

Programming Arduino®
Getting Started with Sketches

00_Monk_FM.indd 1 22/09/22 12:07 PM

00_Monk_FM.indd 2 22/09/22 12:07 PM

This page intentionally left blank

Programming Arduino®
Getting Started with Sketches

THIRD EDITION

Simon Monk

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

00_Monk_FM.indd 3 22/09/22 12:07 PM

Copyright © 2023, 2016, 2012 by McGraw Hill. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-1-26-467888-4
MHID: 1-26-467888-6

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-467698-9,
MHID: 1-26-467698-0.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw Hill eBooks are available at special quantity discounts to use as premiums and sales promo-
tions or for use in corporate training programs. To contact a representative, please visit the Contact
Us page at www.mhprofessional.com.

Information has been obtained by McGraw Hill from sources believed to be reliable. However, be-
cause of the possibility of human or mechanical error by our sources, McGraw Hill, or others, Mc-
Graw Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of
1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, dis-
seminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply
with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPER-
LINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANT-
ABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licen-
sors do not warrant or guarantee that the functions contained in the work will meet your requirements
or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licen-
sors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-
Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequen-
tial or similar damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to any claim
or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

To my boys, Stephen and Matthew,
from a very proud Dad.

00_Monk_FM.indd 5 22/09/22 12:07 PM

About the Author
Simon Monk has a bachelor’s degree in cybernetics and computer science and a
doctorate in software engineering. He has been an active electronics hobbyist since
his school days and is an occasional author in hobby electronics magazines.
Dr. Monk is also author of some 20 books on Maker and electronics topics, especially
Arduino and Raspberry Pi. Simon also designs products for MonkMakes Ltd.
https://monkmakes.com

You can find out more about his books at http://simonmonk.org. You can also
follow him on Twitter, where he is @simonmonk2.

00_Monk_FM.indd 6 22/09/22 12:07 PM

https://monkmakes.com
http://simonmonk.org

vii

CONTENTS

Preface ... xi
Acknowledgments ... xiii
Introduction ... xv

1 Getting Started ... 1
Microcontrollers .. 1

Development Boards .. 2
A Tour of an Arduino Uno Board .. 3

Power Supply .. 4
Power Connections .. 4
Analog Inputs .. 4
Digital Connections .. 4
Microcontroller .. 5
Other Components .. 5
A Tour of a WiFi-Capable Arduino-Compatible 6

The Origins of Arduino .. 7
Powering Up .. 8
Installing the Software .. 8
Uploading Your First Sketch .. 10
The Arduino Application .. 14
Conclusion ... 16

2 C Language Basics .. 17
Programming ... 17
What Is a Programming Language? .. 19
Blink—Again! ... 24
Variables ... 26
Experiments in C ... 27

Numeric Variables and Arithmetic .. 29
Commands . 31

if 31
for 33
while 36

00_Monk_FM.indd 7 22/09/22 12:07 PM

viii Contents

Constants ... 37
Conclusion ... 37

3 Functions .. 39
What Is a Function? ... 39
Parameters ... 40
Global, Local, and Static Variables .. 41
Return Values ... 44
Other Variable Types .. 45

Floats ... 45
Boolean ... 46
Other Data Types ... 47

Coding Style ... 49
Indentation . 49
Opening Braces 50
Whitespace 50
Comments 51

Conclusion 52

4 Arrays and Strings
53

Arrays 53
Morse Code SOS Using Arrays 56

String Arrays 57
String Literals 57
String Variables 59

A Morse Code Translator 59
Data 60
Globals and Setup 61
The loop Function 62
The flashSequence Function . 64
The flashDotOrDash Function 65
Putting It All Together 66
The String Class 67

Conclusion 67

5 Input and Output
69

Digital Outputs ... 69

5 V or 3.3 V? ... 72

00_Monk_FM.indd 8 22/09/22 12:07 PM

Contents ix

Digital Inputs ... 73
Pull-Up Resistors ... 73
Internal Pull-Up Resistors .. 76
Debouncing ... 77

Analog Outputs ... 82
Analog Input ... 84
Conclusion ... 86

6 Boards .. 87
Arduino Nano ... 87
Arduino Pro Mini ... 89
Breadboard ... 90
The Boards Manager ... 91
ESP32 Boards ... 92
Raspberry Pi Pico ... 95
BBC micro:bit ... 96
Adafruit Feather System .. 98
Conclusion ... 99

7 Advanced Arduino .. 101
Random Numbers ... 101
Math Functions ... 104
Bit Manipulation ... 104
Advanced I/O ... 106

Generating Tones ... 106
Feeding Shift Registers .. 108

Interrupts ... 108
Compile-Time Constants .. 110
The Arduino Web Editor .. 111

Conclusion ... 112

8 Data Storage .. 113
Large Data Structures .. 113
Storing Data in Flash Memory .. 114
EEPROM ... 116

Storing an int in EEPROM .. 117
Writing Anything to EEPROM .. 119
Storing a float in EEPROM .. 120

00_Monk_FM.indd 9 22/09/22 12:07 PM

x Contents

Storing a String in EEPROM .. 121
Clearing the Contents of EEPROM .. 122

Compression ... 123
Range Compression .. 123

Conclusion ... 124

9 Displays .. 125
Alphanumeric LCD Displays .. 126
A USB Message Board .. 127
Using the Display ... 129
Other LCD Library Functions .. 130
OLED Graphic Displays .. 130
Connecting an OLED Display .. 131
Software ... 132
Conclusion ... 134

10 Arduino Internet of Things Programming 135
Boards for IoT ... 135
Installing ESP32 into the Arduino IDE .. 136
Connecting to WiFi ... 137
Running a Web Server .. 139
Serving Sensor Readings .. 141
Serving Sensor Readings—Improved .. 142
Turning the Built-in LED On and Off from a Web Page 146
Connecting to a Web Service .. 147
Conclusion ... 153

Index ... 155

00_Monk_FM.indd 10 22/09/22 12:07 PM

xi

PREFACE

The first edition of this book was published in November 2011 and has been
Amazon’s highest ranking book on Arduino.

The Arduino Uno is still considered to be the standard Arduino board. However,
many other boards, including both official Arduino boards (like the Leonardo,
Nano, and Pro Mini) and other Arduino-compatible devices like the Raspberry Pi
Pico, ESP32-based boards, and numerous Feather boards from Adafruit have also
appeared.

The Arduino software is available for so many families of microcontroller, that
it has become the environment of choice for many embedded programmers.

This edition also addresses the use of Arduino in Internet of Things (IoT)
projects and the use of various types of display including OLED and LCD.

Simon Monk

00_Monk_FM.indd 11 22/09/22 12:07 PM

00_Monk_FM.indd 12 22/09/22 12:07 PM

This page intentionally left blank

xiii

ACKNOWLEDGMENTS

I thank Linda for giving me the time, space, and support to write this book and
for putting up with the various messes my projects create around the house.

Finally, I would like to thank Lara Zoble and everyone involved in the produc-
tion of this book. It’s a pleasure to work with such a great team.

00_Monk_FM.indd 13 22/09/22 12:07 PM

00_Monk_FM.indd 14 22/09/22 12:07 PM

This page intentionally left blank

xv

INTRODUCTION

Arduino interface boards provide a low-cost, easy-to-use technology to cre-
ate microcontroller-based projects. With a little electronics, you can make your
Arduino do all sorts of things, from controlling lights in an art installation to
managing the power on a solar energy system.

There are many project-based books that show you how to connect things to
your Arduino, including 30 Arduino Projects for the Evil Genius by this author.
However, the focus of this book is on programming the Arduino and Arduino-
compatible boards using the Arduino IDE.

This book will explain how to make programming the Arduino simple and
enjoyable, avoiding the difficulties of uncooperative code that so often afflict a
project. You will be taken through the process of programming the Arduino
step by step, starting with the basics of the C programming language that
Arduinos use.

So, What Is Arduino?
The word “Arduino” has come to mean both the hardware and a software environ-
ment for programming microcontroller boards. Because microcontroller boards
come in all shapes and sizes, our standard board will be the most popular official
Arduino board, the Arduino Uno.

The Arduino Uno is a small microcontroller board with a universal serial bus
(USB) plug to connect to your computer and a number of connection sockets that
can be wired to external electronics such as motors, relays, light sensors, laser
diodes, loudspeakers, microphones, and more. They can be powered either
through a USB connection from the computer, a battery, or from a power supply.
They can be controlled from the computer or programmed by the computer and
then disconnected and allowed to work independently.

The board design of official Arduino boards and many Arduino-compatible
boards is open source. This means that anyone is allowed to make Arduino-com-
patible boards. This competition has led to low costs for the boards and all sorts
of variations on the “standard” boards.

00_Monk_FM.indd 15 22/09/22 12:07 PM

xvi Introduction

The basic boards are supplemented by accessory shield boards that can be
plugged on top of the Arduino board.

The software for programming your Arduino is easy to use and also freely
available for Windows, Mac, and Linux computers. There is also a browser-based
version of the software.

What Will I Need?
This is a book intended for beginners, but it is also intended to be useful to those
who have used Arduino for a while and want to learn more about programming
the Arduino or gain a better understanding of the fundamentals. As such, this
book concentrates on the use of the Arduino Uno board, apart from Chapter 10
that uses an ESP32 Arduino-compatible board; however, almost all of the code
will work unmodified on all the Arduino models and various Arduino-compatible
microcontroller boards.

You do not need to have any programming experience or a technical back-
ground, and the book’s exercises do not require any soldering. All you need is the
desire to make something.

If you want to make the most of the book and try out some of the experiments,
then it is useful to have the following on hand:

• A few lengths of solid core wire

• A cheap digital multimeter

Both are readily available for a few dollars from a hobby electronics store or online
retailer such as Adafruit or Sparkfun. You will of course also need an Arduino, ide-
ally an Arduino Uno and for Chapter 10, a low-cost ESP32 Arduino-compatible
such as the Lolin32 Lite.

If you want to go a step further and experiment with displays, then you will
need to buy those too. See Chapters 9 and 10 for details.

Using This Book
This book is structured to get you started in a really simple way and gradually build
on what you have learned. You may, however, find yourself skipping or skimming
some of the early chapters as you find the right level to enter the book.

00_Monk_FM.indd 16 22/09/22 12:07 PM

Introduction xvii

The book is organized into the following chapters:

• Chapter 1: Getting Started Here you conduct your first experiments
with your Arduino board: installing the software, powering it up, and
uploading your first sketch.

• Chapter 2: C Language Basics This chapter covers the basics of the
C language; for complete programming beginners, the chapter also serves
as an introduction to programming in general.

• Chapter 3: Functions This chapter explains the key concept of using and
writing functions in Arduino sketches. These sketches are demonstrated
throughout with runnable code examples.

• Chapter 4: Arrays and Strings Here you learn how to make and use
data structures that are more advanced than simple integer variables.
A Morse code example project is slowly developed to illustrate the
concepts being explained.

• Chapter 5: Input and Output You learn how to use the digital
and analog inputs and outputs on the Arduino in your programs.
A multimeter will be useful to show you what is happening on the
Arduino’s input/output connections.

• Chapter 6: Boards In this chapter we will look at the wide range of
Arduino and Arduino-compatible boards to help you choose the right
board for your project.

• Chapter 7: Advanced Arduino This chapter explains how to make use
of the Arduino functions that come in the Arduino’s standard library and
some other more advanced features of Arduino programming.

• Chapter 8: Data Storage Here you learn how to write sketches that can
save data in electrically erasable programmable read-only memory
(EEPROM) and make use of the Arduino’s built-in flash memory.

• Chapter 9: Displays In this chapter, you learn how to interface an Arduino
with displays and to make a simple USB message board.

• Chapter 10: Arduino Internet of Things Programming You learn how
to make the Arduino behave like a web server and communicate with the
Internet using services.

00_Monk_FM.indd 17 22/09/22 12:07 PM

xviii Introduction

Resources
This book is supported by an accompanying web page.

www.arduinobook.com

There you will find all the source code used in this book as well as other resources,
such as errata.

00_Monk_FM.indd 18 22/09/22 12:07 PM

http://www.arduinobook.com

1

1
Getting Started

Arduino is a microcontroller platform that has captured the imagination of
electronics enthusiasts. Its ease of use and open source nature make it a great
choice for anyone wanting to build electronic projects.

Ultimately, it allows you to connect electronics through its pins so that it can
control things—for instance, turn lights or motors on and off or sense things such
as light and temperature. This is why Arduino is sometimes given the description
physical computing. Because Arduinos can be connected to your computer by a
universal serial bus (USB) lead, this also means that you can use the Arduino as an
interface board to control those same electronics from your computer.

This chapter is an introduction to the Arduino system including the history
and background of the Arduino, as well as an overview of the Arduino Uno and
Lolin32 Lite, the two Arduino boards that we will use in this book.

Microcontrollers
The heart of your Arduino is a microcontroller. Pretty much everything else on
the board is concerned with providing the board with power and allowing it to
communicate with your desktop computer.

A microcontroller really is a little computer on a chip. It has everything and
more than the first home computers had. It has a processor, a small amount of
random access memory (RAM) for holding data, some erasable programmable
read-only memory (EPROM) or flash memory for holding your programs and it
has input and output pins. These input/output (I/O) pins link the microcontroller
to the rest of your electronics.

01_Monk_ch01.indd 1 03/08/22 2:32 PM

2 Programming Arduino: Getting Started with Sketches

Inputs can read both digital (is the switch on or off?) and analog (what is the
voltage at a pin?). This opens up the opportunity of connecting many different
types of sensor for light, temperature, sound, and more.

Outputs can also be analog or digital. So, you can set a pin to be on or off
(0 volts or 5 volts) and this can turn light-emitting diodes (LEDs) on and off
directly, or you can use the output to control higher power devices such as
motors. They can also provide an analog output. That is, you can control the
power output of a pin, allowing you to control the speed of a motor or the bright-
ness of a light, rather than simply turning it on or off.

The microcontroller on an Arduino Uno board is the 28-pin chip fitted into a
socket at the center of the board. This single chip contains the memory, proces-
sor, and all the electronics for the input/output pins. It is manufactured by the
company Microchip, which is one of the major microcontroller manufacturers.
Each of the microcontroller manufacturers produces dozens of different micro-
controllers grouped into different families. The microcontrollers are not all cre-
ated for the benefit of electronics hobbyists like us. We are a small part of this
vast market. These devices are really intended for embedding into consumer
products, including cars, washing machines, TVs, cars, children’s toys, and even
air fresheners.

The Arduino system provides a standardized way of programming all manner
of microcontrollers and is not limited to official Arduino boards. This means that
whatever microcontroller you want to use, you can (with a few exceptions) pro-
gram it as an Arduino without having to learn some manufacturer’s proprietary
software tool.

Development Boards
We have established that the microcontroller is really just a chip. A microcon-
troller will not just work on its own without some supporting electronics to
provide it with a regulated and accurate supply of electricity (microcontrollers are
fussy about this) as well as a means of communicating with the computer that is
going to program the microcontroller.

This is where development boards come in. An Arduino Uno board is really a
microcontroller development board that happens to be an independent open
source hardware design. This means that the design files for the printed circuit

01_Monk_ch01.indd 2 03/08/22 2:32 PM

Chapter 1: Getting Started 3

board (PCB) and the schematic diagrams are all publicly available, and everyone
is free to use the designs to make and sell his or her own Arduino boards.

All the microcontroller manufacturers—including Microchip, which makes
the ATmega328 microcontroller used in an Arduino board—also provide their
own development boards and programming software. Although they are usually
fairly inexpensive, these tend to be aimed at professional electronics engineers
rather than hobbyists. This means that such boards and software are arguably
harder to use and require a greater learning investment before you can get any-
thing useful out of them.

A Tour of an Arduino Uno Board
Figure 1-1 shows an Arduino Uno board. Let’s take a quick tour of the various
components on the board.

Figure 1-1 An Arduino Uno board.

Crystal USB Interface ChipReset Switch Digital Connections

Serial
Programming
Connector

Analog
Inputs

Power Microcontroller
Connectors

5V Voltage Regulator

01_Monk_ch01.indd 3 03/08/22 2:32 PM

4 Programming Arduino: Getting Started with Sketches

Power Supply
Referring to Figure 1-1, directly below the USB connector is the 5-volt (5V) volt-
age regulator. This regulates whatever voltage (between 7V and 12V) is supplied
from the DC power socket into a constant 5V.

The 5V voltage regulator chip is actually quite big for a surface mount compo-
nent. This is so that it can dissipate the heat required to regulate the voltage at a
reasonably high current. This is useful when driving external electronics.

Although powering the Arduino through the DC power socket is useful when
running the Arduino from batteries or a DC power jack, the Arduino Uno can also
be powered through the USB port, which is also used to program the Arduino.

Power Connections
Next let us look at the connectors at the bottom of Figure 1-1. You can read the
connection names next to the connectors. The connector of interest is Reset. This
does the same thing as the Reset button on the Arduino. Rather like rebooting a
PC, using the Reset connector resets the microcontroller so that it begins its pro-
gram from the start. To reset the microcontroller with the Reset connector, you
momentarily set this pin low (connecting it to 0V).

The rest of the pins in this section just provide different voltages (3.3V, 5V, GND,
and Vin), as they are labeled. GND, or ground, just means zero volts. It is the refer-
ence voltage to which all other voltages on the board are relative.

Analog Inputs
The six pins labeled as Analog In A0 to A5 can be used to measure the voltage
connected to them so that the value can be used in a sketch (Arduino Program). Note
that they measure a voltage and not a current. Only a tiny current will ever flow into
them and down to ground because they have a very large internal resistance. That is,
the pin having a large internal resistance only allows a tiny current to flow into the pin.

Although these inputs are labeled as analog, and are analog inputs by default,
these connections can also be used as digital inputs or outputs.

Digital Connections
We now switch to the top connector and start on the right-hand side in Figure 1-1.
Here we find pins labeled Digital 0 to 13. These can be used as either inputs or

01_Monk_ch01.indd 4 03/08/22 2:32 PM

Chapter 1: Getting Started 5

outputs. When used as outputs, they behave rather like the power supply volt-
ages discussed earlier in this section, except that these are all 5V and can be
turned on or off from your sketch. So, if you turn them on from your sketch they
will be at 5V, and if you turn them off they will be at 0V. As with the power supply
connectors, you must be careful not to exceed their maximum current capabili-
ties. The first two of these connections (0 and 1) are also labeled RX and TX, for
receive and transmit. These connections are reserved for use in communication
and are indirectly the receive and transmit connections for your USB link to
your computer.

These digital connections can supply 40 mA (milliamps) at 5V. That is more
than enough to light a standard LED, but not enough to drive an electric motor
directly.

Microcontroller
Continuing our tour of the Arduino Uno board, the microcontroller chip itself is
the black rectangular device with 28 pins. This is fitted into a dual in-line (DIL)
socket so that it can be easily replaced. The 28-pin microcontroller chip used on
the Arduino Uno board is the ATmega328.

The heart—or, perhaps more appropriately, the brain—of the device is the cen-
tral processing unit (CPU). It controls everything that goes on within the device. It
fetches program instructions stored in the flash memory and executes them. This
might involve fetching data from working memory (RAM), changing it, and then
putting it back. Or, it may mean changing one of the digital outputs from 0V to 5V.

The electrically erasable programmable read only memory (EEPROM) is a lit-
tle like the flash memory in that it is non-volatile. That is, you can turn the device
off and on and it will not have forgotten what is in the EEPROM. Whereas the
flash memory is intended for storing program instructions (from sketches), the
EEPROM is used to store data that you do not want to lose in the event of a reset
or the power being turned off.

Other Components
Above the microcontroller is a small, silver, rectangular component. This is a
quartz crystal oscillator. It ticks 16 million times a second, and on each of those
ticks, the microcontroller can perform one operation—addition, subtraction, or
another mathematical operation.

01_Monk_ch01.indd 5 03/08/22 2:32 PM

6 Programming Arduino: Getting Started with Sketches

In the top-left corner is the Reset switch. Clicking on this switch sends a logic
pulse to the Reset pin of the microcontroller, causing the microcontroller to start
its program afresh and clear its memory. Note that any program stored on the
device will be retained, because this is kept in non-volatile flash memory—that is,
memory that remembers even when the device is not powered.

On the right-hand edge of the board is the Serial Programming Connector. It
offers another means of programming the Arduino without using the USB port.
Because we do have a USB connection and software that makes it convenient to
use, we will not avail ourselves of this feature.

In the top-left corner of the board next to the USB socket is the USB interface
chip. This chip converts the signal levels used by the USB standard to levels that
can be used directly by the Arduino board.

A Tour of a WiFi-Capable Arduino-Compatible
In contrast to the Arduino Uno, the board shown in Figure 1-2 is a low-cost
Arduino-compatible board manufactured in China. This board has built-in
WiFi, which is why we have chosen it for Chapter 10, the Internet of Things. In
Chapter 6, we will meet this type of board again, along with some other types of
Arduino-compatible boards.

Figure 1-2 An Arduino-compatible Board (Lolin32 Lite).

Battery connector GPIO pins

Flash memorymicro USB SoC

WiFi antenna

01_Monk_ch01.indd 6 03/08/22 2:32 PM

Chapter 1: Getting Started 7

The board has most of the same things as an Arduino Uno. It has a USB con-
nector, all though in this case it is a micro USB connector rather than the full-size
connector of the Arduino Uno. It also has GPIO pins on its two long sides, and
you generally have to solder your own headers onto these. You can either solder
female header pins like the Uno, or more often, people solder on male header pins
(which are usually supplied with the board). This board also has a battery connec-
tor for rechargeable LiPo battery in place of the DC barrel jack of the Uno. The
board’s microcontroller is labeled as a SoC (System on a Chip) to reflect the fact
that it has built-in WiFi hardware rather than just being a simple microcontroller
like the Uno uses.

The Origins of Arduino
Arduino was originally developed as an aid for teaching students. It was subse-
quently (in 2005) developed commercially by Massimo Banzi and David
Cuartielles. It has since gone on to become enormously successful with makers,
students, and artists for its ease of use and durability.

Another key factor in its success is that all the designs for Arduino are freely
available under a Creative Commons license. This has allowed many lower-cost
alternatives to the boards to appear. Only the name Arduino is protected, so such
clones often have “*duino” names, such as Boarduino, Seeeduino, and Freeduino.
Many big retailers sell only the official boards, which are nicely packaged and of
high quality.

Yet another reason for the success of Arduino is that it is not limited to micro-
controller boards. There are a huge number of Arduino-compatible shield boards
that plug directly into the top of an Arduino board. Because shields are available
for almost every conceivable application, you often can avoid using a soldering
iron and instead plug together shields that can be stacked one upon another. The
following are just a few of the most popular shields:

• Liquid Crystal Display (LCD) TFT displays

• Motor, which drives electric motors

• USB Host, which allows control of USB devices

• Relays, which switches relays from your Arduino

Figure 1-3 shows a motor shield (left) and relay shield (right).

01_Monk_ch01.indd 7 03/08/22 2:32 PM

8 Programming Arduino: Getting Started with Sketches

Powering Up
When you buy an Arduino Uno board, it is usually preinstalled with a sample
Blink program that will make the little built-in LED flash.

The LED marked L is wired up to one of the digital input output sockets on the
board. It is connected to digital pin 13. This does not mean that pin 13 can only be
used to light the LED; you can also use it as a normal digital input or output.

All you need to do to get your Arduino Uno up and running is supply it with
some power. The easiest way to do this is to plug it into the USB port on your
computer. You will need a type-A-to-type-B USB lead. This is the same type of
lead that is normally used to connect a computer to a printer.

If everything is working OK, the LED should blink. New Arduino boards
come with this Blink sketch already installed so that you can verify that the board
works.

Installing the Software
To be able to install new sketches onto your Arduino board, you need to do more
than supply power to it over the USB. You need to install the Arduino software
(Figure 1-4).

Full and comprehensive instructions for installing this software on Win-
dows, Linux, and Mac computers can be found at the Arduino website
(www.arduino.cc).

Figure 1-3 Motor and relay shields.

01_Monk_ch01.indd 8 03/08/22 2:32 PM

http://www.arduino.cc

Chapter 1: Getting Started 9

Note that as well as the downloadable IDE that you run on your computer,
there is also a web version. I recommend that you start with the downloadable
IDE.

Once you have successfully installed the Arduino software and, depending on
your platform, USB drivers, you should now be able to upload a program to the
Arduino board.

Figure 1-4 The Arduino IDE application.

01_Monk_ch01.indd 9 03/08/22 2:32 PM

10 Programming Arduino: Getting Started with Sketches

Uploading Your First Sketch
The blinking LED is the Arduino equivalent to the “Hello World” program used in
other languages as the traditional first program to run when learning a new lan-
guage. Let’s test out the environment by installing this program on your Arduino
board and then modifying it.

When you start the Arduino application on your computer, it opens with an
empty sketch. Fortunately, the application ships with a wide range of useful
examples. So from the File menu, open the Blink example as shown in Figure 1-5.

You now need to transfer or upload that sketch to your Arduino board. So plug
your Arduino board into your computer using the USB lead. You should see the
green “On” LED on the Arduino light up. The Arduino board will probably already
be flashing, as the boards are generally shipped with the Blink sketch already
installed. But let’s install it again and then modify it.

Before you can upload a sketch, you must tell the Arduino application what
type of board you are using and which serial port you are connected to. Figures 1-6
and 1-7 show how you do this from the Tools menu.

Figure 1-5 The Blink sketch.

01_Monk_ch01.indd 10 03/08/22 2:32 PM

Chapter 1: Getting Started 11

Figure 1-6 Selecting the board type.

Figure 1-7 Selecting the serial port (in Windows).

01_Monk_ch01.indd 11 03/08/22 2:32 PM

12 Programming Arduino: Getting Started with Sketches

Figure 1-8 Selecting the serial port (on a Mac).

On a Windows machine, the serial port is always COM followed by a number.
On Macs and Linux machines, you will see a much longer list of serial devices
(see Figure 1-8). The device will normally be the bottom selection in the list,
with a name similar to /dev/cu.usbmodem621.

Now click on the Upload icon in the toolbar. This is shown circled in Figure 1-9.
After you click the button, there is a short pause while the sketch is compiled

and then the transfer begins. If it is working, then there will be some furious blink-
ing of LEDs as the sketch is transferred, after which you should see the message
“Done Uploading” at the bottom of the Arduino application window and a further
message similar to “Sketch uses 1,030 bytes (3%) of program storage space.”

Once uploaded, the board automatically starts running the sketch and you will
see the yellow built-in “L” LED start to blink.

If this did not work, then check your serial and board type settings.
Now let’s modify the sketch to make the LED blink faster. To do this, let’s alter the

two places in the sketch where there is a delay for 1,000 milliseconds so that the delay
is 500 milliseconds. Figure 1-10 shows the modified sketch with the changes circled.

Click on the Upload button again. Then, once the sketch has uploaded, you
should see your LED start to blink twice as fast as it did before.

Congratulations, you are now ready to start programming your Arduino. First,
though, let’s take a mini-tour of the Arduino application.

01_Monk_ch01.indd 12 03/08/22 2:32 PM

Chapter 1: Getting Started 13

Figure 1-9 Uploading the sketch.

Figure 1-10 Modifying the Blink sketch.

01_Monk_ch01.indd 13 03/08/22 2:32 PM

14 Programming Arduino: Getting Started with Sketches

The Arduino Application
Sketches in Arduino are like documents in a word processor. You can open them
and copy parts from one to another. So you see options to Open, Save, and Save
As in the File menu. You will not normally use Open because the Arduino applica-
tion has the concept of a Sketchbook where all your sketches are kept carefully
organized into folders. You gain access to the Sketchbook from the File menu.
As you have just installed the Arduino application for the first time, your Sketch-
book will be empty until you create some sketches.

As you have seen, the Arduino application comes with a selection of example
sketches that can be very useful. Having modified the Blink example sketch, if you
try and save it, you get a message that says, “Some files are marked read-only so
you will need to save this sketch in a different location.”

Try this now. Accept the default location, but change the filename to MyBlink,
as shown in Figure 1-11.

Now if you go to the File menu and then click on Sketches, you will see
MyBlink as one of the sketches listed. If you look at your computer’s file system,

Figure 1-11 Saving a copy of Blink.

01_Monk_ch01.indd 14 03/08/22 2:32 PM

Chapter 1: Getting Started 15

you will find that, on a PC, the sketch has been written into My Documents\
Arduino, and on Mac or Linux, it is in Documents/Arduino.

All of the sketches used in this book can be downloaded as a zip file from
www.arduinobook.com. I suggest that now is the time to download this file and
unzip it into the Arduino folder that contains the sketches. Figure 1-12 shows
the files being extracted into the Arduino directory in Windows. In other words,
when you have unzipped the folder, there should be two folders in your Arduino
folder: one for the newly saved MyBlink and one called prog_arduino_3-main.
The Programming Arduino folder will contain all the sketches, numbered
according to chapter, so that sketch 02_01_blink, for example, is sketch 1 of
Chapter 2.

These sketches will not appear in your Sketchbook menu until you quit the
Arduino application and restart it. Do so now. Then your Sketchbook menu
should look similar to that shown in Figure 1-13.

Figure 1-12 Installing the sketches from the book.

01_Monk_ch01.indd 15 03/08/22 2:32 PM

http://www.arduinobook.com

16 Programming Arduino: Getting Started with Sketches

Conclusion
Your environment is all set up and ready to go.

In the next chapter, we will look at some of the basic principles of the C language
that the Arduino uses and start writing some code.

Figure 1-13 Sketchbook with the book’s sketches installed.

01_Monk_ch01.indd 16 03/08/22 2:32 PM

17

2
C Language Basics

The programming language used to program Arduinos is a language called C.
In this chapter, you get to understand the basics of the C language. You will use
what you learn here in every sketch you develop as an Arduino programmer.
To get the most out of Arduino, you need to understand these fundamentals.

Programming
It is not uncommon for people to speak more than one language. In fact, the
more you learn, the easier it seems to learn spoken languages as you start to find
common patterns of grammar and vocabulary. The same is true of programming
languages. So, if you have used any other programming language, you will quickly
pick up C.

The good news is that the vocabulary of a programming language is far smaller
than that of a spoken language, and because you write it rather than say it,
the dictionary can always be at hand whenever you need to look things up. Also,
the grammar and syntax of a programming language are extremely regular, and
once you come to grips with a few simple concepts, learning more quickly becomes
second nature.

It is best to think of a program—or a sketch, as programs are called in Arduino—
as a list of instructions to be carried out in the order that they are written down.
For example, suppose you were to write the following:

digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);

02_Monk_ch02.indd 17 03/08/22 2:36 PM

18 Programming Arduino: Getting Started with Sketches

These three lines would each do something. The first line would set the output of
pin 13 to HIGH. This is the pin with a light-emitting diode (LED) built in to the
Arduino Uno board, so at this point the LED would light. The second line would
simply wait for 500 milliseconds (half a second) and then the third line would turn
the LED back off again. So these three lines would achieve the goal of making the
LED blink once for half a second.

You have already seen a bewildering array of punctuation used in strange ways
and words that don’t have spaces between them. A frustration of many new pro-
grammers is, “I know what I want to do, I just don’t know what I need to write!”
Fear not, all will be explained.

First of all, let’s deal with the punctuation and the way the words are formed.
These are both part of what is termed the syntax of the language. Most languages
require you to be extremely precise about syntax, and one of the main rules is that
names for things have to be a single word. That is, they cannot include spaces. So,
digitalWrite is the name for something. It’s the name of a built-in function (you’ll
learn more about functions later) that will do the job of setting an output pin on the
Arduino board. Not only do you have to avoid spaces in names, but also names are
case sensitive. So you must write digitalWrite, not DigitalWrite or Digitalwrite.

The function digitalWrite needs to know which pin to set and whether to set
that pin HIGH or LOW. These two pieces of information are called arguments,
which are said to be passed to a function when it is called. The arguments for a
function must be enclosed in parentheses and separated by commas.

The convention is to place the opening parenthesis immediately after the last
letter of the function’s name and to put a space after the comma before the next
argument. However, you can sprinkle space characters within the parentheses if
you want.

If the function only has one argument, then there is no need for a comma.
Notice how each line ends with a semicolon. It would be more logical if they

were periods, because the semicolon marks the end of one command, a bit like the
end of a sentence.

In the next section, you will find out a bit more about what happens when you
press the Upload button on the Arduino integrated development environment
(IDE). Then you will be able to start trying out a few examples.

02_Monk_ch02.indd 18 03/08/22 2:36 PM

Chapter 2: C Language Basics 19

What Is a Programming Language?
It is perhaps a little surprising that we can get to Chapter 2 in a book about pro-
gramming without defining exactly what a programming language is. We can rec-
ognize an Arduino sketch and probably have a rough idea of what it is trying to do,
but we need to look a bit deeper into how some programming language code goes
from being words on a page to something that does something real, like turn an
LED on and off.

Figure 2-1 summarizes the process involved from typing code into the Arduino
IDE to running the sketch on the board.

When you press the Upload button on your Arduino IDE, it launches a chain
of events that results in your sketch being installed on the Arduino and being
run. This is not as straightforward as simply taking the text that you typed into
the editor and moving it to the Arduino board.

Compiler

Compiled Code

Bootloader

Host Computer Arduino

Flash Program
Memory

CPU

Ports

LED

Arduino IDE

Figure 2-1 From code to board.

02_Monk_ch02.indd 19 03/08/22 2:36 PM

20 Programming Arduino: Getting Started with Sketches

The first step is to do something called compilation. This takes the code you have
written and translates it into machine code—the binary language that the Arduino
understands. If you click the Verify button (leftmost check mark icon) on the Ardu-
ino IDE, this actually attempts to compile the C that you have written without try-
ing to send the code to the Arduino IDE. A side-effect of compiling the code is that
it is checked to make sure that it conforms to the rules of the C language.

If you type Ciao Bella! into your Arduino IDE and click on the Verify button,
the results will be as shown in Figure 2-2.

The Arduino has tried to compile the words “Ciao Bella,” and despite its Italian
heritage, it has no idea what you are talking about. This text is not C. So, the result

Figure 2-2 Arduinos don’t speak Italian.

02_Monk_ch02.indd 20 03/08/22 2:36 PM

Chapter 2: C Language Basics 21

is that at the bottom of the screen we have that cryptic message “Ciao does not
name a type.” What this actually means is that there is a lot wrong with what you
have written.

Let’s try another example. This time we will try compiling a sketch with no
code at all in it (see Figure 2-3).

This time, the compiler is telling you that your sketch does not have setup or
loop functions. As you know from the Blink example that you ran in Chapter 1,
you have to have some “boilerplate” code, as it is called, before you can add your
own code into a sketch. In Arduino programming the “boilerplate” code takes the
form of the “setup” and “loop” functions that must always be present in a sketch.

Figure 2-3 No setup or loop.

02_Monk_ch02.indd 21 03/08/22 2:36 PM

22 Programming Arduino: Getting Started with Sketches

You will learn much more about functions later in the book, but for now, let’s
accept that you need this boilerplate code and just adapt your sketch so it will
compile (see Figure 2-4).

The Arduino IDE has looked at your efforts at writing code and found them
to be acceptable. It tells you this by saying “Done Compiling” and reporting
the size of the sketch to you: 444 bytes. The IDE is also telling you that the
maximum size is 32,256 bytes, so you still have lots of room to make your
sketch bigger.

Let’s examine this boilerplate code that will form the starting point for every
sketch that you ever write. There are some new things here. For example, there is
the word void and some curly braces. Let’s deal with void first.

The line void setup() means that you are defining a function called setup. In
Arduino, some functions are already defined for you, such as digitalWrite and
delay, whereas you must or can define others for yourself. setup and loop are two
functions that you must define for yourself in every sketch that you write.

Figure 2-4 A sketch that will compile.

02_Monk_ch02.indd 22 03/08/22 2:36 PM

Chapter 2: C Language Basics 23

The important thing to understand is that here you are not calling setup or
loop like you would call digitalWrite, but you are actually creating these func-
tions so that the Arduino system itself can call them. This is a difficult concept
to grasp, but one way to think of it is as being similar to a definition in a legal
document.

Most legal documents have a “definitions” section that might say, for example,
something like the following:

Definitions.
The Author: The person or persons responsible for
creating the book

By defining a term in this way—for example, simply using the word “author” as
shorthand for “The person or persons responsible for creating the book”—lawyers
can make their documents shorter and more readable. Functions work much like
such definitions. You define a function that you or the system itself can then use
elsewhere in your sketches.

Going back to void, these two functions (setup and loop) do not return a
value as some functions do, so you have to say that they are void, using the void
keyword. If you imagine a function called sin that performed the trigonometric
sine function, then this function would return a value. The value returned to use
from the call would be the sine of the angle passed as its argument.

Rather like a legal definition uses words to define a term, we write functions in
C that can then be called from C.

After the special keyword void comes the name of the function and then
parentheses to contain any arguments. In this case, there are no arguments, but
we still have to include the parentheses there. There is no semicolon after the clos-
ing parenthesis because we are defining a function rather than calling it, so we
need to say what will happen when something does call the function.

Those things that are to happen when the function is called must be placed
between curly braces. Curly braces and the code in between them are known as a
block of code, and this is a concept that you will meet again later.

Note that although you do have to define both the functions setup and loop,
you do not actually have to put any lines of code in them. However, failing to add
code will make your sketch a little dull.

02_Monk_ch02.indd 23 03/08/22 2:36 PM

24 Programming Arduino: Getting Started with Sketches

Blink—Again!
The reason that Arduino has the two functions setup and loop is to separate the
things that only need to be done once, when the Arduino starts running its sketch,
from the things that have to keep happening continuously.

The function setup will just be run once when the sketch starts. Let’s add some
code to it that will blink the LED built onto the board. Add the lines to your sketch
so that it appears as follows and then upload them to your Arduino Uno.

void setup() {
pinMode(13, OUTPUT);
digitalWrite(13, HIGH);

}

void loop() {
}

You may have noticed that in the original Blink sketch LED_BUILTIN was used
in preference to the pin number 13. LED_BUILTIN provides a way of making the
code independent of the board. Although the built-in LED is always on pin 13 on an
Arduino Uno, this is not the case for all Arduino and Arduino-compatible boards.

The setup function itself calls two built-in functions, pinMode and
digitalWrite. You already know about digitalWrite, but pinMode is new. The
function pinMode sets a particular pin to be either an input or an output. So,
turning the LED on is actually a two-stage process. First, you have to set pin 13 to
be an output, and second, you need to set that output to be high (5V).

When you run this sketch, on your board you will see that the L LED comes on
and stays on. This is not very exciting, so let’s at least try to make it flash by turn-
ing it on and off in the loop function rather than in the setup function.

You can leave the pinMode call in the setup function because you only need to
call it once. The project would still work if you moved it into the loop, but there is
no need and it is a good programming habit to do things only once if you only
need to do them once. So modify your sketch so that it looks like this:

void setup() {
pinMode(13, OUTPUT);

}

void loop() {
digitalWrite(13, HIGH);

02_Monk_ch02.indd 24 03/08/22 2:36 PM

Chapter 2: C Language Basics 25

delay(500);
digitalWrite(13, LOW);
}

Run this sketch and see what happens. It may not be quite what you were
expecting. The LED is basically on all the time. Hmm, why should this be?

Try stepping through the sketch a line at a time in your head:

1. Run setup and set pin 13 to be an output.

2. Run loop and set pin 13 to high (LED on).

3. Delay for half a second.

4. Set pin 13 to low (LED off).

5. Run loop again, going back to step 2, and set pin 13 to high (LED on).

The problem lies between steps 4 and 5. What is happening is that the LED is
being turned off, but the very next thing that happens is that it gets turned on
again. This happens so quickly that it appears that the LED is on all the time.

The microcontroller chip on the Arduino Uno can perform 16 million instruc-
tions per second. That’s not 16 million C language commands, but it is still very fast.
So, our LED will only be off for a few millionths of a second.

To fix the problem, you need to add another delay after you turn the LED off.
Your code should now look like this:

// 02_01_blink
void setup() {
pinMode(13, OUTPUT);

}

void loop() {
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);
}

Try again and your LED should blink away merrily once per second.
You may have noticed the comment at the top of the listing saying “sketch

02_01_blink.” To save you some typing, we have uploaded to this book’s website all
the sketches with such a comment at the top. You can download them from www
.arduinobook.com.

02_Monk_ch02.indd 25 03/08/22 2:36 PM

http://www.arduinobook.com
http://www.arduinobook.com

26 Programming Arduino: Getting Started with Sketches

Variables
In this Blink example, you use pin 13 and have to refer to it in three places. If you
decided to use a different pin, then you would have to change the code in three
places. Similarly, if you wanted to change the rate of blinking, controlled by the argu-
ment to delay, you would have to change 500 to some other number in two places.

Variables can be thought of as giving a name to a number. Actually, they can be
a lot more powerful than this, but for now, you will use them for this purpose.

When defining a variable in C, you have to specify the type of the variable. We
want our variables to be whole numbers, which in C are called ints. So to define a
variable called ledPin with a value of 13, you need to write the following:

int ledPin = 13;

Notice that because ledPin is a name, the same rules apply as those of function
names. So, there cannot be any spaces. The convention is to start variables with a
lowercase letter and begin each new word with an uppercase letter. Programmers
will often call this “bumpy case” or “camel case.”

Let’s fit this into your Blink sketch as follows:

// 02_02_blink_2
int ledPin = 13;
int delayPeriod = 500;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
}

We have also sneaked in another variable called delayPeriod.
Everywhere in the sketch where you used to refer to 13, you now refer to

ledPin, and everywhere you used to refer to 500, you now refer to delayPeriod.
If you want to make the sketch blink faster, you can just change the value of

delayPeriod in one place. Try changing it to 100 and running the sketch on your
Arduino board.

02_Monk_ch02.indd 26 03/08/22 2:36 PM

Chapter 2: C Language Basics 27

There are other cunning things that you can do with variables. Let’s modify
your sketch so that the blinking starts really fast and gradually gets slower and
slower, as if the Arduino is getting tired. To do this, all you need to do is to add
something to the delayPeriod variable each time that you do a blink.

Modify the sketch by adding the single line at the end of the loop function
so that it appears, as in the following listing, and then run the sketch on the
Arduino board. Press the Reset button and see it start from a fast rate of flash-
ing again.

// 02_02_blink_slowing
int ledPin = 13;
int delayPeriod = 100;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
delayPeriod = delayPeriod + 100;
}

Your Arduino is doing arithmetic now. Every time that loop is called, it will do
the normal flash of the LED, but then it will add 100 to the variable delayPeriod.
We will come back to arithmetic shortly, but first you need a better way than a
flashing LED to see what the Arduino is up to.

Experiments in C
You need a way to test your experiments in C. One way is to put the C that you
want to test out into the setup function, evaluate them on the Arduino, and then
have the Arduino display any output back to something called the Serial Monitor,
as shown in Figures 2-5 and 2-6.

The Serial Monitor is part of the Arduino IDE. You access it by clicking on
the rightmost icon in the toolbar (it looks like a magnifying glass). Its purpose
is to act as a communication channel between your computer and the Ardu-
ino. You can type a message in the text entry area at the top of the Serial

02_Monk_ch02.indd 27 03/08/22 2:36 PM

28 Programming Arduino: Getting Started with Sketches

Figure 2-5 Writing Output to the Serial Monitor.

Figure 2-6 The Serial Monitor.

02_Monk_ch02.indd 28 03/08/22 2:36 PM

Chapter 2: C Language Basics 29

Monitor and when you press Return or click Send, it will send that message
to the Arduino. Also if the Arduino has anything to say, this message will
appear in the Serial Monitor. In both cases, the information is sent through
the USB link.

As you would expect, there is a built-in function that you can use in your
sketches to send a message back to the Serial Monitor. It is called Serial.println
and it expects a single argument, which consists of the information that you want
to send. This information is usually a variable.

You will use this mechanism to test out a few things that you can do with vari-
ables and arithmetic in C; frankly, it’s the only way you can see the results of your
experiments in C.

Numeric Variables and Arithmetic
The last thing you did was add the following line to your blinking sketch to
increase the blinking period steadily:

delayPeriod = delayPeriod + 100;

Looking closely at this line, it consists of a variable name, then an equals sign,
then what is called an expression (delayPeriod + 100). The equals sign does
something called assignment. That is, it assigns a new value to a variable, and the
value it is given is determined by what comes after the equals sign and before the
semicolon. In this case, the new value to be given to the delayPeriod variable is
the old value of delayPeriod plus 100.

Let’s test out this new mechanism to see what the Arduino is up to by enter-
ing the following sketch, running it, and opening the Serial Monitor:

// 02_04_add
void setup() {
Serial.begin(9600);
int a = 2;
int b = 2;
int c = a + b;
Serial.println(c);

}
void loop() {}

Figure 2-7 shows what you should see in the Serial Monitor after this code runs.

02_Monk_ch02.indd 29 03/08/22 2:36 PM

30 Programming Arduino: Getting Started with Sketches

To take a slightly more complex example, the formula for converting a tem-
perature in degrees Centigrade into degrees Fahrenheit is to multiply it by 9,
divide by 5, and then add 32. So you could write that in a sketch like this:

// 02_05_temp
void setup() {
Serial.begin(9600);
int degC = 20;
int degF;
degF = degC * 9 / 5 + 32;
Serial.println(degF);

}
void loop() {}

There are a few things to notice here. First, note the following line:

int degC = 20;

When we write such a line, we are actually doing two things: We are declaring an
int variable called degC, and we are saying that its initial value will be 20. Alter-
natively, you could separate these two things and write the following:

int degC;
degC = 20;

Figure 2-7 Simple arithmetic.

02_Monk_ch02.indd 30 03/08/22 2:36 PM

Chapter 2: C Language Basics 31

You must declare any variable just once, essentially telling the compiler what
type of variable it is—in this case, int. However, you can assign the variable a value
as many times as you want:

int degC;
degC = 20;
degC = 30;

So, in the Centigrade to Fahrenheit example, you are defining the variable degC
and giving it an initial value of 20, but when you define degF, it does not get an
initial value. Its value gets assigned on the next line, according to the conversion
formula, before being sent to the Serial Monitor for you to see.

Looking at the expression, you can see that you use the asterisk (*) for multipli-
cation and the slash (/) for division. The arithmetic operators +, –, *, and / have an
order of precedence—that is, multiplications are done first, then divisions, then
additions and subtractions. This is in accordance with the usual use of arithmetic.
However, sometimes it makes it clearer to use parentheses in the expressions. So,
for example, you could write the following:

degF = ((degC * 9) / 5) + 32;

The expressions that you write can be as long and complex as you need them
to be, and in addition to the usual arithmetic operators, there are other less com-
monly used operators and a big collection of various mathematical functions that
are available to you. You will learn about these later.

Commands
The C language has a number of built-in commands. In this section, we explore
some of these and see how they can be of use in your sketches.

if
In our sketches so far, we have assumed that your lines of programming will be
executed in order one after the other, with no exceptions. But what if you don’t
want to do that? What if you only want to execute part of a sketch if some condi-
tion is true?

Let’s return to our gradually slowing-down Blinking LED example. At the
moment, it will gradually get slower and slower until each blink is lasting hours.

02_Monk_ch02.indd 31 03/08/22 2:36 PM

32 Programming Arduino: Getting Started with Sketches

Let’s look at how we can change it so that once it has slowed down to a certain
point, it goes back to its fast starting speed.

To do this, you must use an if command; the modified sketch is as follows. Try
it out.

// 02_06_blink_slowing_2
int ledPin = 13;
int delayPeriod = 100;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
delayPeriod = delayPeriod + 100;
if (delayPeriod > 3000) {
delayPeriod = 100;

}
}

The if command looks a little like a function definition, but this resemblance is
only superficial. The word in the parenthesis is not an argument; it is what is
called a condition. So in this case, the condition is that the variable delayPeriod
has a value that is greater than 3,000. If this is true, then the commands inside the
curly braces will be executed. In this case, the code sets the value of delayPeriod
back to 100.

If the condition is not true, then the Arduino will just continue on with the next
thing. In this case, there is nothing after the “if,” so the Arduino will run the loop
function again.

Running through the sequence of events in your head will help you understand
what is going on. So, here is what happens:

1. Arduino runs setup and initializes the LED pin to be an output.

2. Arduino starts running loop.

3. The LED turns on.

02_Monk_ch02.indd 32 03/08/22 2:36 PM

Chapter 2: C Language Basics 33

4. A delay occurs.

5. The LED turns off.

6. A delay occurs.

7. Add 100 to the delayPeriod.

8. If the delay period is greater than 3,000, set it back to 100.

9. Go back to step 3.

We used the symbol >, which means greater than. It is one example of what are
called comparison operators. These operators are summarized in the following
table:

Operator Meaning Examples Result

< Less than 9 < 10
10 < 10

true
false

> Greater than 10 > 10
10 > 9

false
true

<= Less than or equal to 9 <= 10
10 <= 10

true
true

>= Greater than or equal to 10 >= 10
10 >= 9

true
true

== Equal to 9 == 9 true

!= Not equal to 9 != 9 false

To compare two numbers, you use the == command. This double equals sign
is easily confused with the character =, which is used to assign values to variables.

There is another form of if that allows you to do one thing if the condition is
true and another if it is false. We will use this in some practical examples later in
the book.

for
In addition to executing different commands under different circumstances, you
also often will want to run a series of commands a number of times in a program.
You already know one way of doing this, using the loop function. As soon as all
the commands in the loop function have been run, it will start again automatically.
However, sometimes you need more control than that.

02_Monk_ch02.indd 33 03/08/22 2:36 PM

34 Programming Arduino: Getting Started with Sketches

So, for example, let’s say that you want to write a sketch that blinks 20 times,
then pauses for 3 seconds, and then starts again. You could do that by just repeat-
ing the same code over and over again in your loop function, like this:

// 02_07_blink_20
int ledPin = 13;
int delayPeriod = 100;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);

digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);

digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
// repeat the above 4 lines another 17 times

delay(3000);
}

But this requires a lot of typing and there are several much better ways to do this.
Let’s start by looking at how you can use a for loop and then look at another way
of doing it using a counter and an if statement.

The sketch to accomplish this with a for loop is, as you can see, a lot shorter
and easier to maintain than the previous example:

// 02_08_blik_20_for
int ledPin = 13;
int delayPeriod = 100;

02_Monk_ch02.indd 34 03/08/22 2:36 PM

Chapter 2: C Language Basics 35

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
for (int i = 0; i < 20; i ++) {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
}
delay(3000);
}

The for loop looks a bit like a function that takes three arguments, although
here those arguments are separated by semicolons rather than the usual commas.
This is just a quirk of the C language. The compiler will soon tell you when you get
it wrong.

The first thing in the parentheses after for is a variable declaration. This speci-
fies a variable to be used as a counter variable and gives it an initial value—in this
case, 0.

The second part is a condition that must be true for you to stay in the loop. In
this case, you will stay in the loop as long as i is less than 20, but as soon as i is 20
or more, the program will stop doing the things inside the loop.

The final part is what to do every time you have done all the things in the loop.
In this case, that is to increment i by 1 so that it can, after 20 trips around the loop,
cease to be less than 20 and cause the program to exit the loop.

Try entering this code and running it. The only way to get familiar with the
syntax and all that pesky punctuation is to type it in and have the compiler tell you
when you have done something wrong. Eventually, it will all start to make sense.

One potential downside of this approach is that the loop function is going to
take a long time. This is not a problem for this sketch, because all it is doing is
flashing an LED. But often, the loop function in a sketch will also be checking that
keys have been pressed or that serial communications have been received. If the
processor is busy inside a for loop, it will not be able to do this. Generally, it is a
good idea to make the loop function run as fast as possible so that it can be run as
frequently as possible.

02_Monk_ch02.indd 35 03/08/22 2:36 PM

36 Programming Arduino: Getting Started with Sketches

The following sketch shows how to achieve this:

// 02_09_blink_20_loop
int ledPin = 13;
int delayPeriod = 100;
int count = 0;
void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
count ++;
if (count == 20) {
count = 0;
delay(3000);

}
}

You may have noticed the following line:

count ++;

This is just C shorthand for the following:

count = count + 1;

So now each time that loop is run, it will take just a bit more than 200 milliseconds,
unless it’s the 20th time round the loop, in which case it will take the same plus the
three seconds delay between each batch of 20 flashes. In fact, for some applica-
tions, even this is too slow, and purists would say that you should not use delay at
all. The best solution depends on the application.

while
Another way of looping in C is to use the while command in place of the for com-
mand. You can accomplish the same thing as the preceding for example using a
while command as follows:

int i = 0;
while (i < 20) {
digitalWrite(ledPin, HIGH);

02_Monk_ch02.indd 36 03/08/22 2:36 PM

Chapter 2: C Language Basics 37

delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
i ++;

}

The expression in parentheses after while must be true to stay in the loop.
When it is no longer true, then the sketch continues running the commands after
the final curly brace.

Constants
For constant values like pin assignments that do not change during the running of
a sketch, use the keyword const, which tells the compiler that the variable has a
constant value and is not going to change.

As an example, you could define a pin assignment for a LED like this:

const int ledPin = 13;

Any sketch that you write will work just as well without the const keyword in
front of any such variables, but it will make the program slightly smaller, some-
thing that can become significant as your sketches get bigger. In any case, it’s a
good habit to get into for any variables whose value is not going to change.

Arduino defines some of its own constants. For example, HIGH and LOW and
OUTPUT are all constants, that actually represent numbers, but it’s much easier
to use names. Another constant that Arduino uses, that we could have used in our
various blinking experiments is LED_BUILTIN. This has the value 13 for an
Arduino Uno, but for other boards it may refer to a different pin number.

Conclusion
This chapter has got you started with C. You can make LEDs blink in various
exciting ways and get the Arduino to send results back to you over the USB by
using the Serial.println function. You also worked out how to use if and for com-
mands to control the order in which your commands are executed, and learned a
little about making an Arduino do some arithmetic.

In the next chapter, you will look more closely at functions. The chapter will
also introduce the variable types other than the int type that you used in this
chapter.

02_Monk_ch02.indd 37 03/08/22 2:36 PM

02_Monk_ch02.indd 38 03/08/22 2:36 PM

This page intentionally left blank

39

3
Functions

This chapter focuses mostly on the type of functions that you can write
yourself rather than the built-in functions such as digitalWrite and delay,
which are already defined for you.

The reason that you need to be able to write your own functions is that as
sketches start to get a little complicated, then your setup and loop functions will
grow and grow until they are long and complicated and it becomes difficult to see
how they work.

The biggest problem in software development of any sort is managing com-
plexity. The best programmers write software that is easy to look at and under-
stand and requires very little in the way of explanation.

Functions are a key tool in creating easy-to-understand sketches that can be
changed without difficulty or risk of the whole thing falling into a crumpled mess.

What Is a Function?
A function is a little like a program within a program. You can use it to wrap up
some little thing that you want to do. A function that you define can be called
from anywhere in your sketch and contains its own variables and its own list of
commands. When the commands have been run, execution returns to the point
just after wherever it was in the code that called the function.

By way of an example, code that flashes a light-emitting diode (LED) is a
prime example of some code that should be put in a function. So let’s modify our
basic “blink 20 times” sketch to use a function that we will create called flash,
shown next.

03_Monk_ch03.indd 39 03/08/22 2:37 PM

40 Programming Arduino: Getting Started with Sketches

// 03_01_blink_function
const int ledPin = 13;
const int delayPeriod = 250;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
for (int i = 0; i < 20; i ++) {
flash();

}
delay(3000);

}

void flash() {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);

}

So, all we have really done here is to move the four lines of code that flash the
LED from the middle of the for loop to be in a function of their own called flash.
Now you can make the LED flash any time you like by just calling the new function
by writing flash(). Note the empty parentheses after the function name. This indi-
cates that the function does not take any parameters. The delay value that it uses is
set by the same delayPeriod variable that you used before.

Parameters
When dividing your sketch up into functions, it is often worth thinking about
what service a function could provide. In the case of flash, this is fairly obvious.
But this time, let’s give this function parameters that tell it both how many times
to flash and how short or long the flashes should be. Read through the following
code and then I will explain just how parameters work in a little more detail.

// 03_02_blink_function_params
const int ledPin = 13;
const int delayPeriod = 250;

03_Monk_ch03.indd 40 03/08/22 2:37 PM

Chapter 3: Functions 41

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
flash(20, delayPeriod);
delay(3000);

}

void flash(int numFlashes, int d) {
for (int i = 0; i < numFlashes; i ++) {
digitalWrite(ledPin, HIGH);
delay(d);
digitalWrite(ledPin, LOW);
delay(d);

}
}

Now, if we look at our loop function, it has only two lines in it. We have moved
the bulk of the work off to the flash function. Notice how when we call flash we
now supply it with two arguments in parentheses.

Where we define the function at the bottom of the sketch, we have to declare
the type of variable in the parameters. In this case, they are both ints. We are in
fact defining new variables. However, these variables (numFlashes and d) can
only be used within the flash function.

This is a good function because it wraps up everything you need in order to
flash an LED. The only information that it needs from outside of the function is to
which pin the LED is attached. If you wanted, you could make this a parameter
too—something that would be well worth doing if you had more than one LED
attached to your Arduino.

Global, Local, and Static Variables
As was mentioned before, parameters to a function can be used only inside that
function. So, if you wrote the following code, you would get an error:

void indicate(int x) {
flash(x, 10);

}
x = 15;

03_Monk_ch03.indd 41 03/08/22 2:37 PM

42 Programming Arduino: Getting Started with Sketches

On the other hand, suppose you wrote this:

int x = 15;
void indicate(int x) {
flash(x, 10);

}

This code would not result in a compilation error. However, you need to be care-
ful, because you now actually have two variables called x and they can each have
different values. The one that you declared on the first line is called a global
variable. It is called global because it can be used anywhere you like in the pro-
gram, including inside any functions.

However, because you use the same variable name x inside the function as a
parameter, you cannot use the global variable x simply because whenever you
refer to x inside the function, the “local” version of x has priority. The parameter x
is said to shadow the global variable of the same name. This can lead to some
confusion when trying to debug a project.

In addition to defining parameters, you can also define variables that are not
parameters but are just for use within a function. These are called local variables.
For example:

void indicate(int x) {
int timesToFlash = x * 2;
flash(timesToFlash, 10);

}

The local variable timesToFlash will only exist while the function is running. As
soon as the function has finished its last command, it will disappear. This means
that local variables are not accessible from anywhere in your program other than
in the function in which they are defined.

So, for instance, the following example will cause an error:

void indicate(int x) {
int timesToFlash = x * 2;
flash(timesToFlash, 10);

}
timesToFlash = 15;

Seasoned programmers generally treat global variables with suspicion. The rea-
son is that they go against the principal of encapsulation. The idea of encapsulation
is that you should wrap up in a package everything that has to do with a particular

03_Monk_ch03.indd 42 03/08/22 2:37 PM

Chapter 3: Functions 43

feature. Hence functions are great for encapsulation. The problem with “globals”
(as global variables are often called) is that they generally get defined at the begin-
ning of a sketch and may then be used all over the sketch. Sometimes there is a
perfectly legitimate reason for this. Other times, people use them in a lazy way
when it would be far more appropriate to pass parameters. In our examples so far,
ledPin is a good use of a global variable. It’s also very convenient and easy to find
up at the top of the sketch, making it easy to change.

Another feature of local variables is that their value is initialized every time the
function is run. This is nowhere more true (and often inconvenient) than in the
loop function of an Arduino sketch. Let’s try and use a local variable in place of a
global variable in one of the examples from the previous chapter:

// 03_03_blink_20_faulty
const int ledPin = 13;
const int delayPeriod = 250;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
int count = 0;
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
count ++;
if (count == 20) {
count = 0;
delay(3000);

}
}

Sketch 03_03_blink_20_faulty is based on sketch 02_09_blink_20_loop, but
attempts to use a local variable instead of the global variable to count the number
of flashes.

This sketch is broken. It will not work, because every time loop is run, the
variable count will be given the value 0 again, so count will never reach 20 and
the LED will just keep flashing forever. The whole reason that we made count
a global in the first place was so that its value would not be reset. The only

03_Monk_ch03.indd 43 03/08/22 2:37 PM

44 Programming Arduino: Getting Started with Sketches

place that we use count is in the loop function, so this is where it should
be placed.

Fortunately, there is a mechanism in C that gets around this conundrum. It is the
keyword static. When you use the keyword static in front of a variable declaration
in a function, it has the effect of initializing the variable only the first time that the
function is run. Perfect! That’s just what is required in this situation. We can keep
our variable in the function where it’s used without it getting set back to 0 every
time the function runs. Sketch 03_04_blink_20_static shows this in operation:

// 03_04_blink_20_static
const int ledPin = 13;
const int delayPeriod = 250;

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
static int count = 0;
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);
count ++;
if (count == 20) {
count = 0;
delay(3000);

}
}

Return Values
Computer science, as an academic discipline, has as its parents mathematics and
engineering. This heritage lingers on in many of the names associated with pro-
gramming. The word function is itself a mathematical term. In mathematics, the
input to the function (the argument or parameter) completely determines the out-
put. We have written functions that take an input, but none that give us back a value.
All our functions have been “void” functions. If a function returns a value, then you
specify a return type.

03_Monk_ch03.indd 44 03/08/22 2:37 PM

Chapter 3: Functions 45

Let’s look at writing a function that takes a temperature in degrees Centi-
grade and returns the equivalent in degrees Fahrenheit:

int centToFaren(int c) {
int f = c * 9 / 5 + 32;
return f;

}

The function definition now starts with int rather than void to indicate that the
function will return an int to whatever calls it. This might be a bit of code that
looks like this:

int pleasantTemp = centToFaren(20);

Any non-void function has to have a return statement in it. If you do not put
one in, the compiler will tell you that it is missing. You can have more than one
return in the same function. This might arise if you have an if statement with
alternative actions based on some condition. Some programmers frown on this,
but if your functions are small (as all functions should be), then this practice will
not be a problem.

The value after return can be an expression; it does not have to just be the name
of a variable. So you could compress the preceding example into the following:

int centToFaren(int c) {
return (c * 9 / 5 + 32);

}

If the expression being returned is more than just a variable name, then it
should be enclosed in parentheses as in the preceding example.

Other Variable Types
All our examples of variables so far have been int variables. This is by far the most
commonly used variable type, but there are some others that you should be
aware of.

Floats
One such type, which is relevant to the previous temperature conversion example,
is float. This variable type represents floating point numbers—that is, numbers

03_Monk_ch03.indd 45 03/08/22 2:37 PM

46 Programming Arduino: Getting Started with Sketches

that may have a decimal point in them, such as 1.23. You need this variable type
when whole numbers are just not precise enough.

Note the following formula:

f = c * 9 / 5 + 32

If you give c the value 17, then f will be 17 * 9 / 5 + 32 or 62.6. But if f is an int, then
the value will be truncated to 62.

The problem becomes even worse if we are not careful of the order in which we
evaluate things. For instance, suppose that we did the division first, as follows:

f = (c / 5) * 9 + 32

Then in normal math terms, the result would still be 62.6, but if all the numbers
are ints, then the calculation would proceed as follows:

1. 17 is divided by 5, which gives 3.4, which is then truncated to 3.

2. 3 is then multiplied by 9 and 32 is added to give a result of 59—which is
quite a long way from 62.6.

For circumstances like this, we can use floats. In the following example, our
temperature conversion function is rewritten to use floats:

float centToFaren(float c) {
float f = c * 9.0 / 5.0 + 32.0;
return f;

}

Notice how we have added .0 to the end of our constants. This ensures that the
compiler knows to treat them as floats rather than ints.

Boolean
Boolean values are logical. They have a value that is either true or false.

In the C language, Boolean is spelled with a lowercase b, but in general use,
Boolean has an uppercase initial letter, as it is named after the mathematician
George Boole, who invented the Boolean logic that is crucial to computer science.

You may not realize it, but you have already met Boolean values when we were
looking at the if command. The condition in an if statement, such as (count == 20),
is actually an expression that yields a boolean result. The operator == is called a
comparison operator. Whereas + is an arithmetic operator that adds two numbers
together, == is a comparison operator that compares two numbers and returns a
value of either true or false.

03_Monk_ch03.indd 46 03/08/22 2:37 PM

Chapter 3: Functions 47

You can define Boolean variables and use them as follows:

boolean tooBig = (x > 10);
if (tooBig) {
x = 5;

}

Boolean values can be manipulated using Boolean operators. So, similar to
how you can perform arithmetic on numbers, you can also perform operations on
Boolean values. The most commonly used Boolean operators are and, which is
written as &&, and or, which is written as ||.

Figure 3-1 shows truth tables for the and and or operators.
From the truth tables in Figure 3-1, you can see that for and, if both A and B are

true, then the result will be true; otherwise, the result will be false.
On the other hand, with the or operator, if either A or B or both A and B are

true, then the result will be true. The result will be false only if neither A nor B is
true.

In addition to and and or, there is the not operator, written as !. You will not be
surprised to learn that “not true” is false and “not false” is true.

You can combine these operators into Boolean expressions in your if state-
ments, as the following example illustrates:

if ((x > 10) && (x < 50))

Other Data Types
As you have seen, the int and occasionally the float data types are fine for most
situations; however, some other numeric types can be useful under some circum-
stances. In an Arduino sketch, the int type uses 16 bits (binary digits). This allows it
to represent numbers between –32768 and 32767.

Figure 3-1 Truth tables.

false true

true

false

A

B
false

false

false

true

AND

false true

true

false

A

B
false

true

OR

true

true

03_Monk_ch03.indd 47 03/08/22 2:37 PM

48 Programming Arduino: Getting Started with Sketches

Other data types available to you are summarized in Table 3-1. This table is
provided mainly for reference. You will use some of these other types as you prog-
ress through the book. Note that Arduino devices using 32-bit architectures,
such as the ESP32 boards, have 4-byte ints, giving them the same range as longs
on an Arduino Uno.

One thing to consider is that if data types exceed their range, then strange
things happen. So, if you have a byte variable with 255 in it and you add 1 to it, you
get 0. More alarmingly, if you have an int variable with 32767 and you add 1 to it,
you will end up with –32768.

Until you are completely comfortable with these different data types, I would
recommend sticking to int, as it works for pretty much everything.

Type
Memory
(Bytes) Range Notes

boolean 1 True or false (0 or 1)

char 1 –128 to +127 Used to represent an American Standard Code
for Information Interchange (ASCII) character
code; e.g., A is represented as 65. Its negative
numbers are not normally used.

byte 1 0 to 255 Often used for communicating serial data, as a
single unit of data.

int 2 –32768 to +32767

unsigned int 2 0 to 65535 Can be used for extra precision where negative
numbers are not needed. Use with caution, as
arithmetic with ints may cause unexpected
results.

long 4 –2,147,483,648 to
2,147,483,647

Needed only for representing very big
numbers.

unsigned long 4 0 to 4,294,967,295 See unsigned int.

float 4 –3.4028235E+38 to
+ 3.4028235E+38

double 4 Same as float Normally, this would be 8 bytes and higher
precision than float with a greater range.
However, on Arduino, it is the same as float.

Table 3-1 Data Types in C

03_Monk_ch03.indd 48 03/08/22 2:37 PM

Chapter 3: Functions 49

Coding Style
The C compiler does not really care about how you lay out your code. For all it
cares, you can write everything on a single line with semicolons between each
statement. However, well-laid-out, neat code is much easier to read and maintain
than poorly laid-out code. In this sense, reading code is just like reading a book:
Formatting is important.

To some extent, formatting is a matter of personal taste. No one likes to think
that he has bad taste, so arguments about how code should look can become per-
sonal. It is not unknown for programmers, on being required to do something
with someone else’s code, to start by reformatting all the code into their preferred
style of presentation.

As an answer to this problem, coding standards are often laid down to encour-
age everyone to lay out his or her code in the same way and adopt “good practice”
when writing programs.

The C language has a de facto standard that has evolved over the years, and this
book is generally faithful to that standard.

Indentation
In the example sketches that you have seen, you can see that we often indent the
program code from the left margin. So, for example when defining a void function,
the void keyword is at the left and then all the text within the curly braces is
indented. The amount of indentation does not really matter. Some people use two
spaces, some four. You can also press tab to indent. In this book, we use two spaces
for indentation.

If you were to have an if statement inside a function definition, then once again
you would add two more spaces for the lines within the curly braces of the if com-
mand, as in the following example:

void loop() {
static int count = 0;
count ++;
if (count == 20) {
count = 0;
delay(3000);

}
}

03_Monk_ch03.indd 49 03/08/22 2:37 PM

50 Programming Arduino: Getting Started with Sketches

You might include another if inside the first if, which would add yet another
level of indentation, making six spaces from the left margin.

All of this might sound a bit trivial, but if you ever sort through someone else’s
badly formatted sketches, you will find it very difficult.

Opening Braces
There are two schools of thought as to where to put the first curly brace in a func-
tion definition, if statement, or for loop. One way is to place the curly brace on the
line after the rest of the command, as shown below, or put it on the same line, as
we have in all the examples so far.

void loop()
{
static int count = 0;
count ++;
if (count ==20)
{
count = 0;
delay(3000);

}
}

The style we use in this book is most commonly used in the Java programming
language, which shares much of the same syntax as C.

Whitespace
The compiler ignores spaces, tabs, and new lines, apart from using them as a way
of separating the “tokens” or words in your sketch. Thus the following example
will compile without a problem:

void loop() {static int
count=0;count++;if(
count==20){count=0;
delay(3000);}}

This will work, but good luck trying to read it.
Where assignments are made, some people will write the following:

int a = 10;

03_Monk_ch03.indd 50 03/08/22 2:37 PM

Chapter 3: Functions 51

But others will write the following:

int a=10;

Which of these two styles you use really does not matter, but it is a good idea to be
consistent. I use the first form.

Comments
Comments are text that is kept in your sketch along with all the real program
code, but which actually performs no programming function whatsoever. The
sole purpose of comments is to be a reminder to you or others as to why the code
is written as it is. A comment line may also be used to present a title.

The compiler will completely ignore any text that is marked as being a com-
ment. We have included comments as titles at the top of many of the sketches in
the book so far.

There are two forms of syntax for comments:

• The single line comment that starts with // and finishes at the end of the line

• The multiline comment that starts with a /* and ends with a */

The following is an example using both forms of comments:

/* A not very useful loop function.
Written by: Simon Monk
To illustrate the concept of comments
*/
void loop() {
static int count = 0;
count ++; // a single line comment
if (count == 20) {
count = 0;
delay(3000);

}
}

In this book, I mostly stick to the single-line comment format.
Good comments help explain what is happening in a sketch or how to use the

sketch. They are useful if others are going to use your sketch, but equally useful
to yourself when you are looking at a sketch that you have not worked on for a
few weeks.

03_Monk_ch03.indd 51 03/08/22 2:37 PM

52 Programming Arduino: Getting Started with Sketches

Some people are told in programming courses that the more comments, the
better. Most seasoned programmers will tell you that well-written code requires
very little in the way of comments because it is self-explanatory. You should use
comments for the following reasons:

• To explain anything you have done that is a little tricky or not immediately
obvious

• To describe anything that the user needs to do that is not part of the
program; for example, // this pin should be connected to the transistor
controlling the relay

• To leave yourself notes; for example, // todo: tidy this - it’s a mess

This last point illustrates a useful technique of todos in comments. Program-
mers often put todos in their code to remind themselves of something they need
to do later. They can always use the search facility in the Arduino IDE to find all
occurrences of // todo in their sketch.

The following are not good examples of reasons you should use comments:

• To state the blatantly obvious; for example, a = a + 1; // add 1 to a.

• To explain badly written code. Don’t comment on it; just write it clearly in
the first place.

Conclusion
This has been a bit of a theoretical chapter. You have had to absorb some new
abstract concepts concerned with organizing our sketches into functions and
adopting a style of programming that will save you time in the long run.

In the next chapter, you can start to apply some of what you have learned and
look at better ways of structuring your data and using text strings.

03_Monk_ch03.indd 52 03/08/22 2:37 PM

53

4
Arrays and Strings

After reading Chapter 3, you have a reasonable appreciation as to how to
structure your sketches to make your life easier. If there is one thing that a good
programmer likes, it’s an easy life. Now our attention is going to turn to the data
that you use in your sketches.

The book Algorithms + Data Structures = Programs by Niklaus Wirth (Prentice-
Hall, 1976) has been around for a good while now, but still manages to capture the
essences of computer science and programming in particular. I can strongly rec-
ommend it to anyone who finds themselves bitten by the programming bug. It
also captures the idea that to write a good program, you need to think about both
the algorithm (what you do) and the structure of the data you use.

You have looked at loops, if statements, and what is called the “algorithmic”
side of programming an Arduino; you are now going to turn to how you structure
your data.

Arrays
Arrays are a way of containing a list of values. The variables that you have met so
far have contained only a single value, usually an int. By contrast, an array con-
tains a list of values, and you can access any one of those values by its position in
the list.

C, in common with the majority of programming languages, begins its index
positions at 0 rather than 1. This means that the first element is actually
element zero.

04_Monk_ch04.indd 53 03/08/22 2:39 PM

54 Programming Arduino: Getting Started with Sketches

To illustrate the use of arrays, we could create an example application that
repeatedly flashes “SOS” in Morse code using the Arduino board’s built-in LED.

Morse code used to be a vital method of communication in the 19th and 20th
centuries. Because of its coding of letters as a series of long and short dots, Morse
code can be sent over telegraph wires, over a radio link, and using signaling lights.
The letters “SOS” (often taken to mean “save our souls”) are still recognized as an
international signal of distress.

The letter “S” is represented as three short flashes (dots) and the letter “O” by
three long flashes (dashes). You are going to use an array of ints to hold the
duration of each flash that you are going to make. You can then use a for loop to
step through each of the items in the array, making a flash of the appropriate
duration.

First, let’s have a look at how you are going to create an array of ints containing
the durations.

int durations[] = {200, 200, 200, 500, 500, 500, 200, 200, 200};

You indicate that a variable contains an array by placing [] after the
variable name.

In this case, you are going to set the values for the durations at the time that you
create the array. The syntax for doing this is to use curly braces and then values
each separated by commas. Don’t forget the semicolon on the end of the line.

You can access any given element of the array using the square bracket
notation. So, if you want to get the first element of the array, you can write the
following:

durations[0]

To illustrate this, sketch 04_01_array will create an array and then print out all
its values to the Serial Monitor:

// 04_01_array

int durations[] = {200, 200, 200, 500, 500, 500, 200, 200, 200};

void setup() {
Serial.begin(9600);
for (int i = 0; i < 9; i++) {
Serial.println(durations[i]);

}
}

void loop() {}

04_Monk_ch04.indd 54 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 55

Note that you can use the keyword const with arrays as well as ordinary vari-
ables, just as long as you do not intend to modify the array within your sketch.

Upload the sketch to your board and then open the Serial Monitor. If all is well,
you will see something like Figure 4-1.

This is quite neat, because if you wanted to add more durations to the array, all
you would need to do is add them to the list inside the curly braces and change “9”
in the for loop to the new size of the array.

You have to be a little careful with arrays, because the compiler will not try and
stop you from accessing elements of data that are beyond the end of the array.
This is because the array is really a pointer to an address in memory, as shown in
Figure 4-2.

Programs keep their data, both ordinary variables and arrays, in memory. Com-
puter memory is arranged much more rigidly than the human kind of memory. It
is easiest to think of the memory in an Arduino as a collection of pigeonholes.
When you define an array of nine elements, for example, the next available nine
pigeonholes are reserved for its use and the variable is said to point at the first
pigeonhole or element of the array.

Going back to our point about access being allowed beyond the bounds of your
array, if you decided to access durations[10], then you would still get back an int,
but the value of this int could be anything. This is in itself fairly harmless, except
that if you accidentally get a value outside of the array, you are likely to get confus-
ing results in your sketch.

Figure 4-1 The Serial Monitor showing the output of sketch 04_01_array.

04_Monk_ch04.indd 55 03/08/22 2:39 PM

56 Programming Arduino: Getting Started with Sketches

However, what is far worse is if you try changing a value outside of the size of
the array. For instance, if you were to include something like the following in your
program, the results could simply make your sketch break:

durations[10] = 0;

The pigeonhole durations[10] may be in use as some completely different
variable. So always make sure that you do not go outside of the size of the array. If
your sketch starts behaving strangely, then check for this kind of problem.

Morse Code SOS Using Arrays
Sketch 04_02_array_sos shows how you can use an array to make your emergency
signal of SOS:

// 04_02_array_sos
const int ledPin = 13;

int durations[] = {200, 200, 200, 500, 500, 500, 200, 200, 200};

200

200

200

500

500

500

200

200

200

durations

durations[0]

durations[1]

durations[2]

durations[3]

durations[4]

durations[5]

durations[6]

durations[7]

durations[8]

?

?

?

?

Memory

Figure 4-2 Arrays and pointers.

04_Monk_ch04.indd 56 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 57

void setup() {
pinMode(ledPin, OUTPUT);

}

void loop() {
for (int i = 0; i < 9; i++) {
flash(durations[i]);

}
delay(1000);

}

void flash(int delayPeriod) {
digitalWrite(ledPin, HIGH);
delay(delayPeriod);
digitalWrite(ledPin, LOW);
delay(delayPeriod);

}

An obvious advantage of this approach is that it is very easy to change the mes-
sage by simply altering the durations array. In sketch 04_05_morse_flasher, you
will take the use of arrays a stage further to make a more general-purpose Morse
code flasher.

String Arrays
In the programming world, the word string has nothing to do with long thin stuff
that you tie knots in. A string is a sequence of characters. It’s the way you can get
your Arduino to deal with text. For example, sketch 04_03_string will repeatedly
send the text “Hello” to the Serial Monitor one time per second:

// 04_03_string
void setup() {
Serial.begin(9600);

}

void loop() {
Serial.println("Hello");
delay(1000);

}

String Literals
String literals are enclosed in double quotation marks. They are literal in the sense
that the string is a constant, rather like the int 123.

04_Monk_ch04.indd 57 03/08/22 2:39 PM

58 Programming Arduino: Getting Started with Sketches

As you would expect, you can put strings in a variable. There is also an advanced
string library, but for now you will use standard C strings, such as the one in
sketch 04_03_string.

In C, a string literal is actually an array of the type char. The type char is a bit
like int in that it is a number, but that number is between 0 and 127 and represents
one character. The character may be a letter of the alphabet, a number, a punctua-
tion mark, or a special character such as a tab or a line feed. These number codes
for letters use a standard called ASCII. Some of the most commonly used ASCII
codes are shown in Table 4-1.

The string literal “Hello” is actually an array of characters, as shown in
Figure 4-3.

Note that the string literal has a special null character (\0) at the end. This
character is used to indicate the end of the string.

H (72)

e (101)

l (108)

l (108)

o (111)

\0 (0)

Memory

Figure 4-3 The string literal “Hello”.

Character ASCII Code (Decimal)

a–z 97–122

A–Z 65–90

0–9 48–57

space 32

Table 4-1 Common ASCII Codes

04_Monk_ch04.indd 58 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 59

String Variables
As you would expect, string variables are very similar to array variables, except
that there is a useful shorthand method for defining their initial value.

char name[] = "Hello";

This defines an array of characters and initializes it to the word “Hello.” It will
also add a final null value (ASCII 0) to mark the end of the string.

Although the preceding example is most consistent with what you know about
writing arrays, it would be more common to write the following:

char *name = "Hello";

This is equivalent, and the * indicates a pointer. The idea is that name points to
the first char element of the char array. That is the memory location that contains
the letter H.

You can rewrite sketch 04_03_string to use a variable as well as a string con-
stant, as follows:

// 04_04_string_var
char message[] = "Hello";

void setup() {
Serial.begin(9600);

}

void loop() {
Serial.println(message);
delay(1000);

}

A Morse Code Translator
Let’s put together what you have learned about arrays and strings to build a more
complex sketch that will accept any message from the Serial Monitor and flash it
out on the built-in LED.

The letters in Morse code are shown in Table 4-2.

04_Monk_ch04.indd 59 03/08/22 2:39 PM

60 Programming Arduino: Getting Started with Sketches

Some of the rules of Morse code are that a dash is three times as long as a dot,
the time between each dash or dot is equal to the duration of a dot, the space
between two letters is the same length as a dash, and the space between two words
is the same duration as seven dots.

For this project, we will not worry about punctuation, although it would be an
interesting exercise for you to try adding this to the sketch. For a full list of all the
Morse characters, see en.wikipedia.org/wiki/Morse_code.

Data
You are going to build this example a step at a time, starting with the data struc-
ture that you are going to use to represent the codes.

It is important to understand that there is no one solution to this problem.
Different programmers will come up with different ways to solve it. So, it is a
mistake to think to yourself, “I would never have come up with that.” Well, no,
quite possibly you would come up with something different and better. Everyone
thinks in different ways, and this solution happens to be the one that first popped
into the author’s head.

A .- N -. 0 -----

B -… O --- 1 .----

C -.-. P .--. 2 ..---

D -.. Q --.- 3 …--

E . R .-. 4 ….-

F ..-. S … 5 …..

G -. T - 6 -….

H …. U ..- 7 --…

I .. V …- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..-

L .-.. Y -.--

M -- Z --..

Table 4-2 Morse Code Letters

04_Monk_ch04.indd 60 03/08/22 2:39 PM

http://en.wikipedia.org/wiki/Morse_code

Chapter 4: Arrays and Strings 61

Representing the data is all about finding a way of expressing Table 4-2 in C. In

fact, you are going to split the data into two tables: one for the letters and one for the

numbers. The data structure for the letters is as follows:

char* letters[] = {
".-", "-...", "-.-.", "-..", ".", // A-I
"..-.", "--.", "....", "..",
".---", "-.-", ".-..", "--", "-.", // J-R
"---", ".--.", "--.-", ".-.",
"...", "-", "..-", "...-", ".--", // S-Z
"-..-", "-.--", "--.."

};

What you have here is an array of string literals. So, because a string literal is
actually an array of char, what you actually have here is an array of arrays—
something that is perfectly legal and really quite useful.

This means that to find Morse for A, you would access letters[0], which would
give you the string .-. This approach is not terribly efficient, because you are
using a whole byte (8 bits) of memory to represent a dash or a dot, which could
be represented in a bit. However, you can easily justify this approach by saying
that the total number of bytes is still only about 90 and we do have 2,048 bytes to
play with. Equally importantly, it makes the code easy to understand.

Numbers use the same approach:

char* numbers[] = {
"-----", ".----", "..---", "...--", "....-",

".....", "-....", "--...", "---..", "----."};

Globals and Setup
You need to define a couple of global variables: one for the delay period for a dot,
and one to define which pin the LED is attached to:

const int dotDelay = 200;
const int ledPin = 13;

The setup function is pretty simple; you just need to set the ledPin as an output
and set up the serial port:

void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

}

04_Monk_ch04.indd 61 03/08/22 2:39 PM

62 Programming Arduino: Getting Started with Sketches

The loop Function
You are now going to start on the real processing work in the loop function. The
algorithm for this function is as follows:

• If there is a character to read from USB:

• If it’s a letter, flash it using the letters array.

• If it’s a number, flash it using the numbers array.

• If it’s a space, flash four times the dot delay.

That’s all. You should not think too far ahead. This algorithm represents what
you want to do, or what your intention is, and this style of programming is called
programming by intention.

If you write this algorithm in C, it will look like this:

void loop() {
char ch;
if (Serial.available() > 0) {
ch = Serial.read();
if (ch >= 'a' && ch <= 'z') {
flashSequence(letters[ch - 'a']);

}
else if (ch >= 'A' && ch <= 'Z') {
flashSequence(letters[ch - 'A']);

}
else if (ch >= '0' && ch <= '9') {
flashSequence(numbers[ch - '0']);

}
else if (ch == ' ') {
delay(dotDelay * 4); // gap between words
}

}
}

There are a few things here that need explaining. First, there is
Serial.available(). To understand this, you first need to know a little about
how an Arduino communicates with your computer over USB. Figure 4-4
summarizes this process.

In the situation where the computer is sending data from the Serial Monitor to
the Arduino board, then the USB is converted from the USB signal levels and
protocol to something that the microcontroller on the Arduino board can use.
This conversion happens in a special-purpose chip on the Arduino board. The

04_Monk_ch04.indd 62 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 63

data is then received by a part of the microcontroller called the Universal Asyn-
chronous Receiver/Transmitter (UART). The UART places the data it receives
into a buffer. The buffer is a special area of memory (128 bytes) that can hold data
that is removed as soon as it is read.

This communication happens regardless of what your sketch is doing. So, even
though you may be merrily flashing LEDs, data will still arrive in the buffer and sit
there until you are ready to read it. You can think of the buffer as being a bit like
an e-mail inbox.

The way that you check to see whether you “have mail” is to use the function
Serial.available(). This function returns the number of bytes of data in the buffer
that are waiting for you to read. If there are no messages waiting to be read, then
the function returns 0. This is why the if statement checks to see that there are
more than zero bytes available to read, and if they are, then the first thing that the
statement does is read the next available char, using the function Serial.read().
This function gets assigned to the local variable ch.

Next is another if to decide what kind of thing it is that you want to flash:

if (ch >= 'a' && ch <= 'z') {
flashSequence(letters[ch - 'a']);

}

At first, this might seem a bit strange. You are using <= and >= to compare
characters. You can do that because each character is actually represented by a
number (its ASCII code). So, if the code for the character is somewhere between

Arduino

Computer USB to Serial

UART Buffer

Microprocessor

Figure 4-4 Serial communication with an Arduino.

04_Monk_ch04.indd 63 03/08/22 2:39 PM

64 Programming Arduino: Getting Started with Sketches

a and z (97 and 122), then you know that the character that has come from the
computer is a lowercase letter. You then call a function that you have not written
yet called flashSequence, to which you will pass a string of dots and dashes; for
example, to flash a, you would pass it .- as its argument.

You are devolving responsibility to this function for actually doing the flash-
ing. You are not trying to do it inside the loop. This lets us keep the code easy
to read.

Here is the C that determines the string of dashes and dots that you need to
send to the flashSequence function:

letters[ch - 'a']

Once again, this looks a little strange. The function appears to be subtracting
one character from another. This is actually a perfectly reasonable thing to do,
because the function is actually subtracting the ASCII values.

Remember that you are storing the codes for the letters in an array. So the first
element of the array contains a string of dashes and dots for the letter A, the sec-
ond element includes the dots and dashes for B, and so on. So you need to find the
right position in the array for the letter that you have just fetched from the buffer.
The position for any lowercase letter will be the character code for the letter
minus the character code for a. So, for example, a − a is actually 97 − 97 = 0.
Similarly, c − a is actually 99 − 97 = 2. So, in the following statement, if ch is the
letter c, then the bit inside the square brackets would evaluate to 2, and you would
get element 2 from the array, which is -.-..

What this section has just described is concerned with lowercase letters. You
also have to deal with uppercase letters and numbers. These are both handled in
a similar manner.

The flashSequence Function
We have assumed a function called flashSequence and made use of it, but now
you need to write it. We have planned for it to take a string containing a series of
dashes and dots and to make the necessary flashes with the correct timings.

Thinking about the algorithm for doing this, you can break it into the following
steps:

• For each element of the string of dashes and dots (such as .-.-):

• Flash that dot or dash.

04_Monk_ch04.indd 64 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 65

Using the concept of programming by intention, let’s keep the function as sim-
ple as that.

The Morse codes are not the same length for all letters, so you need to loop
around the string until you encounter the end marker, \0. You also need a counter
variable called i that starts at 0 and is incremented as the processing looks at each
dot and dash:

void flashSequence(char* sequence) {
int i = 0;
while (sequence[i] != '\0') {

flashDotOrDash(sequence[i]);
i++;

}
delay(dotDelay * 3); // gap between letters

}

Again, you delegate the actual job of flashing an individual dot or dash to a new
method called flashDotOrDash, which actually turns the LED on and off. Finally,
when the program has flashed the dots and dashes, it needs to pause for three
dots worth of delay. Note the helpful use of a comment.

The flashDotOrDash Function
The last function in your chain of functions is the one that actually does the work
of turning the LED on and off. As its argument, the function has a single character
that is either a dot (.) or a dash (–).

All the function needs to do is turn the LED on and delay for the duration of a
dot if it’s a dot and three times the duration of a dot if it’s a dash, then turn the
LED off again. Finally, it needs to delay for the period of a dot, to give the gap
between flashes.

void flashDotOrDash(char dotOrDash) {
digitalWrite(ledPin, HIGH);
if (dotOrDash == '.') {
delay(dotDelay);

}
else { // must be a -
delay(dotDelay * 3);

}
digitalWrite(ledPin, LOW);
delay(dotDelay); // gap between flashes

}

04_Monk_ch04.indd 65 03/08/22 2:39 PM

66 Programming Arduino: Getting Started with Sketches

Putting It All Together
Putting all this together, the full listing is shown in sketch 04_05_morse_flasher.
Upload it to your Arduino board and try it out. Remember that to use it, you
need to open the Serial Monitor and type some text into the area at the top and
click Send. You should then see that text being flashed as Morse code.

//sketch 04_05_morse_flasher
const int ledPin = 13;
const int dotDelay = 200;

char* letters[] = {
".-", "-...", "-.-.", "-..", ".", "..-.", "--.", " ...", "..", // A-I
".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", // J-R
"...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.." // S-Z

};

char* numbers[] = {
"-----", ".----", "..---", "...--", "....-", ".....", "-....", "--...",
"---..", "----."};

void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

}

void loop() {
char ch;
if (Serial.available() > 0) {

ch = Serial.read();
if (ch >= 'a' && ch <= 'z') {
flashSequence(letters[ch - 'a']);

}
else if (ch >= 'A' && ch <= 'Z') {
flashSequence(letters[ch - 'A']);

}
else if (ch >= '0' && ch <= '9') {
flashSequence(numbers[ch - '0']);

}
else if (ch == ' ') {
delay(dotDelay * 4); // gap between words
}

}
}

void flashSequence(char* sequence) {
int i = 0;
while (sequence[i] != NULL) {

flashDotOrDash(sequence[i]);
i++;

}
delay(dotDelay * 3); // gap between letters

}

04_Monk_ch04.indd 66 03/08/22 2:39 PM

Chapter 4: Arrays and Strings 67

void flashDotOrDash(char dotOrDash) {
digitalWrite(ledPin, HIGH);
if (dotOrDash == '.') {

delay(dotDelay);
}
else {

// must be a dash
delay(dotDelay * 3);

}
digitalWrite(ledPin, LOW);
delay(dotDelay); // gap between flashes

}

This sketch includes a loop function that is called automatically and repeatedly
calls a flashSequence function that you wrote, which itself repeatedly calls a
flashDotOrDash function that you wrote, which calls digitalWrite and delay
functions that are provided by Arduino!

This is how your sketches should look. Breaking things up into functions makes
it much easier to get your code working and makes it easier when you return to it
after a period of not using it.

The String Class
There are actually two ways to deal with strings of text in Arduino. There is the
C character array that we have been using so far and there is also a String class
(String with a capital S) that will look more like the stings you are used to if you
have used almost any modern programming language. The problem with using
the String class is that it generally uses more memory, which if you only have the
2k Bytes of an Arduino Uno can rapidly become a problem. However, when using
a device with a lot more memory, the convenience that the String class offers when
doing things like chopping parts out of a big string, or joining strings together, will
simplify your code.

In Chapter 10, we will use the String class quite extensively.

Conclusion
In addition to looking at strings and arrays in this chapter, you have also built this
more complex Morse translator that I hope will also reinforce the importance of
building your code with functions.

In the next chapter, you learn about input and output, by which we mean input
and output of analog and digital signals from the Arduino.

04_Monk_ch04.indd 67 03/08/22 2:39 PM

04_Monk_ch04.indd 68 03/08/22 2:39 PM

69

5
Input and Output

The Arduino is about physical computing, and that means attaching electron-
ics to the Arduino board. So you need to understand how to use the various
options for your connection pins.

Outputs can be digital, which just means switched between being at 0 V or at 5 V,
or analog, which allows you to set the voltage to any voltage between 0 V and 5 V—
although it’s not quite as simple as that, as we shall see, and some boards use 3 V
rather than 5 V.

Likewise, inputs can either be digital (for example, determining whether a but-
ton is pressed or not) or analog (such as from a light sensor).

In a book that is essentially about software rather than hardware, we are going
to try and avoid being dragged into too much discussion of electronics. However,
it will help you to understand what is happening in this chapter if you can find
yourself a multimeter and a short length of solid core wire.

If you are interested in learning more about electronics, then you might like to
look at my book Hacking Electronics (TAB/McGraw Hill, 2018).

Digital Outputs
In earlier chapters, you have made use of the light-emitting diode (LED) attached
to digital pin 13 of the Arduino board. For example, in Chapter 4, you used it as a
Morse code signaler. The Arduino board has a whole load of digital pins available.

Let’s experiment with one of the other pins on the Arduino. You will use
digital pin 4, and to see what is going on, you will fix some wire to your multi-
meter leads and attach them to your Arduino. Figure 5-1 shows the arrange-
ment. If your multimeter has crocodile clips, strip the insulation off the ends of

05_Monk_ch05.indd 69 05/08/22 12:13 PM

70 Programming Arduino: Getting Started with Sketches

some short lengths of solid core wire and attach the clip to one end, fitting the
other end into the Arduino socket. If your multimeter does not have crocodile
clips, then wrap one of the stripped wire ends around the probe as shown in
Figure 5-1.

The multimeter needs to be set to its 0–20 V direct current (DC) range. The
negative lead (black) should be connected to the ground (GND) pin and the posi-
tive to D3. The wire is just connected to the probe lead and poked into the socket
headers on the Arduino board.

Load sketch 05_01_digital_out:

//05_01_digital_out
const int outPin = 3;

void setup() {
pinMode(outPin, OUTPUT);
Serial.begin(9600);
Serial.println("Enter 1 or 0");

}

Figure 5-1 Measuring outputs with a multimeter.

05_Monk_ch05.indd 70 05/08/22 12:13 PM

Chapter 5: Input and Output 71

void loop() {
if (Serial.available() > 0) {
char ch = Serial.read();
if (ch == '1') {
digitalWrite(outPin, HIGH);

}
else if (ch == '0') {
digitalWrite(outPin, LOW);

}
}

}

At the top of the sketch, you can see the command pinMode. You should use
this command for every pin that you are using in a project so that Arduino can
configure the electronics connected to that pin to be either an input or an output,
as in the following example:

pinMode(outPin, OUTPUT);

As you might have guessed, pinMode is a built-in function. Its first argument
is the pin number in question (an int), and the second argument is the mode,
which must be either INPUT, INPUT_PULLUP, or OUTPUT. Note that the
mode name must be all uppercase.

This loop waits for a command of either 1 or 0 to come from the Serial Moni-
tor on your computer. It it’s a 1, then pin 3 will be turned on; otherwise, it will be
turned off.

Upload the sketch to your Arduino and then open the Serial Monitor (shown
in Figure 5-2).

Figure 5-2 The Serial Monitor.

05_Monk_ch05.indd 71 05/08/22 12:13 PM

72 Programming Arduino: Getting Started with Sketches

So, with the multimeter turned on and plugged into the Arduino, you should be
able to see its reading switch between 0 V and about 5 V as you send commands
to the board from the Serial Monitor by either pressing 1 and then enter or press-
ing 0 and then enter. Figure 5-3 shows the multimeter reading after a 1 has been
sent from the Serial Monitor.

If there are not enough pins labeled “D” for your project, you can actually use
the pins labeled “A” (for analog) as digital outputs too. To do this, just use the let-
ter A in front of the analog pin name, for example, A0. You could try this out by
modifying the first line in sketch 05_01_digital_out to use pin A0 and moving
your positive multimeter lead to pin A0 on the Arduino. The Arduino Uno’s pins
are 5 V, but many other types of Arduino use 3 V logic. These will give an output
voltage of 3.3 V rather than 5 V.

That is really all there is to digital outputs, so let’s move on swiftly to digital
inputs.

5 V or 3.3 V?
Although the Arduino Uno uses 5 V logic, some other Arduinos use 3.3 V rather
than 5 V. Most Arduino compatible boards like the Raspberry Pi Pico and ESP32
boards also use 3.3 V rather than 5 V.

Figure 5-3 Setting the output to High.

05_Monk_ch05.indd 72 05/08/22 12:13 PM

Chapter 5: Input and Output 73

Digital Inputs
The most common use of digital inputs is to detect when a switch has been closed.
A digital input can either be on or off. If the voltage at the input is less than 2.5 V
(halfway to 5 V), it will be 0 (off), and if it is above 2.5 V, it will be 1 (on).

Disconnect your multimeter and upload sketch 05_02_digital_input onto your
Arduino board:

//05_02_digital_input
const int inputPin = 5;

void setup() {
pinMode(inputPin, INPUT);
Serial.begin(9600);

}

void loop() {
int reading = digitalRead(inputPin);
Serial.println(reading);
delay(1000);

}

As with using an output, you need to tell the Arduino in the setup function
that you are going to use a pin as an input. You get the value of a digital input using
the digitalRead function. This returns 0 or 1.

Pull-Up Resistors
The sketch reads the input pin and writes its value to the Serial Monitor once
per second. So upload the sketch and open the Serial Monitor. You should see
a value appear once per second. Push one end of your bit of wire into the
socket for D5 and pinch the end of the wire between your fingers, as shown in
Figure 5-4.

Continue pinching for a few seconds and watch the text appear on the Serial
Monitor. You should see a mixture of ones and zeros appear in the Serial Monitor.
The reason for this is that the inputs to the Arduino board are very sensitive. You
are acting as an antenna, picking up electrical interference.

Take the end of the wire that you were holding and push it into the socket for
+5 V as shown in Figure 5-5. The stream of text in the Serial Monitor should
change to ones.

05_Monk_ch05.indd 73 05/08/22 12:13 PM

74 Programming Arduino: Getting Started with Sketches

Figure 5-4 A digital input with a human antenna.

Figure 5-5 Pin 5 connected to +5V.

05_Monk_ch05.indd 74 05/08/22 12:13 PM

Chapter 5: Input and Output 75

Now take the end that was in +5 V and put it into one of the GND connec-
tions on the Arduino. As you would expect, the Serial Monitor should now
display zeros.

A typical use for an input pin is to connect a switch to it. Figure 5-6 shows how
you might connect your switch.

The problem with this is that if the switch is not closed, then the input pin is
not connected to anything. It is said to be floating, and could easily give you a
false reading. You need your input to be more predictable, and the way to do this
is with what is called a pull-up resistor. You will see later how you can enable the
Arduino’s built-in series resistors and avoid having to use separate resistors.
Figure 5-7 shows the standard use of a pull-up resistor. It has the effect that if
the switch is open, then the resistor pulls up the floating input to 5 V. When you
press the switch and close the contact, the switch overrides the effect of the
resistor, forcing the input to 0 V. One side-effect of this is, while the switch is
closed, 5 V will be across the resistor, causing a current to flow. So, the value of
the resistor is selected to be low enough to make it immune from any electrical

Figure 5-6 Connecting a switch to an Arduino board.

05_Monk_ch05.indd 75 05/08/22 12:13 PM

76 Programming Arduino: Getting Started with Sketches

Figure 5-7 Switch with a pull-up resistor.

interference, but at the same time high enough to prevent excessive current
drain when the switch is closed.

Internal Pull-Up Resistors
Fortunately, the Arduino board has software-configurable pull-up resistors built
into the digital pins. By default, they are turned off. So all you need to do to enable
the pull-up resistor on pin 5 for sketch 05_02_digital_input is to change the pin
mode from INPUT to INPUT_PULLUP.

05_Monk_ch05.indd 76 05/08/22 12:13 PM

Chapter 5: Input and Output 77

Sketch 05_03_digital_input_pullup is the modified version. Upload it to your
Arduino board and test it by acting like an antenna again. You should find that this
time the input stays at 1 in the Serial Monitor.

//05_03_digital_input_pullup
const int inputPin = 5;

void setup() {
pinMode(inputPin, INPUT_PULLUP);
Serial.begin(9600);

}

void loop() {
int reading = digitalRead(inputPin);
Serial.println(reading);
delay(1000);

}

Debouncing
When you press a push button, you would expect that you would just get a single
change from 1 (with a pull-up resistor) to 0 as the button is depressed. Figure 5-8

Figure 5-8 Oscilloscope trace of a button press.

05_Monk_ch05.indd 77 05/08/22 12:13 PM

78 Programming Arduino: Getting Started with Sketches

shows what can happen when you press a button. The metal contacts in the but-
ton bounce. So a single button press becomes a series of presses that eventually
stabilize.

All this happens very quickly; the total time span of the button press on the
oscilloscope trace is only 200 milliseconds. This is a very “ropey” old switch. A
new tactile, click-type button may not even bounce at all.

Sometimes bouncing does not matter. For instance, sketch 05_04_switch_led
will light the LED while the button is pressed. In reality, you would not use an
Arduino to do this; we are firmly in the realms of theory rather than practice
here.

//05_04_switch_led
const int inputPin = 5;
const int ledPin = 13;

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT_PULLUP);

}

void loop() {
int switchOpen = digitalRead(inputPin);
digitalWrite(ledPin, ! switchOpen);

}

Looking at the loop function of sketch 05_04_switch_led, the function reads
the digital input and assigns its value to a variable switchOpen. This is a 0 if the
button is pressed and a 1 if it isn’t (remember that the pin is pulled up to 1 when
the button is not pressed).

When you program digitalWrite to turn the LED on or off, you need to reverse
this value. You do this using the ! or not operator.

If you upload this sketch and connect your wire between D5 and GND (see
Figure 5-9), you should see the LED light. Bouncing may be going on here, but it
is probably too fast for you to see and does not matter.

One situation where key bouncing would matter is if you were making your
switch toggle the LED on and off. That is, if you press the button, the LED comes
on and stays on, and when you press the button again, it turns off. If you had a
button that bounced, then whether the LED was on or off would just depend on
whether you had an odd or even number of bounces.

05_Monk_ch05.indd 78 05/08/22 12:13 PM

Chapter 5: Input and Output 79

Sketch 05_05_toggle just toggles the LED without any attempt at “debouncing.”
Try it out using your wire as a switch between pin D5 and GND (or use a real
switch if you have one):

//05_05_toggle
const int inputPin = 5;
const int ledPin = 13;
int ledValue = LOW;

void setup() {
pinMode(inputPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);

}

void loop() {
if (digitalRead(inputPin) == LOW) {

ledValue = ! ledValue;
digitalWrite(ledPin, ledValue);

}
}

You will probably find that sometimes the LED toggles, but other times it
appears not to toggle. This is bouncing in action!

Figure 5-9 Using a wire as a switch.

05_Monk_ch05.indd 79 05/08/22 12:13 PM

80 Programming Arduino: Getting Started with Sketches

A simple way to tackle this problem is simply to add a delay after you detect the
first button press, as shown in sketch 05_06_bounce_delay:

//05_06_bounce_delay
const int inputPin = 5;
const int ledPin = 13;
int ledValue = LOW;

void setup() {
pinMode(inputPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);

}

void loop() {
if (digitalRead(inputPin) == LOW) {

ledValue = ! ledValue;
digitalWrite(ledPin, ledValue);
delay(500);

}
}

By putting a delay here, nothing else can happen for 500 milliseconds, by which
time any bouncing will have subsided. You should find that this makes the tog-
gling much more reliable. An interesting side-effect is that if you hold the button
down, the LED just keeps on flashing.

If that is all there is to the sketch, then this delay is not a problem. However, if
you do more in the loop, then using a delay can be a problem; for example, the
program would be unable to detect the press of any other button during that
500 milliseconds.

So, this approach is sometimes not good enough and you will need to be a bit
more sophisticated. You can write your own advanced debouncing code by hand,
but doing so gets complicated and fortunately some fine folks have done all the
work for you.

To make use of their work, you must add a library to your Arduino applica-
tion. To do this, open the Library Manager (Figure 5-10) from Sketch | Include
Library | Manage Libraries... menu. Then type Bounce2 into the search field.
This should bring the library Bounce2 to near the top of the results. Select it and
then click Install.

05_Monk_ch05.indd 80 05/08/22 12:13 PM

Chapter 5: Input and Output 81

Sketch 05_07_bounce_library shows how you can use the Bounce library.
Upload it to your board and see how reliable the LED toggling has become.

//05_07_bounce_library
#include <Bounce2.h>

const int inputPin = 5;
const int ledPin = 13;

int ledValue = LOW;
Bounce bouncer = Bounce();

void setup() {
pinMode(inputPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
bouncer.attach(inputPin);

}

void loop() {
if (bouncer.update() && bouncer.read() == LOW) {
ledValue = ! ledValue;
digitalWrite(ledPin, ledValue);
}

}

Figure 5-10 Installing the Bounce library.

05_Monk_ch05.indd 81 05/08/22 12:13 PM

82 Programming Arduino: Getting Started with Sketches

Using the library is pretty straightforward. The first thing that you will notice
is this line:

#include <Bounce2.h>

This is necessary to tell the compiler to use the Bounce library.
You then have the following line:

Bounce bouncer = Bounce();

Do not worry about the syntax and somewhat sing-song nature of this line at the
moment; it is actually C++ rather than C syntax, and you will not be meeting C++
until Chapter 7. For now, you will just have to be content to know that this sets up
a bouncer object.

The new line in setup links bouncer to the inputPin using the attach function.
From now on, you use that bouncer object to find out what the switch is doing
rather than reading the digital input directly. It has put a kind of debouncing
wrapper around your input pin. So, deciding whether a button has been pressed is
wrapped up in this line:

if (bouncer.update() && bouncer.read() == LOW)

The function update returns true if something has changed with the bouncer
object and the second part of the condition checks whether the button went LOW.

Analog Outputs
A few of the digital pins of an Arduino Uno—namely digital pins 3, 5, 6, 9, 10,
and 11—can provide variable output other than just 5 V or nothing. These are
the pins on the board with a ~ or “PWM” next to them. PWM stands for
Pulse Width Modulation, which refers to the means of controlling the amount
of power at the output. It does so by rapidly turning the output on and off.
Other types of board may have PWM available on different pins and some-
times on all pins.

On an Arduino Uno, the pulses are always delivered at the same rate (roughly
500 per second on all the pins except pins 5 and 6, which provide 980 pulses per
second), but the length of the pulses is varied. If you were to use PWM to control
the brightness of an LED, then if the pulse were long, your LED would be on all
the time. If, however, the pulses are short, then the LED is actually lit only for a

05_Monk_ch05.indd 82 05/08/22 12:13 PM

Chapter 5: Input and Output 83

Figure 5-11 Measuring the analog output.

small portion of the time. This happens too fast for the observer even to tell that
the LED is flickering, and it just appears that the LED is lighter or dimmer.

Before you try using an LED, you can test this out with your multimeter. Set the
multimeter up to measure the voltage between GND and pin D3 (see Figure 5-11).

Now upload sketch 05_08_analog_output to your board and open the Serial
Monitor (see Figure 5-12). Enter 3 and press enter. You should see your volt
meter register about 3 V. You can then try any other voltage between 0 and 5.

Figure 5-12 Setting the voltage at an analog output.

05_Monk_ch05.indd 83 05/08/22 12:13 PM

84 Programming Arduino: Getting Started with Sketches

//05_08_analog_output
const int outputPin = 3;

void setup() {
pinMode(outputPin, OUTPUT);
Serial.begin(9600);
Serial.println("Enter Volts 0 to 5");

}

void loop() {
if (Serial.available() > 0) {
float volts = Serial.parseFloat();
int pwmValue = volts * 255.0 / 5.0;
analogWrite(outputPin, pwmValue);

}
}

The program determines the value of PWM output between 0 and 255 by mul-
tiplying the desired voltage (0 to 5) by 255/5. (Readers may wish to refer to Wiki-
pedia for a fuller description of PWM.)

You can set the value of the output by using the function analogWrite, which
requires an output value between 0 and 255, where 0 is off and 255 is full power.
This is actually a great way to control the brightness of an LED. If you were to try
to control the brightness by varying the voltage across the LED, you would find
that nothing would happen until you got to about 2 V; then the LED would very
quickly get quite bright. By controlling the brightness using PWM and varying
the average amount of time that the LED is on, you achieve much more linear
control of the brightness.

Analog Input
Digital inputs just give you an on/off answer as to what is happening at a particu-
lar pin on the Arduino board. Analog inputs, however, give you a value between
0 and 1023 depending on the voltage at the analog input pin.

The program reads the analog input using the analogRead function. Sketch
05_09_analog_input displays the reading and actual voltage at the analog pin A0
in the Serial Monitor every half second, so open the Serial Monitor and watch the
readings appear, as shown in Figure 5-13.

05_Monk_ch05.indd 84 05/08/22 12:13 PM

Chapter 5: Input and Output 85

//05_09_analog_input
const int analogPin = 0;

void setup() {
Serial.begin(9600);

}

void loop() {
int reading = analogRead(analogPin);
float voltage = reading / 204.6;
Serial.print("Reading=");
Serial.print(reading);
Serial.print("\t\tVolts=");
Serial.println(voltage);
delay(500);

}

When you run this sketch, you will notice that the readings change quite a bit.
As with the digital inputs, this is because the input is floating.

Take one end of the wire and put it into a GND socket so that A0 is con-
nected to GND. Your readings should now stay at 0. Move the end of the lead
that was in GND and put it into 5 V and you should get a reading of around
1023, which is the maximum reading. So, if you were to connect A0 to the 3.3 V

Figure 5-13 Measuring voltage with an Arduino Uno.

05_Monk_ch05.indd 85 05/08/22 12:13 PM

86 Programming Arduino: Getting Started with Sketches

socket on the Arduino board, the Arduino voltmeter should tell you that you
have about 3.3 V.

The value of 204.6 is 1023 (the maximum analog reading) divided by 5 (the
maximum voltage). Serial.print is used to send messages to the serial monitor
without beginning a new line, which only happens when Serial.println is used.
The \t in the messages is used to represent one tab stop so that the numbers
line up.

The ESP32-based boards add an extra type of analog input not available on
official Arduinos, and that is the ability for a pin to act as a touch sensor. The
touchRead function takes a pin number as a parameter and returns an integer.
This number will be low if the pin is being touched or you are even close to
touching the pin or a conductive pad attached to it and otherwise a higher value.
Depending on what’s connected to your pin, you can choose a threshold to decide
if the touch button has been pressed or not.

If you are using an Arduino with 3 V logic, then instead of dividing by 204.6, to
get the voltage, you would divide by 310 (1023/3.3).

Conclusion
This concludes our chapter on the basics of getting signals into and out of
the Arduino. In the next chapter, we will look at some more advanced Arduino
features.

05_Monk_ch05.indd 86 05/08/22 12:13 PM

87

6
Boards

The Arduino Uno is probably the best board to use when learning Arduino. It
is the closest thing there is to a standard Arduino. However, as you start to make
projects for real, embedding an Arduino Uno into each project gets expensive.
What’s more, some projects will have special requirements, such as the need to
be very compact or need to use WiFi or Bluetooth. For such projects, a host of
other Arduino compatible boards are available. They can still be programmed
from the Arduino IDE, so all that you have learnt about programming still
applies.

There are many more boards available than those listed here, but these make a
fairly representative sample of the kinds of boards available.

Arduino Nano
The Arduino Nano (see Figure 6-1) is essentially an Arduino Uno shrunk down to
be as compact as possible. It uses the same microcontroller as the Uno (ATmega328)
but the header sockets of the Uno are replaced by header pins.

Because the Arduino Nano is so similar to the Uno, it is a great alternative if
you need your project to be small.

When programming an Arduino Nano, you need to select that as the board
type from the Tools menu of the Arduino IDE (Figure 6-2).

The official Arduino boards are expensive. Yes, they are of high quality and made
in Italy, and nicely packaged, but as microcontroller boards go, they are expensive.
Arduino boards have an open source design. That is, the design files used to make

06_Monk_ch06.indd 87 05/08/22 10:45 AM

88 Programming Arduino: Getting Started with Sketches

Figure 6-1 The Arduino Nano.

Figure 6-2 Selecting the board type in the Arduino IDE.

06_Monk_ch06.indd 88 05/08/22 10:45 AM

Chapter 6: Boards 89

them are made public. This has enabled Chinese manufacturers to make versions of
the Nano and other Arduino boards that cost a small fraction of the official boards.
These copies are inferior in several ways. The boards are often literally a bit rough
around the edges, and often seconds of the microcontroller chip are used and the
USB interface chip substituted by a different (and cheaper) USB interface chip. This
last point means that often, when using Windows, drivers for these chips have to be
installed before the board will be recognized by the Arduino IDE.

Arduino Pro Mini
The Arduino Uno and Pico both have USB interface chips that serve the dual pur-
poses of providing a means of programming the Arduino and a way for the
Arduino to pass data over USB to a computer. Many Arduino projects do not
require this second feature, and so, for those projects, the USB interface is only
really needed while programming the Arduino.

The Arduino Pro Mini (Figure 6-3) is like an Arduino Nano, but to keep the cost
down the USB interface is replaced by a serial interface and therefore doesn’t require
an expensive USB interface chip. This makes the Pro Mini cheaper than the Arduino
Nano but it does mean that you need a separate USB to serial adaptor for it.

The Pro Mini is available in two versions, 5 V and 3 V. The 5 V version is closer
to the Arduino Uno, running at 16 MHz, whereas the 3 V version has an 8 MHz
clock speed. This is a trade-off between operating voltage and speed imposed by the
microcontroller of the boards. To operate reliably at 16 MHz the microcontroller
requires a 5 V supply.

As with the Arduino Nano, there is no end of cheap copies of the Pro Mini.

Figure 6-3 An Arduino Pro Mini and USB to serial adaptor.

06_Monk_ch06.indd 89 05/08/22 10:45 AM

90 Programming Arduino: Getting Started with Sketches

Breadboard
Most of the boards that we will cover in this chapter have a similar pin arrange-
ment to an Arduino Pro Mini or Nano. That is, they are tall and thin in aspect
ratio with a row of pins down each side. These pins are 0.1 inches apart and are
designed that way, largely so that they can be used with solderless breadboard
(often just called breadboard).

Figure 6-4 shows an Arduino Nano on solderless breadboard with a light-emit-
ting diode (LED) and resistor also on the breadboard.

Figure 6-4 An Arduino Nano on breadboard.

06_Monk_ch06.indd 90 05/08/22 10:45 AM

Chapter 6: Boards 91

Solderless breadboard is a great way to prototype your projects, because it
allows you to easily connect things to your board without the need for any
soldering. While you can connect breadboard to an Arduino Uno using jumper
wires, it is easy for them to become separated as the Uno and breadboard are not
physically connected.

Behind each row of holes on the breadboard lies a clip that grips any wires or
component legs pushed through the breadboard.

The Boards Manager
A fresh install of the Arduino IDE will reveal a long list of boards when you go to
the Tools and then Board menu options (Figure 6-5). These are just the official
Arduino boards, and you can see the Arduino Uno, Nano, and Pro Mini there.
So when using one of these boards, you have to select it from this list before you
can upload a program to it.

At the top of the boards list is the Boards Manager option. This allows you to
tell the Arduino IDE about all sorts of other boards. This allows anyone (with

Figure 6-5 The official Arduino board options.

06_Monk_ch06.indd 91 05/08/22 10:45 AM

92 Programming Arduino: Getting Started with Sketches

quite a lot of work) to add their own boards to be programmed by the Arduino
IDE. This open feature of the Arduino IDE is one of the main reasons for its
popularity, as the Arduino community has made boards using all types of
microcontroller accessible. When you open the Boards Manager, you will see
something like Figure 6-6.

Typing the name of a board in the search area will find that board if it is known
and give you the option to install it, or if it is already installed to uninstall it of
change the version. Support for a board is termed a core. So, in Figure 6-5, I have
entered the text Pico hoping to find support for the Raspberry Pi Pico and the
second option is there ready for me to install it.

As we will see in the next section, this list of boards is not exhaustive and we
can add search paths to the Arduino IDE, telling it other places where it can go
looking for cores to support other boards.

ESP32 Boards
ESP32 refers to a family of modules that include both a powerful 32-bit
microcontroller with GPIO pins and wireless hardware for WiFi and Bluetooth.
These modules are low cost and when placed on a board, provide a great

Figure 6-6 The board manager.

06_Monk_ch06.indd 92 05/08/22 10:45 AM

Chapter 6: Boards 93

alternative to an Arduino Nano, especially when you need to use WiFi or
Bluetooth in your project. There are lots of manufacturers of boards using the
ESP32 modules. Typical of these are ESP32 Wroom and the Wemos LOLIN32
Lite shown in Figure 6-7. All of these boards operate at 3 V and NOT the 5 V of
an Arduino Uno.

This particular board is not included in the list of boards known to the Boards
Manager. To allow the Boards Manager to find it, we have to add a web address to
the Arduino IDE’s configuration. So, open the Arduino IDE Preferences panel
from the menu (Figure 6-8) and paste the following URL into the Additional
Boards Manager URLs field.

https://dl.espressif.com/dl/package_esp32_index.json

Now, open the Boards Manager and type ESP32 into the search field (Figure 6-9).
After the ESP32 core has finished installing (which may take a while), you

should find a load more options in your Boards menu.
Transferring a program to Arduino Uno is really quick, although it gets slower

the bigger the sketch. In contrast, uploading a program for an ESP32-based board
will take a lot longer. If uploading fails for one off these boards, try reducing
“Upload speed” in the Tools menu.

Figure 6-7 A typical ESP32 board.

06_Monk_ch06.indd 93 05/08/22 10:45 AM

https://dl.espressif.com/dl/package_esp32_index.json

94 Programming Arduino: Getting Started with Sketches

Figure 6-9 Installing support for ESP32 boards.

Figure 6-8 Adding a URL to preferences.

06_Monk_ch06.indd 94 05/08/22 10:45 AM

Chapter 6: Boards 95

A predecessor to the ESP32 is the ESP8266. These are similar modules, but
considerably less powerful. But for the small amount of extra money, you may as
well use the newer ESP32. Some manufacturers even include displays and other
peripherals such as long-range radio and OLED displays on their ESP32 boards.

You will meet an ESP32 board again in Chapter 10 when we use one with WiFi.

Raspberry Pi Pico
The Raspberry Pi Pico (Figure 6-10) is not to be confused with a regular Raspberry
Pi which is a single board computer. The Raspberry Pi Pico is a microcontroller
board in a breadboard friendly format. Although the manufacturers of the Pico
intended it to be primarily programmed using the Python programming language,
the Arduino organization has taken the microcontroller chip (RP2040) and put it
into an official Arduino board. So, you can use the official Arduino board or a
much cheaper Raspberry Pi Pico in your projects. This means that the Arduino
IDE also supports the Pico through an official core. However, at the time of

Figure 6-10 The Raspberry Pi Pico.

06_Monk_ch06.indd 95 05/08/22 10:45 AM

96 Programming Arduino: Getting Started with Sketches

writing, an unofficial core developed by Earle Philhower supports more Pico-type
boards and works very well.

The Pico does not have any extra hardware features like an ESP32-based device,
but it is remarkably low-cost and has a very impressive processor of similar power
to the ESP32. So, if you want the power of an ESP32 but don’t need WiFi and Blue-
tooth, then the Pico makes a good Arduino board.

Installing the unofficial support for the Pico board into the Arduino IDE is a
similar process to installing support for ESP32. You first have to open Preferences
and then add the following URL into the Additional Boards Manager URLs field.

https://github.com/earlephilhower/arduino-pico/releases/
download/global/package_rp2040_index.json

You can copy this URL from the project page at https://github.com/earlephil-
hower/arduino-pico. If you already have a URL (such as the ESP32 URL) in the
preferences field, then click on the icon just after the field to open it in a multi-line
edit window, where you can add the URL on a line of its own.

Open the Boards Manager and search for Pico, this will bring up the official
Arduino Pico core as well as the core you want, from Earle Philhower.

For whatever reason, the Pico’s designers decided to write the pin numbers on
the underside of the board. This is not very convenient if you are using bread-
board. One way to make pin identification easier is to use the MonkMakes Bread-
board for Pico (https://monkmakes.com/pico_bb). This is normal breadboard,
but with the Pico pin names written on the breadboard.

BBC micro:bit
The BBC micro:bit (Figure 6-11) is a very interesting board, that is extremely pop-
ular as an educational tool to teach programming and electronics. What distin-
guishes the board from the boards that we have seen so far is that the micro:bit
comes with a number of peripherals on the board:

• A 5 × 5 LED display

• A small speaker (from version 2 of the micro:bit)

• A microphone (from version 2 of the micro:bit)

• An accelerometer (to detect movement)

• A magnetometer

06_Monk_ch06.indd 96 05/08/22 10:45 AM

https://github.com/earlephil-hower/arduino-pico
https://github.com/earlephil-hower/arduino-pico
https://monkmakes.com/pico_bb

Chapter 6: Boards 97

By a clever trick, it can use the LEDs to measure the light level and can also
report the temperature of its processor chip.

Although the micro:bit is most often programmed using the Makecode
blocks-based programming environment, it’s another board like the Pico, that you
can program from the Arduino IDE. To do so, you need to add the URL below to
the Additional Boards Manager URLs field in Preferences before searching for
micro:bit and installing the core called Nordic Semiconductor nRF5 Boards by
Sandeep Mistry.

https://sandeepmistry.github.io/arduino-nRF5/package_nRF5_boards_index
.json

To make full use of all the micro:bit’s peripherals, you will have to download
other Arduino libraries. You can find out more about this here: https://learn
.adafruit.com/use-micro-bit-with-arduino

Figure 6-11 The BBC micro:bit.

06_Monk_ch06.indd 97 05/08/22 10:45 AM

https://sandeepmistry.github.io/arduino-nRF5/package_nRF5_boards_index.json
https://sandeepmistry.github.io/arduino-nRF5/package_nRF5_boards_index.json
https://learn.adafruit.com/use-micro-bit-with-arduino
https://learn.adafruit.com/use-micro-bit-with-arduino

98 Programming Arduino: Getting Started with Sketches

Adafruit Feather System
Adafruit have formalized a style of board that the call Feathers (for example, Fig-
ure 6-12). These boards are all the same size and have the same basic pinout, but
are available in a huge range of microcontroller variants, including the RP2040 (of
the Raspberry Pi Pico), ESP32, and many others. In many ways this rivals the eco-
system of the original Arduino, especially as it includes Feather Wings, that are
the same idea as Arduino Shields, adding extra hardware features to the boards in
a plug-in manner.

You can find out more about the Feather system here:
https://www.adafruit.com/category/943

Figure 6-12 The Adafruit Feather RP2040.

06_Monk_ch06.indd 98 05/08/22 10:45 AM

https://www.adafruit.com/category/943

Chapter 6: Boards 99

Board Features

Arduino Uno Easy to get started with. The standard Arduino.

Arduino Nano A compact version of the Uno, suitable for breadboard use.

Arduino Pro Mini A lower cost version of the Nano, without a USB interface. Great for
embedding in final projects.

ESP32 board WiFi, Bluetooth, fast processor, breadboard format at a cost low enough
to embed in projects. Slow to program.

Raspberry Pi Pico Low cost and powerful processor.

BBC micro:bit Lots of built-in peripherals.

Table 6-1 Summary of Boards

Conclusion
There are so many boards, that it is somewhat unfair to recommend just a few
boards. However Table 6-1 should point you in the right general direction, at least
with the boards I’ve described here.

06_Monk_ch06.indd 99 05/08/22 10:45 AM

06_Monk_ch06.indd 100 05/08/22 10:45 AM

This page intentionally left blank

101

7
Advanced Arduino

In this chapter, we will look at some of the more advanced features of Arduino
that we have not yet come across and take a more in-depth look at the Arduino’s
standard library of functions and data types.

You have already met a fair few of the built-in functions, such as pinMode,
digitalWrite, and analogWrite. But actually, there are many more. There are
functions that you can use for doing math, making random numbers, manipulat-
ing bits, detecting pulses on an input pin, and using something called interrupts.

The Arduino language is based on an earlier library called Wiring and it comple-
ments another library called Processing. The Processing library is very similar to
Wiring, but it is based on the Java language rather than C and is used on your com-
puter to link to your Arduino over USB. In fact, the Arduino IDE application that
you run on your computer is based on Processing. If you find yourself wanting to
write some fancy interface on your computer to talk to an Arduino, then take a look
at Processing (www.processing.org).

Random Numbers
Despite the experience of anyone using a PC, computers are in actual fact very
predictable. Occasionally it is useful to be able to deliberately make your Arduino
unpredictable. For example, you might want to make a robot take a “random” path
around a room, heading for a random amount of time in one direction, turning a
random number of degrees, and then setting off again. Or, you might be contem-
plating making an Arduino-based die that gives you a random number between
one and six.

07_Monk_ch07.indd 101 07/10/22 1:11 PM

http://www.processing.org

102 Programming Arduino: Getting Started with Sketches

The Arduino standard library provides you with a feature to do just this. It is
the function called random. random returns an int and it can take either one
argument or two. If it just takes one argument, then it will return a random
number between zero and the argument minus one.

The two-argument version produces a random number between the first argu-
ment (inclusive) and the second argument minus one. Thus random(1, 10)
produces a random number between one and nine.

Sketch 07_01_random pumps out numbers between one and six to the
Serial Monitor.

//sketch 07_01_random

void setup() {
Serial.begin(9600);

}

void loop() {
int number = random(1, 7);
Serial.println(number);
delay(500);

}

If you upload this sketch to your Arduino and open the Serial Monitor, you will
see something like Figure 7-1.

Figure 7-1 Random numbers.

07_Monk_ch07.indd 102 07/10/22 1:11 PM

Chapter 7: Advanced Arduino 103

If you run this a few times you will probably be surprised to see that every time
you restart your Arduino you get the same series of “random” numbers.

The output is not really random; the numbers are called pseudo-random num-
bers because they have a random distribution. That is, if you ran this sketch and
collected a million numbers, you would get pretty much the same number of ones,
twos, threes, and so on. The numbers are not random in the sense of being unpre-
dictable. In fact, it is so against the workings of a microcontroller to be random
that it just plain can’t do it without some intervention from the real world.

You can provide this intervention to make your sequence of numbers less
predictable by seeding the random number generator. This basically just gives it
a starting point for the sequence. But, if you think about it, you cannot just use
random to seed the random number generator. A commonly used trick is to
use the fact that (as discussed in the last chapter) an analog input will float.
So you can use the value read from an analog input to seed the random number
generator.

The function that does this is called randomSeed. Sketch 07_02_random_
seed shows how you can add a bit more randomness to your random number
generator.

//sketch 07_02_random_seed

void setup() {
Serial.begin(9600);
randomSeed(analogRead(0));

}

void loop() {
int number = random(1, 7);
Serial.println(number);
delay(500);

}

Try pressing the Reset button on your Arduino a few times. You should now
see that your random sequence is different every time.

This type of random number generation could not be used for any kind of
lottery. For much better random number generation, you would need hardware
random number generation, which is sometimes based on random occurrences,
such as cosmic ray events.

07_Monk_ch07.indd 103 07/10/22 1:11 PM

104 Programming Arduino: Getting Started with Sketches

Math Functions
On rare occasions, you will need to do a lot of math on an Arduino, over and
above the odd bit of arithmetic. But, should you need to, there is a big library of
math functions available to you. The most useful of these functions are summa-
rized in the following table.

Function Description Example

abs Returns the unsigned value of its argument. abs(12) returns 12
abs(-12) returns 12

constrain Constrains a number to stop it from exceeding a
range. The first argument is the number to con-
strain, the second is the start of the range, and the
third is the end of the allowed range of numbers.

constrain(8, 1, 10) returns 8
constrain(11, 1, 10) returns
10
constrain(0, 1, 10) returns 1

map Maps a number in one range into another range.
The first argument is the number to map, the
second and third are the “from” range (or source
range), and the last two are the “to” range (or
destination range). The function is useful for
remapping analog input values.

map(x, 0, 1023, 0, 5000)

max Returns the larger of its two arguments. max(10, 11) returns 11

min Returns the smaller of its two arguments. min(10, 11) returns 10

pow Returns the first argument raised to the power of
the second argument.

pow(2, 5) returns 32

sqrt Returns the square root of a number. sqrt(16) returns 4

sin, cos,
tan

Perform trigonometric functions. They are not
often used.

log Calculates the temperature from a logarithmic
thermistor (for example).

Bit Manipulation
A bit is a single digit of binary information, that is, either 0 or 1. The word bit is a
contraction of binary digit. Most of the time, you use int variables that actually
comprise 16 bits. This is a bit wasteful if you only need to store a simple true/false
value (1 or 0). Actually, unless you are running short of memory, being wasteful is
less of a problem than creating difficult-to-understand code, but sometimes it is
useful to be able to pack your data tightly.

07_Monk_ch07.indd 104 07/10/22 1:11 PM

Chapter 7: Advanced Arduino 105

Each bit in the int can be thought of as having a decimal value, and you can find
the decimal value of the int by adding up the values of all the bits that are a 1. So
in Figure 7-2, the decimal value of the int would be 38. Actually, it gets more com-
plicated to deal with negative numbers, but that only happens when the leftmost
bit becomes a 1.

When you are thinking about individual bits, decimal values do not really work
very well. It is very difficult to visualize which bits are set in a decimal number
such as 123. For that reason, programmers often use something called hexadeci-
mal, or, more commonly, just hex. Hex is number base 16. So instead of having
digits 0 to 9, you have six extra digits, A to F. This means that each hex digit rep-
resents four bits. The following table shows the relationship among decimal, hex,
and binary with the numbers 0 to 15:

Decimal Hex Binary (Four Digit)

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Figure 7-2 An int.

32 + 4 + 2 = 38

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

07_Monk_ch07.indd 105 07/10/22 1:11 PM

106 Programming Arduino: Getting Started with Sketches

So, in hex, any int can be represented as a four-digit hex number. Thus, the
binary number 10001100 would in hex be 8C. The C language has a special syntax
for using hex numbers. You can assign a hex value to an int as follows:

int x = 0x8C;

As well as using hex notation for numbers, you can also use binary notation
directly using the prefix “0b.” For example, the binary used in the hex example of
0x8C could be written directly in binary as:

0b10001100

The Arduino standard library provides some functions that let you manipulate
the 16 bits within an int individually. The function bitRead returns the value of a
particular bit in an int; so, for the following example would assign the value 0 to
the variable called bit:

int x = 0b10001100;
int bit = bitRead(x, 0);

In the second argument, the bit position starts at 0 and goes up to 15. It starts with
the least significant bit. So the rightmost bit is bit 0, the next bit to the left is bit 1,
and so on.

As you would expect, the counterpart to bitRead is bitWrite, which takes
three arguments. The first is the number to manipulate, the second is the bit posi-
tion, and the third is the bit value. The following example changes the value of the
int from 2 to 3 (in decimal or hex):

int x = 0b10;
bitWrite(x, 0, 1);

Advanced I/O
There are some useful little functions that you can use to make your life easier
when performing various input/output tasks.

Generating Tones
The tone function allows you to generate a square-wave signal (see Figure 7-3) on
one of the digital output pins. The most common reason to do this is to generate
an audible tone using a loudspeaker or buzzer.

07_Monk_ch07.indd 106 07/10/22 1:11 PM

Chapter 7: Advanced Arduino 107

The function takes either two or three arguments. The first argument is always
the pin number on which the tone is to be generated, the second argument is the
frequency of the tone in hertz (Hz), and the optional final argument is the duration
of the tone. If no duration is specified, then the tone will continue playing indefi-
nitely, as is the case in sketch 07_03_tone. This is why we have put the tone function
call in setup rather than in the loop function.

//sketch 07_03_tone

void setup() {
tone(4, 500);

}

void loop() {}

To stop a tone that is playing, you use the function noTone. This function has
just one argument, which is the pin on which the tone is playing.

Figure 7-3 A square-wave signal.

07_Monk_ch07.indd 107 07/10/22 1:11 PM

108 Programming Arduino: Getting Started with Sketches

Feeding Shift Registers
Sometimes the Arduino Uno just doesn’t have enough pins. When driving a large
number of LEDs, for example, a common technique is to use a shift register chip.
This chip reads data one bit at a time, and then when it has enough, it latches all
those bits onto a set of outputs (one per bit).

To help you use this technique, there is a handy function called shiftOut. This
function takes four arguments:

• The number of the pin on which the bit to be sent will appear.

• The number of the pin to be used as a clock pin. This toggles every time a
bit is sent.

• A flag to determine whether the bits will be sent starting with the least
significant bit or the most significant. This should be one of the constants
MSBFIRST or LSBFIRST.

• The byte of data to be sent.

Interrupts
One of the things that tend to frustrate programmers used to “programming in
the large” is that the Arduino can do only one thing at a time. If you like to have
lots of threads of execution all running at the same time in your programs, then
you are out of luck. Although a few people have developed projects that can exe-
cute multiple threads in this way, generally this capability is unnecessary for the
type of uses that an Arduino is normally put to. The closest most Arduinos get to
such execution is the use of interrupts.

Two of the pins on the Arduino Uno (D2 and D3) can have interrupts attached
to them. That is, these pins act as inputs that, if the pins receive a signal in a
specified way, the Arduino’s processor will suspend whatever it was doing and run
a function attached to that interrupt.

Sketch 07_04_interrupt blinks an LED, but then changes the blink period when
an interrupt is received. You can simulate an interrupt by connecting your wire
between pin D2 and GND and using the internal pull-up resistor to keep the
interrupt high most of the time.

//sketch 07_04_interrupt
const int interruptPin = 2;
const int ledPin = 13;
int period = 500;

07_Monk_ch07.indd 108 07/10/22 1:11 PM

Chapter 7: Advanced Arduino 109

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(interruptPin, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(pin), goFast,
FALLING);

}

void loop() {
digitalWrite(ledPin, HIGH);
delay(period);
digitalWrite(ledPin, LOW);
delay(period);

}

void goFast() {
period = 100;

}

The following is the key line in the setup function of this sketch:

attachInterrupt(digitalPinToInterrupt(pin), goFast,
FALLING);

The first argument specifies which of the two interrupts you want to use. Rather
confusingly, this is not just the pin name, to find the interrupt number, the func-
tion digitalPinToInterrupt is used.

Although the Arduino Uno only allows interrupts on two pins, some other
boards allow interrupts on any of their pins.

The next argument is the name of the function that is to be called when there
is an interrupt, and the final argument is a constant that will be one of CHANGE,
RISING, or FALLING. Figure 7-4 summarizes these options.

time

5V

Change Change

Falling Rising

0V

Figure 7-4 Types of interrupt signals.

07_Monk_ch07.indd 109 07/10/22 1:11 PM

110 Programming Arduino: Getting Started with Sketches

If the interrupt mode is CHANGE, then either a RISING from 0 to 1 or a
FALLING from 1 to 0 will both trigger an interrupt.

You can disable interrupts using the function noInterrupts. This stops all
interrupts from both interrupt channels. You can resume using interrupts again
by calling the function interrupts.

Different Arduino boards have different interrupt names for different pins so if
you are not using an Arduino Uno, check the documentation for your board on
http://www.arduino.cc.

Compile-Time Constants
Sometimes, when writing a sketch that might be used on different types of board,
it can be useful for the sketch itself to be aware of the environment it will run on.
For example, if the clock speed of the processor is below a certain threshold, you
may want to disable some features of the sketch, because they would not work
correctly. It may also be handy to know when (date and time) the sketch was
flashed onto the board. This is possible using some special constants. These are
summarized in the following table:

F_CPU The CPU frequency of the board in MHz (16 for an Arduino Uno)

ARDUINO The version of the Arduino IDE used to program the sketch onto the board

__DATE__ The date that the sketch was flashed onto the Arduino

__TIME__ The time that the sketch was flashed onto the Arduino

Sketch 07_05_compile_consts illustrates the use of these constants. If you run
this sketch on an Arduino with the Serial Monitor open, you should see some-
thing like Figure 7-5.

//sketch 07_05_compile_consts
void setup() {
Serial.begin(9600);
Serial.println(__DATE__);
Serial.println(__TIME__);
Serial.println(F_CPU);
Serial.println(ARDUINO);

}

void loop() {}

07_Monk_ch07.indd 110 07/10/22 1:11 PM

http://www.arduino.cc

Chapter 7: Advanced Arduino 111

The Arduino Web Editor
The Arduino WEB IDE is a browser-based version of the Arduino IDE
(Figure 7-6). It has most of the same features as the regular IDE, and it allows
you to keep your sketches safely stored in the cloud. It also integrates the Arduino
documentation and provides the ability to deploy to some WiFi-enabled
boards over the Internet, if you pay a small subscription. There is a free version
to try, but you will have to sign up with an account at https://create.arduino.cc/
editor and also install the Arduino Agent software onto your computer to
allow access to the USB port to program your Arduino from the browser.

Figure 7-6 The Arduino web IDE.

Figure 7-5 Compile-time constants.

07_Monk_ch07.indd 111 07/10/22 1:11 PM

https://create.arduino.cc/editor
https://create.arduino.cc/editor

112 Programming Arduino: Getting Started with Sketches

Conclusion
In this chapter, you have looked at some of the handy features that the Arduino
standard library provides. These features will save you some programming effort,
and if there is one thing that a good programmer likes, it is being able to use high-
quality work done by other people.

In the next chapter, we will extend what we learned about data structures in
Chapter 4 and look at how you go about remembering data on the Arduino after
the power goes off.

07_Monk_ch07.indd 112 07/10/22 1:11 PM

113

8
Data Storage

When you give values to variables, the Arduino board will remember those
values only as long as the power is on. The moment that you turn the power off
or reset the board, all that data is lost.

In this chapter, we look at some ways to hang on to that data either by storing
variables in flash memory or on some Arduino boards electrically erasable pro-
grammable read-only memory (EEPROM).

Large Data Structures
Many of the latest Arduino-compatible boards such as the ESP32 and Pico boards
have much more memory than you are ever likely to need. However, in boards
like the Uno and Pro Mini, it is quite easy to run out of storage.

If the data that you want to store does not change, then you can just set the data
up each time that the Arduino starts. An example of this approach is the case in
the letters array in your Morse code translator of Chapter 4 (sketch 04_05_morse_
flasher).

You used the following code to define a variable of the correct size and fill it

with the data that you needed:

char* letters[] = {
".-", "-...", "-.-.", "-..", ".",

"..-.", "--.", "....", "..", // A-I
".---", "-.-", ".-..", "--", "-.",

"---", ".--.", "--.-", ".-.", // J-R
"...", "-", "..-", "...-", ".--",

"-..-", "-.--", "--.." // S-Z
};

08_Monk_ch08.indd 113 26/08/22 10:16 AM

114 Programming Arduino: Getting Started with Sketches

You may remember that you did the calculation and decided that you had
plenty of your meager 2k (on an Arduino Uno) to spare. However, if you were
using say an Uno and was a bit tight, you could store this data in the 32K of flash
memory used to store programs, rather than the 2K of RAM. There is a means of
doing this. It is a directive called PROGMEM; it lives in a library and is a bit awk-
ward to use.

Storing Data in Flash Memory
This section only applies if you are using one of the “AVR” versions of Arduino
such as the Uno, Nano, Mico, Pro Mini, or Leaonado. Arduinos and Arduino-
compatibles based on newer processors have plenty of memory for storage, and in
fact the method described here will not work on some of these boards.

To store your data in flash memory, you have to include the PROGMEM
library as follows:

#include <avr/pgmspace.h>

The purpose of this command is to tell the compiler to use the pgmspace library
for this sketch. In this case, a library is a set of functions that someone else has
written and that you can use in your sketches without having to understand all the
details of how those functions work.

Because you are using this library, the PROGMEM keyword and the pgm_
read_word function are available. You will use both in the sketches that follow.

This library is included as part of the Arduino software and is an officially sup-
ported Arduino library. A good collection of such official libraries is available, and
many unofficial libraries, developed by people like you and made for others to use,
are also available on the Internet. Such unofficial libraries must be installed into
your Arduino environment.

When using PROGMEM, you have to make sure that you use special PROG-
MEM-friendly data types. Unfortunately, that does not include an array of variable
length char arrays. However, it does include access to an array of char arrays if
those char arrays are of fixed size. The full program is very similar to that of sketch
04_05_morse_flasher in Chapter 4. You may like to open sketch 08_01_progmem
in the IDE while I highlight the differences.

There is a new constant called maxLen that contains the maximum
length of a single character’s dots and dashes plus one for the null character
on the end.

08_Monk_ch08.indd 114 26/08/22 10:16 AM

Chapter 8: Data Storage 115

The structure to contain the letters now looks like this:
PROGMEM const char letters[26][maxLen] = {
".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", // A-I
".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", // J-R
"...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.." // S-Z

};

The PROGMEM keyword indicates that the data structure is to be stored in
flash. You can only store constants like this; once in the flash, the data structure
cannot be changed, hence the use of const. The size of the array also has to be
fully specified as 26 letters by maxLen (minus 1) dots and dashes.

The loop function is also slightly different from the original sketch.

void loop() {
char ch;
char sequence[maxLen];
if (Serial.available() > 0) {
ch = Serial.read();
if (ch >= 'a' && ch <= 'z') {
memcpy_P(&sequence, letters[ch - 'a'], maxLen);
flashSequence(sequence);

}
else if (ch >= 'A' && ch <= 'Z') {
memcpy_P(&sequence, letters[ch - 'A'], maxLen);
flashSequence(sequence);

}
else if (ch >= '0' && ch <= '9') {
memcpy_P(&sequence, numbers[ch - '0'], maxLen);
flashSequence(sequence);

}
else if (ch == ' ') {
delay(dotDelay * 4); // gap between words

}
}

}

The data may look like an array of strings, but actually internally it is stored in
flash in a way that can only be accessed by the special function memcp_P, which
copies the flash data into a char array called sequence that is initialized to maxSize
characters in length.

The & character before sequence allows memcpy_P to modify the data inside
the sequence character array.

08_Monk_ch08.indd 115 26/08/22 10:16 AM

116 Programming Arduino: Getting Started with Sketches

I have not listed sketch 08_01_progmem here, as it is a little lengthy, but you may
wish to load it and verify that it works the same way as the RAM-based version.

In addition to creating the data in a special way, you also have to read the data back
a special way. Your code to get the code string for a Morse letter from the array has to
be modified to look like this:

strcpy_P(buffer, (char*)pgm_read_word(&(letters[ch - 'a'])));

This uses a buffer variable into which the PROGMEM string is copied, so that
it can be used as a regular char array. This needs to be defined as a global variable
as follows:

char buffer[6];

This approach works only if the data is constant—that is, you are not going to
change it while the sketch is running. In the next section, you will learn about
using the EEPROM that is intended for storing persistent data that can be
changed.

If you have individual strings that are perhaps formatted for messages to be
displayed on the serial monitor, then Arduino C provides a handy shortcut. You
can just enclose the string in F() as shown in this example:

Serial.println(F("Hello World"));

The string will then be stored in flash memory, rather than use up RAM.

EEPROM
EEPROM is a type of memory whose contents are retrained even when the power
is removed.

The ATMega328 at the heart of an Arduino Uno has a kilobyte of EEPROM.
EEPROM is designed to remember its contents for many years. Despite its name,
it is not really read-only. You can write to it.

The official Arduino commands for reading and writing to EEPROM are just as
awkward to use as the ones for using PROGMEM. You have to read and write to
and from EEPROM one byte at a time.

The example of sketch 08_02_eeprom_byte allows you to enter a number
between 0 and 255 from the Serial Monitor. The sketch then remembers the
number and repeatedly writes it out on the Serial Monitor.

08_Monk_ch08.indd 116 26/08/22 10:16 AM

Chapter 8: Data Storage 117

//sketch 08_02_eeprom_byte
#include <EEPROM.h>

int addr = 0;
byte b;

void setup() {
Serial.begin(9600);
b = EEPROM.read(addr);

}

void loop() {
if (Serial.available() > 0) {
int i = Serial.parseInt();
if (i <= 255) {
b = lowByte(i);
EEPROM.write(addr, b);
Serial.println("saved byte");

}
else {
Serial.println("number too big");

}
}
Serial.println(b);
delay(1000);

}

To try this sketch, open the Serial Monitor and enter a number between 0 and
255. Then unplug the Arduino and plug it back in. When you reopen the Serial
Monitor, you will see that the number has been remembered.

The function EEPROM.write takes two arguments. The first is the address,
which is the memory location in EEPROM and should be between 0 and 1023. The
second argument is the data to write at that location. This must be a single byte.

Storing an int in EEPROM
An int requires 2 bytes of storage. To store a two-byte int in locations 0 and 1 of
the EEPROM, you could do this:

int x = 1234;
EEPROM.write(0, highByte(x));
EEPROM.write(1, lowByte(x));

The functions highByte and lowByte are useful for separating an int into
two bytes. Figure 8-1 shows how this int is actually stored in the EEPROM.

08_Monk_ch08.indd 117 26/08/22 10:16 AM

118 Programming Arduino: Getting Started with Sketches

To read the int back out of EEPROM, you need to read the two bytes from the
EEPROM and reconstruct the int, as follows:

byte high = EEPROM.read(0);
byte low = EEPROM.read(1);
int x = (high << 8) + low;

The << operator is a bit shift operator that moves the eight high bytes to the
top of the int and then adds in the low byte.

You can find an example sketch for this in sketch 08_03_eeprom_int. This
works rather like its counterpart for bytes, but allows you to enter the whole range
of int numbers from –32768 to 32767.

//sketch 08_03_eeprom_int
#include <EEPROM.h>

int i;

void setup() {
Serial.begin(9600);
i = readEEPROMint(0);

}

void writeEEPROMint(int addr, int x) {
EEPROM.write(addr, highByte(x));
EEPROM.write(addr + 1, lowByte(x));

}

int readEEPROMint(int addr) {
int high = EEPROM.read(addr);
int low = EEPROM.read(addr + 1);
return (high << 8) + low;

}

0000 0100

1101 0010

EEPROM Memory
Address

0

1

2

3

1234 decimal = 0000 0100 1101 0010

High Byte Low Byte

Figure 8-1 Storing a 16-bit integer in EEPROM.

08_Monk_ch08.indd 118 26/08/22 10:16 AM

Chapter 8: Data Storage 119

void loop() {
if (Serial.available() > 0) {
i = Serial.parseInt();
writeEEPROMint(0, i);
Serial.println("saved int");

}
Serial.println(i);
delay(1000);

}

Writing Anything to EEPROM
There is a neat way of saving and reading any variable to and from EEPROM. This
uses a C++ technique called generics to make a pair of general purpose functions
that can save and read different types of data to EEPROM.

To use this, just include the two functions in your code. As an example sketch
08_04_eeprom_long saves a long value (4 bytes).

//sketch 08_04_eeprom_long
#include <EEPROM.h>

long x = 12345678;
long y = 0;

void setup() {
Serial.begin(9600);
EEPROM_writeAnything(0, x);
Serial.print("wrote x: ");
Serial.println(x);
int n = EEPROM_readAnything(0, y);
Serial.print("read y: ");
Serial.println(y);
Serial.println(n);

}

void loop() {}

template <class T> int EEPROM_writeAnything(int ee,
const T& value) {
const byte* p = (const byte*)(const void*)&value;
int i;
for (i = 0; i < sizeof(value); i++) {
EEPROM.write(ee++, *p++);

}
return i;

}

08_Monk_ch08.indd 119 26/08/22 10:16 AM

120 Programming Arduino: Getting Started with Sketches

template <class T> int EEPROM_readAnything(int ee,
T& value) {
byte* p = (byte*)(void*)&value;
int i;
for (i = 0; i < sizeof(value); i++) {
*p++ = EEPROM.read(ee++);

}
return i;

}

The functions EEPROM_writeAnything and EEPROM_readAnything both
return the size of the data that was saved in bytes. When you open the serial con-
sole you will see output something like this:

wrote x: 12345678
read y: 12345678
4
The long variable x is saved and its result read back into the variable y. The 4 in

the output indicates that 4 bytes were used.

Storing a float in EEPROM
Storing a float in EEPROM using the EEPROM_writeAnything function is very
similar to storing an int as sketch 08_05_eeprom_float illustrates.

//sketch 08_05_eeprom_float
#include <EEPROM.h>

float x = 12.34;
float y = 0;

void setup() {
Serial.begin(9600);
EEPROM_writeAnything(0, x);
Serial.print("wrote x: ");
Serial.println(x);
int n = EEPROM_readAnything(0, y);
Serial.print("read y: ");
Serial.println(y);
Serial.println(n);

}

Note that the float data type is also 4 bytes long.

08_Monk_ch08.indd 120 26/08/22 10:16 AM

Chapter 8: Data Storage 121

Storing a String in EEPROM
Writing and reading character strings into the EEPROM is also best accomplished
using EEPROM_writeAnything. Sketch 08_06_eeprom_string illustrates this with
an example that reads and writes passwords from EEPROM. The sketch first dis-
plays this password read from EEPROM and then prompts you to enter a new
password (Figure 8-2). Having set the password, you can unplug the Arduino to
power it down and when you plug it back in again and open the Serial Monitor,
the old password will still be there.

//sketch 08_06_eeprom_string
#include <EEPROM.h>
const int maxPasswordSize = 20;
char password[maxPasswordSize];

void setup() {
EEPROM_readAnything(0, password);
Serial.begin(9600);

}

void loop() {
Serial.print("Your password is:");
Serial.println(password);
Serial.println("Enter a NEW password");
while (!Serial.available()) {};
int n = Serial.readBytesUntil('\n', password,

maxPasswordSize);
password[n] = '\0';
EEPROM_writeAnything(0, password);
Serial.print("Saved Password: ");
Serial.println(password);

}

Figure 8-2 Missing figure caption.

08_Monk_ch08.indd 121 26/08/22 10:16 AM

122 Programming Arduino: Getting Started with Sketches

The character array password has a fixed size of 20 characters that must also
include the "\0" end marker. In the startup function the contents of EEPROM
starting at location 0 are read into password.

The loop function displays the necessary messages and then the while loop
does nothing until serial communication arrives, indicated by Serial.available
returning more than 0. The readBytesUntil function will then keep reading char-
acters until the end of line character "\n" is encountered. The bytes being read will
be put straight into the password char array.

Because you don’t know how long a password will be entered, the result of
reading the bytes is stored in n and then element n of the password is set to ‘\0’ to
mark the end of the string. Finally, the new password is printed to the Serial Mon-
itor to confirm the change in password.

Clearing the Contents of EEPROM
When writing to EEPROM, remember that even uploading a new sketch will
not clear the EEPROM, so you may have leftover values in there from a previous
project. Sketch 08_07_eeprom_clear resets all the contents of EEPROM to
zeros:

//sketch 08_07_eeprom_clear
#include <EEPROM.h>

void setup() {
Serial.begin(9600);
Serial.println("Clearing EEPROM");
for (int i = 0; i < 1024; i++) {
EEPROM.write(i, 0);

}
Serial.println("EEPROM Cleared");

}

void loop() {}

Also be aware that you can write to an EEPROM location only about 100,000
times before it will become unreliable. So only write a value back to EEPROM
when you really need to. EEPROM is also quite slow, taking about 3 milliseconds
to write a byte.

08_Monk_ch08.indd 122 26/08/22 10:16 AM

Chapter 8: Data Storage 123

Compression
When saving data to EEPROM or when using PROGMEM, you will some-
times find that you have more to save than you have room to save it. When
this happens, it is worth finding the most efficient way of representing
the data.

Range Compression
You may have a value for which on the face of it you need an int or a float that is
16-bit. For example, to represent a temperature in degrees Celsius, you might use
a float value such as 20.25. When you are storing that into EEPROM, life would
be so much easier if you could fit it into a single byte, and you could store twice as
much as if you used a float.

One way that you can do this is to change the data before you store it. Remem-
ber that a byte will allow you to store a positive number between 0 and 255. So if
you only cared about the temperature to the nearest degree Celsius, then you
could simply convert the float to an int and discard the part after the decimal
point. The following example shows how to do this:

int tempInt = (int)tempFloat;

The variable tempFloat contains the floating point value. The (int) command is
called a type cast and is used to convert a variable from one type to another compat-
ible type. In this case, the type cast converts the float of (for example) 20.25 to an
int that will simply truncate the number to 20.

If you know that the highest temperature that you care about is 60 degrees
Celsius and that the lowest is 0 degrees Celsius, then you could multiply every
temperature by 4 before converting it to a byte and saving it. Then when you read
the data back from EEPROM, you can divide by 4 to get a value that has a preci-
sion of 0.25 of a degree.

The following code example (sketch 08_08_eeprom_compress) saves such a
temperature into EEPROM, then reads it back and displays it in the Serial Moni-
tor as proof:

//sketch 08_08_eeprom_compress
#include <EEPROM.h>

08_Monk_ch08.indd 123 26/08/22 10:16 AM

124 Programming Arduino: Getting Started with Sketches

void setup() {
float tempFloat = 20.75;
byte tempByte = (int)(tempFloat * 4);
EEPROM.write(0, tempByte);

byte tempByte2 = EEPROM.read(0);
float temp2 = (float)(tempByte2) / 4;
Serial.begin(9600);
Serial.println("\n\n\n");
Serial.println(temp2);

}

void loop(){}

There are other means of compressing data. For instance, if you are taking
readings that change slowly—again, changes in temperature are a good example
of this—then you can record the first temperature at full resolution and then just
record the changes in temperature from the previous reading. This change will
generally be small and occupy fewer bytes.

Conclusion
You now know a little about how to make your data hang around after the power
has gone off. In the next chapter, you will look at displays.

08_Monk_ch08.indd 124 26/08/22 10:16 AM

125

9
Displays

In this chapter, you look at how to write software to control displays. Figure 9-1
shows the two types of display that you will use. The first is an alphanumeric
liquid crystal display (LCD) display shield. The second is a 128 × 64-pixel OLED
(organic light-emitting diode) graphical display. These two types of display are
very popular for the Arduino.

This is a book about software, not hardware; but in this chapter, we will have to
explain a little about how the electronics of these displays work so that you under-
stand how to drive them.

Figure 9-1 An alphanumeric LCD shield (left) and OLED display (right).

09_Monk_ch09.indd 125 08/08/22 2:38 PM

D
ow

nloaded by [M
ISR

 U
niversity For Science A

nd T
echnology 95.211.209.129] at [02/07/23]. C

opyright ©
 M

cG
raw

-H
ill G

lobal E
ducation H

oldings, L
L

C
. N

ot to be redistributed or m
odified in any w

ay w
ithout perm

ission.

126 Programming Arduino: Getting Started with Sketches

Alphanumeric LCD Displays
The LCD module that we use is an Arduino shield that can just be plugged on top
of an Arduino Uno shaped board. In addition to its display, it also has some
buttons. There are a number of different shields, but nearly all of them use the
same LCD controller chip (the HD44780), so look for a shield that uses this con-
troller chip.

I used the DFRobot LCD Keypad Shield for Arduino. This module supplied by
DFRobot (www.robotshop.com) is inexpensive and provides an LCD display that
is 16 characters by 2 rows and also has 6 pushbuttons.

The shield comes assembled, so no soldering is required; you just plug it on top
of your Arduino Uno board (see Figure 9-2).

The LCD shield uses seven of the Arduino pins to control the LCD display and
one analog pin for the buttons. So we cannot use these Arduino pins for any
other purpose.

Figure 9-2 LCD shield attached to an Arduino board.

09_Monk_ch09.indd 126 08/08/22 2:38 PM

http://www.robotshop.com

Chapter 9: Displays 127

A USB Message Board
For a simple example of a simple use of the display, we are going to make a USB
message board. This will display messages sent from the Serial Monitor.

The Arduino IDE comes with an LCD library. This greatly simplifies the process
of using an LCD display. The library gives you useful functions that you can call:

• clear clears the display of any text.

• setCursor sets the position in row and column where the next thing that
you print will appear.

• print writes a string at that position.

This example is listed in sketch 09_01_message_board:

//sketch 09_01_message_board
#include <LiquidCrystal.h>

// lcd(RS E D4 D5 D6 D7)
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
int numRows = 2;
int numCols = 16;

void setup() {
Serial.begin(9600);
lcd.begin(numRows, numCols);
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Arduino");
lcd.setCursor(0,1);
lcd.print("Rules");

}

void loop()
{
if (Serial.available() > 0) {
char ch = Serial.read();
if (ch == '#') {
lcd.clear();

}

09_Monk_ch09.indd 127 08/08/22 2:38 PM

128 Programming Arduino: Getting Started with Sketches

else if (ch == '/') {
// new line
lcd.setCursor(0, 1);

}
else {
lcd.write(ch);

}
}

}

As with all Arduino libraries, you have to start by including the library to make
the compiler aware of it.

The next line defines which Arduino pins are used by the shield and for what
purpose. If you are using a different shield, then you may well find that the pin alloca-
tions are different, so check in the documentation for the shield.

In this case, the six pins used to control the display are D4, D5, D6, D7, D8, and
D9. The purpose of each of these pins is described in Table 9-1.

The setup function is straightforward. You start serial communications so
that the Serial Monitor can send commands and initialize the LCD library with
the dimensions of the display being used. You also display the message

Parameter to LCD() Arduino Pin Purpose

RS 8 Register Select; this is set to 1 or 0 depending on
whether the Arduino is sending data for characters
or an instruction. An instruction might make the
cursor flash, for example.

E 9 Enable; this gets toggled to tell the LCD controller
chip that the data on the following four pins is ready
to be read.

Data 4 4 These four pins are used to transfer data. The LCD
controller chip used by the shield can use eight-bit
or four-bit data. This shield uses four bits, in which
case the bits 4–7 are used rather than 0–7.

Data 5 5

Data 6 6

Data 7 7

Table 9-1 LCD Shield Pin Assignments

09_Monk_ch09.indd 128 08/08/22 2:38 PM

Chapter 9: Displays 129

“Arduino Rules” on two lines by setting the cursor to top-left, printing “Arduino,”
then moving the cursor to the start of the second row and printing “Rules.”

Most of the action takes place in the loop function, which checks for any
incoming characters from the Serial Monitor. The sketch deals with characters
one at a time.

Apart from ordinary characters that the sketch will simply display, there are
also a couple of special characters. If the character is a #, then the sketch clears
the whole display, and if the character is a /, the sketch moves to the second line.
Otherwise, the sketch simply displays the character at the current cursor posi-
tion using write. The function write is like print, but it prints only a single char-
acter rather than a string of characters.

Using the Display
Try out sketch 09_01_message_board by uploading it to the board and then
attaching the shield. Note that you should always unplug the Arduino board so
that it is off before you plug in a shield.

Open up the Serial Monitor and try typing in the text shown in Figure 9-3.

Figure 9-3 Sending commands to the display.

09_Monk_ch09.indd 129 08/08/22 2:38 PM

130 Programming Arduino: Getting Started with Sketches

Other LCD Library Functions
In addition to the functions that you have used in this example, there are a num-
ber of other functions that you can use:

• home is the same as setCursor(0,0): it moves the cursor to top-left.

• cursor displays a cursor.

• noCursor specifies not to display a cursor.

• blink makes the cursor blink.

• noBlink stops the cursor from blinking.

• noDisplay turns off the display without removing the content.

• display turns the display back on after noDisplay.

• scrollDisplayLeft moves all the text on the display one character position
to the left.

• scrollDisplayRight moves all the text on the display one character position
to the right.

• autoscroll activates a mode in which, as new characters are added at the
cursor, the existing text is pushed in the direction determined by the
functions leftToRight and rightToLeft.

• noAutoscroll turns autoscroll mode off.

OLED Graphic Displays
OLED displays are bright and crisp and are fast replacing LCD displays in con-
sumer appliances. The type of OLED described here uses an interface bus called
I2C and has a driver chip called the SD1306. These can be bought on eBay,
Adafruit, and many other suppliers around the Internet. Look for a device with
just four interface pins as these are easiest to work with.

Figure 9-4 shows an Arduino Uno connected to a 0.96-inch OLED display.
These boards have a resolution of 128 × 64 pixels and are monochrome—in this
case, blue. The popularity of these boards mean that the Arduino community has
ported the code to drive these displays to most Arduino-compatible boards.

09_Monk_ch09.indd 130 08/08/22 2:38 PM

Chapter 9: Displays 131

Connecting an OLED Display
You can connect your OLED display to your Arduino using jumper wires. You can
buy these from many sources including Adafruit and depending on the type of
Arduino, or Arduino-compatible board, you will either need female-to-male or
female-to-female jumper wires. You will need to make the following connections:

• GND on the display to GND on the Arduino

• VCC on the display to 5V on the Arduino

• SCL on the display to the SCL pin of the Arduino. These are labelled on the
underside of an Arduino Uno and are also indicated in Figure 9-5

• SDA on the display to the SDA pin of the Arduino (also see Figure 9-5)

I2C (pronounced I squared C) is a serial bus standard commonly used to con-
nect sensors and displays to microcontrollers like the Arduino. As well as the
ground (GND) and positive power pins, it uses a data pin (SDA) and clock pin
(SCK) to communicate with the microcontroller by sending serial data 1 bit at
a time.

Figure 9-4 An Arduino Uno and OLED display.

09_Monk_ch09.indd 131 08/08/22 2:38 PM

132 Programming Arduino: Getting Started with Sketches

Software
Sketch 09_02_oled will count in seconds up to 9999 and then reset to 0.

Before uploading it to your Arduino, you need to find out the I2C address of
the display. This will be a hexadecimal number and may be written on the back of
the OLED display. Many low-cost eBay OLED displays use 0x3c.

You will also need to install some libraries before the sketch will compile.
These can both be imported directly from the Arduino IDE’s Library Manager.
Open the Library Manager by selecting the menu option Sketch | Include
Library | Manage Libraries…. Then search for “Adafruit GFX Library” and click
Install (Figure 9-6). Then do the same for the “Adafruit SSD1306” library. The
SPI and Wire libraries that the sketch needs are both installed by default in the
Arduino IDE.

//sketch 09_02_oled
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

Adafruit_SSD1306 display(128, 64, &Wire, -1);

Figure 9-5 Identifying the SCL and SDA pins of an Arduino Uno.

SCL SDA

09_Monk_ch09.indd 132 08/08/22 2:38 PM

Chapter 9: Displays 133

void setup() {
display.begin(SSD1306_SWITCHCAPVCC, 0x3c); // may need to change this
display.setTextSize(4);
display.setTextColor(WHITE);

}

void loop() {
static int count = 0;
display.clearDisplay();
display.drawRoundRect(0, 0, 127, 63, 8, WHITE);
display.setCursor(20,20);
display.print(count);
display.display();
count ++;
if (count > 9999) {
count = 0;

}
delay(1000);

}

The sketch starts by importing the libraries that it needs and then a display
variable initialized. The parameter supplied is that of the optional “reset” pin that
some OLED displays (including those supplied by Adafruit) have. If your display
does not have a reset pin, then set this value to -1.

Figure 9-6 Installing the Adafruit libraries.

09_Monk_ch09.indd 133 08/08/22 2:38 PM

134 Programming Arduino: Getting Started with Sketches

The setup function initializes the display and you may need to change the I2C
address supplied as the second parameter from 0x3c to a different value. setup
then sets the font size to 4 (large) and the text color to white (anything but black
will display in the LED color).

The loop function clears the display, draws a round-cornered rectangle, sets
the cursor position, and then prints the value of count. The display will not actu-
ally be updated until the command display.display() is run. The variable count is
then incremented and there is a delay of one second.

The Adafruit GFX library provides all sorts of fancy drawing routines that you
can use with the graphical display. For documentation on this library see https://
learn.adafruit.com/adafruit-gfx-graphics-library.

Some boards such as the ESP32 boards are capable of using I2C on any of their
GPIO pins. For this, an extra line of code is needed in setup to specify which pins
are to be used. You can find an example of this in the sketch 09_03_oled_esp32.
The new line of code looks like this:

Wire.begin(17, 16); // SDA, SCL

Conclusion
You can see that programming displays is not hard, particularly when there is a
library that can do a lot of the work for you.

In the next chapter, you will use an Arduino to connect to your network and
the Internet.

09_Monk_ch09.indd 134 08/08/22 2:38 PM

https://learn.adafruit.com/adafruit-gfx-graphics-library
https://learn.adafruit.com/adafruit-gfx-graphics-library

135

10
Arduino Internet of Things

Programming

The Internet of Things (IoT) is the concept that more and more devices will
become connected to the Internet. That doesn’t just mean more and more com-
puters using browsers, but actual appliances and wearable and portable technol-
ogy. This includes all sorts of home automation from smart appliances and
lighting, to security systems and even Internet-operated pet feeders as well as
lots of less practical but fun projects.

In this chapter, you will learn how to program a WiFi-capable board to both
send web requests to services on the Internet and program the device to act as a
web server on your local network.

For this chapter, you will need a WiFi-capable board such as the widely avail-
able Lolin32 Lite.

Boards for IoT
The Arduino Uno is a great board for getting started with Arduino; however, it
lacks WiFi hardware and although it can be kitted out with a WiFi shield, this
makes an expensive and bulky option for an IoT project. It is far more practical to
use an ESP32-based board like the Lolin32 shown in Figure 10-1.

ESP32 boards come in many shapes and sizes and some have extra features
such as a battery connector, to allow the board to charge a LiPo battery from uni-
versal serial bus (USB) and then use it to power the board when it is deployed into
a project. You can even find ESP32 boards with a tiny organic light emitting diode
(OLED) display like the display described in Chapter 9 or even a tiny camera.

10_Monk_ch10.indd 135 08/08/22 2:55 PM

136 Programming Arduino: Getting Started with Sketches

Installing ESP32 into the Arduino IDE
We first met the ESP32-type board in Chapter 6, where you will find instructions
for adding support to the ESP32-type boards to the Arduino IDE. Having installed
support, select the board type to match your board (Figure 10-2).

You will also need to set the port, and if you have trouble uploading, try
decreasing the upload speed in the Tools menu. Before launching into IoT
code, try uploading a simple blink sketch such as sketch 02_01_blink or the
sketch below. Remember to change the pin to blink to be the pin that the
board’s built-in LED is connected to. You can use the constant LED_BUILTIN
to do this.

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);
}

If you have been using an Arduino Uno, then the first thing you will notice
about the ESP32 boards is that compiling and uploading takes a lot longer.

Figure 10-1 A Lolin32 Lite ESP32 board.

LiPo Battery
Connector

WiFi & Bluetooth
Antenna

10_Monk_ch10.indd 136 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 137

Connecting to WiFi
Although Ethernet shields are available for Arduinos, it is usually more conve-
nient to connect wirelessly to your network using WiFi. This is the same process
that you go through when you connect a smartphone or computer to your home
WiFi for the first time. You will supply the board with the name of your network
(called the SSID) and the password. On a phone or computer, you would choose
the SSID from a list and then enter the password when prompted. When connect-
ing a board programmed using the Arduino IDE, you put this information in the
sketch. In sketch 10_01_wifi_connect, we just go as far as connecting to the net-
work, but this will form the bases of all the other network examples in this chapter.

//sketch 10_01_wifi_connect
#include <WiFi.h>

// Change these 2 for your network!
const char* ssid = "my network name";
const char* password = "my password";

Figure 10-2 Setting the board type.

10_Monk_ch10.indd 137 08/08/22 2:55 PM

138 Programming Arduino: Getting Started with Sketches

void setup(void) {
Serial.begin(9600);
connectWiFi();

}

void connectWiFi() {
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}
Serial.print("\nConnected to: ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

}

void loop(void) {}

Before uploading this sketch to your ESP32 board, change the two lines for
ssid and password to match your WiFi credentials.

When the program is uploaded, open the serial monitor so that you can see
what’s happening. You should see something like this:

.....
Connected to: MY_NETWORK
IP address: 192.168.1.229

While the board is connecting to your WiFi network, you will see a series of dots
appear. After a few seconds, the board will confirm that it is connected and report
the IP address of your board on your local network. Every device that connects to
your network is allocated an IP address by your network. You can think of this as
your devices name on the network, and it’s that that is used whenever you need
to communicate with the device.

Starting at the top of the code, we not unsurprisingly, start by importing the
WiFi library. All the code for actually connecting to the network is contained in
the function connectWiFi. This starts by setting the WiFi mode to STA (for
station). This means that the board is going to connect to an existing network.
The WiFi.begin call starts of the process of connecting to the network. As this
takes a few seconds, the next few lines monitor the status of WiFi and print out
dots until connection has taken place. After that the code just sends messages to
the serial monitor confirming successful connection and the IP address allocated
to the board by your router.

10_Monk_ch10.indd 138 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 139

Running a Web Server
Let’s now take the connection example a stage further and have our ESP32 board act
as a web server. Yes, I did just say that. This little board is going to do in miniature the
same thing as a big server on the Internet. However, as you might expect, this server
is not going to be able to handle thousands of connections at a time (actually, it just
handles 1). The other difference is that this server is only going to be available inside
our local network. It is just for us, the world is not going to have access to it.

When we connect to this server using a browser on our computer or phone, all
it’s going to do is display a message to us in the browser like the one in Figure 10-3.

If we really wanted a proper web server, then there are much better choices of
hardware available. In this case, we are just displaying a message, but you could
imagine a situation where the ESP32 board was connected to some sensors (per-
haps a weather station) and then it could serve up its readings, so that you could
view them from your phone or computer.

Here is the code for sketch 10_02_webserver_hello. This uses the same func-
tion connectWiFi as the previous sketch; so, for brevity, that function has
been omitted from the following listing as has the loop function which hasn’t
changed either.

//sketch 10_02_webserver_hello
#include <WiFi.h>
#include <WebServer.h>
#include <ESPmDNS.h>

// Change these 2 for your network!
const char* ssid = "my network name";
const char* password = "my password";
const char* hostname = "esp32";

WebServer server(80);

void handleRoot() {
server.send(200, "text/html", "<h1>Hello World!</h1>");

}

void setup(void) {
Serial.begin(9600);
connectWiFi();
if (MDNS.begin(hostname)) {
Serial.println("Webserver started");

}

10_Monk_ch10.indd 139 08/08/22 2:55 PM

140 Programming Arduino: Getting Started with Sketches

server.on("/", handleRoot);
server.begin();
Serial.print("Open your browser on http://");
Serial.println(WiFi.localIP());
Serial.print("this may also work: http://");
Serial.print(hostname); Serial.println(".local");

}

There are a couple of new imports. The purpose of WebServer.h should be fairly
obvious. The other import (ESPmDNS.h) provides a feature called mDNS (multicast
Domain Name Service). This allows devices on the network to identify themselves by
name in addition to their IP address. The new constant hostname is used by mDNS.

The line WebServer server(80); sets up a web server running on port 80
(the default for all web servers). The WebServer library is designed to work like
most web servers by being able to serve up pages when a browser demands them.
The default page is the root or index page and is the page that you see when the
URL is just the host, without specifying a page—for example http://192.168.1.229
shown in Figure 10-3.

The function handleRoot will be called whenever a browser requests the
root page. This function responds to the browser by sending the code 200 (no
errors or redirects), content type of text/html and the HTML tag <h1>Hello
World!</h1>. The h1 tag means heading level 1, which is why the writing is big
when you see it in the browser.

In the setup function MDNS.begin registers the hostname with mDNS. The
mDNS may or may not work, depending on your network and the computer you
are using to try and connect to the ESP32 web server, but the IP address should
always work. If you are happy just using the IP address, then you can omit the
whole if statement.

The code server.on("/", handleRoot); is what links requests to the
server for the root page to the handleRoot function.

Figure 10-3 Hello Web Server!

10_Monk_ch10.indd 140 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 141

To try the sketch out, don’t forget to change the ssid and password to match
your network and then copy and paste the URL from the serial monitor into the
address bar of your browser.

Serving Sensor Readings
A more realistic thing for our web server to do would be to report sensor readings
from the ESP32 board. The ESP32 has certain pins that are touch sensitive. When
you touch them a reading decreases. The lower the number, the better the touch.
We can use this facility to provide a value to be displayed on our web server. We
will start with a really simple version of this example, where the readings only
update when you refresh the page and then go on to improve the example so that
the readings update on the webpage automatically.

The code for this sketch is in 10_03_webserver_touch. The only part of the
sketch that has changed is the function handleRoot and a new constant
touchPin.

//sketch 10_03_webserver_touch
void handleRoot() {
String message = "<h1>Touch value: ";
message += touchRead(touchPin);
message += "</h1>";
server.send(200, "text/html", message);

}

The handleRoot function now builds up a message to be sent to the browser
that is still a level 1 heading (h1) but now the text will display the value of the pin
being used to sense touch, defined in the constant touchPin.

Try uploading the sketch (don’t forget to change the SSID and password) and
you should see something like Figure 10-4.

Put your finger on pin 13 of your ESP board and at the same time click on the
reload button on your browser. The reading should change to a much lower value.

Figure 10-4 Serving touch readings from an ESP32 web server.

10_Monk_ch10.indd 141 08/08/22 2:55 PM

142 Programming Arduino: Getting Started with Sketches

Serving Sensor Readings—Improved
Having to click on the reload button in your browser to get updated readings is a
bit crude. The way to fix this, so that the readings update automatically, is to add
some Javascript to the root page that tells the browser how to fetch values to be
displayed periodically and then for the browser to update the page it’s displaying
its self.

This is where it can get very confusing as to where the code we see in the
Arduino sketch is actually running. This is further complicated by having some of
the code being use in a different programming language (JavaScript) because
that’s the programming language that browsers use).

We are going to change our web server code as follows:

• Put the contents of the root page into a separate file. This root page will
contain not only the HTML tags to display the reading in, but also,
crucially, this page will also provide the JavaScript code to the browser that
it will need to run to update the page.

• Add a second page (called touch) to the web server that responds with a
simple text value that is the touch reading.

A web browser pointed to the root page will only need to load the page con-
tents once and the browser displaying the page will repeatedly request reading
every half a second from the touch page.

When you upload this sketch, it will look the same as Figure 10-4 but impor-
tantly, you should see the touch reading automatically update as you touch or
release the pin, without having to reload the page.

Most of this code has already been explained. Let’s look at the new bits.
First of all, when you open this sketch, you will see that there are now two tabs

in the Arduino IDE’s editor window. The usual one being labeled 10_04_web-
server_touch_auto and the new one being labeled index.h. Arduino sketches are
usually small enough that there is no need to split things out into separate files.
However, this is something that is useful to do in situations like this. To add a
new file to your sketch, click on the drop-down icon at the far right of the tab bar
(Figure 10-5) and select New Tab. You will then be prompted to enter a file name.

Here’s the contents of index.h.

char *index_template = " \
<script> \

10_Monk_ch10.indd 142 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 143

function get_reading() { \
const request = new XMLHttpRequest(); \
request.open('GET', '/touch'); \
request.send(); \
request.onload = function() { \
if (request.status === 200) { \
value_got = request.responseText; \
field = document.getElementById('value_field'); \
field.textContent = value_got; \
window.setTimeout(get_reading, 500); \

} \
} \

} \
get_reading(); \

\
</script> \
<h1>Touch Value: </h1> \
";

Figure 10-5 Adding a file to a sketch.

10_Monk_ch10.indd 143 08/08/22 2:55 PM

144 Programming Arduino: Getting Started with Sketches

The file is actually legal Arduino C code defining a character string and assign-
ing it to a constant called index_template. The \ characters on the right of
each line are string continuation characters that allow the string to be spread over
multiple lines to make it easier to read.

It is beyond the scope of this book to teach JavaScript in any detail, but in explain-
ing how this example works you shouldn’t find it too hard to adapt it to other uses.
The contents of index.h are really in two parts: Javascript code contained inside the
<script> tag and then some regular HTML inside an <h1> tag. Remember this
JavaScript code is not going to run on the ESP32 board. The ESP32 board is just
sending it to the browser so that the browser can then run it. The JavaScript code
first defines a function (just like an Arduino C function) called get_reading and
then calls get_reading just once. Here’s what get_reading does:

• Define a web request of type ‘get’ (get a value) to access the page ‘touch’ and
then send it to the web server.

• Define a new nameless function and associate it with request.onload
that will be run, when the web server has finished sending its data back to
the browser.

• Within that nameless function get the touch value sent back (value_got)
and use it to update the tag of the HTML where the reading is
displayed. Use window.timeout to schedule get_reading to be called
again in 500 milliseconds.

Turning our attention to the main sketch, here is the listing, with the
connectWiFi and loop functions omitted for brevity.

//sketch 10_04_webserver_touch_auto

#include <WiFi.h>
#include <WebServer.h>
#include <ESPmDNS.h>
#include "index.h"

const char* ssid = "my network name";
const char* password = "my password";
const char* hostname = "esp32";

const int touchPin = 13;

WebServer server(80);

10_Monk_ch10.indd 144 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 145

void handleRoot() {
server.send(200, "text/html", index_template);

}

void handleTouch() {
server.send(200, "text/plain", String(touchRead(touchPin)));

}

void setup(void) {
Serial.begin(9600);
connectWiFi();
if (MDNS.begin(hostname)) {
Serial.println("Webserver started");

}
server.on("/", handleRoot);
server.on("/touch", handleTouch);
server.begin();
Serial.print("Open your browser on http://");
Serial.println(WiFi.localIP());
Serial.print("this may also work: http://");
Serial.print(hostname); Serial.println(".local");

}

The first thing to note is that there is a new #include line for index.h. This basi-
cally allows all the contents of index.h to be included in the main sketch file, while
allowing us to keep it in a separate file. In fact, if you were to cut and paste the
contents of index.h into the main sketch files the sketch would work just the same
without the file index.h.

The next interesting part of the sketch is that we have a new function called
handleTouch. This will be called whenever a browser requests the page “touch”
from the web server. This function responds to the browser with the touch read-
ing contained in a string.

To allow the web browser to handle this new web page the following line asso-
ciates requests to the “touch” page with the function handleTouch:

server.on("/touch", handleTouch);
...

It’s easy to see how this example could be modified to display temperature or
other more useful sensor data on a web page.

10_Monk_ch10.indd 145 08/08/22 2:55 PM

146 Programming Arduino: Getting Started with Sketches

Turning the Built-in LED On and Off
from a Web Page
Now you know how to display readings on a web page, what about sending com-
mands to a web page to make the ESP32 do something, such as turn the built-in
LED on and off. This can be done in a similar way to the previous example, where
the main web page is loaded in to the browser once, and then the browser is
responsible for sending further web request to the server to turn the LED on and
off. Figure 10-6 shows the somewhat minimal user interface to do just this.

When the On button is pressed, the ESP32’s built-in LED will light and when
you click Off—well you guessed it!

As with the previous example, the contents of the root page are kept in index.h.

char *index_template = " \
<script> \

function post_switch_status(state) { \
const request = new XMLHttpRequest(); \
request.open('POST', '/switch'); \
request.send(state.toString()); \

} \
</script> \

Figure 10-6 A web switch.

10_Monk_ch10.indd 146 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 147

<h1>Switch</h1> \
<button onClick='post_switch_status(1)'>On</button> \
<button onClick='post_switch_status(0)'>Off</button> \
";

As with the previous example, the contents of index.h are split between JavaScript
code to be run on the web browser and HTML user interface elements. The user
interface comprises two button tags, each of which calls the JavaScript function
post_switch_status with a parameter of 1 or 0 depending on whether the
LED is being turned on or off. The JavaScript function itself sends a web request to
the ‘switch’ page, with the state (0 or 1) as the data posted to web server.

Looking at the sketch itself, the main difference from the previous sketch is the
handleSwitch function:

//sketch 10_05_webserver_switch

void handleSwitch() {
String stateStr = server.arg(0);
Serial.println(stateStr);
if (stateStr == "1") {
digitalWrite(ledPin, LOW);

}
else if (stateStr == "0") {
digitalWrite(ledPin, HIGH);

}
server.send(200, "text/plain", "");

}

This function first retries that data posted to the page as server.args(0)—0
for the first (and only) data sent. It then prints this on the Serial Monitor as a use-
ful debugging tool before setting the GPIO pin for the LED either HIGH or LOW,
depending on the data sent. Note that on the Lolin32 Lite that I used, the logic of
the LED is reversed, so LOW means turn the LED on.

Although this example just turns an LED on or off, that pin could control a
relay to switch something much more powerful on or off.

Connecting to a Web Service
All the examples so far have involved running a local web server on the ESP32. In
this example, we will look at how the ESP32 can act a bit like a browser and use
data that it fetches from the Internet to do something. In this case, to use the open

10_Monk_ch10.indd 147 08/08/22 2:55 PM

148 Programming Arduino: Getting Started with Sketches

weather map web service to lookup the current outdoor temperature for a par-
ticular location and display the temperature and location on an OLED display like
the one used in Chapter 9 (Figure 10-7).

For this project I used a Lolin32 Lite ESP32 board. This board does not break-
out pin 21, one of the default I2C pins for the ESP32 with Arduino. Fortunately, it
is easy to associate the I2C SDA and SCL pins with any pins on an ESP32 board.
So, in this case the wiring (show in Figure 10-7) is as follows:

• GND to GND

• VCC on the OLED display to 3V on the Lolin32

• SCL on the OLED display to 16 on the Lolin32

• SDA on the OLED display to 17 on the Lolin32

The Open Weather Maps service is free if you keep your number of requests
below 1 million calls a month to their API (Application Programming Inter-
face) but to use it, you will need to register for their free tier at: https://
openweathermap.org/. Registering will give you an access key to allow you to
connect to their service to get their weather data. To get your key, log in, then
click on the dropdown menu on your account name and select the option My
API Keys (Figure 10-8).

Create a new key by entering a name (anything will do for a name) and then
clicking the Generate button. This creates a long key, that you will need to copy

Figure 10-7 Displaying the temperature from the open weather map service.

10_Monk_ch10.indd 148 08/08/22 2:55 PM

http://penweathermap.org/

Chapter 10: Arduino Internet of Things Programming 149

and paste on the sketch. You need to specify a latitude and longitude for the
weather API. One way to find this information is to open Google Maps in your
browser and pick a location. When you click on it, the latitude and longitude will
pop-up (Figure 10-9).

The code is quite long, so open the sketch 10_06_weather_api while its opera-
tion is described; there are also the usual changes you will need to make to the
sketch for your network and also the key.

Figure 10-8 Creating an API key.

Figure 10-9 Using Google Maps to find latitude and longitude.

10_Monk_ch10.indd 149 08/08/22 2:55 PM

150 Programming Arduino: Getting Started with Sketches

const char* ssid = "my network name";
const char* password = "my password";
const char* url =
"http://api.openweathermap.org/data/2.5/weather?lat=
53.925854&lon=-3.021994&appid=ea751fc712f28759e8a97613b712";

Change the values of ssid and password to march those of your WiFi net-
work and then paste in new values for lat and long and replace the long string for
the appid at the end of the url variable with the key that you generated earlier.
You can test out this URL by copying and pasting it into the address bar at the top
of your browser. You will get a response something like this:

{"coord":{"lon":-3.022,"lat":53.9259},"weather":[{"id":802,
"main":"Clouds","description":"scattered clouds","icon":
"03d"}],"base":"stations","main":{"temp":282.52,"feels_like":
279.92,"temp_min":281.54,"temp_max":283.84,"pressure":1019,
"humidity":67,"sea_level":1019,"grnd_level”:1018},"visibility":
10000,"wind":{"speed":5.08,"deg":75,"gust":6.31},"clouds":{"all":
28},"dt":1650881760,"sys":{"type":1,"id":1411,"country":"GB",
"sunrise":1650862127,"sunset":1650915062},”timezone”:3600,"id":
2649312,”name":"”Fleetwood","cod":200}

This response from the API is in a format called JSON. It is made up of attribute
and value pairs grouped together in curly braces and separated by commas. We
will need to extract the temp and name values from this. Continuing with the code:

const long fetchPeriod = 60000L; // milliseconds long lastFetchTime = 0;

Adafruit_SSD1306 display(128, 64, &Wire, -1);

int tempC = 0;

String placeText = String("Looking up..");

The variables fetchPeriod and lastFetchTime are used to control how
often requests take place to the API and the display is updated. The global variables
tempC and placeText will be used to hold the values that we want to display.

void setup(void) {
Wire.begin(17, 16); // SDA, SCL
display.begin(SSD1306_SWITCHCAPVCC, 0x3c);
display.setTextColor(WHITE);
display.setTextSize(1);
Serial.begin(9600);
connectWiFi();
getWeatherData();
updateDisplay();

}

10_Monk_ch10.indd 150 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 151

In the setup function the display is initialized. Serial is also started, but is only
used for test messages. As with our other network-related sketches, we call
connectWiFi; but, if you go and look at this function, you will see that rather than
writing progress messages to the Serial Monitor, these are shown on the OLED dis-
play. Finally, setup calls getWeatherData and then updateDisplay, which we
will come to in a minute.

void loop(void) {
long now = millis();
if (now - lastFetchTime > fetchPeriod) {
lastFetchTime += fetchPeriod;
getWeatherData();
updateDisplay();

}
}

The loop function calls getWeatherData and updateDisplay if the
fetchPeriod has elapsed. Now we come to the crucial call to the API con-
tained in the getWeatherData function.

void getWeatherData() {
if (WiFi.status() != WL_CONNECTED) {
connectWiFi();

}
HTTPClient client;
client.begin(url);
int responseCode = client.GET();
if (responseCode == HTTP_CODE_OK) {
String data = client.getString();
String tempText = extractValue(data, "\"temp\":", false);
tempC = tempText.toInt() - 273;
placeText = extractValue(data, "\"name\":", true);

}
}

This function first checks to see if the board is connected to WiFi and if it
isn’t, it calls connectWiFi. It then creates a client connection using the url
variable we defined earlier. The web request to the API is actually made when
client.getString is called. To extract the temperature and location name
from the data, the function extractValue is used and in the case of the tem-
perature, the string result is converted into an int using the toInt method.
The extractValue function is a useful function that you might want to use
in your own IoT projects.

10_Monk_ch10.indd 151 08/08/22 2:55 PM

152 Programming Arduino: Getting Started with Sketches

String extractValue(String data, char* key, boolean isString) {
int valueStartIndex = data.indexOf(key);
int n = strlen(key);
String value = "";
if (valueStartIndex > -1) {
valueStartIndex += n;
int valueEndIndex = data.indexOf(",", valueStartIndex);
if (isString) {

valueStartIndex ++;
valueEndIndex --;

}
value = data.substring(valueStartIndex, valueEndIndex);
Serial.println(value);
return value;

}
return String("");

}

The extractValue function uses the indexOf method of String to find
the start of the key within the body of the text. The length of the key is added to
valueStartIndex to find the first position of the value. It then uses indexOf
again to find the end of the data value (searching for a comma). The second
optional parameter to indexOf is the position to start from.

One subtlety of this function is the isString parameter. If this is set to true
then an extra character is removed from either end of the string by increasing
valueStartIndex by 1 and decreasing valueEndIndex by 1. This removes
the quotation marks from around the string.

The updateDisplay function displays the temperature and location infor-
mation, by positioning the cursor and using different sized fonts.

void updateDisplay() {
display.clearDisplay();
display.setCursor(0, 0);
display.setTextSize(6);
display.print(tempC);
display.setTextSize(2);
display.print("C");
display.setCursor(0, 54);
display.setTextSize(1);
display.println(placeText);
display.display();

}

This project could easily be adapted to display other information about the
current weather, or even display information from other APIs provided by Open
Weather Maps such as weather forecast information.

10_Monk_ch10.indd 152 08/08/22 2:55 PM

Chapter 10: Arduino Internet of Things Programming 153

Conclusion
In this chapter, we have written Arduino sketches that allow a WiFi-equipped
board to both act as a web server on our local network and call web services over
the Internet. Much of this code can be readily adapted to your own projects and
should give you a firm basis to work from.

10_Monk_ch10.indd 153 08/08/22 2:55 PM

10_Monk_ch10.indd 154 08/08/22 2:55 PM

This page intentionally left blank

155

INDEX

Symbols
<, <=, >. >=, ==, !=, 33
|| (or operator), 47
&& (and operator), 47
{} (block), 50

A
Adafruit Feather, 98
Analog Input, 84–86
Analog Output, 82–84
API key, 149
Arduino Boards

Nano, 87
Pro Mini, 89

Arduino IDE
board manager, 91
example sketches, 11, 16
installation, 8–9
port (setting), 11
serial console, 27–29

Arduino Uno
history, 7
overview, 3
power supply and connections, 4

Arduino web editor, 111
Arithmetic, 29
Array, 53–58
ASCII codes, 58

B
BBC micro:bit, 96–97
Binary, 105
Bit manipulation, 104–105
Blink sketch, 10, 13, 24
Board manager (Arduino IDE), 91

boolean datatype, 46
Bounce (switch contacts), 77
Bounce2 library, 81
Breadboard, 90

C
C programming language

arithmetic, 29
array, 53–58
boolean datatype, 46
comparison operators, 33
conditional commands, 31
constants, 37
double datatype, 48
experimenting in the Serial Console,

27–29
float datatype, 45
for loops, 33–36
functions, 39–52
int datatype, 26
long datatype, 48
variables, 26, 41
static variables, 44
string arrays, 57
string literals, 57
string variables, 59
String class, 67
while loops, 36

Coding style, 49
Comments, 51–52
Comparison operators, 33
Compilation, 19
Compile-time constants, 110
Compression (of data), 123–124
Conditional commands, 31
Constants, 37

11_Monk_Index.indd 155 22/09/22 12:16 PM

156 Index

D
Data storage, 113–124
Debouncing (switch contacts), 73
Digital Inputs, 73–82
Digital Outputs, 69–72
Displays, 125–134
double datatype, 48

E
EEPROM, 116
ESP32

boards, 92
touch interface, 86
wifi (connecting to), 137

Example sketches, 11, 16

F
Feather (Adafruit), 98
Flash memory, 114–116
float datatype, 45
for loops, 33
Function

introduction, 39
parameter to function, 40
return value, 44

H
Hexadecimal, 105

I
if, 31
Indentation, 49
Input/Output, 69–86
int datatype, 26
Interrupts, 109–110
IoT (Internet of Things), 135–153

L
LCD display, 126
LCD library, 130
LOLIN32 Lite, 6
long datatype, 48

M
Math functions, 104
micro:bit, 96–97
Microcontroller, 1, 5
Microcontroller development boards, 2
Morse Code translator, 59–67
Multimeter, 72

N
Nano (Arduino), 87

O
OLED display, 130
Open Weather Maps API, 148
Operators (arithmetic), 31

P
Parameter (to function), 40
Port (setting in Arduino IDE), 11
Pro Mini (Arduino), 89
Programming, 17–19
Pull-up resistor, 73–74
PWM (Pulse Width Modulation), 84

R
Random numbers, 101–103
Raspberry Pi Pico, 96–97
Return value (of function), 44

S
Sensor readings (web page), 141–145
Serial Console, 27–29
Sketch

blink, 10, 13, 24
uploading, 10

Shift registers, 108
S.O.S. (using arrays), 56
String

arrays, 57
literals, 57
variables, 59

Switch (push switch), 75

11_Monk_Index.indd 156 22/09/22 12:16 PM

Index 157

T
tone command, 106–107
Touch interface (ESP32), 86
Truth table, 47

U
unsigned datatype modifier, 48
Uploading (sketch), 10

V
variables, 26, 41
Voltage (operating voltage), 72

W
Weather (web service API), 148
Web editor (Arduino), 111
Web server (on ESP32)

displaying sensor readings, 141–145
introduction, 139
switching outputs on and off, 146–147

Web service (accessing) 147–152
while loops, 36
WiFi (connecting), 137

11_Monk_Index.indd 157 22/09/22 12:16 PM

	Cover
	Title Page
	Copyright Page
	Dedication
	About the Author
	Contents
	Preface
	Acknowledgments
	Introduction
	1 Getting Started
	Microcontrollers
	Development Boards

	A Tour of an Arduino Uno Board
	Power Supply
	Power Connections
	Analog Inputs
	Digital Connections
	Microcontroller
	Other Components
	A Tour of a WiFi-Capable Arduino-Compatible

	The Origins of Arduino
	Powering Up
	Installing the Software
	Uploading Your First Sketch
	The Arduino Application
	Conclusion

	2 C Language Basics
	Programming
	What Is a Programming Language?
	Blink—Again!
	Variables
	Experiments in C
	Numeric Variables and Arithmetic

	Commands
	if
	for
	while

	Constants
	Conclusion

	3 Functions
	What Is a Function?
	Parameters
	Global, Local, and Static Variables
	Return Values
	Other Variable Types
	Floats
	Boolean
	Other Data Types

	Coding Style
	Indentation
	Opening Braces
	Whitespace
	Comments

	Conclusion

	4 Arrays and Strings
	Arrays
	Morse Code SOS Using Arrays

	String Arrays
	String Literals
	String Variables

	A Morse Code Translator
	Data
	Globals and Setup
	The loop Function
	The flashSequence Function
	The flashDotOrDash Function
	Putting It All Together
	The String Class

	Conclusion

	5 Input and Output
	Digital Outputs
	5 V or 3.3 V?

	Digital Inputs
	Pull-Up Resistors
	Internal Pull-Up Resistors
	Debouncing

	Analog Outputs
	Analog Input
	Conclusion

	6 Boards
	Arduino Nano
	Arduino Pro Mini
	Breadboard
	The Boards Manager
	ESP32 Boards
	Raspberry Pi Pico
	BBC micro:bit
	Adafruit Feather System
	Conclusion

	7 Advanced Arduino
	Random Numbers
	Math Functions
	Bit Manipulation
	Advanced I/O
	Generating Tones
	Feeding Shift Registers

	Interrupts
	Compile-Time Constants
	The Arduino Web Editor

	Conclusion

	8 Data Storage
	Large Data Structures
	Storing Data in Flash Memory
	EEPROM
	Storing an int in EEPROM
	Writing Anything to EEPROM
	Storing a float in EEPROM
	Storing a String in EEPROM
	Clearing the Contents of EEPROM

	Compression
	Range Compression

	Conclusion

	9 Displays
	Alphanumeric LCD Displays
	A USB Message Board
	Using the Display
	Other LCD Library Functions
	OLED Graphic Displays
	Connecting an OLED Display
	Software
	Conclusion

	10 Arduino Internet of Things Programming
	Boards for IoT
	Installing ESP32 into the Arduino IDE
	Connecting to WiFi
	Running a Web Server
	Serving Sensor Readings
	Serving Sensor Readings—Improved
	Turning the Built-in LED On and Off from a Web Page
	Connecting to a Web Service
	Conclusion

	Index

