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Preface
	
Smart	 systems	 have	 become	 inevitable	 parts	 of	 our	 lives.	Every	 smart	 system	needs	 an
information	processing	unit.	A	microcontroller	is	a	good	candidate	for	such	an	operation.
Therefore,	a	professional	engineer	or	a	fresh	graduate	should	know	how	a	microcontroller
works.	 This	 book	 aims	 to	 introduce	 the	 working	 principles	 of	 a	 current-model
microcontroller	 through	 applications.	 To	 do	 this,	 we	 need	 a	 specific	 microcontroller
platform.	The	recently	introduced	Texas	Instruments	MSP430	LaunchPad	is	an	excellent
choice	for	this	purpose.	It	is	a	compact	platform	with	an	MSP430	microcontroller	on	it.

The	first	step	 in	understanding	a	microcontroller	 is	 to	examine	 its	construction.	We
devote	three	chapters	to	this	issue.	In	Chap.	2,	we	start	with	a	review	of	digital	logic.	Here
we	 emphasize	 that	 the	microcontroller	 is	 composed	 of	 logic	 gates	 in	 its	 basic	 form.	 In
Chap.	3,	we	introduce	data	types	used	in	a	digital	system.	In	this	chapter,	we	provide	the
ways	 to	 represent	 positive	 and	 negative,	 fixed-	 and	 floating-point	 numbers	 in	 a
microcontroller.	We	also	explain	what	a	word	size	and	overflow	mean.	Then	we	consider
the	 endian	 representations.	 In	 Chap.	 4,	 we	 focus	 on	 the	 hardware	 of	 the	 MSP430
microcontroller.	 Therefore,	 we	 look	 at	 the	 central	 processing	 unit,	 memory,	 input	 and
output	ports,	clocks	and	the	timer	modules,	ADC	and	comparator	modules,	and	the	digital
communication	 module.	 This	 chapter	 summarizes	 the	 properties	 of	 the	 MSP430
microcontroller	to	be	considered	throughout	the	book.

The	second	step	in	understanding	a	microcontroller	is	learning	how	to	program	it.	To
do	 so,	 we	 introduce	 Code	 Composer	 Studio	 (CCS)	 in	 Chap.	 5.	 CCS	 is	 the	 unique
environment	in	which	to	program	TI	microcontrollers	and	digital	signal	processors	(DSP).
We	will	use	it	to	program	the	MSP430	in	both	C	and	assembly	languages	throughout	the
book.	CCS	is	not	only	a	programming	environment.	Using	it,	we	can	observe	the	status	of
the	hardware	components	while	the	program	is	running.	Therefore,	it	will	be	of	great	help
in	understanding	the	MSP430	in	action.	We	also	introduce	the	recent	graphical	peripheral
configuration	tool	(Grace)	under	CCS.	It	will	be	of	great	help	in	the	following	chapters.	In
Chap.	6,	we	 introduce	 the	C	 programming	 techniques	 for	 our	microcontroller.	Here	we
first	 consider	 memory	 management	 and	 data	 types.	 Then	 we	 briefly	 overview	 basic	 C
concepts.	Although	 the	C	 language	may	be	sufficient	 for	most	applications,	 learning	 the
assembly	 language	 is	 a	must	 to	understand	 the	microcontroller.	Therefore,	we	 introduce
the	instruction	set	of	the	MSP430	in	Chap.	7.	We	also	look	at	 the	addressing	modes	and
the	usage	of	the	stack	in	this	chapter.

The	 third	 step	 in	 understanding	 a	 microcontroller	 is	 using	 it	 through	 different
applications.	To	do	so,	we	should	know	its	properties	in	detail.	In	Chap.	8,	we	start	with
the	digital	input	and	output	concepts.	Therefore,	we	consider	the	configuration	and	usage
of	the	input/output	ports	of	the	MSP430.	At	the	end	of	the	chapter,	we	pick	the	digital	safe
application	and	implement	it	step-by-step	in	both	hardware	and	software.	In	Chap.	9,	we
focus	 on	 the	 interrupt	 concept,	 which	 is	 extremely	 important	 in	 event-driven
programming.	Therefore,	we	consider	the	occurrence	of	interrupts	as	well	as	the	ways	to
handle	 them.	 To	 explain	 the	 interrupt	 concept	 further,	 we	 pick	 the	 washing	 machine
application	and	 implement	 it	 step-by-step	 at	 the	 end	of	 the	 chapter.	After	 interrupts,	we



consider	time-based	operations	in	Chap.	10.	These	concepts	are	also	extremely	important
in	 applications.	 In	 this	 chapter,	we	 start	with	 the	 oscillators	 since	 they	 are	 the	 building
blocks	of	the	clocks.	The	MSP430	has	more	than	one	clock.	We	explore	all	these	clocks
and	 their	 usage	 areas.	 Another	 important	 topic	 in	 time-based	 operations	 is	 low-power
modes.	 Effectively	 using	 them	 helps	 energy	 savings	 in	 applications.	 Therefore,	 we
consider	them	next.	In	the	same	chapter,	we	also	consider	the	usage	of	the	watchdog	timer
and	 the	 timer	modules.	We	 pick	 the	 chronometer	 as	 the	 end-of-chapter	 application;	we
implement	it	step-by-step.	In	Chap.	11,	we	consider	the	processing	of	mixed	signals.	To	do
so,	we	start	with	the	properties	of	analog	and	digital	signals.	Then	we	focus	on	the	analog-
to-digital	 conversion	 modules	 in	 the	 MSP430	 microcontroller.	 Next,	 we	 focus	 on	 the
digital-to-analog	 conversion.	 Since	 the	 MSP430	 we	 are	 using	 does	 not	 have	 such	 a
module,	we	use	pulse	width	modulation	 instead.	At	 the	 end	of	 the	 chapter,	we	pick	 the
non-touch	 paper	 towel	 dispenser	 as	 an	 application.	 As	 in	 all	 previous	 applications,	 we
implement	 it	 step-by-step	 in	both	hardware	 and	 software.	 In	Chap.	12,	we	 focus	on	 the
digital	communication	module	of	 the	MSP430.	Under	 this	module,	we	consider	 the	SPI,
UART,	 and	 I2C	 communication	modes.	As	 in	 the	 previous	 chapters,	we	 pick	 a	 specific
application	and	 implement	 it	 step-by-step.	 In	Chap.	13,	we	explore	 the	flash	memory	of
the	MSP430.	 In	Chap.	14,	we	provide	 sample	applications	on	all	 topics	 considered.	We
picked	 these	applications	 from	real-life	problems	 to	 show	how	a	microcontroller	 can	be
used	to	solve	them.	In	this	final	chapter,	we	provide	the	problem	statement,	equipment	list,
and	 circuit	 layout	 of	 each	 application.	 We	 expect	 the	 reader	 to	 implement	 these
applications	to	master	his	or	her	knowledge	in	microcontroller-based	system	design.

In	this	book,	we	try	to	make	all	of	these	microcontroller	concepts	understandable	to
an	undergraduate	engineering	student.	Therefore,	a	professional	engineer	may	also	benefit
from	the	book.	Since	we	pick	the	MSP430	LaunchPad	with	the	MSP430	microcontroller,
the	 reader	 may	 find	 a	 wide	 variety	 of	 applications	 besides	 the	 ones	 considered	 in	 this
book.	 However,	 the	 ones	 mentioned	 here	 will	 be	 the	 benchmark	 applications	 for	 the
future.	 As	 a	 result,	 we	 expect	 the	 reader	 to	 become	 familiar	 with	 the	 microcontroller
concepts	in	action.

Cem	Ünsalan

H.	Deniz	Gürhan
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1	 Introduction
Chapter	Outline

1.1					The	TI	MSP430	LaunchPad

1.2					Topics	to	Be	Covered	in	This	Book

Microcontrollers	are	extensively	used	in	our	daily	lives.	Although	they	belong	to	the	larger
family	 of	 microprocessors,	 microcontrollers	 have	 certain	 distinctions.	 According	 to	 the
consensus,	 a	 microprocessor	 does	 not	 contain	 a	 peripheral	 unit.	 On	 the	 other	 hand,	 a
microcontroller	 should	 contain	 its	 peripherals	 to	 interact	 with	 the	 outside	 world.	 This
property	allows	them	to	be	used	in	most	applications.

There	are	excellent	books	on	microprocessors	or	microcontrollers.	One	type	explains
the	 theoretical	 and	practical	microcontroller	 concepts	 for	 a	 hypothetical	 system	or	 for	 a
microcontroller	family	(instead	of	a	specific	microcontroller).	The	idea	here	is	to	be	less
specific	and	more	general.	Therefore,	the	authors	aim	to	explain	the	general	concepts	and
ask	 the	 reader	 to	 apply	 them	 to	 the	 specific	 microcontroller	 he	 or	 she	 picks.	 Since	 a
microcontroller	family	has	a	longer	lifespan	than	a	specific	microcontroller,	books	in	this
group	aim	to	be	used	over	a	longer	time	period.

The	other	type	picks	a	specific	microcontroller	and	explains	its	concepts.	By	default,
the	concepts	explored	in	these	books	will	be	specific	to	the	microcontroller	at	hand.	As	a
result,	 they	will	 not	 be	 general.	 In	 this	 book,	we	 follow	 this	 approach	 and	 pick	 the	 TI
MSP430	LaunchPad	with	an	MSP430	microcontroller	 [12].	This	may	seem	odd,	but	 the
focus	 of	 this	 book	 is	 explaining	 the	 microcontroller’s	 concepts	 through	 applications.
Therefore,	it	is	must	to	pick	a	specific	microcontroller	and	implement	all	the	applications
using	it.	We	are	aware	that	the	digital	electronics	industry	is	dynamic	and,	most	probably,
a	microcontroller	will	be	obsolete	within	five	or	ten	years.	However,	the	newer	members
of	 the	 same	microcontroller	 family	 will	 be	 based	 on	 the	 previous	 ones.	 Therefore,	 the
current	 information	 about	 applications	 will	 be	 a	 valuable	 background	 for	 future
microcontrollers.	 Also,	 other	 MSP430	 microcontroller	 family	 members	 have	 similar
properties.	Therefore,	 the	concepts	considered	in	 this	book	may	be	applied	to	 them	with
minor	modifications.

1.1			The	TI	MSP430	LaunchPad
There	are	several	microcontroller	platforms	under	different	brands	with	various	properties.
In	 this	 book,	 we	 will	 focus	 on	 the	 TI	 MSP430	 LaunchPad	 with	 an	 MSP430G2553
microcontroller.	As	we	 are	writing	 this	 book,	 there	 are	 two	versions	 of	 the	TI	MSP430
LaunchPad.	 These	 are	 revisions	 1.4	 (Rev.1.4)	 and	 1.5	 (Rev.1.5).	 We	 will	 cover	 both
versions	in	the	following	chapters.

Throughout	 the	 book,	 we	 will	 refer	 to	 our	 microcontroller	 in	 two	 different	 ways.
When	we	call	it	MSP430,	this	indicates	that	the	explained	concept	is	common	to	the	other
MSP430	family	members	also.	We	will	call	our	microcontroller	MSP430G2553	when	we
explain	properties	specific	to	it.



MSP430G2553	is	a	16-bit	microcontroller	with	16	kB	of	memory.	It	has	16	general-
purpose	pins	which	can	be	used	for	digital	input	and	output,	timer	applications,	Analog-to-
Digital	 Conversion	 (ADC),	 and	 digital	 communications.	 The	 MSP430	 microcontroller
family	is	designed	to	have	ultralow	power	consumption.	If	these	details	do	not	mean	much
to	you,	do	not	worry.	This	book	is	written	to	explain	these	concepts.

We	 specifically	 picked	 the	 MSP430	 LaunchPad	 platform	 shown	 in	 Fig.	 1.1.	 TI
introduced	 this	platform	as	a	unique	coding	and	debugging	environment	 for	 their	value-
line	 microcontrollers.	 There	 is	 a	 USB	 connection	 on	 the	 MSP430	 LaunchPad	 to
communicate	with	the	host	PC.	The	coding	environment	is	Code	Composer	Studio	(CCS).
CCS	is	the	general	environment	for	all	TI	devices.	A	code	size–limited	version	of	CCS	is
freely	distributed	by	TI	 (at	 the	 time	we	are	writing	 this	book).	The	MSP430	LaunchPad
platform	 is	 around	 $5,	 which	 is	 a	 reasonable	 price	 for	 such	 a	 microcontroller.	 C	 or
assembly	 language	 may	 be	 preferred	 for	 coding.	 Throughout	 this	 book,	 we	 use	 both
approaches	to	explain	the	concepts	in	detail.

	

Figure	1.1			The	TI	MSP430	LaunchPad	platform.

	



1.2			Topics	to	Be	Covered	in	This	Book
The	microcontroller	is	constructed	from	digital	logic	elements	which	are	constructed	from
transistors.	Therefore,	Chap.	2	 is	 a	 brief	 review	of	 digital	 electronics.	 It	 emphasizes	 the
physical	properties	of	the	microcontroller.	Chapter	3	deals	with	the	data	types	considered
in	this	book.	In	a	way,	Chaps.	2	and	3	provide	the	background	of	the	chapters	to	follow.
Chapter	4	explores	the	hardware	of	the	MSP430	microcontroller.	Chapter	5	introduces	the
CCS	environment.	Also	in	this	chapter,	the	graphical	peripheral	configuration	tool	(Grace)
under	CCS	will	be	considered.	Chapter	6	deals	with	the	C	programming	concepts	for	the
MSP430	microcontroller.	This	chapter	serves	two	purposes.	First,	 it	 is	a	review	of	the	C
programming	language.	Second,	it	gives	insight	on	the	C	programming	issues	pertaining
to	 hardware	 (since	we	 can	 observe	 it	 through	CCS).	Chapter	7	 deals	with	 the	MSP430
instruction	set.	With	this	chapter,	we	will	start	programming	the	MSP430	microcontroller
via	 assembly	 language.	 Chapter	 8	 discusses	 digital	 input	 and	 output	 issues.	 We	 will
introduce	 the	 concepts	 of	 how	 the	 microcontroller	 interacts	 with	 the	 outside	 world.
Chapter	 9	 is	 on	 interrupts.	 This	 chapter	 will	 introduce	 the	 event-based	 programming
concept.	Chapter	10	is	on	timing-based	operations.	It	will	focus	on	the	oscillators,	clocks,
low	power	modes,	watchdog	timer,	and	the	timer	module	of	the	MSP430	microcontroller.
Chapter	11	is	on	mixed-signal	systems.	Analog-to-digital	and	digital-to-analog	conversion
will	be	the	main	focus	of	this	chapter.	Therefore,	analog	signals	can	be	processed	on	the
digital	 MSP430	 platform	 after	 mastering	 the	 concepts	 in	 this	 chapter.	 Chapter	 12
introduces	the	basic	digital	communication	methods	through	the	MSP430	microcontroller.
Chapter	13	is	on	flash	memory	programming.	This	book	is	on	microcontrollers	in	action.
Therefore,	every	concept	explained	in	these	chapters	will	have	their	related	applications.
Finally,	Chap.	14	is	on	applications	in	which	more	than	one	concept	is	used.

Sample	 codes	 in	 this	 book	 are	 available	 for	 readers	 on	 the	 companion	 website,
www.mhprofessional.com/ProgrammableMicrocontrollers.	 Course	 slides	 for	 readers	 and
instructors	are	available	on	the	same	website.	The	solution	manual	for	instructors	is	also
available	on	the	companion	website.

http://www.mhprofessional.com/ProgrammableMicrocontrollers
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Digital	 circuits	 are	 the	 essential	 parts	 of	 a	 microcontroller.	 Although	 the	 end	 user	 will
never	see	them,	all	operations	will	be	performed	using	these	circuits.	Hence,	it	is	essential
to	 know	 their	 physical	 properties.	 This	 chapter	 is	 a	 brief	 review	 of	 digital	 circuits	 and
systems.	A	more	detailed	coverage	of	this	topic	can	be	found	in	[3,	5].	To	note	here,	the
circuits	given	in	this	chapter	are	not	unique.	There	may	be	other	circuits	doing	the	same
job.	For	consistency,	we	will	take	one	subset	and	stick	with	it	throughout	the	chapter.

2.1			Transistor	as	a	Switch
A	transistor	is	an	active	circuit	element	with	three	or	four	terminals.	It	can	be	used	either
as	an	amplifier	or	as	a	binary	switch.	For	a	digital	circuit,	the	latter	property	is	extremely
important	since	all	binary	logic	operations	can	be	performed	this	way.	Related	to	this,	in	a
digital	 circuit	 the	 lowest	 level	 of	 information	 representation	 is	 done	 using	 a	 bit	 (binary
digit).	When	we	talk	about	 the	value	of	a	bit	 (being	either	0	or	1),	we	mean	the	voltage
level	on	a	transistor	terminal	is	either	high	(VCC)	or	low	(ground).

There	are	two	types	of	transistors:	bipolar	junction	transistor	(BJT)	and	metal	oxide
semiconductor	field	effect	transistor	(MOSFET).	The	BJT	has	three	terminals:	emitter	(E),
base	 (B),	 and	 collector	 (C).	 The	 current	 through	 the	 emitter	 and	 collector	 terminals	 is
controlled	by	the	current	at	 the	base	terminal.	On	the	other	hand,	 the	MOSFET	has	four
terminals:	gate	(G),	drain	(D),	source	(S),	and	bulk.	A	voltage	applied	to	the	gate	terminal
forms	 a	 conducting	 channel	 between	 the	 drain	 and	 source	 terminals.	A	 voltage	 applied
between	 these	 terminals	 conducts	 the	 current	 on	 this	 channel.	 The	 bulk	 terminal	 is
generally	 connected	 to	 the	 source	 in	 digital	 applications.	 Therefore,	 it	 is	 not	 shown	 in
digital	MOSFET	representations.	MOSFETs	are	preferred	 in	digital	systems	due	 to	 their
low	power	consumption	and	operation	speed.

There	 are	 two	 MOSFET	 types	 based	 on	 their	 construction,	 N-channel	 MOSFET
(NMOS)	and	P-channel	MOSFET	(PMOS).	When	 the	voltage	between	 the	gate	and	 the
source	(VGS)	is	0,	NMOS	acts	like	an	open	switch	and	cannot	conduct	current	between	the
source	 and	drain	 terminals.	Under	 the	 same	 setup,	PMOS	acts	 like	 a	 closed	 switch	 and
conducts	the	current	between	the	source	and	drain	terminals.	When	VGS	equals	VCC,	PMOS
acts	like	an	open	switch.	Here,	NMOS	acts	like	a	closed	switch.	Therefore,	by	applying	a



suitable	 voltage	 level	 to	 the	 gate,	 the	 current	 flow	 between	 the	 drain	 and	 gate	 can	 be
controlled.	These	scenarios	are	shown	in	Fig.	2.1.	 In	 this	 figure,	PMOS	 is	distinguished
from	the	NMOS	by	a	bubble	in	its	gate	terminal.

	

Figure	2.1			NMOS	and	PMOS	MOSFETs	used	as	a	switch.

	

Complementary	metal	oxide	semiconductor	(CMOS)	is	a	special	technology	that	uses
NMOS	and	PMOS	 transistors	 on	 the	 same	 substrate.	Digital	 circuits	 are	 generally	 built
using	CMOS	 technology	 due	 to	 their	minimal	 power	 consumption.	 For	 consistency,	we
will	only	consider	CMOS-type	logic	gates	in	this	chapter.

2.2			Logic	Gates	from	Transistors
As	mentioned	 in	Sec.	2.1,	 by	 applying	 a	 suitable	 voltage	 to	 the	gate	 of	 a	 transistor,	 the
current	flow	(hence	the	voltage)	between	its	drain	and	source	can	be	controlled.	This	will
lead	to	the	development	of	digital	logic	gates:	NOT,	NAND,	AND,	NOR,	OR,	XOR,	and
the	 transmission	 gate.	 To	 eliminate	 any	 confusion,	 from	 now	 on	we	will	 only	mention
binary	levels	0	and	1.	The	reader	should	remember	that	they	correspond	to	voltage	levels
ground	(low)	and	VCC	(high),	respectively.

2.2.1			NOT	Gate

The	NOT	gate	is	actually	an	inverter.	It	has	a	single	input	and	output.	When	the	input	of
the	NOT	gate	is	0,	its	output	is	1.	When	its	input	is	1,	the	output	is	0.	The	symbol	for	the
NOT	gate	is	given	in	Fig.	2.2.



	

Figure	2.2			The	NOT	gate	symbol.

	

The	NOT	 gate	 consists	 of	 one	NMOS	 and	 one	 PMOS	 transistor	 as	 shown	 in	 Fig.
2.3a.	 In	 the	same	figure,	 the	working	principle	of	 the	NOT	gate	at	 the	transistor	 level	 is
given.	In	the	first	scenario	(Fig.	2.3b),	the	logic	level	1	(VCC)	is	applied	to	the	input.	In	the
NOT	circuit,	the	NMOS	transistor	turns	on	and	the	PMOS	transistor	turns	off.	As	a	result,
the	NMOS	 transistor	 sinks	current	 from	 the	output	node.	Therefore,	 it	goes	 to	 the	 logic
level	0	(ground).	In	the	second	scenario	(Fig.	2.3c),	the	logic	level	0	(ground)	is	applied	to
the	 input.	Now,	 the	NMOS	 transistor	 turns	 off	 and	 the	 PMOS	 transistor	 turns	 on.	As	 a
result,	the	PMOS	sources	current	to	the	output	node.	Therefore,	it	goes	to	the	logic	level	1
(VCC).	These	two	scenarios	clearly	show	the	NOT	operation	at	the	transistor	level.

	

Figure	2.3			The	NOT	gate	circuitry	at	the	transistor	level.

	

2.2.2			NOR,	OR	Gates

The	NOR	(NOT-OR)	 is	 the	next	 logic	gate	 to	be	considered.	 Its	symbol	 is	given	 in	Fig.
2.4.	The	truth	table	for	the	NOR	gate	is	given	in	Table	2.1.	As	can	be	seen	in	this	table,	the
NOR	 gate	 gives	 logic	 level	 1	 when	 all	 its	 inputs	 are	 logic	 level	 0.	 For	 all	 other	 input
combinations,	the	output	is	0.



	

Figure	2.4			The	NOR	gate	symbol.

	

Table	2.1			The	truth	table	for	the	NOR	gate.

	

The	transistor-level	circuitry	of	the	NOR	gate	is	given	in	Fig.	2.5.	As	can	be	seen	in
this	figure,	the	CMOS	NOR	gate	is	constructed	by	serially	connected	PMOS	and	parallel
connected	NMOS	transistors.	When	 the	 inputs	of	 the	NOR	gate	are	at	 logic	 level	0,	 the
PMOS	transistors	are	open.	They	source	current	to	the	output	node.	Therefore,	the	output
goes	 to	 logic	 level	 1.	But	when	one	 of	 the	 inputs	 is	 at	 logic	 level	 1,	 one	 of	 the	PMOS
transistors	is	closed	and	the	other	is	open.	Therefore,	the	current	is	sinked	from	the	output
node	and	it	goes	to	logic	level	0.



	

Figure	2.5			The	NOR	gate	circuitry	at	the	transistor	level.

	

The	OR	gate	is	just	the	NOR	with	a	NOT	connected	to	its	output.	Its	symbol	is	given
in	Fig.	2.6.	The	 truth	 table	for	 the	OR	gate	 is	given	in	Table	2.2.	As	can	be	seen	 in	 this
table,	the	OR	gate	gives	logic	level	0	when	all	its	inputs	are	at	logic	level	0.	For	all	other
input	combinations,	the	output	is	1.

	

Figure	2.6			The	OR	gate	symbol.

	

Table	2.2			The	truth	table	for	the	OR	gate.



	

Based	 on	 the	 preceding	 definition,	 the	 transistor	 level	 circuitry	 of	 the	 OR	 gate	 is
given	in	Fig.	2.7.	As	can	be	seen	in	this	figure,	to	obtain	the	OR	gate	only	one	inverter	is
added	to	the	output	of	the	NOR	gate.

	

Figure	2.7			The	OR	gate	circuitry	at	the	transistor	level.

	

2.2.3			NAND,	AND	Gates

The	NAND	(NOT-AND)	is	the	next	logic	gate	to	be	considered.	Its	symbol	is	given	in	Fig.
2.8.	The	truth	table	for	the	NAND	gate	is	given	in	Table	2.3.	As	can	be	seen	in	this	table,
the	NAND	gate	gives	 logic	 level	0	when	all	 its	 inputs	are	at	 logic	 level	1.	For	all	other
input	combinations,	the	output	is	1.



	

Figure	2.8			The	NAND	gate	symbol.

	

Table	2.3			The	truth	table	for	the	NAND	gate.

	

The	transistor-level	circuitry	of	the	NAND	gate	is	given	in	Fig.	2.9.	As	can	be	seen	in
this	 figure,	 the	 CMOS	 NAND	 gate	 is	 constructed	 by	 parallel	 connected	 PMOS	 and
serially	 connected	 NMOS	 transistors.	When	 the	 inputs	 of	 the	 NMOS	 transistors	 are	 at
logic	level	1,	they	are	open	and	sink	current	from	the	output	node.	Therefore,	the	output
goes	to	logic	level	0.	But	when	one	of	these	inputs	is	at	logic	level	0,	one	of	the	NMOS
transistors	is	closed	and	one	of	the	PMOS	transistors	is	open.	Hence,	the	current	is	sourced
to	the	output	node.	Therefore,	the	output	goes	to	logic	level	1.



	

Figure	2.9			The	NAND	gate	circuitry	at	the	transistor	level.

	

The	AND	gate	is	just	the	NAND	with	a	NOT	connected	to	its	output.	Its	symbol	is
given	in	Fig.	2.10.	The	truth	table	for	the	AND	gate	is	given	in	Table	2.4.	As	can	be	seen
in	this	table,	the	AND	gate	gives	logic	level	1	when	all	its	inputs	are	at	logic	level	1.	For
all	other	input	combinations,	the	output	is	0.

	

Figure	2.10			The	AND	gate	symbol.

	

Table	2.4			The	truth	table	for	the	AND	gate.



	

Based	on	 the	preceding	definition,	 the	 transistor-level	 circuitry	of	 the	AND	gate	 is
given	in	Fig.	2.11.	As	can	be	seen	in	this	figure,	only	one	inverter	is	added	to	the	output	of
the	NAND	gate	to	obtain	the	AND	gate.

	

Figure	2.11			The	AND	gate	circuitry	at	the	transistor	level.

	

2.2.4			XOR	Gate

The	logic	gate	to	be	considered	in	this	section	is	XOR	(Exclusive-OR).	It	gives	logic	level
1	when	 its	 inputs	 have	 different	 logic	 levels.	When	 the	 inputs	 of	 the	XOR	gate	 are	 the
same,	it	gives	logic	level	0.	The	symbol	for	the	XOR	gate	is	given	in	Fig.	2.12.	The	truth
table	for	this	gate	is	given	in	Table	2.5.



	

Figure	2.12			The	XOR	gate	symbol.

	

Table	2.5			The	truth	table	for	the	XOR	gate.

	

The	transistor-level	circuitry	of	the	XOR	gate	is	given	in	Fig.	2.13.	As	can	be	seen	in
this	 figure,	 if	both	 inputs	are	 the	same,	 the	output	 is	at	 logic	 level	0.	Let’s	consider	 two
examples.	In	the	first	example,	both	inputs	are	at	logic	level	0.	Only	the	rightmost	NMOS
pair	will	be	open.	They	will	sink	current	from	the	output	node.	Hence,	the	output	will	go
to	logic	level	0.	In	the	second	example,	the	Input1	is	at	logic	level	1	and	the	Input2	is	at
logic	level	0.	In	this	situation,	only	the	leftmost	PMOS	pair	will	be	open.	They	will	source
current	to	the	output	node;	hence,	the	output	will	go	to	logic	level	1.



	

Figure	2.13			The	XOR	gate	circuitry	at	the	transistor	level.

	

2.2.5			The	Transmission	Gate

The	 transmission	 gate	 is	 a	 complementary	 CMOS	 switch	 constructed	 by	 parallel
connected	NMOS	and	PMOS	transistors	as	shown	in	Fig.	2.14.	This	gate	either	passes	or
stops	the	current	between	its	input	and	output	terminals	(source	and	drain),	depending	on
the	control	terminal	(the	gate).	The	symbol	for	the	transmission	gate	is	given	in	Fig.	2.15.

	

Figure	2.14			The	circuitry	of	the	transmission	gate.

	



	

Figure	2.15			The	symbol	for	the	transmission	gate.

	

2.3			Combinational	Circuits	from	Gates
Logic	 gates	 introduced	 in	 Sec.	 2.2	 can	 be	 used	 to	 construct	 combinational	 circuits.	 In
these,	 the	 output	 is	 not	 affected	 by	 previous	 input	 values.	 In	 other	 words,	 there	 is	 no
memory	 in	 combinational	 circuits.	 In	 this	 section,	 we	 will	 consider	 the	 decoder,
multiplexer,	and	adder	as	combinational	circuits.

2.3.1			The	Decoder

The	 basic	 function	 of	 a	 decoder	 is	 to	 decode	 its	 input	 and	 give	 a	 specific	 output
corresponding	to	its	input.	In	general,	a	decoder	has	N	inputs	and	2N	outputs	to	cover	all
input	combinations.	The	symbolic	representation	of	a	two-to-four	decoder	is	given	in	Fig.
2.16.	Its	truth	table	is	given	in	Table	2.6.

	

Figure	2.16			The	two-to-four	decoder	symbol.

	

Table	2.6			The	truth	table	for	the	two-to-four	decoder.

	



The	 decoder	 can	 be	 constructed	 by	 AND	 and	 NOT	 gates.	 For	 the	 two-to-four
decoder,	the	circuit	diagram	at	the	logic	gate	level	is	given	in	Fig.	2.17.	As	can	be	seen	in
this	figure,	the	two-to-four	decoder	is	constructed	by	using	two	NOT	and	four	AND	gates.
If	we	 consider	Output1,	 it	 gives	 logic	 level	 1	 only	when	 Input1	 and	 Input2	 are	 0.	This
input	combination	sets	all	other	output	pins	to	logic	level	0.

	

Figure	2.17			Circuit	diagram	of	the	two-to-four	decoder	at	the	gate	level.

	

2.3.2			The	Multiplexer

The	multiplexer	 (MUX)	 is	a	combinational	 logic	circuit	 that	 transfers	data	coming	from
several	inputs	to	a	single	output.	Therefore,	it	can	be	used	to	select	a	specific	input	from	a
group	of	 inputs	and	 feed	 it	 to	output.	To	perform	 this	 task,	 the	multiplexer	has	N	 select
pins,	2N	input	pins,	and	one	output	pin.	The	symbol	for	a	multiplexer	with	two	select	pins
is	given	in	Fig.	2.18.	The	truth	table	for	this	MUX	is	given	in	Table	2.7.

	

Figure	2.18			The	MUX	symbol	with	two	select	pins.

	



Table	2.7			The	truth	table	for	the	MUX	with	two	select	pins.

	

A	four-to-one	multiplexer	(with	two	select	pins)	at	the	gate	level	is	given	in	Fig.	2.19.
It	can	be	easily	seen	that	only	one	AND	gate	is	enabled	for	each	select	input	sequence.	For
instance,	 the	 first	AND	gate	 is	enabled	when	Select1	and	Select2	are	0.	All	other	AND
gates	are	disabled	for	this	sequence.	Hence,	only	Input1	appears	at	Output.

	

Figure	2.19			Circuit	diagram	of	the	four-to-one	multiplexer	built	from	basic	logic	gates.

	

2.3.3			Adders

Addition	 is	 the	 most	 important	 arithmetic	 operation	 in	 a	 digital	 system	 since	 all	 other
arithmetic	operations	can	be	performed	using	it.	There	are	two	basic	adder	types,	half	and
full.	The	half	adder	 (for	 single-bit	 addition)	has	 two	 inputs	and	 two	outputs.	 It	 adds	 the
input	 bits	 and	 gives	 the	 sum	 and	 carry	 bits	 as	 output.	The	 symbol	 for	 the	 half	 adder	 is
given	in	Fig.	2.20.	The	truth	table	for	this	half	adder	is	given	in	Table	2.8.



	

Figure	2.20			Symbol	for	the	half	adder	(for	single-bit	addition).

	

Table	2.8			The	truth	table	for	the	half	adder	(for	single-bit	addition).

	

As	can	be	seen	in	Table	2.8,	the	carry	bit	is	logic	level	1	when	both	input	bits	are	at
logic	 level	1.	This	corresponds	 to	 the	AND	operation.	The	sum	bit	 (Σ)	has	 logic	 level	1
when	input	bits	have	different	logic	levels.	This	corresponds	to	the	XOR	operation.	Based
on	these	observations,	the	gate-level	representation	of	the	half	adder	can	be	constructed	as
given	in	Fig.	2.21.

	

Figure	2.21			Circuit	diagram	of	the	half	adder	at	the	gate	level.

	

The	 half	 adder	 does	 not	 take	 the	 carry	 bit	 into	 account	 in	 addition.	 This	 causes
problems	 when	 adding	 binary	 numbers	 with	 more	 than	 one	 digit.	 The	 full	 adder	 is
introduced	 to	overcome	this	problem.	Besides	having	 two	 input	pins,	 the	full	adder	also
has	a	carry-in	pin.	The	symbol	for	the	full	adder	(for	adding	one	digit	only)	is	given	in	Fig.
2.22.	The	truth	table	for	this	full	adder	is	given	in	Table	2.9.



	

Figure	2.22			Symbol	for	the	full	adder	(for	single-bit	addition).

	

Table	2.9			The	truth	table	for	the	full	adder	(for	single-bit	addition).

	

As	 in	 the	 half	 adder,	 the	 gate-level	 circuit	 diagram	 for	 the	 full	 adder	 can	 be
constructed	by	analyzing	Table	2.9.	The	final	constructed	circuit	diagram	for	the	full	adder
is	given	in	Fig.	2.23.

	

Figure	2.23			Circuit	diagram	for	the	full	adder	at	the	gate	level.



	

To	add	binary	numbers	with	more	than	one	digit,	full	adders	can	be	used	in	parallel.
The	most	popular	setup	for	this	operation	is	the	4-bit	parallel	adder.	Its	block	diagram	is
given	in	Fig.	2.24.	As	can	be	seen	in	this	figure,	every	digit	of	the	two	binary	numbers	is
added	separately	from	the	least	significant	digit	(A1,	B1)	to	the	most	significant	digit	(A4,
B4).

	

Figure	2.24			Block	diagram	of	the	4-bit	parallel	adder.

	

2.4			Sequential	Circuits	from	Gates
In	contrast	to	combinational	circuits,	the	output	of	a	sequential	circuit	depends	not	only	on
the	 current	 inputs,	 but	 also	on	 the	previous	 inputs	 (or	 outputs).	This	dependence	on	 the
past	 requires	data	storage.	As	we	will	 see	 in	 the	 following	sections,	data	storage	can	be
achieved	by	feedback	loops	added	to	combinational	circuits.

2.4.1			Latches	from	Gates

A	latch	is	a	basic	storage	element	which	can	store	1	bit	of	data.	An	SR	latch	formed	with
two	cross-coupled	NAND	gates	is	shown	in	Fig.	2.25.	This	setup	is	called	an	active-low
input	 SR	 latch.	As	 can	 be	 seen	 in	 this	 figure,	 the	 SR	 latch	 has	 two	 inputs,	 Set	 (S)	 and
Reset	(R).	It	has	two	outputs,	Q	and	 .	In	fact,	Q	and	 	are	complements	of	each	other.



	

Figure	2.25			The	SR	latch	at	the	gate	level.

	

The	 truth	 table	 for	 the	 SR	 latch	 is	 given	 in	Table	2.10.	 In	 this	 table,	U	 stands	 for
undefined.	As	can	be	seen	in	this	table,	when	the	input	S	has	logic	level	0	and	R	has	logic
level	1,	the	output	Q	will	be	at	logic	level	1.	When	S	has	logic	level	1	and	R	has	level	0,	Q
will	be	at	 logic	 level	0.	When	both	S	and	R	have	 logic	 level	1,	 the	SR	latch	stays	 in	 its
previous	state.	In	other	words,	it	stores	the	previous	bit	level.	When	S	and	R	are	at	logic
level	 0,	 a	 contradiction	 occurs.	 In	 this	 case,	 both	 Q	 and	 	 should	 be	 at	 logic	 level	 1.
However,	as	mentioned	before,	Q	should	be	the	complement	of	 .	Therefore,	in	this	input
combination	the	output	will	be	undefined	due	to	the	race	conditions	in	the	circuit	[5].	In
order	to	prevent	this	undesired	condition,	the	D	latch	is	introduced.

Table	2.10			The	truth	table	for	the	SR	latch.

	

The	D	 latch	 has	 one	 input	 and	 two	outputs.	 Its	 circuit	 diagram	 at	 the	 gate	 level	 is
given	in	Fig.	2.26.	As	can	be	seen	in	this	figure,	a	NOT	gate	is	added	between	the	S	and	R
inputs.	 Therefore,	 they	 can	 never	 be	 at	 logic	 level	 0	 at	 the	 same	 time.	 Hence,	 the
contradiction	can	be	avoided.



	

Figure	2.26			The	D	latch	at	the	gate	level.

	

The	 truth	 table	 for	 the	 D	 latch	 is	 the	 same	 as	 that	 for	 the	 SR	 latch	 without	 the
undesired	 contradiction	 condition.	 In	 summary,	when	D	 has	 logic	 level	 0,	Q	will	 be	 at
logic	level	0.	When	D	has	logic	level	1,	Q	will	be	at	logic	level	1.	Therefore,	the	D	latch
simply	stores	1	bit	of	information.	The	symbol	for	the	D	latch	is	given	in	Fig.	2.27.

	

Figure	2.27			Symbol	for	the	D	latch.

	

Latches	are	sensitive	to	their	inputs	all	the	time.	Hence,	sometimes	disabling	inputs	is
a	desired	property.	A	gated	latch	(latch	with	an	enable	input)	is	used	for	this	purpose.	This
latch	 cannot	 be	 used	until	 the	 enable	 input	 activates	 the	 latch.	The	 circuit	 diagram	of	 a
gated	D	latch	is	given	in	Fig.	2.28.	The	symbol	for	the	gated	D	latch	is	given	in	Fig.	2.29.



	

Figure	2.28			Gated	D	latch	at	the	gate	level.

	

	

Figure	2.29			Symbol	for	the	gated	D	latch.

	

2.4.2			Flip-Flops	from	Gates

The	flip-flop	is	also	a	1-bit	storage	element.	The	difference	between	the	flip-flop	and	the
latch	 is	 the	method	 for	 changing	 states.	 Flip-flop	 changes	 its	 state	 only	 at	 the	 rising	 or
falling	edge	of	 the	clock	signal.	Even	 if	 the	 input	changes	after	 the	clock	edge,	 its	 state
still	remains	unchanged.	There	are	basically	four	main	types	of	flip-flops:	SR,	D,	JK,	and
T.

The	D-type	flip-flop	can	be	constructed	by	connecting	two	gated	D	latches	as	shown
in	 Fig.	 2.30.	 The	 first	 and	 second	 latches	 are	 called	 master	 and	 slave	 in	 this	 setup.
Therefore,	 this	configuration	 is	called	a	master-slave	D	flip-flop.	The	symbol	 for	 the	D-
type	flip-flop	is	given	in	Fig.	2.31.

	

Figure	2.30			Block	diagram	of	the	master-slave	D	flip-flop.

	



	

Figure	2.31			Symbol	for	the	master-slave	D	flip-flop.

	

2.4.3			Counters	from	Flip-Flops

The	counter	is	the	basic	building	block	of	timer	modules	in	a	microcontroller.	As	the	clock
signal	is	fed	to	the	counter,	it	changes	its	state.	The	number	of	flip-flops	used	in	a	counter
indicates	its	capacity.	For	example,	a	3-bit	counter	is	built	by	three	flip-flops.	Hence	it	has
eight	states.	In	other	words,	it	can	count	from	zero	to	seven.	The	symbol	for	a	counter	is
given	in	Fig.	2.32.

	

Figure	2.32			Symbol	for	a	counter.

	

There	 are	 two	 counter	 types,	 asynchronous	 (ripple)	 and	 synchronous.	 In	 the	 ripple
counter,	 the	 clock	 signal	 is	 fed	 only	 to	 the	 first	 flip-flop.	 The	 remaining	 flip-flops	 are
clocked	in	a	chain.	A	block	diagram	of	a	3-bit	ripple	counter	is	given	in	Fig.	2.33.	On	the
other	 hand,	 in	 the	 synchronous	 counter	 all	 flip-flops	 are	 clocked	 with	 the	 same	 clock
signal.	A	block	diagram	of	a	3-bit	synchronous	counter	(with	T	flip-flops)	is	given	in	Fig.
2.34.



	

Figure	2.33			Block	diagram	of	a	3-bit	ripple	counter.

	

	

Figure	2.34			Block	diagram	of	a	3-bit	synchronous	counter.

	

The	synchronous	counter	can	also	be	used	as	a	frequency	divider.	This	operation	can
be	seen	in	Fig.	2.34.	The	 input	clock	frequency,	 f,	 is	divided	by	a	power	of	 two	 in	each
flip-flop.	Hence,	 the	output	of	each	flip-flop	becomes	Q0	=	 f/2,	Q1	=	 f/4,	and	Q2	=	 f/8.
This	property	will	be	extensively	used	in	the	timer	module	of	the	microcontroller.

2.4.4			Register	from	Flip-Flops

Register	is	an	N-bit	storage	element	constructed	by	N	flip-flops.	A	block	diagram	of	a	4-
bit	register	is	given	in	Fig.	2.35.	As	can	be	seen	in	Fig.	2.35,	in	the	register	every	flip-flop
changes	its	content	by	a	trigger	from	the	clock.	Therefore,	the	4-bit	data	is	stored	to	this
register	sequentially.	The	symbol	for	an	N-bit	register	is	given	in	Fig.	2.36.

	



Figure	2.35			Block	diagram	of	a	4-bit	register.

	

	

Figure	2.36			Symbol	for	an	N-bit	register.

	

2.4.5			Shift	Register	from	Flip-Flops

There	 are	 four	 shift	 register	 types:	 serial	 in/serial	 out,	 parallel	 in/serial	 out,	 parallel
in/parallel	out,	and	serial	 in/parallel	out.	A	block	diagram	of	 the	serial	 in/serial	out	shift
register	 is	given	 in	Fig.	2.37.	As	 can	 be	 seen	 in	 this	 figure,	 the	 serial	 in/serial	 out	 shift
register	is	constructed	by	a	group	of	flip-flops	connected	as	a	chain.	Hence,	the	output	of
one	flip-flop	is	connected	to	the	input	of	the	next	flip-flop.	In	this	setup,	all	flip-flops	are
driven	by	the	same	clock	source.

	

Figure	2.37			Block	diagram	of	the	serial	in/serial	out	shift	register.

	

As	can	be	seen	in	Fig.	2.37,	the	new	data	bit	is	received	from	the	Data	Input	pin.	The
last	data	bit	is	shifted	out	from	the	Data	Output	pin	with	every	clock	signal.	Therefore,	this
generates	a	delay	of	N	clock	cycles	for	the	data.	Here,	N	is	the	number	of	flip-flops	in	the
shift	 register.	 Similarly,	 parallel	 in/serial	 out	 and	 serial	 in/parallel	 out	 shift	 registers	 are
also	commonly	used	for	the	communication	between	serial	and	parallel	interfaces.

2.4.6			Memory	from	Registers



Registers	can	be	combined	to	form	memory	blocks.	Therefore,	the	memory	can	be	called
as	 a	 collection	 of	 addressable	 register	 locations.	 In	 fact,	 recent	 memory	 systems	 are
constructed	by	a	different	technology	(as	in	flash,	to	be	considered	in	Chap.	13).	However,
to	briefly	explain	the	working	principles	of	a	general	memory	block,	the	discussion	in	this
section	is	necessary.

A	 memory	 block	 consists	 of	 three	 key	 parts:	 address	 decoder,	 memory	 cells
(registers),	and	output	selector	(MUX).	A	block	diagram	of	a	simple	memory	(with	four
registers)	 can	be	 seen	 in	Fig.	2.38.	 In	 this	 setup,	 each	 register	 can	 store	 a	 block	 of	 bits
(such	 as	 8,	 16,	 32	 bits).	 This	 also	 shows	 the	 number	 of	 parallel	 flip-flops	 used	 in	 the
register.	When	the	write	enable	(WE)	signal	is	at	logic	level	1,	only	one	of	the	AND	gates
is	 enabled.	 The	 data	 is	 written	 to	 the	 specific	 register	 selected	 by	 the	 address	 decoder.
When	the	WE	is	at	logic	level	0,	the	MUX	chooses	one	address	line	and	the	data	is	read
from	that	register.

	

Figure	2.38			Block	diagram	of	a	simple	memory	with	four	registers.

	

The	symbol	of	a	generic	memory	block	is	given	in	Fig.	2.39.	As	can	be	seen	in	this
figure,	 the	memory	 block	 has	N	 address	wires,	which	 can	 be	 used	 to	 reach	 2N	 separate
address	locations	inside	the	memory	block.	Here,	N	represents	the	address	to	be	reached
within	the	memory.	D	represents	the	data	(with	length	M)	to	be	written	to	the	memory.	Q
is	the	data	to	be	read	from	the	memory.



	

Figure	2.39			Symbol	for	a	generic	memory	block.

	

2.5			Summary
Digital	circuits	are	the	basic	building	blocks	of	a	microcontroller.	Although	the	user	will
not	deal	with	them	in	a	practical	application,	he	or	she	should	know	them	to	understand
the	 working	 principles	 (as	 well	 as	 limitations)	 of	 the	 microcontroller.	 Therefore,	 we
reviewed	 digital	 circuits	 in	 this	 chapter.	We	 started	 with	 transistors	 and	 formed	 binary
logic	gates	using	them.	We	then	used	these	to	form	combinational	and	sequential	digital
circuits.	These	will	be	the	basic	building	blocks	of	the	microcontroller	modules	such	as	the
arithmetic	logic	unit,	timer,	and	analog-to-digital	converter.

2.6			Problems
2.1					What	is	the	minimum	switching	time	for	a	recent	CMOS	transistor?

2.2					What	is	the	value	of	VCC	for	the	recent	CMOS	transistor-based	gates?

2.3					Construct	an	SR	latch	with	NOR	gates.

2.4					How	can	we	make

a.				a	multiplication	operation,	if	we	only	have	a	full	adder	at	hand?

b.				a	division	operation,	if	we	only	have	a	full	adder	at	hand?

2.5					How	can	we	construct	a	counter	with	range	0–FFFFh?

2.6					Give	an	example	of	binary	multiplication	by	2	using	a	shift	register.

2.7					Give	an	example	of	binary	division	by	4	using	a	shift	register.

2.8					How	can	we	form	a	frequency	divider	(with	division	of	20	to	27)	using
flip-flops?

2.9					What	does	address	space	mean	in	a	memory	block?

2.10					Construct	a	16-bit	memory	space	using	gated	D	latches	as	the	basic	building
blocks.	Do	not	forget	to	add	control	circuitry	for	WE.
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In	 this	chapter,	we	 review	 the	basic	data	 types	and	 representations	 in	MSP430.	We	first
consider	 the	 binary	 representation.	 Then,	 we	 explore	 the	 fixed-	 and	 floating-point
representations	of	binary	numbers.	We	next	focus	on	 the	word	size	and	overflow	issues.
The	next	 topic	we	consider	 is	 the	endian	representation.	We	also	consider	 the	American
Standard	 Code	 for	 Information	 Interchange	 (ASCII)	 characters	 and	 the	 MSP430	 data
types.	 The	 representations	 considered	 in	 this	 chapter	 will	 be	 used	 extensively	 in	 the
following	chapters.

3.1			Number	Representations
In	our	daily	lives,	we	use	the	decimal	number	system.	This	representation	associates	the
weight	(powers	of	10	here)	of	 the	digit	with	 its	 location.	Here,	 the	 least	significant	digit
gets	the	weight	100,	the	next	one	gets	101,	and	so	on.	Using	this	form,	we	can	represent	an
entity	in	a	systematic	way.	Therefore,	a	decimal	number	255	means	we	have	2	×	102	+	5	×
101	+	5	×	100.	If	we	want	to	represent	a	decimal	number	with	fractional	parts,	we	follow
the	same	strategy.	Now,	the	weights	of	the	digits	in	the	fractional	part	become	10−1,	10−2,
and	 so	on	 starting	 from	 the	dot	 (separating	 the	 integer	 and	 fractional	parts)	 from	 left	 to
right.	As	an	example,	the	decimal	number	1.25	corresponds	to	1	×	100	+	2	×	10−1	+	5	×
10−2.

The	binary	number	representation	is	more	suitable	for	digital	systems,	since	they	only
use	 two	 levels,	 0	 and	 1	 (represented	 by	 two	 voltage	 values	 in	 the	 transistor	 level	 as
explained	 in	 Chap.	 2).	 Here,	 each	 binary	 level	 is	 called	 a	 bit	 (binary	 digit).	 Eight	 bits
correspond	to	1	byte,	1024	bytes	to	1	kilobyte	(kB),	1024	kilobytes	to	1	megabyte	(MB),
and	1024	megabytes	to	1	gigabyte	(GB).

The	binary	number	representation	has	weights	in	powers	of	two:	20,	21,	22,…,	2N.	For
the	 fractional	 parts,	 the	 weights	 become	 2−1,	 2−2,	 2−3	 and	 so	 on,	 starting	 from	 the	 dot
separating	 the	 integer	 and	 fractional	 parts.	 In	 a	 binary	 number,	 the	 bit	with	 the	 highest
weight	is	called	the	most	significant	bit	(MSB).	The	bit	with	least	weight	is	called	the	least



significant	bit	(LSB).

In	 this	 book,	 if	 we	 want	 to	 represent	 a	 number	 different	 from	 the	 decimal
representation,	we	will	add	an	appropriate	suffix	to	it.	For	binary	numbers,	this	suffix	will
be	“b.”	For	hexadecimal	numbers,	 this	suffix	will	be	“h.”	Finally,	for	the	octal	numbers,
this	suffix	will	be	“q.”

Conversion	 between	 decimal	 and	 binary	 numbers	 can	 be	 done	 using	 successive
division	and	multiplication	operations.	For	detailed	information,	please	see	[5].	Here,	we
provide	 two	 examples.	 We	 can	 represent	 the	 decimal	 number	 255	 in	 binary	 form	 as
1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20.	Or	in	short	form	11111111b.	Similarly,	for
the	decimal	number	1.25,	we	have	the	binary	representation	1×20+0×2−1+1×2−2.	In	short,
the	binary	representation	becomes	1.01b.

Although	binary	numbers	are	natural	for	digital	systems,	their	representation	may	not
be	practical.	Hexadecimal	numbers	can	be	used	instead	for	a	more	compact	representation.
Here,	there	are	16	digits	as	(0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F).	The	binary	number
11111111b	can	be	represented	in	hexadecimal	form	as	FFh.	The	decimal	number	1.25	can
be	 represented	 in	 hexadecimal	 form	 as	 1.4h.	 For	 conversions	 between	 binary	 and
hexadecimal	representations,	please	see	[5].

3.2			Negative	Numbers
There	may	be	negative	numbers	 in	operations.	Although	in	ordinary	arithmetic	we	put	a
negative	sign	in	front	of	the	number,	we	do	not	do	so	in	a	digital	system.	Three	methods
are	 available	 for	 representing	 both	 positive	 and	 negative	 numbers	 in	 a	 digital	 system.
These	are:	signed	bit,	one’s	complement,	and	two’s	complement	representations.

The	 first	 representation	mimics	 the	 ordinary	 practice	 (negative	 sign	 in	 front	 of	 the
number)	by	a	sign	bit	in	the	MSB	of	the	number.	In	this	representation,	a	positive	number
will	have	a	 sign	bit	of	0.	A	negative	number	will	have	a	 sign	bit	of	1.	Hence	 the	name
signed	 bit	 representation.	 Although	 this	 method	 seems	 straightforward,	 it	 is	 not	 very
effective	since	addition	and	subtraction	operations	may	need	extra	circuitry.

The	 second	 representation	 is	 based	 on	 the	 bit	 complement	 operation.	 Here,	 the
negative	 number	 is	 represented	 by	 the	 bit	 complement	 of	 the	 corresponding	 positive
number.	 Therefore,	 this	 representation	 is	 called	 the	 one’s	 complement.	 In	 this
representation,	no	extra	bit	is	assigned	to	the	sign	bit.	However,	the	arithmetic	operations
are	not	straightforward	in	this	representation.	For	a	more	detailed	explanation,	please	see
[5].

The	 third	 form	 of	 negative	 number	 representation	 is	 based	 on	 two’s	 complement.
Here,	the	negative	number	is	first	represented	in	one’s	complement	form.	Then	the	result
is	 incremented	by	1.	Two’s	complement	 representation	 is	used	 for	 representing	negative
numbers	in	the	MSP430.	Let’s	say	we	have	the	binary	number	01001100b.	We	can	obtain
its	 negated	 version	 in	 two’s	 complement	 form	 in	 two	 steps.	 First,	 we	 obtain	 its	 one’s
complement	 representation,	 10110011b.	 Adding	 1	 to	 the	 result	 gives	 us	 the	 two’s
complement	of	this	number,	10110100b.

Two’s	 complement	 representation	 has	 a	 major	 advantage.	 Subtracting	 two	 binary
numbers	 can	 be	 rephrased	 as	 adding	 the	 first	 number	 to	 the	 two’s	 complement	 of	 the



second.	 Therefore,	 only	 one	 adder	 circuit	 (introduced	 in	 Chap.	 2)	 is	 needed	 for	 both
addition	 and	 subtraction	 operations.	 The	 resulting	 representation	 also	 keeps	 the	 sign
information.	Therefore,	the	need	for	an	extra	sign	bit	is	also	eliminated.

Let’s	 consider	 two	 subtraction	 examples.	 The	 first	 one	 is	 subtracting	 the	 binary
number	00111111b	from	01000000b.	First,	we	obtain	the	two’s	complement	of	00111111b
as	11000001b.	Adding	11000001b	to	01000000b	gives	100000001b.	As	can	be	seen,	the
result	can	be	represented	by	9	bits.	In	other	words,	an	overflow	occurred.	We	will	explore
the	overflow	issue	in	Sec.	3.4.	If	the	overflow	occurs,	we	should	discard	it	and	the	result	is
final.	That	 is,	 the	subtraction	operation	 results	 in	00000001b.	 If	we	subtract	 the	number
01000000b	from	00111111b,	we	follow	the	same	steps	and	obtain	11111111b.	There	is	no
overflow.	Therefore,	the	result	is	negative	and	represented	in	two’s	complement	form.	We
can	check	it	by	obtaining	the	two’s	complement	of	the	first	subtraction	result,	00000001b.
As	can	be	seen,	the	two’s	complement	representation	simplifies	life	for	us.

3.3			Fixed-	and	Floating-Point	Representations
The	 binary	 numbers	 to	 be	 processed	 may	 also	 have	 fractional	 parts.	 In	 Sec.	 3.1,	 we
distinguished	the	integer	and	fractional	parts	of	such	numbers	by	a	dot.	In	a	digital	system,
this	is	not	possible.	Instead,	there	are	two	different	methods	to	represent	binary	numbers
with	integer	and	fractional	parts.	These	are	fixed-	and	floating-point	representations.

3.3.1			Fixed-Point	Representation

The	 number	 of	 bits	 assigned	 to	 the	 integer	 and	 fractional	 parts	 is	 fixed	 in	 this
representation.	Hence	 the	 name	 fixed-point	 representation.	This	 has	 various	 advantages.
This	method	 is	 easy	 to	 implement	 since	 the	 number	 of	 bits	 assigned	 to	 the	 integer	 and
fractional	parts	is	fixed.	Also,	the	numbers	in	this	form	can	be	processed	faster.

Following	 TI’s	 representation,	 we	 can	 show	 an	 unsigned	 (no	 sign	 bit)	 fixed-point
number	 as	 UQp.q.	 Here,	 U	 represents	 the	 unsigned	 bit	 notation,	 p+q	 =	 n	 shows	 the
number	(p	and	q	being	the	integer	and	fractional	parts)	[2].	We	provide	some	fixed-point
representation	formats	in	Table	3.1.

Table	3.1			Fixed-point,	unsigned	number	representation	formats.

	

As	an	example,	let’s	consider	the	decimal	number	255.25.	The	first	step	to	represent
this	 number	 in	 fixed-point	 representation	 is	 finding	 the	 binary	 (or	 hexadecimal)
representation	 of	 the	 integer	 and	 fractional	 parts	 separately.	 The	 integer	 part	 can	 be
represented	as	FFh.	The	fractional	part	can	be	represented	as	4h.	Assume	that	we	would
like	 to	 represent	 this	number	 in	UQ16	 form.	Therefore,	 there	will	 be	no	 fractional	part.



The	number	of	bits	to	be	assigned	to	the	integer	part	will	be	16.	The	resulting	number	will
be	00FFh.	Zeros	added	to	the	left	of	the	number	will	not	affect	its	value.	They	will	satisfy
the	fixed-point	representation	format.	If	the	UQ16.16	fixed-point	representation	is	used	for
the	same	number,	then	the	integer	part	of	255.25	will	be	the	same	as	00FFh.	The	fractional
part	will	be	4000h.	Here,	zeros	are	added	to	the	right	of	the	number	so	that	the	value	of	the
fractional	part	will	not	be	affected.	The	fixed-point	representation	of	 the	number	will	be
00FF4000h.	As	can	be	seen,	there	is	no	separator	between	the	integer	and	fractional	part
of	the	number.	Knowing	that	the	number	is	in	UQ16.16	format,	we	can	easily	extract	the
integer	and	fractional	parts	(since	we	know	the	number	of	bits	assigned	to	each).

In	a	similar	manner,	we	can	also	represent	signed	numbers.	In	this	form,	the	MSB	is
reserved	 for	 the	 sign	 bit.	 We	 provide	 three	 signed	 bit	 formats	 for	 the	 fixed-point
representation	 in	 Table	 3.2.	 Similar	 to	 the	 unsigned	 bit	 representation,	 the	 fixed-point
number	will	be	in	the	form	Qp.q.

Table	3.2			Fixed-point	signed	number	representation	formats.

	

3.3.2			Floating-Point	Representation

The	fixed-point	representation	is	easy	to	implement	and	process.	However,	it	has	a	major
drawback.	The	number	of	bits	assigned	to	the	integer	and	fractional	parts	is	always	fixed.
This	causes	limitations	both	in	the	range	of	numbers	to	be	represented	and	their	resolution.
The	floating-point	 representation	can	be	used	 to	overcome	these	problems.	As	 the	name
implies,	the	number	of	bits	assigned	to	the	integer	and	fractional	parts	is	not	fixed	in	this
representation.	Instead,	the	assigned	number	of	bits	differs	for	each	number,	depending	on
its	significant	digits.	Therefore,	a	much	wider	range	of	values	can	be	represented	by	this
form.

In	floating-point	representation,	a	binary	number	with	fractional	parts	will	be	shown
as	N	=	(−1)S	×	2E	×	F.	Here,	S	stands	for	the	sign	bit,	E	represents	the	exponent	value,	and
F	stands	for	the	fractional	part.	The	floating-point	number	N	is	saved	in	the	memory	as	X
=	SEF.

To	 represent	 the	 floating-point	 number	N	 =	 (−1)S	 ×	 2E	 ×	F,	 the	 number	 should	 be
normalized	such	that	the	integer	part	will	have	one	digit.	For	ease	of	binary	representation,
the	exponent	will	be	biased	by	2(e−1)	−	1,	where	e	is	the	number	of	bits	to	be	used	for	E	in
the	 given	 format.	 Finally,	 a	 certain	 number	 of	 bits	will	 be	 assigned	 to	 the	S,	E,	 and	F,
depending	on	the	standard	format	used	for	representation.	The	IEEE	754	standard	is	used
by	most	digital	 systems	 in	 floating-point	 representation.	This	 standard	 is	 summarized	 in
Table	3.3.



Table	3.3			The	IEEE	754	standard	for	floating-point	representation.

	

Let’s	 take	 three	 examples	 to	 explain	 the	 floating-point	 representation.	 In	 the	 first
example,	we	will	have	255.25.	We	will	follow	the	following	itemized	procedure	to	obtain
its	floating-point	representation.

•		Decide	on	the	format:	Let’s	pick	the	Half	format	for	this	example.

•		Represent	the	integer	and	fractional	parts	of	the	decimal	number	in	binary	form:	Our
number	becomes	11111111.01b.

•		Decide	on	the	sign	bit	S:	Since	the	number	is	positive,	(−1)0	=	1,	S	=	0b.

•		Normalize	the	number	such	that	the	integer	part	will	have	one	digit:	Our	number
becomes	1.111111101	×27b.

•		Find	the	exponent	value:	For	the	half	format,	the	exponent	bias	is	15.	Therefore,	the
exponent	will	become	E	=	15	+	7	=	22	with	bias.	Or	in	binary	form,	E	=	10110b.

•		Find	the	fractional	part:	Our	fractional	part	(after	normalization)	was	111111101b.	Since
10	bits	should	be	used	to	represent	the	fractional	part	of	the	number	in	half	format,	F	=
1111111010b.	Remember,	since	this	is	the	fractional	part,	we	add	the	extra	zero	to	its
right	so	that	the	value	of	the	number	will	not	be	affected.

•		Construct	X	=	SEF:	Finally,	X	=	0101101111111010b.	Or	in	hexadecimal	form,	X	=
5BFAh.

The	next	example	is	representing	−255.25	in	single	floating-point	format.	Again,	the
itemized	conversion	is	as	follows:

•		Decide	on	the	format:	Let’s	pick	the	Single	format	for	this	example.

•		Represent	the	integer	and	fractional	parts	of	the	decimal	number	in	binary	form:	Our
number	becomes	11111111.01b.

•		Decide	on	the	sign	bit	S:	Since	the	number	is	negative,	(−1)1	=	−1,	S	=	1b.

•		Normalize	the	number	such	that	the	integer	part	will	have	one	digit:	Our	number
becomes	1.111111101	×	27b.

•		Find	the	exponent	value:	For	the	single	format,	the	exponent	bias	is	127.	Therefore,	the
exponent	will	become	E	=	127	+	7	=	134	with	bias.	Or	in	binary	form,	E	=	10000110b.

•		Find	the	fractional	part:	Our	initial	fractional	part	(after	normalization)	was	111111101b.



Since	23	bits	should	be	used	to	represent	the	fractional	part	of	the	number	in	single
format,	F	=	11111110100000000000000b.	Remember,	since	this	is	the	fractional	part,
we	add	extra	zeros	to	its	right	so	that	the	value	of	the	number	will	not	be	affected.

•		Construct	X	=	SEF:	Finally,	X	=	C37F4000h	in	hexadecimal	form.

The	last	example	is	representing	8751.135	in	half	format.	The	itemized	conversion	is
as	follows.

•		Decide	on	the	format:	Let’s	pick	the	Half	format	for	this	example.

•		Represent	the	integer	and	fractional	parts	of	the	decimal	number	in	binary	form:	Our
number	becomes	10001000101111.001000101000b.

•		Decide	on	the	sign	bit	S:	Since	the	number	is	positive,	(−1)0	=	0,	S	=	0b.

•		Normalize	the	number	such	that	the	integer	part	will	have	one	digit:	Our	number
becomes	1.0001000101111001000101000	×	213b.

•		Find	the	exponent	value:	For	the	half	format,	the	exponent	bias	is	15.	Therefore,	the
exponent	will	become	E	=	15	+	13	=	28	with	bias.	Or	in	binary	form,	E	=	11100b.

•		Find	the	fractional	part:	Our	initial	fractional	part	(after	normalization)	was
0001000101111001000101000b.	Since	10	bits	should	be	used	to	represent	the	fractional
part	of	the	number	in	half	format,	it	becomes	F	=	0001000101b.	Unlike	previous
examples,	we	had	to	discard	some	bits	in	the	fractional	part	at	this	step.	This	is	due	to
the	number	of	bits	that	can	be	used.

•		Construct	X	=	SEF:	Finally,	X	=	0111000001000101b.	Or	in	hexadecimal	form,	X	=
7045h.

3.4			The	Word	Size	and	Overflow
The	number	of	bits	that	can	be	processed	by	a	microcontroller	at	once	is	called	its	word
size.	The	word	size	is	16	bits	or	2	bytes	for	MSP430.	If	an	arithmetic	operation	results	in
more	than	16	bits,	an	overflow	occurs.	The	overflowed	bit	should	be	saved	somewhere	in
the	 microcontroller.	 Under	 the	 MSP430	 it	 will	 be	 saved	 in	 the	 carry	 bit	 of	 the	 status
register	(to	be	explained	in	Chap.	4).	Therefore,	the	exact	result	of	the	operation	will	not
be	lost	(until	the	next	operation).	The	overflow	should	be	taken	into	account	especially	in
assembly	programming	to	be	explored	in	Chap.	7.

3.5			Little	and	Big	Endian	Representations
Sometimes,	 the	data	 to	be	saved	 in	 the	microcontroller’s	memory	may	be	 larger	 than	 its
word	 size.	 Hence,	 the	 large	 data	 must	 be	 partitioned	 and	 saved	 in	 successive	 memory
locations.	For	such	cases,	there	are	two	representations:	little	endian	and	big	endian.	The
least	significant	bits	of	the	data	are	saved	first	in	the	little	endian	representation.	In	the	big
endian	representation,	the	most	significant	bits	are	saved	first.

As	 an	 example,	 let’s	 consider	 the	 floating-point	 representation	 of	 −255.25	 in	 the
previous	section.	In	single	format,	the	representation	was	X	=	C37F4000h,	which	needs	4
bytes	 (or	 two	words).	Let’s	 label	 two	successive	memory	 locations	 I	and	II.	 In	 the	 little
endian	 representation,	 I	 will	 hold	 4000h	 and	 II	 will	 hold	 C37Fh.	 In	 the	 big	 endian
representation,	 I	 will	 hold	 C37Fh	 and	 II	 will	 hold	 4000h.	 As	 a	 reminder,	 the	 endian



representation	 for	 each	 microcontroller	 is	 fixed.	 The	 little	 endian	 representation	 is
preferred	for	the	MSP430.	We	will	observe	its	effect	in	the	following	chapters.

3.6			ASCII	Characters
We	do	not	only	process	numbers	in	microcontrollers.	For	some	applications,	we	may	need
to	handle	characters	and	symbols	as	well.	As	we	know,	everything	in	the	microcontroller
is	 represented	 in	binary	 form.	The	ASCII	code	 is	 introduced	 to	 represent	characters	and
symbols	 in	binary	 form.	ASCII	 stands	 for	 the	American	Standard	Code	 for	 Information
Interchange.	 The	ASCII	 code	 for	 characters	 and	 symbols	 is	 given	 in	 Table	 3.4.	 In	 this
table,	LSB	stands	for	least	significant	byte	and	MSB	stands	for	most	significant	byte.	To
represent	a	specific	character	(or	a	symbol),	its	corresponding	code	should	be	given.	Let’s
assume	that	we	would	like	to	represent	the	@	symbol.	The	ASCII	code	for	the	symbol	@
can	be	obtained	as	40h	from	Table	3.4.

Table	3.4			ASCII	code	table.

	

3.7			Summary
The	data	 to	 be	 stored	 in	 the	microcontroller	will	 be	 in	 binary	 form.	 In	 this	 chapter,	we
focused	 on	 the	 representations	 of	 binary	 numbers.	 First,	we	 focused	 on	 the	methods	 to
represent	negative	binary	numbers.	We	explored	the	sign	bit,	one’s	complement,	and	two’s
complement	 representations	 for	 negative	 numbers.	 Then,	we	 considered	 the	 problem	 of
representing	 binary	 numbers	with	 fractional	 parts.	We	 explored	 the	 fixed-	 and	 floating-
point	representations.	We	also	provided	examples	on	converting	decimal	numbers	(with	a
fractional	part)	to	these	forms.	Then	we	explored	the	word	size	and	overflow	issues.	The
word	 size	 for	 the	MSP430	 is	 16	 bits.	 Related	 to	 this,	 we	 focused	 on	 the	 little	 and	 big
endian	 representations.	They	help	us	 to	 save	data	 larger	 than	 the	word	 size.	Finally,	we
looked	at	the	ASCII	table	to	represent	characters	in	binary	form.

3.8			Problems
3.1					The	MSP430	microcontroller	uses	two’s	complement	representation	in

subtraction	operations.	Calculate	the	following	(using	pencil	and	pen)	in	binary
arithmetic:



a.				FFFFh+0005h

b.				FFFFh-0005h

c.				0005h-FFFFh

3.2					Is	MSP430	a	fixed-	or	a	floating-point	microcontroller?

3.3					Find	the	fixed-point	representation	of	the	number	315.2342	in	formats

a.				UQ16.

b.				UQ.16.

c.				UQ16.16.

3.4					Find	the	fixed-point	representation	of	the	numbers	−315.2342	and
315.2342	in	formats

a.				Q15.

b.				Q.15.

c.				Q15.16.

3.5					You	are	given	four	numbers:	13.25,	15.50,	17.50,	and	19.25.	Find	the
hexadecimal	representation	of	these	numbers	in	fixed-point	UQ16.16	format.

3.6					Find	the	floating-point	representation	of	the	numbers	−315.2342	and
315.2342	in	formats

a.				half.

b.				single.

c.				double.

3.7					We	will	only	have	an	approximation	in	representing	the	number	8751.135
in	half	floating	form.	What	is	the	difference	between	the	actual	number	and	this
approximation?

3.8					Find	the	floating-point	representation	of	the	number	8751.135	in	single
form.	Will	there	be	an	approximation	here?

3.9					Find	the	floating-point	representation	of	the	number	π	in	half	form.

3.10					Pick	two	numbers	and	calculate	their	sum	in	binary	arithmetic.	Make	sure	that
there	is	an	overflow.

3.11					Pick	two	numbers	and	calculate	their	difference	in	binary	arithmetic.	Make	sure
that	there	is	an	overflow.

3.12					We	want	to	save	the	hexadecimal	number	CBBCh	in	a	microcontroller	with	the
word	size	of	2	bytes.	How	do	we	write	this	number

a.				if	the	memory	organization	is	in	little	endian	form?

b.				if	the	memory	organization	is	in	big	endian	form?

3.13					Which	endian	representation	does	MSP430	use?



3.14					We	want	to	store	the	numbers	considered	in	Prob.	3.5	(in	UQ16.16	format)	in	the
memory	of	the	MSP430G2553.	Let’s	assume	that	the	lowest	possible	memory
location	to	be	used	is	0200h.	Start	filling	these	numbers	(in	hexadecimal	form)
from	the	lowest	possible	memory	address	allowed.	Take	into	account	the
microcontroller’s	endian	representation.

3.15					The	MSP430	microcontroller	keeps	a	floating-point	number	(in	single	format)	in
two	successive	memory	locations	(let’s	say	0200h	and	0202h	for	this	problem)as
522Bh	and	449Ah.	What	is	this	number	in	decimal	form?

3.16					The	ASCII	codes	given	in	Table	3.4	are	called	regular.	What	happens	if	we	want	to
represent	regional	characters	like	ü,	ı,	and	ç?
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The	aim	in	this	chapter	is	to	familiarize	you	with	the	hardware	architecture	of	the	MSP430
microcontroller.	Modules	in	this	architecture	will	be	explored	in	the	following	chapters	in
detail.	We	will	start	with	the	general	 layout	of	 the	MSP430G2553	architecture.	Then	we
will	 focus	on	 the	central	processing	unit	 (CPU),	memory,	 input	and	output	ports,	clocks
and	 the	 timer	 module,	 analog-to-digital	 conversion	 (ADC)	 and	 comparator	 modules,
digital	communication	module,	and	other	modules.

4.1			General	Layout
The	functional	block	diagram	of	the	MSP430G2553	microcontroller	is	given	in	Fig.	4.1.
We	 will	 use	 this	 representation	 in	 grouping	 blocks.	 As	 can	 be	 seen	 in	 this	 figure,	 the
MSP430G2553	has	a	16-MHz	CPU.	It	has	16	kB	flash	and	512	bytes	of	RAM.	It	has	two
input	and	output	ports	named	P1	and	P2.	It	has	a	clock	system,	two	timer	modules,	and	a
watchdog	 timer.	 It	 has	 ADC	 and	 comparator	 modules.	 It	 has	 a	 digital	 communication
module	 with	 universal	 serial	 communication	 interface	 (USCI).	 It	 has	 a	 brownout
protection	module,	the	memory	address	bus	(MAB)	and	the	memory	data	bus	(MDB),	and
interface	modules	(JTAG,	spy-bi-wire,	emulation).



	

Figure	4.1			Functional	block	diagram	of	the	MSP430G2553	microcontroller.

	

4.2			Central	Processing	Unit
The	MSP430	 CPU	 has	 a	 16-bit	 reduced	 instruction	 set	 computing	 (RISC)	 architecture,
with	 27	 physical	 and	 24	 emulated	 instructions.	 We	 will	 explore	 this	 instruction	 set	 in
Chap.	7	in	detail.	The	CPU	is	based	on	Von-Neumann	architecture	such	that	the	data	and
instructions	 are	 treated	 the	 same	 through	 the	 MAB	 and	 MDB.	 More	 detail	 on	 this
architecture	can	be	found	in	[6].	The	block	diagram	of	the	MSP430G2553	CPU	is	given	in
Fig.	4.2.	 The	CPU	 can	 be	 further	 divided	 into	 the	 following	 submodules	 based	 on	 this
diagram.



	

Figure	4.2			Block	diagram	of	the	MSP430G2553	CPU.

	

4.2.1			Arithmetic	Logic	Unit

The	arithmetic	logic	unit	(ALU)	performs	the	arithmetic	and	logical	operations.	The	two
arithmetic	 operations	 in	 this	 module	 are	 addition	 and	 subtraction.	 Subtraction	 is	 done
using	two’s	complement	form	as	explained	in	Sec.	3.2.	Comparison	of	 two	numbers	can
be	 performed	 by	 the	 ALU	 also.	 Logical	 operations	 AND,	 OR,	 and	 XOR	 can	 be	 done
bitwise	within	the	ALU.	There	is	neither	multiplication	nor	division	operation	defined	in
the	MSP430	 instruction	set.	Therefore,	 the	programmer	should	 form	suitable	algorithms
for	 this	purpose	 in	assembly	 language.	Besides	providing	 the	 result	of	 an	operation,	 the
ALU	also	sets	the	status	bits	(flags)	based	on	the	operation.	This	will	be	explained	next.

4.2.2			CPU	Registers

The	MSP430	has	16	registers,	each	having	16-bit	storage	capacity.	Four	of	these	registers
(R0,	R1,	R2,	R3)	have	dedicated	usage.	The	remaining	12	registers	are	general	purpose.
All	of	these	16	registers	can	be	directly	accessed	through	software.	Next,	we	explain	the



registers	with	dedicated	usage	in	detail.

The	R0	register	is	called	the	program	counter	(PC).	It	points	to	the	next	instruction
to	 be	 read	 from	 memory	 and	 executed	 by	 the	 CPU.	 In	 storing	 the	 instructions	 to	 the
memory,	 even-numbered	 locations	 are	 always	 used.	 Therefore,	 the	 PC	 is	 always
incremented	by	multiples	of	two.	The	first	instruction	to	be	executed	is	special.	As	a	reset
occurs	(either	at	the	startup	or	during	operation),	the	CPU	goes	to	the	reset	vector	address
(to	be	explained	in	Chap.	9).	This	address	keeps	the	address	of	the	first	line	of	the	code.

The	R1	 register	 is	 called	 the	 stack	pointer	 (SP).	 It	 is	mainly	used	 to	handle	 stack
operations	(to	be	explained	in	Sec.	7.4).	It	is	also	used	in	the	interrupt	and	function	calls.
As	in	the	PC,	SP	also	keeps	a	memory	address	(of	the	stack).	The	SP	should	be	defined	at
the	beginning	of	the	assembly	programs.

The	R2	register	is	called	the	status	register	(SR).	It	stores	the	status	and	control	bits
as	given	in	Table	4.1.

Table	4.1			The	status	register	bits.

	

In	Table	4.1,	CG1	stands	for	the	constant	generator	(to	be	explained	next).	The	V	bit
(flag)	 represents	 the	overflow.	This	bit	 is	set	when	an	overflow	occurs	 in	 the	ALU.	The
SCG1,	SCG0,	and	OSCOFF	bits	are	used	for	clock	operations.	These	will	be	explored	in
detail	 in	 Chap.	 10.	 Similarly,	 setting	 the	 CPUOFF	 bit	 disables	 the	 CPU.	 The	 GIE	 bit
should	be	set	to	enable	general	interrupts	(to	be	explored	in	Chap.	9).	The	N	bit	(negative
flag)	 is	 set	when	 the	ALU	operation	gives	a	negative	 result.	The	Z	bit	 (zero	 flag)	 is	 set
when	 the	ALU	 operation	 gives	 zero.	 Finally,	 the	C	 bit	 (carry	 flag)	 is	 set	when	 a	 carry
occurs	in	the	ALU	operation.

Register	R3	and	the	most	significant	seven	bits	of	register	R2	(SR)	are	reserved	for
constant	 generators	 (CG1/CG2).	 These	 are	 responsible	 for	 generating	 six	 constants
(0004h,	0008h,	0000h,	0001h,	0002h,	FFFFh)	used	in	the	microcontroller.	These	constants
are	used	in	emulated	instructions	(to	be	explored	in	Sec.	7.1).

The	remaining	registers	R4–R15	are	general	purpose.	They	can	be	used	to	store	data,
address	pointers,	or	index	values.	They	can	be	accessed	with	byte	or	word	instructions.	It
is	advantageous	to	use	them	in	assembly	programming	since	they	are	on	the	CPU.	We	will
explore	these	issues	in	Chap.	7	in	detail.

4.3			Memory
The	MSP430G2553	 has	 a	 16-bit	 address	 bus	 (MAB).	 Therefore,	 it	 can	 map	 64	 kB	 of
memory	 space.	A	 16-bit	 address	 bus	 allows	 direct	 access	 and	 branching	 throughout	 the
entire	memory	range.	The	MSP430G2553	also	has	a	16-bit	data	bus	(MDB).	This	allows
direct	 manipulation	 of	 word-based	 arguments.	 To	 note	 here,	 each	 memory	 location	 is
formed	by	1	byte	of	data,	and	the	CPU	is	capable	of	addressing	the	data	value	either	at	the



byte	or	word	level.	Words	are	always	stored	and	retrieved	from	even	addresses.	This	even
address	 keeps	 the	 least	 significant	 byte.	 The	 following	 odd	 address	 keeps	 the	 most
significant	byte.	This	is	the	little	endian	representation	explained	in	Sec.	3.5.	The	data	can
be	accessed	from	either	an	even	or	an	odd	address	in	byte	operations.

The	MSP430G2553	has	two	types	of	memory.	These	are	RAM	and	flash.	The	RAM
is	 used	 for	 temporary	 storage.	Hence	 it	 is	 suitable	 for	 keeping	 variables.	The	 flash	 is	 a
nonvolatile	memory.	It	can	still	keep	the	data	when	power	goes	off.	Hence,	it	is	primarily
used	to	store	the	code	to	be	executed.	We	will	further	explore	the	flash	memory	in	Chap.
13.

4.3.1			The	Memory	Map

The	memory	map	does	not	just	represent	the	RAM	and	flash	in	the	MSP430	architecture.
It	also	represents	the	interrupt	and	reset	vector	table,	special	function	registers	(SFRs),	and
peripheral	modules.	Therefore,	the	input	and	output	ports	(to	be	considered	in	Chap.	8)	are
treated	 as	 memory	 addresses.	 Based	 on	 these	 definitions,	 the	 memory	 map	 of	 the
MSP430G2553	is	given	in	Table	4.2.

Table	4.2			MSP430G2553	memory	map.

	

As	can	be	seen	in	Table	4.2,	the	highest	64	bytes	of	address	space	(between	FFFFh
and	FFC0h)	are	used	for	interrupt	and	reset	vector	tables.	These	will	be	explored	in	detail
in	Chap.	9.	The	next	16320	bytes	of	address	space	(between	FFBFh	and	C000h)	are	used
for	code	memory.	Here,	constants	are	also	 saved.	We	will	discuss	 this	 issue	 in	Chap.	6.
The	 256	 bytes	 (between	 10FFh	 and	 1000h)	 are	 used	 for	 information	 memory.	 The
calibration	data	for	peripherals	are	stored	in	this	memory	area.	These	were	all	in	the	flash
area	of	the	memory.	The	512	bytes	between	03FFh	and	0200h	of	the	memory	are	reserved
for	the	data.	Hence,	the	local	and	global	variables	are	saved	here.	This	area	is	also	used	for
the	stack	operations	to	be	explained	in	Sec.	7.4.	This	part	of	the	memory	is	from	the	RAM.
The	 next	 256	 bytes	 of	 address	 space	 (between	 01FFh	 and	 0100h)	 are	 used	 for	 16-bit
peripheral	registers.	The	next	240	bytes	of	memory	space	(between	00FFh	and	0010h)	are



used	for	8-bit	peripheral	registers.	The	lowest	16	bytes	of	memory	space	(between	000Fh
and	0000h)	are	used	for	8-bit	SFRs.	These	will	be	explored	next.

4.3.2			Peripheral	and	Special	Function	Registers

In	 the	 following	 chapters,	we	will	 study	 the	 digital	 input	 and	 output,	 interrupts,	 timers,
analog-to-digital	 conversion,	 and	 digital	 communication	 modules	 of	 the	 MSP430
microcontroller.	For	all	 these,	 some	parameters	 should	be	adjusted	 through	 their	 control
registers.	In	fact,	all	these	control	registers	are	kept	in	the	lowest	512	bytes	of	memory	as
peripheral	registers	(16-	and	8-bit)	and	SFRs.	Interrupt	enable	1	(IE1),	interrupt	enable	2
(IE2),	interrupt	flag	1	(IFG1),	and	interrupt	flag	2	(IFG2)	are	defined	under	SFRs.	We	will
explore	all	 these	peripheral	 registers	and	SFRs	 in	 later	chapters.	Here,	we	would	 like	 to
emphasize	that	these	control	registers	are	also	kept	in	the	memory.

4.4			Input	and	Output	Ports
The	microcontroller	can	interact	with	the	outside	world	through	its	input	and	output	ports.
Here,	the	processed	data	can	be	analog	or	digital.	MSP430G2553	has	16	pins	(arranged	in
two	ports	as	port	P1	and	P2)	to	be	used	for	input	and	output.	All	the	pins	can	be	used	as
input	or	output.	They	can	also	be	used	for	both	analog	and	digital	signals.	Therefore,	they
are	called	general	purpose	input	and	output	(GPIO).	We	will	consider	these	in	detail	in	the
following	chapters.	Here,	we	would	 like	 to	mention	one	 important	 issue.	The	 input	 and
output	 ports	 will	 be	 simply	 taken	 as	 memory	 addresses	 through	 peripheral	 registers
mentioned	in	the	previous	section.	This	is	generally	called	memory	mapped	input-output
(memory	mapped	I/O).	Therefore,	reading	or	writing	data	to	input-output	ports	is	simply
like	reading	or	writing	data	to	a	specific	memory	address.

4.5			Clocks,	the	Timer,	and	Watchdog	Timer	Modules
The	MSP430G2553	 has	 one	 clock,	 two	 timers,	 and	 a	watchdog	 timer	module.	We	will
explore	their	properties	in	detail	in	Chap.	10.	Here,	we	briefly	overview	them.

4.5.1			Clocks

As	mentioned	 in	 Chap.	 3,	 the	 ones	 and	 zeros	 in	 the	 code	 level	 correspond	 to	 the	 two
different	 states	 of	 the	 transistor	 at	 the	 physical	 level.	 There	 is	 a	 certain	 time	 needed	 to
switch	from	one	state	to	the	other.	Therefore,	the	operations	within	the	microcontroller	are
done	in	clock	cycles	to	prevent	transition	problems.	With	each	clock	cycle,	the	processor
performs	an	action	that	corresponds	to	an	instruction	phase.	Besides,	timers	and	peripheral
modules	may	also	need	other	clock	signals	to	operate.	Therefore,	the	MSP430G2553	has
more	than	one	clock	source.	These	are	called	the	master	clock	(MCLK),	sub-main	clock
(SMCLK),	 and	 auxiliary	 clock	 (ACLK).	 These	 clocks	 are	 also	 based	 on	 different
oscillators.	We	will	consider	all	these	in	Chap.	10	in	detail.

4.5.2			The	Timer	and	Watchdog	Timer	Modules

MSP430G2553	 has	 two	 timers	 on	 it.	 These	 can	 be	 programmed	 for	 timing	 and
capture/compare	operations.	In	fact,	the	timer	is	a	counter.	There	is	also	a	watchdog	timer
module	which	needs	specific	consideration.	It	resets	the	CPU	in	periodic	time	intervals	to
eliminate	any	unexpected	program	failures	(causing	infinite	loops).	This	module	can	also
be	used	as	a	timer.	We	will	explore	all	timer	modules	in	detail	in	Chap.	10.	Till	 then,	we



will	have	a	code	line	to	disable	the	watchdog	timer	in	all	our	programs.

4.6			ADC	and	Comparator	Modules
MSP430	 can	 process	 analog	 signals	 as	 well.	 This	 is	 done	 in	 two	 ways.	 First,	 the
comparator	can	be	used	such	 that	 the	analog	 input	voltage	 is	compared	with	a	reference
voltage.	Depending	on	the	comparison,	the	output	of	the	comparator	will	be	either	zero	or
one.	This	can	be	 represented	by	1	bit.	Second,	 the	ADC	module	can	provide	 the	digital
form	 of	 the	 analog	 signal	 fed	 to	 the	microcontroller.	MSP430G2553	 has	 a	 10-bit	ADC
module.	We	will	explore	both	the	comparator	and	the	ADC	modules	in	detail	in	Chap.	11.

4.7			The	Digital	Communication	Module
The	MSP430	has	a	digital	communication	module	called	the	USCI.	This	module	supports
universal	asynchronous	receiver/transmitter	(UART),	serial	peripheral	interface	(SPI),	and
inter	integrated	circuit	(I2C)	communication	modes.	We	will	explore	these	issues	in	detail
in	Chap.	12.

4.8			Other	Modules
In	this	section,	we	summarize	the	MSP430	modules	that	we	will	not	explore	in	detail	 in
the	 following	chapters.	These	are	 the	brownout	protection	module,	emulation	 logic	with
spy-bi-wire	 interface	module,	 and	 the	 JTAG	 interface	module.	The	brownout	 protection
module	provides	 the	proper	 internal	 reset	 signal	 to	 the	device	during	power	on	and	off.
The	 interface	modules	provide	 the	communication	 link	between	 the	microcontroller	 and
the	host	computer.	More	detail	on	these	modules	can	be	found	in	[17].

4.9			The	Pin	Layout	of	the	MSP430G2553
The	 pin	 layout	 of	 the	MSP430G2553	microcontroller	 is	 given	 in	 Fig.	 4.3.	 The	 general
usage	area	of	the	GPIO	pins	in	this	figure	is	explained	in	Table	4.3.	As	can	be	seen	in	this
table,	each	pin	can	be	used	for	various	purposes.	We	will	explore	each	property	separately
in	the	following	chapters.	In	this	table,	we	only	summarize	the	usage	areas	of	the	pins	to
be	considered	in	this	book.	Other	usage	areas	of	the	mentioned	pins	can	be	found	in	[17].

	

Figure	4.3			Pin	layout	of	the	MSP430G2553.



	

Table	4.3			Pin	usage	table	for	MSP430G2553.

	

4.10			Summary
We	 explored	 the	 architecture	 of	 the	 MSP430	 microcontroller	 in	 this	 chapter.	 Here	 our
focus	was	on	hardware	modules.	Although	we	will	explore	each	module	in	detail,	seeing
all	together	with	their	interactions	provides	for	better	insight.	Therefore,	we	considered	the
CPU	first.	We	explored	the	arithmetic	logic	unit	and	registers	in	it.	Then,	we	considered
the	memory.	The	most	 important	 point	 here	 is	 the	memory	map	 of	 the	microcontroller.
Therefore,	we	explored	it	in	detail.	Next,	we	considered	the	ports	of	the	MSP430.	Then,
we	briefly	reviewed	the	clock,	timer,	and	watchdog	timer	modules.	These	will	be	the	main
focus	 of	 time-based	 operations.	We	next	 considered	 the	ADC	and	 comparator	modules.
We	then	briefly	reviewed	the	digital	communication	module.	Finally,	we	provided	the	pin
layout	 of	 the	MSP430.	 Our	 aim	 was	 to	 summarize	 the	 usage	 of	 each	 pin	 by	 different
modules.

4.11			Problems
4.1					Pick	another	microcontroller	and	compare	it	with	the	MSP430	in

terms	of	architecture.

4.2					What	do	program	counter,	status	register,	and	stack	pointer	mean?
Where	are	they	kept	in	the	MSP430	microcontroller?



4.3					What	do	flash	and	RAM	mean?	In	the	MSP430G2553,	what	is	the
size	of	the	flash	and	RAM?

4.4					How	many	clocks	does	the	MSP430G2553	microcontroller	have?

4.5					What	is	the	size	of	the	MAB	for	the	MSP430?	What	is	the	the
maximum	addressable	memory	location	with	this	MAB?

4.6					What	should	be	the	size	of	the	MAB	to	address	4	gigabytes	of
memory	(with	word	size	of	64	bits)?

4.7					What	does	memory	mapped	input	and	output	mean?

4.8					According	to	the	memory	map	of	the	MSP430G2553
microcontroller,

a.				What	can	be	the	maximum	code	size	to	be	processed?	Here,
assume	that	100	bytes	are	kept	for	storing	the	data.

b.				What	can	be	the	maximum	stack	size?

c.				What	can	be	the	maximum	data	size	to	be	stored?	Here,	assume
that	the	code	to	process	this	data	needs	512	bytes.
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Code	Composer	Studio	 (CCS)	 is	 the	unique	environment	 for	TI’s	embedded	processors.
Although	a	new	version	of	CCS	is	introduced	every	year,	we	believe	that	the	reader	should
become	familiar	with	at	least	one	CCS	version.	Therefore,	we	pick	the	most	recent	version
of	CCS	(version	5.3)	in	this	book	[11].	We	believe	that,	even	if	a	new	version	of	CCS	is
introduced	in	the	future,	it	will	not	be	totally	different	from	this	version.	We	will	start	with
the	setup	of	CCS.	Then,	we	will	deal	with	creating	C	and	assembly	projects	under	CCS.
On	these,	we	will	explore	CCS	properties	during	code	execution.	We	will	also	explore	the
new	Graphical	Peripheral	Configuration	Tool	(Grace)	in	this	chapter.	Grace	will	allow	us
to	configure	the	hardware	of	the	MSP430	graphically.

5.1			Setup
The	official	version	of	CCS	for	the	MSP430	is	freely	available	on	the	TI	website	(as	we
are	writing	this	book).	Although	this	is	a	code	size	limited	version,	it	is	sufficient	for	our
purposes.	 Next,	 we	 will	 explain	 how	 to	 download	 and	 install	 it.	 To	 note	 here,	 the
following	steps	are	for	a	Windows	7–based	PC.	For	Linux	installation,	please	see	the	TI
website.

5.1.1			Downloading	and	Installing	CCS

Before	 starting	 to	 download	CCS,	 you	 need	 to	 have	 a	TI	 account.	You	 can	 get	 it	 from
http://www.ti.com.	After	you	register,	you	will	be	eligible	to	download	the	latest	version
of	 CCS	 through	 the	 website	 http://processors.wiki.ti.com/index.php/Download_CCS.
There	are	 two	options	 in	 the	download	website.	You	can	select	either	 the	website	or	 the
off-line	installer.	In	the	first	option,	you	can	install	CCS	with	required	configurations	from
the	Internet	directly.	If	you	select	the	second	option,	all	the	installation	documents	will	be
downloaded	to	your	computer.	Then,	you	can	install	CCS	from	these.	The	following	steps
are	the	same	for	both	installing	options.

http://www.ti.com
http://processors.wiki.ti.com/index.php/Download_CCS


1			Click	on	the	executable	file	and	start	the	installation.

2			Accept	the	license	agrement	then	click	Next	in	the	first	window.

3			A	window	asking	for	the	installation	directory	will	appear.	Use	the	default
location	or	create	a	new	folder.

4			In	the	Setup	Type	window,	select	Custom	to	arrange	the	setup	configuration
(instead	of	installing	the	complete	set).

5			In	the	Processor	Support	window,	select	the	only	MSP430	Low	Power	MCUs.

6			In	the	Select	Components	window,	click	Next	without	changes.

7			In	the	Select	Emulators	window,	un-select	MSP430	Parallel	Port	FET.

8			The	CCS	Installation	Options	window	will	appear.	It	will	provide	a	list	of
documents	that	will	be	installed.	Click	Next	and	start	the	installation.

5.1.2			Hardware	Setup

The	 MSP430	 LaunchPad	 comes	 with	 the	 MSP430G2553	 microcontroller	 on	 it.	 This
microcontroller	is	programmed	with	a	demo	software	which	toggles	the	onboard	red	and
green	LEDs	in	a	sequence.	When	the	MSP430	LaunchPad	is	connected	to	the	PC	through
the	 USB,	 the	 driver	 installation	 starts	 first.	 After	 installation,	 the	 demo	 starts
automatically.	This	indicates	that	the	hardware	is	working	properly.

5.1.3			Starting	CCS,	Opening	a	Workspace,	and	Choosing	the	License

When	CCS	starts	for	the	first	time,	a	window	appears	so	that	the	location	of	a	workspace
folder	can	be	configured.	Either	use	the	default	workspace	folder	or	change	the	location	by
clicking	the	Browse	button.	This	workspace	folder	keeps	the	project	and	settings	files	after
CCS	 is	closed.	Therefore,	 the	same	projects	and	settings	will	be	available	when	CCS	 is
opened	 again.	The	workspace	 is	 saved	 automatically	when	CCS	 is	 closed.	The	Licence
Setup	Wizard	window	 appears	 as	 the	workspace	 settings	 are	 done.	 Select	 CODE	 SIZE
LIMITED	 (MSP430).	 Then	 click	 Finish.	 Now,	 CCS	 is	 ready	 to	 run.	 A	window	 should
appear	as	given	in	Fig.	5.1.



	

Figure	5.1			The	CCS	window.

	

5.1.4			CCS	Perspectives

There	are	two	perspectives	for	CCS.	These	are	the	CCS	Edit	and	CCS	Debug.	CCS	opens
in	the	Edit	perspective	every	time	it	starts.	This	perspective	is	used	for	creating	projects,
building	them,	and	observing	errors	in	them.	The	CCS	Edit	perspective	is	switched	to	the
CCS	 Debug	 perspective	 automatically	 when	 the	 created	 project	 is	 debugged.	 This
perspective	is	used	for	debugging	projects.	It	can	also	be	used	for	observing	the	hardware
(such	 as	 registers	 and	memory)	 or	 software	 (such	 as	 variables	 and	 disassembly)	 during
code	execution.	The	user	can	switch	between	these	two	perspectives	using	the	small	icons
in	the	upper	right	corner	of	the	main	CCS	window.

5.2			Creating	a	C	Project
A	C	project	contains	source,	header,	and	include	files.	CCS	generates	an	executable	output
file	 (with	 extension	 .out)	 from	 these.	 This	 file	 is	 used	 by	 the	MSP430.	 This	 section	 is
about	creating	a	C	project	starting	from	the	beginning.

5.2.1			A	New	C	Project

To	create	a	new	project	in	CCS,	click	File	→	New	→	CCS	Project.	A	new	window	will
pop	up	as	in	Fig.	5.2.	In	this	window,	write	a	project	name	and	select	Variant	as	shown	in
Fig.	 5.2	 for	 the	 MSP430G2553	 microcontroller.	 Finally,	 select	 Empty	 Project	 (with
main.c)	and	click	Finish.	After	these	steps,	the	project	will	be	created	with	the	source	file
named	main.c.	The	generated	project	should	be	seen	in	the	Project	Explorer	window.



	

Figure	5.2			Creating	a	C	project.

	

When	 the	 project	 is	 created,	 an	 information	 window	 about	 The	 Ultra-Low-Power
Advisor	(ULP	Advisor)	appears.	Low	power	consumption	is	crucial	for	MSP430	devices.
The	ULP	Advisor	gives	valuable	information	on	how	to	use	this	property	most	effectively.
The	information	can	be	seen	from	Infos	in	the	Problems	window.

When	the	project	 is	created,	 the	compiler	optimization	runs	automatically.	This	can
remove	unused	variables	and	statements.	Therefore,	 it	can	affect	 the	debugging	process.
There	are	two	options	to	prevent	this.	If	compiler	optimization	is	necessary,	variables	must
be	declared	as	volatile.	 If	compiler	optimization	 is	unnecessary,	 the	optimization	can	be
disabled	by	the	following	steps.	In	the	Project	Explorer	window,	right-click	on	the	Project
and	 select	 Properties.	 In	 the	 pop-up	 window,	 select	 Optimization	 and	 set	 Optimization
Level	to	off	as	shown	in	Fig.	5.3.



	

Figure	5.3			Disabling	optimization.

	

After	writing	the	C	code	in	main.c,	save	it	by	clicking	the	Save	button	in	the	upper
left	 corner	of	 the	CCS	menu.	 In	 this	 section,	we	will	use	 the	code	given	 in	Listing	 5.1.
Here,	the	included	header	file	is	msp430.h.	Through	it,	the	compiler	automatically	selects
the	header	file	for	the	MSP430	version.	We	provide	the	header	file	for	the	MSP430G2553
in	the	Appendix.

Listing	5.1			The	first	C	program	for	MSP430.

	



5.2.2			Creating	a	Header	File

For	some	projects,	a	header	file	may	be	needed.	To	add	it	to	the	project,	right-click	on	the
project	 in	 the	Project	Explorer	window	and	select	New	→	Header	File;	or	click	File	→
New	→	Header	File.	Give	the	generated	header	file	a	name	like	header.h	and	click	Finish.
An	empty	window	will	open	for	the	header	file.	As	this	header	file	is	added	to	the	project,
do	not	forget	to	add	a	line	#include	“header.h”	in	the	main	C	code.

5.2.3			Building	and	Loading	the	Project

There	are	two	buttons	on	the	horizontal	toolbar	of	CCS	for	code	generation.	The	first	one
is	 the	Build	button	with	a	hammer	shape.	The	second	one	 is	 the	Debug	button	with	 the
green	bug	shape.

The	build	operation	 is	basically	used	 for	 error	detection.	When	 the	Build	button	 is
clicked,	the	main	source	code	is	linked	with	all	other	source	and	header	files.	The	running
steps	can	be	observed	in	the	Console	window.	The	warnings	(in	yellow),	errors	(in	red),
and	 infos	 (in	blue)	can	be	observed	 in	 the	Problems	window.	As	 the	code	 is	built,	 code
sections	 with	 warnings	 and	 errors	 can	 be	 reached	 by	 double-clicking	 on	 them	 in	 the
Problems	window.	Do	not	forget	that	sometimes	one	mistake	can	generate	multiple	errors.
Double-clicking	on	the	error	may	direct	the	user	to	an	error-free	code	line.	For	such	cases,
examine	the	code	carefully	to	find	the	mistake.

The	debug	operation	includes	the	build.	When	the	Debug	button	is	clicked,	first	the
build	 operation	 is	 performed.	 Then,	 CCS	 loads	 the	 code	 to	 the	 target	 device	 (here
MSP430G2553).	To	perform	this	operation,	the	MSP430	LaunchPad	should	be	connected
to	 the	 host	 computer.	 After	 the	 debug	 operation	 is	 complete,	 the	 CCS	 Edit	 preference
switches	 to	 the	CCS	Debug	preference.	The	code	 is	 run	until	 the	beginning	of	 the	main
function.

5.3			Creating	an	Assembly	Project
To	create	a	new	assembly	project,	click	on	the	File	→	New	→	CCS	Project	on	the	main
CCS	menu.	In	the	pop-up	New	CCS	Project	window,	select	Empty	Assembly-only	Project
and	click	Finish.	After	these	steps,	the	project	will	be	created	with	the	source	file	named
main.asm.	The	generated	project	should	be	seen	in	the	Project	Explorer	window.	We	will
use	the	sample	code	given	in	Listing	5.2.	We	will	see	the	instructions	and	directives	used
here	in	Chap.	7.

Listing	5.2			The	first	assembly	program	for	MSP430.



	

5.4			Program	Execution
As	 the	 main	 code	 (either	 written	 in	 C	 or	 assembly)	 is	 debugged,	 the	 next	 step	 is	 its
execution.	 The	 buttons	 for	 the	 program	 execution	 are	 placed	 in	 the	 Debug	 window	 as
shown	in	Fig.	5.4.	The	name	of	each	button	can	be	observed	by	moving	the	cursor	over	it.
These	buttons	and	their	functions	are	explained	briefly	in	the	list	below.

	

Figure	5.4			Program	execution	menu.

	

•		Resume:	Resumes	the	execution	of	code	from	last	location	of	the	program	counter.



When	it	is	pressed,	execution	continues	until	a	breakpoint	or	a	suspend	button	press.

•		Suspend:	Halts	the	execution	of	the	code.	All	windows	used	to	observe	software	and
hardware	parts	are	updated	with	recent	data.

•		Step	Into:	Executes	the	next	line	of	the	code.	If	this	line	calls	a	subroutine,	the	compiler
just	executes	the	next	line	in	the	subroutine	then	stops.

•		Step	Over:	Executes	the	next	line	of	the	code.	If	this	line	calls	a	subroutine,	the
compiler	executes	the	whole	subroutine	then	stops.

•		Assembly	Step	Into:	Executes	the	next	assembly	instruction.	If	this	instruction	calls	a
subroutine,	the	compiler	just	executes	the	next	instruction	in	the	subroutine	then	stops.

•		Assembly	Step	Over:	Executes	the	next	assembly	instruction.	If	this	instruction	calls	a
subroutine,	the	compiler	executes	the	whole	subroutine	then	stops.

•		Step	Return:	Completes	the	execution	of	the	subroutine.

•		Reset	CPU:	Resets	the	target	microcontroller.	It	works	similar	to	the	reset	pin.	When	it
is	clicked,	registers	of	the	device	return	to	their	default	states.

•		Restart:	Returns	the	program	counter	to	the	beginning	of	the	loaded	program.

5.4.1			Inserting	a	Breakpoint

To	stop	the	execution	of	the	program	in	a	specific	code	line,	a	breakpoint	should	be	added.
Right-click	 on	 the	 code	 line	 to	 place	 the	 breakpoint	 and	 select	 Breakpoint	 (Code
Composer	Studio).	There	are	three	types	of	breakpoint	options	under	this	item:	Breakpoint
(Software	Breakpoint),	Hardware	Breakpoint,	and	Watchpoint	as	shown	in	Fig.	5.5.

	

Figure	5.5			Adding	a	breakpoint.

	

A	software	breakpoint	is	an	instruction	which	is	placed	at	the	breakpoint	address	to
halt	 the	code	execution.	A	hardware	breakpoint	is	an	address	value	which	halts	the	code
execution	 when	 the	 PC	matches	 this	 value.	 A	 watchpoint	 is	 actually	 a	 special	 kind	 of
hardware	breakpoint.	 It	 is	 based	on	 a	 specified	data	value.	The	program	halts	when	 the
code	generates	it	during	execution.

There	 are	 two	 ways	 to	 alter	 the	 inserted	 breakpoint.	 First,	 the	 breakpoint	 can	 be



deleted	 by	 toggling	 it.	 To	 do	 so,	 right-click	 on	 the	 breakpoint.	 Then,	 select	 the	 Toggle
Breakpoint	 from	 the	pop-up	window.	Second,	 the	breakpoint	can	be	disabled.	To	do	so,
select	the	Disable	Breakpoint	from	the	same	pop-up	window.

5.4.2			Adding	a	Watch	Expression

In	CCS,	the	Expressions	window	(as	shown	in	Fig.	5.6)	can	be	used	 to	observe	selected
variables.	In	order	to	add	a	variable	to	it,	select	the	variable	to	be	observed	and	right-click
on	it.	Then,	click	Add	Watch	Expression.	Also	the	Add	new	expression	can	be	clicked	in
the	Expressions	window	and	the	name	of	 the	variable	can	be	entered	in	the	box.	Do	not
forget	to	halt	the	execution	process	to	observe	the	changes	in	the	selected	variables.

	

Figure	5.6			Adding	a	Watch	Expression.

	

Global	variables	can	also	be	observed	in	the	Expressions	window	either	by	using	the
Add	new	expression	button	or	by	right-clicking	on	the	Expressions	window	then	selecting
Add	Global	Variables.	However,	defining	a	global	variable	alone	is	not	enough	to	arrange
a	memory	location	for	the	compiler.	The	global	variable	must	be	used	in	the	main	code.

Local	variables	can	also	be	observed	in	the	Variables	window	as	in	Fig.	5.7.	They	are
already	listed.	Both	Expressions	and	Variables	windows	are	opened	automatically	after	the
debugging	process.	In	case	of	their	absence,	they	can	also	be	opened	from	the	View	menu.

	

Figure	5.7			Observing	local	variables	in	the	Variables	window.

	

5.5			Observing	Hardware	under	CCS



CCS	 is	 not	 a	 simple	 C	 or	 assembly	 compiler.	 Through	 it,	 we	 can	 also	 observe	 the
hardware	status	of	the	microcontroller.	In	this	section,	we	explore	how	to	observe	the	key
hardware	elements	of	the	MSP430.

5.5.1			Registers

As	 we	 mentioned	 in	 Chap.	 4,	 MSP430	 registers	 include	 the	 program	 counter,	 stack
pointer,	 status	 register,	 and	 general-purpose	 registers.	 All	 other	 registers	 to	 control
peripherals	 and	 special	 functions	 are	 listed	 separately.	 To	 observe	 the	 status	 of	 these
registers,	the	Registers	window	(under	the	View	menu)	can	be	used.	This	is	shown	in	Fig.
5.8.

	

Figure	5.8			Observing	registers.

	

5.5.2			Memory

To	 observe	 the	 memory	 contents,	 click	 View	→	 Memory	 Browser.	 Write	 the	 starting
address	of	the	memory	location	to	be	observed	in	the	empty	box	as	shown	in	Fig.	5.9.	The
machine	 language	 equivalent	 of	 the	 code	 can	 also	 be	 observed	 by	 using	 the	 memory
browser	window.



	

Figure	5.9			Observing	memory.

	

5.5.3			Disassembly

CCS	also	allows	observing	the	assembly	code	corresponding	to	the	compiled	C	code.	To
do	so,	 the	disassembly	window	should	be	opened	by	clicking	 the	View	→	Disassembly.
The	Disassembly	window	will	open	as	shown	in	Fig.	5.10.



	

Figure	5.10			Disassembly	window.

	

There	are	four	buttons	in	the	vertical	column	of	the	Disassembly	window.	These	are:
Link	with	Active	Debug	Context,	Show	Source,	Assembly	Step	Into,	and	Assembly	Step
Over.	Assembly	Step	Into	and	Assembly	Step	Over	buttons	are	already	explained	in	Sec.
5.4.	When	the	Link	with	Active	Debug	Context	button	is	pressed,	a	blue	arrow	will	appear
at	 the	 left	 horizontal	 column	 of	 the	 Disassembly	 window	 to	 follow	 assembly	 code
execution.	 The	 Show	 Source	 button	 may	 be	 used	 to	 link	 every	 C	 code	 line	 with	 the
corresponding	assembly	line.

5.6			Terminating	the	Debug	Session	and	Closing	the	Project
Clicking	 Terminate	 in	 the	 Debug	 window	 will	 terminate	 the	 active	 debug	 session	 and
switch	the	CCS	Debug	preference	to	the	Edit	preference.	Right-click	on	the	project	in	the
Project	Explorer	window	and	select	Close	Project	to	close	the	project.	This	project	can	be
reopened	by	selecting	Open	Project.

5.7			Graphical	Peripheral	Configuration	Tool	(Grace)
Grace	 is	 a	 user-friendly	 graphical	 user	 interface	 (GUI)	 tool	 to	 enable	 and	 configure
peripherals	visually.	In	this	book,	we	use	Grace	version	v2.0.	In	order	to	create	a	Grace-
based	project,	click	File	→	New	→	CCS	Project.	In	the	pop-up	New	CCS	Project	window,
select	Empty	Grace	(MSP430)	Project.	All	other	steps	are	the	same	as	those	for	creating	a



C	project.

When	the	project	is	created,	it	is	opened	in	the	main.cfg	configuration	window	with	a
Welcome	 preference.	 When	 the	 Device	 Overview	 button	 at	 the	 top	 of	 this	 window	 is
clicked,	 the	peripheral	 interface	opens	as	 in	Fig.	5.11.	 In	 this	 figure,	 there	are	white	and
blue	 boxes.	White	 boxes	 represent	 inaccessible	 blocks.	 Blue	 boxes	 represent	 accessible
peripheral	blocks.	Some	blue	boxes	have	green	check	marks	on	them.	This	indicates	that
these	blocks	are	enabled	and	configured	without	error.

	

Figure	5.11			Grace,	the	Device	Overview	window.

	

All	peripheral	blocks	work	synchronously	under	Grace.	Therefore,	a	change	in	one	of
them	 affects	 the	 others.	 If	 a	 change	 in	 one	 block	 is	 not	 feasible	 (due	 to	 a	 conflict	with
another	 block),	 then	Grace	 gives	 a	warning	with	 a	 red	 cross	mark.	When	 the	 cursor	 is
moved	 over	 the	 red	 cross	mark,	 a	 yellow	 line	 pops	 up	 and	 explains	 the	 reason	 for	 the
conflict.	An	example	of	such	a	case	is	given	in	Fig.	5.12.	In	this	figure,	a	conflict	exists	on
P1.0.	Therefore,	Grace	put	a	red	cross	on	it.



	

Figure	5.12			An	example	of	a	conflict	on	P1.0.

	

The	supply	voltage	for	the	microcontroller	can	be	changed	under	Grace.	To	do	so,	the
user	should	select	 the	desired	voltage	value	from	the	drop-down	menu	on	the	left	of	 the
DVCC.	In	this	menu,	voltage	values	ranging	from	1.8	V	to	3.6	V	can	be	selected	based	on
the	application.	Generally,	3.6	V	is	picked	to	prevent	any	undesired	problems.

In	the	Device	Overview	View,	clicking	a	peripheral	directs	the	user	to	the	peripheral’s
window.	 In	 this	 window,	 the	 “enable	 the	 name	 of	 the	 peripheral	 in	 my	 configuration”
check	box	 should	be	checked.	Otherwise,	Grace	assumes	 that	 the	peripheral	will	not	be
used.	After	this	operation,	four	modes	will	show	up	on	the	top	of	the	window:	overview,
basic	user,	power	user,	and	register	controls.	The	overview	mode	gives	brief	information
and	basic	examples	about	the	usage	of	Grace	for	this	peripheral.	The	basic	user	mode	is
very	useful	 for	beginners.	Most	of	 the	configurations	can	be	done	 in	a	simple	way	with
this	mode.	The	power	user	mode	 contains	 detailed	 configuration	 settings.	These	 are	 for
advanced	users.	Finally,	the	register	controls	mode	provides	direct	access	to	the	peripheral
registers.	 In	 the	 following	 chapters,	 we	 will	 deal	 with	 each	 peripheral	 (and	 its	 Grace
modes)	in	detail.

As	we	mentioned	previously,	Grace	is	just	a	GUI.	When	the	Grace	project	is	created,
a	main.c	 file	 is	 also	 formed	 under	 the	 project.	When	 all	 the	 peripherals	 are	 configured
under	Grace,	the	user	can	run	debug.	CCS	wraps	up	all	the	configuration	settings	under	a
function	 Grace_init()	 and	 adds	 it	 to	 main.c.	 The	 header	 file	 Grace.h	 containing	 the
Grace-related	 definitions	 is	 also	 included	 in	main.c.	CCS	 also	 indicates	where	 the	 code
should	 be	 added	 under	 the	main.c.	 The	 user	 can	 add	 his	 or	 her	 codes	 in	 this	 area.	 An
example	of	such	a	main	file	generated	by	Grace	is	given	in	Listing	5.3.

Listing	5.3			The	main.c	file	generated	by	Grace.



	

	

	

5.8			The	Terminal	Window
CCS	 has	 an	 internal	 terminal	 program	 to	 communicate	 with	 the	 MSP430	 Launch-Pad
through	 the	 universal	 asynchronous	 receiver/transmitter	 (UART)	 communication	 mode.
We	will	use	this	property	in	Chap.	12.	The	terminal	window	can	be	accessed	by	clicking
on	the	View	→	Other→Terminal.	The	terminal	window	will	open	as	shown	in	Fig.	5.13.

	

Figure	5.13			The	terminal	window.

	

To	establish	a	 serial	communication	 link,	 the	configuration	settings	 should	be	done



first.	 To	 do	 so,	 the	 Terminal	 Settings	window	will	 be	 used	 as	 shown	 in	 Fig.	 5.14.	 The
communication	 type	 should	 be	 selected	 as	 Serial	 first.	 Then	 the	 desired	 baud	 rate,	 data
bits,	stop	bits,	and	parity	values	can	be	set.	The	flow	control	and	timeout	settings	can	be
left	unchanged.

	

Figure	5.14			Terminal	settings.

	

The	port	 number	used	by	 the	MSP430	LaunchPad	can	be	 found	under	Windows	7
using	 the	 following	 steps.	 First,	 right-click	 on	 the	 computer	 icon.	 Select	 the	 properties
option	 from	the	 list.	This	will	open	up	a	new	window.	 In	 this	window,	open	 the	Device
Manager.	The	Ports(COM&LPT)	in	the	list	gives	the	port	number	MSP430	LaunchPad	is
using.

After	 checking	 these	 settings,	 the	 link	 between	 the	 terminal	 and	 the	 MSP430
LaunchPad	can	be	established	by	clicking	the	green	Connect	mark	in	the	terminal	window.
The	code	on	 the	MSP430	must	be	debugged	and	 run	 to	use	 the	 terminal	window.	Let’s
assume	that	the	code	can	send	and	receive	data.	Data	sent	from	the	MSP430	LaunchPad
can	be	observed	in	the	terminal	window.	It	can	be	cleared	anytime	by	right-clicking	and
selecting	 the	 Clear	 Terminal	 option.	 Data	 can	 also	 be	 sent	 from	 the	 terminal	 in	 two
different	ways.	 In	 the	 first	 option,	 the	 user	 can	 click	 anywhere	 in	 the	 terminal	window.



Then,	any	character	pressed	on	the	keyboard	can	be	sent	as	soon	as	the	key	is	pressed.	In
the	second	option,	the	toggle	command	input	field	can	be	used.	To	do	so,	the	user	should
right-click	 on	 the	 terminal	 window	 and	 select	 the	 Toggle	 Command	 Input	 Field.	 A
subwindow	appears	below.	The	text	to	be	sent	can	be	entered	here.	It	will	be	sent	as	the
Enter	key	is	pressed.	The	link	can	be	terminated	by	clicking	on	the	red	Disconnect	mark.

5.9			Summary
Knowing	 its	 hardware	 is	 not	 enough	 to	 use	 a	microcontroller.	 The	 coding	 environment
with	all	its	properties	should	also	be	mastered.	In	this	chapter,	we	introduced	the	CCS	as
the	coding	environment	of	 the	MSP430	microcontroller.	We	started	with	installing	CCS.
Then,	 step	 by	 step	we	 explored	 its	 usage	 in	 debugging	 and	 executing	 C	 and	 assembly
programs.	 We	 also	 introduced	 Grace	 (GUI	 environment	 of	 CCS)	 in	 this	 chapter.	 The
information	 provided	 in	 this	 chapter	 will	 be	 extensively	 used	 in	 the	 rest	 of	 this	 book.
Therefore,	we	strongly	suggest	you	master	it.

5.10			Problems
5.1					Download	the	latest	version	of	CCS	to	your	computer	and	install	it.

5.2					Create	an	empty	C	project.

a.				Add	the	code	block	given	in	Listing	5.1.

b.				Debug	the	code	and	run	it.

c.				Observe	the	local	and	global	variables.

d.				Add	breakpoints	and	observe	their	effects.

e.				Obtain	the	assembly	code	corresponding	to	the	C	code.

5.3					Create	an	empty	assembly	project.

a.				Add	the	code	block	given	in	Listing	5.2.

b.				Debug	the	code	and	run	it.

c.				Observe	the	register	values	before	and	after	the	program	is	run.

d.				Add	breakpoints	and	observe	their	effects.
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In	 this	 chapter,	 we	 consider	 the	 C	 programming	 issues	 for	 MSP430.	 Therefore,	 we
strongly	 suggest	 you	 refresh	 your	 knowledge	 of	 C	 concepts	 [1].	 Here,	 we	 will	 briefly
review	the	basic	C	concepts	from	the	microcontroller	perspective.	In	other	words,	we	will
see	how	Code	Composer	Studio	(CCS)	acts	while	compiling	C	code.	Therefore,	we	will
first	deal	with	memory	management	issues.	Then	we	will	consider	C	data	types.	Next	we
will	briefly	cover	 the	arithmetic	and	 logic	operations.	Then	we	will	consider	 the	control
structures.	 We	 will	 also	 focus	 on	 arrays	 and	 pointers.	 Finally,	 we	 will	 consider
miscellaneous	issues	that	we	will	see	in	later	chapters.

6.1			Memory	Management
As	we	saw	in	Table	4.2,	the	memory	locations	for	both	code	and	the	data	are	well	defined
for	 the	MSP430	microcontroller.	 In	 this	chapter,	we	will	consider	 these	 issues	on	actual
examples.	Since	we	are	using	CCS	as	the	compiler,	we	will	see	how	it	manages	memory
for	both	code	and	data.

6.1.1			The	Code

After	compiling	the	C	code,	CCS	places	the	main	code	block	in	the	flash	memory	starting
from	 the	 memory	 address	 C000h	 up	 to	 FFBFh.	 Therefore,	 the	 C	 code	 written	 for	 the
MSP430G2553	 cannot	 be	 larger	 than	 16,320	 bytes.	 Let’s	 consider	 the	 sample	 C	 code
given	 in	 Listing	 6.1.	 After	 following	 the	 steps	 given	 in	 Chap.	 5,	 we	 can	 generate	 a	 C
project	under	CCS	from	this	code	block.

Listing	6.1			The	sample	C	program.



	

	

The	user	can	observe	how	the	C	code	given	 in	Listing	6.1	 is	placed	 in	memory	by
using	 the	 Disassembly	 window.	 We	 provide	 the	 Disassembly	 window	 from	 C000h	 to
C02Ch	and	C0E8h	to	C106h	in	Fig.	6.1	for	this	sample	code.	As	can	be	seen	in	this	figure,
CCS	places	the	initialization	data	for	the	code	starting	from	memory	location	C000h.	The
actual	code	is	placed	starting	from	memory	location	C0E8h.



	

Figure	 6.1	 	 	 Memory	 contents	 (from	 C000h	 to	 C106h)	 observed	 in	 the	 Disassembly
window.

	



	

Figure	 6.2	 	 	 Memory	 contents	 (from	 C05Eh	 to	 C0B2h)	 observed	 by	 the	 Disassembly
window.

	

We	 can	 arrange	 the	 sample	 code	 in	 Listing	 6.1	 such	 that	 the	 addition	 operation	 is
done	 in	 a	 function.	 We	 provide	 the	 modified	 C	 code	 in	 Listing	 6.2.	 We	 provide	 the
memory	map	from	C05Eh	to	C084h	and	C094h	to	C0B2h	for	this	code	block.	As	can	be
seen	in	this	example,	the	function	is	placed	in	memory	after	the	main	code.



Listing	6.2			The	sample	C	program,	with	a	function.

	

	

6.1.2			Local	and	Global	Variables

We	can	define	a	variable	either	as	local	or	global	in	the	C	language.	As	the	name	implies,
the	global	variable	is	available	to	all	program	blocks.	However,	the	local	variable	is	only
available	 to	 the	 function	 it	 is	 defined	 in.	 CCS	 keeps	 local	 and	 global	 variables	 in	 two
different	memory	locations.	The	global	variables	are	kept	starting	from	the	lowest	possible
memory	 address	 (0200h)	 in	 the	RAM.	As	 a	 new	 global	 variable	 is	 added,	 the	memory
address	is	 incremented	and	the	new	variable	is	saved.	On	the	other	hand,	 local	variables
are	 kept	 in	 the	 stack	 (0400h).	 Based	 on	 the	 definition	 of	 the	 stack,	 local	 variables	 are
saved	 from	 top	 to	 bottom.	 Here,	 it	 is	 important	 to	 note	 that	 the	 C	 language	 takes	 the
main()	 as	 a	 function.	 Hence,	 the	 variables	 defined	 within	 the	 main	 function	 are	 also
treated	as	local.	Therefore,	a	global	variable	should	be	defined	before	the	main().

We	reconsider	the	sample	code	given	in	Listing	6.1	to	show	the	difference	between
local	and	global	variables.	Here,	the	variable	a	is	defined	as	global.	The	variables	b	and	c
are	defined	as	local.	We	show	the	Expressions	window	in	Fig.	6.3.	As	can	be	seen	in	this
figure,	the	global	variable	a	is	kept	in	0200h	(the	lowest	data	address).	The	local	variables
b	and	c	are	kept	in	03FAh	and	03FCh	(in	the	stack)	as	expected.



	

Figure	6.3			Observing	local	and	global	variables	in	the	Expressions	window.

	

6.2			C	Data	Types
A	variable	 declaration	 in	 the	C	 language	means	 a	memory	 location.	Therefore,	 the	 first
issue	in	a	declaration	is	deciding	the	size	of	the	memory	to	be	used.	The	second	issue	is
the	format	to	be	used	in	this	assigned	memory	location.	These	two	issues	are	handled	by
predefined	data	types	for	variables.	We	provide	the	C	data	types	under	CCS	in	Table	6.1.

Table	6.1			C	data	types	under	CCS.

	

As	 can	 be	 seen	 in	Table	6.1,	 there	 are	 three	main	 data	 types	 under	CCS.	The	 first
group	consists	of	characters.	They	can	be	represented	in	either	signed	or	unsigned	form.
The	number	of	bits	assigned	to	them	is	eight.	The	ASCII	characters	corresponding	to	these
numbers	are	given	in	Table	3.4.	The	second	group	includes	short,	int,	and	long	(signed	and
unsigned).	These	data	types	need	16	or	32	bits.	While	saving	the	32-bit	data	type	long,	the
little	 endian	 representation	 should	be	used,	 since	 the	MSP430	has	a	16-bit	word	 length.
The	 data	 types	 in	 this	 group	 cannot	 represent	 numbers	 with	 fractional	 parts.	 The	 third
group	 consists	 of	 float	 and	 double.	 These	 are	 the	 only	 possible	 representations	 for
numbers	with	fractional	parts.	For	these,	the	floating-point	representation	with	the	single
format	(given	in	Table	3.3)	is	used.	Here	also	the	little	endian	representation	is	used.



We	provide	examples	for	the	mentioned	C	data	types	in	Listing	6.3.	Here,	we	define
five	global	variables	with	different	types	having	positive	or	negative	values.	To	note	here,
we	redefine	the	character	a	within	the	program	for	the	compiler	to	run	properly.	Besides
this	there	is	no	other	purpose.

Listing	6.3			The	C	program	for	data	types.

	

	

As	we	run	the	C	code	in	Listing	6.3,	we	get	the	memory	map	given	in	Fig.	6.4.	This
memory	map	provides	us	with	valuable	information.	First,	the	character	@	(in	variable	a)
is	saved	in	memory	by	its	ASCII	code	0040h	(as	given	in	Table	3.4).	The	negative	short
variable	b	(with	value	−1)	is	kept	as	FFFFh,	which	is	the	two’s	complement	representation
of	−1.	The	integer	variable	c	with	value	2	is	saved	as	is.	All	the	previous	variables	were
occupying	 2	 bytes	 (one	 word).	 Hence,	 the	 endian	 representation	 is	 not	 used	 for	 them.
However,	the	variable	d	is	defined	in	long	type.	This	requires	4	bytes	(two	words).	As	can
be	seen	in	the	memory	map,	the	variable	d	with	value	3	is	kept	in	two	parts.	The	first	part
0003h	is	kept	 in	memory	location	0206h	and	the	second	part	0000h	in	memory	location
0208h.	The	little	endian	representation	can	be	clearly	seen	here.	This	is	also	the	case	for
the	 float	variable	e	 (with	value	−12.3).	The	hexadecimal	 representation	 (in	 terms	of	 the
single	floating	format)	for	this	number	is	4144CCCDh.	This	is	kept	in	4	bytes	in	the	little
endian	format	such	that	CCCDh	is	kept	in	memory	location	020Ah	and	4144h	is	kept	in
memory	 location	020Ch.	Finally,	 the	 float	variable	f	 is	 specifically	 set	 as	−255.25.	The
hexadecimal	representation	obtained	here	justifies	the	result	in	Sec.	3.3.2.



	

Figure	6.4			The	memory	map	for	the	program	showing	C	data	types.

	

6.3			Arithmetic	and	Logic	Operations
We	have	 addition,	multiplication,	 subtraction,	 division,	mode,	 and	 remainder	 arithmetic
operations	in	C	language.	These	may	seem	straightforward.	However,	in	Chap.	7,	we	will
observe	 that	 besides	 addition	 and	 subtraction,	 none	 of	 the	 other	 operations	 can	 be
performed	 in	 the	MSP430	 assembly	 language.	Therefore,	 the	C	 language	 simplifies	 life
for	us.

It	 is	 important	 to	mention	 that	 in	 the	C	 language,	 the	overflow	cannot	be	observed
directly.	Therefore,	 the	 programmer	 should	 take	 the	 overflow	 into	 account.	 In	 a	 similar
manner,	 the	 result	 of	 an	 arithmetic	 operation	 is	 converted	 to	 the	 assigned	variable	 type.
The	other	important	point	is	that	we	can	define	hexadecimal	numbers	by	a	prefix	0x	in	the
C	language.	In	Listing	6.4,	we	provide	such	examples.

Listing	6.4			Arithmetic	operations.



	

	

After	 the	 C	 code	 in	 Listing	 6.4	 is	 run,	 the	 variables	 can	 be	 observed	 in	 the
Expressions	window	as	given	 in	Fig.	6.5.	As	can	be	seen	 in	 this	 figure,	adding	1	 to	 the
integer	 variable	 a	 (which	 was	 initially	 32767)	 caused	 an	 overflow.	 Therefore,	 we	 see
−32768	for	a	instead	of	32768	in	the	Expressions	window.	The	overflow	bit	in	the	status
register	 has	 changed.	 However,	 we	 should	 use	 implicit	 functions	 for	 the	 MSP430	 to
observe	it.	We	will	see	this	in	Sec.	6.6.	For	the	integer	variable	b,	we	assigned	a	float	by	a
division	operation.	Here,	only	the	integer	part	is	saved	as	can	be	seen	in	the	Expressions
window.	The	variables	c	and	d	 keep	hexadecimal	 values.	The	 first	 one	 is	 defined	 as	 an
unsigned	integer.	Hence	it	can	keep	2	bytes	(one	word)	of	data.	The	second	one	is	defined
as	an	unsigned	char.	It	can	keep	1	byte	of	data.	To	observe	these	values	in	the	Expressions
window,	we	should	adjust	the	format	of	the	number	by	right-clicking	on	the	variable	and
selecting	the	“number	format”	option.	The	overflow	can	also	be	observed	for	the	variables
c	and	d.	The	variables	e	and	f	indicate	what	happens	when	a	division	by	zero	occurs.	The
result	is	zero	for	the	integer	variable	e.	Therefore,	the	programmer	cannot	detect	division
by	 zero.	 However,	 the	 result	 becomes	 1.#QNAN	 for	 the	 float	 variable.	 This	 indicates
division	 by	 zero	 under	 CCS.	 After	 a	 0/0	 division,	 the	 integer	 variable	 g	 becomes	 −1.
Again	 the	 result	 becomes	 1.#QNAN	 for	 the	 float	 variable	 h.	As	 can	 be	 seen,	 detecting
division	by	zero	or	0/0	is	easier	for	the	float	variables.



	

Figure	6.5			The	expressions	window	after	arithmetic	operations.

	

We	can	perform	bitwise	logic	operations	(and,	or,	xor,	not)	in	C.	In	performing	these,
only	byte	(or	word)	 level	operations	can	be	done.	We	provide	examples	on	 the	usage	of
logic	operations	in	Listing	6.5.

Listing	6.5			Logic	operations.

	

	

	

After	 the	 C	 code	 in	 Listing	 6.5	 is	 run,	 the	 variables	 can	 be	 observed	 in	 the
Expressions	 window	 as	 given	 in	 Fig.	 6.6.	 As	 can	 be	 seen	 in	 this	 figure,	 all	 the	 logic
operations	are	done	on	a	bit	basis.	It	is	also	possible	to	observe	a	variable	in	binary	form	in
the	Expressions	window	by	adjusting	its	number	format.	This	representation	may	help	the



programmer	to	observe	the	result	of	the	logic	operation	in	a	more	descriptive	manner.

	

Figure	6.6			The	Expressions	window	after	logic	operations.

	

6.4			Control	Structures
We	have	 the	condition	check	and	loop	operations	under	control	structures.	However,	we
will	not	explore	these	in	detail.	As	we	mentioned	previously,	the	reader	should	consult	C
books	for	them.

6.4.1			Condition	Check

There	are	two	options	if	a	condition	is	to	be	checked	within	a	program.	The	first	one	is	the
if	or	if	else	statement.	The	usage	of	these	is	straightforward.	One	of	the	two	options	is
selected	based	on	a	binary	decision.	The	second	one	is	the	switch	statement.	It	should	be
used	if	more	than	two	options	are	available.	The	condition	checks	will	be	inevitable	in	our
applications.	Either	we	will	 check	 the	 status	of	 a	 switch,	or	we	will	 observe	 the	 analog
voltage	level	in	a	pin.	We	will	perform	appropriate	actions	based	on	the	obtained	values.
We	will	need	condition	check	statements	for	these	and	similar	cases.

6.4.2			Loops

If	we	want	to	execute	a	code	block	more	than	once,	we	can	use	loop	operations.	We	have
three	options	for	loop	operations	in	the	C	language:	for,	while,	and	do	while.	They	differ
in	terms	of	their	starting	and	stopping	conditions.	We	suggest	the	reader	check	them	in	a	C
book.

We	will	use	loop	statements	in	various	applications.	However,	we	have	one	standard
usage	which	may	 seem	 odd.	We	will	 have	 an	 infinite	 loop	 line	 at	 the	 end	 of	most	 our
codes,	or	the	main	program	block	will	be	kept	in	an	infinite	loop.	This	can	be	performed
by	a	code	line	while(1)	or	for(;;).	The	main	reason	for	using	such	an	infinite	loop	is	as
follows:	For	almost	all	microcontroller	applications,	 the	code	should	 run	 indefinitely.	 In
other	words,	the	program	should	not	end	after	the	first	run.	To	perform	this,	we	will	let	the
microcontroller	stay	in	an	infinite	loop	without	exiting	the	program.

6.5			Arrays	and	Pointers
Arrays	 and	pointers	deserve	 specific	 consideration	 in	 the	C	 language.	When	an	 array	 is
defined	in	C,	it	is	treated	like	a	pointer.	Therefore,	in	this	section	we	consider	arrays	and



pointers	together.

Pointers	and	pointer	arithmetic	are	one	of	the	most	confusing	topics	in	C.	Fortunately,
in	our	case	we	can	observe	the	memory	map	of	the	MSP430	directly	under	CCS.	This	will
help	us	to	understand	the	usage	of	the	pointers	and	their	arithmetic.

Let’s	 start	 with	 the	 pointer	 definition.	 In	 Listing	 6.6,	 we	 define	 a	 global	 integer
variable	a	and	initially	assign	3	to	it.	Next,	we	define	a	global	pointer	named	a_pointer
with	integer	type.	We	provide	the	Expressions	window	(after	the	code	is	run)	in	Fig.	6.7.
As	can	be	seen,	the	variable	a	with	value	3	is	stored	in	the	memory	address	0200h.	The
address	of	the	variable	a	is	stored	in	the	pointer	a_pointer	with	the	code	line	a_pointer
=	&a;.	Therefore,	the	pointer	keeps	the	memory	address.	In	the	following	line,	we	change
the	entry	of	this	memory	address	to	*a_pointer	=	5;.	As	can	be	seen	in	the	Expressions
window,	this	changes	the	value	of	the	variable	a.

	

Figure	6.7			The	Expressions	window	for	the	pointer	example.

	

Listing	6.6			Pointer	usage	example.

	

	

	

Let’s	 consider	 an	 array	 with	 five	 integers	 and	 observe	 the	 operations	 on	 it.	 We
provide	such	a	code	in	Listing	6.7.	We	first	define	a	global	integer	array	a	with	entries	{1,
2,	3,	4,	5}.	We	provide	the	Expressions	window	(after	the	code	is	run)	in	Fig.	6.8.	As	can



be	seen,	the	a	array	is	in	fact	saved	by	its	starting	address	0200h.	We	assign	this	address	to
the	 pointer	 a_pointer	 in	 the	 code	 line	 a_pointer	 =	 a;.	 Then,	 we	 reach	 the	 fourth
element	of	the	array	and	change	it	to	zero	by	incrementing	the	pointer	value	by	3.	There
are	 two	 important	 issues	 here.	 First,	 the	 array	 can	 be	 processed	 as	 if	 it	 is	 a	 pointer	 as
mentioned	above.	Second,	increments	and	decrements	are	done	relative	to	the	pointer	type
in	pointer	arithmetic.	Therefore,	the	code	line	a_pointer	+	=3;	 incremented	the	pointer
value	by	6	(3	×	2	bytes),	since	each	integer	occupies	2	bytes.

Listing	6.7			Array	usage	example.

	

	

	

Figure	6.8			The	Expressions	window	for	the	array	and	pointer	example.

	

Finally,	we	consider	dynamic	arrays	 formed	by	pointers.	 In	Listing	6.8,	we	 form	 a
dynamic	array	using	a	pointer.	Here,	we	first	define	the	global	integer	variable	a	and	the
integer	 pointer	 a_pointer.	 We	 fill	 the	 successive	 memory	 locations	 starting	 from	 the
address	of	the	variable	a	by	using	a	for	loop.	We	provide	the	memory	map	(after	the	code
is	run)	in	Fig.	6.9.	As	can	be	seen	in	this	example,	initially	we	did	not	define	the	size	of



the	 array	 (formed	 by	 the	 pointer).	We	 can	 adjust	 the	 array	 size	 on	 the	 fly	 since	we	 are
using	pointer	arithmetic.	The	only	disadvantage	here	is	that	the	programmer	is	responsible
for	memory	management	(allowable	memory	size	and	other	memory	entries).

Listing	6.8			The	dynamic	array	using	a	pointer.

	

	



	

Figure	6.9			The	memory	map	for	the	dynamic	array	using	a	pointer.

	

6.6			Miscellaneous	Issues
In	this	section,	we	briefly	summarize	some	miscellaneous	issues	in	the	C	language	for	the
MSP430.	 The	 first	 issue	 is	 the	 define	 statement	 and	 the	 const	 declaration.	 When	 a
constant	is	defined	by	the	#	define	keyword,	CCS	converts	all	the	affected	code	lines	to
the	final	value	in	the	compiling	process.	Therefore,	no	more	calculations	are	done	during
execution.	 In	 a	 similar	manner,	 if	 a	 global	 variable	 is	 defined	 as	 constant	 by	 the	const
keyword,	the	data	it	contains	is	saved	in	the	code	memory	block.

In	 this	 and	 the	 following	 chapters,	 we	 may	 need	 to	 reach	 the	 lowest	 hardware
components	such	as	registers.	In	the	C	language	this	is	not	directly	possible.	However,	TI
provides	 a	 set	 of	 intrinsic	 functions	 for	 this	 purpose	 in	 the	 header	 files	 in	 430.h	 and
msp430g2553.h.	We	 provide	 the	 intrinsic	 functions	 used	 for	 the	MSP430G2553	 in	 the
Appendix.

We	provide	the	sample	code	in	Listing	6.9	to	give	examples	of	the	topics	considered
in	 this	section.	We	provide	 the	Expressions	window	in	Fig.	6.10(a).	To	observe	how	the
define	 statements	 are	 handled	 during	 the	 compiling	 process,	 we	 provide	 the	 first
Disassembly	window	in	Fig.	6.11(a).	As	can	be	seen	in	this	figure,	for	the	C	code	lines	a
=	2*CONST	and	b	=	4*CONST	 the	assembly	codes	are	given	directly.	 In	other	words,	 the
values	2*CONST	and	4*CONST	are	calculated	during	the	compiling	process.	The	end	result	is
directly	assigned.	We	provide	the	second	Disassembly	window	in	Fig.	6.11(b)	to	show	that
the	global	const	int	variable	c	is	in	fact	saved	in	the	code	memory.	Finally,	in	Fig.	6.10(b)
we	 provide	 the	 bits	 of	 the	 status	 register.	 This	 is	 to	 show	 that	 the	 intrinsic	 function
_get_SR_register()	actually	assigned	the	bit	values	of	 the	status	register	 to	 the	 integer
variable	SR_bits.

Listing	6.9			The	sample	code	for	miscellaneous	issues.



	

	

	

Figure	6.10			The	Expressions	and	Registers	windows	for	the	miscellaneous	C	concepts.

	



	

Figure	6.11			The	Disassembly	windows	for	the	miscellaneous	C	concepts.

	

The	 header	 file	 math.h	 can	 be	 used	 for	 advanced	 mathematical	 operations	 in	 the
MSP430	in	the	C	language.	In	Listing	6.10,	we	use	the	sin()	function,	defined	under	this
header	file,	to	fill	the	sine_arr	array	with	one	period	of	the	sine	wave.	The	Expressions
window	can	be	used	to	see	the	sine_arr	array	entries	after	the	program	is	run.

Listing	6.10			The	C	code	for	the	usage	of	the	math.h	header	file.



	

	

In	Chap.	9,	we	will	use	the	pragma	keyword	extensively.	This	will	force	the	compiler
to	include	the	following	code	block	in	the	compiling	process.	We	will	see	why	this	option
is	crucial	in	Chap.	9.

6.7			Summary
The	MSP430	can	be	programmed	in	both	assembly	and	C	languages.	In	this	chapter,	we
considered	 the	 latter	 approach.	 Although	 we	 focused	 on	 the	 C	 programming	 of	 the
MSP430,	we	assumed	that	the	user	has	a	basic	knowledge	of	C.	Here	we	extend	this	basic
knowledge	on	the	MSP430.	Therefore,	we	first	explored	the	memory	management	issues
and	C	data	types.	Since	CCS	allows	us	to	observe	the	memory	map	of	 the	MSP430,	we
were	able	to	see	how	local	and	global	variables	are	handled.	Then	we	looked	at	the	result
of	division	by	zero	in	the	C	language.	We	also	practiced	on	array	and	pointer	operations.
Finally,	 we	 provided	 an	 example	 of	 using	 the	 math.h	 header	 file	 for	 advanced
mathematical	operations.

6.8			Problems
6.1					Write	a	program	in	the	C	language	such	that:

a.				It	contains	a	function	which	calculates	the	third	power	of	a	given
integer.

b.				Your	program	should	calculate	the	third	powers	of	numbers	between	1
and	10	using	your	function.	The	results	should	be	saved	in	an	array.

c.				Take	the	overflow	possibility	into	account.

6.2					Write	a	C	program	to	calculate	the	first	10	elements	of	the	Fibonacci
series.	The	user	only	provides	the	first	two	entries	of	the	series.	The	rest	will	be
calculated	by	the	program.	The	result	will	be	saved	in	an	array.



6.3					What	is	the	calculated	value	y	in	Listing	6.11?

Listing	6.11			The	C	code	for	Prob.	6.3.

	

Note:	This	program	is	similar	to	the	discrete	convolution	operation	in	signal	processing.

6.4					Write	a	complete	C	program	which	calculates	the	difference	between	a
given	number	(out	=	10.3,	in	this	problem)	and	the	reference	value	(ref	=	8.2,	in
this	problem).	The	difference	will	be	assigned	to	the	variable	err.	Your	program
should	also	produce	the	control	signal	(cont,	in	this	problem)	as	+1	if	the	variable
err	is	less	than	zero	and	−1	if	it	is	greater	than	zero.

Note:	This	program	is	similar	to	a	basic	feedback	application	in	digital	control.

6.5					Find	the	first	four	values	of	the	variable	y	as	the	code	in	Listing	6.12	is
run.

Listing	6.12			The	C	code	for	Prob.	6.5.



	

	

6.6					What	will	be	the	entries	of	the	array	arr	as	the	code	in	Listing	6.13	is
run?

Listing	6.13			The	C	code	for	Prob.	6.6.

	

	

6.7					Using	a	suitable	intrinsic	function,	change	the	contents	of	the	status
register.	Observe	the	result	in	the	Registers	window.
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We	 explored	 the	 architecture	 of	 the	 MSP430	 microcontroller	 in	 Chap.	 4.	 In	 fact,	 the
architecture	also	contains	the	instruction	set	of	the	microcontroller.	This	chapter	is	about
the	instruction	set	and	the	addressing	modes	of	the	MSP430.	Related	to	these,	we	will	also
consider	the	stack	here.	We	have	devoted	a	separate	chapter	to	the	instruction	set	due	to	its
importance.

7.1			Introduction
The	MSP430	has	27	 instructions	based	on	 its	 reduced	 instruction	 set	 computing	 (RISC)
architecture.	We	will	explore	these	in	groups	as	double	operand,	single	operand,	and	jump
instructions.	As	you	know,	every	operation	to	be	performed	on	the	microcontroller	should
be	represented	in	binary	form	(ones	and	zeros).	The	instruction	set	is	no	exception	to	this.
This	is	called	machine	language.	We	will	consider	machine	language	in	detail	in	Sec.	7.2.
Since	reading	and	decoding	patterns	of	zeros	and	ones	 is	nearly	 impossible	for	 the	user,
the	assembly	language	is	used.	Here	each	instruction	is	represented	by	a	mnemonic.	In	the
following	sections,	we	will	describe	the	MSP430	instruction	set	in	terms	of	mnemonics.

7.1.1			Double-Operand	Instructions

There	are	12	double-operand	instructions.	These	can	be	separated	into	arithmetic,	logical
and	register	control,	and	data	instructions.	In	these,	the	operation	is	done	by	two	operands
called	source	(src)	and	destination	(dst).	The	result	is	written	to	the	destination.

Double-operand	instructions	may	work	on	both	word	and	byte	levels.	This	is	set	by
attaching	a	suffix	to	the	mnemonic,	either	.w	(word)	or	.b	(byte).	The	default	is	word-level
processing.	We	provide	the	mnemonic,	operation,	and	a	brief	description	of	the	operation
for	double-operand	instructions	in	Table	7.1.

There	are	several	issues	to	be	considered	in	Table	7.1.	As	can	be	seen,	there	is	neither
a	multiplication	nor	a	division	operation	for	the	MSP430.	Also,	the	subtraction	operation
is	done	in	two’s	complement	form.	In	this	table	.not,	.and,	.or,	.xor	words	stand	for	binary
logical	operations.	In	the	cmp	instruction,	the	result	is	not	written	to	the	destination.	Only



the	appropriate	status	bits	are	affected	by	 this	operation.	Although	the	mov	command	 is
almost	always	called	move,	 it	only	copies	 the	source	 to	 the	destination.	This	may	cause
confusion.	However,	this	usage	originates	from	historical	roots.

Table	7.1			Description	of	double-operand	instructions.

	

In	Table	7.2,	we	provide	the	effect	of	the	instructions	on	the	status	register	(SR)	bits.
In	this	table,	the	signs	have	the	following	meanings:	+,	the	corresponding	bit	is	affected;	-,
the	corresponding	bit	is	not	affected;	0,	the	corresponding	bit	is	reset;	1,	the	corresponding
bit	is	set.	We	will	use	the	same	notation	in	the	following	sections.

Table	7.2			The	effect	of	the	double-operand	instructions	on	the	status	register	bits.



	

7.1.2			Single-Operand	Instructions

The	MSP430	has	seven	single-operand	 instructions.	These	may	also	work	on	both	word
and	byte	levels.	This	is	set	by,	suffix	to	the	mnemonic	either	.w	(word)	or	.b	(byte).	The
default	is	adding	a	word-level	processing.	The	only	exception	to	this	dual	operation	is	sxt
and	swpb.	These	 instructions	 can	only	work	on	word	 level.	 Single-operand	 instructions
are	described	in	Table	7.3.

Table	7.3			Description	of	the	single-operand	instructions.

	



In	Table	7.3,	SP	stands	for	the	stack	pointer	and	SR	for	the	status	register.	As	in	the
previous	section,	we	show	the	effect	of	single-operand	instructions	on	the	status	register
bits	in	Table	7.4.

Table	7.4			The	effect	of	the	single-operand	instructions	on	the	status	register	bits.

	

7.1.3			Jump	Instructions

Jump	instructions	are	given	in	Table	7.5.	In	this	table,	C,	Z,	and	N	represent	status	register
bits	or	flags	(as	mentioned	in	Sec.	4.2.2).	Jump	instructions	redirect	the	program	execution
flow	based	on	these	bits.	In	other	words,	jump	instructions	alter	the	program	counter.

Table	7.5			Description	of	the	jump	instructions.

	

The	 jump	 instruction	 jmp	 $	 deserves	 special	 consideration.	 Using	 $	 as	 a	 label
indicates	that	the	program	will	jump	to	the	current	address.	Hence,	an	infinite	loop	will	be
formed.	Therefore,	the	execution	of	the	program	will	not	end.	We	will	use	this	structure	in
our	assembly	code	samples	for	this	purpose.

7.1.4			Emulated	Instructions



The	MSP430	 has	 24	 emulated	 instructions	 in	 addition	 to	 the	 27	 instructions	mentioned
above.	These	are	given	in	Table	7.6.	To	note	here,	the	emulated	instructions	only	help	the
readability	of	the	assembly	code	written.	Besides,	they	are	automatically	replaced	by	the
original	instructions	(or	their	pairs)	during	the	compiling	step.

Table	7.6			Emulated	instructions.

	

There	 are	 some	 important	 points	 on	 the	 usage	 of	 emulated	 instructions.	 In	 the	 sbc
instruction,	the	constant	FFFFh	will	be	replaced	by	FFh	for	the	byte-level	operation.	This
is	also	the	case	for	the	inv	instruction.	We	provide	the	effect	of	emulated	instructions	on



the	status	register	bits	in	Table	7.7.

Table	7.7			The	effect	of	the	emulated	instructions	on	the	status	register	bits.

	

7.2			Anatomy	of	an	Instruction
As	we	 have	mentioned	 in	 the	 previous	 sections,	 the	 information	 in	 a	microcontroller	 is
represented	 in	 binary	 form	 (as	 ones	 and	 zeros).	 Instructions	 are	 no	 exception.	 In	 this
section,	we	provide	 the	 format	 for	double,	 single,	 and	 jump	 instructions	 in	Table	7.8	 in
machine	language.

Table	7.8			Format	for	instructions.



	

In	Table	7.8,	As	 represents	 the	 addressing	 bits	 used	 to	 define	 the	 addressing	mode
used	by	the	source	operand.	S-reg	represents	the	register	used	by	the	source	operand.	Ad
represents	the	addressing	bits	used	to	define	the	addressing	mode	used	by	the	destination
operand.	 D-reg	 represents	 the	 register	 used	 by	 the	 destination	 operand.	 Finally,	 b/w
represents	word-	or	byte-level	selection	bit.

We	provide	three	instructions	from	three	groups	(double	operand,	single	operand,	and
jump)	 in	 Listing	 7.1.	 We	 obtain	 the	 Disassembly	 window	 as	 given	 in	 Fig.	 7.1	 after
executing	the	assembly	code.	As	can	be	seen	in	this	figure,	the	assembly	code	line	mov.w
R5,R4	 (double-operand	 instruction)	 has	 the	 hexadecimal	 representation	 4504h.	 The
assembly	 code	 line	 rrc	 R5	 (single-operand	 instruction)	 has	 the	 hexadecimal
representation	1005h.	Finally,	the	assembly	code	line	jmp	Mainloop	(jump	instruction)	has
the	hexadecimal	representation	3FFCh.	These	are	the	machine	language	representations	of
the	sample	code	lines	given.	For	more	detailed	information	on	this	issue,	please	see	[2].

	

Figure	7.1			Disassembly	window	for	the	anatomy	of	an	instruction	example.

	

7.3			MSP430	Addressing	Modes
The	MSP430	has	seven	addressing	modes.	These	can	be	used	by	all	instructions	given	in
the	 previous	 section.	We	 briefly	 list	 these	 addressing	modes	 in	Table	 7.9.	 In	 this	 table,
ADDR1	and	ADDR2	represent	symbols	for	the	memory	locations.	Each	addressing	mode
is	explained	below	with	examples.

Table	7.9			Addressing	modes.



	

7.3.1			Immediate	Mode

The	 immediate	mode	can	be	used	 to	 assign	numbers	directly	 to	 a	 register	or	 a	memory
location.	 In	 assigning	 numbers,	 Code	 Composer	 Studio	 (CCS)	 allows	 binary,	 octal,
decimal,	 and	 hexadecimal	 values	with	 the	 format	 given	 in	Chap.	3.	 The	 #	 sign	 is	 used
before	the	number	to	represent	a	constant	value.	We	illustrate	the	usage	of	the	immediate
mode	in	Listing	7.2.

Listing	7.1			Anatomy	of	an	instruction	example.



	

	

The	code	in	Listing	7.2	assigns	hexadecimal	numbers	0000h	to	0003h	to	successive
memory	locations	0200h	to	0206h.	It	also	assigns	the	hexadecimal	number	0A0Ah	to	the
general-purpose	register	R5.

Listing	7.2			Usage	of	the	immediate	mode.

	

	

7.3.2			Register	Mode

The	operations	are	performed	on	registers	in	the	register	mode.	Since	the	registers	are	on
the	CPU,	 they	are	easy	 to	access.	Therefore,	 their	processing	 speed	 is	 fast.	The	code	 in
Listing	7.3	copies	the	content	of	register	R5	to	register	R6.

Listing	7.3			Usage	of	the	register	mode.



	

	

7.3.3			Absolute	Mode

The	absolute	mode	is	used	to	reach	a	memory	address	directly.	In	the	MSP430,	peripherals
are	also	taken	as	addresses	as	explained	in	Sec.	4.3.1.	Therefore,	the	absolute	mode	may
be	 used	 to	 reach	 and	 alter	 them.	 The	memory	 address	 is	 indicated	 by	 the	 &	 sign.	We
illustrate	the	usage	of	the	absolute	mode	in	Listing	7.4.	The	eight	line	in	Listing	7.4	copies
the	contents	of	memory	address	0200h	to	register	R9.	The	ninth	line	copies	the	contents	of
the	memory	address	0200h	to	the	memory	address	0206h.

Listing	7.4			Usage	of	the	absolute	mode.

	



	

	

7.3.4			Symbolic	Mode

Memory	locations	and	variables	are	represented	by	words	in	symbolic	mode.	This	makes
the	 assembly	 program	 easy	 to	 understand.	 This	 also	 allows	 us	 to	 transfer	 the	 code	 to
another	MSP430	microcontroller	family	member	easily	(the	relativity	property).

We	provide	Listing	7.5	to	illustrate	 the	usage	of	symbolic	mode.	Here,	 the	program
counter	 (PC)	 has	 been	 defined	 beforehand	 (in	 the	msp430g2553.h	 header	 file).	We	 can
copy	the	value	of	the	PC	to	register	R5	by	mov.w	PC,R5.	As	can	be	seen	here,	the	usage	of
the	 symbol	 PC	 is	 straightforward	 in	 assembly	 language.	 The	 second	 line	 in	Listing	 7.5
copies	the	port	P1	input	values	to	register	R8	(we	will	see	this	in	detail	in	Chap.	8).

Listing	7.5			Usage	of	the	symbolic	mode.



	

	

	

7.3.5			Indexed	Mode

The	 indexed	mode	 is	used	 to	process	a	 table	 in	memory.	A	 register	 (memory)	holds	 the
base	 address	 of	 the	 table	 in	 this	 mode.	 This	 value	 is	 incremented	 to	 reach	 successive
memory	locations.	Meanwhile,	the	base	address	value	is	not	changed.

We	 provide	 Listing	 7.6	 to	 illustrate	 indexed	 mode	 usage.	 Here,	 four	 hexadecimal
numbers	 are	 assigned	 to	 successive	 memory	 locations	 first.	 Then,	 the	 value	 at	 each
location	is	assigned	to	register	R6	step	by	step.	To	do	so,	register	R5	is	taken	as	the	base
address.	The	increments	are	done	by	two	since	we	are	using	the	mov	 instruction	at	word
level	 (mov.w)	 in	 reaching	 memory.	 If	 we	 want	 to	 reach	 the	 memory	 at	 byte	 level,	 we
should	use	mov.b.	The	second	part	in	Listing	7.6	provides	such	an	example.

Listing	7.6			Usage	of	the	indexed	mode.



	

	

	



7.3.6			Indirect	Register	Mode

The	indirect	register	mode	performs	a	pointer-based	operation.	In	this	mode,	the	memory
address	 saved	 in	 the	 register	 is	 reached.	We	 illustrate	 the	 usage	 of	 the	 indirect	 register
mode	in	Listing	7.7.	Here,	the	@	sign	is	used	to	represent	the	memory	address	processing
(pointer).	In	the	ninth	line	of	Listing	7.7,	 the	memory	address	0202h	is	saved	in	register
R10.	In	the	tenth	line,	the	value	in	this	memory	address	is	copied	to	register	R11.

Listing	7.7			Usage	of	the	indirect	register	mode.

	

	

	

7.3.7			Indirect	Autoincrement	Mode

The	 indirect	autoincrement	mode	can	also	be	used	 for	 table	processing.	This	mode	uses
the	 indirect	 register	 mode.	 The	 register	 value	 is	 incremented	 after	 each	 operation
automatically	without	any	extra	code	line.

In	 Listing	 7.8,	 we	 repeat	 the	 operations	 in	 Listing	 7.6	 using	 the	 indirect
autoincrement	mode.	In	the	first	part	of	Listing	7.8,	increments	are	done	in	2	bytes	since



we	have	a	word	operation.	If	we	had	byte	operations,	the	increments	would	be	in	1	byte.
We	provide	such	an	example	in	the	second	part	of	Listing	7.8.

Listing	7.8			Usage	of	the	indirect	autoincrement	mode.

	



	

	

7.4			The	Stack
The	stack	is	a	last-in,	First-out	(LIFO)	address	list.	Local	variables	are	saved	in	the	stack
automatically	for	C	programs.	The	stack	is	also	used	during	function	and	interrupt	calls	by
the	CPU.	As	mentioned	 in	Sec.	4.2.2,	 the	 special-purpose	 register	R1	 is	 assigned	as	 the
stack	 pointer	 for	 the	 MSP430.	 At	 the	 beginning	 of	 an	 assembly	 program,	 this	 pointer
should	be	initialized.	For	the	MSP430G2553	microcontroller,	the	memory	address	for	this
initialization	is	0400h.	This	is	the	highest	data	memory	location	as	given	in	Table	4.2.

There	are	two	assembly	instructions	related	to	the	stack,	push	and	pop.	Push	adds	the
number	(as	the	last	entry)	to	the	stack.	Pop	gets	the	last	number	from	the	stack.	Therefore,
these	two	commands	perform	the	LIFO	operation.	In	Listing	7.9,	we	provide	an	example
on	how	to	initialize	the	stack	and	the	usage	of	the	push	and	pop	operations.	This	program
is	 similar	 to	 the	previous	 table-based	processing.	The	 reader	 should	pay	attention	 to	 the
inverse	ordering	of	the	table	entries	due	to	the	LIFO	structure.

Listing	7.9			Usage	of	the	stack.



	

	

	

7.5			Assembly	Program	Structure
An	assembly	program	has	 a	 specific	 structure.	 It	 needs	extra	directives	 and	adjustments
during	 linking	 and	 compiling	 steps.	 They	 are	 explained	 in	 detail	 in	 [13,	 11].	 In	 this
section,	we	briefly	explain	the	directives	used	in	assembly	programs	throughout	the	book.
We	 pick	 Listing	 7.10	 to	 demonstrate	 the	 assembly	 program	 structure	 and	 the	 usage	 of
directives.	The	directives	in	Listing	7.10	are	explained	below.

Listing	7.10			Structure	of	an	assembly	program.



	

	

	

•		.cdecls:	This	directive	is	used	to	include	the	C	header	files	to	the	assembly	program.	As
a	result,	C	header	file	definitions	can	be	used	directly.

•		.text:	This	directive	indicates	the	beginning	of	the	executable	code	block.

•		.retain:	This	directive	is	used	to	disable	the	removal	of	nonreferenced	code	blocks	(like
interrupt	service	routines)	during	the	linking	process.

•		.retainrefs:	This	directive	expands	the	retain	operation	to	code	blocks	from	other
sections.

•		.global:	This	directive	defines	a	global	symbol	such	that	it	can	be	reached	from	any	part
of	the	program.



•		.sect:	This	directive	defines	a	section	(a	contiguous	block	of	code	or	data	in	the
memory)	that	can	hold	code	or	data.

•		.short:	This	directive	initializes	one	or	more	16-bit	integers.

•		.end:	This	directive	indicates	the	end	of	the	assembly	program.

Based	on	the	preceding	definitions,	we	can	read	Listing	7.10	as	follows.	In	line	1,	we
include	the	C	header	file	msp430.h	using	the	.cdecls	directive.	In	line	3,	we	indicate	the
starting	point	of	the	program	by	the	.text	directive.	In	lines	4	and	5,	we	adjust	the	linker
properties	by	the	.retain	and	.retainref	directives.	In	lines	20	and	21,	we	associate	the
constant	--STACK_END	with	the	stack	address	(defined	by	.stack)	using	directives	.sect
and	.short	in	a	joint	manner.	Similarly,	in	lines	26	and	27,	we	associate	the	RESET	 label
with	the	RESET_VECTOR	using	directives	.sect	and	.short.	We	will	explain	the	reason	for
this	operation	in	Chap.	9.	In	line	28,	we	indicate	the	endpoint	of	the	program	by	the	.end
directive.

7.6			Sample	Programs	on	Instruction	Set	Usage
In	 this	 section,	we	provide	 several	 assembly	 programs.	The	 reader	 should	 execute	 each
program	step	by	step	to	observe	the	result	of	each	operation.	Therefore,	the	Assembly	Step
Into	option	in	the	Debug	view	should	be	used.

We	should	emphasize	 two	 important	 topics	before	 starting.	First,	 comments	 can	be
added	 to	 an	 assembly	 program	 by	 the	 ‘;’	 sign.	We	 have	 been	 using	 the	 ‘;’	 sign	 to	 add
comments.	Second,	CCS	needs	an	extra	0	in	front	of	a	hexadecimal	number	starting	with
characters	 A–F.	 Therefore,	 the	 user	 should	 write	 0FFFFh	 instead	 of	 FFFFh	 in	 the
assembly	code.	Otherwise	the	CCS	compiler	gives	an	error	message.

We	demonstrate	the	usage	of	arithmetic,	logical	and	register	control,	data,	and	jump
instructions	in	Listing	7.11.	We	emphasized	the	difference	between	the	binary	and	decimal
addition	operations	in	arithmetic	instructions.	The	result	of	the	subtraction	operation	will
be	 a	 negative	 number	 in	 Listing	 7.11.	 Therefore,	 the	 reader	 can	 observe	 the	 two’s
complement	 representation	here.	We	defined	 the	constants	 in	binary	 form	 in	 logical	and
register	control	instructions.	The	reader	should	adjust	the	number	format	for	each	register
to	 see	 the	 result	 of	 each	 operation	 clearly.	 We	 have	 used	 the	 data	 instructions	 in	 the
previous	steps.	Therefore,	they	are	not	new.	Here,	the	reader	should	observe	the	effect	of
the	 cmp	 instruction	 on	 the	 status	 register.	 Finally,	 we	 provide	 one	 jump	 instruction	 in
Listing	7.11	to	form	an	infinite	loop.	We	will	extensively	use	jump	instructions	next.

Listing	7.11			Usage	of	arithmetic,	logical	and	register	control,	data,	and	jump
instructions.



	

	

	



Control	 structures	 are	 not	 explicitly	 defined	 in	 assembly	 language.	 Therefore,	 we
provided	 several	 examples	 on	 forming	 C-like	 control	 structures	 using	 assembly
instructions	in	Listing	7.12.	In	all	these	examples,	jump	operations	are	mandatory.	To	note
here,	these	are	not	the	only	control	structures	in	assembly	language.	The	reader	can	form
his	or	her	structure	using	different	jump	instructions.

Listing	7.12			Control	structures	in	assembly	language.

	



	

	

Finally,	 we	 provide	 an	 example	 on	 the	 usage	 of	 subroutines	 (functions)	 in	 Listing
7.13.	Here,	 the	 contents	 of	 registers	R5	 and	R6	 are	 swapped	 through	 register	 R7.	 This
operation	is	done	in	the	user-defined	subroutine.

Listing	7.13			Usage	of	subroutines	in	assembly	language.



	

	

	

7.7			Summary
Although	the	C	language	can	be	used	in	most	operations	under	the	MSP430,	the	assembly
language	gives	insight	into	the	basics	of	the	microcontroller.	Therefore,	in	this	chapter	we
considered	the	instruction	set	and	the	addressing	modes	of	the	MSP430.	We	started	with
the	double-operand,	single-operand,	and	jump	instructions.	We	provided	sample	codes	on
their	 usage.	 Then	 we	 briefly	 described	 the	 anatomy	 of	 an	 instruction.	 As	 a	 separate
section,	 we	 looked	 at	 the	 addressing	 modes	 of	 the	 MSP430.	 This	 was	 followed	 by	 a
discussion	 of	 the	 stack	 and	 its	 usage.	 Finally,	 we	 provided	 an	 overview	 of	 assembly
program	 structure.	 Since	 the	 assembly	 language	 is	 important	 for	 understanding	 the



microcontroller,	we	provide	the	assembly	language	codes	for	all	applications	besides	C	in
the	following	chapters.

7.8			Problems
7.1					Assume	that	your	register	R4	holds	the	hexadecimal	number	4001h	and

the	memory	location	02F0h	holds	the	hexadecimal	number	0F18h.	Write	a
program	in	assembly	language	such	that:

a.				These	two	numbers	are	added.

b.				One’s	complement	of	the	sum	is	saved	in	register	R6.

c.				The	least	significant	two	hexadecimal	digits	of	the	sum	are	swapped
with	its	most	significant	two	hexadecimal	digits.	The	output	is	written	to
register	R12.

7.2					Write	a	program	in	assembly	language	such	that:

a.				Two	binary	numbers	are	saved	in	two	separate	memory	locations.

b.				As	the	numbers	are	added,	an	overflow	will	occur.

c.				As	the	numbers	are	added,	no	overflow	occurs.

Check	whether	an	overflow	occurred	or	not	from	the	status	register.

7.3					Repeat	Prob.	7.2	using	the	subtraction	operation.

7.4					Extend	Prob.	7.2	such	that,	if	the	result	is	greater	than	(less	than)	zero,	the
program	will	jump	to	the	label	greater	(less).

7.5					Write	an	assembly	program	such	that:

a.				It	reads	the	input	from	port	P1	and	assigns	it	to	register	R9.

b.				If	the	second	most	significant	bit	of	this	value	is	greater	than	zero,
assign	FFFFh	to	register	R10.

7.6					Write	an	assembly	program	to	change	the	little	endian	ordering	of	the
MSP430	to	big	endian	for	selected	memory	locations.

7.7					Write	a	program	in	assembly	language	such	that:

a.				It	contains	a	subroutine	which	performs	the	and	operation	with	the
entry	of	register	R6	and	hexadecimal	number	0001h.	The	result	will	be	saved
in	the	same	register.

b.				Repeat	part	a	by	applying	the	same	operation	to	five	successive
memory	locations.	Use	an	appropriate	addressing	mode.

7.8					Write	a	program	in	assembly	language	to	calculate	the	first	10	elements	of
the	Fibonacci	series.

a.				The	user	only	provides	the	first	two	entries	of	the	series.

b.				The	rest	will	be	calculated	by	the	program.

c.				Use	appropriate	memory	locations.



d.				The	numbers	can	be	represented	in	hexadecimal	form.

7.9					Write	an	assembly	program	such	that:

a.				When	the	least	significant	bit	of	registers	R4	and	R5	have	the	value	1,
the	register	R9	gets	the	value	0FF0h.

b.				When	only	one	of	the	least	significant	bits	of	either	register	R4	or	R5
has	the	value	1,	the	one’s	complement	of	the	value	in	register	R9	will	be
saved	in	register	R10.

7.10					What	will	be	the	values	at	memory	locations	02F0h,	02F2h,	02F4h,	02F6h,	and
02F8h	when	the	program	given	in	Listing	7.14	is	run?

Listing	7.14			The	assembly	code	for	Prob.	7.10.

	



	

	

7.11					Write	an	assembly	program	with	the	following	specifications.

a.				In	the	main	block,	you	should	have	two	registers	R4	and	R5.	They
should	be	checked	in	an	infinite	loop.	If	R4	is	greater	than	R5,	then	the
greater	subroutine	will	be	called.	If	R4	is	less	than	R5,	then	the	less
subroutine	will	be	called.	If	R4	equals	R5,	then	no	operations	will	be	done.

b.				In	the	greater	subroutine,	your	code	will	fill	the	decimal	numbers	1,	2,
3,	4,	5	in	hexadecimal	form	to	five	successive	memory	locations.	After	this
operation,	the	value	in	R4	will	be	decreased	by	one.

c.				In	the	less	subroutine,	your	code	will	fill	the	decimal	numbers	10,	9,	8,
7,	6	in	hexadecimal	form	to	five	successive	memory	locations.	After	this
operation,	the	value	in	R4	will	be	decreased	by	one.

7.12					Write	an	assembly	program	to	calculate	the	division	of	the	hexadecimal	number
00FFh	by	00A0h.	Use	only	available	registers	to	save	your	variables.	Write	the
result	to	register	R7.

7.13					What	will	the	register	values	R4,	R5,	and	R6	be	as	the	program	in	Listing	7.15	is
run?

Listing	7.15			The	assembly	code	for	Prob.	7.13.



	

	

	

7.14					Write	down	the	values	assigned	to	register	R14	in	four	steps	(labeled	in	Listing
7.16).

Listing	7.16			The	assembly	code	for	Prob.	7.14.



	

	

	

7.15					Write	an	assembly	program	to	divide	a	hexadecimal	number	by	2.	The	number	to
be	divided	should	be	kept	in	a	suitable	memory	location	of	the	MSP430G2553.
The	division	result	will	be	kept	in	register	R5	and	the	remainder	will	be	kept	in
register	R6.

7.16					Three	numbers	are	written	in	the	designated	memory	locations	with	the	code	given
in	Listing	7.17.

Listing	7.17			The	assembly	code	for	Prob.	7.16.



	

	

Write	an	assembly	program	such	that:

a.				It	contains	a	subroutine	which	performs	the	and	operation	between	the
first	and	second	numbers.	Then,	it	performs	the	or	operation	between	the
result	of	the	and	operation	and	the	third	number.

b.				The	final	result	must	be	written	to	the	memory	address	020Dh.

c.				You	cannot	change	the	numbers	in	the	addresses	given	above.

7.17					Two	numbers	are	written	in	the	designated	memory	locations	with	the	code	given
in	Listing	7.18.

Listing	7.18			The	assembly	code	for	Prob.	7.17.



	

	

Write	an	assembly	program	such	that:

a.				It	contains	a	subroutine	which	performs	the	xor	operation	between	the
first	and	second	numbers.	Then,	it	performs	the	not	operation	on	the	result	of
the	or	operation.

b.				The	final	result	must	be	written	to	the	memory	address	023Ch.

c.				You	cannot	change	the	numbers	in	the	addresses	given	above.

7.18					Write	an	assembly	program	to	calculate	the	sum	of	the	four	numbers	given	in	Prob.
7.14.

7.19					Add	a	subroutine	to	your	assembly	program	in	Prob.	7.18	to	calculate	the	average
of	the	four	numbers.

7.20					Assume	that	there	are	four	numbers	represented	in	single	floating-point	format.
These	are	saved	in	successive	memory	locations	starting	from	0200h.	Write	an
assembly	program	to	convert	them	to	the	fixed-point	UQ16.16	format.	The
converted	numbers	should	be	saved	in	successive	memory	locations	starting	from
0300h.

7.21					Analyze	the	assembly	code	given	in	Listing	7.19.	Form	a	table	for	registers	and	fill



their	values	as	the	code	is	run.

Listing	7.19			The	assembly	code	for	Prob.	7.21.

	

	



	

8	Digital	Input	and	Output
Chapter	Outline

8.1					Pin	Layout	for	Digital	I/O

8.2					Digital	I/O	Registers

8.3					Digital	I/O	Hardware	Issues

8.4					Coding	Practices	for	Digital	I/O

8.5					Digital	I/O	in	Grace

8.6					Digital	Safe	Application

8.7					Summary

8.8					Problems

A	microcontroller	interacts	with	the	outside	world	through	its	input	and	output	ports.	The
interaction	can	be	in	either	analog	or	digital	form.	In	this	chapter,	we	focus	on	the	digital
input	 and	 output	 (digital	 I/O)	 characteristics	 of	 the	 MSP430	 microcontroller.	 We	 will
develop	methods	to	use	them.	We	will	also	use	Grace	to	configure	the	digital	I/O.

8.1			Pin	Layout	for	Digital	I/O
Digital	 input	 and	 output	 (I/O)	 is	 the	 simplest	 form	 of	 communication	 between	 the
microcontroller	and	the	outside	world.	The	input	or	the	output	is	either	0	or	1	in	this	form.
In	other	terms,	the	input	or	the	output	is	either	0	V	or	VCC.	There	are	two	ports	called	P1
and	 P2	 in	 the	MSP430G2553.	 These	 are	 generally	 called	 Px.	 Each	 port	 has	 eight	 pins
associated	with	 it.	These	are	called	P1.0–P1.7	and	P2.0–P2.7.	The	general	pin	 layout	of
the	MSP430G2553	 is	given	 in	Fig.	8.1.	The	usage	 table	 for	 these	pins	 is	given	 in	Table
8.1.	As	can	be	seen	in	this	table,	all	pins	in	ports	P1	and	P2	can	be	used	for	digital	I/O.

	

Figure	8.1			Pin	layout	of	the	MSP430G2553.



	

Table	8.1			The	pin	usage	table	for	digital	I/O	in	the	MSP430G2553.

	

We	diagram	the	basic	hardware	for	the	pins	in	Fig.	8.2.	As	can	be	seen,	all	pins	can
be	used	for	multipurpose	besides	being	used	for	digital	I/O.	They	are	labeled	Other	in	this
figure.	In	this	chapter,	we	only	consider	the	digital	I/O	characteristics	of	the	pins.	Next,	we
will	explore	how	to	reach	a	specific	pin	in	a	given	port.



	

Figure	8.2			Basic	hardware	for	the	pins.

	

8.2			Digital	I/O	Registers
Each	pin	in	a	port	can	be	set	either	as	input	or	output.	This	is	done	by	the	register	PxDIR.
To	set	a	specific	pin	as	input,	the	corresponding	bit	in	this	register	should	be	reset	(to	0).
In	 a	 similar	manner,	 to	 set	 a	 specific	pin	 as	output,	 the	 corresponding	bit	 in	 the	PxDIR
register	should	be	set	(to	1).	Due	to	the	byte-based	operation	of	the	MSP430,	all	the	port
pins	should	be	taken	into	account	in	this	operation.	In	fact,	 this	is	applicable	for	all	port
registers.	As	an	example,	let’s	say	that	we	want	to	assign	the	first	and	the	seventh	pins	of
the	first	port	(P1.0,	P1.6)	as	output.	We	would	also	like	to	assign	the	fourth	pin	of	the	same
port	 (P1.3)	as	 input.	To	do	so,	we	should	assign	 the	binary	number	01000001b	(41h)	 to
P1DIR.	Therefore,	the	code	line	P1DIR=0x41	in	C	language	does	the	job.	This	corresponds
to	mov.b	#41h,P1DIR	in	assembly	language.	Now,	the	input	can	be	connected	to	pin	P1.3
and	outputs	can	be	connected	to	pins	P1.0	and	P1.6.

Based	on	the	preceding	definition,	P1.3	is	set	as	input.	The	P1IN	register	should	be
checked	to	read	values	from	this	pin.	In	general,	we	will	call	this	register	PxIN	(for	P1	or
P2).	The	digital	input	fed	to	the	microcontroller	is	directly	observed	from	this	register.	As
we	have	mentioned	previously,	we	cannot	observe	a	specific	bit	in	this	register.	To	do	so,
we	need	to	apply	a	binary	mask	to	extract	the	desired	input	value.	We	only	need	the	value
of	the	pin	P1.3	for	our	example.	Therefore,	we	should	apply	an	and	operation	between	the
P1IN	register	and	the	binary	mask	00001000b	(08h).	This	will	be	done	by	the	code	line
P1IN&0x08	 in	 C	 language.	 This	 corresponds	 to	 bit	 #08h,P1IN	 in	 assembly	 language.



While	processing	the	digital	input	values,	please	also	take	into	account	the	active	high	and
low	settings	(to	be	discussed	in	the	next	section).

To	feed	output	values	to	pins	P1.0	or	P1.6,	the	P1OUT	register	is	used.	In	general,	we
will	call	 this	register	PxOUT	 (for	P1	or	P2).	 If	we	want	 to	 feed	a	0	V	to	output	 from	a
specific	pin,	the	corresponding	bit	value	in	PxOUT	should	be	reset	(to	0).	We	should	set
the	pin	(to	1)	to	feed	VCC	to	output.	As	an	example,	we	should	assign	01000000b	(40h)	to
P1OUT	to	feed	VCC	 to	output	 from	pin	P1.6.	This	corresponds	 to	 the	code	 line	P1OUT	=
0x40	 in	 C	 language.	 This	 corresponds	 to	 the	 code	 line	 bis	 #40h,P1OUT	 in	 assembly
language.

Each	pin	in	ports	P1	and	P2	has	a	pull-up/down	resistor.	These	are	controlled	by	the
PxREN	register.	By	default,	these	resistors	are	disabled.	To	enable	a	resistor	connected	to
a	specific	pin,	 the	corresponding	bit	 in	PxREN	should	be	set	 (to	1).	As	an	example,	 the
code	line	P2REN	=	0x02	should	be	used	to	enable	the	pull-up/down	resistor	of	the	pin	P2.1
in	C	language.	This	corresponds	to	the	code	line	bis	#02h,P2REN	 in	assembly	language.
After	 the	 pull-up/down	 resistor	 is	 enabled,	 the	 selection	 between	 the	 pull-up	 or	 down
option	is	done	with	the	PxOUT	register.	If	the	related	bit	of	the	PxOUT	register	is	set,	the
internal	resistor	will	be	used	as	pull	up.	Otherwise,	the	internal	resistor	will	be	used	as	pull
down.

As	 mentioned	 in	 the	 previous	 section,	 MSP430	 pins	 are	 used	 for	 more	 than	 one
purpose.	The	registers	PxSEL	and	PxSEL2	are	used	to	select	the	usage	area	of	the	pins.	If
a	specific	pin	will	be	used	for	digital	I/O,	 the	corresponding	bits	 in	PxSEL	and	PxSEL2
should	be	 reset.	 If	 the	pin	will	be	used	 for	a	specific	purpose	other	 than	 the	digital	 I/O,
then	PxSEL	and	PxSEL2	should	be	set	accordingly.	In	Table	8.2,	we	provide	these	settings
for	different	application	types.

Table	8.2			Application	type	based	on	PxSEL	and	PxSEL2	function	settings.

	

The	only	exception	 to	Table	8.2	 is	 in	 the	 comparator	 usage	described	 in	Chap.	 11.
When	 the	comparator	output	 (CAOUT)	 is	given	 from	P1.3,	PxSEL=1	and	PxSEL2	=	1.
When	the	CAOUT	is	given	from	P1.7,	PxSEL=1	and	PxSEL2=0.

8.3			Digital	I/O	Hardware	Issues
There	are	two	major	hardware	issues	to	be	dealt	with	when	using	digital	I/O.	The	first	is
the	definition	and	setup	of	active	high/low	input.	The	second	is	switch	bouncing.	We	will
explain	them	next.



8.3.1			Active	High/Low	Input

There	are	two	setup	options	to	use	a	push	button	in	a	digital	circuit.	In	the	first	setup,	the
microcontroller	gets	VCC	volts	(logic	1)	on	its	pin	when	the	button	is	pressed.	This	is	called
the	active	high	input.	In	the	second	setup,	the	microcontroller	gets	0	V	(logic	0)	on	its	pin
when	the	button	is	pressed.	This	is	called	the	active	low	input.	To	note	here,	active	high	or
low	inputs	are	not	related	to	the	microcontroller.	They	are	based	on	the	connection	type	to
the	digital	I/O	pin.	The	circuit	diagrams	for	the	active	high/low	input	setups	are	given	in
Fig.	8.3.

	

Figure	8.3			Active	high	and	low	input	circuit	diagrams	for	the	push	button.

	

For	 the	MSP430	LaunchPad,	 the	preferred	setup	is	active	 low.	Therefore,	when	the
button	connected	to	pin	P1.3	is	pressed,	it	will	generate	logic	0.	When	it	is	not	pressed,	it
will	give	logic	1.	This	should	be	taken	into	account	while	reading	the	value	from	the	P1IN
register	using	a	binary	mask.

8.3.2			Switch	Bouncing

The	second	hardware-based	issue	in	digital	I/O	is	switch	(button)	bouncing.	If	the	button
is	 pressed	 once,	 it	 may	 generate	 output	 more	 than	 once,	 depending	 on	 its	 physical
characteristics.	 Therefore,	 the	 microcontroller	 may	 see	 one	 input	 and	 its	 successive
shadow	versions.	To	eliminate	this	effect,	either	a	software-	or	a	hardware-based	solution
can	be	used.	In	the	software-based	solution,	a	delay	should	be	added	to	the	button	input
reading	part	of	the	code.	The	input	will	not	be	observed,	and	possible	shadow	inputs	will
be	 eliminated	 during	 this	 delay.	 Although	 the	 software-based	 solution	 is	 easier	 to
implement,	actual	inputs	will	also	be	eliminated	during	delay.	Therefore,	it	should	be	used
with	caution.

There	 are	 also	 hardware-based	 solutions	 for	 switch	 bouncing.	 The	 most	 feasible
circuitry	 is	 a	 low-pass	RC	 filter	 (composed	of	 a	 resistor	 and	a	 capacitor)	 followed	by	a
Schmitt	 trigger	for	the	MSP430.	This	setup	is	shown	in	Fig.	8.4.	Each	digital	 I/O	pin	of
the	MSP430G2553	has	a	Schmitt	trigger	[16].	There	is	also	an	internal	pull-up	resistor	and
a	 capacitor	 connected	 parallel	 to	 the	 push	 button	 (connected	 to	 P1.3)	 in	 MSP430



LaunchPad	 Rev.1.4.	 Therefore,	 the	 circuitry	 in	 Fig.	 8.4	 is	 ready	 for	 this	 LaunchPad
version.	However,	the	parallel	capacitor	is	discarded	in	MSP430	LaunchPad	Rev.1.5.	Only
the	internal	pull-up	resistor	(if	enabled)	can	be	used	to	form	the	circuit.	The	user	should
also	connect	an	external	capacitor	 to	solve	 the	switch	bouncing	problem	by	hardware	 in
this	LaunchPad	version.	In	the	next	section,	we	provide	sample	codes	to	address	this	issue.

	

Figure	8.4			Hardware	solution	of	the	switch	bouncing	problem.

	

In	Fig.	8.4,	 the	 low-pass	RC	 filter	 is	 used	 to	 eliminate	 the	 high-frequency	 shadow
inputs	 coming	 from	 the	 button.	 Then	 remaining	 glitches	 are	 eliminated	 by	 the	 Schmitt
trigger.	In	this	circuitry,	the	time	constant	of	the	filter	(τ	=	R×C)	must	be	 larger	 than	 the
switch	bouncing	time	to	eliminate	all	shadow	inputs.	The	internal	pull-up	resistor	values
may	vary	between	20	and	50	kΩ.	Throughout	the	book,	we	will	assume	that	a	2-	to	5-ms
time	 constant	 is	 enough	 to	 eliminate	 switch	 bouncing.	 Therefore,	 a	 100-ηF	 external
capacitor	 should	 be	 used.	 The	 time	 constant	 of	 the	 filter	 can	 be	 adjusted	 by	 this
capacitance	value	depending	on	other	constraints.

8.4			Coding	Practices	for	Digital	I/O
In	this	section,	we	provide	sample	C	and	assembly	codes	for	digital	I/O.	Since	our	setup	is
based	on	the	MSP430	LaunchPad,	we	will	use	the	push	button	and	LEDs	(red,	green)	on
it.	Therefore,	ports	used	in	the	codes	will	be	the	same.

8.4.1			Digital	I/O	in	C

We	first	 consider	an	application	where	 the	 red	LED	(connected	 to	P1.0	on	 the	MSP430
LaunchPad)	 turns	 on	 when	 the	 push	 button	 (connected	 to	 P1.3	 on	 the	 MSP430
LaunchPad)	is	pressed.	When	the	button	is	released,	the	red	LED	turns	off.	We	provide	the
C	code	in	Listing	8.1	for	MSP430	LaunchPad	Rev.1.4.	Here,	the	location	of	the	red	LED
and	the	push	button	is	defined	first.	The	port	direction	is	set	accordingly.	Initially,	the	red
LED	is	turned	off.	Then	the	input	from	the	push	button	is	checked	in	an	infinite	loop.	Here
there	are	three	important	issues.	First,	a	masking	operation	should	be	done	to	check	for	a



specific	pin	since	port	P1	can	be	observed	at	a	byte	level.	Second,	the	active	low	setup	of
the	MSP430	LaunchPad	should	be	taken	into	account.	Therefore,	the	control	within	the	if
statement	is	checked	for	0	not	1.	Third,	the	switch	bouncing	is	not	taken	into	account	here
since	the	LED	turns	on	only	during	the	button	press.

Listing	8.1			Turning	on	the	red	LED	when	the	push	button	is	pressed,	for	MSP430
LaunchPad	Rev.1.4.

	

	

We	 repeat	 the	 previous	 application	 given	 in	 Listing	 8.1	 for	 MSP430	 Launch-Pad
Rev.1.5.	We	provide	the	C	code	in	Listing	8.2.	As	can	be	seen	here,	 the	code	is	slightly
modified.	First,	the	internal	resistor	connected	to	the	push	button	(connected	to	P1.3	on	the
MSP430	LaunchPad)	is	enabled	by	the	code	line	P1REN	=	BUTTON;.	This	resistor	is	also
set	as	pull-up	by	 the	code	 line	P1OUT	=	BUTTON;.	The	push	button	check	conditions	are
also	modified	accordingly	so	that	this	setup	is	not	changed	during	operation.

Listing	8.2			Turning	on	the	red	LED	when	the	push	button	is	pressed,	for	MSP430
LaunchPad	Rev.1.5.

	



	

	

We	next	provide	a	more	complex	example.	Here,	the	green	LED	(connected	to	P1.6
on	the	MSP430	LaunchPad)	is	toggled	every	time	the	push	button	(connected	to	P1.3	on
the	 MSP430	 LaunchPad)	 is	 pressed.	 We	 provide	 the	 C	 code	 for	 MSP430	 LaunchPad
Rev.1.4	in	Listing	8.3.	Here,	 the	 location	of	 the	red	LED	and	 the	push	button	 is	defined
first.	The	port	direction	is	set	accordingly.	Initially,	the	green	LED	is	turned	off.	Then,	the
input	from	the	push	button	is	checked	in	an	infinite	loop.	When	the	button	is	pressed,	the
code	waits	 for	5	ms	by	 the	 intrinsic	 function	__delay_cycles(5000);.	The	code	checks
the	push	button	condition	after	this	delay	again.	If	the	push	button	is	still	pressed,	then	the
green	LED	toggles.	The	code	waits	in	an	infinite	loop	for	the	release	of	the	push	button.
This	 step	ensures	 that	 the	green	LED	cannot	be	 toggled	again	unless	 the	push	button	 is
released.

Listing	8.3			Toggling	the	green	LED	when	the	push	button	is	pressed,	for	MSP430
LaunchPad	Rev.1.4.



	

	

	

We	modify	the	C	code	given	in	Listing	8.3	for	MSP430	LaunchPad	Rev.1.5	next.	We
provide	the	C	code	in	Listing	8.4.	Here,	the	internal	resistor	connected	to	the	push	button
(connected	 to	 P1.3	 on	 the	 MSP430	 LaunchPad)	 is	 enabled	 by	 the	 code	 line	 P1REN	 =
BUTTON;.	This	resistor	is	also	set	as	pull-up	by	the	code	line	P1OUT	=	BUTTON;.	This	was
also	the	case	in	Listing	8.2.

Listing	8.4			Toggling	the	green	LED	when	the	push	button	is	pressed,	for	MSP430
LaunchPad	Rev.1.5.

	

	

8.4.2			Digital	I/O	in	Assembly

We	provide	assembly	code	for	digital	I/O	in	Listing	8.5.	Here,	the	microcontroller	waits	in
an	 infinite	 loop.	 It	 turns	 the	 red	 and	 green	LEDs	 on	 and	 off	 based	 on	 the	 status	 of	 the
button	pressed.

Listing	8.5			Digital	I/O	in	assembly.



	

	

	

8.5			Digital	I/O	in	Grace
Grace	can	be	used	to	configure	the	input	and	output	ports	of	the	MSP430.	Let’s	start	with
a	new	Grace	project	 (generated	 in	 accordance	with	Sec.	5.7).	We	 can	 configure	 the	 pin
properties	by	clicking	on	the	blue	port	(P1,	P2,	P3)	block.	As	we	click	on	the	block,	a	new
tab	 named	 GPIO	 appears	 in	 main.cfg.	 This	 new	 tab	 is	 named	 GPIO-Overview.	 It	 has
several	 buttons.	 For	 our	 application	 (having	 the	 20-pin	 version	 of	 the	 MSP430G2553
microcontroller)	 the	 overview,	 Pinout20-TSSOP/20-PDIP,	 power	 user,	 and	 P1/P2	 views



are	useful.	As	we	mentioned	in	Sec.	5.7,	Overview	provides	basic	 info	and	sample	code
blocks	on	the	GPIO.

8.5.1			The	Pinout20-TSSOP/20-PDIP	Mode

The	Pinout20-TSSOP/20-PDIP	mode	provides	the	active	microcontroller	block	diagram	as
shown	in	Fig.	8.5.	In	this	mode,	the	property	of	each	pin	can	be	changed	from	the	drop-
down	 list	which	appears	when	 the	blue	pointer	by	 the	pin	 is	clicked.	This	automatically
changes	the	PxSEL,	PxSEL2,	and	PxDIR	registers.

	

Figure	8.5			The	Pinout20-TSSOP/20-PDIP	mode	under	Grace.

	

8.5.2			The	Power	User	Mode

In	 the	power	user	mode,	 shown	 in	Fig.	8.6,	 the	 following	properties	of	 each	pin	 can	be
configured:	 GPIO	 function,	 output	 state,	 pull-up/down	 resistor	 enable,	 and	 interrupt
enable.	The	GPIO	function	option	is	the	same	as	the	Pinout20-TSSOP/20-PDIP	mode.	The
output	 state	 allows	us	 to	 set	 the	 initial	 value	 (low	or	 high)	 of	 the	pin	when	used	 in	 the
GPIO	output	mode.	The	pull-up/down	resistor	enable	option	allows	the	user	to	disable	or
enable	the	pull-up/down	resistors	connected	to	the	pin	when	used	in	the	GPIO	input	mode.
Finally,	the	interrupt	enable	option	can	be	used	to	configure	the	interrupt	properties	related
to	the	pin.	We	will	see	how	to	use	this	property	in	Chap.	9.



	

Figure	8.6			The	power	user	mode	under	Grace.

	

8.5.3			The	P1/P2	Mode

This	mode	provides	the	port	registers	(PxOUT,	PxDIR,	PxSEL,	PxSEL2,	and	PxREN)	as
given	 in	Fig.	8.7.	All	port	 registers	can	be	set	and	reset	 in	 this	mode	by	clicking	on	 the
appropriate	check	button.	Changes	made	here	also	affect	the	other	modes	automatically.



	

Figure	8.7			The	P1/P2	mode	under	Grace.

	

8.5.4			Coding	Practices

In	this	section,	we	redo	the	digital	I/O	application	given	in	Listing	8.1	using	Grace.	As	a
reminder,	 this	 application	 turns	 on	 the	 red	 LED	 (connected	 to	 P1.0	 on	 the	 MSP430
LaunchPad)	when	the	button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	 is	pressed.
When	 the	 button	 is	 not	 pressed,	 the	 red	LED	 turns	 off.	We	 start	 by	 generating	 a	Grace
project.	Then,	we	configure	the	pins	P1.0	and	P1.3	under	Grace.	The	pin	P1.0	should	be
set	as	GPIO	output.	The	pin	P1.3	should	be	set	as	input.	These	settings	can	be	done	by	any
of	the	three	GPIO	views.	When	we	add	the	code	block	given	in	Listing	8.6	to	the	main.c
file	 of	 the	 Grace	 project,	 we	 are	 done.	 After	 compiling	 the	 project,	 we	 can	 run	 our
application.

8.6			Digital	Safe	Application



The	purpose	of	this	application	is	to	learn	how	to	use	the	digital	I/O	pins	of	the	MSP430
microcontroller.	As	a	real-world	application,	we	will	design	a	digital	safe	system.	In	this
section,	we	 provide	 the	 equipment	 list,	 the	 layout	 of	 the	 circuit,	 the	 procedure,	 and	 the
system	design	specifications.

8.6.1			Equipment	List

Below,	we	provide	the	equipment	list	to	be	used	in	this	application.

•		Three	LEDs	(green,	yellow,	red)

•		Three	220	Ω	resistors

•		Four	dip	switches

•		Four	push	buttons

Listing	8.6			Digital	I/O	example	under	Grace.

	

	

8.6.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	8.8.



	

Figure	8.8			Layout	of	the	digital	safe	application.

	

8.6.3			System	Design	Specifications

The	design	of	the	digital	safe	will	have	three	main	blocks.	These	are	listed	below.

•		Block	1:	At	startup,	the	user	will	press	the	enter	new	password	push	button.	Then	he	or
she	will	enter	a	password	using	password	switches.	Afterwards,	he	or	she	will	lock	the
system	using	the	verify	new	password	push	button.	The	yellow	LED	will	turn	on.	The
system	will	wait	for	an	input.

•		Block	2:	If	the	user	wants	to	unlock	the	system,	first	he	or	she	should	press	the	enter
your	password	push	button	and	enter	the	password	using	password	switches.	Then,	the
verify	your	password	push	button	should	be	pressed	to	unlock	the	safe.	If	the	entered
password	is	correct,	the	green	LED	will	turn	on.	Otherwise,	the	red	LED	will	turn	on
and	the	system	will	wait	for	the	correct	password.

•		Block	3:	After	the	first	entry,	the	password	can	only	be	changed	if	the	previous
password	is	entered	correctly.

8.6.4			The	C	Code	for	the	System

In	 the	 first	part	of	 the	code,	given	 in	Listing	8.7,	 constants	 are	defined.	This	 is	 done	 to
make	 the	code	more	readable.	 In	Listing	8.7,	B1,	B2,	B3,	and	B4	are	used	for	 input	 from
switches.	BUTTON1,	BUTTON2,	BUTTON3,	and	BUTTON4	are	used	for	input	from	push	buttons.



YellowLedOn,	 GreenLedOn,	 and	 RedLedOn	 are	 used	 for	 turning	 on	 corresponding	 LEDs.
AllLedsOff	is	used	for	turning	off	all	LEDs	at	the	same	time.

Listing	8.7			Digital	safe,	the	C	code	part	I.

	

	

	

In	the	second	part	of	the	code,	given	in	Listing	8.8,	local	variables	to	be	used	in	the
code	are	defined.	They	must	be	defined	at	the	beginning	of	the	main	function	to	prevent
some	 compiling	 errors	 in	 CCS.	 In	 Listing	 8.8,	 the	 NewPassword	 array	 is	 used	 for
determining	the	new	password.	The	YourPassword	array	is	used	for	entering	the	password
to	unlock	 the	system.	The	 integers	EnterNewPassword	and	EnterYourPassword	 are	 used
for	changing	and	entering	the	password.	The	requirement	of	entering	the	correct	password
for	changing	the	old	password	is	checked	with	the	Control	integer.

Listing	8.8			Digital	safe,	the	C	code	part	II.

	

	

In	the	third	part	of	the	code,	given	in	Listing	8.9,	the	hardware	setup	is	done.	In	the
first	 line	of	Listing	8.9,	 the	watchdog	 timer	 is	disabled.	The	 reason	 for	 this	 step	will	be
explained	 in	 Sec.	 10.5.	 In	 the	 second	 line,	 the	 port	 P2	 is	 configured	 as	 digital	 I/O
completely.	In	the	third	and	fourth	lines,	pin	directions	are	assigned.	For	port	P1,	P1DIR	=
0x0F	 is	 used	 because	 three	 LEDs	 are	 connected	 to	 P1.0,	 P1.1,	 and	 P1.2	 and	 four	 dip
switches	are	connected	to	P1.4,	P1.5,	P1.6,	and	P1.7.	The	unused	pin	P1.3	is	set	as	output



to	prevent	accidental	input	changes.	For	port	P2,	P2DIR	=	0xE1	is	used	because	four	push
buttons	are	connected	 to	pins	P2.1,	P2.2,	P2.3,	 and	P2.4.	Unused	pins	P2.0,	P2.5,	P2.6,
and	P2.7	are	set	as	output.	In	the	fifth	and	sixth	lines,	pull-up/down	resistors	are	enabled
for	pins	in	which	a	button	or	a	switch	is	connected.	In	the	seventh	and	eighth	lines,	output
registers	are	set	as	P1OUT=0xF0	and	P2OUT=0x1E.	Low	bits	of	these	registers	are	used	for
turning	off	LEDs	initially.	Unnecessary	power	consumption	is	prevented	for	unused	output
pins	 by	 this	 procedure.	 On	 the	 other	 hand,	 high	 bits	 of	 these	 registers	 are	 used	 for
choosing	pull-up	resistors	for	input	pins.

Listing	8.9			Digital	safe,	the	C	code	part	III.

	

	

	

Finally,	the	C	code	for	the	system	(with	all	its	components)	is	given	in	Listing	8.10.
The	code	block	doing	the	operation	is	put	in	an	infinite	loop.	Therefore,	 the	system	will
wait	for	an	input,	checking	for	the	password	all	the	time.	Initially,	the	Control	variable	is
zero	 and	 the	 system	 is	 in	 Block	 1.	 When	 BUTTON1	 is	 pressed,	 the	 EnterNewPassword
variable	 is	changed	to	1	and	values	read	from	switches	are	assigned	to	 the	NewPassword
array.	Unless	BUTTON2	is	pressed,	the	EnterNewPassword	variable	is	kept	at	1	and	switches
can	be	changed.	But	when	BUTTON2	is	pressed,	this	variable	is	toggled	to	zero	and	the
new	 password	 is	 determined.	 The	 yellow	LED	will	 turn	 on	 to	 indicate	 that	 this	 step	 is
done.	 The	 Control	 variable	 is	 also	 changed	 to	 1	 to	 get	 the	 system	 in	 Block	 2.	When
BUTTON3	 is	pressed,	 the	EnterYourPassword	variable	 is	changed	 to	1	and	values	coming
from	 switches	 are	 assigned	 to	 the	 YourPassword	 array.	 When	 BUTTON4	 is	 pressed,
YourPassword	and	NewPassword	arrays	are	compared.	If	they	do	not	match,	the	password
is	decided	as	wrong	and	 the	red	LED	turns	on	for	a	warning.	 If	 they	match,	 the	entered
password	 is	 decided	 as	 true	 and	 the	 green	LED	will	 turn	 on	 to	 indicate	 that	 the	 safe	 is
unlocked.	The	Control	variable	 is	 also	changed	 to	zero	 to	get	 the	 system	 in	Block	1	 to
determine	 a	 new	 password.	 It	 can	 be	 seen	 that	 the	 Control	 variable	 is	 used	 alone	 to
accomplish	Block	3.

Listing	8.10			Digital	safe,	the	complete	C	code.



	



	



	

	

8.7			Summary
A	 microcontroller	 interacts	 with	 other	 devices	 through	 its	 ports.	 In	 this	 chapter,	 we
focused	 on	 the	 digital	 I/O	 in	 the	MSP430.	We	 reviewed	 specific	 registers	 to	 set	 up	 the
digital	 I/O	properties.	Then	we	considered	 the	 two	 important	 hardware	 issues	 related	 to
push	buttons.	Finally,	we	designed	a	real-life	application	(a	digital	safe)	using	digital	I/O.
We	provided	all	the	hardware	and	software	design	information	related	to	the	digital	safe.
We	 hope	 that	 this	 information	will	 encourage	 the	 reader	 to	 develop	 new	 projects	 using
digital	I/O.

8.8			Problems
8.1					Write	a	C	program	for	the	MSP430	to	calculate	the	number	of	zeros	and

ones	in	an	array.	If	the	number	of	zeros	is	more	than	the	number	of	ones,	the	red
LED	(connected	to	P1.0	on	the	MSP430	LaunchPad)	will	turn	on.	Otherwise,	the
green	LED	(connected	to	P1.6	on	the	MSP430	LaunchPad)	will	turn	on.

8.2					Repeat	Prob.	8.1	in	assembly	language.

8.3					Repeat	Prob.	8.1	using	Grace.

8.4					Write	a	C	program	for	the	MSP430	to	multiply	numbers	(except	zeros)	in
an	array.	Then	divide	the	result	by	the	length	of	the	array.	If	the	result	is	less	than
the	first	predefined	value,	the	red	LED	(connected	to	P1.0	on	the	MSP430



LaunchPad)	will	turn	on.	If	it	is	between	the	first	and	second	predefined	values,	the
green	LED	(connected	to	P1.6	on	the	MSP430	LaunchPad)	will	turn	on.	If	it	is
more	than	the	second	predefined	value,	both	LEDs	will	turn	on.

8.5					Repeat	Prob.	8.4	using	Grace.

8.6					Write	a	C	program	for	the	MSP430	to	compute	the	average	of	10	floating-
point	numbers.	If	the	average	is	greater	than	zero,	the	red	LED	(connected	to	P1.0
on	the	MSP430	LaunchPad)	will	turn	on.	Otherwise,	the	green	LED	(connected	to
P1.6	on	the	MSP430	LaunchPad)	will	turn	on.	Initially	both	LEDs	are	turned	off.

8.7					Repeat	Prob.	8.6	using	pointers	and	pointer	arithmetic	only.

8.8					Repeat	Prob.	8.7	using	Grace.

8.9					Write	a	C	program	for	the	MSP430	with	the	following	specifications:
When	the	push	button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	is	pressed,
the	red	LED	(connected	to	P1.0	on	the	MSP430	LaunchPad)	will	turn	on	and	wait
for	a	certain	time.	Then,	both	the	red	and	green	LEDs	(connected	to	P1.0	and	P1.6
on	the	MSP430	LaunchPad)	will	turn	on	and	wait	for	a	certain	time.	Afterwards,
the	red	LED	(connected	to	P1.0	on	the	MSP430	LaunchPad)	will	turn	off	and	the
green	LED	(connected	to	P1.6)	will	turn	on	and	wait	for	a	certain	time.	Finally,
both	LEDs	will	turn	off.	This	procedure	is	repeated	indefinitely.	Hint:	Use	loop
operations	to	generate	waiting	times.

8.10					Repeat	Prob.	8.9	in	assembly	language.

8.11					Repeat	Prob.	8.9	using	Grace.

8.12					Write	a	C	program	for	the	MSP430	with	the	following	specifications.	When	the
push	button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	is	pressed	four	times,
the	red	LED	(connected	to	P1.0	on	the	MSP430	LaunchPad)	will	turn	on	and	the
green	LED	(connected	to	P1.6	on	the	MSP430	LaunchPad)	will	turn	off.	When	the
push	button	is	pressed	two	more	times,	the	red	LED	will	turn	off	and	the	green
LED	will	turn	on.	This	procedure	is	repeated	indefinitely.

8.13					Repeat	Prob.	8.12	in	assembly	language.

8.14					Repeat	Prob.	8.12	using	Grace.
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The	 interrupt	 is	 the	main	 tool	 for	 event-driven	programming	 in	a	microprocessor.	 If	 the
user	wants	 to	write	 a	 program	 to	 react	 to	 predefined	 actions,	 the	 only	 solution	 is	 using
interrupts.	 The	 most	 important	 (and	 confusing)	 property	 of	 interrupts	 is	 their
unpredictability.	Since	 interrupts	are	generated	by	hardware,	 it	 is	not	possible	 to	predict
when	 they	 will	 occur.	 This	 chapter	 is	 about	 interrupts	 on	 the	 MSP430.	 We	 start	 by
explaining	 what	 happens	 when	 an	 interrupt	 occurs.	 Then,	 step-by-step	 we	 explore	 the
interrupt	concept.

9.1			What	Happens	When	an	Interrupt	Occurs?
We	experience	interrupts	in	our	daily	lives.	Let’s	assume	that	the	fire	alarm	is	activated	for
a	fire	drill	during	the	class	hour.	This	 is	an	 interrupt.	The	instructor	halts	 the	 lesson	and
everyone	 leaves	 the	 class.	 This	 is	what	we	 do	 after	 the	 interrupt.	 After	 the	 fire	 drill	 is
done,	the	lesson	resumes	from	where	it	was	left.	This	is	returning	from	the	interrupt.	The
pattern	is	the	same	for	the	CPU.	Let’s	analyze	what	happens	when	an	interrupt	occurs.

First	of	all,	 the	 interrupt	must	come	from	an	external	source	 (such	as	a	button	or	a
switch)	 or	 an	 internal	 source	 (like	 a	 timer	 or	 an	 analog-to-digital	 conversion	 [ADC]
signal).	The	user	should	enable	the	interrupt	option	for	 the	desired	source	to	process	the
interrupt.	 As	 the	 interrupt	 comes,	 the	 CPU	 stops	what	 it	 is	 doing.	 If	 it	 is	 executing	 an
instruction,	 this	 is	done.	Then,	without	executing	 the	next	 instruction	 the	CPU	saves	 the
program	counter	(PC),	status	register	(SR),	and	variables	to	the	stack.	The	PC	is	set	to	the
interrupt	 vector,	 which	 is	 a	 predefined	 memory	 address	 for	 that	 specific	 interrupt.
Therefore,	 the	 execution	 continues	 from	 that	 address.	As	 a	matter	 of	 fact,	 the	 interrupt
vector	 address	 holds	 another	 address	 to	 be	 branched	 to.	 This	 branched	 address	 holds	 a
subroutine	to	be	processed	in	response	to	the	interrupt.	This	is	called	the	interrupt	service



routine	 (ISR).	The	 user	 is	 responsible	 for	 the	 code	 block	 to	 be	written	 in	 the	 ISR.	The
CPU	recalls	the	saved	PC,	SR,	and	variables	from	the	stack	as	the	ISR	is	executed.	Then	it
turns	back	to	the	main	program	and	continues	executing	the	next	instruction.

Let’s	analyze	a	simple	example	to	clarify	what	happens	when	an	interrupt	occurs.	We
want	to	turn	on	the	red	LED	connected	to	port	P1.0	by	the	push	button	connected	to	pin
P1.3	of	the	MSP430	LaunchPad.	In	this	case,	the	interrupt	source	will	be	pin	P1.3.	Here
we	assume	that	the	port	settings	are	done	as	given	in	Chap.	8.	The	interrupt	from	pin	P1.3
is	enabled	(to	be	explained	in	Sec.	9.6	in	detail).	If	we	only	want	to	turn	on	the	red	LED
when	 the	 button	 is	 pressed,	 the	main	 program	will	 just	 have	 an	 infinite	 loop.	 In	 other
words,	 the	 CPU	will	wait	 in	 an	 infinite	 loop	 doing	 nothing.	When	 the	 user	 pushes	 the
button,	an	interrupt	will	be	generated.	The	CPU	will	stop	the	infinite	loop.	The	CPU	will
set	the	PC	to	the	address	of	the	port	interrupt	vector.	As	the	CPU	reaches	this	address,	it
will	check	what	is	written	there.	The	interrupt	vector	holds	another	address	pointing	to	the
ISR	as	we	mentioned	previously.	Now,	the	CPU	sets	the	PC	to	this	address.	Therefore,	the
CPU	reaches	the	ISR	in	the	next	step.	As	programmers,	it	is	our	responsibility	to	write	the
code	block	in	the	ISR.	Since	our	task	is	just	to	turn	on	the	red	LED,	the	code	in	the	ISR
will	just	set	pin	P1.0	to	VCC.	As	this	code	block	is	executed,	the	CPU	will	turn	back	from
the	ISR	and	continue	to	wait	in	the	infinite	loop.	In	the	following	sections,	we	will	explore
all	these	steps	in	detail.

9.2			Types	of	Interrupts
The	MSP430	 has	 different	 kinds	 of	 interrupt	 sources	 as	 listed	 in	 Table	 9.1.	 These	 are
divided	into	three	groups:	reset,	non-maskable,	and	maskable.	The	reset	interrupt	has	the
highest	priority.	Maskable	and	non-maskable	interrupts	(NMIs)	are	enabled	by	individual
interrupt	 enable	 bits.	 The	main	 difference	 between	 them	 is	 that	maskable	 interrupts	 are
also	controlled	by	the	global	interrupt	enable	(GIE)	bit	in	the	SR.	NMIs	do	not	have	such
control.	There	are	other	NMIs	aside	from	those	listed	in	Table	9.1.	Detailed	 information
on	these	can	be	found	in	[16].

Table	9.1			Interrupt	sources,	flags,	and	vectors.



	

There	is	a	possibility	that	more	than	one	interrupt	will	occur	at	the	same	time.	Hence,
there	 must	 be	 an	 order	 between	 the	 interrupt	 sources.	 This	 is	 called	 the	 priority	 order
among	interrupts.	This	order	indicates	that	when	two	interrupts	occur	at	the	same	time,	the
one	with	 higher	 priority	 will	 take	 precedence	 over	 the	 lower	 priority	 one.	 The	 priority
order	for	the	MSP430	is	provided	in	Table	9.1.

9.3			Interrupt	Flags
Interrupt	flags	are	actually	register	bits.	When	an	interrupt	occurs,	its	specific	flag	is	set.
Therefore,	 the	 CPU	 becomes	 aware	 of	 the	 interrupt.	 The	 list	 of	 interrupt	 flags	 for	 the
MSP430	 appears	 in	 Table	 9.1.	 While	 reset,	 non-maskable,	 and	 universal	 serial
communications	 interface	 (USCI)	 interrupt	 flags	 are	 placed	 in	 interrupt	 flag	 registers,
maskable	interrupt	flags	(except	USCI	interrupt	flags)	are	located	in	the	related	module’s
register.	 There	 is	 also	 a	 CPU	 interrupt	 flag	 controlled	 by	 the	 GIE.	 When	 a	 maskable
interrupt	occurs,	the	CPU	interrupt	flag	and	the	related	flag	in	the	module	register	are	set.

The	CPU	 should	 also	 know	whether	 to	 process	 the	 incoming	 interrupt	 or	 not.	 The
interrupt	enable	bit	 is	used	for	 this	purpose.	Each	interrupt	has	a	specific	enable	bit	 in	a
different	register	address.	This	bit	must	be	set	to	request	an	interrupt.	It	is	sufficient	to	set
the	related	enable	bit	for	NMIs.	But	the	GIE	bit	must	also	be	set	for	maskable	interrupts.



The	GIE	bit	warns	the	CPU	about	the	interrupt	process	for	these.	The	individual	interrupt
enable	bit	gives	information	about	the	interrupt	source.

For	 some	 microcontrollers,	 an	 interrupt	 with	 higher	 priority	 may	 occur	 while	 an
interrupt	with	a	lower	priority	is	in	progress.	This	is	called	a	nested	interrupt.	But	this	may
cause	a	stack	overflow.	The	GIE	bit	is	cleared	when	the	ISR	is	called	in	the	MSP430.	This
prevents	 calling	any	other	maskable	 interrupts.	 In	other	words,	nested	 interrupts	 are	not
allowed	 in	 the	MSP430.	To	enable	 the	 interrupt	 from	the	same	source	again,	 the	related
interrupt	flag	must	be	reset	in	the	ISR.	The	GIE	flag	is	cleared	automatically,	so	there	is	no
need	to	reset	it.

9.4			Interrupt	Vectors
As	we	mentioned	in	Sec.9.1,	after	an	interrupt	occurs	and	the	necessary	information	about
the	main	process	is	saved,	the	CPU	needs	to	go	to	the	ISR.	The	memory	address	for	the
ISR	is	kept	in	an	interrupt	vector.	Generally,	each	interrupt	source	has	a	specific	interrupt
vector.	But	 some	of	 them	share	 the	same	 interrupt	vector.	For	each	 interrupt	 source,	 the
interrupt	 vector	 address	 is	 given	 in	 Table	 9.1.	 To	 simplify	 coding,	 these	 addresses	 are
defined	as	constants	in	the	MSP430	header	file	given	in	the	Appendix.	In	Table	9.2,	they
are	shown	as	interrupt	vector	definitions.

Table	9.2			Interrupt	vector	definitions.

	

9.5			Interrupt	Service	Routines
The	interrupt	service	routine	(ISR),	also	known	as	the	interrupt	handler,	is	the	code	block
which	 is	 executed	 when	 an	 interrupt	 occurs.	 The	 ISR	 is	 very	 similar	 to	 a	 function
(subroutine).	But	unlike	a	function,	ISR	is	called	by	the	interrupt.	As	discussed	before,	the



MSP430	doesn’t	allow	nested	 interrupts.	Therefore,	 the	 ISR	must	be	kept	 short.	 It	must
perform	 its	 actions	 as	 quickly	 as	 possible	 and	 return	 to	 the	 main	 code	 to	 allow	 other
interrupts.	To	do	so,	the	programmer	should	also	reset	the	related	interrupt	flag	at	the	end
of	the	ISR.

9.5.1			ISR	in	C

The	pragma	keyword	should	be	used	 in	defining	an	ISR	in	C.	Since	 the	ISR	will	not	be
related	 to	 the	main	 code	 (remember,	 their	 only	 connection	 is	 through	 hardware),	 the	C
compiler	may	not	include	it	in	the	compilation	process.	To	avoid	this,	we	define	the	ISR
with	the	#	pragma	keyword	in	front	of	it.	To	define	to	which	interrupt	vector	this	ISR	is
related,	we	should	also	put	it	before	the	ISR.	The	ISR	should	also	be	distinguished	from	a
function.	Therefore,	the	__interrupt	keyword	should	be	added	before	its	name.	In	Listing
9.1,	these	definitions	are	given	on	a	sample	port	interrupt.

Listing	9.1			ISR	definitions	in	C.

	

	

9.5.2			ISR	in	Assembly

Defining	 the	 ISR	 in	 the	 assembly	 language	 is	 easier	 than	 in	C.	 First	 of	 all,	 there	 is	 no
pragma	keyword	in	the	assembly	code.	The	interrupt	vector	should	be	defined	here	also.
This	is	necessary	to	associate	the	ISR	with	the	interrupt.	In	fact,	we	applied	this	procedure
in	Sec.	7.5.	There,	we	associated	the	RESET	label	with	the	RESET_VECTOR.	Next,	we	provide
a	sample	code	block	in	Listing	9.2	for	the	port-based	interrupt	in	assembly	language.	Here,
the	interrupt	vectors	and	the	ISR	are	associated	at	the	bottom	of	the	code	block.	The	ISR	is
just	like	a	subroutine.	The	only	exception	is	the	instruction	reti,	which	is	used	instead	of
ret	to	return	from	the	ISR.

Listing	9.2			ISR	definitions	in	assembly	language.

	



	

	

9.6			Port	Interrupts
The	 interrupt	may	be	generated	 from	several	 sources	 as	mentioned	earlier.	Since	digital
input	 and	output	 (I/O)	was	considered	 in	Chap.	8,	here	we	 focus	on	 the	 interrupts	 from
ports.	We	will	also	focus	on	interrupts	from	other	sources	in	the	following	chapters.

Ports	P1	and	P2	can	be	used	as	interrupt	sources	for	the	MSP430.	Each	pin	of	these
ports	 can	be	used	 for	 a	different	 interrupt.	Unfortunately,	 these	 share	 the	 same	 interrupt
vector,	 hence	 the	 same	 ISR.	 Interrupt	 flags	 can	 be	 used	 to	 overcome	 this	 issue.	 Using
them,	 the	 task	of	each	pin	 interrupt	can	be	controlled	 separately	by	 the	condition	of	 the
related	interrupt	flag.	There	are	three	special	registers	to	control	port	interrupts:	interrupt
enable	 register	 (PxIE),	 interrupt	edge	select	 register	 (PxIES),	 and	 interrupt	 flag	 register
(PxIFG).

The	PxIE	register	is	used	to	enable	the	interrupt	for	the	associated	pin.	To	enable	the
port	interrupt	from	a	specific	pin,	the	corresponding	bit	in	PxIE	should	be	set.	To	disable



the	interrupt	from	the	same	pin,	the	corresponding	bit	should	be	reset.	Initially	all	the	port
interrupts	are	disabled.

The	PxIES	register	is	used	to	select	the	signal	edge	in	which	the	interrupt	occurs	(on
a	 specific	 pin).	 The	 interrupt	 occurs	 when	 the	 input	 goes	 from	 low	 to	 high,	 if	 the	 bit
corresponding	to	 the	pin	 is	reset.	The	interrupt	occurs	when	the	 input	goes	from	high	to
low,	if	the	bit	is	set.	PxIE	and	GIE	bits	must	be	set	beforehand	to	enable	the	interrupt	from
that	pin.

The	PxIFG	register	is	used	to	check	the	interrupt	condition.	When	an	interrupt	occurs
from	a	pin,	the	related	interrupt	flag	is	set.	PxIFG	must	be	cleared	at	the	end	of	the	ISR	to
allow	a	new	 interrupt.	 In	 the	 same	manner,	 all	 the	 interrupt	 flags	 should	be	 reset	 at	 the
beginning	of	the	program	to	avoid	any	confusion.

9.7			Coding	Practices	for	Interrupts
In	this	section,	we	provide	several	C	and	assembly	codes	related	to	port	interrupts	under
the	 MSP430.	 These	 provide	 basic	 examples	 on	 how	 to	 use	 interrupts	 on	 the	 MSP430
LaunchPad.

9.7.1			Interrupts	in	C

The	first	C	code	on	interrupts,	given	in	Listing	9.3,	toggles	the	red	LED	when	the	button	is
pressed.	 Here,	 it	 is	 important	 to	 note	 that	 all	 the	 interrupts	 are	 enabled	 by	 an	 intrinsic
function	_enable_interrupts().

Listing	9.3			Toggle	the	red	LED	by	an	interrupt,	in	C	language.



	

	

In	the	second	C	code,	given	in	Listing	9.4,	the	number	of	button	presses	is	counted	by
the	 ISR.	Here,	 the	 variable	count	 is	 specifically	 defined	 as	 global.	 Therefore,	 it	 can	 be
kept	between	successive	interrupts.

Listing	9.4			Count	the	number	of	button	presses	by	interrupts,	in	C	language.



	

	

In	the	third	C	code,	given	in	Listing	9.5,	the	red	and	green	LEDs	are	turned	on	based
on	the	total	number	of	button	presses.	Again,	the	variable	count	is	specifically	defined	as
global	for	the	same	reason	given	in	Listing	9.4.

Listing	9.5			Turn	on	and	off	LEDs	by	the	total	number	of	interrupts,	in	C	language.

	



	

	

9.7.2			Interrupts	in	Assembly

In	the	first	assembly-based	port	interrupts	application,	we	redo	the	code	given	in	Listing
9.3.	Here,	we	toggle	red	and	green	LEDs	when	the	button	is	pressed	instead	of	 toggling
the	red	LED	alone.	The	assembly	code	for	this	operation	is	given	in	Listing	9.6.

Listing	9.6			Toggle	red	and	green	LEDs	when	the	button	is	pressed,	in	assembly
language.



	

	

	

In	 the	 second	assembly-based	port	 interrupt	application,	we	 redo	 the	code	given	 in
Listing	9.5.	The	final	assembly	code	is	given	in	Listing	9.7.

Listing	9.7			Turn	on	and	off	LEDs	by	the	total	number	of	interrupts,	in	assembly
language.



	



	

	

9.8			Interrupts	in	Grace
We	can	use	Grace	to	handle	interrupts.	There	are	several	interrupt	sources	for	the	MSP430
as	 tabulated	 in	Table	9.1.	Up	 to	now,	we	only	considered	port	 interrupts.	Therefore,	we
will	focus	on	them	in	this	section.

9.8.1			Port	Interrupts

The	 port	 power	 user	 or	 P1/P2	mode	 of	 general	 purpose	 input	 and	 output	 (GPIO)	 has	 a
View	 All	 Interrupt	 Handlers	 link.	 As	 we	 press	 it,	 a	 new	 tab	 named	 Interrupt	 Vectors
appears.	This	is	given	in	Fig.	9.1.	In	this	tab,	all	interrupt	sources	are	listed	under	the	All
Interrupts	 list.	 We	 should	 select	 either	 Port	 1	 or	 Port	 2	 in	 this	 list	 to	 generate	 a	 port
interrupt.	As	we	select	one	of	these	options,	the	select	buttons	for	specific	pins	appear	on
the	right	as	shown	in	Fig.	9.1.



	

Figure	9.1			Interrupt	vectors	under	Grace.

	

The	Generate	 Interrupt	Handler	Code	button	generates	 the	prototype	 ISR	under	 the
file	 Interrupt	Vectors_init.c.	This	 file	can	be	opened	by	pressing	 the	 link	Open	 Interrupt
Vector	File	 on	 the	 right	 top	 corner	 of	Fig.	9.1.	As	 a	 reminder,	 this	 file	 is	 automatically
generated.	Unfortunately,	it	is	reset	whenever	a	hardware	option	is	changed	under	Grace.
Therefore,	it	should	be	used	with	caution.

9.8.2			Coding	Practices

In	this	section,	we	redo	the	port	interrupt	application	given	in	Listing	9.3	using	Grace.	As
a	 reminder,	 this	 application	 toggles	 the	 red	 LED	 (connected	 to	 P1.0	 on	 the	 MSP430
LaunchPad)	when	the	button	(connected	to	P1.3	on	the	MSP430	Launch-Pad)	is	pressed.
We	 start	 by	 generating	 a	 Grace	 project.	 Then,	 we	 configure	 pins	 P1.0	 and	 P1.3	 under
Grace.	The	pin	P1.0	should	be	set	as	GPIO	output.	The	pin	P1.3	should	be	set	as	 input.
These	settings	can	be	done	by	any	of	 the	 three	GPIO	views	given	 in	Sec.	8.5.	The	port
interrupt	 property	 of	P1.3	 should	 also	 be	 done	 either	 from	 the	 power	 user	 or	 the	P1/P2
mode	of	 the	GPIO.	 In	 this	application,	we	do	not	add	any	code	 lines	 to	 the	main.c	 file.
Since	we	are	using	 the	 ISR,	we	generate	 an	 ISR	prototype	using	 the	Generate	 Interrupt
Handler	Code	button.	We	fill	the	prototype	Port	1	ISR	block	under	Interrupt	Vectors_init.c
as	given	in	Listing	9.8.	After	compiling	the	project,	we	can	run	our	application.

Listing	9.8			Generating	a	port	interrupt	under	Grace.

	

	



9.9			Washing	Machine	Application
The	aim	in	this	application	is	 to	 learn	how	to	set	and	use	port	 interrupts	of	 the	MSP430
microcontroller.	As	 a	 real-world	 application,	we	will	 design	 a	washing	machine	 system
using	a	stepper	motor.	In	this	section,	we	provide	the	equipment	list,	layout	of	the	circuit,
procedure,	and	system	design	specifications.

9.9.1			Equipment	List

Following	is	the	equipment	list	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		One	stepper	motor

•		One	ULN2003	motor	driver

•		Five	push	buttons

•		Three	100-ηF	capacitors

•		Two	LEDs	(yellow	and	red)

•		Two	220-Ω	resistors

The	stepper	motor	is	a	device	that	rotates	in	steps,	rather	than	turning	smoothly	as	a
dc	 motor	 does.	 The	 rotation	 step	 size	 can	 be	 0.9	 (half-stepping)	 or	 1.8	 (full-stepping)
degrees.	Therefore,	a	full	rotation	needs	400	and	200	steps	respectively.	The	speed	of	the
motor	 is	 determined	 by	 the	 time	delay	 between	 each	 step.	 In	 this	 application,	we	 use	 a
four-phase	stepper	motor.

We	 should	 feed	 a	 binary	 sequence	 to	 rotate	 the	 stepper	motor.	 This	 sequence	will
hold	the	states.	For	our	four-phase	motor,	the	binary	sequence	for	half-stepping	is	given	in
Table	9.3.	For	full-stepping,	this	sequence	will	be	as	in	Table	9.4.	We	should	feed	one	of
these	sequences	in	a	periodic	manner	in	order	to	rotate	the	stepper	motor	continuously.	We
should	 also	 add	 a	 time	delay	between	each	 state	 in	 the	 sequence	 for	 the	motor	 to	work
properly.

Table	9.3			Half-step	control	sequence.



	

Table	9.4			Full-step	control	sequence.

	

	

9.9.2			Layout

The	layout	of	this	application	is	given	in	Fig.	9.2.	The	voltage	supply	block	will	be	used
in	future	applications	also.	Therefore,	it	is	given	in	Fig.	9.3.

direction.



	

Figure	9.2			Layout	of	the	washing	machine	application.

	

	

Figure	9.3			The	voltage	supply	block.



	

9.9.3			System	Design	Specifications

The	 washing	 machine	 will	 be	 controlled	 by	 five	 push	 buttons.	 Two	 of	 them	 are	main
on/off	 and	 rotation	 speed.	 The	 remaining	 three	 buttons	 are	 for	 program	 selection	 as
follows:

•		Prewash:	30	rotations	in	one	direction,	then	30	rotations	in	the	other	direction.

•		Normal	wash:	100	rotations	in	one	direction,	then	100	rotations	in	the	other

•		Final	spin:	50	rotations	in	one	direction,	but	faster	than	prewash	and	normal	wash.

When	the	main	on/off	button	is	pressed,	the	system	will	be	activated.	To	indicate	this,
the	red	LED	will	turn	on.	In	this	state,	all	programs	(prewash,	normal	wash,	and	final	spin)
can	be	performed.	Each	program	can	be	selected	by	a	specific	button.	There	 is	an	extra
button	 for	 adjusting	 the	 rotation	 speed	 to	 slow	 or	 fast.	Depending	 on	 the	 selection,	 the
yellow	LED	will	be	either	on	or	off.	When	 the	main	on/off	button	 is	pressed	again,	 the
system	will	be	deactivated.	To	indicate	this,	the	red	LED	will	turn	off.

9.9.4			The	C	Code	for	the	System

In	 the	first	part	of	 the	code,	constants	 for	 interrupts	and	output	pins	are	defined.	This	 is
done	to	make	the	code	more	readable.	Here,	ONOFF,	RSPEED,	NWASH,	PWASH,	and	FSPIN
are	used	for	 interrupts	from	push	buttons.	YellowLedToggle	and	RedLedToggle	are	used
for	 toggling	 the	 LEDs.	 Also	 NormalWash,	 PreWash,	 and	 FinalSpin	 are	 defined	 as
constants	with	appropriate	values.	The	code	block	for	this	part	is	given	in	Listing	9.9.

Listing	9.9			Washing	machine,	the	C	code	part	I.

	

	

In	the	second	part	of	the	code,	global	variables	are	defined.	The	code	block	for	this
part	is	given	in	Listing	9.10.	Here,	the	Program	variable	is	used	for	determining	the	wash
cycle.	The	RotationSpeed	variable	is	used	for	choosing	the	rotation	speed	option	for	the
system.	The	open	variable	is	used	for	controlling	the	on/off	property	of	the	main	button.
These	are	defined	as	global	variables	since	they	are	used	by	the	ISR.



Listing	9.10			Washing	machine,	the	C	code	part	II.

	

	

In	the	third	part	of	the	code,	given	in	Listing	9.11,	the	hardware	setup	is	done.	In	the
first	line	of	Listing	9.11,	the	watchdog	timer	is	disabled.	The	reason	for	this	step	will	be
explained	in	Sec.	10.5.	In	the	second	line,	port	P2	is	configured	as	digital	I/O	completely.
In	the	third	and	fourth	lines,	pin	directions	are	assigned.	For	port	P1,	P1DIR=0xFF	is	used
because	 the	 stepper	motor	 is	 connected	 to	pins	P1.0,	P1.1,	P1.2,	 and	P1.3.	Unused	pins
P1.4,	P1.5,	P1.6,	and	P1.7	are	 set	as	output.	For	port	P2,	P2DIR=0x83	 is	used	 since	 five
push	 buttons	 are	 connected	 to	 pins	 P2.2,	 P2.3,	 P2.4,	 P2.5,	 and	 P2.6.	 Two	 LEDs	 are
connected	to	P2.0	and	P2.1.	Unused	pin	P2.7	is	again	set	as	output.	In	the	fifth	line,	pull-
up/down	 resistors	 for	 button-connected	 pins	 of	 port	 P2	 are	 enabled.	 In	 the	 sixth	 and
seventh	lines,	output	registers	are	set	as	P1OUT=0x00	and	P2OUT=0x7C.	Unnecessary	power
consumption	 is	 prevented	 for	 unused	 output	 pins	 by	 this	 procedure.	On	 the	 other	 hand,
high	bits	of	the	P2OUT	register	are	used	for	choosing	pull-up	resistors	for	input	pins.	In
the	next	three	lines,	interrupt	configurations	for	port	P2	are	done.	Interrupt	is	enabled	for
pins	P2.2,	P2.3,	P2.4,	P2.5,	and	P2.6	by	P2IE=0x7C	 (since	a	push	button	is	connected	to
each).	All	of	these	five	interrupts	are	triggered	by	a	high-to-low	transition.	Therefore,	we
set	 P2IES=0x7C.	 Also,	 all	 interrupt	 flags	 are	 cleared	 at	 the	 beginning	 of	 the	 code	 by
P2IFG=0x00.	Finally,	in	the	last	line	the	GIE	bit	is	set	to	enable	maskable	interrupts	by	the
intrinsic	function	_enable_interrupts().

Listing	9.11			Washing	machine,	the	C	code	part	III.

	

	

ISR	settings	 for	port	P–2	based	 interrupts	 are	given	 in	Listing	9.12.	There	are	 five



interrupt	sources	coming	from	five	different	buttons.	The	main	on/off	button	 toggles	 the
variable	open.	It	also	toggles	the	red	LED	to	inform	the	user	whether	the	system	is	on	or
off.	The	rotation	speed	button	toggles	the	variable	RotationSpeed.	It	also	warns	the	user
about	the	selected	rotation	speed	by	toggling	the	yellow	LED.	The	other	three	buttons	are
used	for	choosing	the	wash	program	(prewash,	normal	wash,	and	final	spin).	Each	button
assigns	a	different	number	to	the	variable	program.	The	related	interrupt	flag	is	cleared	at
the	end	of	the	ISR	to	get	a	new	interrupt.

Listing	9.12			Washing	machine,	the	C	code	part	IV.

	

	

Finally,	the	C	code	for	the	system	(with	all	its	components)	is	given	in	Listing	9.13.
The	code	block	doing	the	operation	is	put	in	an	infinite	loop.	Therefore,	 the	system	will
wait	for	an	input	and	check	for	the	buttons	all	the	time.

Listing	9.13			Washing	machine,	the	C	code.



	



	



	



	

	

There	are	two	functions	used	in	this	code:	delay_ms	and	Wash.	Delay	times	between
the	 stepper	motor	 states	 are	 obtained	 by	 the	 delay_ms	 function.	 This	 function	 calls	 the
intrinsic	_delay_cycles	 function	with	 a	 value	 of	 1	ms.	This	 intrinsic	 function	 is	 called
within	a	loop	(by	the	time	coming	from	the	input	variable	a)	 to	obtain	the	desired	delay
time.	The	Wash	function	is	used	to	rotate	the	stepper	motor	according	to	the	value	chosen
by	 the	 rotation	speed	and	one	of	 the	 three	program	selection	buttons.	Program	selection
buttons	 determine	 the	 number	 of	 right	 turns,	 number	 of	 left	 turns,	 and	 the	 delay	 time
coefficient	(for	slow	or	fast	rotation	speed).	The	rotation	speed	button	is	used	to	select	the
fast	or	slow	rotation	speed.	To	rotate	the	stepper	motor,	a	while	loop	is	added	to	send	the
states	 given	 in	Table	9.3.	The	 iteration	 number	 of	 these	 sequences	 is	 controlled	 by	for
loops.	Each	for	loop	has	a	condition	open==1.	This	is	used	for	breaking	the	for	loop	when
the	main	on/off	button	is	pressed.

9.10			Summary
This	 chapter	 is	 about	 the	 interrupt-based	 programming	 of	 the	 MSP430.	 We	 first
considered	what	 happens	when	 an	 interrupt	 occurs.	 Then,	 step-by-step	we	 explored	 the
interrupt	concept.	Therefore,	we	analyzed	the	interrupt	 types,	 interrupt	vectors,	and	ISR.



We	 only	 considered	 port-based	 interrupts	 here,	 since	we	 discussed	 digital	 I/O	 concepts
previously.	 In	 later	 chapters,	 we	will	 also	 see	 timer,	 ADC,	 and	 digital	 communication-
based	 interrupts.	We	 provided	 sample	 C	 and	 assembly	 codes	 using	 interrupts.	We	 also
considered	the	interrupt	concept	under	Grace.	Finally,	we	provided	a	real-life	application
using	port	interrupts.

9.11			Problems
9.1					What	is	the	difference	between	the	interrupt	service	routine	and	the

interrupt	vector?

9.2					Write	a	C	program	for	the	MSP430	that	will	count	the	number	of
times	the	push	button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	is
pressed.

a.				The	button-pressing	operation	should	be	defined	in	an	ISR.

b.				Observe	the	count	value	from	the	Watch	window.

9.3					Repeat	Prob.	9.2	in	assembly	language.

9.4					Expand	Prob.	9.2	such	that

a.				At	the	beginning	of	the	program,	the	green	LED	(connected	to
P1.6	on	the	MSP430	LaunchPad)	will	turn	on.

b.				When	the	count	reaches	multiples	of	five,	the	green	LED
(connected	to	P1.6	on	the	MSP430	LaunchPad)	will	toggle.

9.5					Repeat	Prob.	9.4	in	assembly	language.

9.6					Repeat	Prob.	9.4	using	Grace.

9.7					Repeat	Probs.	8.9	and	8.10	using	interrupts.

9.8					Repeat	Prob.	8.9	using	interrupts	under	Grace.

9.9					Repeat	Probs.	8.12	and	8.13	using	interrupts.

9.10					Repeat	Prob.	8.12	using	interrupts	under	Grace.

9.11					Write	a	C	program	for	the	MSP430	such	that	the	global	integer	array	x	with
10	elements	will	be	filled	initially.	For	this	problem,	fill	it	at	the	beginning	of
the	code.	When	an	interrupt	comes	from	the	push	button	(connected	to	P1.3
on	the	MSP430	LaunchPad),	the	ISR	will	be	called.	The	ISR	will	calculate
the	global	integer	array	y	defined	as	y[n]	=	2*x[n]	−	x[n−1]	where	n	is	the
index	for	the	array.	In	fact,	this	is	a	simple	filtering	operation	working	with
interrupts.	In	the	actual	application,	the	interrupt	should	come	from	some
other	source.	The	array	y	should	also	be	filled	by	an	other	module	or	a
peripheral	(such	as	ADC).

9.12					Repeat	Prob.	9.11	in	assembly	language.

9.13					Repeat	Prob.	9.11	using	Grace.
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In	earlier	microcontrollers,	there	was	just	one	clock	(supplied	by	one	oscillator)	to	handle
all	time-based	operations.	In	modern	microcontrollers	this	approach	has	been	abandoned,
and	different	time-based	operations	are	handled	by	different	clocks	(supplied	by	different
oscillators).	As	a	modern	microcontroller,	the	MSP430	also	has	this	property.	Therefore,	it
has	three	oscillators	and	three	clocks.	In	this	chapter,	we	will	start	with	the	oscillators.	The
clocks	of	 the	MPS430	are	managed	by	the	basic	clock	module+	(BCM+).	Next,	we	will
focus	 on	 it.	 The	CPU	 also	 depends	 on	 a	 clock	 signal	 to	 operate.	 Therefore,	 to	 halt	 the
operation	of	the	CPU,	we	should	disable	its	clock.	This	is	the	main	idea	behind	low-power
modes.	We	will	also	introduce	them	in	this	chapter.	Then	we	will	consider	the	watchdog
timer.	Finally,	we	will	focus	on	the	Timer_A	(TA)	module	of	the	MSP430.

10.1			Oscillators
The	oscillator	is	the	basic	building	block	of	the	clock.	The	MSP430	has	three	oscillators:
the	 digitally	 controlled	 oscillator	 (DCO),	 very	 low	 power	 oscillator	 (VLO),	 and	 low-
frequency/high-frequency	external	oscillator	(LFXT1).	Their	properties	are	briefly	listed
in	Table	10.1.

Table	10.1			Oscillators	in	the	MSP430.



	

As	can	be	 seen	 in	Table	10.1,	 the	DCO	and	VLO	are	based	on	an	 internal	 resistor
capacitor	(RC)–based	circuitry.	Therefore	the	DCO	and	VLO	are	cheap	and	quick	to	start.
Unfortunately,	they	have	poor	accuracy.	On	the	other	hand,	LFXT1	is	based	on	an	external
crystal,	 which	 is	 expensive	 and	 needs	 a	 longer	 time	 to	 start.	 However,	 crystal-based
oscillators	are	accurate	and	stable.	Internal	RC	oscillators	are	sufficient	if	accurate	timing
is	not	required.	The	oscillators	are	briefly	summarized	in	the	following	subsections.	How
to	handle	their	faulty	operations	is	also	explained	in	a	separate	subsection.

10.1.1			Digitally	Controlled	Oscillator

The	 digitally	 controlled	 oscillator	 (DCO)	 is	 a	 high-frequency	 integrated	 oscillator.	 Its
frequency	 can	 be	 as	 high	 as	 16	MHz.	 The	DCO	 is	 based	 on	 the	 internal	 RC	 circuitry.
Hence,	 it	 is	 not	 accurate	 as	 crystal	 oscillators.	On	 the	 other	 hand,	 the	DCO	 draws	 less
current.	Hence,	it	consumes	less	energy.	The	frequency	accuracy	of	the	DCO	varies	in	a
2%	range.

10.1.2			Very	Low	Power	Oscillator

The	 very	 low	 power	 oscillator	 (VLO)	 is	 a	 low-frequency	 internal	 RC	 oscillator.	 Its
frequency	can	be	around	12	kHz.	The	VLO	is	generally	used	for	periodically	waking	up
the	device	 from	 low-power	modes.	The	 frequency	accuracy	of	 the	VLO	varies	 in	 a	5%
range.	Therefore,	it	is	not	as	accurate	as	the	DCO.

10.1.3			Low-Frequency	External	Oscillator

The	 low-frequency	 external	 oscillator	 (LFXT1)	 can	 be	 used	 by	 connecting	 an	 external
crystal	between	XIN	and	XOUT	pins.	Capacitors	should	also	be	connected	between	these
pins	and	the	ground.	The	MSP430	has	internal	capacitors	for	this	purpose.	External	crystal
oscillators	are	more	accurate	and	stable	than	internal	RC-based	oscillators.	However,	they
are	 expensive,	 consume	 more	 energy,	 and	 need	 more	 time	 to	 reach	 their	 stable	 state.
Therefore,	they	should	not	be	preferred	unless	accurate	timing	is	required.

10.1.4			Oscillator	Faults

External	crystal	oscillators	may	cause	errors	due	to	their	startup	stabilization	time	or	to	a
failure	during	operation.	When	an	oscillator	 fault	occurs,	 system	clocks	 sourced	 from	 it
also	malfunction.	In	such	a	case,	only	the	master	clock	source	is	switched	to	the	DCO	for
clocking	 the	CPU.	But	 this	process	may	also	cause	problems.	Fortunately,	 the	CPU	can
detect	 these	 faults	 through	 the	 individual	 oscillator	 fault	 bits	 such	 as	 the	oscillator	 fault
interrupt	flag	(OFIFG).	Then	the	oscillator	fault	can	be	fixed	by	software.

The	 MSP430G2553	 has	 only	 LFXT1,	 which	 uses	 an	 external	 crystal.	 Therefore,
checking	the	OFIFG	is	sufficient.	The	best	way	to	fix	an	oscillator	fault	is	to	use	the	NMI.



The	OFIFG	calls	the	NMI	handler	if	the	oscillator	fault	interrupt	enable	(OFIE)	bit	is	set.
Then	 the	OFIFG	 is	 cleared	 repeatedly	 (until	 it	 stays	 cleared)	 in	 the	 associated	 interrupt
service	 routine	 (ISR).	The	OFIE	bit	 is	 cleared	 automatically	when	 the	NMI	 is	 handled.
Therefore,	it	must	be	set	again.	For	more	information	on	this	issue,	please	see	[17].

10.2			Clocks
The	MSP430	has	three	clocks	sourced	by	the	oscillators	explained	in	the	previous	section.
These	 are	 the	 master	 clock	 (MCLK),	 sub-main	 clock	 (SMCLK),	 and	 auxiliary	 clock
(ACLK).	Their	properties	are	listed	in	Table	10.2.

Table	10.2			Clocks	in	the	MSP430.

	

10.2.1			The	Basic	Clock	Module+

The	 clocks	 of	 the	MSP430	 are	 handled	 by	 the	 basic	 clock	module+	 (BCM+).	 A	 block
diagram	 of	 this	 module	 is	 given	 in	 Fig.	 10.1.	 As	 can	 be	 seen	 in	 this	 figure,	 the	 clock
source,	type,	frequency	division	ratio,	and	other	properties	can	be	configured.	This	is	done
by	the	dedicated	BCM+	registers	to	be	explained	next.



	

Figure	10.1			Block	diagram	of	the	BCM+.

	

10.2.2			BCM+	Registers

There	 are	 six	 dedicated	 registers	 to	 configure	 the	 BCM+.	 These	 are	 the	 DCO	 control
register	 (DCOCTL),	 basic	 clock	 system	 control	 register	 1	 (BCSCTL1),	 basic	 clock
system	control	register	2	(BCSCTL2),	basic	clock	system	control	register	3	(BCSCTL3),
interrupt	enable	register	(IE1),	and	interrupt	flag	register	(IFG1).

In	this	book,	we	will	not	consider	DCOCTL.	More	information	on	it	can	be	found	in
[17].	Instead,	we	will	adjust	the	frequency	of	the	DCO	by	predefined	values.	The	MSP430
has	four	calibrated	DCO	frequency	values:	1	MHz,	8	MHz,	12	MHz,	and	16	MHz.	These
are	represented	by	the	constants	given	in	Table	10.3.

Table	10.3			Calibration	codes	for	the	DCO	and	BCS.



	

The	entries	of	the	BCSCTL1	register	are	shown	in	Table	10.4.	This	register	is	mainly
responsible	 for	 the	auxiliary	clock.	 In	Table	10.4,	 the	XTS	bit	 is	used	 for	LFXT1	mode
selection.	When	it	is	reset,	low-frequency	mode	is	selected.	When	it	is	set,	high-frequency
mode	 is	 selected.	 To	 note	 here,	 setting	 XTS	 is	 not	 supported	 for	 the	 MSP430G2553.
DIVAx	bits	are	used	for	frequency	division	by	1,	2,	4,	and	8	for	the	ACLK.	Constants	for
these	values	 are	DIVA_0,	DIVA_1,	DIVA_2,	 and	DIVA_3	 respectively.	RSELx	 bits	 are
used	for	the	DCO.	Hence,	we	will	not	explain	them	here.

Table	10.4			BCM+	control	register	1	(BCSCTL1).

	

The	entries	of	the	BCSCTL2	register	are	shown	in	Table	10.5.	This	register	is	mainly
responsible	 for	 the	 master	 and	 sub-main	 clock.	 In	 Table	 10.5,	 SELMx	 bits	 select	 the
MCLK	 oscillator.	 Constants	 for	 these	 bits	 are	 SELM_0	 and	 SELM_1	 (for	 DCOCLK),
SELM	2	and	SELM	3	(for	VLOCLK	or	LFXTCLK).	DIVMx	bits	are	used	for	frequency
division	 by	 1,	 2,	 4,	 and	 8	 for	 the	 MCLK.	 Constants	 for	 these	 values	 are	 DIVM_0,
DIVM_1,	 DIVM_2,	 and	 DIVM_3	 respectively.	 The	 SELS	 bit	 is	 used	 for	 the	 SMCLK
oscillator.	 When	 this	 bit	 is	 reset,	 DCOCLK	 is	 used.	 When	 it	 is	 set,	 LFXT1CLK	 or
VLOCLK	is	used.	DIVSx	 bits	 are	used	 for	 frequency	division	by	1,	2,	4,	 and	8	 for	 the
SMCLK.	 Constants	 for	 these	 values	 are	 DIVS_0,	 DIVS_1,	 DIVS_2,	 and	 DIVS_3
respectively.

Table	10.5			BCM+	control	register	2	(BCSCTL2).



	

The	entries	of	the	BCSCTL3	register	are	shown	in	Table	10.6.	This	register	is	mainly
responsible	for	the	external	oscillator	and	clock.	In	Table	10.6,	LFXT1Sx	bits	are	used	for
low-frequency	clock	and	range	select.	Constants	for	these	bits	are	LFXT1S_0	(for	external
crystal),	LFXT1S_1	(reserved),	LFXT1S_2	(for	VLO),	and	LFXT1S_3	(for	digital	 input
signal).	 The	 MSP430G2553	 does	 not	 have	 an	 XT2	 oscillator.	 Therefore,	 XT2Sx	 and
XT2OF	 bits	 are	 not	 used.	 XCAPx	 bits	 are	 used	 for	 selecting	 internal	 capacitors	 for
external	crystal	oscillator.	Here,	1-pF,	6-pF,	10-pF,	or	12.5-pF	capacitor	can	be	chosen.	If
an	external	clock	source	will	be	used	for	the	system,	these	bits	must	be	reset.	LFXT1OF
bit	represents	whether	an	oscillator	fault	is	present	or	not.

Table	10.6			BCM+	control	register	3	(BCSCTL3).

	

10.2.3			Coding	Practices	for	the	BCM+	Module

In	Listing	10.1,	we	provide	a	code	block	for	adjusting	clocks.	In	the	first	two	lines	of	the
code,	the	VLO	is	set	to	produce	a	3-kHz	ACLK	clock	signal.	In	the	third	line	of	the	code,
LFTX1	with	a	10-pF	internal	capacitor	is	used	to	produce	a	32-kHz	ACLK	clock	signal.

Listing	10.1			The	C	code	block	for	adjusting	clocks.

	

	

10.3			BCM+	in	Grace
In	 the	 Device	 Overview	 window	 of	 Grace	 (given	 in	 Fig.	 5.11),	 the	Oscillators	 Basic
Clock	 System+	 block	 is	 used	 to	 configure	 the	 BCM+.	 The	 “Enable	 Clock	 in	 my
configuration”	box	should	be	checked	first	to	use	the	BCM+	under	Grace.	As	a	note,	the
BCM+	is	called	Basic	Clock	System+	in	Grace.	As	in	the	previous	blocks,	there	are	three
options	for	this	configuration.	We	will	consider	each	next.

10.3.1			The	Basic	User	Mode

The	basic	user	mode	 is	 shown	 in	Fig.	10.2	 for	 the	BCM+.	 In	 this	mode,	 high-and	 low-
speed	 clock	 frequencies	 for	 the	 CPU	 and	 other	 peripherals	 can	 be	 set	 separately.



Calibrated	clock	frequencies	(1	MHz,	8	MHz,	12	MHz,	and	16MHz)	can	be	used	for	the
high-speed	 clock	 source.	 The	 other	 option	 is	 entering	 the	 desired	 frequency	 into	 the
“manually	 configure”	box.	The	closest	producible	 frequency	value	will	 be	generated.	A
12-kHz	VLO	or	32-kHz	crystal	frequency	values	can	be	chosen	for	 the	low-speed	clock
source.

	

Figure	10.2			Basic	user	mode	for	the	BCM+.

	

10.3.2			The	Power	User	Mode

In	 the	 power	 user	mode	 of	 the	BCM+	 (shown	 in	 Fig.	10.3),	 system	 clocks	 can	 also	 be
configured.	The	high-speed	clock	source	is	specified	as	the	DCO.	It	can	be	disabled	from
the	“Disable	DCO”	check	box	 if	 it	 is	not	used.	For	 the	 low-speed	clock	source,	12-kHz
VLO,	32-kHz	crystal	or	an	external	digital	source	(by	marking	the	related	check	box)	can
be	selected	from	the	Select	Clock	Source	drop-down	list.	If	the	external	crystal	is	used	for
low-speed	clock	source,	internal	capacitor	values	should	also	be	determined	from	the	Int.
Load	Eff.	Capacitance	drop-down	 list.	An	 initial	delay,	 in	 terms	of	milliseconds,	can	be
added	to	the	configured	clock	from	the	System	Start-up	Delay	box.	Then,	the	configured
clock	 source	 can	 be	 used	 as	 the	 system	 clock	 as	MCLK	 or	 SMCLK.	ACLK	 is	 always
sourced	 from	 the	 Low-Speed	External	 Clock	 Source	 1.	 Frequency	 division	 can	 also	 be
applied	 to	 the	 clocks	 in	 this	 mode	 by	 the	 associated	 “Divider”	 drop-down	 list.	 The
SMCLK	and	ACLK	can	also	be	fed	to	the	related	output	pins	by	the	Output	SMCLK	and
Output	ACLK	drop-down	lists.	The	oscillator	fault	 interrupt	can	also	be	set	by	checking
the	Oscillator	Fault	Interrupt	Enable	box.	Then,	the	prototype	ISR	can	be	generated	under



the	Interrupt	Vectors_init.c	file	by	pressing	the	Generate	Interrupt	Handler	Code	button.

	

Figure	10.3			Power	user	mode	for	the	BCM+.

	

10.3.3			The	Register	Controls	Mode

Finally,	 the	 register	 controls	 mode	 can	 be	 used	 to	 configure	 the	 BCM+	 registers.	 The
register	 controls	mode	 is	 shown	 in	 Fig.	 10.4.	 In	 these	 registers,	 some	 bits	 are	 disabled
since	the	user	cannot	change	them.	There	are	also	drop-down	lists	to	adjust	some	register
entries.



	

Figure	10.4			The	register	controls	mode	for	the	BCM+.

	

10.4			Low-Power	Modes
Power	consumption	is	a	critical	feature	for	modern	battery-controlled	devices.	Therefore,
modern	microcontrollers	are	designed	to	work	in	low-power	modes	(LPMs).	The	MSP430
has	one	active	and	five	low-power	modes,	as	listed	below.

•		Active	mode	(AM):	CPU,	all	clocks	and	enabled	peripheral	modules	are	active.	Draws
about	230-μA	current.

•		Low-power	mode	0	(LPM0):	CPU	and	MCLK	are	disabled.	SMCLK	and	ACLK	are
still	active.	Draws	about	56-μA	current.

•		Low-power	mode	1	(LPM1):	CPU	and	MCLK	are	disabled.	SMCLK	and	ACLK	are
still	active.	DCO	is	disabled	if	it	is	not	used.

•		Low-power	mode	2	(LPM2):	CPU,	MCLK,	and	SMCLK	are	disabled.	ACLK	and



DCO	remain	active.	Draws	about	22-μA	current.

•		Low-power	mode	3	(LPM3):	CPU,	MCLK,	SMCLK,	and	DCO	are	disabled.	ACLK
remains	active.	Draws	about	0.5-μA	current.	This	is	also	called	the	standby	mode.

•		Low-power	mode	4	(LPM4):	CPU,	all	clocks,	and	the	crystal	oscillator	are	disabled.
Only	RAM	is	retained.	Draws	about	0.1-μA	current.	This	is	also	called	the	off	mode.

In	each	mode,	only	necessary	modules	(peripherals	and	the	CPU)	are	active.	This	is
achieved	by	disabling	and	enabling	clocks	feeding	the	modules.	We	provide	the	effect	of
each	low-power	mode	on	the	SR	bits	in	Table	10.7.

Table	10.7			The	effect	of	the	low-power	modes	on	the	SR	bits.

	

Since	various	operations	should	be	done	to	enter	or	exit	a	low-power	mode,	there	are
predefined	constants	in	the	MSP430	header	file.	In	Table	10.8,	constants	for	entering	low-
power	modes	are	tabulated.

Table	10.8			Predefined	constants	for	entering	LPM.

	

Similarly,	in	Table	10.9,	constants	for	exiting	low-power	modes	are	tabulated.	These
can	be	directly	used	in	C	and	assembly	programs.

Table	10.9			Predefined	constants	for	exiting	LPM.



	

Some	 points	 should	 be	 taken	 into	 account	 when	 using	 low-power	 modes	 with
interrupts.	First,	if	the	LPM_EXIT	command	is	not	entered	in	the	ISR,	the	CPU	turns	back
to	 the	 code	 line	where	 the	 interrupt	 is	 generated.	This	 property	 can	be	 used	 to	 form	an
infinite	 loop	 in	 time-based	 operations.	We	will	 provide	 examples	 in	 Sec.	10.7.4	 on	 this
issue.	Second,	some	problems	may	occur	while	exiting	from	low-power	modes	in	an	ISR
in	assembly	programming.	This	is	mainly	because	of	the	operation	of	the	CPU.	Since	the
CPU	saves	all	the	data	in	the	stack	while	handling	the	ISR,	this	point	should	be	taken	into
account.	For	example,	we	should	use	bic.w	#LPM0,0(SP)	to	exit	from	LPM0	in	an	ISR.
We	will	provide	examples	in	Sec.	10.7.4	on	this	issue.

10.5			The	Watchdog	Timer
The	watchdog	 timer	 resets	 the	system	periodically	unless	disabled	before	generating	 the
reset	signal.	This	operation	aims	to	eliminate	any	undesired	infinite	loops	in	operation	due
to	 software	 failure.	 The	 watchdog	 timer	 can	 also	 be	 used	 as	 a	 timer	 that	 can	 generate
periodic	 interrupts.	 The	 watchdog	 timer	 module	 is	 specifically	 called	 the	 Watchdog
Timer+	(WDT+)	in	the	MSP430.	The	layout	of	the	WDT+	module	is	given	in	Fig.	10.5.



	

Figure	10.5			Block	diagram	of	the	WDT+	module.

	

The	WDT+	 is	controlled	by	a	16-bit	 register	called	 the	WDTCTL.	The	entries	 for
this	 register	are	given	 in	Table	10.10.	Here,	 the	WDTPW	 bits	 are	used	 for	 entering	 the
password.	To	stop	 the	 reset	 signal	 (power	up	clear,	PUC),	05Ah	should	be	written	 to	 it.
When	 the	WDTHOLD	 bit	 is	 set,	 the	WDT+	 is	 stopped.	The	WDTNMIES	 bit	 sets	 the
WDT+	 non-maskable	 interrupt	 edge	 select.	 When	 this	 bit	 is	 reset,	 the	 interrupt	 is
generated	on	the	rising	edge.	When	it	is	set,	the	interrupt	is	generated	on	the	falling	edge.
The	WDTNMI	bit	is	used	to	select	a	reset	or	a	non-maskable	interrupt.	Since	the	default
work	of	the	WDT+	is	to	periodically	reset	the	CPU,	this	bit	is	initially	reset.	If	this	bit	is
set	(for	non-maskable	interrupt	generation),	the	NMIIE	bit	inside	the	IE1	register	should
be	set	at	the	same	time.	The	WDTTMSEL	is	used	as	the	mode	selection	bit.	When	this	bit
is	 set,	 the	WDT+	 can	 be	 used	 as	 an	 interval	 timer	 (without	 any	 watchdog	 operation).
When	 it	 is	 reset,	 the	WDT+	 is	 used	 as	 a	 watchdog.	 The	WDTCNTCL	 bit	 clears	 the
watchdog	counter	 to	0000h.	The	WDTSSEL	 bit	 selects	 the	WDT+	clock	 source.	When
this	bit	is	reset,	SMCLK	is	used.	When	it	is	set,	ACLK	is	used.	The	WDTISx	bits	are	used
for	 WDT+	 interval	 select	 (both	 for	 watchdog	 and	 timer	 operations).	 Assigning	 binary
values	00,	01,	10,	and	11	to	these	will	lead	to	the	division	of	the	WDT+	clock	source	by



215	 (32,768),	 213	 (8192),	 29	 (512),	 and	 26	 (64)	 respectively.	 In	 a	 way,	 they	 work	 as
frequency	dividers.	The	watchdog	timer	has	a	specific	counter	called	WDTCNT.	It	cannot
be	reached	by	software.

Table	10.10			WDT+	control	register	(WDTCTL).

	

10.5.1			WDT+	Used	as	a	Watchdog

The	WDT+	 is	activated	when	 the	 system	 is	powered	up	or	 reset.	The	WDT+	should	be
disabled	when	it	is	not	used.	This	is	done	by	setting	the	WDTHOLD	bit.	The	C	code	for
this	 operation	 is	 WDTCTL	 =	 WDTPW	 +	 WDTHOLD;	 or	 WDTCTL	 =	 WDTPW|WDTHOLD;.	 The
assembly	 code	 for	 this	 operation	 is	mov.w	#WDTPW+	WDTHOLD,WDTCTL.	 In	 fact,	we	 have
been	using	one	of	these	lines	in	all	our	previous	C	and	assembly	codes.	Now	they	should
make	 sense.	As	 a	matter	 of	 fact,	we	 never	 asked	 the	watchdog	 timer	 to	 operate	 in	 our
previous	codes.

The	 MSP430	 header	 file	 has	 predefined	 constants	 for	 the	 time	 intervals	 of	 the
watchdog	 timer.	 They	 are	 given	 in	Tables	10.11	 and	10.12.	 In	 the	 first	 table,	 the	 clock
source	 for	 the	WDT+	 is	 selected	as	SMCLK	(at	1	MHz).	 In	 the	 second	 table,	 the	clock
source	is	selected	as	ACLK	(at	32	kHz).

Table	10.11			WDT+	constants	when	SMCLK	(1	MHz)	is	used.

	

Table	10.12			WDT+	constants	when	ACLK	(32	kHz)	is	used.

	



10.5.2			WDT+	Used	as	an	Interval	Timer

The	WDT+	can	also	be	used	as	an	interval	 timer	by	setting	the	WDTTMSEL	bit.	When
the	WDT+	is	used	in	the	timer	mode,	a	periodic	interrupt	will	be	generated	instead	of	the
system	reset	signal.	This	interrupt	is	controlled	by	the	WDTIE	bit	in	the	IE1	register.	This
bit	 must	 be	 set	 in	 order	 to	 request	 an	 interrupt.	 In	 this	 mode,	 the	 WDT+	 interrupt	 is
maskable.	 Therefore,	 the	 global	 interrupt	 enable	 (GIE)	 bit	 also	 must	 be	 set.	 The
occurrence	 of	 the	 interrupt	 can	 be	 observed	 by	 the	 watchdog	 timer	 interrupt	 flag
(WDTIFG	bit	 in	the	IFG1	register).	This	bit	 is	set	when	the	WDTCNT	reaches	its	 limit.
WDTIF	is	automatically	reset	after	the	ISR	is	performed.

As	in	the	watchdog	timer	mode,	there	are	predefined	time	interval	constants	for	the
WDT+	used	in	the	interval	timer	mode.	These	are	given	in	Tables	10.13	and	10.14.	As	in
the	previous	tables,	here	the	clock	source	for	the	WDT+	is	selected	as	either	SMCLK	or
ACLK.

Table	10.13			WDT+	constants	when	used	in	the	timer	mode	with	SMCLK	(1	MHz).

	

Table	10.14			WDT+	constants	when	used	in	the	timer	mode	with	ACLK	(32	kHz).

	

10.5.3			Coding	Practices	for	the	WDT+	Module

We	first	provide	the	C	code	in	which	the	WDT+	is	used	as	a	watchdog	in	Listing	10.2.	In
this	 code,	 initially	 the	WDT+	 and	 the	 red	LED	 are	 off.	 The	 red	LED	 turns	 on	 and	 the
WDT+	starts	 to	 run	as	we	press	 the	push	button.	We	use	 the	VLO	for	 the	WDT+.	This
gives	 a	 2.8	 s	 delay.	 The	 program	 counter	 goes	 to	 main	 as	 the	 WDT+	 resets	 the
microcontroller.	Then,	 the	WDT+	and	 the	red	LED	are	 turned	off.	The	system	waits	 for
another	 button	 press	 to	 repeat	 the	 procedure.	 In	 Listing	 10.3,	we	 provide	 the	 assembly
code	doing	the	same	job.

Listing	10.2			Usage	of	the	WDT+	in	watchdog	mode	in	C.



	

	

	

Listing	10.3			Usage	of	the	WDT+	in	Watchdog	Mode	in	assembly.

	



	

	

In	Listing	10.4,	we	provide	a	sample	code	for	the	usage	of	the	WDT+	in	timer	mode.
Here,	 the	red	and	green	LEDs	toggle	every	256	msec	by	using	 the	SMCLK	(divided	by
eight).	The	sample	code	in	Listing	10.5	does	the	same	job	in	assembly	language.

Listing	10.4			Usage	of	the	WDT+	in	timer	mode	in	C.



	

	

Listing	10.5			Usage	of	the	WDT+	in	timer	mode	in	assembly.

	

	



	

	

10.6			WDT+	in	Grace
The	WDT+	configurations	under	Grace	 can	be	done	by	 clicking	 the	Watchdog	WDT+
block	 in	 the	Device	Overview	window	 (given	 in	 Fig.	 5.11).	 This	 block	 should	 also	 be
enabled	first	by	checking	 the	“Enable	WDT+	in	my	configuration”	box.	Then,	 it	can	be
configured	by	three	modes	as	follows.

10.6.1			The	Basic	User	Mode

In	 the	 basic	 user	 mode	 of	 the	WDT+	 (shown	 in	 Fig.	 10.6),	 the	WDT+	modes	 can	 be
selected.	 These	 modes	 are	 Stop	Watchdog	 Timer,	 Interval	 Timer	Mode,	 and	Watchdog
Timer	Mode.	When	one	of	the	last	two	modes	is	selected,	a	new	menu	appears	in	the	same
window.	Here,	 the	 clock	 source	 can	 be	 selected	 from	 the	Clock	Source	 drop-down	 list.
The	frequency	divider	 for	 this	clock	source	can	also	be	set	 from	the	Divider	drop-down
list.	As	a	reminder,	the	frequency	value	for	the	selected	clock	source	can	be	changed	from
the	BCM+	module.	The	WDT+	interrupt	can	be	enabled	by	checking	the	WDT+	Interrupt
Enable	 box.	 Then	 the	 WDT+	 based	 ISR	 prototype	 can	 be	 generated	 in	 Interrupt
Vectors_init.c	by	pressing	the	Generate	Interrupt	Handler	Code	button.



	

Figure	10.6			The	basic	user	mode	for	the	WDT+.

	

10.6.2			The	Power	User	Mode

There	 is	 only	 an	 extra	 RST/NMI	 Pin	 Configuration	 menu	 in	 the	 power	 user	 mode	 as
shown	in	Fig.	10.7.	The	function	of	this	pin	can	be	defined	as	reset	or	NMI.	This	interrupt
can	be	enabled	by	checking	the	NMI	Pin	Interrupt	Enable	box.	The	user	can	set	the	signal
edge	 to	 trigger	 the	 interrupt.	 Then	 the	 ISR	 prototype	 can	 be	 generated	 in	 Interrupt
Vectors_init.c	by	pressing	 the	 related	Generate	 Interrupt	Handler	Code	button.	All	other
configurations	are	the	same	as	those	provided	by	the	basic	user	mode.



	

Figure	10.7			The	power	user	mode	for	the	WDT+.

	

10.6.3			The	Register	Controls	Mode

Finally,	the	register	controls	mode	of	the	WDT+	module	is	shown	in	Fig.	10.8.	As	in	the
previous	section,	the	WDT+	registers	can	be	directly	configured	in	this	mode.



	

Figure	10.8			The	register	controls	mode	for	the	WDT+.

	

10.6.4			Coding	Practices

In	this	section,	we	redo	the	WDT+	time	interval	interrupt	application	given	in	Listing	10.4
using	Grace.	As	a	reminder,	this	application	toggles	the	red	and	green	LEDs	(connected	to
P1.0	 and	P1.6	on	 the	MSP430	LaunchPad)	 every	2.8	 s.	We	 start	 by	generating	 a	Grace
project.	Then	we	configure	the	pins	P1.0	and	P1.6	under	Grace.	Both	pins	should	be	set	as
GPIO	output.	Moreover,	 the	 red	LED	should	be	 initially	 set.	The	green	LED	should	be
initially	 reset.	Do	 not	 forget	 to	make	 necessary	 adjustments	 on	 the	BCS+	module.	 The
power	user	mode	of	the	GPIO	block	should	be	used	for	this	purpose.	We	should	select	the
Interval	Timer	Mode	from	the	WDT+	Mode	Select	list	under	the	basic	user	mode.	In	the
same	 tab,	 we	 should	 select	 the	 clock	 source	 as	 “low-speed	 clock”	 and	 the	 divider	 as
/32768.	To	generate	interrupts,	we	should	check	the	WDT+	Interrupt	Enable	box.

In	 this	 application,	we	 do	 not	 add	 any	 code	 lines	 to	 the	main.c	 file.	 Since	we	 are
using	the	ISR,	we	generate	an	ISR	prototype	using	the	Generate	Interrupt	Handler	Code
button.	We	fill	the	prototype	WDT+	ISR	block	under	Interrupt	Vectors_init.c	as	given	in
Listing	 10.6.	 After	 compiling	 the	 project,	 we	 can	 run	 our	 application.	 The	 power	 user
mode	 is	not	very	different	 for	 the	WDT+.	Therefore,	we	did	not	give	an	example	on	 its
usage	here.

Listing	10.6			The	WDT+	timer	mode	under	Grace	in	basic	user	mode.

	

	



10.7			Timers
The	MSP430	 timer	module	 is	 called	 the	 Timer_A.	 In	 fact,	 the	MSP430G2553	 has	 two
identical	Timer_A	modules	called	TA0	and	TA1.	The	first	Timer_A	module	(TA0)	is	set	as
the	default	timer.	This	timer	is	also	called	TA	in	the	header	file	definitions.	Therefore,	we
will	use	TA	instead	of	TA0	throughout	this	book.	In	Sec.	10.7.4,	we	also	provide	a	sample
code	using	both	TA0	(TA)	and	TA1.

A	block	diagram	of	the	TA	module	is	given	in	Fig.	10.9.	As	can	be	seen	in	this	figure,
there	are	two	blocks	under	TA,	the	timer	and	capture/compare.	The	capture/compare	block
is	also	divided	into	three	subblocks	as	capture/compare	blocks	0,	1,	and	2.	These	blocks
have	the	same	characteristics.	Therefore,	they	are	represented	as	capture/compare	block	x
in	Fig.	10.9.	In	the	following	sections,	we	will	focus	on	the	timer	and	the	capture/compare
blocks	separately.



	

Figure	10.9			Block	diagram	of	the	Timer_A	module.

	

10.7.1			The	Timer	Block

The	core	of	the	timer	block	is	the	16-bit	TAR	register.	Timer	count	results	are	kept	in	this
register.	The	timer	block	of	TA	is	controlled	by	the	TACTL	control	register.	Properties	of
this	register	are	given	in	Table	10.15.

Table	10.15			Timer_A	control	register	(TACTL).

	

In	 Table	 10.15,	 the	 TASSELx	 bits	 are	 used	 to	 select	 the	 clock	 source	 for	 TA.
Constants	 for	 these	bits	 are	TASSEL_0,	TASSEL_1,	TASSEL_2,	 and	TASSEL_3.	They
correspond	to	TACLK,	ACLK,	SMCLK,	and	INCLK	(inverse	of	the	TACLK)	as	the	clock
source	for	TA.	IDx	bits	are	used	for	frequency	division.	Constants	for	these	bits	are	ID_0,
ID_1,	 ID_2,	 and	 ID_3.	 They	 correspond	 to	 frequency	 division	 by	 1,	 2,	 4,	 and	 8
respectively.	 When	 the	 TACLR	 bit	 is	 set,	 the	 TAR,	 the	 clock	 divider,	 and	 the	 count
direction	 are	 reset.	 But	 resetting	 the	 clock	 divider	 and	 count	 direction	 does	 not	 mean
resetting	IDx	and	MCx	bits.	Resetting	the	clock	divider	means	current	prescaler	counter	is
reset	to	0.	Resetting	the	count	direction	means	if	TAR	in	counting	down	part	in	up/down
mode,	it	is	reset	to	counting	up	part.	The	TAIE	bit	is	used	to	enable	the	Timer_A	interrupt.
When	an	interrupt	comes	from	the	timer	module,	the	TAIFG	bit	is	set.	The	MCx	bits	are
used	for	selecting	the	mode	of	the	timer.	Constants	for	these	bits	are	MC_0,	MC_1,	MC_2,
and	MC_3.	They	correspond	to	stop,	up,	continuous,	and	up/down	modes.	These	are	listed
below.

•		Stop	Mode:	The	timer	stops	counting	and	TAR	retains	its	value	to	continue	later	when
this	mode	is	selected.	Timer_A	is	initially	in	this	mode	to	save	power.

•		Continuous	Mode:	The	timer	counts	up	until	it	reaches	FFFFh	(65535),	then	restarts
from	zero	again	as	shown	in	Fig.	10.10.	The	TAIFG	bit	is	set	when	the	TAR	value
changes	from	FFFFh	to	zero.	The	time	period	for	this	mode	can	be	calculated	as	period
=	65536/	fCLK	where	fCLK	stands	for	the	frequency	of	the	timer	clock.	The	continuous
mode	is	generally	used	for	generating	output	with	different	frequencies	or	independent
time	intervals.	In	this	mode,	four	different	output	frequencies	or	time	intervals	can	be
produced	by	using	three	capture/compare	and	TAR	register	entries.



	

Figure	10.10			Timer_A	continuous	mode.

	

•		Up	Mode:	The	timer	counts	up	until	it	reaches	the	value	in	TACCR0	(to	be	explained	in
Sec.	10.7.2)	in	this	mode.	Then	it	restarts	from	zero	again	as	shown	in	Fig.	10.11.	The
TAIFG	bit	is	set	when	the	TAR	value	changes	from	TACCR0	to	zero.	Also,	the
capture/compare	interrupt	flag	(CCIFG)	bit	is	set	when	the	TAR	value	changes	from
TACCR0-1	to	TACCR0.	The	timer	period	for	this	mode	can	be	calculated	as	period	=
(TACRR0+1)/	fCLK.

	

Figure	10.11			Timer_A	up	mode.

	

•		Up/Down	Mode:	In	this	mode,	first	the	timer	counts	up	until	it	reaches	the	value	in	the
TACCR0.	Then	counting	is	inverted,	and	the	timer	counts	down	from	TACCR0	to	zero
as	shown	in	Fig.	10.12.	The	TAIFG	bit	is	set	when	the	TAR	value	changes	from	one	to
zero	in	counting	down.	Also,	the	CCIFG	bit	is	set	when	the	TAR	value	changes	from
TACCR0-1	to	TACCR0	in	counting	up.	The	timer	period	for	this	mode	can	be
calculated	as	period	=	(2×TACRR0)/	fCLK.

	



Figure	10.12			Timer_A	up/down	mode.

	

10.7.2			The	Capture/Compare	Block

Timer_A	has	three	capture/compare	blocks,	0,	1,	and	2.	The	capture/compare	block	0	can
also	be	used	by	the	timer	module	in	counting	up	or	up/down	modes.	Therefore,	 the	user
should	be	careful	when	using	 it.	Each	capture/compare	block	 is	controlled	by	a	separate
16-bit	control	register	TACCTLx.	The	entries	of	this	register	are	given	in	Table	10.16.

Table	10.16			Timer_A	capture/compare	control	register	(TACCTLx).

	

In	Table	10.16,	 the	CMx	 bits	 are	 used	 to	 select	 the	 edge	 sensitivity	 in	 the	 capture
mode.	The	constants	for	these	bits	are	CM_0	(no	capture),	CM_1	(capture	on	rising	edge),
CM_2	(capture	on	falling	edge),	and	CM_3	(capture	on	both	edges).	The	CCISx	bits	are
used	 to	 select	 the	 capture/compare	 input	 select.	 They	 are	 for	 external	 pins	 and	 internal
signals.	(These	are	listed	in	Table	10.18.)	Constants	for	the	CCISx	bits	and	their	values	are
CCIS_0	(CCIxA),	CCIS_1	(CCIxB),	CCIS_2	(GND),	and	CCIS_3	(VCC).	The	SCS	bit	 is
used	 to	 synchronize	 the	 timer	 clock	 and	 the	 capture	 signal	 (to	 eliminate	 the	 race
condition).	The	SCCI	bit	is	used	to	observe	the	synchronized	input.	The	CAP	bit	is	used
to	 select	 the	 capture	 or	 compare	 mode.	 When	 this	 bit	 is	 reset,	 the	 compare	 mode	 is
selected.	 When	 it	 is	 set,	 the	 capture	 mode	 is	 selected.	 The	 CAP	 bit	 is	 initially	 in	 the
compare	mode.	The	OUTMODx	bits	are	used	to	select	the	output	modes	for	the	compare
operation.	 Constants	 and	 their	 values	 are	 OUTMOD_0	 (OUT	 bit	 value),	 OUTMOD_1
(set),	 OUTMOD_2	 (toggle/reset),	 OUTMOD_3	 (set/reset),	 OUTMOD_4	 (toggle),
OUTMOD_5	 (reset),	 OUTMOD_6	 (toggle/set),	 and	 OUTMOD_7	 (reset/set).	 These
modes	 will	 be	 explained	 in	 detail	 next.	 The	 CCIE	 bit	 is	 used	 to	 enable	 the
capture/compare	interrupt.	The	CCI	bit	is	used	to	observe	the	capture/compare	input.	The
OUT	bit	 (when	 in	OUTMOD_0)	directly	controls	 the	output.	When	 this	bit	 is	 reset,	 the
output	is	low.	When	it	is	set,	the	output	is	high.	The	COV	bit	indicates	whether	a	capture
overflow	has	occurred	or	not.	It	should	be	cleared	by	software	to	observe	a	new	overflow.
The	CCIFG	is	the	capture/compare	interrupt	flag.

For	 each	 capture/compare	 block,	 there	 is	 also	 a	 separate	 TACCRx	 register.	 This
register	holds	the	data	for	the	comparison	of	the	timer	value	in	the	TAR	in	compare	mode.
In	capture	mode,	the	TAR	value	is	copied	to	this	register	when	a	capture	is	performed.

The	Capture	Mode

The	 purpose	 of	 the	 capture	 mode	 is	 to	 link	 the	 changes	 in	 the	 input	 signal	 with	 TAR



values.	We	should	first	set	the	CAP	bit	of	the	TACCTLx	register	to	use	this	mode.	Then
the	input	signal	source	should	be	selected	by	CCISx	bits.	The	capture	edge	type	(rising	or
falling)	of	this	selected	signal	is	set	by	CMx	bits.	When	a	capture	occurs,	the	value	in	the
TAR	register	is	copied	to	the	related	TACCRx	register.	The	CCIFG	is	set	to	indicate	that
the	capturing	is	done.	Also,	the	timer	ISR	is	called	if	the	CCIE	bit	is	set.	Then,	the	time
interval	 between	 the	 two	 time	 instants	 can	 be	 calculated	 by	 these	 captured	 TACCRx
values.

There	are	synchronization	and	overflow	issues	to	be	considered	in	the	capture	mode.
If	 the	 input	 changes	 its	 state	at	 the	 same	 time	as	 the	 timer	clock,	 this	may	cause	a	 race
condition	when	the	TAR	value	is	copied	to	the	TACCRx.	The	SCS	bit	should	be	set	and
the	 input	 should	 be	 synchronized	 with	 the	 timer	 clock	 in	 order	 to	 prevent	 this.	 Also,
another	capture	may	occur	before	the	first	one	is	processed.	When	this	happens,	the	COV
bit	is	set	to	indicate	that	an	overflow	occurred.	Therefore,	the	COV	bit	must	be	cleared	by
software	to	catch	subsequent	overflows.

The	Compare	Mode

The	purpose	of	the	compare	mode	is	to	generate	interrupts	at	specific	time	intervals.	This
can	be	used	to	form	pulse	width	modulation	(PWM)	signals.	The	interrupt	time	intervals
or	 the	 frequency	of	 the	PWM	can	be	adjusted	by	 the	TACCRx	register.	When	 the	 timer
counts	 up	 (until	 the	 value	 in	 the	 TAR	 reaches	 the	 TACCRx	 value),	 the	 internal	 signal
EQUx	(which	can	be	seen	at	the	output	of	the	comparator)	is	set.	Afterwards,	the	interrupt
flag	 CCIFG	 is	 set	 and	 the	 EQUx	 signal	 triggers	 (by	 the	 changing	 of	 the	 output	 signal
TA_OUTx)	according	to	the	output	mode	selected.	Also,	the	input	signal	of	the	compare
block	 CCI	 is	 latched	 into	 the	 SSCI	 bit.	 There	 are	 eight	 different	 output	 types	 in	 the
compare	mode.	They	are	briefly	described	below.

•		Out	bit	value	(OUTMOD_0):	OUT	bit	controls	the	output	signal.

•		Set	(OUTMOD_1):	The	output	is	set	only	once	when	the	TAR	reaches	the	TACCRx
value.

•		Toggle/Reset	(OUTMOD_2):	The	output	is	toggled	when	the	TAR	reaches	the
TACCRx	value.	It	is	reset	when	the	TAR	reaches	the	TACCR0	value.

•		Set/Reset	(OUTMOD_3):	The	output	is	set	when	the	TAR	reaches	the	TACCRx	value.
It	is	reset	when	the	TAR	reaches	the	TACCR0	value.

•		Toggle	(OUTMOD_4):	The	output	is	toggled	when	the	TAR	reaches	the	TACCRx
value.

•		Reset	(OUTMOD_5):	The	output	is	reset	only	once	when	the	TAR	reaches	the
TACCRx	value.

•		Toggle/Set	(OUTMOD_6):	The	output	is	toggled	when	the	TAR	reaches	the	TACCRx
value.	It	is	set	when	the	TAR	reaches	the	TACCR0	value.

•		Reset/Set	(OUTMOD_7):	The	output	is	reset	when	the	TAR	reaches	the	TACCRx
value.	It	is	set	when	the	TAR	reaches	the	TACCR0	value.

The	 compare	mode	output	 types	 are	 given	 in	Figs.	10.13,	10.14,	 and	10.15.	 In	 the
first	figure,	the	timer	is	in	the	up	mode.	In	the	second	figure,	the	timer	is	in	the	continuous



mode.	 In	 the	 third	 figure,	 the	 timer	 is	 in	 the	up/down	mode.	These	 figures	clearly	show
that	 the	 compare	mode	 can	 be	 used	 in	 PWM	 generation.	 In	 Sec.	 11.5	 we	 will	 use	 the
compare	mode	to	generate	PWM	signals.

	

Figure	10.13			Compare	mode	outputs	when	the	timer	is	in	the	up	mode.

	



	

Figure	10.14			Compare	mode	outputs	when	the	timer	is	in	the	continuous	mode.

	



	

Figure	10.15			Compare	mode	outputs	when	the	timer	is	in	the	up/down	mode.

	

10.7.3			Timer_A	Based	Interrupts

Either	 the	 timer	 or	 the	 capture/compare	 blocks	 can	 generate	 interrupts.	 An	 interrupt	 is
generated	when	the	TAR	register	overflows	in	the	timer	block.	An	interrupt	is	generated
when	the	timer	value	in	the	TACCRx	register	is	captured	in	the	capture	mode.	An	interrupt
is	generated	when	the	TAR	equals	the	value	in	the	TACCRx	register	in	the	compare	mode.
All	 these	 interrupts	 are	 maskable.	 Therefore,	 the	 GIE	 must	 be	 set	 with	 corresponding
interrupt	 enable	 bits.	 These	 are	 TAIE	 for	 the	 timer	 block	 and	 CCIE	 for	 the
capture/compare	block.



As	can	be	seen	in	Table	9.2,	there	are	two	interrupt	vectors	for	the	TA	module.	These
are	TIMERx_A0_VECTOR	and	TIMERx_A1_VECTOR.	The	TIMERx_A0_VECTOR	is
associated	with	 the	TACCR0	 capture/compare	 register	 and	 has	 the	 highest	 priority.	The
TIMERx_A1_VECTOR,	also	known	as	the	TAIV	interrupt	vector,	is	associated	with	the
TACCR1,	 TACCR2	 capture/compare	 registers	 and	 the	 timer	 block.	 The	 TAIV	 interrupt
vector	register	(Table	10.17)	is	used	to	control	this	interrupt	vector.	When	more	than	one
of	 these	 sources	 requests	 an	 interrupt,	 TAIV	 is	 loaded	 with	 the	 content	 of	 the	 highest
priority	interrupt.	Other	interrupts	will	be	pending	until	this	interrupt	is	handled.

Table	10.17			The	TAIV	register.

	

10.7.4			Coding	Practices	for	the	Timer_A	Module

In	 this	 section,	we	 provide	 sample	 C	 and	 assembly	 codes	 for	 the	 TA	module.	We	 first
provide	a	C	code	on	 the	usage	of	 the	capture	mode	 in	Listing	10.7.	For	 this	program	to
work,	pin	P1.3	should	be	connected	to	pin	P1.1	on	the	MSP430	LaunchPad	since	pin	P1.3
cannot	generate	the	capture	input.	In	Listing	10.7,	the	capture	mode	is	used	to	measure	the
time	difference	between	successive	button	presses.	The	maximum	time	difference	that	can
be	 calculated	here	 is	 approximately	 41	 s	 due	 to	 the	 clock	 and	oscillator	 settings.	 In	 the
assembly	 code,	 given	 in	 Listing	 10.8,	 we	 again	 measure	 the	 time	 difference	 between
successive	button	presses.	The	time	difference	between	the	button	press	and	release	time
can	 also	 be	 calculated	 by	 both	 codes.	 To	 do	 so,	 the	 disabled	 code	 section	 should	 be
enabled	instead	of	the	current	setting.

Listing	10.7			Usage	of	the	capture	mode	in	C.



	

	

Listing	10.8			Usage	of	the	capture	mode	in	assembly.

	



	



	

	

Next,	we	provide	C	and	assembly	codes	on	the	usage	of	TAIV	in	Listing	10.9.	Here
the	red	LED	toggles	when	an	overflow	occurs.	This	happens	every	second	(based	on	the
parameter	 settings).	Here,	 the	capture/compare	block	 is	not	used.	The	same	operation	 is
done	in	assembly	language	in	Listing	10.10.

Listing	10.9			Usage	of	the	TAIV	in	C.



	

	

	

Listing	10.10			Usage	of	the	TAIV	in	assembly.

	



	

	

	

We	 can	use	 the	 capture/compare	 blocks	 instead	of	 using	TAIV,	 as	 given	 in	Listing



10.9.	Now	 the	C	code	becomes	as	given	 in	Listing	10.11.	Here	 the	 ISR	 toggles	 the	 red
LED	 based	 on	 the	 compare	 mode	 configuration.	 The	 assembly	 code	 version	 of	 this
operation	is	given	in	Listing	10.12.

Listing	10.11			Toggling	the	red	LED	using	the	timer	interrupt	in	compare	mode	in	C.

	

	

Listing	10.12			Toggling	the	red	LED	using	the	timer	interrupt	in	compare	mode	in
assembly.

	



	

	

We	provide	the	code	in	Listing	10.13	to	observe	the	effects	of	different	timer	settings.
Here,	 the	 red	 and	 green	 LEDs	 toggle.	 Each	 disabled	 setting	 can	 be	 enabled	 to	 see	 its
effect.	Do	not	forget	to	disable	the	previous	active	setting	when	a	new	one	is	enabled.

Listing	10.13			Toggling	the	red	and	green	LEDs	with	various	options	in	C.



	

	

	

We	 next	 provide	 the	 usage	 of	 two	 timers	 together	 in	C	 language	 in	 Listing	 10.14.
Here,	the	red	and	green	LEDs	toggle	by	interrupts	generated	by	TA0	and	TA1	separately.
We	provide	the	assembly	code	doing	the	same	operation	in	Listing	10.15.	Again,	the	two
timers	are	used	together	in	this	code	block.

Listing	10.14			Using	TA0	and	TA1	together	in	C.



	

	

	

Listing	10.15			Using	TA0	and	TA1	together	in	assembly.

	



	



	

	

The	code	given	in	Listing	10.16	is	an	example	of	the	joint	usage	of	the	port	and	timer
interrupts.	Here,	the	program	counts	the	timer	interrupts.	If	the	sum	reaches	five,	the	red
and	green	LEDs	toggle.	The	sum	is	reset	if	the	user	presses	the	button	during	operation.
This	operation	is	done	under	the	port	ISR.

Listing	10.16			Jointly	using	the	port	and	the	timer	interrupts,	the	first	example	in	C.

	



	

	

The	code	given	in	Listing	10.17	is	another	example	of	the	joint	usage	of	the	port	and
timer	interrupts.	Here	the	program	counts	how	many	times	the	button	is	pressed	while	the
red	and	green	LEDs	are	on	separately.	 In	addition,	 the	system	disables	all	 the	 interrupts
and	goes	 to	LPM4	after	 a	 certain	 time.	This	means	 the	 system	 is	 turned	off	 using	 low-
power	modes.

Listing	10.17			Jointly	using	the	port	and	the	timer	interrupts,	the	second	example	in	C.



	



	

	

Finally,	 we	 provide	 the	 assembly	 code	 in	 Listing	 10.18.	 Here,	 the	 timer	 and	 port
interrupts	are	jointly	used.	The	application	here	is	similar	to	Listing	10.17.

Listing	10.18			Jointly	using	the	port	and	the	timer	interrupts	in	assembly.



	



	



	

	

10.8			The	Pin	Layout	for	the	BCM+	and	TA	Modules
We	provide	the	pin	layout	of	the	MSP430G2553	in	Fig.	10.16	(again	to	be	compact).	The
usage	of	these	in	BCM+	and	TA	perspective	are	tabulated	in	Table	10.18.	Do	not	forget	to
set	these	pins	with	the	appropriate	PxSEL	bits	before	using	them.

	

Figure	10.16			Pin	layout	of	the	MSP430G2553.

	

Table	10.18			BCM+	and	Timer_A	properties	for	the	pins	of	the	MSP430G2553.



	

In	Table	10.18,	TA0CLK	is	the	external	clock	input	used	to	supply	the	clock	signal
for	 the	timer	block.	ACLK	and	SMCLK	can	be	fed	to	output	 to	control	other	connected
devices.	If	an	external	crystal	is	to	be	connected,	the	XIN	and	XOUT	should	be	used.	All
TAx.x	 pins	 can	 be	 used	 as	 output	 of	 compare	 blocks.	Also,	 some	 of	 these	 pins	 can	 be
configured	 as	 input	 for	 capture	 blocks.	 Pins	 3,	 4	 (TA0.0,	 TA0.1),	 and	 8	 to	 13	 (TA1.0,
TA1.1,	TA1.2)	can	be	used	for	both	purposes.	Don’t	forget	that	each	of	these	pins	can	only
be	connected	to	one	capture	or	compare	block.

10.9			Timer_A	in	Grace
The	Timer_A	(TA)	module	can	be	configured	by	the	Timer0_A3	and	Timer1_A3	blocks
in	the	Device	Overview	window	(shown	in	Fig.	5.11).	Configurations	for	these	two	timer
blocks	are	identical.	Therefore,	we	will	only	explain	the	Timer0_A3	block	in	this	section.
As	 in	 the	 previous	 sections,	 the	Timer_A	block	 should	 be	 enabled	 first.	 Then	 it	 can	 be
configured	as	follows.

10.9.1			The	Basic	User	Mode



The	basic	user	mode	of	the	Timer0_A3	block	is	given	in	Fig.	10.17.	The	Timer	Selection
list	can	be	used	as	follows:	The	Timer	OFF	option	can	be	used	to	disable	the	timer	if	it	is
not	needed.	Initially,	this	option	is	chosen.	The	Interval	Mode	option	can	be	used	to	create
a	 time	 interval.	This	 time	 interval	 is	 obtained	 by	 entering	 a	 value	 to	 the	Desired	Timer
Period	 box.	 The	 generated	 signal	 can	 be	 fed	 to	 P1.1	 or	 P1.5	 from	 the	 neighboring	 list.
These	settings	are	done	under	Timer	Capture/Compare	Block	#0.

	

Figure	10.17			Basic	user	mode	for	Timer0_A3.

	

The	PWM	Mode	option	in	the	Timer	Selection	list	is	used	to	generate	a	PWM	signal.
When	 this	 option	 is	 selected,	 Timer	 Capture/Compare	 Block	 #1	 and	 Timer
Capture/Compare	Block	 #2	 are	 also	 enabled	 as	 shown	 in	 Fig.	 10.18.	 In	 this	mode,	 the
PWM	period	is	determined	by	the	value	entered	in	the	Desired	Timer	Period	box.	As	the
PWM	 Duty	 Cycle	 option	 is	 selected	 from	 the	 Mode	 Selection	 list	 under	 the	 Timer
Capture/Compare	 Block	 #1,	 the	 Desired	 PWM	Duty	 Cycle	 box	 becomes	 enabled.	 The
user	can	enter	 the	desired	duty	cycle	here.	The	generated	PWM	signal	can	be	fed	to	 the
output	pin	selected	from	the	neighboring	list.



	

Figure	10.18			The	basic	user	mode	for	Timer0_A3	specifically	for	PWM	generation.

	

The	user	can	set	interrupts	for	each	block	(Timer	Capture/Compare	Block	#0,	#1,	or
#2)	separately.	To	do	so,	first	the	related	Capture/compare	interrupt	enable	box	should	be
checked.	 Then,	 the	 related	 Generate	 Interrupt	 Handler	 Code	 button	 can	 be	 pressed	 to
generate	the	prototype	ISR	under	the	Interrupt	Vectors_init.c	file.

10.9.2			The	Power	User	Mode

In	the	Power	User-CCR0	mode	(given	in	Fig.	10.19),	the	clock	source	for	the	timer	block
can	be	set	from	the	Clock	Source	list.	The	frequency	divider	for	the	selected	clock	source
can	be	set	from	the	neighboring	Divider	list.	Then,	the	counting	mode	can	be	chosen	from
the	Counting	Mode	list.	The	TAR	register	can	be	cleared	by	checking	the	Clear	box.	the



Timer_A	 overflow	 interrupt	 enable	 box	 can	 be	 checked	 to	 enable	 the	 interrupt.	 The
prototype	 ISR	 for	 this	 interrupt	 can	 be	 generated	 under	 Interrupt	 Vectors_init.c	 by	 the
Generate	Interrupt	Handler	Code	button.

	

Figure	10.19			The	power	user-CCR0	mode	for	Timer0_A3.

	

The	desired	time	interval	can	be	obtained	by	entering	the	time	value	into	the	Desired
Timer	Period	box	under	Timer	Capture/Compare	Block	#0.	The	desired	time	can	also	be
entered	 into	 the	 Capture	 Register	 box	 in	 terms	 of	 clock	 ticks.	 Also	 Input	 Capture	 or
Output	Compare/Period	modes	can	be	selected	from	the	Mode	list.	If	the	capture	mode	is
selected,	it	is	configured	from	the	Input	Selection	and	Capture	Mode	lists.	If	the	compare
mode	is	selected,	the	Output	Pins	list	and	the	Output	Mode	drop-down	list	should	be	used
for	necessary	configurations.	In	this	mode,	 the	capture/compare	interrupt	can	be	enabled
similar	to	the	Timer_A	overflow	interrupt.

Configurations	for	the	Power	User-CCR1	and	Power	User-CCR2	views	are	identical.
Therefore,	 only	 the	 Power	 User-CCR1	 is	 explained	 in	 detail	 here.	 In	 the	 Power	 User-
CCR1	mode	(shown	in	Fig.	10.20),	capture	and	compare	mode	configurations	can	be	done
as	in	the	Power	User-CCR0	mode.	In	this	mode,	the	shape	of	the	generated	PWM	signal
can	also	be	seen.	Please	note	that	the	configurations	in	the	power	user	mode	interact	with
each	other.	Therefore,	one	setting	in	one	mode	affects	another	setting	in	the	next	mode.



	

Figure	10.20			The	power	user	CCR1	mode	for	Timer0_A3.

	

10.9.3			The	Register	Controls	Mode

In	the	register	controls	mode	of	the	Timer0_A3	block	(given	in	Fig.	10.21),	all	available
timer	 registers	 can	 be	 configured.	 Also,	 all	 capture/compare	 register	 values	 can	 be
configured.



	

Figure	10.21			The	register	controls	mode	for	Timer0_A3.

	

10.9.4			Coding	Practices

In	 our	 first	 example,	we	 use	Grace	 to	 toggle	 red	 and	 green	LEDs	 every	 3	 s	 as	 in	 Sec.
10.6.4.	We	use	the	basic	user	mode	here.	We	first	select	the	Interval	Mode	under	the	Timer
Selection	list	of	the	Timer_A	block.	Then	we	select	the	output	as	TA0.0	Output	Off.	We
enter	the	desired	timer	period	as	3000	ms.	We	should	enable	the	capture/compare	interrupt
by	checking	 the	Capture/compare	 interrupt	enable	0	box.	Then,	we	generate	 the	 ISR	by
pressing	the	Generate	Interrupt	Handler	button.	In	the	Interrupt	Vector_init.c	file,	we	fill
the	Timer_A	ISR	as	in	Listing	10.19.	As	we	run	the	application,	the	red	and	green	LEDs
toggle	on	every	3	s.	Do	not	forget	to	enable	the	BCM+	for	this	application.

Listing	10.19			The	Timer_A	application	ISR	under	Grace,	the	basic	user	mode.

	

	

We	 repeat	 the	 same	 application	 now	 using	 the	 power	 user	mode.	Here,	we	 set	 the
LED	 toggle	 time	 to	 be	 1	 s.	We	 perform	 this	 operation	 as	 follows:	 First,	 we	 select	 the



ACLK	 from	 the	 Clock	 Source	menu.	We	 set	 the	 Divider	 to	 Divider-/8.	We	 enable	 the
Timer_A	overflow	interrupt	by	checking	the	Timer_A	overflow	interrupt	enable	box.	We
select	 the	 Up	Mode	 as	 the	 Counting	mode.	We	 enter	 1000	ms	 into	 the	 Desired	 Timer
Period	 box.	We	 select	 the	Output	Compare/Period	 from	 the	Mode	 list.	We	generate	 the
ISR	by	pressing	the	Generate	Interrupt	Handler	Code	button.	In	the	Interrupt	Vector_init.c
file,	we	fill	 the	Timer_A	ISR	with	Listing	10.20.	As	we	run	 the	application,	 the	red	and
green	 LEDs	 toggle	 on	 every	 second.	 Do	 not	 forget	 to	 enable	 the	 BCM+	 for	 this
application.

Listing	10.20			The	Timer_A	application	ISR	under	Grace,	the	power	user	mode.

	

	

Finally,	we	can	feed	the	PWM	output	to	adjust	the	brightness	of	the	green	LED	using
Grace.	 We	 do	 not	 need	 any	 code	 blocks	 for	 this	 application.	 The	 settings	 for	 this
application	are	as	follows:	We	select	the	PWM	Mode	in	the	Timer	Selection	list.	We	adjust
the	desired	timer	period	to	1	ms.	In	the	Timer	Capture/Compare	Block	#	1,	we	select	the
PWM	Duty	Cycle	under	the	Mode	Selection	list.	We	select	P1.6/TA0.1	as	output.	As	we
enter	the	Desired	PWM	Duty	Cycle	(between	1%	and	100%),	we	can	run	our	application.
The	brightness	of	the	green	LED	is	adjusted	by	duty	cycle	here.

10.10			Chronometer	Application
The	aim	in	this	application	is	to	learn	how	to	set	and	use	the	timer	module	and	low-power
modes	 of	 the	 MSP430	 microcontroller.	 As	 a	 real-world	 application,	 we	 design	 a
chronometer	 using	 a	 liquid	 crystal	 display	 (LCD)	 and	 push	 buttons.	 In	 this	 section,	we
provide	 the	 equipment	 list,	 layout	 of	 the	 circuit,	 procedure,	 and	 system	 design
specifications.

10.10.1			Equipment	List

Following	is	the	equipment	list	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	16×2	character	LCD	(with	a	Samsung	processor)



•		One	10-kΩ	potentiometer

•		Two	push	buttons

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		Two	100-ηF	capacitors

16×2	Character	LCD:	 In	 this	application,	an	LCD	with	 two	 lines	 (each	having	16
characters)	will	be	used	to	show	the	time.	Although	another	LCD	brand	can	be	used,	we
picked	the	one	with	a	Samsung	processor	due	to	its	availability.	When	using	another	LCD,
the	reader	should	obtain	its	pin	description	and	the	header	file.	The	pin	description	for	our
LCD	is	given	in	Table	10.19.

Table	10.19			The	pin	description	of	the	LCD.

	

As	can	be	seen	in	Table	10.19,	pins	1	and	2	are	used	to	supply	power	to	the	LCD.	Pin
3	is	used	to	adjust	the	contrast	of	the	LCD.	This	is	done	by	changing	the	voltage	at	this	pin
between	0	and	5	V	with	a	suitable	potentiometer.	Pin	4	is	used	to	identify	the	data	type.
When	 this	 pin	 is	 low,	 the	 data	 transferred	 to	 the	 LCD	 is	 recognized	 as	 an	 instruction.
When	this	pin	is	high,	the	data	transferred	to	the	LCD	is	recognized	as	a	character	(to	be
displayed).	Pin	5	is	used	to	set	the	state	of	the	LCD.	When	this	pin	is	low,	the	LCD	is	in
write	state.	When	it	is	high,	the	LCD	is	in	read	state.	Pin	6	is	used	to	start	the	data	transfer.



When	a	high-to-low	transition	occurs	at	this	pin,	the	data	is	sent	to	the	LCD.	When	a	low-
to-high	transition	occurs,	the	data	is	read	from	the	LCD.	Pins	7	to	14	are	used	to	transfer
8-bit	data	to	the	LCD.	When	the	LCD	is	used	in	a	4-bit	mode,	only	the	last	four	pins	(from
11	to	14)	are	used.	Pins	15	and	16	are	used	to	supply	power	to	the	LED	backlight	of	the
LCD.

We	 collected	 the	 functions	 to	 control	 the	 LCD	 properly	 in	 a	 header	 file	 given	 in
Listing	10.21.	First	the	definitions	are	done	in	this	file.	The	LCD_Change()	function	is	used
to	generate	the	necessary	high-to-low	transition	for	pin	6.	The	functions	SendCommand	and
SendCharacter	are	used	to	provide	low	and	high	signals	for	pin	4.	The	LCD_Data	function
represents	port	2.	But	only	four	pins	of	this	port	are	used	for	data	transfer.	The	delay_ms()
function	is	used	to	generate	the	required	delay	times	for	the	system.	The	data	is	sent	to	the
LCD	(first	upper	4	bits,	 then	 lower	4	bits)	with	 the	lcd_send()	 function.	The	 functions
lcd_writestr()	 and	 lcd_writechr()	 write	 string	 and	 character	 variables	 to	 the	 LCD.
Integer	 values	 cannot	 be	 sent	 directly	 to	 the	 LCD.	 They	 should	 be	 converted	 to	 the
corresponding	 character	 values	 first.	 The	 function	 itoa(i,buffer,base)	 does	 the	 job.
This	 function	 converts	 the	 integer	 i	 to	 the	 corresponding	 character	 value,	 saved	 in	 the
string	 buffer.	 The	 variable	 base	 represents	 the	 base	 number	 of	 the	 integer	 i.	 The
lcd_goto(x,y)	 function	 is	used	 to	set	 the	starting	point	on	 the	LCD.	In	 this	 function,	x
represents	 the	 column	 number,	 y	 represents	 the	 row	 number.	 The	 lcd_init()	 function
initializes	the	LCD.

Listing	10.21			The	header	file	for	the	LCD.



	



	

	

10.10.2			Layout

The	 layout	 of	 this	 application	 is	 given	 in	 Fig.	 10.22.	 For	 more	 information	 about	 the
voltage	supply	block,	please	see	Fig.	9.3.



	

Figure	10.22			Layout	of	the	chronometer	application.

	

10.10.3			System	Design	Specifications

The	chronometer	will	be	controlled	by	two	push	buttons.	The	first	button	will	be	used	to
start	 and	 stop	 the	 chronometer.	 When	 it	 is	 pressed	 once,	 the	 chronometer	 will	 start
counting.	The	time	will	be	displayed	on	the	LCD.	When	the	first	button	is	pressed	again,
the	 chronometer	 will	 stop.	 The	 second	 button	 will	 reset	 the	 chronometer.	 If	 the
chronometer	is	running,	pressing	this	button	will	also	stop	it.

In	 designing	 the	 chronometer,	 we	 need	 to	 use	 the	 proper	 clock	 frequency	 for	 the
timer.	 Since	 this	 is	 a	 prototype	 system,	 we	 will	 use	 the	 RC-based	 oscillators	 in	 this
application.	As	mentioned	 in	 previous	 sections,	 the	 internal	RC-based	 oscillators	 of	 the
MSP430	 are	 not	 precise.	 Therefore,	 the	 designed	 chronometer	 will	 not	 be	 precise.	 An
external	 oscillator	 can	 always	 be	 connected	 to	 increase	 the	 precision.	Besides,	 the	TAR
value	should	also	be	taken	into	account.

10.10.4			The	C	Code	for	the	System



In	the	first	part	of	the	code,	constants	for	interrupts	are	defined.	This	is	done	to	make	the
code	more	readable.	The	code	block	for	this	part	is	given	in	Listing	10.22.

Listing	10.22			Chronometer,	the	C	code	part	I.

	

	

In	the	second	part	of	the	code,	given	in	Listing	10.23,	global	variables	to	be	used	in
the	code	are	defined.	In	this	code	block,	the	Start	variable	keeps	the	stop	or	start	state	of
the	chronometer.	 Initially,	 the	chronometer	 is	stopped.	Therefore,	 the	Start	variable	has
the	 value	 0.	 The	 variables	 secondh	 and	 minuteh	 are	 used	 to	 keep	 the	 tens	 digit	 of	 the
second	 and	minute.	 Similarly,	 the	 variables	 secondl	 and	 minutel	 are	 used	 to	 keep	 the
ones	 digit	 of	 the	 second	 and	minute.	The	 arrays	lcdsecondh,	lcdminuteh,	 lcdsecondl,
and	lcdminutel	 are	used	 to	keep	 the	character	values	of	 the	 second	and	minute	values.
The	lcd	array	is	used	to	keep	the	complete	time	value	(to	be	sent	to	the	LCD).

Listing	10.23			Chronometer,	the	C	code	part	II.

	

	

In	the	third	part	of	the	code,	the	hardware	setup	for	digital	input	and	output	(I/O)	is
done.	This	code	block	is	given	in	Listing	10.24	in	terms	of	the	PinConfig()	function.	In
the	first	line	of	the	function	PinConfig(),	port	P2	is	set	as	digital	I/O.	In	the	second	and
third	lines,	pin	directions	are	determined	for	ports	P1	and	P2.	As	can	be	seen	in	Fig.	10.22,
Register	Select	 and	Enable	pins	of	 the	LCD	are	connected	 to	pins	P1.6	and	P1.7	of	 the
MSP430G2553.	 Two	 push	 buttons	 are	 also	 connected	 to	 pins	 P1.0	 and	 P1.1	 of	 the
microcontroller.	 In	 software,	 the	 corresponding	 code	 line	 is	 P1DIR=0xFC.	Here	 also,	 all
other	pins	of	port	P1	are	set	as	output.	As	can	be	seen	in	Fig.	10.22,	Data	pins	of	the	LCD
are	connected	 to	pins	P2.0,	P2.1,	P2.2,	and	P2.3	of	 the	microcontroller.	 In	 software,	 the
corresponding	code	line	is	P2DIR=0xFF.	Again,	unused	pins	of	port	P2	are	set	as	output.	In
the	fourth	line,	pull-up/down	resistors	for	button-connected	pins	of	port	P1	are	enabled.	In
the	 fifth	 and	 sixth	 lines,	 output	 registers	 are	 set	 as	 P1OUT=0x03	 and	 P2OUT=0x00.



Unnecessary	 power	 consumption	 is	 also	 prevented	 for	 unused	 output	 pins	 by	 this
procedure.	On	the	other	hand,	high	bits	of	the	P1OUT	register	are	used	for	choosing	pull-
up	resistors	for	input	pins.	In	the	next	three	lines,	interrupt	settings	for	port	P1	are	done.
Interrupts	are	obtained	from	two	push	buttons	connected	to	pins	P1.0	and	P1.1.	Therefore,
P1IE=0x03.	 These	 interrupts	 are	 triggered	 by	 a	 high-to-low	 transition.	 Therefore,
P1IES=0x03.	Also,	all	interrupt	flags	are	cleared	initially	by	P1IFG=0x00.

Listing	10.24			Chronometer,	the	C	code	part	III.

	

	

	

In	 the	 fourth	part	of	 the	code,	 the	hardware	setup	 for	 the	 timer	block	 is	done.	This
code	block	is	given	in	Listing	10.25	in	terms	of	the	TimerConfig()	function.	In	the	first
line	of	the	function	TimerConfig(),	the	watchdog	timer	is	disabled.	In	the	second	line,	the
VLO	 is	 chosen	 to	 source	 the	ACLK	 at	 12	 kHz.	 In	 the	 third	 line,	 the	 timer	 interrupt	 is
enabled.	 In	 the	 fourth	 line,	 the	ACLK	 is	chosen	as	 the	clock	source	with	TASSEL_1.	 Its
frequency	is	divided	by	8	with	ID_3.	This	1.5	kHz	clock	is	used	in	the	timer	block.	The
TAR	register	is	cleared	with	TACLR.	Also,	the	timer	is	stopped	with	MC_0	since	the	system
should	not	start	until	the	Start	button	is	pressed.	In	the	fifth	line,	the	time	interval	is	set	as
1	s	by	assigning	1499	to	TACCR0.	Remember,	the	period	is	(TACCR0+1)/	fCLK.

Listing	10.25			Chronometer,	the	C	code	part	IV.

	



	

ISR	settings	for	port-	and	timer-based	interrupts	are	given	in	Listing	10.26.	As	a	port
interrupt	comes	from	the	Start	button	when	start==0,	 the	system	exits	from	LPM4.	The
system	goes	 to	 the	 ISR	int_timer	 every	 second	 by	 the	 timer-based	 interrupt.	Then	 the
variable	secondl	 is	 increased	by	one	within	 this	 ISR.	secondl	 is	cleared	when	 it	equals
10.	Then,	secondh	is	increased	by	one.	There	can	be	two	different	interrupts	coming	from
the	 two	 buttons	 for	 port	 P1.	 The	 necessary	 actions	 for	 these	 two	 button	 presses	 are
separately	defined	 in	 the	 ISR	int_button.	After	 the	 ISR	completes	 its	 task,	 the	 related
interrupt	flag	is	cleared	to	get	a	new	interrupt.

Listing	10.26			Chronometer,	the	C	code	part	V.

	

	



	

Finally,	the	C	code	for	the	system	(with	all	its	components)	is	given	in	Listing	10.27.
The	 code	 block	 doing	 the	 operation	 is	 put	 in	 an	 infinite	 loop.	 Every	 time	 the	 system
returns	from	the	ISR	int_timer	or	int_button,	it	goes	to	this	loop.	Then	the	system	calls
the	 Write_to_LCD()	 function.	 This	 function	 converts	 the	 second	 and	 minute	 digits	 to
corresponding	character	values,	places	them	into	the	lcd	character	array,	then	writes	to	the
LCD.	Also,	if	the	start	variable	equals	one,	the	timer	starts	by	writing	MC_1	to	the	TACTL
register.	Otherwise,	the	system	goes	to	LPM4	and	the	timer	stops.	The	LCD	is	initialized
by	the	lcd_init()	function	in	the	main	code.	The	GIE	bit	is	also	set	to	enable	maskable
interrupts.

Listing	10.27			Chronometer,	the	C	code.

	



	



	

	

10.11			Summary
This	chapter	was	on	time-based	operations.	We	started	with	the	oscillators	available	in	the
MSP430.	Then	we	considered	the	BCM+	and	available	clocks.	Since	the	user	can	select
more	 than	one	clock	 for	different	operations,	 the	clock	properties	 should	be	known.	We
also	considered	 the	BCM+	under	Grace.	Next,	we	 focused	on	 low-power	modes.	Using
low-power	modes	is	extremely	important	for	battery-based	systems.	Through	them	energy



can	 be	 saved	 by	 disabling	 the	CPU	 or	 peripherals	when	 they	 are	 not	 needed.	 Then	we
considered	the	watchdog	timer	(WDT+)	module	of	the	MSP430.	This	module	can	be	used
as	 a	 watchdog	 or	 as	 a	 timer.	 We	 provided	 sample	 C	 and	 assembly	 codes	 on	 both
operations.	We	 also	 explored	 the	WDT+	 operation	 under	 Grace.	We	 looked	 at	 the	 TA
module	 of	 the	 MSP430	 afterwards.	 There	 are	 two	 identical	 timer	 modules	 in	 the
MSP430G2553.	Each	module	has	a	separate	timer	and	three	capture/compare	blocks.	We
explored	 the	 operation	 of	 each	 block	 in	 detail.	 We	 also	 considered	 the	 usage	 of	 these
blocks	under	Grace.	Finally,	we	provided	the	design	of	a	simple	chronometer	application
by	using	concepts	considered	in	this	chapter.

10.12			Problems
	10.1				Write	a	program	in	C	such	that	the	MSP430	is	in	low-power	mode	most	of	the

time.	Initially	the	green	LED	(connected	to	P1.6	on	the	MSP430	LaunchPad)
is	on	and	the	red	LED	(connected	to	P1.0	on	the	MSP430	LaunchPad)	is	off.
The	CPU	wakes	up	in	periodic	time	intervals	of

a.				10	s

b.				1	min

c.				1	h	(if	possible)

d.				1	day	(if	possible)

As	the	CPU	wakes	up,	the	LEDs	toggle.	Then	the	CPU	will	go	to	the	low-power
mode	again.

	10.2				Repeat	Prob.	10.1	in	assembly	language.

	10.3				Add	a	push	button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	to	Prob.
10.1.	When	this	button	is	pressed,	the	timer	will	reset	itself	and	the	LEDs	will
go	to	their	initial	states.

	10.4				Repeat	Prob.	10.3	in	assembly	language.

	10.5				Repeat	Prob.	10.3	using	Grace.

	10.6				Write	a	subroutine	to	display	the	characters	on	the	LCD	in	assembly
language.

	10.7				Write	international	characters	like	ü,	ı,	and	ç	to	the	LCD	in	C	and	assembly
languages.
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This	 chapter	 deals	 with	 analog-to-digital	 and	 digital-to-analog	 conversion.	 In
microcontrollers,	 there	 are	 specific	 modules	 to	 convert	 analog	 signals	 to	 digital	 form.
These	perform	sampling	in	time	and	quantization	in	amplitude.	They	are	generally	called
analog-to-digital	converters	(ADCs).	The	ADC	module	under	the	MSP430G2553	is	called
ADC10.	There	is	also	a	Comparator_A+	module	which	can	be	taken	as	a	1-bit	ADC	under
the	 MSP430.	 For	 digital-to-analog	 conversion,	 there	 are	 also	 specific	 modules	 in
microcontrollers.	These	perform	interpolation	between	digital	samples.	They	are	generally
called	 digital-to-analog	 converters	 (DACs).	 Unfortunately,	 the	MSP430G2553	 does	 not
have	a	DAC	module.	Therefore,	we	will	use	the	PWM	operation	to	obtain	the	approximate
analog	 representation	 of	 the	 corresponding	 digital	 signal.	 Next,	 we	 will	 start	 with	 the
general	explanation	of	analog	and	digital	signals.

11.1			Analog	and	Digital	Signals
A	value	changing	with	time	or	another	dependent	variable	can	be	taken	as	a	signal.	There
are	 two	 signal	 types,	 analog	 and	 digital.	 By	 definition,	 an	 analog	 signal	 can	 have	 its
amplitude	represented	with	infinite	precision.	It	can	also	be	defined	for	any	time	value.	A
digital	signal	can	represent	samples	of	the	analog	signal	in	time.	Moreover,	its	amplitude
values	 are	 also	 quantized.	This	means	 that	 the	 amplitude	 is	 represented	 by	 only	 certain
values.	More	information	on	these	signal	types	(in	terms	of	theory)	can	be	found	in	[8,	4].

The	digital	signal	is	the	sampled	and	quantized	form	of	the	analog	signal.	Therefore,
digital	 signal	 representation	 contains	 less	 information	 than	 its	 analog	 counterpart.	 This
may	seem	a	disadvantage	for	digital	signal	representation.	In	practice,	this	is	not	the	case.
Analog	signals	are	hard	 to	store	and	process.	They	are	also	prone	 to	noise.	Besides,	 the
system	for	processing	an	analog	signal	is	usually	static.	On	the	other	hand,	a	digital	signal
is	very	robust	to	noise.	The	system	to	process	a	digital	signal	can	be	a	code	block.	Hence,
all	the	system	parameters	(or	the	system	itself)	can	easily	be	changed	by	replacing	a	code
block.	 That	 is	 why	most	 recent	 systems	 are	 in	 digital	 form.	 In	 this	 book,	 we	 take	 the



microcontroller	as	the	digital	system.	Next,	we	will	consider	the	most	primitive	module	to
convert	an	analog	signal	to	digital	form.

11.2			The	Comparator
The	comparator	has	 two	 inputs	called	positive	and	negative.	One	of	 these	 inputs	can	be
used	for	the	reference	voltage	(either	external	or	internal).	The	other	is	used	for	the	input
voltage.	The	comparator	compares	these	two	values.	Let’s	assume	that	the	input	voltage	is
fed	to	the	positive	input	and	the	reference	voltage	is	fed	to	the	negative	input.	If	the	input
voltage	is	higher	than	the	reference,	the	comparator	output	will	be	one.	Otherwise,	it	will
be	zero.	In	other	saying,	the	comparator	output	is	just	1	bit.	This	operation	can	be	taken	as
a	1-bit	ADC.

11.2.1			The	Comparator_A+	Module

The	comparator	module	under	the	MSP430	is	called	Comparator_A+.	A	block	diagram	of
Comparator_A+	is	given	in	Fig.	11.1.	As	in	other	modules,	Comparator_A+	is	controlled
by	specific	registers.	They	are	explored	next.



	

Figure	11.1			Block	diagram	of	the	Comparator_A+	module.

	

11.2.2			Comparator_A+	Registers

The	Comparator_A+	module	has	three	control	registers.	These	are	the	control	register	1,
CACTL1,	control	register	2,	CACTL2,	and	port	disable	register,	CAPD.	Their	entries	are
shown	in	Tables	11.1,	11.2,	and	11.3	in	detail.

Table	11.1			The	Comparator_A+	control	register	1	(CACTL1).



	

Table	11.2			The	Comparator_A+	control	register	2	(CACTL2).

	

Table	11.3			The	Comparator_A+	port	disable	register	(CAPD).

	

In	Table	11.1,	setting	the	CAEX	bit	exchanges	the	comparator	inputs	and	inverts	the
comparator	output.	The	CARSEL	bit	selects	the	terminal	for	the	reference	voltage	VCAREF.
If	CARSEL	is	zero,	VCAREF	 is	applied	to	the	positive	terminal.	Otherwise,	 it	 is	applied	to
the	negative	terminal.	For	this	scenario,	CAEX	is	assumed	to	be	zero.	The	CAREF	bits
select	the	source	for	the	reference	voltage	VCAREF.	Based	on	the	binary	values	from	00	to
11,	the	reference	voltage	is	applied	as	follows:	internal	reference	off	(an	external	reference
can	be	applied),	0.25	×	VCC,	0.5	×	VCC,	and	diode	reference.	Predefined	constants	for	these
are	CAREF_0,	CAREF_1,	CAREF_2,	and	CAREF_3	respectively.	The	CAON	bit	 turns
on	the	comparator.	The	CAIES	bit	sets	the	interrupt	edge	select	(low	to	high	or	reverse).
The	CAIE	bit	 is	used	 to	enable	 the	comparator	 interrupt.	The	CAIFG	bit	represents	the
interrupt	flag.

In	 Table	 11.2,	 setting	 the	CASHORT	 bit	 short-circuits	 the	 positive	 and	 negative
inputs	of	the	comparator.	Bits	P2CA4	and	P2CA0	are	used	to	select	the	positive	input	of
the	 comparator	 among	 pins	 CA0,	 CA1,	 and	 CA2.	 Similarly,	 bits	P2CA3,	P2CA2,	 and
P2CA1	are	used	to	select	the	negative	input	of	the	comparator	among	pins	CA1	to	CA7.
Please	see	Table	11.4	for	the	pin	layout	for	the	Comparator_A+	module.	The	CAF	bit	sets
the	comparator’s	output	filter.	The	CAOUT	bit	keeps	the	comparator’s	output.

Table	11.4			Pin	usage	table	for	the	Comparator_A+	module.



	

In	 Table	 11.3,	 each	 bit	 disables	 the	 input	 buffer	 for	 the	 pins	 associated	 with	 the
Comparator_A+	module.	This	 reduces	 the	current	consumption	 for	certain	 input	voltage
levels.	For	more	detail	on	this	issue,	please	see	[17].

11.2.3			The	Pin	Layout	for	the	Comparator_A+	Module

As	in	the	previous	chapters,	we	provide	the	pin	layout	of	the	MSP430G2553	in	Fig.	11.2.
This	figure	will	serve	for	both	the	Comparator_A+	and	ADC10	modules	(to	be	explained
in	the	following	section).	The	pin	usage	table	for	the	Comparator_A+	module	is	given	in
Table	11.4.	As	can	be	seen	in	this	table,	pins	2	to	7,	13,	and	14	can	be	used	for	comparator
input.	Only	pins	5	and	15	can	be	used	for	comparator	output.



	

Figure	11.2			Pin	layout	of	the	MSP430G2553.

	

11.2.4			Coding	Practices	for	the	Comparator_A+	Module

Below,	we	 provide	 sample	C	 and	 assembly	 codes	 for	 the	 usage	 of	 the	Comparator_A+
module.	The	same	operation	is	done	in	both	codes.	The	input	from	CA1	is	compared	with
the	internal	reference	voltage,	which	is	0.25	×	VCC	here.	If	the	input	voltage	is	greater	than
this	reference	voltage,	the	green	LED	(connected	to	the	P1.6	on	the	MSP430	LaunchPad)
will	turn	on.	Otherwise,	the	red	LED	(connected	to	the	P1.0	on	the	MSP430	LaunchPad)
will	turn	on.	This	application	can	be	taken	as	a	simple	battery	check	system.

In	 Listing	 11.1,	 we	 first	 set	 the	 comparator	 parameters.	 Then	 we	 check	 the	 input
values	and	turn	on	the	appropriate	LED	in	an	infinite	loop.	To	do	so,	we	have	to	check	the
register	 CACTL2	 since	 we	 cannot	 reach	 the	 CAOUT	 bit	 alone.	 In	 Listing	 11.2,	 we
perform	the	same	operation	in	assembly	language.

Listing	11.1			Usage	of	the	Comparator_A+	module	in	C	language.



	

	

Listing	11.2			Usage	of	the	Comparator_A+	module	in	assembly	language.

	

	



	

	

11.3			Comparator_A+	in	Grace
The	 Comparator_A+	 module	 can	 be	 used	 under	 Grace	 by	 clicking	 the	 Comp_A+	 8
Channels	 block	 shown	 in	 Fig.	 5.11.	 Do	 not	 forget	 to	 check	 the	 box	 “Enable
Comparator_A+	in	my	configuration”	first	to	configure	the	Comparator_A+	module	under
Grace.

11.3.1			The	Basic	User	Mode

The	Comparator_A+	module	can	be	configured	basically	by	setting	inputs,	output,	and	the
reference	voltage	 in	 the	basic	user	mode	 (given	 in	Fig.	11.3).	There	 are	 two	drop-down
lists	for	positive	and	negative	inputs	to	the	comparator.	There	is	a	third	drop-down	list	for
the	 reference	voltage	under	Voltage	Reference.	There	 is	also	a	 list	 to	 select	which	 input
will	use	 this	 reference	voltage.	Here,	 the	 two	options	are	+	Channel	and	-	Channel.	The



output	of	the	comparator	module	can	be	directed	either	to	Timer_ACCI1B	or	to	either	of
the	 two	 options	 from	 the	 dropdown	 list.	 The	 Comparator_A+	 based	 interrupts	 can	 be
adjusted	 in	 this	 mode	 also.	 First,	 the	 user	 should	 check	 the	 Comparator_A+	 interrupt
enable	box.	The	user	can	select	the	interrupt	edge	select	type	(whether	it	will	occur	on	the
rising	or	the	falling	edge)	from	the	two	check	boxes.	Then	the	prototype	interrupt	service
routine	 (ISR)	 can	 be	 added	 to	 the	 InterruptVectors_init.c	 file	 by	 pressing	 the	 Generate
Interrupt	Handler	Code	button.

	

Figure	11.3			The	basic	user	mode	for	the	Comp_A+	block	under	Grace.

	

11.3.2			The	Power	User	Mode

The	 power	 user	mode	 for	 the	 Comparator_A+	module	 is	 given	 in	 Fig.	 11.4.	 There	 are
three	 additional	 check	 boxes	 in	 the	 power	 user	 mode.	 Two	 of	 them	 are	 related	 to	 the
inputs.	The	Short	 inputs	 check	box	can	be	used	 to	 short-circuit	 inputs.	The	Flip	 Inputs,
Inverse	Output	check	box	can	be	used	to	flip	inputs	and	inverse	output.	The	third	check
box,	Enable	Filter	 is	 related	 to	 the	output.	The	user	 can	 enable	 the	 comparator’s	 output
filter	by	checking	this	box.



	

Figure	11.4			The	power	user	mode	for	the	Comp_A+	block	under	Grace.

	

11.3.3			The	Register	Controls	Mode

Finally,	all	of	 the	preceding	Comparator_A+	module	settings	can	be	done	in	 the	register
controls	 mode	 given	 in	 Fig.	 11.5.	 In	 this	 mode,	 Comparator_A+	 registers	 CACTL1,
CACTL2,	and	CAPD	can	be	adjusted	by	appropriate	check	boxes.	There	 is	also	a	drop-
down	list	to	adjust	the	reference	voltage	value	in	CACTL1.



	

Figure	11.5			The	register	controls	mode	for	the	Comp_A+	block	under	Grace.

	

11.3.4			Coding	Practices

In	this	section,	we	redo	the	comparator	application	given	in	Listing	11.1	using	Grace.	As	a
reminder,	 this	 application	 is	 a	 simple	 battery	 checker.	 We	 start	 by	 generating	 a	 Grace
project.	Then,	we	configure	pins	P1.0	and	P1.6	under	Grace.	These	should	be	set	as	GPIO
output.	These	settings	can	be	done	by	any	of	the	three	GPIO	views.	The	internal	reference
voltage	 is	 connected	 to	 the	 positive	 input	 of	 the	 Comparator_A+	module.	 The	 voltage
input	is	connected	to	the	negative	input	of	the	Comparator_A+	module.	In	this	application,
we	 reconfigure	 the	main.c	 file	as	given	 in	Listing	11.3.	After	 compiling	 the	project,	we
can	run	our	application.

Listing	11.3			Usage	of	the	Comparator_A+	module	under	Grace,	basic	user	mode.



	

	

11.4			Analog-to-Digital	Conversion
There	are	several	analog-to-digital	conversion	(ADC)	methods.	Each	has	advantages	and
disadvantages	 [2].	 The	 ADC10	 module	 in	 the	 MSP430G2553	 uses	 the	 successive
approximation	register	(SAR)	conversion	method.	Therefore,	we	will	only	deal	with	it	in
this	section.	Then	we	will	focus	on	the	properties	of	the	ADC10	module.

11.4.1			Successive	Approximation	Register	Converter

As	the	name	implies,	the	SAR	converter	works	iteratively	in	obtaining	the	digital	form	of
the	analog	signal.	In	iteration,	the	MSB	of	the	digital	form	is	obtained	first.	Then,	step-by-
step,	remaining	lower-order	bit	values	are	obtained	until	the	LSB	is	reached.

The	 SAR	 circuitry	 is	 shown	 in	 Fig.	 11.6.	 In	 this	 figure,	VIN	 stands	 for	 the	 analog
voltage	 value	 to	 be	 converted	 to	 digital	 form.	The	working	 principle	 of	 the	 given	SAR
circuitry	is	as	follows:	Initially,	all	the	capacitors	will	be	discharged	to	the	offset	voltage
of	the	comparator.	As	the	analog	signal	is	fed	to	the	input,	it	will	be	kept	at	that	value	by	a
sample	and	hold	circuit.	Then	this	voltage	is	applied	to	all	capacitors.	Since	each	capacitor
has	 a	 different	 capacitance	 (in	 powers	 of	 two),	 they	will	 be	 charged	 accordingly.	These
values	are	compared	with	 the	 reference	voltage.	Based	on	 the	comparison,	 the	bit	value



(either	zero	or	one)	is	generated	and	saved	in	the	shift	register.	Then	the	reference	voltage
(VREF)	is	updated	and	the	conversion	continues	until	the	desired	accuracy	is	obtained.

	

Figure	11.6			The	circuit	diagram	of	the	SAR	converter.

	

To	 explain	 how	 the	 SAR	 conversion	works,	we	 simulate	 it	with	 the	 code	 given	 in
Listing	11.4.	Here,	 the	constant	bitsize	 represents	 the	bit	 size	of	 the	digital	 form	 to	be
obtained.	The	variable	Vin	stands	for	 the	analog	voltage	to	be	converted	to	digital	form.
The	variable	Vref	stands	for	the	reference	voltage.	The	array	bits	holds	the	digital	form
obtained.	 Finally,	 the	 variable	 quantized	 holds	 the	 quantized	 approximate	 form	 of	 the
analog	 input	 voltage.	 We	 can	 observe	 the	 bits	 and	 quantized	 variables	 from	 the
Expressions	window	in	CCS.

Listing	11.4			The	simulation	program	for	the	SAR	conversion.

	



	

	

Let’s	consider	an	example	of	the	use	of	this	simulation	program.	Assume	that	we	take
the	reference	voltage	(VREF)	as	3.6	(V).	We	set	the	bit	size	to	10	(bits).	Assume	the	input
voltage	(VIN)	to	be	1.9	(V).	We	will	get	the	digital	representation	1000011100b	or	21Ch	as
we	run	the	simulation	program.	As	can	be	observed	from	the	CCS	Expressions	window,
the	input	voltage	is	approximated	by	1.898438	V.	This	simulation	program	also	gives	an
insight	into	the	working	principles	of	the	SAR	conversion.

11.4.2			The	ADC10	Module

The	layout	of	the	ADC10	module	is	shown	in	Fig.	11.7.	In	this	figure,	the	input	channels
A12	to	A15	are	connected	to	channel	A11	internally.	The	input	channel	A10	is	connected
to	 the	 internal	 temperature	 sensor.	 In	 this	 figure,	 TA_OUT0,	TA_OUT1,	 and	 TA_OUT2
represent	the	timer	block	output	(TA_OUTx)	given	in	Fig.	10.9.	Therefore,	ADC10	can	be
directly	triggered	by	any	channel	of	the	timer	module.



	

Figure	11.7			Block	diagram	of	the	ADC10	module.

	

11.4.3			ADC10	Registers

As	 can	 be	 seen	 in	 Fig.	 11.7,	 the	 ADC10	 module	 has	 several	 parameters.	 These	 are
controlled	by	the	two	registers	called	ADC10CTL0	and	ADC10CTL1.	We	will	first	focus
on	the	ADC10CTL0	register	given	in	Table	11.5.	As	can	be	seen	in	this	table,	the	user	can
select	the	voltage	reference	values,	sample	and	hold	time,	sampling	rate,	reference	voltage
output,	 internal	 reference	 buffer,	 multiple	 sample	 and	 conversion,	 reference	 generators,
turning	on	the	SAR	core,	interrupt	capabilities,	and	the	conversion	operation	through	the
ADC10CTL0	register.

Table	11.5			ADC10	control	register	0	(ADC10CTL0).



	

In	Table	11.5,	 the	most	 significant	3	bits	of	 the	ADC10CTL0	 register,	SREFx,	are
used	 for	 voltage	 reference	 values.	 In	 connection	 with	 Fig.	 11.7,	 these	 correspond	 to
SREF2	(MSB),	SREF1,	and	SREF0	(LSB)	respectively.	These	values	are	shown	in	detail
in	Table	11.6.	Here,	we	provide	 the	constants	 (from	SREF_0	 to	SREF_7)	defined	 in	 the
MSP430	header	 file	 (given	 in	 the	Appendix)	 instead	of	giving	 the	 individual	values	 for
these	bits.	In	this	table,	VREF	represents	the	built-in	reference	voltage	and	VeREF	 represents
the	external	reference	voltage.

Table	11.6			SREFx	values	and	corresponding	constants.

	

In	Table	11.5,	bits	12	and	11	(ADC10SHTx)	are	reserved	for	sample	and	hold	times.
The	 constants	 and	 the	 corresponding	 sample	 and	 hold	 times	 related	 to	 these	 bits	 are
tabulated	in	Table	11.7.	As	can	be	seen	in	this	table,	the	sample	and	hold	time	is	related	to
the	clock	used	in	the	ADC10	module.

Table	11.7			ADC10SHTx	values	and	corresponding	constants.



	

The	remaining	bits	for	the	ADC10CTL0	register	have	the	following	properties.	The
ADC10SR	bit	adjusts	the	sampling	rate.	When	this	bit	is	reset,	the	sampling	rate	can	be	up
to	200	ksps.	When	 it	 is	 set,	 the	sampling	rate	may	go	up	 to	50	ksps.	The	REFOUT	bit
enables	the	reference	voltage	output.	The	REFBURST	bit	controls	the	internal	reference
buffer.	 When	 this	 bit	 is	 reset,	 the	 reference	 buffer	 will	 be	 fed	 to	 output	 continuously,
independent	of	the	status	of	the	ADC10	module.	When	this	bit	is	set,	the	reference	voltage
is	 fed	 to	 output	 only	when	 the	ADC10	module	 is	 active.	The	MSC	 bit	 allows	multiple
sample	and	conversion	operations	 for	valid	sampling	modes	 (to	be	explained	next).	The
REFON	 bit	 enables	 the	 reference	 generator.	 The	 REF2_5V	 bit	 selects	 the	 reference
voltage	as	either	1.5	or	2.5	V	when	it	is	reset	and	set,	respectively.	The	REFON	bit	must
also	be	enabled	 for	 this	purpose.	The	ADC10IE	 bit	 enables	 the	 interrupts	 related	 to	 the
ADC10	module.	The	ADC10IFG	bit	 stands	for	 the	 interrupt	 flag.	The	ENC	bit	enables
the	conversion.	Finally,	setting	the	ADC10SC	bit	starts	the	analog-to-digital	conversion.

The	second	control	register	for	the	ADC10	module	is	ADC10CTL1,	given	in	Table
11.8.	As	can	be	seen	in	this	table,	the	user	can	select	the	input	channel,	sample	and	hold
source,	 data	 format,	whether	 or	 not	 to	 invert	 the	 sample	 and	hold	 signal,	ADC10	clock
divider,	ADC10	clock	source,	and	conversion	sequence	mode	 through	 the	ADC10CTL1
register.

Table	11.8			ADC10	control	register	1	(ADC10CTL1).

	

In	 Table	 11.8,	 the	 most	 significant	 4	 bits	 in	 the	 ADC10CTL1	 control	 register,
INCHx,	 are	 reserved	 for	 the	 input	 pins	 to	 the	ADC	 core.	 Pins	A0	 to	A7	 (explained	 in
Table	11.10)	can	be	selected	as	inputs	for	the	ADC.	The	constants	corresponding	to	these
inputs	are	INCH_0,	INCH_1,…,	INCH_7	respectively.	The	corresponding	pin	should	also
be	enabled	in	the	ADC10AE0	 register	for	analog	 input.	The	input	should	be	selected	as
INCH_10	to	use	the	internal	temperature	sensor	of	the	MSP430.	The	SHSx	bits	select	the
sample	 and	 hold	 source.	 The	 constants	 for	 these	 bits	 are	 defined	 as	 SHS_0,	 SHS_1,
SHS_2,	 and	 SHS_3.	 They	 correspond	 to	 ADC10SC,	 Timer_A	 output	 units	 1,	 0,	 and	 2
respectively.	The	ADC10DF	 bit	 sets	whether	 the	data	 format	 for	 the	ADC10	will	 be	 in
binary	or	two’s	complement	form.	In	the	first	form,	the	result	will	be	right-justified	binary
in	 the	 0000h–03FFh	 range.	 Zero	 corresponds	 to	 the	 bottom	 of	 the	 input	 range.	 In	 the
second	 form,	 the	 lowest	 6	 bits	 are	 always	 clear,	 and	 bit	 15	 gives	 the	 sign.	 Zero
corresponds	to	the	middle	of	the	input	range,	and	lower	inputs	give	negative	values.	The
ISSH	bit	enables	or	disables	the	sample	input	signal	inversion.



The	ADC10DIVx	bits	set	the	clock	divider	values.	The	clock	in	the	ADC10	module
can	be	divided	into	1,	2,…,	8	based	on	the	constants	ADC10DIV_0,	ADC10	DIV_1,…,
ADC10DIV_7.	The	ADC10SSELx	bits	are	used	to	select	the	clock	source	for	the	ADC10
module.	 This	 clock	 can	 be	 taken	 from	 the	 module’s	 internal	 oscillator	 ADC10OSC,
ACLK,	 MCLK,	 or	 SMCLK.	 These	 can	 be	 selected	 by	 constants	 ADC10SSEL_0,
ADC10SSEL_1,	ADC10SSEL_2,	and	ADC10SSEL_3	 respectively.	The	default	 clock	 is
ADC10OSC.	 It	 runs	nominally	 at	 5	MHz.	 It	 is	 automatically	 enabled	when	needed	 and
disabled	when	 conversions	have	 finished.	This	makes	 it	 the	most	 convenient	 source	 for
most	applications.	The	CONSEQx	bits	are	used	to	select	the	conversion	mode.	These	are:

•		Single	channel,	single	conversion:	Single	conversion	for	the	channel	selected	by
INCHx	bits.	This	mode	is	represented	by	the	constant	CONSEQ_0.

•		Sequence	of	channels:	One	conversion	in	multiple	channels,	beginning	with	the
channel	selected	by	INCHx	bits	and	decrementing	to	channel	A0.	The	operation	stops
after	the	conversion	of	channel	A0.	This	mode	is	represented	by	the	constant
CONSEQ_1.

•		Repeat	single	channel:	A	single	channel	selected	by	INCHx	bits	is	converted
repeatedly	until	stopped.	This	mode	is	represented	by	the	constant	CONSEQ_2.

•		Repeat	sequence	of	channels:	Repeated	conversions	for	multiple	channels,	beginning
with	the	channel	selected	by	INCHx	bits	and	decrementing	to	channel	A0.	The
sequence	ends	after	conversion	of	channel	A0.	The	next	trigger	signal	restarts	the
sequence.	This	mode	is	represented	by	the	constant	CONSEQ_3.

The	 final	 bit	 in	 the	 ADC10CTL1	 register	 is	 ADC10BUSY.	 It	 will	 be	 set	 while	 the
conversion	is	in	progress.

As	 the	 conversion	 is	 done,	 the	 result	will	 be	written	 to	 the	ADC10MEM	 register.
Based	on	the	previously	mentioned	reference	selections,	this	will	be	in	the	form	of

(11.1)

where	N	 is	 the	output	of	 the	conversion	operation.	nint	 (·)	stands	for	 the	nearest	 integer
function.	VR+	and	VR−	are	the	upper	and	lower	reference	voltages	given	in	Table	11.6.	VIN	is
the	 input	 voltage	 applied	 to	 the	 ADC.	 Here,	 the	 constant	 1024	 corresponds	 to	 the
maximum	level,	210,	that	can	be	obtained	from	the	ADC10	module.

In	 its	 basic	 form,	 three	 steps	 are	 needed	 to	 perform	 a	 single	 conversion	 with	 the
ADC10	 module.	 First,	 the	 ADC10	 should	 be	 configured	 through	 its	 registers
ADC10CTL0	and	ADC10CTL1.	Meanwhile,	 the	ADC10ON	bit	 should	be	set	 to	enable
the	ADC10	module.	ADC10	control	 registers	can	only	be	adjusted	when	the	ENC	bit	 is
reset.	 Second,	 the	 ENC	 bit	 should	 be	 set	 to	 enable	 conversion.	 Third,	 the	 conversion
should	be	started	either	by	setting	the	ADC10SC	bit	or	by	an	edge	from	the	Timer_A	(TA)
module.	The	last	two	steps	must	be	repeated	for	each	conversion,	which	requires	clearing
and	setting	the	ENC	bit	again.	This	two-step	sequence	is	relaxed	for	conversions	triggered
by	 software.	 In	 this	 case,	 the	 first	 conversion	 can	 be	 triggered	 by	 setting	 the	 ENC	 and
ADC10SC	bits	 together	 in	a	single	 instruction.	Subsequent	conversions	can	be	 triggered



by	 setting	 the	 ADC10SC	 bit	 alone	 without	 toggling	 the	 ENC	 bit.	 The	 interrupt	 flag
ADC10IFG	 is	 set	when	 the	 result	 is	written	 to	 the	ADC10MEM	 except	when	 the	 data
transfer	controller	is	used.	This	will	be	explained	next.

11.4.4			Multiple	Conversions	Using	the	Data	Transfer	Controller

In	 some	 applications,	more	 than	 one	 conversion	may	 be	 needed.	 Instead	 of	 performing
these	 conversions	 within	 a	 loop,	 the	 data	 transfer	 controller	 (DTC)	 inside	 the	 ADC10
module	 can	 be	 used.	 The	 DTC	 automatically	 transfers	 the	 conversion	 results	 from	 the
ADC10MEM	to	specified	memory	locations.

DTC	can	be	controlled	through	two	registers,	ADC10DTC0	and	ADC10	DTC1.	The
entries	of	the	ADC10DTC0	register	are	shown	in	Table	11.9.

Table	11.9			ADC10	DTC	control	register	0	(ADC10DTC0).

	

In	Table	11.9,	 the	most	significant	4	bits	of	 the	ADC10DTC0	register	are	 reserved.
The	ADC10TB	bit	 is	used	 to	select	 the	 transfer	mode.	When	 this	bit	 is	 reset,	one-block
transfer	mode	will	be	active.	When	it	is	set,	two-block	transfer	mode	will	be	active.	When
the	ADC10CT	bit	is	reset,	data	transfer	stops	when	one	block	(in	one-block	mode)	or	two
blocks	 (in	 two-block	 mode)	 have	 completed.	 When	 this	 bit	 is	 set,	 data	 is	 transferred
continuously.	 The	 DTC	 operation	 is	 stopped	 only	 if	 the	 ADC10CT	 bit	 is	 reset	 or
ADC10SA	 (holding	 the	 data	 transfer	 start	 address)	 is	 written	 to.	 The	 ADC10B1	 bit
indicates	 which	 block	 is	 filled	 with	 the	 ADC10	 conversion	 results	 (in	 the	 two-block
mode).	 When	 this	 block	 is	 reset,	 it	 indicates	 that	 block	 2	 is	 filled.	 When	 it	 is	 set,	 it
indicates	that	block	1	is	filled.	For	this	bit	to	be	valid,	ADC10IFG	and	ADC10TB	should
be	set.	The	ADC10FETCH	bit	should	normally	be	reset.

The	ADC10DTC1	register	 is	used	 to	define	 the	number	of	 transfers	per	block.	The
user	should	also	declare	the	data	transfer	start	address	through	the	ADC10SA	register.	We
will	show	how	to	make	this	declaration	in	C	and	assembly	languages	in	Sec.	11.4.6.

11.4.5			The	Pin	Layout	for	the	ADC10	Module

The	pin	usage	for	the	ADC10	module	is	given	in	Table	11.10.	As	can	be	seen	in	this	table,
pins	2	to	7	and	14,	15	can	be	used	for	ADC	input.	These	are	labeled	as	A0–A7.	Reference
voltages	for	conversion	can	be	fed	through	pins	5	and	6.

Table	11.10			Pin	usage	table	for	the	ADC10	module.



	

11.4.6			Coding	Practices	for	the	ADC10	Module

In	this	section,	we	will	provide	several	examples	using	the	ADC10	module.	Our	examples
will	 be	 in	C	and	 assembly	 languages.	We	will	 also	deal	with	 the	usage	of	 the	DTC	 for
multiple	conversions.

Our	first	ADC	example	in	the	C	language	is	given	in	Listing	11.5.	Here,	the	ADC10
module	is	basically	used	as	a	comparator.	The	input	voltage	level	at	pin	A1	(pin	P1.1)	is
checked	within	an	infinite	loop.	If	the	value	there	is	above	a	certain	level,	the	red	LED	is
turned	on.

Listing	11.5			The	first	ADC	example	in	C	language.



	

	

In	 the	 second	ADC	 example,	 given	 in	 Listing	 11.6,	 the	 voltage	 level	 at	 pin	A1	 is
checked	within	an	infinite	loop.	This	level	is	converted	to	the	corresponding	floating-point
representation.	 Then	 it	 is	 saved	 in	 the	 variable	voltage.	 This	 variable	 can	 be	 observed
through	the	Watch	window.

Listing	11.6			The	second	ADC	example	in	C	language.



	

	

In	the	third	ADC	example,	given	in	Listing	11.7,	 the	 internal	 temperature	sensor	of
the	ADC10	module	is	used.	The	temperature	is	measured	20	times	using	the	DTC	module.
The	average	temperature	value	is	calculated.	Again,	the	average	temperature	is	converted
to	 the	 true	 (scaled)	 value.	 Then	 it	 is	 saved	 in	 the	 avgtemp	 variable.	 This	 can	 also	 be
observed	in	the	Watch	window.

Listing	11.7			The	third	ADC	example	in	C	language.



	

	

	

The	 first	 assembly	code	 for	 the	ADC10	module	 is	given	 in	Listing	11.8.	Here,	 the
ADC10	module	is	used	as	a	comparator.	If	the	input	voltage	is	greater	than	a	predefined
value,	the	red	LED	on	the	MSP430	LaunchPad	will	turn	on.

Listing	11.8			The	first	ADC	example	in	assembly.



	



	

	

In	the	second	ADC	example,	given	in	Listing	11.9,	the	DTC	module	and	the	internal
temperature	sensor	of	the	ADC10	module	are	used.	The	temperature	is	measured	16	times.
If	 the	average	temperature	value	is	greater	than	27°C,	then	the	red	LED	on	the	MSP430
LaunchPad	is	turned	on.

Listing	11.9			The	second	ADC	example	in	assembly.

	



	

	

11.5			Digital-to-Analog	Conversion
To	convert	a	digital	signal	to	analog	form,	a	digital-to-analog	conversion	(DAC)	is	needed.
Unfortunately,	 the	MSP430G2553	does	not	have	 such	a	module.	Therefore,	we	will	use
pulse	width	modulation	(PWM)	for	this	purpose.

11.5.1			Pulse	Width	Modulation



The	 output	 signal	 in	 pulse	 width	 modulation	 (PWM)	 is	 a	 high-frequency	 digital	 pulse
sequence.	 The	 width	 of	 the	 pulses	 changes	 depending	 on	 the	 setting.	 As	 this	 high-
frequency	signal	 is	smoothed	by	a	 low-pass	filter	(such	as	a	simple	RC	circuit),	we	will
get	 an	 average	 voltage	which	 is	 approximately	 a	 dc	 signal.	 This	 average	 voltage	 (Vavg)
obtained	from	the	system	will	be

(11.2)

where	ton	is	the	duration	the	pulse	will	be	on	and	tperiod	is	the	period	of	the	pulse.	The	ratio
ton/tperiod	 is	 called	 the	 duty	 cycle	 (D)	 of	 the	 PWM	 signal.	 By	 changing	 the	 duty	 cycle
(changing	ton	and	keeping	tperiod	constant),	an	approximate	dc	signal	can	be	generated.

The	 Timer_A	 capture/compare	mode	 can	 be	 used	 to	 generate	 PWM	 signals	 in	 the
MSP430.	This	mode	is	explained	in	detail	in	Sec.	10.7.2.	Based	on	the	definitions	there,
the	duty	cycle	of	the	PWM	becomes

(11.3)

where	TACCRx	 stands	 for	 the	 xth	Timer_A	 capture/compare	 register.	 To	 note	 here,	 the
timer	will	be	in	the	up	mode	for	this	equation	to	be	valid.

The	 arrangement	 for	 PWM	 while	 using	 the	 Timer_A	 capture/compare	 block	 (in
output	mode	7)	is	as	follows:	The	output	is	turned	on	when	the	TAR	value	reaches	zero.	It
is	turned	off	when	the	TAR	value	reaches	TACCRx.	This	means	that	increasing	the	value
in	TACCRx	 increases	 the	 duty	 cycle.	The	period	of	PWM	 is	 the	 same	 as	 that	 of	 timer.
Therefore,	its	frequency	is

(11.4)

where	fCLK	stands	for	the	frequency	of	the	timer	clock.

Finally,	the	generated	PWM	signal	can	be	taken	out	from	ports	P1	and	P2.	Please	see
Table	 10.18	 for	 specific	 pins.	 Do	 not	 forget	 to	 set	 the	 corresponding	 bit	 in	 the	 PxSEL
register	for	analog	output.

11.5.2			Coding	Practices	for	PWM

In	this	section,	we	provide	sample	C	and	assembly	codes	for	PWM	generation.	We	benefit
from	 the	 capture/compare	 block	 of	 the	 TA	module	 in	 generating	 the	 PWM.	 In	 Listing
11.10,	 the	 period	 and	 the	 duty	 cycle	 of	 the	 generated	 PWM	 can	 be	 adjusted	 by	 two
variables.	The	output	is	fed	to	the	green	LED	of	the	MSP430	LaunchPad.	Therefore,	the
PWM	signal	can	be	observed	by	the	dimness	of	the	LED.

Listing	11.10			The	PWM	generation	example	in	C	language.



	

	

In	 the	 assembly	 code,	 given	 in	 Listing	 11.11,	 we	 follow	 the	 same	 strategy	 as	 in
Listing	11.10.	The	period	and	 the	duty	cycle	of	 the	PWM	signal	can	be	adjusted	 in	 this
example	also.	The	output	is	fed	to	the	green	LED	of	the	MSP430	LaunchPad.	Therefore,
the	PWM	signal	can	be	observed	by	the	dimness	of	the	LED.

Listing	11.11			The	PWM	generation	example	in	assembly.



	

	

	

11.6			ADC10	in	Grace
The	ADC10	module	can	be	used	under	Grace	by	clicking	the	ADC10	10-bit	block	shown
in	Fig.	5.11.	 To	 configure	 the	ADC10	module	 under	Grace,	 do	 not	 forget	 to	 check	 the
“Enable	ADC10	in	my	configuration”	box	first.

11.6.1			The	Basic	User	Mode

The	basic	user	mode	for	ADC10	is	shown	in	Fig.	11.8.	In	this	mode,	the	ADC10	module
can	 be	 configured	 basically	 by	 setting	 the	ADC	 channel,	 signal	 bandwidth,	 impedance,
and	sampling	rate.	The	sampling	time	is	calculated	by	the	impedance	value.	Grace	directs
the	 user	 to	 the	MSP430	User’s	Guide	 [17]	 for	 this	 issue.	The	 user	 can	 select	 the	ADC
channel	from	the	ADC	Channel	drop-down	list.	Finally,	the	drop-down	list	Sampling	Rate
can	be	used	to	select	the	timer	to	be	used	in	the	sampling	operation.	If	the	user	wants	to
sample	 the	 signal	 in	 an	 irregular	 manner,	 then	 he	 or	 she	 should	 choose	 the	 Manually
Sample	 option	 from	 the	 drop-down	 list.	 The	 other	 three	 options	 Timer_A3	 Channel	 0,
Timer_A3	 Channel	 1,	 and	 Timer_A3	 Channel	 2	 in	 fact	 correspond	 to	 TA_OUT0,
TA_OUT1,	and	TA_OUT2	in	Fig.	11.7.	The	ADC10-based	 interrupts	can	be	adjusted	 in
this	mode	 also.	 First,	 the	 user	 should	 check	 the	ADC10	 interrupt	 enable	 box.	 Then	 the
prototype	 ISR	 can	 be	 added	 to	 the	 InterruptVectors_init.c	 file	 by	 pressing	 the	Generate
Interrupt	Handler	Code	button.



	

Figure	11.8			The	basic	user	mode	for	the	ADC10	block	under	Grace.

	

11.6.2			The	Power	User	Mode

The	power	user	mode	for	the	ADC10	block	is	shown	in	Fig.	11.9.	In	this	mode,	the	GPIO
pins	 to	 be	 used	 can	 be	 selected	 from	 the	 Enable	 External	 GPIO	 Pin	 check	 boxes.
Configurations	 for	 these	 pins	 can	 be	 done	 by	 the	 check	 boxes	 under	 the	 Enable	 ADC
Channel	Config	menu.	The	user	 can	also	 select	 the	 sampling	operation	 type	 (whether	 it
will	be	from	a	single	channel	or	a	sequence	of	channels)	in	this	menu.	Reference	voltages
are	organized	 in	Negative	 and	Positive	Reference	Voltage	 lists	 in	 the	power	user	mode.
The	system	ground	or	the	external	negative	reference	voltage	values	can	be	selected	from
the	 Negative	 Reference	 Voltage	 list.	 The	 user	 can	 select	 the	 positive	 reference	 voltage
from	 the	Positive	Reference	Voltage	 list.	The	buffer	 setting	 for	 the	 external	voltage	 can
also	be	done	by	check	boxes	there.	The	conversion	type	(single,	repeated)	can	be	selected
from	the	Conversion	Type	list.	The	user	can	also	select	the	sample	and	hold	time	from	the
Sample	&	Hold	Time	list.	There	are	four	options	for	the	ADC10CLK	here.	The	user	can
invert	the	sample	and	hold	the	signal	with	its	check	box	in	this	menu.	As	in	the	basic	user
mode,	the	user	can	also	enter	the	impedance	value	into	the	related	box	to	set	the	sample
time.	Grace	selects	 the	suitable	sample	and	hold	 time	from	the	 list	based	on	 the	entered
impedance	value.	The	ADC	clock	source	can	be	selected	from	the	ADC	Clock	Source	list.
The	frequency	divider	for	the	selected	clock	can	be	selected	from	the	Clock	Divider	drop-
down	 list	 by	 the	 clock	 source	 list.	 The	 user	 can	 also	 use	 the	 ADC	 Trigger	 Source	 &
Sampling	Rate	list	to	select	an	appropriate	source	for	this	operation.	The	user	can	enable
the	 two’s	complement	operation	by	 its	check	box.	The	 interrupt	operations	 in	 the	power
user	mode	are	the	same	as	in	the	basic	user	mode.



	

Figure	11.9			The	power	user	mode	for	the	ADC10	block	under	Grace.

	

The	DTC	block	 in	 the	ADC10	module	can	be	enabled	 in	 the	power	user	mode.	 Its
properties	can	be	set	within	the	Automatic	Data	Transfer	Controller	block.	Here	the	user
should	 enter	 the	 Starting	 Memory	 Address	 and	 Memory	 Block	 Size	 values	 in	 the
appropriate	boxes.	To	note	here,	 the	starting	memory	address	can	be	entered	as	a	global
variable	defined	in	the	main.c	program	of	the	Grace	project.	Also,	one-block,	two-block,
and	one-time	or	continuous	data	transfer	modes	can	be	selected	by	checking	related	boxes
under	this	block.

11.6.3			The	Register	Controls	Mode

Finally,	all	 the	above	ADC10	module	settings	can	be	done	 in	 the	register	controls	mode
shown	in	Fig.	11.10.	In	this	mode,	the	ADC10	registers	ADC10CTL0,	ADC10CTL1,	and
ADC10AE0	 can	 be	 adjusted	 by	 appropriate	 check	 boxes.	 Also,	 the	 DTC	 registers
ADC10DTC0,	ADC10DTC1,	and	ADC10SA	can	be	set	in	this	mode.



	

Figure	11.10			The	register	controls	mode	for	the	ADC10	block	under	Grace.

	

11.6.4			Coding	Practices

In	 this	 section,	we	provide	 two	ADC	examples	using	Grace.	 In	 the	 first	 application,	we
use	the	basic	user	mode	with	the	internal	temperature	sensor	of	the	MSP430.	Here,	either
the	red	or	the	green	LED	is	turned	on,	depending	on	the	temperature	value	measured.	The
settings	for	this	operation	are	as	follows:	Red	and	green	LEDs	are	set	as	output	from	the
GPIO.	 The	 temperature	 sensor	 is	 selected	 from	 the	 ADC	 Channels	 drop-down	 list.
Sampling	 rate	 is	 selected	 as	Manually	 Sample	 from	 the	 associated	 drop-down	 list.	 The
main.c	file	of	the	Grace	project	will	be	as	in	Listing	11.12	for	this	application.

Listing	11.12			The	main.c	file	of	the	first	ADC	example	under	Grace,	basic	user	mode.



	

	

	

In	this	application,	we	also	use	the	ADC10	interrupts.	Therefore,	the	ADC	interrupts
should	be	enabled.	The	ADC	ISR	under	InterruptVectors_init.c	will	be	as	given	in	Listing
11.13.	As	we	compile	and	run	the	project,	the	MSP430	will	check	the	temperature	value	in
an	infinite	loop.	Depending	on	the	measured	value,	either	the	red	or	green	LED	will	turn
on.

Listing	11.13			The	ISR	file	of	the	first	ADC	example	under	Grace,	basic	user	mode.



	

	

In	 the	 second	 example,	 we	 redo	 the	 DTC-based	 temperature	 sensing	 application
given	in	Listing	11.7	using	Grace.	Unlike	from	Listing	11.7,	we	use	the	two-block	transfer
mode	here.	 In	 the	power	user	mode,	we	make	 the	 following	adjustments:	We	 select	 the
Temperature	Sensor	from	the	Enable	ADC	Channel	Config	list.	Then	we	set	the	negative
and	positive	reference	voltage	values	as	System	GND	and	1.5	V	respectively.	We	select
the	conversion	type	as	repeated	with	the	“automatic	successive	conversion”	box	checked.
The	sample	and	hold	 time	is	64	×	ADC10CLK.	The	ADC10	clock	source	 is	selected	as
ADC10OSC	with	the	clock	division	value	of	four.

We	 enable	 the	 DTC	 by	 its	 check	 box.	 Then,	 we	 enter	 “temparr”	 (defined	 in	 the
main.c	file	of	the	Grace	project)	to	the	Starting	Memory	Address	box	in	the	DTC	block.
We	enable	 the	 two-block	 transfer	mode	by	checking	 its	box.	Since	we	are	using	a	 two-
block	transfer	mode,	we	enter	eight	(half	of	the	total	number	of	samples	to	be	taken)	into
the	Memory	Block	Size	 box.	The	main.c	 file	 of	 the	Grace	 project	will	 be	 as	 in	Listing
11.14	for	this	application.

Listing	11.14			The	main.c	file	of	the	second	ADC	example	under	Grace,	power	mode.



	

	

We	use	 the	ADC	 interrupts	 in	 this	application	also.	Therefore,	we	enable	 the	ADC
interrupts	 by	 checking	 a	 box.	 The	ADC	 ISR	 under	 InterruptVectors_init.c	will	 be	 as	 in
Listing	11.15.	As	we	compile	and	run	 the	project,	 the	MSP430	will	 take	16	 temperature
samples.	 The	 user	 can	 observe	 their	 (scaled)	 average	 value	 from	 the	 avgtemp	 float
variable.

Listing	11.15			The	ISR	file	of	the	second	ADC	example	under	Grace,	power	mode.



	

	

11.7			Non-Touch	Paper	Towel	Dispenser	Application
The	purpose	of	this	application	is	to	learn	how	to	use	the	ADC	and	PWM	on	the	MSP430
microcontroller.	As	a	real-world	application,	we	design	a	non-touch	paper	towel	dispenser.
In	this	section,	we	provide	the	equipment	list,	layout	of	the	circuit,	procedure,	and	system
design	specifications.

11.7.1			Equipment	List

Following	is	the	equipment	list	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		One	100-ηF	capacitor

•		One	light-dependent	resistor	(LDR)

•		One	LED

•		One	12-V	dc	motor

•		One	L293D	motor	driver	integrated	circuit	(IC)

•		One	220-Ω	resistor

•		One	10-kΩ	resistor

L293D	Motor	Driver:	In	this	application,	a	dc	motor	will	be	used.	We	will	use	the
L293D	dual	H-bridge	motor	driver	IC	to	control	 it.	This	IC	can	be	used	to	drive	two	dc
motors	 simultaneously,	 both	 in	 forward	 and	 reverse	 directions.	 Pin	 names	 and	 their
descriptions	for	the	L293D	IC	are	given	in	Table	11.11.

Table	11.11			Pin	names	and	descriptions	for	the	L293D	IC.



	

In	 this	application,	 the	PWM	signal	generated	by	 the	MSP430G2553	will	be	fed	 to
the	INH	pin.	The	 IN1	and	IN2	pins	will	be	used	 to	specify	 the	direction	of	 the	 rotation.
This	is	done	by	setting	one	of	these	pins	and	resetting	the	other.

11.7.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	11.11.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	11.11			Layout	of	the	non-touch	paper	towel	dispenser	application.

	

11.7.3			System	Design	Specifications

In	 the	 first	part	of	 the	application,	we	will	design	a	non-touch	 towel	dispenser	using	an
LDR	and	an	LED.	When	the	user	crosses	his	or	her	hand	by	the	LDR,	this	will	 indicate
that	the	paper	towel	is	needed.	This	should	generate	a	timer	interrupt.	The	LED	will	turn
on	for	4	s	 to	 indicate	 that	 the	paper	 towel	 is	fed.	During	 this	 time,	no	other	paper	 towel
request	is	accepted.	When	the	waiting	time	is	over,	the	LED	will	turn	off.	The	system	will
wait	for	a	new	paper	towel	request.

In	 the	second	part	of	 the	application,	we	will	 repeat	 the	 first	part	using	a	dc	motor



instead	of	the	LED.	To	do	so,	we	should	set	the	PWM	frequency	to	5	kHz.	The	duty	cycle
of	the	PWM	signal	should	be	50%.	The	dc	motor	will	rotate	for	4	s	to	simulate	the	feeding
of	the	paper	towel.	Again,	no	other	paper	towel	request	is	accepted	during	this	time.	After
the	waiting	time	is	over,	the	motor	will	stop.

11.7.4			The	C	Code	for	the	System

In	 the	 first	 part	 of	 the	 code,	 given	 in	 Listing	 11.16,	 constants	 and	 global	 variables	 are
defined.	 This	 is	 done	 to	 make	 the	 code	 more	 readable.	 In	 this	 code	 block,	 LedOn	 and
LedOff	constants	are	used	to	turn	on	and	turn	off	the	LED.	The	Count	variable	is	used	for
a	4-s	delay.	The	Control	variable	is	used	to	reject	any	interrupts	during	operation.

Listing	11.16			Non-touch	paper	towel	dispenser,	the	C	code	part	I.

	

	

In	the	second	part	of	the	code,	given	in	Listing	11.17,	the	hardware	configurations	for
the	digital	input	and	output	(I/O),	timer,	and	ADC	modules	are	done.	In	this	code	block,
configurations	 for	 each	 hardware	 module	 are	 done	 in	 a	 separate	 function.	 In	 the
PinConfig()	function,	pin	directions	are	assigned	as	P1DIR=0xFE	in	the	first	line	since	the
LED	is	connected	to	pin	P1.3	and	the	LDR	is	connected	to	pin	P1.0.	All	other	unused	pins
are	 set	 as	 output.	 In	 the	 second	 line,	 all	 output	 pins	 are	 reset.	 In	 the	 TimerConfig()
function,	 the	watchdog	 timer	 is	disabled	 in	 the	 first	 line.	 In	 the	second	 line,	 the	VLO	is
chosen	to	source	the	ACLK	at	12	kHz.	In	the	third	line,	the	timer	interrupt	is	enabled.	In
the	fourth	line,	the	timer	is	stopped	with	MC_0	because	the	timer	should	not	start	until	an
input	comes	from	the	LDR.	In	the	fifth	line,	the	time	interval	is	set	as	1	s	by	writing	1499
to	 the	 TACCR0	 register.	 Remember,	 period	 =	 (TACRR0+1)/	 fCLK.	 In	 the	 ADCConfig()
function,	 the	ADC10CTL0	 register	 is	configured	 in	 the	 first	 line.	The	ADC10ON	bit	 is	 set	 to
enable	the	ADC10	module.	Reference	voltages	for	the	ADC10	are	taken	from	VCC	and	VSS
which	are	analog	power	supplies	for	the	microcontroller.	ADC10SHT_3	is	used	to	choose	64
clock	 cycles	 to	 take	 a	 sample.	 In	 the	 second	 line,	 the	ADC10CTL1	 register	 is	 configured.
First,	A0	is	chosen	as	the	input	channel	with	INCH_0.	Then,	ADC10SSEL_0	is	used	to	choose
the	 internal	 ADC	 oscillator	 (with	 about	 5	 MHz	 frequency)	 as	 the	 clock	 source.
ADC10DIV_0	is	used	for	no	frequency	division.	The	trigger	for	a	new	conversion	is	set	as
the	ADC10SC	 bit	with	 SHS_0.	 Single-channel,	 single-conversion	mode	 is	 selected	with
CONSEQ_0.	In	the	third	line,	A0	is	enabled	as	the	analog	input	with	ADC10AE0	=	BIT0.	In
the	fifth	line,	conversion	is	enabled	with	ADC10CTL0	|=	ENC.

Listing	11.17			Non-touch	paper	towel	dispenser,	the	C	code	part	II.



	

	

In	the	third	part	of	the	code,	given	in	Listing	11.18,	the	ISR	settings	for	the	timer	are
done	as	follows:	The	system	generates	a	timer	interrupt	at	every	second.	Through	the	ISR,
the	 counter	 is	 increased.	 If	 the	 counter	 equals	 four,	 the	 LED	 is	 turned	 off,	 Count	 and
Control	variables	are	cleared,	and	the	timer	is	stopped	with	MC_0.

Listing	11.18			Non-touch	paper	towel	dispenser,	the	C	code	part	III.

	

	

Finally,	 the	C	code	for	 the	system	(with	all	 its	components)	 for	 the	first	part	of	 the
application	is	given	in	Listing	11.19.	The	code	block	performing	the	operation	is	placed	in
an	infinite	loop.	In	this	loop,	a	new	conversion	is	triggered	with	the	code	line	ADC10CTL0



|=	ADC10SC.	Then	 the	system	waits	until	 this	conversion	 is	complete	with	 the	code	 line
while((ADC10CTL1	 &	 ADC10BUSY)	 ==	 ADC10BUSY).	 After	 the	 conversion	 is	 done,	 the
obtained	value	is	written	to	the	ADC10MEM	register.	This	value	changes	between	03FFh
(at	 full	 light)	 and	 01FFh	 (at	 no	 light).	 The	 ADC10MEM	 value	 is	 compared	 with	 the
reference	value	0300h.	If	it	is	smaller	than	this	reference	value,	the	LED	is	turned	on	first.
Then	the	code	line	TACTL	=	MC_1	|	ID_3	|	TASSEL_1	|	TACLR	is	used	to	start	the	timer.
ACLK	 is	 set	 as	 the	clock	 source,	 the	clock	 frequency	 is	divided	by	eight,	 and	 the	TAR
register	 is	 reset.	 Finally,	 the	Control	 variable	 is	 set.	 It	 is	 reset	 again	 after	 the	 4-s	 time
delay.	This	disables	any	new	interrupt	request	for	the	timer	during	this	period.	Also	before
this	while	loop,	the	global	interrupt	enable	(GIE)	bit	is	set	to	enable	maskable	interrupts.

Listing	11.19			Non-touch	paper	towel	dispenser,	the	C	code	for	the	first	part	of	the
application.

	



	

	

The	C	code	for	the	system	(with	all	its	components)	is	modified	for	the	second	part	of
the	application.	It	is	given	in	Listing	11.20.	In	this	code	block,	first	constant	definitions	for
the	LED	are	changed	for	the	motor	to	MotorStart	and	MotorStop.	The	motor	starts	to	turn
when	pin	P1.2	is	set	as	PWM	output	(by	P1SEL	|=	0x04).	The	motor	stops	when	pin	P1.2
is	set	as	digital	I/O	(by	P1SEL	&= 0x04).	In	the	PinConfig()	function,	pins	P1.4	and	P1.5
are	used	as	inputs	to	the	motor	driver.	Pin	P1.3	is	unused	this	time.	P1OUT	=	0x10	is	used
to	 set	 one	 of	 the	motor	 driver	 inputs	 to	 turn	 it	 in	 one	 direction.	 In	 the	 TimerConfig()
function,	the	timer	block	is	reconfigured	to	generate	a	5-kHz	PWM	signal	with	50%	duty
cycle.	A	250-kHz	clock	signal	is	used	for	the	timer	block.	A	5-kHz	PWM	with	50%	duty
cycle	is	obtained	by	TACCR0=49	and	TACCR1=25.	Also,	the	reset/set	mode	is	selected	with
TACCTL1	=	OUTMOD_7	for	the	PWM.	In	the	timer	ISR,	the	Count	variable	must	be	equal	to



20,000	to	obtain	4-s	delay	since	the	time	interval	is	0.2	ms	this	time.	If	the	Count	variable
equals	20,000,	 the	motor	 is	stopped	instead	of	 turning	off	 the	LED.	In	the	infinite	while
loop,	if	the	ADC10MEM	value	is	smaller	than	the	reference	value,	the	motor	starts	instead
of	 turning	 on	 the	LED.	Also,	when	 the	 timer	 starts,	 the	 SMCLK	 is	 used	 instead	 of	 the
ACLK	and	it	is	divided	by	four	this	time.

Listing	11.20			Non-touch	paper	towel	dispenser,	the	C	code	for	the	second	part	of	the
application.

	



	

	

11.8			Summary
The	MSP430	 can	 process	 analog	 signals	 as	 well	 as	 digital	 signals.	 In	 this	 chapter,	 we
considered	ADC	and	DAC	operations.	We	first	focused	on	the	Comparator_A+	module.	It
provides	 a	 binary	output	 by	 comparing	 its	 input	 values.	We	provided	 sample	 codes	 and
Grace	 usage	 examples	 for	 this	module.	 Then	we	 focused	 on	 the	 ADC10	module.	 This
module	provides	a	10-bit	digital	representation	of	the	analog	signal	fed	to	it.	In	analog-to-
digital	 conversion,	 the	 ADC10	 uses	 the	 SAR	 method.	 We	 explored	 the	 operation
principles	 of	 this	 method	 through	 a	 simulation	 program.	 As	 in	 the	 Comparator_A+
module,	 we	 provided	 sample	 C	 and	 assembly	 codes.	 We	 also	 considered	 the	 ADC10
module	 under	Grace.	Unfortunately,	 the	MSP430G2553	 does	 not	 have	 a	DAC	module.
Therefore,	we	used	PWM	to	obtain	analog	signals	from	digital	representations.	Although
the	obtained	analog	signal	 is	an	approximation,	for	most	applications	 it	 is	sufficient.	We
used	the	timer	module	under	Grace	to	generate	PWM	signals.	We	should	use	an	external
DAC	module	to	obtain	a	precise	analog	signal.	We	provide	such	an	example	in	Chap.	14.
Finally,	 we	 considered	 the	 non-touch	 paper	 towel	 dispenser	 system	 as	 a	 real-world
application.	It	contains	both	ADC	and	PWM	operations.	We	designed	the	system	step-by-
step	both	in	hardware	and	software.

11.9			Problems
	11.1				Use	Listing	11.4	to	calculate	the	10-bit	SAR	conversion	of	the	analog	voltage

levels	1.2,	2.85,	and	3.243	V.	The	reference	voltage	will	be	3.6	V.

	11.2				Design	a	battery	charge	controller	using	the	MSP430	with	the	following
specifications:

a.				The	battery	will	be	connected	between	pin	P1.1	and	the	ground	of
the	MSP430	LaunchPad.



b.				The	Comparator_A+	module	will	be	used	in	operation.

c.				The	control	operation	will	be	performed	only	when	the	push
button	(connected	to	P1.3	on	the	MSP430	LaunchPad)	is	pressed.

d.				The	system	will	be	in	an	appropriate	low-power	mode	during	idle
times.

e.				If	the	voltage	level	of	the	battery	is	above	a	threshold	(let’s	say
0.25×VCC	V),	the	green	LED	(connected	to	P1.6	on	the	MSP430
LaunchPad)	will	turn	on.	Otherwise	the	red	LED	(connected	to	P1.0	on
the	MSP430	LaunchPad)	will	turn	on.

	11.3				Repeat	Prob.	11.2	under	Grace.

	11.4				Repeat	Prob.	11.2	using	the	ADC10	module.	Here,	set	the	threshold	as	0.32	×
VCC	V.

	11.5				Repeat	Prob.	11.4	under	Grace.

	11.6				Repeat	Probs.	11.2	and	11.4	in	assembly	language.

	11.7				Repeat	Prob.	11.4	using	the	DTC	module.	Here,	take	16	samples	and	calculate
their	average	using	this	module.	Use	this	value	in	operation.

	11.8				Repeat	Prob.	11.7	in	assembly	language.

	11.9				Repeat	Prob.	11.7	under	Grace.
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Data	 transfer	 between	 two	 (or	more)	microcontrollers	 becomes	 a	 necessity	 for	 complex
projects.	 Moreover,	 some	 peripheral	 devices	 (such	 as	 sensors	 and	 digital-to-analog
converter	 [DAC]	modules)	 communicate	with	 the	microcontroller	 through	 data	 transfer
channels.	 Therefore,	 digital	 communication	 has	 become	 an	 essential	 part	 of	 a	 modern
microcontroller.	 In	 the	 MSP430,	 the	 module	 responsible	 for	 digital	 communication	 is
called	 the	 universal	 serial	 communication	 interface	 (USCI).	 This	 module	 supports
universal	asynchronous	receiver/transmitter	(UART),	serial	peripheral	interface	(SPI),	and
inter	integrated	circuit	(I2C)	communication	modes.	In	this	chapter,	we	will	concentrate	on
the	 USCI	 module	 and	 the	 communication	 modes	 it	 provides.	 Here	 we	 will	 only
concentrate	 on	 the	 communication	 between	 two	 devices.	 For	 details	 on	 communication
between	more	than	two	devices,	please	see	[17].	We	begin	with	a	brief	description	of	the
USCI	module.

12.1			Universal	Serial	Communication	Interface
There	are	 two	USCI	modules	called	USCI_A0	and	USCI_B0	in	the	MSP430.	USCI_A0
can	support	UART	and	SPI	communication	modes.	Similarly,	USCI_B0	can	support	SPI
and	I2C	communication	modes.	In	this	section,	we	will	describe	the	general	properties	of
the	USCI_A0	and	USCI_B0	modules.

12.1.1			USCI	Registers

The	USCI	module	has	several	special	function	control	and	status	registers	for	the	UART,
SPI,	 and	 I2C	 communication	 modes.	 Some	 of	 these	 registers	 are	 specific	 to	 the
communication	mode.	Some	of	 them	 share	 the	 same	name	 for	 different	 communication
modes.	All	USCI	 registers	 are	 listed	 in	Tables	12.1	 and	12.2.	 In	 these	 tables,	 the	 usage
area	of	each	register	is	also	provided.



Table	12.1			USCI_A0	control	and	status	registers.

	

Table	12.2			USCI_B0	control	and	status	registers.

	

We	will	explain	the	control	and	status	registers	given	in	Tables	12.1	and	12.2	in	detail
for	 each	communication	mode	 in	 the	 following	 sections.	However,	 receive	 and	 transmit
buffer	 registers	 for	 the	USCI_A0	 and	USCI_B0	modules	 deserve	 specific	 consideration
here.	The	data	 to	be	 transmitted	should	be	written	 to	 the	 transmit	buffer	register	for	any
communication	mode.	These	are	UCA0TXBUF	and	UCB0TXBUF	for	the	USCI_A0	and
USCI_B0	modules	respectively.	Similarly,	the	data	received	will	be	read	from	the	receive
buffer	 register.	 These	 are	 UCA0RXBUF	 and	 UCB0RXBUF	 for	 the	 USCI_A0	 and
USCI_B0	modules	respectively.



There	are	also	 two	special-function	 interrupt	 registers	used	by	 the	UART,	SPI,	 and
I2C	 communication	 modes.	 These	 are	 special	 function	 register	 (SFR)	 interrupt	 enable
register	(IE2)	and	SFR	interrupt	flag	register	(IFG2).	These	are	described	in	Tables	12.3
and	12.4.	The	IE2	register	is	responsible	for	enabling	interrupts.	As	given	in	Table	12.3,
the	UCA0TXIE	and	UCB0TXIE	bits	enable	the	transmit	interrupts	for	the	related	USCI
module.	Similarly,	the	UCA0RXIE	and	UCB0RXIE	bits	enable	the	receive	interrupts	for
the	 related	 USCI	 module.	 Bits	 UCA0TXIFG,	 UCB0TXIFG,	 UCA0RXIFG,	 and
UCB0RXIFG,	given	in	Table	12.4,	are	set	when	an	interrupt	occurs	from	a	transmission
or	reception	operation	in	the	related	USCI	module.

Table	12.3			Interrupt	enable	register	2	(IE2).

	

Table	12.4			Interrupt	flag	register	2	(IFG2).

	

12.1.2			USCI	Clocks

The	 USCI	 module	 has	 three	 clocks,	 BRCLK,	 BITCLK,	 and	 BITCLK16.	 The	 BRCLK
represents	 the	selected	clock	for	 the	USCI	module.	The	UART	mode	can	use	UC0CLK,
ACLK,	and	SMCLK	as	BRCLK.	UC0CLK	is	 the	external	clock	for	 the	UART	mode.	It
can	be	fed	through	pin	P1.4	when	this	pin	is	not	used	by	the	SPI	mode.	The	SPI	mode	can
use	ACLK	and	SMCLK	as	BRCLK.	Finally,	the	I2C	mode	can	use	UC1CLK,	ACLK,	and
SMCLK	 as	 BRCLK.	 UC1CLK	 is	 the	 external	 clock	 for	 the	 I2C	 mode.	 It	 can	 be	 fed
through	pin	P1.5	when	this	pin	is	not	used	by	the	SPI	mode.	BITCLK	is	generated	from
the	 BRCLK.	 It	 is	 mainly	 used	 in	 controlling	 the	 bit	 transmission	 and	 reception	 rates.
Finally,	 the	 BITCLK16	 is	 used	 as	 the	 sampling	 clock	 in	 oversampling	 mode.	 In	 the
following	sections,	we	will	explain	all	these	clocks	in	specific	communication	modes.

There	are	two	registers	to	divide	the	clock	for	the	USCI_A0	and	USCI_B0	modules.
These	are	called	baud	rate	control	register	0	(UCA0BR0)	and	baud	rate	control	register	1
(UCA0BR1)	in	the	USCI_A0	module.	UCA0BR0	and	UCA0BR1	registers	form	the	16-
bit	division	coefficient	for	the	clock.	This	is	called	UCBRx.	In	this	coefficient,	UCA0BR0
forms	 the	 low	 byte	 and	 UCA0BR1	 forms	 the	 high	 byte.	 In	 the	 USCI_B0	module,	 the
registers	used	in	clock	division	are	called	bit	rate	control	register	0	(UCB0BR0)	and	bit
rate	 control	 register	 1	 (UCB0BR1).	 They	 can	 be	 used	 in	 the	 same	 manner	 as	 in	 the
USCI_A0	registers	to	form	the	UCBRx.

12.1.3			Common	Properties



The	UART,	SPI,	and	I2C	communication	modes	are	initialized	by	the	same	steps.	Initially,
the	USCI	module	must	be	reset	to	configure	all	related	USCI	registers.	The	USCI	module
must	be	set	after	this	operation.	Finally,	if	the	interrupts	are	used	in	the	USCI	module,	they
should	be	enabled.	We	will	explore	these	steps	for	each	communication	mode	separately
in	the	following	sections.

Another	 common	 issue	 for	 the	 UART,	 SPI,	 and	 I2C	 communication	 modes	 is	 the
SMCLK	usage	with	low-power	modes.	When	the	USCI	module	is	clocked	by	SMCLK,	it
is	activated	automatically	even	if	 it	 is	deactivated	by	a	low-power	mode.	As	a	result,	all
other	 modules	 using	 the	 SMCLK	 also	 restart.	 This	 may	 cause	 error.	 Therefore,	 the
SMCLK	 should	 be	 used	 carefully	 with	 the	 USCI	 module.	 Also	 for	 SPI	 and	 I2C	 slave
modes,	no	internal	clock	is	needed	since	the	master	device	provides	the	clock.	Therefore,
the	microcontroller	can	be	held	in	LPM4.	It	wakes	up	by	a	receive	or	transmit	interrupt.

12.1.4			Pin	Layout	for	USCI

We	provide	the	pin	layout	of	the	MSP430G2553	in	Fig.	12.1	(again	to	be	compact).	The
usage	of	these	in	the	USCI	perspective	are	listed	in	Table	12.5.	Do	not	forget	to	set	these
pins	by	appropriate	PxSEL	bits	before	using	them.

	

Figure	12.1			Pin	layout	of	the	MSP430G2553.

	

Table	12.5			Pin	usage	table	for	the	USCI	module.



	

12.2			Universal	Asynchronous	Receiver/Transmitter
UART	 is	 the	 asynchronous	 communication	 mode	 used	 between	 two	 or	 more	 devices.
Being	asynchronous,	there	is	no	need	for	a	common	clock	in	the	UART.	Hence,	connected
devices	can	work	independently.	In	fact,	UART	is	the	only	asynchronous	communication
mode	 in	 the	 MSP430.	 UART	 is	 simple	 to	 use	 compared	 to	 the	 synchronous
communication	modes	to	be	considered	in	the	following	sections.	In	this	section,	we	will
only	focus	on	the	UART	mode	for	communication	between	two	microcontrollers	(or	one
microcontroller	and	a	host	computer).	Also,	we	will	not	consider	the	enhanced	UART	with
automatic	 baud	 rate	 detection	 (local	 interconnect	 network,	 LIN)	 and	 infrared	 data



association	(IrDA).	More	information	on	them	can	be	found	in	[17].

A	block	diagram	of	the	UART	is	given	in	Fig.	12.2.	As	can	be	seen	in	this	figure,	the
MSP430	UART	mode	 has	 two	 pins	 to	 communicate	 with	 other	 devices.	 These	 are	 the
receive	 (UC0RX)	 and	 transmit	 (UC0TX)	 pins.	 In	 this	 block	 diagram,	 the	 transmit	 and
receive	 shift	 registers	 are	 not	 accessible	 to	 the	 user.	 Instead,	 the	 transmit	 and	 receive
buffers	will	be	used	for	communication.

	

Figure	12.2			Block	diagram	of	the	UART	mode.

	

The	 UART	 is	 mainly	 configured	 by	 two	 control	 registers.	 These	 are	 USCI_A0
Control	Register	0	(UCA0CTL0)	and	USCI_A0	Control	Register	1	(UCA0CTL1).	Their
entries	are	given	in	Tables	12.6	and	12.7.



Table	12.6			USCI_A0	control	register	0	(UCA0CTL0).

	

Table	12.7			USCI_A0	control	register	1	(UCA0CTL1).

	

In	 Table	 12.6,	UCPEN	 and	UCPAR	 bits	 are	 used	 for	 parity	 bit	 settings	 [5].	 The
UCPEN	bit	is	used	to	enable	the	parity	bit	for	the	system.	If	this	bit	is	reset,	the	parity	bit
is	disabled.	If	it	is	set,	the	parity	bit	is	enabled.	After	the	UCPEN	bit	is	set,	the	UCPAR	bit
is	used	to	decide	on	the	parity	type.	When	this	bit	is	reset,	odd	parity	is	used.	When	it	is
set,	 even	 parity	 is	 used.	 The	UCMSB	 bit	 is	 used	 to	 choose	 the	 start	 bit	 for	 the	 data
transfer.	When	this	bit	 is	 reset,	 the	 transmission	starts	 from	the	LSB.	When	it	 is	set,	 the
transmission	 starts	 from	 the	MSB.	The	 former	configuration	 is	generally	 selected	 in	 the
UART	mode.	The	UC7BIT	bit	is	used	to	select	the	data	length.	When	this	bit	is	reset,	the
data	length	is	set	to	eight	bits.	When	it	is	set,	the	data	length	is	set	to	7	bits.	The	UCSPB
bit	is	used	to	decide	on	the	number	of	stop	bits.	When	this	bit	is	reset,	one	stop	bit	is	used.
When	it	is	set,	two	stop	bits	are	used.	UCMODEx	bits	are	used	to	select	the	asynchronous
mode.	Constants	 for	 these	 bits	 are	UCMODE_0	 (UART	mode),	UCMODE_1	 (idle-line
multiprocessor	mode),	UCMODE_2	(address-bit	multiprocessor	mode),	and	UCMODE_3
(automatic	baud	rate	detection	mode).	The	default	setting	is	UCMODE_0	for	 the	UART
communication	between	two	devices.	UCMODE_1	and	UCMODE_2	can	be	used	for	the
UART	 communication	 between	 more	 than	 two	 devices.	 The	UCSYNC	 bit	 is	 used	 to
choose	the	asynchronous	or	synchronous	communication	mode.	When	this	bit	is	reset,	the
asynchronous	mode	 (UART)	 is	 selected.	When	 it	 is	 set,	 the	 synchronous	mode	 (SPI)	 is
selected.	Therefore,	the	UCSYNC	bit	should	be	reset	for	the	UART	mode.

In	Table	12.7,	UCSSELx	bits	are	used	 to	select	 the	UART	clock	source.	Constants
for	 these	bits	are	UCSSEL_0	(for	UC0CLK),	UCSSEL_1	(for	ACLK),	UCSSEL_2,	and
UCSSEL_3	(for	SMCLK).	The	UCRXEIE	bit	is	used	to	enable	the	interrupt	for	receiving
erroneous	 characters	 (detected	 by	 parity	 bit	 tests).	 When	 this	 bit	 is	 reset,	 received
erroneous	 characters	 are	 rejected	 and	 the	UCA0RXIFG	bit	 (explained	 in	Sec.	12.2.3)	 is
not	set.	When	the	UCRXEIE	bit	is	set,	received	erroneous	characters	set	the	UCA0RXIFG
bit.	The	UCBRKIE	bit	 is	used	 to	enable	 the	 interrupt	 for	 receiving	 the	break	condition.
When	 this	 bit	 is	 reset,	 the	 received	 break	 character	 does	 not	 set	 the	 UCA0RXIFG	 bit.
When	 it	 is	 set,	 the	 received	 break	 character	 sets	 the	 UCA0RXIFG	 bit.	 For	 the	 break
operation,	please	see	[17].	The	UCDORM	bit	is	used	to	decide	on	which	characters	will
set	 the	 UCA0RXIFG	 bit.	 When	 this	 bit	 is	 reset,	 all	 received	 characters	 will	 set	 the
UCA0RXIFG	 bit.	When	 it	 is	 set,	 no	 character	 sets	 the	UCA0RXIFG	 bit	 in	 the	 normal



UART	mode.	The	UCTXADDR	bit	is	used	in	communication	of	more	than	two	devices.
Therefore,	 it	 is	 not	 explained	here.	The	UCTXBRK	 bit	 is	 used	 to	 inform	 that	 the	 next
frame	will	be	transmitted	as	a	break	condition.	When	the	UCTXBRK	bit	is	reset,	the	next
frame	is	not	acknowledged	as	a	break.	When	it	is	set,	the	next	frame	is	acknowledged	as	a
break	or	break/synch.	The	UCSWRST	bit	is	used	to	reset	the	USCI	module.	When	this	bit
is	 set,	 the	USCI	module	 is	 reset.	When	 it	 is	 reset,	 the	USCI	module	will	 be	 ready	 for
operation.

The	UART	mode	also	has	 a	 status	 register	 called	as	UCA0STAT.	 It	 is	 specifically
used	to	observe	the	changes	in	the	system.	The	entries	of	this	register	are	given	in	Table
12.8.	 In	 this	 table,	 the	UCLISTEN	 bit	 is	 used	 to	generate	 an	 internal	 loop	between	 the
transmitter	and	receiver	on	the	same	device.	When	this	bit	is	set,	the	loopback	is	enabled.
When	it	 is	reset,	 the	loopback	is	disabled.	This	property	can	be	used	to	troubleshoot	 the
communication	codes	on	a	 single	device.	The	UCFE	 bit	 is	used	 to	observe	 the	 framing
error	(caused	by	the	low	stop	bit).	When	the	received	character	has	a	low	stop	bit,	UCFE
is	set.	The	UCOE	bit	is	used	to	observe	the	overrun	error.	When	a	new	character	is	sent
into	the	receive	buffer	register	before	the	previous	one	is	read,	this	bit	is	set	to	indicate	that
there	is	an	overrun	in	the	system.	This	bit	is	cleared	automatically	when	the	receive	buffer
register	is	read.	Therefore,	the	user	should	not	try	to	clear	it	by	software.	The	UCPE	bit	is
used	 to	observe	 the	parity	error.	This	bit	 is	set	when	 the	received	character	has	zeros	or
ones	different	from	the	number	stated	in	the	parity	bit.	The	UCBRK	bit	is	used	to	observe
the	break	condition.	This	bit	is	set	when	a	break	condition	occurs.	The	UCRXERR	bit	is
used	to	observe	any	error	in	the	received	character.	This	bit	is	set	when	one	or	more	than
one	of	the	UCPE,	UCOE,	or	UCFE	bits	are	set.	UCADDR	and	UCIDLE	bits	are	used	in
the	communication	of	more	than	two	devices.	Therefore,	they	are	not	explained	here.	The
UCBUSY	bit	shows	that	whether	the	USCI	module	is	busy	or	not.	This	bit	is	set	when	the
transmit	or	receive	operation	is	performed.	It	is	reset	when	the	system	is	inactive.

Table	12.8			USCI_A0	status	register	(UCA0STAT).

	

12.2.1			Baud	Rate	Generation

Baud	 rate	 represents	 the	 number	 of	 received	 or	 sent	 symbols	 per	 second.	Desired	 baud
rates	 can	be	generated	by	using	 the	baud	 rate	generator	block	 in	 the	UART	mode.	This
block	receives	the	selected	clock	(BRCLK)	as	input.	The	clock	frequency	can	be	divided
by	 the	 16-bit	 division	 coefficient	 UCBRx	 (explained	 in	 Sec.	 12.1.2).	 The	 baud	 rate
generator	block	also	has	a	USCI_A0	Modulation	Control	Register	(UCA0MCTL)	 to	set
the	modulation	property.	The	entries	of	this	register	are	given	in	Table	12.9.	Depending	on
the	settings	and	the	input	clock	frequency,	the	MSP430	UART	baud	rate	generator	block
can	be	used	 in	 low-or	 high-frequency	modes.	We	will	 talk	 about	 these	 in	 the	 following
paragraphs.



Table	12.9			USCI_A0	modulation	control	register	(UCA0MCTL).

	

In	 Table	 12.9,	 UCBRFx	 bits	 are	 used	 to	 select	 the	 modulation	 pattern	 for
BITCLK16.	For	more	detail	on	these	patterns,	please	see	[17].	This	is	the	first	modulation
step	for	the	oversampling	(high-frequency)	mode.	This	step	is	not	applicable	in	the	low-
frequency	 mode.	UCBRSx	 bits	 are	 used	 to	 select	 the	 modulation	 pattern	 for	 BITCLK
which	has	the	closest	frequency	for	the	desired	baud	rate.	This	is	the	only	modulation	step
for	the	low-frequency	mode.	Also,	this	is	the	second	step	for	the	oversampling	mode.	The
UCOS16	 bit	 is	 used	 to	 activate	 the	 oversampling	 mode.	 When	 this	 bit	 is	 reset,
oversampling	mode	 is	 disabled	 and	 the	 baud	 rate	 is	 generated	 by	 using	 low-frequency
clock	sources.	In	this	mode,	high-frequency	clock	sources	can	also	be	used.	However,	this
is	generally	not	recommended	since	it	decreases	the	time	interval	for	majority	votes	(to	be
explained	in	the	following	section).	When	the	UCOS16	bit	is	set,	the	oversampling	mode
is	enabled.	Here,	the	baud	rate	is	generated	by	using	only	high-frequency	clock	sources.

In	 the	 UART	 mode,	 baud	 rate	 calculation	 formulas	 are	 given	 in	 [17].	 However,
typical	 baud	 rates	 can	 be	 generated	 by	 setting	 the	 UCOS16,	 UCBRx,	 UCBRFx,	 and
UCBRSx	 values.	 Based	 on	 the	 status	 of	 the	 UCOS16	 bit,	 the	 baud	 rates	 that	 can	 be
generated	are	given	in	Tables	12.10	and	12.11.	In	these	tables,	possible	transmission	and
reception	errors	(labeled	as	“TX	Error”	and	“RX	Error”)	are	also	provided	for	each	baud
rate	generation	scenario.

Table	12.10			Typical	baud	rates	that	can	be	generated	when	the	UCOS16	Bit	is	reset.



	

Table	12.11			Typical	baud	rates	that	can	be	generated	when	the	UCOS16	bit	is	set.



	

12.2.2			UART	Transmit/Receive	Operations

Before	 focusing	 on	 the	 transmit	 and	 receive	 operations,	 we	 should	 mention	 that	 these
operations	are	done	on	a	character	basis	in	the	UART	mode.	Also,	the	character	is	not	sent
alone.	In	Table	12.12,	we	provide	the	character	format	for	the	UART	mode.	In	this	table,
D0·	 ·	 ·D6	stand	 for	 the	seven	data	 (character)	bits.	D7	 stands	for	 the	eighth	data	bit.	 In
Table	12.12,	italic	characters	indicate	that	the	mentioned	bits	are	optional	to	use.	Also,	the
LSB	 first	 transmission	 is	 typically	 used	 in	 the	 UART	 mode.	 As	 a	 reminder,	 this	 is
achieved	by	resetting	the	UCMSB	bit	in	the	UCA0CTL0.



Table	12.12			UART	character	format.

	

Transmit	 and	 receive	operations	 are	 simple	 in	 the	UART	mode.	 If	 there	 is	 no	data
written	 to	 the	UCA0TXBUF,	 the	baud	 rate	 generator	 does	not	 provide	 any	 clock	 to	 the
UART.	Hence,	it	stays	in	the	idle	state.	The	transmit	operation	starts	when	data	is	written
to	 the	UCA0TXBUF.	Then	 the	 baud	 rate	 generator	 starts	working.	 The	 data	within	 the
UCA0TXBUF	is	moved	to	the	transmit	shift	register.	Meanwhile,	the	UCA0TXIFG	bit	in
IFG2	 is	 set	 to	 indicate	 that	UCA0TXBUF	 is	 ready	 to	 accept	 new	data.	The	 data	 in	 the
transmit	shift	register	is	sent	to	the	receiver	in	a	serial	manner.	Then	UART	returns	to	the
idle	state.

The	 receive	operation	starts	when	 the	 falling	edge	of	 the	start	bit	 is	detected.	Until
then,	 the	 baud	 rate	 generator	 does	 not	 provide	 any	 clock	 to	 the	 UART.	 Therefore,	 the
UART	 stays	 in	 the	 idle	 state	 as	 in	 the	 transmission	 operation.	 The	 baud	 rate	 generator
starts	working	after	the	falling	edge	of	the	start	bit	 is	detected.	Then	the	receiver	checks
the	validity	of	 the	 start	bit.	 If	 the	 start	bit	 is	not	valid,	 the	UART	goes	 to	 the	 idle	 state.
Otherwise,	each	received	signal	pulse	is	checked	by	majority	voting.	Here,	three	samples
are	taken	from	the	pulse.	If	the	number	of	zeros	is	more	than	ones	in	these	samples,	then
the	receive	shift	register	receives	a	zero.	Otherwise,	it	receives	a	one.	The	binary	data	is
shifted	in	the	receive	shift	register.	This	operation	continues	until	the	stop	bit	is	detected.
The	final	result	is	transferred	to	the	UCA0RXBUF.

12.2.3			UART	Interrupts

UART	has	different	interrupt	vectors	for	transmission	and	reception	operations.	As	given
in	Table	9.2,	for	 the	 transmitter	 the	 interrupt	vector	 is	USCIAB0TX_VECTOR.	For	the
receiver,	the	interrupt	vector	is	USCIAB0RX_VECTOR.

The	interrupt-based	communication	operation	works	as	follows	in	the	UART	mode.
Initially,	 the	UCA0TXIE	and	UCA0RXIE	bits	 should	be	 set	 to	 enable	 transmission	 and
reception	interrupts.	These	two	interrupts	are	maskable.	Therefore,	the	GIE	bit	must	also
be	set.	In	the	transmission	operation,	an	interrupt	is	requested	when	the	UCA0TXBUF	is
ready	 for	 another	 character.	 Then	 the	 UCA0TXIFG	 is	 set.	 This	 flag	 is	 automatically
cleared	when	a	new	character	is	written	to	the	UCA0TXBUF.	In	the	reception	operation,
an	 interrupt	 is	 requested	 when	 a	 character	 is	 loaded	 to	 the	 UCA0RXBUF.	 Then	 the
UCA0RXIFG	is	set.	This	flag	is	automatically	cleared	when	the	data	in	UCA0RXBUF	is
read.

12.2.4			Coding	Practices	for	the	UART	Mode

In	 this	 section,	we	 provide	 sample	C	 and	 assembly	 codes	 in	 the	UART	communication
mode.	 Before	 focusing	 on	 the	 code	 samples,	 there	 are	 important	 issues	 to	 be	 clarified.
First,	the	MSP430	LaunchPads	should	be	disconnected	from	the	external	circuitry	before
debugging	the	code.	Otherwise,	CCS	gives	a	debug	error	since	common	grounds	are	used



in	the	circuitry.	Second,	 the	jumper	settings	of	J3	for	 the	MSP430	LaunchPad	should	be
done	for	 the	transmit	and	receive	pins	as	given	in	Fig.	12.3.	Third,	we	will	be	using	 the
terminal	program	under	CCS.	Please	see	Sec.	5.8	for	its	usage.

	

Figure	12.3			Jumper	3	(J3)	TXD/RXD	connections	for	UART	communication.	From	left
to	right:	Normal	view;	UART	setting	for	MSP430	LaunchPad	Rev.1.5;	UART	setting	for
MSP430	LaunchPad	Rev.1.4.

	

UART	in	C

In	Listing	12.1,	the	loopback	property	of	the	UART	mode	is	used.	The	connection	diagram
for	 this	 application	 is	 given	 in	 Fig.	 12.4.	 The	 C	 code	 containing	 the	 transmitter	 and
receiver	parts	 are	 run	on	 the	 same	microcontroller	using	 the	 loop-back	property.	Hence,
the	 code	 can	 be	 debugged	 easily.	 In	 Listing	 12.1,	 the	 green	 LED	 on	 the	 MSP430
LaunchPad	 is	 toggled	 by	 the	 button	 connected	 to	 pin	 P1.3.	 However,	 the	 loopback
property	 is	 used	 such	 that	 the	 toggle	 command	 is	 sent	 and	 received	 within	 the
microcontroller.

Listing	12.1			The	UART	loopback	application,	in	C	language.



	

	

	



	

Figure	12.4			The	connection	diagram	for	the	UART	loopback	application.

	

In	Listing	12.2,	the	MSP430	receives	the	password	through	the	UART	mode	from	the
host	 computer.	The	 connection	diagram	 for	 this	 application	 is	 given	 in	Fig.	12.5.	 If	 the
password	is	correct,	then	the	green	LED	on	the	MSP430	Launch-Pad	turns	on	for	5	s,	then
the	code	is	reset.	Otherwise,	the	red	LED	on	the	MSP430	LaunchPad	turns	on	for	2	s,	then
the	MSP430	waits	 for	 the	 new	 password.	Meanwhile,	 the	MSP430	will	 tell	 the	 user	 to
enter	 the	 password	 and	 will	 determine	 whether	 the	 entered	 password	 is	 correct	 or	 not
though	the	terminal	program.

	

Listing	12.2			The	UART	password	application,	in	C	language.

	



	



	



	



	

	

	

Figure	12.5			The	connection	diagram	for	UART	password	application.

	

In	Listing	12.3,	the	duty	cycle	of	a	PWM	signal	is	obtained	from	the	host	computer
using	the	UART	mode.	The	connection	diagram	for	this	application	is	given	in	Fig.	12.6.
Then	the	PWM	signal	is	used	to	adjust	the	brightness	of	the	green	LED	on	the	MSP430
LaunchPad.	This	operation	is	done	continuously.

	



Listing	12.3			The	UART	PWM	application,	in	C	language.

	

	



	



	

	

	

Figure	12.6			The	connection	diagram	for	the	UART	PWM	application.

	

In	 Listings	 12.4	 and	 12.5,	 the	 UART	 mode	 is	 used	 to	 establish	 a	 digital



communication	 between	 two	 MSP430	 LaunchPads.	 The	 connection	 diagram	 for	 this
application	is	given	in	Fig.	12.7.	The	C	code	for	the	transmitter	device	is	given	in	Listing
12.4.	The	C	code	for	the	receiver	device	is	given	in	Listing	12.5.	In	this	application,	when
the	button	connected	to	pin	P1.3	of	the	transmitter	device	is	pressed,	the	transmitter	sends
the	next	PWM	constant	from	the	TXData	array	to	control	the	brightness	of	the	green	LED
on	the	receiver.	The	connection	between	pin	P1.5	of	 the	 transmitter	device	and	 the	RST
pin	of	the	receiver	device	is	used	for	resetting	the	slave	before	the	communication	starts.

	

Listing	12.4			The	transmitter	part	of	the	UART	communication	between	two	MSP430
LaunchPads,	in	C	language.

	

	



	

	



	

Listing	12.5			The	receiver	part	of	the	UART	communication	between	two	MSP430
LaunchPads,	in	C	language.

	

	



	

	

	

Figure	 12.7	 	 	 The	 connection	 diagram	 for	 the	 UART	 communication	 between	 two
MSP430	LaunchPads.

	



UART	in	Assembly

In	the	first	assembly	code,	given	in	Listing	12.6,	the	“Hello	World”	string	is	transmitted	to
the	 host	 computer	 when	 the	 button	 connected	 to	 pin	 P1.3	 is	 pressed.	 The	 connection
diagram	for	this	application	is	given	in	Fig.	12.8.

	

Listing	12.6			The	UART	“Hello	World”	application,	in	assembly	language.

	

	



	



	

	

	

Figure	12.8			The	connection	diagram	for	the	UART	“Hello	World”	application.

	

In	the	second	assembly	code,	given	in	Listing	12.7,	 the	 red	and	green	LEDs	on	 the
MSP430	LaunchPad	are	controlled	by	the	host	computer.	The	connection	diagram	for	this



application	 is	 the	 same	 as	 given	 in	 Fig.	 12.5.	 In	 this	 application,	 the	 red	 LED	 on	 the
MSP430	 LaunchPad	 turns	 on	 when	 the	 ‘r’	 key	 is	 pressed	 on	 the	 keyboard	 of	 the	 host
computer.	The	green	LED	on	the	MSP430	LaunchPad	turns	on	when	the	‘g’	key	is	pressed
on	the	keyboard	of	the	host	computer.	Both	LEDs	turn	off	when	a	different	key	is	pressed.

Listing	12.7			The	UART	LED	control	application,	in	assembly	language.

	



	

	

12.3			UART	in	Grace
Grace	can	be	used	to	configure	the	USCI_A0	and	USCI_B0	modules.	The	first	module	is
called	USCI_A0:	UART/LIN,	IRDA,	SPI	and	the	second	module	is	called	USCI_B0:	SPI,
I2C	 as	 shown	 in	 Fig.	 5.11.	 First,	 the	 target	 block	 should	 be	 clicked.	 Then,	 the	 Enable
USCI_x0	 in	 my	 configuration	 box	 must	 be	 checked	 to	 enable	 it.	 For	 both	 modules,	 a
selection	window	appears	with	the	Basic	User,	Power	User,	and	Registers	options.	For	all
options,	a	selection	window	appears.	For	the	USCI_A0	block,	this	window	will	have	two
buttons,	UART	and	SPI.	The	same	window	appears	when	the	USCI_B0	block	is	chosen.
There	the	buttons	will	be	SPI	and	I2C.	When	a	button	is	clicked	in	this	selection	window,
the	 related	 communication	mode	 appears.	 The	 user	 can	 return	 to	 the	 previous	 selection
window	by	clicking	the	Return	to	USCI_x0	Mode	Selection	View	button.

In	 this	 section,	we	will	 focus	on	 the	UART	mode.	Therefore,	we	 should	 select	 the
USCI_A0	block	first.	We	assume	that	the	user	has	clicked	the	UART	button	in	the	initial
selection	window	for	all	user	modes	explored	below.

12.3.1			The	Basic	User	Mode

The	basic	user	mode	window	appears	as	shown	in	Fig.	12.9.	In	this	mode,	we	can	enable
or	disable	the	UART	pins	from	the	related	drop-down	lists.	We	can	also	select	the	UART
baud	rate	from	the	Baud	drop-down	list.	Here,	we	have	an	option	to	set	a	custom	baud	rate
by	first	selecting	the	Custom	option	from	the	list.	Then	we	can	enter	the	desired	value	into
the	 Set	 Custom	 box.	 In	 the	 basic	 user	 mode,	 we	 can	 enable	 the	 transmit	 and	 receive
interrupts	 by	 checking	 the	 “USCI_A0	UART	 transmit	 interrupt	 enable”	 and	 “USCI_A0
UART	receive	interrupt	enable”	boxes	respectively.	We	can	also	generate	ISRs	related	to
these	interrupts	using	the	associated	Generate	Interrupt	Handler	Code	button.



	

Figure	12.9			The	basic	user	mode	for	the	UART	under	Grace.

	

12.3.2			The	Power	User	Mode

The	power	user	mode	 for	 the	UART	 is	 shown	 in	Fig.	12.10.	 In	 this	mode,	 the	user	 can
adjust	 the	 clock	 source,	 character	 length,	 parity,	 and	 stop	 bits	 in	 addition	 to	 the
arrangements	in	the	basic	user	mode.	All	these	can	be	adjusted	by	using	related	drop-down
list	items.



	

Figure	12.10			The	power	user	mode	for	the	UART	under	Grace.

	

12.3.3			The	Register	Controls	Mode

Finally,	 the	 UART	 registers	 can	 be	 adjusted	 under	 Grace.	 The	 user	 should	 select	 the
register	controls	mode,	as	shown	in	Fig.	12.11	for	this	purpose.	Some	register	entries	are
not	 available	 under	 Grace.	 They	 are	 labeled	 R/W.	 Some	 entries	 are	 only	 available	 for
reading	a	value.	They	are	 labeled	R.	The	 same	 format	applies	 to	 the	SPI	and	 I2C	 under
Grace	also.



	

Figure	12.11			The	register	controls	mode	for	the	UART	under	Grace.

	

12.3.4			Coding	Practices

In	this	section,	we	redo	the	previous	UART-based	applications	using	Grace.	We	first	redo
the	application	given	in	Listing	12.6	 in	C	language.	For	 this	application,	we	generate	an
empty	Grace	project.	Then	we	enable	the	USCI_A	block.	We	select	the	UART	option	from
the	selection	window	in	the	basic	user	mode.	We	set	 the	baud	rate	to	9600	bps	from	the



drop-down	 list.	 The	main.c	 file	 of	 the	Grace	 project	will	 be	 as	 in	 Listing	 12.8	 for	 this
application.	 As	 we	 debug	 and	 run	 the	 program,	 the	 “Hello	 World”	 string	 will	 be
transmitted	 from	 the	MSP430	 to	 the	 host	 computer.	 Do	 not	 forget	 to	 use	 the	 terminal
program	to	see	the	string	in	the	host	computer.

Listing	12.8			The	main.c	file	of	the	UART	“Hello	World”	application,	under	Grace.

	

	

In	 the	 second	 example,	 we	 redo	 the	 application	 given	 in	 Listing	 12.7,	 now	 in	 C
language.	We	first	generate	an	empty	Grace	project	for	 this	application.	Then	we	enable
the	USCI_A	block.	We	 select	 the	UART	option	 from	 the	 selection	window	 in	 the	basic
user	mode.	We	set	the	baud	rate	to	9600	bps	from	the	drop-down	list.	We	also	enable	the
receive	interrupt	by	checking	its	box.	We	set	the	clock	to	1	MHz	under	the	BCM+	module.
We	also	set	P1.0	and	P1.6	as	output	(both	initially	turned	off)	from	the	GPIO	block.	For
this	 application,	 we	 do	 not	 add	 any	 codes	 to	 the	main.c	 file	 of	 the	Grace	 project.	 The
USCI_A	ISR	under	InterruptVectors_init.c	will	be	as	in	Listing	12.9.	As	we	debug	and	run
the	program,	we	can	control	the	red	and	green	LEDs	by	the	keyboard	entries	of	the	host



computer.	 Do	 not	 forget	 to	 use	 the	 terminal	 program	 in	 the	 host	 computer	 for	 this
application.

Listing	12.9			The	ISR	of	the	UART	LED	control	application,	under	Grace.

	

	

	

12.4			Serial	Peripheral	Interface
SPI	is	a	synchronous	communication	mode.	It	can	be	used	between	multiple	masters	and
one	 slave.	 It	 can	 also	be	used	 for	one	master	 and	one	or	more	 slaves.	As	 in	 the	UART
mode,	in	this	chapter	we	will	only	focus	on	the	SPI	mode	between	one	master	and	slave.	A
block	 diagram	 of	 the	 SPI	mode	 is	 given	 in	 Fig.	 12.12.	 SPI	 is	 the	 only	 communication
mode	 available	 in	 both	USCI_A0	 and	USCI_B0	modules.	 Therefore,	 the	 character	 x	 is
used	 in	 register	 or	 variable	 names	 to	 indicate	 that	 the	 same	 register	 can	 be	 used	 for
USCI_A0	or	USCI_B0.



	

Figure	12.12			Block	diagram	of	the	SPI	mode.

	

As	can	be	seen	in	Fig.	12.12,	the	SPI	mode	has	four	pins	for	communication.	These
pins	 are	 slave	 in	master	 out	 (UCxSIMO),	master	 in	 slave	 out	 (UCxSOMI),	 SPI	 clock
(UCxCLK),	 and	 slave	 transmit	 enable	 (UCxSTE).	UCxSIMO	and	UCx-SOMI	pins	 are
used	 for	data	 transmission.	UCxSIMO	is	 the	data	output	 line	and	UCxSOMI	 is	 the	data
input	line	for	the	master	device.	UCxSIMO	is	the	data	input	line	and	UCxSOMI	is	the	data
output	line	for	the	slave	device.	UCxCLK	is	the	SPI	clock	generated	by	the	master	device.
It	 ensures	 synchronization	 between	 the	 master	 and	 slave	 devices.	 UCxSTE	 is	 used	 to
enable	the	chosen	master	in	the	multiple	master	mode	or	chosen	slave	in	the	multiple	slave
mode.	When	this	pin	is	used,	the	SPI	mode	is	called	four	pin.	In	single	master	and	slave
mode,	some	slave	devices	need	this	pin	to	start	or	end	the	SPI	communication.	Therefore,
four-pin	SPI	is	a	necessity	for	them.	If	the	SPI	communication	is	established	between	one
master	and	slave	(and	UCxSTE	is	not	needed),	then	UCxSIMO,	UCxSOMI,	and	UCxCLK
pins	will	be	enough.	The	UCxSTE	pin	can	be	connected	to	the	ground	in	this	setting.	This
SPI	mode	is	called	three	pin.



The	SPI	mode	is	configured	by	the	USCI_x0	Control	Register	0	(UCx0CTL0)	and
USCI_x0	 Control	 Register	 1	 (UCx0CTL1).	 As	 a	 reminder,	 the	 UCA0CTL0	 and
UCA0CTL1	registers	are	also	used	in	the	UART	mode.	Here	they	are	used	for	SPI	with
different	 entries.	 The	 reader	 should	 be	 aware	 of	 this	 overlap.	 The	 UCx0CTL0	 and
UCx0CTL1	register	entries	are	given	in	Tables	12.13	and	12.15.

Table	12.13			USCI_x0	control	register	0	(UCx0CTL0).

	

Table	12.14			SPI	clock	modes.

	

Table	12.15			USCI_x0	control	register	1	(UCx0CTL1).

	

In	 Table	 12.13,	UCCKPH	 and	UCCKPL	 bits	 are	 used	 together	 to	 adjust	 the	 SPI
clock	modes.	The	UCCKPL	bit	is	used	to	set	the	clock	polarity.	When	this	bit	is	reset,	the
clock	is	kept	low	in	the	idle	state.	When	it	is	set,	the	clock	is	kept	high	in	the	idle	state.
The	UCCKPL	bit	does	not	affect	the	transmission	format.	The	UCCKPH	bit,	on	the	other
hand,	has	a	direct	effect	on	the	transmission	format.	When	this	bit	is	reset,	data	is	sent	on
the	first	clock	edge	and	read	on	the	next	edge.	When	it	is	set,	data	is	read	on	the	first	clock
edge	 and	 sent	 on	 the	 next	 edge.	 UCCKPL	 and	 UCCKPH	 bits	 must	 be	 same	 for	 both
master	and	slave	devices	to	set	up	an	SPI	communication	between	them.	The	clock	modes
for	the	SPI	are	shown	in	Table	12.14.	Here,	modes	0	and	3	are	the	most	commonly	used
ones.	 In	 these,	data	 is	 read	on	 the	 rising	edge	and	sent	on	 the	 falling	edge	of	 the	clock.
Mode	0	needs	the	UCxSTE	pin.	Therefore,	it	is	preferred	in	the	four-pin	SPI	mode.	Unlike
mode	0,	mode	3	does	not	need	the	UCxSTE	pin.	Therefore,	it	is	used	in	the	three-pin	SPI
mode.



The	UCMSB	bit	in	Table	12.13	is	used	to	choose	the	start	bit	for	the	data	transfer.	If
this	bit	 is	 reset,	 the	 transmission	starts	 from	 the	LSB.	 If	 it	 is	 set,	 the	 transmission	starts
from	the	MSB.	The	UC7BIT	bit	 is	used	to	select	the	data	length.	When	this	bit	is	reset,
the	data	 length	 is	 taken	as	8	bits.	When	 it	 is	 set,	 the	data	 length	 is	 taken	as	7	bits.	The
UCMST	bit	is	used	to	decide	on	the	usage	type	of	the	device.	When	this	bit	is	reset,	the
device	is	used	as	a	slave.	When	the	bit	is	set,	it	is	used	as	a	master.	UCMODEx	bits	are
used	 to	 select	 the	 synchronization	 mode.	 Constants	 for	 these	 bits	 are	 as	 follows:
UCMODE_0	 (three-pin	 SPI	 mode),	 UCMODE_1	 (four-pin	 SPI	 mode	 with	 UCxSTE
active	 high),	 UCMODE_2	 (four-pin	 SPI	 mode	 with	 UCxSTE	 active	 low),	 and
UCMODE_3	(I2C	mode).	Finally,	the	UCSYNC	bit	is	used	to	select	the	communication
mode.	When	this	bit	is	reset,	asynchronous	mode	is	selected.	When	it	is	set,	synchronous
mode	is	selected.	Therefore,	this	bit	must	be	set	for	the	SPI	mode.

In	Table	12.15,	UCSSELx	bits	are	used	to	select	the	SPI	clock	source.	Constants	for
these	bits	are	UCSSEL_0	(not	available),	UCSSEL_1	(for	ACLK),	and	UCSSEL_2,	and
UCSSEL_3	(for	SMCLK).	After	the	clock	source	is	selected,	it	can	be	divided	by	the	16-
bit	coefficient	UCBRx	as	explained	in	Sec.	12.1.2.	The	SPI	mode	does	not	use	modulation
for	 clock	 generation.	 Therefore,	 the	 UCA0MCTL	 register	 must	 be	 cleared	 when	 the
USCI_A0	module	is	used	for	the	SPI	mode.	The	UCSWRST	bit	is	used	to	reset	the	USCI
module.	When	this	bit	is	set,	the	USCI	module	is	reset.	When	it	is	reset,	the	USCI	module
will	be	ready	for	operation.

The	SPI	mode	also	has	a	status	register	called	UCx0STAT.	It	is	specifically	used	to
observe	the	changes	in	the	system.	The	entries	of	this	register	are	given	in	Table	12.16.	In
this	table,	the	UCLISTEN	bit	is	used	to	generate	an	internal	loop	between	the	transmitter
and	receiver	on	the	same	device.	When	this	bit	is	set,	the	loopback	is	enabled.	When	it	is
reset,	 the	 loopback	 is	 disabled.	 The	UCFE	 bit	 is	 the	 framing	 error	 flag.	 This	 bit	 is	 set
when	a	bus	conflict	occurs	 in	 the	 four-pin	SPI	mode.	 It	 is	not	used	 in	 the	 three-pin	SPI
mode.	The	UCOE	bit	is	the	overrun	error	flag.	This	bit	is	set	when	a	new	character	is	sent
to	 the	receive	buffer	 register	 (UCx0RXBUF)	before	 the	previous	one	 is	 read.	This	bit	 is
cleared	automatically	when	the	UCx0RXBUF	is	read.	Therefore,	the	user	should	not	try	to
clear	it	by	software.	The	UCBUSY	bit	shows	whether	the	USCI	module	is	in	process	or
not.	This	bit	is	set	when	the	transmit	or	receive	operation	is	performed.	It	is	reset	when	the
system	is	inactive.

Table	12.16			USCI_x0	status	register	(UCx0STAT).

	

12.4.1			SPI	Transmit/Receive	Operations

Transmission	 and	 reception	 must	 be	 carried	 out	 simultaneously	 in	 the	 SPI	 mode.
Therefore,	data	must	be	 received	 from	 the	slave	or	 transmitted	 from	 the	master	 (or	vice
versa)	even	if	it	is	completely	redundant.	Next,	we	provide	transmit/receive	operations	for
the	master	and	slave	modes	separately.



Master	Mode

One	 transmit-receive	cycle	 for	 the	SPI	master	mode	 is	as	 follows:	The	USCI	module	 is
enabled.	Transfer	starts	when	data	is	written	to	the	UCx0TXBUF.	Then,	data	is	transferred
to	the	transfer	shift	register	from	the	UCx0TXBUF.	UCx0TXIFG	is	set	to	indicate	that	the
UCx0TXBUF	is	ready	to	accept	new	data.	Data	in	the	transfer	shift	register	is	sent	to	the
UCxSIMO	 pin	 starting	 with	 MSB	 or	 LSB	 order	 (based	 on	 the	 UCMSB	 bit	 setting).
Meanwhile,	 the	 received	 data	 is	 kept	waiting	 at	 the	UCxSOMI	 pin	 until	 the	 next	 clock
edge.	Data	in	the	UCxSOMI	pin	is	moved	to	the	receive	shift	register	with	the	next	clock
edge.	Then	 data	 is	 transferred	 to	 the	UCx0RXBUF	 from	 the	 receive	 shift	 register.	This
operation	 is	 repeated	until	 the	7	or	8	bits	 (depending	on	 the	setting	of	 the	UC7BIT)	are
transferred.	As	 the	 transfer	 is	 completed,	 the	UCx0RXIFG	bit	 is	 set	 to	 indicate	 that	 the
transmit-receive	cycle	is	completed.

As	 mentioned	 before,	 four-pin	 SPI	 master	 mode	 is	 extensively	 used	 for	 the
multimaster	SPI	communication.	Here,	the	desired	master	is	set	active	by	the	UCMODEx
and	 UCxSTE	 bits.	 When	 a	 master	 is	 set	 inactive,	 UCxSIMO	 and	 UCxCLK	 pins	 are
reconfigured	as	input.	Receive-transmit	operations	are	reset.	Any	ongoing	shift	operation
is	terminated.	The	UCFE	bit	is	set	to	show	that	bus	conflict	on	the	system	is	handled	by
the	user.	If	there	is	no	ongoing	shift	operation	when	the	master	is	set	inactive,	data	in	the
UCx0TXBUF	 is	 transmitted	 after	 the	 master	 is	 set	 active	 again.	 But	 if	 there	 is	 a
transmission	 in	 process	 when	 the	 master	 is	 set	 inactive,	 this	 data	 is	 lost	 and	 must	 be
rewritten	to	the	UCx0TXBUF.

Slave	Mode

One	transmit-receive	cycle	for	the	slave	mode	is	as	follows:	The	UCxCLK	supplied	by	the
master	is	used	to	start	the	data	transfer.	Before	this	clock	is	enabled,	data	is	transferred	to
the	 transmit	 shift	 register	 from	 UCx0TXBUF.	 UCx0TXIFG	 is	 also	 set	 to	 indicate	 that
UCx0TXBUF	is	ready	to	accept	new	data.	Data	in	the	transmit	shift	register	is	sent	to	the
UCxSOMI	pin	starting	with	MSB	or	LSB	order	(based	on	the	UCMSB	bit	setting).	This
data	waits	until	the	clock	is	activated.	Data	kept	in	the	UCxSOMI	pin	is	sent	to	output	as
the	clock	is	activated.	Meanwhile,	the	received	data	is	kept	waiting	at	the	UCxSIMO	pin
until	the	next	clock	edge.	Data	in	the	UCxSIMO	pin	is	moved	to	the	receive	shift	register
with	the	next	clock	edge.	Then,	data	is	transferred	to	the	UCx0RXBUF	from	the	receive
shift	register.	This	operation	is	repeated	until	the	7	or	8	bits	(depending	on	the	setting	of
the	UC7BIT)	are	 transferred.	As	the	transfer	 is	completed,	 the	UCx0RXIFG	bit	 is	set	 to
indicate	that	the	transmit-receive	cycle	is	completed.

Four-pin	SPI	slave	mode	is	used	for	multislave	SPI	communication.	Here,	the	desired
slave	is	set	active	by	the	UCMODEx	and	UCxSTE	bits.	When	a	slave	is	set	inactive,	its
UCxSOMI	 pin	 is	 reconfigured	 as	 input.	 Any	 receive	 operation	 in	 progress	 in	 the
UCxSIMO	pin	is	stopped.	Until	the	slave	is	set	active	by	reconfiguring	the	UCxSTE	bit,
ongoing	shift	operations	are	also	stopped.

The	four-pin	SPI	also	provides	an	option	to	disable	the	slave	in	a	single	master	slave
setup.	To	do	so,	we	should	have	a	connection	between	a	digital	I/O	pin	of	the	master	to	the
STE	pin	of	the	slave	device.	Then	we	can	set/reset	the	digital	I/O	pin	to	enable/disable	the
slave	device.	We	provide	such	an	example	in	Sec.	12.4.3.



12.4.2			SPI	Interrupts

The	SPI	mode	shares	the	same	interrupt	vectors	with	the	UART	mode	for	the	transmission
and	 reception	 operations.	 As	 a	 reminder,	 for	 the	 transmitter	 the	 interrupt	 vector	 is
USCIAB0TX_VECTOR.	 For	 the	 receiver,	 the	 interrupt	 vector	 is
USCIAB0RX_VECTOR.	 Also,	 the	 SPI	 interrupt–related	 registers	 are	 the	 same	 as	 the
UART	ones.	These	 are	 the	 interrupt	 enable	 register	 2	 (IE2)	 and	 interrupt	 flag	 register	 2
(IFG2)	given	in	Tables	12.3	and	12.4.

The	 interrupt	 operations	 for	 the	 transmitter	 and	 the	 receiver	 are	 similar	 in	 the	 SPI
mode.	More	specifically,	 the	 interrupt-based	communication	operation	works	as	follows:
Initially,	the	UCx0TXIE	and	UCx0RXIE	bits	should	be	set	in	the	master	and	slave	devices
to	 enable	 transmission	 and	 reception	 interrupts.	 These	 two	 interrupts	 are	 maskable.
Therefore,	the	GIE	bit	must	also	be	set	in	both	devices.	In	the	transmitter,	an	interrupt	is
requested	when	the	UCA0TXBUF	is	ready	for	another	character.	Then	the	UCA0TXIFG
is	 set.	 This	 flag	 is	 automatically	 cleared	 when	 a	 new	 character	 is	 written	 to	 the
UCA0TXBUF.	In	the	receiver,	an	interrupt	is	requested	when	a	character	is	loaded	to	the
UCA0RXBUF.	Then	the	UCA0RXIFG	is	set.	This	flag	is	automatically	cleared	when	the
data	in	UCA0RXBUF	is	read.

12.4.3			Coding	Practices	for	the	SPI	Mode

In	 this	 section,	 we	 provide	 sample	 C	 and	 assembly	 codes	 on	 the	 SPI	 communication
mode.	The	problems	mentioned	for	the	UART	mode	are	also	applicable	here.	Therefore,
please	see	Sec.	12.2.4	first.

SPI	in	C

In	Listing	12.10,	the	loopback	property	of	the	SPI	mode	is	used.	The	connection	diagram
for	this	application	is	given	in	Fig.	12.13.	Here,	the	green	LED	on	the	MSP430	LaunchPad
is	 toggled	by	 the	button	connected	 to	pin	P1.3.	However,	 the	 loopback	property	 is	used
such	that	the	toggle	command	is	sent	and	received	within	the	microcontroller.

Listing	12.10			The	SPI	loopback	application,	in	C	language.

	

	



	

	



	

Figure	12.13			The	connection	diagram	for	the	SPI	loopback	application.

	

In	 Listings	 12.11	 and	 12.12,	 the	 four-pin	 SPI	 mode	 is	 used	 to	 establish	 a	 digital
communication	 between	 two	 MSP430	 LaunchPads.	 The	 connection	 diagram	 for	 this
application	is	given	in	Fig.	12.14.	The	C	code	for	the	master	device	(used	as	transmitter)	is
given	 in	 Listing	 12.11.	 The	 C	 code	 for	 the	 slave	 device	 (used	 as	 receiver)	 is	 given	 in
Listing	12.12.	 In	 this	 application,	when	 the	 button	 connected	 to	 pin	 P1.3	 of	 the	master
device	is	pressed,	 it	sends	the	next	PWM	constant	from	the	TXData	array	to	control	 the
brightness	 of	 the	 green	 LED	 on	 the	 receiver.	 The	 connection	 between	 pin	 P1.5	 of	 the
master	device	and	the	RST	pin	of	the	slave	device	is	used	for	resetting	the	slave	before	the
communication	starts.

Listing	12.11			The	SPI	PWM	application	in	four-pin	mode,	the	master	transmitter	code	in
C	language.

	



	



	



	

	

Listing	12.12			The	SPI	PWM	application	in	four-pin	mode,	the	slave	receiver	code	in	C
language.

	



	

	

	



	

Figure	12.14			The	connection	diagram	for	the	SPI	PWM	application	in	four-pin	mode.

	

In	Listings	12.13	and	12.14,	 the	SPI	PWM	application	 is	 implemented	 in	 three-pin
mode.	 Therefore,	 the	 previous	 application	 is	 redone.	 The	 connection	 diagram	 for	 this
application	is	given	in	Fig.	12.15.	The	C	code	for	the	master	device	(used	as	transmitter)	is
given	 in	 Listing	 12.13.	 The	 C	 code	 for	 the	 slave	 device	 (used	 as	 receiver)	 is	 given	 in
Listing	12.14.

Listing	12.13			The	SPI	PWM	application	in	three-pin	mode,	the	master	transmitter	code
in	C	language.

	



	



	

	

	

Listing	12.14			The	SPI	PWM	application	in	three-pin	mode,	the	slave	receiver	code	in	C
language.



	

	



	

	

	

Figure	12.15			The	connection	diagram	for	the	SPI	PWM	application	in	three-pin	mode.

	

SPI	in	Assembly



The	assembly	codes,	given	in	Listings	12.15	and	12.16,	perform	the	same	operation	done
in	Listings	12.11	and	12.12.	The	connection	diagram	for	this	application	is	also	the	same
as	that	given	in	Fig.	12.14.	The	assembly	code	for	the	master	device	(used	as	transmitter)
is	 given	 in	Listing	12.15.	 The	 assembly	 code	 for	 the	 slave	 device	 (used	 as	 receiver)	 is
given	in	Listing	12.16.

Listing	12.15			The	SPI	PWM	application	in	four-pin	mode,	the	master	transmitter	code	in
assembly	language.

	



	



	

	

Listing	12.16			The	SPI	PWM	application	in	four-pin	mode,	the	slave	receiver	code	in
assembly	language.

	



	

	



	

	

The	assembly	codes,	given	in	Listings	12.17	and	12.18,	perform	the	same	operation
done	in	Listings	12.13	and	12.14.	The	connection	diagram	for	this	application	is	also	the
same	 as	 that	 given	 in	 Fig.	 12.15.	 The	 assembly	 code	 for	 the	 master	 device	 (used	 as
transmitter)	 is	 given	 in	Listing	12.17.	 The	 assembly	 code	 for	 the	 slave	 device	 (used	 as
receiver)	is	given	in	Listing	12.18.

Listing	12.17			The	SPI	PWM	application	in	three-pin	mode,	the	master	transmitter	code
in	assembly	language.



	



	



	



	

	

Listing	12.18			The	SPI	PWM	application	in	three-pin	mode,	the	slave	receiver	code	in
assembly	language.

	



	



	

	

12.5			SPI	in	Grace
SPI	is	available	in	both	USCI_A0	and	USCI_B0	blocks	under	Grace.	However,	they	are
used	in	the	same	manner.	Therefore,	we	only	provide	the	SPI	mode	under	the	USCI_A0
block	in	this	section.	We	assume	that	the	user	clicked	the	SPI	button	in	the	first	selection
window	for	all	user	modes	to	be	explored	below.

12.5.1			The	Basic	User	Mode



The	basic	 user	mode	 for	 the	SPI	 is	 given	 in	Fig.	12.16.	Here,	we	 can	 set	 the	 device	 as
master	 or	 slave	 from	 the	 drop-down	 list	 in	 the	 USCI_A0	 SPI	 Mode	 block.	 We	 can
configure	the	SPI	pins	from	the	related	drop-down	lists.	We	can	select	the	bit	rate	from	the
Bitrate	drop-down	list.	We	can	also	select	a	custom	bit	rate	value.	First,	we	should	select
the	Custom	option	from	the	drop-down	list.	Then	we	can	enter	the	desired	bit	rate	in	the
Set	 Custom	 box.	We	 can	 also	 set	 the	 clock	 phase	 and	 polarity	 values	 from	 the	 related
drop-down	 lists.	 We	 can	 enable	 the	 transmit	 and	 receive	 interrupts	 by	 checking	 the
“USCI_A0	 SPI	 transmit	 interrupt	 enable”	 and	 “USCI_A0	 SPI	 receive	 interrupt	 enable”
boxes	 respectively.	 We	 can	 also	 generate	 an	 ISR	 related	 to	 these	 interrupts	 using	 the
associated	Generate	Interrupt	Handler	Code	button.

	



Figure	12.16			The	basic	user	mode	for	the	SPI	under	Grace.

	

12.5.2			The	Power	User	Mode

The	power	user	mode	for	the	SPI	is	given	in	Fig.	12.17.	In	addition	to	the	basic	user	mode,
we	can	select	 the	 three-	or	 four-pin	mode	 from	 the	drop-down	 list	 in	 the	USCI_A0	SPI
Mode	block.	We	can	also	select	the	bit	order	(MSB	or	LSB	first)	and	the	character	length
using	the	related	drop-down	lists.

	

Figure	12.17			The	power	user	mode	for	the	SPI	under	Grace.

	



12.5.3			The	Register	Controls	Mode

Finally,	the	SPI	registers	can	be	adjusted	under	Grace.	The	user	should	select	the	register
controls	 mode,	 as	 given	 in	 Fig.	 12.18,	 for	 this	 purpose.	 As	 in	 the	 UART	mode,	 some
registers	are	not	available	here.	Some	register	entries	are	also	read	only	in	this	mode.

	

Figure	12.18			The	register	controls	mode	for	the	SPI	under	Grace.

	



12.6			Inter	Integrated	Circuit
Inter	integrated	circuit	(I2C)	is	the	second	synchronous	communication	mode	supported	by
the	MSP430.	 It	can	be	used	between	multiple	masters	and	slaves.	The	master	and	slave
devices	 are	 represented	 by	 address	 values	 in	 I2C.	 In	 addition	 to	 this,	 a	 simple	 protocol
establishes	 an	 effective	 communication	 between	 multiple	 master	 and	 slave	 devices.	 A
block	diagram	of	the	I2C	mode	is	given	in	Fig.	12.19.

	

Figure	12.19			Block	diagram	of	the	I2C	mode.

	

As	 can	 be	 seen	 in	 Fig.	 12.19,	 the	 I2C	 mode	 has	 two	 bidirectional	 pins	 for
communication.	These	 are	 the	 serial	 data	 pin	 (SDA)	 and	 serial	 clock	 pin	 (SCL).	 These
pins	must	be	connected	to	the	positive	supply	voltage	(VCC)	via	pull-up	resistors.	The	pull-
up	resistors	should	be	external.	Their	values	should	be	around	10	kΩ.	Unlike	SPI,	here	the
transmission	 and	 reception	 operations	 are	 done	 on	 a	 single	 line.	 This	 saves	 pins,	 but	 it
slows	down	the	communication	speed.	More	information	on	I2C	can	be	found	in	[7].

The	 I2C	mode	 is	 configured	 by	 the	 USCIB0	 control	 register	 0	 (UCB0CTL0)	 and



USCIB0	control	register	1	(UCB0CTL1).	As	a	reminder,	the	same	registers	are	also	used
in	the	SPI	mode.	Here	they	are	used	for	the	I2C	with	different	entries.	The	reader	should	be
aware	 of	 this	 overlap.	 The	 UCB0CTL0	 and	 UCB0CTL1	 register	 entries	 are	 given	 in
Tables	12.17	and	12.18.

Table	12.17			USCI_B0	control	register	0	(UCB0CTL0).

	

Table	12.18			USCI_B0	control	register	1	(UCB0CTL1).

	

In	Table	12.17,	the	UCA10	bit	is	used	to	select	the	own-address	length	of	the	device.
When	 this	 bit	 is	 reset,	 7-bit	 address	 is	 used.	When	 it	 is	 set,	 10-bit	 address	 is	 used.	The
UCSLA10	 bit	 is	used	 to	 set	 the	 slave	address	 length	 similar	 to	 the	UCA10	bit	 settings.
The	UCMM	bit	is	used	to	choose	the	master	number.	This	bit	should	be	reset	if	there	is
only	one	master	in	the	system.	Otherwise,	it	should	be	set	to	indicate	that	more	than	one
master	 device	 will	 be	 used	 in	 communication.	 The	UCMST	 bit	 is	 used	 to	 decide	 on
whether	 the	device	 is	master	or	 slave.	When	 this	bit	 is	 reset,	 the	device	will	be	used	as
slave.	When	it	is	set,	the	device	will	be	used	as	master.	The	UCMODEx	bits	are	used	to
select	the	synchronous	communication	mode.	For	I2C,	they	should	be	set	 to	 the	constant
UCMODE_3.	 Finally,	 the	 UCSYNC	 bit	 is	 used	 to	 choose	 the	 communication	 mode.
When	this	bit	is	reset,	asynchronous	mode	is	chosen.	When	it	is	set,	synchronous	mode	is
chosen.	Therefore,	this	bit	must	be	set	for	the	I2C	mode.

In	Table	12.18,	UCSSELx	bits	are	used	to	select	the	I2C	clock	source.	Constants	for
these	bits	are	UCSSEL_0	(for	UC1CLK),	UCSSEL_1	(for	ACLK),	and	UCSSEL_2	and
UCSSEL_3	(for	SMCLK).	After	the	clock	source	is	selected,	it	can	be	divided	by	the	16-
bit	coefficient	UCBRx	as	 in	 the	SPI	mode.	The	UCTR	bit	 is	used	 to	select	whether	 the
device	is	a	transmitter	or	a	receiver.	When	this	bit	is	set,	the	device	becomes	a	transmitter.
When	it	is	reset,	the	device	becomes	a	receiver.	The	UCTXNACK	bit	is	used	to	adjust	the
not-acknowledge	(NACK)	bit	settings.	When	this	bit	is	reset,	sending	an	ACK	bit	occurs
normally.	 When	 it	 is	 set,	 the	 NACK	 bit	 is	 generated.	 The	 UCTXNACK	 bit	 is	 reset
automatically	after	the	NACK	bit	is	sent.	More	information	on	these	settings	can	be	found
in	 [7].	UCTXSTT	 and	UCTXSTP	 bits	 are	 used	 to	 transmit	 start	 and	 stop	 conditions
respectively.	When	these	bits	are	set,	start	or	stop	conditions	are	generated.	These	can	be
produced	only	by	the	master	device.	Therefore,	they	are	not	used	in	the	slave	mode.	When
these	bits	are	set	in	the	master	receiver	mode	to	generate	a	repeated	start	or	stop	condition,
they	are	followed	by	a	NACK	bit.	The	UCTXSTT	bit	is	reset	automatically	after	the	start



condition	and	the	address	data	is	sent.	The	UCTXSTP	bit	is	reset	automatically	after	the
stop	condition	is	generated.	The	UCSWRST	bit	is	used	to	reset	the	USCI	module.	When
this	bit	is	set,	the	USCI	module	is	reset.	When	it	is	reset,	the	USCI	module	will	be	ready
for	operation.

The	I2C	mode	also	has	a	status	register	called	UCB0STAT.	It	is	specifically	used	to
observe	the	changes	in	the	system.	The	entries	of	this	register	are	given	in	Table	12.19.	In
this	table,	the	UCSCLLOW	bit	is	used	to	check	the	condition	of	the	SCL.	When	this	bit	is
set,	the	SCL	is	held	low.	When	it	is	reset,	the	SCL	is	held	high	(default	case).	The	UCGC
bit	is	used	to	control	whether	the	general	call	address	is	received	or	not.	The	general	call
address	is	used	when	more	than	two	devices	are	used	in	communication.	Please	see	the	I2C
data	sheet	for	detailed	information	[7].	When	the	UCGC	bit	is	reset,	this	means	the	general
call	address	is	not	received.	When	it	is	set,	this	means	the	address	information	is	received.
The	UCBBUSY	bit	is	used	to	indicate	that	whether	the	I2C	bus	is	busy	or	not.	When	this
bit	 is	 reset,	 it	means	 the	 bus	 is	 inactive.	When	 it	 is	 set,	 it	means	 that	 the	 bus	 is	 active.
UCNACKIFG,	 UCSTPIFG,	 UCSTTIFG	 and	 UCALIFG	 bits	 are	 used	 to	 observe
interrupts	for	NACK,	stop,	start,	and	arbitration	lost	conditions	respectively.	When	these
bits	 are	 reset,	 this	means	 that	 there	 is	 no	 interrupt	 pending.	When	 these	 bits	 are	 set,	 it
means	 there	 is	 an	 interrupt	 pending	 from	 the	 related	 source.	 UCNACKIFG	 and
UCSTPIFG	bits	are	reset	automatically	after	the	start	condition	is	received.	UCSTTIFG	is
reset	 automatically	 after	 the	 stop	 condition	 is	 received.	 Start	 and	 stop	 conditions	 are
received	by	the	slave	device.	Therefore,	 the	UCSTPIFG	and	UCSTTIFG	bits	are	related
only	with	the	slave	device.

Table	12.19			USCI_B0	status	register	(UCB0STAT).

	

The	I2C	mode	has	two	additional	address	registers.	These	are	called	the	USCI_B0	I2C
own	 address	 register	 (UCB0I2COA)	 and	 USCI_B0	 I2C	 slave	 address	 register
(UCB0I2CSA).	UCB0I2COA	keeps	the	device’s	own	address.	It	is	used	when	the	device
is	used	as	a	slave.	Also	the	fifteenth	bit	of	this	register	(UCGCEN)	is	used	to	respond	to	a
general	call.	When	this	bit	is	set,	the	device	responds	to	a	general	call.	When	it	is	reset,	the
device	does	not	respond	to	any	general	calls.	UCB0I2CSA	keeps	the	address	of	the	slave
device	to	be	connected	by	the	master.	Therefore,	it	is	used	when	the	device	is	in	the	master
mode.	When	 the	master	wants	 to	communicate	with	another	 slave,	 this	 register	must	be
changed	to	the	address	of	the	new	slave.

12.6.1			I2C	Transmit/Receive	Operations

Data	 transfer	 in	 the	 I2C	 mode	 is	 carried	 out	 byte	 by	 byte.	 Every	 bit	 of	 the	 byte	 is
transferred	during	one	SCL	pulse.	Communication	starts	when	the	master	sends	the	start
condition	 to	 the	 slave.	This	 is	 done	 by	 generating	 a	 high	 to	 low	 transition	 on	 the	 SDA
while	the	SCL	is	high.	Then,	the	slave	address	is	transmitted	by	the	master	in	the	next	1	or
2	bytes	according	to	the	addressing	mode.



In	the	7-bit	addressing	mode,	the	address	information	is	sent	in	1	byte.	In	this	byte,
the	 first	 7	 bits	 represent	 the	 slave	 address.	The	8	bit	 is	R/ .	When	 the	R/ 	 bit	 is	 0,	 it
means	that	the	master	will	transmit	data	to	the	slave.	When	the	R/ 	bit	is	1,	it	means	that
the	master	will	receive	data	from	the	slave.	After	this	byte	is	transmitted	by	the	master,	the
slave	 sends	 an	 acknowledge	 (ACK)	 bit	 to	 the	 master	 to	 indicate	 that	 the	 address
information	 is	 received.	Actually,	 this	ACK	bit	 is	 sent	by	 the	 receiver	 (master	or	 slave)
after	each	received	byte	throughout	the	communication	to	show	that	the	transmitted	byte	is
received.

In	 the	10-bit	 addressing	mode,	 the	address	 information	 is	 sent	 in	2	bytes.	The	 first
byte	is	formed	by	the	constant	number	11110b,	the	first	2	bits	of	the	slave	address,	and	the
R/ 	 bit.	 The	 second	 byte	 contains	 the	 remaining	 8	 bits	 of	 the	 slave	 address.	 After
receiving	 each	 byte,	 the	 slave	 sends	 an	 ACK	 bit.	 After	 the	 address	 information	 is
acknowledged	by	the	slave,	data	is	transmitted	or	received	byte	by	byte	according	to	the
R/ 	bit.	As	in	the	7-bit	addressing	mode,	the	ACK	bit	is	sent	by	the	receiver	(master	or
slave)	after	receiving	each	byte.

The	UCBBUSY	bit	is	set	to	indicate	that	the	bus	is	busy	during	the	communication
period.	As	 the	data	 transfer	 is	 completed,	 the	 communication	halts.	This	 is	 done	by	 the
master	device	by	sending	the	stop	condition	(a	low	to	high	transition	on	the	SDA	while	the
SCL	is	high).

Sometimes,	 the	 direction	 of	 data	 transfer	 has	 to	 be	 changed	 during	 I2C
communication.	This	can	be	achieved	by	sending	a	start	condition	followed	by	the	address
information	and	new	R/ 	bit	after	an	ACK	bit	anywhere	in	the	data	transfer.	This	way,	the
direction	 can	 be	 changed	 without	 stoping	 the	 data	 transfer	 since	 no	 stop	 condition	 is
generated.

There	are	four	 transmit/receive	operation	options	for	 the	I2C	mode.	These	are	slave
transmitter,	 slave	 receiver,	 master	 transmitter,	 and	 master	 receiver.	 In	 the	 following
sections,	we	explore	each	in	detail.

Slave	Transmitter	Mode

In	 this	mode,	 first	 the	device	 is	 set	 as	 slave	by	 setting	UCSYNC	and	 resetting	UCMST
bits.	Then,	 the	slave	address	 is	written	 to	 the	UCB0I2COA	register.	This	address	can	be
either	 seven	 or	 10	 bits	 long	 based	 on	 the	 UCA10	 bit	 value.	 After	 a	 start	 condition	 is
detected	by	the	slave,	its	own	address	is	compared	with	the	received	one	coming	from	the
master	 (from	 the	UCB0I2CSA	register).	 If	both	addresses	match,	UCSTTIFG	 is	 set	 and
UCSTPIFG	is	reset.	The	slave	must	be	set	as	receiver	first	by	resetting	the	UCTR	bit.	This
is	done	to	get	the	address	information	from	the	master.	Then,	if	the	master	is	configured	as
the	receiver,	the	R/ 	bit	is	set	and	the	slave	is	configured	as	transmitter	automatically.	The
UCTR	and	UCB0TXIFG	bits	are	also	set	automatically	in	this	step.	Then,	the	first	data	bit
is	written	 to	 the	UCB0TXBUF	and	an	ACK	bit	 is	 sent	by	 the	 slave	 to	 indicate	 that	 the
address	information	is	acknowledged.	Afterwards,	UCB0TXIFG	is	reset	and	the	data	byte
is	transmitted.	UCB0TXIFG	is	set	again	as	soon	as	data	in	UCB0TXBUF	is	transferred	to
the	transmit	shift	register.	After	data	is	transmitted	to	the	master,	there	are	three	options	for
the	system.	First,	the	master	can	send	an	ACK	bit,	a	new	data	byte	is	transmitted,	and	the
transfer	proceeds.	Second,	the	master	can	send	a	NACK	bit	followed	by	the	stop	condition



to	 end	 data	 transfer.	 Here,	 the	 UCB0TXIFG	 bit	 is	 reset	 after	 the	 NACK	 bit.	 The
UCSTPIFG	is	set	and	UCSTTIFG	is	reset	after	the	stop	condition	is	received	by	the	slave.
Third,	the	master	can	also	send	a	NACK	bit	followed	by	the	restart	condition	to	restart	the
data	transfer.	Then,	the	data	transfer	cycle	returns	to	the	step	where	the	start	condition	and
address	information	is	received	by	the	slave.

Slave	Receiver	Mode

This	mode	has	the	same	configuration	steps	as	the	previous	one.	Only	in	the	slave	receiver
mode,	the	master	is	configured	as	transmitter	and	the	R/ 	bit	is	reset.	Then,	the	slave	is
configured	as	receiver	automatically.	The	UCTR	bit	is	also	reset	automatically	in	this	step.
UCB0RXIFG	is	set	automatically	after	the	first	data	byte	is	received.	Then,	the	received
data	 is	 read	 from	 UCB0RXBUF	 and	 an	 ACK	 bit	 is	 sent	 by	 the	 slave.	 There	 are	 four
options	for	the	system	after	the	ACK	bit	is	sent.

First,	the	master	can	transfer	a	new	data	byte	and	the	transfer	proceeds.	Second,	the
master	can	send	a	stop	condition.	Here,	UCSTPIFG	is	set	and	UCSTTIFG	is	reset	after	the
stop	condition.	Third,	the	master	can	send	a	restart	condition.	Then,	the	data	transfer	cycle
returns	 to	 the	step	where	 the	start	condition	and	address	 information	are	received	by	the
slave.	Fourth,	 the	 slave	device	 can	 also	 send	a	NACK	bit	 instead	of	 an	ACK	bit	 to	 the
master	 if	 the	UCTXNACK	bit	 is	 set	during	 the	 last	data	cycle.	The	master	device	must
respond	to	this	by	generating	a	stop	or	restart	condition.	If	a	NACK	is	transmitted	before
the	 last	data	 in	UCB0RXBUF	is	 read,	new	data	 is	written	 to	UCB0RXBUF	and	the	 last
data	 is	 lost.	 In	 order	 to	 prevent	 this,	 data	 in	 UCB0RXBUF	 must	 be	 read	 before
UCTXNACK	 is	 set.	 After	 the	 NACK	 is	 transmitted,	 the	 UCTXNACK	 bit	 is	 reset
automatically.	 UCSTPIFG	 is	 set	 and	 UCSTTIFG	 is	 reset	 after	 the	 stop	 condition.	 If	 a
restart	condition	occurs,	the	data	transfer	cycle	returns	to	the	step	where	the	start	condition
and	address	 information	are	 received	by	 the	 slave.	The	 fourth	option	can	be	used	 if	 the
slave	wants	to	stop	the	communication.

Master	Transmitter	Mode

In	this	mode,	first	 the	device	is	set	as	master	by	setting	the	UCSYNC	and	UCMST	bits.
Then,	 the	 target	 slave	address	 is	written	 to	 the	UCB0I2CSA	register	 in	accordance	with
the	 UCSLA10	 bit	 (7-	 or	 10-bit	 addressing	 modes).	 Also	 the	 UCTR	 bit	 must	 be	 set	 to
indicate	that	the	master	is	used	as	the	transmitter.	The	master	generates	a	start	condition	to
initiate	 the	 communication	 if	 the	 UCTXSTT	 bit	 is	 set	 by	 software.	 When	 this	 start
condition	 is	generated,	UCB0TXIFG	is	set	 to	show	that	UCB0TXBUF	is	 ready	for	new
data.	 Then,	 the	 slave	 address	 is	 transmitted	 with	 the	R/ 	 bit	 being	 0.	 An	 ACK	 bit	 is
expected	from	the	slave	as	the	first	data	byte	is	written	to	UCB0TXBUF.	The	UCTXSTT
bit	is	reset	automatically	after	the	ACK	bit	is	received.	Also,	UCB0TXIFG	is	set	again	as
soon	as	data	 in	UCB0TXBUF	 is	 transferred	 to	 the	 transmit	 shift	 register.	Then	 the	data
byte	 is	 transmitted	 from	 the	master	 to	 the	 slave.	After	 this	 transmission,	 there	 are	 four
options.

First,	 the	 slave	 can	 send	 an	ACK	 bit,	 a	 new	 data	 byte	 is	 transmitted,	 and	 transfer
proceeds.	 Second,	 the	 master	 can	 generate	 a	 stop	 condition	 after	 the	 last	 ACK	 bit	 is
received	 from	 the	 slave	 if	 UCTXSTP	 is	 set.	 When	 the	 data	 is	 transferred	 from
UCB0TXBUF	 to	 the	 transmit	 shift	 register,	 UCB0TXIFG	 is	 set	 to	 show	 that	 data



transmission	has	started	and	the	UCTXSTP	bit	may	be	set.	UCB0TXIFG	must	be	reset	by
the	user	when	UCTXSTP	is	set.	UCTXSTP	is	reset	automatically	after	the	stop	condition
is	generated.	Third,	 the	master	can	generate	a	 restart	 condition	after	 the	 last	ACK	bit	 is
received	from	the	slave	if	UCTXSTT	is	set.	Then	the	data	transfer	cycle	returns	to	the	step
where	 the	 start	 condition	 and	 address	 information	 are	 received	 by	 the	 slave.	 If	 desired,
UCTR	and	UCB0I2CSA	can	 be	 changed	here.	 Fourth,	 the	 slave	 can	 send	 a	NACK	bit.
This	sets	the	UCNACKIFG	bit.	The	master	must	respond	to	this	by	generating	a	stop	or
restart	 condition.	 Data	 in	 the	 UCB0TXBUF	 is	 discarded	 here.	 If	 this	 data	 needs	 to	 be
transmitted	after	a	restart	condition,	it	must	be	rewritten	to	the	UCB0TXBUF.

In	the	first	address	transmission	operation	by	the	master,	the	following	scenario	may
occur.	If	the	address	information	cannot	be	acknowledged	by	the	slave,	it	sends	a	NACK
bit	 to	 the	master	 and	UCNACKIFG	 is	 set.	 The	master	 device	must	 respond	 to	 this	 by
generating	a	stop	or	restart	condition.	This	is	also	the	case	for	the	master	receiver	mode	to
be	explained	next.

Master	Receiver	Mode

This	mode	has	the	same	configuration	steps	as	the	previous	one.	Only	the	UCTR	bit	must
be	reset	to	indicate	that	the	master	is	used	as	a	receiver.	Here,	the	master	generates	a	start
condition	to	initiate	the	communication	if	the	UCTXSTT	bit	is	set	by	software.	Then	the
slave	address	is	transmitted	with	R/ 	=	1.	As	the	ACK	bit	is	received	from	the	slave	(for
the	address	information),	 the	UCTXSTT	bit	 is	reset	automatically	and	the	first	data	byte
can	 be	 received.	After	 this	 byte	 is	 received,	UCB0RXIFG	 is	 set	 to	 indicate	 that	 data	 is
loaded	to	UCB0RXBUF.	After	the	UCB0RXIFG	bit	is	set,	there	are	three	options	for	the
system.

First,	 the	 master	 can	 send	 an	 ACK	 bit,	 a	 new	 data	 byte	 is	 received,	 and	 transfer
proceeds.	 Second,	 the	 master	 can	 generate	 a	 stop	 condition	 by	 setting	 UCTXSTP	 and
sending	 a	NACK	bit.	Here,	UCTXSTP	 is	 reset	 automatically	 after	 the	 stop	 condition	 is
generated.	 Third,	 the	master	 can	 generate	 a	 restart	 condition	 by	 setting	UCTXSTT	 and
sending	 a	 NACK	 bit.	 Here,	 the	 data	 transfer	 cycle	 returns	 to	 the	 step	 where	 the	 start
condition	 and	 the	 address	 information	 are	 received	 by	 the	 slave.	 If	 desired,	UCTR	 and
UCB0I2CSA	can	be	changed	here.

12.6.2			I2C	Interrupts

The	I2C	mode	 shares	 the	 same	 interrupt	 vectors	with	 the	UART	and	SPI	modes	 for	 the
transmit	 and	 receive	 operations.	 However,	 they	 are	 used	 in	 a	 different	 way	 in	 the	 I2C
mode.	The	USCIAB0TX_VECTOR	is	used	for	both	transmit	and	receive	interrupts.	The
USCIAB0RX_VECTOR	 is	used	 for	checking	UCNACKIFG,	UCSTPIFG,	UCSTTIFG,
and	UCALIFG	flags	(in	UCB0STAT)	generated	by	related	interrupts.	In	order	to	use	these
flags,	 related	 interrupt	 enable	 bits	 of	 the	 USCI_B0	 I2C	 interrupt	 enable	 register
(UCB0I2CIE)	 must	 be	 set.	 The	 entries	 of	 this	 register	 are	 given	 in	 Table	 12.20.	 The
interrupt	enable	register	2	(IE2)	and	interrupt	flag	register	2	(IFG2)	given	in	Tables	12.3
and	12.4	are	also	used	here	as	with	the	SPI	mode.

Table	12.20			USCI_B0	I2C	interrupt	enable	register	(UCB0I2CIE).



	

The	 interrupt-based	 communication	 operation	 in	 the	 I2C	 is	 the	 same	 as	 in	 the	 SPI
mode.	The	only	difference	is	the	UCB0TXIFG.	This	bit	is	reset	if	a	NACK	bit	is	received
in	addition	to	writing	a	new	character	to	UCB0TXBUF.

12.6.3			Coding	Practices	for	the	I2C	Mode

In	this	section,	we	provide	sample	C	and	assembly	codes	on	the	I2C	communication	mode.
The	problems	mentioned	for	the	UART	mode	are	also	applicable	here.	Therefore,	please
see	Sec.	12.2.4	first.

I2C	in	C

In	Listings	12.19	 and	12.20,	 the	 I2C	mode	 is	 used	 to	 establish	 a	 digital	 communication
between	two	MSP430	LaunchPads.	The	connection	diagram	for	this	application	is	given
in	Fig.	12.20.	The	C	code	for	the	master	transmitter	device	is	given	in	Listing	12.19.	The
C	code	for	the	slave	receiver	device	is	given	in	Listing	12.20.	In	this	application,	when	the
button	 connected	 to	 pin	 P1.3	 of	 the	 master	 device	 is	 pressed,	 it	 sends	 the	 next	 PWM
constant	 from	 the	 TXData	 array	 to	 control	 the	 brightness	 of	 the	 LED	 connected	 to	 pin
P1.2	of	 the	slave	device.	The	connection	between	pin	P1.5	of	 the	master	device	and	 the
RST	pin	of	the	slave	device	is	used	for	resetting	the	slave	before	the	communication	starts.

Listing	12.19			The	I2C	PWM	application,	master	transmitter	code	in	C	language.

	



	



	



	

	

Listing	12.20			The	I2C	PWM	application,	slave	receiver	code	in	C	language.

	



	



	

	



	

Figure	12.20			The	connection	diagram	for	the	I2C	PWM	application	(master	transmitter
and	slave	receiver).

	

In	 Listings	 12.21	 and	 12.22,	 the	 I2C	 mode	 is	 again	 used	 to	 establish	 a	 digital
communication	 between	 two	 MSP430	 LaunchPads.	 The	 connection	 diagram	 for	 this
application	 is	given	 in	Fig.	12.21.	However,	 this	 time	 the	 slave	becomes	 the	 transmitter
and	the	master	becomes	the	receiver.	The	C	code	for	the	slave	transmitter	device	is	given
in	Listing	12.21.	The	C	code	for	 the	master	receiver	device	is	given	in	Listing	12.22.	 In
this	application,	when	the	button	connected	to	pin	P1.3	of	the	master	device	is	pressed,	the
slave	sends	the	next	PWM	constant	from	the	TXData	array	to	control	the	brightness	of	the
LED	connected	to	pin	P1.2	of	the	master	device.	The	connection	between	pin	P1.5	of	the
master	device	and	the	RST	pin	of	the	slave	device	is	used	for	resetting	the	slave	before	the
communication	starts.

Listing	12.21			The	I2C	PWM	application,	slave	transmitter	code	in	C	language.

	



	



	

	

Listing	12.22			The	I2C	PWM	application,	master	receiver	code	in	C	language.

	



	



	

	



	

Figure	12.21			The	connection	diagram	for	the	I2C	PWM	application	(master	receiver	and
slave	transmitter).

	

I2C	in	Assembly

The	assembly	codes,	given	in	Listings	12.23	and	12.24,	perform	the	same	operation	done
in	Listings	12.19	and	12.20.	The	connection	diagram	for	this	application	is	also	the	same
as	that	shown	in	Fig.	12.20.	The	assembly	code	for	the	master	transmitter	device	is	given
in	Listing	12.23.	The	assembly	code	for	the	slave	receiver	device	is	given	in	Listing	12.24.

Listing	12.23			The	I2C	PWM	application,	master	transmitter	code	in	assembly	language.



	



	



	

	

	

Listing	12.24			The	I2C	PWM	application,	slave	receiver	code	in	assembly	language.



	

	



	

	

The	assembly	codes	given	in	Listings	12.25	and	12.26,	perform	the	same	operation
done	in	Listings	12.21	and	12.22.	The	connection	diagram	for	this	application	is	shown	in
Fig.	12.21.	The	assembly	code	for	the	slave	transmitter	device	is	given	in	Listing	12.25.
The	assembly	code	for	the	master	receiver	device	is	given	in	Listing	12.26.

Listing	12.25			The	I2C	PWM	application,	slave	transmitter	code	in	assembly	language.



	



	

	

	

Listing	12.26			The	I2C	PWM	application,	master	receiver	code	in	assembly	language.

	



	



	



	

	

12.7			I2C	in	Grace
The	I2C	mode	 can	 also	 be	 configured	 under	Grace.	 Since	 I2C	 is	 present	 only	 under	 the
USCI_B0	module,	we	should	enable	it	first.	Then	we	should	click	the	I2C	button	from	the
selection	window	for	all	user	modes	to	be	explored	below.

12.7.1			The	Basic	User	Mode

The	basic	user	mode	for	I2C	is	shown	in	Fig.	12.22.	In	this	mode,	we	can	set	the	device	as
master	 or	 slave	 from	 the	 drop-down	 list	 in	 the	USCI	B0	 I2C	 block.	We	 can	 enable	 or
disable	I2C	pins.	We	can	select	 the	bit	 rate	from	the	Bitrate	dropdown	list.	We	can	enter
the	 slave	 and	 own	 addresses	 to	 the	 I2C	 Slave	 Address	 and	 I2C	 Own	 Address	 boxes
respectively.



	

Figure	12.22			The	basic	user	mode	for	I2C	under	Grace.

	

We	can	enable	the	I2C	interrupts	by	checking	the	appropriate	“USCI_B0	I2C	transmit
interrupt	 enable,”	 “USCI_B0	 I2C	 receive	 interrupt	 enable,”	 “Start	 condition	 interrupt
enable,”	 or	 “Stop	 condition	 interrupt	 enable”	 box	 respectively.	We	can	 also	generate	 an
ISR	 related	 to	 these	 interrupts	 using	 the	 associated	 Generate	 Interrupt	 Handler	 Code
button.

12.7.2			The	Power	User	Mode

The	power	user	mode	for	I2C	is	shown	in	Fig.	12.23.	In	addition	to	the	basic	user	mode,
we	can	set	the	clock	source	here.	We	can	also	set	two	additional	interrupts	by	checking	the
“Not-acknowledge	interrupt	enable”	and	“Arbitration	lost	interrupt	enable”	boxes.



	

Figure	12.23			The	power	user	mode	for	I2C	under	Grace.

	

12.7.3			The	Register	Controls	Mode

Finally,	the	I2C	registers	can	be	adjusted	under	Grace.	The	user	should	select	the	register
controls	mode,	as	shown	in	Fig.	12.24,	for	this	purpose.	As	in	the	UART	and	SPI	modes,
some	registers	are	not	available	here.	Some	register	entries	are	also	read	only	in	this	mode.



	

Figure	12.24			The	register	controls	mode	for	I2C	under	Grace.

	

12.8			Digital	Communication	Application
In	this	section,	we	provide	a	generic	application	different	from	the	previous	chapters.	Our
aim	 here	 is	 using	 the	 UART	 and	 I2C	 modes	 together	 to	 form	 a	 communication	 link
between	two	MSP430	LaunchPads	and	a	host	computer.	The	user	should	be	aware	of	the
hardware	issues	(related	to	digital	communication)	mentioned	in	the	previous	sections.



12.8.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		Two	MSP430	LaunchPads

•		One	LED

•		One	220	Ω	resistor

•		Two	10	kΩ	resistors

12.8.2			Layout

The	layout	of	this	application	is	given	in	Fig.	12.25.

	

Figure	12.25			Layout	of	the	digital	communication	application.

	

12.8.3			System	Design	Specifications

In	 this	 application,	 we	 use	 two	 MSP430	 LaunchPads	 and	 a	 host	 computer	 for
communication.	 The	 host	 computer	 communicates	 with	 the	 first	MSP430	 using	 UART
mode.	The	first	MSP430	communicates	with	the	second	MSP430	using	I2C.	The	aim	here
is	to	change	the	brightness	of	the	LED	connected	to	the	second	MSP430	by	data	coming
from	the	host	computer.



First,	UART	communication	between	the	host	computer	and	the	first	MSP430	must
be	constructed.	A	variable	in	the	first	MSP430	is	used	to	keep	the	duty	cycle	value.	This
variable	should	change	between	0	and	100.	When	the	‘+’	key	is	pressed	on	the	keyboard
of	the	host	computer,	this	variable	will	increase	by	one.	When	the	‘−’	key	is	pressed,	the
same	variable	will	decrease	by	one.	 If	 these	keys	are	held	down,	 the	data	 is	 transmitted
continuously.	But	the	amount	of	data	that	can	be	sent	in	one	second	is	limited	(to	30–40)
because	of	the	BIOS	setup	restrictions.

While	the	duty	cycle	variable	is	changing,	the	first	MSP430	will	check	this	value.	If
the	duty	cycle	equals	0,	the	MSP430	will	send	the	Minimum	Duty	Cycle	Value	warning	to
the	host	computer.	If	the	duty	cycle	equals	100,	the	MSP430	will	send	the	Maximum	Duty
Cycle	Value	warning	 to	 the	 host	 computer.	 If	 the	 duty	 cycle	 is	 between	 0	 and	 100,	 the
MSP430	will	send	the	Duty	Cycle	is	Changing	warning	to	the	host	computer.

Finally,	 the	 I2C	 communication	 between	 the	 first	 and	 second	 MSP430	 must	 be
constructed.	When	the	duty	cycle	variable	has	changed	on	the	first	MSP430,	it	transmits
this	data	via	 I2C	 to	 the	 second	MSP430.	Then	 the	 second	MSP430	 receives	 this	data.	 It
uses	the	received	data	to	change	the	duty	cycle	of	the	PWM	signal	connected	to	the	LED.
Hence,	the	brightness	of	the	LED	changes	accordingly.	Initially,	the	brightness	of	the	LED
is	at	minimum.

12.8.4			The	C	Codes	for	the	System

The	first	MSP430	communicates	with	the	host	computer	using	UART	mode.	It	is	also	the
master	 transmitter	 device	 for	 the	 I2C	 communication	 between	 the	 first	 and	 second
MSP430.	 The	 second	 MSP430	 is	 only	 used	 as	 the	 slave	 receiver	 device	 for	 I2C
communication.

The	C	Code	for	the	First	MSP430

In	Listing	12.27,	global	variables	are	defined	as	the	first	part	of	the	code.	Here,	Min,	Max,
and	Mid	arrays	hold	the	text	information	to	be	sent	to	the	host	computer.	The	DutyCycle
variable	 is	 used	 to	get	 the	duty	 cycle	 from	 the	host	 computer	 and	 send	 it	 to	 the	 second
MSP430.	The	StartEnable	variable	is	used	to	control	the	start	of	the	I2C	communication.
The	TXByteCtr	variable	is	used	as	a	counter	for	the	transmitted	bytes.

Listing	12.27			Digital	communication	application,	the	transmitter	code	part	I.

	

	

In	the	second	part	of	the	code,	given	in	Listing	12.28,	the	hardware	configurations	for
the	digital	I/O,	timer,	UART,	and	I2C	modules	are	done.	In	this	code	block,	configuration



for	each	hardware	module	is	done	in	a	separate	function.

Listing	12.28			Digital	communication	application,	the	transmitter	code	part	II.

	

	

In	 the	PinConfig()	 function,	pin	directions	are	assigned	 to	P1DIR=BIT5	 in	 the	 first
line	to	obtain	the	reset	output	from	P1.5.	In	the	second	and	third	lines:	P1.1	is	set	as	UART
receive	data	input	(RXD);	P1.2	is	set	as	UART	transmit	data	output	(TXD);	P1.6	is	set	as
the	I2C	clock	pin	(SCL);	and	P1.7	is	set	as	the	I2C	data	pin	(SDA).	In	the	fourth	and	fifth
lines,	 a	 low	 to	 high	 transition	 is	 given	 from	P1.5	with	P1OUT	&=	 BIT5	 and	 P1OUT	 |=
BIT5	to	reset	the	slave	at	the	beginning	of	communication.

In	the	TimerConfig()	function,	the	watchdog	timer	is	disabled	in	the	first	line.	In	the



second	and	third	lines,	DCO	is	calibrated	to	1	MHz.

In	 the	UARTConfig()	 function,	 software	 reset	 is	 enabled	 and	 the	 clock	 source	 for	 a
baud	rate	generator	is	selected	as	SMCLK	with	UCA0CTL1	|=	UCSWRST	|	UCSSEL_2	in	the
first	 line.	 In	 the	 second,	 third,	 and	 fourth	 lines	 the	 baud	 rate	 is	 set	 to	 9600	 bps	 with
UCA0BR0	=	104,	UCA0BR1	=	0,	and	UCA0MCTL	=	UCBRS_1.	These	values	are	obtained	from
Table	12.10.	 In	 the	 fifth	 line,	 software	 reset	 is	disabled	with	UCA0CTL1	&=	 UCSWRST	 to
resume	the	USCI	operation.	In	the	sixth	line,	the	receive	interrupt	is	enabled	with	IE2	|=
UCA0RXIE.

In	 the	 I2CConfig()	 function,	 the	 software	 reset	 is	 enabled	 with	 UCB0CTL1	 |=

UCSWRST	 in	 the	 first	 line	 to	 start	 the	 configuration.	 In	 the	 second	 line,	 the	 synchronous
communication	mode	is	selected	by	setting	the	UCSYNC	bit.	The	device	is	set	as	master	by
setting	the	UCMST	bit.	Also,	UCMODE_3	is	used	to	select	the	I2C	mode.	In	the	third	line,	the
clock	source	for	 the	bit	 rate	generator	 is	selected	as	SMCLK	while	 the	software	reset	 is
kept	enabled	with	UCA0CTL1	=	UCSSEL_2	|	UCSWRST.	In	the	fourth	and	fifth	lines,	fBITCLK
is	set	to	100	kHz	with	UCB0BR0	=	10	and	UCA0BR1	=	0.	In	the	sixth	line,	the	slave	address
is	set	as	0x48.	In	the	seventh	line,	software	reset	is	disabled	with	UCB0CTL1	&=	 UCSWRST

to	 resume	 the	 USCI	 operation.	 Finally,	 the	 transmit	 interrupt	 is	 enabled	 with	 IE2	 |=
UCB0TXIE	in	the	last	line.

In	the	third	part	of	the	code,	given	in	Listing	12.29,	 the	ISR	settings	for	 the	UART
and	I2C	modes	are	done	as	follows:	In	the	UART	receive	ISR,	the	DutyCycle	variable	is
changed	 according	 to	 the	 incoming	 character	 data.	 If	 this	 character	 equals	 ‘+’,	 the
DutyCycle	 variable	 is	 increased	 by	 one.	 If	 it	 equals	 ‘−’,	 the	 DutyCycle	 variable	 is
decreased	 by	 one.	 In	 order	 to	 generate	 a	 duty	 cycle	 range	 between	 0	 and	 100,	 the
DutyCycle	variable	is	set	to	0	if	it	is	less	than	0.	The	duty	cycle	is	set	to	100	if	it	is	greater
than	 100.	 Also,	 the	 StartEnable	 variable	 is	 set	 to	 1	 to	 trigger	 the	 start	 of	 I2C
communication.	In	the	I2C	transmit	ISR,	the	most	recent	DutyCycle	variable	is	loaded	to
the	 transmit	 buffer	 and	TXByteCtr	 is	 decreased	 by	 one	when	 the	 ISR	 is	 called	 the	 first
time.	 Then	 the	 stop	 condition	 is	 sent	 with	 UCB0CTL1	 |=	 UCTXSTP.	 The	 StartEnable
variable	 is	 reset	 to	 halt	 the	 transmission	 until	 the	 next	 data	 is	 received	 from	 the	 host
computer.	The	transmit	interrupt	flag	is	cleared	manually	with	IFG2	&=	 UCB0TXIFG.

Listing	12.29			Digital	communication	application,	the	transmitter	code	part	III.



	

	

Finally,	the	C	code	for	the	transmitter	part	is	given	in	Listing	12.30.	In	a	while	loop,
TXByteCtr	 is	 loaded	 with	 1	 first.	 Then	 the	 system	 is	 halted	 with	 while	 (UCB0CTL1	 &
UCTXSTP)	until	the	UCTXSTP	bit	is	reset.	The	system	waits	for	the	new	received	data	to	get
StartEnable=1	 after	 the	 bit	 UCTXSTP	 is	 reset.	 Then	 the	 device	 can	 start	 the	 I2C
communication	as	a	transmitter	with	UCB0CTL1	|=	UCTR	|	UCTXSTT.	Also	in	this	step,	an
update	for	the	DutyCycle	 is	sent	 to	 the	host	computer	with	UART	communication	when
TXByteCtr	is	0.	If	the	DutyCycle	equals	zero,	the	Minimum	Duty	Cycle	Value	message	is
sent.	 If	 the	 DutyCycle	 equals	 100,	 the	 Maximum	 Duty	 Cycle	 Value	 message	 is	 sent.
Finally,	 if	 the	DutyCycle	 is	between	0	and	100,	 the	Duty	Cycle	 is	Changing	message	 is
sent.	The	Transmit	function	is	used	here	to	send	the	desired	message	to	the	host	computer.
In	this	function,	a	string	is	taken	as	input.	All	characters	in	the	string	are	sent	one	by	one
until	 a	 null	 character	 is	 reached.	Also,	 before	 sending	 the	 next	 character,	 the	 system	 is
halted	with	while(!(IFG2&UCA0TXIFG))	until	the	transmit	interrupt	flag	is	cleared.

Listing	12.30			Digital	communication	application,	the	transmitter	code.



	

	



	

	

The	C	Code	for	the	Second	MSP430

In	the	first	part	of	the	receiver	code,	given	in	Listing	12.31,	 the	hardware	configurations
for	the	digital	I/O,	timer,	and	I2C	modules	are	done.	In	this	code	block,	configurations	for
each	hardware	module	are	done	in	a	separate	function.

Listing	12.31			Digital	communication	application,	the	receiver	code	part	I.



	

	

In	the	PinConfig()	 function,	pin	directions	are	assigned	by	P1DIR=BIT2	 in	 the	 first
line	since	the	LED	is	connected	to	pin	P1.2.	In	the	second	and	third	lines:	P1.2	is	set	as
PWM	output;	P1.6	 is	set	as	 the	I2C	clock	pin	(SCL);	and	P1.7	 is	set	as	 the	 I2C	data	pin
(SDA).

In	the	TimerConfig()	function,	the	watchdog	timer	is	disabled	in	the	first	line.	In	the
second	 and	 third	 lines,	 DCO	 is	 calibrated	 to	 1	 MHz.	 In	 the	 fourth	 line,	 the	 timer
configurations	 are	 done.	 SMCLK	 is	 chosen	 as	 the	 clock	 source	 in	 up	 mode,	 and	 it	 is
divided	 by	 8	 so	 that	 f

CLK
	 equals	 125	 kHz.	 In	 the	 fifth	 and	 sixth	 lines,	 TACCR0	 and

TACCR1	are	set	 for	PWM	generation.	TACCR1	is	set	 to	999	so	 that	 f
PWM
	 is	100	Hz	and

TACCR0	is	set	to	0.	Therefore,	the	initial	duty	cycle	is	0.	The	reset/set	mode	is	chosen	for
the	PWM	in	the	last	line.

In	the	I2CConfig()	function,	software	reset	is	enabled	by	UCB0CTL1	|=	UCSWRST	in
the	 first	 line	 to	 enable	 the	 configuration	 change.	 In	 the	 second	 line,	 synchronous
communication	mode	is	selected	by	setting	the	UCSYNC	bit.	Also	UCMODE_3	is	used	to	select
the	I2C	mode.	In	the	third	line,	own	address	is	set	as	0x48.	In	the	fourth	line,	software	reset
is	disabled	with	UCB0CTL1	&=	 UCSWRST	 to	resume	the	USCI	operation.	In	 the	fifth	 line,
start	and	stop	interrupts	are	enabled	by	UCB0I2CIE	|=	UCSTPIE	|	UCSTTIE.	Finally,	 the
receive	interrupt	is	enabled	with	IE2	|=	UCB0RXIE	in	the	last	line.



In	 the	 second	part	of	 the	code,	given	 in	Listing	12.32,	 the	 ISR	 settings	 for	 the	 I2C
mode	 are	 done	 as	 follows:	 In	 transmit	 ISR,	 the	 received	 data	 is	 written	 to	 the
ReceivedDutyCycle.	Then	 this	value	 is	multiplied	by	10	and	written	 to	 the	TACCR1	 to
obtain	 the	 desired	 duty	 cycle.	 In	 receive	 ISR,	 start	 and	 stop	 interrupt	 flags	 are	 cleared
manually	 by	 UCB0STAT	 &=	 (UCSTPIFG	 |	 UCSTTIFG)	 to	 resume	 the	 communication.
Finally,	the	C	code	for	the	receiver	part	is	given	in	Listing	12.33.

Listing	12.32			Digital	communication	application,	the	receiver	code	part	II.

	

	

Listing	12.33			Digital	communication	application,	the	receiver	code.

	



	



	

	

12.9			Summary
The	MSP430	has	digital	communication	capabilities.	In	this	chapter,	we	explored	these	in
detail.	 We	 started	 with	 the	 USCI_A	 and	 USCI_B	 modules	 available	 on	 the
MSP430G2553.	USCI_A	 supports	UART	 and	 SPI	 communication	modes.	UART	 is	 the
only	 asynchronous	 communication	 mode	 available	 on	 the	 MSP430G2553.	 SPI,	 on	 the
other	hand	is	a	synchronous	and	fast	communication	mode.	USCI_B	supports	SPI	and	I2C
communication	modes.	Therefore,	SPI	is	supported	by	the	two	USCI	modules.	I2C	is	also
synchronous.	We	explored	each	mode	in	detail	in	this	chapter.	We	also	provided	sample	C
and	 assembly	 codes	 for	 the	 three	 communication	 modes.	 We	 benefit	 from	 Grace	 to
configure	 and	 use	 UART,	 SPI,	 and	 I2C.	 Finally,	 we	 provided	 a	 generic	 digital
communication	application	jointly	using	UART	and	I2C	communication	modes.

12.10			Problems
In	this	section,	we	will	not	offer	new	problems.	Instead,	we	will	ask	the	reader	to
solve	problems	given	in	previous	chapters	using	two	MSP430	LaunchPad	boards	and
establishing	a	digital	communication	link	between	them.	Some	sample	problems	are
given	below.	In	all	below	questions,	please	use	available	Port	2	pins	for	LED
connections.

	12.1				Solve	Prob.	8.9	using	two	MSP430	LaunchPad	boards.	The	first	MSP430
LaunchPad	will	be	used	for	the	push	button.	The	second	will	be	used	for	the
LEDs.	Establish	a	digital	communication	link	between	these	two	boards	using
UART,	SPI,	and	I2C	communication	modes.

	12.2				Repeat	Prob.	12.1	in	assembly	language.

	12.3				Solve	Prob.	8.12	using	two	MSP430	LaunchPad	boards.	The	first	MSP430
LaunchPad	will	be	used	for	the	push	button.	The	second	will	be	used	for	the
LEDs.	Establish	a	digital	communication	link	between	these	two	boards	using
UART,	SPI,	and	I2C	communication	modes.

	12.4				Repeat	Prob.	12.3	in	assembly	language.



	12.5				Solve	Prob.	9.4	using	two	MSP430	LaunchPad	boards.	The	first	MSP430
LaunchPad	will	be	used	for	the	push	button.	The	second	will	be	used	for	the
LEDs.	Establish	a	digital	communication	link	between	these	two	boards	using
UART,	SPI,	and	I2C	communication	modes.

	12.6				Repeat	Prob.	12.5	in	assembly	language.

	12.7				Solve	Prob.	11.2	using	two	MSP430	LaunchPad	boards.	The	first	MSP430
LaunchPad	will	be	used	for	the	comparator	operation.	The	second	will	be
used	for	the	LEDs.	Establish	a	digital	communication	link	between	these	two
boards	using	UART,	SPI,	and	I2C	communication	modes.

	12.8				Repeat	Prob.	12.7	in	assembly	language.

	12.9				Solve	Prob.	11.4	using	two	MSP430	LaunchPad	boards.	The	first	MSP430
LaunchPad	will	be	used	for	the	ADC	operation.	The	second	will	be	used	for
the	LEDs.	Establish	a	digital	communication	link	between	these	two	boards
using	UART,	SPI,	and	I2C	communication	modes.

12.10				Repeat	Prob.	12.9	in	assembly	language.



	

13	Flash	Memory

Chapter	Outline

13.1					MSP430	Flash	Memory

13.2					Flash	Memory	Programming

13.3					Coding	Practices	for	Flash	Memory

13.4					Flash	Memory	in	Grace

13.5					Summary

13.6					Problems

MSP430	memory	is	divided	into	two	parts,	flash	and	RAM.	The	flash	memory	is	the	main
topic	 of	 this	 chapter.	 We	 will	 see	 how	 to	 program	 the	 flash	 using	 C	 and	 assembly
languages.

13.1			MSP430	Flash	Memory
A	 flash	memory	 cell	 is	 composed	 of	 a	MOS	 transistor	with	 an	 additional	 floating	 gate
under	 the	 control	 gate.	 Its	 working	 principle	 is	 based	 on	 charging	 and	 discharging	 this
floating	gate.	More	information	on	this	operation	and	the	physical	characteristics	of	a	flash
cell	can	be	found	in	[9,	10].

The	flash	is	nonvolatile.	It	can	keep	the	saved	data	even	when	energy	is	not	provided.
Therefore,	 it	 can	 be	 taken	 as	 another	 form	 of	 ROM.	 However,	 the	 flash	 can	 easily	 be
programmed	by	feeding	a	suitable	voltage	to	it.	The	MSP430	has	circuitry	to	program	its
flash	memory.

MSP430	 flash	 memory	 is	 divided	 into	 two	 sections,	 main	 and	 information.	 The
executable	code	and	the	constant	values	are	kept	in	the	main	section.	The	calibration	data,
serial	 number,	 and	 similar	 factory	 settings	 are	 kept	 in	 the	 information	 section.	 To	 note
here,	there	is	no	physical	difference	between	these	two	sections.

The	main	section	of	the	flash	memory	for	the	MSP430G2553	is	16	kB.	It	spans	the
memory	addresses	between	FFC0h	and	C000h.	This	space	is	divided	into	segments,	each
being	512	bytes.	Therefore,	there	are	12	segments.	The	information	section	is	divided	into
four	segments.	These	are	called	A,	B,	C,	and	D.	Here,	each	segment	is	64	bytes.	Segment
A	 holds	 the	 calibration	 data.	 Therefore,	 it	 is	 protected.	Although	 this	 protection	 can	 be
bypassed	during	programming,	it	should	be	done	with	caution.

13.2			Flash	Memory	Programming
There	are	three	options	to	program	the	flash	memory.	The	first	one	is	using	the	JTAG	port.
For	more	detail	 on	 this	option,	please	 see	 [15].	The	 second	option	 to	program	 the	 flash
memory	is	using	the	bootstrap	loader.	For	more	detail	on	this	option,	please	see	[14].	The
last	 option	 is	 using	 a	 custom	 solution.	 In	 this	 option,	 we	 rely	 on	 the	 CPU’s	 ability	 to
program	its	own	flash	memory.	In	this	book,	we	will	only	focus	on	this	property.



The	CPU	 can	write	 to	 a	 single	 byte	 or	word	 location	 of	 the	 flash	memory.	 In	 the
erasing	operation,	it	can	only	operate	on	a	segment	level.	The	CPU	can	use	flash	to	flash
or	RAM	to	flash	programming.	 In	 this	book,	we	will	only	deal	with	 the	former	solution.
For	 the	 RAM	 to	 flash	 programming,	 please	 see	 [17].	 Moreover,	 segment	 A	 in	 the
information	memory	is	handled	separately	in	programming	the	flash	memory.	To	see	how
it	is	handled,	please	see	[17].

13.2.1			The	Flash	Memory	Controller

The	MSP430	has	an	internal	flash	memory	controller	for	erasing	and	writing	operations.
This	 controller	 has	 three	 registers,	 a	 timing	 generator,	 and	 a	 programming	 voltage
generator.	The	registers	can	be	used	to	configure	the	writing	and	erasing	operations.	The
writing	and	erasing	operations	are	controlled	by	the	flash	timing	generator.	The	properties
of	this	timing	generator	are	also	configured	through	the	registers.	The	voltage	generator	is
used	to	generate	necessary	voltage	values	for	writing	and	erasing	operations.

In	 order	 to	 program	 the	 flash	memory,	 the	 timing	 generator	 frequency	must	 be	 set
within	the	257	to	476	kHz	range.	The	supply	voltage	should	be	between	2.2	and	3.6	V.	If
these	values	are	not	satisfied	during	writing	or	erasing,	the	result	of	the	operation	will	be
unpredictable.	For	more	detail	on	these	limits,	please	see	[16].

There	are	specific	options	when	the	CPU	is	used	to	write	or	erase	the	flash	memory.
Byte,	 word,	 or	 block	 levels	 can	 be	 used	 in	 writing	 to	 flash.	 When	 erasing	 the	 flash
memory,	segment	level,	mass	erase	(to	erase	all	main	memory	segments),	and	all	erase	(to
erase	all	segments)	options	can	be	selected.

13.2.2			Flash	Memory	Registers

The	operations	in	the	flash	memory	controller	are	configured	by	three	registers.	These	are
called	 the	 flash	 memory	 control	 register	 1	 (FCTL1),	 flash	 memory	 control	 register	 2
(FCTL2),	and	flash	memory	control	register	3	(FCTL3).

The	FCTL1	register,	given	in	Table	13.1,	is	for	selecting	the	erasing	mode.	In	Table
13.1,	the	FRKEY	will	be	read	as	96h	and	FWKEY	should	be	written	as	A5h.	These	are
the	FCTLx	passwords.	The	BLKWRT	 bit	 should	be	 set	 for	 the	block	write	mode.	The
WRT	bit	should	be	set	to	select	any	write	mode.	The	MERAS	and	ERASE	bits	are	used
together	for	mass	erase	and	erase	modes.	There	will	be	no	erasing	when	MERAS=0	and
ERASE=0.	Individual	segments	can	be	erased	when	MERAS=0	and	ERASE=1.	All	main
memory	 segments	 can	 be	 erased	 when	 MERAS=1	 and	 ERASE=0.	 The	 main	 and
information	sections	of	the	flash	memory	can	be	erased	when	MERAS=1,	ERASE=1,	and
LOCKA=0	(in	FCTL3).	Only	the	main	section	of	 the	flash	memory	can	be	erased	when
MERAS=1,	ERASE=1,	and	LOCKA=1.

Table	13.1			Flash	memory	control	register	1	(FCTL1).



	

The	FCTL2	register,	given	in	Table	13.2,	is	for	configuring	the	flash	controller	clock
source.	 In	Table	13.2,	 the	FWKEYx	will	be	 read	as	96h	and	should	be	written	as	A5h.
These	are	the	FCTLx	passwords.	The	FSSELx	bits	are	used	to	select	the	flash	controller
clock	 source.	 The	 constants	 for	 these	 bits	 are	 as	 follows:	 FSSEL_0	 (for	 selecting	 the
ACLK),	FSSEL_1	(for	selecting	the	MCLK),	FSSEL_2,	and	FSSEL_3	(for	selecting	the
SMCLK).	The	FNx	 bits	 are	used	 for	 the	 flash	controller	 clock	divider.	The	divider	 is	1
when	FNx=00h.	The	divider	is	64	(which	is	the	maximum	value)	when	FNx=3Fh.

Table	13.2			Flash	memory	control	register	2	(FCTL2).

	

The	 FCTL3	 register,	 given	 in	 Table	 13.3,	 is	 for	 the	 operation	 modes	 and	 failure
handling.	In	Table	13.3,	the	FWKEYx	will	be	read	as	96h	and	should	be	written	as	A5h.
These	are	 the	FCTLx	passwords.	The	FAIL	 bit	 is	 set	when	an	operation	 failure	occurs.
The	LOCKA	bit	is	used	to	unlock	segment	A	in	the	information	memory.	This	bit	should
be	reset	 to	allow	the	programmer	to	adjust	segment	A.	The	EMEX	bit	 is	for	emergency
exit.	The	LOCK	bit	is	used	to	unlock	the	flash	memory	for	writing	and	erasing	operations.
When	the	WAIT	bit	is	reset,	it	indicates	that	the	flash	memory	is	not	ready	for	a	byte-	or
word-level	writing	operation.	The	ACCVIF	stands	for	the	access	violation	interrupt	flag.
The	KEYV	bit	indicates	the	flash	security	key	violation.	When	this	bit	is	reset,	it	indicates
that	the	FCTLx	password	is	entered	correctly.	When	it	is	set,	it	indicates	that	the	FCTLx
password	 is	 entered	 incorrectly.	 The	BUSY	 bit	 indicates	 the	 status	 of	 the	 flash	 timing
generator.	When	this	bit	is	set,	it	indicates	that	the	flash	timing	generator	is	busy.

Table	13.3			Flash	memory	control	register	3	(FCTL3).

	

13.3			Coding	Practices	for	Flash	Memory
In	this	section,	we	provide	C	and	assembly	code	samples	for	flash	memory	programming.
These	are	modified	from	TI	sample	codes.	Next,	we	explain	them	in	detail.



13.3.1			Flash	Memory	in	C

The	C	code	for	flash	programming	is	given	in	Listing	13.1.	Initially,	we	set	 the	digitally
controlled	oscillator	(DCO)	to	1	MHz.	This	clock	will	be	used	in	the	timing	generator.	The
erase_SegCD()	 function	 erases	 the	 segments	 C	 and	 D	 separately.	 Here,	 the	 memory
address	of	each	segment	is	given	separately.	The	memory	address	is	1040h	for	segment	C.
The	memory	 address	 is	 1000h	 for	 segment	D.	The	 erasing	 is	 done	by	 simply	 assigning
zero	to	the	segment.	Since	only	segment-based	erasing	can	be	done,	all	segment	elements
are	erased	by	this	operation.	To	note	here,	 the	erased	bit	value	for	 the	segment	elements
will	be	one.	In	the	erasing	operation,	the	ERASE	bit	 in	the	FCTL1	register	 is	reset	after
each	operation.	Therefore,	 to	 erase	 segment	D	 it	 should	be	 set	 after	 erasing	 segment	C.
The	write_SegC()	function	writes	values	0	to	63	to	segment	C	at	the	byte	level.	Finally,
the	copy_SegCD()	function	copies	the	entries	of	segment	C	to	segment	D	in	reverse	order.
This	is	done	to	show	that	we	can	reach	the	segment	elements	at	a	byte	level.

Listing	13.1			Flash	memory	processing	in	C.



	



	

	

13.3.2			Flash	Memory	in	Assembly

The	operations	performed	in	Listing	13.1	are	redone	in	assembly	language	in	Listing	13.2.
The	subroutines	here	have	 the	same	name	as	 in	 the	C	code.	Therefore,	 the	explanations
given	above	also	apply	here.

Listing	13.2			Flash	memory	processing	in	assembly	language.



	



	

	

	

13.4			Flash	Memory	in	Grace



The	 flash	 memory	 controller	 can	 be	 configured	 by	 the	 Flash	 block	 in	 the	 Device
Overview	 Window	 (given	 in	 Fig.	 5.11).	 First,	 we	 should	 check	 the	 “Enable	 Flash
controller	in	my	configuration”	box.	Then	the	flash	can	be	configured	as	follows.

13.4.1			The	Basic	User	Mode

In	 the	basic	user	mode,	 shown	 in	Fig.	13.1,	 the	 clock	 (for	 the	 timing	generator)	 can	be
configured	by	its	source	and	frequency	divider.	The	oscillator	frequency	is	directly	taken
from	 the	 basic	 clock	module+	 (BCM+).	 Then	 the	 clock	 divider	 is	 automatically	 set	 by
Grace	 to	 set	 the	 Flash	 Timing	 Generator	 within	 a	 257	 to	 476	 kHz	 range.	 As	 in	 other
blocks,	interrupts	can	be	enabled	by	checking	the	Flash	Ctrl	Access	Violation	Int	Enable
box.	The	prototype	interrupt	service	routine	(ISR)	for	the	interrupt	can	be	generated	by	the
Generate	Interrupt	Handler	Code	button.

	

Figure	13.1			Basic	user	mode	for	the	flash	memory	controller.

	

13.4.2			The	Register	Controls	Mode

In	 the	register	controls	mode,	given	 in	Fig.	13.2,	 the	FCTL2	register	can	be	configured.
Since	the	access	violation	handler	is	also	present,	the	interrupt	enable	register	(IE1)	can	be
configured	here.	The	interrupt	flag	register	(IFG1)	is	also	given	here.	However,	it	cannot
be	configured.



	

Figure	13.2			Register	mode	for	the	flash	memory	controller.

	

13.5			Summary
The	MSP430G2553	has	flash	as	the	nonvolatile	memory.	This	part	of	the	memory	holds
the	 code	 and	 constants	 in	 our	 applications.	 In	 this	 chapter,	 we	 focused	 on	 the	 flash
memory	 programming	 issues.	 There	 are	 several	 methods	 to	 program	 the	 flash.	 In	 this
book,	we	only	considered	flash	programming	through	the	CPU.	For	more	detail	on	other
programming	methods,	we	directed	the	reader	to	cited	references.	We	provided	sample	C
and	 assembly	 codes	 for	 the	 CPU-based	 flash	 programming.	 We	 also	 considered	 flash
programming	under	Grace.

13.6			Problems
	13.1				What	is	the	starting	address	of	segments	A	and	B	in	the	flash	memory?

	13.2				Write	a	program	in	C	to	erase	the	contents	of	segment	B	in	the	flash	memory.

	13.3				Repeat	Prob.	13.2	in	assembly	language.

	13.4				Write	a	program	in	C	to	erase	the	contents	of	segment	B	in	the	flash	memory.
Then,	write	the	first	10	Fibonacci	numbers	to	this	area.

	13.5				Repeat	Prob.	13.4	in	assembly	language.

	13.6				Research	the	FRAM	technology.



	

14	Applications
Chapter	Outline

14.1					Car	Door	Alarm

14.2					Car	Window	Control

14.3					Car	Park	Tollgate

14.4					Digital	Lock	System

14.5					Air	Freshener	Dispenser

14.6					Traffic	Lights

14.7					Sound	Detector

14.8					Obstacle-Avoiding	Tank

14.9					Car	Parking	Sensor	System

14.10					Fire	Alarm

14.11					Wave	Generator

14.12					Sports	Watch

In	this	chapter,	we	provide	several	applications	for	the	MSP430.	These	are	based	on	real-
life	problems.	In	these	we	aim	to	show	the	usefulness	of	the	microcontroller	in	our	daily
lives.	We	 provide	 the	 circuit	 layout	 and	 the	 equipment	 list	 for	 each	 application	 so	 that
readers	can	implement	them	directly.	We	also	suggest	that	you	check	the	TI	websites	for
other	MSP430-based	applications.

14.1			Car	Door	Alarm
The	goal	of	this	application	is	to	learn	how	to	use	the	digital	input	and	output	(I/O)	pins	of
the	MSP430G2553	microcontroller.	As	a	 real-world	application,	we	examine	a	car	door
alarm	system.	In	this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and
the	procedure.

14.1.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		Five	LEDs

•		Five	220-Ω	resistors

•		Five	push	buttons

•		One	100-ηF	capacitor

14.1.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.1.



	

Figure	14.1			Layout	of	the	car	door	alarm	application.

	

14.1.3			System	Design	Specifications

The	 design	 steps	 of	 the	 car	 door	 alarm	 system	 are	 as	 follows:	 In	 the	 first	 part	 of	 the
application,	we	will	assume	that	four	push	buttons	are	placed	between	the	four	car	doors
and	the	chassis.	When	a	button	is	not	pressed,	 it	means	that	door	 is	open	and	a	warning
should	be	given.	This	is	done	by	an	LED	representing	that	door.	When	the	same	button	is
pressed,	 it	means	 that	 door	 is	 closed	now	and	 the	warning	 should	be	 reset	 (or	 the	LED
should	be	turned	off).

In	 the	 second	part	 of	 the	 application,	 a	 lock	button	 and	 lock	warning	LED	will	 be
added	 to	 the	 system.	When	 the	 lock	 button	 is	 pressed,	 the	 car	 is	 locked	 and	 the	 lock
warning	 LED	 is	 off.	 When	 the	 lock	 button	 is	 pressed	 again,	 it	 means	 that	 the	 car	 is
unlocked	now.	Therefore,	 the	 lock	warning	LED	should	 turn	on.	 Initially,	 the	 car	 is	not
locked.	Therefore,	 the	 lock	warning	LED	must	 turn	on.	Also,	 the	 lock	button	cannot	be
used	 if	 all	 doors	 are	 not	 closed.	As	 long	 as	 the	 car	 is	 locked,	 doors	 cannot	 be	 opened.
Normally,	mechanical	systems	are	used	for	this	purpose.	In	this	application,	this	property
is	 simulated	 by	using	LEDs.	After	 the	 car	 is	 locked,	 even	 releasing	 the	 buttons	 (placed



between	 the	doors	and	 the	chassis)	cannot	 turn	on	 the	LEDs.	This	way,	we	will	assume
that	the	doors	are	still	closed.	The	user	should	press	all	buttons	(placed	between	the	doors
and	the	chassis),	then	press	the	lock	button	in	order	to	unlock	the	system	again.

Hint:	In	the	second	part	of	the	application,	be	careful	about	the	time	of	pressing	the
lock	button.

14.2			Car	Window	Control
The	 goal	 of	 this	 application	 is	 to	 learn	 how	 to	 use	 the	 digital	 I/O	 pins	 of	 the	MSP430
microcontroller.	As	a	real-world	application,	we	design	a	car	window	control	system.	In
this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.2.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		Two	100-ηF	capacitors

•		One	stepper	motor

•		One	ULN2003	motor	driver

•		Four	push	buttons

14.2.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.2.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.2			Layout	of	the	car	window	control	application.

	

14.2.3			System	Design	Specifications

In	this	application,	we	will	design	a	car	window	control	system	by	using	a	stepper	motor
and	push	buttons.	The	stepper	motor	is	used	to	control	a	window.	Initially,	the	window	is
assumed	to	be	closed.	The	stepper	motor	will	act	in	two	states:	either	it	will	fully	open	the
window	or	 it	will	 close	 it.	The	 stepper	motor	will	 stop	when	one	of	 these	 conditions	 is
met.	The	number	of	stepper	motor	states	to	open	the	window	will	be	decided	by	the	user.
Two	of	the	push	buttons	will	be	used	to	control	the	direction	of	the	stepper	motor.	When
the	first	button	is	pressed,	 the	stepper	motor	will	start	 to	rotate	in	one	direction	until	 the
window	is	fully	open.	When	the	second	button	is	pressed,	the	motor	will	rotate	in	the	other
direction	until	the	window	is	closed.	The	user	may	press	the	other	button	when	one	of	the
buttons	 is	 pressed.	 The	 third	 button	 will	 be	 used	 to	 stop	 the	 rotation.	 Therefore,	 the



window	 will	 be	 half	 open	 when	 it	 is	 pressed.	 The	 last	 button	 will	 be	 used	 for	 child
protection.	It	will	 lock	the	system	when	it	 is	pressed	once.	The	system	will	be	unlocked
and	can	be	used	again	when	the	last	button	is	pressed	again.

14.3			Car	Park	Tollgate
The	goal	of	this	application	is	to	learn	how	to	set	and	use	port	interrupts	of	the	MSP430
microcontroller.	As	a	real-world	application,	we	design	a	car	park	tollgate	system.	In	this
section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.3.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		One	100-ηF	capacitor

•		One	16×2	character	LCD	(with	a	Samsung	processor)

•		One	10-kΩ	potentiometer

•		Two	IR	transmitter	LEDs

•		Two	IR	receiver	LEDs

•		Two	10-kΩ	resistors

•		Two	220-Ω	resistors

The	IR	transmitter	LED	conducts	current	when	VCC	 is	applied	 to	 its	anode.	Here,
the	cathode	 is	connected	 to	ground	through	a	220-Ω	resistor.	 It	emits	IR	 light	when	 this
current	 is	conducted.	On	 the	other	hand,	 the	IR	receiver	LED	 conducts	current	when	a
positive	 voltage	 is	 applied	 to	 its	 cathode	 through	 a	 10-kΩ	 resistor	 and	 its	 anode	 is
connected	 to	 ground.	Also,	 it	must	 absorb	 IR	 light	 to	 conduct	 current.	 This	 property	 is
critical	 for	 the	working	 logic	of	 the	IR	sensor	used	 in	 this	application.	 In	 terms	of	 logic
level,	when	the	light	is	absorbed	by	the	receiver	(with	VCC	present,	of	course)	it	gives	zero.
Otherwise,	it	gives	one.

14.3.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.3.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.3			Layout	of	the	car	park	tollgate	application.

	

14.3.3			System	Design	Specifications

In	 this	 application,	 a	 car	 park	 tollgate	 system	 will	 be	 designed	 by	 using	 two	 infrared
sensors	 and	 an	 LCD.	 One	 sensor	 can	 detect	 the	 movement,	 but	 cannot	 decide	 on	 its
direction.	 Therefore,	 two	 sensors	 will	 be	 jointly	 used	 to	 detect	 the	 movement	 and	 its
direction	 (entering	 to	 or	 exiting	 from	 the	 park).	 The	 LCD	 will	 be	 used	 to	 provide
information	on	the	status	of	the	park.	In	the	first	line	of	the	LCD,	entering	and	exiting	car
numbers	will	be	displayed.	In	the	second	line,	 the	number	of	cars	inside	the	park	at	 that
moment	will	 be	 displayed.	Be	 careful—when	 the	 number	 of	 cars	 inside	 the	 car	 park	 is
zero,	there	will	be	no	exiting	process.

14.4			Digital	Lock	System
The	 goal	 of	 this	 application	 is	 to	 learn	 how	 to	 set	 and	 use	 the	 port	 interrupts	 of	 the
MSP430	 microcontroller.	 As	 a	 real-world	 application,	 we	 will	 design	 a	 digital	 lock



system.	 In	 this	 section,	we	provide	 the	 equipment	 list,	 the	 layout	of	 the	 circuit,	 and	 the
procedure.

14.4.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		Two	10-μF	electrolytic	capacitors

•		One	1-μF	electrolytic	capacitor

•		One	100-ηF	capacitor

•		One	16×2	character	LCD	(with	a	Samsung	processor)

•		One	10-kΩ	potentiometer

•		Two	LEDs	(green	and	red)

•		Two	220-Ω	resistors

•		One	solenoid

•		One	ULN2003

•		One	MM74C922

•		Two	buzzers

•		One	4×3	keypad

•		One	push	button

14.4.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.4.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	



	

Figure	14.4			Layout	of	the	digital	lock	application.

	

14.4.3			System	Design	Specifications

In	 this	 application,	we	will	 design	 a	 digital	 lock	 system	with	 a	 keypad,	 an	LCD,	 and	 a
solenoid.	 Initially,	Enter	Your	Password	 is	written	on	 the	 first	 line	of	 the	LCD,	 and	 the
system	must	wait	in	a	suitable	low-power	mode.	When	there	is	an	entry	from	the	keypad,
the	system	exits	 from	the	 low-power	mode	and	writes	*	on	 the	second	 line	of	 the	LCD.
Each	*	 sign	 represents	an	entered	number.	 If	 the	*	button	on	 the	keypad	 is	pressed,	 the
system	erases	the	last	entry.	If	the	entered	password	is	wrong,	an	Access	Denied	string	is
written	 to	 the	 second	 line	 of	 the	 LCD	 and	 the	 red	 LED	 is	 turned	 on.	Also,	 the	 buzzer
connected	to	the	same	pin	with	the	red	LED	starts	to	beep.	After	2	s,	the	system	returns	to
the	 initial	 condition	 by	 turning	 off	 the	 red	LED	and	 stopping	 the	 buzzer.	 If	 the	 entered
password	 is	 correct,	 an	Access	Granted	 string	 is	written	 to	 the	 second	 line	of	 the	LCD.
The	solenoid	is	opened,	and	the	green	LED	is	turned	on	to	indicate	that	the	door	is	opened.
Also,	the	second	buzzer	beeps	for	2	s.	After	the	door	is	opened,	the	user	has	two	choices.
First,	 the	 door	 can	 be	 closed	 by	 using	 the	 push	 button.	 Then	 the	 system	 returns	 to	 the



initial	condition	by	turning	off	the	green	LED	and	closing	the	solenoid	again.	Second,	the
password	 can	 be	 changed	 after	 pressing	 the	 #	 button	 on	 the	 keypad.	 Then	 a	 Change
Password	string	is	written	to	the	first	line	of	the	LCD	and	after	this	process	is	completed.
Meanwhile,	the	Change	Password	string	will	be	changed	to	a	Password	Changed	 string.
After	this	step,	the	system	can	return	to	the	initial	condition	by	pressing	the	push	button.

14.5			Air	Freshener	Dispenser
The	goal	of	this	application	is	to	learn	how	to	set	and	use	timers	and	low-power	modes	of
the	MSP430	microcontroller.	As	a	real-world	application,	we	will	design	an	air	freshener
dispenser	system.	In	this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,
and	the	procedure.

14.5.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		Five	LEDs

•		Five	220-Ω	resistors

•		Three	push	buttons

•		Two	100-ηF	capacitors

14.5.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.5.



	

Figure	14.5			Layout	of	the	air	freshener	dispenser	application.

	

14.5.3			System	Design	Specifications

The	design	steps	of	the	air	freshener	dispenser	system	are	as	follows:	In	the	first	part	of
the	application,	an	air	 freshener	dispenser	with	 three	different	programs	is	 implemented.
These	programs	are	called	short,	medium,	and	 long.	They	correspond	 to	 the	 spraying	of
fresh	odor	 in	5-,	10-,	and	15-s	periods.	 In	an	actual	system,	 these	should	be	 in	minutes.
Also,	 the	 spraying	 operation	 should	 be	 done	 by	 a	mechanism	 in	 an	 actual	 system.	We
simulate	 this	 operation	 by	 turning	 on	 an	LED	 for	 one	 second.	 In	 our	 system,	 one	 push
button	will	be	used	to	switch	between	programs.	Three	LEDs	will	be	associated	with	the
programs.	Therefore,	 selecting	 each	 program	will	 turn	 on	 the	 associated	LED.	There	 is
also	an	instant	spray	button.	When	it	is	pressed,	the	system	will	spray	the	odor	and	reset
the	counting	process.	Also,	in	this	part,	one	of	the	three	programs	must	be	selected	as	the
initial	starting	program.

In	the	second	part,	an	on/off	button	and	a	warning	LED	will	be	added	to	the	system.
When	the	system	is	in	the	off	state,	all	LEDs	are	turned	off	and	the	system	goes	into	an
appropriate	low-power	mode.	All	buttons	except	the	on/off	button	will	be	unavailable	in



this	state.	When	the	system	turns	on	by	 this	button,	 the	warning	LED	will	 turn	on.	This
LED	should	blink	for	a	1-s	period	during	operation.	Initially,	the	system	must	be	in	the	off
state.

Hint:	The	watchdog	timer	can	be	used	for	the	restarting	process	in	the	second	part	of
the	application.

14.6			Traffic	Lights
The	goal	of	this	application	is	to	learn	how	to	set	and	use	timers	and	low-power	modes	of
the	 MSP430	 microcontroller.	 As	 a	 real-world	 application,	 we	 design	 a	 traffic	 lights
system.	 In	 this	 section,	we	provide	 the	 equipment	 list,	 the	 layout	of	 the	 circuit,	 and	 the
procedure.

14.6.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		Five	LEDs	(two	green,	two	red,	one	yellow)

•		Five	220-Ω	resistors

•		One	push	button

14.6.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.6.

	



Figure	14.6			Layout	of	the	traffic	lights	application.

	

14.6.3			System	Design	Specifications

In	 this	 application,	we	will	 design	 a	 traffic	 lights	 system	 for	 a	 street	with	 a	 crosswalk.
Three	of	the	LEDs	(green,	yellow,	and	red)	are	for	the	cars.	The	other	two	LEDs	(green
and	red)	and	the	push	button	are	for	pedestrians.	When	the	push	button	is	not	pressed,	the
system	works	in	a	loop	as	follows:

•		State	1:	The	green	LED	for	cars	is	turned	on	for	90	s.	During	this	time,	the	red	LED	is
turned	on	for	pedestrians.

•		State	2:	The	yellow	LED	for	cars	is	turned	on	for	5	s.	During	this	time,	the	red	LED	is
turned	on	for	pedestrians.

•		State	3:	The	red	LED	for	cars	is	turned	on	for	20	s.	During	this	time,	the	green	LED	is
turned	on	for	pedestrians.

•		State	4:	The	red	and	yellow	LEDs	for	cars	are	turned	on	for	5	s.	During	this	time,	the
red	LED	is	turned	on	for	pedestrians.

If	a	pedestrian	pushes	the	button	in	State	1	after	60	s,	the	system	will	jump	to	State	2.	If
the	button	is	pressed	before	60	s,	the	system	will	wait	until	60	s	has	passed.	Then	it	will
jump	to	State	2.	If	the	system	is	in	State	3	or	State	4,	the	push	button	will	not	be	activated
and	cannot	be	used.

14.7			Sound	Detector
The	 goal	 of	 this	 application	 is	 to	 learn	 how	 to	 use	 the	 ADC	 module	 of	 the	 MSP430
microcontroller.	As	a	 real-world	application,	we	design	a	 sound	detector	 system.	 In	 this
section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.7.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	100-ηF	capacitor

•		One	47-ηF	capacitor

•		Four	10-μF	electrolytic	capacitors

•		One	220-μF	electrolytic	capacitor

•		One	LM386	low-voltage	audio	power	amplifier

•		One	electret	microphone

•		Two	7-segment	displays



•		Two	74HC595	shift	registers

•		Fourteen	220-Ω	resistors

•		One	10-Ω	resistor

•		One	10-kΩ	resistor

14.7.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.7.	For	more	information	on	the	voltage
supply	block,	 please	 see	Fig.	9.3.	 In	Fig.	14.7,	 all	 resistors	 connected	 to	 the	 7-segment
display	are	220	Ω.



	

Figure	14.7			Layout	of	the	sound	detector	application.

	

14.7.3			System	Design	Specifications

In	this	application,	we	will	design	a	sound	detector	system.	The	sound	will	be	converted	to
an	electrical	 signal	by	 the	electret	microphone.	Then	 this	signal	will	be	amplified	 to	 the
appropriate	level	with	the	audio	amplifier.	The	audio	amplifier	will	give	approximately	2.5
V	to	its	output	when	there	is	no	sound	in	the	environment.	When	the	user	snaps	his	or	her
finger,	 the	 system	will	 detect	 it.	The	voltage	 level	which	detects	 the	 snap	 sound	can	be
arranged	by	the	user.	After	each	detection,	a	short	delay	must	be	added	to	avoid	detecting
echoes.	The	number	of	snaps	detected	will	be	shown	on	two	7-segment	displays	as	a	two-
digit	number.	When	a	new	snap	is	detected,	this	number	will	be	increased	by	one.	When
the	snap	count	reaches	99,	 it	will	be	reset	(to	00).	Initially,	 the	7-segment	displays	show
00.	Shift	registers	are	connected	as	a	cascade.	Therefore,	be	careful	about	when	the	digit
sequence	is	sent	to	them.

14.8			Obstacle-Avoiding	Tank
The	goal	of	 this	 application	 is	 to	 learn	how	 to	use	 the	ADC	and	PWM	modules	on	 the
MSP430	microcontroller.	As	a	real-world	application,	we	will	design	an	obstacle-avoiding
tank.	 In	 this	 section,	 we	 provide	 the	 equipment	 list,	 the	 layout	 of	 the	 circuit,	 and	 the
procedure.

14.8.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		Two	100-ηF	capacitors

•		One	push	button

•		One	red	LED

•		One	220-Ω	resistor

•		Two	12-V	dc	motors

•		One	L293D	motor	driver	IC

•		One	GP2Y0A21YK	proximity	sensor

14.8.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.8.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.8			Layout	of	the	obstacle	avoiding	tank	application.

	

14.8.3			System	Design	Specifications

In	this	application,	we	will	design	an	obstacle-avoiding	tank	with	a	proximity	sensor	and
two	dc	motors.	GP2Y0A21YK	is	an	analog	proximity	sensor	which	gives	voltage	values
between	3.1	and	0.4	V	for	10–80	cm	distance	values	(please	see	device	specific	datasheet).
The	 tank	should	check	 the	obstacle	distance	every	0.2	s.	The	 tank	will	move	 forward	 if
there	is	no	obstacle	closer	than	15	cm.	This	step	is	carried	out	by	rotating	the	dc	motors	in
the	 same	 direction	 with	 a	 suitable	 PWM	 signal.	 The	 tank	 should	 move	 backwards
diagonally	if	there	is	an	obstacle	closer	than	15	cm.	This	is	achieved	by	stopping	one	of
the	dc	motors	and	rotating	the	other	in	the	reverse	direction	with	a	suitable	PWM	signal.
During	this	phase,	the	tank	should	check	the	obstacle	distance	continuously.	If	there	is	no
obstacle	 closer	 than	 15	 cm,	 the	 tank	 should	 continue	 to	move	 in	 that	 direction.	Then	 it
should	return	to	check	the	obstacle	distance	every	0.2	s.	The	system	can	also	be	turned	off
and	on	by	a	push	button.	This	operation	must	be	accomplished	by	a	suitable	 low-power



mode.	The	red	LED	should	be	turned	on	if	the	system	is	working.

14.9			Car	Parking	Sensor	System
The	goal	of	 this	 application	 is	 to	 learn	how	 to	use	 the	ADC	and	PWM	modules	on	 the
MSP430	 microcontroller.	 As	 a	 real-world	 application,	 we	 design	 a	 car	 parking	 sensor
system.	 In	 this	 section,	we	provide	 the	 equipment	 list,	 the	 layout	of	 the	 circuit,	 and	 the
procedure.

14.9.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	10-µF	electrolytic	capacitor

•		One	100-ηF	capacitor

•		One	buzzer

•		One	light-dependent	resistor	(LDR)

•		One	12-V	dc	motor

•		One	L293D	motor	driver	IC

•		One	10-kΩ	potentiometer

14.9.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.9.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.9			Layout	of	the	car	parking	sensor	application.

	

14.9.3			System	Design	Specifications

In	this	application,	we	will	design	a	car	parking	sensor	system	using	an	LDR	(as	a	sensor),
a	 buzzer	 (as	 warning),	 and	 a	 dc	 motor.	 First,	 we	 should	 calibrate	 the	 ADC	 input.
Therefore,	we	 should	 first	 construct	 the	LDR	potentiometer	 pair	 as	 shown	 in	Fig.	 14.9.
Then	the	calibration	can	be	done	by	changing	the	potentiometer	value.	In	calibration,	the
ADM10MEM	 value	 should	 be	 nearly	 50h	 when	 there	 is	 no	 light	 on	 the	 LDR.	 The
ADC10MEM	value	may	change	depending	on	 the	 light	conditions	of	 the	medium	when
there	is	full	light	on	the	LDR.	Therefore,	a	maximum	value	must	be	chosen	to	eliminate



this	 effect.	 For	 this	 application,	 the	 maximum	 value	 will	 be	 200h.	 Finally,	 the
ADC10MEM	values	must	be	mapped	to	a	variable	with	the	following	constraints.

•		If	the	ADC10MEM	value	is	less	than	or	equal	to	50h,	it	is	mapped	to	0h	in	the
variable.

•		If	the	ADC10MEM	value	is	greater	than	or	equal	to	200h,	it	is	mapped	to	200h	in	the
variable.

•		If	the	ADC10MEM	value	is	between	50h	and	200h,	it	is	mapped	to	the	interval	[50h,
200h]	in	the	variable.

Then	 this	 variable	 is	 used	 to	 generate	 a	 PWM	 by	 feeding	 it	 to	 the	 related	 timer
register.	The	ADC	register	is	10	bits.	The	timer	register	(and	the	associated	variable)	is	16
bits.	Therefore,	the	most	significant	6	bits	of	variable	and	the	timer	register	must	be	zero.
Also,	 if	variable	 equals	 0h,	which	means	 that	 there	 is	 a	 danger	 of	 a	 crash,	 the	motor
should	be	stopped.

We	should	construct	a	lookup	table	for	the	buzzer	warning	part.	This	table	will	be	a
constant	array	with	32	elements	which	cover	the	interval	[0h,	50h–200h].	The	table	will	be
used	as	follows:

•		The	buzzer	will	stop	for	the	first	element	of	the	array	(which	covers	the	input	between
0h	and	50h).

•		If	the	value	is	greater	than	1C0h,	it	means	there	is	no	danger	of	a	crash.	Therefore,	the
buzzer	will	stop	for	the	elements	between	1C0h	and	200h.

•		The	buzzer	beeps	with	different	gaps	for	the	rest	of	the	elements.	These	gaps	can	be
obtained	by	using	the	delay	ms()	function	mentioned	in	Sec.	10.10.	Gap	values	will	be
kept	in	another	lookup	table.	A	group	of	elements	can	share	the	same	gap	value.	These
gaps	will	be	long	when	the	obstacle	is	away,	and	they	will	start	to	decrease	when
approaching	the	obstacle.

14.10			Fire	Alarm
The	 goal	 of	 this	 application	 is	 to	 learn	 how	 to	 use	 the	ADC	 and	 timer	modules	 on	 the
MSP430	microcontroller.	As	a	real-world	application,	we	will	design	a	fire	alarm	system.
In	this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.10.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		Two	100-ηF	capacitors

•		One	10-μF	electrolytic	capacitor

•		One	push	button

•		Two	LEDs	(green	and	red)



•		Two	220-Ω	resistors

•		One	relay

•		One	ULN2003

•		One	buzzer

•		One	MQ-2	gas	sensor

•		One	50-kΩ	potentiometer

14.10.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.10.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.

	

Figure	14.10			Layout	of	the	fire	alarm	application.

	

14.10.3			System	Design	Specifications

In	 this	 application,	we	will	 design	 a	 fire	 alarm	 system	with	MQ-2,	 relay,	 and	 a	 buzzer.



MQ-2	is	an	analog	sensor	which	has	high	resistance	to	clean	air.	This	resistance	starts	to
drop	when	smoke	exists	in	the	environment.	The	sensitivity	of	the	sensor	can	be	arranged
with	 a	 potentiometer	 connected	between	 its	 output	 and	ground	pins.	The	 system	 should
check	 the	 smoke	 level	 every	 5	 s.	 In	 idle	 times,	 it	 should	 stay	 in	 a	 suitable	 low-power
mode.	 If	 the	 smoke	 reaches	 a	 dangerous	 level	 (selected	 by	 the	 user),	 then	 the	 system
should	 turn	 off	 the	main	 electricity	 of	 the	 house	 by	 disconnecting	 the	 relay.	 The	 green
LED	will	be	turned	off	to	show	that	the	relay	is	disconnected.	Also,	the	buzzer	should	start
to	beep	with	a	0.5-s	interval.	The	system	can	be	turned	off	and	on	by	using	a	push	button.
This	 operation	 must	 be	 accomplished	 by	 a	 suitable	 low-power	 mode.	 If	 the	 system	 is
working,	the	red	LED	will	flash	every	30	s.

14.11			Wave	Generator
The	goal	of	this	application	is	to	learn	how	to	use	an	external	DAC	IC	with	the	MSP430
microcontroller.	As	a	real-world	application,	we	will	design	a	wave	generator	system.	In
this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.11.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		Two	12-V	dc	adaptors

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		Three	100-ηF	capacitors

•		One	10-μF	electrolytic	capacitor

•		One	UA741	OpAmp

•		One	10-kΩ	potentiometer

•		One	DAC0808	8-bit	D/A	converter

•		One	220-Ω	resistor

•		One	5-kΩ	resistor

•		One	2.5-kΩ	resistor

•		Five	push	buttons

•		One	red	LED

14.11.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.11.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.11			Layout	of	the	wave	generator	application.

	

14.11.3			System	Design	Specifications

In	this	application,	we	will	design	a	wave	generator	with	an	external	DAC	IC.	The	wave
generator	will	have	four	signal	options:	sine,	square,	sawtooth,	and	triangle.	These	can	be
selected	by	four	push	buttons.	Also,	 there	will	be	another	push	button	 to	 turn	off/on	 the
system.	This	operation	must	be	accomplished	by	a	suitable	low-power	mode.	The	red	LED
will	indicate	the	state	of	the	system.	Initially	the	system	will	be	turned	off.	Hence,	the	red
LED	is	turned	off.	When	the	system	is	turned	on	by	pressing	the	turn	on/off	button,	the	red
LED	will	 turn	 on.	The	desired	 signal	 can	 be	 fed	 to	 output	 by	 pressing	 the	 related	 push
button.	Four	lookup	tables	must	be	created	within	the	code	for	four	different	signals.	The
user	will	decide	on	the	properties	of	these	signals	(such	as	the	period	and	the	number	of
samples).	DCO	must	be	calibrated	to	16	MHz	to	obtain	higher	frequencies.	The	user	will
have	 an	option	 to	 change	 the	 amplitude	of	 the	generated	 signal	 by	 trimming	 the	 10-kΩ
potentiometer	connected	to	the	UA741	OpAmp.



14.12			Sports	Watch
The	goal	of	this	application	is	to	learn	how	to	use	the	digital	communication	block	on	the
MSP430	microcontroller.	As	a	 real-world	application,	we	will	design	a	 sports	watch.	 In
this	section,	we	provide	the	equipment	list,	the	layout	of	the	circuit,	and	the	procedure.

14.12.1			Equipment	List

Following	is	a	list	of	the	equipment	to	be	used	in	this	application.

•		One	12-V	dc	adaptor

•		One	LM7805	voltage	regulator

•		One	330-ηF	capacitor

•		One	100-ηF	capacitor

•		One	10-μF	electrolytic	capacitor

•		Two	push	buttons

•		Two	10-kΩ	resistors

•		One	390-Ω	resistor

•		One	16×2	character	LCD	(with	a	Samsung	processor)

•		One	10-kΩ	potentiometer

•		One	Hoperf	HDPM01	sensor

•		One	32-kHz	crystal	oscillator

•		One	3.3-V	Zener	diode

14.12.2			Layout

The	layout	of	this	application	is	shown	in	Fig.	14.12.	For	more	information	on	the	voltage
supply	block,	please	see	Fig.	9.3.



	

Figure	14.12			Layout	of	the	sports	watch	application.

	

In	Fig.	14.12,	the	MCLK	pin	of	the	HDPM01	sensor	is	connected	to	pin	P1.0	of	the
MSP430	because	this	pin	must	be	driven	by	a	32-kHz	clock	signal.	The	user	can	give	the
ACLK	directly	from	pin	P1.0.	Also,	be	careful	about	the	RS	and	E	pins	of	the	LCD.	Until
now,	 these	pins	were	connected	 to	pins	P1.6	and	P1.7	of	 the	MSP430.	However,	 in	 this
application	pins	P1.6	and	P1.7	are	used	by	the	I2C	mode.	Therefore,	pins	P1.4	and	P1.5	are
connected	 to	 the	RS	 and	E	pins	 of	 the	LCD.	The	user	 should	 change	 the	 code	 sections
related	to	these	pins	in	the	LCD	header	file	given	in	Listing	10.21.

14.12.3			System	Design	Specifications

In	 this	 application,	 we	 will	 design	 a	 sports	 watch	 with	 an	 HDPM01	 sensor	 and	 LCD.
HDPM01	is	a	multifunctional	sensor	which	detects	temperature,	air	pressure,	altitude,	and



location.	Therefore,	the	designed	sports	watch	will	display	these	values.	Two	push	buttons
will	be	used	to	select	the	temperature-pressure	and	altitude-compass	screens	on	the	LCD.
Initially,	 the	watch	 should	 show	 the	 time.	When	one	of	 the	push	buttons	 is	pressed,	 the
related	data	will	be	obtained	 from	 the	 sensor.	 It	will	be	displayed	on	 the	LCD	for	10	 s.
Then	 the	 watch	 will	 show	 the	 time	 again.	 An	 external	 crystal	 will	 be	 used	 in	 this
application.	Therefore,	all	timer-based	operations	should	be	using	the	ACLK	supplied	by
the	LFXT1	oscillator.



	

15	Appendix
Chapter	Outline

15.1					MSP430	Intrinsic	Functions

15.2					MSP430G2553	Header	File

15.1			MSP430	Intrinsic	Functions
Listing	15.1	Header	file	containing	MSP430	intrinsic	functions.

	



	

	

15.2			MSP430G2553	Header	File
Listing	15.2	MSP430G2553	header	file.
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				function	compared	with

				interrupt	vectors	and

				LPMs	and

				non-touch	paper	towel	dispenser	application,	C	code

				washing	machine	application	settings

Interrupts:

				CCIFG

				coding	practices:

												in	assembly

												button	press	counting

												in	C

												LEDs	turned	on	and	off

												red	and	green	LEDs	toggled

												red	LED	toggle

												turn	on	and	off	LEDs

				edge	select	register

				enable	register

				flag	register

				flags

				GIE	and

				in	Grace:

												coding	practices

												port	interrupts

				I2C

				IE1

				LPMs	and

				maskable

				NMIs

				occurrence	of

				OFIE

				overview

				PC	and

				port

												car	park	tollgate

												digital	lock	system

				priority	order	and

				registers



				reset

				SPI

				SR	and

				summary

				timer

				types	of

				UART

				vectors

				washing	machine	application:

												C	code

												constants	defined

												delay	function

												equipment	list

												full-step	control	sequence

												global	variables	defined

												half-step	control	sequence

												hardware	setup

												ISR	settings

												layout

												overview

												stepper	motor

												system	design	specifications

												voltage	supply	block

												wash	function

Interval	timer

IR.	See	Infrared

ISR.	See	Interrupt	service	routine

ISSH	bit

J
jmp	$	instruction

Jump	instructions:

				format

				mnemonics

				usage

Jumper	settings,	UART	and

K
KEYV	bit

L



L293D	motor	driver	IC

Latches,	from	gates

LaunchPad.	See	specific	subject

LCD.	See	Liquid	crystal	display

LED.	See	Light-emitting	diode

LFXT1.	See

				Low-frequency/high-frequency

				external	oscillator

Light-emitting	diode	(LED):

				car	door	alarm	and

				IR	transmitter	and	receiver

				red

				toggle

				red	and	green	LEDs	toggled

				turned	on	and	off

				UART	and

Liquid	crystal	display	(LCD).	See	also	Chronometer	application

Little	endian	representations

Local	variables:

				C	language	and

				CCS	and

LOCK	bit

LOCKA	bit

Logic	gates,	from	transistors:

				AND	gate

				OR	gate

				NAND	gate

				NOR	gate

				NOT	gate

				overview

				transmission	gate

				XOR	gate

Logic	operations,	C	programming

Logical	and	register	control	instructions,	mnemonics:

				double-operand

				emulated

				single-operand

Long,	signed	long	data	type



Loopback	application:

				SPI	and

				UART	and

Loops,	control	structures	and

Low-frequency/high-frequency	external	oscillator	(LFXT1)

				LFXT1OF	bit

				LFXT1Sx	bits

Low-power	modes	(LPMs):

				air	freshener	dispenser	and

				AM	and

				constants	for	entering

				constants	for	exiting

				interrupts	and

				ISR	and

				overview

				SR	bits	and

				traffic	lights	and

LPMs.	See	Low-power	modes

M
MAB.	See	16-bit	address	bus

Maskable	interrupts

Master	clock	(MCLK)

Master	in	slave	out	(UCxSOMI)

Master	mode

Master	receiver	code,	I2C	coding	practices:

				in	assembly

				in	C

Master	receiver	mode

Master	transmitter	code:

				I2C	coding	practices:

												in	assembly

												in	C

				SPI	coding	practices:

												in	assembly

												in	C

Master	transmitter	mode

MCLK.	See	Master	clock

MCx	bits



MDB.	See	16-bit	data	bus

Memory.	See	also	Flash	memory;	Random	access	memory

				architecture

				C	programming	memory	management:

												code	samples

												local	and	global	variables

				map

				observing

				overview

				peripheral	registers	and	SFRs

				from	registers

				Starting	Memory	Address

Memory	Block	Size	values

MERAS	bit

Metal	oxide	semiconductor	field	effect	transistor	(MOSFET)

Microcontrollers.	See	also	specific	subject

				overview	about

				TI	MSP430	LaunchPad	and

				topics	about

Mnemonics:

				double-operand	instructions

				emulated	instructions

				jump	instructions

				single-operand	instructions

MOSFET.	See	Metal	oxide

				semiconductor	field	effect

				transistor

mov.b

mov.w

MSC	bit

Multiplexer	(MUX)

N
N-channel	MOSFET	(NMOS)

NAND	gate

Negative	numbers

Negative	Reference	Voltage	list

NMIs.	See	Non-maskable	interrupts

NMOS.	See	N-channel	MOSFET



Non-maskable	interrupts	(NMIs)

Non-touch	paper	towel	dispenser	application:

				C	code

												constants	defined

												global	variables	defined

												hardware	configurations

												ISR	timer	settings

				equipment	list

				L293D	motor	driver	IC	and

				layout

				overview

				system	design	specifications

NOR	gate

NOT	gate

Numbers:

				binary

				decimal

				fixed-point	representation

				floating-point	representation

				hexadecimal

				little	and	big	endian	representations

				negative

				representations

				summary

O
Obstacle-avoiding	tank:

				equipment	list

				layout

				system	design	specifications

OFIE.	See	Oscillator	fault	interrupt	enable

OFIFG.	See	Oscillator	fault	interrupt	flag

Optimization

OR	gate

Oscillator:

				DCO	and	VLO

				LFXT1

Oscillator	fault	interrupt	enable	(OFIE)

Oscillator	fault	interrupt	flag	(OFIFG)



Oscillators:

				DCO

				external	crystal

				faults

				LFXT1

				overview

				RC

				VLO

OUT	bit

OUTMODx	bits

Overflow

P
P-channel	MOSFET	(PMOS)

P1/P2	mode

P2CA	bits

Parallel	adder

Password

				application

PC.	See	Program	counter

Peripheral	registers

Pin:

				description,	chronometer	application

				I/O:

												hardware

												usage	table

				layout

												ADC	module

												BCM+

												comparator_A+	module

												I/O

												timer

												USCI

				PWM	application:

												four-pin	mode	in	assembly

												four-pin	mode	in	C

												three-pin	mode	in	assembly

												three-pin	mode	in	C

Pinout20-TSSOP/20-PDIP	mode



PMOS.	See	P-channel	MOSFET

Pointers,	C	programming	and

pop

Port:

				input	and	output

				interrupts

												car	park	tollgate

												digital	lock	system

												in	Grace

Positive	Reference	Voltage	list

Power	user	mode,	in	Grace:

				ADC	module

				BCM+

				comparator_A+	module

				I/O

				I2C

				SPI

				timer

				UART

				WDT+

pragma	keyword

Priority	order

Program	counter	(PC)

				interrupt	and

Program	flow	control	instructions:

				mnemonics,	emulated

				single-operand

Programming	voltage	generator

Pulse	width	modulation	(PWM):

				car	parking	sensor	system	and

				coding	practices	for:

												in	assembly

												in	C

				I2C	coding	practices:

												master	receiver	code	in	assembly

												master	receiver	code	in	C

												master	transmitter	code	in	assembly

												master	transmitter	code	in	C



												slave	receiver	code	in	assembly

												slave	receiver	code	in	C

												slave	transmitter	code	in	assembly

												slave	transmitter	code	in	C

				obstacle-avoiding	tank	and

				overview

				SPI	coding	practices:

												four-pin	mode	in	assembly

												four-pin	mode	in	C

												three-pin	mode	in	assembly

												three-pin	mode	in	C

				UART	coding	practices,	in	C

push

PWM.	See	Pulse	width	modulation

PxDIR

PxIN	and	PxOUT

PxREN

PxSEL	and	PxSEL2

R
Random	access	memory	(RAM)

REF2	5V	bit

REFBURST	bit

REFON	bit

REFOUT	bit

Register	controls	mode,	in	Grace:

				ADC	module

				BCM+

				comparator_A+	module

				flash	memory

				I2C

				SPI

				timer

				UART

Registers.	See	also	Status	register

				ADC	module

				BCM+

				clocks

				comparator_A+	module



				CPU

				edge	select

				enable

				flash	memory

				from	flip-flops

				I/O

				I2C	and

				IE1

				interrupt

				memory	from

				mode

				observing	hardware	under	CCS	and

				peripheral

				SFRs

				shift

				SPI	and

				TACCTLx

				TACTL	control

				TAR

				UART

				UCB0I2CIE

				USCI

Reset	CPU	button

Reset	interrupts

RESET	label

Resistor	capacitor	(RC)

Restart	button

Resume	button

.retain	directive

.retainrefs	directive

RSELx	bits

S
S-reg

SAR.	See	Successive	approximation	register

sbc	instruction

SCCI	bit

SCL.	See	Serial	clock	pin

SCS	bit



SDA.	See	Serial	data	pin

.sect	directive

SELMx	bits

SELS	bit

Sequential	circuits,	from	gates:

				counters	from	flip-flops

				flip-flops

				latches

				memory	from	registers

				overview

				register	from	flip-flops

				shift	register	from	flip-flops

Serial	clock	pin	(SCL)

Serial	data	pin	(SDA)

Serial	peripheral	interface	(SPI):

				clocks	and

				coding	practices:

												loopback	application	in	C

												master	transmitter	code	in	assembly

												master	transmitter	code	in	C

												PWM	application	four-pin	mode	in	assembly

												PWM	application	four-pin	mode	in	C

												PWM	application	three-pin	mode	in	assembly

												PWM	application	three-pin	mode	in	C

												slave	receiver	code	in	assembly

												slave	receiver	code	in	C

				common	issues

				communication	pins

				control	register

				diagram

				in	Grace:

												basic	user	mode

												power	user	mode

												register	controls	mode

				interrupts

				overview

				registers	and

				SFR	IE2



				and	IFG2

				SMCLK	and

				SR	and

				transmit	and	receive	operations:

												master	mode

												slave	mode

SFRs.	See	Special	function	registers

Shift	register,	from	flip-flops

Short,	signed	short	data	type

.short	directive

SHSx	bits

Signed	char	data	type

Single-operand	instructions:

				format

				mnemonics

Slave	in	master	out	(UCxSIMO)

Slave	mode

Slave	receiver	code:

				I2C	coding	practices:

												in	assembly

												in	C

				SPI	coding	practices:

												in	assembly

												in	C

Slave	receiver	mode

Slave	transmit	enable	(UCxSTE)

Slave	transmitter	code,	I2C	coding	practices:

				in	assembly

				in	C

Slave	transmitter	mode

SMCLK.	See	Sub-main	clock

Sound	detector:

				equipment	list

				layout

				system	design	specifications

SP.	See	Stack	pointer

Special	function	registers	(SFRs)

				IE2	and	IFG2



SPI.	See	Serial	peripheral	interface

Sports	watch:

												equipment	list

												layout

												system	design	specifications

SR.	See	Status	register

SREFx	bits

Stack

Stack	pointer	(SP)

Starting	Memory	Address

Status	register	(SR)

				double-operand	instructions	effect	on

				emulated	instructions	effect	on

				I2C	and

				interrupt	and

				jump	instructions	and

				LPMs	effect	on

				single-operand	instructions	effect	on

				SPI	and

				UART	and

Step	Into	button

Step	Over	button

Step	Return	button

Stepper	motor

Stop	mode

Sub-main	clock	(SMCLK)

				USCI	module	and

Successive	approximation	register	(SAR):

				diagram

				simulation	program

Suspend	button

Switch	bouncing

swpb	instruction

sxt	instruction

Symbolic	mode

Synchronous	counter

T
TACCTLx	control	register



TACLR	bit

TACTL	control	register

TAIE	bit

TAIFG	bit

TAR	register

TASSELx	bits

Temperature	example

Terminal	window

.text	directive

TI	MSP430	LaunchPad:

				overview

				versions

Timer.	See	also	Watchdog	Timer+

				air	freshener	dispenser	and

				block

												hardware	setup

				capture/compare	block

												capture	mode

												compare	mode

				coding	practices:

												for	assembly

												for	C

				continuous	mode

				diagram

				in	Grace:

												basic	user	mode

												coding	practices

												power	user	mode

												register	controls	mode

				interrupts

				interval

				module

				non-touch	paper	towel	dispenser	application

				pin	layout

				stop	mode

				TACTL	control	register	and

				TAR	register

				terminology



				traffic	lights	and

				up/down	mode

				up	mode

Timing	generator,	flash	memory	controller

Traffic	lights:

				design	specifications

				equipment	list

				layout

Transistor:

				BJT

				logic	gates	from

				MOSFET

				as	switch

Transmission	gate

Transmit	and	receive	operations,	UART

Trigger	Source	&	Sampling	Rate,	ADC

Turn	on	and	off	LEDs

U
UART.	See	Universal	asynchronous	receiver/transmitter

UC7BIT	bit

UCA0BR0.	See	Baud	rate	control	register	0

UCA0BR1.	See	Baud	rate	control	register	1

UCA10	bit

UCADDR	bit

UCALIFG	bit

UCB0I2CIE.	See	USCI_B0	I2C	Interrupt	Enable	Register

UCBBUSY	bit

UCBRFx	bits

UCBRK	bit

UCBRKIE	bit

UCBRSx	bits

UCBUSY	bit

UCCKPH	bit

UCCKPL	bit

UCDORM	bit

UCFE	bit

UCGC	bit

UCIDLE	bit



UCLISTEN	bit

UCMM	bit

UCMODEx	bits

UCMSB	bit

UCMST	bit

UCNACKIFG	bit

UCOE	bit

UCOS16	bit

UCPAR	bits

UCPE	bit

UCPEN	bits

UCRXEIE	bit

UCRXERR	bit

UCSCLLOW	bit

UCSLA10	bit

UCSPB	bit

UCSSELx	bits

UCSTPIFG	bit

UCSWRST	bit

UCSYNC	bit

UCSYNC	bits

UCTR	bit

UCTXADDR	bit

UCTXBRK	bit

UCTXNACK	bit

UCTXSTP	bit

UCTXSTT	bit

UCxCLK

UCxSIMO.	See	Slave	in	master	out

UCxSOMI.	See	Master	in	slave	out

UCxSTE.	See	Slave	transmit	enable

Ultra-Low-Power	Advisor	(ULP	Advisor)

Universal	asynchronous	receiver/transmitter	(UART):

				as	asynchronous	mode

				baud	rate	generation

				character	format	for

				clocks	and

				coding	practices:



												Hello	World	application	in	assembly

												jumper	settings	and

												LED	control	application	in	assembly

												loopback	application	in	C

												overview

												password	application	in	C

												PWM	application	in	C

												for	two	LaunchPads	communication	in	C

				common	issues

				diagram

				digital	communication	application:

												C	codes

												equipment	list

												first	microcontroller	transmitter	code

												layout

												overview

												system	design	specifications

				in	Grace:

												basic	user	mode

												coding	practices

												overview

												power	user	mode

												register	controls	mode

				interrupts

				overview

				registers	and

				SFR	IE2

				and	IFG2

				SMCLK	and

				SR	and

				summary

				transmit	and	receive	operations

Universal	serial	communication	interface	(USCI):

				clocks

				common	issues

				module	types

				overview

				pin	layout



				registers

				SFR	IE2

				and	IFG2

				SMCLK	and

Unsigned	int	data	type

Unsigned	long	data	type

Unsigned	short	data	type

Up/down	mode

Up	mode

USCI.	See	Universal	serial	communication	interface

USCI_B0	I2C	Interrupt	Enable	Register	(UCB0I2CIE)

V
Variables	window

Vectors,	interrupts

Very	low	power	oscillator	(VLO)

Voltage:

				level	example

				Negative	Reference	Voltage	list

				Positive	Reference	Voltage	list

				programming	voltage	generator

				supply	block

W
WAIT	bit

Wash	function

Washing	machine	application,	interrupts:

				C	code

				constants	defined

				delay	function

				equipment	list

				full-step	control	sequence

				global	variables	defined

				half-step	control	sequence

				hardware	setup

				ISR	settings

				layout

				overview

				stepper	motor

				system	design	specifications



				voltage	supply	block

				wash	function

Watch	expression

Watchdog	Timer+	(WDT+):

				coding	practices:

												in	assembly

												in	C

												in	timer	mode

												in	watchdog	mode

				constants

				control	register

				diagram

				in	Grace:

												basic	user	mode

												coding	practices

												power	user	mode

												register	control	mode

				module

												layout

				overview

				used	as	interval	timer

				used	as	watchdog

				WDTCTL

Wave	generator:

				equipment	list

				layout

				system	design	specifications

WDT+.	See	Watchdog	Timer+

WDT+	control	register	(WDTCTL)

Word	size

WRT	bit

X
XCAPx	bits

XOR	gate

XT2OF	bits

XT2Sx	bits

XTS	bit
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