate Constant values mov #45h, &ADDR1
Register Fast mov R10,R11
Absolute Direct access to a memory location mov &ADDR1, &ADDR2
Symbolic Easy to read code, relative mov ADDR1,ADDR2
Indexed Table processing mov 2(R10),6(R10)
Indirect register Access memory with pointers mov @R10,R11
Indirect autoincrement Table processing mov @R10+,R11

7.3.1 Immediate Mode

The immediate mode can be used to assign numbers directly to a register or a memory
location. In assigning numbers, Code Composer Studio (CCS) allows binary, octal,
decimal, and hexadecimal values with the format given in Chap. 3. The # sign is used
before the number to represent a constant value. We illustrate the usage of the immediate
mode in Listing 7.2.

Listing 7.1 Anatomy of an instruction example.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

Mainloop:
mov.w #01h,R5
mov.w R5,R4
rrc E5
jmp Mainloop

.global __STACK_END
.sect .stack

.5ect RESET_VECTOR
.short RESET
.end

The code in Listing 7.2 assigns hexadecimal numbers 0000h to 0003h to successive
memory locations 0200h to 0206h. It also assigns the hexadecimal number 0AOAh to the
general-purpose register R5.

Listing 7.2 Usage of the immediate mode.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACEK_END, SP

mov.w #0000h,&0200h
mov.w #0001h,&0202h
mov.w #0002h,&0204h
mov.w #0003h,&0206h
mov.w #0A0Ah,R5

.global __STACK_END
.sect .stack

.sect RESET._VECTOR
. short RESET
.end

7.3.2 Register Mode

The operations are performed on registers in the register mode. Since the registers are on
the CPU, they are easy to access. Therefore, their processing speed is fast. The code in
Listing 7.3 copies the content of register R5 to register R6.

Listing 7.3 Usage of the register mode.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD ;WDTCTL
mov.w #__STACK_END,SP

mov.w R5,R6
jmp S

.global __STACK_END
.sect .stack

.5ect RESET_VECTOR
.short RESET
.end

7.3.3 Absolute Mode

The absolute mode is used to reach a memory address directly. In the MSP430, peripherals
are also taken as addresses as explained in Sec. 4.3.1. Therefore, the absolute mode may
be used to reach and alter them. The memory address is indicated by the & sign. We
illustrate the usage of the absolute mode in Listing 7.4. The eight line in Listing 7.4 copies
the contents of memory address 0200h to register R9. The ninth line copies the contents of
the memory address 0200h to the memory address 0206h.

Listing 7.4 Usage of the absolute mode.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD ;WDTCTL
mov.w #__STACK_END,SP

mov.w &0200h,R9

mov.w &0200h,&0206h0
jmp S

.global __STACEK_END
.5ect .stack

.sect RESET VECTOR
.short RESET
.end

7.3.4 Symbolic Mode

Memory locations and variables are represented by words in symbolic mode. This makes
the assembly program easy to understand. This also allows us to transfer the code to
another MSP430 microcontroller family member easily (the relativity property).

We provide Listing 7.5 to illustrate the usage of symbolic mode. Here, the program
counter (PC) has been defined beforehand (in the msp430g2553.h header file). We can
copy the value of the PC to register R5 by mov.w PC,R5. As can be seen here, the usage of
the symbol PC is straightforward in assembly language. The second line in Listing 7.5
copies the port P1 input values to register R8 (we will see this in detail in Chap. 8).

Listing 7.5 Usage of the symbolic mode.

.cdecls C,LIST, "msp430.h"

. text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

mov.w PC,R5
mov.b P1IN,R6

jmp $

.global __STACK_END
.5ect .stack

.5ect RESET.VECTOR
.5hort RESET
.end

7.3.5 Indexed Mode

The indexed mode is used to process a table in memory. A register (memory) holds the
base address of the table in this mode. This value is incremented to reach successive
memory locations. Meanwhile, the base address value is not changed.

We provide Listing 7.6 to illustrate indexed mode usage. Here, four hexadecimal
numbers are assigned to successive memory locations first. Then, the value at each
location is assigned to register R6 step by step. To do so, register R5 is taken as the base
address. The increments are done by two since we are using the mov instruction at word
level (mov.w) in reaching memory. If we want to reach the memory at byte level, we
should use mov.b. The second part in Listing 7.6 provides such an example.

Listing 7.6 Usage of the indexed mode.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

;word level operations

mov.w #0000h,&0200h
mov.w #0002h,&0202h
mov.w #0004h,&0204h
mov.w #0006h,&0206h
mov.w #0200h,R5
mov.w 0(R5),R6
mov.w 2(R5),R6
mov.w 4(R5),R6
mov.w 6(R5),R6

;byte level operations
mov.b #00h,&0200h
mov.b #01h,&0201h
mov.b #02h,&0202h
mov.b #03h,&0203h
mov
mov
mov

.w #0200h,R5
.b 0(R5),R6
.b 1(R5),R6

mov.b 2(R5),R6
mov.b 3(R5),R6

.global __STACK END
.sect .stack

.sect RESET_VECTOR
.short RESET
.end

7.3.6 Indirect Register Mode

The indirect register mode performs a pointer-based operation. In this mode, the memory
address saved in the register is reached. We illustrate the usage of the indirect register
mode in Listing 7.7. Here, the @ sign is used to represent the memory address processing
(pointer). In the ninth line of Listing 7.7, the memory address 0202h is saved in register
R10. In the tenth line, the value in this memory address is copied to register R11.

Listing 7.7 Usage of the indirect register mode.

.cdecls C,LIST, "msp430.h"

. text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

mov.w #0CCCCh,&0202h
mov.w #0202h,R10
mov.w ER10,R11

jmp $

.global __STACEK_END
.5ect .stack

.5ect RESET.VECTOR
.5hort RESET
.end

7.3.7 Indirect Autoincrement Mode

The indirect autoincrement mode can also be used for table processing. This mode uses
the indirect register mode. The register value is incremented after each operation
automatically without any extra code line.

In Listing 7.8, we repeat the operations in Listing 7.6 using the indirect
autoincrement mode. In the first part of Listing 7.8, increments are done in 2 bytes since

we have a word operation. If we had byte operations, the increments would be in 1 byte.
We provide such an example in the second part of Listing 7.8.

Listing 7.8 Usage of the indirect autoincrement mode.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

;word level operations

mov.w #0000h,&0200h
mov.w #0002h,&0202h
mov.w #0004h,&0204h
mov.w #0006h,&0206h
mov.w #0200h,R5
mov.w @R5+,R6

mov.w @R5+,R6

mov.w @R5+,R6

mov.w @R5+,R6

;byte level operations

mov.b #00h,&0200h
mov.b #01h,&0201h
mov.b #02h,&0202h
mov.b #03h,&0203h
mov.w #0200h,R5
mov.b @R5+,R6
mov.b @R5+,R6
mov.b @R5+,R6

mov.b @R5+,R6
jmp S

.global __STACE_END
.5ect .stack

.sect RESET . VECTOR
.short RESET
.end

7.4 The Stack

The stack is a last-in, First-out (LIFO) address list. Local variables are saved in the stack
automatically for C programs. The stack is also used during function and interrupt calls by
the CPU. As mentioned in Sec. 4.2.2, the special-purpose register R1 is assigned as the
stack pointer for the MSP430. At the beginning of an assembly program, this pointer
should be initialized. For the MSP430G2553 microcontroller, the memory address for this
initialization is 0400h. This is the highest data memory location as given in Table 4.2.

There are two assembly instructions related to the stack, push and pop. Push adds the
number (as the last entry) to the stack. Pop gets the last number from the stack. Therefore,
these two commands perform the LIFO operation. In Listing 7.9, we provide an example
on how to initialize the stack and the usage of the push and pop operations. This program
is similar to the previous table-based processing. The reader should pay attention to the
inverse ordering of the table entries due to the LIFO structure.

Listing 7.9 Usage of the stack.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

push.w #0006h
push.w #0004h
push.w #0002h
push.w #0000h
pop.w R6
pop.w R6
pop.w R6
pop.w R6

jmp $

.global __STACK END
.5ect .stack

.5ect RESET.VECTOR
.5hort RESET
.end

7.5 Assembly Program Structure

An assembly program has a specific structure. It needs extra directives and adjustments
during linking and compiling steps. They are explained in detail in [13, 11]. In this
section, we briefly explain the directives used in assembly programs throughout the book.
We pick Listing 7.10 to demonstrate the assembly program structure and the usage of
directives. The directives in Listing 7.10 are explained below.

Listing 7.10 Structure of an assembly program.

o= L ba

WO 0o =J n

14
15

16
17
18

19
20
21

22
23
24
¥
26
27
28

.cdecls C,LIST, "msp430.h"

text

.retain
.retainrefs

RESET
mov.w
mov.w

mov.b
mov.w
and.w

jmp $

#WDTPW|WDTHOLD , WDTCTL
#__.STACK_END, SP

#11h,R4
#00AAh, R5
R4,R5

Pointer definition

.global __STACK_END

.sect

.stack

.sect RESET _VECTOR
.5hort RESET

.end

.cdecls: This directive is used to include the C header files to the assembly program. As
a result, C header file definitions can be used directly.

.text: This directive indicates the beginning of the executable code block.

.retain: This directive is used to disable the removal of nonreferenced code blocks (like
interrupt service routines) during the linking process.

.retainrefs: This directive expands the retain operation to code blocks from other
sections.

.global: This directive defines a global symbol such that it can be reached from any part

of the program.

- .sect: This directive defines a section (a contiguous block of code or data in the
memory) that can hold code or data.

+ .short: This directive initializes one or more 16-bit integers.
+ .end: This directive indicates the end of the assembly program.

Based on the preceding definitions, we can read Listing 7.10 as follows. In line 1, we
include the C header file msp430.h using the .cdecls directive. In line 3, we indicate the
starting point of the program by the .text directive. In lines 4 and 5, we adjust the linker
properties by the .retain and .retainref directives. In lines 20 and 21, we associate the
constant - -STACK_END with the stack address (defined by .stack) using directives .sect
and .short in a joint manner. Similarly, in lines 26 and 27, we associate the RESET label
with the RESET_VECTOR using directives .sect and .short. We will explain the reason for
this operation in Chap. 9. In line 28, we indicate the endpoint of the program by the .end
directive.

7.6 Sample Programs on Instruction Set Usage

In this section, we provide several assembly programs. The reader should execute each
program step by step to observe the result of each operation. Therefore, the Assembly Step
Into option in the Debug view should be used.

We should emphasize two important topics before starting. First, comments can be
added to an assembly program by the ‘;’ sign. We have been using the *;’ sign to add
comments. Second, CCS needs an extra 0 in front of a hexadecimal number starting with
characters A—F. Therefore, the user should write OFFFFh instead of FFFFh in the

assembly code. Otherwise the CCS compiler gives an error message.

We demonstrate the usage of arithmetic, logical and register control, data, and jump
instructions in Listing 7.11. We emphasized the difference between the binary and decimal
addition operations in arithmetic instructions. The result of the subtraction operation will
be a negative number in Listing 7.11. Therefore, the reader can observe the two’s
complement representation here. We defined the constants in binary form in logical and
register control instructions. The reader should adjust the number format for each register
to see the result of each operation clearly. We have used the data instructions in the
previous steps. Therefore, they are not new. Here, the reader should observe the effect of
the cmp instruction on the status register. Finally, we provide one jump instruction in
Listing 7.11 to form an infinite loop. We will extensively use jump instructions next.

Listing 7.11 Usage of arithmetic, logical and register control, data, and jump
instructions.

.cdecls C,LIST, "msp430.h”

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD WDTCTL
mov.w #__STACEK_END,SP

;Arithmetic Instructions
mov.w #0009h,R5

mov.w #0006h,R6
add.w R5,R6
mov.w #0006h,R6

dadd.w R5,R6
mov.w #0006h,R6
sub.w R5,R6

;Logical and Register Control Instructions

mov.b #00001111b,R5
mov.b #00000011b,R6
and.b R5,R6

mov.b #00000011b,R6
xor.b R5,R6

rra.b R6

swpb R5

;Data Instructions
mov.w #0006h,R5
mov.w #0009h,R6
cmp.w R5,R6

;Jump Instructions
jmp S

.global __STACKEND
.sect .stack

.5ect RESET._VECTOR
.short RESET
.end

Control structures are not explicitly defined in assembly language. Therefore, we
provided several examples on forming C-like control structures using assembly
instructions in Listing 7.12. In all these examples, jump operations are mandatory. To note
here, these are not the only control structures in assembly language. The reader can form
his or her structure using different jump instructions.

Listing 7.12 Control structures in assembly language.

.cdecls C,LIST, "msp430.h"

. text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

:if then
mov.w #0005h,R4
cmp.w #0004h,R4
jge Greater
dec R4
jmp donel
Greater:
inc R4
donel:

:if then
mov.w #000Ah,R4
mov.w #0009h,R5
sub.w R4 ,R5
jn Less
dec R5
jmp done?2
Less:
inc R4
donel:

sfor
mov.w #000Ah,R4
Loopl:

dec R4
jne Loopl

;while

mov.w #0006h,R4
mov.w #0002h,R5
Loop2:

dec R4

cmp.w R5,R4

jge Loop2

jmp $

.global __STACKEND
.5ect .stack

.5ect RESET_VECTOR
.short RESET
.end

Finally, we provide an example on the usage of subroutines (functions) in Listing
7.13. Here, the contents of registers R5 and R6 are swapped through register R7. This
operation is done in the user-defined subroutine.

Listing 7.13 Usage of subroutines in assembly language.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD s WDTCTL
mov.w #__STACK_END,SP

mov.w #0005h,R5
mov.w #0006h,R6
mov.w #0007h,R7

call #Replace
jmp S

Replace:
mov.w R6,R7

mov.w R5,R6
mov.w R7,R5
ret

.global __STACE_END
.8ect .stack

.sect RESET.VECTOR
. short RESET
.end

7.7 Summary

Although the C language can be used in most operations under the MSP430, the assembly
language gives insight into the basics of the microcontroller. Therefore, in this chapter we
considered the instruction set and the addressing modes of the MSP430. We started with
the double-operand, single-operand, and jump instructions. We provided sample codes on
their usage. Then we briefly described the anatomy of an instruction. As a separate
section, we looked at the addressing modes of the MSP430. This was followed by a
discussion of the stack and its usage. Finally, we provided an overview of assembly
program structure. Since the assembly language is important for understanding the

microcontroller, we provide the assembly language codes for all applications besides C in
the following chapters.

7.8 Problems

7.1 Assume that your register R4 holds the hexadecimal number 4001h and
the memory location 02FOh holds the hexadecimal number 0F18h. Write a
program in assembly language such that:

a. These two numbers are added.
b. One’s complement of the sum is saved in register R6.

c. The least significant two hexadecimal digits of the sum are swapped
with its most significant two hexadecimal digits. The output is written to
register R12.

7.2 Write a program in assembly language such that:
a. Two binary numbers are saved in two separate memory locations.
b. As the numbers are added, an overflow will occur.
c. As the numbers are added, no overflow occurs.

Check whether an overflow occurred or not from the status register.

7.3 Repeat Prob. 7.2 using the subtraction operation.

7.4 Extend Prob. 7.2 such that, if the result is greater than (less than) zero, the
program will jump to the label greater (less).

7.5 Write an assembly program such that:
a. It reads the input from port P1 and assigns it to register R9.

b. If the second most significant bit of this value is greater than zero,
assign FFFFh to register R10.

7.6 Write an assembly program to change the little endian ordering of the
MSP430 to big endian for selected memory locations.

7.7 Write a program in assembly language such that:

a. It contains a subroutine which performs the and operation with the
entry of register R6 and hexadecimal number 0001h. The result will be saved
in the same register.

b. Repeat part a by applying the same operation to five successive
memory locations. Use an appropriate addressing mode.

7.8 Write a program in assembly language to calculate the first 10 elements of
the Fibonacci series.

a. The user only provides the first two entries of the series.
b. The rest will be calculated by the program.

c. Use appropriate memory locations.

d. The numbers can be represented in hexadecimal form.
7.9 Write an assembly program such that:

a. When the least significant bit of registers R4 and R5 have the value 1,
the register R9 gets the value OFFOh.

b. When only one of the least significant bits of either register R4 or R5
has the value 1, the one’s complement of the value in register R9 will be
saved in register R10.

7.10 What will be the values at memory locations 02F0h, 02F2h, 02F4h, 02F6h, and
02F8h when the program given in Listing 7.14 is run?

Listing 7.14 The assembly code for Prob. 7.10.

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD s WDTCTL
mov.w #__STACK END,SP

Mainloop:
mov.w #0006h,&02F0h
mov.w #0009h,&02F2h
clr.w &02F6h
clr.w &02F8h
mov.w &02F2h,&02F4h
add.w &02F0h,&02F4h
cmp.w #000Ah,&02F4h

jhs Greater

jlo Less

Greater:
mov.w &02F0h, &02F8h
jmp Mainloop

Less:
mov.w &02F2h,&02F6h
jmp Mainloop

.global __STACEK_END
.5ect .stack

.sect RESET_VECTOR
.short RESET
.end

7.11 Write an assembly program with the following specifications.

a. In the main block, you should have two registers R4 and R5. They
should be checked in an infinite loop. If R4 is greater than R5, then the
greater subroutine will be called. If R4 is less than R5, then the less
subroutine will be called. If R4 equals R5, then no operations will be done.

b. In the greater subroutine, your code will fill the decimal numbers 1, 2,
3, 4, 5 in hexadecimal form to five successive memory locations. After this
operation, the value in R4 will be decreased by one.

c. In the less subroutine, your code will fill the decimal numbers 10, 9, 8,
7, 6 in hexadecimal form to five successive memory locations. After this
operation, the value in R4 will be decreased by one.

7.12 Write an assembly program to calculate the division of the hexadecimal number
OOFFh by 00AOh. Use only available registers to save your variables. Write the
result to register R7.

7.13 What will the register values R4, R5, and R6 be as the program in Listing 7.15 is
run?

Listing 7.15 The assembly code for Prob. 7.13.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END, SP

mov.w #0004h,R5

mov.w R5,R4

clr Eé6

dec R5

inc R4

sub.w R4 ,R5
sub.w #9FFFh,R4
add.w #000Bh,R6
and.w R5,R6

jmp $

.global __STACK_END
.sect .stack

.5ect RESET.VECTOR
.short RESET
.end

7.14 Write down the values assigned to register R14 in four steps (labeled in Listing
7.16).

Listing 7.16 The assembly code for Prob. 7.14.

7.15

7.16

.cdecls C,LIST, "msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD,WDTCTL
mov.w #-_STACEK_END,SP

mov.w #0006h,&0200h
mov.w #000Ah,&0202h
mov.w #0014h,&0204h
mov.w #008Dh,&0206h
mov.w #0200h,R13

mov.w 2(R13),R14 ;step 1
sub.w 0(R13),R14 ;step 2
add.w 4(R13),R14 ;step 3
add.w 6(R13),R14 ;step 4
jmp $

.global __STACKEND
.5ect .stack

.5ect RESET._VECTOR
.short RESET
.end

Write an assembly program to divide a hexadecimal number by 2. The number to
be divided should be kept in a suitable memory location of the MSP430G2553.
The division result will be kept in register R5 and the remainder will be kept in
register R6.

Three numbers are written in the designated memory locations with the code given
in Listing 7.17.
Listing 7.17 The assembly code for Prob. 7.16.

.cdecls C,LIST, "msp430.h”

. text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

mov.w #007Dh,&0200h ;the first number
mov.w #00B5h,&0202h ;the second number
mov.w #00EBh, &0204h ;the third number

jmp $

.global __STACKEND
.52ct .stack

.sect RESET VECTOR
.short RESET
.end

Write an assembly program such that:

a. It contains a subroutine which performs the and operation between the
first and second numbers. Then, it performs the or operation between the

result of the and operation and the third number.

b. The final result must be written to the memory address 020Dh.

c. You cannot change the numbers in the addresses given above.

7.17 Two numbers are written in the designated memory locations with the code given

in Listing 7.18.
Listing 7.18 The assembly code for Prob. 7.17.

7.18

7.19

7.20

7.21

.cdecls C,LIST, "msp430.h”

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD,WDTCTL
mov.w #_-_STACK END,SP

mov.w #2D97h,&0220h ;the first number
mov.w #6239h,&0222h :the second number
jmp $

.global __STACK_END
.5ect .stack

.5ect RESET._VECTOR
.short RESET
.end

Write an assembly program such that:

a. It contains a subroutine which performs the xor operation between the
first and second numbers. Then, it performs the not operation on the result of
the or operation.

b. The final result must be written to the memory address 023Ch.
c. You cannot change the numbers in the addresses given above.

Write an assembly program to calculate the sum of the four numbers given in Prob.
7.14.

Add a subroutine to your assembly program in Prob. 7.18 to calculate the average
of the four numbers.

Assume that there are four numbers represented in single floating-point format.
These are saved in successive memory locations starting from 0200h. Write an
assembly program to convert them to the fixed-point UQ16.16 format. The
converted numbers should be saved in successive memory locations starting from
0300h.

Analyze the assembly code given in Listing 7.19. Form a table for registers and fill

their values as the code is run.

Listing 7.19 The assembly code for Prob. 7.21.

.cdecls C,LIST,"msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END,SP

mov.w #0200h,R5
mov.w #0001h,6R6

Loopl:

mov.w R6,0({R5)
incd.w RS
inc.w R6

emp.w #0214h,R5
jle Loopl

mov.w #0000h,R7
mov.w #0200h,R5

Loop2:
cmp.w #020Ah,R5
jlo Less
sub.w @RS ,R7
jmp Incr

Less:
add.w @R5,R7
Incr:
ined.w RS
cmp.w #0214h,R5
jlo Loop2

jmp $

.global __STACK END
.sect .stack

. 5ect RESET_VECTOR
.short RESET
.end

8 Digital Input and Output

Chapter Outline
8.1 Pin Layout for Digital 1/0

8.2 Digital I/O Registers
8.3 Digital I/O Hardware Issues

8.4 Coding Practices for Digital 1/0
8.5 Digital I/O in Grace
8.6 Digital Safe Application

8.7 Summary
8.8 Problems

A microcontroller interacts with the outside world through its input and output ports. The
interaction can be in either analog or digital form. In this chapter, we focus on the digital
input and output (digital I/0) characteristics of the MSP430 microcontroller. We will
develop methods to use them. We will also use Grace to configure the digital 1/0.

8.1 Pin Layout for Digital 1/0

Digital input and output (I/O) is the simplest form of communication between the
microcontroller and the outside world. The input or the output is either 0 or 1 in this form.
In other terms, the input or the output is either 0 V or V.. There are two ports called P1
and P2 in the MSP430G2553. These are generally called Px. Each port has eight pins
associated with it. These are called P1.0-P1.7 and P2.0—P2.7. The general pin layout of
the MSP430G2553 is given in Fig. 8.1. The usage table for these pins is given in Table
8.1. As can be seen in this table, all pins in ports P1 and P2 can be used for digital 1/0.

: Vee GND 20
— 1{p10 XIN ——
— P11 XOUT ——
— IPp12 TEST|—
— P13 MSP RST ——

430
— {p14 i PI7}—
— P15 PI6l——
—{p2o P25
P2.1 P24
10 ps p2.3 |

Figure 8.1 Pin layout of the MSP430G2553.

Table 8.1 The pin usage table for digital I/O in the MSP430G2553.

Pin Port Name Usage Area
| Vio Source voltage
2 P10 General-purpose digital I/O
3 Pl.1 General-purpose digital I/O
4 P2 General-purpose digital I/O
5 PES General-purpose digital I/O
6 P14 General-purpose digital I/O
7 PLS General-purpose digital I/O
8 P20 General-purpose digital I/O
9 P21 General-purpose digital I/O
10 P22 General-purpose digital I/O
11 P25 General-purpose digital I/O
12 P24 General-purpose digital I/O
13 P25 General-purpose digital I/O
14 P16 General-purpose digital /O
15 Pl.? General-purpose digital I/O
16 RST Reset
17
18 P27 General-purpose digital I/'O
19 P26 General-purpose digital I/O
20 Vig Ground voltage

We diagram the basic hardware for the pins in Fig. 8.2. As can be seen, all pins can
be used for multipurpose besides being used for digital I/O. They are labeled Other in this
figure. In this chapter, we only consider the digital I/O characteristics of the pins. Next, we
will explore how to reach a specific pin in a given port.

0: Input

PxDIR.y
Y 1: Output
PxREN.y
DVSS - i
DVCC 1
PxSEL2.y =il
PxSEL.y g
PxOUT.y e 00 . 1 =
Other — 01 s e
Other — 10 - T =
Other — 11 - A4
~
S
PxIN.y = et
~ L
3
2

Figure 8.2 Basic hardware for the pins.

8.2 Digital I/0 Registers

Each pin in a port can be set either as input or output. This is done by the register PxDIR.
To set a specific pin as input, the corresponding bit in this register should be reset (to 0).
In a similar manner, to set a specific pin as output, the corresponding bit in the PxDIR
register should be set (to 1). Due to the byte-based operation of the MSP430, all the port
pins should be taken into account in this operation. In fact, this is applicable for all port
registers. As an example, let’s say that we want to assign the first and the seventh pins of
the first port (P1.0, P1.6) as output. We would also like to assign the fourth pin of the same
port (P1.3) as input. To do so, we should assign the binary number 01000001b (41h) to
P1DIR. Therefore, the code line P1DIR=0x41 in C language does the job. This corresponds
to mov.b #41h,P1DIR in assembly language. Now, the input can be connected to pin P1.3
and outputs can be connected to pins P1.0 and P1.6.

Based on the preceding definition, P1.3 is set as input. The P1IN register should be
checked to read values from this pin. In general, we will call this register PxIN (for P1 or
P2). The digital input fed to the microcontroller is directly observed from this register. As
we have mentioned previously, we cannot observe a specific bit in this register. To do so,
we need to apply a binary mask to extract the desired input value. We only need the value
of the pin P1.3 for our example. Therefore, we should apply an and operation between the
P1IN register and the binary mask 00001000b (08h). This will be done by the code line
P1IN&Ox08 in C language. This corresponds to bit #08h,P1IN in assembly language.

While processing the digital input values, please also take into account the active high and
low settings (to be discussed in the next section).

To feed output values to pins P1.0 or P1.6, the P1OUT register is used. In general, we
will call this register PxOUT (for P1 or P2). If we want to feed a 0 V to output from a
specific pin, the corresponding bit value in PxOUT should be reset (to 0). We should set
the pin (to 1) to feed V. to output. As an example, we should assign 01000000b (40h) to
P10OUT to feed V. to output from pin P1.6. This corresponds to the code line P10oUT =
0x40 in C language. This corresponds to the code line bis #46h,P10UT in assembly
language.

Each pin in ports P1 and P2 has a pull-up/down resistor. These are controlled by the
PxREN register. By default, these resistors are disabled. To enable a resistor connected to
a specific pin, the corresponding bit in PxREN should be set (to 1). As an example, the
code line P2REN = 0x02 should be used to enable the pull-up/down resistor of the pin P2.1
in C language. This corresponds to the code line bis #02h, P2REN in assembly language.
After the pull-up/down resistor is enabled, the selection between the pull-up or down
option is done with the PxOUT register. If the related bit of the PxOUT register is set, the
internal resistor will be used as pull up. Otherwise, the internal resistor will be used as pull
down.

As mentioned in the previous section, MSP430 pins are used for more than one
purpose. The registers PXSEL and PxSEL2 are used to select the usage area of the pins. If
a specific pin will be used for digital I/O, the corresponding bits in PxSEL and PxSEL?2
should be reset. If the pin will be used for a specific purpose other than the digital 1/0,
then PXSEL and PxSEL?2 should be set accordingly. In Table 8.2, we provide these settings
for different application types.

Table 8.2 Application type based on PxSEL and PxSEL2 function settings.

Application PxSEL PxSEL2

Digital 1/O 0 0
Timer and clock usage 1 0
Capacitive sensing 0 1
Digital communication 1 1

The only exception to Table 8.2 is in the comparator usage described in Chap. 11.
When the comparator output (CAOUT) is given from P1.3, PxSEL=1 and PxSEL2 = 1.
When the CAOUT is given from P1.7, PxXSEL=1 and PxSEL2=0.

8.3 Digital I/0 Hardware Issues

There are two major hardware issues to be dealt with when using digital I/O. The first is
the definition and setup of active high/low input. The second is switch bouncing. We will
explain them next.

8.3.1 Active High/Low Input

There are two setup options to use a push button in a digital circuit. In the first setup, the
microcontroller gets V. volts (logic 1) on its pin when the button is pressed. This is called
the active high input. In the second setup, the microcontroller gets 0 V (logic 0) on its pin
when the button is pressed. This is called the active low input. To note here, active high or
low inputs are not related to the microcontroller. They are based on the connection type to
the digital I/O pin. The circuit diagrams for the active high/low input setups are given in

Fig. 8.3.

Ve Ve
b < Pull-up
I_ g Resistor
Input_| Input |
for Pin 8 for Pin
- Pull-down o
j:: Resistor ﬁl_
GND GND
(a) Active high (b) Active low

Figure 8.3 Active high and low input circuit diagrams for the push button.

For the MSP430 LaunchPad, the preferred setup is active low. Therefore, when the
button connected to pin P1.3 is pressed, it will generate logic 0. When it is not pressed, it
will give logic 1. This should be taken into account while reading the value from the P1IN
register using a binary mask.

8.3.2 Switch Bouncing

The second hardware-based issue in digital I/O is switch (button) bouncing. If the button
is pressed once, it may generate output more than once, depending on its physical
characteristics. Therefore, the microcontroller may see one input and its successive
shadow versions. To eliminate this effect, either a software- or a hardware-based solution
can be used. In the software-based solution, a delay should be added to the button input
reading part of the code. The input will not be observed, and possible shadow inputs will
be eliminated during this delay. Although the software-based solution is easier to
implement, actual inputs will also be eliminated during delay. Therefore, it should be used
with caution.

There are also hardware-based solutions for switch bouncing. The most feasible
circuitry is a low-pass RC filter (composed of a resistor and a capacitor) followed by a
Schmitt trigger for the MSP430. This setup is shown in Fig. 8.4. Each digital I/O pin of
the MSP430G2553 has a Schmitt trigger [16]. There is also an internal pull-up resistor and
a capacitor connected parallel to the push button (connected to P1.3) in MSP430

LaunchPad Rev.1.4. Therefore, the circuitry in Fig. 8.4 is ready for this LaunchPad
version. However, the parallel capacitor is discarded in MSP430 LaunchPad Rev.1.5. Only
the internal pull-up resistor (if enabled) can be used to form the circuit. The user should
also connect an external capacitor to solve the switch bouncing problem by hardware in
this LaunchPad version. In the next section, we provide sample codes to address this issue.

'L.?

[

)

s

4

=

GND

Figure 8.4 Hardware solution of the switch bouncing problem.

In Fig. 8.4, the low-pass RC filter is used to eliminate the high-frequency shadow
inputs coming from the button. Then remaining glitches are eliminated by the Schmitt
trigger. In this circuitry, the time constant of the filter (r = RxC) must be larger than the
switch bouncing time to eliminate all shadow inputs. The internal pull-up resistor values
may vary between 20 and 50 kQ. Throughout the book, we will assume that a 2- to 5-ms
time constant is enough to eliminate switch bouncing. Therefore, a 100-nF external
capacitor should be used. The time constant of the filter can be adjusted by this
capacitance value depending on other constraints.

8.4 Coding Practices for Digital I/O

In this section, we provide sample C and assembly codes for digital I/O. Since our setup is
based on the MSP430 LaunchPad, we will use the push button and LEDs (red, green) on
it. Therefore, ports used in the codes will be the same.

8.4.1 Digital I/0 in C

We first consider an application where the red LED (connected to P1.0 on the MSP430
LaunchPad) turns on when the push button (connected to P1.3 on the MSP430
LaunchPad) is pressed. When the button is released, the red LED turns off. We provide the
C code in Listing 8.1 for MSP430 LaunchPad Rev.1.4. Here, the location of the red LED
and the push button is defined first. The port direction is set accordingly. Initially, the red
LED is turned off. Then the input from the push button is checked in an infinite loop. Here
there are three important issues. First, a masking operation should be done to check for a

specific pin since port P1 can be observed at a byte level. Second, the active low setup of
the MSP430 LaunchPad should be taken into account. Therefore, the control within the if
statement is checked for 0 not 1. Third, the switch bouncing is not taken into account here
since the LED turns on only during the button press.

Listing 8.1 Turning on the red LED when the push button is pressed, for MSP430
LaunchPad Rev.1.4.

#include <msp430.h=

#define LED BITO
#define BUTTON BIT3

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = LED;

P1lOUT = 0x00:

while(1){

if((P1IN & BUTTON) == 0x00) // Active low input
P1OUT = LED; // Turnonthe LED

aelse

P10UT = 0x00; // Turn off the LED
}

We repeat the previous application given in Listing 8.1 for MSP430 Launch-Pad
Rev.1.5. We provide the C code in Listing 8.2. As can be seen here, the code is slightly
modified. First, the internal resistor connected to the push button (connected to P1.3 on the
MSP430 LaunchPad) is enabled by the code line PAREN = BUTTON;. This resistor is also
set as pull-up by the code line P1ouT = BUTTON;. The push button check conditions are
also modified accordingly so that this setup is not changed during operation.

Listing 8.2 Turning on the red LED when the push button is pressed, for MSP430
LaunchPad Rev.1.5.

#include <msp430.h=

#define LED BITO

#define BUTTON BIT3

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = LED;

P1REN = BUTTON;

P1OUT = BUTTON;

while(1){

if((P1IN & BUTTON) == 0x00) // Active low input
P10OUT |= LED; // Turnonthe LED

else

P10UT &= "LED; // Turn off the LED

}

We next provide a more complex example. Here, the green LED (connected to P1.6
on the MSP430 LaunchPad) is toggled every time the push button (connected to P1.3 on
the MSP430 LaunchPad) is pressed. We provide the C code for MSP430 LaunchPad
Rev.1.4 in Listing 8.3. Here, the location of the red LED and the push button is defined
first. The port direction is set accordingly. Initially, the green LED is turned off. Then, the
input from the push button is checked in an infinite loop. When the button is pressed, the
code waits for 5 ms by the intrinsic function _ delay _cycles(5000);. The code checks
the push button condition after this delay again. If the push button is still pressed, then the
green LED toggles. The code waits in an infinite loop for the release of the push button.
This step ensures that the green LED cannot be toggled again unless the push button is
released.

Listing 8.3 Toggling the green LED when the push button is pressed, for MSP430
LaunchPad Rev.1.4.

#include <msp430.h=>

#define LED BIT6
#define BUTTON BIT3

void main(veoid)

{

WDTCTL = WDTPWMDTHDLD;
P1DIR LED;

P1OUT 0x00:

while(1){

if((P1IN & BUTTON) == 0x00){
_delay cycles(5000);
if((P1IN & BUTTON) == 0x00){

P1OUT "= LED;
while((P1IN & BUTTON) == 0x00);

H
}

We modify the C code given in Listing 8.3 for MSP430 LaunchPad Rev.1.5 next. We
provide the C code in Listing 8.4. Here, the internal resistor connected to the push button
(connected to P1.3 on the MSP430 LaunchPad) is enabled by the code line P1REN =
BUTTON;. This resistor is also set as pull-up by the code line P10UT = BUTTON;. This was
also the case in Listing 8.2.

Listing 8.4 Toggling the green LED when the push button is pressed, for MSP430
LaunchPad Rev.1.5.

#include <=msp430.h=>

#define LED BIT6
#define BUTTON BIT3

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = LED;

P1REN = BUTTON;

P1OUT = BUTTON;

while(1){

if((P1IN & BUTTON) == 0x00)]
_delay.cycles(5000);

if ((P1IN & BUTTON) == 0x00)]
P1OUT “= LED;

while((P1IN & BUTTON) == 0x00);

H

8.4.2 Digital I/O in Assembly

We provide assembly code for digital I/O in Listing 8.5. Here, the microcontroller waits in
an infinite loop. It turns the red and green LEDs on and off based on the status of the
button pressed.

Listing 8.5 Digital I/O in assembly.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL

mov.w #-_STACK_END,SP
bis.b #01000001b,P1DIR

Mainloop:
bit.b #00001000b,P1IN
je Off

On:
biec.b #00000001b,P10OUT
bis.b #01000000b,P10OUT
jmp Mainloop

Off:

bis.b #00000001b,P10OUT
bic.b #01000000b,P10OUT
jmp Mainloop

.global __STACK_END
.sect .stack

.5ect RESET.VECTOR
.short RESET
.end

8.5 Digital I/0 in Grace

Grace can be used to configure the input and output ports of the MSP430. Let’s start with
a new Grace project (generated in accordance with Sec. 5.7). We can configure the pin
properties by clicking on the blue port (P1, P2, P3) block. As we click on the block, a new
tab named GPIO appears in main.cfg. This new tab is named GPIO-Overview. It has
several buttons. For our application (having the 20-pin version of the MSP430G2553
microcontroller) the overview, Pinout20-TSSOP/20-PDIP, power user, and P1/P2 views

are useful. As we mentioned in Sec. 5.7, Overview provides basic info and sample code
blocks on the GPIO.

8.5.1 The Pinout20-TSSOP/20-PDIP Mode

The Pinout20-TSSOP/20-PDIP mode provides the active microcontroller block diagram as
shown in Fig. 8.5. In this mode, the property of each pin can be changed from the drop-
down list which appears when the blue pointer by the pin is clicked. This automatically
changes the PxSEL, PxSEL2, and PxDIR registers.

pvee [T]1 O 20 [T] Dvss
GPIO Output * P1.0[T] 2 19 [T] P2.6~ XIN

GPIO Input ¥ P1.1 [T} 3 18 [J] P2.7 ¥ XOUT

GPIO Input ¥ P1.2[T] 4 3 Texas 17 [I] TESTISBWTCK
GPIO Input ¥ P1.3[T]5 INSTRUMENTS 4 IT] RST/NMISSBWTDIO
GPIOInput ¥ P1.4[[]6 MSP430G2553 15 [[JP1.7 ¥ GPIO Input
GPIO Input ¥ P1.5[T]7 14 [T] P1.6 ¥ GPIO Input
GPIO Input ¥ P2.0 [T]8 13 [[] P2.5 ¥ GPIO Input
GPIO Input ¥ P2.1 [T} 9 12 [[] P2.4 ¥ GPIO Input
GPIO Input ¥ P2.2 [T]10 11 [[] P2.3 ¥ GPIO Input

Figure 8.5 The Pinout20-TSSOP/20-PDIP mode under Grace.

8.5.2 The Power User Mode

In the power user mode, shown in Fig. 8.6, the following properties of each pin can be
configured: GPIO function, output state, pull-up/down resistor enable, and interrupt
enable. The GPIO function option is the same as the Pinout20-TSSOP/20-PDIP mode. The
output state allows us to set the initial value (low or high) of the pin when used in the
GPIO output mode. The pull-up/down resistor enable option allows the user to disable or
enable the pull-up/down resistors connected to the pin when used in the GPIO input mode.
Finally, the interrupt enable option can be used to configure the interrupt properties related
to the pin. We will see how to use this property in Chap. 9.

Grace (MSP430) * GPIO - Power User Mode "
Oyerview Pingut 32-OFN Pinout 2)-TSSOP0-POP Pingut 28-TSS0P BPZ B2

In this Power User view selection, you can enable each indridual GPID pin a2 pull-up/deown ressstor and/or enable the GPIO interrupt enable for risingfalling

edige.

Mote 1: For lowest power currfiguratinn, set all unused GPIO pins to Output port direction. See device User's Guide for more information.

Note 2: Pull-up/down resistor configuration i enly available on device when GPIO is configured as an Input darection pin.

* GPIO Function = Output State = Pull-Up/Down Resistor Enable = Interrupt Enable
p1o = GPIO Output * Output Set Low (Default) i I -

P11 = CAl o t b i

P12 = GPIO Input * t t w [Dasabled * Disabled
P13 = GPID Input - tput Set fanatt * [sabled = Disabled
P14 = GPIO Input w t Liow fault * Disabled = Disabled
P15 = GPIO Input ¥ Cutput Set fault * Dusabled * Disabled
P15 = GPID Qutput * Qutput Set Low (Default) v b

PLT = GPIO Input - : t + Disabled = Disabled
P20 = GPID Input - i ~ Disabled ~ Disalbled
P21 = GPIO Input - : t * Daabled = Disabled
P22 = GPIOD Input b t {sult + [isabled w Dicabled
P23 = GPIO Input b b t Default w Dsabled w Disabled
P24 = GPIO Input - | = Dasabled = Disabled
P25 = GPIO Input v (s et L w [Dasabled Disabled
PG = XN ¥ Ot . {sult v v

PLT = XOUT v Ot t t v -

P30 = GPIO Input v Output Set fault ~* Dusabled

P31 * GFIO Input v Dut et fault ~ Disabled

P32 = GPIO Input i t fault ~ Disabled

P13 = GPIO Input i et = Disabled

P34 = GPIO Input v = [Disabled

P35 = GRIO Input * Ot t Lo I ~ Disabled

P36 = GRID Input - t tlo t w [Disabled

P37 = GPID Input b el Lo 1 ~ Disabled

Figure 8.6 The power user mode under Grace.

8.5.3 The P1/P2 Mode

This mode provides the port registers (PxOUT, PxDIR, PxSEL, PxSEL2, and PxXREN) as
given in Fig. 8.7. All port registers can be set and reset in this mode by clicking on the
appropriate check button. Changes made here also affect the other modes automatically.

Grace (M5P430) * GPIO - Port 1 / Port 2 - Register Controls

PORT 1
Qutput Register

T] 3 4 i

PORT 2
Output Register

r a a 4 3

Direction Regster

¥ L] L £ 3

Direction Regster

F 4 L & 3

=22

zl

Interrupt Flag Jegister

L] 3 d a

Interrupt Flag Register

7 [. & 3

Wil

L=t

Interrupt Edge Salect Registar

T a4 3 &]

Interrupt Edge Select Ragister

T a] & 3

5

£

Internupt Enab e Reqister

i

Interupt Enable Reqister

T L]] 3 2 i a r L & Ll i] i a

L] i,

Port Select Ragister Port Select Register

L]] i] F i a T L]] i 3 F i a

s : 1 4 il

Port Select Register 2 Port Select Register 2

T L] 5 & 3 E i] r a E & i 3 i 0

Resistor Enable Registar Resistor Enable Registar

a 5 & i F 1 a F L] E & 3 £ 1 a

i ACMs

Enable Interrupt Handlers
| Generate Interrupt Handier Cose |

Generaste Interrupt Handter Code. |

Figure 8.7 The P1/P2 mode under Grace.

8.5.4 Coding Practices

In this section, we redo the digital I/O application given in Listing 8.1 using Grace. As a
reminder, this application turns on the red LED (connected to P1.0 on the MSP430
LaunchPad) when the button (connected to P1.3 on the MSP430 LaunchPad) is pressed.
When the button is not pressed, the red LED turns off. We start by generating a Grace
project. Then, we configure the pins P1.0 and P1.3 under Grace. The pin P1.0 should be
set as GPIO output. The pin P1.3 should be set as input. These settings can be done by any
of the three GPIO views. When we add the code block given in Listing 8.6 to the main.c
file of the Grace project, we are done. After compiling the project, we can run our
application.

8.6 Digital Safe Application

The purpose of this application is to learn how to use the digital I/O pins of the MSP430
microcontroller. As a real-world application, we will design a digital safe system. In this
section, we provide the equipment list, the layout of the circuit, the procedure, and the
system design specifications.

8.6.1 Equipment List

Below, we provide the equipment list to be used in this application.
* Three LEDs (green, yellow, red)

* Three 220 Q resistors

* Four dip switches

* Four push buttons

Listing 8.6 Digital I/0 example under Grace.

[*
* ======== Standard MSP430 includes ========
»/

#include =msp430.h=

[*
* ======== (race related includes ========
*7

#include <ti/mcu/msp430/Grace.h=

[*
* ======== i}l ========
r/

int main(veoid)

{

Grace_init();

!/ Activate Grace-generated configuration
while(1){

if((P1IN & BIT3)==0x00) // Activelow input
P1OUT=BITO; // Turnon the LED

else

P10OUT=0x00; // Turnoff the LED

}

return (0);

i

8.6.2 Layout
The layout of this application is shown in Fig. 8.8.

I GND
P1.0 XIN f—
Pl pep XOUT|—
P1.2 430 TEST——
— P13 G2553 RST—
o —P1 4 P17
D R P1.5 P1.6
L o b — P20 P25+H—
P2.1 P24 f—
91p22 p23pl
YV GV RV
—" |
O O o R ¢ A [L LL O
| | v\ | |
I.r IG ".I "., ll\'n,l II"-,I | -\. |("-\‘_
I R 1
@ & @ a——

Figure 8.8 Layout of the digital safe application.

8.6.3 System Design Specifications
The design of the digital safe will have three main blocks. These are listed below.

* Block 1: At startup, the user will press the enter new password push button. Then he or
she will enter a password using password switches. Afterwards, he or she will lock the
system using the verify new password push button. The yellow LED will turn on. The
system will wait for an input.

* Block 2: If the user wants to unlock the system, first he or she should press the enter
your password push button and enter the password using password switches. Then, the
verify your password push button should be pressed to unlock the safe. If the entered
password is correct, the green LED will turn on. Otherwise, the red LED will turn on
and the system will wait for the correct password.

* Block 3: After the first entry, the password can only be changed if the previous
password is entered correctly.

8.6.4 The C Code for the System

In the first part of the code, given in Listing 8.7, constants are defined. This is done to
make the code more readable. In Listing 8.7, B1, B2, B3, and B4 are used for input from
switches. BUTTON1, BUTTON2, BUTTON3, and BUTTON4 are used for input from push buttons.

YellowLedOn, GreenLedOn, and RedLedOn are used for turning on corresponding LEDs.
AllLedsOff is used for turning off all LEDs at the same time.

Listing 8.7 Digital safe, the C code part I.

#define BUTTON1 ((P2IN & 0x02) == 0x00)
#define BUTTON2 ((P2IN & 0x04) == 0x00)
#define BUTTON3 ((P2IN & 0x08) == 0x00)
#define BUTTON4 ((P2IN & 0x10) == 0x00)

#define Bl (P1lIN & 0x10)

#define B2 (P1lIN & 0x20)

#define B3 (P1lIN & 0x40)

#define B4 (P1lIN & 0x80)

#define YellowLedOn (P1lOUT |= 0x01)
#define GreenLedOn (P1lOUT |= 0x02)
#define RedLedOn (P1OUT |= 0x04)
#define AllLedsOff (P1lOUT &= ~0x07)

In the second part of the code, given in Listing 8.8, local variables to be used in the
code are defined. They must be defined at the beginning of the main function to prevent
some compiling errors in CCS. In Listing 8.8, the NewPassword array is used for
determining the new password. The YourPassword array is used for entering the password
to unlock the system. The integers EnterNewPassword and EnterYourPassword are used
for changing and entering the password. The requirement of entering the correct password
for changing the old password is checked with the Control integer.

Listing 8.8 Digital safe, the C code part II.

int Control = 0:

int NewPassword([4];

int YourPassword[4];

int EnterNewPassword = 0:
int EnterYourPassword = 0:

In the third part of the code, given in Listing 8.9, the hardware setup is done. In the
first line of Listing 8.9, the watchdog timer is disabled. The reason for this step will be
explained in Sec. 10.5. In the second line, the port P2 is configured as digital 1/O
completely. In the third and fourth lines, pin directions are assigned. For port P1, PADIR =
0xOF is used because three LEDs are connected to P1.0, P1.1, and P1.2 and four dip
switches are connected to P1.4, P1.5, P1.6, and P1.7. The unused pin P1.3 is set as output

to prevent accidental input changes. For port P2, P2DIR = 0xE1 is used because four push
buttons are connected to pins P2.1, P2.2, P2.3, and P2.4. Unused pins P2.0, P2.5, P2.6,
and P2.7 are set as output. In the fifth and sixth lines, pull-up/down resistors are enabled
for pins in which a button or a switch is connected. In the seventh and eighth lines, output
registers are set as P10UT=0xFO and P20UT=0x1E. Low bits of these registers are used for
turning off LEDs initially. Unnecessary power consumption is prevented for unused output
pins by this procedure. On the other hand, high bits of these registers are used for
choosing pull-up resistors for input pins.

Listing 8.9 Digital safe, the C code part III.

WDTCTL = WDTPWWDTHOLD;

PZS5EL = 0x00:
P1DIR = 0x0F;
PZDIR = 0xE1l:
P1REN = 0xFO0O:

PZ2REN = 0x1E:
P1lOUT = 0xFO0O:
P20UT = 0x1E:

Finally, the C code for the system (with all its components) is given in Listing 8.10.
The code block doing the operation is put in an infinite loop. Therefore, the system will
wait for an input, checking for the password all the time. Initially, the Control variable is
zero and the system is in Block 1. When BUTTON1 is pressed, the EnterNewPassword
variable is changed to 1 and values read from switches are assigned to the NewPassword
array. Unless BUTTON2 is pressed, the EnterNewPassword variable is kept at 1 and switches
can be changed. But when BUTTON? is pressed, this variable is toggled to zero and the
new password is determined. The yellow LED will turn on to indicate that this step is
done. The Control variable is also changed to 1 to get the system in Block 2. When
BUTTON3 is pressed, the EnterYourPassword variable is changed to 1 and values coming
from switches are assigned to the YourPassword array. When BUTTON4 is pressed,
YourPassword and NewPassword arrays are compared. If they do not match, the password
is decided as wrong and the red LED turns on for a warning. If they match, the entered
password is decided as true and the green LED will turn on to indicate that the safe is
unlocked. The control variable is also changed to zero to get the system in Block 1 to
determine a new password. It can be seen that the Control variable is used alone to
accomplish Block 3.

Listing 8.10 Digital safe, the complete C code.

#include =msp430.h=

#define BUTTON1 ((P2IN & 0x02) ==
#define BUTTON2 ((P2IN & 0x04) =
#define BUTTON3 ((P2IN & 0x08) =
#define BUTTON4 ((P2IN & 0x10) ==
#define Bl (P1lIN & 0x10)
#define B2 (P1lIN & 0x20)
#define B3 (P1lIN & 0x40)
#define B4 (P1IN & 0x80)
#define YellowLedOn (P1lOUT |= 0x01)
#define GreenLedOn (P1lOUT |= 0x02)
#define RedLedOn (P1OUT |= 0x04)
#define AllLedsOff (P1OUT &= ~0x0
void main(veid)

{

WDTCTL = WDTPW|WDTHDLD H

int Control = 0;

int NewPassword[4];

int YourPassword[4];

int EnterNewPassword = 0;

int EnterYourPassword = 0;

P2SEL

0x00;

0x00)

= 0x00)
= 0x00)

0x00)

7)

P1DIR = (0x0F:
P2DIR = 0xEl;
P1REN = 0xFO0;
P2ZREN = 0x1E;
P1OUT = 0xFO0;
P20UT = (0x1E:

while(1l)

{

if (Control == 0)
l

if (BUTTON1)

(

EnterNewPassword = 1;

]

if (EnterNewPassword == 1)
{

AllLedsOff;

NewPassword[(0] = Bl;
NewPassword[1l] = B2:
NewPassword[2] = B3;
NewPassword[3]
if (BUTTON2)

l
EnterNewPassword = 0:
YellowLedOn;

Contreol = 1;

1

!

!

if (Control == 1)
l

if (BUTTON3)

{

EnterYourPassword = 1;

]

if (EnterYourPassword == 1)

|
m
7.
-

YourPassword[0] = Bl;
YourPassword[1l] = B2;
YourPassword[2] = B3;
YourPassword[3] = B4;

if (BUTTON4)
I

EnterYourPassword = 0:

if ((YourPassword[0] == NewPassword[0]) &&
(YourPassword[1l] == NewPassword[l]) &&
(YourPassword[2] == NewPassword[2]) &&
{YourPassword[3] == NewPassword[3]))

I

AllLedsOff;

GreenLedOn:

Control = 0:
}

else

{
AllLedsOff:;
RedLedOn;:

HH

8.7 Summary

A microcontroller interacts with other devices through its ports. In this chapter, we
focused on the digital I/0 in the MSP430. We reviewed specific registers to set up the
digital I/0O properties. Then we considered the two important hardware issues related to
push buttons. Finally, we designed a real-life application (a digital safe) using digital I/O.
We provided all the hardware and software design information related to the digital safe.
We hope that this information will encourage the reader to develop new projects using
digital I/O.

8.8 Problems

8.1 Write a C program for the MSP430 to calculate the number of zeros and
ones in an array. If the number of zeros is more than the number of ones, the red
LED (connected to P1.0 on the MSP430 LaunchPad) will turn on. Otherwise, the
green LED (connected to P1.6 on the MSP430 LaunchPad) will turn on.

8.2 Repeat Prob. 8.1 in assembly language.
8.3 Repeat Prob. 8.1 using Grace.

8.4 Write a C program for the MSP430 to multiply numbers (except zeros) in
an array. Then divide the result by the length of the array. If the result is less than
the first predefined value, the red LED (connected to P1.0 on the MSP430

8.10
8.11
8.12

8.13
8.14

LaunchPad) will turn on. If it is between the first and second predefined values, the
green LED (connected to P1.6 on the MSP430 LaunchPad) will turn on. If it is
more than the second predefined value, both LEDs will turn on.

8.5 Repeat Prob. 8.4 using Grace.

8.6 Write a C program for the MSP430 to compute the average of 10 floating-
point numbers. If the average is greater than zero, the red LED (connected to P1.0
on the MSP430 LaunchPad) will turn on. Otherwise, the green LED (connected to
P1.6 on the MSP430 LaunchPad) will turn on. Initially both LEDs are turned off.

8.7 Repeat Prob. 8.6 using pointers and pointer arithmetic only.
8.8 Repeat Prob. 8.7 using Grace.

8.9 Write a C program for the MSP430 with the following specifications:
When the push button (connected to P1.3 on the MSP430 LaunchPad) is pressed,
the red LED (connected to P1.0 on the MSP430 LaunchPad) will turn on and wait
for a certain time. Then, both the red and green LEDs (connected to P1.0 and P1.6
on the MSP430 LaunchPad) will turn on and wait for a certain time. Afterwards,
the red LED (connected to P1.0 on the MSP430 LaunchPad) will turn off and the
green LED (connected to P1.6) will turn on and wait for a certain time. Finally,
both LEDs will turn off. This procedure is repeated indefinitely. Hint: Use loop
operations to generate waiting times.

Repeat Prob. 8.9 in assembly language.
Repeat Prob. 8.9 using Grace.

Write a C program for the MSP430 with the following specifications. When the
push button (connected to P1.3 on the MSP430 LaunchPad) is pressed four times,
the red LED (connected to P1.0 on the MSP430 LaunchPad) will turn on and the
green LED (connected to P1.6 on the MSP430 LaunchPad) will turn off. When the
push button is pressed two more times, the red LED will turn off and the green
LED will turn on. This procedure is repeated indefinitely.

Repeat Prob. 8.12 in assembly language.
Repeat Prob. 8.12 using Grace.

9 Interrupts

Chapter Outline

9.1 What Happens When an Interrupt Occurs?

9.2 Types of Interrupts

9.3 Interrupt Flags
9.4 Interrupt Vectors

9.5 Interrupt Service Routines

9.6__ Port Interrupts

9.7 Coding Practices for Interrupts
9.8 Interrupts in Grace
9.9 Washing Machine Application

9.10_ Summary
9.11 Problems

The interrupt is the main tool for event-driven programming in a microprocessor. If the
user wants to write a program to react to predefined actions, the only solution is using
interrupts. The most important (and confusing) property of interrupts is their
unpredictability. Since interrupts are generated by hardware, it is not possible to predict
when they will occur. This chapter is about interrupts on the MSP430. We start by
explaining what happens when an interrupt occurs. Then, step-by-step we explore the
interrupt concept.

9.1 What Happens When an Interrupt Occurs?

We experience interrupts in our daily lives. Let’s assume that the fire alarm is activated for
a fire drill during the class hour. This is an interrupt. The instructor halts the lesson and
everyone leaves the class. This is what we do after the interrupt. After the fire drill is
done, the lesson resumes from where it was left. This is returning from the interrupt. The
pattern is the same for the CPU. Let’s analyze what happens when an interrupt occurs.

First of all, the interrupt must come from an external source (such as a button or a
switch) or an internal source (like a timer or an analog-to-digital conversion [ADC]
signal). The user should enable the interrupt option for the desired source to process the
interrupt. As the interrupt comes, the CPU stops what it is doing. If it is executing an
instruction, this is done. Then, without executing the next instruction the CPU saves the
program counter (PC), status register (SR), and variables to the stack. The PC is set to the
interrupt vector, which is a predefined memory address for that specific interrupt.
Therefore, the execution continues from that address. As a matter of fact, the interrupt
vector address holds another address to be branched to. This branched address holds a
subroutine to be processed in response to the interrupt. This is called the interrupt service

routine (ISR). The user is responsible for the code block to be written in the ISR. The
CPU recalls the saved PC, SR, and variables from the stack as the ISR is executed. Then it
turns back to the main program and continues executing the next instruction.

Let’s analyze a simple example to clarify what happens when an interrupt occurs. We
want to turn on the red LED connected to port P1.0 by the push button connected to pin
P1.3 of the MSP430 LaunchPad. In this case, the interrupt source will be pin P1.3. Here
we assume that the port settings are done as given in Chap. 8. The interrupt from pin P1.3
is enabled (to be explained in Sec. 9.6 in detail). If we only want to turn on the red LED
when the button is pressed, the main program will just have an infinite loop. In other
words, the CPU will wait in an infinite loop doing nothing. When the user pushes the
button, an interrupt will be generated. The CPU will stop the infinite loop. The CPU will
set the PC to the address of the port interrupt vector. As the CPU reaches this address, it
will check what is written there. The interrupt vector holds another address pointing to the
ISR as we mentioned previously. Now, the CPU sets the PC to this address. Therefore, the
CPU reaches the ISR in the next step. As programmers, it is our responsibility to write the
code block in the ISR. Since our task is just to turn on the red LED, the code in the ISR
will just set pin P1.0 to V.. As this code block is executed, the CPU will turn back from
the ISR and continue to wait in the infinite loop. In the following sections, we will explore
all these steps in detail.

9.2 Types of Interrupts

The MSP430 has different kinds of interrupt sources as listed in Table 9.1. These are
divided into three groups: reset, non-maskable, and maskable. The reset interrupt has the
highest priority. Maskable and non-maskable interrupts (NMIs) are enabled by individual
interrupt enable bits. The main difference between them is that maskable interrupts are
also controlled by the global interrupt enable (GIE) bit in the SR. NMIs do not have such
control. There are other NMIs aside from those listed in Table 9.1. Detailed information
on these can be found in [16].

Table 9.1 Interrupt sources, flags, and vectors.

Interrupt Interrupt

Interrupt Source Flag Type Address Priority

Power-Up PORIFG

External Reset RSTIFG

Watchdog Timer+ WDTIFG reset FFFER 31

Flash key violation KEYV highest

PC out of range

NMI NMIIFG

Oseillator fault OFIFG (nonj-maskable FFFCh 30

Flash memory access violation ACCVIRG

Timer1_A3 TAICCRO, CCIFG maskable FFFAQ 29

Timerl_A3 TAICCR2, TAICCRI1 maskable FFFsh 28
CCIFG, TAIFG

Comparator_A+ CAIFG maskable FFF6h 27

Watchdog Timer+ WDTIFG maskable FFF4h 26

TimerQ_A3 TAOCCRO, CCIFG maskahle FFF2h 25

Timer(_A3 TAOCCR2, TAOCCR1 maskable FFFOh 24
CCIFG,TAIFG

USCI_AQUSCI_BO receive UCAORXIFG UCBORXIFG maskable FFEEh 23

USCI-BO I°C status

USCI_ANUSCI_BO transmit UCAOTXIFG UCBUTXIFG maskable FFECh 22

USCI_BO I°C receive/transmit

ADCI10 ADCI0IFG maskable FFEAh 21

1/O Port P2 (up to eight flags) P2IFG.O o P2IPG T maskable FFE6h 19

1/O Port P1 (up to eight flags) PIIFGO o P1IPG .7 maskable FFE4h 13

There is a possibility that more than one interrupt will occur at the same time. Hence,
there must be an order between the interrupt sources. This is called the priority order
among interrupts. This order indicates that when two interrupts occur at the same time, the
one with higher priority will take precedence over the lower priority one. The priority
order for the MSP430 is provided in Table 9.1.

9.3 Interrupt Flags

Interrupt flags are actually register bits. When an interrupt occurs, its specific flag is set.
Therefore, the CPU becomes aware of the interrupt. The list of interrupt flags for the
MSP430 appears in Table S9.1. While reset, non-maskable, and universal serial
communications interface (USCI) interrupt flags are placed in interrupt flag registers,
maskable interrupt flags (except USCI interrupt flags) are located in the related module’s
register. There is also a CPU interrupt flag controlled by the GIE. When a maskable
interrupt occurs, the CPU interrupt flag and the related flag in the module register are set.

The CPU should also know whether to process the incoming interrupt or not. The
interrupt enable bit is used for this purpose. Each interrupt has a specific enable bit in a
different register address. This bit must be set to request an interrupt. It is sufficient to set
the related enable bit for NMIs. But the GIE bit must also be set for maskable interrupts.

The GIE bit warns the CPU about the interrupt process for these. The individual interrupt
enable bit gives information about the interrupt source.

For some microcontrollers, an interrupt with higher priority may occur while an
interrupt with a lower priority is in progress. This is called a nested interrupt. But this may
cause a stack overflow. The GIE bit is cleared when the ISR is called in the MSP430. This
prevents calling any other maskable interrupts. In other words, nested interrupts are not
allowed in the MSP430. To enable the interrupt from the same source again, the related
interrupt flag must be reset in the ISR. The GIE flag is cleared automatically, so there is no
need to reset it.

9.4 Interrupt Vectors

As we mentioned in Sec.9.1, after an interrupt occurs and the necessary information about
the main process is saved, the CPU needs to go to the ISR. The memory address for the
ISR is kept in an interrupt vector. Generally, each interrupt source has a specific interrupt
vector. But some of them share the same interrupt vector. For each interrupt source, the
interrupt vector address is given in Table 9.1. To simplify coding, these addresses are
defined as constants in the MSP430 header file given in the Appendix. In Table 9.2, they
are shown as interrupt vector definitions.

Table 9.2 Interrupt vector definitions.

Interrupt Source Interrupt Vector Definition

I/O Port 1 PORT1_VECTOR
1I/O Port 2 PORT2_VECTOR
ADCI10 ADCI0_.VECTOR
USCI A0/BO Transmit USCIABOTX_VECTOR
USCI A0/BO Receive USCIABORX_VECTOR
TimerO_A CC1 TIMERO_AI_VECTOR
TimerO_A CCO TIMERO_AO_VECTOR
Watchdog Timer WDTVECTOR
Comparator A COMPARATORA_VECTOR
Timerl_A CClI TIMERI_AI_VECTOR
Timerl_A CCO TIMERI_AO_VECTOR
Non-Maskable Interrupt NMI_VECTOR
Reset RESET_.VECTOR

9.5 Interrupt Service Routines

The interrupt service routine (ISR), also known as the interrupt handler, is the code block
which is executed when an interrupt occurs. The ISR is very similar to a function
(subroutine). But unlike a function, ISR is called by the interrupt. As discussed before, the

MSP430 doesn’t allow nested interrupts. Therefore, the ISR must be kept short. It must
perform its actions as quickly as possible and return to the main code to allow other
interrupts. To do so, the programmer should also reset the related interrupt flag at the end
of the ISR.

9.5.1 ISRinC

The pragma keyword should be used in defining an ISR in C. Since the ISR will not be
related to the main code (remember, their only connection is through hardware), the C
compiler may not include it in the compilation process. To avoid this, we define the ISR
with the # pragma keyword in front of it. To define to which interrupt vector this ISR is
related, we should also put it before the ISR. The ISR should also be distinguished from a
function. Therefore, the __interrupt keyword should be added before its name. In Listing
9.1, these definitions are given on a sample port interrupt.

Listing 9.1 ISR definitions in C.

// Main Code Block to be Added Here

#pragma vector=PORT1_VECTOR

// define the interrupt vector
__interrupt wvoid PORT1_ISR(void)|{
// Interrupt Service Routine

// ISR Code to be Added Here

P1IFG = 0x00; // clear the interrupt flag

}

9.5.2 ISR in Assembly

Defining the ISR in the assembly language is easier than in C. First of all, there is no
pragma keyword in the assembly code. The interrupt vector should be defined here also.
This is necessary to associate the ISR with the interrupt. In fact, we applied this procedure
in Sec. 7.5. There, we associated the RESET label with the RESET_VECTOR. Next, we provide
a sample code block in Listing 9.2 for the port-based interrupt in assembly language. Here,
the interrupt vectors and the ISR are associated at the bottom of the code block. The ISR is
just like a subroutine. The only exception is the instruction reti, which is used instead of
ret to return from the ISR.

Listing 9.2 ISR definitions in assembly language.

.cdecls C,LIST, "msp430.h"

text

.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END,SP

:The Main Code Block to be Added Here

: ISR Code to be Added Here

bic.b #08h,P1IFG ;Clear the P1.3 interrupt flag
reti :Return from the ISR

.global __STACK_END
.5ect .stack

.5ect RESET._VECTOR
.short RESET

.sect PORT1_-VECTOR
.short P1_ISR

.end

9.6 Port Interrupts

The interrupt may be generated from several sources as mentioned earlier. Since digital
input and output (I/O) was considered in Chap. 8, here we focus on the interrupts from
ports. We will also focus on interrupts from other sources in the following chapters.

Ports P1 and P2 can be used as interrupt sources for the MSP430. Each pin of these
ports can be used for a different interrupt. Unfortunately, these share the same interrupt
vector, hence the same ISR. Interrupt flags can be used to overcome this issue. Using
them, the task of each pin interrupt can be controlled separately by the condition of the
related interrupt flag. There are three special registers to control port interrupts: interrupt
enable register (PxIE), interrupt edge select register (PxIES), and interrupt flag register
(PxIFG).

The PxIE register is used to enable the interrupt for the associated pin. To enable the
port interrupt from a specific pin, the corresponding bit in PxIE should be set. To disable

the interrupt from the same pin, the corresponding bit should be reset. Initially all the port
interrupts are disabled.

The PxIES register is used to select the signal edge in which the interrupt occurs (on
a specific pin). The interrupt occurs when the input goes from low to high, if the bit
corresponding to the pin is reset. The interrupt occurs when the input goes from high to
low, if the bit is set. PxIE and GIE bits must be set beforehand to enable the interrupt from
that pin.

The PxIFG register is used to check the interrupt condition. When an interrupt occurs
from a pin, the related interrupt flag is set. PxIFG must be cleared at the end of the ISR to
allow a new interrupt. In the same manner, all the interrupt flags should be reset at the
beginning of the program to avoid any confusion.

9.7 Coding Practices for Interrupts

In this section, we provide several C and assembly codes related to port interrupts under
the MSP430. These provide basic examples on how to use interrupts on the MSP430
LaunchPad.

9.7.1 Interruptsin C

The first C code on interrupts, given in Listing 9.3, toggles the red LED when the button is
pressed. Here, it is important to note that all the interrupts are enabled by an intrinsic
function _enable_interrupts().

Listing 9.3 Toggle the red LED by an interrupt, in C language.

#include <msp430.h=>

#define LED BITO
#define BUTTON BIT3

void main(void)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = LED;
rlouTt LED;

P1IE = BUTTON;// enable interrupt from port Pl
P1IES = BUTTON;// interrupt edge select from high to low
P1IFG = 0x00;:// clear the interrupt flag

_enable_interrupts();// enable all interrupts

while(l); // wait for an interrupt

}

#pragma vector=PORTI1_VECTOR
// define the interrupt vector
_.interrupt woid PORTI1_ISR(woid){
// Interrupt Service Routine
P1OUT ~= 0x01; // toggle LED
P1IFG = 0x00; // clear the interrupt flag

}

In the second C code, given in Listing 9.4, the number of button presses is counted by
the ISR. Here, the variable count is specifically defined as global. Therefore, it can be
kept between successive interrupts.

Listing 9.4 Count the number of button presses by interrupts, in C language.

#include <msp430.h=
#define BUTTON BIT3
int count = 0:

void main(void)

{

WDTCTL = WDTPW|WDTHOLD;

P1IE = BUTTON;// Enable interrupt from portl
P1IES = BUTTON;// Interrupt edge select from high to low
P1IFG = 0x00;// Clear the interrupt flag

enable_interrupts();// Enable all interrupts

while(l);

}

#pragma vector=PORT1_VECTOR

// define the interrupt vector
_-interrupt weoid PORT1_ISR(wveoid)|

// Interrupt Service Routine for Port 1
count += 1;

P1IFG = 0x00;// Clear the interrupt flag
J

In the third C code, given in Listing 9.5, the red and green LEDs are turned on based
on the total number of button presses. Again, the variable count is specifically defined as
global for the same reason given in Listing 9.4.

Listing 9.5 Turn on and off LEDs by the total number of interrupts, in C language.

#include <=msp430.h=

#define REDLED BITO
#define GREENLED BITG6
#define BUTTON BIT3
int count = 0;

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

P1DIR = REDLED|GREENLED H
P10OUT 0x00:

P1IE = BUTTON;// enable interrupt from portl

P1IES = BUTTON;// interrupt edge select from high to low
P1lIFG 0x00;// clear interrupt flag

I

enable_interrupts();// enable all interrupts

while(l);
J

#pragma vector=PORTI1.VECTOR

// define interrupt vector
--interrupt woid PORTI1_ISR(woid){
// Interrupt Service Routine

count++;
if (count == 4)P1lOUT = REDLED;// Turn on the RED LED
if (count == 6){

P1OUT = 0x00;

Pl1OUT = GREENLED;

count = 0:

}// Turn on the GREEN LED

P1lIFG = 0x00;// clear the interrupt flag

9.7.2 Interrupts in Assembly

In the first assembly-based port interrupts application, we redo the code given in Listing
9.3. Here, we toggle red and green LEDs when the button is pressed instead of toggling
the red LED alone. The assembly code for this operation is given in Listing 9.6.

Listing 9.6 Toggle red and green LEDs when the button is pressed, in assembly
language.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

mov.b #41h,P1DIR ;Pl1.0 and Pl.6 output, else input
mov.b #01h,P10OUT ;P1.0 set, else reset

bis.b #08h,P1IE ;Pl.3 Interrupt enabled

bis.b #08h,P1IES ;Pl1.3 high/low edge

bic.b #08h,P1lIFG ;Pl.3 IFG cleared

bis.w #GIE,SR ;Enable interrupts

P1 ISR ;Toggle P1.0 Output

xor.b #41h,P10UT ;P1.0 and P1.6 toggle

bic.b #08h,P1IFG ;P1l.3 IFG Cleared
reti ;Return from ISR

.global __STACK_END
.sect .stack

.sect RESET_VECTOR
.short RESET

.sect PORT1_VECTOR
.short P1.ISR

.end

In the second assembly-based port interrupt application, we redo the code given in
Listing 9.5. The final assembly code is given in Listing 9.7.

Listing 9.7 Turn on and off LEDs by the total number of interrupts, in assembly
language.

.cdecls C,LIST, “msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

mov.b #41h,P1DIR ;Pl.
bic.b #41h,P10UT ;Pl.
bis.b #08h,P1IE ;Pl.
bis.b #08h,P1IES ;Pl.
bic.b #08h,P1IFG ;Pl.
clr R5

and P1l.6 output, else input
and Pl.6 reset

Interrupt enabled

high/low edge

IFG cleared

W W W o o

bis.w #GIE,SR ;Enable all interrupts
jmp $

P1 ISR ;Toggle P1.0 Output
inc RS

cmp.w #4d,R5

jeq RedLED

cmp.w #6d,R5

jeqg GreenLED

bic.b #08Bh,P1IFG ;Pl1.3 IFG Cleared
reti :Return from ISR

RedLED:

bis.b #01h,P10UT

bic.b #40h,P10OUT

bic.b #08h,P1lIFG ;Pl.3 IFG Cleared
reti ;Return from ISR

GreenLED:

bic.b #01h,P10UT

bis.b #40h,P10OUT

clr R5

bic.b #08h,P1lIFG ;Pl.3 IFG Cleared
reti ;Return from ISR

.global __STACEK_END
.5ect .stack

.3ect RESET_VECTOR
.short RESET

.3ect PORT1_.VECTOR
.short P1_ISR

.end

9.8 Interrupts in Grace

We can use Grace to handle interrupts. There are several interrupt sources for the MSP430
as tabulated in Table 9.1. Up to now, we only considered port interrupts. Therefore, we
will focus on them in this section.

9.8.1 Port Interrupts

The port power user or P1/P2 mode of general purpose input and output (GPIO) has a
View All Interrupt Handlers link. As we press it, a new tab named Interrupt Vectors
appears. This is given in Fig. 9.1. In this tab, all interrupt sources are listed under the All
Interrupts list. We should select either Port 1 or Port 2 in this list to generate a port
interrupt. As we select one of these options, the select buttons for specific pins appear on
the right as shown in Fig. 9.1.

Grace (M5P430) * Interrupt Vectors - MSP430

Interrupt Vector List Open Interrupt Vector File
Thas 15 a consoldated view of all mterrupt wectors for MSPA30G2553 device. To view each mbermupt handler in more detail, chck on each tem in the st of All
Interrupts
= All Interrupts = [nterrupt Details

Non-rmaskable The current internupt prionty s 18

Tirmerl A3 CCRD [|

Tirnerl_A3 CCRI-2 [Genesste intesrupt Handier Code

Comparator A PLIED PLEL

Sy T Portl Interrupt Enable Bit D[] Portd Interrupt Enable Bit 1
Timeed_A3 CCRD L&l EEffupt Chabe Bl U Ofl Interrupl Enabile i
Tirnee)_A3 CCR1-2 P1IE.2 MIE3

LUSCT AD-B0 Recerve

Portl Intermupt Enable Bit 2 Portl Interrupt Enable Bit 3
USC1 AD-BO Transmit

ADCLD P1IEA PLIES
Part 2 Perl Interupt Enable Bit 4 Paortl Interrupt Enable Bit 5
P1IE& PIET
Portl |n':1-|:-.||1| Enable Bit & Portl Jntrrrupt Enable Bt 7

Figure 9.1 Interrupt vectors under Grace.

The Generate Interrupt Handler Code button generates the prototype ISR under the
file Interrupt Vectors_init.c. This file can be opened by pressing the link Open Interrupt
Vector File on the right top corner of Fig. 9.1. As a reminder, this file is automatically
generated. Unfortunately, it is reset whenever a hardware option is changed under Grace.
Therefore, it should be used with caution.

9.8.2 Coding Practices

In this section, we redo the port interrupt application given in Listing 9.3 using Grace. As
a reminder, this application toggles the red LED (connected to P1.0 on the MSP430
LaunchPad) when the button (connected to P1.3 on the MSP430 Launch-Pad) is pressed.
We start by generating a Grace project. Then, we configure pins P1.0 and P1.3 under
Grace. The pin P1.0 should be set as GPIO output. The pin P1.3 should be set as input.
These settings can be done by any of the three GPIO views given in Sec. 8.5. The port
interrupt property of P1.3 should also be done either from the power user or the P1/P2
mode of the GPIO. In this application, we do not add any code lines to the main.c file.
Since we are using the ISR, we generate an ISR prototype using the Generate Interrupt
Handler Code button. We fill the prototype Port 1 ISR block under Interrupt Vectors_init.c
as given in Listing 9.8. After compiling the project, we can run our application.

Listing 9.8 Generating a port interrupt under Grace.

#pragma vector=PORT1_VECTOR
__interrupt wveoid PORT1_ISR_HOOK (void)
{

P1OUT "= BITO;

P1IFG = 0x00;

}

9.9 Washing Machine Application

The aim in this application is to learn how to set and use port interrupts of the MSP430
microcontroller. As a real-world application, we will design a washing machine system
using a stepper motor. In this section, we provide the equipment list, layout of the circuit,
procedure, and system design specifications.

9.9.1 Equipment List

Following is the equipment list to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator
* One 330-nF capacitor

* One 10-pF electrolytic capacitor
* One stepper motor

* One ULN2003 motor driver

* Five push buttons

* Three 100-nF capacitors

* Two LEDs (yellow and red)

« Two 220-Q resistors

The stepper motor is a device that rotates in steps, rather than turning smoothly as a
dc motor does. The rotation step size can be 0.9 (half-stepping) or 1.8 (full-stepping)
degrees. Therefore, a full rotation needs 400 and 200 steps respectively. The speed of the
motor is determined by the time delay between each step. In this application, we use a
four-phase stepper motor.

We should feed a binary sequence to rotate the stepper motor. This sequence will
hold the states. For our four-phase motor, the binary sequence for half-stepping is given in
Table 9.3. For full-stepping, this sequence will be as in Table 9.4. We should feed one of
these sequences in a periodic manner in order to rotate the stepper motor continuously. We
should also add a time delay between each state in the sequence for the motor to work

properly.
Table 9.3 Half-step control sequence.

States Ouvutputl Ouvutput2 Ouvutput3d Outputs

Statel
State2
State3
State4
State5
State6
State7

o = B == R = T - R e B
o0 s == DD
T T e S e B e [

o0 0 0 = = =

State8

Table 9.4 Full-step control sequence.

States Ouvutputl Ouvutpui2 Output3d Outputs

Statel 1 0 0 0

State2 0 1 0 0

State3 0 0 1 0

State4 0 0 0 1
9.9.2 Layout

The layout of this application is given in Fig. 9.2. The voltage supply block will be used
in future applications also. Therefore, it is given in Fig. 9.3.

direction.

NI OUTI Red
IN2 ouUT? Bloe & .
IN3 OUT3 White ""'t"‘pp"‘_]
vg ULN gy Orange Moto1
INs 2003 ouTsl— 2 I Brown
IN6 OUT6 —
IE INT ouT? Jl_
GND COMMON
—izv
LY GND |22 l —lcrp Voltage
P10 XIN|—— - Supply
P11 XOUT |— -
P12 TEST|—
pi3 MSP per|
—P1.4 430 P17 |—
—P15 (G255} Ple—
P20 P25
P21 P24
01p22 231
“} |7
220 220 '
Q Q
. .
O l O O O O
YV RV I{}IJJ— 100 '[| | :.
nF o' gl o ol »:;l o!
» s * ° »

12-V dc
7805 Adaptor
0 Vee GND
|2 3
330nF

Figure 9.3 The voltage supply block.

9.9.3 System Design Specifications

The washing machine will be controlled by five push buttons. Two of them are main
on/off and rotation speed. The remaining three buttons are for program selection as
follows:

» Prewash: 30 rotations in one direction, then 30 rotations in the other direction.
» Normal wash: 100 rotations in one direction, then 100 rotations in the other
* Final spin: 50 rotations in one direction, but faster than prewash and normal wash.

When the main on/off button is pressed, the system will be activated. To indicate this,
the red LED will turn on. In this state, all programs (prewash, normal wash, and final spin)
can be performed. Each program can be selected by a specific button. There is an extra
button for adjusting the rotation speed to slow or fast. Depending on the selection, the
yellow LED will be either on or off. When the main on/off button is pressed again, the
system will be deactivated. To indicate this, the red LED will turn off.

9.9.4 The C Code for the System

In the first part of the code, constants for interrupts and output pins are defined. This is
done to make the code more readable. Here, ONOFF, RSPEED, NWASH, PWASH, and FSPIN
are used for interrupts from push buttons. YellowLedToggle and RedLedToggle are used
for toggling the LEDs. Also Normalwash, PrewWash, and FinalSpin are defined as
constants with appropriate values. The code block for this part is given in Listing 9.9.

Listing 9.9 Washing machine, the C code part I.

#define ONOFF ((P2IFG & 0x40) == 0x40)
#define RSPEED ((P2IFG & 0x04) == 0x04)
#define NWASH ((P2IFG & 0x08) == 0x08)
#define PWASH ((P2IFG & 0x10) == 0x10)
#define FSPIN ((P2IFG & 0x20) == 0x20)
#define RedLedToggle (P20UT “= 0x01)
#define YellowLedToggle (P20UT “= 0x02)

#$define NormalWash 1
#define PreWash 2
#define FinalSpin 3

In the second part of the code, global variables are defined. The code block for this
part is given in Listing 9.10. Here, the Program variable is used for determining the wash
cycle. The RotationSpeed variable is used for choosing the rotation speed option for the
system. The open variable is used for controlling the on/off property of the main button.
These are defined as global variables since they are used by the ISR.

Listing 9.10 Washing machine, the C code part II.

int Program;
int RotationSpeed = 0;
int open = 0;

In the third part of the code, given in Listing 9.11, the hardware setup is done. In the
first line of Listing 9.11, the watchdog timer is disabled. The reason for this step will be
explained in Sec. 10.5. In the second line, port P2 is configured as digital I/O completely.
In the third and fourth lines, pin directions are assigned. For port P1, PADIR=0xFF is used
because the stepper motor is connected to pins P1.0, P1.1, P1.2, and P1.3. Unused pins
P1.4, P1.5, P1.6, and P1.7 are set as output. For port P2, P2DIR=0x83 is used since five
push buttons are connected to pins P2.2, P2.3, P2.4, P2.5, and P2.6. Two LEDs are
connected to P2.0 and P2.1. Unused pin P2.7 is again set as output. In the fifth line, pull-
up/down resistors for button-connected pins of port P2 are enabled. In the sixth and
seventh lines, output registers are set as P10UT=0x00 and P20UT=0x7C. Unnecessary power
consumption is prevented for unused output pins by this procedure. On the other hand,
high bits of the P2OUT register are used for choosing pull-up resistors for input pins. In
the next three lines, interrupt configurations for port P2 are done. Interrupt is enabled for
pins P2.2, P2.3, P2.4, P2.5, and P2.6 by P21E=0x7C (since a push button is connected to
each). All of these five interrupts are triggered by a high-to-low transition. Therefore, we
set P2IES=0x7C. Also, all interrupt flags are cleared at the beginning of the code by
P21FG=0x00. Finally, in the last line the GIE bit is set to enable maskable interrupts by the
intrinsic function _enable_interrupts().

Listing 9.11 Washing machine, the C code part III.

WDTCTL = WDTPWWDTHOLD;

PZS5EL = 0x00:
P1DIR = (0xFF;
PZDIR = 0x83:;
PZREN = 0x7C:
P1OUT = 0x00:
PZ20UT = 0x7C:
PZIE = 0x7C:
PZIES 0x7C:
PZ2IFG 0x00:

_enable_interrupts();

ISR settings for port P-2 based interrupts are given in Listing 9.12. There are five

interrupt sources coming from five different buttons. The main on/off button toggles the
variable open. It also toggles the red LED to inform the user whether the system is on or
off. The rotation speed button toggles the variable RotationSpeed. It also warns the user
about the selected rotation speed by toggling the yellow LED. The other three buttons are
used for choosing the wash program (prewash, normal wash, and final spin). Each button
assigns a different number to the variable program. The related interrupt flag is cleared at
the end of the ISR to get a new interrupt.

Listing 9.12 Washing machine, the C code part IV.

#pragma vector =PORT2_VECTOR
--interrupt wvoid PORT2_-ISR(void)|{
if (ONOFF)|
open "= 1;
RedLedToggle;
P2IFG &= ~0x40;

}

if ((RSPEED) && (open == 1)){
RotationSpeed "= 1;
YellowLedToggle:;

P2IFG &= ~0x04;

|

if ((NWASH) && (open == 1)){
Program = NormalWash;

P2IFG &= ~0x08;

J

if ((PWASH) && (open == 1)){
Program = PreWash;

P2IFG &= ~0x10;

J

if ((FSPIN) && (open == 1)){
Program = FinalSpin;

P2IFG &= ~0x20;

j
P2IFG=0x00;

Finally, the C code for the system (with all its components) is given in Listing 9.13.
The code block doing the operation is put in an infinite loop. Therefore, the system will
wait for an input and check for the buttons all the time.

Listing 9.13 Washing machine, the C code.

#include =msp430.h=>

#define
#define
#define
#define
#define
#idefine
#define
#define
#define
#define

ONOFF ((P2IFG & 0x40) == 0x40)
RSPEED ((P2IFG & 0x04) == 0x04)
NWASH ((P2IFG & 0x08) == 0x08)
PWASH ((P2IFG & 0x10) == 0x10)
FSPIN ((P2IFG & 0x20) == 0x20)
RedLedToggle (P20OUT "= 0x01)
YellowLedToggle (P20UT ~“= 0x02)
NormalWash 1

PreWash 2

FinalSpin 3

int Program=0;
int RotationSpeed = 0;
int open = 0;

void delayms(int);
void Wash();

void main(veid)

{
WDTCTL

P2SEL =
= (xFF:
= (0x83;
= 0x7C:
= 0x00;

P1DIR
P2DIR
P2ZREN
P1OUT

P20UT =

P2IE =

= WDTPW|WDTHOLD;

0x00;

0x7C:
0x7C:

P2IES = 0x7C:;
P2IFG = 0x00;

_enable_interrupts();

while(1l)/{
if(Program!=0) Wash();
!

)

vold delayms(int a){
while(a != 0)

l

~delay cycles(1000);
a--j

]

]

volid Wash(){
int speed, turn, fast, slow, Rturn, Lturn, pos;

volatile unsigned int seqgr[8] = {0x08,0x0C,0x04,0x06,
0x02,0x03,0x01,0x09);
volatile unsigned int seqgl[8] = {0x09,0x01,0x03,0x02,

O0x06,0x04,0x0C,0x08};

if (Program == 1)

slow = 20, fast = 10, Rturn = 100, Lturn = 100;
]

if (Program == 2){

slow = 20, fast = 10, Rturn = 30, Lturn = 30:

}
if (Program == 3)|
slow = 10, fast = 5, Rturn = 50, Lturn = 0;

j

if (RotationSpeed == 0)
speed = fast;
else

speed = slow;

for {(turn=0; turn<Rturn; turn++)|
if(open == 1){

pos = 0;

while(pos<8){

P1OUT = seqr[pos];

pos+t++;

delay ms (speed) ;

}

P1OUT = 0x00;

J

aelse break:

}

for (turn=0; turn<Lturn; turnt++)|
if(open == 1){

pos = 0;
while(pos<8)|{
P1OUT = seql[pos];
pos++;

delay.ms (speed) ;

}

P1OUT = 0x00;

J

aelse break:

)

Program = 0;

#pragma vector =PORTZ _VECTOR
_interrupt wvoid PORTZ_ISR(wvoid){
if (ONOFF){

open "= 1

RedLedToggle;

P2IFG &= “0x40;

J

if ((RSPEED) && (open == 1)){
RotationSpeed ~= 1;
YellowLedToqggle;

P2IFG &= ~0x04:

}

if ((NWASH) && (open == 1))|
Program = NormalWash;

P2IFG &= ~0x08:

}

if ((PWASH) && (open == 1)){
Program = PreWash:

P2IFG &= ~0x10;:

]

if ((FS5PIN) && (open == 1)){
Program = FinalSpin;

P2IFG &= ~0x20;

]
P2IFG=0x00;

There are two functions used in this code: delay ms and wash. Delay times between
the stepper motor states are obtained by the delay ms function. This function calls the
intrinsic _delay_cycles function with a value of 1 ms. This intrinsic function is called
within a loop (by the time coming from the input variable a) to obtain the desired delay
time. The wash function is used to rotate the stepper motor according to the value chosen
by the rotation speed and one of the three program selection buttons. Program selection
buttons determine the number of right turns, number of left turns, and the delay time
coefficient (for slow or fast rotation speed). The rotation speed button is used to select the
fast or slow rotation speed. To rotate the stepper motor, a while loop is added to send the
states given in Table 9.3. The iteration number of these sequences is controlled by for
loops. Each for loop has a condition open==1. This is used for breaking the for loop when
the main on/off button is pressed.

9.10 Summary

This chapter is about the interrupt-based programming of the MSP430. We first
considered what happens when an interrupt occurs. Then, step-by-step we explored the
interrupt concept. Therefore, we analyzed the interrupt types, interrupt vectors, and ISR.

We only considered port-based interrupts here, since we discussed digital I/O concepts
previously. In later chapters, we will also see timer, ADC, and digital communication-
based interrupts. We provided sample C and assembly codes using interrupts. We also
considered the interrupt concept under Grace. Finally, we provided a real-life application
using port interrupts.

9.11 Problems

9.1 What is the difference between the interrupt service routine and the
interrupt vector?

9.2 Write a C program for the MSP430 that will count the number of
times the push button (connected to P1.3 on the MSP430 LaunchPad) is
pressed.

a. The button-pressing operation should be defined in an ISR.
b. Observe the count value from the Watch window.

9.3 Repeat Prob. 9.2 in assembly language.

9.4 Expand Prob. 9.2 such that

a. At the beginning of the program, the green LED (connected to
P1.6 on the MSP430 LaunchPad) will turn on.

b. When the count reaches multiples of five, the green LED
(connected to P1.6 on the MSP430 LaunchPad) will toggle.

9.5 Repeat Prob. 9.4 in assembly language.

9.6 Repeat Prob. 9.4 using Grace.

9.7 Repeat Probs. 8.9 and 8.10 using interrupts.

9.8 Repeat Prob. 8.9 using interrupts under Grace.

9.9 Repeat Probs. 8.12 and 8.13 using interrupts.
9.10 Repeat Prob. 8.12 using interrupts under Grace.

9.11 Write a C program for the MSP430 such that the global integer array x with
10 elements will be filled initially. For this problem, fill it at the beginning of
the code. When an interrupt comes from the push button (connected to P1.3
on the MSP430 LaunchPad), the ISR will be called. The ISR will calculate
the global integer array y defined as y[n] = 2*x[n] - x[n-1] where n is the
index for the array. In fact, this is a simple filtering operation working with
interrupts. In the actual application, the interrupt should come from some
other source. The array y should also be filled by an other module or a
peripheral (such as ADC).

9.12 Repeat Prob. 9.11 in assembly language.
9.13 Repeat Prob. 9.11 using Grace.

10 Oscillators, Clocks, and Timers

Chapter Outline
10.1 Oscillators
10.2 Clocks

10.3_ BCM+ in Grace

10.4 TL.ow-Power Modes

10.5_ The Watchdog Timer

10.6_ WDT+ in Grace

10.7__ Timers

10.8 _ The Pin Layout for the BCM+ and Timer A Modules
10.9_ Timer A in Grace

10.10__ Chronometer Application

10.11 Summary
10.12 Problems

In earlier microcontrollers, there was just one clock (supplied by one oscillator) to handle
all time-based operations. In modern microcontrollers this approach has been abandoned,
and different time-based operations are handled by different clocks (supplied by different
oscillators). As a modern microcontroller, the MSP430 also has this property. Therefore, it
has three oscillators and three clocks. In this chapter, we will start with the oscillators. The
clocks of the MPS430 are managed by the basic clock module+ (BCM+). Next, we will
focus on it. The CPU also depends on a clock signal to operate. Therefore, to halt the
operation of the CPU, we should disable its clock. This is the main idea behind low-power
modes. We will also introduce them in this chapter. Then we will consider the watchdog
timer. Finally, we will focus on the Timer_A (TA) module of the MSP430.

10.1 Oscillators

The oscillator is the basic building block of the clock. The MSP430 has three oscillators:
the digitally controlled oscillator (DCO), very low power oscillator (VLO), and low-
frequency/high-frequency external oscillator (LFXT1). Their properties are briefly listed
in Table 10.1.

Table 10.1 Oscillators in the MSP430.

Oscillator Brief Description Frequency Range

DCO Internal RC oscillator 1 MHz, 8 MHz, 12 MHz, 16 MHz
VLO Internal RC oscillator 12 kHz
LFXTI External crystal-based oscillator

As can be seen in Table 10.1, the DCO and VLO are based on an internal resistor
capacitor (RC)-based circuitry. Therefore the DCO and VLO are cheap and quick to start.
Unfortunately, they have poor accuracy. On the other hand, LFXT1 is based on an external
crystal, which is expensive and needs a longer time to start. However, crystal-based
oscillators are accurate and stable. Internal RC oscillators are sufficient if accurate timing
is not required. The oscillators are briefly summarized in the following subsections. How
to handle their faulty operations is also explained in a separate subsection.

10.1.1 Digitally Controlled Oscillator

The digitally controlled oscillator (DCO) is a high-frequency integrated oscillator. Its
frequency can be as high as 16 MHz. The DCO is based on the internal RC circuitry.
Hence, it is not accurate as crystal oscillators. On the other hand, the DCO draws less
current. Hence, it consumes less energy. The frequency accuracy of the DCO varies in a
2% range.

10.1.2 Very Low Power Oscillator

The very low power oscillator (VLO) is a low-frequency internal RC oscillator. Its
frequency can be around 12 kHz. The VLO is generally used for periodically waking up
the device from low-power modes. The frequency accuracy of the VLO varies in a 5%
range. Therefore, it is not as accurate as the DCO.

10.1.3 Low-Frequency External Oscillator

The low-frequency external oscillator (LFXT1) can be used by connecting an external
crystal between XIN and XOUT pins. Capacitors should also be connected between these
pins and the ground. The MSP430 has internal capacitors for this purpose. External crystal
oscillators are more accurate and stable than internal RC-based oscillators. However, they
are expensive, consume more energy, and need more time to reach their stable state.
Therefore, they should not be preferred unless accurate timing is required.

10.1.4 Oscillator Faults

External crystal oscillators may cause errors due to their startup stabilization time or to a
failure during operation. When an oscillator fault occurs, system clocks sourced from it
also malfunction. In such a case, only the master clock source is switched to the DCO for
clocking the CPU. But this process may also cause problems. Fortunately, the CPU can
detect these faults through the individual oscillator fault bits such as the oscillator fault
interrupt flag (OFIFG). Then the oscillator fault can be fixed by software.

The MSP430G2553 has only LFXT1, which uses an external crystal. Therefore,
checking the OFIFG is sufficient. The best way to fix an oscillator fault is to use the NMI.

The OFIFG calls the NMI handler if the oscillator fault interrupt enable (OFIE) bit is set.
Then the OFIFG is cleared repeatedly (until it stays cleared) in the associated interrupt
service routine (ISR). The OFIE bit is cleared automatically when the NMI is handled.
Therefore, it must be set again. For more information on this issue, please see [17].

10.2 Clocks

The MSP430 has three clocks sourced by the oscillators explained in the previous section.
These are the master clock (MCLK), sub-main clock (SMCLK), and auxiliary clock
(ACLK). Their properties are listed in Table 10.2.

Table 10.2 Clocks in the MSP430.

Clock Usedby Sourced from Initial Frequency

MCLK CPU DCO,LFXTI,VLO 1 MHz
SMCLK Peripherals DCO,LFXT1,VLO 1MHz
ACLK Peripherals LFXTI1, VLO

10.2.1 The Basic Clock Module+

The clocks of the MSP430 are handled by the basic clock module+ (BCM+). A block
diagram of this module is given in Fig. 10.1. As can be seen in this figure, the clock
source, type, frequency division ratio, and other properties can be configured. This is done
by the dedicated BCM+ registers to be explained next.

VLO VLOCLK DIVAx

Oscillator —
IDW Divider| ACLK
- LEXTICLK 72 —
> clse /418
OSCOFF LEXTISx ot
e]
XIN
iy
1 LFXT1
Oscillator
DC
xourT ‘ ‘
XCAPx
SELMx
TI DIV My
CPUOFF
—o) B
01 Divider
112 MCLEK
T +— 10 14 /8
11 -
S5CG0O
: DIVSx
T A BE scal
DCO |DCOCLEL 5N |Divider -
Oscillator 72 SMCLK
1 1478

Figure 10.1 Block diagram of the BCM+.

10.2.2 BCM+ Registers

There are six dedicated registers to configure the BCM+. These are the DCO control
register (DCOCTL), basic clock system control register 1 (BCSCTL1), basic clock
system control register 2 (BCSCTLZ2), basic clock system control register 3 (BCSCTL3),
interrupt enable register (IE1), and interrupt flag register (IFG1).

In this book, we will not consider DCOCTL. More information on it can be found in
[17]. Instead, we will adjust the frequency of the DCO by predefined values. The MSP430
has four calibrated DCO frequency values: 1 MHz, 8 MHz, 12 MHz, and 16 MHz. These
are represented by the constants given in Table 10.3.

Table 10.3 Calibration codes for the DCO and BCS.

Constant Register Frequency (MHz)

CALDCO_IMHZ DCOCTL 1
CALDCO_SMHZ DCOCTL 8
CALDCO_I2ZMHZ DCOCTL 12
CALDCO_IeMHZ DCOCTL 16
CALBCI-IMHZ BCSCTLI 1
CALBCI-8MHZ BCSCTLI 8
CALBCI_1ZMHZ BCSCTLI1 2

._.._.
)]

CALBCI_16MHZ BCSCTLI

The entries of the BCSCTL1 register are shown in Table 10.4. This register is mainly
responsible for the auxiliary clock. In Table 10.4, the XTS bit is used for LFXT1 mode
selection. When it is reset, low-frequency mode is selected. When it is set, high-frequency
mode is selected. To note here, setting XTS is not supported for the MSP430G2553.
DIVAX bits are used for frequency division by 1, 2, 4, and 8 for the ACLK. Constants for
these values are DIVA_0, DIVA_1, DIVA_2, and DIVA_3 respectively. RSELXx bits are
used for the DCO. Hence, we will not explain them here.

Table 10.4 BCM+ control register 1 (BCSCTL1).
Bits 7 6 5-4 3-0

XTS DIVAx RSELx

The entries of the BCSCTL2 register are shown in Table 10.5. This register is mainly
responsible for the master and sub-main clock. In Table 10.5, SELMx bits select the
MCLK oscillator. Constants for these bits are SELM_0 and SELM_1 (for DCOCLK),
SELM 2 and SELM 3 (for VLOCLK or LEXTCLK). DIVMx bits are used for frequency
division by 1, 2, 4, and 8 for the MCLK. Constants for these values are DIVM_O0,
DIVM_1, DIVM_2, and DIVM_3 respectively. The SELS bit is used for the SMCLK
oscillator. When this bit is reset, DCOCLK is used. When it is set, LFXT1CLK or
VLOCLK is used. DIVSx bits are used for frequency division by 1, 2, 4, and 8 for the
SMCLK. Constants for these values are DIVS 0, DIVS_1, DIVS 2, and DIVS_3
respectively.

Table 10.5 BCM+ control register 2 (BCSCTL2).
Bits 7-6 5-4 3 2-1 O

SELMx DIVMx SELS DIVSx

The entries of the BCSCTL3 register are shown in Table 10.6. This register is mainly
responsible for the external oscillator and clock. In Table 10.6, LFXT1Sx bits are used for
low-frequency clock and range select. Constants for these bits are LEXT1S_0 (for external
crystal), LFXT1S_1 (reserved), LFXT1S_2 (for VLO), and LFXT1S_3 (for digital input
signal). The MSP430G2553 does not have an XT2 oscillator. Therefore, XT2Sx and
XT2O0F bits are not used. XCAPx bits are used for selecting internal capacitors for
external crystal oscillator. Here, 1-pF, 6-pF, 10-pF, or 12.5-pF capacitor can be chosen. If
an external clock source will be used for the system, these bits must be reset. LFEXT10F
bit represents whether an oscillator fault is present or not.

Table 10.6 BCM+ control register 3 (BCSCTL3).
Bits 7-6 5-4 3-2 1 0

XT25x LFXTI5x XCAPx XT20F LFEXTIOF

10.2.3 Coding Practices for the BCM+ Module

In Listing 10.1, we provide a code block for adjusting clocks. In the first two lines of the
code, the VLO is set to produce a 3-kHz ACLK clock signal. In the third line of the code,
LFTX1 with a 10-pF internal capacitor is used to produce a 32-kHz ACLK clock signal.

Listing 10.1 The C code block for adjusting clocks.

BCSCTL3 |= LFXT1S.2; // ACLK from VLO
BCSCTL1 |= DIVA2; // Divide ACLK frequency by four

BCSCTL3 |= LFXT1S_0|XCAP_3;
// ACLK from crystal oscillator,
// with 10 pF internal capacitors

10.3 BCM-+ in Grace

In the Device Overview window of Grace (given in Fig. 5.11), the Oscillators Basic
Clock System+ block is used to configure the BCM+. The “Enable Clock in my
configuration” box should be checked first to use the BCM+ under Grace. As a note, the
BCM+ is called Basic Clock System+ in Grace. As in the previous blocks, there are three
options for this configuration. We will consider each next.

10.3.1 The Basic User Mode

The basic user mode is shown in Fig. 10.2 for the BCM+. In this mode, high-and low-
speed clock frequencies for the CPU and other peripherals can be set separately.

Calibrated clock frequencies (1 MHz, 8 MHz, 12 MHz, and 16MHz) can be used for the
high-speed clock source. The other option is entering the desired frequency into the
“manually configure” box. The closest producible frequency value will be generated. A
12-kHz VLO or 32-kHz crystal frequency values can be chosen for the low-speed clock
source.

Grace (MSP430) * Clock - Basic User Mode

Overview

Power User Registers

High Speed Clock Sounce CPU
Seled calibrated
- 1000 kHz
frequency 1 MHz | +
ar
manually configure* 1000.0 kHz

" Manuwally con fguring the frequency

can result in 3 +-10 % frequency
dewation

Low Speed Clock Source**
Select available 12 kHz
preset frequency
ar

manua ly configure

120 | kHz

H

High-Speed Perpherals
1000 kHz

+

LowSpeed Peripherals
12 kHz

** This satting uses an intemal lowfreguency
osdillator, Frequency can vary between 4kHz to
20kHz. S ee specific device datashest,

Figure 10.2 Basic user mode for the BCM+.

10.3.2 The Power User Mode

In the power user mode of the BCM+ (shown in Fig. 10.3), system clocks can also be
configured. The high-speed clock source is specified as the DCO. It can be disabled from
the “Disable DCO” check box if it is not used. For the low-speed clock source, 12-kHz
VLO, 32-kHz crystal or an external digital source (by marking the related check box) can
be selected from the Select Clock Source drop-down list. If the external crystal is used for
low-speed clock source, internal capacitor values should also be determined from the Int.
Load Eff. Capacitance drop-down list. An initial delay, in terms of milliseconds, can be
added to the configured clock from the System Start-up Delay box. Then, the configured
clock source can be used as the system clock as MCLK or SMCLK. ACLK is always
sourced from the Low-Speed External Clock Source 1. Frequency division can also be
applied to the clocks in this mode by the associated “Divider” drop-down list. The
SMCLK and ACLK can also be fed to the related output pins by the Output SMCLK and
Output ACLK drop-down lists. The oscillator fault interrupt can also be set by checking
the Oscillator Fault Interrupt Enable box. Then, the prototype ISR can be generated under

the Interrupt Vectors_init.c file by pressing the Generate Interrupt Handler Code button.
Grace (MS5P430) * Clock - Power User Mode

Orverview Basic User Registers

Configure Clock Source

Internsl High Saeed Clock Source

Interme DO 10000 kHz
Fre-caibraed DCD Values (L MHz =
Disanle DOO |

-

Low Speed Extemnal Clock Source 1

12 kHz X

T 120 kHz

Seled Clodk Source™

Int. Load Eff. Capacikance | ~& pF

External Digital Sowrce O

-

System Ster-ua Delay’™ g0 ms

" Thig settng uses an iIntsma 1ow Teguensy
azvilEtar Freouency =sn vary betwesn dhHz 12
20k Hz. See apecic devos dotashert.

Select Clock Source

Clock Snurca Divicker] Wain Syatern Clock (MCLE)
u{nmnz - |Dmdr byl * 1000 kHz
Output MCLK Mz MCLK Ping

Clnck Soires Dhivieie] Sub Sysen Ciodk (SMOLK)
—|pcacik =) |Dividz by1 = 1000 kriz
Outaut SHELK. ———— SMCLK Dutput OFF -
Closk Source from Divicer Avii ery Clock (ACLK)

Low sp2ed External i ik
Clock Soure 1 Uﬁ'lda‘. byl - T
Outad ACLK ——{ACIK Dutput GFF |

Interrupt Enables
[T Osallatar Fault Interiupt Enable

Generate interrupt Handler Code |

¥iew Al lrtérnapt Han@ers

Figure 10.3 Power user mode for the BCM+.

10.3.3 The Register Controls Mode

Finally, the register controls mode can be used to configure the BCM+ registers. The
register controls mode is shown in Fig. 10.4. In these registers, some bits are disabled
since the user cannot change them. There are also drop-down lists to adjust some register

entries.

Grace (M5P430) * Clock - Register Controls

Owerview Basiclcer Power User

DCOCTL, DCO Control Register

T] 5 4 3 2 1 [}
e MO0
] J| ¥ | O & | [il

BCSCTLT, Basic Clock Systam Control Register 1

7] 5 4 x] 2 1 q

XT20FF XTs Divi REEL

Divide byl +|| [[+ ¥]l

BCSCTLZ, Basic Clock System Control Register 2

7] 5 < 3 2 1 [

SEM= D =ELS DivEs OCOR

|pcocik +|||Dividebyr «|| [|[Divideby1 ~

BCSCTL3, Basic Clock System Control Register 3

7] 5 4 x] i 1]

HT25x LFAT15x HCAPs AT20OF LFATIOF

lo4-1MHz ~|||viocik «||[-6pF || m)

|ET, Interrupt Enable Kegister 1

7] 5 4] 2 1

IFG1, Interrupt Flag Register 1

T 4] a z i a

Figure 10.4 The register controls mode for the BCM+.

10.4 Low-Power Modes

Power consumption is a critical feature for modern battery-controlled devices. Therefore,
modern microcontrollers are designed to work in low-power modes (LPMs). The MSP430
has one active and five low-power modes, as listed below.

* Active mode (AM): CPU, all clocks and enabled peripheral modules are active. Draws
about 230-pA current.

* Low-power mode 0 (LPMO0): CPU and MCLK are disabled. SMCLK and ACLK are
still active. Draws about 56-p1A current.

* Low-power mode 1 (LPM1): CPU and MCLK are disabled. SMCLK and ACLK are
still active. DCO is disabled if it is not used.

* Low-power mode 2 (LPM2): CPU, MCLK, and SMCLK are disabled. ACLK and

DCO remain active. Draws about 22-pA current.

* Low-power mode 3 (LPM3): CPU, MCLK, SMCLK, and DCO are disabled. ACLK
remains active. Draws about 0.5-pA current. This is also called the standby mode.

+ Low-power mode 4 (LPM4): CPU, all clocks, and the crystal oscillator are disabled.
Only RAM is retained. Draws about 0.1-pA current. This is also called the off mode.

In each mode, only necessary modules (peripherals and the CPU) are active. This is
achieved by disabling and enabling clocks feeding the modules. We provide the effect of
each low-power mode on the SR bits in Table 10.7.

Table 10.7 The effect of the low-power modes on the SR bits.

SR Bit

Mode SCG1 SCGO OSCOFF CPUOFF

Active 0 0 0 0
LPMO 0 0 0 1
LPMI 0 1 0 1
LPM2 1 0 0 1
LPM3 1 1 0 1
LPM4 1 1 1 1

Since various operations should be done to enter or exit a low-power mode, there are
predefined constants in the MSP430 header file. In Table 10.8, constants for entering low-
power modes are tabulated.

Table 10.8 Predefined constants for entering LPM.

LPMO Enter Low-power mode 0
LPMI Enter Low-power mode 1
LPM2 Enter Low-power mode 2
LPM3 Enter Low-power mode 3
LPM4 Enter Low-power mode 4

Similarly, in Table 10.9, constants for exiting low-power modes are tabulated. These
can be directly used in C and assembly programs.

Table 10.9 Predefined constants for exiting LPM.

LPMO_EXIT Exit Low-power mode 0
LPMI_EXIT Exit Low-power mode 1
LPM2_EXIT Exit Low-power mode 2
LPM3_EXIT Exit Low-power mode 3
LPM4_EXIT Exit Low-power mode 4

Some points should be taken into account when using low-power modes with
interrupts. First, if the LPM_EXIT command is not entered in the ISR, the CPU turns back
to the code line where the interrupt is generated. This property can be used to form an
infinite loop in time-based operations. We will provide examples in Sec. 10.7.4 on this
issue. Second, some problems may occur while exiting from low-power modes in an ISR
in assembly programming. This is mainly because of the operation of the CPU. Since the
CPU saves all the data in the stack while handling the ISR, this point should be taken into
account. For example, we should use bic.w #LPM@,0(SP) to exit from LPMO in an ISR.
We will provide examples in Sec. 10.7.4 on this issue.

10.5 The Watchdog Timer

The watchdog timer resets the system periodically unless disabled before generating the
reset signal. This operation aims to eliminate any undesired infinite loops in operation due
to software failure. The watchdog timer can also be used as a timer that can generate
periodic interrupts. The watchdog timer module is specifically called the Watchdog
Timer+ (WDT+) in the MSP430. The layout of the WDT+ module is given in Fig. 10.5.

22 e Msal 1)
2 Imelrupt{;f\arﬂ(}n Y -1- LK :}_:.... -~ |
Fl‘lfr 3 :Q]I!l 1 _i-- k-0 l
— % | [16-Bit 0—= -)
Pulse A Counter == Password [*+— |

Generator B I—:-- Compare |« :l{m—Bil
| |
PUC — T B 6 s i K
— TAsyn) A\ l _:_-, e :
“_I""' EUI_T - I
Fail-Safe]I}U ,-— Write En: :hlcl
MCLK .z Tkeres N Low Byle | R

= \— I
| |
I WDTHOLD :
SMCLK z | | WDTNMIES }
| ¥ |
ACLK - | | WDTNMI |
| IWDTTMSEL| |
r | |
l— . = WDTCNTCL I
| I
& i WDTSSEL :
: WDTIS1 :
= WDTISO |

e . .Y

Clock |— MCLK Active
Request — SMCLK Active
Logic | —= ACLK Active

Figure 10.5 Block diagram of the WDT+ module.

The WDT+ is controlled by a 16-bit register called the WDTCTL. The entries for
this register are given in Table 10.10. Here, the WDTPW bits are used for entering the
password. To stop the reset signal (power up clear, PUC), 05Ah should be written to it.
When the WDTHOLD bit is set, the WDT+ is stopped. The WDTNMIES bit sets the
WDT+ non-maskable interrupt edge select. When this bit is reset, the interrupt is
generated on the rising edge. When it is set, the interrupt is generated on the falling edge.
The WDTNMI bit is used to select a reset or a non-maskable interrupt. Since the default
work of the WDT+ is to periodically reset the CPU, this bit is initially reset. If this bit is
set (for non-maskable interrupt generation), the NMIIE bit inside the IE1 register should
be set at the same time. The WDTTMSEL is used as the mode selection bit. When this bit
is set, the WDT+ can be used as an interval timer (without any watchdog operation).
When it is reset, the WDT+ is used as a watchdog. The WDTCNTCL bit clears the
watchdog counter to 0000h. The WDTSSEL bit selects the WDT+ clock source. When
this bit is reset, SMCLK is used. When it is set, ACLK is used. The WDTISx bits are used
for WDT+ interval select (both for watchdog and timer operations). Assigning binary
values 00, 01, 10, and 11 to these will lead to the division of the WDT+ clock source by

215 (32,768), 212 (8192), 2° (512), and 2° (64) respectively. In a way, they work as
frequency dividers. The watchdog timer has a specific counter called WDTCNT. It cannot
be reached by software.

Table 10.10 WDT+ control register (WDTCTL).

WwWDTPW
Bits 7 6 S5 4 3 2 1-0

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx

10.5.1 WDT+ Used as a Watchdog

The WDT+ is activated when the system is powered up or reset. The WDT+ should be
disabled when it is not used. This is done by setting the WDTHOLD bit. The C code for
this operation is WDTCTL = WDTPW + WDTHOLD; or WDTCTL = WDTPW|WDTHOLD;. The
assembly code for this operation is mov.w #WDTPW+ WDTHOLD,WDTCTL. In fact, we have
been using one of these lines in all our previous C and assembly codes. Now they should
make sense. As a matter of fact, we never asked the watchdog timer to operate in our
previous codes.

The MSP430 header file has predefined constants for the time intervals of the
watchdog timer. They are given in Tables 10.11 and 10.12. In the first table, the clock
source for the WDT+ is selected as SMCLK (at 1 MHz). In the second table, the clock
source is selected as ACLK (at 32 kHz).

Table 10.11 WDT+ constants when SMCLK (1 MHz) is used.

Shortcut Setting Time (ms)
WDT_MRST.32 WDTPW+WDTCNTCL 32.000
WDT_MRST_8 WDTPW+WDTCNTCL+WDTISO 8.000
WDT_MRST0.5 WDTPW+WDTCNTCL+WDTIS1 0.500
WDTMRST. 0064 WDTPW+WDTCNTCL+WDTIS1+WDTISO 0.064

Table 10.12 WDT+ constants when ACLK (32 kHz) is used.

Shortcut Setting Time (ms)
WDT_ARST_1000 WDTPW+WDTCNTCL+WDTSSEL 1000.0
WDT-ARST-250 WDTPW+WDTCNTCL+WDTSSEL+WDTISO 250.0
WDT_ARST_16 WDTPW+WDTCNTCL+WDTSSEL+WDTIS] 16.0

WDT_ARST_1.9 WDTPW+WDTCNTCL+WDTSSEL+WDTIS 1+WDTIS0 1.9

10.5.2 WDT+ Used as an Interval Timer

The WDT+ can also be used as an interval timer by setting the WDTTMSEL bit. When
the WDT+ is used in the timer mode, a periodic interrupt will be generated instead of the
system reset signal. This interrupt is controlled by the WDTIE bit in the IE1 register. This
bit must be set in order to request an interrupt. In this mode, the WDT+ interrupt is
maskable. Therefore, the global interrupt enable (GIE) bit also must be set. The
occurrence of the interrupt can be observed by the watchdog timer interrupt flag
(WDTIFG bit in the IFG1 register). This bit is set when the WDTCNT reaches its limit.
WDTTF is automatically reset after the ISR is performed.

As in the watchdog timer mode, there are predefined time interval constants for the
WDT+ used in the interval timer mode. These are given in Tables 10.13 and 10.14. As in
the previous tables, here the clock source for the WDT+ is selected as either SMCLK or
ACLK.

Table 10.13 WDT+ constants when used in the timer mode with SMCLK (1 MHz).

Shortcut Setting Time (ms)

WDTMDLY_ 32 WDTPW+WDTTMSEL+WDTCNTCL 32,000
WDT-MDLY_8 WDTPW+W DTTMSEL+WDTCNTCL+WDTIS0 8.000
WDT_MDLY_ (.5 WDTPW+WDTTMSEL+WDTCNTCL+ WDTISI 0.500
WDT_MDLY_0_064 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS 10 +WDTIS 0.064

Table 10.14 WDT+ constants when used in the timer mode with ACLK (32 kHz).

Shortcut Sefting Time (ms)

WDT_ADLY_1000 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL 1000.0

WDT_ADLY.250 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0 250.0

WDT-ADLY_16 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS | 16.0

WDT-ADLY-1-9 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTISI 1.9
+WDTISO

10.5.3 Coding Practices for the WDT+ Module

We first provide the C code in which the WDT+ is used as a watchdog in Listing 10.2. In
this code, initially the WDT+ and the red LED are off. The red LED turns on and the
WDT+ starts to run as we press the push button. We use the VLO for the WDT+. This
gives a 2.8 s delay. The program counter goes to main as the WDT+ resets the
microcontroller. Then, the WDT+ and the red LED are turned off. The system waits for
another button press to repeat the procedure. In Listing 10.3, we provide the assembly
code doing the same job.

Listing 10.2 Usage of the WDT+ in watchdog mode in C.

#include =msp430.h=>

#define RedLED BITO
#define Button BIT3

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = RedLED;
P1OUT = 0x00;
P1IE = Button;
P1IES = Button;
P1IFG = 0x00;

_enable_interrupts();

LPM4;

}

#pragma vector=PORT1.VECTOR
--interrupt wvoid PORT1-ISR(wvoid)|
P10UT = RedLED;

BCSCTL3 |= LFXT1S.2;
WDTCTL = WDT-ARST_-1000;
P1IFG = 0x00;

}

Listing 10.3 Usage of the WDT+ in Watchdog Mode in assembly.

.cdecls C,LIST,"msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END,SP

mov.b #01h,P1DIR
mov.b #00h,P10UT
bis.b #08h,P1IE

bis.b #08h,P1IES
bic.b #08h,P1IFG

bis.w #LPM4+GIE, SR

-

mov.b #01h,P10OUT

mov.w #LFXT1S5_2,BCSCTL3 :12 Khz VLO as ACLEK source
mov.w #WDT_ARST_1000,WDTCTL

;Use WDT as watchdog to reset the system

;after 1/(12000/32768) = approx. 2.8 sec.

bic.b #08Bh,P1IFG

reti

T o o o i —— ———— . ———— — ——— — — —

-

.global __STACKEND
.5ect .stack

M T LTI r T r T T

-

.sect RESET.VECTOR
.8hort RESET
.5ect PORT1.VECTOR

.short P1_ISR
.end

In Listing 10.4, we provide a sample code for the usage of the WDT+ in timer mode.
Here, the red and green LEDs toggle every 256 msec by using the SMCLK (divided by
eight). The sample code in Listing 10.5 does the same job in assembly language.

Listing 10.4 Usage of the WDT+ in timer mode in C.

#include =msp430.h=>

#define RedLED BITO
#define GreenLED BIT6
#define ToggleLeds (PlOUT "~ = RedLED|GreenLED)

void main(veoid)

{
BCSCTL2 |= DIVS.3;
WDTCTL = WDT_MDLY_32;
IEl |= WDTIE;

P1DIR = RedLED|GreenLED;
P1OUT RedLED;

_enable_interrupts();

LPM1;

}

#pragma vector=wWDT_-VECTOR
--interrupt wveoid WDT(void){
ToggleLeds;

}

Listing 10.5 Usage of the WDT+ in timer mode in assembly.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #__STACK_END, SP

mov.w #DIVS_3,BCSCTL2 ; (SMCLK frequency)/8
mov.w #WDT MDLY_32,WDTCTL

;Use WDT as 32x8 = 256ms time interval
bis.b #WDTIE,IEl1 ;Enable WDT interrupt
mov.b #41h,P1DIR

mov.b #01h,P10UT

bis.w #LPM1+GIE,SR ;Enable interrupts and LPM

WDT_-ISR ;Toggle Pl1.0 and Pl.6

xor.b #41h,P10OUT
reti

.global __STACEK_END
.5ect .stack

.sect RESET_VECTOR
.short RESET
.sect WDT.VECTOR
.short WDT_ISR
.end

10.6 WDT+ in Grace

The WDT+ configurations under Grace can be done by clicking the Watchdog WDT+
block in the Device Overview window (given in Fig. 5.11). This block should also be
enabled first by checking the “Enable WDT+ in my configuration” box. Then, it can be
configured by three modes as follows.

10.6.1 The Basic User Mode

In the basic user mode of the WDT+ (shown in Fig. 10.6), the WDT+ modes can be
selected. These modes are Stop Watchdog Timer, Interval Timer Mode, and Watchdog
Timer Mode. When one of the last two modes is selected, a new menu appears in the same
window. Here, the clock source can be selected from the Clock Source drop-down list.
The frequency divider for this clock source can also be set from the Divider drop-down
list. As a reminder, the frequency value for the selected clock source can be changed from
the BCM+ module. The WDT+ interrupt can be enabled by checking the WDT+ Interrupt
Enable box. Then the WDT+ based ISR prototype can be generated in Interrupt
Vectors_init.c by pressing the Generate Interrupt Handler Code button.

Grace (MSP430) » WDT+ - Basic User Mode

Cverview Power User Registers

Stop Watchdog Timer

Interrupt Enables
| WDT= Interrupt Enable Generate Interrupt Handler Code

View All Interrupt Handlers

Figure 10.6 The basic user mode for the WDT+.

10.6.2 The Power User Mode

There is only an extra RST/NMI Pin Configuration menu in the power user mode as
shown in Fig. 10.7. The function of this pin can be defined as reset or NMI. This interrupt
can be enabled by checking the NMI Pin Interrupt Enable box. The user can set the signal
edge to trigger the interrupt. Then the ISR prototype can be generated in Interrupt
Vectors_init.c by pressing the related Generate Interrupt Handler Code button. All other
configurations are the same as those provided by the basic user mode.

Grace (MSP430) »* WDT+ - Power User Mode
QOverview Basic User =1 Registers

Stop Watchdog Timer

Interrupt Enables
| WDT+ Interrupt Enable [Generate Interrupt Handler Code J

View All Interrupt Handlers

RST/NMI Pin Configuration
RST/NMI Pin Functionality:

@ Reset function
() NMI function

Interrupt Enables
E] MMI Pin Interrupt Enable [Generate Interrupt Handler Code J
NMI Edge Select

@ NMI Rising Edge
() NMI Falling Edge

Figure 10.7 The power user mode for the WDT+.

10.6.3 The Register Controls Mode

Finally, the register controls mode of the WDT+ module is shown in Fig. 10.8. As in the
previous section, the WDT+ registers can be directly configured in this mode.

Grace (M5P430) * WDT+ - Register Controls

Owerview Basic User Power User

WOTCTL , Watchdog Timer+ Register

% E 1 ; A L z 1 .|
- - - w1 WO T Wit e Wit
WOTP - Rasca 080, e be witan m05kh i iyl WOTHA | oo ot bz
o

|ET. Interrupt Enaolz Eegister 1

mAE AETIE

IFG1, Interrupt Flag Register 1

4 F 1

T) Aaad fWrita rags ter net ailzhl e in G

ald AL 3l Tazd orly ragirtar

Figure 10.8 The register controls mode for the WDT+.

10.6.4 Coding Practices

In this section, we redo the WDT+ time interval interrupt application given in Listing 10.4
using Grace. As a reminder, this application toggles the red and green LEDs (connected to
P1.0 and P1.6 on the MSP430 LaunchPad) every 2.8 s. We start by generating a Grace
project. Then we configure the pins P1.0 and P1.6 under Grace. Both pins should be set as
GPIO output. Moreover, the red LED should be initially set. The green LED should be
initially reset. Do not forget to make necessary adjustments on the BCS+ module. The
power user mode of the GPIO block should be used for this purpose. We should select the
Interval Timer Mode from the WDT+ Mode Select list under the basic user mode. In the
same tab, we should select the clock source as “low-speed clock” and the divider as
/32768. To generate interrupts, we should check the WDT+ Interrupt Enable box.

In this application, we do not add any code lines to the main.c file. Since we are
using the ISR, we generate an ISR prototype using the Generate Interrupt Handler Code
button. We fill the prototype WDT+ ISR block under Interrupt Vectors_init.c as given in
Listing 10.6. After compiling the project, we can run our application. The power user
mode is not very different for the WDT+. Therefore, we did not give an example on its
usage here.

Listing 10.6 The WDT+ timer mode under Grace in basic user mode.

#pragma vector=WDT_VECTOR
__interrupt wvoid WDT_ISR_HOOK (wveoid)

{

P10UT "= BITO|BITG;

}

10.7 Timers

The MSP430 timer module is called the Timer A. In fact, the MSP430G2553 has two
identical Timer_A modules called TAO and TA1. The first Timer_A module (TAO) is set as
the default timer. This timer is also called TA in the header file definitions. Therefore, we
will use TA instead of TAO throughout this book. In Sec. 10.7.4, we also provide a sample
code using both TAO (TA) and TAL1.

A block diagram of the TA module is given in Fig. 10.9. As can be seen in this figure,
there are two blocks under TA, the timer and capture/compare. The capture/compare block
is also divided into three subblocks as capture/compare blocks 0, 1, and 2. These blocks
have the same characteristics. Therefore, they are represented as capture/compare block x
in Fig. 10.9. In the following sections, we will focus on the timer and the capture/compare
blocks separately.

E TASSELx Timer Clock Timer Block :
H Q IDx MCx .
i TACLK—{00 " o’ :
: Divider 16-Bit Timer :
sl ne Lef> TAR = S l—EQuo
t SMCLK— 10 /418 Clear RC R :
E INCLK— 11 Sci E
! TACLR | TAIFG '

& CD\‘ I
“]
CCIxA —{ 00 Chiiite SCS ¥

i CCIxB— 01 Mode { TACCRx ;
i GND— 10 f]? e o i
P Ve 11 e T i
; Timer __> Comparator x '
: EQUx CAP '
P oscamdy M :
: ‘ 2 Set ¢
: iy ¥ }- TACCRx
E CCIFG |
: DLfThj' ~ i
E - Sel Siee :
- Lo o ol
EEQU{}—- Unit x Timer Clock —{> Wi E
: Reset '
E __J >)' L] \r- \!‘__H_h E
' i D_’éi'}]{)) :
: OUTMODx 9 :

Figure 10.9 Block diagram of the Timer_A module.

10.7.1 The Timer Block

The core of the timer block is the 16-bit TAR register. Timer count results are kept in this
register. The timer block of TA is controlled by the TACTL control register. Properties of
this register are given in Table 10.15.

Table 10.15 Timer_A control register (TACTL).

Bits 15-10 9-8
Unused TASSELx
Bits 7-6 5-4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

In Table 10.15, the TASSELXx bits are used to select the clock source for TA.
Constants for these bits are TASSEL_0, TASSEL_1, TASSEL_2, and TASSEL_3. They
correspond to TACLK, ACLK, SMCLK, and INCLK (inverse of the TACLK) as the clock
source for TA. IDx bits are used for frequency division. Constants for these bits are ID_0,
ID_1, ID_2, and ID_3. They correspond to frequency division by 1, 2, 4, and 8
respectively. When the TACLR bit is set, the TAR, the clock divider, and the count
direction are reset. But resetting the clock divider and count direction does not mean
resetting IDx and MCx bits. Resetting the clock divider means current prescaler counter is
reset to 0. Resetting the count direction means if TAR in counting down part in up/down
mode, it is reset to counting up part. The TAIE bit is used to enable the Timer_A interrupt.
When an interrupt comes from the timer module, the TAIFG bit is set. The MCx bits are
used for selecting the mode of the timer. Constants for these bits are MC_0, MC_1, MC_2,
and MC_3. They correspond to stop, up, continuous, and up/down modes. These are listed
below.

+ Stop Mode: The timer stops counting and TAR retains its value to continue later when
this mode is selected. Timer_A is initially in this mode to save power.

+ Continuous Mode: The timer counts up until it reaches FFFFh (65535), then restarts
from zero again as shown in Fig. 10.10. The TAIFG bit is set when the TAR value
changes from FFFFh to zero. The time period for this mode can be calculated as period
= 65536/ f- x Where f., x stands for the frequency of the timer clock. The continuous
mode is generally used for generating output with different frequencies or independent
time intervals. In this mode, four different output frequencies or time intervals can be
produced by using three capture/compare and TAR register entries.

FFFFh |---ooc oo

Oh

Figure 10.10 Timer_A continuous mode.

« Up Mode: The timer counts up until it reaches the value in TACCRO (to be explained in

Sec. 10.7.2) in this mode. Then it restarts from zero again as shown in Fig. 10.11. The
TAIFG bit is set when the TAR value changes from TACCRO to zero. Also, the

capture/compare interrupt flag (CCIFG) bit is set when the TAR value changes from

TACCRO-1 to TACCRO. The timer period for this mode can be calculated as period =
(TACRRO+1)/ fe k-

FFFFh [------=n====-====m=mmmmmoomoo oo
TACCRO

Oh

Figure 10.11 Timer_A up mode.

Up/Down Mode: In this mode, first the timer counts up until it reaches the value in the
TACCRO. Then counting is inverted, and the timer counts down from TACCRO to zero
as shown in Fig. 10.12. The TAIFG bit is set when the TAR value changes from one to
zero in counting down. Also, the CCIFG bit is set when the TAR value changes from
TACCRO-1 to TACCRO in counting up. The timer period for this mode can be
calculated as period = (2xTACRRO)/ fc; -

2 1 i T R e e A
TACCRD [reeseisernerpesrmr e srm s s s

Oh

Figure 10.12 Timer_A up/down mode.

10.7.2 The Capture/Compare Block

Timer_A has three capture/compare blocks, 0, 1, and 2. The capture/compare block 0 can
also be used by the timer module in counting up or up/down modes. Therefore, the user
should be careful when using it. Each capture/compare block is controlled by a separate
16-bit control register TACCTLXx. The entries of this register are given in Table 10.16.

Table 10.16 Timer_A capture/compare control register (TACCTLX).

Bits 15-14 13-12 11 10 9 8
CMx CCISx SCS SCCI CAP
L 7-5 4 3 y- 1 0

OUTMODx CCIE CCI ouT COV CCIFG

In Table 10.16, the CMx bits are used to select the edge sensitivity in the capture
mode. The constants for these bits are CM_0 (no capture), CM_1 (capture on rising edge),
CM_2 (capture on falling edge), and CM_3 (capture on both edges). The CCISx bits are
used to select the capture/compare input select. They are for external pins and internal
signals. (These are listed in Table 10.18.) Constants for the CCISx bits and their values are
CCIS_0 (CCIxA), CCIS_1 (CCIxB), CCIS_2 (GND), and CCIS_3 (V). The SCS bit is
used to synchronize the timer clock and the capture signal (to eliminate the race
condition). The SCCI bit is used to observe the synchronized input. The CAP bit is used
to select the capture or compare mode. When this bit is reset, the compare mode is
selected. When it is set, the capture mode is selected. The CAP bit is initially in the
compare mode. The OUTMODXx bits are used to select the output modes for the compare
operation. Constants and their values are OUTMOD_0 (OUT bit value), OUTMOD_1
(set), OUTMOD_2 (toggle/reset)) OUTMOD_3 (set/reset)y OUTMOD_4 (toggle),
OUTMOD_5 (reset), OUTMOD_6 (toggle/set), and OUTMOD_7 (reset/set). These
modes will be explained in detail next. The CCIE bit is used to enable the
capture/compare interrupt. The CCI bit is used to observe the capture/compare input. The
OUT bit (when in OUTMOD_0) directly controls the output. When this bit is reset, the
output is low. When it is set, the output is high. The COV bit indicates whether a capture
overflow has occurred or not. It should be cleared by software to observe a new overflow.
The CCIFG is the capture/compare interrupt flag.

For each capture/compare block, there is also a separate TACCRx register. This
register holds the data for the comparison of the timer value in the TAR in compare mode.
In capture mode, the TAR value is copied to this register when a capture is performed.

The Capture Mode
The purpose of the capture mode is to link the changes in the input signal with TAR

values. We should first set the CAP bit of the TACCTLx register to use this mode. Then
the input signal source should be selected by CCISx bits. The capture edge type (rising or
falling) of this selected signal is set by CMx bits. When a capture occurs, the value in the
TAR register is copied to the related TACCRx register. The CCIFG is set to indicate that
the capturing is done. Also, the timer ISR is called if the CCIE bit is set. Then, the time
interval between the two time instants can be calculated by these captured TACCRx
values.

There are synchronization and overflow issues to be considered in the capture mode.
If the input changes its state at the same time as the timer clock, this may cause a race
condition when the TAR value is copied to the TACCRx. The SCS bit should be set and
the input should be synchronized with the timer clock in order to prevent this. Also,
another capture may occur before the first one is processed. When this happens, the COV
bit is set to indicate that an overflow occurred. Therefore, the COV bit must be cleared by
software to catch subsequent overflows.

The Compare Mode

The purpose of the compare mode is to generate interrupts at specific time intervals. This
can be used to form pulse width modulation (PWM) signals. The interrupt time intervals
or the frequency of the PWM can be adjusted by the TACCRx register. When the timer
counts up (until the value in the TAR reaches the TACCRx value), the internal signal
EQUx (which can be seen at the output of the comparator) is set. Afterwards, the interrupt
flag CCIFG is set and the EQUx signal triggers (by the changing of the output signal
TA_OUTX) according to the output mode selected. Also, the input signal of the compare
block CCI is latched into the SSCI bit. There are eight different output types in the
compare mode. They are briefly described below.

* Out bit value (OUTMOD_0): OUT bit controls the output signal.

* Set (OUTMOD_1): The output is set only once when the TAR reaches the TACCRx
value.

- Toggle/Reset (OUTMOD_2): The output is toggled when the TAR reaches the
TACCRXx value. It is reset when the TAR reaches the TACCRO value.

* Set/Reset (OUTMOD_3): The output is set when the TAR reaches the TACCRx value.
It is reset when the TAR reaches the TACCRO value.

+ Toggle (OUTMOD_4): The output is toggled when the TAR reaches the TACCRx
value.

* Reset (OUTMOD_5): The output is reset only once when the TAR reaches the
TACCRXx value.

* Toggle/Set (OUTMOD_6): The output is toggled when the TAR reaches the TACCRx
value. It is set when the TAR reaches the TACCRO value.

* Reset/Set (OUTMOD_7): The output is reset when the TAR reaches the TACCRx
value. It is set when the TAR reaches the TACCRO value.

The compare mode output types are given in Figs. 10.13, 10.14, and 10.15. In the
first figure, the timer is in the up mode. In the second figure, the timer is in the continuous

mode. In the third figure, the timer is in the up/down mode. These figures clearly show
that the compare mode can be used in PWM generation. In Sec. 11.5 we will use the
compare mode to generate PWM signals.

5131) R OSSR —————.
R

TACCRI ool L

0h i

Output Mode 1

Output Mode 2

Output Mode 3

Output Mode 4

Output Mode 5

gy Sy Sy SRy Sy ey e ey e ey Sty Sy Rty s Ry sy

Output Mode 6

Output Mode 7

Interrupts EQUO EQUI EQUO EQUI
- TAIFG TAIFG

Figure 10.13 Compare mode outputs when the timer is in the up mode.

1712131 21 TS S -
PAOCRD; [oosssssasssgdodissaiigpfis iz

TACCRI {-----—---—- kN I~

0h i

Output Mode 1

Output Mode 2

Output Mode 3

Output Mode 4

Output Mode 5

imm e fom om o o o ST o B

Output Mode 6

Output Mode 7

Dbt iy Fe A R Sy Sy iy ey ey e g S Sy Sy SRy SRy SRy sy ey e et Sk A e S0t i J o ans ek s s A A kR S0 A S S A A e S R

EQUI EQUO! EQUI EQUO
TAIFG TAIFG

Interrupts

Figure 10.14 Compare mode outputs when the timer is in the continuous mode.

FFFFh
AR, o e e S L S S

TACCR2 {----#----

Oh i
|

Output Mode 1

Output Mode 2

Output Mode 3

i e ol i o

Output Mode 4

Output Mode 5

Output Mode 6

-

b B e Ly

Output Mode 7 i

Interrupts | EQU2 | EQU2 | EQU2 | EQU2

TAIFG EQUO TAIFG EQUO

o oo o e doc e oo oot o et il e o e o o oo e ot i o o o o oo R o ot i ot i o o oo oo e e i ot i ot i o i s e v o

Figure 10.15 Compare mode outputs when the timer is in the up/down mode.

10.7.3 Timer_A Based Interrupts

Either the timer or the capture/compare blocks can generate interrupts. An interrupt is
generated when the TAR register overflows in the timer block. An interrupt is generated
when the timer value in the TACCRX register is captured in the capture mode. An interrupt
is generated when the TAR equals the value in the TACCRX register in the compare mode.
All these interrupts are maskable. Therefore, the GIE must be set with corresponding
interrupt enable bits. These are TAIE for the timer block and CCIE for the
capture/compare block.

As can be seen in Table 9.2, there are two interrupt vectors for the TA module. These
are TIMERx_AO_VECTOR and TIMERx_A1_VECTOR. The TIMERx_AO_VECTOR is
associated with the TACCRO capture/compare register and has the highest priority. The
TIMERx_A1_VECTOR, also known as the TAIV interrupt vector, is associated with the
TACCR1, TACCR2 capture/compare registers and the timer block. The TAIV interrupt
vector register (Table 10.17) is used to control this interrupt vector. When more than one
of these sources requests an interrupt, TAIV is loaded with the content of the highest
priority interrupt. Other interrupts will be pending until this interrupt is handled.

Table 10.17 The TAIV register.

TAIV Content Interrupt Source Interrupt Flag Interrupt Priority

00h No interrupt pending -

02h Capture/Compare 1| TACCRI1 CCIFG Highest
04h Capture/Compare 2 TACCR2 CCIFG

06h Reserved

08h Eeserved

OAh Timer overflow TAIFG

0OCh Reserved -

0OEh Reserved - Lowest

10.7.4 Coding Practices for the Timer_A Module

In this section, we provide sample C and assembly codes for the TA module. We first
provide a C code on the usage of the capture mode in Listing 10.7. For this program to
work, pin P1.3 should be connected to pin P1.1 on the MSP430 LaunchPad since pin P1.3
cannot generate the capture input. In Listing 10.7, the capture mode is used to measure the
time difference between successive button presses. The maximum time difference that can
be calculated here is approximately 41 s due to the clock and oscillator settings. In the
assembly code, given in Listing 10.8, we again measure the time difference between
successive button presses. The time difference between the button press and release time
can also be calculated by both codes. To do so, the disabled code section should be
enabled instead of the current setting.

Listing 10.7 Usage of the capture mode in C.

#include =msp430.h=>
// 40 sec. max. //connect P1.1 to P1.3

int count = 0;
int result = 0;
float sec = 0.0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHDLD;
BCSCTL3 |= LFXT1S.2;
P1SEL = 0x02;

// TACCTLO = CAP|CM.3|SCS|CCIE|CCIS.O0;
// capture at rising and falling edges

TACCTLO = CAP|CM.2|SCS|CCIE|CCIS.0;
// capture at falling edge

TACTL = TASSEL_1|ID_3|MC.2|TACLR;
—enable interrupts();

LPM1;
}

#pragma vector=TIMERO_AQ0_VECTOR
--interrupt wveoid Timer A(void){

count++;
// clear TAR at first press
if(count == 1)TACTL |= TACLR;
// get the final value at second press
if(count == 2){
result = TACCRO;
sec = (float)result/1500;
count = 0;

}

Listing 10.8 Usage of the capture mode in assembly.

.cdecls C,LIST, "msp430.h"
.text

.retain

.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END, SP

mov.w #LFXT1S5_.2,BCSCTL3
mov.b #02h,P1SEL
mov.w #CAP+CM_1+SCS+CCIE+CCIS_0,TACCTLO

;capture at rising edge

; mov.w #CAP+CM_3+SCS+CCIE+CCIS_0,TACCTLO
;capture at rising and falling edges

mov.w #TASSEL_1+ID_3+MC_2+TACLR, TACTL

clr.w R6
clr.w R7
bis.w #GIE+LPM1,SR

inc.w R6

cmp.w #1d,R6

jne Loopl

bis.w #TACLR,TACTL
Loopl:

cmp.w #2d,R6

jne Loop2

mov.w &TACCRO,R7
clr.w R6

LoopZd:

reti

.global __STACEK_END
.sect .stack

.sect RESET_VECTOR
.short RESET

.5ect TIMERO_AO_VECTOR
.short TAO_ISR

.end

Next, we provide C and assembly codes on the usage of TAIV in Listing 10.9. Here
the red LED toggles when an overflow occurs. This happens every second (based on the
parameter settings). Here, the capture/compare block is not used. The same operation is
done in assembly language in Listing 10.10.

Listing 10.9 Usage of the TAIV in C.

#include <=msp430.h=

#define RedLED BITO

#define RedLEDToggle (PlOUT ~= RedLED)

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR = RedLED;
P1OUT RedLED;

TACTL = TASSEL_2|ID_3|MC_3|TAIE;
TACCRO = 62500;

—enable_interrupts();

LPM1;// enter low power mode
I
#pragma vector=TIMERO-A1_VECTOR
--interrupt wveoid Timer A(void){
switch(TAIV)

{

case (0x02: break;

case 0x04: break:

case 0x0A: RedLEDToggle;
break:;

i

Listing 10.10 Usage of the TAIV in assembly.

.cdecls C,LIST, "msp430.h"
-.text

.retain

.retainrefs

RESET
mov.w #WDTPW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

mov.b #01h,P1DIR
mov.b #01h,P10UT

mov.w #TASSEL_2+ID_3+MC_3+TAIE,TACTL

;SMCLK, f/8, up/down mode

;timer overflow interrupt enabled

mov.w #62500d,TACCR0 ;Add Offset to TACCRO

bis.w #GIE+LPM1,SR; Enable interrupts and enter LPM

add.w &TAIV,PC :Use PC for observing TAIV
reti ; No interrupt pending

reti ; TACCRD

reti ; TACCRI1

reti ; Reserved

reti ; Reserved
xor.b #01h,P10UT ;Toggle P1.0
reti

.global __STACK_END
.sect .stack

.sect RESET_VECTOR
.short RESET

.Sect TIMERO_A1_VECTOR
.short TOAl_ISR

.end

We can use the capture/compare blocks instead of using TAIV, as given in Listing

10.9. Now the C code becomes as given in Listing 10.11. Here the ISR toggles the red
LED based on the compare mode configuration. The assembly code version of this
operation is given in Listing 10.12.

Listing 10.11 Toggling the red LED using the timer interrupt in compare mode in C.

#include =msp430.h=
#define LED BITO

void main(veoid)

{

WDTCTL = WDTPWWDTHOLD;

P1DIR = LED;
P1OUT = LED;

TACCRO = 49999; // Upper limit of count for TAR
TACCTLO0 = CCIE; // Enable interrupts on compare 0

TACTL = MC_1|ID_3|TASSEL_2|TACLR;
// Setup and start Timer A

-enable_interrupts();

LPM1;// enter low power mode

}

#pragma vector = TIMEROAQO_VECTOR
--interrupt wveoid TAO-ISR(void)({
P1OUT ~= LED;

}

Listing 10.12 Toggling the red LED using the timer interrupt in compare mode in
assembly.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTFW|WDTHDLD, WDTCTL
mov.w #__STACK_END,SP

mov.w #LFXT1S5.2,&BCSCTL3 ;12 Khz VLO as ACLK source

mowv.
mow.

b #41h,P1DIR

b #01h,P10OUT

mov.w #CCIE,TACCTLO ;TACCRO interrupt enabled
mov.w #999d, TACCRO ;TACCRO counts to 1000

mov.w #TASSEL_1+MC_1,TACTL ;ACLK, upmode

)

bis.w #LPM1+GIE,SR ;LPMl, enable interrupts

reti

.global __STACEK_END
.sect .stack

.3ect RESET_VECTOR
.short RESET

.3ect TIMERO_AQO_VECTOR
.short TAO_-ISR

.end

We provide the code in Listing 10.13 to observe the effects of different timer settings.
Here, the red and green LEDs toggle. Each disabled setting can be enabled to see its
effect. Do not forget to disable the previous active setting when a new one is enabled.

Listing 10.13 Toggling the red and green LEDs with various options in C.

#include =msp430.h=

#define RedLED BITO

#define GreenLED BIT6

void main(veid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR
P1OUT

RedLED|GreenLED;
RedLED:

TACCTLO0 = CCIE; // Enable interrupts on compare 0

// TACTL = TASSEL_2|ID_3|MC_2|TACLR;
// Use clock from SMCLEK, divide clock by 8,
// up mode, clear Timer A

// TACTL = TASSEL 2|ID_.0O|MC_2|TACLR;

// The effect of the frequency divider

// TACCRO = 19999; // Upper limit for count
// TACTL = TASSEL 2|ID 3|MC_1|TACLR;

TACCR0 = O0xFFFF; // Upper limit for count
TACTL = TASSEL 2|ID.3|MC_.3|TACLR;
// up down mode

_enable_interrupts();

LPM1;

i

#pragma vector = TIMEROAQO_VECTOR
--interrupt wveid TAOQO_ISR(veoid)|
P10UT "= RedLED|GreenLED;

}

We next provide the usage of two timers together in C language in Listing 10.14.
Here, the red and green LEDs toggle by interrupts generated by TAO and TA1 separately.
We provide the assembly code doing the same operation in Listing 10.15. Again, the two
timers are used together in this code block.

Listing 10.14 Using TAO and TA1 together in C.

#include =msp430.h=

#define RedLED BITO
#define GreenLED BIT6

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;
BCSCTL3 |= LFXT1S.2;

P1DIR = RedLED|GreenLED;
PlOUT RedLED|GreenLED;

TACCRO = 62500;
TA1CCRO = 6000;

TACCTLO = CCIE;
TAICCTLO = CCIE;
TACTL = MC-2|ID-3|TASSEL.2|TACLR;
TALICTL = MC_3|ID_3|TASSEL_1|TACLR;

-enable_interrupts();

LPM1;

}

#pragma vector = TIMERO_AQO_VECTOR
__interrupt woid TAO0_ISR(wvoid){
P1OUT "~ = RedLED;

}

#pragma vector = TIMER1-A0O_-VECTOR
—-interrupt wveid TAl ISR(void)|
P1OUT ~= GreenLED;

}

Listing 10.15 Using TAO and TA1 together in assembly.

.cdecls C,LIST, "msp430.h"

tex

t

.retain
.retainrefs

RESET
mov.
mov.

bis.

mow.
mow.

mow.
mow.
mowv.
mowv.
mowv.
mowv.

bis.

#WDTPW|WDTHOLD, WDTCTL
#__STACK_END, SP

#LFXT15_2,BCSCTL3

#41h,P1DIR
#41h,P1l0OUT

#CCIE, TACCTLO ;TACCRO interrupt enabled
#CCIE, TAICCTLO ;TA1CCRO interrupt enabled
#62500d, TACCRO ;TACCRO counts to 62500
#6000d, TAICCRO ;TA1CCRO counts to 6000
#TASSEL_2+MC_2+ID_3+TACLR, TACTL ;ACLK, upmode
#TASSEL_1+MC_3+ID_3+TACLR,TAICTL ;ACLK, upmode

#LPM1+GIE,SR ;LPM1, Enable interrupts

reti

.global __STACK_END
.sect .stack

.sect RESET_VECTOR
.short RESET

.Sect TIMERO_AO_VECTOR
.short TAOQO_.ISR

.Sect TIMER1_AO_VECTOR
.short TA1l_ISR

.end

The code given in Listing 10.16 is an example of the joint usage of the port and timer
interrupts. Here, the program counts the timer interrupts. If the sum reaches five, the red
and green LEDs toggle. The sum is reset if the user presses the button during operation.
This operation is done under the port ISR.

Listing 10.16 Jointly using the port and the timer interrupts, the first example in C.

#include =msp430.h=

#define RedLED BITO
#define GreenLED BIT6
#define Button BIT3

int count = 0;

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

P1DIR
P1OUT

RedLED|GreenLED;
RedLED:

P1IE = Button;
P1IES = Button:
P1IFG 0x00:

TACCTLO = CCIE; // Enable interrupts on compare 0
TACCRO = O0xFFFF; // Upper limit for count

TACTL = THSSEL_2|ID_3|MC_3|TRCLR;

// Use clock from SMCLEK, divide clock by 8,

// up down mode, clear Timer A

-enable_interrupts();

LPM1;

}

#pragma vector = TIMERO-AO_VECTOR
_-interrupt wveid TAO_ISR(void)|
count += 1:

if (count == 5){
P10UT "= RedLED|GreenLED;
count = 0:

i
i

#pragma vector=PORTI1_VECTOR
__interrupt wvoid PORT1_ISR(wvoid)|{
P10UT = RedLED;
count = 0:
TACTL |= TACLR;
P1IFG = 0x00;

}

The code given in Listing 10.17 is another example of the joint usage of the port and
timer interrupts. Here the program counts how many times the button is pressed while the
red and green LEDs are on separately. In addition, the system disables all the interrupts
and goes to LPM4 after a certain time. This means the system is turned off using low-
power modes.

Listing 10.17 Jointly using the port and the timer interrupts, the second example in C.

#include =msp430.h=

#define RedLED BITO
#define GreenLED BIT6
#define Button BIT3

int count = 0;

int redcount = 0;
int greencount = 0;
int state = 0:

int done = 0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR
P1OUT

RedLED|GreenLED;
RedLED;

P1IE = Button;
P1IES = Button;
P1IFG = 0x00;

TACCTLO = CCIE; // Enable interrupts on compare 0
TACCR0 = O0xFFFF; // Upper limit for count

TACTL = TASSEL_2|ID_3|MC_3|TACLR;

// Use clock from SMCLK, divide clock by 8,

// continuous up down mode, clear Timer A
-enable_interrupts();

while(1l)

{

if (done = 5){

P1OUT = 0x00:;
_disable_interrupts();
LPM4;

}

else

LPM1;

}
i

#pragma vector = TIMERO_AQO_VECTOR
_-interrupt wveoid TAO_ISR(void){
LPM1_EXIT;

count++;

if (count == 30){

P10UT "= RedLED|GreenLED;

state = !state;

count 0:

done++;

}
}

#pragma vector=PORT1_-VECTOR
_-interrupt wveid PORT1_ISR(void){
if (state == 0)
redcount++;
else
greencount++;
P1IFG = 0x00;

Finally, we provide the assembly code in Listing 10.18. Here, the timer and port
interrupts are jointly used. The application here is similar to Listing 10.17.

Listing 10.18 Jointly using the port and the timer interrupts in assembly.

.cdecls C,LIST, "msp430.h"

. text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD ,WDTCTL

mov.w #_ STACK END, SP

mow
mow
mowv
mowv
mowv

mowv

#0d,R5 ;used
#0d,R6 ;used
#0h,R7 ;used
#0d,R8 ;used
#0d,R9 ;used

.b #41h,P1DIR

mov.b #08h,P1REN
mov.b #09h,P10UT

bis.

b #08h,P1IE

bis.b #0Bh,Pl1IES

bic.

mowv.
mov.w
mov.w

bis.

b #08h,P1IFG

w #0FFFFh, TACCRO
#TASSEL 2+MC_3+1ID_3,TACTL
#CCIE, TACCTLO

as
as
as
as
as

count

done
state
redcount
greencount

w #GIE,SR ;Enable interrupts

Loop:
cmp #06d,R6
j1l Subloop
clr.b P1OUT
bic.w #GIE,SR
bis.w #LPM4,SR
Subloop:
bis.w #LPM1,SR
jmp Loop

Eit:

reti

bic.w #LPM1,0(SP)
inc RS

cmp.w #05d,R5

il EndISR

xor.b #41h,P10UT
inc R6

mov #0d,R5

xor #01d,R7
EndISR:

reti

:Stack Pointer definition
.global __STACEK END
.S5ect .stack

.3ect RESET_-VECTOR
.3hort RESET

.Sect PORT1 VECTOR
.s3hort P1_.ISR

.sect TIMERO_AQO_VECTOR
.short TAO_ISR

.end

10.8 The Pin Layout for the BCM+ and TA Modules

We provide the pin layout of the MSP430G2553 in Fig. 10.16 (again to be compact). The
usage of these in BCM+ and TA perspective are tabulated in Table 10.18. Do not forget to
set these pins with the appropriate PxSEL bits before using them.

S GND} 22

— P10 XIN}|——
— P11 XOUT——
—1p1.2 TEST——
— P13 Mk RSTH——

430

— Ip14 ey P17 ——
—1p15 P1.6——
— P20 P25
— P21 P24l
1045 pa3ltl

Figure 10.16 Pin layout of the MSP430G2553.

Table 10.18 BCM+ and Timer_A properties for the pins of the MSP430G2553.

Pin Port Name Usage Area

| Voo Source voltage
2 P1.O0/ TAOCLK Timerl_A, clock signal TACLK input
ACLK ACLK signal output

3 Pl1.1/ TA0.O TimerO_A, capture: CCIOA input, compare: OutO output
4 P1.2/ TAQ.1 Timer(_A, capture: CCI1A input, compare: Outl output
5 P1.3

6 P14/ SMCLK SMCLK signal output

7 P15/ TA0.0 Timer(_A , compare: Out() output

8 P20/ TAlD Timerl_A, capture: CCIOA mput, compare: OutQ output
9 P2.1/ TAl.l Timerl_A, capture: CCI1A input, compare: Qutl output
10 P22/ TAlLl Timerl_A, capture: CCI1B input, compare: Outl output

11 P23/ TAl1Q Timerl_A, capture: CCIOA input, compare: OutO output
12 P24/ TAl2 Timerl_A, capture: CCI2ZA input, compare: Out2 output
13 P25/ TAl2 Timerl_A, capture: CCI2B input, compare: Out2 output

14 Ple/ TAOD.1 Timer(_A, compare: Outl output

15 P1.7

16 RST Reset

17

18 P27/ XOUT Qutput terminal of crystal oscillator

19 P26/ XIN Input terminal of crystal oscillator
TAO.1 Timer(_A, compare: Outl output

20 Vg Ground voltage

In Table 10.18, TAOCLK is the external clock input used to supply the clock signal
for the timer block. ACLK and SMCLK can be fed to output to control other connected
devices. If an external crystal is to be connected, the XIN and XOUT should be used. All
TAx.x pins can be used as output of compare blocks. Also, some of these pins can be
configured as input for capture blocks. Pins 3, 4 (TA0.0, TA0.1), and 8 to 13 (TA1.0,
TA1.1, TA1.2) can be used for both purposes. Don’t forget that each of these pins can only
be connected to one capture or compare block.

10.9 Timer A in Grace

The Timer_A (TA) module can be configured by the Timer0_A3 and Timer1_A3 blocks
in the Device Overview window (shown in Fig. 5.11). Configurations for these two timer
blocks are identical. Therefore, we will only explain the TimerO_A3 block in this section.
As in the previous sections, the Timer_A block should be enabled first. Then it can be
configured as follows.

10.9.1 The Basic User Mode

The basic user mode of the Timer0O_A3 block is given in Fig. 10.17. The Timer Selection
list can be used as follows: The Timer OFF option can be used to disable the timer if it is
not needed. Initially, this option is chosen. The Interval Mode option can be used to create
a time interval. This time interval is obtained by entering a value to the Desired Timer
Period box. The generated signal can be fed to P1.1 or P1.5 from the neighboring list.
These settings are done under Timer Capture/Compare Block #0.

Grace (MSP430) * Timer0_A32 - Basic User Made
Chyenaew Power User - CCR0 Power User - CCR1 Power User - CCRZ Registers

Timer Capture/Compare Block #0

Timer Salection:

Interval Mode PL.1/TAD.0

PWM Mode — P1.5,/TADO
Custom F3.4,/TA0.0
Desired Timer Period: 0 ms Calculated Timer Feariod: 0 us
Calculated Timer Mrequency: 0 Hz
Interrupt Enables
=] Capture/compare interiupt enable 0 Generate Interrupt Handler Code

View All Interrupt Handlers

Figure 10.17 Basic user mode for Timer0_A3.

The PWM Mode option in the Timer Selection list is used to generate a PWM signal.
When this option is selected, Timer Capture/Compare Block #1 and Timer
Capture/Compare Block #2 are also enabled as shown in Fig. 10.18. In this mode, the
PWM period is determined by the value entered in the Desired Timer Period box. As the
PWM Duty Cycle option is selected from the Mode Selection list under the Timer
Capture/Compare Block #1, the Desired PWM Duty Cycle box becomes enabled. The
user can enter the desired duty cycle here. The generated PWM signal can be fed to the
output pin selected from the neighboring list.

Grace (MSP430) * Timer0_A3 - Basic User Mode
Timer Capture/Compare Block #0

Timer Selection:

Timer QFF TAD.D Output OFF
Interval Mode PL.1,/TA0.0
PWh Mode P1.5,/TA0.0
Custom P3.4/TAD.0
Desired Timer Period: 0.0 ms Caloulated Timer Period: 0 us
Caleulated Timer Freguency: 0 Hz
Interrupt Enables
[Capture/compare interrupt enakle 0 [Generate Interrupt Handler Code]
Viaws Al ndler:
Timer Capture/Compare Block #1
Mode Selection:
OFFMode |l NN
PWHM Duty Cycle P1.2,TA0.1 =il
Custom P1.6,TAD.1 |
P26,Ta0.1
P £/TAN 1 f
Desired PWM Duty Cycle: 0% Calculated PWIW Duty Cycle: 0%
Interrupt Enables
Ll Capture/compare interrupt enakle 1 | Generate Interrupt Handler Code]
Timer Capture/Compare Block #2
Mode Selection:
Wiz OusatorE

WM Duty Cycle
Custom

F3.0,/TAD.2

Desired PWM Duty Cycle; 0| % Calculated PWIW Duty Cycle:; 0%

Interrupt Enables

M Capture/compare interrupt enakle 2 Generate Interrupt Handler Code

Figure 10.18 The basic user mode for TimerO_A3 specifically for PWM generation.

The user can set interrupts for each block (Timer Capture/Compare Block #0, #1, or
#2) separately. To do so, first the related Capture/compare interrupt enable box should be
checked. Then, the related Generate Interrupt Handler Code button can be pressed to
generate the prototype ISR under the Interrupt Vectors_init.c file.

10.9.2 The Power User Mode

In the Power User-CCRO mode (given in Fig. 10.19), the clock source for the timer block
can be set from the Clock Source list. The frequency divider for the selected clock source
can be set from the neighboring Divider list. Then, the counting mode can be chosen from
the Counting Mode list. The TAR register can be cleared by checking the Clear box. the

Timer_A overflow interrupt enable box can be checked to enable the interrupt. The
prototype ISR for this interrupt can be generated under Interrupt Vectors_init.c by the
Generate Interrupt Handler Code button.

Grace (MSP430) * Timer0_AS3 - Power User Mode - CCRO

Overview DBasic User Power User- CCRL Power User - CCR2 Registers

Clock Source Dividar
(=T
ACLE

SMCLK
i (TS

Counting Mod e
itop Mode

Divider - 2 i i 1
Divider - 4 16-bit TimeriCounter Continuous Maode

Divider - & Clear Up/Down Mode

L

1 Timer A overflow inferupt enable

TADCLK Input OFF .'| Generate Intermupt Handler Cade |

Jiigy 1 REAEn

Timear Captura/Compare Block #0

[esired Timer Period: 00 ms Tima (1) Perod Ous

Caplure Regsien a Clock Ticks Timz() Frequeanrcy O
nnu! Selectan uapm a Maode o da Curtput Pins

nimer QFF TAQLD Chaput OFF
—11 A0.CCI0A (Output Compare/Pedic W]
a I ng E | Input Capture — PL5TADD
Goth Edozs F3.4/TA00
ULTFMTW-M%- PWM output mode: 0 - OUT bitvalue =[] Set OUT ket High/Low

Inerrupt Enables

[| capturescompare intemupt enable O [Generate Interupt Handler Code]

View all Interrupl Handlers

Figure 10.19 The power user-CCR0 mode for Timer0_A3.

The desired time interval can be obtained by entering the time value into the Desired
Timer Period box under Timer Capture/Compare Block #0. The desired time can also be
entered into the Capture Register box in terms of clock ticks. Also Input Capture or
Output Compare/Period modes can be selected from the Mode list. If the capture mode is
selected, it is configured from the Input Selection and Capture Mode lists. If the compare
mode is selected, the Output Pins list and the Output Mode drop-down list should be used
for necessary configurations. In this mode, the capture/compare interrupt can be enabled
similar to the Timer_A overflow interrupt.

Configurations for the Power User-CCR1 and Power User-CCR2 views are identical.
Therefore, only the Power User-CCR1 is explained in detail here. In the Power User-
CCR1 mode (shown in Fig. 10.20), capture and compare mode configurations can be done
as in the Power User-CCR0O mode. In this mode, the shape of the generated PWM signal
can also be seen. Please note that the configurations in the power user mode interact with
each other. Therefore, one setting in one mode affects another setting in the next mode.

Grace (M5P430) * Timer0O_A3 - Power User Mode - CCR1
Overvew BascUser Power Uses - CCRD Povier User - CCR2 Registers

Timer CaptureiCompare Block 1

Desired PWMW Duty Cycle: o .
Capture Hegister: 0 Clock Ticks
Inaut Selection Capturz Mode Mo ca Cutput Fins
MimerOFF W oo
Pl 2ATAD COT1 A Rising Edge Dutput Compare P ATAD
GHD — Falling Edge Input Capture —{ PL.E/TAO.1
WiCC Both Edges P2.6/TAD
F3.5/TAGL
Cutput Mode: | pwih cutput mede: 0 - CUTkitvaiue = | [Set OUT bit High/Low
OxFFFF
T«CCRD
TxCCRx
Interrupt Enables
T Capturefcompére Interrupl enabile L | Generate Interupt Handler Code |

Miew AllInterrupt Handlers

Figure 10.20 The power user CCR1 mode for TimerO_A3.

10.9.3 The Register Controls Mode

In the register controls mode of the Timer0_A3 block (given in Fig. 10.21), all available
timer registers can be configured. Also, all capture/compare register values can be
configured.

Grace (M5P430) * Timer0_A3 - Register Controls
Ouewien Basic Ussr Powes Lker - CCRD Poweer User - CCR1 Power Uer - CERR

TADCTL Timer_A Control Register

1& =] 2] (0]] 4 ¥ 3] -] ' i a

Unpmemd TaESE i Wl .I';_-\."| ACLR TaaE TajiG
TACLE | |[omaer.a =] |[upmose - e
TAOCCTLO, Capture/Compare Block #0
1% (L] 13 [i (0]]]) €] L] 2 i o
O Lo L5 00 ruas CAH QU IO oK co [EF] L= NG
Mo Capture | || Ccien =|| E A | E1 || Pt output mogeso = | | @ g | e

TAQCCTL, Capturs/Campars Rlock #1
= I i 2 1]

] I n] 4 7 L ¥ . 1] F 3 i o
(=3 L T =oa Urusad L5 U TROD OLE =] Lt § o ooirG
Ne Capture —| || ot =]| & Al O ||pwM output madeso ~|| | " Fwl | A

TAQCCTLZ, Capture/Compare Block #2
= 16 (F] 12 "

[0} u] 7 & 3 i L] r 1 1

b i C i - RTSg O THOD cee | oo | our | ew | cowe
| M Copture —| || CcTa - | 7l [| pwh output madeso ~| | | ’ Eal | R
TAQCCRD TAOCCR1 TADCCR2
it 14 1mn
] 0 L]

Figure 10.21 The register controls mode for TimerO_A3.

10.9.4 Coding Practices

In our first example, we use Grace to toggle red and green LEDs every 3 s as in Sec.
10.6.4. We use the basic user mode here. We first select the Interval Mode under the Timer
Selection list of the Timer_A block. Then we select the output as TA0.0 Output Off. We
enter the desired timer period as 3000 ms. We should enable the capture/compare interrupt
by checking the Capture/compare interrupt enable 0 box. Then, we generate the ISR by
pressing the Generate Interrupt Handler button. In the Interrupt Vector_init.c file, we fill
the Timer_A ISR as in Listing 10.19. As we run the application, the red and green LEDs
toggle on every 3 s. Do not forget to enable the BCM+ for this application.

Listing 10.19 The Timer_A application ISR under Grace, the basic user mode.

#pragma vector=TIMERO_AOD_VECTOR
--interrupt wveoid TIMERO-A0_-ISR_-HOOEK(wvoid)

{

P10UT "= BIT6|BITO;

}

We repeat the same application now using the power user mode. Here, we set the
LED toggle time to be 1 s. We perform this operation as follows: First, we select the

ACLK from the Clock Source menu. We set the Divider to Divider-/8. We enable the
Timer_A overflow interrupt by checking the Timer_A overflow interrupt enable box. We
select the Up Mode as the Counting mode. We enter 1000 ms into the Desired Timer
Period box. We select the Output Compare/Period from the Mode list. We generate the
ISR by pressing the Generate Interrupt Handler Code button. In the Interrupt Vector_init.c
file, we fill the Timer_A ISR with Listing 10.20. As we run the application, the red and
green LEDs toggle on every second. Do not forget to enable the BCM+ for this
application.

Listing 10.20 The Timer_A application ISR under Grace, the power user mode.

#pragma vector=TIMER0_A1 VECTOR
__interrupt wvoid TIMERO_A1_ISR HOOK(wvoid)

{

switch(TAQIV)

{

case (x02: break:

case (x04: break:

case (0x0A: P1lOUT "= BITO|BIT6;
break:

}

Finally, we can feed the PWM output to adjust the brightness of the green LED using
Grace. We do not need any code blocks for this application. The settings for this
application are as follows: We select the PWM Mode in the Timer Selection list. We adjust
the desired timer period to 1 ms. In the Timer Capture/Compare Block # 1, we select the
PWM Duty Cycle under the Mode Selection list. We select P1.6/TA0.1 as output. As we
enter the Desired PWM Duty Cycle (between 1% and 100%), we can run our application.
The brightness of the green LED is adjusted by duty cycle here.

10.10 Chronometer Application

The aim in this application is to learn how to set and use the timer module and low-power
modes of the MSP430 microcontroller. As a real-world application, we design a
chronometer using a liquid crystal display (LCD) and push buttons. In this section, we
provide the equipment list, layout of the circuit, procedure, and system design
specifications.

10.10.1 Equipment List

Following is the equipment list to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 16x2 character LCD (with a Samsung processor)

One 10-kQ2 potentiometer

Two push buttons

One 330-nF capacitor

One 10-pF electrolytic capacitor

Two 100-nF capacitors

16x2 Character LCD: In this application, an LCD with two lines (each having 16
characters) will be used to show the time. Although another LCD brand can be used, we
picked the one with a Samsung processor due to its availability. When using another LCD,
the reader should obtain its pin description and the header file. The pin description for our
LCD is given in Table 10.19.

Table 10.19 The pin description of the LCD.

1 Vi Power supply (GND)

2 Vi Power supply (+5 V)

3 Vo Contrast adjust

4 RS Register select

5 RW Data read/write

6 E Enable signal

7 DBO Data bus line0

8 DBI Data bus linel

9 DB2 Data bus line2
10 DB3 Data bus line3
11 DB4 Data bus line4
12 DBS Data bus line5
13 DB6 Data bus line6
14 DB7 Data bus line7
15 A Power supply for the LED (+)
16 K Power supply for the LED (-)

As can be seen in Table 10.19, pins 1 and 2 are used to supply power to the LCD. Pin
3 is used to adjust the contrast of the LCD. This is done by changing the voltage at this pin
between 0 and 5 V with a suitable potentiometer. Pin 4 is used to identify the data type.
When this pin is low, the data transferred to the LCD is recognized as an instruction.
When this pin is high, the data transferred to the LCD is recognized as a character (to be
displayed). Pin 5 is used to set the state of the LCD. When this pin is low, the LCD is in
write state. When it is high, the LCD is in read state. Pin 6 is used to start the data transfer.

When a high-to-low transition occurs at this pin, the data is sent to the LCD. When a low-
to-high transition occurs, the data is read from the LCD. Pins 7 to 14 are used to transfer
8-bit data to the LCD. When the LCD is used in a 4-bit mode, only the last four pins (from
11 to 14) are used. Pins 15 and 16 are used to supply power to the LED backlight of the
LCD.

We collected the functions to control the LCD properly in a header file given in
Listing 10.21. First the definitions are done in this file. The LCD_Change() function is used
to generate the necessary high-to-low transition for pin 6. The functions SendCommand and
SendCharacter are used to provide low and high signals for pin 4. The LcD_bData function
represents port 2. But only four pins of this port are used for data transfer. The delay_ms()
function is used to generate the required delay times for the system. The data is sent to the
LCD (first upper 4 bits, then lower 4 bits) with the 1cd_send() function. The functions
lcd_writestr() and lcd writechr() write string and character variables to the LCD.
Integer values cannot be sent directly to the LCD. They should be converted to the
corresponding character values first. The function itoa(i,buffer,base) does the job.
This function converts the integer i to the corresponding character value, saved in the
string buffer. The variable base represents the base number of the integer i. The
lcd_goto(x,y) function is used to set the starting point on the LCD. In this function, x
represents the column number, y represents the row number. The lcd_init() function
initializes the LCD.

Listing 10.21 The header file for the LCD.

#define LCD_Data P20UT

#define LCD.Change() ((PlOUT |= BIT7),(PlOUT &= ~BIT7))
#define SendCommand (P1lOUT &= "BIT6)

#define SendCharacter (P1lOUT |= BIT6)

void delayms(int a){
while(a != 0)
{
delaycycles(1000);
a--;
}
}

void lcd_send(unsigned char data)|
LCD_Data=((data & 0xF0) == 4);
LCD_Change();
LCD_Data=((data & 0x0F));
LCD_Change();

}

void lcd writestr(const char *str)|
SendCharacter;
while(*str)
lcd_send(*str++);

}

void lcd writechr(char chr){
SendCharacter;
lcd_send(chr);

}

void lcd_goto(char x,char y){
SendCommand ;
if(x == 1)
lcd_send (0x80+((y-1)));
else

led-send (0xCO+((y-1)));
}

void lecd_init(veid)|
SendCommand;
delay.ms(40);
led send(0x30);
delayms(1);
led send(0x28);
delayms({1);
led_send(0x28);
delayms({1);
lecd_send (0x0C) ;
delayms(1);
lcd send(0x01);
delayams({2);
led send(0x06);

}

char* itoa(int value, char* result, int base)|

if (base<2 || base=36)[*result = '\0';return result;)
char* ptr = result, *ptrl = result, tmpchar;

int tmp_value;

do|

tmp_value = value;

value /= base;

*ptr++ = "zyxwvutsrgponmlkjihgfedcba®9876543210123\
45678%abecdefghijklmnopgrstuvwxyz "
[35+(tmp_value_value*base)];

| while (value);

if (tmp_value < 0) *ptr++ = '=-';
*ptr-- = '\0';

while(ptrl<ptr)|

tmp_char = *ptr:

*ptr—- *otrl:
*ptrl++ tmp_char;

}

return result:

}

10.10.2 Layout

The layout of this application is given in Fig. 10.22. For more information about the
voltage supply block, please see Fig. 9.3.

' 100
nF

GND |

— Ve 12V
P1.0 XIN Voltage
—1{P1.2 TEST 5V
—p13 MSP g
—p14 430 p1y
—1P15 G2553 p1e
P2.0 P2.5
P2.1 P24l—
O (71 o p2 31l
o
LCD MODULE
(14131211109 8 7 6 5 4 3 2 11615
J I [T 1 | [
@ ®
e
10-kQ
Pot

Figure 10.22 Layout of the chronometer application.

10.10.3 System Design Specifications

The chronometer will be controlled by two push buttons. The first button will be used to
start and stop the chronometer. When it is pressed once, the chronometer will start
counting. The time will be displayed on the LCD. When the first button is pressed again,
the chronometer will stop. The second button will reset the chronometer. If the

chronometer is running, pressing this button will also stop it.

In designing the chronometer, we need to use the proper clock frequency for the
timer. Since this is a prototype system, we will use the RC-based oscillators in this
application. As mentioned in previous sections, the internal RC-based oscillators of the
MSP430 are not precise. Therefore, the designed chronometer will not be precise. An
external oscillator can always be connected to increase the precision. Besides, the TAR

value should also be taken into account.
10.10.4 The C Code for the System

In the first part of the code, constants for interrupts are defined. This is done to make the
code more readable. The code block for this part is given in Listing 10.22.

Listing 10.22 Chronometer, the C code part I.

#define STARTSTOP ((PlIFG & 0x0l) == 0x01)
#define RESET ((PlIFG & 0x02) == 0x02)

In the second part of the code, given in Listing 10.23, global variables to be used in
the code are defined. In this code block, the Start variable keeps the stop or start state of
the chronometer. Initially, the chronometer is stopped. Therefore, the Start variable has
the value 0. The variables secondh and minuteh are used to keep the tens digit of the
second and minute. Similarly, the variables secondl and minutel are used to keep the
ones digit of the second and minute. The arrays lcdsecondh, lcdminuteh, lcdsecondl,
and lcdminutel are used to keep the character values of the second and minute values.
The 1cd array is used to keep the complete time value (to be sent to the LCD).

Listing 10.23 Chronometer, the C code part II.

int start = 0:
int secondh =
int secondl =
int minuteh
int minutel
char lcdsecond
char lcdsecond
char lcdminuteh
char lcdminutel
char lcd[5]:

-
r
.

F

-

r

0
0
0
0
h[1]
1[11];
1]:
1]

[
|
[
[

r

In the third part of the code, the hardware setup for digital input and output (I/O) is
done. This code block is given in Listing 10.24 in terms of the PinConfig() function. In
the first line of the function PinConfig(), port P2 is set as digital I/O. In the second and
third lines, pin directions are determined for ports P1 and P2. As can be seen in Fig. 10.22,
Register Select and Enable pins of the LCD are connected to pins P1.6 and P1.7 of the
MSP430G2553. Two push buttons are also connected to pins P1.0 and P1.1 of the
microcontroller. In software, the corresponding code line is P1DIR=0xFC. Here also, all
other pins of port P1 are set as output. As can be seen in Fig. 10.22, Data pins of the LCD
are connected to pins P2.0, P2.1, P2.2, and P2.3 of the microcontroller. In software, the
corresponding code line is P2DIR=0xFF. Again, unused pins of port P2 are set as output. In
the fourth line, pull-up/down resistors for button-connected pins of port P1 are enabled. In
the fifth and sixth lines, output registers are set as P10UT=0x03 and P20UT=0x00.

Unnecessary power consumption is also prevented for unused output pins by this
procedure. On the other hand, high bits of the P1OUT register are used for choosing pull-
up resistors for input pins. In the next three lines, interrupt settings for port P1 are done.
Interrupts are obtained from two push buttons connected to pins P1.0 and P1.1. Therefore,
P1IE=0x03. These interrupts are triggered by a high-to-low transition. Therefore,
P1IES=0x03. Also, all interrupt flags are cleared initially by P1IFG=0x00.

Listing 10.24 Chronometer, the C code part III.

void PinConfig(wveoid)|
P25EL = 0x00;
P1DIR = 0xXFC:
P2DIR = (xFF;

P1REN = 0x03:
P1lOUT = 0x03:

PZ20OUT = 0x00;
P1IE = 0x03:
P1IES = 0x03;
P1IFG = 0x00;

In the fourth part of the code, the hardware setup for the timer block is done. This
code block is given in Listing 10.25 in terms of the TimercConfig() function. In the first
line of the function Timerconfig(), the watchdog timer is disabled. In the second line, the
VLO is chosen to source the ACLK at 12 kHz. In the third line, the timer interrupt is
enabled. In the fourth line, the ACLK is chosen as the clock source with TASSEL_1. Its
frequency is divided by 8 with 1p_3. This 1.5 kHz clock is used in the timer block. The
TAR register is cleared with TACLR. Also, the timer is stopped with MC_0 since the system
should not start until the Start button is pressed. In the fifth line, the time interval is set as
1 s by assigning 1499 to TACCRe. Remember, the period is (TACCRO+1)/ f; k-

Listing 10.25 Chronometer, the C code part I'V.

void TimerConfig(wveid){
WDTCTL = WDTPW |WDTHDLD &

BCSCTL3 |= LFXT1S.2;

TACCTLO = CCIE;
TACTL = MC_0|ID_3|TASSEL_1|TACLR;
TACCRO = 1499;

ISR settings for port- and timer-based interrupts are given in Listing 10.26. As a port
interrupt comes from the Start button when start==0, the system exits from LPM4. The
system goes to the ISR int_timer every second by the timer-based interrupt. Then the
variable secondl is increased by one within this ISR. secondl is cleared when it equals
10. Then, secondh is increased by one. There can be two different interrupts coming from
the two buttons for port P1. The necessary actions for these two button presses are
separately defined in the ISR int_button. After the ISR completes its task, the related
interrupt flag is cleared to get a new interrupt.

Listing 10.26 Chronometer, the C code part V.

#pragma vector=TIMERO0-AO_VECTOR
_-interrupt veoid int_timer(wveid)|{
secondl++:;
if(secondl == 10){
secondl = 0:
secondh++:;

6){

if(secondh =
secondh = 0;
minutel++;

if(minutel =
minutel = 0;
minuteh++;

H
j

#pragma vector=PORTI1_VECTOR
_-interrupt veid int button(wveid){
LPM4_EXIT:

if (STARTSTOP) |
start "= 1:
P1IFG &= “0x01:

}

10){

if (RESET)|
secondh = 0;
secondl = 0:
minuteh = 0;
minutel 0;

start = 0;
TACTL |= TACLR;
Pl1IFG &= ~0x02:

)

Finally, the C code for the system (with all its components) is given in Listing 10.27.
The code block doing the operation is put in an infinite loop. Every time the system
returns from the ISR int_timer or int_button, it goes to this loop. Then the system calls
the write_to_LcD() function. This function converts the second and minute digits to
corresponding character values, places them into the 1cd character array, then writes to the
LCD. Also, if the start variable equals one, the timer starts by writing MC_1 to the TACTL
register. Otherwise, the system goes to LPM4 and the timer stops. The LCD is initialized
by the 1cd_init() function in the main code. The GIE bit is also set to enable maskable
interrupts.

Listing 10.27 Chronometer, the C code.

#include <msp430.h=>
#include "lcd.h”

#define STARTSTOP ((PlIFG & 0x01) == 0x01)
#define RESET ((PlIFG & 0x02) == 0x02)

int start = 0:
int secondh = 0
int secondl = 0
int minuteh 0
int minutel 0
char lcdsecondh[1];
char lcdsecondl[1l];
char lcdminuteh[1]:
char lcdminutel[1l];
char lcd[5]:

s
F

I
L] -

void PinConfig(void);
void TimerConfig(void);
void Write to LCD(wveoid);

void main(void)

i

PinConfig();
TimerConfig();

led init():
_enable_interrupts():;

while(1l)

l

if(start == 1)|
Write to LCD();
TAOCTL |= MC_1;
1

if(start == 0){
Write to LCD();
LPM4

1
]

void PinConfig(void)|{
P25EL = 0x00;

P1DIR = 0xFC;

P2DIR = 0xFF;

P1REN = 0x03;

P1OUT = 0x03;

P20UT = 0x00;

P1IE = 0x03:

P1IES = 0x03;

P1IFG = 0x00;:

J

void TimerConfig(void){
WDTCTL = WDTPW|WDTHOLD;

BCSCTL3 |= LFXT1S. 2;

TACCTLO = CCIE;
TACTL = MC.0|ID_3|TASSEL 1|TACLR;
TACCRO = 1499;

J

void Write to LCD(wvoid)|

itoa(secondh,lcdsecondh,10);
itoa(secondl,lcdsecondl, 10);
itoa(minuteh,lcdminuteh,10);
itoa(minutel,lcdminutel,10);

led[0] ledminuteh[0];
led[1] ledminutel[0];
led[2] Ll a

led[3] = lcdsecondh[0];
lcd[4] lcdsecondl[0];
led goto(l,1);

led writestr(lcd);
}

#pragma vector=TIMERO_AQO_VECTOR
--interrupt void int_timer (wvoid){
secondl++;
if(secondl == 10){
secondl = 0;
secondh++;
if(secondh == 6)|
secondh = 0;
minutel++;
if(minutel == 10){
minutel = 0:
minuteh++;

i

}

#pragma vector=PORT1 VECTOR
--interrupt wvoid intbutton(veid){
LPM4_EXIT;
if (STARTSTOP) |
start "= 1;

PlIFG &= ~0x01;

}

if(RESET)|{

secondh =
secondl =
minuteh
minutel =
start = 0;
TACTL |= TACLR;
P1IFG &= ~0x02:

J

I
oo oo

. mas

¥

10.11 Summary

This chapter was on time-based operations. We started with the oscillators available in the
MSP430. Then we considered the BCM+ and available clocks. Since the user can select
more than one clock for different operations, the clock properties should be known. We
also considered the BCM+ under Grace. Next, we focused on low-power modes. Using
low-power modes is extremely important for battery-based systems. Through them energy

can be saved by disabling the CPU or peripherals when they are not needed. Then we
considered the watchdog timer (WDT+) module of the MSP430. This module can be used
as a watchdog or as a timer. We provided sample C and assembly codes on both
operations. We also explored the WDT+ operation under Grace. We looked at the TA
module of the MSP430 afterwards. There are two identical timer modules in the
MSP430G2553. Each module has a separate timer and three capture/compare blocks. We
explored the operation of each block in detail. We also considered the usage of these
blocks under Grace. Finally, we provided the design of a simple chronometer application
by using concepts considered in this chapter.

10.12 Problems

10.1 Write a program in C such that the MSP430 is in low-power mode most of the
time. Initially the green LED (connected to P1.6 on the MSP430 LaunchPad)
is on and the red LED (connected to P1.0 on the MSP430 LaunchPad) is off.

The CPU wakes up in periodic time intervals of
a. 10s
b. 1 min
c. 1h (if possible)
d. 1 day (if possible)

As the CPU wakes up, the LEDs toggle. Then the CPU will go to the low-power
mode again.

10.2 Repeat Prob. 10.1 in assembly language.

10.3 Add a push button (connected to P1.3 on the MSP430 LaunchPad) to Prob.
10.1. When this button is pressed, the timer will reset itself and the LEDs will
go to their initial states.

10.4 Repeat Prob. 10.3 in assembly language.
10.5 Repeat Prob. 10.3 using Grace.

10.6 Write a subroutine to display the characters on the LCD in assembly
language.

10.7 Write international characters like i, 1, and ¢ to the LCD in C and assembly
languages.

11 Mixed Signal Systems

Chapter Outline

11.1 Analog and Digital Signals
11.2 The Comparator

11.3 Comparator A+ in Grace

11.4 Analog-to-Digital Conversion

11.5_ Digital-to-Analog Conversion
11.6 ADCI10 in Grace

11.7 Non-Touch Paper Towel Dispenser Application

11.8 Summary
11.9 Problems

This chapter deals with analog-to-digital and digital-to-analog conversion. In
microcontrollers, there are specific modules to convert analog signals to digital form.
These perform sampling in time and quantization in amplitude. They are generally called
analog-to-digital converters (ADCs). The ADC module under the MSP430G2553 is called
ADC10. There is also a Comparator_A+ module which can be taken as a 1-bit ADC under
the MSP430. For digital-to-analog conversion, there are also specific modules in
microcontrollers. These perform interpolation between digital samples. They are generally
called digital-to-analog converters (DACs). Unfortunately, the MSP430G2553 does not
have a DAC module. Therefore, we will use the PWM operation to obtain the approximate
analog representation of the corresponding digital signal. Next, we will start with the
general explanation of analog and digital signals.

11.1 Analog and Digital Signals

A value changing with time or another dependent variable can be taken as a signal. There
are two signal types, analog and digital. By definition, an analog signal can have its
amplitude represented with infinite precision. It can also be defined for any time value. A
digital signal can represent samples of the analog signal in time. Moreover, its amplitude
values are also quantized. This means that the amplitude is represented by only certain
values. More information on these signal types (in terms of theory) can be found in [8, 4].

The digital signal is the sampled and quantized form of the analog signal. Therefore,
digital signal representation contains less information than its analog counterpart. This
may seem a disadvantage for digital signal representation. In practice, this is not the case.
Analog signals are hard to store and process. They are also prone to noise. Besides, the
system for processing an analog signal is usually static. On the other hand, a digital signal
is very robust to noise. The system to process a digital signal can be a code block. Hence,
all the system parameters (or the system itself) can easily be changed by replacing a code
block. That is why most recent systems are in digital form. In this book, we take the

microcontroller as the digital system. Next, we will consider the most primitive module to
convert an analog signal to digital form.

11.2 The Comparator

The comparator has two inputs called positive and negative. One of these inputs can be
used for the reference voltage (either external or internal). The other is used for the input
voltage. The comparator compares these two values. Let’s assume that the input voltage is
fed to the positive input and the reference voltage is fed to the negative input. If the input
voltage is higher than the reference, the comparator output will be one. Otherwise, it will
be zero. In other saying, the comparator output is just 1 bit. This operation can be taken as
a 1-bit ADC.

11.2.1 The Comparator_A+ Module

The comparator module under the MSP430 is called Comparator_A+. A block diagram of
Comparator_A+ is given in Fig. 11.1. As in other modules, Comparator_A+ is controlled
by specific registers. They are explored next.

P2CA4

P2CAO Vee OV
1% CAEX @l CAON
cao—o1 | W - 1 .
!
N
CA2 y |

|
*\ -
— 000 | CAF
CAl —
o > CCIIB
CA2 — 010
CA3—011
»! CAOUT
CA4— 100
CcA5— 101
Set
CA6— 110 T CAIFG
P2CA3 CAREFx W
P2CA2 T
P2CAI CARSEL é
05xV_{CC]
= 0.25xV_(CC)
_! \
| — v
Vv

Figure 11.1 Block diagram of the Comparator_A+ module.

11.2.2 Comparator_A+ Registers

The Comparator_A+ module has three control registers. These are the control register 1,
CACTL1, control register 2, CACTLZ2, and port disable register, CAPD. Their entries are
shown in Tables 11.1, 11.2, and 11.3 in detail.

Table 11.1 The Comparator_A+ control register 1 (CACTL1).

Bits 7 6 5-4 3 2 1 0o

CAEX CARSEL CAREF CAON CAIES CAIE CAIFG

Table 11.2 The Comparator_A+ control register 2 (CACTL2).

Bits 7 6 5 a 3 2 1 0

CASHORT P2CA4 P2CA3 P2CA2 P2CAl1 P2CA0 CAF CAOUT

Table 11.3 The Comparator_A+ port disable register (CAPD).

Bits 7 6 5 4 3 2 1 o

CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPDO

In Table 11.1, setting the CAEX bit exchanges the comparator inputs and inverts the
comparator output. The CARSEL bit selects the terminal for the reference voltage Vggr-
If CARSEL is zero, Vcager is applied to the positive terminal. Otherwise, it is applied to
the negative terminal. For this scenario, CAEX is assumed to be zero. The CAREF bits
select the source for the reference voltage Vi arrr- Based on the binary values from 00 to
11, the reference voltage is applied as follows: internal reference off (an external reference
can be applied), 0.25 x V., 0.5 x V., and diode reference. Predefined constants for these
are CAREF_0, CAREF_1, CAREF_2, and CAREF_3 respectively. The CAON bit turns
on the comparator. The CAIES bit sets the interrupt edge select (low to high or reverse).
The CAIE bit is used to enable the comparator interrupt. The CAIFG bit represents the
interrupt flag.

In Table 11.2, setting the CASHORT bit short-circuits the positive and negative
inputs of the comparator. Bits P2CA4 and P2CA0 are used to select the positive input of
the comparator among pins CA0O, CA1, and CA2. Similarly, bits P2CA3, P2CA2, and
P2CA1 are used to select the negative input of the comparator among pins CA1 to CA7.
Please see Table 11.4 for the pin layout for the Comparator_A+ module. The CAF bit sets
the comparator’s output filter. The CAOUT bit keeps the comparator’s output.

Table 11.4 Pin usage table for the Comparator_A+ module.

Pin Port Name Usage Area

1 Voo Source voltage
2 P10/ CAD Comparator_A+, CAO input
3 P1.1/ CAl Comparator_A+, CAl input
- P1.2/ CA2 Comparator_A+, CA2 input
5 P13/ CA3 Comparator_A+, CA3 input
CAOUT Comparator_A+, output

6 P14/ CA4 Comparator-A+, CA4 input
7 P1.5/ CAS Comparator_A+, CAS input
8 P20
9 P2.1

10 P22

11 P23

12 P24

13 P25

14 P1.6/ CA6 Comparator-A+, CA6 input

15 CA7 Comparator-A+, CA7 input

P1.7/ CAOUT Comparator_A+, output

16 RST Reset

17

18 P2.7

19 P26

20 Vig Ground voltage

In Table 11.3, each bit disables the input buffer for the pins associated with the
Comparator_A+ module. This reduces the current consumption for certain input voltage
levels. For more detail on this issue, please see [17].

11.2.3 The Pin Layout for the Comparator_A+ Module

As in the previous chapters, we provide the pin layout of the MSP430G2553 in Fig. 11.2.
This figure will serve for both the Comparator_A+ and ADC10 modules (to be explained
in the following section). The pin usage table for the Comparator_A+ module is given in
Table 11.4. As can be seen in this table, pins 2 to 7, 13, and 14 can be used for comparator
input. Only pins 5 and 15 can be used for comparator output.

—= e GND
— P10 XIN|——
S XOUT——
— P12 TEST——
—1p13 MEE RST|——
430
— |p14 g5 P1.7——
— P15 P1.6——
— P20 P25
—{p21 P24
_104ps] L

Figure 11.2 Pin layout of the MSP430G2553.

11.2.4 Coding Practices for the Comparator_A+ Module

Below, we provide sample C and assembly codes for the usage of the Comparator_A+
module. The same operation is done in both codes. The input from CA1 is compared with
the internal reference voltage, which is 0.25 x V. here. If the input voltage is greater than
this reference voltage, the green LED (connected to the P1.6 on the MSP430 LaunchPad)
will turn on. Otherwise, the red LED (connected to the P1.0 on the MSP430 LaunchPad)
will turn on. This application can be taken as a simple battery check system.

In Listing 11.1, we first set the comparator parameters. Then we check the input
values and turn on the appropriate LED in an infinite loop. To do so, we have to check the
register CACTL2 since we cannot reach the CAOUT bit alone. In Listing 11.2, we
perform the same operation in assembly language.

Listing 11.1 Usage of the Comparator_A+ module in C language.

#include =msp430.h=

#define REDLED BITO
#define GREENLED BIT6

void main (wvoid)

{

WDTCTL = WDTPWWDTHOLD;
P1DIR = BITO|BIT6;

CACTL]1 = CARSEL+CAREF_1+CAOQON;
// 0.25 Vec = -comp, on
CACTLZ = P2CA4; // P1.1/CA1l = +comp

while(1l)

{

if(CAOUT & CACTL2)
P10UT = GREENLED;
else P10UT = REDLED;

}

Listing 11.2 Usage of the Comparator_A+ module in assembly language.

.cdecls C,LIST, "msp430.h"”

Ltext
.retain
.retainrefs

RESET

mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END,SP

bis.b #41h,P1DIR

mov.b #CARSEL+CAREF_1+CAON,CACTL1
mov.b #P2CA4,CACTL2Z2

Mainloop:
bit.b #CAOUT,CACTL2
iz REDLED

GREENLED:
bis.b #40h,P10OUT
bic.b #01h,P10OUT
jmp Mainloop

REDLED:
bis.b #01h,P10UT
bic.b #40h,P10OUT
jmp Mainloop

.global __STACEK_END
.5ect .stack

.sect RESET_VECTOR
.short RESET
.end

11.3 Comparator_A+ in Grace

The Comparator_A+ module can be used under Grace by clicking the Comp_A+ 8
Channels block shown in Fig. 5.11. Do not forget to check the box “Enable
Comparator_A+ in my configuration” first to configure the Comparator_A+ module under
Grace.

11.3.1 The Basic User Mode

The Comparator_A+ module can be configured basically by setting inputs, output, and the
reference voltage in the basic user mode (given in Fig. 11.3). There are two drop-down
lists for positive and negative inputs to the comparator. There is a third drop-down list for
the reference voltage under Voltage Reference. There is also a list to select which input
will use this reference voltage. Here, the two options are + Channel and - Channel. The

output of the comparator module can be directed either to Timer_ACCI1B or to either of
the two options from the dropdown list. The Comparator_A+ based interrupts can be
adjusted in this mode also. First, the user should check the Comparator_A+ interrupt
enable box. The user can select the interrupt edge select type (whether it will occur on the
rising or the falling edge) from the two check boxes. Then the prototype interrupt service
routine (ISR) can be added to the InterruptVectors_init.c file by pressing the Generate
Interrupt Handler Code button.

Grace (MSP430) * Comparator_Aplus - Basic User Mode

Oyerview Power User Registers
Inputs Qutput
Mo connection b4 i Timer_A CCILE
{ CAOUT Output OFF ~
FL1/CAL - —T

Voltage Reference

'+ channe! IS .
" Channel 109V ~[05*Vcq |

Interrupt Enables

Comparator_A+ interrupt enable _ Generate Interrupt Handler Code

View All Interrupt Handlers

Interrupt Edge Select @ Rising Edge
Falling Edge

Figure 11.3 The basic user mode for the Comp_A+ block under Grace.

11.3.2 The Power User Mode

The power user mode for the Comparator_A+ module is given in Fig. 11.4. There are
three additional check boxes in the power user mode. Two of them are related to the
inputs. The Short inputs check box can be used to short-circuit inputs. The Flip Inputs,
Inverse Output check box can be used to flip inputs and inverse output. The third check
box, Enable Filter is related to the output. The user can enable the comparator’s output
filter by checking this box.

Grace (MSP430) * Comparator_Aplus - Power User Mode

QOvendiew Basic User Registers
Inpuls Cutput
|No connedtion v ——+ ["] Enable Filter — g Timer_A CCILB
[7] short inputs 1 CAOUT Output OFF =
[Pr1/CAL =——
[T Flip Inputs, Inverse Outpul Voltage Reference

|+ Channe | _.
|- Channel —| 09V~ [0.5*VCq -

Interrupt Enables
Comparator_A= interrupt enable i Generate Interrupt Handler Code
View all i ndler
Interrupt Edge Select @ Rising Edge

_! Falling Edge

Figure 11.4 The power user mode for the Comp_A+ block under Grace.

11.3.3 The Register Controls Mode

Finally, all of the preceding Comparator_A+ module settings can be done in the register
controls mode given in Fig. 11.5. In this mode, Comparator_A+ registers CACTL],
CACTL2, and CAPD can be adjusted by appropriate check boxes. There is also a drop-
down list to adjust the reference voltage value in CACTL1.

Grace (MSP430) * Comparator_Aplus - Register Controls

Overview Basic User Power User

CACTL1, Comparator_A+ Control Register 1

7 L a & 3 2 1 1]

CAEX CARSEL CAREFx CADN CMES CAE CAIFG

] 1 |losorveec ~«||] RAW)

CACTL2, Comparator_ A+ Control Reqister 2

[L 5 & 3 2 1 1]

CA
SHORT

]]] (W V] I] 5

PaCAL P2CAT P2CA2 P2CAY P2CAD CAF CADUT

CAPD, Comparator_A+, Port Disable Reqister

7 @ 5 4 3 2 1 a

CAPDT CAPDG CAPDS CAPDe CAPDa CaPD2 CAPD CAPDO

c £ £ [l]] ki

Figure 11.5 The register controls mode for the Comp_A+ block under Grace.

11.3.4 Coding Practices

In this section, we redo the comparator application given in Listing 11.1 using Grace. As a
reminder, this application is a simple battery checker. We start by generating a Grace
project. Then, we configure pins P1.0 and P1.6 under Grace. These should be set as GPIO
output. These settings can be done by any of the three GPIO views. The internal reference
voltage is connected to the positive input of the Comparator_A+ module. The voltage
input is connected to the negative input of the Comparator_A+ module. In this application,
we reconfigure the main.c file as given in Listing 11.3. After compiling the project, we
can run our application.

Listing 11.3 Usage of the Comparator_A+ module under Grace, basic user mode.

* ======== Standard MSP430 includes ========
L

#include <=msp430.h=

‘,.-’*
* ======== (race related includes ========
*/f

#include <ti/mcu/mspd430/Grace.h=

‘,.-’*
* ======== main s=s=s=====
*/f

int main(void)

{

Grace_init();

// Activate Grace-generated configuration

while(1l)

{

if (CAOUT & CACTL2Z)
P1OUT=BITO;

else P1OUT=BITH:

}

return (0):

11.4 Analog-to-Digital Conversion

There are several analog-to-digital conversion (ADC) methods. Each has advantages and
disadvantages [2]. The ADC10 module in the MSP430G2553 uses the successive
approximation register (SAR) conversion method. Therefore, we will only deal with it in
this section. Then we will focus on the properties of the ADC10 module.

11.4.1 Successive Approximation Register Converter

As the name implies, the SAR converter works iteratively in obtaining the digital form of
the analog signal. In iteration, the MSB of the digital form is obtained first. Then, step-by-
step, remaining lower-order bit values are obtained until the LSB is reached.

The SAR circuitry is shown in Fig. 11.6. In this figure, V|y stands for the analog
voltage value to be converted to digital form. The working principle of the given SAR
circuitry is as follows: Initially, all the capacitors will be discharged to the offset voltage
of the comparator. As the analog signal is fed to the input, it will be kept at that value by a
sample and hold circuit. Then this voltage is applied to all capacitors. Since each capacitor
has a different capacitance (in powers of two), they will be charged accordingly. These
values are compared with the reference voltage. Based on the comparison, the bit value

(either zero or one) is generated and saved in the shift register. Then the reference voltage
(Vrer) is updated and the conversion continues until the desired accuracy is obtained.

A r.,_‘j..
)
Q
{2
N His—s
]
| S QC—H—-
]
]
[5]
~o
["-3,-
e
&
T
= T -

__

Figure 11.6 The circuit diagram of the SAR converter.

To explain how the SAR conversion works, we simulate it with the code given in
Listing 11.4. Here, the constant bitsize represents the bit size of the digital form to be
obtained. The variable vin stands for the analog voltage to be converted to digital form.
The variable vref stands for the reference voltage. The array bits holds the digital form
obtained. Finally, the variable quantized holds the quantized approximate form of the
analog input voltage. We can observe the bits and quantized variables from the
Expressions window in CCS.

Listing 11.4 The simulation program for the SAR conversion.

#include <msp430.h=
#define bitsize 10

float Vref = 3.6
float Vin = 3.3:
float thresh;:

float gquantized = 0;
int count:

int bitwval:

int bits[bitsize];

void main (veoid)

{

WDTCTL = WDTPWWDTHOLD;

Vref /= 2;
thresh = Vref:

for(count=0; count<bitsize; count++){
Vref /= 2;

if (Vin >= thresh)

{bitval = 1;

thresh += Vref;}

else
{bitval = 0;
thresh -= Vref;}

bits[count] = bitwval;
quantized += 2*Vref*bitwval;

}

while(1l);
i

Let’s consider an example of the use of this simulation program. Assume that we take
the reference voltage (Vzgr) as 3.6 (V). We set the bit size to 10 (bits). Assume the input
voltage (V}y) to be 1.9 (V). We will get the digital representation 1000011100b or 21Ch as
we run the simulation program. As can be observed from the CCS Expressions window,
the input voltage is approximated by 1.898438 V. This simulation program also gives an
insight into the working principles of the SAR conversion.

11.4.2 The ADC10 Module

The layout of the ADC10 module is shown in Fig. 11.7. In this figure, the input channels
A12 to A15 are connected to channel A1l internally. The input channel A10 is connected
to the internal temperature sensor. In this figure, TA_OUTO0, TA_OUTI1, and TA_OUT2
represent the timer block output (TA_OUTX) given in Fig. 10.9. Therefore, ADC10 can be
directly triggered by any channel of the timer module.

VerEF+

&
g 4B —
C REFOUT —<i T 7 @REFON
SREFI REFBURTS| ~—] L. __“—INCHx = 0Ah
0 Voo] / on
1 Lo < B T: SV or 2.5 Vi AVee
T\ Reference
V. Ref_x |
REF-' " ¢REF- i i
INCHx AVec MI. W
4 © 1osR 4
s 111001 unf B SREF
I CONSEQx a W SREFO
Al ity ADCI0SSELx
A2 0010 SREF-2l~.! D{-lmﬂ ADC10DIVX ADCIO!
Al—le— 0011 ﬂ pees
Ad—e 000) -
AS 0101 Sz Ve 00 |
0110 x
AS o111 tein Divider [01 — ACLK
[E3H 10-Bit 5. 1718 ! | s
— 1001 o | | 10
L5
= e o L swek
le—iiol ADCIOCLK
L F— = I55H
ENC
AV Sample ' 00 — ADCI0SC
Timer |SHI/ 0 |
S [] 7478 | | < o1 {— TO_Al
r/L |NCH\L :ﬂBh .“El fﬁ-l- | 1 —TU_AU
* Ref x 2] L1 —To_Aa2
L ADC10 MSC
= ADCI0DF SHTx
}R By
> & N
. L ADCIOMEM
Vi RAM., Flash,
Data Transfer : :
:;ER Controller I s] Peripheralz
;/L | ADCI0SA e
AVes i i

ADCIOCT ADCIOTB ADCI0BI

Figure 11.7 Block diagram of the ADC10 module.

11.4.3 ADC10 Registers

As can be seen in Fig. 11.7, the ADC10 module has several parameters. These are
controlled by the two registers called ADC10CTL0 and ADC10CTL1. We will first focus
on the ADC10CTLO register given in Table 11.5. As can be seen in this table, the user can
select the voltage reference values, sample and hold time, sampling rate, reference voltage
output, internal reference buffer, multiple sample and conversion, reference generators,
turning on the SAR core, interrupt capabilities, and the conversion operation through the

ADCI10CTLO register.

Table 11.5 ADCI10 control register 0 (ADC10CTLDO).

Bits 15-13 12-11 10 9 8
SREFx ADCIOSHTx ~ ADCI0OSR REFOUT REFBURST

Bits 7 6 3 4 3 2 1 o
MSC REF2_.5V REFON ADC100N ADCI0IE ADCIOIFG ENC ADCI0SC

In Table 11.5, the most significant 3 bits of the ADC10CTLO register, SREFx, are
used for voltage reference values. In connection with Fig. 11.7, these correspond to
SREF2 (MSB), SREF1, and SREFO0 (LSB) respectively. These values are shown in detail
in Table 11.6. Here, we provide the constants (from SREF_0 to SREF_7) defined in the
MSP430 header file (given in the Appendix) instead of giving the individual values for
these bits. In this table, Vi represents the built-in reference voltage and Vegg; represents
the external reference voltage.

Table 11.6 SREFx values and corresponding constants.

Constant Ve Vi
SREF._0 Voo Vi
SREF._1 VREE+ Vss
SREF_2 V erer+ Vss
SREF_3 Buffered Vegpr Vss
SREF_4 Vee VREF—/ VerEr—
SREF_5 VREF+ VREF—/ VerEF—
SREF_6 Verpr+ Vrer—/ Vergr—

SREE.7 Buffered V\‘-’REF{— VREI"—X V“-’REF—

In Table 11.5, bits 12 and 11 (ADC10SHTX) are reserved for sample and hold times.
The constants and the corresponding sample and hold times related to these bits are
tabulated in Table 11.7. As can be seen in this table, the sample and hold time is related to
the clock used in the ADC10 module.

Table 11.7 ADC10SHTx values and corresponding constants.

Constant Sample and Hold Time

ADCI0SHT.0 4 x ADCIOCLK
ADCI0SHT_1 8 x ADCIOCLK
ADCI0SHT:2 16 x ADCI0CLK

ADCI0SHT.3 64 x ADCIOCLK

The remaining bits for the ADC10CTLO register have the following properties. The
ADCI10SR bit adjusts the sampling rate. When this bit is reset, the sampling rate can be up
to 200 ksps. When it is set, the sampling rate may go up to 50 ksps. The REFOUT bit
enables the reference voltage output. The REFBURST bit controls the internal reference
buffer. When this bit is reset, the reference buffer will be fed to output continuously,
independent of the status of the ADC10 module. When this bit is set, the reference voltage
is fed to output only when the ADC10 module is active. The MSC bit allows multiple
sample and conversion operations for valid sampling modes (to be explained next). The
REFON bit enables the reference generator. The REF2_5V bit selects the reference
voltage as either 1.5 or 2.5 V when it is reset and set, respectively. The REFON bit must
also be enabled for this purpose. The ADCI10IE bit enables the interrupts related to the
ADC10 module. The ADC10IFG bit stands for the interrupt flag. The ENC bit enables
the conversion. Finally, setting the ADC10SC bit starts the analog-to-digital conversion.

The second control register for the ADC10 module is ADC10CTL1, given in Table
11.8. As can be seen in this table, the user can select the input channel, sample and hold
source, data format, whether or not to invert the sample and hold signal, ADC10 clock
divider, ADC10 clock source, and conversion sequence mode through the ADC10CTL1
register.

Table 11.8 ADCI10 control register 1 (ADC10CTL1).

Bits 15-12 11-10 9 8

INCHx SHS5x ADCDF ISSH

Bits 7-5 4-3 2-1 0

ADCI0DIVx ADCIOSSELx CONSEQx ADCI0OBUSY

In Table 11.8, the most significant 4 bits in the ADC10CTL1 control register,
INCHx, are reserved for the input pins to the ADC core. Pins A0 to A7 (explained in
Table 11.10) can be selected as inputs for the ADC. The constants corresponding to these
inputs are INCH_0, INCH_1,..., INCH_7 respectively. The corresponding pin should also
be enabled in the ADC10AEOQ register for analog input. The input should be selected as
INCH_10 to use the internal temperature sensor of the MSP430. The SHSx bits select the
sample and hold source. The constants for these bits are defined as SHS_0, SHS_1,
SHS_2, and SHS_3. They correspond to ADC10SC, Timer_A output units 1, 0, and 2
respectively. The ADC10DF bit sets whether the data format for the ADC10 will be in
binary or two’s complement form. In the first form, the result will be right-justified binary
in the 0000h—03FFh range. Zero corresponds to the bottom of the input range. In the
second form, the lowest 6 bits are always clear, and bit 15 gives the sign. Zero
corresponds to the middle of the input range, and lower inputs give negative values. The
ISSH bit enables or disables the sample input signal inversion.

The ADC10DIVx bits set the clock divider values. The clock in the ADC10 module
can be divided into 1, 2,..., 8 based on the constants ADC10DIV_0, ADC10 DIV _1,...,
ADC10DIV_7. The ADC10SSELXx bits are used to select the clock source for the ADC10
module. This clock can be taken from the module’s internal oscillator ADC100SC,
ACLK, MCLK, or SMCLK. These can be selected by constants ADC10SSEL_O,
ADC10SSEL_1, ADC10SSEL_2, and ADC10SSEL_3 respectively. The default clock is
ADC100SC. It runs nominally at 5 MHz. It is automatically enabled when needed and
disabled when conversions have finished. This makes it the most convenient source for
most applications. The CONSEQXx bits are used to select the conversion mode. These are:

* Single channel, single conversion: Single conversion for the channel selected by
INCHXx bits. This mode is represented by the constant CONSEQ_0.

 Sequence of channels: One conversion in multiple channels, beginning with the
channel selected by INCHx bits and decrementing to channel AQ. The operation stops
after the conversion of channel AQ. This mode is represented by the constant
CONSEQ _1.

* Repeat single channel: A single channel selected by INCHx bits is converted
repeatedly until stopped. This mode is represented by the constant CONSEQ_2.

- Repeat sequence of channels: Repeated conversions for multiple channels, beginning
with the channel selected by INCHx bits and decrementing to channel A0. The
sequence ends after conversion of channel A0. The next trigger signal restarts the
sequence. This mode is represented by the constant CONSEQ_3.

The final bit in the ADC10CTL1 register is ADC10BUSY. It will be set while the
conversion is in progress.

As the conversion is done, the result will be written to the ADC10MEM register.
Based on the previously mentioned reference selections, this will be in the form of

1024 x (Vin — V)
N = nint (. o - 5)
: IFH+ — IFH_

(11.1)

where N is the output of the conversion operation. nint (-) stands for the nearest integer
function. V5, and Vg_ are the upper and lower reference voltages given in Table 11.6. V}y is

the input voltage applied to the ADC. Here, the constant 1024 corresponds to the
maximum level, 219, that can be obtained from the ADC10 module.

In its basic form, three steps are needed to perform a single conversion with the
ADC10 module. First, the ADC10 should be configured through its registers
ADC10CTLO and ADC10CTL1. Meanwhile, the ADC100N bit should be set to enable
the ADC10 module. ADC10 control registers can only be adjusted when the ENC bit is
reset. Second, the ENC bit should be set to enable conversion. Third, the conversion
should be started either by setting the ADC10SC bit or by an edge from the Timer_A (TA)
module. The last two steps must be repeated for each conversion, which requires clearing
and setting the ENC bit again. This two-step sequence is relaxed for conversions triggered
by software. In this case, the first conversion can be triggered by setting the ENC and
ADC10SC bits together in a single instruction. Subsequent conversions can be triggered

by setting the ADC10SC bit alone without toggling the ENC bit. The interrupt flag
ADCI10IFG is set when the result is written to the ADC10MEM except when the data
transfer controller is used. This will be explained next.

11.4.4 Multiple Conversions Using the Data Transfer Controller

In some applications, more than one conversion may be needed. Instead of performing
these conversions within a loop, the data transfer controller (DTC) inside the ADC10
module can be used. The DTC automatically transfers the conversion results from the
ADCI10MEM to specified memory locations.

DTC can be controlled through two registers, ADC10DTCO0 and ADC10 DTC1. The
entries of the ADC10DTCO register are shown in Table 11.9.

Table 11.9 ADC10 DTC control register 0 (ADC10DTCO).
Bits 7-4 3 2 1 0

Reserved ADCIOTB ADCIOCT ADCI0B1 ADCIOFETCH

In Table 11.9, the most significant 4 bits of the ADC10DTCO register are reserved.
The ADC10TB bit is used to select the transfer mode. When this bit is reset, one-block
transfer mode will be active. When it is set, two-block transfer mode will be active. When
the ADC10CT bit is reset, data transfer stops when one block (in one-block mode) or two
blocks (in two-block mode) have completed. When this bit is set, data is transferred
continuously. The DTC operation is stopped only if the ADCI10CT bit is reset or
ADCI10SA (holding the data transfer start address) is written to. The ADC10B1 bit
indicates which block is filled with the ADC10 conversion results (in the two-block
mode). When this block is reset, it indicates that block 2 is filled. When it is set, it
indicates that block 1 is filled. For this bit to be valid, ADC10IFG and ADC10TB should
be set. The ADC10FETCH bit should normally be reset.

The ADC10DTCI1 register is used to define the number of transfers per block. The
user should also declare the data transfer start address through the ADC10SA register. We
will show how to make this declaration in C and assembly languages in Sec. 11.4.6.

11.4.5 The Pin Layout for the ADC10 Module

The pin usage for the ADC10 module is given in Table 11.10. As can be seen in this table,
pins 2 to 7 and 14, 15 can be used for ADC input. These are labeled as AO—A?7. Reference
voltages for conversion can be fed through pins 5 and 6.

Table 11.10 Pin usage table for the ADC10 module.

10

11
12
13
14
i
16
17
18
19
20

Port Name
Voo
P1.0J AD
P1.1/ Al
P1.2/ A2
P1.3/
A3 Vrgp—/Vergr-
P1.4/
A4 VrRery/ V erer+
P1.5/A5
P2.0
P2.1
P22
P23
P24
P2.5
P1.6/A6
P1.7/A7
RST

P2.7
P2.6
Vss

Usage Area
Source voltage
ADCI10 analog input A0
ADCI10 analog input Al
ADCI10 analog input A2
ADCI10 analog input A3
ADCI10 negative reference voltage
ADCI10 analog input A4
ADCI10 positive reference voltage
ADCI10 analog input A5

ADCI10 analog input A6
ADCI10 analog input A7

Reset

Ground voltage

11.4.6 Coding Practices for the ADC10 Module

In this section, we will provide several examples using the ADC10 module. Our examples
will be in C and assembly languages. We will also deal with the usage of the DTC for

multiple conversions.

Our first ADC example in the C language is given in Listing 11.5. Here, the ADC10
module is basically used as a comparator. The input voltage level at pin A1 (pin P1.1) is
checked within an infinite loop. If the value there is above a certain level, the red LED is
turned on.

Listing 11.5 The first ADC example in C language.

#include =msp430.h=
#idefine LED BITO

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

P1DIR
P10OUT

LED;
0x00;

ADC10CTLO = SREF_0|ADC10SHT_2|ADC100N;
// Vecc and Vss references,sample for 16 cycles
// ADC on

ADC10CTL1 = INCH_1|SHS_O|ADC10DIV_0|ADC10SSEL_0O\
|ICONSEQ.0;
// Input channell (Al)}, trigger using ADC10SC bit,
// use internal ADC clock, single channel
// and single conversion

ADC10AEQ0 = BIT1; //Enable conversion
ADC10CTLO |= ENC;

while(1l)

{

ADC10CTLO |= ADC10SC; //Trigger new conversion
while (ADC10CTL1 & BUSY);

// Wait if ADC10 core is active

if(ADC10OMEM == 0x0200)
P10OUT = LED;
else P10OUT = 0x00;

}
}

In the second ADC example, given in Listing 11.6, the voltage level at pin Al is
checked within an infinite loop. This level is converted to the corresponding floating-point
representation. Then it is saved in the variable voltage. This variable can be observed
through the Watch window.

Listing 11.6 The second ADC example in C language.

#include <=msp430.h=>

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;
volatile float voltage;
P1DIR = BIT4;

ADC10CTL0O = SREF_0|ADC10SHT_2|ADC100N;
ADC10CTL1 = INCH.1|SHS_0|ADC10DIV_0|ADC10SSEL_0\
|ICONSEQ-0;

ADC10AED = BITI1;
ADC10CTLO |= ENC;

while(1){

ADC10CTLO |= ADC10SC;

while (ADC10CTLl1 & BUSY);

// Wait if ADC10 core is active
voltage = ((ADClOMEM*3.55)/0x03FF);

|

In the third ADC example, given in Listing 11.7, the internal temperature sensor of
the ADC10 module is used. The temperature is measured 20 times using the DTC module.
The average temperature value is calculated. Again, the average temperature is converted
to the true (scaled) value. Then it is saved in the avgtemp variable. This can also be
observed in the Watch window.

Listing 11.7 The third ADC example in C language.

#include =msp430.h=
#define nsamp 20

float avgtemp = 0;
void main(wveoid)

{

WDTCTL = WDTPW|WDTHOLD;

int count;
unsigned int temparr|[nsamp];

ADC10CTL1 CONSEQ_2 + INCH_10 + ADCI10DIV.7;
ADC10CTLO SREF_1 + ADC10SHT_.3 + REFON + ADC100N
+ ADC10IE + MSC;

// Repeat single channel, Temp Sensor, ADC10CLK/8

ADC10DTC1l = nsamp; // number of conversions

while (ADCLOCTL1 & BUSY);
// Wait if ADC10 core is active

ADC10SA = (unsigned int) temparr;
// Data buffer start address

ADC10CTLO |= ENC + ADC10SC;
// Sampling and conversion start

_enable_interrupts();
LPMO; // LPM0O, ADC10_ISR will force exit

for(count=0; count<nsamp; count++)
avgtemp += temparr[count];

avgtemp = avgtemp/nsamp;
avgtemp ((avgtemp-673)*423)/1024;

while(1l);

}

#pragma vector=ADC10_VECTOR
_-interrupt void ADC10_ISR(void){
LPMO_EXIT;

}

The first assembly code for the ADC10 module is given in Listing 11.8. Here, the
ADC10 module is used as a comparator. If the input voltage is greater than a predefined
value, the red LED on the MSP430 LaunchPad will turn on.

Listing 11.8 The first ADC example in assembly.

.cdecls C,LIST, “msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END, SP

mov.w #ADCl0SHT-2+ADC100N+ADC10IE,ADC10CTLO
:16x, enable int.

mov.w #INCH_1,ADC10CTL1

bis.b #02h,ADC10AED

;P1.1 ADC10 option select

bis.b #01h,P1DIR

Mainloop:
bis.w #ENC+ADC10SC,ADC10CTLO
;Start sampling/conversion

bis.w #LPMO+4GIE,SR
; LPMO, ADCI10-ISR will force exit

bic.b #01h,P10UT
cmp.w #01FFh,ADC10MEM

sADC10MEM = Al > 0.5AVcc?
jle Mainloop ;Again
bis.b #01h,P10OUT

jmp Mainloop

bic.w #LPM0,0(SP) ;Exit LPM0 on reti
reti

.global __STACEK_END
.sect .stack

.sect RESET_VECTOR
.short RESET

.5ect ADCl0_VECTOR
.short ADC10_ISR
.end

In the second ADC example, given in Listing 11.9, the DTC module and the internal
temperature sensor of the ADC10 module are used. The temperature is measured 16 times.
If the average temperature value is greater than 27°C, then the red LED on the MSP430
LaunchPad is turned on.

Listing 11.9 The second ADC example in assembly.

.cdecls C,LIST, "msp430.h"

text

.retain
.retainrefs

RESET
mov.w
mov.w

mov.w
mov.w
bis.w
mov.b

bis.b
bic.b

#WDTPW|WDTHOLD, WDTCTL
#..STACK_END, SP

#CONSEQ_2+INCH.10+ADC10DIV_7,ADC10CTL1
#SREF_1+MSC+ADC10SHT_3+REFON,ADC10CTLO
#ADC100ON+ADC10IE,ADCIOCTLO
#10h,ADC10DTC1 ;16 conversions

#41h,P1DIR
#41h,P10OUT

Mainloop:

bic.w
mov.w

bis.w

#ENC, ADC10CTLO
#0200h,ADC10SA ;Data buffer start

#ENC+ADC10SC,ADC10CTLO

;jS5ampling and conversion start

bis.w #LPMO4GIE,SR
sLPMO, ADCL0_ISR will force exit

call #Average

cmp.w #02E2h,R6 :Temp = 27C7
jle Less
bis.b #01h,P10UT
jmp Mainloop
Less:
bis.b #40h,P10UT
jmp Mainloop

Average:
mov.w #0200h,R5 ;set as pointer
mov.w #0000h,R6 ;set as sum

Total:
add.w ERS5,R6
ined.w RS
cmp.w #0220h,RE5
jle Total
rra.w R6
rra.w R6
rra.w RE
rra.w R6
rat

bic.b #41h,P10OUT
bic.w #LPM0,0(SP)
rati

i i i S | i iy

«global __STACK-END
.5ect .stack

.8ect RESET_VECTOR
.short RESET

.sect ADC10_VECTOR
.short ADC10_ISR
.end

11.5 Digital-to-Analog Conversion

To convert a digital signal to analog form, a digital-to-analog conversion (DAC) is needed.
Unfortunately, the MSP430G2553 does not have such a module. Therefore, we will use
pulse width modulation (PWM) for this purpose.

11.5.1 Pulse Width Modulation

The output signal in pulse width modulation (PWM) is a high-frequency digital pulse
sequence. The width of the pulses changes depending on the setting. As this high-
frequency signal is smoothed by a low-pass filter (such as a simple RC circuit), we will
get an average voltage which is approximately a dc signal. This average voltage (V,,,)
obtained from the system will be

. lon . ;
Vavg = X Voo = D x Vee
penod

(11.2)
where t,, is the duration the pulse will be on and ¢, is the period of the pulse. The ratio
ton/tyerioa 1S Called the duty cycle (D) of the PWM signal. By changing the duty cycle

(changing t,, and keeping t,;,4 constant), an approximate dc signal can be generated.

The Timer_A capture/compare mode can be used to generate PWM signals in the
MSP430. This mode is explained in detail in Sec. 10.7.2. Based on the definitions there,
the duty cycle of the PWM becomes

TACCRx
TACCRO + 1

(11.3)

where TACCRx stands for the xth Timer_A capture/compare register. To note here, the
timer will be in the up mode for this equation to be valid.

The arrangement for PWM while using the Timer_A capture/compare block (in
output mode 7) is as follows: The output is turned on when the TAR value reaches zero. It
is turned off when the TAR value reaches TACCRx. This means that increasing the value
in TACCRx increases the duty cycle. The period of PWM is the same as that of timer.
Therefore, its frequency is

f .{l.‘l.}(
TACCRO + 1

f .I-1 WM =

(11.4)

where f1 i stands for the frequency of the timer clock.

Finally, the generated PWM signal can be taken out from ports P1 and P2. Please see
Table 10.18 for specific pins. Do not forget to set the corresponding bit in the PxSEL
register for analog output.

11.5.2 Coding Practices for PWM

In this section, we provide sample C and assembly codes for PWM generation. We benefit
from the capture/compare block of the TA module in generating the PWM. In Listing
11.10, the period and the duty cycle of the generated PWM can be adjusted by two
variables. The output is fed to the green LED of the MSP430 LaunchPad. Therefore, the
PWM signal can be observed by the dimness of the LED.

Listing 11.10 The PWM generation example in C language.

#include =msp430.h=

void main(veid)

{

WDTCTL = WDTPWWDTHOLD;

int period = 0x0FFF; // period of the PWM
float D = .8; // duty cycle, max value 1

P1DIR |= BIT6;
P1SEL |= BIT6;

TACCRO = period-1; // PWM Period

TACCR1 = period*D; // CCR1 PWM duty cycle
TACCTL1 = QUTMOD_7; // CCR1 reset/set
TACTL = TASSEL.2|MC_1; // SMCLE, up mode

LPM1;

In the assembly code, given in Listing 11.11, we follow the same strategy as in
Listing 11.10. The period and the duty cycle of the PWM signal can be adjusted in this
example also. The output is fed to the green LED of the MSP430 LaunchPad. Therefore,
the PWM signal can be observed by the dimness of the LED.

Listing 11.11 The PWM generation example in assembly.

.cdecls C,LIST,"msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

bis.b #40h,P1DIR
bis.b #40h,P1SEL

mov.w #0FFFh-1,TACCR0O ;PWM Period
mov.w #OUTMOD_7,CCTL1

mov.w #00FFh, TACCR1 ;PWM Duty Cycle
mov.w #TASSEL_2+MC_1, TACTL

bis.w #LPM1,SR ;CPU off

.global __STACEK_END
.5ect .stack

.sect RESET._VECTOR
.short RESET
.end

11.6 ADC10 in Grace

The ADC10 module can be used under Grace by clicking the ADC10 10-bit block shown
in Fig. 5.11. To configure the ADC10 module under Grace, do not forget to check the
“Enable ADC10 in my configuration” box first.

11.6.1 The Basic User Mode

The basic user mode for ADC10 is shown in Fig. 11.8. In this mode, the ADC10 module
can be configured basically by setting the ADC channel, signal bandwidth, impedance,
and sampling rate. The sampling time is calculated by the impedance value. Grace directs
the user to the MSP430 User’s Guide [17] for this issue. The user can select the ADC
channel from the ADC Channel drop-down list. Finally, the drop-down list Sampling Rate
can be used to select the timer to be used in the sampling operation. If the user wants to
sample the signal in an irregular manner, then he or she should choose the Manually
Sample option from the drop-down list. The other three options Timer_A3 Channel 0,
Timer_A3 Channel 1, and Timer_A3 Channel 2 in fact correspond to TA_OUTO,
TA_OUT1, and TA_OUT?2 in Fig. 11.7. The ADC10-based interrupts can be adjusted in
this mode also. First, the user should check the ADC10 interrupt enable box. Then the
prototype ISR can be added to the InterruptVectors_init.c file by pressing the Generate
Interrupt Handler Code button.

Grace (MS5P430) * ADCL0 - Basic User Mode
Orvervizw PowerUser Registerss

Sampling Time

0.8 us
Sanplng Rae

Signol Banciicth Manualy Sampie v [CotoTine

Analog to Digital

0 kkz O samples [second
Convearter
Imnpederes
Ohms
ADE Chanrele A =7
laocor - ! ADC Memory

Interr pI Enables
ADCLD Intemupt enable Generake Int2imupl Hamaler Code
Wieww All Infeniupd Mandleis

Figure 11.8 The basic user mode for the ADC10 block under Grace.

11.6.2 The Power User Mode

The power user mode for the ADC10 block is shown in Fig. 11.9. In this mode, the GPIO
pins to be used can be selected from the Enable External GPIO Pin check boxes.
Configurations for these pins can be done by the check boxes under the Enable ADC
Channel Config menu. The user can also select the sampling operation type (whether it
will be from a single channel or a sequence of channels) in this menu. Reference voltages
are organized in Negative and Positive Reference Voltage lists in the power user mode.
The system ground or the external negative reference voltage values can be selected from
the Negative Reference Voltage list. The user can select the positive reference voltage
from the Positive Reference Voltage list. The buffer setting for the external voltage can
also be done by check boxes there. The conversion type (single, repeated) can be selected
from the Conversion Type list. The user can also select the sample and hold time from the
Sample & Hold Time list. There are four options for the ADC10CLK here. The user can
invert the sample and hold the signal with its check box in this menu. As in the basic user
mode, the user can also enter the impedance value into the related box to set the sample
time. Grace selects the suitable sample and hold time from the list based on the entered
impedance value. The ADC clock source can be selected from the ADC Clock Source list.
The frequency divider for the selected clock can be selected from the Clock Divider drop-
down list by the clock source list. The user can also use the ADC Trigger Source &
Sampling Rate list to select an appropriate source for this operation. The user can enable
the two’s complement operation by its check box. The interrupt operations in the power
user mode are the same as in the basic user mode.

Grace (MSP430) * ADC10 - Power User Mode

Ouencew Basc Uses Begisters
Hegatve Reference YVolage Positive Rejerencs Volage Coneerson Type
SpctemVCC |
External Negative Referend L5 Repeated Corversion
Enable Enable ADC | 1.5¥
Extarnal GPIO Channel Config Exterrnal Reference Automatic Suctediive
Fin " Buffered External Referenc Conversion
Sequence of Channel: Reference Bufler Drive =
W e e S 00kaps Cample & Hold Tme .
AD/PLD ADC Charngl 0 Ried Butier O orily 4 ADCIOCKK:
ALPLA ADC Channel 1 g Samplng 8 x ADC10CLKS
ot | Ontput Infernal 16 x ADC10CLKS
A2FL2 ADC Channel 2 Reference Vokage &4 x ADCI0CILKS
ﬁ-‘;i oo ML CIMREe S Vo Ve Sample & Hoid Tme = 08 us
VEREF- i Irvvert Sample & Hold Signal
B PLAG ADC Channel 4 Analog to Digital B ide byl ‘] Impedance ohm
VREF =/ ekt S
iy e Converter
ADC Clock Source
AS/FLS ADC Channel 5
A5 FLE ADC Channel 6 ACLK
ATPLT ADC Channel 7 MCLE
| SMCLE
Positive External Ref o b |
Megative Ext | Rt s
egative Externa
ADCIOMEM
Temperalure Sensor Enable Ts Camplement ADEC Trigger Source
Measure VT 4 Sampling Rae
Temer_A3 Channel 1
v Timer_A3 Channel O
- Temer_A3 Channel 2
Automatic Data Transfer Controlier
0 Samples [Second
Enabled
Starting Memory Address | 512

[
Memory Block Size | 0 T

2 Block Transker Mode Cortinuoushy enable dats trarsfes

Interrupt Enables
ADCID intermupt enabile

Generate Intermupt Handier Code
Vigw ARl [1

Figler:

Figure 11.9 The power user mode for the ADC10 block under Grace.

The DTC block in the ADC10 module can be enabled in the power user mode. Its
properties can be set within the Automatic Data Transfer Controller block. Here the user
should enter the Starting Memory Address and Memory Block Size values in the
appropriate boxes. To note here, the starting memory address can be entered as a global
variable defined in the main.c program of the Grace project. Also, one-block, two-block,
and one-time or continuous data transfer modes can be selected by checking related boxes
under this block.

11.6.3 The Register Controls Mode

Finally, all the above ADC10 module settings can be done in the register controls mode
shown in Fig. 11.10. In this mode, the ADC10 registers ADC10CTLO, ADC10CTL1, and
ADCI10AEO can be adjusted by appropriate check boxes. Also, the DTC registers
ADC10DTCO0, ADC10DTC1, and ADC10SA can be set in this mode.

Grace (MSP430) * ADC10 - Register Controls
Ouerview Bagic User Power Uger

ADC10CTLO, ADC10 Control Register 0

(1] 14 u n n L1 a » r & H] & 3 2 1 a

SAEFa AOC0BHTa scvse | merout | S usc | meraav | merom | accaas | AN oo | Aocrosc

[¥R+ = VCC and VR-» = | ||4xaDC10G ~ | mwl | mw | mow

ADC10CTL1, ADC10 Control Register 1

L] At u Lt n L] u L] T & 5 & ;| a 1 a

RO
BusY

{4DC channeio =|||apc10se | | Dividte by 1 - ||[apcr00sc | |[singlechan =] |

PCH, SHia ADC WP (=] ADCHIDN ADCHSSEL: COME D0

ADC10AED, Analog (Input) Enable Control Register O

e

ADC10DTCO, Data Transfer Control Register 0

7 L] } 4 1 2]]

ADCK)

] ADCHITE | ADCIRCT | ADCIDE) fi
ETCH

M A

ADC10DTC1, Data Transfer Control Register 1

]
B ResdWrite reg ter net weadsbis n GUI

4 Mm Read anly register

ADC10SA, Start Address Register for Data Transfer

154

517 Mis fabds ombly whan ENC» 0

Figure 11.10 The register controls mode for the ADC10 block under Grace.

11.6.4 Coding Practices

In this section, we provide two ADC examples using Grace. In the first application, we
use the basic user mode with the internal temperature sensor of the MSP430. Here, either
the red or the green LED is turned on, depending on the temperature value measured. The
settings for this operation are as follows: Red and green LEDs are set as output from the
GPIO. The temperature sensor is selected from the ADC Channels drop-down list.
Sampling rate is selected as Manually Sample from the associated drop-down list. The
main.c file of the Grace project will be as in Listing 11.12 for this application.

Listing 11.12 The main.c file of the first ADC example under Grace, basic user mode.

* ======== Standard MSP430 includes ========
*/

#include <=msp430.h=

‘,.I’*
* ======== (OJrace related Iincludes =s=======
*/

*./
int main(wvoid)
{

Grace_init();
// Activate Grace-generated configuration
ADC10CTLO |= ADC1l0SC;
// ADC Start Conversion - Software trigger
while ((ADC10CTLO & ADCL0IFG) == 0);
// Loop until ADC10IFG is set indicating ADC
// conversion is complete

LPM4 ;

return (0);

}

In this application, we also use the ADC10 interrupts. Therefore, the ADC interrupts
should be enabled. The ADC ISR under InterruptVectors_init.c will be as given in Listing
11.13. As we compile and run the project, the MSP430 will check the temperature value in
an infinite loop. Depending on the measured value, either the red or green LED will turn
on.

Listing 11.13 The ISR file of the first ADC example under Grace, basic user mode.

#pragma vector=ADC10_VECTOR
_-interrupt veoid ADC10_ISR HOOQK(void)
{

if (ADC10MEM > 0x02D5)

P1OUT = BITO;

aelse

P1OUT = BIT6;

}

In the second example, we redo the DTC-based temperature sensing application
given in Listing 11.7 using Grace. Unlike from Listing 11.7, we use the two-block transfer
mode here. In the power user mode, we make the following adjustments: We select the
Temperature Sensor from the Enable ADC Channel Config list. Then we set the negative
and positive reference voltage values as System GND and 1.5 V respectively. We select
the conversion type as repeated with the “automatic successive conversion” box checked.
The sample and hold time is 64 x ADC10CLK. The ADC10 clock source is selected as
ADC100SC with the clock division value of four.

We enable the DTC by its check box. Then, we enter “temparr” (defined in the
main.c file of the Grace project) to the Starting Memory Address box in the DTC block.
We enable the two-block transfer mode by checking its box. Since we are using a two-
block transfer mode, we enter eight (half of the total number of samples to be taken) into
the Memory Block Size box. The main.c file of the Grace project will be as in Listing
11.14 for this application.

Listing 11.14 The main.c file of the second ADC example under Grace, power mode.

* ======== Standard MSP430 includes ========
ny

#include =msp430.h=>

/*
* ======== (race related includes ========
"/

#include <ti/mcu/msp430/Grace.h=

/*
* =s======= Mmain =s=s=s=s====
ny

unsigned int temparr[16];
float avgtemp=0;

int main(wvoid)

{

int count;

Grace_init();
// Activate Grace-generated configuration

// ADC Start Conversion - Software trigger
ADC10CTLO |= ADC10SC;

LPMO;

for(count=0;count<16;count++)
avgtemp+=temparr|[count];

avgtemp=avgtemp/16;
avgtemp=((avgtemp-673)*423)/1024;

LPM4 ;

return(0);

We use the ADC interrupts in this application also. Therefore, we enable the ADC
interrupts by checking a box. The ADC ISR under InterruptVectors_init.c will be as in
Listing 11.15. As we compile and run the project, the MSP430 will take 16 temperature
samples. The user can observe their (scaled) average value from the avgtemp float
variable.

Listing 11.15 The ISR file of the second ADC example under Grace, power mode.

#pragma vector=ADC10_VECTOR
--interrupt wvoid ADC10_-ISR_-HOOK (void)

{

LPMO_EXIT;

}

11.7 Non-Touch Paper Towel Dispenser Application

The purpose of this application is to learn how to use the ADC and PWM on the MSP430
microcontroller. As a real-world application, we design a non-touch paper towel dispenser.
In this section, we provide the equipment list, layout of the circuit, procedure, and system
design specifications.

11.7.1 Equipment List

Following is the equipment list to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* One 10-pF electrolytic capacitor

* One 100-nF capacitor

* One light-dependent resistor (LDR)

* One LED

* One 12-V dc motor

* One L293D motor driver integrated circuit (IC)
* One 220-Q resistor

* One 10-kQ resistor

L.293D Motor Driver: In this application, a dc motor will be used. We will use the
L.293D dual H-bridge motor driver IC to control it. This IC can be used to drive two dc
motors simultaneously, both in forward and reverse directions. Pin names and their
descriptions for the L.293D IC are given in Table 11.11.

Table 11.11 Pin names and descriptions for the L.293D IC.

Pin No Name Function

1 INHI1 Enable pin for Motor 1; active high
2 IN1 Input 1 for Motor 1
3 OuUTI1 Qutput 1 for Motor 1
4 GND Ground (0 V)
5 GND Ground (0 V)
6 OuUT2 Qutput 2 for Motor 1
i IN2 Input 2 for Motor 1
VC Supply voltage for motors; 9-12 V (up to 36 V)
9 INH2 Enable pin for Motor 2; active high
10 IN3 Input 1 for Motor 2
11 OuT3 Qutput 1 for Motor 2
12 GND Ground (0 V)
13 GND Ground (0 V)
14 ouT4 Qutput 2 for Motor 2
15 IN4 Input 2 for Motor 2
16 v_.CC Supply voltage; 5V (upto 36 V)

In this application, the PWM signal generated by the MSP430G2553 will be fed to
the INH pin. The IN1 and IN2 pins will be used to specify the direction of the rotation.
This is done by setting one of these pins and resetting the other.

11.7.2 Layout

The layout of this application is shown in Fig. 11.11. For more information on the voltage
supply block, please see Fig. 9.3.

INHI Ves
| INI IN4
V+ OUTI OUT4
12-V dc GND GND
1.293D l
Motor GND GND
% OUT?2 OUT3
9 3
5 IN2 IN3
8 |ve INH2 2
L]
Voltage
e—|GND ' 138
_ .. Supply
T 5V
1 1-":': GNDL
P10 XIN|——
— P11 XOUTh—
P1.2 o TESTE—
MSP
PL3 o RST—
P14 < PL7—
p1s G2553 prel——
— P20 | —
— P21 P24l
220 <, A01pss pa3l
()
QS |
+
LDE
LED Y/ -
< 10
~ kQ
{T

Figure 11.11 Layout of the non-touch paper towel dispenser application.

11.7.3 System Design Specifications

In the first part of the application, we will design a non-touch towel dispenser using an
LDR and an LED. When the user crosses his or her hand by the LDR, this will indicate
that the paper towel is needed. This should generate a timer interrupt. The LED will turn
on for 4 s to indicate that the paper towel is fed. During this time, no other paper towel
request is accepted. When the waiting time is over, the LED will turn off. The system will
wait for a new paper towel request.

In the second part of the application, we will repeat the first part using a dc motor

instead of the LED. To do so, we should set the PWM frequency to 5 kHz. The duty cycle
of the PWM signal should be 50%. The dc motor will rotate for 4 s to simulate the feeding
of the paper towel. Again, no other paper towel request is accepted during this time. After
the waiting time is over, the motor will stop.

11.7.4 The C Code for the System

In the first part of the code, given in Listing 11.16, constants and global variables are
defined. This is done to make the code more readable. In this code block, Ledon and
Ledoff constants are used to turn on and turn off the LED. The count variable is used for
a 4-s delay. The control variable is used to reject any interrupts during operation.

Listing 11.16 Non-touch paper towel dispenser, the C code part I.

#define LedOn (P1lOUT |= 0x08)
#define LedOff (P1lOUT &= ~0x08)

int Count = 0:

int Control 0-

In the second part of the code, given in Listing 11.17, the hardware configurations for
the digital input and output (I/O), timer, and ADC modules are done. In this code block,
configurations for each hardware module are done in a separate function. In the
PinConfig() function, pin directions are assigned as PADIR=0xFE in the first line since the
LED is connected to pin P1.3 and the LDR is connected to pin P1.0. All other unused pins
are set as output. In the second line, all output pins are reset. In the TimerConfig()
function, the watchdog timer is disabled in the first line. In the second line, the VLO is
chosen to source the ACLK at 12 kHz. In the third line, the timer interrupt is enabled. In
the fourth line, the timer is stopped with MC_0 because the timer should not start until an
input comes from the LDR. In the fifth line, the time interval is set as 1 s by writing 1499
to the TACCRO register. Remember, period = (TACRRO+1)/ fcLk. In the ADCConfig()

function, the ADC10CTLO register is configured in the first line. The ADC100N bit is set to
enable the ADC10 module. Reference voltages for the ADC10 are taken from V. and Vgg

which are analog power supplies for the microcontroller. ADC10SHT_3 is used to choose 64
clock cycles to take a sample. In the second line, the ADC10CTL1 register is configured.
First, AQ is chosen as the input channel with INCH_6. Then, ADC10SSEL_0 is used to choose
the internal ADC oscillator (with about 5 MHz frequency) as the clock source.
ADC10DIV_0 is used for no frequency division. The trigger for a new conversion is set as
the ADC10SC bit with sHS_o. Single-channel, single-conversion mode is selected with
CONSEQ_0. In the third line, AO is enabled as the analog input with ADC10AE® = BITO. In
the fifth line, conversion is enabled with ADC10CTL® |= ENC.

Listing 11.17 Non-touch paper towel dispenser, the C code part II.

void PinConfig(wvoid){
P1DIR = (xFE;
P1OUT = 0x00;

}

void TimerConfig(wveoid){
WDTCTL = WDTPWWDTHOLD;

BCSCTL3 |= LFXT1S.2;

TACCTLO = CCIE;
TACTL = MC_0;
TACCRO = 1499;

}

void ADCConfig(weoid)|

ADC10CTLO = SREF_0|ADC10SHT_3|ADC100N;
ADC10CTL1 = INCH-0|SHS-0|ADC10DIV_0|ADC10SSEL_0\
|CONSEQ.0;

ADC10AEQ0 = BITO;

ADC10CTLO |= ENC;

}

In the third part of the code, given in Listing 11.18, the ISR settings for the timer are
done as follows: The system generates a timer interrupt at every second. Through the ISR,
the counter is increased. If the counter equals four, the LED is turned off, Count and
Control variables are cleared, and the timer is stopped with MC_o.

Listing 11.18 Non-touch paper towel dispenser, the C code part III.

#pragma vector=TIMER0_AQO_VECTOR
_-interrupt veoid isr_name (wveoid){

Count++;

if(Count == 4){

LedQff:

TACTL = MC_0;

Control = 0;

Count = 0:

}

Finally, the C code for the system (with all its components) for the first part of the
application is given in Listing 11.19. The code block performing the operation is placed in
an infinite loop. In this loop, a new conversion is triggered with the code line ADC10CTL®

|= ADc10sc. Then the system waits until this conversion is complete with the code line
while((ADC10CTL1 & ADC10BUSY) == ADC10BUSY). After the conversion is done, the
obtained value is written to the ADC10MEM register. This value changes between 03FFh
(at full light) and 01FFh (at no light). The ADC10MEM value is compared with the
reference value 0300h. If it is smaller than this reference value, the LED is turned on first.
Then the code line TACTL = MC_1 | ID_3 | TASSEL_1 | TACLR is used to start the timer.
ACLK is set as the clock source, the clock frequency is divided by eight, and the TAR
register is reset. Finally, the control variable is set. It is reset again after the 4-s time
delay. This disables any new interrupt request for the timer during this period. Also before
this while loop, the global interrupt enable (GIE) bit is set to enable maskable interrupts.

Listing 11.19 Non-touch paper towel dispenser, the C code for the first part of the
application.

#include <msp430.h=>

#define LedOn (PlOUT |= 0x08)
#define LedOff (P1lOUT &= ~0x08)

int Count = 0;
int Control = 0:

void PinConfig(veid);
void TimerConfig(wvoid);
void ADCConfig(veid);

void main(void)
{
PinConfig();
TimerConfig();
ADCConfig();
-enable_interrupts();

while(1){
ADC10CTLO |= ADC10SC;

while((ADC10CTL1&ADC10BUSY)==ADC10BUSY);

if(Control == 0){
if (ADC10MEM < 0x0300){
LedOn;

TACTL = MC_1|ID_3|TASSEL_1|TACLR;
Control = 1:

H

}

void PinConfig(wvoid){
P1DIR = (XFE;
P1OUT = 0x00;

|

void TimerConfig(wvoid){
WDTCTL = WDTPW|WDTHOLD;

BCSCTL3 |= LFXT1S.2;

TACCTLO = CCIE;
TACTL = MC.0;
TACCRO = 1499;

}

void ADCConfig(wvoid){

ADC10CTLO = SREF_0|ADC10SHT_3|ADC100N;

ADC10CTL1 = INCH_0|SHS_0|ADC10DIV_0|ADC10SSEL_0|CONSEQ.0;
ADC10AEQ = BITO;

ADC10CTLO |= ENC;

)

#pragma vector=TIMER0_AO_VECTOR
_-interrupt veoid isr_name (wveoid){

Count++:

if(Count == 4){

LedOff:

TACTL = MC.0;

Control = 0;:

Count = 0;

}

The C code for the system (with all its components) is modified for the second part of
the application. It is given in Listing 11.20. In this code block, first constant definitions for
the LED are changed for the motor to MotorStart and MotorStop. The motor starts to turn
when pin P1.2 is set as PWM output (by P1SEL |= 0x04). The motor stops when pin P1.2
is set as digital I/O (by P1SEL &=~0x04). In the PinConfig() function, pins P1.4 and P1.5
are used as inputs to the motor driver. Pin P1.3 is unused this time. P10UT = 0x10 is used
to set one of the motor driver inputs to turn it in one direction. In the TimerConfig()
function, the timer block is reconfigured to generate a 5-kHz PWM signal with 50% duty
cycle. A 250-kHz clock signal is used for the timer block. A 5-kHz PWM with 50% duty
cycle is obtained by TACCRO=49 and TACCR1=25. Also, the reset/set mode is selected with
TACCTL1 = ouTMoD_7 for the PWM. In the timer ISR, the Count variable must be equal to

20,000 to obtain 4-s delay since the time interval is 0.2 ms this time. If the Count variable
equals 20,000, the motor is stopped instead of turning off the LED. In the infinite while
loop, if the ADC10MEM value is smaller than the reference value, the motor starts instead
of turning on the LED. Also, when the timer starts, the SMCLK is used instead of the
ACLK and it is divided by four this time.

Listing 11.20 Non-touch paper towel dispenser, the C code for the second part of the
application.

#include =mspd430.h=

#define MotorStart (P1SEL |= 0x04)
#define MotorStop (PlSEL &= ~0x04)

int Count = 0:
int Control = 0;

void PinConfig(wveoid);
void TimerConfig(wvoid);
void ADCConfig(wvoid);

void main(wvoid)

{
PinConfig();

TimerConfig();
ADCConfig();

_enable interrupts();

while(1)|
ADC10CTLO |= ADC10SC;

while((ADClO0CTL1&ADC10BUSY)==ADC10BUSY);

if(Control == 0){
if(ADCI10OMEM = 0x0300)]
MotorsStart;

TACTL = MC.1l|ID.2|TASSEL.2|TACLR;
Control = 1:
H}

}

void PinConfig(wveid)|
P1DIR = O0XFE;

PlOUT = 0x10;

}

void TimerConfig(wvoid)|
WDTCTL = WDTPW|WDTHOLD;

[

TACCTLO CCIE;
TACCTL1 OUTMOD_7 ;
TACTL = MC0;
TACCRO = 49;
TACCR1 25;

}

void ADCConfig(wveid)|

ADC10CTLO = ADC10ON|SREF_0|ADC10SHT.3;

ADC10CTL1 = INCH.0|ADC10SSEL.0|ADC10DIV.0|SHS_0|CONSEQ.0;
ADC10AEQ = BITO;

ADC10CTLO |= ENC;

|

#pragma vector=TIMERO0_AO_VECTOR
_-interrupt veoid isr_name (wveoid){
Count++:

if(Count == 20000){

MotorStop;

TACTL = MC_0;

Control = 0:

Count = 0:

}

11.8 Summary

The MSP430 can process analog signals as well as digital signals. In this chapter, we
considered ADC and DAC operations. We first focused on the Comparator_A+ module. It
provides a binary output by comparing its input values. We provided sample codes and
Grace usage examples for this module. Then we focused on the ADC10 module. This
module provides a 10-bit digital representation of the analog signal fed to it. In analog-to-
digital conversion, the ADC10 uses the SAR method. We explored the operation
principles of this method through a simulation program. As in the Comparator_ A+
module, we provided sample C and assembly codes. We also considered the ADC10
module under Grace. Unfortunately, the MSP430G2553 does not have a DAC module.
Therefore, we used PWM to obtain analog signals from digital representations. Although
the obtained analog signal is an approximation, for most applications it is sufficient. We
used the timer module under Grace to generate PWM signals. We should use an external
DAC module to obtain a precise analog signal. We provide such an example in Chap. 14.
Finally, we considered the non-touch paper towel dispenser system as a real-world
application. It contains both ADC and PWM operations. We designed the system step-by-
step both in hardware and software.

11.9 Problems

11.1 Use Listing 11.4 to calculate the 10-bit SAR conversion of the analog voltage
levels 1.2, 2.85, and 3.243 V. The reference voltage will be 3.6 V.

11.2 Design a battery charge controller using the MSP430 with the following
specifications:

a. The battery will be connected between pin P1.1 and the ground of
the MSP430 LaunchPad.

11.3
11.4

11.5
11.6
11.7

11.8
11.9

b. The Comparator_A+ module will be used in operation.

c. The control operation will be performed only when the push
button (connected to P1.3 on the MSP430 LaunchPad) is pressed.

d. The system will be in an appropriate low-power mode during idle
times.

e. If the voltage level of the battery is above a threshold (let’s say
0.25%V V), the green LED (connected to P1.6 on the MSP430

LaunchPad) will turn on. Otherwise the red LED (connected to P1.0 on
the MSP430 LaunchPad) will turn on.

Repeat Prob. 11.2 under Grace.

Repeat Prob. 11.2 using the ADC10 module. Here, set the threshold as 0.32 x
Vee V.

Repeat Prob. 11.4 under Grace.
Repeat Probs. 11.2 and 11.4 in assembly language.

Repeat Prob. 11.4 using the DTC module. Here, take 16 samples and calculate
their average using this module. Use this value in operation.

Repeat Prob. 11.7 in assembly language.
Repeat Prob. 11.7 under Grace.

12 Digital Communication

Chapter Outline
12.1 Universal Serial Communication Interface
12.2 Universal Asynchronous Receiver/Transmitter
12.3 UART in Grace

12.4 Serial Peripheral Interface

12.5_ SPI in Grace

12.6__ Inter Integrated Circuit

12.7 12C in Grace

12.8_ Digital Communication Application

12.9 Summary
12.10 Problems

Data transfer between two (or more) microcontrollers becomes a necessity for complex
projects. Moreover, some peripheral devices (such as sensors and digital-to-analog
converter [DAC] modules) communicate with the microcontroller through data transfer
channels. Therefore, digital communication has become an essential part of a modern
microcontroller. In the MSP430, the module responsible for digital communication is
called the universal serial communication interface (USCI). This module supports
universal asynchronous receiver/transmitter (UART), serial peripheral interface (SPI), and
inter integrated circuit (I°C) communication modes. In this chapter, we will concentrate on
the USCI module and the communication modes it provides. Here we will only
concentrate on the communication between two devices. For details on communication
between more than two devices, please see [17]. We begin with a brief description of the
USCI module.

12.1 Universal Serial Communication Interface

There are two USCI modules called USCI_AO and USCI_BO in the MSP430. USCI_AO0
can support UART and SPI communication modes. Similarly, USCI_BO can support SPI
and I°C communication modes. In this section, we will describe the general properties of
the USCI_AO0 and USCI_BO0 modules.

12.1.1 USCI Registers

The USCI module has several special function control and status registers for the UART,
SPI, and I2C communication modes. Some of these registers are specific to the
communication mode. Some of them share the same name for different communication
modes. All USCI registers are listed in Tables 12.1 and 12.2. In these tables, the usage
area of each register is also provided.

Table 12.1 USCI_AQO control and status registers.

Register Name

USCI_AO control register 0

USCI_AO control register 1

USCI_A0 baud rate control register 0
USCI_AO baud rate control register 1
USCI_A0 modulation control register
USCI_AOQ status register

USCI_AO receive buffer register
USCI_AQ transmit buffer register
USCI_AO auto baud rate control register
USCI_AO IrDA transmit control register
USCILAO IrDA receive control register

Short Form

UCAOCTLO
UCAOCTLI
UCAOBRO
UCAOBRI1
UCAOMCTL
UCAOSTAT
UCAORXBUF
UCAOTXBUF
UCAQOABCTL
UCAOIRTCTL
UCAOIRRCTL

Used in

UART, SPI
UART, SPI
UART, SPI
UART, SPI
UART, SPI
UART, SPI
UART, SPI
UART, SPI
UART

UART

UART

Table 12.2 USCI_BO control and status registers.

USCI_BO control register ()

USCI_B0O control register 1

USCI_BO bit rate control register 0
USCI_BO bit rate control register 1
USCI_BO status register

USCI_B0 receive buffer register
USCI_BO transmit buffer register
USCI_BO I°C interrupt enable register
USCI_B0 I°C own address register
USCI_BO I°C slave address register

UCBOCTLO
UCBOCTLI1
UCBOBRO
UCBOBRI1
UCBOSTAT
UCBORXBUF
UCBOTXBUF
UCBOI2CIE
UCBOIZOA
UCBOI2ZSA

SPL, I°C
SPI, I°C
SPL I°C
SPI, I°C
SPL I°C
SPI, I°C
SPI, I°C
I2C

I°C

12C

We will explain the control and status registers given in Tables 12.1 and 12.2 in detail
for each communication mode in the following sections. However, receive and transmit
buffer registers for the USCI_AO and USCI_BO modules deserve specific consideration
here. The data to be transmitted should be written to the transmit buffer register for any
communication mode. These are UCAOTXBUF and UCBOTXBUF for the USCI_AO and
USCI_BO0 modules respectively. Similarly, the data received will be read from the receive
buffer register. These are UCAORXBUF and UCBORXBUF for the USCI_AO and

USCI_BO0 modules respectively.

There are also two special-function interrupt registers used by the UART, SPI, and
[°C communication modes. These are special function register (SFR) interrupt enable
register (IE2) and SFR interrupt flag register (IFG2). These are described in Tables 12.3
and 12.4. The IE2 register is responsible for enabling interrupts. As given in Table 12.3,
the UCAOTXIE and UCBOTXIE bits enable the transmit interrupts for the related USCI
module. Similarly, the UCAORXIE and UCBORXIE bits enable the receive interrupts for
the related USCI module. Bits UCAOTXIFG, UCBOTXIFG, UCAORXIFG, and
UCBORXIFG, given in Table 12.4, are set when an interrupt occurs from a transmission
or reception operation in the related USCI module.

Table 12.3 Interrupt enable register 2 (IE2).

Bits 7-2 1 0

Unused UCBOTXIE UCBORXIE UCAOTXIE UCAORXIE

Table 12.4 Interrupt flag register 2 (IFG2).

Unused UCBOTXIFG UCBORXIFG UCAOTXIFG UCAORXIFG

12.1.2 USCI Clocks

The USCI module has three clocks, BRCLK, BITCLK, and BITCLK16. The BRCLK
represents the selected clock for the USCI module. The UART mode can use UCOCLK,
ACLK, and SMCLK as BRCLK. UCOCLK is the external clock for the UART mode. It
can be fed through pin P1.4 when this pin is not used by the SPI mode. The SPI mode can
use ACLK and SMCLK as BRCLK. Finally, the I?°C mode can use UC1CLK, ACLK, and
SMCLK as BRCLK. UCICLK is the external clock for the I°C mode. It can be fed
through pin P1.5 when this pin is not used by the SPI mode. BITCLK is generated from
the BRCLK. It is mainly used in controlling the bit transmission and reception rates.
Finally, the BITCLKI16 is used as the sampling clock in oversampling mode. In the
following sections, we will explain all these clocks in specific communication modes.

There are two registers to divide the clock for the USCI_AO and USCI_BO modules.
These are called baud rate control register 0 (UCAOBRO) and baud rate control register 1
(UCAOBR1) in the USCI_AO module. UCAOBRO and UCAOBRI1 registers form the 16-
bit division coefficient for the clock. This is called UCBRx. In this coefficient, UCAOBRO
forms the low byte and UCAOBR1 forms the high byte. In the USCI_BO module, the
registers used in clock division are called bit rate control register 0 (UCBOBRO) and bit
rate control register 1 (UCBOBR1). They can be used in the same manner as in the
USCI_AO registers to form the UCBRx.

12.1.3 Common Properties

The UART, SPI, and I°C communication modes are initialized by the same steps. Initially,
the USCI module must be reset to configure all related USCI registers. The USCI module
must be set after this operation. Finally, if the interrupts are used in the USCI module, they
should be enabled. We will explore these steps for each communication mode separately
in the following sections.

Another common issue for the UART, SPI, and I?C communication modes is the
SMCLK usage with low-power modes. When the USCI module is clocked by SMCLK, it
is activated automatically even if it is deactivated by a low-power mode. As a result, all
other modules using the SMCLK also restart. This may cause error. Therefore, the
SMCLK should be used carefully with the USCI module. Also for SPI and I°C slave
modes, no internal clock is needed since the master device provides the clock. Therefore,
the microcontroller can be held in LPM4. It wakes up by a receive or transmit interrupt.

12.1.4 Pin Layout for USCI

We provide the pin layout of the MSP430G2553 in Fig. 12.1 (again to be compact). The
usage of these in the USCI perspective are listed in Table 12.5. Do not forget to set these
pins by appropriate PxSEL bits before using them.

15 GND 22

— P10 XIN|——
—PLI XOUT ——
— P12 TEST|——
— P13 “_::‘f RST|——
— P14 ks P1.7——
— P15 Pl.6——
— P20 | M—
— P21 | —
_100ps pall

Figure 12.1 Pin layout of the MSP430G2553.

Table 12.5 Pin usage table for the USCI module.

Pin Port Name Usage Area

I Vee Source voltage

2 P1.0

3 P1.1/UCORX USCI_AO receive data input in UART mode
UCAOSOMI USCI_AO slave data out/master in SPI mode

4 P1.2/ UCOTX USCI_AO transmit data output in UART mode
UCAOSIMO USCI_AO slave data in/master out in SPI mode

. PL3

6 P1.4/UCBOSTE USCI_BO slave transmit enable in SPI mode
UCAOCLK USCI_AO clock input/output

7 P1.5/UCBOCLK USCIBO clock input/output
UCAOSTE USCI-AO slave transmit enable in SPI mode

8 P2.0

9 72

10 P22

11 P23

12 P2.4

13 P2.5

14 P1.6/ UCBOSOMI USCI_BO slave out/master in SPI mode
UCBOSCL USCI-BO SCL I’C clock in I’C mode

15 P1.7/ UCBOSIMO USCI-BO slave in/'master out in SPI mode
UCBOSDA USCI_BO SDA I?C data in I>C mode

16 RST Reset

17

18 P2.7

19 P2.6

20 Vg Ground voltage

12.2 Universal Asynchronous Receiver/Transmitter

UART is the asynchronous communication mode used between two or more devices.
Being asynchronous, there is no need for a common clock in the UART. Hence, connected
devices can work independently. In fact, UART is the only asynchronous communication
mode in the MSP430. UART is simple to use compared to the synchronous
communication modes to be considered in the following sections. In this section, we will
only focus on the UART mode for communication between two microcontrollers (or one
microcontroller and a host computer). Also, we will not consider the enhanced UART with
automatic baud rate detection (local interconnect network, LIN) and infrared data

association (IrDA). More information on them can be found in [17].

A block diagram of the UART is given in Fig. 12.2. As can be seen in this figure, the
MSP430 UART mode has two pins to communicate with other devices. These are the
receive (UCORX) and transmit (UCOTX) pins. In this block diagram, the transmit and
receive shift registers are not accessible to the user. Instead, the transmit and receive

buffers will be used for communication.

UCMODEx UCSPB UCDORM
2 UCRX .
HRKIE'H Error Flags : EIEEECERR
| ” o UCRX - - UL‘FE_
> RX State Machine EIE —ll UCOE
= Set Flags S
= Set RXIFG et
L "UCAORXIFG
UCAORXBUF Set UCBRK ~ UCLISTEN
§ UCORX
L S RX Shift Register -
LUCPEN UCPAR UCMSRE UCTBIT
UCSSELx Baud Rate Generator
I UCOBRx
NG
L{_U(ifi P | 4
AEL—K'{JJ s > Prescaler/Divider Receive Clock
DML Modulator Transmit Clock
SMCLK| |
T
| UCBRFx UCBRS: UCOSI6
UCPEN UCPAR UCMSR UCTBIT
[I I B
L S TX Shift Register (>
* UCOTX
UCAOTXBUF
: — Set
3] @ =
UCMODEx UCSPB UCTXBRK

Figure 12.2 Block diagram of the UART mode.

The UART is mainly configured by two control registers. These are USCI_AO
Control Register 0 (UCAOCTLO0) and USCI_AOQ Control Register 1 (UCAOCTL1). Their

entries are given in Tables 12.6 and 12.7.

Table 12.6 USCI_AO control register 0 (UCAOCTLDO).
Bits 7 6 5 4 3 2-1 0

UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC

Table 12.7 USCI_AO control register 1 (UCAOCTL1).
Bits 7-6 5 4 3 2 1 0

UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

In Table 12.6, UCPEN and UCPAR bits are used for parity bit settings [5]. The
UCPEN bit is used to enable the parity bit for the system. If this bit is reset, the parity bit
is disabled. If it is set, the parity bit is enabled. After the UCPEN bit is set, the UCPAR bit
is used to decide on the parity type. When this bit is reset, odd parity is used. When it is
set, even parity is used. The UCMSB bit is used to choose the start bit for the data
transfer. When this bit is reset, the transmission starts from the LSB. When it is set, the
transmission starts from the MSB. The former configuration is generally selected in the
UART mode. The UC7BIT bit is used to select the data length. When this bit is reset, the
data length is set to eight bits. When it is set, the data length is set to 7 bits. The UCSPB
bit is used to decide on the number of stop bits. When this bit is reset, one stop bit is used.
When it is set, two stop bits are used. UCMODEX bits are used to select the asynchronous
mode. Constants for these bits are UCMODE_0 (UART mode), UCMODE_1 (idle-line
multiprocessor mode), UCMODE_2 (address-bit multiprocessor mode), and UCMODE_3
(automatic baud rate detection mode). The default setting is UCMODE_O0 for the UART
communication between two devices. UCMODE_1 and UCMODE_2 can be used for the
UART communication between more than two devices. The UCSYNC bit is used to
choose the asynchronous or synchronous communication mode. When this bit is reset, the
asynchronous mode (UART) is selected. When it is set, the synchronous mode (SPI) is
selected. Therefore, the UCSYNC bit should be reset for the UART mode.

In Table 12.7, UCSSELX bits are used to select the UART clock source. Constants
for these bits are UCSSEL_0 (for UCOCLK), UCSSEL_1 (for ACLK), UCSSEL_2, and
UCSSEL_3 (for SMCLK). The UCRXEIE bit is used to enable the interrupt for receiving
erroneous characters (detected by parity bit tests). When this bit is reset, received
erroneous characters are rejected and the UCAORXIFG bit (explained in Sec. 12.2.3) is
not set. When the UCRXEIE bit is set, received erroneous characters set the UCAORXIFG
bit. The UCBRKIE bit is used to enable the interrupt for receiving the break condition.
When this bit is reset, the received break character does not set the UCAORXIFG bit.
When it is set, the received break character sets the UCAORXIFG bit. For the break
operation, please see [17]. The UCDORM bit is used to decide on which characters will
set the UCAORXIFG bit. When this bit is reset, all received characters will set the
UCAORXIFG bit. When it is set, no character sets the UCAORXIFG bit in the normal

UART mode. The UCTXADDR bit is used in communication of more than two devices.
Therefore, it is not explained here. The UCTXBRK bit is used to inform that the next
frame will be transmitted as a break condition. When the UCTXBRK bit is reset, the next
frame is not acknowledged as a break. When it is set, the next frame is acknowledged as a
break or break/synch. The UCSWRST bit is used to reset the USCI module. When this bit
is set, the USCI module is reset. When it is reset, the USCI module will be ready for
operation.

The UART mode also has a status register called as UCAOSTAT. It is specifically
used to observe the changes in the system. The entries of this register are given in Table
12.8. In this table, the UCLISTEN bit is used to generate an internal loop between the
transmitter and receiver on the same device. When this bit is set, the loopback is enabled.
When it is reset, the loopback is disabled. This property can be used to troubleshoot the
communication codes on a single device. The UCFE bit is used to observe the framing
error (caused by the low stop bit). When the received character has a low stop bit, UCFE
is set. The UCOE bit is used to observe the overrun error. When a new character is sent
into the receive buffer register before the previous one is read, this bit is set to indicate that
there is an overrun in the system. This bit is cleared automatically when the receive buffer
register is read. Therefore, the user should not try to clear it by software. The UCPE bit is
used to observe the parity error. This bit is set when the received character has zeros or
ones different from the number stated in the parity bit. The UCBRK bit is used to observe
the break condition. This bit is set when a break condition occurs. The UCRXERR bit is
used to observe any error in the received character. This bit is set when one or more than
one of the UCPE, UCOE, or UCFE bits are set. UCADDR and UCIDLE bits are used in
the communication of more than two devices. Therefore, they are not explained here. The
UCBUSY bit shows that whether the USCI module is busy or not. This bit is set when the
transmit or receive operation is performed. It is reset when the system is inactive.

Table 12.8 USCI_AQO status register (UCAOSTAT).
Bits 7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR UCBUSY
UCIDLE

12.2.1 Baud Rate Generation

Baud rate represents the number of received or sent symbols per second. Desired baud
rates can be generated by using the baud rate generator block in the UART mode. This
block receives the selected clock (BRCLK) as input. The clock frequency can be divided
by the 16-bit division coefficient UCBRx (explained in Sec. 12.1.2). The baud rate
generator block also has a USCI_AO Modulation Control Register (UCAOMCTL) to set
the modulation property. The entries of this register are given in Table 12.9. Depending on
the settings and the input clock frequency, the MSP430 UART baud rate generator block
can be used in low-or high-frequency modes. We will talk about these in the following
paragraphs.

Table 12.9 USCI_AO modulation control register (UCAOMCTL).
Bits 7-4 3-1 0

UCBRFx UCBRSx UCOSI6

In Table 12.9, UCBRFx bits are used to select the modulation pattern for
BITCLK16. For more detail on these patterns, please see [17]. This is the first modulation
step for the oversampling (high-frequency) mode. This step is not applicable in the low-
frequency mode. UCBRSx bits are used to select the modulation pattern for BITCLK
which has the closest frequency for the desired baud rate. This is the only modulation step
for the low-frequency mode. Also, this is the second step for the oversampling mode. The
UCOS16 bit is used to activate the oversampling mode. When this bit is reset,
oversampling mode is disabled and the baud rate is generated by using low-frequency
clock sources. In this mode, high-frequency clock sources can also be used. However, this
is generally not recommended since it decreases the time interval for majority votes (to be
explained in the following section). When the UCOSI16 bit is set, the oversampling mode
is enabled. Here, the baud rate is generated by using only high-frequency clock sources.

In the UART mode, baud rate calculation formulas are given in [17]. However,
typical baud rates can be generated by setting the UCOS16, UCBRx, UCBRFx, and
UCBRSx values. Based on the status of the UCOS16 bit, the baud rates that can be
generated are given in Tables 12.10 and 12.11. In these tables, possible transmission and
reception errors (labeled as “TX Error” and “RX Error”) are also provided for each baud
rate generation scenario.

Table 12.10 Typical baud rates that can be generated when the UCOS16 Bit is reset.

BRCLK
Baud Frequency Maximum Maximum

Rate (Hz.) UCBRx UCBRSx UCBRFx TX Error (%) RX Error (%)

1.200 32768 27 2] =180 140 =350 200
2400 32,768 i3 L] o =480 600 =970 B30
4 JK) 317648 6 7 0 =110 AN =1340 1500
S 500 32768] 3] =21.10 1520 —4430 21350
9600 | SO0 L] I o =050 060 =050 120
9600 1 IMESTE 108 2] =020 070 =100 (80
9800 & 00 X 416] 1] =020 020 =020 (.40

9 A B 000 0 B33 2 1] =010 00 =00 0.4
9600 T2 A0 X 1250 0] 0.0 000 =005 el
9800 16000 (0 1666] L] =003 005 =005 .10
19 2040 1 000 £ 52 1] 1]] 00 =260 050
19.200 I IMESTE 54 3] =110 o0 =130 150
19200 4 000 £ 208 3 L] =020 030 =030 (.80
19,200 B 000 £ 416] 0 =020 020 020 0,40
19 0 12 000 Ok 625 0 1] Ok ool =020 O
19200 16 000 (R £33 2] =010 008 =020 0.10
15 400 1 000 £ 6 L] 0 —1.80 000 =360 1.50
218 A0 | (4 ES5T6 27 2 1] =280 140 =550 200
33 400 & 000 N 1] 1 1] =050 060 ~050 120
38 400 B 00000 08 3 1] =020 050 —030 LB
38 400 12 000 (XK 2 4 o =020 000 =020 020
38 400 16 S0 X 416 6 L] =020 020 =020 (.40
56,000 1 000 0dx 17 7 1] —d R0 0OED =R 20
56 X0 1 IMESTG I8 L] o =190 L0 =450 LN
36 D00 4S040 X T 4 o =060 100 =170 130
56 [0 B 000 0 142 7 1]] 010 —0T (]
36 000 12 000 (Wh 214 g] =030 020 —040 050
36 000 165 00 X 285 6 1] =030 00 =050 0.20
115 200 (FLiLL]]] 0 =180 640 =0T0 1610
15 200 1 MESTE 9 I 1] =110 1T0 =1150 1130
115 200 4 S0 £ M] o =210 060 =230 30
115 200 B 000 00 L 4 L] =160 080 =180 110
V15 200 12 000 (XK 104 | L] =050 060 =050 120
115 200 16 00 X 138 7 L] =070 000 =080 (60
128 D00 | 000 D0 T 7 1] =10.40 640 =1R00 11.60
128 P 1 MES5TE] |] —890 750 —1380 1480
128 Do 4 400 £ £ | 2 1] =080 160 =360 200
128 (00 8 000 (0 62 4 (] (1B 00 =120 120
128 000 12 00 [0k 93 & i —~0Li 0 —1.50 0.4
(F=Fiii] 165 00 X 125 0 1] D 000 =080 iy
256,004 (FLULL] 3 7 1] =260 000 3360 520
256 0K | B S5T0 4 1 1] =230 2540 1340 3xR0
56 D0 4 000 (XK 15 5 o =400 3 —R40 30
256,000 & 000,000 k]| 2] =080 160 =360 200
256 00 12 00 [0k L2 T 1] =150 000 =200 200
F= L 16 4000 [Xh 62 4 o =080 00 =120 120

Table 12.11 Typical baud rates that can be generated when the UCOS16 bit is set.

BRCLK
Baud Frequency Maximum Maximum

Rate (Hz.) UCBRx UCBRSx UCBRFx TX Error (%) RX Error (%)

9 600 1.00CH 00 G 0 8 —1.8 00 =22 04

4 600 LB 576 6 0 13 =23 04 =22 0.8

9 A0 4,000 L300 26 0 1 0.0 0.9 0.0 1l

9 600 8000 D00 52 0 1 —04 00 —04 0.1

9 600 12,000 000 78] 2 0.0 00 —0.1 0.1

9 600 16,000 000 104 0 3 0.0 0.2 0.0 03
19200 1 000 D00 3 0 4 —1.8 00 =246 09
19 200 1 (M8 576 3 1 6 —4.6 32 =50 47
19200 4,000 00 13 1] 0 —1.8 o0 —19 02
19 200 B 000000 26 i | 0.0 0.9 0.0 1.1
19200 12000 {00 39] 1 0.0 0.0 0.0 02
19 200 16,000 000 52 0 1 —0.4 00 —-04 0.1
38400 4,000 000 G 0 8 ~1.8 00 =22 04
38 400 8,000 000 13 0 0 =18 00 =19 02
38 400 12,000 00 19 0 8 —1.8 o0 —1.8 0.1
38 400 16,00 000 26 1] 1 0.0 0.9 0.0 1.1
37600 100G 00 1 7 0 —3d4 00 —334 0o
57 600 4,000 000 4 5 3 =35 32 =18 64
57 600 8000 000 8 0 11 0.0 0.9 0.0 16
37 600 12,000 000 13 0 0 -1.8 00 =19 02
37 600 16, (K D00 17] 6 0.0 0.9 —0. 10
15 200 4,000 000 2 3 2 =21 48 25 13
15 200 8000 000 4 5 3 —3.5 32 —18 64
115 200 12,000 000 6 0 8 —=1.8 00 =22 04
115200 16,000 000 8 0 11 0.0 0.9 0.0 16
230 400 4,000 000 1 7 0 =344 00 =334 0n
230 400 8,000 000 2 3 2 =21 48 =23 T3
230 400 12,000 (00 3 1] 4 —1.8 00 =26 05
230 400 16,000 000 4 5 3 —3.5 32 —18 64
460 500 8 000 000 | 7 0 —344 00 —334 00
460 500 16,000 000 2 3 2 =2.1 48 =25 73

12.2.2 UART Transmit/Receive Operations

Before focusing on the transmit and receive operations, we should mention that these
operations are done on a character basis in the UART mode. Also, the character is not sent
alone. In Table 12.12, we provide the character format for the UART mode. In this table,
DO- - -D6 stand for the seven data (character) bits. D7 stands for the eighth data bit. In
Table 12.12, italic characters indicate that the mentioned bits are optional to use. Also, the
LSB first transmission is typically used in the UART mode. As a reminder, this is
achieved by resetting the UCMSB bit in the UCAOCTLO.

Table 12.12 UART character format.

Start Bit DO ---D6 D7 Address Bit Parity Bit Stop Bit Second Stop Bit

Transmit and receive operations are simple in the UART mode. If there is no data
written to the UCAOTXBUF, the baud rate generator does not provide any clock to the
UART. Hence, it stays in the idle state. The transmit operation starts when data is written
to the UCAOTXBUF. Then the baud rate generator starts working. The data within the
UCAOTXBUEF is moved to the transmit shift register. Meanwhile, the UCAOTXIFG bit in
IFG2 is set to indicate that UCAOTXBUF is ready to accept new data. The data in the
transmit shift register is sent to the receiver in a serial manner. Then UART returns to the
idle state.

The receive operation starts when the falling edge of the start bit is detected. Until
then, the baud rate generator does not provide any clock to the UART. Therefore, the
UART stays in the idle state as in the transmission operation. The baud rate generator
starts working after the falling edge of the start bit is detected. Then the receiver checks
the validity of the start bit. If the start bit is not valid, the UART goes to the idle state.
Otherwise, each received signal pulse is checked by majority voting. Here, three samples
are taken from the pulse. If the number of zeros is more than ones in these samples, then
the receive shift register receives a zero. Otherwise, it receives a one. The binary data is
shifted in the receive shift register. This operation continues until the stop bit is detected.
The final result is transferred to the UCAORXBUF.

12.2.3 UART Interrupts

UART has different interrupt vectors for transmission and reception operations. As given
in Table 9.2, for the transmitter the interrupt vector is USCIABOTX_VECTOR. For the
receiver, the interrupt vector is USCIABORX_VECTOR.

The interrupt-based communication operation works as follows in the UART mode.
Initially, the UCAOTXIE and UCAORXIE bits should be set to enable transmission and
reception interrupts. These two interrupts are maskable. Therefore, the GIE bit must also
be set. In the transmission operation, an interrupt is requested when the UCAOTXBUF is
ready for another character. Then the UCAOQOTXIFG is set. This flag is automatically
cleared when a new character is written to the UCAOTXBUF. In the reception operation,
an interrupt is requested when a character is loaded to the UCAORXBUF. Then the
UCAORXIFG is set. This flag is automatically cleared when the data in UCAORXBUF is
read.

12.2.4 Coding Practices for the UART Mode

In this section, we provide sample C and assembly codes in the UART communication
mode. Before focusing on the code samples, there are important issues to be clarified.
First, the MSP430 LaunchPads should be disconnected from the external circuitry before
debugging the code. Otherwise, CCS gives a debug error since common grounds are used

in the circuitry. Second, the jumper settings of J3 for the MSP430 LaunchPad should be
done for the transmit and receive pins as given in Fig. 12.3. Third, we will be using the
terminal program under CCS. Please see Sec. 5.8 for its usage.

———

Figure 12.3 Jumper 3 (J3) TXD/RXD connections for UART communication. From left
to right: Normal view; UART setting for MSP430 LaunchPad Rev.1.5; UART setting for
MSP430 LaunchPad Rev.1.4.

UART in C

In Listing 12.1, the loopback property of the UART mode is used. The connection diagram
for this application is given in Fig. 12.4. The C code containing the transmitter and
receiver parts are run on the same microcontroller using the loop-back property. Hence,
the code can be debugged easily. In Listing 12.1, the green LED on the MSP430
LaunchPad is toggled by the button connected to pin P1.3. However, the loopback
property is used such that the toggle command is sent and received within the
microcontroller.

Listing 12.1 The UART loopback application, in C language.

#include <msp430.h=>
int Data = 0:

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

BCSCTL1 = CALBC1_1MHZ: /S /Adjust the clock
DCOCTL = CALDCO_1MHE:

P1DIR |= BIT6; //Adjust pins
P1OUT = 0x00:

P1SEL BITl|BIT2;

P1SELZ = BITl|BIT2;

P1IE |= 0x08;

P1IES |= 0x08;

P1IFG = 0x00;

UCAQOCTL1 |= UCSSEL.2; S /5etup the UART mode
S/ Use SMCLK

UCAOBROD = 104;

JS/Low bit of UCBRx is 104

UCAOBR1 = 0;

//High bit of UCBRx is 0

UCAOMCTL = UCBRS_1;

//Second modulation stage select is 1

//Baud Rate = 9600
UCAOSTAT |= UCLISTEN;

//Enable internal loopback
UCAOCTL1 &= ~UCSWRST;

//Clear SW reset, resume operation
IE2 |= UCAORXIE|UCAOTXIE;

//Enable USCI.A0 RX TX interrupt

-enable_interrupts();

LPM4;
i

A/USCI A transmitter interrupt

#ipragma vector=USCIABOTX_VECTOR

--interrupt woid USCIAOTX_ISR(void) |
UCAOTXBUF = Data;

//Load the TX buffer with integer value

}

A/USCI A receiver interrupt

#pragma vector=USCIABORX VECTOR

--interrupt woid USCIAORX-ISR(void) |
P1OUT = UCAQORXBUF;

J/Write received data to P1OUT

}

#pragma vector=PORT1_VECTOR
--interrupt weoid Port_l(void){
Data "= 0x40:
S /Toggle data value
P1IFG = 0x00;
//Clear interrupt flags

}

— VeC GND
RXD and TXD S i XINF—
are connected e——— P51 XOUTH——-
ey by (<~ ez e —
R B3 T;‘:’ RSTH—
—Pl4 G553 P1.7—

—P1.5 Fl.6
Vee —P2.0 P2.5—
—P2.1 P24——
:) e i ITH

10 kQ = pP2.2 P2.:

100 nF Onboard
Green LED
GND

Figure 12.4 The connection diagram for the UART loopback application.

In Listing 12.2, the MSP430 receives the password through the UART mode from the
host computer. The connection diagram for this application is given in Fig. 12.5. If the
password is correct, then the green LED on the MSP430 Launch-Pad turns on for 5 s, then
the code is reset. Otherwise, the red LED on the MSP430 LaunchPad turns on for 2 s, then
the MSP430 waits for the new password. Meanwhile, the MSP430 will tell the user to
enter the password and will determine whether the entered password is correct or not
though the terminal program.

Listing 12.2 The UART password application, in C language.

#include =msp430.h=>

#define RedLed BITO
#define GreenLed BIT6

char password[] = "12345"; //The Password

char enter[] = "Enter Your Password\r'\n";

char correct|[] = "Your password is correct\r\n”;

char incorrect|[] = "Your password is incorrect\r\n";
char reenter|[] = "Please re-enter your password\r\n”;

char input[100];

int RXByteCtr = 0;

int cnt = 0;

int inputlength,passwordlength;
int difference;

void transmit(char *str);
int compare(char *strin, char *strpass);
int arraylength(char *str);

void main(veid)

WDTCTL = WDTPW|WDTHOLD;

BCSCTL1 = CALBC1_1MHZ; //Adjust the clock
DCOCTL = CALDCO_1MHZ;

P1DIR RedLed|GreenLed; //Adjust pins
P1OUT = 0x00;

P1SEL = BIT1|BITZ2;

P1SEL2 = BITl|BIT2;

UCAQCTL1 |= UCSWRST+UCSSEL.-2; //Setup the UART mode
S /BEnable SW reset, Use SMCLEK

UCAQOBRO = 104;

f/Low bit of UCBRx is 104

UCAQBRL1 = 0;

//High bit of UCBRx is 0

UCAOMCTL = UCBRS.1;

S /Second modulation stage select is 1
//Baud Rate = 93600

UCAQCTL]1 &= ~UCSWRST;

//Clear SW reset, resume coperation

transmit(enter);
IE2 |= UCAORXIE; //Enable the USCI_A0 RX interrupt
—enable_interrupts();

while(1}]

if(cnt == 1)

FiCheck if cnt iz 1

inputlength = arraylength(input):;
//Get your input length
passwordlength = arraylength(password);
f/ Get your password length
difference = compare(input,password);
J/Compare the received password with your password
if(difference == 0)|

S /Check if they match
transmit(correct);

SAIE they match, transmit correct string
PlOUT = GreenLed;

S/Turn on the green LED
—delay.cycles(5000000);

Si/Walt for 5 seconds

WDTCTL = WDT_MRST_0.064;

/S /Reset the system

|

else|
JAIE Ehey do not match

transmit (incorrect);
S /Transmit incorrect string

P1OUT = RedLed;
S/Turn on the red LED
delay_cycles(2000000);
SiWait for 2 seconds

P1OUT = 0x00;
S /Turn off the red LED

transmit (reenter);
S /Transmit reenter string

|

cnt = 0;
/S /Reset cnt

RXByteCtr = 0;
//Reset Receive Byte counter

H
}

FSAUSCT A receiver interrupt
f#pragma vector=USCIABORX.VECTOR
--interrupt weold USCIORX.ISR(woid)|
f/Check 1f the UCAORXBUF is different from 0x0A
S/ (Enter key from keyboard)
if (UCAORXBUF != 0x0A)
input [RXByteCtr++] = UCAORXBUF;
FSAIE it is, load received character
fito current input string element
else|
cnt = 1;
FAIE it ig not, set cnt
input [RXByteCtr] = 0;
S/Add null character at the end of input string
I
I

void transmit(char *str)|
while(*str != 0)|
//Do this during current element is not
Sregqual to null character
while (! (IFG2&UCAOTXIFG));
//Ensure that transmit interrupt flag is set
UCAOTXBUF = *str++;
S /Load UCAOTXBUF with current string element
Sithen go to the next element
I
!

int compare(char *strin, char *strpass)|

int result = 0;

SiClear result

if(inputlength == passwordlength)|

//Check if passwordlength is greater than or

Flegqual to inputlength

while(*strpass != 0)|

result = result + abs((*strin++)-(*strpass++));

JAIE 1t is, take the difference betwesen elements of
//strin and strpass until current element of strpass
A/l equal to null character, abs() is used to ensure
//that differences do not cancel each other

H

else|

while(*strin != 0)]

result = result + abs((*strin++)-(*strpass++));

FAIF it is not, do the same thing until current element
fiof strin is equal to null character this time

H

return result;

S /Return result wvalue

}

int arraylength(char *str){
int length = 0;
//Clear length
while(*str != 0){
A/Until null character is reached
str++;
J/Increase array address
length++;
/S /Increase length value
}
return length;
//Return length value

}

Onboard ; -
ot FP1.0 NINle——
ost Computer s
(viaUSB.no |~~~ —Pl1.1 XOUT——-
external [----- —P1.2 ‘ TESTH——
connection) P1.3 MSP RST
— p14 o P17——
’ G2553 '
—P1.5 Pl.6
— P20 P2.5—
—TE—PZI P14]T__
— P22 P2.3i——
Onboard
Green LED

Figure 12.5 The connection diagram for UART password application.

In Listing 12.3, the duty cycle of a PWM signal is obtained from the host computer
using the UART mode. The connection diagram for this application is given in Fig. 12.6.
Then the PWM signal is used to adjust the brightness of the green LED on the MSP430
LaunchPad. This operation is done continuously.

Listing 12.3 The UART PWM application, in C language.

#include =msp430.h=

#define GreenLed BIT6

char digits[3];

char enter[] = "Enter Duty Cycle \r\n”;

char enterl[] = "Enter New Duty Cycle \r\n”;
int result = 0;

int cnt = 0;
int RXByteCtr = 0;

void transmit(char *str);
void convert(veoid);

void main(veoid)

{

WDTCTL = WDTPWWDTHOLD;

BCSCTL1 = CALBC1_1MHZ; //Adjust the clock
DCOCTL = CALDCO_1MHZ;

P1DIR = Greenled; //Adjust pins
P10OUT 0x00:

P1SEL = BIT1|BIT2|BIT6;

P1SEL2Z2 = BITl|BIT2;

UCAQOCTL1 |= UCSWRST|UCSSEL-2; //Setup the UART mode
/S /BEnable SW reset, Use SMCLEK
UCAOBRO = 104; //Low bit of UCBRx is 104

UCROBRL = 0; //High bit of UCBRx is 0
UCAOMCTL = UCBRS.1;
S /8econd modulation stage select 1is 1
S/Baud Rate = 9600
UCAOCTL1 &= “UCSWRST;
//Clear SW reset, resume operation

TACCRLl = 0; //Setup the PWM
TACCRO = 9989;

TACCTLL = QUTMOD.T;

TACTL = TASSEL 2|MC_1|ID._3;

transmit(enter);
IE2 |= UCAORXIE; //Enable USCI_A0 RX interrupt
-enable interrupts();

while(l)]

if{cnt == 1}

convert(); //Convert received character to integer
CCR1 = 10*result;

transmit(enterl);

cnt = 0;

RXByteCtr = 0; //Reset the Recelive Byte counter

1
}

SAUSCT A receiver interrupt
#pragma vector=USCIABORX.VECTOR
—-interrupt woid USCIORX_ISR(wvoid){
S/Check if the UCAORXBUF is different from Ox0A
S/ (Enter key from keyboard)
if (UCADRXBUF != 0Ox0Aa)
digits[RXByteCtr++] = UCAQORXBUF;
SAIE it is, load received character
Sito the current string element
S/Ehen go to next string element
else cnt = 1;
F/Tf the received character is 0x0A, set cnt

}

void transmit(char *str)|

SiWhile the current element is not egual
Sito the null character

while(*str != 0}

while (! (IFG2&UCAOTXIFG));
//Ensure the transmit interrupt flag iz set
UCAQTXBUF = *gstr++:

S /Load the UCAOTXBUF with the current string
Sielement, then go to the next element

1

I

void convert(wveid)|

char hundreds = '0',tens = '0',ones = '0';
if(RXByteCtr == l)ones = digits[0];

J/1If the RXByteltr egquals 1,

//take only ones digit

if (RXByteCtr == 2){

ones = digits[1l];

tens = digits[0];

}
/S /1 the RXByte(Ctr eguals 1,
//take ones and tens digits

if (RXByteCtr == 3){

ones = digits[2];

tens = digits[l1l];

hundreds = digits[0];

}
J /I the RXByteltr equals 1,
//take ones, tens, and hundreds digits

result = ((hundreds-0x30)*100)+((tens-0x30)*10)+"
{ones-0x30);

}

-
. GND[~~
—P1.0 XIN——
Host Computer| I
(via USB, no P11 v
external pEERRRS — P1.2 ; TEST——
connection) — P13 MSP RSTH——
430
—P1.4 G2553 P1.7——
—P1.5 P1.6
—P2.0 P2a—
_HE_PLI P14]T__
=~ P23—
Onboard
Green LED

Figure 12.6 The connection diagram for the UART PWM application.

In Listings 12.4 and 12.5, the UART mode is used to establish a digital

communication between two MSP430 LaunchPads. The connection diagram for this
application is given in Fig. 12.7. The C code for the transmitter device is given in Listing
12.4. The C code for the receiver device is given in Listing 12.5. In this application, when
the button connected to pin P1.3 of the transmitter device is pressed, the transmitter sends
the next PWM constant from the TXData array to control the brightness of the green LED
on the receiver. The connection between pin P1.5 of the transmitter device and the RST
pin of the receiver device is used for resetting the slave before the communication starts.

Listing 12.4 The transmitter part of the UART communication between two MSP430
LaunchPads, in C language.

#include <msp430.h=>

unsigned int *PTXData = 0;
unsigned int TXByteCtr;

unsigned int TXData[] = {0x0000, OxO00FA, Ox01F4, \
0x02EE, DXDHEB}; S A/TACCR] values to be transmitted
unsigned int High = 0, Low = 0;

int cntr=0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

BCSCTL1l = CALBC1_1MHZ: /S /Adjust the clock
DCOCTL = CALDCO_1MHE:

P1DIR |= BITS5; //Adjust pins
//Assing Pl.5 as output for resetting the slave
P1SEL = EITl|EIT2;

P1SELZ2 = BIT1|BITZ;

P1IE |= 0x08;

P1IES |= 0x08;

P1IFG = 0x00;

UCAOCTL]1 |= UCSWRST|UCSSEL-2; //Setup the UART mode
S /Enable SW reset, Use SMCLK
UCAQOBRO = 104;
JS/Low bit of UCBRx is 104
UCAOBR1 = 0;
f/High bit of UCBRx iz 0
UCAOMCTL = UCBRS.1;
//Second modulation stage select is 1
S/Baud Rate = 9600
UCAOCTL1 &= “UCSWRST:
S /Clear SW reset, resume operation
PTXData = TXData;
S /Egquate TXData array’s start address to PTXData

P10OUT &= "“BITS; //Reset UART slave
P1OUT |= BITS;

-enable_interrupts();

LPM4 ;
I

FAUSCI A transmitter interrupt
#pragma vector=USCIABOTX_VECTOR
—-interrupt woid USCIAOTX_ISR(veid)|
if((TEByteCtr:2) == 0)f
High = *PTXData;
SiWrite the incoming array element to high integer
UCAQOTXBUF=(High==8);
//8hift the high byte of High integer then load
JS/ithe TX buffer with it
|
if((TEByteCtri2) == 1})|
Low = *PTXDatat++;
S/Write the incoming array element to low integer,
S/then increase the PTXData
UCAQOTXBUF = Low;
F/Load the TX buffer with low byte of array element
cntr++;
if({entr == 5}
FTXData = PTXData-5;
cntr = (;
SAIF entr egquals 5, return to array start address
Sland reset cntr
|
IEZ2 &= “UCROTXIE;
Si/Digsable the transmit interrupt
|
TXByteCtr--;
//Decrease TX Byte Counter

}

#pragma vector=PORT1.VECTOR

--interrupt veoid Port.1(veoid)

{
TXByteCtr = 2;

//Load TX Byte Counter with 2
IE2 |= UCAOTXIE;

//Enable the transmit interrupt
P1IFG = 0x00;

}

Listing 12.5 The receiver part of the UART communication between two MSP430
LaunchPads, in C language.

#include <msp430.h=>

unsigned int RXData;
unsigned int RXByteCtr = 0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

BCSCTL1 = CALBC1_1MHZ; //Adjust the clock
DCOCTL = CALDCO-1MHZ;

P1DIR |= BIT6; //Adjust pins
P1SEL = BIT1|BIT2|BIT6;
P1SEL2 = EITl|EIT2;

P1OUT = 0x00;

UCAQOCTL1 |= UCSWRST|UCSSEL.2; //Setup the UART mode
S /Enable SW reset, Use SMCLE
UCAOBRO = 104;
S/Low bit of UCBRx is 104
UCAOBR1 = 0;
//High bit of UCBRx is @
UCAOMCTL = UCBRS_1;
//S8econd modulation stage select is 1
S /Baud Rate = 9600
UCAOCTL1 &= “UCSWRST;
//Clear SW reset, resume operation
IE2 |= UCAORXIE;
//Enable the USCI_AQ RX interrupt

TACCR1 = 0; //Setup the PhM
TACCRO 999;

TACCTL1 = OUTMOD.7;

TACTL = TASSEL 2 | MC_1 | ID.3;

-enable interrupts();

LPMO;

}

//USCI A receiver interrupt
#pragma vector = USCIABORX_VECTOR
__interrupt wvoid USCIABORX_ISR(void){
if((RXByteCtr%2) == 0){
R¥XData = UCAQORXBUF;
//Move the received data (high byte) to low byte
S /of RXData
RXData = (RXData=<8);
//8hift the low byte of RXData to high byte
}
if((RXByteCtr%2) == 1)|
RXData |= UCAORXBUF;
//Move received data (low byte) to low byte
S /of RXData
TACCR1 = RXData:;
S /Move RXData teo TACCRI1

J

BEXByteCtr++;
//Increase RX Byte (Counter
if(RXByteCtr == 2) RXByteCtr = 0;
= GNDJ22 = 7 GNDJ-22
—P1.0 XIN+—— —P1.0 XIN|——o
PFl.1 XouTr P1.1 XOUT|——
P1.2 ASP TEST Pl1.2 MSP TEST—
e P1.3 430 RSTH—— —P13 430 RST
pra G2553 pg — P14 G2853 pr7—
{ Transmitter) { Receiver)
— —P1.5
10 ng P1.5 Pl.6 | o Pl.o
P20 P25— ——P2.0 P2.5——
?Pll PE.JT TFEJ FE.#T
—iP2.2 P23— —P2.2 23—
100 nF E E
Onboard
Green LED

GND

Figure 12.7 The connection diagram for the UART communication between two
MSP430 LaunchPads.

UART in Assembly

In the first assembly code, given in Listing 12.6, the “Hello World” string is transmitted to
the host computer when the button connected to pin P1.3 is pressed. The connection
diagram for this application is given in Fig. 12.8.

Listing 12.6 The UART “Hello World” application, in assembly language.

.cdecls C,LIST, "msp430.h"”

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHDLD ,WDTCTL
mov.w #__STACK_END,SP

;String starts

mov.b # H',&0200h
mov.b #'e',&0201h
mov.b #'1',&0202h
mov.b #'1',&0203h
mov.b #'o0',&0204h
mov.b #' ',&0205h
mov.b #'W',&0206h

mov.b #'0',&0207h
mov.b #'r',&0208h
mov.b #'1',&0209h
mov.b #'d’',&020ah
;5tring ends

mov.b #0Ah,&020Bh ;New Line

mov.b #0Dh,&020Ch

jCursor returns to the beginning of the line
mov.b #0h,&0200h ;Null character

mov.b &CALBCI.IMHZ,BCSCTL1 ;:;Adjust the clock
mov.b &CALDCO_1IMHZ,DCOCTL

mov.b #6h,P1SEL ;Adjust pins
mov.b #6h,P1SEL2

bis.b #08h,P1lIE

bis.b #08h,P1IES

elr.b PlIFG

bis.b #UCSWRST+UCSSEL_Z,UCAOCTL]1 ;Adjust the UART mode
1Enable 5W reset, Use SMCLE

mov.b #68h, UCAOBRO ;Low bit of UCEBRx is 104

mov.b #0h,UCROBR1 ;High bit of UCBRx is 0

mov.b #UCBRS_.1,UCAOMCTL

i1Second modulation stage select is 1

:Baud Rate = 92600

bie.b #UCSWRST,UCAOCTL1

jClear 5W reset, resume operation

bis.w #GIE+LPM4,SR

;Transmit subroutine
Transmit:

mov.w #0200h,R5
Check:

bit.b #UCAOTEIFG, IFG2

jEnsure the transmit interrupt flag is set
jeq Check

;If not, jump to check label

mov.b BRS5,R6

tst.b R6

iCheck if new character equals null character
jeqg Finish

;If it is jump to finish

mov.b BRS+,UCAOTXBUF

$If it is not, Load TX buffer with this
jcharacter then go to new character

jmp Check

jJump to check label to send new character
Finish:

ret

call #Transmit
clr.b P1IFG
reti

.global __STACK_END
.sect .stack

.5ect RESET_VECTOR
.short RESET

.sect PORT1_VECTOR
.short P1_ISR

.end

-
_ b Vee GND 20
P ——P1.0 XIN——
ost Computer
(vig USB, no |[7777777" — P XOUT——-
external W eememass — P12 TEST—
connection) P13 MSP RST
W — P14 430 Pl
cC ' G2553 :
PL.5 P1.6
10 kil; —P2.0 P2.5—
—{PZ P2.4—
—JE—Plﬁ Plﬁjl——
100 nE

GND

Figure 12.8 The connection diagram for the UART “Hello World” application.

In the second assembly code, given in Listing 12.7, the red and green LEDs on the
MSP430 LaunchPad are controlled by the host computer. The connection diagram for this

application is the same as given in Fig. 12.5. In this application, the red LED on the
MSP430 LaunchPad turns on when the ‘r’ key is pressed on the keyboard of the host
computer. The green LED on the MSP430 LaunchPad turns on when the ‘g’ key is pressed
on the keyboard of the host computer. Both LEDs turn off when a different key is pressed.

Listing 12.7 The UART LED control application, in assembly language.

.cdecls C,LIST,"msp430.h"

text
.retain
.retainrefs

RESET
mov.w #FWDTPW|WDTHOLD,WDTCTL
mov.w #_ _STACK_END,SP

mov.b &CALBCl_1MHZ,BCSCTL1 ;Adijust the clock
mov.b &CALDCO-1MHZ ,DCOCTL

bis.b #41h,P1DIR
elr.b PlOUT

mov.b #6h,P1SEL ;Adjust pins
mov.b #6h,P1SEL2

bis.b #UCSWRSTHUCSSEL.2,UCAOCTL1 ;Adjust the UART mode
jEnable SW reset, Use SMCLE

mov.b #68h,UCAOBRO ;Low bit of UCBRx is 104

mov.b #0h,UCAOBR]1 ;High bit of UCBRx is 0

mov.b #UCBRS_1,UCAROMCTL

iSecond modulation stage select is 1

;Baud Rate = 9600

bic.b #UCSWRST,UCAQCTL1

:Clear SW reset, resume operation

bie.b #UCAORXIE,IEZ ;Enable RX interrupt

bis.w #GIE+LPMO,SR

cmp.b #'r', UCAORXBUF
;Check if the received character is 'r’
jne Second
;If not, jump Second
mov.b #01lh,PlOUT
+If it is, turn on red LED
jmp EndISR
Second:
cemp.b #'qg',UCAORXBUF
iCheck if the received character is 'g'
jne Third
:If not, jump Third
mov.b #40h,P1lOUT
:If it is, turn on green LED
jmp EndISR
Third:
mov.b #00h,P1lOUT

;If anything else, turn off LEDs
EndISR:
reti

.global __STACEK_END
.5ect .stack

.sect RESET_VECTOR
.short RESET

.sect USCIABORX VECTOR
.short USCIABORX_ISR
.end

12.3 UART in Grace

Grace can be used to configure the USCI_AO and USCI_BO0 modules. The first module is
called USCI_AO: UART/LIN, IRDA, SPI and the second module is called USCI_BO: SPI,
I2C as shown in Fig. 5.11. First, the target block should be clicked. Then, the Enable
USCI_x0 in my configuration box must be checked to enable it. For both modules, a
selection window appears with the Basic User, Power User, and Registers options. For all
options, a selection window appears. For the USCI_AOQ block, this window will have two
buttons, UART and SPI. The same window appears when the USCI_BO0 block is chosen.
There the buttons will be SPI and I°C. When a button is clicked in this selection window,
the related communication mode appears. The user can return to the previous selection
window by clicking the Return to USCI_x0 Mode Selection View button.

In this section, we will focus on the UART mode. Therefore, we should select the
USCI_AO block first. We assume that the user has clicked the UART button in the initial
selection window for all user modes explored below.

12.3.1 The Basic User Mode

The basic user mode window appears as shown in Fig. 12.9. In this mode, we can enable
or disable the UART pins from the related drop-down lists. We can also select the UART
baud rate from the Baud drop-down list. Here, we have an option to set a custom baud rate
by first selecting the Custom option from the list. Then we can enter the desired value into
the Set Custom box. In the basic user mode, we can enable the transmit and receive
interrupts by checking the “USCI_AO UART transmit interrupt enable” and “USCI_AQ
UART receive interrupt enable” boxes respectively. We can also generate ISRs related to
these interrupts using the associated Generate Interrupt Handler Code button.

Grace (MSP430) * USCI_AO - Basic User Mode
Overview Power User Registers

| Return to USCI_AD Mode Selection View |

UCxRX

Clock source set =
to SMCL:' | i | USCI_AD ®—| USC_AD RX Qutput OFF |
BRCLK | UART Mode | UCXTX

USCLAD TX Output OFF v |

~Stan DO v Dx D7 Stop

\issce

Baud= Qﬁa—qu llllllll _’ - | tem =0 us
Set Custom bps
Interrupt Enables
[7] USCI_AD UART transmit interrupt enable [Generate Interrupt Handler Code]
[usCI_AD UART receive interrupt enable [Generate Interrupt Handler Code]

View All Interrupt Handlers

Figure 12.9 The basic user mode for the UART under Grace.

12.3.2 The Power User Mode

The power user mode for the UART is shown in Fig. 12.10. In this mode, the user can
adjust the clock source, character length, parity, and stop bits in addition to the
arrangements in the basic user mode. All these can be adjusted by using related drop-down
list items.

| Return to USCI_AQ Mode Selection View

Clock source UCxRX

]
SMCLEK - m USCl_AD —Q—[USCI_M RX Output OFF -

UART Mode UCxTX
BRCLK USCLAO TX Output OFF |

Parity: Stop:
_ Stat DO Dx [8-bit v [Mom ~| [or +|
I e 5 f :
> -
Baud= [pisabled v| ter=Ous
Set Custom bps
Interrupt Enables
[7] USCI_AD UART transmit interrupt enable | Generate Interrupt Handler Code |
[USCI_AD UART receive interrupt enable l Generate Interrupt Handler Code I

View &l Interrupt Handlers

Figure 12.10 The power user mode for the UART under Grace.

12.3.3 The Register Controls Mode

Finally, the UART registers can be adjusted under Grace. The user should select the
register controls mode, as shown in Fig. 12.11 for this purpose. Some register entries are
not available under Grace. They are labeled R/W. Some entries are only available for
reading a value. They are labeled R. The same format applies to the SPI and I?C under
Grace also.

Grace (M5P430) * USCI_AD - Register Controls
Chgrview Bl Uter Povwar Liser

UCAXCTLO, USCI_Ax Control Register 0

¥ L] g & ¥ L] a
Uk uLRaR atii] LR T =2 [Fals i T
| WAART Mode =
LCACTL1, USCI_Ax Control Register 1
L L] 3 L} ¥ 3 L (1]
uCsaEL vonee | ucssoe | ucooees E:L: ';;" 'f;""
T
SMCLE =1 il
UCABROD UCAXBR
ra Ta
o o

UCAXMCTL, USCl_Ax Modulation Control Regstear

¥ L] L & ¥ 3 1 a
LB Lae Bt P

First staged 'l | Second stage 0 '!
UCAxSTAT USCI_Ax Status Register

¥ L] L L] 3 3 L a
ey | e | weor | uoee | uesme | US| UERDER gy
Roj [R | P | Pw | B | Rw | Rel | R
LUCAxRXBLF LUCAxTXBUF

o L)

UCAxIRTCTL, USCI_Ax [rDA Transmt Contol Register

r & a5 El 3 F 3 i o

LTy [Ee 23 [T a4 [T a2 LTy e T [F o]

nE A4 XY A2 LX) A | T | UOREN

UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

&] & 3 z 1 a
WEMAN | WEAAK | AR | e | WLSmAn | s wen wen

F.5 Fut FLY FL2 i Fud RER LE- g

UCAxABCTL, USC1_Ax Auto Baud Rate Control Reqister

' & 5 4 3 2 1]
Amarad Eatadi I?H.‘l usstol | LCHRCE | Mmanad "'\;:“
[[R | R [
IE2, Interrupt Enable REQISIQI’ 2
r @ H " 2 2 1 a
A []
Tad o
IFG2, Interrupt Flag Register 2
r “ o " 3 3 1 a
A R
Tars LEA ot
bt | g

Figure 12.11 The register controls mode for the UART under Grace.

12.3.4 Coding Practices

In this section, we redo the previous UART-based applications using Grace. We first redo
the application given in Listing 12.6 in C language. For this application, we generate an
empty Grace project. Then we enable the USCI_A block. We select the UART option from
the selection window in the basic user mode. We set the baud rate to 9600 bps from the

drop-down list. The main.c file of the Grace project will be as in Listing 12.8 for this
application. As we debug and run the program, the “Hello World” string will be
transmitted from the MSP430 to the host computer. Do not forget to use the terminal
program to see the string in the host computer.

Listing 12.8 The main.c file of the UART “Hello World” application, under Grace.

‘,.I’*
* ======== Standard MSP430 includes ========
*f

#include <msp430.h=

‘,.I’*
* ======== (@race related includes ========
*f

#include <ti/mcu/msp430/Grace.h=

‘,.-’*
* ======== main s=s=s=====
*/f

const char string[] = {"Hello World"};

unsigned int i=0;

int main(wvoid)
{

Grace_init();
//Activate Grace-generated configuration

while(string[i] != 0){
while (! (IFG2&UCAOQOTXIFG)):
UCAOTXBUF = string[i++];

}

while(1l);
return(0);

}

In the second example, we redo the application given in Listing 12.7, now in C
language. We first generate an empty Grace project for this application. Then we enable
the USCI_A block. We select the UART option from the selection window in the basic
user mode. We set the baud rate to 9600 bps from the drop-down list. We also enable the
receive interrupt by checking its box. We set the clock to 1 MHz under the BCM+ module.
We also set P1.0 and P1.6 as output (both initially turned off) from the GPIO block. For
this application, we do not add any codes to the main.c file of the Grace project. The
USCI_A ISR under InterruptVectors_init.c will be as in Listing 12.9. As we debug and run
the program, we can control the red and green LEDs by the keyboard entries of the host

computer. Do not forget to use the terminal program in the host computer for this
application.

Listing 12.9 The ISR of the UART LED control application, under Grace.

#pragma vector=USCIABORX_VECTOR

__interrupt woid USCIORX.ISR_HOOK (veoid)

{
if (UCAORXBUF == 'r') P1lOUT = BITO;
else if (UCAORXBUF == 'g') P1lOUT = BIT6;
else P1OUT = 0x00:

}

12.4 Serial Peripheral Interface

SPI is a synchronous communication mode. It can be used between multiple masters and
one slave. It can also be used for one master and one or more slaves. As in the UART
mode, in this chapter we will only focus on the SPI mode between one master and slave. A
block diagram of the SPI mode is given in Fig. 12.12. SPI is the only communication
mode available in both USCI_AO and USCI_BO modules. Therefore, the character x is
used in register or variable names to indicate that the same register can be used for
USCI_AO or USCI_BO.

Set

* UCxORXIFG
> RX State Machine
= Set
LUCOE
? UCxS0OMI
o[> RX Shift Register ;
UCMSB UCTBIT yeckpH ucckpL
UCSSELx |- -| =
3 T Bit Clock Generator Clock
NAA| S~ ; ;

QCLEGG UCxBRx Direction,

s L — Phase |® S
SMCLEK 16 e
SMCLEK| Ltf" BRCLK escaler/Divider Bilaniy

UCMSE UCTBIT —T®
[2 TX Shift Register C—D?—@
7 UCI“"'IE’DEK UCxSIMO
UCXOTXBUF - -
x Transmit UCEKSTE
Enable .t
Control | -
L TX State Machine - ~/ UCFE
- e
UCxOTXIFG

Figure 12.12 Block diagram of the SPI mode.

As can be seen in Fig. 12.12, the SPI mode has four pins for communication. These
pins are slave in master out (UCxSIMO), master in slave out (UCxSOMI), SPI clock
(UCxCLK), and slave transmit enable (UCXSTE). UCxSIMO and UCx-SOMI pins are
used for data transmission. UCXSIMO is the data output line and UCxSOMI is the data
input line for the master device. UCXSIMO is the data input line and UCxSOMI is the data
output line for the slave device. UCxCLK is the SPI clock generated by the master device.
It ensures synchronization between the master and slave devices. UCXSTE is used to
enable the chosen master in the multiple master mode or chosen slave in the multiple slave
mode. When this pin is used, the SPI mode is called four pin. In single master and slave
mode, some slave devices need this pin to start or end the SPI communication. Therefore,
four-pin SPI is a necessity for them. If the SPI communication is established between one
master and slave (and UCXSTE is not needed), then UCXxSIMO, UCxSOMI, and UCxCLK
pins will be enough. The UCXSTE pin can be connected to the ground in this setting. This
SPI mode is called three pin.

The SPI mode is configured by the USCI_x0 Control Register 0 (UCx0CTLO0) and
USCI_x0 Control Register 1 (UCx0CTL1). As a reminder, the UCAOCTLO and
UCAOCTL1 registers are also used in the UART mode. Here they are used for SPI with
different entries. The reader should be aware of this overlap. The UCxOCTLO and
UCx0CTL1 register entries are given in Tables 12.13 and 12.15.

Table 12.13 USCI_xO0 control register 0 (UCx0CTLO).

Bits 7 6 5 4 3 2-1 0

UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC

Table 12.14 SPI clock modes.

Mode UCCKPL UCCKPH

0
0
1
1

L = D
o e D

Table 12.15 USCI_xO0 control register 1 (UCx0CTL1).

Bits 7-6 5-1 0

UCSS5ELx Unused UCSWRST

In Table 12.13, UCCKPH and UCCKPL bits are used together to adjust the SPI
clock modes. The UCCKPL bit is used to set the clock polarity. When this bit is reset, the
clock is kept low in the idle state. When it is set, the clock is kept high in the idle state.
The UCCKPL bit does not affect the transmission format. The UCCKPH bit, on the other
hand, has a direct effect on the transmission format. When this bit is reset, data is sent on
the first clock edge and read on the next edge. When it is set, data is read on the first clock
edge and sent on the next edge. UCCKPL and UCCKPH bits must be same for both
master and slave devices to set up an SPI communication between them. The clock modes
for the SPI are shown in Table 12.14. Here, modes O and 3 are the most commonly used
ones. In these, data is read on the rising edge and sent on the falling edge of the clock.
Mode 0 needs the UCXSTE pin. Therefore, it is preferred in the four-pin SPI mode. Unlike
mode 0, mode 3 does not need the UCXSTE pin. Therefore, it is used in the three-pin SPI
mode.

The UCMSB bit in Table 12.13 is used to choose the start bit for the data transfer. If
this bit is reset, the transmission starts from the LSB. If it is set, the transmission starts
from the MSB. The UC7BIT bit is used to select the data length. When this bit is reset,
the data length is taken as 8 bits. When it is set, the data length is taken as 7 bits. The
UCMST bit is used to decide on the usage type of the device. When this bit is reset, the
device is used as a slave. When the bit is set, it is used as a master. UCMODEXx bits are
used to select the synchronization mode. Constants for these bits are as follows:
UCMODE_0 (three-pin SPI mode), UCMODE_1 (four-pin SPI mode with UCxSTE
active high), UCMODE_2 (four-pin SPI mode with UCxXSTE active low), and
UCMODE_3 (I°C mode). Finally, the UCSYNC bit is used to select the communication
mode. When this bit is reset, asynchronous mode is selected. When it is set, synchronous
mode is selected. Therefore, this bit must be set for the SPI mode.

In Table 12.15, UCSSELX bits are used to select the SPI clock source. Constants for
these bits are UCSSEL_0 (not available), UCSSEL_1 (for ACLK), and UCSSEL._2, and
UCSSEL._3 (for SMCLK). After the clock source is selected, it can be divided by the 16-
bit coefficient UCBRXx as explained in Sec. 12.1.2. The SPI mode does not use modulation
for clock generation. Therefore, the UCAOMCTL register must be cleared when the
USCI_AO module is used for the SPI mode. The UCSWRST bit is used to reset the USCI
module. When this bit is set, the USCI module is reset. When it is reset, the USCI module
will be ready for operation.

The SPI mode also has a status register called UCx0STAT. It is specifically used to
observe the changes in the system. The entries of this register are given in Table 12.16. In
this table, the UCLISTEN bit is used to generate an internal loop between the transmitter
and receiver on the same device. When this bit is set, the loopback is enabled. When it is
reset, the loopback is disabled. The UCFE bit is the framing error flag. This bit is set
when a bus conflict occurs in the four-pin SPI mode. It is not used in the three-pin SPI
mode. The UCOE bit is the overrun error flag. This bit is set when a new character is sent
to the receive buffer register (UCxORXBUF) before the previous one is read. This bit is
cleared automatically when the UCXORXBUF is read. Therefore, the user should not try to
clear it by software. The UCBUSY bit shows whether the USCI module is in process or
not. This bit is set when the transmit or receive operation is performed. It is reset when the
system is inactive.

Table 12.16 USCI_xO status register (UCx0STAT).

Bits 7 6 5 4 -1 0

UCLISTEN UCFE UCOE Unused UCBUSY

12.4.1 SPI Transmit/Receive Operations

Transmission and reception must be carried out simultaneously in the SPI mode.
Therefore, data must be received from the slave or transmitted from the master (or vice
versa) even if it is completely redundant. Next, we provide transmit/receive operations for
the master and slave modes separately.

Master Mode

One transmit-receive cycle for the SPI master mode is as follows: The USCI module is
enabled. Transfer starts when data is written to the UCX0TXBUF. Then, data is transferred
to the transfer shift register from the UCXOTXBUF. UCx0TXIFG is set to indicate that the
UCx0TXBUF is ready to accept new data. Data in the transfer shift register is sent to the
UCxSIMO pin starting with MSB or LSB order (based on the UCMSB bit setting).
Meanwhile, the received data is kept waiting at the UCxSOMI pin until the next clock
edge. Data in the UCxSOMI pin is moved to the receive shift register with the next clock
edge. Then data is transferred to the UCXORXBUF from the receive shift register. This
operation is repeated until the 7 or 8 bits (depending on the setting of the UC7BIT) are
transferred. As the transfer is completed, the UCXORXIFG bit is set to indicate that the
transmit-receive cycle is completed.

As mentioned before, four-pin SPI master mode is extensively used for the
multimaster SPI communication. Here, the desired master is set active by the UCMODEXx
and UCXSTE bits. When a master is set inactive, UCxSIMO and UCxCLK pins are
reconfigured as input. Receive-transmit operations are reset. Any ongoing shift operation
is terminated. The UCFE bit is set to show that bus conflict on the system is handled by
the user. If there is no ongoing shift operation when the master is set inactive, data in the
UCxO0TXBUF is transmitted after the master is set active again. But if there is a
transmission in process when the master is set inactive, this data is lost and must be
rewritten to the UCx0TXBUF.

Slave Mode

One transmit-receive cycle for the slave mode is as follows: The UCxCLK supplied by the
master is used to start the data transfer. Before this clock is enabled, data is transferred to
the transmit shift register from UCxOTXBUF. UCx0TXIFG is also set to indicate that
UCx0TXBUF is ready to accept new data. Data in the transmit shift register is sent to the
UCxSOMI pin starting with MSB or LSB order (based on the UCMSB bit setting). This
data waits until the clock is activated. Data kept in the UCXxSOMI pin is sent to output as
the clock is activated. Meanwhile, the received data is kept waiting at the UCxSIMO pin
until the next clock edge. Data in the UCXSIMO pin is moved to the receive shift register
with the next clock edge. Then, data is transferred to the UCXORXBUF from the receive
shift register. This operation is repeated until the 7 or 8 bits (depending on the setting of
the UC7BIT) are transferred. As the transfer is completed, the UCXORXIFG bit is set to
indicate that the transmit-receive cycle is completed.

Four-pin SPI slave mode is used for multislave SPI communication. Here, the desired
slave is set active by the UCMODEXx and UCXSTE bits. When a slave is set inactive, its
UCxSOMI pin is reconfigured as input. Any receive operation in progress in the
UCxSIMO pin is stopped. Until the slave is set active by reconfiguring the UCXSTE bit,
ongoing shift operations are also stopped.

The four-pin SPI also provides an option to disable the slave in a single master slave
setup. To do so, we should have a connection between a digital I/O pin of the master to the
STE pin of the slave device. Then we can set/reset the digital I/O pin to enable/disable the
slave device. We provide such an example in Sec. 12.4.3.

12.4.2 SPI Interrupts

The SPI mode shares the same interrupt vectors with the UART mode for the transmission
and reception operations. As a reminder, for the transmitter the interrupt vector is
USCIABOTX VECTOR. For the receiver, the interrupt vector is
USCIABORX_VECTOR. Also, the SPI interrupt-related registers are the same as the
UART ones. These are the interrupt enable register 2 (IE2) and interrupt flag register 2
(IFG2) given in Tables 12.3 and 12.4.

The interrupt operations for the transmitter and the receiver are similar in the SPI
mode. More specifically, the interrupt-based communication operation works as follows:
Initially, the UCX0TXIE and UCxORXIE bits should be set in the master and slave devices
to enable transmission and reception interrupts. These two interrupts are maskable.
Therefore, the GIE bit must also be set in both devices. In the transmitter, an interrupt is
requested when the UCAOTXBUF is ready for another character. Then the UCAOTXIFG
is set. This flag is automatically cleared when a new character is written to the
UCAOTXBUEF. In the receiver, an interrupt is requested when a character is loaded to the
UCAORXBUF. Then the UCAORXIFG is set. This flag is automatically cleared when the
data in UCAORXBUF is read.

12.4.3 Coding Practices for the SPI Mode

In this section, we provide sample C and assembly codes on the SPI communication
mode. The problems mentioned for the UART mode are also applicable here. Therefore,
please see Sec. 12.2.4 first.

SPIin C

In Listing 12.10, the loopback property of the SPI mode is used. The connection diagram
for this application is given in Fig. 12.13. Here, the green LED on the MSP430 LaunchPad
is toggled by the button connected to pin P1.3. However, the loopback property is used
such that the toggle command is sent and received within the microcontroller.

Listing 12.10 The SPI loopback application, in C language.

#include <msp430.h=
int Data = 0:

void main(veid)

{

WDTCTL = WDTPW|WDTHDLD;
P1DIR |= BIT6; //Adjust pins
P1lOUT = 0x00:
P15EL = BITl|BIT2;

P1SEL2Z2 = BITl|BIT2;
P1IE |= 0x08;

P1IES |= 0x08;

PL1IFG = 0x00;

UCAQCTL1 |= UCSWRST; //Setup the SPI mode
//Enable SW reset

UCAOCTLO |= UCCKPL | UCMSB | UCMST | UCSYNC;
fiClock Mode 3, MSBE first, B-bit SPI master,
//three pin mode

UCAQCTL] = UCSSEL_2|UCSWRST;

S /Use SMCLK, keep SW reset

UCAQBRO |= 0x02;

//Lbow bit of UCBRx is 2

UCAOBRL = 0;
S /High bit of UCBRx is zero,

FSF/ESCL = SMCLK/2 = ~600kH=z

UCAOMCTL = 0;
F#/No modulation

UCAOSTAT |= UCLISTEN;

//Enable internal loopback

UCAOCTL1 &= “UCSWRST;

fiClear SW reset, resume operation

IE2 |= UCAORXIE;

//Enable USCIQ RX interrupt

-enable_interrupts();

LPM4 ;

I

FAUSCTI A transmitter interrupt

#pragma vector=USCIABOTX_VECTOR

_-interrupt wveoid USCIAOTX_ISR(veoid)|
UCAOTXBUF = Data;

//Load the TX buffer with integer value
IE2 &= TUCAOTXIE;

S/Disable transmit interrupt

I

AAU8CT A receiver interrupt
#¥pragma vector=USCIABORX_VECTOR

--interrupt weid USCIAORX_ISR(wvoid)|
PlOUT = UCAORXBUF;

FiWrite received data to P1OUT

I

#pragma vector=PORT1_VECTOR
--interrupt weid Port.l(wveid)|
Data "= 0x40;

FiToggle data value

IE2 |= UCAQTXIE;

//Enable transmit interrupt
PlIFG = 0x00;

f/Clear interrupt flags

}

SIMO and SOMI

internally by
software

are connected L

Ve

10kQS

100 nFI

GND

Vee GND

F1.0 XIN——-o
F1.1 XOoUT——-
P1.2 _ TEST——
P1.3 “_::‘;f' RST——
P1.4 G2553 P1.7—
P1.5 Pl.6

P2.0 P25——
P2.1 P24——
P22 P23 LA

Onboard
Green LED

Figure 12.13 The connection diagram for the SPI loopback application.

In Listings 12.11 and 12.12, the four-pin SPI mode is used to establish a digital
communication between two MSP430 LaunchPads. The connection diagram for this
application is given in Fig. 12.14. The C code for the master device (used as transmitter) is
given in Listing 12.11. The C code for the slave device (used as receiver) is given in
Listing 12.12. In this application, when the button connected to pin P1.3 of the master
device is pressed, it sends the next PWM constant from the TXData array to control the
brightness of the green LED on the receiver. The connection between pin P1.5 of the
master device and the RST pin of the slave device is used for resetting the slave before the

communication starts.

Listing 12.11 The SPI PWM application in four-pin mode, the master transmitter code in

C language.

#include =msp430.h=

#define SlaveActive (P1lOUT &= ~0x01)
#define Slavelnactive (PlOUT |= 0x01)
//Define outputs to activate

//or deactivate the slave

unsigned int *PTXData = 0;

unsigned int TXData[] = {0x0000, OxO00FA, 0x01F4,\
0x02EE, DXD3E8}; S /TACCR] values to be transmitted
int Receive = 0;

int cntr = 0;

unsigned int High = 0, Low = 0;

unsigned int TXByteCtr;

void main(wvoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR |= BITOQ|BITS; //Adjust pins
SA0utputs teo enable and reset the slave
P1OUT |= 0x01;

f/8lave ig initially inactive
P1SEL = BITI1|BITZ|BIT4;

P1SELZ2 = BITI1|BITZ|BIT4;

P1IE |= 0Ox08;

P1IES |= Ox08;

P1IFG = (x00;

UCAOCTL]1 |= UCSWRST; //Setup the SPI mode
//Enable SW reset

UCAQCTLO |= UCCKPH | UCMSB | UCMST | UCSYNC;
FiClock Mode 00, MSB first, 8-bit SPI master,
S ithrea pin mode

UCAQCTL1 = UCSSEL_Z | UCSWRST;

S /Use SMCLK, keep SW reset

UCAOBRO |= 0x02;

//Low bit of CBRx iz 2

UCAOBR1 = 0;

f/High bit of UCBRx is zero,

FAESCL = SMCLE/2 = ~600kHz

UCAOMCTL = 0
J/No modulation

UCADCTL1 &= T“UCSWRST:
S /Clear SW reset, resume coperation

PTXData = TXData;
S /Egquate TXData array’'s start address

Ffto PTXData

IE2 |= UCAORXIE; //Enable USCIO RX interrupt

PlOUT &= "BITS; //Reset SPI slave
P1OUT |= BITS;

-enable_interrupts();

while(l){

TEByteCtr = 2; //Load TX byte counter with two bytes
LPMO;

S/Enter LEMO (until two byte SPI communication

S/iis done)

I

I

J/5PI master transmit interrupt service routine
#pragma vector=USCIABOTX_VECTOR

--interrupt woid USCIAOTX.ISR({wveoid)|

if (TXByteCtr)|

if{(TXByteCtr%2) == 0)[High = *PTXData;

S/Write the incoming array element to high integer

UCAOTXBUF = (High>>8);
//Shift the high byte of High integer then
//load the TX buffer with it

|

if((TXByteCtrs2) == 1)|

Low = *PTXData++;
J/Write the incoming array element to low
J/integer, then increase PTXData

UCAOQOTXBUF = Low;
//Load the TX buffer with low byte of array element
cntr++:

}
TXByteCtr—-;

}

else|

if(cntr == 5){

PTXData = TXData;

cntr = 0;
//1E cntr eguals to 5, return to array start address
//and reset cntr

|
IE2 &= "UCAOTXIE; //Disable the TX interrupt

H

//SPI master receive interrupt service routine
#pragma vector=USCIABORX.VECTOR
--interrupt wvoid USCIAQORX ISR(wveid)|
Receive = UCAORXBUF; //Recelive data from slave
if(TXByteCtr == 0)|
LEMO_EXIT;
SlaveInactive:
}
}
#pragma vector=PORT1.VECTOR
--interrupt wvoid Port.l(veid){
SlaveActive;
IE2 |= UCAOTXIE; //Enable TX interrupt
P1IFG = 0x00;

}

Listing 12.12 The SPI PWM application in four-pin mode, the slave receiver code in C
language.

#include <msp430.h=>

unsigned int RXData;
unsigned int RXByteCtr=0;
int Null=0x00;

void main(veid)

{

WDTCTL=WDTPW|WDTHOLD;

P1DIR |= BIT6; //Adjust pins
P1SEL = BIT1|BIT2|BIT4|BITS|BITG;
P1SEL2 = BIT1|BIT2|BIT4|BITS;

UCAOCTL1 |= UCSWRST; //Setur the SPI mode
//Enabla SW reset

UCAOCTLO |= UCCKPH | UCMSB | UCSYNC | UCMODE. Z2;
FiClock Mode 0, MSB first, 8-bit SPI slave,
A/four pin moede (STE active low)

UCAQCTL1 &= “UCSWRST;

F/Clear SW reset, resume operation

IE2 |= UCAORXIE | UCAOTXIE;

S /Enable UsSCI0 RX and TX interrupts

TACCR1 = 0; //Setup the DWM
TACCRO = 999;

TACCTL1 = QUTMOD_7;

TACTL = TASSEL.2 | MC.1 | ID.3;

-enable_interrupts();

while(1l)
LPMO;

|

//SPI slave transmit interrupt

#pragma vector=USCIABOTX_VECTOR

--interrupt weid USCIOTX.ISR (veid)|

UCAOTXBUF = Null; //Send null byte

IEZ &= “UCAOTXIE; //Disable the TX interrupt

i

//8PI slave receive interrupt

#pragma vector=USCIABORX_VECTOR
_.interrupt weoid USCIORX.ISR (wvoid}|

if((RXByteCtri2)==0){

RXData=UCAORXBUF ;

/ /Move received data (high byte) to low byte of RXData
RXData=({RXData<<8);

A/8hift low byte of RXData to high byte

}

elses|

RXData|=UCRORXBUF;

S /Move received data (low byte) to low byte of RXData
TACCRl=RXData;

}

RXByteCtr++;

if (RXByteCtr==2) RXByteCtr=0;

IEZ |= UCAOTXIE; //Enable TX interrupt

1 20 | e 20
—A Ve GND oC GND —l
Pl.O XINp— —P1.O XINp—
P1.1 XouT P1.1 XOUT——
P1.2 MSPE TEST Pl1.2 AMSP TEST——
v F1.3 430 RSTH— —P1.3 430 RST
oc 1255 1255
T PL4 G255 p1y P14 [:’3--3 P1.7—
(Transmitter) { Receiver)
- 5 H— 5 i
Il]l».'!.l;? Fl Pl.6 Pl Pl.6
= P20 P2.5}— —{P2.0 P2.5}—
P2.1 P24— —P2.1 P24——
P2.2 P"E._TrL LPE..'-_’ E.EL
100 nF
Onboard
Green LED

GND

Figure 12.14 The connection diagram for the SPI PWM application in four-pin mode.

In Listings 12.13 and 12.14, the SPI PWM application is implemented in three-pin
mode. Therefore, the previous application is redone. The connection diagram for this
application is given in Fig. 12.15. The C code for the master device (used as transmitter) is
given in Listing 12.13. The C code for the slave device (used as receiver) is given in

Listing 12.14.

Listing 12.13 The SPI PWM application in three-pin mode, the master transmitter code

in C language.

#include <msp430.h>

unsigned int *PTXData 0;

unsigned int TXData[] = {0x0000, Ox00FA, O0x01F4,\
O0x02EE, Ox03E8); //TACCR1 values to be transmitted
int Receive = 0:

int cntr = 0;

unsigned int High = 0, Low = 0;

unsigned int TXByteCtr;

void main(veid)

{
WDTCTL = WDTPW|WDTHOLD;

P1DIR |= BITS; //Adjust pins
Pl1OUT = 0x00;

P1SEL = BIT1|BITZ|BIT4;

P1SEL2 = BIT1|BIT2|BIT4;

P1lIE |= 0x08;

P1IES |= 0x08;

P1IFG = 0x00;

UCAOCTL1 |= UCSWRST; //Setup the SPI mode
//Enable SW reset

UCAOCTLO |= UCCKPL | UCMSB | UCMST | UCSYNC;
//Clock Mode 3, MSB first, 8-bit SPI master,
//three pin mode

UCAOCTL1 = UCSSEL_2 | UCSWRST;
//Use SMCLE, keep SW reset

UCAOBRO |= 0x02;
//Low bit of UCBRx is 2

UCAODBRL = 0;
//High bit of UCBRx is zero,
//ESCL = SMCLK/2 = “600kHz

UCAOMCTL = 0;
S /No modulation

UCAQOCTL]1 &= "“UCSWRST:
//Clear SW reset, resume operation

PTXData = TXData;
//Bgquate TXData array’s start address to PTXData
IEZ2 |= UCAORXIE;

S /Enable USCI0 RX interrupt

P1OUT &= "BITS5: //Reset SPI slave
P1OUT |= BITS:;

-enable_interrupts();

while(l}]|

TiByteCtr = 2; //Load TX byte counter with two bytes
LPMO;

S /Enter LPM0 (until two byte SPI communication

S i1is done)

|
}

F/8PI master transmit interrupt
#pragma vector=USCIABOTX_VECTOR
--interrupt wvoid USCIAQTX.ISR(wvoid)|

if (TXByteCtr)|

if((TXByteCtri2) == 0)|

High = *PTXData;

SiWrite the incoming array element to high integer
UCAQTXBUF = (High==8);

S /8hift the high byte of High integer then leoad TX
S/buffer with this

|

if((THByteCtrs2) == 1)

Low = *PTXData++;

S/Write the incoming array element to low integer,
//then increase PTXData

UCAQTXBUF = Low;

cntr++;

|

TXByteCtr--;

|

else|

if(cntr == 5}

PTXData = TXData;

cntr = 0;

A/IE entr eguals to 5, return to array start address
JSsand reset cntr

}

IE2 &= "“UCAOTXIE; //Disable TX interrupt

|

I

S /8PI master receive Interrupt

#pragma vector=USCIABORX_VECTOR

--interrupt wveid USCIAORX_ISR(woid)|

Receive = UCAORXBUF; //Receive data from slave
if (TXByteCtr == 0)LPMO_EXIT;

I
#pragma vector=PORT1.VECTOR

--interrupt wveoid Port-1(wvoid)|
IE2 |= UCAOTXIE; //Enable TX interrupt
P1lIFG = 0x00;

}

Listing 12.14 The SPI PWM application in three-pin mode, the slave receiver code in C
language.

#include <msp430.h=

unsigned int RXData;
unsigned int RXByteCtr = 0;
int Null = 0x00;

void main(wveoid)

{
WDTCTL = WDTPW|WDTHOLD;

PIDIR |= BIT6; //Adjust pins
P1SEL = BIT1|BIT2|BIT4|BIT6;
P1SELZ2 = BITHBITEEIT4;

UCAQOCTL1 |= UCSWRST; //Setup the SPI mode
//Enable SW reset

UCAOCTLO |= UCCKPL | UCMSB | UCSYNC;
S /Clock Mode 3, MSE first, 8-bit SPI slave,
//three pin mode

UCAOCTL]1 &= “UCSWRST;
//Clear SW reset, resume operation

IE2 |= UCAORXIE | UCAOTXIE;
//Enable USCI0 RX and TX interrupts

TACCR1 = 0; //Setup the PWM
TACCRO = 999;

TACCTL1 = QUTMOD.7;

TACTL = TASSEL.-2|MC-1|ID-3;

-enable_interrupts();

while (1){

RXByteCtr=0;

LPMO;

//Enter LPMO and wait until transmit
//or receive interrupts occur

}
}

//SPI slave transmit interrupt
#ipragma vector=USCIABOTX.VECTOR
--interrupt wveoid USCIOTX_ISR (wvoid)|
UCAOTXBUF = Null:
IE2 &= "UCAOTXIE; //Disable TX interrupt

}

//8PI slave receive interrupt

#pragma vector=USCIABORX_VECTOR
__interrupt wvoid USCIORX.ISR (woid){

if ((RXByteCtr%2) == 0){

R¥XData = UCAQORXBUF;

//Move received data (high byte) to
J/1low byte of RXData

RXData = (RXData<=<=8);

//8hift low byte of RXData to high byte
}

elsef

RXData |= UCAORXBUF;

//Move received data (low byte) to low byte of RXData
TACCR1 = RXData:;

S /Move RXData to TACCRI

LPMO_EXIT;

}

BEXByteCtr++;
IE2 |= UCAOTXIE; //Enable TX interrupt

}

o v GND| 22 ! Voo GND[22
—1IP10 XINE— —PLOD XIMNE——
Pl.1 XouT Pl.1 XouT ——
Pl1.2 MSP TEST P1.2 MSP TEST——
“ P1.3 430 RST— ——P1.3 430 RST
s, P14 G2553 p17 Pl4 G255 PL7—
P15 {Transmitter) PL6G P15 {Receiver) P16
10 kL2
—P20 P2.5— —P2.0 P25—
—iP2.1 P2.4}— — P21 P24}—
181pay P23l 10p2s P23l
100 nF
Omboard
GND Green LED

Figure 12.15 The connection diagram for the SPI PWM application in three-pin mode.

SPI in Assembly

The assembly codes, given in Listings 12.15 and 12.16, perform the same operation done
in Listings 12.11 and 12.12. The connection diagram for this application is also the same
as that given in Fig. 12.14. The assembly code for the master device (used as transmitter)
is given in Listing 12.15. The assembly code for the slave device (used as receiver) is

given in Listing 12.16.

Listing 12.15 The SPI PWM application in four-pin mode, the master transmitter code in
assembly language.

.cdecls C,LIST,"msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END,SP

: These five values are to be sent
mov.w #0000h, &0200h
mov.w #00FAh, &0202h
mov.w #01F4h,&0204h
mov.w #02EEh, &0206h
mov.w #03E8h,&0208h

bis.b #21h,P1DIR ;Adjust pins
bis.b #01h,P10UT

bis.b #16h,P1S5EL

bis.b #16h,P1SEL2

bis.b #08h,PlIE

bis.b #08h,P1IES

celr.b PlIFG

bis.b #UCSWRST,UCAOCTL1 :Adjust the SPI mode
:Enable 5W reset

bis.b #UCCEPH + UCMSBE + UCMST + UCSYNC,UCAOQOCTLO
:Clock Mode 0, MSE first, 8-bit SPI master,
:four pin mode

mov.b #UCSSEL_2+UCSWRST,UCAQOCTL1

sUse SMCLEK, keep SW reset

mov.b #02h,UCAOBRO :Low bit of UCBRx is 2
mov.b #00h,UCAOBR]l ;High bit of UCBRx is zero,
+£SCL = SMCLK/12 = ~“100kHz

clr.b UCAQOMCTL

:No Modulation

bic.b #UCSWRST,UCAQCTL1

;Clear SW reset, resume operation

bis.b #UCAORXIE,IE2 :;Enable RX interrupt
mov.w #0200h,R5

:Write the start address of TX data into RS
clr R10

;Clear R10 used for checking which element

;is transmitted

bie.b #20h,Pl0OUT :Reset slave
bis.b #20h,P1OUT

bis.w #GIE,SR

Mainloop:
mov.w #2,R7
bis.w #LEMO,SR
jmp Mainloop

tst.w R7 ;Test if R7 is zero

jeq AllBytesTransmitted

;If it is, jump AllBytesTransmitted

bit.w #1h,R7

:Check if R7 is odd

jne OddByte

;If it is, jump OddByte

mov.w ER5,RE8

;Write the incoming array element to RB
swpbk RE

mov.b RE,UCAOTXBUF

;Load TX buffer with high byte of incoming element
OddByte:

cmp.w #1lh,R7 ;Check if R7 is 1

jne DecrementByteNumber

mov.w BRS+,R9

mov.b R%,UCAQOTXBUF

;Load TX buffer with low byte of incoming element
ine.w R10

;Increase R10 to indicate that one element is sent
DecrementByteNumber:

dec.w R7

;Decrease byte number by one

jmp EndIsSR
AllBytesTransmitted:

cmp.Ww #5h,R10

iCheck if all five elements are sent

ine DisableTX

sub.w #10h,R5

;If it is 5, reload PTXData pointer with
;address of the first element

elr R10
DisableTX:

bic.b #UCAOTXIE,IEZ ;Disable TX interrupt
EndISR:

reti

USCIABORX_ISR
:SPI slave receive interrupt service routine
mov.b UCAORXBUF,R6
;Move received data from slave to R6
tst.w R7
:Check if R7 is zero
jne EndISR2
;If it is not, jump EndISR2
bic.w #LPMO,0(SP)
bis.b #01h,Pl0OUT
:Exit LPM0 and deactivate slave
EndISR2:
reti

T o ———— ——— -

bic.b #01h,PlOUT ;Activate slave

bis.b #UCAQTXIE,IEZ ;Enable the TX interrupt
clr.b P1IFG

reti

B o e i — —— —

.global _-_.STACK.END
.5ect .stack

| ——

.5ect RESET._VECTOR
.short RESET

.sect USCIABOTX_VECTOR
.short USCIABOTH_ISR
.8ect USCIABORX_VECTOR
.short USCIABORX_ISR

. 5ect PORT1-VECTCOR
.short P1l_ISR

. end

Listing 12.16 The SPI PWM application in four-pin mode, the slave receiver code in
assembly language.

.cdecls C,LIST,"msp430.h"

text
.retain
.retainrefs

RESET

mov.w #WDTPW|WDTHOLD ,WDTCTL
mov.w #..STACE.END,SP

bise.b #40h,P1DIR ;Adjust pins
bis.b #076h,P1SEL
bis.b #036h,P1SELZ

bis.b #UCSWRST,UCAQCTL]1 ;Adjust the SPI mode
:Enable SW reset

mov.b #UCCEFH + UCMSE + UCSYNC + UCMODE_2,UCAQCTLO
jClock Mode 0, MSB first, B8-bit SPI slave,

jfour pin mode (STE active low)

bie.b #UCSWRST,UCAOCTL1

jClear SW reset, resume operation

bis.bh #UCAORXIE + UCAOQOTXIE,IEZ2

:Enable USCIO RX and TX interrupts

clr.w TACCR1 ;Adjust the PWM
mov.W #03ETh, TACCRO

mov.w #OUTMOD_7, TACCTLI

mov.w #TASSEL 2+MC_1+ID_3, TACTL

elr.w R7
;jClear R7 used for counting the received byte

bis.w #GIE,SR

Mainloop:
elr.w R7
bis.w #LPMD,SR
jmp Mainloop

USCIABOTX_ISR
;SPI slave transmit interrupt service routine

mov.b #0h,UCAOTXEBUF ;Send Null character
bic.b #UCAOTXIE,IE2 ;Disable TX interrupt
rati

bit.w #1h,R7 ;Check if R7 is odd

jne OddByte

sIf it is, jump OddByte

mov.b UCAORXBUF,RB

jMove the received data (low byte) to low byte of RE
jmp IncrementByteNumber
OddByte:

mov.b UCAORXBUF,R9

jMove the received data (low byte) to R9
swpb RB

and.w #0F00h,R8

;And RB with 0x0F00; for the high byte
snumbers are located in these four bits

bis.w R8,R9 ;0r R8 and R9
mov.w R9,TACCR1
;Move the received two byte data to TACCR1
bic.w #LPMO,0(SP)
;Exit from LPMO
IncrementByteNumber:
ine.w R7 ;Increase byte number by one
bis.b #UCAOTXIE,IE2 ;Enable TX interrupt
reti

.global __STACK_END
.sect .stack

. 3ect RESET_VECTOR
.short RESET

.3ect USCIABOTX VECTOR
.short USCIABOTX_ISR
.5ect USCIABORX . VECTOR
.short USCIABORX_ISR
.end

The assembly codes, given in Listings 12.17 and 12.18, perform the same operation
done in Listings 12.13 and 12.14. The connection diagram for this application is also the
same as that given in Fig. 12.15. The assembly code for the master device (used as
transmitter) is given in Listing 12.17. The assembly code for the slave device (used as
receiver) is given in Listing 12.18.

Listing 12.17 The SPI PWM application in three-pin mode, the master transmitter code
in assembly language.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END, SP

;: These five values are to be sent
mov.w #0000h,&0200h
mov.w #00FAh,&0202h

mov.w #01F4h,&0204h
mov.w #02EEh,&0206h
mov.w #03EBh,&0208h

bis.b #20h,P1DIR

bia.b #16h,P1SEL ;Adjust pins
bis.b #16h,P1SEL2

bis.b #08h,P1IE

bis.b #08h,P1IES

elr.b P1IFG

bis.b #UCSWRST,UCAOCTL1 ;Adjust the SPI mode
;jEnable SW reset

bis.b #UCCEPL + UCMSB + UCMST + UCSYNC,UCAQCTLO
iClock Mode 3, MSB first, B-bit SPI master
jthree pin mode

mov.b #UCSSEL.2+UCSWRST, UCAQCTLI]

jUse SMCLEK, keep SW reset

mov.b #02h,UCAOBRO ;Low bit of UCBRx is 2
mov.b #00h,UCAOBR1 ;High bit of UCBRx is zero
;£5CL = SMCLE/12 = “100kHz

elr.b UCAOMCTL

jHo Modulation

bie.b #UCSWRST,UCAOCTLL

jClear SW reset, resume operation

bis.b #UCAORXIE,IE2 ;Enable RX interrupt
mov.w #0200h,R5

; Write the start address of TX data to RS

clr R10O

iClear R10 used for checking which element

;is transmitted

bie.b #20h,P1OUT ;Reset I2C slave
bia.b #20h,PlOUT

bis.w #GIE,SR

Mainloop:
mov.w #2h,R7 ;Load R7 with two bytes
bis.w #LPMO,SR
jmp Mainloop

USCIABOTE_ISR

;5PI master transmit interrupt service routine
tast.w R7 ;Test if R7 is zero

jeg AllBytesTransmitted

;If it is, jump to AllBytesTransmitted

bit.w #1h,R7 :Check if R7 iz odd

jne OddByte

1If it is, jump to OddByte

mov.w #@R5,RE8

iWrite the incoming array element to RE8

swpb RS

mov.b RE8,UCAOTXBUF

;Load TX buffer with high byte of incoming element
OddByte:

cmp.w #1h,R7 ;Check if R7 is 1

jne DecrementByteNumber

mov.w ERS5+,R9

mov.b R9,UCAOTXBUF

;Load TX buffer with the low byte of the incoming

;selement
ine.w R10
;Increase R10 to indicate that one element is sent
DecrementByteNumber:
dec.w R7
;Decrease byte number by one
jmp EndISR
AllBytesTransmitted:

cmp.w #5h,R10 ;Check if all five elements are sent
jne DisableTX
sub.w #10h,R5
;If it is 5, reload PTXData pointer with
;jaddress of the first element
elr R10 ;Clear R10
DisableTX:
bic.b #UCAOTXIE,IE2 ;Disable TX interrupt
EndISR:
reti

USCIABORX_ISR
;SPI slave receive interrupt service routine
mov.b UCAORXBUF,R6
iMove the received data from slave to Ré
tet.w R7 ;Check if R7 is zero
jne EndISrR2 ;If it is not, jump to EndISR2
bic.w #LPM0,0(SP) ;Exit LPMO
EndISR2:
reti

bis.b #UCAOTXIE,IE2Z ;Enable TX interrupt
clr.b P1IFG
reti

;Stack Pointer definition

.global __STACK_END

.sect RESET_VECTOR
.short RESET

.sect USCIABOTX_VECTOR
.short USCIABOTX_ISE
.sect USCIABORX_VECTOR
.short USCIABORX_ISE
.sect PORT1_VECTOR
.short P1_ISR

.end

Listing 12.18 The SPI PWM application in three-pin mode, the slave receiver code in
assembly language.

.cdecls C,LIST, “msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

bis.b #40h,P1DIR ;Adjust pins
bis.b #056h,P1SEL
bis.b #016h,P1SEL2

bis.b #UCSWRST,UCAOCTL]1 ;Adjust the SPI mode
:Enable SW reset

mov.b #UCCKPL + UCMSB + UCSYNC,UCAOCTLO
;Clock Mode 3, MSB first, 8-bit SPI slave,
;three pin mode

bic.b #UCSWRST,UCAOCTL1

;Clear SW reset, resume operation

bis.b #UCAORXIE + UCAOTXIE,IE2

;Enable USCI0 RX and TX interrupts

clr.w TACCR1 ;Adjust the PWM
mov.w #03E7h, TACCRO

mov.w #0UTMOD_7, TACCTL1

mov.w #TASSEL_2+MC_1+ID_3,TACTL

clr.w R7
;Clear R7 used for counting the received byte

bis.w #GIE,SR

Mainloop:
clr.w R7

bie.w #LPMO,SR
jmp Mainloop

mov.b #0h,UCAQOTHBUF ;Send Null character
bic.b #UCAOTXIE,IE2 ;Disable TX interrupt
reti

USCIABORX_ISR
iSPI slave receive interrupt service routine

bit.w #1h,R7 ;Check if R7 is odd
jne OddByte ;If it is, jump OddByte
mov.b UCAORXBUF,RB8
jMove the received data (low byte) to low byte of RSB
jmp IncrementByteNumber
OddByte:
mov.b UCAORXBUF,R9
jMove the received data (low byte) to R9
swpb RSB
and.w #0F00h,R8
;And RB with Ox0F00, high byte
jnumbers are located only these four bits
bis.w R8,R9 ;Or RB and R9
mov.w R9,TACCR1
jMove the received two bytes of data to TACCRI
bic.w #LPMO,0(SP)
jExit from LPMO
IncrementByteNumber:
ine.w R7 ;Increase byte number by one
bis.b #UCAOTXIE,IE2 ;Enable TX interrupt
reti

.global __STACE_END
.8ect .stack

.sect RESET_VECTOR
.short RESET

.sect USCIABOTH VECTOR
.short USCIABOTX_ISR
.sect USCIABORA_VECTOR
.short USCIABORX.ISR
-end

12.5 SPI in Grace

SPI is available in both USCI_AO and USCI_BO blocks under Grace. However, they are
used in the same manner. Therefore, we only provide the SPI mode under the USCI_AOQ
block in this section. We assume that the user clicked the SPI button in the first selection
window for all user modes to be explored below.

12.5.1 The Basic User Mode

The basic user mode for the SPI is given in Fig. 12.16. Here, we can set the device as
master or slave from the drop-down list in the USCI_AO SPI Mode block. We can
configure the SPI pins from the related drop-down lists. We can select the bit rate from the
Bitrate drop-down list. We can also select a custom bit rate value. First, we should select
the Custom option from the drop-down list. Then we can enter the desired bit rate in the
Set Custom box. We can also set the clock phase and polarity values from the related
drop-down lists. We can enable the transmit and receive interrupts by checking the
“USCI_AQO SPI transmit interrupt enable” and “USCI_AOQO SPI receive interrupt enable”
boxes respectively. We can also generate an ISR related to these interrupts using the
associated Generate Interrupt Handler Code button.

Grace (MSP430) * USCI_AO - Basic User Mode

Ohverview Power User Registers

| Return to USCI_AD Mode Selection View J

UCxCLK .

SR ——_>——— UCAOCLK Output OFF m

Clock source set SPI Mode UCxSOMI .

ML LT LML UCAOSOMI Output OFF ~ |
[slavemod +] | ycxsIMO

BRCLK UCADSIMO Output OFF - |

Bitrate=[nisabled v lgr=0us
Set Custom bps
Clock Phase: | Data is change v Clock Polarity: [Inactive state i ~|
Interrupt Enables
USCI_AD SPI transmit interrupt enable l Generate Interrupt Handler Code]
|| USCI_AD SPI receive interrupt enable L ____ G _g_l_'_l_g:fafc__:gn.il:g}_r_ﬂpt Hand_irf.udl: _J

View All Interrupt Handlers

Figure 12.16 The basic user mode for the SPI under Grace.

12.5.2 The Power User Mode

The power user mode for the SPI is given in Fig. 12.17. In addition to the basic user mode,
we can select the three- or four-pin mode from the drop-down list in the USCI_AQ SPI
Mode block. We can also select the bit order (MSB or LSB first) and the character length
using the related drop-down lists.

Grace (MSP430) * USCI_AO - Power User Mode
U'I.remew Basic User Registers

| Return to USCLAO Mode Selection View |

UCxCLK

UCAOCLK Output OFF -]

USCl_AD
Clock source SPI Mode LUCxSOMI

M ——>———{UCAOSOMI Output OFF v |
s

DRERS UCADSIMO Output OFF v/

UCxSTE

M/A

Cycle# 1

—- g}
Bitraie-:[nisabled - tpr =0 us
Set Custom bps

Clock F‘has.e: Clock Polarty:

Interrupt Enables
u USCI_AD SFI transmit interrupt enable | Generate Interrupt Handler Code |

[_| USCI_AD SF1 receive interrupt enable | Generate Interrupt Handler Code |

View All Interrupt Handlers

Figure 12.17 The power user mode for the SPI under Grace.

12.5.3 The Register Controls Mode

Finally, the SPI registers can be adjusted under Grace. The user should select the register
controls mode, as given in Fig. 12.18, for this purpose. As in the UART mode, some
registers are not available here. Some register entries are also read only in this mode.

Grace (MSP430) » USCI_AO - Register Controls

UCAxCTLO, USCI|_Ax Control Reqister 0

7 1 5 4 3 2 1 a

UCCKPH | UOCHPL uCMEs ucram UCMSET UCMODEx UCSYNC

Do |0|0|0 G e

UCAxCTL1, USCI|_Ax Control Register 1

7]] & | 2 1 Q

UCSSELs Urnased "'ESS;""
o
UCAxBRO UCAxBR1
T4 T4
0 0
UCAXSTAT, USCI_Ax Status Register
7 a 5 4 a 2 | a
_JlSJ‘IFEM UCFE UCOE Umumead Unused U mad U UCBUSY
[RAN) A RV [RAN]
UCAXRXBUF UCAXT XBUF
T4 T4
|E2, Interrupt Enable Reaqister 2
T 1 & H | 2 1 a
UCAD A
TAE RHIE
(] (W
IFG2, Interrupt Flag Register 2
T & 5 £ 3 2 | a
uCaD UCAD
THIFG RAIFG
R [N

Figure 12.18 The register controls mode for the SPI under Grace.

12.6 Inter Integrated Circuit

Inter integrated circuit (I2C) is the second synchronous communication mode supported by
the MSP430. It can be used between multiple masters and slaves. The master and slave
devices are represented by address values in I°C. In addition to this, a simple protocol
establishes an effective communication between multiple master and slave devices. A
block diagram of the IC mode is given in Fig. 12.19.

UCA10 UCGCEN Yoo
-4 T f —|:
UCBOI2ZCOA RS

& :“:;;.-

—1> RX Shift Register

ASDA
L
UCBORXBUF - I:

—{> I2C State Machine

GND
UCBOTXBUF Ve
s
®— > TX Shift Register —i scH
yaN R
| | B
UCBOI2CSA

T ——$SCL
UCSLATLO UCMST l— —
UCSSELx —;'_)Q;{ ':

TJ Bit Clock Generator
UCICLK

ACLK |, LB R GND
5.1*»1(11(ﬂ

RN 16
SMCLK] { ‘

| >Prescaler/Divider | —

BRCLK

Figure 12.19 Block diagram of the IC mode.

As can be seen in Fig. 12.19, the I?°C mode has two bidirectional pins for
communication. These are the serial data pin (SDA) and serial clock pin (SCL). These
pins must be connected to the positive supply voltage (V) via pull-up resistors. The pull-
up resistors should be external. Their values should be around 10 k2. Unlike SPI, here the
transmission and reception operations are done on a single line. This saves pins, but it
slows down the communication speed. More information on I2C can be found in [7].

The I2C mode is configured by the USCIBO control register 0 (UCBOCTLO0) and

USCIBO control register 1 (UCBOCTL1). As a reminder, the same registers are also used
in the SPI mode. Here they are used for the I°C with different entries. The reader should be
aware of this overlap. The UCBOCTLO and UCBOCTL1 register entries are given in
Tables 12.17 and 12.18.

Table 12.17 USCI_BO control register 0 (UCBOCTLO).

Bits 7 6 5 4 3 2-1 0

UCA10 UCSLAIO UCMM Unused UCMST UCMODEx UCSYNC

Table 12.18 USCI_BO control register 1 (UCBOCTL1).

Bits 7-6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

In Table 12.17, the UCA10 bit is used to select the own-address length of the device.
When this bit is reset, 7-bit address is used. When it is set, 10-bit address is used. The
UCSLA10 bit is used to set the slave address length similar to the UCA10 bit settings.
The UCMM bit is used to choose the master number. This bit should be reset if there is
only one master in the system. Otherwise, it should be set to indicate that more than one
master device will be used in communication. The UCMST bit is used to decide on
whether the device is master or slave. When this bit is reset, the device will be used as
slave. When it is set, the device will be used as master. The UCMODEXx bits are used to
select the synchronous communication mode. For I°C, they should be set to the constant
UCMODE_3. Finally, the UCSYNC bit is used to choose the communication mode.
When this bit is reset, asynchronous mode is chosen. When it is set, synchronous mode is
chosen. Therefore, this bit must be set for the I?C mode.

In Table 12.18, UCSSELX bits are used to select the I°C clock source. Constants for
these bits are UCSSEL_0 (for UC1CLK), UCSSEL_1 (for ACLK), and UCSSEL_2 and
UCSSEL_3 (for SMCLK). After the clock source is selected, it can be divided by the 16-
bit coefficient UCBRx as in the SPI mode. The UCTR bit is used to select whether the
device is a transmitter or a receiver. When this bit is set, the device becomes a transmitter.
When it is reset, the device becomes a receiver. The UCTXNACK bit is used to adjust the
not-acknowledge (NACK) bit settings. When this bit is reset, sending an ACK bit occurs
normally. When it is set, the NACK bit is generated. The UCTXNACK bit is reset
automatically after the NACK bit is sent. More information on these settings can be found
in [7]. UCTXSTT and UCTXSTP bits are used to transmit start and stop conditions
respectively. When these bits are set, start or stop conditions are generated. These can be
produced only by the master device. Therefore, they are not used in the slave mode. When
these bits are set in the master receiver mode to generate a repeated start or stop condition,
they are followed by a NACK bit. The UCTXSTT bit is reset automatically after the start

condition and the address data is sent. The UCTXSTP bit is reset automatically after the
stop condition is generated. The UCSWRST bit is used to reset the USCI module. When
this bit is set, the USCI module is reset. When it is reset, the USCI module will be ready
for operation.

The I?C mode also has a status register called UCBOSTAT. It is specifically used to
observe the changes in the system. The entries of this register are given in Table 12.19. In
this table, the UCSCLLOW bit is used to check the condition of the SCL. When this bit is
set, the SCL is held low. When it is reset, the SCL is held high (default case). The UCGC
bit is used to control whether the general call address is received or not. The general call
address is used when more than two devices are used in communication. Please see the I°C
data sheet for detailed information [7]. When the UCGC bit is reset, this means the general
call address is not received. When it is set, this means the address information is received.
The UCBBUSY bit is used to indicate that whether the I?C bus is busy or not. When this
bit is reset, it means the bus is inactive. When it is set, it means that the bus is active.
UCNACKIFG, UCSTPIFG, UCSTTIFG and UCALIFG bits are used to observe
interrupts for NACK, stop, start, and arbitration lost conditions respectively. When these
bits are reset, this means that there is no interrupt pending. When these bits are set, it
means there is an interrupt pending from the related source. UCNACKIFG and
UCSTPIFG bits are reset automatically after the start condition is received. UCSTTIFG is
reset automatically after the stop condition is received. Start and stop conditions are
received by the slave device. Therefore, the UCSTPIFG and UCSTTIFG bits are related
only with the slave device.

Table 12.19 USCI_BO status register (UCBOSTAT).
Bits 7 6 5 4 3 p- 1]

Unused UCSCLLOW UCGC UCBBUSY UCNACKIFG UCSTPIFG UCSTTIFG UCALIFG

The I’C mode has two additional address registers. These are called the USCI_BO I*C
own address register (UCBOI2COA) and USCI_BO I?C slave address register
(UCBOI2CSA). UCBOI2COA keeps the device’s own address. It is used when the device
is used as a slave. Also the fifteenth bit of this register (UCGCEN) is used to respond to a
general call. When this bit is set, the device responds to a general call. When it is reset, the
device does not respond to any general calls. UCBOI2CSA keeps the address of the slave
device to be connected by the master. Therefore, it is used when the device is in the master
mode. When the master wants to communicate with another slave, this register must be
changed to the address of the new slave.

12.6.1 I?PC Transmit/Receive Operations

Data transfer in the I?°C mode is carried out byte by byte. Every bit of the byte is
transferred during one SCL pulse. Communication starts when the master sends the start
condition to the slave. This is done by generating a high to low transition on the SDA
while the SCL is high. Then, the slave address is transmitted by the master in the next 1 or
2 bytes according to the addressing mode.

In the 7-bit addressing mode, the address information is sent in 1 byte. In this byte,
the first 7 bits represent the slave address. The 8 bit is R/W. When the R/W bit is 0, it
means that the master will transmit data to the slave. When the R/W bit is 1, it means that
the master will receive data from the slave. After this byte is transmitted by the master, the
slave sends an acknowledge (ACK) bit to the master to indicate that the address
information is received. Actually, this ACK bit is sent by the receiver (master or slave)
after each received byte throughout the communication to show that the transmitted byte is
received.

In the 10-bit addressing mode, the address information is sent in 2 bytes. The first
byte is formed by the constant number 11110b, the first 2 bits of the slave address, and the
R/W bit. The second byte contains the remaining 8 bits of the slave address. After
receiving each byte, the slave sends an ACK bit. After the address information is
acknowledged by the slave, data is transmitted or received byte by byte according to the
R/W bit. As in the 7-bit addressing mode, the ACK bit is sent by the receiver (master or
slave) after receiving each byte.

The UCBBUSY bit is set to indicate that the bus is busy during the communication
period. As the data transfer is completed, the communication halts. This is done by the
master device by sending the stop condition (a low to high transition on the SDA while the
SCL is high).

Sometimes, the direction of data transfer has to be changed during I°C
communication. This can be achieved by sending a start condition followed by the address
information and new R/W bit after an ACK bit anywhere in the data transfer. This way, the
direction can be changed without stoping the data transfer since no stop condition is
generated.

There are four transmit/receive operation options for the I?°C mode. These are slave
transmitter, slave receiver, master transmitter, and master receiver. In the following
sections, we explore each in detail.

Slave Transmitter Mode

In this mode, first the device is set as slave by setting UCSYNC and resetting UCMST
bits. Then, the slave address is written to the UCBOI2COA register. This address can be
either seven or 10 bits long based on the UCA10 bit value. After a start condition is
detected by the slave, its own address is compared with the received one coming from the
master (from the UCBOI2CSA register). If both addresses match, UCSTTIFG is set and
UCSTPIFG is reset. The slave must be set as receiver first by resetting the UCTR bit. This
is done to get the address information from the master. Then, if the master is configured as
the receiver, the R/W bit is set and the slave is configured as transmitter automatically. The
UCTR and UCBOTXIFG bits are also set automatically in this step. Then, the first data bit
is written to the UCBOTXBUF and an ACK bit is sent by the slave to indicate that the
address information is acknowledged. Afterwards, UCBOTXIFG is reset and the data byte
is transmitted. UCBOTXIFG is set again as soon as data in UCBOTXBUF is transferred to
the transmit shift register. After data is transmitted to the master, there are three options for
the system. First, the master can send an ACK bit, a new data byte is transmitted, and the
transfer proceeds. Second, the master can send a NACK bit followed by the stop condition

to end data transfer. Here, the UCBOTXIFG bit is reset after the NACK bit. The
UCSTPIFG is set and UCSTTIFG is reset after the stop condition is received by the slave.
Third, the master can also send a NACK bit followed by the restart condition to restart the
data transfer. Then, the data transfer cycle returns to the step where the start condition and
address information is received by the slave.

Slave Receiver Mode

This mode has the same configuration steps as the previous one. Only in the slave receiver
mode, the master is configured as transmitter and the R/W bit is reset. Then, the slave is
configured as receiver automatically. The UCTR bit is also reset automatically in this step.
UCBORXIFG is set automatically after the first data byte is received. Then, the received
data is read from UCBORXBUF and an ACK bit is sent by the slave. There are four
options for the system after the ACK bit is sent.

First, the master can transfer a new data byte and the transfer proceeds. Second, the
master can send a stop condition. Here, UCSTPIFG is set and UCSTTIFG is reset after the
stop condition. Third, the master can send a restart condition. Then, the data transfer cycle
returns to the step where the start condition and address information are received by the
slave. Fourth, the slave device can also send a NACK bit instead of an ACK bit to the
master if the UCTXNACK bit is set during the last data cycle. The master device must
respond to this by generating a stop or restart condition. If a NACK is transmitted before
the last data in UCBORXBUF is read, new data is written to UCBORXBUF and the last
data is lost. In order to prevent this, data in UCBORXBUF must be read before
UCTXNACK is set. After the NACK is transmitted, the UCTXNACK bit is reset
automatically. UCSTPIFG is set and UCSTTIFG is reset after the stop condition. If a
restart condition occurs, the data transfer cycle returns to the step where the start condition
and address information are received by the slave. The fourth option can be used if the
slave wants to stop the communication.

Master Transmitter Mode

In this mode, first the device is set as master by setting the UCSYNC and UCMST bits.
Then, the target slave address is written to the UCBOI2CSA register in accordance with
the UCSLA10 bit (7- or 10-bit addressing modes). Also the UCTR bit must be set to
indicate that the master is used as the transmitter. The master generates a start condition to
initiate the communication if the UCTXSTT bit is set by software. When this start
condition is generated, UCBOTXIFG is set to show that UCBOTXBUF is ready for new
data. Then, the slave address is transmitted with the R/W bit being 0. An ACK bit is
expected from the slave as the first data byte is written to UCBOTXBUF. The UCTXSTT
bit is reset automatically after the ACK bit is received. Also, UCBOTXIFG is set again as
soon as data in UCBOTXBUF is transferred to the transmit shift register. Then the data
byte is transmitted from the master to the slave. After this transmission, there are four
options.

First, the slave can send an ACK bit, a new data byte is transmitted, and transfer
proceeds. Second, the master can generate a stop condition after the last ACK bit is
received from the slave if UCTXSTP is set. When the data is transferred from
UCBOTXBUF to the transmit shift register, UCBOTXIFG is set to show that data

transmission has started and the UCTXSTP bit may be set. UCBOTXIFG must be reset by
the user when UCTXSTP is set. UCTXSTP is reset automatically after the stop condition
is generated. Third, the master can generate a restart condition after the last ACK bit is
received from the slave if UCTXSTT is set. Then the data transfer cycle returns to the step
where the start condition and address information are received by the slave. If desired,
UCTR and UCBOI2CSA can be changed here. Fourth, the slave can send a NACK bit.
This sets the UCNACKIFG bit. The master must respond to this by generating a stop or
restart condition. Data in the UCBOTXBUF is discarded here. If this data needs to be
transmitted after a restart condition, it must be rewritten to the UCBOTXBUF.

In the first address transmission operation by the master, the following scenario may
occur. If the address information cannot be acknowledged by the slave, it sends a NACK
bit to the master and UCNACKIFG is set. The master device must respond to this by
generating a stop or restart condition. This is also the case for the master receiver mode to
be explained next.

Master Receiver Mode

This mode has the same configuration steps as the previous one. Only the UCTR bit must
be reset to indicate that the master is used as a receiver. Here, the master generates a start
condition to initiate the communication if the UCTXSTT bit is set by software. Then the
slave address is transmitted with R/W = 1. As the ACK bit is received from the slave (for
the address information), the UCTXSTT bit is reset automatically and the first data byte
can be received. After this byte is received, UCBORXIFG is set to indicate that data is
loaded to UCBORXBUF. After the UCBORXIFG bit is set, there are three options for the
system.

First, the master can send an ACK bit, a new data byte is received, and transfer
proceeds. Second, the master can generate a stop condition by setting UCTXSTP and
sending a NACK bit. Here, UCTXSTP is reset automatically after the stop condition is
generated. Third, the master can generate a restart condition by setting UCTXSTT and
sending a NACK bit. Here, the data transfer cycle returns to the step where the start
condition and the address information are received by the slave. If desired, UCTR and
UCBOI2CSA can be changed here.

12.6.2 I2C Interrupts

The I°C mode shares the same interrupt vectors with the UART and SPI modes for the
transmit and receive operations. However, they are used in a different way in the I°C
mode. The USCIABOTX_VECTOR is used for both transmit and receive interrupts. The
USCIABORX_VECTOR is used for checking UCNACKIFG, UCSTPIFG, UCSTTIFG,
and UCALIFG flags (in UCBOSTAT) generated by related interrupts. In order to use these
flags, related interrupt enable bits of the USCI_BO I°C interrupt enable register
(UCBOI2CIE) must be set. The entries of this register are given in Table 12.20. The
interrupt enable register 2 (IE2) and interrupt flag register 2 (IFG2) given in Tables 12.3
and 12.4 are also used here as with the SPI mode.

Table 12.20 USCI_BO I?C interrupt enable register (UCBOI2CIE).

Bits 7 -4 3 2 1 0

UCNACKIE UCSTPIE UCSTTIE UCALIE

The interrupt-based communication operation in the I?C is the same as in the SPI
mode. The only difference is the UCBOTXIFG. This bit is reset if a NACK bit is received
in addition to writing a new character to UCBOTXBUF.

12.6.3 Coding Practices for the I’°C Mode

In this section, we provide sample C and assembly codes on the [°C communication mode.
The problems mentioned for the UART mode are also applicable here. Therefore, please
see Sec. 12.2.4 first.

I’Cin C

In Listings 12.19 and 12.20, the I°C mode is used to establish a digital communication
between two MSP430 LaunchPads. The connection diagram for this application is given
in Fig. 12.20. The C code for the master transmitter device is given in Listing 12.19. The
C code for the slave receiver device is given in Listing 12.20. In this application, when the
button connected to pin P1.3 of the master device is pressed, it sends the next PWM
constant from the TXData array to control the brightness of the LED connected to pin
P1.2 of the slave device. The connection between pin P1.5 of the master device and the
RST pin of the slave device is used for resetting the slave before the communication starts.

Listing 12.19 The I°C PWM application, master transmitter code in C language.

#include =msp430.h=

unsigned int *PTXData = 0;

unsigned int TXByteCtr;

unsigned int TXData[] = {0x0000, OxO00FA, Ox01F4, \
0x02EE, 0x03E8}; //TACCR1 values to be transmitted
unsigned int High = 0, Low = 0;

int StartEnable = 0, cntr = 0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR |= BITS5; //Adjust pins
P1SEL |= BIT6|BIT7;

P1SEL2 |= BIT6|BIT7;

P1IE |= 0x08;

P1IES |= 0x08;

P1IFG = 0x00;

UCBOCTL1 |= UCSWRST; S /5etup the I2C mode
/S /Enable SW reset

UCBOCTLO = UCMST | UCMODE_3 | UCSYNC:
J/I2C Master, synchronous mode
UCBOCTL1 = UCSSEL_2 | UCSWRST;

S /Use SMCLE, keep SW reset

UCBOBRO = 12;

S iLow byte of UCBRx is 12

UCBOBR1 = 0;

S /High byte of UCBRx is zero,

/A AESCL = SMCLK/12 = “100KkHz

UCBOIZCSA = 0x4B8; //S5lave Address
UCBOCTL1 &= “UCSWRST:

S /Clear SW reset, resume operation
IE2 |= UCBOTXIE; //Enable TX interrupt
PTXData = TXData;

S /Egquate TXData array’s start address to PTXData

P1OUT &= “BITS5; //Reset the IZ2C slave
P1OUT |= BITS;

enable_interrupts();

while (1) |
TXByteCtr = 2;

SsLoad TX byte counter with two bytes
while (UCBOCTLl & UCTXSTP);

S /Ensure that the stop condition is sent
if(StartEnable == 1) //Check for the button press
{

UCBOCTL]1 |= UCTR | UCTXSTT;

FAI2C Transmitter, start condition
LPMO;

H

I

FSAI2C transmit interrupt
#pragma vector = USCIABOTYX _VECTOR
—-interrupt wveid USCIABOTX_ISR(wveid)|
if (TXByteCtr)|
if((TXByteCtr$2) == 0}
High = *PTXData;
//Write the incoming array element to high integer
UCBOTXBUF = (High==8);
S /8hift the high byte of High integer then load
F/TX buffer with it
|
if ((TEKByteCtr32) == 1)
Low = *PTXDatat++;
//Write incoming array element to low integer,
f/then increase PTXData
UCBOTXBUF = Low;
SiLoad TX buffer with low byte of array element
cntr++;
|
TEByteCtr--;
|

else

{

if(cntr == 5){

PTXData = PTXData-5;
//Reload PTXData pointer with address
//of the first element

cntr = 0;

}

StartEnable = 0;
//Reset StartEnable to stop the I2C communication
J/until the button is pressed again

UCBOCTL1 |= UCTXSTP; //IZ2C stop condition

IFG2 &= “UCBOTXIFG; //Clear the USCI_B0O TX int. flag
LPMO_EXIT;

}
}

#pragma vector=PORT1_VECTOR
__interrupt woid Port_1l(veoid)|
StartEnable = 1;
//8et StartFEnable variable to start the
A/T2C communication
P1IFG = 0x00;

}

Listing 12.20 The I°C PWM application, slave receiver code in C language.

#include =msp430.h=

unsigned int RXData;
unsigned int RXByteCtr = 0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1DIR |= BIT2; //Adjust pins
P1SEL |= BIT6|BIT7|BIT2;
P1SEL2 |= BIT6|BIT7;

UCBOCTL1 |= UCSWRST; /S /5etup the I2C mode
/S /Enable SW reset
UCBOCTLO = UCMODE_3 | UCSYNC;
J/I12C Slave, synchronous mode
UCBOI2COA = 0x48; // Own Address
UCBOCTL1 &= ~UCSWRST;
//Clear SW reset, resume operation
UCBOIZ2CIE |= UCSTPIE | UCSTTIE:;
//Enable STT and STP interrupt
IE2 |= UCBORXIE; //Enable the RX interrupt

TACCR1 = 0; //Setup the PhM

TACCRO = 999;
TACCTL1 = OUTMOD.7:
TACTL = TASSEL.2[MC_1|ID_3;

-enable_interrupts();

while (1){
RXByteCtr = 0;
LPMO ;

|
i

//I2C transmit interrupt
#pragma vector = USCIABOTX_VECTOR
_-interrupt veoid USCIABOTX ISR(void)|
if((RXByteCtr%2) == 0){
RXData = UCBORXBUF;
//Move the received data (high byte) to low byte
S fof RXData
R¥XData = (RXData<<8);
//Shift the low byte of RXData to high byte
1
if((RXByteCtr%2) == 1){
RXData F UCBORXBUF;
//Move the received data (low byte) to low byte
Jlof RXData
TACCR1 = RXData; // Move the RXData to TACCR1
}

RXByteCtr++;

}

S /I2C receive interrupt
#pragma vector = USCIABORX_VECTOR
--interrupt woid USCIABORX_ISR(void)|
UCBOSTAT &= ~(UCSTPIFG | UCSTTIFG);
//Clear interrupt flags

if (RXByteCtr) LPMO_EXIT;
J/Bxit LPMO 1if data is received

}

L

LED
f‘::;z:n) GND
Ny 20| 7 Tem 20
— Ve GMD —— Ve GMND
— P10 XINF— ——F1.0 AINp—
——{PI.1 XOUT p— ——PL.1 XOUT}——
—iP1.2 MSP TEST — P1.2 AMSP TEST }——
V. P1.3 430 RST— —iP1.3 430 RST
CC vy 3L
T —P14 G2553 py7 P14 R"l?""‘ P17
L { Transmitter) { Receiver)
= 1.5 i 5 Pl.6
10 k2 = . P16 e
= —P2.0 P2.5— —P2.0 P2.5—
—P2.1 P24— P21 24—
l = .0 P2.2 PZ.EL 2 P22 k| L
100 nF :—
[

~
o
.]

< <
10 ki) < < 10 k{2
T e

Vee Ve

Figure 12.20 The connection diagram for the I?’C PWM application (master transmitter
and slave receiver).

In Listings 12.21 and 12.22, the I’C mode is again used to establish a digital
communication between two MSP430 LaunchPads. The connection diagram for this
application is given in Fig. 12.21. However, this time the slave becomes the transmitter
and the master becomes the receiver. The C code for the slave transmitter device is given
in Listing 12.21. The C code for the master receiver device is given in Listing 12.22. In
this application, when the button connected to pin P1.3 of the master device is pressed, the
slave sends the next PWM constant from the TXData array to control the brightness of the
LED connected to pin P1.2 of the master device. The connection between pin P1.5 of the
master device and the RST pin of the slave device is used for resetting the slave before the
communication starts.

Listing 12.21 The I>C PWM application, slave transmitter code in C language.

#include =msp430.h=

unsigned int *PTXData = 0;

unsigned int TXByteCtr = 2;

unsigned int TXData[] = {0x0000, OxO00FA, Ox01F4, \
0x02EE, DXDEEE}; A/TACCR] values to be transmitted
unsigned int High = 0, Low = 0;

int cntr = 0;

void main(veoid)

{

WDTCTL = WDTPW|WDTHOLD;

P1SEL |= BIT6|BIT7; //Adjust pins
P1SEL2 |= BIT6|BIT7;

UCBOCTL1 |= UCSWRST; S /5etup the I2C mode

S /Enable SW reset
UCBOCTLO = UCMODE_3 | UCSYNC;

FAI2C Slave, synchronous mode

UCBOIZCOA = Ox4B; //Own Address
UCBOCTL1 &= TUCSWRST;

F/Clear SW reset, resume operation
UCBOIZCIE |= UCSTPIE + UCSTTIE;

S /Enable STT and S5TP interrupt

IE2 |= UCBOTXIE; //Enable TX interrupt
PTXData = TXData:;

-enable_interrupts();

while (1)}

if{cntr == 5){

PTXData = PTXData - 5;
//Reload PTXData pointer with the address of
//the first element
cntr = 0;

)

TXByteCtr = 0;

LPMO;

}

}

FAI2C transmit interrupt

fpragma vector = USCIABOTX VECTOR

--interrupt wvoid USCIABOTX.ISR(void)|

if((TEByteCtri2) == 0)|

High = *PTxXData;

SiWrite the incoming array element to high integer
UCBOTXBUF={High>>8);

S/8hift high bvite of High integer then load TX buffer
S/with 1E

|

if((THByteCtri2) == 1}|

Low = *PTXDatat+;

SiWrite the incoming array element to low integer,
S/then increase PTXData

UCBOTXBUF=Low;

Sihoad TX buffer with the low byte of the array element
cntr++;

]

THEByteCtr++;

I

//I2C receive interruptk

#pragma vector = USCIABORX_VECTOR
—interrupt weoid USCIABORX_ISE(wveoid)|
UCBOSTAT &= ~(UCSTPIFG | UCSTTIFG);
f/Clear interrupt flags

if [TXByteCtr) LPMO_EXIT;

S/ExIt LPMO if data is transmitted

}

Listing 12.22 The I*C PWM application, master receiver code in C language.

#include -mspd430.h=

uneigned int RXData;
unsigned int RXByteCtr;
int StartEnable = 0;

void main(wveid)

{
WDTCTL = WDTPW|WDTHOLD;

PI1DIR |= BIT2|BIT5; //Adjust pins
F/iAssign P1.5 as output to reset the slave
P1SEL |= BIT6|BIT7|BITZ;

P1SEL2Z |= BITG|BIT7;

P1lIE |= Ox08;

PlIES |= 0x08;

P1IFG = 0x00;

UCBOCTL1 |= UCSWRST; //Setup the IZ2C mode
/S fEnable SW reset

UCBOCTLO = UCMST | UCMODE_3 | UCSYNC;
//I2C Master, synchronous mode

UCBOCTL1 = UCSSEL.-2 | UCSWRST;

S /Use SMCLK, keep SW reset

UCBOBRO = 12;

FAr/Low byte of UCBRx is 12

UCBOBR1l = 0;

//High byte of UCBRx is 0,

FA/ESCL = SMCLK/12 = “100kHz

UCBOI2CSA = 0x48; //Slave Address
UCBOCTL1 &= “UCSWRST;

//Clear SW reset, resume operation

IE2 |= UCBORXIE; //Enable RX interrupt

TACCRL1 = 0; //Setup the PWM
TACCRO = 999;

TACCTL1 = OUTMOD_7;

TACTL = TASSEL.2 | MC.1 | ID.3;

PI1OUT &= "BITS; //Reset the I2C slave
P1OUT |= BITS;

-enable.interrupts():

while (1)

EXByteCtr = 2;

while (UCBOCTL1 & UCTXSTP);

//Ensure that the stop condition is sent

if(StartEnable == 1)|{
UCBOCTL1 |= UCTXSTT;
LPMO;

)

//I2C transmit interrupt
#pragma vector = USCIABOTX_.VECTOR
_-interrupt wveid USCIABOTX_ISR(woid){
FXByteCtr——;
if (RXByteCtr)|
RXData = UCBORXBUF;
//Move the received data (high byte) to
S /1ow byte of RXData
FXData = (RXData<=<8);
//S8hift low byte of RXData to high byte
if (RXByteCtr == 1)
UCBOCTL1 |= UCTXSTF;
//Generate I2C stop condition
}
else|
RXData |= UCBORXBUF:
//Move the received data (low byte) to
S/1low byte of RXData
TACCR1 = RXData;
//Load TACCR1 with RXData
StartEnable = 0;
//Reset StartEnable to stop I2C communication
J/until the button is pressed again
LPMO_EXIT;

}
}

#pragma vector=PORT1_VECTOR

__interrupt wveoid Port_l(veid){
StartEnable = 1:

/S /Set StartFnable to start the I2C communication
P1IFG = 0x00;

}

—
zmgzé GND
— Ve GND 2 — Ve GND} 22
—1PID XN — —1P1.0 XINf——
—P1.1 XOUTH—— —Pl.1 XOUTE ——
L—— P12 yop TEST— —PL2 ngp TEST—
P1.3 430 RST p}— —iP1.3 430 RST
Pl4 G255 pi7 Pl4 G2553 pi7
P15 {Receiver) Pl 6 P15 { Transmitter} Pl
P2.0 P25— —P2.0 P2.5——
P2.1 P24— —P2.1 P24+——o
104p; 5 P23l Opra | LI

mkug <10 kL2

il

‘_'{- © 1 oC

Figure 12.21 The connection diagram for the [2°C PWM application (master receiver and
slave transmitter).

I2C in Assembly

The assembly codes, given in Listings 12.23 and 12.24, perform the same operation done
in Listings 12.19 and 12.20. The connection diagram for this application is also the same
as that shown in Fig. 12.20. The assembly code for the master transmitter device is given
in Listing 12.23. The assembly code for the slave receiver device is given in Listing 12.24.

Listing 12.23 The I°C PWM application, master transmitter code in assembly language.

.cdecls C,LIST, "msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END, SP

; These five values are to be sent
mov.w #0000h,&0200h
mov.w #00FAh,&0202h
mov.w #01F4h,&0204h
mov.w #02EEh,&0206h
mov.w #03E8h,&0208h

bis.b #20h,P1DIR ;Adjust pins
bis.b #0COh,P1SEL

bis.b #0C0h,P1SEL2
bis.b #08h,P1IE
bis.b #08h,P1IES
elr.b PlIFG

bis.b #UCSWRST,UCBOCTLL ;Adjust the I2C mode
;Enable 5W reset

mov.b #UCMST+UCHMODE_3+UCSYNC, UCBOCTLO

;I2C Master, synchronous mode

mov.b #UCSSEL.2Z+UCSWRST,UCBOCTLL

jUse SMCLEK, keep 5W reset

mov.b #0Ch, UCBOBR0 ;Low bit of UCBRx is 12
mov.b #00h,UCBOBR1 ;High bit of UCBRx is zero
;£5CL = SMCLE/12 = "100kHz

mov.w #48h,UCBOIZ2CS5A ;Slave Address

bie.b #UCSWRST,UCBOCTLL

jClear SW reset, resume operation

bis.b #UCBOTXIE,IE2 ;Enable TX interrupt

mov.w #0200h,R5

jWrite the start address of TX data to RS
mov.w #0h,R6

jReset R6 used for controlling IZC start/stop
clr R10O

jClear R10 used for checking which element is
jtransmitted

biec.b #20h,P10UT ;Reset I2C slave
bis.b #20h,Pl0UT

bis.w #GIE,SR

Mainloop:

mov.w #2h,R7

jLoad R7 with desired byte number to be transmitted
StopConditionLoop:

bit.b #UCTXSTP,UCBOCTLL

jne StopConditionLoop

:Ensure the stop condition is sent

emp.w #1lh,R6

jne Mainloop

bis.b #UCTR+UCTXSTT,UCBOCTLL
;I2C Transmitter, start condition
bis.w #LPMO,SR

jmp Mainloop

USCIABOTX_ISR
;I2C tramsmit interrupt service routine to
jcontrol transmit operation

tet.w R7 ;Test if R7 is zero
jeg AllBytesTransmitted

;If it is, jump AllBytesTransmitted
bit.w #1h,R7 ;Check if R7 is odd
jne OddByte ;If it is, jump OddByte

mov.w ER5,R8

; Write the incoming array element to R8

swpb RE

mov.b RB,UCBOTXBUF

;Load TX buffer with high byte of incoming element
OddByte:

cop.w #1,R7

jne DecrementByteNumber

mov.w BR5+,R9

mov.b R9,UCBOTXBUF

;Load TX buffer with low byte of incoming element
ine.w R10

;Increase R10 to indicate that one element is sent
DecrementByteNumber:

dec.w R7

jmp EndISR
AllBytesTransmitted:

cmp.w #5h,R10 ;Check if all five elements are sent
jne SendStop

sub.w #10h,R5

:If they are sent, relcad PTXData pointer with
;the address of the first element

clr R10
SendStop:

clr RE

bis.b #UCTHSTP,UCBOCTL]1 ;I2C stop condition
bic.b #UCBOTXIFG,IFG2 ;Clear USCIB0O TX int flag
bic.w #LEMO,0(SPE)
EndISR:

reti

mov.w #1h,R6

reti

.gluhal --STACK_END
.5ect .stack

;i Interrupt Vectors

5ect RESET.VECTOR
.8hort RESET

.sect USCIABOTX_VECTOR
.short USCIABOTX_ISR
.sect PORT1_VECTOR
.short P1_ISR

.end

Listing 12.24 The I*C PWM application, slave receiver code in assembly language.

.cdecls C,LIST,"msp430.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD ,WDTCTL
mov.w #__STACK END,SP

bis.b #04h,P1DIR ;Adjust pins
bis.b #0C4h,P1SEL
bis.b #0CO0h,P1lSEL2

bis.b #UCSWRST,UCBOCTL1 ;Adjust the I2C mode
;Enable SW reset

mov.b #UCMODE_3+UCSYHNC ,UCBOCTLO

;I12C Slave, synchroncus mode

mov.w #48h,UCB0IZ2COA ;0wn Address

bic.b #UCSWRST,UCBOCTL1

;Clear SW reset, resume operation

bis.b #UCSTPIE+UCSTTIE,UCBOI2CIE

;Enable STT and STP interrupts

bis.b #UCBORXIE,IE2Z :Enable RX interrupt

elr.w TACCR1l ;Adjust the PWM
mov.w #03E7h, TACCRO

mov.w #0UTMOD_7,TACCTL1

mov.w #TASSEL_2+MC_1+ID_3,TACTL

bis.w #GIE,SR

Mainloop:
clr.w R7
bis.w #LPMO, SR
jmp Mainloop

USCIABOTX_ISR
:I2C transmit interrupt service routine to
:control receive operation

bit.w #1h,R7 :Check if R7 is odd

jne OddByte ;If it is, jump OddByte

mov.b UCBORXBUF,RS8

;Move the received data (low byte) to low byte of RS

OddByte:
cmp.w #1h,R7 :Check if R7 is 1
jne IncrementByteNumber
; If it is not, jump IncrementByteNumber
mev.b UCBORXBUF,R9
iMove the received data (low byte) to RO
swpbk RSB
and.w #0F00h,RB
;And R8 with 0x0F00, high byte
jnumbers are located only these four bits
bis.w RB,R9
mov.w R9,TACCR]1 ;Move received 2 byte data to TACCRI1
IncrementByteNumber :
inc.w R7
reti

USCIABORX_ISR

;I12C receive interrupt service routine to check
irestart or stop conditions
mov.b #UCSTPIFG + UCSTTIFG,R10

iMove stop and start interrupt flags to R10
inv.b R10

and.b R10,UCBOSTAT ;Clear interrupt flags
tst.w R7

jeg EndISR

bic.w #LPMO,0(SP)
EndISR:

reti

.global __STACK END
«3ect .stack

320t RESET_VECTOR
.short RESET

.5ect USCIABOTX VECTOR
.short USCIABOTX_ ISR
.5ect USCIABORX_VECTOR
.8hort USCIABORX_ISR
.end

The assembly codes given in Listings 12.25 and 12.26, perform the same operation
done in Listings 12.21 and 12.22. The connection diagram for this application is shown in
Fig. 12.21. The assembly code for the slave transmitter device is given in Listing 12.25.
The assembly code for the master receiver device is given in Listing 12.26.

Listing 12.25 The I>C PWM application, slave transmitter code in assembly language.

.cdecls C,LIST,"mspd30.h"

text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #__STACK_END,SP

;These five values are to be sent
mov.w #0000h,&0200h
mov.w #00FAh,&0202h
mov.w #01F4h,&0204h
mov.w #02EEh,&0206h
mov.w #03E8h,&0208h

bis.b #0C0h,PlSEL ;Adjust pins
bis.b #0COh,P1SEL2

bis.b #UCSWRST,UCBOCTL]l ;Adjust the I2C mode
;1Enable 5W reset

mov.b #UCMODE_3+UCSYNC,UCBOCTLO

31I2C Slave, synchronous mode

mov.w #48h,UCBOIZ2COA ;0wn Address

biec.b #UCSWRST,UCBOCTL1

jClear SW reset, resume operation

bis.b #UCSTPIE+UCSTTIE,UCBOI2CIE

;jEnable STT and STP interrupts

bis.b #UCBOTXIE,IEZ ;Enable TX interrupt

mov.w #0200h,RS

jWrite the start address of TX data to RS
celr.w R10

jClear R10 used for checking which element
i1is transmitted

bis.w #GIE,SR

Mainloop:
cmp.w #5h,R10 ;Check if all five elements are sent
jne Subloop
;If they are sent, reload R10 with address of the
jfirst element
sub.w #10,R5
clr R10
Subloop:
clr.w R7
bis.w #LPMO,SR
jmp Mainloop

JI2C transmit interrupt service routine to
jcontrol transmit operation

r

bit.w #1h,R7 :Check R7 i= odd

jne OddByte ;If it is, jump OddByte
mov.w @R5,R8

jWrite the incoming array element to RS
swpb RSB

mov.b RE,UCBOTXBUF

;jLoad TX buffer with the high byte of

jthe incoming element
OddByte:

cmp.w #1h,R7

jne IncrementByteNumber

mov.w @RS5+,R9

mov.b R9,UCEBOTXBUF

jLoad TX buffer with low byte of incoming element
inc.w R10

jIncrease R10 to indicate that one element is sent
IncrementByteNumber:

inc.w R7

reti

USCIABORX_ISR
;I12C receive interrupt service routine to
jcheck restart or stop conditions

mov.b #UCSTPIFG + UCSTTIFG,R11

iMove stop and start interrupt flags to R11
inv.b R11 ;Invert R11

and.b R11,UCBOSTAT ;Clear interrupt flags
tet.w R7 ;Check if R7 is 0

jeg EndISR ;If it is, jump EndISR

bic.w #LPMO,0(SP)

EndISR:
reti

.global __STACFK_END
. s2ect .stack

.3a2ct RESET.VECTOR
.short RESET

.8ect USCIABOTK_VECTOR
.short USCIABOTX-ISR
.sect USCIABORX.VECTOR

.short USCIABORX_ISR
.end

Listing 12.26 The I>C PWM application, master receiver code in assembly language.

.cdecls C,LIST,"msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #FWDTEW|WDTHOLD, WDTCTL
mov.w #__STACK_END,SP

bis.b #24h,P1DIR ;Adjust pins
bis.b #0C4h,P1SEL

bis.b #0C0Oh,P15EL2

bis.b #08h,PlIE

bis.b #08h,P1IES

clr.b F1IFG

bis.b #UCSWRST,UCBOCTL1 ;Adjust the I2C mode
;Enable SW reset

mov.b #UCMST+UCMODE_3+UCSYNC,UCBOCTLO

;I2C Master, synchronous mode

mov.b #UCSSEL_Z2+UCSWRST,UCBOCTL1

jUse SMCLK, keep SW reset

mov.b #0Ch,UCBOBRO ;Low bit of UCBRx is 12
mov.b #00h,UCBOBR1 ;High bit of UCBRx is =zero,
:£SCL = SMCLK/12 = "100kHz

mov.w #48h,UCB0I2CSA ;Slave Address

biec.b #UCSWRST,UCBOCTL1

;Clear SW reset, resume operation

bis.b #UCBORXIE,IEZ ;Enable RX interrupt

clr.w TACCR1 ;Adjust the PWM
mov.w #03E7h, TACCRO

mov .w #OUTMOD_7,TACCTL1

mov.w #TASSEL_24MC_1+ID_3, TACTL

mov.w #0h,R6
;Reset StartEnable used for controlling
:I2C start/stop
clr.w RS
;Clear R8 used for getting the high byte of data
clr.w R9
iClear R? used for getting the low byte of data

bie.b #20h,P10UT
bis.b #20h,P1OUT ;Reset I2C slave

bis.w #GIE,SR

Mainloop:

mov.w #2h,R7

jLoad R7 with the desired byte number to be received
StopConditionLoop:

bit.b #UCTXSTPF,UCBOCTL1

jne StopConditionLoop

jEnsure the stop condition is sent
emp.w #1h,R6

iCheck if R6 is set

jne Mloop

bis.b #UCTXSTT,UCBOCTL1

;1I2C Receiver, start condition
bis.w #LPMO,SR

jmp Mloop

;I2C transmit interrupt service routine
;jto control receive operation

jeg LastByte

mov.b UCBORXBUF,RE8 ;Load R8 with UCBORXBUF
emp.w #1h,R7

jne EndISR

bis.b #UCTXSTP,UCBOCTL1 ;I2C stop condition
jmp EndISRE
LastByte:

mov.b UCBORXBUF,R9

iMove the received data (low byte) to R9
swpb RS

and.w #0F00h,R8

;And RB with O0x0F00, high byte

; numbers are located on these four bits
bie.w R8,R%

mov.w R9,TACCRI1

jMove received 2 bytes of data to TACCRI
clr.w R6 ;Clear StartEnable

elr.w RSB

elr.w R9

bic.w #LPMO,0(SP)
EndISR:

reti

mov.w #1h,R6 ;Set StartEnable
clr.b P1IFG
reti

.global __STACEK_END
.5ect .stack

.sect RESET_VECTOR
.short RESET

.sect USCIABOTX VECTOR
.short USCIABOTX_ISR
.sect PORT1_VECTOR
.short P1_ISR

.end

12.7 I2C in Grace

The I2C mode can also be configured under Grace. Since I°C is present only under the
USCI_BO0 module, we should enable it first. Then we should click the I2C button from the
selection window for all user modes to be explored below.

12.7.1 The Basic User Mode

The basic user mode for I2C is shown in Fig. 12.22. In this mode, we can set the device as
master or slave from the drop-down list in the USCI B0 I2C block. We can enable or
disable I°C pins. We can select the bit rate from the Bitrate dropdown list. We can enter
the slave and own addresses to the I°C Slave Address and I°C Own Address boxes
respectively.

Grace (MSP430) * USCI_BO - Basic User Mode

Overview Power User Registers

| Return to USCL_BO Mode Selection View |

uscl BO
UCxSCL
Clock source set 12C Mode

to SMCLK | JE— _Q_[UCBOSCL Output OFF v]

Slave mod v!
BRCLK LCxSDA

UCBOSDA Output OFF -
Stat 12 X RW ACK
—- -
Bitrate = [Disabled v| ter=0us

C Slave Address; 0 I’C Own Address; 0

Interrupt Enables

_i USCI_BD [2C transmit interrupt enable | Generate Interrupt Handler Code]

-| USCI_BD I2C transmit interrupt enable | Generate Interrupt Handler Code |

[] start condition interrupt enable ' Generate Interrupt Handler Code]

_} Stop condition interrupt enable E Generate Interrupt Handler Code |

View all Interrupt Handlers

Figure 12.22 The basic user mode for I’C under Grace.

We can enable the I?C interrupts by checking the appropriate “USCI_BO0 I2C transmit
interrupt enable,” “USCI_BO0 I2C receive interrupt enable,” “Start condition interrupt
enable,” or “Stop condition interrupt enable” box respectively. We can also generate an
ISR related to these interrupts using the associated Generate Interrupt Handler Code
button.

12.7.2 The Power User Mode

The power user mode for I2C is shown in Fig. 12.23. In addition to the basic user mode,
we can set the clock source here. We can also set two additional interrupts by checking the
“Not-acknowledge interrupt enable” and “Arbitration lost interrupt enable” boxes.

i Basic User Registers

[Return to USCI_BO Mode Selection View

uscCl Bo
Clock source [2C Mode UCxSCL
UECBOSCL Output OFF
SMCLK v | — I ___)
Slave mod - UCxShA
BRCLK o UCBOSDA Output OFF -
_\\ z’f X X o X \k z’r
— -
Bitrate = | Disabled - tpr =0 us

PC Slave Address 0 12C Cwn Address: 0
Interrupt Enables
[USCI B0 12C transmit interrupt enable [Generate Interrupt Handler Code]
j USCT_B0 I2C transmit interrupt enable [Generate Interrupt Handler Code]
[start condition interrupt enable [Generate Interrupt Handler Code]
|:|5tc|p candition interrupt enable [Generate Interrupt Handler Code]
|:| Mot-acknowledge interrupt enable [Generate Interrupt Handler Code]
|j Arhitration last interrupt enahle [Generate Interrupt Handler Codea]

View All Interrupt Handlers

Figure 12.23 The power user mode for I?C under Grace.

12.7.3 The Register Controls Mode

Finally, the I°C registers can be adjusted under Grace. The user should select the register
controls mode, as shown in Fig. 12.24, for this purpose. As in the UART and SPI modes,
some registers are not available here. Some register entries are also read only in this mode.

Grace (MSP430) * USCI_BO - Register Controls

LCBxCTLO, USCI_Ex Contral RegisterQ

7 L] g A 1 H i L]
WEATE W AN FAH &bl =21) (1l =} 4 [-
B B lai| O ||pcmede =] =1

LUCBxCTL1, USCI_Ex Control Register 1
7 a 3 & 1 2 i &
BESEELL e | woTR ;;j 'L:'L* WCTESTY ";}“
SMOLK = Fesy (B [Tl A R
LCE<ERD LCBxBR1
ia ro
i i
LICBxSTAT, USCI_Bx Status Ragistar
¥] i F i 1 i]
it | goie [ueee | SSB [USES TUSEE [USEN [y pe
" Py i mw | man | Rl | s
LICBxRXBUF UCBxTXBUF
14 T

UCEXI2COA, USCIBX IFC Own Address Regster

B " [@ 1 o 8] r & | L 3 2 i
E £ et ¢ [- a]] (Futet
| B o

UCExI2CSA, USCI_Bx I*C Save Address Register

3] L] (1] L] L1 L] L] L] F [a Ll 3 F I

| [L [[[]] (P2 TY
o

LUCExI20E, USC Bx 1°C Interrupt Enable Reg ster

L] . -] 2 1 1

Dowarmad Mnﬁl‘ UCETPE | UCSTIE [Tl
IE2, Interrupt Enable Register 2
1 [(] i] ¥ i 3
WERD ucea
L e
IFG2, Interiupl Flag Regster 2
? € H . b = i 3
(T} uCBa
THFG FOG
[| |

Figure 12.24 The register controls mode for I?C under Grace.

12.8 Digital Communication Application

In this section, we provide a generic application different from the previous chapters. Our
aim here is using the UART and I°C modes together to form a communication link
between two MSP430 LaunchPads and a host computer. The user should be aware of the
hardware issues (related to digital communication) mentioned in the previous sections.

12.8.1 Equipment List

Following is a list of the equipment to be used in this application.

* Two MSP430 LaunchPads

* One LED

* One 220 Q resistor

* Two 10 kQ resistors

12.8.2 Layout

The layout of this application is given in Fig. 12.25.

veeeeee-| Host Computer LED
i {via USB, no : —
i . external L bl]
i ! connection) j;' 220Q GND
o | [0| 3 20
B Vee GND — Ve GND
i : P1.0 XIN P1.0 XN
I lee——P1.1 XOUT — ——P1.1 XOUT|——
........ —— P12 op TEST PlL2 yep TEST—
—iP1.3 430 RSTF—— —P1.3 430 RST
Pl,‘.]. {;2553 P]'I'Ir P|4 ‘:2553
_ 1st MSP430) i 2nd MSP430)
Pl.5 Ple P1.5
—P2.0 P2.5+— —P2.0 P25——
—P2.1 P2d— —P2.1 P24——
I_[I P2.2 P2.3 s I—UPZ.E F‘Z.JL
_-

= B

10 k2= 10 k€2
T <
Voo Voo

Figure 12.25 Layout of the digital communication application.

12.8.3 System Design Specifications

In this application, we use two MSP430 LaunchPads and a host computer for
communication. The host computer communicates with the first MSP430 using UART
mode. The first MSP430 communicates with the second MSP430 using I?’C. The aim here
is to change the brightness of the LED connected to the second MSP430 by data coming

from the host computer.

First, UART communication between the host computer and the first MSP430 must
be constructed. A variable in the first MSP430 is used to keep the duty cycle value. This
variable should change between 0 and 100. When the ‘+’ key is pressed on the keyboard
of the host computer, this variable will increase by one. When the ‘-’ key is pressed, the
same variable will decrease by one. If these keys are held down, the data is transmitted
continuously. But the amount of data that can be sent in one second is limited (to 30—40)
because of the BIOS setup restrictions.

While the duty cycle variable is changing, the first MSP430 will check this value. If
the duty cycle equals 0, the MSP430 will send the Minimum Duty Cycle Value warning to
the host computer. If the duty cycle equals 100, the MSP430 will send the Maximum Duty
Cycle Value warning to the host computer. If the duty cycle is between 0 and 100, the
MSP430 will send the Duty Cycle is Changing warning to the host computer.

Finally, the I°C communication between the first and second MSP430 must be
constructed. When the duty cycle variable has changed on the first MSP430, it transmits
this data via I°C to the second MSP430. Then the second MSP430 receives this data. It
uses the received data to change the duty cycle of the PWM signal connected to the LED.
Hence, the brightness of the LED changes accordingly. Initially, the brightness of the LED
Is at minimum.

12.8.4 The C Codes for the System

The first MSP430 communicates with the host computer using UART mode. It is also the
master transmitter device for the I?C communication between the first and second

MSP430. The second MSP430 is only used as the slave receiver device for I°C
communication.

The C Code for the First MSP430

In Listing 12.27, global variables are defined as the first part of the code. Here, Min, Max,
and Mid arrays hold the text information to be sent to the host computer. The butyCycle
variable is used to get the duty cycle from the host computer and send it to the second
MSP430. The StartEnable variable is used to control the start of the I°C communication.
The TXBytecCtr variable is used as a counter for the transmitted bytes.

Listing 12.27 Digital communication application, the transmitter code part I.

char Min[] "Minimum Duty Cycle Value‘\r\n";
char Max[] "Maximum Duty Cycle Value‘\r\n";
char Mid[] = "Duty Cycle is Changing\r\n";

int DutyCycle = 0;
int StartEnable = 0:
unsigned int TXByteCtr;

In the second part of the code, given in Listing 12.28, the hardware configurations for
the digital I/O, timer, UART, and IC modules are done. In this code block, configuration

for each hardware module is done in a separate function.

Listing 12.28 Digital communication application, the transmitter code part II.

void PinConfig(wvoid){

P1DIR |= BIT5;

P1SEL = BIT1|BIT2|BIT6|BIT7;
P1SEL2 = BIT1|BIT2|BIT6|BIT7;
P10OUT &= “BIT5;

P1OUT |= BITS;

}

void TimerConfig(wveid){
WDTCTL = WDTPW|WDTHOLD;
BCSCTL1 = CALBC1l_-1MHZ;
DCOCTL = CALDCO-1MHZ;

}

void UARTConfig(woid){
UCAOCTL1 |= UCSWRST|UCSSEL.2;
UCAOBRO = 104;

UCAOBRL = 0;

UCAOMCTL = UCBRS_1:

UCAOCTL1 &= “UCSWRST;

IEZ |= UCAORXIE;

}

void I2CConfig(weoid)|
UCBOCTL1 |= UCSWRST;
UCBOCTLO = UCMST | UCMODE.3 | UCSYNC;
UCBOCTL1 = UCSSEL_2 | UCSWRST;
UCBOBRO = 10;
UCBOBR1l = 0;
UCBOIZ2CSA = 0x48;
UCBOCTL1 &= “UCSWRST;
IE2 |= UCBOTXIE;

In the PinConfig() function, pin directions are assigned to PADIR=BITS in the first
line to obtain the reset output from P1.5. In the second and third lines: P1.1 is set as UART
receive data input (RXD); P1.2 is set as UART transmit data output (TXD); P1.6 is set as
the I?C clock pin (SCL); and P1.7 is set as the I?C data pin (SDA). In the fourth and fifth
lines, a low to high transition is given from P1.5 with P10UT &= ~BIT5 and P10UT |=
BITS to reset the slave at the beginning of communication.

In the Timerconfig() function, the watchdog timer is disabled in the first line. In the

second and third lines, DCO is calibrated to 1 MHz.

In the UARTConfig() function, software reset is enabled and the clock source for a
baud rate generator is selected as SMCLK with UCAGCTL1 |= UCSWRST | UCSSEL_2 in the
first line. In the second, third, and fourth lines the baud rate is set to 9600 bps with
UCAGBRO = 104, UCAGBR1 = 0, and UCAGMCTL = UCBRS_1. These values are obtained from
Table 12.10. In the fifth line, software reset is disabled with UCAGCTL1 &= ~UCSWRST to
resume the USCI operation. In the sixth line, the receive interrupt is enabled with IE2 |=
UCAGRXIE.

In the 12cconfig() function, the software reset is enabled with ucBecTL1l |=
UCSWRST in the first line to start the configuration. In the second line, the synchronous
communication mode is selected by setting the UCSYNC bit. The device is set as master by
setting the UCMST bit. Also, UCMODE_3 is used to select the I°C mode. In the third line, the
clock source for the bit rate generator is selected as SMCLK while the software reset is
kept enabled with UCAGCTL1 = UCSSEL_2 | UCSWRST. In the fourth and fifth lines, fgrcx
is set to 100 kHz with ucBeBRO = 10 and UCA®BR1 = 0. In the sixth line, the slave address
is set as 0x48. In the seventh line, software reset is disabled with UCBOCTL1 &= ~UCSWRST
to resume the USCI operation. Finally, the transmit interrupt is enabled with IE2 |=
UCBOTXIE in the last line.

In the third part of the code, given in Listing 12.29, the ISR settings for the UART
and I°C modes are done as follows: In the UART receive ISR, the butyCycle variable is
changed according to the incoming character data. If this character equals ‘+’, the
DutyCycle variable is increased by one. If it equals ‘—’, the DutyCycle variable is
decreased by one. In order to generate a duty cycle range between O and 100, the
DutyCycle variable is set to O if it is less than 0. The duty cycle is set to 100 if it is greater
than 100. Also, the StartEnable variable is set to 1 to trigger the start of I2C
communication. In the I°C transmit ISR, the most recent butyCycle variable is loaded to
the transmit buffer and TxBytectr is decreased by one when the ISR is called the first
time. Then the stop condition is sent with UCBOCTL1 |= UCTXSTP. The StartEnable
variable is reset to halt the transmission until the next data is received from the host
computer. The transmit interrupt flag is cleared manually with IFG2 &= ~UCBOTXIFG.

Listing 12.29 Digital communication application, the transmitter code part III.

#pragma vector=USCIABORX VECTOR

__interrupt wvoid USCIAORX_ISR(wvoid)({
if (UCAORXBUF == '+')DutyCycle++;
if (UCAORXBUF == '-')DutyCycle-—-;

if(DutyCycle = 100)DutyCycle = 100;
if(DutyCycle < 0)DutyCycle = 0;

StartEnable

)

#pragma vector = USCIABOTX_VECTOR
--interrupt wveoid USCIBOTX ISR (void)({
if (TXByteCtr)
{
UCBOTXBUF = DutyCycle;
T¥ByteCtr—-;

)

else

{

UCBOCTL1 |= UCTXSTP;
StartEnable = 0;
IFG2 &= “UCBOTXIFG;

}

1;

Finally, the C code for the transmitter part is given in Listing 12.30. In a while loop,
TxByteCtr is loaded with 1 first. Then the system is halted with while (UCBOCTL1 &
UCTXSTP) until the UCTXSTP bit is reset. The system waits for the new received data to get
StartEnable=1 after the bit UCTXSTP is reset. Then the device can start the I°C
communication as a transmitter with UCBOCTL1 |= UCTR | UCTXSTT. Also in this step, an
update for the DutyCycle is sent to the host computer with UART communication when
TXBytectr is 0. If the butyCycle equals zero, the Minimum Duty Cycle Value message is
sent. If the putyCycle equals 100, the Maximum Duty Cycle Value message is sent.
Finally, if the Dutycycle is between 0 and 100, the Duty Cycle is Changing message is
sent. The Transmit function is used here to send the desired message to the host computer.
In this function, a string is taken as input. All characters in the string are sent one by one
until a null character is reached. Also, before sending the next character, the system is
halted with while(! (IFG2&UCAGTXIFG)) until the transmit interrupt flag is cleared.

Listing 12.30 Digital communication application, the transmitter code.

#include <msp430.h=

char Min[] "Minimum Duty Cycle Value‘\r\n";
char Max[] = "Maximum Duty Cycle Value\r\n";

char Mid[] = "Duty Cycle is Changingir\n”;

int DutyCycle = 0;
int StartEnable = 0;
unsigned int TXByteCtr;

void transmit(char *str);
void PinConfig(wvoid);
void TimerConfig(weid);
void UARTConfig(wvedd);
void I2CConfig({veid);

void main(wvoid)
{
PinConfig();
TimerConfig();
UARTConfig();
I2CConfig();

-enable_interrupts();

while(1}|

TXByteCtr = 1;

while (UCBOCTLL & UCTXSTP);
if(StartEnable == 1){

UCBOCTL1 |= UCTR | UCTXSTT;

if (TXByteCtr == 0}

if(DutyCycle == ()transmit(Min);
else if (DutyCycle == 100)transmit(Max);
else transmit(Mid);

1
I

#pragma vector=USCIABORX.VECTOR

--interrupt woid USCIAORN._ISR({woid)|
if (UCAORXBUF == '+')DutyCycle++;
if (UCAORXBUF == '-')DutyCycle--;

if(DutyCycle = 100)DutyCycle = 100;
if(DutyCycle < 0)DutyCycle = 0;

StartEnable = 1;

}

#ipragma vector = USCIABOTX.VECTOR
--interrupt wveoid USCIBOTK.ISR(veoid)|
if (THByteCtr)|
UCBOTXBUF = DutyCycle;
TEByteCtr——;
|
alasa
{
UCBOCTL]1 |= UCTXSTP;
StartEnable = 0;
IFGZ &= “UCBOTXIFG;

}
)

void transmit(char #*str){
while(*str != 0){
while (! (IFG2&UCAOTXIFG));
UCAOTXBUF = *str++;

}
}

void PinConfig(veoid)|
P1DIR |= BITS;
P1SEL = BIT1|BITZ|BIT6|BIT7;
P1SEL2 = BIT1|BITZ|BITG|BIT7;
P1lOUT &= "BIT5;
P1OUT |= BITS;

}

void TimerConfig(wveid)|
WDTCTL = WDTPW|WDTHOLD;
BCSCTL1 = CALBCl_1MHZ;
DCOCTL = CALDCO_1MHZ;

}

vold UARTConfig(wveid)|
UCAOCTL1 |= UCSWRST|UCSSEL.2;
UCAOBRO = 104;

UCAOBR1 = 0;

UCAOMCTL = UCBRS.1;

UCAOCTL1 &= “UCSWRST;

IE2 |= UCAORXIE;

J

void I2CConfig(veid)|

UCBOCTL1 |= UCSWRST;

UCBOCTLO UCMST | UCMODE.3 | UCSYNC;
UCBOCTL1 UCSSEL.2 | UCSWRST;
UCBOBRO = 10;

UCBOBR1 = 0;

UCBOI2CSA = 0x48;

UCBOCTL1 &= "“UCSWRST;

IEZ2 |= UCBOTXIE:;

The C Code for the Second MSP430

In the first part of the receiver code, given in Listing 12.31, the hardware configurations
for the digital I/O, timer, and I°C modules are done. In this code block, configurations for
each hardware module are done in a separate function.

Listing 12.31 Digital communication application, the receiver code part I.

void PinConfig(veid)|
P1DIR = BIT2Z;

P1SEL |= BIT6|BIT7|BIT2;
P1SELZ |= BIT6|BIT7;

void TimerConfig(wvoid)|
WDTCTL = WDTPW|WDTHOLD;
BCSCTL]1 = CALBC1_1MHE:;
DCOCTL = CALDCO_1MHZ;
TACTL = TASSEL.2|MC_1 | ID_3:
TACCR1 = 0;
TACCRO = 999;
TACCTL1 = QUTMOD_7;

void I2CConfig(wvoid)|

UCBOCTL1 |= UCSWRST;

UCBOCTL0O = UCMODE_3 | UCESYNC;
UCBOIZ2COA = 0x48;

UCBOCTL1 &= “UCSWRST;
UCBOI2CIE |= UCSTPIE | UCSTTIE;
IE2 |= UCBORXIE;

In the PinConfig() function, pin directions are assigned by P1DIR=BIT2 in the first
line since the LED is connected to pin P1.2. In the second and third lines: P1.2 is set as
PWM output; P1.6 is set as the I°C clock pin (SCL); and P1.7 is set as the I°C data pin
(SDA).

In the Timerconfig() function, the watchdog timer is disabled in the first line. In the
second and third lines, DCO is calibrated to 1 MHz. In the fourth line, the timer
configurations are done. SMCLK is chosen as the clock source in up mode, and it is
divided by 8 so that f,, equals 125 kHz. In the fifth and sixth lines, TACCRO and

TACCRL1 are set for PWM generation. TACCR1 is set to 999 so that f;,, is 100 Hz and

TACCRO is set to 0. Therefore, the initial duty cycle is 0. The reset/set mode is chosen for
the PWM in the last line.

In the 12cconfig() function, software reset is enabled by UCBOCTL1 |= UCSWRST in
the first line to enable the configuration change. In the second line, synchronous
communication mode is selected by setting the UCSYNC bit. Also UCMODE_3 is used to select
the I2C mode. In the third line, own address is set as 0x48. In the fourth line, software reset
is disabled with ucBecTL1 &= ~UCSWRST to resume the USCI operation. In the fifth line,
start and stop interrupts are enabled by UCBOI2CIE |= UCSTPIE | UCSTTIE. Finally, the
receive interrupt is enabled with IE2 |= UCBORXIE in the last line.

In the second part of the code, given in Listing 12.32, the ISR settings for the I?C
mode are done as follows: In transmit ISR, the received data is written to the
ReceivedDutyCycle. Then this value is multiplied by 10 and written to the TACCRI1 to
obtain the desired duty cycle. In receive ISR, start and stop interrupt flags are cleared
manually by UCBOSTAT &= ~(UCSTPIFG | UCSTTIFG) to resume the communication.
Finally, the C code for the receiver part is given in Listing 12.33.

Listing 12.32 Digital communication application, the receiver code part II.

#pragma vector = USCIABOTX_VECTOR

__interrupt wveoid USCIABOTX_ISR(wvoid)|{
ReceivedDutyCycle = UCBORXBUF;
TACCR1 = ReceivedDutyCycle*10;

}

#pragma vector = USCIABORX_VECTOR
__interrupt wveoid USCIABORX_ISR(wvoid)|{
UCBOSTAT &= ~ (UCSTPIFG | UCSTTIFG);

}

Listing 12.33 Digital communication application, the receiver code.

#include =msp430.h=>
unsigned int ReceivedDutyCycle = 0;

void PinConfig(wveoid);
void TimerConfig(wveoid);
void I2CConfig(wveoid);

void main(veoid)
{
PinConfig();
TimerConfig();
I2CConfig();

-enable_interrupts();
LPMO;

}

#pragma vector = USCIABOTX_VECTOR

__interrupt wveoid USCIABOTX_ISR(wvoid)|{
ReceivedDutyCycle = UCBORXBUF;
TACCR1 = ReceivedDutyCycle=*10;

}

#pragma vector = USCIABORX_VECTOR
__interrupt wvoid USCIABORX_ISR(wvoid)|{
UCBOSTAT &= ~(UCSTPIFG | UCSTTIFG);

}

void PinConfig(wveoid)|
P1DIR = BITZ;

P1SEL |= BIT6|BIT7|BIT2;
P1SEL2 |= BIT6|BIT7;

i

void TimerConfig(wvoid)|
WDTCTL = WDTPW|WDTHOLD;
BCSCTL1 = CALBCl1_1MHZ;
DCOCTL = CALDCO_1MHEZ:
TACTL = TASSEL_2|MC_1|ID.3;

TACCR1 = 0;
TACCRO Y99;
TACCTL1 = OUTMOD-7;

}

void I2CConfig(wvoid){

UCBOCTL1 |= UCSWRST;

UCBOCTL0O = UCMODE_3 | UCSYNC;
UCBOIZ2COA = 0x48;

UCBOCTL1 &= “UCSWRST;
UCBOIZ2CIE |= UCSTPIE | UCSTTIE;
IEZ |= UCBORXIE;

12.9 Summary

The MSP430 has digital communication capabilities. In this chapter, we explored these in
detail. We started with the USCI_ A and USCI B modules available on the
MSP430G2553. USCI_A supports UART and SPI communication modes. UART is the
only asynchronous communication mode available on the MSP430G2553. SPI, on the
other hand is a synchronous and fast communication mode. USCI_B supports SPI and I°C
communication modes. Therefore, SPI is supported by the two USCI modules. I?C is also
synchronous. We explored each mode in detail in this chapter. We also provided sample C
and assembly codes for the three communication modes. We benefit from Grace to
configure and use UART, SPI, and I’°C. Finally, we provided a generic digital
communication application jointly using UART and [°C communication modes.

12.10 Problems

In this section, we will not offer new problems. Instead, we will ask the reader to
solve problems given in previous chapters using two MSP430 LaunchPad boards and
establishing a digital communication link between them. Some sample problems are
given below. In all below questions, please use available Port 2 pins for LED
connections.

12.1 Solve Prob. 8.9 using two MSP430 LaunchPad boards. The first MSP430
LaunchPad will be used for the push button. The second will be used for the
LEDs. Establish a digital communication link between these two boards using
UART, SPI, and I°C communication modes.

12.2 Repeat Prob. 12.1 in assembly language.

12.3 Solve Prob. 8.12 using two MSP430 LaunchPad boards. The first MSP430
LaunchPad will be used for the push button. The second will be used for the
LEDs. Establish a digital communication link between these two boards using
UART, SPI, and I°C communication modes.

12.4 Repeat Prob. 12.3 in assembly language.

12.5

12.6
12.7

12.8
12.9

Solve Prob. 9.4 using two MSP430 LaunchPad boards. The first MSP430
LaunchPad will be used for the push button. The second will be used for the
LEDs. Establish a digital communication link between these two boards using
UART, SPI, and I’C communication modes.

Repeat Prob. 12.5 in assembly language.

Solve Prob. 11.2 using two MSP430 LaunchPad boards. The first MSP430
LaunchPad will be used for the comparator operation. The second will be
used for the LEDs. Establish a digital communication link between these two
boards using UART, SPI, and I°C communication modes.

Repeat Prob. 12.7 in assembly language.

Solve Prob. 11.4 using two MSP430 LaunchPad boards. The first MSP430
LaunchPad will be used for the ADC operation. The second will be used for
the LEDs. Establish a digital communication link between these two boards
using UART, SPI, and I2C communication modes.

12.10 Repeat Prob. 12.9 in assembly language.

13 Flash Memory

Chapter Outline
13.1 MSP430 Flash Memory
13.2_ Flash Memory Programming
13.3 Coding Practices for Flash Memory
13.4__ Flash Memory in Grace

13.5_ Summary
13.6 Problems

MSP430 memory is divided into two parts, flash and RAM. The flash memory is the main
topic of this chapter. We will see how to program the flash using C and assembly
languages.

13.1 MSP430 Flash Memory

A flash memory cell is composed of a MOS transistor with an additional floating gate
under the control gate. Its working principle is based on charging and discharging this
floating gate. More information on this operation and the physical characteristics of a flash
cell can be found in [9, 10].

The flash is nonvolatile. It can keep the saved data even when energy is not provided.
Therefore, it can be taken as another form of ROM. However, the flash can easily be
programmed by feeding a suitable voltage to it. The MSP430 has circuitry to program its
flash memory.

MSP430 flash memory is divided into two sections, main and information. The
executable code and the constant values are kept in the main section. The calibration data,
serial number, and similar factory settings are kept in the information section. To note
here, there is no physical difference between these two sections.

The main section of the flash memory for the MSP430G2553 is 16 kB. It spans the
memory addresses between FFCOh and CO0Oh. This space is divided into segments, each
being 512 bytes. Therefore, there are 12 segments. The information section is divided into
four segments. These are called A, B, C, and D. Here, each segment is 64 bytes. Segment
A holds the calibration data. Therefore, it is protected. Although this protection can be
bypassed during programming, it should be done with caution.

13.2 Flash Memory Programming

There are three options to program the flash memory. The first one is using the JTAG port.
For more detail on this option, please see [15]. The second option to program the flash
memory is using the bootstrap loader. For more detail on this option, please see [14]. The
last option is using a custom solution. In this option, we rely on the CPU’s ability to
program its own flash memory. In this book, we will only focus on this property.

The CPU can write to a single byte or word location of the flash memory. In the
erasing operation, it can only operate on a segment level. The CPU can use flash to flash
or RAM to flash programming. In this book, we will only deal with the former solution.
For the RAM to flash programming, please see [17]. Moreover, segment A in the
information memory is handled separately in programming the flash memory. To see how
it is handled, please see [17].

13.2.1 The Flash Memory Controller

The MSP430 has an internal flash memory controller for erasing and writing operations.
This controller has three registers, a timing generator, and a programming voltage
generator. The registers can be used to configure the writing and erasing operations. The
writing and erasing operations are controlled by the flash timing generator. The properties
of this timing generator are also configured through the registers. The voltage generator is
used to generate necessary voltage values for writing and erasing operations.

In order to program the flash memory, the timing generator frequency must be set
within the 257 to 476 kHz range. The supply voltage should be between 2.2 and 3.6 V. If
these values are not satisfied during writing or erasing, the result of the operation will be
unpredictable. For more detail on these limits, please see [16].

There are specific options when the CPU is used to write or erase the flash memory.
Byte, word, or block levels can be used in writing to flash. When erasing the flash
memory, segment level, mass erase (to erase all main memory segments), and all erase (to
erase all segments) options can be selected.

13.2.2 Flash Memory Registers

The operations in the flash memory controller are configured by three registers. These are
called the flash memory control register 1 (FCTL1), flash memory control register 2
(FCTL2), and flash memory control register 3 (FCTL3).

The FCTL1 register, given in Table 13.1, is for selecting the erasing mode. In Table
13.1, the FRKEY will be read as 96h and FWKEY should be written as A5h. These are
the FCTLx passwords. The BLKWRT bit should be set for the block write mode. The
WRT bit should be set to select any write mode. The MERAS and ERASE bits are used
together for mass erase and erase modes. There will be no erasing when MERAS=0 and
ERASE=0. Individual segments can be erased when MERAS=0 and ERASE=1. All main
memory segments can be erased when MERAS=1 and ERASE=0. The main and
information sections of the flash memory can be erased when MERAS=1, ERASE=1, and
LOCKA=0 (in FCTL3). Only the main section of the flash memory can be erased when
MERAS=1, ERASE=1, and LOCKA=1.

Table 13.1 Flash memory control register 1 (FCTL1).
Bits 15-8
FRKEY, FWKEY
Bits 7 6 5 4 3 2 1 o

BLEWET WRT Reserved - - MERAS ERASE Reserved

The FCTL2 register, given in Table 13.2, is for configuring the flash controller clock
source. In Table 13.2, the FWKEYx will be read as 96h and should be written as A5h.
These are the FCTLx passwords. The FSSELX bits are used to select the flash controller
clock source. The constants for these bits are as follows: FSSEL_0 (for selecting the
ACLK), FSSEL_1 (for selecting the MCLK), FSSEL_2, and FSSEL_3 (for selecting the
SMCLK). The FNx bits are used for the flash controller clock divider. The divider is 1
when FNx=00h. The divider is 64 (which is the maximum value) when FNx=3Fh.

Table 13.2 Flash memory control register 2 (FCTL2).

FWEKEYx
Bits 7-6 5-0

FSSELx FNx

The FCTL3 register, given in Table 13.3, is for the operation modes and failure
handling. In Table 13.3, the FWKEYx will be read as 96h and should be written as A5h.
These are the FCTLx passwords. The FAIL bit is set when an operation failure occurs.
The LOCKA bit is used to unlock segment A in the information memory. This bit should
be reset to allow the programmer to adjust segment A. The EMEX bit is for emergency
exit. The LOCK bit is used to unlock the flash memory for writing and erasing operations.
When the WAIT bit is reset, it indicates that the flash memory is not ready for a byte- or
word-level writing operation. The ACCVIF stands for the access violation interrupt flag.
The KEY'V bit indicates the flash security key violation. When this bit is reset, it indicates
that the FCTLx password is entered correctly. When it is set, it indicates that the FCTLx
password is entered incorrectly. The BUSY bit indicates the status of the flash timing
generator. When this bit is set, it indicates that the flash timing generator is busy.

Table 13.3 Flash memory control register 3 (FCTL3).
FWKEYx
Bits 7 6 5 4 3 2 1 0
FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY

13.3 Coding Practices for Flash Memory

In this section, we provide C and assembly code samples for flash memory programming.
These are modified from TI sample codes. Next, we explain them in detail.

13.3.1 Flash Memory in C

The C code for flash programming is given in Listing 13.1. Initially, we set the digitally
controlled oscillator (DCO) to 1 MHz. This clock will be used in the timing generator. The
erase_SegCD() function erases the segments C and D separately. Here, the memory
address of each segment is given separately. The memory address is 1040h for segment C.
The memory address is 1000h for segment D. The erasing is done by simply assigning
zero to the segment. Since only segment-based erasing can be done, all segment elements
are erased by this operation. To note here, the erased bit value for the segment elements
will be one. In the erasing operation, the ERASE bit in the FCTL1 register is reset after
each operation. Therefore, to erase segment D it should be set after erasing segment C.
The write_SegC() function writes values 0 to 63 to segment C at the byte level. Finally,
the copy_SegcCD() function copies the entries of segment C to segment D in reverse order.
This is done to show that we can reach the segment elements at a byte level.

Listing 13.1 Flash memory processing in C.

#include =msp430.h>

void erase.SegCD(veid);
vold write_ SegC(veid);
void copyC2D(wveoid);

void main(wvoid)

WDTCTL = WDTPW|WDTHOLD;

BCSCTL1 = CALBC1_1MHZ; // Set DCO to IMH=z
DCOCTL = CALDCO.1MHEZ;

FCTL2 = FWKEY+FSSELO+FN1;
Sf MCLK/3 for Flash Timing Generator

erase SeqCD(); // Erase segments C and D
write SegC(); // Write to segment C
copy-C2D() ; /4 Copy segment C to D

while(1);
}

void erase_SegCD(veid)|
char *Flash.ptrC;
char *Flash_ptrD;

Flash.ptrC = [char *) 0x1040;
/¢ Initialize Flash segment C peointer
FlashptrD = (char *) 0x1000;
/4 Initialize Flash segment I peinter

FCTL1 = FWKEY+ERASE; // Set Erase bit
FCTL3 = FWKEY; // Clear Lock bit
*FlashptrC = 0;

FCTL1 = FWKEY+ERASE; // Set Erase bit

*Flash ptrD = 0; /¢4 Dummy write to erase segments
FCTL3 = FWEEY+LOCK; A/ Set LOCK bit

|

void write SegC(wvoid)|

char *Flash-ptrC;

char i:

Flash ptrC = (char *) 0x1040;

/S Initialize Flash pointer

FCTL3 = FWKEY; // Clear Lock bit
FCTL1 = FWKEY+WRT;

S/ Set WRT bit for write operation

for (i=0; i<64; i++)
*FlashptrC++ = i; // Write value to flash

FCTL1 = FWKEY; A/ Clear WRT bit
FCTL3 = FWEKEY+LOCK; // Set LOCK bit
|

void copy.C2D(void)|

char *Flash ptrC;

char *Flash ptrD;

int i;

Flash ptrD = (char *) 0x1000;

// Initialize Flash segment D pointer

FCTL1 = FWKEY+WRT:
// Set WRT bit for write operation
FCTL3 = FWKEY; // Clear Lock bit

FlashptrC = (char *) 0x107F;
for (i=0; i<64; i++)

*Flash ptrD++ = *Flash ptrC--;
/7 copy value segment O to segment D

FCTL1 = FWKEY; // Clear WRT bit
FCTL3 FWKEY+LOCK; // Set LOCK bit

13.3.2 Flash Memory in Assembly

The operations performed in Listing 13.1 are redone in assembly language in Listing 13.2.
The subroutines here have the same name as in the C code. Therefore, the explanations
given above also apply here.

Listing 13.2 Flash memory processing in assembly language.

.cdecls C,LIST, “msp430.h"

.text
.retain
.retainrefs

RESET
mov.w #WDTPW|WDTHOLD,WDTCTL
mov.w #-_STACK_END, SP

mov.b CALBC1_1MHZ,BCSCTL1
mov.b CALDCO_1MHZ,DCOCTL ;Set DCO to 1MH=z

mov.w #FWKEY+FSSELO+FN1,FCTL2
;Timing generator = MCLK/3

call #Erase_SegCD
;Erase segments C and D

call #Write_SegC
;Copy value to segment C

call #CopyC2D
jmp S
Erase_SegCD

mov.w #FWEEY,FCTL3 ;Lock = 0

mov.w #FWKEY+ERASE,FCTL1

;Erase bit = 1, allow interrupts
mov.w #0,&1040h

;Dummy write to SegC to erase

mov.w #FWEEY+ERASE,FCTL1

;Erase bit = 1, allow interrupts
mov.w #0,&1000h

sDummy write to SegD to erase
rekt

Write SegC

mov.w HFWEEY+WRT,FCTL1

;Write bit = 1, block interrupts
mov.Ww ¥FFWEEY,FCTL3 :Lock = 0

mov.w #1040h,R5
mov.b #00h,RE

Prog.Ll
mov.b R6,0(RS)
inec.w RS
ine.b H6
cmp.w #1080h, RS
jne ProgLl

mov.w ¥FWEEY+LOCK,FCTL3 :Lock = 1:
rat

CopyC2D
;Copy Seg C to Seg D

mov.w #FWEEY+WRT, FCTL1
;Write bit = 1, block interrupts
mov.w #FWEEY,FCTL3 ;Lock = 0

mov.w #1040h,R5
mov.w #103Fh,R6

Prog.L2
mov.b BRS+,0(R6)
dec.w Ré6
cmp.w #1080h,R5
jne Prog.LZ

mov.w #FWEEY+LOCK,FCTL3 ;Lock = 1
rat

.global __STACFK_END
.5ect .stack

.sect RESET VECTOR
.short RESET
.end

13.4 Flash Memory in Grace

The flash memory controller can be configured by the Flash block in the Device
Overview Window (given in Fig. 5.11). First, we should check the “Enable Flash
controller in my configuration” box. Then the flash can be configured as follows.

13.4.1 The Basic User Mode

In the basic user mode, shown in Fig. 13.1, the clock (for the timing generator) can be
configured by its source and frequency divider. The oscillator frequency is directly taken
from the basic clock module+ (BCM+). Then the clock divider is automatically set by
Grace to set the Flash Timing Generator within a 257 to 476 kHz range. As in other
blocks, interrupts can be enabled by checking the Flash Ctrl Access Violation Int Enable
box. The prototype interrupt service routine (ISR) for the interrupt can be generated by the
Generate Interrupt Handler Code button.

Grace (MSP430) * Flash - Basic User Mode

Overview Registers
Clock Source Divider Flash Timing Generator
Current Value
333.33 kHz
3
Min Max
257 kHz 476 kHz
Interrupt Enables
|| Flash Ctrl Access Violation Int Enable Generate Interrupt Handler Code

View All Interrupt Handlers

Note1: Min and Max values for Flash Timing Generator are from datasheet.

Mote2: By enabling the interrupt handler, Grace generates a fully working interrupt
service routine in InterruptVectors_init.c file inside src folder. User could insert
code inside the specified area of the ISR and the code is preserved. When a user
disables the interrupt handler, the user's inserted code remains at the bottom of
the file which is automatically re-inserted if the user re-enables the interrupt
handler. User could also manually remove the code when it is no longer needed,

Figure 13.1 Basic user mode for the flash memory controller.

13.4.2 The Register Controls Mode

In the register controls mode, given in Fig. 13.2, the FCTL2 register can be configured.
Since the access violation handler is also present, the interrupt enable register (IE1) can be
configured here. The interrupt flag register (IFG1) is also given here. However, it cannot
be configured.

Grace (M5P430) * Flash - Register Controls = 2h

Ouerview Basic User

FCTLZ, Flash Memory Cantrol Register

15 - 13 1 1 i L] a 7 6 & & a Z k]

Pl - Roal ax M5 md e sedcaas 354 FBECL. Ml [H Fed - P Fra
KICLE - L
[E1, Interrupt Enable Regster 1
7 2 4] H i @
ACCAE
FEL, Imtarrupt Flag Regfsrer 1
5 5 3 M L
B |msa FezdfiNrta regster not availadhe in CU|
o = Fieard a nly ragister

Figure 13.2 Register mode for the flash memory controller.

13.5 Summary

The MSP430G2553 has flash as the nonvolatile memory. This part of the memory holds
the code and constants in our applications. In this chapter, we focused on the flash
memory programming issues. There are several methods to program the flash. In this
book, we only considered flash programming through the CPU. For more detail on other
programming methods, we directed the reader to cited references. We provided sample C
and assembly codes for the CPU-based flash programming. We also considered flash
programming under Grace.

13.6 Problems

13.1 What is the starting address of segments A and B in the flash memory?
13.2 Write a program in C to erase the contents of segment B in the flash memory.
13.3 Repeat Prob. 13.2 in assembly language.

13.4 Write a program in C to erase the contents of segment B in the flash memory.
Then, write the first 10 Fibonacci numbers to this area.

13.5 Repeat Prob. 13.4 in assembly language.
13.6 Research the FRAM technology.

14 Applications

Chapter Outline
14.1 Car Door Alarm
14.2Car Window Control
14.3 Car Park Tollgate
14.4 Digital Lock System

14.5__ Air Freshener Dispenser

14.6_ Traffic Lights
14.7 Sound Detector

14.8 Obstacle-Avoiding Tank

14.9 Car Parking Sensor System
14.10 Fire Alarm

14.11 Wave Generator
14.12 Sports Watch

In this chapter, we provide several applications for the MSP430. These are based on real-
life problems. In these we aim to show the usefulness of the microcontroller in our daily
lives. We provide the circuit layout and the equipment list for each application so that
readers can implement them directly. We also suggest that you check the TT websites for
other MSP430-based applications.

14.1 Car Door Alarm

The goal of this application is to learn how to use the digital input and output (I/O) pins of
the MSP430G2553 microcontroller. As a real-world application, we examine a car door
alarm system. In this section, we provide the equipment list, the layout of the circuit, and
the procedure.

14.1.1 Equipment List

Following is a list of the equipment to be used in this application.
* Five LEDs

* Five 220-Q resistors

* Five push buttons

* One 100-nF capacitor

14.1.2 Layout

The layout of this application is shown in Fig. 14.1.

P1.0 XIN

Pl.1 XouT
P1.2 : TEST—

MSP

P1.3 -:111 RSTL—

Pl4 '11"1. P1.7
—1p1s U530 pret—

> > > > > P2.0 P25

":FF# -""f-- < = 2

221:}{1“?* 22{};} 220_~ gj{}:j} 33D§ 10 E-.J EE: T

S 0 g o> — ez

Q> 0 = 03 a3 405

LEDY/ LEDY/ LEDY LEDY/ LEDY/

© s @ °
—s
0, Q C o))
100_["~ } “"
nF »k o} o, 3! (o
: L L L L

Figure 14.1 Layout of the car door alarm application.

14.1.3 System Design Specifications

The design steps of the car door alarm system are as follows: In the first part of the
application, we will assume that four push buttons are placed between the four car doors
and the chassis. When a button is not pressed, it means that door is open and a warning
should be given. This is done by an LED representing that door. When the same button is
pressed, it means that door is closed now and the warning should be reset (or the LED
should be turned off).

In the second part of the application, a lock button and lock warning LED will be
added to the system. When the lock button is pressed, the car is locked and the lock
warning LED is off. When the lock button is pressed again, it means that the car is
unlocked now. Therefore, the lock warning LED should turn on. Initially, the car is not
locked. Therefore, the lock warning LED must turn on. Also, the lock button cannot be
used if all doors are not closed. As long as the car is locked, doors cannot be opened.
Normally, mechanical systems are used for this purpose. In this application, this property
is simulated by using LEDs. After the car is locked, even releasing the buttons (placed

between the doors and the chassis) cannot turn on the LEDs. This way, we will assume
that the doors are still closed. The user should press all buttons (placed between the doors
and the chassis), then press the lock button in order to unlock the system again.

Hint: In the second part of the application, be careful about the time of pressing the
lock button.

14.2 Car Window Control

The goal of this application is to learn how to use the digital I/O pins of the MSP430
microcontroller. As a real-world application, we design a car window control system. In
this section, we provide the equipment list, the layout of the circuit, and the procedure.

14.2.1 Equipment List
Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator
* One 330-nF capacitor

* One 10-puF electrolytic capacitor
* Two 100-nF capacitors

* One stepper motor

* One ULN2003 motor driver

* Four push buttons

14.2.2 Layout

The layout of this application is shown in Fig. 14.2. For more information on the voltage
supply block, please see Fig. 9.3.

| 16 |

INI OUT1 = Red
—~IN2 OUT2 —— Blue _ _
"I.N3 [JIJN UU‘T}J | \"\"hil\i‘. Stcpp["‘l
[IN4 2003 OUT4 ————— Orange Motor
NS OUT5 — 3 Brown
o IN6 OUTE —
+—— IN7 OUT7 |—
'—8% GND COMMON
12V
_ Iy 20 Voltage
Veo GND - e GND Supply
P1.0 XINf— v :
P1.1 XOUT}—— -
P1.2 TEST}——
MSP
P1.3 430 RSTI——
— P14 Gass3 PLI—
—P15 P16
—P2.0 P2.5}—
P2.1 P24
—ipoo p2.3|1
—
100 _ [2 O . O O
nfF [3 , }7 }7
L]

Figure 14.2 Layout of the car window control application.

14.2.3 System Design Specifications

In this application, we will design a car window control system by using a stepper motor
and push buttons. The stepper motor is used to control a window. Initially, the window is
assumed to be closed. The stepper motor will act in two states: either it will fully open the
window or it will close it. The stepper motor will stop when one of these conditions is
met. The number of stepper motor states to open the window will be decided by the user.
Two of the push buttons will be used to control the direction of the stepper motor. When
the first button is pressed, the stepper motor will start to rotate in one direction until the
window is fully open. When the second button is pressed, the motor will rotate in the other
direction until the window is closed. The user may press the other button when one of the
buttons is pressed. The third button will be used to stop the rotation. Therefore, the

window will be half open when it is pressed. The last button will be used for child
protection. It will lock the system when it is pressed once. The system will be unlocked
and can be used again when the last button is pressed again.

14.3 Car Park Tollgate

The goal of this application is to learn how to set and use port interrupts of the MSP430
microcontroller. As a real-world application, we design a car park tollgate system. In this
section, we provide the equipment list, the layout of the circuit, and the procedure.

14.3.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* One 10-pF electrolytic capacitor

* One 100-nF capacitor

* One 16%2 character LCD (with a Samsung processor)
* One 10-kQ2 potentiometer

* Two IR transmitter LEDs

* Two IR receiver LEDs

* Two 10-kQ resistors

* Two 220-Q resistors

The IR transmitter LED conducts current when V. is applied to its anode. Here,
the cathode is connected to ground through a 220-Q resistor. It emits IR light when this
current is conducted. On the other hand, the IR receiver LED conducts current when a
positive voltage is applied to its cathode through a 10-kQ resistor and its anode is
connected to ground. Also, it must absorb IR light to conduct current. This property is
critical for the working logic of the IR sensor used in this application. In terms of logic
level, when the light is absorbed by the receiver (with V. present, of course) it gives zero.
Otherwise, it gives one.

14.3.2 Layout

The layout of this application is shown in Fig. 14.3. For more information on the voltage
supply block, please see Fig. 9.3.

Ber 20 -
—VYec GND 12V
P1.0 XIN— Voltage
PI.1 XOUT}— GND gy5ply
— P12 \gp TEST— 5V i
— P13 RST *
— P14 430 p;
—1Pl1.5 (2553 Pl.6—
) 4 P2.0 P2.5|—
P2.1 P24—
10 11
P22 2.3}
10 10 <
L£2<"> kQ ;
T ﬂ N
"y Y
& & LCD MODULE
14131211109 8 76 54 3 2 11615
) ‘ | T 11 | l |]
L L :
AN AN
LN N *
o 103 e
’}".\.[}{:: T’ﬂ{:} T
RS0 S — T
< e Pot ’
T ®

Figure 14.3 Layout of the car park tollgate application.

14.3.3 System Design Specifications

In this application, a car park tollgate system will be designed by using two infrared
sensors and an LCD. One sensor can detect the movement, but cannot decide on its
direction. Therefore, two sensors will be jointly used to detect the movement and its
direction (entering to or exiting from the park). The LCD will be used to provide
information on the status of the park. In the first line of the LCD, entering and exiting car
numbers will be displayed. In the second line, the number of cars inside the park at that
moment will be displayed. Be careful—when the number of cars inside the car park is
zero, there will be no exiting process.

14.4 Digital Lock System

The goal of this application is to learn how to set and use the port interrupts of the
MSP430 microcontroller. As a real-world application, we will design a digital lock

system. In this section, we provide the equipment list, the layout of the circuit, and the
procedure.

14.4.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

» Two 10-pF electrolytic capacitors

* One 1-pF electrolytic capacitor

* One 100-nF capacitor

* One 16%2 character LCD (with a Samsung processor)
* One 10-kQ2 potentiometer

« Two LEDs (green and red)

* Two 220-Q resistors

* One solenoid

* One ULN2003

* One MM74C922

* Two buzzers

* One 4%3 keypad

* One push button

14.4.2 Layout

The layout of this application is shown in Fig. 14.4. For more information on the voltage
supply block, please see Fig. 9.3.

Green

L ouTIHE * LN
N2 oUT2 —
N3 ULN OUT3 b —
N4 2003 OUTY}— H
bl Himel Solenoid 290
ING OUTE|— KO
N7 ouT7 | — l
8laND coMMON 2 ®
— 12V
— GND|2 l +—{GND g”lmigﬁ
—iPLD XIN o upply
BUZZER Pl1.1 XouT AY
P12 MSP TEST p——
P13 i) RST——
BUZZER * e
— ——p1s P16 T
PO P25— I Lo
P21 P24
P26
220 553
7 3.
LCD MODULE
- |4|3121|1|:}£,|u|3irﬁ543g11|f.1|5 ¢-—— GND >
i +—i 5>
LED | ot
L
& L 3
Y
o 10-kQ)

Z P95
< P26
< P27
P15
5V
~GND
“¥
HVee Y= 123
B Y3 - |
c va 4 15 . 6
D MM74 NC
—INC (922 OSC ENE
clOE KBM .
DA X4 0| #
X X3
Iﬂxz GND Hle!
410 _[+1
= | T uE
&8

Figure 14.4 Layout of the digital lock application.

14.4.3 System Design Specifications

In this application, we will design a digital lock system with a keypad, an LCD, and a
solenoid. Initially, Enter Your Password is written on the first line of the LCD, and the
system must wait in a suitable low-power mode. When there is an entry from the keypad,
the system exits from the low-power mode and writes * on the second line of the LCD.
Each * sign represents an entered number. If the * button on the keypad is pressed, the
system erases the last entry. If the entered password is wrong, an Access Denied string is
written to the second line of the LCD and the red LED is turned on. Also, the buzzer
connected to the same pin with the red LED starts to beep. After 2 s, the system returns to
the initial condition by turning off the red LED and stopping the buzzer. If the entered
password is correct, an Access Granted string is written to the second line of the LCD.
The solenoid is opened, and the green LED is turned on to indicate that the door is opened.
Also, the second buzzer beeps for 2 s. After the door is opened, the user has two choices.
First, the door can be closed by using the push button. Then the system returns to the

initial condition by turning off the green LED and closing the solenoid again. Second, the
password can be changed after pressing the # button on the keypad. Then a Change
Password string is written to the first line of the LCD and after this process is completed.
Meanwhile, the Change Password string will be changed to a Password Changed string.
After this step, the system can return to the initial condition by pressing the push button.

14.5 Air Freshener Dispenser

The goal of this application is to learn how to set and use timers and low-power modes of
the MSP430 microcontroller. As a real-world application, we will design an air freshener
dispenser system. In this section, we provide the equipment list, the layout of the circuit,
and the procedure.

14.5.1 Equipment List

Following is a list of the equipment to be used in this application.
* Five LEDs

 Five 220-Q resistors

* Three push buttons

* Two 100-nF capacitors

14.5.2 Layout

The layout of this application is shown in Fig. 14.5.

— Ve GND
P1.0 XIN
Pl1.1 XOUT———
P1.2 « TEST|—
—1P1.3 T:{r RST—
D T O - B | s—
Plj {rz."!:'rj Plﬁ
- b — P20 P25
5 ~ 00
zzn:,“‘:“} 220 > 220_> 02! Ir:*i -
¥ T LY T £ Lo 2.2
< < <
LEDY/ LEDY/ LEDY/]

LEDY/ LEDY/

100_| © = o | ©
MF T o 5! nF T O|

Figure 14.5 Layout of the air freshener dispenser application.

14.5.3 System Design Specifications

The design steps of the air freshener dispenser system are as follows: In the first part of
the application, an air freshener dispenser with three different programs is implemented.
These programs are called short, medium, and long. They correspond to the spraying of
fresh odor in 5-, 10-, and 15-s periods. In an actual system, these should be in minutes.
Also, the spraying operation should be done by a mechanism in an actual system. We
simulate this operation by turning on an LED for one second. In our system, one push
button will be used to switch between programs. Three LEDs will be associated with the
programs. Therefore, selecting each program will turn on the associated LED. There is
also an instant spray button. When it is pressed, the system will spray the odor and reset
the counting process. Also, in this part, one of the three programs must be selected as the
initial starting program.

In the second part, an on/off button and a warning LED will be added to the system.
When the system is in the off state, all LEDs are turned off and the system goes into an
appropriate low-power mode. All buttons except the on/off button will be unavailable in

this state. When the system turns on by this button, the warning LED will turn on. This
LED should blink for a 1-s period during operation. Initially, the system must be in the off
state.

Hint: The watchdog timer can be used for the restarting process in the second part of
the application.

14.6 Traffic Lights

The goal of this application is to learn how to set and use timers and low-power modes of
the MSP430 microcontroller. As a real-world application, we design a traffic lights
system. In this section, we provide the equipment list, the layout of the circuit, and the
procedure.

14.6.1 Equipment List

Following is a list of the equipment to be used in this application.
* Five LEDs (two green, two red, one yellow)

* Five 220-Q resistors

* One push button

14.6.2 Layout

The layout of this application is shown in Fig. 14.6.

L= GNDJ22
P10 XINf—
P1.1 XOUT—
L2 eus THSTE—
—P1.3 '“;I RST—
— lprg 0 gl
—1{p1.5 G2353 prgl
= = — P20 P25l
20> 220 220 > T s T
S e < 10/py.2 P2.3
Q o 9] 2 Q {:,,s
Green Yellow Red
LEpY DY LDV .
220 < 220 =
* o Q Q =
L= R
Green Red
LED ¥ LED ¥
C};

Figure 14.6 Layout of the traffic lights application.

14.6.3 System Design Specifications

In this application, we will design a traffic lights system for a street with a crosswalk.
Three of the LEDs (green, yellow, and red) are for the cars. The other two LEDs (green
and red) and the push button are for pedestrians. When the push button is not pressed, the
system works in a loop as follows:

- State 1: The green LED for cars is turned on for 90 s. During this time, the red LED is
turned on for pedestrians.

« State 2: The yellow LED for cars is turned on for 5 s. During this time, the red LED is
turned on for pedestrians.

« State 3: The red LED for cars is turned on for 20 s. During this time, the green LED is
turned on for pedestrians.

+ State 4: The red and yellow LEDs for cars are turned on for 5 s. During this time, the
red LED is turned on for pedestrians.

If a pedestrian pushes the button in State 1 after 60 s, the system will jump to State 2. If
the button is pressed before 60 s, the system will wait until 60 s has passed. Then it will
jump to State 2. If the system is in State 3 or State 4, the push button will not be activated
and cannot be used.

14.7 Sound Detector

The goal of this application is to learn how to use the ADC module of the MSP430
microcontroller. As a real-world application, we design a sound detector system. In this
section, we provide the equipment list, the layout of the circuit, and the procedure.

14.7.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* One 100-nF capacitor

* One 47-nF capacitor

* Four 10-uF electrolytic capacitors

* One 220-pF electrolytic capacitor

* One LM386 low-voltage audio power amplifier
* One electret microphone

* Two 7-segment displays

Two 74HC595 shift registers

Fourteen 220-Q2 resistors

One 10-Q resistor
One 10-kQ resistor
14.7.2 Layout

The layout of this application is shown in Fig. 14.7. For more information on the voltage
supply block, please see Fig. 9.3. In Fig. 14.7, all resistors connected to the 7-segment
display are 220 €2.

v onDL
P10 XINp—
—PL.I XOUT|—
—iPl.2 MsP TEST p—
— P12 430 RST|—
Pl ey Pl
—Jpis G253 el
PO P25l —
e P21 Prd—
< P20 }—— 10p2.2 paafl
P21
P22
< sV | .
- 12V
GND -
GND Volage
Supply
< P20 |
< P21
D |
J <
—<v]
—<_ GND|
{1 Ve —{01 Vool ‘
—— e Q0f— 2 Qo
Q3 DS 03 DS —
4 T4HC OF— 4 T4HC BE|H—
Q5 zgx STCP Q5 595 STCP
06 SHCP 06 SHCP
=7 MR =07 AR
GHD Q75 GND QIS
B i E .
£ com a _'
L
L
%.?b?i‘i“%
|

Figure 14.7 Layout of the sound detector application.

14.7.3 System Design Specifications

In this application, we will design a sound detector system. The sound will be converted to
an electrical signal by the electret microphone. Then this signal will be amplified to the
appropriate level with the audio amplifier. The audio amplifier will give approximately 2.5
V to its output when there is no sound in the environment. When the user snaps his or her
finger, the system will detect it. The voltage level which detects the snap sound can be
arranged by the user. After each detection, a short delay must be added to avoid detecting
echoes. The number of snaps detected will be shown on two 7-segment displays as a two-
digit number. When a new snap is detected, this number will be increased by one. When
the snap count reaches 99, it will be reset (to 00). Initially, the 7-segment displays show
00. Shift registers are connected as a cascade. Therefore, be careful about when the digit
sequence is sent to them.

14.8 Obstacle-Avoiding Tank

The goal of this application is to learn how to use the ADC and PWM modules on the
MSP430 microcontroller. As a real-world application, we will design an obstacle-avoiding
tank. In this section, we provide the equipment list, the layout of the circuit, and the
procedure.

14.8.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* One 10-pF electrolytic capacitor

* Two 100-nF capacitors

* One push button

* Onered LED

* One 220-Q resistor

* Two 12-V dc motors

* One L293D motor driver IC

* One GP2Y0A21YK proximity sensor
14.8.2 Layout

The layout of this application is shown in Fig. 14.8. For more information on the voltage
supply block, please see Fig. 9.3.

s 16
INHI Ves
|1 INI IN4 1]
Ve OUTI OUT4 v+
12 V-dc GND GND 12 V-dc
” 1.293D
Motor : GND GND l Motor
- ﬁflan (}LIITIi %
0 . % 0
I 8lye iNH2 2 -

12V

5V

anp Yoltage

Supply

1 20
NE..: 2 GND
P1D XINp—
[H{P1.1 XOUTp—
PI2 ppgp TEST—
P13 _Jll“: RSTH—
—{p1a * 17—
— P15 G353 prel
— P20 P25—
P21 P24
o 00 12{]‘:} 101p22 p2.30LL
_| T,
c[nF Q
Ve
LEDY]
OUT GP2Y0
AZIYK

GND
@ T

Figure 14.8 Layout of the obstacle avoiding tank application.

14.8.3 System Design Specifications

In this application, we will design an obstacle-avoiding tank with a proximity sensor and
two dc motors. GP2Y0A21YK is an analog proximity sensor which gives voltage values
between 3.1 and 0.4 V for 10-80 cm distance values (please see device specific datasheet).
The tank should check the obstacle distance every 0.2 s. The tank will move forward if
there is no obstacle closer than 15 cm. This step is carried out by rotating the dc motors in
the same direction with a suitable PWM signal. The tank should move backwards
diagonally if there is an obstacle closer than 15 cm. This is achieved by stopping one of
the dc motors and rotating the other in the reverse direction with a suitable PWM signal.
During this phase, the tank should check the obstacle distance continuously. If there is no
obstacle closer than 15 cm, the tank should continue to move in that direction. Then it
should return to check the obstacle distance every 0.2 s. The system can also be turned off
and on by a push button. This operation must be accomplished by a suitable low-power

mode. The red LED should be turned on if the system is working.

14.9 Car Parking Sensor System

The goal of this application is to learn how to use the ADC and PWM modules on the
MSP430 microcontroller. As a real-world application, we design a car parking sensor
system. In this section, we provide the equipment list, the layout of the circuit, and the
procedure.

14.9.1 Equipment List

Following is a list of the equipment to be used in this application.

One 12-V dc adaptor

One LM7805 voltage regulator
One 330-nF capacitor

One 10-pF electrolytic capacitor
One 100-nF capacitor

One buzzer

One light-dependent resistor (LDR)
One 12-V dc motor

One L.293D motor driver IC

One 10-kQ potentiometer

14.9.2 Layout

The layout of this application is shown in Fig. 14.9. For more information on the voltage
supply block, please see Fig. 9.3.

INHI Voo 8
1 IN1 INg —
La OUTI OUT4 |—
2 Voe GND GND
I‘. V Llc __ I.Zg][] i
Motor EUNU (—'NU:
v OUT2 OUTI —
0 IN2 IN3 —
Blve INH2 P—
.
12V
GND Voltage
Supply
| = — 20
— v, GND|—e
P10 XINpb—
—1PL1 XOUT —
Pl1.2 .oi TEST}—
—pa MSP ool
_ pra 430 prg
p1s G2553 prel—
BUZZER P2.0 P25+——
L ——P2.1 P24 f—
10p2a Pl
[
+
LDR
S
10-kQ 7
Pot

Figure 14.9 Layout of the car parking sensor application.

14.9.3 System Design Specifications

In this application, we will design a car parking sensor system using an LDR (as a sensor),
a buzzer (as warning), and a dc motor. First, we should calibrate the ADC input.
Therefore, we should first construct the LDR potentiometer pair as shown in Fig. 14.9.
Then the calibration can be done by changing the potentiometer value. In calibration, the
ADM10MEM value should be nearly 50h when there is no light on the LDR. The
ADC10MEM value may change depending on the light conditions of the medium when
there is full light on the LDR. Therefore, a maximum value must be chosen to eliminate

this effect. For this application, the maximum value will be 200h. Finally, the
ADC10MEM values must be mapped to a variable with the following constraints.

* If the ADC10MEM value is less than or equal to 50h, it is mapped to Oh in the
variable.

« If the ADC10MEM value is greater than or equal to 200h, it is mapped to 200h in the
variable.

* If the ADC10MEM value is between 50h and 200h, it is mapped to the interval [50h,
200h] in the variable.

Then this variable is used to generate a PWM by feeding it to the related timer
register. The ADC register is 10 bits. The timer register (and the associated variable) is 16
bits. Therefore, the most significant 6 bits of variable and the timer register must be zero.
Also, if variable equals Oh, which means that there is a danger of a crash, the motor
should be stopped.

We should construct a lookup table for the buzzer warning part. This table will be a
constant array with 32 elements which cover the interval [Oh, 50h—200h]. The table will be
used as follows:

 The buzzer will stop for the first element of the array (which covers the input between
Oh and 50h).

« If the value is greater than 1COh, it means there is no danger of a crash. Therefore, the
buzzer will stop for the elements between 1COh and 200h.

 The buzzer beeps with different gaps for the rest of the elements. These gaps can be
obtained by using the delay ms() function mentioned in Sec. 10.10. Gap values will be
kept in another lookup table. A group of elements can share the same gap value. These
gaps will be long when the obstacle is away, and they will start to decrease when
approaching the obstacle.

14.10 Fire Alarm

The goal of this application is to learn how to use the ADC and timer modules on the
MSP430 microcontroller. As a real-world application, we will design a fire alarm system.
In this section, we provide the equipment list, the layout of the circuit, and the procedure.

14.10.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* Two 100-nF capacitors

* One 10-pF electrolytic capacitor

* One push button

* Two LEDs (green and red)

Two 220-Q resistors
* One relay
One ULN2003

* One buzzer

One MQ-2 gas sensor

One 50-kQ2 potentiometer
14.10.2 Layout

The layout of this application is shown in Fig. 14.10. For more information on the voltage
supply block, please see Fig. 9.3.

50-k€2
Pot

N

Green
LN ouTT e * LED
{2 ourz}— ——
Ve(A) OUT(R) : ULN |
VeeH) GNDAH | ® i OUT-—
o ‘ IN5 OUTS — 220
Vel A) OUT(B)|—e NG OUT6 — Q
{INT Dl_l'l"]’i—
—|GMD C'DMMDNE';
WVolts
SN (5] G e GND gu: Ife
PLO XIN|— sy PP
—{PL.I XOUT — -
B e T
—{p14 430 p 7l
BUZZER ——— P1.5 G2553 pref—
L | —{P2.0 P2.5—
—{P2.1 P24|—
0p22 praftl
]
220
l{]'l]__ _ | vR"‘i
:]
°

Figure 14.10 Layout of the fire alarm application.

14.10.3 System Design Specifications

In this application, we will design a fire alarm system with MQ-2, relay, and a buzzer.

MQ-2 is an analog sensor which has high resistance to clean air. This resistance starts to
drop when smoke exists in the environment. The sensitivity of the sensor can be arranged
with a potentiometer connected between its output and ground pins. The system should
check the smoke level every 5 s. In idle times, it should stay in a suitable low-power
mode. If the smoke reaches a dangerous level (selected by the user), then the system
should turn off the main electricity of the house by disconnecting the relay. The green
LED will be turned off to show that the relay is disconnected. Also, the buzzer should start
to beep with a 0.5-s interval. The system can be turned off and on by using a push button.
This operation must be accomplished by a suitable low-power mode. If the system is
working, the red LED will flash every 30 s.

14.11 Wave Generator

The goal of this application is to learn how to use an external DAC IC with the MSP430
microcontroller. As a real-world application, we will design a wave generator system. In
this section, we provide the equipment list, the layout of the circuit, and the procedure.

14.11.1 Equipment List
Following is a list of the equipment to be used in this application.

* Two 12-V dc adaptors

One LM7805 voltage regulator
* One 330-nF capacitor

* Three 100-nF capacitors

* One 10-pF electrolytic capacitor
* One UA741 OpAmp

* One 10-kQ2 potentiometer

* One DACO0808 8-bit D/A converter
* One 220-Q resistor

* One 5-kQ resistor

* One 2.5-kQ resistor

* Five push buttons

* One red LED

14.11.2 Layout

The layout of this application is shown in Fig. 14.11. For more information on the voltage
supply block, please see Fig. 9.3.

g e N 5k
1 oc llrj\“.-J - -) s I,-"'-. I,-""\._' II.'J\'-
AR
P1.2 ‘TesTI— | [T—6NP . VREF(-)| g e
PI.; MsI* R-HT— — VEE DAL \"RI-'.Fr;+|" WA 1
pia 430 pral_ — o U508 Vee *
Si% Pased Tial Al(MSB) AS(LSB)
13 255] 6 [A2 AT
P20 P2.5 [
Pl P24 L a3 AB
A s 5 P23 qL*‘_ Ad "ﬁﬂ
» GND 4.
L1 g 1 —+— 12V Adaptor
_ — —t1 T1ay
.-"_-\. . I - o
220, | {GND Yollage
o {-"-.-I o, ™~ ~y & S1Ipr.|}‘
52 < H_'":'l__ e | s, | ,_,l (_‘.‘-l o 1 5: v
FE==| : | | [.
o ry 8] ") o — I
Ri.l'il 'xi.r' » Dffset NC L
LED | Mull 1 o
|Inverting Vet
t Inpun LA ™
. & . . . Non- 7H ouputl— ¢ oUT ™
Inverting o
Input Offser |
Pap= ull 2
10-kL2 1
Pot

Figure 14.11 Layout of the wave generator application.

14.11.3 System Design Specifications

In this application, we will design a wave generator with an external DAC IC. The wave
generator will have four signal options: sine, square, sawtooth, and triangle. These can be
selected by four push buttons. Also, there will be another push button to turn off/on the
system. This operation must be accomplished by a suitable low-power mode. The red LED
will indicate the state of the system. Initially the system will be turned off. Hence, the red
LED is turned off. When the system is turned on by pressing the turn on/off button, the red
LED will turn on. The desired signal can be fed to output by pressing the related push
button. Four lookup tables must be created within the code for four different signals. The
user will decide on the properties of these signals (such as the period and the number of
samples). DCO must be calibrated to 16 MHz to obtain higher frequencies. The user will
have an option to change the amplitude of the generated signal by trimming the 10-kQ
potentiometer connected to the UA741 OpAmp.

14.12 Sports Watch

The goal of this application is to learn how to use the digital communication block on the
MSP430 microcontroller. As a real-world application, we will design a sports watch. In
this section, we provide the equipment list, the layout of the circuit, and the procedure.

14.12.1 Equipment List

Following is a list of the equipment to be used in this application.
* One 12-V dc adaptor

* One LM7805 voltage regulator

* One 330-nF capacitor

* One 100-nF capacitor

* One 10-pF electrolytic capacitor

» Two push buttons

» Two 10-kQ resistors

* One 390-Q resistor

* One 16%2 character LCD (with a Samsung processor)
* One 10-kQ potentiometer

* One Hoperf HDPMO1 sensor

* One 32-kHz crystal oscillator

* One 3.3-V Zener diode

14.12.2 Layout

The layout of this application is shown in Fig. 14.12. For more information on the voltage
supply block, please see Fig. 9.3.

m% %m

RS> >ke

MCLK SCLK
HDPM
XCLR SDA P
01
(1
: | 390 Q
1 >
Ve GO 12V
PLO XIN l Volt:
P11 XOUT | GND 53::;‘55
Pl.2 o PRET T3 kHz —I5V 4
pia MSP pep _ﬁ—
Pla 430 p17 -
P15 ;2553 Pl.a
P20 P25l
P2.1 P4l
10/p 2 p2.3|L]
& & LCD MODULE
" o5 J_-HJIE[]J;CHJ_‘STE:’SilS_?Illﬁllﬁ
| |
L
* ®
K
10-kQ
L I.J.*t'.t
,‘ £

Figure 14.12 Layout of the sports watch application.

In Fig. 14.12, the MCLK pin of the HDPMO1 sensor is connected to pin P1.0 of the
MSP430 because this pin must be driven by a 32-kHz clock signal. The user can give the
ACLK directly from pin P1.0. Also, be careful about the RS and E pins of the LCD. Until
now, these pins were connected to pins P1.6 and P1.7 of the MSP430. However, in this
application pins P1.6 and P1.7 are used by the I?C mode. Therefore, pins P1.4 and P1.5 are
connected to the RS and E pins of the LCD. The user should change the code sections
related to these pins in the LCD header file given in Listing 10.21.

14.12.3 System Design Specifications

In this application, we will design a sports watch with an HDPMO1 sensor and LCD.
HDPMOL1 is a multifunctional sensor which detects temperature, air pressure, altitude, and

location. Therefore, the designed sports watch will display these values. Two push buttons
will be used to select the temperature-pressure and altitude-compass screens on the LCD.
Initially, the watch should show the time. When one of the push buttons is pressed, the
related data will be obtained from the sensor. It will be displayed on the LCD for 10 s.
Then the watch will show the time again. An external crystal will be used in this
application. Therefore, all timer-based operations should be using the ACLK supplied by
the LFXT1 oscillator.

15 Appendix

Chapter Outline
15.1 MSP430 Intrinsic Functions
15.2 MSP430G2553 Header File
15.1 MSP430 Intrinsic Functions

Listing 15.1 Header file containing MSP430 intrinsic functions.

f'* __ & S
A* ind30.h

/% Intrinsic function prototypes and convenience mapping */
/* macros for migrating code from the IAR platform. i
F i T
A* Ver | dd mmm yvyyy | Who | Description of changes .
[* =====|============o|z===s==|=====s=ssss=s=s=ssssossos=oo== %/
A* 0.01| 06 Apr 2004 | A.D. | First Prototype g
A% 0.02] 22 Jun 2004 | A.D. | File reformatted .
./i' __ 9.'/

#ifndef = IN430H
#define = IN430H

;" B e e e e e e g e g e e e e ey g e e g e e :'.';"
¥ COMPILER INTRINSIC FUNCTTONS 7
R s e e s s e e st s e *

vold enable interrupts(veold);

vold disable interrupts(vold);

unsigned short hTic SE register (unsigned short mask);
unsigned short bic SE register on exit(unsigned short mask);
unsigned short bTis SE register (unsigned short mask);
unsigned short bis SE register on exit{unsigned short mask);
unsigned short _ge=t SR register(vold);

unsigned short get SE register onexit(vold);

unsigned short swap byvtes (unsigned short src);

vold nop(voild);

vold never.executed(void);

##define EINT() -enable_interrupts|()

ffdefine DINT() disable.interrupts()

#define BIC.SE(x) bic.SR register (x)

##define EBIC.SE-IROQ (x) bic. SR.register.on-exit (x)

##define BIS.SE(x) bis SR register (x)

ffdefine EIS_SE-IROQ (x) :bis SR.register.-on-exit (x)

##define SWADP EYTES (x) -swap-bytes (x)

#define NOP() nopl)

/ R S S P S N G P P S S VS O R S PP VP P R PR 1'."(2‘
% INTRINSIC MAPPING FPOR TAR V2. XX/V3.XX L
B e e e e e e e e e e e e et Y e e e i e e e i 10.-/'
fidefine enable interrupt() _enable interrupts ()
fdefine disable interrupt() _disable interrupts()
fidefine Lic SR register(x) bic SR register(x)

fidefine bic SR register onexit(x) _bic SE register onexit(x)
fidefine Lis 5R register(x) bis SR register (x)

fdefine bis SR register onexit(x) _bis SE register onexit (x)
fidefine get SR register() _get SE.register{)

fidefine = get SE register onexit() _get SE register onexit()
fidefine swap bytes(x) _swap.-bytes (x)

f#define = no operation() nop ()

#endlf /* __IN430.H */

15.2 MSP430G2553 Header File
Listing 15.2 MSP430G2553 header file.

/ﬂ ok ok o o o o o o o o o o ok o o ol ol ok ok o o ol ol ol ol ol ol ol o ol ol o ol o o o o o o ol ol ol o o ol o o R o o o o o o

W

* Standard register and bit definitions for the
*Texas Instruments MSP430 microcontroller.

This file supports assembler and C development for
MsP430c2553 devices.

Rev. 1.0, Setup

o
o
o
o
* Texas Instruments,
o
o
o
o

Version 1.0

ol ol ol ol ol ol ol o o o o o o ol o o o ol o ol ol ol ol o ol o o o o o o o o o ok o oF o o o o o o OF oF oF oF oF oF oF o o of of o o o

#ifndef - MSP430C2553
#define - MSP430c2553

#ifdef -_cplusplus
axtern "CT* |

fendif

/% External references resolved by a device-specific linker

command fila */

#define SFR BEBIT {address) extern wolatile '
uneigned char address

#define SFR 16EIT(address) extern wolatile
unsigned int address

_fl* ol ol ol ol ol ol ol o o ol ol

* STANDARD BITS

ook o ol o o o o o o o o R o */

#define
#define
#define
#define
#tdefine
f#idefine

BITO
BIT1
BIT2
BIT3
BIT4
BITS

(00001)
(0:x0002)
(020004}
{00008}
(00010}
(00020}

#define BITE (0x0040)
#define BITT (0x0080)
#define BITE (0x0100)
#define BITO (0x0200)
#define BITA (0x:0400)
#define BITE (0x0B00)
#define BITC (0x1000)
#define BITD (0x2000)
#define BITE (04000}
#define BITF (0xB000)

S R A AR R R R R

¥ STATUS RECISTER BITS

Wl ol ol ol ol ol ol II'-/

#define C (0xcG0GL)
#define =& (0xG002)
#define I (0x0004)
f#idefine V (0x0100)
#define CIE (00008}

#define CEUCFF (0x0010)
#define OSCOFF (0x0020)
fidefine SCC0 { Dx0040)
fidefine S5CC1 { 00080}

£* Low Power Modes coded with Bits 4-7 im SR */

S* Begin #defines for assembler */
#ifdef ~ASM HEADEHR -

fidefine LFM0 (CPUOFF}

#define 1.PM1 (SCCO+CPUOFF)

f#define 1L.PMZ (SCC1+CPUOFF)

fidefine LEMI (SCCl+8CC0+CPUCER)
fidefine LFPM4 (SCC1+3CC0+0S5COFF+CPUDEF)
/% End gdefines for assembler */

flelse /* Begin #defines for C */

fidefine LPFMO bits (CPUDFF)

#idefine LFM] bits (SCE0+CPUOFF)

#idefine LPMZ bit= (SCC1+CPUIFF)

#define LPM3I bits (SCEl+5CG0+CPUCEF)
f#idefine L.PM4d bits (SCC1+3CCO+0SCOFF+CPUOEE)

#include “ind3i0.h"

/¥ Enter Low Power Mode 0 */

#idefine LEPM[bis SR register (LPMO-bits)

A% Exit Low Power Mode 0 */

f#idefine LPFMO EXIT bic SR register on exit (LPMJ bits)
/% Enter Low Power Mode 1 */

f#idefine LEMI] bis SR register (LPFM1 bits)

/% Exit Low Power Mode 1 */

##idefine L.PM]1 EXIT bic SH register omexit(LPM1l bits)
/* Enter Low Poweor Mode 2 */

#define LEMZ bis.- SR register (LPM2.bits)

/* Exit Low Power Mode 2 */

#define LPMI_EXIT .bic.SR.register.on.exit (LFMZ.hits)
A£* Enter Low Power Mode 3 */
$define LFM3 Ppis.SR.register (LPM3.bits)

/* Exit Low Power Mode 3 */
#define LPMI.EXIT bic.SR.register onexit(LPM3 bhits)
S/* Enter Low Power Mode 4 */
#define LPM4 bis SR register (LPM4d. bits)

F* Exit Low Power Mode 4 */
#define LPH4.EXIT .bic SR.register.on.exit(LPH4.bits)
#endif /* End #defines for ¢ */

fi @ ok ok A ook R ok ob ok o

* PERIPHERAL FILE MAFP

LA R B R R R R if

/* L E s s S S R R E RS RS R RS R R PR R R R R R R R R R R

* SPECIAL FUNCTION REEGISTER ADDRESSES + CONTROL BITS

diddgdddg Rl dddd b i ddddidFpdid i dsddddiid * 7

SFR.BBIT(IEl); /* Interrupt Enable 1 */

#define WDTIE (0x01) /* Watchdog Interrupt Enable */
#define COFIE (0x02) /% Osgc. Fault Interrupt Enable */
#define MMIIE (0xI0) /% NMI Interrupt Enable */

#define ACCVIE (0x20)

#* Flash Access Violatlion Interrupt Enable */

SFR.BBIT{IFGl); /% Interrupt Flag 1 */

f#define WDTIFG (0x0l) /* Watchdog Interrupt Flag */
#define OFIFG {0x02) /* Oz¢. Fault Interrupt Flag */
#define PORIFE (0x04d) /% Power On Interrupt Flag */
#define RSTIFG (Ox08) /* Reset Interrupt Flag */
$define MMIIFG (0x10) /% NMI Interrupt Flag */

SFR.EBITI(IEZ) ; A% Interrupt Enable 2 */
#define UCOIE IE2

#define UCAORXIE (Ox01)

#define UCAOTXIE (0x02)

#define UCBORXIE (0x04)

#define UCBOTXIE (0x08)

SFR.8BIT(IFGZ); £ Interrupt Flag 2 */
#define UCOIFG IFG2

f#define UCAOURXIFG (0x01)

#define UCAOTXIFG (0x02)

#define UCBORXIFC (0x04)

#define UCBOTXIFG (0x08)

/1 LR R

* ADC1O0

L b *;

S* Definition to show that Module 1s awvailable */
$#define . MSP430.HAS ADCLO..

SFR.EBIT(ADCLODTCO) ;
A* ADCIQ Data Transfer Contrel 0 */
SFR-EBIT{ADC10DTCL) ;

A* ADC10 Data Transfer Control 1 */
EFR.EBIT(ADC10RECD) ;
S* ADC10 Analog Enable O */

SFR.16BIT(ADCLOCTLO); #* ADCIO Contrel 0 =/
SFR.1IGBIT(ADCLOCTL1) ; /* ADC10 Control 1 */
SFR1EBIT(ADCLOMEM) ; /™ ADC10 Memory */
SFRL16BIT(ADCL1054) ;

A* ADC10 Data Transfer Start Address */

F* ADCIOCTLO */

#define ADCIOSC (0x001)
A* ADCIO Start Conversion */
#define ENC {0x002)

S* ADCIQ Enable Conversion */
#define ADCLOIFG (Ox004)
ST ADCIQ Interrupt Flag */

#define ADCIOIE (0x008)

S* ADCIQ Interrupt Enable */
f#tdefine ADCLOON (0x010)

F* ADC10 On/Enable */

#define REFON {00207

A* ADC10 Reference on */
#define REFZ_ 5V (O040)

F* ADCIQ Ref 0:1.5V / 1:2.5V */
#define M3C {0x080)

F* ADCIO Multiple SampleConversion */
#define REFEURST (0x100)
A* ADC10 Reference Burst Mode */

#define REFOUT (0x200)
£* ADC10 Emable output of Ref. */
#define ADCI0SE (0x400)

£ ADCIQ sampling Rate 0:200ksps ¢ 1:50ksps */
#idefine ADCLOSHTO (0x800)

S* ADCIO Sample Hold Select Bit: O */

#define ADCLOSHT1 (0x1000)

F* ADC10 Sample Hold Select Bit: 1 */

#define SREFOD {0x2000)
A* ADC10 Reference Select Bic: O %/
#define SREF1L (0x4000)
£* ADC10 Refersnce Select Bit: 1 */
#define SHEFZ [Ox2000)

S* ADC1Q Reference Select Bitc: 2 */
#define ADCIOSHT.O (O0*0x800u)

F* 4§ x ADCI0OCLKs */

#idefine ADCIOSHT.L (1*0x800u)

S8 x ADCIOCLEs */

#define ADCI0SHT 2 (2*0xB00u)

/* 16 x ADCIOCLEs */

#define ADCLOSHT.? (3*0x800u)

F* 6d x ADCIOCLEs */

f#idefine SREF.0 (0*0x2000u)
A* VR+ = AVCC and VR— = AVSS */

#define SREF.1 (1*0x2000u)

S* VUR+ = VREF+ and VR— = AVSS */

#define SREF.Z (2*0x2000u)

S* VB+ = VEREF+ and VR- = AVSS */

#define SREF.3 (3*0x2000u)

7* VR+ = VEREF+ and VR— = AVSs */

#define SREF.4 (4*0x2000u)

A% VR+ = AVCC and VR- = VREF-/VEREF- */
#define SREF.S (5*0x2000u)

/* VR+ = VREF+ and VR- = VREF-/VEREF- */
$#dafine SREF.6 (6*0x2000u)

i* VR+ = VEREF+ and VE- = VREF-/VEREF- */
$define SREF.7 (7*0x2000u)

/* VR+ = VEREF+ and VR—- = VREF-/VEREF- */

S ADCIOCTLL */

fidefine ADCIOBUSY (0x0001)

ST ADCIQ BUSY */

$defina CONSEQD {0x0002)

A* ADCIQ Conversion Segquence Select 0 */
#define CONSEQL {0x0004)

A* ADCIQ Conversion Sequence Select 1 */
#define ADCI0SSELO (0x0008)

F* ADCIO Clock Source Select Bit: 0 */
#define ADCIOSSELL {0x0010)

A* ADCI0 Clock Source Select Bit: 1 */
#define ADC10DIVO (0x0020)

A* ADCI10 Clock Divider Select Bit: 0 */
f#idefine ADCIODIV1 (0x0040)

F* ADC10 Clock Divider Select Bit: 1 */
$#define ADCLIODIVZ (O0x0080)

JS* ADCI0 Clock Divider Select Bit: 2 */
#define ISSH {0x0100)

A* ADCIR Invert Sample Hold Sigmal */
#define ADCIODF (0x0200)

F* ADCI1@ Data Format O:binary 1:2's complement */

$#dafine SHSO {0x0400)

F* ADCIQ samplesHold Source Bit: O */
#define SHS1 {0x0800)

A* ADCI0 Sample/Hold Scurce Bit: 1 "/
#define INCHO {0x1000)

A% ADCIO Input Channel Select Bit: 0 */
#define INCHI {0x20:00)

S* ADCIQ Inmput Channel Select Bitc: 1 */
#define INCHZ {0x4000)

S* ADCI0 Input Channel Select Bit: 2 */
$define INCH3I {0xB0O00)

A* ADCIQ Inmput Channel Select Bit: 3 */

#define CONSEQ. 0 (0%Zu)

A* gsingle channel single conversion */
#define CONSEQ-1 (1*2u}

/* Seguence of channels */

#idefine CONSEQ.Z (2*2u)

/* Repeat single channel */
#define CONSEQ.3 (3*2u)

/* Repeat segquence of channels */

#define ADC10SSEL.0 (0*8u) /* ADCIOOSC */
#define ADCI0SSEL 1 (1*8u} /* ACLE */
#define ADCLOSSEL.Z (2*8u) /* MCLE */
#define ADC10SSEL.3 (3*8u) /* SMCLK */

#define ADCLI0DIV.D (0*0x20u)
/* ADCID Clock Divider Select 0 */
#define ADCLODIV.1 (L*0x20u)
FS* ADCI® Clock Divider Selectc 1 */
#define ADCLODIV.Z (2*0x20u)
F* ADCIR Clock Divider Select 2 */
#define ADCIODIV.Y (3*0x20u)
ST ADCIQ Clock Divider Select 3 */
##define ADCLODIV.4 (4*0x20u)
S* ADCI0 Clock Divider Select 4 */
#define ADCIODIV.S (5+*0x20u)
£ ADCIO Clock Divider Select 5 */
#idefine ADC10ODIV.E (&6*0x20u)
S* ADCIC Clock Divider Selectc & */
$#define ADCLODIV.T (T*0x20u)
F* ADCI@ Clock Divider Select 7 */

#define SHS.0 (0*0x400u) /* ADCIOSC */
#define SHS.1 (1*0x400u) /* TAZ OUTI */
#define SHS.Z (2*0x400u) /* TAZ oUTO */
#define SHS.3 (3" 0xd00u) /* TAZ oUT2 */

#define INCH.O (0*0x1000u) /* Selects Channel 0 */
#define INCH.1 (1*0x1000u) J/* Seleccs Channel 1 */
#define IMCH 2 (2*0x1000u) J* Selects Channel 2 */
#define INCH.3 (3*0x1000u) J* Selects Channel 3 */
#define IMCH 4 (d4*0x1000u) /* Selects cChannel 4 */
#define INCH.S (5*0x1000u) /* Selects Channel 5 */
#dafina INCH.& (6°0x1000u) /* Selects Channel & */
#tdefine INCH.7 (7*0x1000u) /* Selects Channel 7 */
#define INCH.2 (&*0x1000u) /* Selects Channel & */
#define INCH.9 (9*0x1000u) /* Selects Channel & */

fidefine INCH-10 (10*0x1000u) /* Selects Channel 10 */
f#define INCH.11 (11*0x1000u) /* Selects Channel 11 */
#define IMNCH.12 (12*0x1000u) /* Selects Channel 12 */
#define INCH.13 (13*0x1000u) /* Selects Channel 13 */
#define INCH.14 (14*0x1000u) /* Selects Channel 14 */
#hdefine INCH.15 (15*0x1000u) /* Selects Channel 15 */

S* ADCIODTCO */

f#define ADC10FETCH (0x001)

£* This bit should normally be reset */

#define ADCICEL (0x002) /* ADCI0 block one */

#defins ADCLOCT (0x004) /* ADC10 concinuocus cransfer */

#define
fdefine

ADC10TE {0x008) /% ADCIO two-block mode

ADC10DISABLE (0x000) /" ADCIODTCL */

ff LR R R R R RN

* Basic

Clock Module

FRARAFEFE R AR R AR T ff

F* Dafinicion to show that Module is avaflable

#define

SFR.8BIT{DCOCTL) ;

SFRBBIT(BCSCTLZ) : /™

#$define
#define
#define
fdefine
#define
#define
#define
#tdefine

#define
#define
#$define
#define
f#define
#define
#define

-HM3P430.HAS.BCI. .

MODO {(0x01) /" Modulation Bitc 0 */
MODl (0x02) /* Modulation Bit 1 */
MODZ (0x04) /* Modulation Bit 2 */
MOD3 (0x08) /* Modulariom Bit 3 */
MoDd (9x10) /* Modulation Bic 4 */
DCco0 (0x20) 7% DOO Select Bic 0 */
DCol (Ox40) /* DOO Select Bic 1 */
DCo? (0x80) /* DOO Select Bic 2 +/

RSELO (0201} /* Range Select Bit 0
RSEL1 (0x02) /* Range Select Bit 1
RSEL2 (0x04) /* Range Select EBitr 2
RSEL3 (0x08) /" Range Select Bit 3
DIVAO (0x10) /* ACLEK Divider 0 */
DIVAL ({(0x20) /* ACLK Divider 1 */
TS {0x40)

S* LEXTCLK 0:Low Freqg. / l: High Freg. */

#define

#define
f#define
#define
#define

$define
#define
#define

S* BMCLE Source Select 0:DCOCLK / 1:XT2CLK/LFXTCLK */

#define
#define
#define
#define

#define
#define
$define
#define

$dafine
#$define
#define
#define

KT20FF (0x80) /* Enable XT2CLK */

DIVA.O (0x00) /% ACLE Divider 0:; /1
DIVA.1l (0x10) /* ACLK Divider 1: /2
DIVA 2 (0x20) /* ACLK Divider 2: /4
DIVA 3 (0x30) /" ACLK Divider 3: /8B

DIVSD (0x02) /* SMCLK Divider 0 */
DIVS1 (0x04) /* SMCLK Ddvider 1 */
SELS (0x08)

DIVMO (0x10) /* MCLE Divider 0 */
DIVML (0x20) /* MCLK Divider 1 */

F* Do0 clock Fregquency Control */
SFRLBBIT(BCSCTLL); /* Basic Clock System Control 1 */
Basic Clock System Control 2 */
SFR.BBIT(BCSCTLY) ; /" Basic Clock System Control 3 */

*/
o'
*S
*s

B
Lo
et §
'

SELMO (0x40) /* MCLE Source Select 0 */

SELM1 (0x80) /* MCLE Source Select 1

DIVE.0 (0x00) /" SMCLK Divider 0: /1
DIVE.l (0x02) /* SMCLK Divider 1: /2
DIVS.2 (0x04) /* SMCLK Divider 2:; /d
DIVS.3 (0x06) /" SMCOLK Divider 3: /B

DIVM.O (0x00) /% MCLK Divider 0: /1
DIVl (0x10) /* MCOLE Divider 1:» /2
DIVM.2 (0x20) /* MCLK Divider 2: /4
DIVM-3 (0x30) /* MCLK Divider 3: /8

*
7
*/
/
./
7
i
74

o d

#define SELM.O0 (0x00) /* MCLK Source Select 0: DCOCLE </
#dafine SELM.1 (0x40) #* MCLE Source Select 1: DOOCLE */
ftdefine SELM.Z (0x80)

S* MCLE Source Select 2: XT2CLK/LEXTCLK */

#define SELM 3 (0xC0) /* MCLE Source Select 3: LFXTCLE */

f#define LFXTLIOF (0x01)

/" Low/high Freguency Oscillator Fault Flag */

#define XTZOF (0x02)

F* High fregquency oscillator 2 fault flag */

#define XCAPO (0=x04) /" XIN/XOUT Cap @ */

#define XCAFP1 {0x08) /* XIN/XOUT Cap 1 */

#define LFXT1S0 (0x10) /* Mode 0 for LFXTL (XTS = D) */
#definea LFXT1S1 (0x20} /* Mode 1 for LFXTI (XTS = Q) */
#define XT2S0 {0x40) /* Mode 0 for XT2 */

#define XT251 (0xBO) »* Mode 1 for XT2 */

#define XCAP.O (0x00) /* XIN/XOUT Cap : 0 pF %/
#define XCAP.1 (0x04) /* XIN/XOUT Cap : 6 pF */
#define XCAF 2 (0x0B) /* XIN/XOUT Cap : 10 pF */
#define XCAP.3 (O0x0C) /* XIN/XOUT Cap : 12.5 pF */

#define LFXT15.0 {(0x00)

F* Mode @ for LFXT1 : Normal operation */

#define LFXT1S.1 (0x10) /" Mode I for LFXTI : Reserved */
#define LFXT1S.2 (0x20) /* Mode 2 for LFXTI : VLO */
#define LFXT1S.3 (0x30)

/* Mode 3 for LFXT1 : Digital input signal */

#define XTZ5.0 (0x00) /* Mode O for XT2 : 0.4 - 1 MHz =/
#define XT325 1 (0xd0) /% Mode 1 for XT2 : 1 - 4 MHz %/
#define XT25.2 (0x80) /* Mode 2 for XT2 : 2 - 16 MHz */
ftdefine XT2S5.3 (0xCOD)

S* Mode 3 for XT2 : Digital input signal */

f‘i’ FEEEF R F R

* Comparator A

L b i ‘K

S* Dafinition to show that Module is available */
$#define . MSP430. HAS.CAPLUS..

SFR.BBITI(CACTLLl); /* Comparator A Contrel 1 =/
SFR-BBIT(CACTLZ); /* Comparater A Control 2 */
SFR.8BIT(CAPD} ; /¥ Comparator A Port Disable */

#define CAIFCZ (0x01)

S* Comp. A Interrupt Flag */

#define CAIE (002)

A* Comp. A Interrupt Enable */

#define CAIES (0x04)

f* Comp. A Int. Edge Select: O:rising / l:falling */
#idefine CAON (Ox08)

A* Comp. A enable */

#define CAREFO (0x10)

F* Comp. A Internal Reference Select 0 =/

#define CRAREF1 (0x20)

F* Comp. A Internal Reference Select 1 */
f#idefine CRARSEL (C0xd40)

S* Comp. A Internal Reference Enable =/
#define CAEX (Dxg0)

S* Comp. A Exchange Inputs */

$#define CAREF.0 (0x00)

F* Comp. A Int. Ref. Selectc 0 : Off */
f#define CAREF.1 (0x10)

" Comp., A Int. Ref, Select 1 ; 0.25"Vee */
$#define CAREF. 2 (0x20)

F* Comp. A Int. Ref. Select 2 : 0.5%cec */
#idefine CAREF.3 (0x30)

¥ Comp. A Int. Ref. Select 3 : Vc*/

*

#define CAOUT (0x01) /" Comp.
f#define CAF {0x02) /* Comp.
#define P2CAOD (0x04) /* Comp.
f#define P2CAL (0x08) /* Comp.
#define P2CAZ (0x10) /" Comp.
#define P2ICA3 (0x20) /* Comp.
fidefine PECA4 (0xd40) /* Comp.
fidefine CASHORT (0xB80) /* Comp.

Output */

Enable output Filcer */
+Terminal Multiplexer */
-Terminal Multiplexer */
-Terminal Multiplexer */
=Terminal Multiplexer */
+Terminal Multiplexer */
Short + and - Terminals */

o b e e b b

f#idefine CAPDO (0x01)
S* Comp. A Disable Input Buffer of Port Register .0 */
fidefine CAPDL (0x02)
F* Comp. A Disable Input Buffer of Port Reglister .1 */
#define CAPDZ (0x04)
S* Comp. A Disable Input Buffer of Port Reglster .2 */
#define CAPDI (0x08)
S* Comp. A Disable Input Buffer of Port Reglister .3 */
#define CAPDY (Ox10)
F* Comp. A Disable Input Buffer of Fort Reglster .4 */
#define CAPDS (0x20)
F* Comp. A Disabie Input Buffer of Port Register .5 */
#idafina CAPDS (0xd0)
F* Comp. A Disable Input Buffer of Port Reglscer .6 */
$define CAPDT (0x80)
f* Comp. A Digsable Input Buffer of Port Regiscer .7 */

llf‘l‘ FEFEEE R A A

* Flash Hemory

dEd bk Fd R s

J* Definicion to show that Module 1s available */
fdefine . MSP4I0.HAS. FLASHZ..

EFRL1EBIT(FCTLL) ; /* FLASH Control 1 */
SFRL16BIT{FCTL2) ; /* FLASH Control 2 */
SFR.16BIT(FCTL3) ; /" FLASH Control 3 ™/

#define FREEY (0x5&00) 7* Flash key returned by read */
#define FWEEY (0xAS00) /% Flash key for write */
#define FXKEY (0x3300) /* for use with XOR inscruction */

#define ERASE (0x0002)

/% Enable bit for Flash segment erase */
#define MERAS (0x0004)

/% Enable bit for Flash mass erase */
#define WRT {0x0040)

/* Enable bit for Flash write */

#define BLEWRT (0x0080)

/* Enable bit for Flash segment write */
St old definition */

#define SEGWRT (0x0080)

/% Enable bit for Flash segment write */

/" Divide Flash clock by 1 to 64 using FNU to FN5
according to: */

#define FNO (0x0001)

A% 32*FN5 + 1E"FNd + 8*FN3 + {4"FN2 + 2"FN1 + FNO + 1 */
#dafina FN1 {0x0002)

#ifndef FHNZ

#define FN2 {0x0004)

#endif

#ifndef FNZ

#define FNZ {0x0008)

#endif

#ifndef FN4

#define FHN4 {0x0010)

#endif

fidefine FNS {0x0020)

/* Flash clock select 0 */
A* to distinguish from USART SSELx */

#idefine FSSELO (0x0040)
#define FSSELL (0x0080) /* Flash clock select 1 */

#define FSSEL.Q (0x0000} /% Flash clock select: 0 — ACLK */
#define FSSEL.1 (0x0040) /* Flash clock select: 1 — MCLE */
#define FSSEL.Z (0x0080) /* Flash clock select: 2 — SMCLE */
#define FSSEL.3 (0x00C0Q) /* Flash clock select: 3 = SMCLK */
#define BUSY (0x0001) /* Flash busy: 1 */

#define EEYV (0x0002) /* Flazh Key violation flag */
#define ACCVIFG (0x0004) /* Flash Access viclation flag */
#define WAIT (0x0008) /* Wait flag for segment write */
#define LOCKE {0x0010)

/* Lock bit: 1 = Flash is locked (read onlyl) *7

#define EMEX (0x0020) /% Flash Emergency Exitc =/

/" Segment A Lock bit: read = 1 — Segment 1is

locked (read only) */

#tdefine LOCKA (000400

fidefine FAIL (0x0080) /% Last Program or Erase falled */

Jf'i R T P R R R R P R R R R R R R R PR

* DIGITAL I/0 Porcl/2 Pull up / Pull down Resistors

LA R SRS SR R R e e N R R e ‘f

A* Definition to show that Module is available */
#define . MSP430.HAS PORTL.R..
£* Definition to show that Module is available */
#define . MSP430.HAS.PORTZ.E..

SFR_SBIT(P1IN); /% Port 1 Input %/
SFR.BBIT(PLOUT); /% Port 1 Output =/
SFR.8BIT(PLDIR); /™ Port I Direction */
SFR.BBIT(P1IFG); /* Port 1 Interrupt Flag */
SFR.BBIT(PLIES): /* Porc 1 Interrupt Edge Select */
SFR.SBIT(PL1IE); /* Port 1 Interrupt Enable */
SFR.EBIT(P1SEL): /* Port 1 Selsction */
SFR.BEIT(P1SEL2); /* Port 1 Selection 2 */
SFR.ZBIT(P1REN); /* Port ! Resistor Enable */
SFR-SBIT(P2IN); /* Port 2 Input */
SFR.BBIT(P2OUT); /* Port 2 OQutput */
SFR.EBIT(P2DIR); /™ Port 2 Direction */
SFR.BBIT(P2IFG); /* Port 2 Interrupt Flag */
SFR.BBIT(PZIES); /J* Fort 2 Interrupt Edge Select */
SFR.ABIT(P2ZIE); /* Port 2 Interrupt Enable */
SFR.EBITI(P2SEL):; /* Port 2 Selection */
SFR.BEBIT(P2SEL2); /* Port 2 Selection 2 */

SFR.EBRIT(P2ZREN); /" Port 2 Resistor Enable */
B L R T TR

* DIGITAL I/0 Portld Pull up / Pull down Resistors

s L A e L s e e e e L L A

S* Definicion to show that Module is available */
$define . MSP4310_HAS PORTI_R..

SFR.ERIT(P3IIN); /* Port 3 Input */
SFR_EBIT(P3IOUT); /* Port 3 output */
SFR.BBIT(P3DIR); /* Port 3 Direcction */
SFR.BBIT(PISEL); /" Port 3 Selection */
SFR.BBIT(P3ISELZ); /* Port 3 Selection 2 */
SFR.BBIT(PIREN); /™ Port 3 Resistor Enable */

SR ek

* Timer0. A3

LA S S A L sl 1‘/’

A* Definition to show that Module iz available */
$define . MSPAI0_HAS. TAZ _

SFR.IGBIT({TAQIV}) ; /* Timer0.A3 Interrupt Vector Word */
SFR.16BIT(TAOCTL) ; /* Timer(0.A3 Control */
SFR_1EBIT(TAOQCCTLO) ; /* Timerd A3 Capture/Compare Control 0 */
SFR.16BIT({TAOCCTLL) ; /* Timer{. A3 Capture/Compare Control 1 */
SFRAEBIT{TAQCCTL2) ; /* Timer0 A3 Capture/Compare Control 2 */
SFR.16BIT(TAOR) ; £* Timer0. A3 */

SFR.16BIT(TAOCCRD) ; /* Timerd. A} Capture/Compare 0 */
SFR.1EBIT(TAOCCRL); /* Timer0.A? Capture/Compare 1 */
SFR.16BIT(TAOCCR2); /* Timer(. A} Capture/Compare 2 */

S* Alternate register names */

#define TAIV TAQIV

A% Timer A Interrupt Vector Weord */

#tdefine TACTL TAOCTL

/* Timer A Control */
#define TACCTLO TAOCCTLO
F* Timer A Capture/Compare
f#idefine TACCTL1 TAOCCTL1
St Timer A Capture/sCompare
#define TACCTLZ TAOCCTLZ
A* Timer A Capture/Compare
#define TAR TAODR

S* Timer A */

#tdefine TACCRO TAOCCRO
S* Timer A Capture/Compare
#define TACCRIL TAOCCR1
f* Timer A Caprure/Compare
#define TACCRZ TAOCCRZ
J* Timer A Capture/Compare
#define TAIV. TAOIV.

Control 0 */

Control 1 */

Centrol 2 */

e */
I */

2y

A* Timer A Interrupt Vector Weord */

#define TACTL. TAOCTL.

A* Timer A Control */
#define TACCTLO. TAOCCTLO.
A* Timer A Capture/Compare
#define TACCTLLI. TAOCCTLL.
S* Timer A Capture/Compare
#define TACCTLZ. TAOCCTLZ.
S* Timer A Capture/Compare
#define TIR TAOR

F* Timer A */

#define TACCRO. TAOCCRO.
JS* Timer A Capture/Compare
#define TACCRLl. TAOCCRIL.
A* Timer A Capture/Compare
#define TACCR2Z. TAOCCRZ.
S Timer A Capture/Compare

Control 0 */
Control 1 */

Control 2 */

ot/
1. %

&y

/™ Alternate register names 2 */

#define CCTLO TACCTLO

f* Timer A Capture/Compare
#tdefine CCTL1 TACCTLL

A*¥ Timer A Capture/Compare
#define CCTLZ TACCTLZ2

S* Timer A Capture/Compare
t#define CCRO TACCRO

f* Timer A Capture/Compare
#define CCR1 TACCR]1

S* Timer A Capture/Compare
#define CCRZ TACCR2

A* Timer A CapturesCompare
#tdefine CCTLO. TACCTLO-

A* Timer A Capture/Compare

Control 0 */

Control 1 */

Control 2 */

g */

LmE

2

Control 0 */

#define CCTL1- TACCTLIL-

A£* Timer A Capture/Compare Control I */

$dafine CCTLZ. TACCTLZ.

J* Timer A Capture/s/Compare Contrel 2 */

#define CCRO. TACCRO.

A* Timer A Capture/Compare 0 */
#define CCR1. TACCRIL.

S* Timer A Capture/Compare 1 */
#tdefine CCRI. TACCRZ.

A* Timer A Capture/Compare 2 */
#define TASSELL (0x0Z00)

A* Timer A clock source select 0
¢define TASSELO (0x0100)

JS* Timer A clock source select 1
#tdefine IDI1 (0xGOE0)

A* Timer A cleck Input divider 1
#dafine IDO (0x0040)

S* Timer A clock Ipput divider 0
tdefine MC1 (0x0020)

A* Timer A mode control 1 */
$define MCO {(0x0010)

F* Timer A mode control 0 */
#define TACLE {0x0004)

S* Timer A counter clear */
#define TAIE {00002)

A* Timer A counter Iinterrupt
#define TAIFG (0x0001)

A% Timer A countcer Interrupt

tdefine MC.0 (0*0x10u})

F£* Timer A mode control: 0 —

$define MC.1 [1*0x10u)

S Timer A mode control: 1 -

f#define MC.2 (2*0x10u)

A% Timer A mode control: 2 —

#define MC.3 [{3*0x10u}

/* Timer A mode centrol: 3 =—

#dafine ID.0O (O*Ox40u)

S* Timer A inpur divider: 0 -
#define ID.1 (1*0xd0u)

F* Timer A input divider: 1 -
#define ID.2 (2*0xd40u)

S* Timer A inpuct divider: 2 -
$define ID.3 (3*0xd40ul

A* Timer A Input divider: 3 -
#define TASSEL.O (0*0x100u)
S* Timer A clock source selec
#define TASSEL.1 (1*0x100u)
A* Timer A clock source selec
#define TASSEL.Z (2*0x100u)
S* Timer A cleck source selec
#define TASSEL.3 (3*0x100u)
S* Timer A clock source selec

s

M

it

*/

enable

flag

bt i

B

Stop */

Up to CCRO */

Continous up */

Up/Down */
i
f2 %
S
i8S
t: 0 — TACLK
t: 1 — ACLK
tE: 2 — SMCLK
£: 3 = INCLK

v/

o

*/

i’

#define CM1 (0x8000)

/* Capture mode 1 */

#define CMD (0x4000)

A" Capture mode 0 */

#define CCIS1 (0x2000)

A* Capture input select 1 %/
#define CCISO (021000}

A* Capture input select 0 %/
#define SCS {0x0800)

A* Capture sychronize */

#define SCCI {0x0400)

/* Latched capture signal (read) */
#define CAP (0x0100)

/* Capture mode: 1 /Compare mode : 0 */
#define OUTMODZ (0x0080)

AT Qutput mode 2 */

#defina OUTMODL (0x0040)

A% Output mode 1 */

#define OUTMODO (0x0020)

At Output mode 0 */

#define CCIE (0x0010)

/% Capture/compare interrupt enable */
##define CCI (0x0008)

/* Capture input signal (read) */
#define CUT (0x0004}

A% PWM output signal if output mode 0 */
#define COV (0x0002)

/% Capture/compare overflow flag */
#define CCOIFG (Dx0001)

/* Capture/compare interrupt flag */

#define OUTHMOD.O (0*0x20u)

/* PWM cutput mode: 0 — output only */
#define OUTMOD.1 (1*0x20u)

/* PWM cutput mode: I — set */

#define COUTMOD.2Z (2*0x20u)

A% PWM ocutput mode: 2 — PWM togglesreset */
#define COUTMOD.Z (3*0x20u)

/% PWM output mode: 3 — PWM set/reset */
#define OUTMOD.4 (4*0x20u)

A% PWM oucput mode: 4 — rcoggle */
t#tdefine OUTHMOD.S (5*0x20u)

/* PWM ocutput mode: 5 — Reset */

t#tdefine COUTMOD. & (6*0x20u)

/* PWM ocutput mode: 6§ — PMM toggle/set */
#define OUTHMOD.T (7*0x20u)

JS* PWM output mode: 7 — PWM reset/set */
#define CCIS.O (0*0x1000u)

/* Capture input select: 0 — CCIxA */
#define CCIS.1 {1*0x1000u)

J* Caprure input select: 1 — CCIxB */

#define CCIS.Z

{2*0x1000u)

S* Capture input select: 2 — GND */
#define CCIS.3 (3*0x1000u)

S Capture Input select: 3 — Voo */
#define M0 {(0*0x4000u0)

A* Capture mode: 0 — disabled */
#define CM.1 (1*0x4000u)

/" Capture mode: 1 — pos, edge "/
#define CM 2 (2*0x4000u)

J* Capture mode: 1 — neg. edge */
#define CM.3 (3*0x4000u)

" Capture mode: 1 =

A* TOLAITIV pefinicions */

#define TAOIV.NONE {0x0000)
#define TAOIV.TACCR1 (0x0002)
#define TAOIV.TACCRZ (0x0004)

#define TAOIV.E {0x0006)
#define TAOIV.E {0x0008)
$#define TAOIV.TAIFG (0x0O00A)

/‘l‘ W o

Timerl A3

LR R RS s a] H‘K

A Definition to show that Module Is available

#define __MSPI30 HAS TI1AZ _

SFR-16BIT(TALIV) ;

both edges */

S* No Interrupt pending */
A% TAOCCRI.CCIFG */

/* TAOCCR2.CCIFG */

/* Regerved */

/* Reserved */

A* TAOIFG */

*/

A* Timerl.A3 Interrupt Vector Word */

SFR.16BIT (TAICTL) ;

JS* Timerl AR Contrel */
EFR.16BIT{TALCCTLO) ;

A% Timerl.A? Capture/Compare
SFR.1EBIT(TALCCTLL) ;

A Timerl A2 Capture/Compare
SFR.1EBIT(TALCCTLZ) ;

/% Timerl A3 capture/Compare
SPFR.1EBIT(TAIR) ;

A* Timerl A3 */
SFR-16BIT(TALCCRO) ;

A* Timerl.A3 Capture/Compare
SFR-16BIT(TA1CCR1);

A* Timerl A3 Capture/Compare
SFR.1E6BIT(TALCCR2) ;

F* Timerl A3 Capture/Compare

Control 0 */

Control 1 */
Conptrol 2 %/

o %

1

2 "

A* Bits are already defined within the Timer0 Ax */

J* T1 A3IV Definitions */

#define TALIV.NCHNE (0x0000)
$define TAIIV.TACCR1l (0x0002)
$#define TAIIV.TACCRZ (0x0004)
#define TALIV.TAIFG (0x000A)

£* No Interrupt pending "/
S OPATCCRILCCTIRG */

A* TAICCR2.CCIFG */

ST TRAIIRG */

r"l L

¥ QIscT
wamew

J* Definition to show that Module is avallable */
#define . MSP430.HAS.USCI..

SFR.GBIT{DCAOCTLO) ; #* USCI A@ Concrel Register O */
SFR.ABIT(UCAOCTLL) ; F* USCT AQ control Register 1 */
SFR.EBEIT(UCAOBRO) ; A* USCT AQ Baud Rate 0 */
SFR.ZBITI(UCAOEBRL) ; 4 UsCT AQ Baud Rate 1 */
SEFR_EBIT(UCAOMCTL) ; A* USCT AQ Modulation Control */
SFR_EBIT{UCADSTAT) ; A* SCI AQ Status Register */
SFR_EBIT(UCAORXBUF): /% USCI A0 Receive Buffer */
SFR.BBIT(UCAOTXBUF): /* USCI A0 Transmic Buffer */
SFR.BBIT(UCAOABCTL); /* USCI AQ LIN Control */
SFR.GBIT(UCAQOIRTCTL); /* USCI A0 IrDA Transmit Control *7
SFRABIT(UCAOIRRCTL) : /" USCI AQ IrDA Recelve Control */

SFR.BBEIT(UCBOCTLO) ; S* USCI BQ Control Register O */
SFREBIT(UCBOCTLL) ; f* UsSCI B0 Control Register 1 */
SFR EBIT(UCBOBRO) ; A* USCT BiY Baud Rate 0 */
SFRLEBIT({UCBOBRL) ; A* UscI B0 Baud Race 1 */
SFR.BBIT{UCBOIZCIE) ;

S* USCI BO IZC Incterrupt Enable Reglscer */
SFR.EBIT(UCBISTAT) ; A* USCI BO Status Register */
SFR.BBIT(UCBORXBUF); /* USCI BO Receive Buffer */
SFR-EBIT(UCBOTXBUF): /* USCI BO Transmit Buffer */
SFR-16BIT(UCBOIZCOA) ; /" USCI BO I2C Own Address */
SFR.16BIT(UCBOI2CSA): /* UsCI BfY I2C Slave Address */

/4 UART=-Mode Bics

#dafina UCPEN {0=80)

£* Asyne, Mode: Parity enable */

#define TUCPAR (0x40)

S* Async. Mode: Parity O:odd / l:even */
#define UCMSE {0x20)

J* Async. Mode: MSB first (0:LSB / 1:MSB */
#define UCTBIT (0x10)

/* Async. Mode: Data Bits 0:8-bitg / 1:7-bicts */
#idefine UCSPFE {0x08)

A* Rsyne. Mode: Stop Bits Qrone / I: two */
#define UCMODEL (0x04)

A* Async. Mode: USCI Mode 1 */

#define UCMODED {0x02)

A* Async. Mode: USCI Mode 0 */

#define UCSYNC (0x01)

St Eyneo-Mode 0:UART-Mode / 1:5PI-Mode */

S SPI-Mode Blts

#define UCCEPH (0x80) /¢ Syne. Mode: Clock Fhase */
fidefine UCCERL (0x4Q) /* Sync. Mode: Clock Polaricy */
#define UCMST (0x08) /* Sync. Mode: Master Selact */

S5 I2C-Mode Bits
#define UCALD (0xB0) /% 10-bit Address Mode */

#define UCSLALO (Ox40) /* 10-bit Slave Address Mode */
#define UCMM (0x20) /% Multi-Master Environment */
Sifdefine res (0x10) /* reserved */

#define UCMODE.0 (Ox00) /* Syne. Mode: USCI Mode: 0 =/
#define UCHMODE.1l (0x02) /* Sync. Mode: USCI Mode: 1 =/
#define UCMODE.2 (0x04) /* Syne. Mode: USCI Mode: 2 */
#define UCHMODE.3 (0x06) /* Sync. Mode: USCI Mode: 3 =/

S/ UART-Mode Bits

#define UCSSELL (0x30})

/T UsCr 0 Clock Source Select 1 */
#define UCSSELD (Oxd0)

S UsSCI 0 Clock Source Select 0 */
#define UCRXEIE (0Ox20}

FS* RX Error interrupt enable #*/
$dafine UCBRKIE (0x10)

/* Break interrupt enable */
#define UCDORM (Ox08)

S* Dormant (Sleep) Mode */
$#define UCTHXADDR (Ox04d})

/* Send next Data as Address */
#dafine UCTXBRE (0x02}

A* Send next Data as Break */
#define UCSWRST (0Ox01})

S* USCI Sofrware Resetr */

/¢ SPI-Mode Bits

Si#define res (0x20) /* reserved */
fivdefine res (0xI0) /% reserved */
Sifdefine res (0x08) /* reserved */
//#define res (0x04) /* reserved */
Si#define res (0x02) /% reserved */

£ IZ2C=-Mode EBlts

fiddefine res (0x20) 7* reserved */
#dafine UCTR (Ox10)

/* Transmit/Receive Select/Flag */
#define UCTHMACK (0x08)

/* Transmitc MACK */

$define UCTESTE (Ox04)

A* Transmit STOP */

#define UCTESTT (0x02}

f* Transmit START */

#define UCSSEL.0 (0x00)

S* UsSCI 0 Clock Source: 0 */
$#define UCSSEL.1 (0xd0)

S* UsCIr ¢ Clock Source: 1 */
#define UCSSEL.Z (0x30)

f* USCI ¢ Clock Source: 2 "/
#define UCSSEL_2 (O0xC0)

ST USCT 0 Clock Source: 3 %/

f#idefine UCBRF3I (0x80)
FS* USCI First Stage Modulation Select 3 */

#define UCBRFZ (0x40)

A* USCTI First Stage Modulation Select 2 */
#define UCERF1 (0xZ0)

S* USCI First Stage Modulation Select 1 */
#define UCERFD (0x10)

J* USCI First Stage Modulation Select 00 */
#define UCBRSZ ([0x08)

A* UsSCI Second Stage Modulation Select 2 %/
#define UCBRS1 (0x04)

£* USCI Second Stage Modulation Select 1 */
#define UCBRSO (0=x02)

S USCTI Second Stage Modulatlon Select 0 */
#define UCOS1le (Ox0O1)

St USCI lé-times Oversampling enable */

#idefine UCERF.0 (0x:00)
S* USCI First Stage Modulatiom: O */
#define UCBRF 1 (0x10)
S* USCI First Stage Modulation: 1 */
#define UCERF.Z (0x20)
£* USCI First Stage Modulation: 2 */
#tdefine UCBRF.Z (0x30)
S* USCT First Stage Modulation: 3 */
#define UCERF.4 (0xd40)
f* USCI First Stage Modulation: 4 =/
#idefine UCERF.5 (0x50)
J* USCI First Stage Modulation: 5 =/
#define UCBRF.& (0x&0)
FS* USCTI First Stage Modulation: & */
t#tdefine UCERF.T (0x70)
S* USCY First Stage Modulation: 7 */
#define UCBRF.2 (0xE0)
F* USCTI First Stage Modulacion: 8 "/
#idefine UCERF.Z (0xS0)
F* USCI First Scage Modulation: 8 #/
f#tdefine UCBRF.10 (0xAD)
S* USCT First Stage Modulatiom: A */
#define UCERF.11 (0xBO)
f* USCI Firsc Stage Modulacion: B */
#define UCERF.1Z (0xC0)
S USCI First Stage Modulation: C */
#dafine UCERF.13 (0xDO0)
S* USCI First Stage Modulation: D */
#idefine UCERF.14 (0xEQD)
J* USCI First Stage Modulation: E */
#define UCBRF.15 (0xF0)
S* USCI First Stage Modulation: F */

#define UCBRS.0 (0x00)
S* USCI Second Stage Modulation: O */
#define UCBRS.1 (0x02)
F* USCI Second Stage Modulation: 1 */
#define UCEBRS.2Z (0x04)
S USCT Second Stage Modulation: 2 */

#define UCBRS.3Z (0x08)
A* USCI Second Stage Modulation: 3 %/
#define UCERS.4 (0x08)
St USCI Second Stage Modulation: 4 =/
#define UCEBRE.S5 (0x0A)
J* USCI Second Stage Modulation: 5 */
#define UCBRS.& (0x0C)
A* USCI Second Stage Modulation: & */
gdefine UCERS.T (0x0OE)
S* UscI Second Stage Modulation: 7 */

#$define UCLISTEN (0x80) /#* USCI Listen mode */

#define UCFE (0x40) /* USCI Frame Error Flag */
#define UCOE (0x20) /* USCI overrun Error Flag */
#define UCPE {(0x10) #* USCI Parity Error Flag */

#define UCERE (0x08) +/* USCI Break received */

#dafine UCRXERR (Ox04) /* USCI RX Error Flag */

#define UCADDR (0x02) /* USCI Address received Flag */
#define UCBUSY (0x01) /* USCI Busy Flag */

define UCIDLE {(0x02) /#* USCI Idle line detected Flag */

Si#dafine res {Ox80) /* reserved */
Fifdefine res (Oxd) 7* reserved */
FiRdefine res (0x20) /* reserved */
fitdefine res fOxI0) /* reserved */

#define UCHACKIE (0Ox08)

A* NACK Condition inrerrupt enable */
#define UCSTPIE (0x04)

JS* STOF Condition interrupt enable */
#define UCSTTIE (0x02)

A" START Condition Iinterrupt enable */
#define UCALIE {Dx01)

F* Arbictracion Lost Incerrupt enable */

#$define UCSCLLOW (0x40)

F* 5CL Jow *f

$#define UCGC (Ox20})

F* General Call address received Flag */
fdefina UCEBUSY (Ox10})

/% Bus Busy Flag */

#define UCHACKIFG (0x08)

S* NAK Condition interrupt Flag */
#define UCSTRPIFG (0x04})

/* STOP Condition interrupt Flag */
#define UCSTTIFG (0Ox02}

A* START Condition Iinterrupt Flag */
#define UCALIFZ (0x01)

J* Arbitration Lost Interrupt Flag */

#define UCIRTXPLS (0x80)
/* IRDA Transmit Pulse Length 5 */
#define UCIRTXPLY (0x40)
#* IRDA Transmit Pulse Length 4 */
#define UCIRTXPL3 (0x20)
A* IRDA Transmit Pulse Length 3 */

#define UCIRTXPLZ (0x10)

A% IRDA Transmit Pulse Length 2 */
#define UCIRTEPL1 (Ox08)

A* IRDA Transmit Pulse:-Length 1 */
#define UCIRTEPLO (Ox04)

S* IRDA Transmit Pulse Length 0 */
#define UCIRTXCLE (0x02)

S* IRDA Transmit Pulse Clock Select */
#define UCIREN (Ox01)

/* IRDA Encoder/Decoder enable */

#define UCIRRXFLS (0x80)
/" IRDA Receive Filter Length 5 */
#define UCIRRXFL4 (0x40)
A* IRDA Recelve Filter Length 4 */
#define UCIRRXFL3Z (0x20)
/* IRDA Receive Filter Length 3 */
#define UCIRRXFLZ (0x10)
/* IRDA Roceive Filter Length 2 */
#define UCIRRXFL1 (0x08)
f* IRDA Recelive Filter Length 1 %/
#define UCIRRXFLO (0x04)
A% IRDA Receive Filter Length 0 */
#define UCIRRXPL (0x02)
JS* IRDA Receive Input Polarity */
#define UCIRRXFE (Ox01)
£* IRDA Receive Filter enable */

siddefine res {0x80}) /* reserved */
/i/#define res (Gxd0) /* reserved */
#define UCDELIM1 (0x20)

J* Break Sync Delimiter 1 */

#define UCDELIMO (0x10)

/" Break Sync Delimiter 0 */

#define UCSTOE {0x08)

£ Syne-Fleld Timeout error */
#define UCETOE {0x04)

/% Break Timeout error */

Si#define res {0x02) /* reserved */
#define UCABDEN (0x01)

A% Auto Baud Rate detect enable */

$define UCGCEM (0x8000) /* IZC General Call enable */

#define UCOAS (0x0200) A* IZC Own Address 9 */
#define UCOAZE (0x0100) /* IZ2C Own Address 8§ */
$dafine UCOAT [(0xD0B0) /% I2C Own Address 7 */
fidefine UCOAE (0x0040) /* I2C Own Address & */
#define UCOAS (O0x0020) /% I2C Own Address 5 */
$define UTCOAL (0x0010) /* IZ2C Own Address 4 */
#define UCOAZ (0x0008) /* IZ2C Own Address 3 =/
#define UCOAZ (0x0004) /¥ IZC Own Address 2 %/
#define UCOAl (0x0002) /* I2C Own Address 1 */
#define UCOAD (0x0001) /* IZ2C Own Address 0 */

#define UCSA9 (0x0200) s* IZC Slave Address & */
#$define UCSAS (0x0100) #* IZ2C Slave Address 8 */
#define UCSAT (0x0080) /* IZC Slave Address 7 </
fdefine UCSA6 (0x0040) /* IZC Slave Address & */
#define UCSAS (0x0020) /* IZC Slave Address 5 */
#define UCSAd [0x0010) /A* I2ZC Slave Address 4 */
#define UCSAZ (0x0008) /* I2C Slave Address 3 */
$define UCSAZ (0x0004) /* IZC Slave Address 2 */
#define UCSAL (0x0002) /* IZC Slave Address 1 */
#define UCSAD (0x0001) /* IZC Slave Address 0 */

;"l‘ W W

* HWATCHDOG TIMER

[EE S TS ES S N ES S i.fl

A* Definitien to show that Module is avallable */
#define __MSP420.HAS WDT_.

SFR_1GBIT{WDTCTL); /* Watchdog Timer Control */
£* The bic names have been prefixed wich “WDT* */
fdefine WDTISO (0x0001)

#define WDTIS1 {Dx0002)

#define WDTSSEL (0x0004)

#define WDTCNTCL (0x0008)

#define WDTTHSEL (0x0010)

#define WDTHMI (Dx0020)

$#define WDTHMIES (0x0040)

#define WDTHOLD (0x0080)

#define WDTEW {0x5A00)

F* WDT-1interval times [Ims] coded with Bits 0-2 */

S* WDT is clocked by £SMCLK (assumed 1MH=z) */

/* 32ms Interval (default) */

ftdefine WDTMDLY. 32 (WDTPW+WDTTHMSEL+WDTCHTCL)

F* 8Bms " e

#define WDT.MDLY.S8 (WDTPW+WDTTMSEL+WDTCHTCL+WDTISO)

F£* 0. 5ms Lol

#define WOT.MDLY.0.5 (WDTPW+WDTTMSEL+WDTCHTCL+WDTISL1)

S 0.06dms = */

#define WDT.MDLY.0.064 (WDTPW+WDTTHSEL+WDTCHNTCL
+WDTIS1+WDTIS0)

A% WOT is clocked by fACLE {assumed 32KHz) */

A* 1000ms ~ */

#define WDTADLY 1000 (WDTPW+WDTTHSEL+WDTCNTCL+WDTSSEL)

A* 250ms il |

fidefine WDT.ADLY. 250 (WDTPW+WDTTHMSEL+WDTCNTCL+WDTSSEL \

+WDTIS0)

A* lems L =

#define WDOT ADLY 16 (WDTPW+WDTTHSEL+WDTCHNTCL+WDTSSEL

+WDTIS1)

A* 1.9ms L

#idafine WOT.ADLY.1.9 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL
+WDTIS1+WDTISO)

/* Watchdog mode —> reset after expired time */
A* WDT is clocked by L[SMCLK (assumed IMHz) */
/* 32ms incerval (defaulc) */

#define WDT MRST_32 (WDTPW+WDTCNTCL)
/ir Ems- - Irf'
#define WDT.MRST.S (WDTPW+WDTCNTCL+WDTIS0)

A" 0,.5ms oy

f#idefine WDTMRST.0.5 (WDTPW+WDTCHTCL+WDTISL)

A% 0,068ms = */

#dafine WDTMRST 0.064 (WDTPW+WDTCHNTCL+WDTIS1+WDTISO)

A* WDT is clocked by FACLKE (assumed 32KHz) */

A 1000ms "= */

#define WDT-ARST-1000 (WDTPW+WDTCHNTCL+WDTSSEL)

A* 250ms e §

##define WDT.ARST.250 (WDTPW+WDTCNTCL+WDTSSEL+WDTISO)
A* léms -l

#define WDT.ARST.16 {WDTPW+WDTCNTCL+WDTSSEL+WDTIS1)
A% 1.9ms w oy

#define WDT ARST.1. 9 (WDTPW+WDTCHNTCL+WDTSSEL+WDTIS1
+WDTISO)

/* INTERRUPT CONTROL */
/* These two bits are defined in the
Special Function Registers */

/* #define WDTIE Ox01 */
/* #define WDTIFG 0x01 */

/i' 3 E S S EREE RS EE SRR EEE S

* (Calibration Data In Info Mem

LA A B A S AR R 1')/

#ifndef __DisableCalData

SFR.BEIT(CALDCO.16MHE) ;

A* DCOCTL Calibraticn Data for le6MHz */
SFR.ABIT (CALEBC1.16MHZ) ;

JS* BCSCTL1 cCalibration Data for 1e6MHz */
SFR_EBIT(CALDCO.12MHZ) ;

S* DOOCTL Calibration Data for 12MHz */
SFR.BBEIT(CALBC1.12MHZ) ;

/* BCSCTLl Calibracion Data for 12MHz */
SFR_BBIT (CALDCO_8MHZ) ;

A* DOCOCTL Calibration Data for BMHz */
SFR.ABIT(CALBC1 8MHZ) ;

/* BCSCTLL Calibracion Data for SMHz */
SFR.EBIT(CALDCO.1MHZ) ;

F* DOOCTL calibration Data for IMHz */
SFR_BEBIT(CALEBC1_1IMHZ) ;

S* BCSCTLI calibration Data for 1MHz */

#endif /* #ifndef ..DisableCalData */

Ki‘ o ol o o o o ol o ok o o o o R R o ol o o o R R W

* Interrupt Vectors (offset from (xFFEQ)

o w ook o ok o o ab ok o b o o b oF o ob o g o oF o b o ok o b o b o oo o o o o o o *'f

#define VECTOR.MAME (name) name#§ ptr
#define EMIT PRAGMA (x) _Pragma (#x}
#define CREATE VECTOR (name)
vold (* const VECTOENAME (name)) (vold) = &name
#define PLACE.VECTOR(vector,section)
EMIT.PRAGMA (DATA SECTION (vector, section))
#define ISR VECTOR(func,ocffset) CREATEVECTOR(func);
PLACE VECTOR (VECTOR_MAME (func), offset)

$#ifdef __ASHM HEARDER. _

$#define PORT1.-VECTOR * . incg2”
F* OXFFEd Porc 1 */

felse

#define FPORT1.VECTOR (2 * 1lu)
£* OxFFEd Port 1 */

#endif

$ifdef __ASM HEADER _

#define PORTZ VECTOR ".ine03-
/* OXFFE&S Port 2 */

#alse

#define PORTZ.VECTOR {3 * 1lu)
/% OxFFE& Port 2 */

#endif

#ifdef __ASM_HERDER--

#define ADCLlO_VECTOR ".ilncos~
A% OxFFEA ADCLO #*/

#alse

#define ADC10.VECTOR (5 * 1lu)
Y OxFFEAR ADCIO */

#endif

$ifdef __ASH HEARDER. _

$#define USCIABITE VECTOR * . incds”
S* OxFFEC USCI AQ/BO Transmitc */
#alse

#define USCIABOTHE VECTOR {6 * 1u)
A% OxFFEC USCI AQ/BO Transmitc */
#endif

#ifdef __ASM_HEARDER--

$#define USCIABORX VECTOR * . into7-
/% OxFFEE UsCI AQ/BO Receive */
#alse

$define USCIABOIRX.VECTOR {7 * 1lu)
/* OxFFEE UsSCI AO0/B0 Receive ™/
#endif

$ifdef __ASH HEADER. .

$#define TIMERO.ALVECTOR *.intcog"
£* OxFFFQ TimerdQ)a CCl, TAQ */
$alse

\

f#idefine TIMERO.AL.VECTOR (8 * 1wl
S* OXFFF0 Timer0)a CoCl, TAQ */
f#endif

#ifdef __ASM HEADER .

fidefine TIMERO.AQ.VECTOR *.intoo~
A* OxFFF2 Timer0 A CCO0 */

fielse

#define TIMERO.AQ_VECTOR (9. * 1lu)
/* OXFFF2 TimerQ. A CCO */

#endif

ftifdef __ASHM HEADER. .

#define WDT.VECTOR *.intl0*~
S* OxFFFd Watchdog Timer */

#ielse

#define WDT.VECTOR (10 * 1lu)
/* 0xFFFd Watchdog Timer */

#endif

#ifdef __ASM HEADER .

#define COMPARATORAVECTOR ".intll"
/* OxFFFé& Comparator A */

felse

#define COMPARATORA VECTOR (11 * 1lu)
S* 0xFFF6 Comparator A */

#endif

#ifdef __ASM HEADER. .

#define TIMER1.Al VECTOR *.intcl2~
A* OxFFF8 Timerl.A CCl-4, TAl */
#ielse

#idefine TIMERL1.AL VECTOR (12 * 1u)
S* OxFFFE Timerl A CCl-4, TAl */
#endif

#ifdef __ASM HEADER .

#define TIMERL.A(.VECTOR = intia-
/* OxFFFA Timerl A CCO */

ftelse

#defina TIMER1 A0 _VECTOR (13 * lul}
/* OXFFFA Timerl A CCO */

#endif

#ifdef __ASHM HEADER..

#define NMI.VECTOR " ineldr
£* O0xFFFC Non-maskable */

#else

#define NMI.VECTOR (14 * 1lu)
S* O0xFFFC Non-maskable */

#endif

#ifdef __ASM HEADER .

#define RESET.VECTOR ".reset”
/" OxFFFE Reset [Highest Priority] */
#else

#define RESET VECTOR (15 * 1lu}
/* OxXFFFE Reset [Highest Priority] */
#endif

’;’:1' AAAAA A AAAAA A A A A

* End of Modules

AAAAAAAAAAA A A A A & :1'!;’

#ifdef __cplusplus

}
#$endif /* extern *C* */

#endif /* #ifndef __MSP430G2553

G

1. Deitel, P., Deitel, H.: C: How to Program, 7th ed. Prentice Hall (2012).

2. Gaspar, P. D., Santo, A. E., Riberio, B.: MSP430 Teaching ROM. Texas
Instruments (2009).

3. Kleitz, W.: Digital Electronics: A Practical Approach with VHDL, 9th ed.
Prentice Hall (2012).

4. Lathi, B. P., Ding, Z.: Modern Digital and Analog Communication Systems, 4th
ed. Oxford University Press (2009).

5. Mano, M. M., Ciletti, M. D.: Digital Design, 4th ed. Prentice Hall (2006).

6. Mano, M. M., Kimei, C.: Logic and Computer Design Fundamentals, 4th ed.
Prentice Hall (2007).

7. NXP: UM10204 I°C-Bus Specification and User Manual, rev. 5th ed. (2012).

8. Oppenheim, A. V., Schafer, R. W.: Discrete-Time Signal Processing, 3rd ed.
Prentice Hall (2009).

9. Texas Instruments: MSP430 Flash Memory Characteristics, slaa334a ed.
(2008).

10. Texas Instruments: Understanding MSP430 Flash Data Retention, slaa392 ed.
(2008).

11. Texas Instruments: Code Composer Studio v5.3 User’s Guide for MSP430, slaul57u
ed. (2012).

12. Texas Instruments: MSP-EXP430G2 LaunchPad Experimenter Board User’s Guide,
slau318c ed. (2012).

13. Texas Instruments: MSP430 Assembly Language Tools v4.1 User’s Guide, slaul31g
ed. (2012).

14. Texas Instruments: MSP430 Programming via the Bootstrap Loader User’s Guide,
slau319 ed. (2012).

15. Texas Instruments: MSP430 Programming via the JTAG Interface User’s Guide,
slau320 ed. (2012).

16. Texas Instruments: MSP430G2x53, MSP430G2x13 Mixed Signal Microcontroller,
slas735g ed. (2012).

17. Texas Instruments: MSP430x2xx Family User’s Guide, slaul44i ed. (2012).

0/0 division

16-bit address bus (MAB)
16-bit data bus (MDB)
16x2 character LCD

A

Absolute mode
Access violation interrupt flag (ACCVIFG)
ACLK. See Auxiliary clock
Active high/low input
Active mode (AM)
ADC. See Analog-to-digital conversion module
Adders
Air freshener dispenser:
equipment list
layout
system design specifications
ALU. See Arithmetic logic unit
AM. See Active mode
American Standard Code for Information Interchange (ASCII)
Analog signals
Analog-to-digital conversion (ADC) module:
ADC10B1 bit
ADC10BUSY bit
ADCI10CT bit
ADC10DIVx bits
ADCI10FETCH bit
ADCIO0IE bit
ADCI10IFG bit
ADC10SC bit
ADC10SHTx bits
ADC10SR bit
ADC10SSELXx bits
ADC10TB bit
ADCDF bit

car parking sensor system and

Clock Source list
coding practices:
in assembly
inC
comparator example
temperature example
voltage level example
diagram
DTC and
fire alarm and
in Grace:
basic user mode
coding practices
overview
power user mode
register control mode
obstacle-avoiding tank and
overview
pin layout
registers
SAR converter:
diagram
simulation program
sound detector and
summary
Trigger Source & Sampling Rate
AND Gate
Architecture:
clocks
CPU
digital communication module
general layout
input and output ports
memory
other modules
overview
pin layout

summary

timer and watchdog timer modules
Arithmetic instructions:
MNemonics:
double-operand
emulated
sample programs
Arithmetic logic unit (ALU)
Arithmetic operations, C programming
Arrays, C programming and
ASCII. See American Standard Code for Information Interchange
Assembly:
ADC module and
CCS and
comparator_A+ module and
control structures in
flash memory coding practices

I/0 and

IC coding practices:
master receiver code
master transmitter code
slave receiver code
slave transmitter code
interrupts coding practices in:
LEDs turned on and off
red and green LEDs toggled
ISR in
language subroutines usage
program structure
project creation
PWM and
SPI coding practices:
master transmitter code
PWM application four-pin mode
PWM application three-pin mode
slave receiver code
timer coding practices
UART in:

Hello World application

LED control application
WDT+ coding practices
Assembly Step Into button
Assembly Step Over button
Asynchronous counter
Automatic Data Transfer Controller block

Auxiliary clock (ACLK)
B

Basic clock system control register 1 (BCSCTL1)
Basic clock system control register 2 (BCSCTL2)
Basic clock system control register 3 (BCSCTL3)
Basic user mode, in Grace:
ADC module
BCM+
comparator_A+ module
flash memory
1°C
SPI
timer
UART
WDT+
Baud rate control register 0 (UCAOBRO)
Baud rate control register 1 (UCAOBR1)
Baud rate generation, UART
BCM+:
block diagram
coding practices
in Grace:
basic user mode
power user mode
register controls mode
overview
pin layout
registers
BCSCTLI1. See Basic clock system control register 1
BCSCTL2. See Basic clock system control register 2
BCSCTL3. See Basic clock system control register 3

Big endian representations

Binary numbers representation
Bipolar junction transistor (BJT)
BLKWRT bit

Bootstrap loader

Breakpoint insertion

Build button

BUSY bit

Button press counting

C
C programming:
ADC module and
arithmetic operations
arrays and
C data types
CCS project creation:
header file creation
new
optimization and
overview
project building and loading
chronometer application
constants defined
global variables defined
I/0 hardware setup
ISR settings
timer block hardware setup
comparator_A+ module and
const declaration and
control structures:
condition check
loops
define statement and
digital communication application
flash memory coding practices
global variables and
I/O coding in C
interrupts coding practices:

button press counting

red LED toggle
turn on and off LEDs
ISR and
logic operations
memory management:
code samples
local and global variables
miscellaneous issues
non-touch paper towel dispenser application
constants defined
global variables defined
hardware configurations
ISR timer settings
overview
pointers and
PWM and
SPI coding practices in:
loopback application
master transmitter code
PWM application four-pin mode
PWM application three-pin mode
slave receiver code
summary
timer coding practices
UART in:
loopback application
password application
PWM application
for two LaunchPads communication
WDT+ coding practices
CAEX bit
CAF bit
CAIE bit
CAIES bit
CAIFG bit
CAON bit
CAOUT bit
CAP bit

Capture/compare block
Capture mode
Car door alarm:
equipment list
layout
system design specifications
Car park tollgate:
equipment list
IR transmitter and receiver LED and
layout
system design specifications
Car parking sensor system:
equipment list
layout
system design specifications
Car window control:
equipment list
layout
system design specifications
CAREF bits
CARSEL bit
CASHORT bit
CCI bit
CCIE bit
CCIFG interrupt flag
CCISx bits
CCS. See Code Composer Studio
.cdecls directive
Central processing unit (CPU):
ALU
architecture
block diagram
flash memory and
interrupts flags and
oscillator faults and
overview
registers

reset button

Char, unsigned char data type
Chronometer application:
C code
constants defined
global variables defined
I/O hardware setup
ISR settings
timer block hardware setup
equipment list
header file for
layout
overview
pin description
system design specifications
Clock Divider drop-down list
Clocks. See also Chronometer application; Low-power modes; Oscillator; Timer; Watchdog Timer+
ACLK
ADC Clock Source list
architecture
BCM+:
block diagram
coding practices
overview
registers
BCM+ in Grace:
basic user mode
power user mode

register controls mode

1°C and
MCLK
overview
SCL and
SMCLK
SPI and
summary
types of
UART and
USCI and

CMOS. See Complementary metal oxide semiconductor
cmp instruction
CMx bits
Code Composer Studio (CCS)
assembly project creation
C project creation:
header file creation
new
optimization and
overview
project building and loading
debug perspective
debug termination
edit perspective
Grace and
observing hardware under
disassembly
memory
registers
obtaining
overview
program execution:
breakpoint insertion
buttons associated with
local variables and
menu
watch expression and
setup:
downloading and installing
hardware
opening workspace
perspectives
starting
summary
terminal window
Coding practices. See specific subject
Combinatorial circuits, from gates:

adders

decoder
full adder
half adder
MUX
overview
parallel adder
Comparator
ADC module and
Comparator_A+ module:
coding practices:
in assembly
inC
diagram
in Grace:
basic user mode
coding practices
overview
power user mode
register controls mode
overview
pin layout
registers
Compare mode
Complementary metal oxide semiconductor (CMOS)
Condition check, control structures and
CONSEQx bits
Const declaration
Constants:
chronometer application
for entering and exiting LPMs
non-touch paper towel dispenser application
washing machine application
WDT+
Continuous mode
Control structures:
in assembly
C programming:

condition check

loops
Conversion Type list
Counters. See also Program counter
asynchronous
from flip-flops
synchronous
COV bit

CPU. See Central processing unit

D
D-reg
DAC. See Digital-to-analog conversion
Data instructions, mnemonics:
double-operand
emulated
Data transfer controller (DTC)
DCO. See Digitally controlled oscillator
DCO control register (DCOCTL)
Debug:
button
perspective
termination
Decimal numbers representation
Decoder
Define statement
Delay function
Digital circuits:
combinatorial circuits from gates
logic gates from transistors
overview
sequential circuits from gates
summary
transistor as switch
Digital communication application:
C codes
equipment list
first microcontroller transmitter code
part I

part II

part III
layout
overview
second microcontroller receiver code
part I
part II
system design specifications
Digital communication module:
overview
sports watch and
Digital input and output (I/O):
car door alarm and
car window control and
chronometer application, C code hardware setup
coding practices
in assembly
inC
digital safe application:
C code complete
C code part I for
C code part II for
C code part III for
equipment list
layout
overview
system design specifications
in Grace:
coding practices
overview
P1/P2
mode
Pinout20-TSSOP/20-PDIP mode
power user mode
hardware issues:
active high/low input
switch bouncing
overview

pin hardware

pin layout for
pin usage table
registers
summary
Digital lock system:
equipment list
layout
overview
system design specifications
Digital signals
Digital-to-analog conversion (DAC):
PWM for
wave generator and
Digitally controlled oscillator (DCO)
Disassembly window
DIVAX bits
DIVMXx bits
DIVSx bits
Double-operand instructions
format

DTC. See Data transfer controller

E

Edge select register

Edit perspective

EMEX bit

Emulated instructions

ENC bit

.end directive

Endian representations
ERASE bit

Exclusive-OR. See XOR gate

Expressions window

F

FAIL bit

Fire alarm:
equipment list
layout

system design specifications

Fixed-point representation
Flags:
interrupt
ACCVIFG
CCIFG
OFIFG
register
Flash
Flash memory:
coding practices:
in assembly
inC
controller
CPU and
in Grace:
basic user mode
register controls mode
overview
programming, options
registers
sections
summary
Flash to flash programming
Flip-flops:
counters from
from gates
register from
shift register from
Float, double, long double data type
Floating-point representation
FNx bits
FRKEY password
FSSELX bits
Full adder
Full-step control sequence
FWKEY password
FWKEYx password

G

Gates. See Combinatorial circuits; Logic gates; Sequential circuits
General purpose input and output (GPIO)
GIE. See Global interrupt enable
.global directive
Global interrupt enable (GIE)
Global variables:
chronometer application
memory management and
non-touch paper towel dispenser application
washing machine application
GPIO. See General purpose input and output
Graphical Peripheral Configuration Tool (Grace)
ADC module in:
basic user mode
coding practices
overview
power user mode
register control mode
basic user mode in:
ADC module
BCM+
comparator_A+ module
flash memory
1°C
SPI
timer
UART
WDT+
BCM+ in:
basic user mode
power user mode
register controls mode
CCS and
comparator_A+ module in:
basic user mode
coding practices
overview

power user mode

register controls mode
flash memory in:
basic user mode
register controls mode
I/O in:
coding practices
overview
P1/P2
mode
Pinout20-TSSOP/20-PDIP mode
power user mode
1°C in:
basic user mode
power user mode
register controls mode
interrupts in:
coding practices
port interrupts
power user mode in:
ADC module
BCM+
comparator_A+ module
/O
1°C
SPI
timer
UART
WDT+
register controls mode in:
ADC module
BCM+
comparator_A+ module
flash memory
1°C
SPI
timer
UART
SPIin:

basic user mode

power user mode

register controls mode
timer in:

basic user mode

coding practices

power user mode

register controls mode
UART in:

basic user mode

coding practices

overview

power user mode

register controls mode
WDT+ in:

basic user mode

coding practices

power user mode

register control mode

H

Half adder

Half-step control sequence
Header file creation

Hello World application

Hexadecimal numbers representation

I
I/0. See Digital input and output

1C. See Inter integrated circuit

IC. See Integrated circuit; 1.293D motor driver
IDx bits

IE1. See Interrupt enable register

Immediate mode

INCHx bits

Indexed mode

Indirect autoincrement mode

Indirect register mode

Infrared (IR)

Input and output ports

Instruction set:

addressing modes:
absolute mode
immediate mode
indexed mode
indirect autoincrement mode
indirect register mode
overview
register mode
symbolic mode

assembly program structure

double-operand instructions

emulated instructions

instruction anatomy

jump instructions

overview

sample programs:
arithmetic usage
assembly language subroutines usage
control structures in assembly language
data usage
jump instructions usage
logical and register control usage
overview

single-operand instructions

stack and

summary

Int, signed int data type

Integrated circuit (IC)

Inter integrated circuit (I2C):

clocks and

coding practices for:
in assembly
inC
master receiver code in assembly
master receiver code in C
master transmitter code in assembly

master transmitter code in C

slave receiver code in assembly
slave receiver code in C
slave transmitter code in assembly
slave transmitter code in C
common issues
control register and
digital communication application:
C codes
equipment list
first microcontroller transmitter code
layout
overview
second microcontroller receiver code
system design specifications
in Grace:
basic user mode
power user mode
register controls mode
interrupts
overview
pins and
registers and
SFR IE2
and IFG2
SMCLK and
SR and
summary
transmit and receive operations:
master receiver mode
master transmitter mode
overview
slave receiver mode
slave transmitter mode
Interrupt enable register (IE1)
UCBOI2CIE
Interrupt service routine (ISR)
in assembly

inC

chronometer application, C code
function compared with
interrupt vectors and
LPMs and
non-touch paper towel dispenser application, C code
washing machine application settings
Interrupts:
CCIFG
coding practices:
in assembly
button press counting
inC
LEDs turned on and off
red and green LEDs toggled
red LED toggle
turn on and off LEDs
edge select register
enable register
flag register
flags
GIE and
in Grace:
coding practices
port interrupts
1°C
IE1
LPMs and
maskable
NMIs
occurrence of
OFIE
overview
PC and
port
car park tollgate
digital lock system
priority order and

registers

reset
SPI
SR and
summary
timer
types of
UART
vectors
washing machine application:
C code
constants defined
delay function
equipment list
full-step control sequence
global variables defined
half-step control sequence
hardware setup
ISR settings
layout
overview
stepper motor
system design specifications
voltage supply block
wash function
Interval timer
IR. See Infrared
ISR. See Interrupt service routine

ISSH bit
J

jmp $ instruction
Jump instructions:
format
mnemonics
usage
Jumper settings, UART and
K
KEYYV bit

L

L293D motor driver IC
Latches, from gates
LaunchPad. See specific subject
LCD. See Liquid crystal display
LED. See Light-emitting diode
LFXT1. See
Low-frequency/high-frequency
external oscillator
Light-emitting diode (LED):
car door alarm and
IR transmitter and receiver
red
toggle
red and green LEDs toggled
turned on and off
UART and
Liquid crystal display (LCD). See also Chronometer application
Little endian representations
Local variables:
C language and
CCS and
LOCK bit
LOCKA bit
Logic gates, from transistors:
AND gate
OR gate
NAND gate
NOR gate
NOT gate
overview
transmission gate
XOR gate
Logic operations, C programming
Logical and register control instructions, mnemonics:
double-operand
emulated
single-operand

Long, signed long data type

Loopback application:
SPI and
UART and
Loops, control structures and
Low-frequency/high-frequency external oscillator (LFXT1)
LFXT1OF bit
LFXT1Sx bits
Low-power modes (LPMs):
air freshener dispenser and
AM and
constants for entering
constants for exiting
interrupts and
ISR and
overview
SR bits and
traffic lights and

LPMs. See Low-power modes

M

MAB. See 16-bit address bus
Maskable interrupts

Master clock (MCLK)

Master in slave out (UCxSOMI)

Master mode

Master receiver code, I°C coding practices:
in assembly
inC

Master receiver mode

Master transmitter code:

IC coding practices:
in assembly
inC
SPI coding practices:
in assembly
inC
Master transmitter mode
MCLK. See Master clock
MCx bits

MDB. See 16-bit data bus
Memory. See also Flash memory; Random access memory
architecture
C programming memory management:
code samples
local and global variables
map
observing
overview
peripheral registers and SFRs
from registers
Starting Memory Address
Memory Block Size values
MERAS bit
Metal oxide semiconductor field effect transistor (MOSFET)
Microcontrollers. See also specific subject
overview about
TI MSP430 LaunchPad and
topics about
Mnemonics:
double-operand instructions
emulated instructions
jump instructions
single-operand instructions
MOSFET. See Metal oxide
semiconductor field effect
transistor
mov.b
Mmov.w
MSC bit
Multiplexer (MUX)
N
N-channel MOSFET (NMOS)
NAND gate
Negative numbers
Negative Reference Voltage list

NMIs. See Non-maskable interrupts

NMOS. See N-channel MOSFET

Non-maskable interrupts (NMIs)
Non-touch paper towel dispenser application:
C code
constants defined
global variables defined
hardware configurations
ISR timer settings
equipment list
L293D motor driver IC and
layout
overview
system design specifications
NOR gate
NOT gate
Numbers:
binary
decimal
fixed-point representation
floating-point representation
hexadecimal
little and big endian representations
negative
representations

summary

o

Obstacle-avoiding tank:
equipment list
layout
system design specifications
OFIE. See Oscillator fault interrupt enable
OFIFG. See Oscillator fault interrupt flag
Optimization
OR gate
Oscillator:
DCO and VLO
LFXT1
Oscillator fault interrupt enable (OFIE)

Oscillator fault interrupt flag (OFIFG)

Oscillators:
DCO
external crystal
faults
LFXT1
overview
RC
VLO
OUT bit
OUTMODX bits

Overflow

P
P-channel MOSFET (PMOS)
P1/P2 mode
P2CA bits
Parallel adder
Password
application
PC. See Program counter
Peripheral registers
Pin:
description, chronometer application
I/O:
hardware
usage table
layout
ADC module
BCM+
comparator_A+ module
/O
timer
USCI
PWM application:
four-pin mode in assembly
four-pin mode in C
three-pin mode in assembly
three-pin mode in C

Pinout20-TSSOP/20-PDIP mode

PMOS. See P-channel MOSFET
Pointers, C programming and
pop
Port:
input and output
interrupts
car park tollgate
digital lock system
in Grace
Positive Reference Voltage list
Power user mode, in Grace:
ADC module
BCM+
comparator_A+ module
/O
1°C
SPI
timer
UART
WDT+
pragma keyword
Priority order
Program counter (PC)
interrupt and
Program flow control instructions:
mnemonics, emulated
single-operand
Programming voltage generator
Pulse width modulation (PWM):
car parking sensor system and
coding practices for:
in assembly
inC
I2C coding practices:
master receiver code in assembly
master receiver code in C
master transmitter code in assembly

master transmitter code in C

slave receiver code in assembly
slave receiver code in C
slave transmitter code in assembly
slave transmitter code in C
obstacle-avoiding tank and
overview
SPI coding practices:
four-pin mode in assembly
four-pin mode in C
three-pin mode in assembly
three-pin mode in C
UART coding practices, in C
push
PWM. See Pulse width modulation
PxDIR
PxIN and PxOUT
PxREN
PxSEL and PxSEL2

R
Random access memory (RAM)
REF2 5V bit
REFBURST bit
REFON bit
REFOUT bit
Register controls mode, in Grace:
ADC module
BCM+
comparator_A+ module
flash memory
1°C
SPI
timer
UART
Registers. See also Status register
ADC module
BCM+
clocks

comparator_A+ module

CPU

edge select

enable

flash memory

from flip-flops

/O

1°C and

IE1

interrupt

memory from

mode

observing hardware under CCS and

peripheral

SFRs

shift

SPI and

TACCTLx

TACTL control

TAR

UART

UCBOI2CIE

USCI
Reset CPU button
Reset interrupts
RESET label
Resistor capacitor (RC)
Restart button
Resume button
retain directive
retainrefs directive

RSELx bits

S

S-reg

SAR. See Successive approximation register
sbc instruction

SCCI bit

SCL. See Serial clock pin

SCS bit

SDA. See Serial data pin
.sect directive
SELMX bits
SELS bit
Sequential circuits, from gates:
counters from flip-flops
flip-flops
latches
memory from registers
overview
register from flip-flops
shift register from flip-flops
Serial clock pin (SCL)
Serial data pin (SDA)
Serial peripheral interface (SPI):
clocks and
coding practices:
loopback application in C
master transmitter code in assembly
master transmitter code in C
PWM application four-pin mode in assembly
PWM application four-pin mode in C
PWM application three-pin mode in assembly
PWM application three-pin mode in C
slave receiver code in assembly
slave receiver code in C
common issues
communication pins
control register
diagram
in Grace:
basic user mode
power user mode
register controls mode
interrupts
overview
registers and

SFR IE2

and IFG2
SMCLK and
SR and
transmit and receive operations:
master mode
slave mode
SFRs. See Special function registers
Shift register, from flip-flops
Short, signed short data type
.short directive
SHSx bits
Signed char data type
Single-operand instructions:
format
mnemonics
Slave in master out (UCxSIMO)
Slave mode

Slave receiver code:

IC coding practices:
in assembly
inC

SPI coding practices:
in assembly
inC

Slave receiver mode

Slave transmit enable (UCxSTE)

Slave transmitter code, I°C coding practices:
in assembly
inC
Slave transmitter mode
SMCLK. See Sub-main clock
Sound detector:
equipment list
layout
system design specifications
SP. See Stack pointer
Special function registers (SFRs)
IE2 and IFG2

SPI. See Serial peripheral interface
Sports watch:
equipment list
layout
system design specifications
SR. See Status register
SREFx bits
Stack
Stack pointer (SP)
Starting Memory Address
Status register (SR)
double-operand instructions effect on

emulated instructions effect on

1°C and
interrupt and
jump instructions and
LPMs effect on
single-operand instructions effect on
SPI and
UART and
Step Into button
Step Over button
Step Return button
Stepper motor
Stop mode
Sub-main clock (SMCLK)
USCI module and
Successive approximation register (SAR):
diagram
simulation program
Suspend button
Switch bouncing
swpb instruction
sxt instruction
Symbolic mode

Synchronous counter

T
TACCTLx control register

TACLR bit
TACTL control register
TAIE bit
TAIFG bit
TAR register
TASSELXx bits
Temperature example
Terminal window
.text directive
TI MSP430 LaunchPad:
overview
versions
Timer. See also Watchdog Timer+
air freshener dispenser and
block
hardware setup
capture/compare block
capture mode
compare mode
coding practices:
for assembly
for C
continuous mode
diagram
in Grace:
basic user mode
coding practices
power user mode
register controls mode
interrupts
interval
module
non-touch paper towel dispenser application
pin layout
stop mode
TACTL control register and
TAR register

terminology

traffic lights and

up/down mode

up mode
Timing generator, flash memory controller
Traffic lights:

design specifications

equipment list

layout
Transistor:

BJT

logic gates from

MOSFET

as switch
Transmission gate
Transmit and receive operations, UART
Trigger Source & Sampling Rate, ADC
Turn on and off LEDs

U

UART. See Universal asynchronous receiver/transmitter
UC7BIT bit

UCAOBRO. See Baud rate control register 0

UCAOBRI1. See Baud rate control register 1

UCA10 bit

UCADDR bit

UCALIFG bit

UCBOI2CIE. See USCI_BO I°C Interrupt Enable Register
UCBBUSY bit
UCBRFx bits
UCBRK bit
UCBRKIE bit
UCBRSx bits
UCBUSY bit
UCCKPH bit
UCCKPL bit
UCDORM bit
UCFE bit
UCGC bit
UCIDLE bit

UCLISTEN bit
UCMM bit
UCMODEX bits
UCMSB bit
UCMST bit
UCNACKIFG bit
UCOE bit
UCOS16 bit
UCPAR bits
UCPE bit
UCPEN bits
UCRXEIE bit
UCRXERR bit
UCSCLLOW bit
UCSLA10 bit
UCSPB bit
UCSSELX bits
UCSTPIFG bit
UCSWRST bit
UCSYNC bit
UCSYNC bits
UCTR bit
UCTXADDR bit
UCTXBRK bit
UCTXNACK bit
UCTXSTP bit
UCTXSTT bit
UCxCLK
UCXSIMO. See Slave in master out
UCxSOMILI. See Master in slave out
UCXSTE. See Slave transmit enable
Ultra-Low-Power Advisor (ULP Advisor)
Universal asynchronous receiver/transmitter (UART):
as asynchronous mode
baud rate generation
character format for
clocks and

coding practices:

Hello World application in assembly
jumper settings and
LED control application in assembly
loopback application in C
overview
password application in C
PWM application in C
for two LaunchPads communication in C
common issues
diagram
digital communication application:
C codes
equipment list
first microcontroller transmitter code
layout
overview
system design specifications
in Grace:
basic user mode
coding practices
overview
power user mode
register controls mode
interrupts
overview
registers and
SFR IE2
and IFG2
SMCLK and
SR and
summary
transmit and receive operations
Universal serial communication interface (USCI):
clocks
common issues
module types
overview

pin layout

registers

SFR IE2

and IFG2

SMCLK and
Unsigned int data type
Unsigned long data type
Unsigned short data type
Up/down mode
Up mode

USCI. See Universal serial communication interface
USCI_BO IC Interrupt Enable Register (UCBOI2CIE)
V

Variables window
Vectors, interrupts
Very low power oscillator (VLO)
Voltage:
level example
Negative Reference Voltage list
Positive Reference Voltage list
programming voltage generator

supply block

w

WAIT bit

Wash function

Washing machine application, interrupts:
C code
constants defined
delay function
equipment list
full-step control sequence
global variables defined
half-step control sequence
hardware setup
ISR settings
layout
overview
stepper motor

system design specifications

voltage supply block
wash function
Watch expression
Watchdog Timer+ (WDT+):
coding practices:
in assembly
inC
in timer mode
in watchdog mode
constants
control register
diagram
in Grace:
basic user mode
coding practices
power user mode
register control mode
module
layout
overview
used as interval timer
used as watchdog
WDTCTL
Wave generator:
equipment list
layout
system design specifications
WDT+. See Watchdog Timer+
WDT+ control register (WDTCTL)
Word size

WRT bit

X

XCAPx bits
XOR gate
XT2OF bits
XT2Sx bits
XTS bit

lﬂhe Institution of

Engineering and Technology

Adding value to your research

The 1ET is Europe’s largest professional body of engineers with over 150,000
members in 127 countries and is a source of essential engineering intelligence.

We facilitate the exchange of ideas and promote the positive role of science,
enginearing and technology in the world. Discover the IET online to access:

m 400 eBooks

m 26 internationally renowned research journals

W 1,300 conference publications

m over 70,000 archive articles dating back to 1872

W Inspec database containing over 13 million searchable records

To find out more please visit: ERICITAGEH KIEIS

	Preface
	Acknowledgments
	1 Introduction
	1.1 The TI MSP430 LaunchPad
	1.2 Topics to Be Covered in This Book
	2 Review of Digital Circuits
	2.1 Transistor as a Switch
	2.2 Logic Gates from Transistors
	2.3 Combinational Circuits from Gates
	2.4 Sequential Circuits from Gates
	2.5 Summary
	2.6 Problems
	3 Data Types
	3.1 Number Representations
	3.2 Negative Numbers
	3.3 Fixed- and Floating-Point Representations
	3.4 The Word Size and Overflow
	3.5 Little and Big Endian Representations
	3.6 ASCII Characters
	3.7 Summary
	3.8 Problems
	4 MSP430 Architecture
	4.1 General Layout
	4.2 Central Processing Unit
	4.3 Memory
	4.4 Input and Output Ports
	4.5 Clocks, the Timer, and Watchdog Timer Modules
	4.6 ADC and Comparator Modules
	4.7 The Digital Communication Module
	4.8 Other Modules
	4.9 The Pin Layout of the MSP430G2553
	4.10 Summary
	4.11 Problems
	5 Code Composer Studio
	5.1 Setup
	5.2 Creating a C Project
	5.3 Creating an Assembly Project
	5.4 Program Execution
	5.5 Observing Hardware under CCS
	5.6 Terminating the Debug Session and Closing the Project
	5.7 Graphical Peripheral Configuration Tool (Grace)
	5.8 The Terminal Window
	5.9 Summary
	5.10 Problems
	6 MSP430 Programming with C
	6.1 Memory Management
	6.2 C Data Types
	6.3 Arithmetic and Logic Operations
	6.4 Control Structures
	6.5 Arrays and Pointers
	6.6 Miscellaneous Issues
	6.7 Summary
	6.8 Problems
	7 MSP430 Instruction Set
	7.1 Introduction
	7.2 Anatomy of an Instruction
	7.3 MSP430 Addressing Modes
	7.4 The Stack
	7.5 Assembly Program Structure
	7.6 Sample Programs on Instruction Set Usage
	7.7 Summary
	7.8 Problems
	8 Digital Input and Output
	8.1 Pin Layout for Digital I/O
	8.2 Digital I/O Registers
	8.3 Digital I/O Hardware Issues
	8.4 Coding Practices for Digital I/O
	8.5 Digital I/O in Grace
	8.6 Digital Safe Application
	8.7 Summary
	8.8 Problems
	9 Interrupts
	9.1 What Happens When an Interrupt Occurs?
	9.2 Types of Interrupts
	9.3 Interrupt Flags
	9.4 Interrupt Vectors
	9.5 Interrupt Service Routines
	9.6 Port Interrupts
	9.7 Coding Practices for Interrupts
	9.8 Interrupts in Grace
	9.9 Washing Machine Application
	9.10 Summary
	9.11 Problems
	10 Oscillators, Clocks, and Timers
	10.1 Oscillators
	10.2 Clocks
	10.3 BCM+ in Grace
	10.4 Low-Power Modes
	10.5 The Watchdog Timer
	10.6 WDT+ in Grace
	10.7 Timers
	10.8 The Pin Layout for the BCM+ and Timer_A Modules
	10.9 Timer_A in Grace
	10.10 Chronometer Application
	10.11 Summary
	10.12 Problems
	11 Mixed Signal Systems
	11.1 Analog and Digital Signals
	11.2 The Comparator
	11.3 Comparator A+ in Grace
	11.4 Analog-to-Digital Conversion
	11.5 Digital-to-Analog Conversion
	11.6 ADC10 in Grace
	11.7 Non-Touch Paper Towel Dispenser Application
	11.8 Summary
	11.9 Problems
	12 Digital Communication
	12.1 Universal Serial Communication Interface
	12.2 Universal Asynchronous Receiver/Transmitter
	12.3 UART in Grace
	12.4 Serial Peripheral Interface
	12.5 SPI in Grace
	12.6 Inter Integrated Circuit
	12.7 I 2 C in Grace
	12.8 Digital Communication Application
	12.9 Summary
	12.10 Problems
	13 Flash Memory
	13.1 MSP430 Flash Memory
	13.2 Flash Memory Programming
	13.3 Coding Practices for Flash Memory
	13.4 Flash Memory in Grace
	13.5 Summary
	13.6 Problems
	14 Applications
	14.1 Car Door Alarm
	14.2 Car Window Control
	14.3 Car Park Tollgate
	14.4 Digital Lock System
	14.5 Air Freshener Dispenser
	14.6 Traffic Lights
	14.7 Sound Detector
	14.8 Obstacle-Avoiding Tank
	14.9 Car Parking Sensor System
	14.10 Fire Alarm
	14.11 Wave Generator
	14.12 Sports Watch
	15 Appendix
	15.1 MSP430 Intrinsic Functions
	15.2 MSP430G2553 Header File
	References
	Index

