P \ .

DevOps Culture
and Practice with
OpenShift

Deliver continuous business value through people,
processes, and technology

=78

Tim Beattie | Mike Hepburn | Noel O'Connor | Donal Spring
lllustrations by Ilaria Doria

_— d
I\ \



DevOps Culture
and Practice with
OpenShift

Deliver continuous business value through people,
processes, and technology

Tim Beattie
Mike Hepburn
Noel O'Connor

Donal Spring

Packt

BIRMINGHAM—-MUMBAI




DevOps Culture and Practice with OpenShift
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author(s), nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Tim Beattie, Mike Hepburn, Noel O'Connor, and Donal Spring
Hlustrator: Ilaria Doria

Technical Reviewer: Ben Silverman

Managing Editors: Aditya Datar and Siddhant Jain

Acquisitions Editor: Ben Renow-Clarke

Production Editor: Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Edward Doxey, Alex Patterson,
Arijit Sarkar, Jake Smith, and Lucy Wan

First Published: August 2021
Production Reference: 1100821
ISBN: 978-1-80020-236-8

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street,
Birmingham, B3 2PB, UK.

www.packt.com



http://www.packt.com

Praise for DevOps Culture and
Practice with OpenShift

"Creating successful, high-performing teams is no easy feat. DevOps Culture and
Practice with OpenShift provides a step-by-step, practical guide to unleash
the power of open processes and technology working together."

—Jim Whitehurst, President, IBM

"This book is packed with wisdom from Tim, Mike, Noel, and Donal and lovingly illustrated
by Ilaria. Every principle and practice in this book is backed by wonderful stories of the
people who were part of their learning journey. The authors are passionate about visualizing
everything and every chapter is filled with powerful visual examples. There is something for
every reader and you will find yourself coming back to the examples time and again."

—Jeremy Brown, Chief Technology Officer/Chief Product Officer at Traveldoo,
an Expedia Company

"This book describes well what it means to work with Red Hat Open Innovation Labs,
implementing industrial DevOps and achieving business agility by listening to the team. I have
experienced this first hand. Using the approach explained in this book, we have achieved a level

of collaboration and engagement in the team we had not experienced before, the results didn't
take long and success is inevitable. What I have seen to be the main success factor is the change
in mindset among team members and in management, which this approach helped us drive."

—Michael Denecke, Head of Test Technology at Volkswagen AG

"This book is crammed full to the brim with experience, fun, passion, and great practice. It
contains all the ingredients needed to create a high performance DevOps culture...it's awesome!"

—John Faulkner-Willcocks, Head of Coaching and Delivery Culture, JUST

"DevOps has the opportunity to transform the way software teams work and the products they
deliver. In order to deliver on this promise, your DevOps program must be rooted in people. This
book helps you explore the mindsets, principles, and practices that will drive real outcomes."
—Douglas Ferguson, Voltage Control Founder, Author of Magical Meetings
and Beyond the Prototype

"Fun and intense to read! Somehow, the authors have encapsulated
the Red Hat culture and expression in this book."

—Jonas Frydal, Director at Volvo Cars



"This book is really valuable for me. I was able to map every paragraph I read to the journey we
took during the residency with Red Hat Open Innovation Labs. It was such an intense but also
rewarding time, learning so much about culture, openness, agile and how their combination
can make it possible to deliver crucial business value in a short amount of time.

Speaking from my personal experience, we enabled each other, my team bringing the deep
knowledge in the industry and Red Hat's team bringing good practices for cloud-native
architectures. This made it possible to reinvent how vehicle electronics technology is tested
while pushing Red Hat's OpenShift in an industrial DevOps direction.

I am looking forward to keeping a hard copy of the book at my desk for easy review."
—Marcus Greul, Program Manager at CARIAD, a Volkswagen Group company

"Innovation requires more than ideas and technology. It needs people being well led and the
'‘Open Leadership' concepts and instructions in DevOps Practice and Culture with OpenShift
should be required reading for anyone trying to innovate, in any environment, with any team."

—Patrick Heffernan, Practice Manager and Principal Analyst,
Technology Business Research Inc.

"Whoa! This has to be the best non-fiction DevOps book I've ever read. I cannot believe how
well the team has captured the essence of what the Open Innovation Labs residency is all
about. After reading, you will have a solid toolbox of different principles and concrete practices
for building the DevOps culture, team, and people-first processes to transform how you use
technology to act as a force multiplier inside your organization."

—Antti Jaakkonen, Lean Agile Coach, DNA Plc

"Fascinating! This book is a must-read for all tech entrepreneurs who want to build scalable
and sustainable companies. Success is now handed to you."

—Jeep Kline, Venture Capitalist, Entrepreneur

"In a digital-first economy where technology is embedded in every business,
innovation culture and DevOps are part and parcel of creating new organizational values
and competitive advantages. A practical and easy to understand guide for both technology

practitioners and business leaders is useful as companies accelerate their
Digital Transformation (DX) strategies to thrive in a changed world."

—Sandra Ng, Group Vice President, ICT Practice

"DevOps Culture and Practice with OpenShift is a distillation of years of experience into
a wonderful resource that can be used as a recipe book for teams as they form and develop,
or as a reference guide for mature teams as they continue to evolve."

—David Worthington, Agile Transformation Coach, DBS Bank, Singapore



Table of Contents

Foreword i
Preface iii
Acknowledgements ix
Section 1: Practices Make Perfect 1
Chapter 1: Introduction — Start with Why 3
Why — For What Reason OF PUIPOSE? .....ccceeeeeriiricreerenneenesneesesnesssneesssneesssseeens 4
Why Should | Listen to These FOIKS? ...ttt 5
Where Did This BOOK COME FromM? ......coooiiiiiiiiiiieineenceeneeseessntesseessneessneenne 6
Who Exactly IS This BOOK FOI? ...ttt 8

a0 o 0 0 T I (o T I o Y N 10
CONCIUSION ettt s re s ae e s ae e s s sne s s sae e s e snessssneesanns 11
Chapter 2: Introducing DevOps and Some Tools 13
The Value Chain ...ttt see e s e s ssesene s 14
THE GAPS coeeeeiereiereie e st resere st e s e s s e e s se e s aesssae s s sessnessssessssessnessnsasennessnsens 16

The Big List Of TRINGS £0 DO .....eeereiireeieeereereereeere e e sse e s sne e s see s ne e s neesene 16

Demonstrating Value and Building the Right Thing .......ccccccooviiiiiiiiiiniiiiiiiine 17

How Do We Do the Things on OUr LiSt? .......cccccevviiniiiiiiieennienienienieneeseeseeseesseens 18

Development t0 OPEratioNs ........cccceiiiiiiiiiiiiiiincence ettt sse s sseesane 22
People, Process, and TeChNOIOZY ......cccccverieiiiieiiiiiciiincrencrescceeeseneeseseeesennees 24
The Mobius Loop and the Open Practice Library .......cccccoevevevenevencvenncennnenn. 26

(@0 Lol 11 53 o] o TR 32



Chapter 3: The Journey Ahead 33

A Story about Telling @ PractiCe .......ccocveeveveiinireiinceeecceeecceeescneeeseeeesssneesssnees 35
PetBattle — the BackStOry ...ttt e s 36
What about Legacy SYSTEMIS? .....ccccuiiirviieiiiiercrreenceeeecnneesssneesesneesssssesssseesssnnes 37
BOrrowing BrilllanCe ........coccuiiiiiiiiiiieiccteneenecre s 38
What to Expect from the Rest of This BOOK? ......cccccceveviiriieeencveeecneeencneenenee 38
What about Distributed TEamIS? ........cocciiiiiiiiireieneeeereeeeeee e 43
Some Words about the World of 'Open’ .........oieriinrienreereeneeeseesseeessseessneessneens 44
(6o o Tof 11 ] o o LRSI 45
Section 2: Establishing the Foundation 47
Chapter 4: Open Culture 53
WhY IS It IMPOITANT? .....eeiieeieceeecceteecrtcesceeescsree e s seeesssaeessssneesssanessssnessssnnasssnns 54
Information RAAIAtOrsS ........ccoviiiiiiiiiiiiiicnr e 56
Can You Make Those Red Lights Go Green, Please? .........ccccevverrverrveenseencneennneens 56
O | U = 57
1Y oY d V7= 1 Lo o TSR 58
PetBattle — Creating Autonomy, Mastery, and PUrpoSe ........ccccecerveereeriecrecnnenne 60
SOCIAl CONTIACES .coeeiiiieeeeeeieeeee ettt et s et e s se e s sae e s ae e e ae e s saessneeans 61
Do | Need One? If SO, HOW DO | BUIld ONE? ....eeeeeeceiiiiiiiieeeeeeeeereeeveeeneneesseeeesens 63
It'S OK 0 BE WIONG ...eiieeiiiiiiiiiiiiiirtensscneeesssessnessssssssnsesssssssnnsssssssssssssssssssssnses 67
Social Contracting for Distributed People ........ccocvviveiriirniniiniiniinnincnciicnnen, 68
SEOP the WOKI ...ttt st s s saee s s sne e s s sneessssnessssnnasssnnannns 70
The Andon Cord and Psychological Safety ........ccccvvviviniiiiniiniiniiiicicecneee, 71
We're Just Rebuilding the Same Experience. Stop the World! ..........ccccerevvereunennnen. 72

Losing Track of Original PUIPOSE ........cooiiiiiieiieereerecree et seee e sesee e 73



Real-Time RetroSPECLIVE ......ccovoiiiiciiiiteneeteree et 75

TEAM IAENTILY ...eeeiieeiecteecteeccte et e e sre e s sare s e s sae e sssnnessssnnesssnnessssnaessnns 79
SOCHAIIZING ettt ettt ettt 80
NEtWOrK MapPPING ...coocuerereireeerernreenreesseesseesseessseessseessseessseessssessssessssessssessssessseesns 81
Team Logo and Prime Dir€CLiVEe .......ccccoeviiiiiiiiiiececececeneee et 83
Team Name + Building a Team Logo = the Beginning of Team Identity ............... 84
Creating a Team Identity with Distributed People ........ccccoociriviiiiiiiiiiiiiiccieene 85

Radiate EVErYtRING ....cccuviiiiiiieeiccterccrerceteccre st scneesesnnessssneessssnesssnneessnnnas 86
Radiating Everything When Distributed ..........cccoooiiiiiiiiiiininiiiieieneeneeeeee 88

Team SeNtIMENT .......ooviiiii e s e 89
Blending Team Sentiment with Other Practices ........cccccoviiiiiiiiiiniinniiniiceienne 90
Team Sentiment Achieving a Different Purpose - Banter! ........ccccoecereverrvernvennns 92
Team Sentiment with Distributed People ... 93
RAIALE FAIIUIES ......eeiiiiieieeeeeetce ettt sa e saesnene 93
Radiating Failure - as Useful (If Not More) as Radiating Success .........cccceceervuennne 94

INSPECE AN AAPL ...oeiiiiiictereceteecte et ssrre s e sreesesanesssnnessssnnessssnesssssaessnnns 96

PetBattle — Establishing the Cultural Foundation ........ccccccccovevirniiiininnecnnnnen. 97

(6o o ol [1 {10 o RS SS RO RTRUTROTRRRR 99

Chapter 5: Open Environment and Open Leadership 101

The Kodak Problem ...ttt ee e s e s ne s nesnee 103

Learning from HiSTOIY .....cocciiiiiiiiiiriiiecieenteeecneeseneesesne e s sneesesnnessssneesssnnessans 105

(0] o<1 I T=To [T 6 o 11 « RO TSRS RRRR 105

Changing an Organization .......c..ccccecveeririeiiiieeneneeneeeenesneesesresesseesessnessssneens 106

Leading Sustainable Change ... 107

ACRhIEVING GreatNESS ......coivieiiiriiiiriiterceererrteeeseeesesressesaeessssnessssnessssssesssnsesssns 109
GIVING INTENT ..ottt ettt s e s s ae s 109

Moving Decisions to Where the Information Is .........ccccccevevireveniiencvenerereeennees 109



Setting the ENVIFONMENT ..ottt ne e 109

How Do We (as Leaders) Convince the Doubters? .........cccevveiveenieeineeneenneenennne 110
No Computers in the Company! The 1990s or the 1890s? ........cccccveveriierivecnnnen. 111
PriOFity SHAGIS ..eeiieieeeeeeceeeccteccrecrrt e e ssee e s sne e sesnesssneesesanessssnaessnns 112
Running Priority Sliders with Distributed People .........cccooviiiiiiiiiniiiiiiiniennee. 116
TRE SPACE ettt et e st e s s s re e e s saeessssnesessneessssnasssssaesessnesssnnaasnns 117
The Minimal Viable SPace ...ttt 120
"We See What You Want To Do and Why and We'll Help You Get There"
N JUSE 4 WEEKS ...ttt ettt ccreee s e sessse e e s e s s s aaae e e s s s ana e s e s s s ssnaeaesssssnnaasesnnnn 121
ViIrtUQL SPACES ..ottt s st st s s sae s s ae s s sne s s sesssessnnassnsessnnassnnes 123
CONCIUSION ettt e st e s sae s se e s sae s s ne s ne s sne s nnesnnesnsassnnens 125

Chapter 6: Open Technical Practices - Beginnings,

Starting Right 127
Green fromM GO! ...ttt s e s s e s as 129
Pair Programming and Mob Programming .........cccccceveviirivvinncneencneenneneennene 130
Mob to Learn, Pair to BUild .........cocooviiiiiiiiiiiiiceinienecceeceeceeneeseesee e 131
Containers and Being Container-Native .........cccccceviviericieencnneenncneencneennennees 133
CONLAINEGT HISTOIY ...eviiiiiiiieiitecteerceesecneesesneeseseessssanesesnnesssssnessssnesssssnesssssnasssnnes 133
HOW CONtAINErS WOKK ......oiiiiiiiiieeeieeeeeeeeeseee e eee s see s sne s ne s s e e s smeesnes 134
Pipelines — Cl Or CD Or CD2? .......ccicviiieceeencneerenneessseeesesseessssnessssessssseesssssasssnns 137
Derek the DeVOPS DINOSAUT .......cocceiieiiriieiriieneeeeieee e eeee e s ssse e sne s sneessneessneesnes 137
CoNtiNUOUS INTEZIatioN .....cceeiviviiiiiiieiiiieericnterecreeeeseesecssressssseessssneessssnesssssnesssnnes 144
Integrate CONtINUOUSIY .....coceiiiiiiiiireeceeeeeee e s e sme e 145
CONLINUOUS DEIIVEIY ...uueeereeeeeceerceenetesceeeeeesseesseessssesssnessssessssessssessssesssnessnassnns 146
Building Confidence in the Quality of the Software Delivery Pipeline ............... 147
Continuous DeploymMent (CD?) .....ccccecveeeveeereerneenseenseessseessseessseessseessseessssessssesnes 149

When the Work Is Done, Ship It! ...t 150



EVErything-as-Code ...ttt ee s se e s sneseens 152

Can You Build a Second One of Those for Me, Please? ........ccccoceevevieiieeniennnenne 154
Establishing the Technical Foundation for PetBattle ..........ccccceeviiiviiiiinnnennnnen. 156
Jenkins — Our BeSt Friend! ... eeeeeeeeccteeeecccveeeeeeecenneeeeeeesssseeeessessseeeessnnnnns 157
HEIM OVEIVIEW ...ttt ne s ne s ne s 158
Installing Jenkins USiNg HelM .........cooiiriiriiereeeeeeeeecreeeee e eee s ne e ee e 160
Developer WOrKfIOWS .........cooceervirrierreereeeneeesceeseeesseeessenessnessnesenesssnessnnesenes 165
GIEFIOW .ttt a e s sae s a e s b e s b s b e s snesnesnesns 165
GItHUD FIOW .ttt ettt st s 166
Trunk-Based DeVelOPMENL ........cociiriieeeereereereeree e seeesneessseessneessnnessnnessneens 167
Too Many Choices — Tell Me What t0 DO .....ccccoeviiiiiiiiiiieciceeeeeee e 168
(6o o ol [1 Y10 o RSSO SRRR PR 170
Chapter 7: Open Technical Practices — The Midpoint 171
The Big PICLUIE ..ottt s s e s see s sne s s sne s ne s ne s nnessnessne 172
PetBattle - Building @ Big PiCtUIe ........cccceeeiireieereeereeeeeeeneeeeeee e e ee e 175
€ 10 o 13PN 180
Y=o T PP 181
If It's Not in Git, It's NOt REal! .....coeeiiiiiiiieeteetetee et 182
IMPIEMENLING GILOPS ..ooveeeeeeierierctererereee e seee s e s e s ee s see s seesenessnesssnesssnnsssnes 184
Testing Testing TEStING! .......ooi i 194
The Test Automation Pyramid ..........ccoooeeeeiirriinnieenneeneeneesee e ssaeessneessneesneens 195
TeStiNg iN PractiCe ...ttt 196
Testing and the Definition 0f DONE ........cooiireiiiciieceeereeeeeee e 198
TDD OF BDD OF DDT ...eeeiiieiinteinitcinetcirtc et ssee s ase s ar e s aa e s ssaaes 199
BDD for Our Ops Tooling Python Library ..........ccecceeeverereneneneeneeeneeeneeeeeeeeenees 202
Product Owners Seeing Their Thoughts in Code! ........ccccoiviiiiiiiiiiiiiniienieennen. 204

(S Ta gl o] (1Y F=T o] o1y F- USRS 204



Example Mapping in the Field ... 205

NON-FUNCLIONAI TESTING ....eeeeeieeeecereeceeeeeeeer e eee s re s sne s s e e s neessnnessnes 207
Performance Testing Sam's COde ........coooiiiiiiiiiniiiiircnce e 208
A Few Final Thoughts 0N TEStING ...c.cccevevereieririerneereerceerereseeeseeesseessseessneessneens 211
EMerging Archit@Cture ...t 211
Observations from the Field ..o, 213
(@] oo 1111 Lo o ORI 217
Section 3: Discover It 221
Chapter 8: Discovering the Why and Who 223
The NOIth SEar ....eiieiet et 225
PetBattle @s @ BUSINESS ..ot 230
Our North Star at Open Innovation Labs ........ccccooceirvienriinninneeeeneeeeeeeee 232
IMPACt MAPPING oottt s s st e s e e s s s ne e s sneessssnassanns 233
Start with the WHY — the GOoal .......ccceiviiiiiiiiiinirirtctrcrcceseeeene 235
PetBattle — the GOal ..ot 237
WHO Can Help Us Reach the Desired Effect? The ACtOrs .......cccecceeeevercvercvennnen. 239
PetBattle — the ACLOKS ..... .ot 239
HOW Should Our Actors’ Behaviors Change? The Impacts .......cccccceevereveerreennnee. 241
PetBattle — the IMPACES ...t 241
WHAT Should We Build? The Deliverables ..........ccccoecriiniiiniciniieniiniiencrceeeenen. 243
PetBattle - the Deliverables ... 244
PetBattle — PIACING BELS .....cccceveeerceeeeeeeeeeeeeeeeseeesneesseesssseessneesssnessnnesssnsssssassnnes 248
Hypothesis EXamMPIES .......ooiiiiiiiiiiereeeee e 251

Connecting Engineers to BuSiNness OULCOMES .......ccccccverievueericrneerinnneesesnneesesnensnnns 253



Human-Centered DeSIZN ......coccciiiiiiiiiiiiiniiineeeeneeeeseseessesneeseenessssseesssnnesenns 255

UX Design and Empathy Mapping a PetBattle User ........ccccceeeverevercveercreerceennnee. 259
Users Do Strange and Unexpected Things ..., 261
Empathy Mapping an Organization — DeV Versus OPS .......ccccceeeveerervereeereseenenees 263
Engineers Build Out Empathy Maps during User Interviews ..........cccceceeeeenen. 265
(6o o ol [1 Y To ] o RSOSSN 266
Chapter 9: Discovering the How 269
EVENT STOIMING ..coiiiiiieet ettt st s ae e s ne s 270
What IS EVEeNt SEOrMING? ......ooveiiiiieeeeeeeeereesseeseesee e st e s e e s seessneessnnessnnessneans 271
The INGFredieNtS ......cooeiiii ettt et 273
TRE RECIPE ..ottt ste st e s e st e s sr e s ne e s sn e s se e s snessnnessnnessnnessnsessnsasnnans 274
Event Storming with DoUbDters ..., 285
PetBattle EVENT STOrM .....cociiiiiiiiiiiiiiicectctctce ettt et et se s 287
Final Thoughts on Event StOrming ...t 297
EMerging Archit@Cture ...ttt s e e s csne e s e nnessens 297
Transitioning an Event Storm to an Emergent Architecture ..........ccccecceveuennnenn. 299
The NoN-FUNCLIONAl MAP ....cooiiiiiiiinitnceecreere et ne e s ssee s anes 304
From Non-Functional Map to Backlog ..........ccocceiiiiiiiniiiiiiiniiinceencecneeceeeee, 305
Discovering the Case for Continuous Delivery .........cccocciveeviiricierncneencnneennnne 308
Metrics-Based ProCess Map .....ccccocieiiiiiiiiiiiniieniesees et ee s 309
Finding and Making IMpProvements .........ccoccceeeverererenereneneneneseessseesesneseseessseesenees 31
Improving through Iteration ..., 312
Scoping an Entire Engagement Using MBPM .........cccccciiiviiiiiieininnenninneenncneenenns 313
PetBattle - MBPM ...ttt 316

(@0 Lol [ 53 o] o TP 319



Chapter 10: Setting Outcomes 321

What IS @an QULCOME? .......eiiiiiiieeteceeeet et e st e st e sae e sae s sae s sne s nnes 322
Outcomes VErsus OULPULS ....cocivveiiiiiiiiiietiiiiinrecissnnrecesssneeeesssssssseessssssssesssees 323
Why Have Target OULCOMES? ........cocveerreerneerneessneessseessseessseessnsessssessssessssessssesssnens 324
How to Capture Target OULCOMES ........ccoiviirieiiiiiiiiiiiieiiiineeesnseseeessssssseeesssssnne 325
Examples of Target OULCOMES .......cocvieeeveereeerrreerneernseeeseeesseeessseessseessseessnnessnnessnes 327
Visualizing Target OULCOMEES .....c.ccceieiereiereieretenereseeeseresete s ee s ee s e e s eesenneseneens 329
Optimizing Target OULCOMES ......cciveviirirreiieireeeecireeeesressesneesesssnesssssnessssseesssnesssnns 330
Chaining Target Outcomes with Other Practices ........ccccvvervenienneniecnncnnecnnenns 331
PetBattle Target OULCOMES .....c.ccovvierreerrieeereereeereeeeeseeessseessseesssesssseessseessssessssessnes 332
The Balance of Three: People/Process/Technology ........c.ccccvvivvirviivirnininennnen. 335
Target Outcomes from a Telecoms Product - Stopwatch at the Ready! ........... 337

Differentiating between Primary Outcomes and Enabling Outcomes ........ 338
SOFtWAre DeliVEry MELIICS ...cocuiieeereeereeerceerceerseesseeseeessseessssesssesssessssesssasssneanns 340
Platform Adoption MELIICS ....cccceieviiiiiriiecererceeee e 341
ContinUoUs MetricS INSPECLION ....coccviiiierieiriiieeeinrerrcirereeseesesneesessenesessneessssneesnns 342

Creating @ DISCOVErY Map ....ccccevveviiriiiinicienceesccnee e s seneesenne s s snessesnnesssnnees 343

CONCIUSION ettt ettt s s sae s ne s e e s e e s nnessneesneess 346

Section 4: Prioritize It 349

Chapter 11: The Options Pivot 353

Value SHICING .cooueiiiiiiiiiiiiiiinetrtertcr et a e sess e sesnesane 355
The Beer and the CUITY ...t s 360
One to Few to Many Slices of Value - Continuous Delivery ........ccccecvevereuennnee. 362

PetBattle - Slicing Value towards Continuous Delivery ........ccccceverrverrveervuennee. 366



Design Of EXPEriMENTS ...cceeeeceererereeereeereeeneeeseeesseessseessnnesssesssnessssessssessnnesnes 373

Qualitative versus Quantitative FEedback .......cccccovvevviirirrrrreeieeeeeeieineescerssnnnnnenne 374
Impact and Effort Prioritization MatriX .....ccccceevervveenseenrererennneersseeseneeseneenenes 377
HOW-NOW-WOW Prioritization .........ccceeveiiiiiiiieiiniiineciniecneccneccscneeene 379
The DeSIZN SPriNt ....oiiiiiiiieeereeertce et e st e s ee s s sae e s snasssnnes 382
Forming the Initial Product BackIOg ........cccceieeuiiieieiriieiencnieneneeenceeesesneennens 385

PetBattle — Tracing Value through Discovery and Delivery Practices .............. 388

Product Backlog Refinement ..........coooeeeeiineieneieneeeeceeeceescee e ssee e s ee s ne s e 389
e Ao g1 (2= 1 (o] o IS SPTRTOPPRRRPTRRRRRTO 391

Value VErsuS RiSK ....ccciiiiiiiiiiniiititntnteesst sttt sttt st e st e e s sa s 391

Cost of Delay @and WSJF ...ttt 392

PetBattle - Prioritizing USING WSJF ......cooiirieiereeereeeeeeeeeesseeseeeseee s eesseesennes 394
Product OWNEISNIP ..ccoeceiiiiiiiteneenetestee et see et e s sne s s saeesssnne s e 396

Experimenting with Different Product OWNErs .........ccoecereverrreercreencneensneereseenenees 398

Patterns of Early Sprints and the Walking Skeleton ........c.ccccocceiiiiiiiininnnnnnnnnen. 399
Advanced Deployment Considerations .........ccccccereveerrereeencneerenreeencneesssnnesenns 400

ATB TESEING ittt ettt ettt ettt et s et et e s e eas 401

Blue/Green DePIOYMENTS .....ccoceeeeiieeieriierceeeerercreseeessnessnesssesssnesssnesssnesssnessnnes 402

CaNArY REIEASES ..ottt ettt 403

(DT T Q- T g ol o TSRS 404

FEAtUIe FIAZS ....eeeieiiiieeetet ettt s s 405

PetBattle - Tech Spikes, Prototypes, Experiments, and

Feature Implementations ... e 406

Reframing the Question - How Much Can | Borrow or

How Much House Can | AffOrd? ........coceiiiiiiniininiiectcctectecteeectecee et 408
Research, Experiment, Implement ..ot 409
Creating an OPLioNS MaAP ....ccoiveevreiriiiriieerienreerreesneeeesesssreessssssseessssssnnassssssnnes 410

(@0 Lof 11 53 1o o TP 412



Section 5: Deliver It 415

Chapter 12: Doing Delivery 419
WaAterfall .....ooeeeeeeeeeee ettt e 421
The Birth of AGIle ... sssneesnne 424
How Does OPenShift HEIP? ....coueiiiereeceeeceecceesseeesseeeseessseeessneessneessneessneessnnessnes 427
Decision-Making CONLEXLS ......ccccvrevieriiiiirieieerciereseeeeesneesesresesneesesaeessssnessnns 428
The CyNefin FramMEWOTIK .......cocviieiereieennienetenseeneeesseesssessssessssesssesssessssessssesssseses 428
The Ferrari and the RAINTOrest ..ot 430
When Does a Mobius Loop Mindset Make SeNnse? .........ccccceeeeeeveerneenceenceeneneens 432
PetBattle—Complex, Complicated, or Clear? .........cocorevereviniiennienceeceeeseeenees 433
The Definition 0f REAY .....cccceeeveiririiiicierieeirceeesceceecreesesreeeseeeesssaeesssnneesnns 435
PetBattle - Definition of Ready ........cccocerveiiiiiiiniiiiiiiiieenicicccecr e 439
Y of 1 0 PR 440
The 3-5-3 FOrMaAtioN ..cceeeiiiiiieeeeeeeee e s e s e e s e e s e s e e 441
The Product OWNEr ROIE ..ot 442
The SCrumMaASEEr ROIE ...t 443
The Development TEaM ROIE .......ooooeiiiiirieeceeeteeees e seee s eessneessseessneessneens 444
The Product Backlog Artifact .........cooeieiiiiniiieeeeeeeeeeeeteeeeere e 445
The Sprint Backlog Artifact ........cocceeveerrienrienreenreenceesceesseesseesseessneessseessseessneens 447
The Product Increment Artifact ........ccooceeevieiiiinnieeeeeeeeteeeeeree e 450
Show Me the ProdUCL! ..ottt e e 450
The Sprint Planning EVENT .........oo ittt 451
The Daily SCrumM EVENT ....ccuiieeeeeerceeectesctesceesseessseesenessssessssesssnessssessssessssessssenes 453
The SPrint REVIEW EVENL ......c.eeiiiiiieeteeeerteree et ee s ese e s e senee e 455
When WOULD We Have Uncovered This In a Traditional Mode of Delivery? .... 457

The Sprint Retrospective EVENt .........ccccviviiiiiiniiniiniiicentceeestessessssesseenees 458



THIE PUD REEIO! ettt eeettee e s e eeetaeessseeessaseesssessssssssssesssssnsssssssnnnnnsssens 463

A Sprint in the Life of PetBattle: Getting Ready ........ccocceevverrcerereenneerreeeceeenneen. 465
A Sprint in the Life of PetBattle: Sprint 1 Planning .........cccccoeviivviincinnicnnncnnnenn. 467
A Sprint in the Life of PetBattle: Sprint 1 DeliVery ........cccoccveeveeecceeeceenseesseeeneeen. 470
A Sprint in the Life of PetBattle: Sprint 1 Review And Retrospective ................. 471
Using Scrum with distributed people ... 472
When should we Stop SCrummIing? ........cooiiiiiiiiiiirerteeee et 474
Teams asking questions that suggest we've matured out of Scrum .................. 474
101 o= T o TR 475
Kanban Board! ..ottt ettt et e s s 476
PetBattle - Release Early, Release Often, Release Continuously ........................ 478
The Definition 0f DONE .......cociiiiiiiiiiietettee e 478
PetBattle - Definition 0f DONE ..o e 479
Bad AZile SMEIIS ...ttt s s ne e s s sae e s s neeen 482
CONCIUSION ettt et e s ne e s an e s s sne s s s sanesennes 483
Chapter 13: Measure and Learn 485
Metrics-Driven Transformation .......c.ccccevvviiniinniinninnncnncnecsecseesceesne 486
Where to Measure and Learn ........cocceeecerereereeenseenseesseeeseessseeseseesssseseeesnes 487
The SHOWCASE .....coiiuiiiiiiiieitetetctet ettt st n e s s a e 488
The RELrOSPECLIVE ......eiiiiiiiieet ettt 488
The Retrospective - an Engineering Perspective ........ccccoccvevereccernnerecereseeennnens 489
Inspecting the Build Stats at Retrospectives .........ccccceviveiiiiniiiniienineencieecceeeee, 491
Experiments — the RESUILS! ........oo i 492
USEE TESTING ..ottt s e s ae s a e s ae s ne s 493
USaDIility TESTING .coceeeeeeeeeeeereeeee sttt s e s re s see s ee s see s s ne s e nessnesesnnsssnnessnes 493
"We Are NOLt QUK USEIS" ...ttt ane s ease s saae s nns 494

GUEITIIA TESTING oottt ee e see e s ae e s see e s se s e sne s s nessnnesnnessnes 496



Guerrilla testing with a box of donuts in a busy Dublin bank! ............................ 496

PetBattle Usability TESTING .....ccccereveerrrreriiereierceereeeeeseeseeeseseeeeeesssnesssneessneesnnessns 497
What £0 MEASUIE? .....eeeiiiiiiecteneteee et e s aee s e ne e s sat e s s s nessssnnesssnnassanns 499
Measuring Service Delivery and Operational Performance (SDO) ............c........ 499
PIOIUS ...ttt ettt et e s e s sae e es 502
Measuring Lean MELIICS .......cevvvveeriireiriciiericeerecneesseneesesneesessesssssnesssssnesssssnasssnnes 502
Measuring SLOS, SLAS, and SLIS ......cocciiiiiiiiiiirereceecsec e 503
PetBattle SErvice LEVEIS ... 504
MeEASUNING SECUNILY .coeeiiiiiiiieteeteetee ettt ettt ettt s 505
PetBattle SECUIILY ...coccceereeieceeeeeereereceere e e e seeessee e s e e s sneessaeessaesssnnesnnesssnsssnnassnnes 506
Measuring PerfOrmance ...t 507
PetBattle Performance ...ttt eane 508
Measuring Deployment Pain ...t e 509
MEASUIING CUITUIE .....eeeeeeeeeeeeeeeeeeeceeeseessteessseessseessseesssesssseessssesssnesssnesssnssssnasnnes 510
Measuring Application MetriCS ......cocciiiiiiiiiiiiiiete et 511
PetBattle Application MELIICS .....ccccereeereieriierreereeeeereeeeeeseseeeeeesssee s snesssneessneessnes 511
Measuring Infrastructure Platform Costs and Utilization ........c.ccccccieinnennee. 512
Measuring Resources and SEIVICES .......cccceevereverereerrsersrereseesseesssnessssesssssesssesssnes 514
User EXperience ANAIYLICS ..ot 515
PetBattle User Experience ANAIYLICS ......cccoevereverereererernreernreesnessseesssneessneessneesnnes 516
Visualize Measurable OUtCOMES ........coccviiiiiiiiiiiiinctereeeee e 516
Proactive NOLIfiCation .........cocivviiiiiiiiiiintrerc e 517
Altering the CUSTOMENS .......coiiiiiiiieeeee ettt sttt 518
Having Fun with Notifications and the Build! ...........c.ccoocerevirivirnreriereeereeeee 518
Creating @ DeliVery Map .....coccciiiciiiiniinnetenceesecnee et s are s ne e s saeesssnnees 522

CONCIUSION cceeeeiiiieeeeeetteeeeeteteeeeeeeaaeeeeeesesessesssssssseesssssssssssssssssssssssssesssnssssennnnnnns 524



Section 6: Build It, Run It, Own It 527

Chapter 14: Build It 531
ClUSEET RESOUICES .....eeeiiieiieiieieeeeeteseteseee st e st e st e s ae s s saeesssesssaesssnesssnessnnens 533
Existing PetBattle Archit@CtUre ........ccocveireviiiiiiiinceereeeeecee e seeee e 533
PetBattle COMPONENLS .....coociireiiecierteecteeeeesceereeessseeeseessssesssesssesssesssnsessssessnes 534
Plan Of ATLACK ....eoiieieeeeeeeeer ettt e ne e 537
RUNNING PELBALLIE .....coceeieeeieeeecceteccetecceeesceeesesreessseeesssaeesssaneesssneesssnneensns 538
Y = T N 543
Trunk-Based Development and Environments ........cccccceveveeecveeencneencnneeennnnes 545
The Anatomy of the App-of-Apps Pattern ........ccvvevirncveiniinenncneencceenenes 546
Build It — CI/CD for PetBattle ........occccovverieieiieeeeeeeteeeeeeee et 549
TRE Big PICLUIE ..ttt sttt et s et s et e s et e s se e st e s e e s nnaas 549
TRE BUIIA ..ottt st sseesseessaee st e ssseessneesssnesssnessnnesssnessnnassnsessnsannnens 551
TRE BAKE ...ttt sttt et st s es 552
TRE DEPIOY ..ottt sste s seessreessaeessseessseesssnesssnessssessneesssnessnsassnsessnsansnnans 553
AT 0 0TI PN 554
PrOMOTE ....oueiiiiiiiiiiiittttcittc et s ab e s aane 555
Choose YOUr OWN AdVENTUIE .....cccceieeieeeeeeeeeeeteeeeee e seee e e s see s snesssnesssnesssnesssnes 558
JeNKINS=TNE FrONTENM ......eueeeeeeeeeeeeeeccccrttteeeeeecccccerreeeeeee e e e eseeessssssseeseesesssnnnnns 559
ConNNECt Argo CD tO Gl ..coovceiiiiiiiiiiiireernrc et ase s ase s nns 559
SECrets in OUN PIPEIINE ...ttt sseesseessseessee s seesssaesssaesssnessnsassnnenans 563
The Anatomy of @ JenKIiNSTile ..o 572
BranCRiNG .cceeeieieeeeeceeectcccteecte st ssresseessseesssnessaesssaesssnessssessssessssessssesssnnessnnessnes 579
WEDBROOKS ...ttt s e st st s e e s e st e s nn e s nn s 580



Bringing It All TOZEther ...t 581

What's Next for JENKINSTIlE ...t reeeeee e neeee e e e snnneees 584
Tekton-The Backend .........ccoiiiiiiiiiiiinieeneetesee et se s ee s ne e s ssnessnne 585
TEKEON BASICS ..coneiiiiiiiieiiecteneeetccrcstcs et a s sr s e sae s sa e saesnesnes 585
ReUSAbIE PIPEIINES ...ttt ettt 588
Build, Bake, Deploy With TEKEON .....ccc.coeeiireiirierereereereeeeee e 589
Triggers and WebhooKS ... 593
GItOPS OUF PIPEIINES .....oeeieeeeeeeeceereeeeresre s e s e s ee s snesseesseessnesssnessnnessnnesnns 595
Which One Should [ USE? ...ttt seeee s sanesenne 596
(6o o Lol [1 5110 o RSOSSN 598
Chapter 15: Run It 599
The Not Safe For Families (NSFF) Component .........cccccoeveeeeerererenerenereneenenees 600
WY SEIVEIIESS? ...ooneeeeeeeeeeeeeetese e sere s e s see s ee s ee s nesenesesnesennesesnesensesensesennenen 600
Generating or Obtaining a Pre-trained Model .........c.ccocciiiiiiiinininiiiiiieicnee, 601
The OpenShift Serverless OPerator ........ceeercierierrreereere e eeee s e seneens 603
Deploying Knative Serving SErviCes .........ccciiiiniiiiinnicieeneesseesseessee e 604
Invoking the NSFF COMPONENT .......coooiiriiiereieeceereeeeeeeeeeeeeeeeeseessseessnesssneessneessnes 607
Let's Talk about TESEING ...ccociiiiiiiiiitit ettt 611
Unit Testing With JUNIE ..ot sne e s 612
Service and Component Testing with REST Assured and Jest .........ccccccoeeereeenne 613
Service Testing With TeStCONTAINEIS ......coceerevererereereeereee e seee e sene e 616
ENd-tO-ENA TESTING ..coueiiiiiiiiiititc ettt ettt 617
Pipelines and Quality Gates (Non-functionals) ........ccccccceeeeviirncveencneericneennens 621
SONATQUDE .t eteee et e eeeeeeeeeeesssss s s ss s s s s sssseseseseseseasesssssssnns 621
Perf Testing (NON-FUNCLIONAI) .....coevirmiieieeeeeeeeee e 627
Resource Validation ...ttt 633

IMAGE SCANNING ettt re e st e s s se e s se s s s nessssanassesnnassssnns 636



[T | ] =PRSS 638

COAE COVEIAGE ...utrrerrreererrreeeeereessseessseessseessseesssesssssssssssssssessssesssssssnssssssessasessansssnns 639
Untested Software Watermark ... 642
The OWASP Zed Attack ProXy (ZAP) .....eeeeceeeeveereeenreenseessseessseessseessssesssssssssessnsens 643
Chaos ENGINEEIING ...ooeiiiiieeeet ettt 644
Accidental Chaos TESHING .....ccocceereiereierciireerrersee e e sree s ee s neessneesssnessnnessneans 646
Advanced DeploymMENtS ........coocciiiriiiiiiiiniieneceeesete st senee s e s sae e s saneseans 648
ATB TESTING eeeeeieiieeiiieereceeeeeee st s sesere s s s saee s s sneessssneessssnessssssassssnsasssssnasssssnessssnaes 649
The EXPEIIMENT ..ottt ettt et ettt et s e eas 649
Matomo - Open SOUrce ANAIYLICS ....ccceeeiereeercieneierereeeresereeeeeseeeseseessnessnesssnes 650
Deploying the A/B TeSt ...t 652
Understanding the reSUILS ........coveireiiririreeeercrercee e eee e ne s ne s ne e snes 655
Blue/Green deployments ... 656
DeploYMENT PreVIEWS ......cccccieeeiereieeeteeeeeretessresereseseessssesssesssessssessssesssssssssesssnes 658
CONCIUSION ettt et e s ne e s an e s s sne s s s sanesennes 660
Chapter 16: Own It 661
ODBSEIVADIIILY ..ooieeiieiiieeeeectercttecre e sae e s ssne s s neesesnnassssneens 661
PrODES ... 662
(DToT 0 01T g Lo I8 = & =T ot SRR 664
FAUIt TOIEIaNCE ...t 664
(o =4~ | o 1= SRR 665
L= 1011 0 =SSOSR 666
1= o ol 666
Configuring Prometheus To Retrieve Metrics From the Application ................. 669
Visualizing the Metrics in OpenShift .........cccoo i 671
Querying using PrometheuUSs ...ttt 671

Visualizing Metrics Using Grafana ..........coccvveeeneiineennneeneeeeeeeeeeeeeee e 672



Metadata and Traceability ........cccocviiriiiiiiiiiniercee e 673

LabEIS ..ttt 673
Software Traceability ..o 676
ANNOLALIONS ..ottt st s ae s 677
BUild INfOrmation ... 677
ALEITING «eeveiiiiieeeiterectteecrreeerreeeerreessseessssseessssnessssseesssssessssssesssssessssssesssssesssssenes 678
What IS @n AlGIT? ...ttt sttt st e 678
WRY ALEIE? .t ecteseeesete s te s eesseessnesssnesssne s snessssessnessnsesssnessssesessessnnesen 678
ALCIE TYPES ettt ettt st sae st s s ae s et s at e sat e at e e nt e nn s 679
MaNAZING ALEIES .....eeieeeeeeeceeeeerrtert et e esreessseessseessseessseesssnessssesssnessnsesssnessnnassnnes 680
User-Defined AlEITS ...ttt ettt 680
OpenShift AlErtMANAEGEL ....ccceeeeieecierieerreereereteesee et e ssseesssressseessneessseessssessssessnes 684
SEIVICE MESH ..ot 685
WhY Service MESQ? ...t seeesseessee s eesseesesnesesnesssnesssnessssessnnenes 685
Aside - Sidecar CONLAINEIS .....cccoiviiiiiiiireeeee ettt et 686
Here Be DragOonS! ... iiiiiiiiiiiiniieccsnnietcssssssseesssssssssessssssssssessssssssssassssnns 687
Service Mesh COMPONENLS ......cocciiiiiiiiiiiiiicieeereee e se e ee s e s e s ne e 688
PetBattle Service Mesh ReSOUICES .........coceiveriiiiiiiiiiciienrccnecce e 689
Operators EVErYWREIe ...ttt s s ne e s san e s e s 693
Operators Under the HOOd .........cooieeeiinnienieneeeeeeseeseesseeesseesneessseessneessnnessnes 695
CONLIOl LOOPS .ottt ettt ettt s e e s n e s e s sne s ne s nesenne 695
O T 0 T=T = 1o T Y oo o 1L PPN 696
Operators in PetBattle ... 697
Service Serving Certificate SECrets .......ccoirirererirerrrererereeereeeseeeseeeseseessnesans 700

(oY o [l L1 1] 1o o S 701



Section 7: Improve It, Sustain It 703

Chapter 17: Improve It 705
What Did WE LEAINT? .....eeiiiieeereeeeeeeseteseeeseeeseste st e s sse e sse s sae s sne s nessnesnas 707
Did We Learn ENOUEN? .........ooiiiiiiieecteneee st sneesssne s s eneesesnneseens 708
We Need TWO APPS, NOt ONE! ......eoiieeeeeerctenceeseessseessreessseessseessaeesssnessssessneans 709
"Just Enough" Leads to Continuous Everything .........cccccceveviiiiciiincneerccnennn. 710
Learning from Security EXPerts .......cceecverrrierriernreeneneenseensneesseessseessssesssaesssenssnnes 712
Always Improve Metrics and AUtOMaAtioN .......ccccceviiviiiiininniniinte e 713
Revisiting the Metrics-Based Process Map .......cccccceeeveereeerrveensneersneessnnessseessseessnes 714
My management only really understand numbers and spreadsheets .............. 714
IMmprove the TEChNOIOZY ......uiiicuiiiiiiieeecceeeccete e sre e seee e s reesesaneeeens 718
LONG LiVe the T@AM ..ottt seeeesesee e s saee s ne s s saeesesnnessans 719
Visualizing the Transition from [ toO TtO M ......covviirciirciincierceeeeeeseeeeee e e eneens 719
Wizards and COWDOYS ..ottt 721
CONCIUSION ettt ettt s e e s e e st e s sn e s saesssaesesneens 722
Chapter 18: Sustain It 723
THE JOUINEY SO FAr ..ottt e st s e s s s an e s sn e s nnas 724
Infectious ENthUSIasm ..o 726
[DT=T 0 o o T D T- )T 728
Documenting the JOUINEY ......cc.eeviireiiriierceeeeeeecrerere e seeesere s ee s nessnesssnesssnes 730
Sketching the EXPeri@nCe ...ttt 731
WalK the WaIS .....ooeiiiiiieeetrtetttet ettt ettt 732
WIItten SNOWCASES .....ooneiiiiete ettt ettt et 733
WOrd Of MOULRN ..ottt 734
Mind-Blowing Metrics That Cannot Be Ignored ..........cccceeveiiveniiencnencneencneennee. 734

Transitioning From One Team To Seven TEAMS .......ccocvceerrccueerecneericnneessssneessnnnens 735



More Teams, More Application Products ..........ccceecirieviiicnnienncneencnneenieneennens 738

The Power of Three Iterations in Enablement .........ccccceveviiiiiniiiinecrinncennne 739

The App Does Something This Week That It Didn’t Do Last Week! ..................... 740
Bolster the FOUNAtiONS .........ccooviiiiiiiiiiiieieteeerec e eae e 741
Sustaining the TechNOIOZY .......cooiiiiiiii e 742
The Double Mobius Loop - Platform and Application Product ..................... 747

Connecting Many Levels of Product TEamss .......ccccceeeviriiiiiiiniiinieeceeceeeceeee 749
CONCIUSION ettt s s s ae s n e s e e st e s nnessanesnnens 752

Appendix A - OpenShift Sizing Requirements for Exercises 755

How To Resize Storage in Your CRC Virtual Machine .........cccccciiiiiiiiininnncnnnee. 758
TeKton PersiStent STOrage ......cccccceeeverrreernerrneeesreenreesnresssressressnnessnnessnnessnsassnsens 758
Appendix B - Additional Learning Resources 761

Index 763




Foreword

Over the past two decades, as the popularity of Agile and Lean approaches hit the
mainstream, many new frameworks have emerged, each promising to solve your
problems if you just bought their secret sauce. Yet the pioneers in the early days
didn't get the answers handed to them; instead, they had to figure out the recipes
through trial and error. This relentless discovery and invention process led to great
leaps forward; it drove the most innovative companies in the world. So the question
is, why did we stop reinventing? When was it enough to follow guidelines rather than
constantly evolve and grow?

A common problem for organizations is to stay competitive in a constantly evolving
market. Competitors emerge fast and disrupt the playing field. To deal with this
challenge, organizations hire expensive creative agencies to run ideation workshops

in the hope that they can spark new ideas and future proof their organization. But it
doesn't stick. Bringing in someone else's creative talent that leaves when the workshops
are over doesn't breed an innovation culture.



ii | Foreword

Red Hat recognized that to help their clients innovate, a model was needed that

could be fully customized and adapted it to their needs. A model that would help
organizations build their own innovation culture. To help people learn to fish rather
than fishing for them. By blending Mobius, an open innovation model, with Red Hat's
open culture, organizations can create their own process that builds up their innovation
muscle. That creates their own process, develops their own people, and applies
technology in novel ways to achieve their desired outcomes faster.

With pragmatic stories from the trenches, the team at Red Hat Open Innovation Labs
has created an essential handbook. It takes you on a journey from Day One, from setting
up the workspace to practical tips on getting a team to gel and collaborate on their
real-world challenges. We get to see under the covers how the DevOps culture emerges
through stories and photos. Rather than keeping their secret sauce recipe, Red Hat is
following its own principles of being open and sharing its knowledge in a pragmatic,
easy-to-follow way.

This book brings together the key ingredients: the people, processes, and technology.
It's like having a great travel guide that gives you the tips you need when you need
them. [ also love that the authors speak with candor and share their real-world war
stories, including the mistakes and pitfalls.

The last thing I will say is that the idea of fun is integral to the book, from the simple
how-to guides to the engaging illustrations and photos. This book is the culmination
of the learning collected along the way and I hope this book brings forth great ideas

that can help shape the future and create not only awesome products, but awesome
organizations.

Gabrielle Benefield

Founder, Mobius Loop



Preface

About

This section briefly introduces the authors, the coverage of this book, the skills you'll need to get
started, and the hardware and software needed to complete all of the technical topics.



iv | Preface

About DevOps Culture and Practice with OpenShift

DevOps Culture and Practice with OpenShift features many different real-world
practices - some people-related, some process-related, some technology-related - to
facilitate successful DevOps, and in turn OpenShift, adoption within your organization.
It introduces many DevOps concepts and tools to connect culture and practice through
a continuous loop of discovery, pivots, and delivery underpinned by a foundation of
collaboration and software engineering.

Containers and container-centric application lifecycle management are now an
industry standard, and OpenShift has a leading position in a flourishing market of
enterprise Kubernetes-based product offerings. DevOps Culture and Practice with
OpenShift provides a roadmap for building empowered product teams within your
organization.

This guide brings together lean, agile, design thinking, DevOps, culture, facilitation, and
hands-on technical enablement all in one book. Through a combination of real-world
stories, a practical case study, facilitation guides, and technical implementation details,
DevOps Culture and Practice with OpenShift provides tools and techniques to build a
DevOps culture within your organization on Red Hat’s OpenShift Container Platform.

About the authors

Tim Beattie is Global Head of Product and a Senior Principal Engagement Lead for Red
Hat Open Innovation Labs. His career in product delivery spans 20 years as an agile
and lean transformation coach - a continuous delivery & design thinking advocate who
brings people together to build meaningful products and services whilst transitioning
larger corporations towards business agility. He lives in Winchester, UK, with his wife
and dog, Gerrard the Labrador (the other Lab in his life) having adapted from being a
cat-person to a dog-person in his 30s.

Mike Hepburn is Global Principal Architect for Red Hat Open Innovation Labs and helps
customers transform their ways of working. He spends most of his working day helping
customers and teams transform the way they deliver applications to production with
OpenShift. He co-authored the book "DevOps with OpenShift" and loves the outdoors,
family, friends, good coffee, and good beer. Mike loves most animals, not the big hairy
spiders (Huntsman) found in Australia, and is generally a cat person unless it's Tuesday,
when he is a dog person.



About DevOps Culture and Practice with OpenShift | v

Noel O'Connor is a Senior Principal Architect in Red Hat's EMEA Solutions Practice
specializing in cloud native application and integration architectures. He has worked
with many of Red Hat's global enterprise customers in both Europe, Middle East & Asia.
He co-authored the book "DevOps with OpenShift" and he constantly tries to learn new
things to varying degrees of success. Noel prefers dogs over cats but got overruled by
the rest of the team.

Donal Spring is a Senior Architect for Red Hat Open Innovation Labs. He works in

the delivery teams with his sleeves rolled up tackling anything that's needed - from
coaching and mentoring the team members, setting the technical direction, to coding
and writing tests. He loves technology and getting his hands dirty exploring new tech,
frameworks, and patterns. He can often be found on weekends coding away on personal
projects and automating all the things. Cats or Dogs? He likes both :)

About the illustrator

Ilaria Doria is an Engagement Lead and Principal at Red Hat Open Innovation Labs.

In 2013, she entered into the Agile arena becoming a coach and enabling large
customers in their digital transformation journey. Her background is in end-user
experience and consultancy using open practices to lead complex transformation and
scaling agile in large organizations. Colorful sticky notes and doodles have always been
a part of her life, and this is why she provided all illustrations in the book and built all
digital templates. She is definitely a dog person.

About the reviewer

Ben Silverman is currently the Chief Architect for the Global Accounts team at
Cincinnati Bell Technology Services. He is also the co-author of the books OpenStack
for Architects, Mastering OpenStack, OpenStack - Design and Implement Cloud
Infrastructure, and was the Technical Reviewer for Learning OpenStack (Packt
Publishing).

When Ben is not writing books he is active on the Open Infrastructure Superuser
Editorial Board and has been a technical contributor to the Open Infrastructure
Foundation Documentation Team (Architecture Guide). He also leads the Phoenix,
Arizona Open Infrastructure User Group. Ben is often invited to speak about cloud and
Kubernetes adoption, implementation, migration, and cultural impact at client events,
meetups, and special vendor sessions.



vi | Preface

Learning Objectives

* Implement successful DevOps practices and in turn OpenShift within your
organization

» Deal with segregation of duties in a continuous delivery world
* Understand automation and its significance through an application-centric view

* Manage continuous deployment strategies, such as A/B, rolling, canary, and
blue-green

* Leverage OpenShift’s Jenkins capability to execute continuous integration
pipelines
* Manage and separate configuration from static runtime software

* Master communication and collaboration enabling delivery of superior software
products at scale through continuous discovery and continuous delivery

Audience

This book is for anyone with an interest in DevOps practices with OpenShift or other
Kubernetes platforms.

This DevOps book gives software architects, developers, and infra-ops engineers
a practical understanding of OpenShift, how to use it efficiently for the effective
deployment of application architectures, and how to collaborate with users and
stakeholders to deliver business-impacting outcomes.

Approach

This book blends to-the-point theoretical explanations with real-world examples to
enable you to develop your skills as a DevOps practitioner or advocate.

Hardware and software requirements

There are five chapters that dive deeper into technology. Chapter 6, Open Technical
Practices - Beginnings, Starting Right and Chapter 7, Open Technical Practices - The

Midpoint focuses on boot-strapping the technical environment. Chapter 14, Build It,
Chapter 15, Run It, and Chapter 16, Own It cover the development and operations of
features into our application running on the OpenShift platform.



About DevOps Culture and Practice with OpenShift | vii

We recommend all readers, regardless of their technical skill, explore the concepts
explained in these chapters. Optionally, you may wish to try some of the technical
practices yourself. These chapters provide guidance in how to do that.

The OpenShift Sizing requirements for running these exercises are outlined in
Appendix A.

Conventions

Code words in the text, database names, folder names, filenames, and file extensions
are shown as follows:

We are going to cover the basics of component testing the PetBattle user interface
using Jest. The user interface is made of several components. The first one you see
when landing on the application is the home page. For the home page component, the
test class is called home . component. spec. ts:

describe('HomeComponent', () => {
let component: HomeComponent;

let fixture: ComponentFixture<HomeComponent>;

beforeEach(async () => {...
i9H

beforeEach(() => {...
s

it('should create', () => {
expect(component).toBeTruthy();
1);
s



viii | Preface

Downloading resources

All of the technology artifacts are available in this book's GitHub repository at https: //
github.com /PacktPublishing /DevOps-Culture-and-Practice-with-OpenShift /

High resolution versions of all of the visuals including photographs, diagrams and

digital artifact templates used are available at https: //github.com /PacktPublishing /
DevOps-Culture-and-Practice-with-OpenShift /tree /master/figures

We also have other code bundles from our rich catalog of books and videos available at

https: //github.com /PacktPublishing /. Check them out!

We are aware that technology will chage over time and APIs will evolve. For the latest
changes of technical content, have a look at the book's GitHub repository above. If you
want to contact us directly for any issue you've encountered, please raise an issue in
this repository.


https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/
https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/
https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/tree/master/figures
https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/tree/master/figures
https://github.com/PacktPublishing/

Acknowledgements

First and foremost, we'd like to thank those on the front line who dealt with and are
dealing with COVID-19 and its impact. Their incredible contributions to maintaining
and strengthening our communities cannot be overstated.

We'd also like to thank those in the Open Source community who collaborate and
contribute to make all the products we use better every day. This includes the many
contributors to the Open Practice Library!, with special thanks to the individuals who
have driven the Open Practice Library from its initial idea to where it is now including
Justin Holmes, Ryan de Beasi, Matt Takane, Riley Ghiles, Jerry Becker, and Donna
Benjamin. We thank the Mobius Outcome Delivery community who have evolved an
inspiring mental model and navigators through complexity with extra special thanks to
the founder of this community, Gabrielle Benefield, for all her support in providing the
framework that we've anchored this book around.

We'd like to thank our internal and external reviewers for their effort in keeping us

on the straight and narrow, correcting us, challenging us, and driving continuous
improvement into this book - Chris Baynham-Hughes, Charley Beattie, Donna
Benjamin, Jeremy Brown, Margaret Dineen, Cansu Kavili Oernek, David Eva, Oli Gibson,
Kari Mayhew, Brid Mackey, Ed Seymour, Mike Walker, and the whole team at Packt
Publishing.

Thank you to our many colleagues and customers of Red Hat, Red Hat Open Innovation
Labs, and of our previous companies for providing us with our experiences, stories and
tips that we have shared in this book.

1 https: //github.com /openpracticelibrary/openpracticelibrary/graphs/contributors


https://github.com/openpracticelibrary/openpracticelibrary/graphs/contributors

X | Acknowledgements

On a personal level:

Tim - Thank you so much to my wife, Charley, for being
such an immense support and encouragement in helping
me write this book and in everything I do. I also want to
express my thanks to my extended family including my
Mum, Chantelle, Bev, Ivy, Henry, Kieran, and Sharon as well
as all my friends and colleagues, past and present, who
have all helped develop me and my career. Finally,

I dedicate this to my late Dad who I know would be very
proud of this and who I miss every day.

Mike - We wrote this book during COVID-19 times. You
would think that might make it easier, being locked away,
gaining weight. In fact, for everyone globally, it has been a
time of turmoil and stress, so I want to thank everyone
involved for sticking with it, especially my immediate
family who have supported me all the way. I am going to
repeat my favorite quote from Harry S. Truman - "It is
amazing what you can accomplish if you do not care who
gets the credit". To the amazing community that has
provided the ideas that have gone into this book, thank
you.

Noel - To Mags, Michael, and Sean, thanks for all your
support and patience. We're still not getting a cat though
:-) Also thanks to Noel and Mary, I told you this IT thing
would be interesting.



On a personal level: | xi

Donal - [ have to start by saying thank you to my awesome
wife, Natasha Carroll. When we started writing this book,
it was just the two of us and now we have a small boy
Cillian and Louis the pup. Finding time to carve out to
finish the book could only be done with her rallying and
support. Thanks to my Mum and Dad for encouraging me
to get into IT and leading me down the path I'm on. The
experiences shared in this book come from all the amazing
teams I've been in over the years. They've shaped my
opinions and the learnings shared here, so thank you all.

Ilaria - First thanks to Noel and Tim. When I heard they
started a book, I asked if I could help. I was going through
a hard time, and they said, "yes, why not? Why don't you do
the illustrations?" I was not conscious of what that meant
and realized only after a few months the effort and how
many new things [ had to learn and practice! I have also
to thank Furo, my husband, and my parents who always
encouraged me in trusting I could do it, and I did it ;)






Section 1: Practices
Make Perfect

In this section, we are going to introduce the book, where it came from, and how it's
organized.

Chapter 1, Introduction - Start with Why focuses on the book's purpose and the target
audience. Chapter 2, Introducing DevOps and Some Tools explains, in our words, what
DevOps is and how it helps speed up the value chain of product development. We'll
explore what this chain is and the bottlenecks that DevOps culture and practices
address. We'll introduce a couple of important tools that we'll use throughout the book
to navigate around the use of many different types of practices we're going to apply.

In Chapter 3, The Journey Ahead, we will introduce how we use real-world stories and
the case study we'll use throughout the book that will outline how the remaining six
sections of the book are organized.

This will set us up to build a foundation and start a journey of continuous discovery,
options, and continuous delivery.






Introduction — Start
with Why

You've picked up this book and have started reading it — thank you very much!

Perhaps you read the back cover and it gave you just enough information to be
inquisitive enough to open the book up and read some more. Maybe a friend or
colleague told you about it and recommended it to you. Maybe you have stumbled upon
it for another reason. Whatever the reason, we're very happy you've taken some time
out of your day to start reading this and we hope you get some value from it and want
to keep reading it.

Before going into any kind of detail regarding what this book is about and what it's
going to cover, we want to start with why. This is a practice we use to create a common
vision of purpose. Why have we written this book? What problems is it trying to solve
and who is the intended audience?



4 | Introduction — Start with Why

It was the nolt the
Start wilh
WHY You Do IT I HAVE 4 DREgm F A T e a maw
A
¢ =
B s
//oﬁ"zioffou poIr prech \’/ 2 s/ﬁeacé
ot see gt Jinek
WHAT You Do

Figure 1.1: Creating a common vision of purpose

Why — For What Reason or Purpose?

While this book may have been positioned as a book about technology, it is, at most,
only one-third about technology. DevOps is really all about collaboration. We wrote
this book because we want to increase your understanding of DevOps, collaboration,
and cultural and engineering practices on a container platform such as OpenShift. We
want to make moving to DevOps easier and provide a clearer path for you to apply
DevOps using OpenShift. We want to excite you when reading this and give you some
inspiration as to how you can apply DevOps principles and practices. We want to equip
you to go out and try these new techniques and practices.

As you progress through this book, we want you to continually measure the usefulness
(impact/value) of using these new techniques. In fact, every time you try something
out, we want you to think about and measure what impact it had.

That impact might be at an individual level: What impact did trying that thing out have
on me or a customer or a user? For example, has it reduced my cycle time to complete a
set of delivery activities? Alternatively, it might be an impact on a team or a department
you work in: Has team satisfaction been increased? What did we, as a group of people,
achieve from that? The impact might even be felt at organizational or societal level: Has
it reduced the number of operational incidents impacting customers? We believe you will
quickly start to see positive effects in all of these aspects. As a result, maybe you'll leave
us nice reviews and tell all your friends about this book. If not, perhaps you can pivot
and use this book as a doorstop or a monitor stand, which, of course, will give you a
different type of value!

If you don't know where to start with how to go about measuring value, read on — we
promise we'll cover that.

What we've just done is started using one of the practices and techniques used in
writing this book. We have used the Start with why practice, which is something we
always strive to do with every team or organization we work with.



Why Should I Listen to These Folks? | 5

So, what is a practice? A practice is an activity that helps teams achieve specific goals.
It's not just an idea; it's something that you do repeatedly in order to hone or polish a
skill. Practices have the following attributes:

* Empowering: The practices in this book will help teams discover and deliver
iteratively.

* Concise: They can be read in a few minutes.
* Agnostic: Practices don't require the team to follow a specific framework.
* Proven: Practices have been tested in the real world.

* Repeatable: Practices can be used more than once.

Hopefully, throughout this book, you'll see examples of us practicing what we preach
through the experiences, stories, and tips we will share from our real-world delivery
experience, which includes stories such as these:

* The story about when we worked with an insurance company to rebuild one of
their applications using DevOps and OpenShift but had a stop the world moment
(a practice we'll talk about in the next section) when we realized we were
redeveloping an app that users did not want and were not using!

* The story of when we worked with a European automotive company and
kick-started modern application development and agile practices with one of
their teams, only for the product owner to question how they were going to
prove to management that this was a better way of working when management
only work with spreadsheets and numbers.

* The story of the telecom company that suffered huge outages and
non-functional problems over a festive period and were keen to learn new
cultural and engineering practices to drive an auto-scaling and self-healing
approach to their infrastructure and applications.

Why Should I Listen to These Folks?

Before you read any more from the four folks writing this book, perhaps it's worth
taking a step back and sharing a bit of background as to where all our anecdotes,
theories, stories, and tips come from.

We all work for Red Hat. In particular, we are all a part of Red Hat's services
organization, which means that we all regularly interact with, and deliver professional
services to, Red Hat customers. This ranges from helping with installation and
supporting the early adoption of Red Hat technology to driving large transformation
programs underpinned by Red Hat technology and Red Hat's culture.



6 | Introduction — Start with Why

Red Hat's culture is relatively unique as it is entirely based on open source culture and
open organizations (of which Red Hat is one of the largest examples). This means that
the Red Hat organization is run under a set of characteristics that are closely aligned
with open source culture and philosophy. They include collaboration, community,
inclusivity, adaptability, and transparency. We highly recommend learning more

about Red Hat's open organization philosophy by reading Jim Whitehurst's The Open
Organization'.

Alot of the experience that has informed this book and the stories and tips we will share
emanate from engagements led by Red Hat Open Innovation Labs (or Labs for short). Labs
provides an immersive and open approach to creating new ways of working that can help
our customers and their teams develop digital solutions and accelerate business value
using open technology and open culture. The main offering provided by Labs is called

the residency, which is a four- to twelve-week timeboxed engagement where client's
engineers are matched one-on-one with Red Hat's technology and culture specialists.

Between the four authors, we've been involved in over 50 Open Innovation Labs'
residencies around the world, in addition to many other professional services
engagements. Due to the relatively short nature of Labs residencies, we get to learn
very quickly different techniques, different approaches, and different practices. We
get to see what works well and what doesn't work so well. We get to build up a huge
collection of stories and tips. This book is all about sharing those stories and tips.

Where Did This Book Come From?

The title of this book is an evolution of a training enablement program that the authors
have developed named DevOps Culture and Practice Enablement. This is an immersive
training course run by Red Hat, providing enablement to Red Hat customers, partners,
and employees.

We initially created the course because the services area of Red Hat we are working

in was growing, and we needed a way to consistently increase the enthusiasm and
shared understanding behind the practices and culture we were using globally, with
our customers, and within our own organization. We wanted to do this by exploring

all of the principal practices we had found to be successful in taking many products to
market with our customers. This included practices to help understand the why and
drive the discovery of products, as well as practices that would help us safely, securely,
and confidently deliver in an iterative and incremental manner. And then there was the
third outcome, which was having fun. We really couldn't see the point in all of this if you
couldn't have some fun, banter, and enjoyment as you went along — it's one of the key
ingredients of that mysterious word culture.

1 https:/www.redhat.com /en /explore /the-open-organization-book



Where Did This Book Come From? | 7

One of the key success factors behind this was injecting lots of experience and real-
life stories into our delivery and using a lot of our practices on ourselves to deliver
the course. Every time we run the course, we use the definition of done? practice to
explain to participants that every practice we are going to teach on the course will be
presented in a consistent way, following this process:

1. Introducing the practice with the theory and an overview of what it is, why you
should use it, and how to use it

2. A hands-on practical exercise so everyone participating can leave the course having
had a go at using the practice and having gained some learning and experience
from it

3. Areal-world example of the practice being used in action on a real customer
delivery project or product development initiative

The core practices taught in this course vary from discovery practices, such as

impact mapping and event storming, to delivery practices, such as sprint planning

and retrospectives. They include a set of practices we've found to be very powerful in
establishing high-performing, long-lived product teams, such as social contracts, team
sentiment practices, and mob and pair programming. They include the engineering
practices that many coming to the course would have most strongly associated with
the term DevOps, such as continuous integration, continuous delivery, test-driven
development, and infrastructure as code.

One of the unique aspects of this course is its appeal to a broad audience. It is not
exclusively for technologists or designers. In fact, we embraced the idea of having
cross-functional groups of people spanning from engineers to project managers,

from infrastructure experts to user experience designers. We felt this course offered
the opportunity to break down silos. We intentionally do not run different tracks for
different types of people. The aim is for participants to have a shared understanding of
all of the practices that can be applied to truly appreciate and enable a DevOps culture.

Having run this course more than a hundred times globally, we've learned volumes from
it and have continuously improved it as we've gone along.

Faced with the opportunity to write a new book about DevOps with OpenShift and
to apply new learnings and more up-to-date technologies from Stefano Picozzi,
Mike Hepburn, and Noel O'Connor's existing book, DevOps with OpenShift - Cloud
Deployments Made Easy, we considered what the important ingredients are to
make DevOps with OpenShift a success for any organization choosing to adopt the
technology.

2  https: //openpracticelibrary.com /practice /definition-of-done



8 | Introduction — Start with Why

The success factors are all based on people, processes, and technology through the
application of the many practices we've used with our customers globally and, in
particular, the kinds of practices we were introducing and enabling using DevOps
culture and practice enablement.

This book's purpose is to enable you to understand and be ready to apply the many
different practices — some people-related, some process-related, some technology-
related — that will make DevOps culture and practice with OpenShift a success within
your organization.

Who Exactly Is This Book For?

This book is intended for a broad audience — anyone who is in any way interested in
DevOps practices and /or OpenShift or other Kubernetes platforms. One of the first
activities for us to undertake was to get together and list the different personas and
types of reader we intended to write for. These included the following:

ﬂ

Designer
PevOps
Specialist
.
Tech
Lead
speam list (\ T Leader
nfrastructure Bnginear

Figure 1.2: The intended audience



Who Exactly Is This Book For? | 9

Caoimbhe, a technical lead who looks after a team of people who develop
software. She wants to learn more about DevOps so she can help adopt great
DevOps practices.

Fionn, a project manager who is responsible for a set of legacy software
applications and wants to modernize his team's approach to make use of this
DevOps thing he's heard lots of people talking about.

Padraig, an Agile coach who is very experienced in applying Agile delivery
frameworks such as Scrum and wants to further his skills and experience with
DevOps. He feels that this will really add value to the teams he is coaching.

Tadhg, a user experience designer who wants to better understand what other
people in the company's development team do with his designs and how he can
collaborate with them to deliver products.

Séamus, who is an IT leader executing his company's technology strategy to
adopt containers and cloud-native technology across the company's entire IT
estate. He has chosen OpenShift Container Platform (OCP) as the strategic
product to support this. He wants to ensure that OCP generates a fast return
on investment and that there is a large uptake across all IT teams in his
organization.

Aroha, the CIO of the organization. She wants to ensure that the company's
people are aligned with company strategy and getting the very best out of the
technology and the organizational decisions being made to drive the strategy.
She's motivated for the business to become more agile and adapt quickly if
and when market conditions change. She wants to read about what similarly
sized organizations in different industries (including in her own industry) have
successfully done and what they saw as being the critical success factors.

Siobhan, an infrastructure engineer who has been using Kubernetes for many
years and is now part of a team introducing OCP to her organization. She wants
to ensure that the platform is configured to support her team's goals and wants
to know how she can best work with development teams so that they get the
maximum value out of the technology.



10 | Introduction — Start with Why

* Eimar, a project manager who has spent two decades delivering IT projects
through up-front planning, tracking deliverables against plans, and managing
risks, issues, and dependencies with strong project reporting and stakeholder
management skills. She gets frustrated by the amount of time it takes to ship
software and not being able to address user needs and fixes quickly. She sees
the benefit of moving to a more product-centric approach rather than a project-
centric one. She would like to re-skill herself to be a product manager. In doing
this, she wants to be able to test and adapt quickly, ship deliverables quicker,
adapt to changing market conditions, and also improve performance, uptime,
recovery times, and more.

* Finn, a system tester who takes great pride in quality assuring software before
it is shipped to customers. His business analysis background helps him develop
comprehensive testing approaches and scripts and, over the years, he's also led
performance testing, security testing, and operability testing. He's keen to learn
how he can introduce more automation to his work and branch out to other
forms of testing.

FromltoTtoM

With this book, we want people to move away from being I-shaped, where they are

a specialist in one skill or one field. We want them to become more T-shaped, where
they still have a depth of skill and experience in a particular field (such as infrastructure
or UX design), but they also have an appreciation and breadth of knowledge across all
the other skills that people bring to make up a cross-functional team. This could be a
frontend engineer, for example, who also works side by side with the API engineer.

A great cross-functional team is one where the full team holds all the skills and
experience they need. They are empowered to take a new requirement from a user

or business stakeholder through to production. A team could be made up of lots

of I-shaped people, but this type of team quickly becomes dependent on specific
individuals who can be a blocker when they are not available. For example, if a database
change is needed to expose a new API but only one team member has the knowledge
to be able to do this, the team can quickly become stuck. If the team is full of more
T-shaped members, there is a greater opportunity for collaboration, sharing, and
partnerships across the team and less reliance on individuals:



Conclusion | 11

0
AT

Specialist NU/h’(umfebnal Muthfunctienal
One SKill Knowledge Hnows [edge

+ +
One De/oﬂ: onll MU’h‘P’G D!P‘H? Skills

® A

Figure 1.3: Skills transformation

We want this book to help I-shaped people become more T-shaped and perhaps even
become M-shaped. M-shaped people are inspired to deepen their learning, take it into
other fields, and hold multiple skills, thereby building stronger cross-functional teams.

Conclusion

This chapter presented a brief overview of why we wrote this book and who it is
intended for.

We introduced ourselves and how we will be using our applied knowledge, experience,
and learnings to write this book full of stories and examples.

We examined the different personas we are targeting in this book and how we intend
to help move these focused I-shaped people into more T-shaped or M-shaped to build
stronger cross functional teams.

In the next chapter, we will introduce DevOps and some tools we will use during the
book to organize and explain DevOps practices.






Introducing DevOps
and Some Tools

What Does It Mean to Be DevOps in a Container World? People have different
perceptions about DevOps, what it means, and how it works.

In this chapter, we are going to explain our view on DevOps and the bottlenecks and
challenges that DevOps focuses on addressing. We will introduce the idea of a value
chain in software product delivery and how we can use different techniques from lean,
agile, and DevOps communities to optimize and speed up the value chain.

We will also introduce some tools, such as the Mobius Loop and the Open Practice
Library that we will use to navigate our way through the many practices utilized in the
rest of the book.

DevOps is a bit of a buzzword at the moment! It seems that for every decade in
technology, there is a new buzzword associated with it.



14 | Introducing DevOps and Some Tools

Throughout the 2010s, Agile was that buzzword—This is going to be an Agile project, or
We're going to use Agile to deliver this, or We're going to use the Agile methodology were
common phrases that many of us have heard. It was (and still is) often used incorrectly
about delivering software faster. In fact, Agile is focused more around delivering
business value earlier and more frequently and driving a culture of continuous learning.
Agile has now officially grown up—it had its 18" birthday in February 2019. Even after all
this time, we still love to use the values and principles of the Agile Manifesto' created
back in 2001.

Containers is another buzzword these days. We see it being used by individuals without
them necessarily understanding the full meaning of what a container is and why people,
teams, and organizations would benefit by utilizing them.

So, with this book being about DevOps and OpenShift (a container management
platform), we're going to de-buzzify these terms and talk about very practical,

real world experience and examples of the real value behind DevOps and OpenShift
containers.

Let's take a look back in time and see where we believe these phenomena came from.

We all have worked in IT for a number of decades (some more decades than others!).
While chatting over a beer and looking back at our experiences of delivering IT projects,
we recognized some common characteristics in all our IT projects that have been
constant. We also identified a set of gaps in the value chain of delivering IT projects
that, for us, seemed to slow things down.

The Value Chain

Every project we've ever worked on has had some kind of end customer or user.
Sometimes they have been external users, such as an online shopper wanting to use
their mobile app to buy the latest set of Justin Bieber bedsheets! Other times, they
have been teams internal to an organization, such as an operations team or a particular
department within a company. One common denominator we all agree on is that the
objective of our work was always having smiley, happy customers:

1 www.agilemanifesto.org


http://agilemanifesto.org/

The Value Chain | 15

/7

\\
ﬁ\ 7
\

Figure 2.1: Happy customers — The ultimate goal of organizations

Between us, we have helped many organizations, from the public sector and finance

to retail and charities. We've seen it all! As we reminisced, we discussed the end result
of some of our projects; we thought about our why — there was almost always some
kind of monetary value aspect associated with the reason for us being there. There
were other motivations, too, such as increased customer satisfaction, reduced risk, and
improved security and performance, but the bottom line is that an essential part of any
of our commercial customers' business is to make money and reduce costs.

So, in the end, value was often linked to money in some shape or form. Three of us
authors are Irish and the fourth is from New Zealand, so we felt it was appropriate to
reflect this as a pot of gold!

Figure 2.2: Profits — A common goal of every commercial organization



16 | Introducing DevOps and Some Tools

The 1990 book The Machine That Changed the World, written by James Womack, Daniel
Jones, and Daniel Roos, first introduced the term value stream. The idea was further
popularized by the book Lean Thinking, written by the same authors. According to
them, the value stream is the sequence of activities an organization undertakes to
deliver on a customer request. More broadly, a value stream is the sequence of activities
required to design, produce, and deliver a good or service to a customer, and it includes
the dual flows of information and material. Most value streams are highly cross-
functional: the transformation of a customer request to a good or service flows through
many functional departments or work teams within the organization:

@\\}@/oooooooo

o

\ 7
\

Figure 2.3: Customers dreaming of the pot of gold

Let's visualize this as our customers dreaming of that pot of gold. They're constantly
thinking about how they can get the most out of their products or ideas to generate the
most gold. So, how do they go about doing this?

The Gaps

We're going to explore the gaps in the value chain between customers and
organization's business people, between business people and development people, and
between development people and operations people.

The Big List of Things to Do

The first gap in the software development process that we consistently saw was the
process of collecting information from end customers and forming a list of customer
requirements:

@\\}@/oooooooo

o)

\

\

Figure 2.4: Understanding and collecting customer requirements



The Gaps | 17

Our early projects often involved long phases of business analysts documenting

every possible requirement they could conceivably think of into epic volumes of
business requirements — documents. The goal was to pre-empt every conceivable
customer journey or scenario and to cover all the bases by building specifications that
included every possible eventuality. Sounds rigid, right? What if we made an incorrect
assumption?

Demonstrating Value and Building the Right Thing

The second gap revolved around demonstrating value to customers. Usually, the project
being undertaken was set up to include all of the features and ideas needed so that

they could be released together. Once the project was in production, it would only have
a small operations budget to support minor enhancements and problem resolution.
Sounds like it might take a long time to get the application into the end users' hands,
right?

There are two reasons we call these gaps. First, the process was lengthy — months,
sometimes years, would elapse between starting a project and signing off on the
requirements. Second, trying to collect every possible requirement before delivering
anything would mean no real benefit to the end customer for years and often, the
wrong functionality was built and delivered to an unhappy customer:

Figure 2.5: Using human-centered practices to understand customer needs



18 | Introducing DevOps and Some Tools

This gap of not building the right thing has been plugged in recent years by the emergence
of human-centered design and design thinking. These are a set of practices that put the
end user at the center of capturing the needs and requirements of a product.

We gather the information by talking directly to users and forming greater empathy?
with them:

cimp athy noun
@ Save Word

em-pa-thy | \'em-pa-the @ \

Definition of empathy

1 :the action of understanding, being aware of, being sensitive to, and vicariously
experiencing the feelings, thoughts, and experience of another of either the past
or present without having the feelings, thoughts, and experience fully
communicated in an objectively explicit manner

also : the capacity for this

Figure 2.6: Merriam-Webster definition of 'empathy’

In this book, we'll explore how techniques such as impact mapping, event storming, and
human-centered design can aid the software development process. We'll also explore
other practices to help us define solutions and features and crucially ensure that the
solution is connected to business value. We'll show how the act of coupling research
activities such as user interface prototypes and technical spikes with experimentation
inform product backlogs that are well prioritized according to delivered business value.
We will show you how using just enough information can lead to a better-understood
product.

How Do We Do the Things on Our List?

Let's consider the second gap in delivering value to users. This gap focuses on moving
from a shopping list of TODO items into working software.

The traditional approach is to sign off and confirm a finite set of requirements that
have undergone the lengthy process of business analysis and capture. The scope of the
project is locked down and a stringent change control process and governance is put in
place for dealing with any deviation from the documented requirements.

2 https:/www.merriam-webster.com /dictionary/empath


https://www.merriam-webster.com/dictionary/empath

The Gaps | 19

A team of software designers and architects then gets to work, producing a high-level
design (HLD) that will deliver a solution or set of solutions according to the business
requirements specified. These requirements also go through a formal review process
by key project stakeholders and, once signed off, become the reference source for the
solution scope.

Often, different design documents are written in the next phase - detail design
documents, program specifications, data designs, logical architecture blueprints,
physical architecture solutions, and many more. Each of these is written to support a
defined, dated, and signed-off version of the HLD, which itself, is signed off against a
defined set of business requirement specifications:

Change Control Process and Governance
0
Formal sigw off 4

Project Manager

Reauirements Formal review process
0 ADesan
( 0
BusLness

Avchitect 0
o TEER

Developer

Mantenance

a °

Operations

Tester

)

4 € + $ + £ +Mom,e5 @

For every change everything has to be reassessed

Figure 2.7: Traditional application development lifecycle

Any changes to the earlier documents have direct time and cost implications

for reassessing and updating each of the following design documents. Software
development teams may have been involved in the production or review of some of
these documents. However, they are often encouraged not to start any coding or
development activities until these designs have been locked down. Some organizations
reduce project costs by not onboarding development teams until this stage.
Development is often siloed by function and unaware of the big picture with limited
automated testing.



20 | Introducing DevOps and Some Tools

At a predefined point in the project plan, all developers are expected to have delivered
their coded components to a testing environment. Perhaps each developer manually
builds and deploys their own code to the testing environment. Some larger programs
seek economies of scale by setting up build infrastructure teams who do this on behalf
of all developers. Once all components had been delivered, a separate team of testers
starts executing the hundreds of test scripts they had been writing in the preceding
weeks and months to test the solution according to business requirements and HLD
documentation. This is the first time some components are integrated and tested
together. Of course, problems and bugs drive reworking by development teams and
designers to fix such issues.

Just as there are different levels of design documentation, testing often undergoes
different levels of testing, with one starting when the previous phase is completed.

A test manager would sign off on a set of test results, signaling that the next level of
testing could start. Testing would range from a set of component integration testing to
wider system integration testing, security and penetration testing, performance testing,
failover and operability testing, and finally, user acceptance testing!

The final stage before the big-bang go-live of a solution would often be user acceptance
testing, involving a set of focus users and the test system. In many cases, it could

often be months or years before this first user saw the implemented system. Once

user acceptance of the solution was signed off, the green light was given to deploy to
the production environment. Finally, with the software in the hands of real end users,
business revenue could hopefully be generated from all this work.

You're probably thinking that this process sounds long and drawn out — well in truth, it
was! Many programs hit delays at different points along the way and what started out as
a multi-month project plan ended up being years long. For the curious, there is even a
list of some epic failures on Wikipedia: https: //en.wikipedia.org /wiki /List of failed

and overbudget custom software projects.

Often, business conditions would change during the development period. New feature
requests would be generated. During testing, gaps in the requirements would emerge
that no one considered during the analysis and requirements capture. The market
didn't stand still during development and competitor companies may have started to
innovate quicker. The competition would even provide more feature requests, in a
process akin to a feature comparison war.

Of course, there was always some kind of change control procedure to handle new
scope like this. In a complex program of work, the lead time to get features added to the
work plan could range from months to years. In order to get something into production,
program executives would simply say no to any more change and just focus on getting
to the end of the project plan.


https://en.wikipedia.org/wiki/List_of_failed_ and_overbudget_custom_software_projects
https://en.wikipedia.org/wiki/List_of_failed_ and_overbudget_custom_software_projects

The Gaps | 21

This meant that solutions finally delivered to production were somewhat
underwhelming to users several years after the first requirements were discussed. Time
and industry had moved on. The biggest frustration of these programs was that they
were frequently delivered late, were over budget, and often delivered a solution that
lacked user satisfaction or quality.

Stepping back a little, we had this huge gap of converting lists of features into a
software deliverable. The process known as Waterfall due to the nature of separate
phases of work flowing down to the next phase was associated with very lengthy times:

1IME

Figure 2.8: Traditional deliverables with its drawbacks failed to achieve customer satisfaction

Let's think about how we plug that second gap with more modern software
development processes. How do modern developers manage to translate user needs
into working software solutions much more quickly compared to previous ways of
working?

The formation of the Agile movement in 2001, led by the 17 IT individuals who wrote the
Agile Manifesto, has triggered alternative approaches and mindsets toward delivering
software. Many of the individuals involved in writing the Agile Manifesto had been
tackling many of the problems described by Waterfall development. Jeff Sutherland
and Ken Shwaber had created the Scrum framework for software development, which
included delivering small incremental releases of value much more frequently — they
used the term sprint, which was a fixed timebox ranging from one to four weeks
(usually being two weeks), during which a set of events and roles would work together
such that big solutions could be delivered iteratively and incrementally. Kent Beck

and Ron Jefferies led much of the eXtreme Programming (XP) movement, focusing on
delivering faster releases of value and working on key practices that helped drive more
efficiency into review, testing, and release processes, using better collaboration and
increased automation:



22 | Introducing DevOps and Some Tools

o

@\\J@/OOOOOOO

B DEV
e

\ ‘ v ‘ \ ——’— z\ ﬁ 3\
b—- ) 0PS

’—‘—‘— _‘_7\\ @
|

=N aly

Figure 2.9: Implementation of DevOps practices leading to faster delivery and better products

In this book, we'll show you different software delivery practices and how our
experience using a mixture of different practices from Scrum, Kanban, XP, Lean, and
some scaling frameworks helps deliver value quicker. All the underlying practices are
simply tools to help close the gap between an idea or requirement being captured and
it being delivered. This has been an area we have sought to continuously improve to a
level where the gaps are minimized and we're working in a mode of continuous delivery.

Development to Operations

There is one more gap to plug in our efforts to optimize the software delivery process.
The third gap is the one between development teams and operations teams.

In our Waterfall process, we had reached the point where the signed-off solution exited
user acceptance testing and went through a big-bang go-live. So, what happened next?

Often, a whole new team responsible for maintenance and support would then pick
up the solution. The people who work in this new team were not involved in any of the
design, development, or testing, so additional time would be built into the project plan
for knowledge transfer. The delivery team would write lengthy documentation in the
hope that this would be a useful resource for future operations teams.



The Gaps | 23

At this point, the package of software would metaphorically be thrown over the wall
from the army of developers to the group of operation engineers. The operations
teams often had to learn about the software the hard way by investigating production
incidents, addressing bugs that were not found previously, and handling new scenarios

not considered during the requirement planning stage:

6 U
DV o
AN

B

Figure 2.10: Aspiring to bring down the wall between development and operations teams

To plug this gap, we must bring development and operations teams together. Tear
down that wall and remove the silos! Bringing down the wall forms new teams that
are focused on development and operations activities. These teams are collectively
responsible for the whole solution and can design the solution according to each
others' needs.

The term DevOps was coined by the idea that we no longer have siloed development
and operations teams. In recent years, we've seen various other terms emerge from this
idea, such as DevSecOps, BizDevOps, DesOps and even BizDesDevSecOps!

Note

BizDesDevSecOps is a bit of a mouthful, so we're going to use the term product
team to describe it throughout this book. It addresses the ultimate goal of
plugging all gaps in the software development process and bringing down all the
walls.




24 | Introducing DevOps and Some Tools

0Ps

- 6%
S CULTURE

Figure 2.11: Plugging the gaps in the software delivery process

f_‘___‘_—\\\ @
.

Note that we will not use the DevOps team term DevOps team — the idea of having a
team or even an individual purely focused on DevOps runs counter to what the DevOps
philosophy is all about — collaboration, cross-functionality, and the removal of silos.
How many times have you seen ads on LinkedIn or other sites looking for DevOps
engineers? The invention of the DevOps engineer or the DevOps team could be seen as
creating just another silo.

People, Process, and Technology

DevOps is really all about collaboration. It's about taking pride in, and ownership of, the
solution you're building by bringing down walls and silos and by removing bottlenecks
and obstacles. This speeds up the value stream connecting the customer's perceived
need to the product delivery.

Technology alone will never solve all your business problems. No matter how good the
platform or software product you are evaluating or being sold, unless your organization
has learned to adopt the correct balance of people aspects, process changes, and
technology adoption, the objectives will not be met.



People, Process, and Technology | 25

This book is about finding the right combination of people, process, and technology
changes needed to maximize business outcomes on a continuous basis. This requires
changes in mindset and changes in behavior. This book will look at the behavioral
change that we have seen be most effective with the hundreds of organizations we have
collectively worked with. We've observed that such mindset and behavioral change

is needed across all roles and that we need to break down the silos we see inside
organizations, which, as we saw previously, is what drives the gaps and inefficiencies in
software development:

Pentss

Q\W\Q %/ﬁ
Tudhndleg)
L

Figure 2.12: A healthy balance between people, process, and technology

Everyone in an organization should care about people, process engineering, and
technology in order to drive the desired outcomes. We want to break down the silos
between these three pillars and bring them closer together. A reader who may be more
interested and focused in one of these three things will get as much (if not more) value
from learning about the other two things.

This means a hardcore software engineer or architect can pick up some great insights
and guidance on why people, culture, and collaboration are equally important for their
role.

Someone who has previously been an expert in project management methodologies
and is now learning about more agile delivery practices such as Scrum can also use
this book to learn about modern technology approaches such as GitOps, CI/CD, and
serverless. They can learn why these are important to understand and appreciate so
that they can articulate the business value such approaches bring to organizations.

Aleader who is concerned about employee retention can learn how the mastery of
these modern tech practices of iterative and incremental delivery strategies can
maximize the opportunities for organizational success through the delivery of highly
valuable products being used by happy customers.



26 | Introducing DevOps and Some Tools

The Mobius Loop and the Open Practice Library

In this book, we're going to explore lots of different practices. We're going to explain
what they are and why we use them. We're going to give you some guidance on how to
use them. We're going to share some real-world examples of how we've used them and,
where possible, we'll even show them in action. Using our Pet Battle case study (more
on that later), we're going to bring them to life in a fun way and we'll share the best tips
that we've picked up in the field.

A problem we hit a few years ago when working with our customers' new teams was
explaining how and when you might want to use different practices and in what order.
What practice should we start with? What practice links nicely to the output produced
from a previous practice, and so on?

To help with this, we have made use of an open-source navigator tool called Mobius.
This was created by Gabrielle Benefield and Ryan Shriver. There is a huge amount of
great material, including a number of open-sourced canvases and artifacts, available at
www.mobiusloop.com. Red Hat Open Innovation Labs makes use of this open-source
material in all of its residencies and in its DevOps culture and practice enablement
courses.® We will use it in this book to structure the content and the sections.

WHY 8WHO DELIVER
what is the problem to solve or idea to Ruw experiments and deliver to
pursue? Who are the target customers 0P ﬂow customers
and what do they need? How will we achieve the outcomes?

OUTCOMES MEASURE & LEARN
How will we weet the customer and Measure the impact and learn what
business needs? we should do next

Figure 2.13: The Mobius loop*
3  https: //github.com /rht-labs /enablement-docs

4 The Mobius Loop (https: //mobiusloop.com /) resources by Gabrielle Benefield and
Ryan Shriver used here and throughout this book are licensed under CC BY 3.0.
Later in the book, images include an additional modification of a foundation layer.
For more information please see https: //creativecommons.org /licenses/by/3.0


http://www.mobiusloop.com
https://github.com/rht-labs/enablement-docs
https://mobiusloop.com/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

The Mobius Loop and the Open Practice Library | 27

Mobius is a framework that connects discovery and delivery and can be used to connect
strategy to products to operations. The common denominator is measurable outcomes.
Mobius is used to understand, align, and share measurable target outcomes so they can
be tested and validated.

There are a number of principles that underpin the Mobius navigator:

Outcomes over outputs: We focus on delivering tangible impacts or outcomes to
people as opposed to delivering lots of features that may not drive outcomes.

Multi-options strategy (options pivot): We look to build a list of options, a list of
research initiatives, experiments, and implementation features that can be used
to test hypotheses about whether those research initiatives, experiments, and
implementation features will indeed drive the anticipated outcomes.

Rapid delivery: We aim to use short iterations of delivery with regular feedback
and measurement as we strive toward the idea of continuous delivery.

Continuous learning and improvement: happens throughout the cycle so that
our next set of options yield an even better impact on outcomes.

There are seven core elements to the Mobius approach across a continuous and
never-ending flow. They can be visualized on a single canvas that is open source and
made available under a creative commons license at www.mobiusloop.com:

Why describes the purpose. Why are we doing this? What is the problem we are
trying to solve? What is the idea we are trying to pursue?

Who focuses on the end users. Who are we trying to solve the problem for?

Outcomes are where we want to get to with these people, the changes in
their human behavior that influences big results, and how we will measure the
customer and business impacts delivered.

Options are the potential solutions that could deliver these outcomes. They help
define the hypotheses we can go on to test and help us find the simplest way to
achieve the desired outcome with the least amount of effort or output.

Deliver is the cycle where we run experiments to deliver a solution or set of
solutions to users so we can measure the impact.

Measure is where we assess what happened as a result of delivering the solution
or set of solutions. We check whether the impact of the solution delivered the
desired outcomes and assess how much of an impact we achieved.

Learn is the feedback loop that takes us back to the options pivot. We learn from
what we delivered and assess what to do next. Have we delivered enough to
make an assessment? Do we go right back around the delivery loop again? Have
we reached our target outcomes or invalidated assumptions from our learnings?
Do we return to the discovery loop?


http://www.mobiusloop.com

28 | Introducing DevOps and Some Tools

Personas such as Tadhg, our user experience designer, would typically spend a lot

of time in the discovery loop. Personas such as Caoimhe, our technical lead, would
traditionally be focused on the delivery loop. Personas such as Fionn, our project
manager, would typically spend a lot of time here establishing outcomes and gathering
options. But, as we seek to move to cross-functional teams of T- or M-shaped people,
we really benefit from everyone being involved at every stage of the Mobius loop. And
Mobius creates a common language based on targeted measurable outcomes.

You can apply the same principles of outcome-driven thinking for strategy, product,
and services delivery to enabling business and technical operations — we'll return to
this idea later in the book.

Mobius is powerful because it's framework agnostic. It integrates with many existing
frameworks and methods you may already be familiar with — Scrum, Kanban, design
thinking, Lean UX, Business Model Generation, Lean startup, and many other great
frameworks that have surfaced during the last couple of decades. You don't have to
reinvent the wheel or replace everything you already like and that works for you.

You can capture key information on a discovery map, an options map, and a delivery
map — all of these are open source artifacts available under Creative Commons at

www.mobiusloop.com:

TITLE PuRPosE baTE TIME ONE-UNER DAt DATE

DISCOVER WY weson  OPTIONS WHAT vaeson  DELIVERHOW et
context 9] orTIoNS Fe) & o5 |PRORITY z AcTioNs OOING g DONE  _g)IMPACT 2 eARw &
wHO & [why 9| ourcomes ©®
=S | s

\

\

|

|

|

|

|

|

|

|

|

|

|

|

I

|

\

|

|

|

|

|

|

!
NGRS 5 [NsiGEs g TNSGHTS v

Figure 2.14: Using the Discovery, Options, and Delivery canvases of the Mobius loop


http://www.mobiusloop.com

The Mobius Loop and the Open Practice Library | 29

When Red Hat Open Innovation Labs started using Mobius, we placed all of our
practices around the Mobius loop. Some practices clearly aligned with the discovery
loop and, in particular, the Why & Who end of the discovery loop. Practices such as
impact mapping, start-at-the-end, and empathy mapping are great at uncovering the
answers posed in this section of the loop. We'll get into the detail of these practices in
subsequent chapters of this book.

Practices such as event storming and user story mapping were very helpful in
establishing and visualizing outcomes on the other side of the discovery loop. Again,
we'll look at these practices in detail and share some great examples of their effect.

Practices such as design sprints, how-might-we, and product backlog refinement would
help determine and organize the series of options available attempting to drive toward
outcomes.

Practices such as sprint planning would help plan and execute the incremental delivery
of products toward outcomes. We'll explore these iterative delivery practices and how
different Agile frameworks can be used with Mobius.

Practices such as showcases and retrospectives would help with capturing measure-
and-learn data from incremental delivery.

We still had a large number of practices that we did not feel naturally fitted into one of
the loops or the options pivot. When we laid out all of the remaining practices that we
had all used with numerous customers very effectively, we found they fitted into one of
two areas. One set of practices were all focused on creating culture and collaboration.
The other practices were all technical engineering practices that supported the
concept of continuous delivery.

When explaining these practices to others, we talked about these being very important
practices to put in place, but not necessarily practices that you would schedule. For
example, you will learn that practices such as impact mapping on the discovery loop are
important scheduled workshops that you execute and occasionally revisit in the future.
Practices such as sprint planning, showcases, and retrospectives on the delivery loop
are also tightly scheduled when working in an iterative delivery framework. But the
practices associated with culture and collaboration or those associated with technical
engineering were more like practices that you use all the time, continuously.



30 | Introducing DevOps and Some Tools

Practices such as social contracts and definition of done are not one-time-only
practices where you bring the artifact out on a schedule. These are living and breathing
artifacts that teams use all the time in their day-to-day work. Likewise, continuous
integration, test automation, and infrastructure as code — these are not the types of
practices you schedule one or two times a week. These are practices that you do all the
time. They are practices in the foundation of where and how we're working. In order

to effectively practice continuous delivery and continuous discovery as presented by
the Mobius loop, we need to have a strong foundation of culture, collaboration, and
technical engineering practices.

To visualize this, we added the foundation to the Mobius loop:

WHY DELIVER

DisCoVERY DELIVERY

PTION
OUTCOME RS 2&3&&5

G
CULTURE FOUNMTWN TECHNICAL

Figure 2.15: Adding a foundation to the Mobius loop

This graphic has become a simple visualization tool that helps us navigate the
ever-growing list of practices and techniques we use to achieve continuous discovery
and continuous delivery of digital products:



The Mobius Loop and the Open Practice Library | 31

2 EE= FOUNDATION 825,

PAIRINL § HOBBING
Figure 2.16: Practicing continuous discovery and delivery through the Mobius loop

Open Innovation Labs Residencies involves traveling around the Mobius loop a few
times, usually starting from discovery before proceeding to delivery and then pivoting
a few times to either more delivery or returning to discovery continuously. We

find that, in order for this to be sustainable, you must build a foundation of culture
and collaboration and you must build a strong foundation of technical engineering
practices.

Open Innovation Labs kick-started an open source, community-driven project called
the Open Practice Library. The Open Practice Library is a community-driven repository
of practices and tools. These are shared by people currently using them day-to-day for
people looking to be inspired with new ideas and experience.

All of the practices you read about in this book have been contributed to the Open
Practice Library and, throughout the book, we will use the Mobius loop and the
foundation of culture, collaboration, and technical practices as a reference point to
determine where and how all our open practices fit together to deliver great DevOps
culture and practice with OpenShift.



32 | Introducing DevOps and Some Tools

An important characteristic of Mobius and the Open Practice Library is that it is not
prescriptive. It is not a methodology. It does not tell you exactly which practice to

use when and where. Think of the Open Practice Library as a box of tools — a really
well-organized toolbox with lots of compartments and shelves. The practices have
been organized into compartments that help with discovery and, in particular, the why
and who, followed by deriving outcomes. There is a drawer containing all the tools
that help form, organize, and prioritize options and how to pivot later in the cycle.
There is a portion of the toolbox with all of the tools that help with delivery — whether
that be iterative and incremental delivery associated with agile practices or single
delivery associated with Waterfall. There are tools to help capture and understand the
measurements and learning from delivery. Finally, there is a huge drawer of tools used
to establish culture, collaboration, and technical engineering excellence. These are
often the first tools we go to grab when starting a piece of work.

Conclusion

In this chapter, we introduced the value chain in software product delivery and
explored how traditional ways of working brought inefficiencies, bottlenecks and gaps
between users, business stakeholders, development teams, and operational teams.

We explored some of the techniques that have been used to plug these gaps and how a
balanced focus on people, process, and technology is needed by all involved.

Finally, we introduced the open-source navigator tool called Mobius that connects
discovery and delivery in an infinite loop and can connect strategy to product to
operations with a common denominator of measurable outcomes. The Open Practice
Library uses mobius on a foundation of culture and technology to navigate between an
evolving number of open practices — many of which will be explained in subsequent
chapters.

In the next chapter, we're going to outline how we'll approach the rest of the book by
introducing our case study and the structure for the remaining sections.



The Journey Ahead

As we conclude the first section of this book, this chapter will explain the journey we
intend to take you through the remaining sections.

This will include how we intend to not just tell you about practices and techniques but
also show them in action and apply them. We'll introduce a fun case study and real
world stories to do this.

One of the challenges of writing a book intended to be read by a diverse group of
people with different skill sets and backgrounds is how to write it in such a way that
means it can be consumed, understood, and appreciated by all. From tech leads,
infrastructure engineers, and OpenShift specialists, to Agile coaches, user experience
designers, and project managers, to IT leaders and CXOs, we want you to grasp a
shared understanding of what's behind all the practices being taught and the principles
that underpin then.



34 | The Journey Ahead

The topics covered are going to range from how to capture behaviors in an empathy
map using human-centered design practices to considering observability within
applications using performance metrics. It will look at ways to help product owners
prioritize value versus risk while also addressing instrumentation for applications,
image tagging, and metadata!

Similar to the definition of done practice we use on our DevOps culture and practice
enablement course, we're going to use a few different approaches in this book to help
you with your journey:

1. Explaining the culture and practice
2. Showing the culture and practice
3. Applying the culture and practice

To explain the culture and practice, we will introduce what the practice is and why and
where we've chosen to use it, and give some guidance on how to use it. In some ways,
this is the easy part.

We have a saying among us that we prefer to show, not tell. It's easy to research and
write a load of words. It's far more compelling to visually show a practice in action and
the effect it is having. To show the culture and practice, we have a few techniques:

1. As much as possible, we'll aim to make use of visualization techniques such as
sketch notes, diagrams, and other charts. You will have seen a few of these,
beautifully drawn by Ilaria Doria, in this section already, and hopefully, they have
helped bring the words to life a little.

2. Where we can show you a practice in action through photographs or reproduced
artifacts, we will do so. Where possible, we have made the diagrams and other
visual artifacts open source, and they are available at https: //github.com /

PacktPublishing /DevOps-Culture-and-Practice-with-OpenShift /.

3. We find stories and real-world examples the best way to explain a practice and the
value it brings. So, from time to time, we will break away and tell a story that one or
more of the authors have experienced connected with these practices. We'll visually
tell these stories on their own by having a box around the story. Let's start with
one now:


https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/
https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/

A Story about Telling a Practice | 35

A Story about Telling a Practice

In December 2005, I was working in the billing
workstream of a large telecommunications
billing system replacement program in the UK.
I'd been working on this program for 18 months
already at this point. It was a 10-year program
to replace all legacy billing systems with a more
modern COTS software and introduce some
new business capability enabling flexible and
changeable product management.

\

I lead the billing interfaces workstream and was responsible for the delivery
of interfaces between billing systems and third parties such as banks, BACS,
and the treasury.

Our workstream was having our Christmas dinner in a pub near the office.
We'd chosen this pub because most of us had been to the same pub 12
months previously for last year's Christmas dinner. It was funny to see so
many of us in the same place around the same time of year 12 months on.

When I was there, I reflected on the last 12 months and what had been
achieved by our expensive team of consultants during the period. It dawned
on me that 12 months ago, we were entering the design phase of a major
release of the program. We were running a series of workshops over several
weeks to map out the different work products and deliverables required for
the release.

12 months on, we were still in that design phase. A workstream of over

60 people had spent a year writing, rewriting, refining, and writing again
design documents, more design documents, variations of design documents,
technical clarification notes against design documents, and even change
requests against design documents. At this point, no code had been

written, no tests had been run, and no software had been released. All we
had produced from 12 months was lots of design documents and lots of
meetings.

I remember feeling somewhat underwhelmed by the impact of what we'd
achieved in the last year. I said to myself then, There has to be a better way of
delivering software.



36 | The Journey Ahead

Finally, we want to apply some of the culture and practices for real. To help us do that,
we are going to use a simple, fun case study about a small start up organization going
through some of the challenges and hurdles associated with creating a DevOps culture
and establishing DevOps practices. This story will represent an anonymized account of
some of the things we've seen in the field with our customers using these practices.

We'll regularly return to this story of applying DevOps culture and practices using
OpensShift in shaded boxes. Let's get this rolling with the backstory — we hope you're
ready for this!

PetBattle - the Backstory

Pictures of domestic cats are some of the most widely viewed content on the
internet'. Is this true? Who knows! Maybe it's true. What we do know is that
they make a great backstory for the example application we use in this book
to help explain a number of DevOps practices:

Pet Battle @& HOME @

It's Cat Vs Cat in this purrfect competition.

The challenge is tough as these cats are all very fur-midable! There can be only one winner in this a-paw-ling competition, could you pawsibly choose just one cat?? You must be kitten-met!

¥ Add your cat the competition ¥

& Third Place Cat % 3

y
&

4 Second Place Cat % 4

& Refresh the Leaderboard

Figure 3.1: PetBattle — The backstory

PetBattle is a hobbyist app, started for fun, hacked around with so that
the authors can Cat versus Cat battle each other in a simple online forum.
A My cat is better than your cat type of thing. There are very few bells
and whistles to the initial architecture — there is a simple web-based user
interface and an API layer coupled with a NoSQL database.

1 https:/en.wikipedia.org /wiki/Cats _and the Internet


https://en.wikipedia.org/wiki/Cats_and_the_Internet

What about Legacy Systems? | 37

PetBattle begins life deployed on a single virtual machine. It's online but not
attracting a lot of visitors. It's mainly frequented by the authors' friends and
family.

While on holiday in an exotic paradise, one of the authors happensed to
meet an online influencer. They date, they have a holiday romance, and
PetBattle suddenly becomes Insta-famous! Nearly overnight, there was

a drastically increased number of players, the PetBattle server crashes,

and malicious pictures of not cats start appearing on the child-friendly

application.

Back from holiday, the authors suddenly find themselves needing to
earn a living from PetBattle and decide that developing a business and a
production-ready version of the hobbyist app is now a viable thing to do.

The scene is set for the PetBattle founders to go on an exciting journey embracing
DevOps culture and practice with OpenShift.

What about Legacy Systems?

People often associate Agile and DevOps with greenfield, brand-new development and
see it as only applicable to start-ups and those with the luxury to start again. What
about legacy systems? is a common question we get asked.

We'll show throughout this book that the Mobius loop and the foundation can apply to
any kind of project and any kind of technology; greenfield or brownfield, small web app
or large mainframe, on-premises infrastructure delivery or hybrid cloud technology.

We tend to start our journey on the Mobius loop at the discovery part (after building the
base foundation of culture, collaboration, and technical practices). But you don't have
to start there. In fact, you can start anywhere on the loop. The most important tip is to
make sure you regularly travel around all parts of the loop. Do not get stuck in delivery
loops and never return to discovery to revisit hypotheses and assumptions previously
made. Do not get stuck in discovery where you're moving so slowly, you're getting stuck
in analysis paralysis and risk missing market windows and never delivering value. Most
importantly, never forget to keep building on the foundation of culture, collaboration,
and technical practices.



38 | The Journey Ahead

Borrowing Brilliance

Before we start to dive deeper into the detail, we should take a moment to point out
that we did not write or dream up any of the practices in this book. The practices in
this book and in the Open Practice Library are a growing list of contributions of some
brilliant minds. We have borrowed that brilliance and will attribute it to the brilliant
minds that came up with it. We hope we have attributed everyone correctly and any
omissions are purely accidental.

What we have attempted to do with this book is show how these practices, when
connected together, have delivered some highly impactful outcomes for organizations
and show some of the underlying principles needed to enable those outcomes.

What to Expect from the Rest of This Book?

So, you've almost made it to the end of this first section. Thanks for sticking with us so
far! We hope you're feeling suitably enthused and motivated to read some more and
have enough trust in us to want to read what we've written.

If you need just a little bit more information about what to expect, here's a short
overview.

Section 2 — Establishing the Foundation

In this section, we'll look much deeper into the importance of establishing a foundation
both culturally and technically. We'll look again at the purpose motive — the start with
why that we kicked off this book with and how that should be the starting point for any
product or any team. We'll look at some of our favorite and most powerful practices
we've used to help create the foundation and culture of collaboration — social contracts,
stop-the-world andon cords, real-time retrospectives, creating team identity, and
getting into the habit of visualizing everything and having a cycle of inspection and
adaptation. A relentless focus on creating an environment of psychological safety is a
key success factor when establishing the foundation. We'll explain what this is and how
we can help achieve it.

We'll explore how executive sponsorship can enable and impede a successful
foundation and explore deeper what it means to be open in terms of technology and
culture. We'll look into how Agile decision-making works and some of the useful tools
and practices that can help with this. And we'll look at the adoption approach and how
to convince the doubters and skeptics!



What to Expect from the Rest of This Book? | 39

From a technical foundation perspective, we're going to share some of our most
successful approaches, including the visualization of technology through a big picture,
the green from go philosophy, and how we treat everything as code. We'll introduce
some of the baseline metrics we've used to measure the success and impact of DevOps
culture and practices. We'll even set the scene for some of the technical practice trade
offs and approaches to consider when creating your foundation — GitFlow — versus
Trunk-based development, setting up development workflows, considering different
types of testing, and setting up an environment for pairing and mobbing.

To show and not tell, establishing the foundation is about turning the picture on the left
into the picture on the right:

Figure 3.2: Collaboration within the organization

Section 3 — Discover It

Here, we'll dive into the discovery loop of Mobius and look at some of the best ways
to use it. We'll share some of our favorite and most impactful practices from the Open
Practice Library that have helped us in the discovery loop, including impact mapping,
human-centered design, and event storming.

We'll look at how this relates to technology and the idea of emerging architecture and
enabling true continuous delivery.

From a business perspective, we'll explore the difference between outcomes and
outputs and how we're trying to move from the idea of more features being better to
creating powerful outcomes with fewer features. We'll explore some practices for how
we can continuously measure outcomes and how we can radiate information from the
entire discovery loop on open source canvases.

To show and not tell, we'll look at moving discovery from looking like what you see on
the left to what you see on the right:



40 | The Journey Ahead

Figure 3.3: Practicing discovery through impact mapping, human-centric design, and event storming

Section 4 — Prioritize It

Here, we'll dive into the options pivot of Mobius and see why living, breathing, and
always-changing options are important. We'll explore practices such as user story
mapping and value slicing that help us with this and share some of the gotcha stories
we have of where this has been misunderstood and misused. We'll look at how we go
about building that initial product backlog using discovery that leads to options pivot
practices. We'll look at different types of items that end up in product backlogs, which
range from research work to experimentation work and implementation work. We'll
look at some economic prioritization models and how to assess the trade-offs between
value and risk with the mindset of continuous experimentation and continuous
learning. We have lots of stories to share — some with a specific focus area and some
with a thin thread of learning across many areas.

To show and not tell, we'll see how prioritization can go from looking like what's on the
left to what's on the right:

Figure 3.4: Using the Options pivot to prioritize backlog items



What to Expect from the Rest of This Book? | 41

Section 5 — Deliver It

In this section, we'll look at Agile delivery and where and when it is applicable according
to levels of complexity and simplicity. We'll also look at Waterfall and the relative

merits and where it might be appropriate. We'll explore different agile frameworks out
there and how all of them relate to the Open Practice Library and Mobius loop. We'll
explore the importance of visualization and of capturing measurements and learning.
Technology-wise, we'll look at how advanced deployment techniques now available help
underpin some of the experimentation and learning approaches being driven.

To show and not tell, we'll see about getting delivery from looking like the picture on
the left to something like the picture on the right:

Lead Time for Change Deployment Frequency Mean Time to Restore Change Failure Rate

g Gurertmeva T g e

13.27 hour -3.03% 1.69 day 0% 29%

Figure 3.5: Practicing delivery through visualization and measurements

Section 6 — Build It, Run It, Own It

This section really focuses on technology as an enabler and why it is important to have
an application platform.

We'll return to the philosophy of everything-as-code and look at Git and Helm as
enablers for this. We'll dive deeper into containers and the cloud-native (the cloud,
the platform, and the container) ecosystem. We'll explore OpenShift and Cloud IDE,
as well as pipelines that enable continuous integration, including Jenkins and Tekton.
We'll explore emerging deployment and configuration approaches, such as GitOps
through ArgoCD, with guidance on how and where to store configuration. We'll
explore advanced deployment techniques, such as A/B testing, feature toggles, canary
deployments, and blue /green deployments, and how these are used with business
outcome experimentation. We'll look at non-functional aspects of DevOps practices,
including Open Policy Agent (OPA), the scanning of images, DevSecOps, Baselmage,
and chain builds. We'll look at some functional and non-functional testing. We'll
explore operational aspects such as app chassis, image tagging, metadata and labeling
instrumentation, Knative and serverless, and observability in terms of business versus
app performance metrics. We'll reference Service Mesh and focus on operators for
management and day 2 operation considerations.



42 | The Journey Ahead

To show and not tell, we'll explore taking building and running from being what you see
on the left to what you see on the right:

Figure 3.6: Creating the right environment for doing DevOps

Section 7 — Improve It, Sustain It

As we come out of the delivery loop, we'll ask, Did we learn enough? Should we pivot or
go round the delivery loop again? We'll see how we're entering a continuous learning
cycle - not a one-time thing. Assumptions are proven or disproven during delivery
loops. We explore the world of technical debt and how we can bring qualitative and
quantitative metrics from the platform, the feature, and the app dev workflow to help
radiate this. We'll seek how to take measurements and learning from delivery back

into discovery artifacts, such as event storms, metrics-based process maps, and user
research.

We'll learn how to blend everything covered in the discovery loop, the options pivot,
the delivery loop, and the foundation to help sustain this way of working. This is what
enables double-loop learning for continuous discovery and continuous delivery.

Long lived, cross-functional product teams learn to build it, run it, and own it. In this
section, we'll look at some of the practices that help them sustain it.

What role does leadership have to play in all of this? We'll show how to visualize
the connection between leadership strategy, product development, and platform
operations, all being driven by intent and informed by information and metrics.

We'll explore approaches to scaling everything described in the book and how a culture
of following principles is more important than pure religious use of practices.



What to Expect from the Rest of This Book? | 43

What about Distributed Teams?

When you look at the photographs in the previous section, you may have noticed that
the world that we're moving towards involves people collaborating together. We are in
the same space, around big white boards with lots of colourful sticky notes.

A common question we receive from leaders, executives and customers is how easy is it
to apply these practices such as Event Storming or Social Contracting when people are
not in the same location.

During the last couple of decades, there has been a steady increase in offshore and
nearshore development models. Some organisations have been restructured resulting
in different parts of the organisation being located in certain areas of the world. In
some situations, this has resulted in a more siloed organisation with larger walls
between different parts of it due to geography, time zones and lack of face-to-face
collaboration.

Our answer to whether the people, process and technology practices we're going to
explore in this book can be used with distributed teams is yes, they can.

However, the speed at which a distributed team will discover, deliver and learn is very
unlikely to ever be as fast as the same team working together co-located. The ability to
learn and learn fast is foundational to the whole way of working. Therefore we always
seek opportunities to find the fastest way to learn and remove bottlenecks that might
slow down a team's learning. Working distributed in nearly all situations we've observed
is a bottleneck.

Until 2020, questions around whether use of these practices can be applied with
distribution have been motivated by offshore teams, availability of skills and, ultimately,
cost. Large System Integrators have spent the 2000s investing billions in nearshore
and offshore development centres so it's understandable why they will want to do
everything possible to enable teams in those centres to be able to use agile, lean and
DevOps practices. For Agilistas, this can be frustrating as the focus of agile is very
much on switching the conversation to be about value rather than cost and how to
continuously learn and improve in order to optimise value.

The year 2020 saw a new and significantly enhanced motivation for distributed teams

- the COVID-19 global pandemic. We were in the early stages of writing this book when
the pandemic was declared and governments started talking about lockdowns and
other severe restrictions. From March 2020, most if not all people reading this book will
recall that their working and personal lives changed significantly. The vast majority of
IT development and operations was suddenly performed from employees’ homes. The
opportunity to co-locate for any kind of in-person collaboration was severely restricted
by companies, by governments and, given health risk, was a detractor for individuals
themselves.



44 | The Journey Ahead

Like most, we had to pivot our own work and modify our own ways of working with

our customers during the pandemic. Regardless of preference or prior thinking on
distributed working, we now had to explore and invest in distributed working practices.
For us personally, this meant the launch of the Open Innovation Labs Virtual Residency
and other services to be provided remotely and distributed.

When we released this first section of this book as an early preview for feedback, we
were strongly encouraged by our readers to explore distributed use of practices more
than we were originally planning to. So, we will. In each of the sections of this book,
we'll include a section to share our experience of applying practices with distributed
teams. This will include stories and experiences from the field during 2020 when we
did this and the many learnings we got from doing so. Where relevant, we'll also include
details and links to digital templates that have supported us.

A note of caution. Just investing in a tool like Mural or Miro and having access to a
bunch of templates will not enable you to carry on as normal with all the practices and
techniques you may have used in a room. We've already outlined the importance of
getting the balance of people, process and technology change to get successful DevOps
Culture and Practice. When switching to using distributed mode - teams need extra
and continued focus on people, process, and technology.

Some Words about the World of 'Open’

The term open has been used several times in this book already and it will be used
many times more. We work for an open organization, a company built on open source
principles and characteristics. We're using the experiences of Open Innovation Labs to
tell many of our stories, and all the practices we're using are captured and will continue
to evolve in the Open Practice Library.

THE WOPLD OF
OPEN

Figure 3.7: Default to open

We strongly believe that open culture and open practices using open technology makes
the best cocktail for successful transformation.



Conclusion | 45

Conclusion

In this chapter, we introduced PetBattle and the backstory of the hobbyist app that will
form our fun case study we'll use throughout this book.

We also introduced how we'll regularly break out into real stories and examples from
work we've done with our customers.

Finally, we set out the remaining sections of the book and what we'll explore in each of
those sections.

Our introduction is complete. Let’s start working our way round the Mobius Loop and
exploring our most used practices. Before we get onto the loop, we're going to the
foundation the loop will stand on. In the next chapter we'll start by building the very
important foundation of culture.






Section 2: Establishing
the Foundation

In Section 1, Practices Make Perfect, we introduced DevOps and the practices and tools
we're going to use to navigate around the Mobius Loop, which we also introduced.
Before we get onto the loop, we're going to build a foundation for the loop to stand on.
This is a foundation focused on building culture and technology:

WHY $WHO . DELveR
what is the problem to solve or idea to Ruw experiments and deliver to
pursue? Who are the target customers 0P f/ﬂ//é’ customers
and what do they need? How will we achieve the outcomes?

How CAN we BuiLD
AN OPEN CULTURE

WHAT TECHNICAL PRACTICES
CAN WE YSE TO DELI\VER
CONTINYOUSLY?

CAN WE INCREASE
TEAM PSYCHOLOGICAL

SAFETY!?

MEASURE & LEARN

Measure the impact and Learn what
we should do next

U TCOMES

How will we meet the customer and
business needs?

Figure 4.0.1: The Foundation - setting the scene



48 | Section 2: Establishing the Foundation

When you hear the word Foundation, what do you think of? A lot of people will think
of the foundations of the building you are currently sitting or standing in. As you

know, you cannot just turn up and start building a house on top of some land. I mean,
theoretically, you could. But not if you wanted something to stand the test of time and
more importantly meet building regulations! First, you need to build a solid foundation.
That means going beneath the surface of where you're going to build. The taller the
building, the deeper and stronger the foundations need to be.

When you think about it, this kind of applies to anything in life. When you lay a solid
foundation, incrementally building on top of it has a much higher chance of success.
Think about your education, your health, your fitness, your career, and your life. The
successes you enjoy are because of the foundations and what you have been able to
build on top of them.

What happens when you build on top of a weak foundation? Well, generally, it's not
good news:

£ e

Figure 4.0.2: Building on a weak foundation



| 49

When working with organizations to build applications to run on OpenShift Container
Platform (OCP), we see much greater success and return of business value when those
organizations invest time and expertise to build a foundation and a solid approach for
their development and operations.

In Section 1, we introduced DevOps and some tools we're going to use throughout

this book—namely the Mobius Loop and the Open Practice Library. The Mobius Loop
acts as a navigator tool for teams seeking to apply DevOps on a journey of continuous
discovery and continuous delivery. The principles we've just discussed about needing
a solid foundation before building anything also apply in the field of software design.
We therefore added a foundation in our Open Practice Library. Before we even think
about putting any teams, people, or products onto that Mobius Loop, we need to build
a foundation. And not just a flimsy and minimal foundation - we need to build a rock-
solid foundation. One that is going to support fast movement and an increasing number
of folks jumping on the loop above it. What do we mean by a foundation? We mean a
foundation of culture and technical practices:

D
CULTURE FOUND ATION TECHNICAL

Figure 4.0.3: Focus on the foundation underpinning the Mobius Loop

At Red Hat Open Innovation Labs, we meticulously drive an outcomes-based delivery
approach. The Mobius Loop acts as our navigator. It is a visualization tool that helps us
to navigate, identify, and articulate the practices that we use at different points of our
DevOps journey.



50 | Section 2: Establishing the Foundation

When we are on the Discovery Loop, we identify and use practices that help us answer
the question of Why - why are we embarking on this journey? What problems are we
trying to solve? Who are we trying to solve them for and what do we know about them?
What is our great idea? We also use practices on the Discovery Loop to help us identify
and set target measurable outcomes for the business and their customers.

When we are at the Options Pivot, we use practices to identify how we are going to
achieve measurable outcomes. What are the ideas we have that we could implement to
help us get there? What are the hypotheses that have resulted from our discovery that
we can test, run experiments on, and conduct research? How can we prioritize these
options so we deliver value more quickly?

When we are on the Delivery Loop, we are using practices to do the work identified
on the Options Pivot — implementing the features, running the experiments, and
conducting the research. We crucially also use practices that allow us to take
measurements and capture learning about the impact of our delivery. And, as we
return back into the Options Pivot, we assess what we should do next based on those
measurements and learning.

The Mobius Loop is this infinite, continuous journey of continuous discovery, Options
Pivots, and continuous delivery of measurable business outcomes that matter. We use
practices on the Mobius Loop that typically have defined start and end points. The
practices are designed to help a team advance around the loops - for example, in their
Discovery process, to make their way to options and a decision point.

When creating the Open Practice Library - a toolbox to store all of these practices -
we found that many of them did not necessarily fit within the Discovery or Delivery
Loops. Their nature was ongoing, or continuous. For example, we use many practices
and techniques that help establish and drive a culture of collaboration. We use tools
that help increase the energy, autonomy, and empowerment of product teams. We use
practices that help drive an environment built on information radiation, transparency,
and continuous learning. The concept of the Foundation beneath the Mobius Loop
was added to explain these kinds of practices. These practices are designed to make
it easy for teams to do the right thing by default. They are practices that we use to
build a foundation of culture. There are also many technical practices that we use

on an ongoing basis. The first instinct might be to associate these practices with
delivery and argue that they should belong to the Delivery Loop. However, there is a
subtle difference given that practices sitting on the Delivery Loop tend to be time-
boxed, scheduled bursts of activity that help drive delivery. Practices such as Sprint
Planning, Showcases, and user acceptance testing events (all of which we'll explore in
detail in Section 5, Deliver It) tend to be scheduled at a particular time in the week or
iteration. There are a host of practices that you would not schedule in the same way
that you would, for example, a Sprint Planning session. These include practices such



| 51

as continuous integration and continuous delivery, Infrastructure as Code or, in fact,
Everything as Code, and practices around automation, such as test automation. You
don't do a couple of hours of continuous integration every Wednesday morning! You
don't schedule a period for Infrastructure as Code at the end of the week. These are
things you do all the time, and doing them all the time is what makes them so powerful.
The Foundation beneath the Mobius Loop is also used to explain these kinds of
practices — practices that help build a foundation of technical engineering excellence.

Similarly, Discovery-type practices tend to be focused events run at a particular time,
sometimes multiple times as teams do multiple iterations of the Discovery Loop. The
practices that we'll examine in detail in Section 3, Discover It, are all executed by a
group of people gathering to focus on that activity for a period of time. Practices more
focused on generating culture, such as creating a team charter and social contract to
define ways of working (which will be introduced in the next chapter, Chapter 4, Open
Culture) do not sit on the Discovery Loop. This is because teams get the most value out
of these practices when they use them all the time. They don't get their social contract
out for half an hour on Monday morning and then never consider it until the next
Monday morning! This is why we build them into the Foundation.

Now an important aspect of the Foundation and, in fact, the whole Open Practice
Library, is that it does not prescribe or mandate any one practice over another. This is
not another methodology or framework that spells out, in a prescriptive way, the tools
and practices that someone or some team must use to achieve an outcome. We use the
Mobius Loop and the Foundation to visualize the different practices we are choosing to
use. There is no right answer to say how many practices you should use when building
a foundation of culture and collaboration.

We find that if you don't focus on or prioritize these practices at all, teams struggle

to achieve outcomes, remain stuck in old ways of working, or fall back into the status
quo when attempting change. Many organizations send their staff on a two-day Scrum
training course and try to implement it by the book, only to struggle to see the impact
of moving toward business agility. Scrum is primarily focused on the Delivery Loop and
Options Pivot and organizations are not considering the cultural change or technical
practices needed to sustain and promote the benefits that Scrum practices provide.

In this section of the book, we will show you how to build an initial foundation of
culture, collaboration, and the required technical practices, so that your house will
stand for a very long time!

You may have taken a peek at the Open Practice Library following its introduction in
Section 1, Practices Make Perfect. If you applied the filter to look at all the foundation
practices in the Open Practice Library, you will see that there are a lot! You may be
wondering, Do I need to use all those practices?



52 | Section 2: Establishing the Foundation

The answer is no. The foundation of the Open Practice Library is a growing selection

of tools and practices that will help grow an open culture. You don't need to use them
all but you should start with at least a few. You may even have a few of your own! Ask
yourself whether you are achieving an open culture and whether the tools you are using

are working well for you.



Open Culture

Many development teams, operations teams, and even cross-functional product teams
have a tendency to jump straight into the technological aspect of the project. Let's set
up pipelines, let's automate our infrastructure, let's write some code! It's such a natural
temptation to dive straight in without investing at least some time in establishing a
cultural foundation. It can also lead to ineffective and unnecessary complexity.

Don't worry, we will get to the technology in Chapter 6, Open Technical Practices -
Beginnings, Starting Right. But, before we do, we want to talk about open culture and
open leadership. In this chapter, we are going to explore what open culture is and why
it proves to be such a critical enabler for development and operations.

Open culture stems from a performance-oriented approach to collaborative work.

It provides motivated teams of individuals with an environment where they can be
continuously inspired to work together and feel a sense of autonomy, mastery, and
purpose. We are going to explore what these three elements entail and provide some
good and bad examples of them.

We're going to dive into our Open Practice Library and explore some of our favorite
practices that we have used to establish a foundation of culture, such as social
contracting, stop-the-world cords, and real-time retrospectives. These are practices to
help establish team identity, understand team sentiment, and visualize all of our work in
a very transparent manner.



54 | Open Culture

We have an array of stories to share about using these and other practices and we'll
return to our PetBattle organization to see how they go about establishing an open
culture as they move from being part-time hobbyists to establishing a high-performing
team ready to take over the pet battling world!

Why Is It Important?

Culture refers to shared customs or behaviors among members of a group of people.
Open culture refers to the custom of defaulting to open principles of transparency,
collaboration, community, inclusivity, and adaptability. Studies have shown that high-
performing teams need psychological safety, and open culture reinforces the behavior
patterns that allow for this.

What do we mean by psychological safety? William Kahn introduced this term in

1990,! explaining Psychological Safety was experienced as feeling able to show and

employ one's self without fear of negative consequences to self-image, status, or career.

Dr Amy Edmondson provided further explanation in her 1999 paper,? where she stated,
Psychological safety is a belief that one will not be punished or humiliated for speaking

up with ideas, questions, concerns, or mistakes. This was taken from her 1999 paper that
got picked up by the Google Project Aristotle in 2013. That Google study found that
psychological safety was (somewhat surprisingly) the most important factor for building
high-performing teams.

Tom Geraghty, Transformation Lead for Red Hat Open Innovation Labs, recently
redefined this as a part of his own research and transformation services work with
his customers. He explained, In a group context, psychological safety manifests as the
belief that other members value your contributions and concerns and will not harm you,
actively or passively, for expressing them. It creates space for group members to take
calculated risks, admit vulnerability and acknowledge mistakes without fear of negative
consequences.

Open culture and psychological safety are essential ingredients of any organization.
They are the enabler for an environment where people and teams feel an echo of trust
with the freedom to explore new ideas, conduct experiments, learn by doing, and share
freely with colleagues, peers, leaders, customers, users... in fact, everyone!

1 Kahn, WA, (1990). Psychological conditions of personal engagement and

disengagement at work. Academy of management journal, 33(4 .692-724.

2 Edmondson, A., (1999). Psychological Safety and Learning Behavior in Work Teams

Amv Edmondson. Administrative Science Quarterly, 44(2 .350-383.


https://journals.aom.org/doi/10.5465/256287
https://journals.aom.org/doi/10.5465/256287
https://journals.sagepub.com/doi/abs/10.2307/2666999
https://journals.sagepub.com/doi/abs/10.2307/2666999

Why Is It Important? | 55

Conversely, a closed culture has blockers and barriers all over the place that prevent
these kinds of behaviors. Teams fall back into protective and secretive mode. When
there is a fear of sharing bad news, or the idea of asking for feedback fills someone

with dread, we end up in an environment where we protect what we're doing from the
outside world. We don't want to share our code with others in case they shoot us down
or ridicule us for not getting it right. We don't want to show our managers when we are
behind the plan for fear of being mentally beaten up and being told we have to work
nights and weekends to get back on track. We don't want to show features to business
people or end users because they might tell us that what we've done is not right, which
will trigger more re-work (and more angry managers).

By creating these types of environments, what we are really doing here is delaying the
inevitable. Think about how many IT programs have run into problems that have only
surfaced toward the end of the development timeline. Teams suddenly have to work
above and beyond to meet a deadline. What was missing was an open, honest, and
transparent view of work progress as the project developed.

Have you ever heard of the watermelon effect on IT projects? Nice and green and
healthy on the outside but when you start to peel back the skin and look inside, it's red
everywhere! An example we've seen is where team leads and project managers write
reports with their own RAG (Red, Amber, Green) status and they all get passed up to

a more senior project manager who summarizes everyone's reports with their own
summary RAG status. That gets passed up for even more senior executive steering
governance and an even higher level (or more diluted) set of information with a RAG
status presented to senior customer stakeholders.

The watermelon effect

Figure 4.1: The watermelon effect



56 | Open Culture

Information Radiators

The best way to encourage an open culture is by having information openly available to
all team members and other interested stakeholders.

The term information radiator was coined by Alistair Cockburn for any of a number

of handwritten, drawn, printed, or electronic displays that a team places in a highly
visible location, so that all team members, as well as passers-by, can see the latest
information at a glance. In Cockburn's book Agile Software Development, written in
2001, the information radiator formed part of an extended metaphor that equated the
movement of information with the dispersion of heat and gas. We'll look at the many
different types of information radiator we use with our customers and teams - counts
of automated tests, velocity, incident reports, continuous integration status, and so on.

We also sometimes use the term information refrigerator - where information
becomes cold and sometimes out of date. The information refrigerator is somewhere
you need to go looking for information rather than it being readily available and
accessible. The refrigerator may even be locked! Information stored in files on shared
drives, JIRA repositories, and other digital tooling all risk become refrigerated, so it's up
to us to keep them warm and radiating.

Can You Make Those Red Lights
Go Green, Please?

Working with a UK retail organization, my
team had instigated the idea of transparent,
information radiation.

The project had been reporting green to the
business stakeholders for months. But there
were some key dependencies and blockers
preventing progress to the delivery teams.
Our team had set up TV monitors to highlight
that none of our services could get access to pre-production or production
servers. Some simple automated tests would show no traffic getting through
the network infrastructure and therefore all tests were failing. These test
results were being shown on a big monitor in the team's room. The monitor,
which was very visible to lots of people, just showed big blocks of red.




Culture | 57

As stakeholders had been, to date, reporting a healthy, successful program
with no big issues, having big monitors showing lots of red gave an opposite
and worrying message. I was asked if we could change these traffic light
information radiators for a day because the CIO was coming in. If not, could
we just turn the monitors off?

This was a classic watermelon effect.

NO - don't falsify the real-time information radiator that the team has
set up.

DON'T hide the information. Instead, address the infrastructure issue
that the information radiator is highlighting. That'll automatically turn the
dashboard green the next time the automated tests run.

In an effort to continue empowering our team, we chose to ignore this
request.

When we have an open culture, we have the opportunity to regularly inspect the
health of everything - the health of the product, the teams, the investment, the
stakeholders, the users, and the technology. An open culture means that when we do a
health inspection and it does not give us positive news, we welcome the bad news with
engagement and conversation. We do not berate people for giving bad news. Instead,
we talk about what we have learned and what we need to do to make things better.
What do we need to change? What should we adapt? Inspection and adaptation are
healthy indicators of an open culture. The more open the culture, the greater freedom
we have to inspect and adapt as we go along.

Before we get into a few specific practices that help build an open culture foundation,
let's share a few thoughts on what we mean by that word culture and how motivation
within teams is what can really drive culture up.

Culture

Culture is a mysterious energy. You can't see it but you can certainly feel it. You can feel
when it's particularly strong within a team or in a physical space. If you've ever known
what great open culture feels like, you'll also quickly know when you can't feel it.



58 | Open Culture

We often liken open culture to the force in Star Wars. The force was strong in young
Luke Skywalker in Star Wars IV — A New Hope: he wasn't wearing a t-shirt that said so,
but others could feel it when in his presence. Open culture is like that. You'll know it
when you've got it and you'll know when it's getting stronger. Your job is to regularly
assess, sense, and check how strong the open culture is and, if you feel it could be
stronger, explore more cultural foundation practices to strengthen it. We'll explore
different techniques and practices that help measure and learn from the impact of
these changes in Chapter 13, Measure and Learn.

In the remainder of this chapter, we're going to share a handful of practices we've had
the most success with in establishing a cultural foundation during Open Innovation
Labs residencies.

Motivation

According to Dan Pink, author of the number 1 New York Times bestseller Drive: The
Surprising Truth About What Motivates Us, people are not motivated in the ways we
expect. He argues that Organizations historically have incentivized employees the wrong
way by offering rewards (money) and creating a culture of fear and punishment for
underachieving. When work requires any cognitive skill or knowledge, then these methods
do not work.

Through his research, he shows there are three things that motivate people beyond
basic task completion:

* Autonomy: The desire to be self-directed and the freedom to take ownership
* Mastery: The desire to get better at something
* Purpose: The desire to do something that has meaning or is important to you

o p 1
3]
AuToNoMY Mastery TRIRPOSE

OWNERSHIP OF THE TASK EXPERNSEGUNDERSTANDING  IKNOWIN G THE WAY
DRVING OWN LEARNING OF CONCEPTS AND SKIUS

Figure 4.2: Autonomy, mastery, and purpose



Motivation | 59

Creating an open culture in your organization should embody these principles. Open
source software development is built on the pillars of autonomy, mastery, and purpose.
Examples include using open source code bases, collaborating on public discussion
forums, and having transparent decision-making records; these practices make it
easier for people to find purpose, gain expertise, and take ownership of their work.

It eliminates dependencies on people and on scarce or hidden information. People
across the globe are willingly contributing to open source projects such as OKD (the
community distribution of Kubernetes that powers OpenShift), thus improving the
product for all. Sometimes they are contributing because it is part of their paid work,
but quite frequently they contribute because they want to. They are working on these
projects because of the deep personal fulfillment that they gain through helping a
community build something better that benefits everyone, being self-directed or
listened to, and building something for the future; they also want to become a better
coder by implementing and testing something on a public backlog.

In order to build this kind of ethos in your organization, leadership needs to set the
environment for people to achieve these things. They should empower teams to make
decisions and adopt self-organization and self-correction, thus providing autonomy.
They should embrace and encourage continuous improvement and enable team
members to continuously learn and improve themselves and their team, providing
mastery. Leadership should remove obstacles and silos that prevent team members
from connecting with and appreciating business purpose. They should enable regular
and direct access to business stakeholders, customers, and leadership to drive up the
sense of purpose to their work. Allowing employees to focus on autonomy, mastery,
and purpose will have a twofold effect. Teams will have the freedom and drive to create
brilliant products. With greater responsibility for the product, people will start to work
harder because they truly believe they are listened to and are connected, and they will
want to work on making the product better.

Let's get back to our PetBattle case study and see how some of the employees felt
autonomy, mastery, and purpose. Specifically, let's look at a few events that happened in
the early days of establishing PetBattle that helped achieve this open culture.



60 | Open Culture

PetBattle — Creating Autonomy, Mastery, and Purpose

Connecting the engineers to the end users is a great way to create a sense of
purpose. The PetBattle engineers do not want features or tickets dropped on
them with no view of how the feature connects to the vision of the product.
To combat this, they do regular demos with end users and generate some
feedback. This connectivity allows them to build empathy with one another
and see how the application is being used in real life.

Mary (a self-confessed cat lover who plays PetBattle regularly) was being
asked to use the app while Ciaran (a member of the PetBattle engineering
team) observed her. Mary was struggling to understand why her cat was not
appearing immediately in the competition after she'd uploaded it. Ciaran
knew she had to vote for another cat before hers would appear in the list,
which seemed obvious to him. A few days after this feedback, Ciaran sees

a ticket in his backlog to have the uploaded cat appear in the voting list
immediately. Ciaran sees the purpose of this ticket immediately and starts
thinking about the effect this feature will have on Mary, who plays the

game regularly.

Ciaran and the other engineers working on PetBattle - Aidan, Emma, and
Jen - recognized that having access to Mary's feedback was really rewarding,
especially when they had the opportunity to deliver new features to Mary.
It's so much better than my previous projects, when I would be asked to code

to a specification and not really understand what it was that I was helping to
build, said Jen in a recent retrospective meeting. Aidan suggested it would be
even better if they could meet users like Mary every now and again, perhaps
working with them to do some testing and hear all their other ideas for
future development.

During that same retrospective meeting, Aidan called out his personal
highlight from recent weeks working in the PetBattle engineering team. He
said he loved how he could just release his new features and bug fixes when
he was ready. He didn't have to wait for a release window or need a change
review board to meet. He could just push the button and the awesome
technical foundation practices that Ciaran and Emma in particular had
focused on putting in place meant he could ship with confidence. He was
learning to create feature toggles around his new code, which was even
better as it empowered the business product owner to decide when to



Social Contracts | 61

switch on the feature. Aidan thinks the team should look to explore more
advanced deployment capabilities like this.

Meanwhile, Emma's highlight was having the opportunity to share openly
with the wider community some of the technical foundation tips she'd
picked up. She has written several blog articles and has been invited to
present at a DevOps conference in the new year. She said that, in her
previous projects, she wasn't allowed to share so openly the work she had
done. She felt she had some great techniques to share back with the wider
technical community. Many folks in this community had helped and inspired
her own development, so she was very happy to share back. Everyone
agreed they should seek opportunities to do these kinds of things - who
knows, maybe it will even help promote and advertise PetBattle as a product
and, as they grow the team, a really cool place to work!

Dan Pink, author of Drive: The Surprising Truth About What Motivates Us, gave an
awesome talk at the Royal Society for Arts (RSA) in 2010 all about what really motivates
us. The RSA produced a short video?® from this talk, which is awesome - we've shown it
to many teams and leaders. It's openly available on YouTube and we really recommend
watching it at least once to explore this area of autonomy, mastery, and purpose
further.

At Red Hat, autonomy, mastery, and purpose are values that underpin much of our open
culture. We're going to explore tactical practices that help create this. As we move into
product discovery and product delivery, you will find that all practices here are also
helping realize this culture.

Social Contracts

We, the four authors, are in a very fortunate position where we get to help kick-start
new product teams. We use a range of practices to help bootstrap these teams and get
them off to the best start possible. We've come to realize that one practice in particular
is foundational - social contracts.

3  https: //voutu.be /u6XAPnuFjlc


https://youtu.be/u6XAPnuFjJc

62 | Open Culture

The social contract practice is a simple yet highly effective way to enable team autonomy
and self-accountability for engagements. A social contract is created by and for the team.
It looks to codify the behaviors and expectations of the team. It also provides a mechanism
for the team to visualize and share its desired behaviors with management and other
stakeholders.

A social contract is not some big expensive consulting engagement but a simple set of
guidelines and behaviors put forward by a team for how they would like to interact with
one another. It promotes autonomy and self-governance within a team.

One thing we've learned from previous engagements is that if we don't invest time

and use tools such as social contracts upfront with new teams, we risk running into all
sorts of cultural, teaming, and communication problems over time. Figure 4.3 shows an
example of a social contract.

Figure 4.3: An example of a social contract



Social Contracts | 63

Do | Need One? If So, How Do | Build One?

In modern software development, we're all about tearing down walls. The wall between
development and operations teams was only the beginning! Open organizations want
their teams to act with more autonomy and so give them shared purpose around their
products. Teams react to this by often trying to embody the You build it, you own it, you
run it mantra. But how can we kick-start this change in people's behavior? How can

we accelerate our teams to be high-performing, especially when starting with a new
team whose members know nothing about each other? This is where our friendly social
contract comes into play.

When we are kicking off with a new team, we get them to come up with a team name.
Team identity is very important in setting up the ownership part of a high-performing
team culture. We'll explore team identity further later in this chapter.

The next step is simple: get the group to spend a few minutes thinking about the best
teams they've ever worked in previously or the best products they've been a part of
creating. With this in mind, they should think of all the amazing characteristics and
behaviors they can remember and capture them on sticky notes.

Conversely, think of all the terrible projects and what things created that toxic
environment for the team to operate in. With some ideas of behaviors that they want to
adhere to, the group can discuss them further to get a shared understanding and home
in on the specific language to use.

A good social contract will contain concrete actionable items and not fluffy statements.
To really tease these out, lead by giving examples of how someone would embody the
statements they've come up with and try to capture that. For example, be open could
be a good seed for an item in a social contract, but perhaps lacks specificity. We can
explore this by getting examples of where we are, or are not, adhering to it. Teams may
then come up with things like Everyone's opinion and contribution is valuable, Give
space to quieter people, and Actively listen to others the same way I want to be heard.



64 | Open Culture

With some items in the contract, the group signs the contract and hangs it high and
visibly. It is now the responsibility of the team to abide by it and call out when others

do not.

Figure 4.4: Another example of a social contract



Social Contracts | 65

The preceding example is from a cyber security company we worked with for 4 weeks.
This team had a mix of developers, designers, and site reliability engineers. Some of the
things they included were as follows:

* Core Hours (10.00 to 16.00): This is the team's agreed collaboration time. This
is not the hours they work, but more the time in which they will have sync ups,
meetings, or pairing and other collaboration. On this engagement, one of the
team members wanted to miss the early morning traffic, so if she came in a tiny
bit later her commute would take her a lot less time. Also, another member of
the team had childcare responsibilities so getting out at a reasonable hour would
have made his life easier.

* Mob to Learn / Pair to Build: This is a simple mantra that describes how the
team wanted to interact when writing code, tests, or even documentation. If
there are new things to be tackled, such as that scary new microservice in a
language or framework that's new, do it as a full team. Get everyone on the same
page from the beginning and ensure that you're not creating individual heroes
with all the knowledge in the team. Pair on implementing features to raise skills
across the board.

» Have a Weekly Social: Celebrating success is an important thing for lots of
teams. Taking the time as a group to get away from our desks, socialize together,
and eat together helps build positive relationships. These events can lead to
improving team morale and creating a positive culture around the people
working on a product.

Now we've considered the key tenets of social contracts, let's look at how to integrate
them with other workplace practices.

To support gaining consensus on ideas and behaviors, use grouping techniques such as
Affinity Mapping, the Fist of Five, and Dot Voting. These are simple yet very powerful
practices and open facilitation techniques that help drive alignment, consensus, and the
inclusion of all people involved. We will explore them in more detail in the next chapter
about open leadership.



66 | Open Culture

Vi
hQ\Pi«S
%\,\ OHI\U

Figure 4.5: Retrospective learnings driving social contract updates

When the social contract is first created, it represents a snapshot in time. It represents
a best guess of how a team should interact and is often written when we know the least
about each other or our habits. It is a useful tool to accelerate a team to a comfortable
position built on trust and psychological safety. However, it is not a fixed or static
thing. Items in there could be invalid or possibly missing. A great thing a Scrum Master
or Agile coach can do is bring the social contract along to a team's retrospective

(a practice we will explore in more detail in Section 5 - Deliver It). It provides a great

opportunity for the group to inspect and adapt it, possibly updating it with new ideas
or improvements.



Social Contracts | 67

It's OK to Be Wrong

When working with the cyber security company,
we found a great opportunity to update our
social contract. There were two developers

on that team that were quite hot-headed and
both always liked to be right. Often, they could
not agree on the approach to take for any

given solution, which was creating a toxic vibe
within the team and reducing morale. Through
a retrospective, the team identified this issue.
After some discussion and getting the issue out
into the open, we updated our social contract with one simple phrase: It's
OK to be wrong.

This had a profound effect on the team going forward. The competition
within the team started to evaporate as we could focus less on who was
right and more on does the solution work for our end users. We looked for
opportunities for both developers to have their voices heard by trying more
than one implementation of a feature. Building both solutions and evaluating
each, both developers then started to pair on building out each other's
solution, thus creating a better bond between the two. This also had the

net benefit of writing a much better solution by often combining ideas from
both individuals.

Social contracts are a powerful and easy-to-implement practice - they promote team
autonomy, self-governance, and psychological safety. If your team does not have one,
it's not too late to build one. Most importantly, keep it visible to the team and don't
forget to revisit it when needed.



68 | Open Culture

Social Contracting for Distributed People

We mentioned at the end of Section 1, Practices Make Perfect that we would consider
how our practices work in a more distributed environment where people are not
physically in the same place. Using the social contract practice with a new virtual team
can be tricky as we tend to use social contracts at a time when relationships, trust, and
rapport have not yet formed.

The challenges we've seen include not having everyone engaged or contributing to
the social contract. Hearing from the same voices puts those not so involved in the
background. What follows are some recommendations on how to approach social
contracting with distributed team members.

Using a virtual whiteboarding tool such as Miro or Mural with everyone connected
and looking at the same artifact will set you up for the best possible success. As shown
in Figure 4.6, we have created some templates, which are openly available and can be

used as a starting point for your social contract. You can download this from the book's
GitHub repository.

What is a Social Contract? Steps Social Contract for Team <...insert name...>

el iy, @ Establish your Team name

+ Created by and far the team
- Looks to codity the behaviours and expectations of the team
it reits

. Provi . for the team to radiate and sha Within the Team agree how you
are going to work together

Sign the Contract (use a
drawing tool, photos or stickies)

+ Revisited and updated as often as necessary

Prompting Questions

« What sort of team culture do we want Lo build?
- Open, pasitive, blame-free, constructive
« Fun!
+ No magic. no wizardry, no ninjas - build shared
understanding
+ Celebrate success

+ What do we expect from others? .

+ How are we going to work? Materials
- How do we feel about asking for help?

+ How do we make decisions?

- What core hours do you want to work?

- What are your thoughts an pair programming? Mab .
+ How should we handle devices in meetings? . e = =
+ Step out if you need to work on something else? ‘ .,

:@, them great

hings ot meren' warking for them

Figure 4.6: Digital social contract template for a distributed team



Social Contracts | 69

Consider having a pre-canned social contract that is good for remote meetings, then
allow people to add/change based on their thoughts:

Everyone should sign their name with a sticky note or virtual pen.

Add remote working elements to the social contract (for example, mute on entry
to calls, turn your webcam on, and so on).

Establish global communication norms and individual teams' exceptions:
response time, writing style, tone, and so on.

Some good examples of communication norms we've seen in our virtual engagements
include the following:

One conversation at a time.

Assume positive intent.

Do not delete or move others' contributions.
Stay focused on our goal, working iteratively.
Respect breaks.

Avoid other distractions such as email and chat.
A contract can be updated based on needs.

Figure 4.7 shows an example social contract created by a team distributed with their
suggestions and signatures:



70 | Open Culture

Figure 4.7: An example social contract used by a distributed team

You can learn more about the social contract practice by going to the Open Practice

Library page at openpracticelibrary.com /practice /social-contract.

Creating a social contract over a video call with everyone remotely takes an extra level
of facilitation skill. There are some great tips for facilitating this and other practices
remotely in a blog post contributed by Ilaria Doria and Marcus Maestri at https: //

openpracticelibrary.com /blog /facilitation-tips-for-remote-sessions/.
Stop the World

The Stop the World event or Andon Cord is another of our favorite practices that we
use regularly in our engagements and is a DevOps superpower.

John Willis explained the origins of the word Andon in his ITRevolition blog post* - in
Japanese, it comes from the use of traditional lighting equipment using a fire-burning
lamp made out of paper and bamboo. This idea was later translated for use in
manufacturing in Japan. The Andon became used as a signal to highlight an anomaly
(that is, a flashing light). This signal would be used to amplify potential defects in quality.

4  https: /itrevolution.com /kata


http://openpracticelibrary.com/practice/social-contract
https://openpracticelibrary.com/blog/facilitation-tips-for-remote-sessions/
https://openpracticelibrary.com/blog/facilitation-tips-for-remote-sessions/
https://itrevolution.com/kata/

Stop the World | 71

The Andon Cord and Psychological Safety

The first time I heard of the Andon Cord was
when reading The Phoenix Project — A Novel

About IT, DevOps and Helping Your Business

Win by Gene Kim, Kevin Behr, and George

Spafford - if an employee on the car production
line suspects a problem is happening, they K

i o

w AL}
=1
pull the cord and the whole production line
immediately stops. By avoiding passing failures
downstream, Toyota credits this disruptive

behavior as being the only way we can build

2,000 vehicles per day - that's one completed vehicle every 55 seconds.

About eight years later, I heard Gene Kim talk about the relationship
between the Andon Cord and team psychological safety. When you pulled
the Andon Cord in the Toyota factory, the line manager ran up to you and
THANKED YOU for stopping production so that whatever the problem was
could be resolved. No-one would pull the cord if they thought they were
going to be punished for it.

Yes ... Good DevOps you borrow, great DevOps you steal!

The process of stopping a system when a defect is suspected goes back to the original
Toyota System Corporation and something called Jidoka. The idea behind Jidoka is
that by stopping the system, you get an immediate opportunity for improvement, or to
find the root cause, as opposed to letting the defect move further down the line and
be left unresolved. The Jidoka concept was pioneered by the original Toyota founder,
Sakichi Toyoda, also known as the father of the Japanese industrial revolution and also
the founder of the original Toyota Systems Corporation (before they manufactured
automobiles).

We use the Stop the World event during our engagements with customers. When
somebody on the team identifies that the engagement is off-course, the full team works
together to find a solution that is actionable and acceptable to all and progress can then
resume.



72 | Open Culture

There are a lot of hidden benefits to using Stop the World events within your team. In
the Toyota factory, the line manager would physically go and see the station where the
cord had been pulled and ask: how can I help you? Immediately the issue is treated as a
priority and by going straight to the area where the problem is first raised, the process
becomes evidential and fact-based. By thanking the team member who pulled the cord,
this encouraged a safety culture: factory management was saying, You have saved a
customer from receiving a defect. Whenever your application tests fail the pipeline, think
of this! At their core, Toyota believed failure created learning opportunities and that
failures are good things because of that.

We're Just Rebuilding the Same Experience.
Stop the World!

We spent 6 weeks delivering a dual-track Open
Innovation Labs residency to a customer in the
Nordics in 2018. (A dual-track residency has one
track /team focused on building a brand-new
production OpenShift platform while the other
team builds and maintains the first business
applications to run on it. The two tracks
collaborate closely together and work in the
same physical space.)

For this client, the application being built was a modernization of an existing
mobile application used by customers to buy new travel insurance products.
The goal of the dual-track residency was to learn new skills around DevOps,
develop microservices, and explore the OpenShift product while improving
their customers' overall user experience.

Four days into the residency, the team was using a practice called event
storming (which we'll explore in detail in Section 3, Discover It) to map out
the end-to-end business process and discover the emerging architecture.
This had been running for a couple of days.

Riley, our UX Designer, had a sudden moment of realization as he looked

at the in-progress Event Storm. All the conversation and visualization was
focused on capturing the EXISTING application flow. They were going down
the path of just rebuilding exactly the same experience but with some new
technology and approaches.



Stop the World | 73

Riley pulled the Andon Cord, which, in this space, was a big bell. He stopped
the world. It was loud and disruptive and intended to interrupt everyone
and grab their immediate attention. Everyone stopped what they were doing
and gathered in a circle. Riley explained his concerns and everyone agreed
that this approach was not going to help much with the target outcome

of improving the customers' overall user experience if they just designed
exactly the same application again.

So, as a team, they agreed that they would use the Event Storm to capture
assumptions that needed to be tested, ideas for fresh experiments, and lots
of questions where there were unknowns that they should explore with end
users.

The world was started again and the six weeks that followed took a
hypothesis- and experiment-based approach.

That story showed the user-centered motivations behind stopping the world.
A second story explains how a more technical team member stopped the world.

Losing Track of Original Purpose

The team here was running a number of
experiments, technical spikes, and research
efforts to maximize learning during a 6-week
Open Innovation Labs residency as a precursor
to launching their new cloud platform using
OpenShift.

The team had agreed on a number of
architectural principles for the residency.




74 | Open Culture

During the third sprint, one member of the team,
Tom, noted an increasing number of side
conversations and drawings happening on
whiteboards. These had nothing to do with the
work committed in the current sprint. They had
nothing to do with the part of the business
process the team was developing user stories for.

The team's burndown chart was well off-course
and it was looking increasingly unlikely they
would achieve the current iteration's goal. As
Tom investigated further what all these side chats were about, he learned
there was a lot of discussion about completely different scenarios and
thinking about architecture in 2-3 years' time.

A little frustrated, Tom stopped the world. There was a stop the world bell in
the labs space, which he rang.

Figure 4.8: A team member stopping the world

The team were all familiar with the practice but slightly alarmed to hear

the bell for real. They gathered around and the team had an open, honest
conversation. Tom shared his concerns and frustrations. The team re-visited
their current commitments and reminded themselves of some of the



Real-Time Retrospective | 75

decisions previously made during priority sliders and target outcomes
practices. They agreed to put some items on the product backlog to park
these discussions.

Figure 4.9: Team gathers after the world has stopped to fix the problem

Within just 15 minutes, the team had re-aligned, re-focused their priorities,
and were renewed with energy and commitment.

One wonders if Tom had not aired his concerns and frustrations and just let
them sit in the back of his head, how long would this have gone on? What
ripple effects might there have been? What would the overall impact have
been?

You can learn more and collaborate about the Stop the World practice by going to the
Open Practice Library page at https: //openpracticelibrary.com /practice /stop-the-

world-event/.

Real-Time Retrospective

In seeking to establish an open culture and kick-start an ethos of autonomy, mastery,
and purpose across the spaces we work in, we need to have feedback loops in place so
we can sense if we're moving in the right direction.


https://openpracticelibrary.com/practice/stop-the-world-event/
https://openpracticelibrary.com/practice/stop-the-world-event/

76 | Open Culture

So far, we've just introduced a couple of very simple practices that help to build the
foundational culture. But will they work? How will you know? What if the new team
is muttering bad things under their breath about how the social contract was fluffy
and that Stop the World thing will never work in a place like this. Hopefully, this isn't
happening, but if it is, you're probably heading in the opposite direction to an open
culture by creating side silos and more closed behaviors and thinking.

We need to create a channel for folks to feed back on their own use of the practices,
even first impressions. Do they like these things and think they're helping to create the
foundation desired? Are there things they already foresee as barriers and blockers?

We've mentioned the practice of the retrospective a couple of times already and

we'll be coming back to it several times during this book as the concept behind the
practices brings the most important philosophy of continuous learning and continuous
improvement.

But the practice being introduced here is a little different. Rather than scheduling in
retrospectives to start capturing feedback on our early foundation activities, could we
have a more continuous and always on self-service approach to capturing feedback?

The real-time retrospective technique shared by Emily Webber provides a simple, visual
tool for anyone to add retrospective feedback on any item at any time. Rather than
waiting for a formal feedback event or some kind of survey (which, let's be honest, is
not everyone's cup of tea), the real-time retrospective enables faster, more accurate,
and more direct feedback from everyone involved.

To make use of this technique, find a wall or surface that is long enough to handle the
amount of feedback you are expecting. Make a long line to represent time.

Draw a happy face above the line, a sad face below the line, and a surprised face along
the line (this represents the type of feedback that you wish to receive - positive,
negative, and surprised).

Explain to your participants your goal of using this practice and how to use your
prepped area. Here are the key things to share:
* Where to find materials for them to contribute.

* How the timeline begins at the left and continues until the timeframe you
designate as the end.

* Any and all feedback is welcome.
* One sticky note per feedback item.

Cycle back and monitor constantly to review your feedback and make appropriate
improvements based on them.



Real-Time Retrospective | 77

We find that making some simple adjustments early based on a real-time retrospective's
comments can really sow the seeds for autonomy, mastery, and purpose. Even reacting
to temperature control, improving catering, or switching people's positioning around
the workspace can have a great positive impact because the feedback came from the
people and they see their ideas being responded to quickly. This is what we mean by
empowering teams.

As always, we like to show more than tell, so let's look at a real example of where we
used a real-time retrospective.

Figure 4.10: A real-time retrospective used throughout a five-day DevOps Culture and Practice
Enablement workshop

This was used during the delivery of a five-day immersive enablement workshop -
DevOps Culture and Practice Enablement. Given the short nature of this, a real-time
retrospective is particularly useful because you don't want to learn feedback at the end
of the week (or even the end of one of the days) if there was a simple improvement or
resolution that could have been applied much earlier.

You'll see that a lot of the stickies in this example are beneath the middle line and
represent the sad feedback. Does this mean this delivery was going really badly? No,
not necessarily. When we facilitate real-time retrospectives, we actually tell people
not to worry about giving us lots of negative feedback. While it is nice to read the
happy or positive contributions (and it helps affirm what we should do more of), it's the
improvement ideas that we really want to capture. How can we make ourselves better
and how can we do that quickly?



78 | Open Culture

You may not be able to read the low-level detail but a few great examples of early
feedback captured on the real-time retrospective that were addressed in the second
day included the following:

* Having more frequent breaks and reducing the long lecture times

* Ordering more vegetarian food

* Adopting a group policy to move on when discussions were starting to rabbit hole
(separately, the team came up with visual cues to call out when these things were
happening)

* Getting some more monitors to help with the collaborative nature of technical
exercises

* Going outside for some fresh air at least a couple of times each day

These are all great feedback points from attendees and very easily addressable. The
continuous feedback and continuous improvement journey starts here!

One of the things that make the real-time retrospective practice very powerful is that
it is always on display and always in sight of the people contributing to and using it.
We often use large eight foot by four-foot portable foam boards to put the real-time
retrospective on so we can move it around the room and purposefully have it in places
that team members have to walk by regularly. This encourages them to contribute,
reorganize, or simply see what others have been feeding back.

If you're working with a distributed team using digital whiteboards and video
conferencing, we can easily start a real-time retrospective. We have a good template
that you can use as shown in Figure 4.11 and available to download from the book's
GitHub repository.

REAL TIME RETRO

i
0
0
(8§
£
(2
(B}

© Add
instructions
to this
board

T —

Figure 4.11: Digital real-time retrospective canvas for a distributed team



Team Identity | 79

The challenge here is getting the adoption and usage to continue. Digital artifacts
such as this risk becoming information refrigerators where information goes to die
and is only found when someone opens it up, resulting in it being cold and out of date!
Perhaps information should have use-by or best-before dates! To avoid this, we need
strong facilitation. We should encourage all our team members to have these digital
artifacts visible at all times. We should, as a team, regularly do a virtual walk-the-walls,
and Engagement Leaders and facilitators should encourage contribution to the
real-time retrospective where it makes sense.

You can learn more and collaborate about the real-time retrospective practice by
going to the Open Practice Library page at https: //openpracticelibrary.com /practice

realtime-retrospective/.

Social contracts, stop-the-world Andon cords, and real-time retrospectives are three
great practices to start building the foundation of culture. If well facilitated, the
conversations generated from these practices alone should start to drive a sense of
team autonomy and team identity. We're going to explore team identity further as itis a
crucial ingredient of great team culture.

Team ldentity

Think about the teams you've worked with in the past. How many of them have been
really great experiences that you enjoyed waking up to every morning? How many of
them were terrible and you couldn't wait for it all to end? Have you ever worked with a
group and thought, That was amazing - I wish it could have gone on forever! If so, what
were the things that made working with that team so amazing?

Team identity, morale, and cohesion are all linked and are critical for building
high-performing teams. They are all a state of mind, meaning the formula for creating
awesome teams is a bit more abstract and a lot less formal. You cannot force a team
to have high cohesion just by slapping people together, by adding one-part outgoing
individuals and two parts hard-working individuals! It must form more organically
than this.

Individual team identity can have an infectious enthusiasm and spread to other
teams in the organization. When there is a level of energy, team culture, and shared
identity evident, other teams want to be like that team. New teams should form to be
like that team. And, to avoid the risk of a team's identity becoming their own silo, we
can introduce ways to connect teams together through communities of interest and
communities of practice. We'll explore this more in Section 7 - Improve It, Sustain It.


https://openpracticelibrary.com/practice/realtime-retrospective/
https://openpracticelibrary.com/practice/realtime-retrospective/

80 | Open Culture

Socializing

There are lots of little cultural nuggets and practices that we've used to try and
accelerate team forming and get us to a performing state quicker. If team members
naturally get along with each other or have shared interests, this can infect the whole
group and create bonds between everyone.

JE H*Mﬂl"‘

Figure 4.12: Team social away from the office

Getting to know people on a personal level and sharing interests easily spills over into
the day job. Humans by their very nature are social creatures. That's why the first thing
we always try to do with our teams is socialize together. Take that moment to get away
from the office and relax. Sometimes that can be in the pub after work or even during
the day while sharing lunches. In fact, on a previous residency, we've even had things
like a weekly curry buffet for the team to use the time to socialize together. On one
occasion we went twice in a week when one of the team was off sick on Curry Day!

If going to the pub after work does not suit, flip it on its head! We've often had teams
go for a big tasty breakfast together first thing in the morning! It's a great way to

start the first day of a new sprint with fresh eyes and fresh eggs! Socializing can take
many forms, but it's important to stop and celebrate the work that's been done. Going
out to play a game together or hit the bowling alley for an hour helps the team build
friendships and get to know one another.



Team Identity | 81

It may sound super fluffy, but teams that share in activities like this will always help
each other out on the day job, even if they're unfamiliar with the tasks being tackled.
Team members will go the extra mile for one another when they've established such
relationships.

Figure 4.13: Team social in the office

Social music playlists provide a simple way for teams to get to know one another.
Creating a shared playlist for all to be able to add songs they like, or upvote and
downvote others, can create a very positive vibe within the team. Getting to know
people's taste in music, or lack of taste in some cases, can open up new connections
with people who may be shy or less likely to engage in a social outing. We've used
Outloud.dj for social playlists, even on training events!

Network Mapping

Network mapping is a handy practice for individuals to get to know each other. The
practice is simple - line up all the people in your group so each person has a partner
they've never met before.

Each person writes their name on a sticky note. Set a timer for three minutes for the
pairs to write on a new sticky note something they have in common. With that in place,
shuffle the group and go again with a new partner capturing something they have in
common.



82 | Open Culture

Two sticky notes are usually enough for each person to get started with this activity,
but you could go around again, especially if the group is small. Select one person to

go first and have them introduce the people they met. Pop their name sticky note on
canvas along with the thing in common and draw a line connecting them. Pass over

to the next person and have them introduce the other person they met, continuing to
connect the people to the interests. With all in place, allow the team to draw additional
lines they have with others in the group, forming a large spaghetti map! It's a simple
practice, we know, but it helps to accelerate new groups getting to know one another.

Network Map

laria
ltaLH

ALps

golf ~ AQP : TN

treland
Bike, walk \ Mike, NZ

walk

N— Walk / i

Figure 4.14: Network map example

You can take it one step further to demonstrate metaphorically what happens when
you break up a team that's already high performing. With the group standing around
in a circle, connect each person who has the thing in common with string or wool.
This should form a giant web; take the social contract and lay it on top of the web.

To demonstrate the negative effect that swapping in team members or removing
team members has on the group's inner workings, cut all the strings connecting those
individuals. You will see the social contract is no longer supported and falls away to
the floor, symbolizing the effect that moving team members in and out has on the
collective.



Team Identity | 83

You can learn more about and discuss the network mapping practice by going to the

Open Practice Library page at openpracticelibrary.com /practice /network-mapping.
Team Logo and Prime Directive

Another practice that could appear a bit fluffy - but that we stand by - is creating

a team name and logo. It strengthens the team's ability to contribute to the team's
identity and culture. As the group gets to know each other and starts to build in-jokes,
take the time to create a team motto or design a logo that can be printed on t-shirts!

Figure 4.15: Team identity with some customized t-shirts and a team name


http://openpracticelibrary.com/practice/network-mapping

84 | Open Culture

Let's look at a real world example where a team name and a team logo kick-started
team identity:

Team Name + Building a Team Logo =
the Beginning of Team Identity

Some of the best teams we've worked with
have co-created logos for their team and worn
them with pride. While working for a space
and defense customer, we had a team logo
designing competition. We took a crest and
broke it into segments with each team member
doodling something appropriate for the team.
We dot voted on all the pieces we liked and
collaboratively built the crest from the top four
pieces.

Team Space Force was born just like that!

Figure 4.16: Team Space Force logo



Team Identity | 85

A team with a strong identity will feel that they have purpose. All of these little
practices and many more can help a team form, storm, norm, and perform as outlined
in Tuckman's stages of group development®. It's important for teams to be allowed
the space and bandwidth to get to know each other. When given space, a team will be
happy to self-organize and share problems, and will want to succeed as a unit.

The responsibility of leadership is to just get out of the way and help facilitate the team.
If the cost of a pizza and a few beers each week makes a better product or a happier
team, it's a negligible cost in the long run. Supporting a team to create bonds like this
helps to foster a positive culture. Creating this environment is key for a team to adopt a
mantra such as—You Build It, You Run It, You Own It.

Creating a Team Identity with Distributed People

Admittedly, during the COVID-19 pandemic, this has been and continues to be one
of our biggest challenges and concerns. We knew how special and magical team
identity could be and the impact it had in creating an awesome, psychologically
safe environment for us to work in. Creating this with a bunch of people we'd never
physically met nor were likely to meet any time soon felt impossible!

A variety of online ice breaker activities can help kick-start a distributed culture
and are widely encouraged at the beginning of every meeting. Something fun that
gets everyone saying something and generating a few smiles up front! One example
is to have everyone introduce themselves and share a superpower they have and a
superpower they would like to have. All team members are superheroes after all!

Regular break-out sessions and opportunities just to chat informally should not be
underestimated. Think about all those conversations you have by the water cooler or
coffee machine, over lunch or over a beer at the end of the day. Those conversations
still need to happen when the team is distributed.

Building a collective identity may feel like just a nice thing to have but it really drives
social bonds within the team. All of the tips mentioned earlier around team name,
team logo, t-shirts, and so on, along with having virtual celebrations for events such as
birthdays, are arguably even more important in distributed working to build a strong,
high-performing virtual team. Even the act of going through this can be done in a
collaborative and inclusive way.

5 Tuckman's stages of group development


https://content.apa.org/record/1965-12187-001

86 | Open Culture

Finally, don't underestimate the value and importance of being social while having
lunch or breakfast together. This is something we build into our Open Innovation Labs
residency experience because we see the strength it generates in relationships. So,
while it may feel a little awkward, we still do it with our virtual teams. We have our team
members show us around their houses, meet their kids and pets, and create fun selfie
videos. We have virtual socials - order a pizza and chat over a glass of wine, watch a
movie online, and even go to a virtual escape room activity.

A really strong team identity and a high-performing team often result from working
in a great team space, full of energy, color, and information that the team is engaging
with. Earlier in this section, we introduced the information radiator concept (and the
information refrigerator). Let's explore this idea of information radiation further.

Radiate Everything

Have you ever walked into a room housing a high-performing team and found that it
just feels different? It's hard to capture why it feels different in text, but you just get a
sensation of cohesion and openness all at the same time. You may see sticky notes on a
wall showing things being worked on or tracking tools such as a burndown chart visible
to all who enter showing the team's progress so far. Possibly you see things such as
build monitors showing dashboards of code being built and deployed or tests executing,
or even live stats of the applications' and platform's current usage!

All of these things are information radiators, and they are probably one of the most
important things we have in our kit bags.

An information radiator serves one purpose - to show whoever passes by the latest
information. Radiate all the things, from test scores to retrospectives, architecture
diagrams, and even things that could hurt the team! Be proud of them and use them as
talking points in an open environment. In a truly agile environment, we emphasize open
and honest communication. Hiding behind a tool or burying a problem does not adhere
to the principles of transparency. An information refrigerator is exactly that - it's the
deep freeze where information goes to die. How many times have you had to request
access or sign in to something to find the information you needed? How often has that
information become stale or not been updated?

Besides the dashboards and sticky notes we like to have on display, a few other
information radiators are good to have in your foundation kit bag:

1. Visualization of business process design: The following figure shows an example
of this that utilized a practice called event storming. We'll be going into much more
detail on this in the Discover It section but, as a teaser, you can see the amount
of information being radiated - all of it was generated through collaboration and
conversations.



Radiate Everything | 87

Figure 4.17: Event storming

2. Visualizing what the team is working on now, what they've worked on previously,
and what they might be working on in the future: The following figure shows lots
of boards of sticky notes providing the team with this information.

Figure 4.18: Information radiators on every wall and every window

3. Our tools (which we will introduce in Chapter 6, Open Technical Practices —
Beginnings, Starting Right) can radiate lots of real-time information about the status
and health of the software products we're building. Build status, test scores, and
even animations showing the evolution of source code commits can provide helpful
information to team members. The following figure shows some big monitors we
use to radiate this information.



88 | Open Culture

Figure 4.19: Real-time information radiators focused on technology

In the following section, we'll see how teams can practice this when working in
distributed environments.

Radiating Everything When Distributed

Once again, it can be challenging to emulate this environment full of information
radiators and artifacts when everyone in the team is in a different location. It is
challenging but not impossible. Having some time and investment to set up workspaces
well and equip them with the right tools and facilities will reap huge benefits and
returns.

Figure 4.20: Setting up information radiators at home



Team Sentiment | 89

Having a second (or even third) monitor can help have information radiators oozing
warm information to you at all times. You can set windows up so you have different
applications giving you real-time information and also have your digital whiteboard and
video conferencing tools running. The benefit of using digital whiteboards is you will
never run out of wall space!

In the preceding example, you'll also see a portable speaker (great if you have a team
social playlist running!), a small tablet that is being used to show a live build monitor,
wall space, and sticky notes - still useful for ideating and planning your own work.
There's even a plant helping oxygenate the space to generate creativity and clearer
thinking!

Check out many more tips (and add your own) by visiting https: //openpracticelibrary.
com /blog /guidelines-for-setting-up-a-home-working-space/.

A further set of information radiators we use to visualize a team's health and mood
are supported by team sentiment practices and are a key enabler of high-performing
teams.

Team Sentiment

Team sentiment practices track the mood of a team and provide a mechanism for team
members to rapidly feed back, either publicly or anonymously, when their mood has
changed. Team sentiment practices enable problems to be identified, radiated, and
addressed early. They enable the team to quickly discuss where one or more team
members are suddenly troubled by the direction their work is going in and can also
provide an information radiator to assess the overall team's health and feeling.

One popular approach to introduce a team sentiment information radiator is mood
marbles. To use this, you will need a number of containers to hold enough marbles so
there is one for each team member participating. When we say containers, it can be

a simple transparent box (in Red Hat, we love containers and OpensShift is all about
containers, so we've even found a way to get containers to track our feelings!) or even
just a drawing of a container on large flip-chart paper. You'll also need two different
colored marbles (can be sticky notes) to start with. Other colors can be introduced.

Mood marble containers are placed in a strategic place where all team members will
see and walk past them regularly (for example, near the door or on the way to the
bathroom).

Team members are encouraged to think about their current mood. Start with positive
(often this is green) and negative (often this is red), and each team member adds a
marble to the container that reflects their mood.


https://openpracticelibrary.com/blog/guidelines-for-setting-up-a-home-working-space/
https://openpracticelibrary.com/blog/guidelines-for-setting-up-a-home-working-space/

90 | Open Culture

Figure 4.21: Mood marble container radiating team sentiment information

Team members are regularly reminded they can change their mood marble at any

time by removing their previous marble and replacing it with a different color. With a
container of all team members' mood marbles, the information radiated is on the team's
overall mood.

Blending Team Sentiment with Other Practices

Having a container of balls turn from green to red very quickly will cause more harm
than good if we don't use other practices to recognize and address the change. The
change could be explained by information on the real-time retrospective. Perhaps this
is serious enough for Stop the World.

Either way, a retrospective is an excellent forum to surface, discuss, and address
concerns that may be showing up in the team sentiment box. It can also be interesting
to examine trends and see how team mood is changing over time. Team sentiment may
also be impacted by other changes happening in the work environment or technology.



Team Sentiment | 91

It can be interesting and very powerful to aggregate team sentiment data over time.

We can use this to identify trends and patterns and draw conclusions as to how, for
example, making some tweaks to technology practices, to other cultural practices, or
to leadership behaviors can have an impact on team mood and performance. Figure 4.22
illustrates mood distribution over time.

Moods Distribution By Day

g E

( @O o) G @ -©
-® 00 ©0o oo O
. e o [} [ BN | (] [ ] (2]

20/08 22/08 24/08 26/08 28/08 30/08 1/09 3/09 5/09 7/09 9/09 11/09 13/09 15/09 17/09 19/09

E E

g

mm moods average @ Excellent @ Good ¢ Neutral @ Hard @ Bad

Figure 4.22: Team sentiment analysis

Let's look at another real-world story of one of our authors, where he learned that
sometimes these practices can achieve different outcomes but still very helpful ones!



92 | Open Culture

Team Sentiment Achieving
a Different Purpose - Banter!

I have found that measuring team sentiment
can be an extraordinarily tough thing to do in
practice, especially when you are confronted
with teams who are predominantly of one sex

- for example, all male. I am a man and I can
confidently say that men in particular generally
do not want to share their feelings, especially in
terms of the mood of the team.

On one particular engagement, we had a great female engagement lead
who described the practice of mood marbles and was fully expecting the
nearly all-male team to whole-heartedly participate. After several days of
no activity on the mood marble board, the sticky note shown on the left
appeared.

It took a bit of explaining that no, it really was not representative of the
deeply held feelings of a frustrated teammate, it was just good old banter!
In the days that followed, many different colors and funny drawings
appeared in the mood marble container. So, the practice did (kind of) work!

Many people will have had to try team-forming with groups of people who have
never met each other or are not in the same location. This is particularly true during
the COVID-19 pandemic. Let's look at an example of how we used the same practice
digitally.



Team Sentiment | 93

Team Sentiment with Distributed People

The same practice can be done using a digital tool and again emphasizes the
importance of keeping such information radiators warm and regularly inspected.

b ] Mood Marbles @ s

Everybody gets 1 Red and 1 Green marble
each everyday.

Choose 1 marble and drop in the jar.
. Green Marble means ‘All good'

. Red Marble means 'Something is not
right'

Figure 4.23: A digital mood marble container for distributed team sentiment capture

You can learn more and collaborate about Team Sentiment practices by going to
the Open Practice Library page at https: //openpracticelibrary.com /practice /team-

sentiment/.
Radiate Failures

Having information radiators, dashboards, and mood marble containers show green
can be satisfying and positive validation. But when they are red is when they are more
powerful. When they radiate that something is wrong or failing, it presents a feedback
loop to the people around to react and respond to.


https://openpracticelibrary.com/practice/team-sentiment/
https://openpracticelibrary.com/practice/team-sentiment/

94 | Open Culture

Radiating Failure - as Useful
(If Not More) as Radiating Success

Not all information radiators need to be flashing
green all the time or show positive things.
Sometimes the negative can be a great way to
start a conversation.

When working for a retailer some years ago,
there were multiple suppliers contributing to
the solution. Each one was responsible for a
different tier of the architecture and my team
was responsible for some of the middleware used to serve data in a mobile-
friendly way from a broker.

We were repeatedly being challenged by the retailer for being late in
deploying our production server — however, none of the other teams was
ready either! When we did deploy our stack, the broker layer was not
connected up either, so our server was talking to something that did not
exist!

To try to bring the conversation back to the teams that were now causing
the blockages, we created a simple dashboard of TrafficLight jobs. It was

a simple piece of automation that just did a smoke test of each service, to
check its connectivity. We labeled the dashboard Production Monitoring and
got it up on a projector in our project room - so whenever someone entered,
they would see a board with lots of red on it.

The lesson I took from it was simple - one way to get things moving is to
have a dashboard with lots of red on it labeled Production Monitoring!
This dashboard helped us steer the conversation toward the fact that our
piece of the architecture being in place on its own was useless - and that
we as multiple suppliers for the retailer needed to work together to get the
end-to-end solution working and not just our small parts.



Team Sentiment | 95

Figure 4.24: Starting to make technical environmental information visible

If you're looking for some great ideas for things you can visualize in a creative way, we
cannot recommend this book enough - 96 Visualization Examples by Jimmy Janlén!®
It has some amazing ideas for displaying information that's critical for the team to

be able to respond to. And it has a super bonus section on the correct way to peel a
sticky note!!

You can learn more and collaborate about the visualization of work practice by going
to the Open Practice Library page at https: //openpracticelibrary.com /practice

visualisation-of-work/.

6 https://visualizationexamples.com


https://openpracticelibrary.com/practice/visualisation-of-work/
https://openpracticelibrary.com/practice/visualisation-of-work/
https://visualizationexamples.com/

96 | Open Culture

Inspect and Adapt

By now we've introduced lots of practices and techniques to help the team collaborate
and get to know each other. But there is no point in doing them once and walking away
without learning from them.

There is nothing to be gained from the data they provide if it's not responded to.

It's very easy to slip into this pattern. We've seen it all before - the team does a
retrospective and comes up with a really great discussion but then captures no actions
to fix things. Even worse, they capture actions but they are not adhered to or given any
time to solve.

What happens next? The same problems appear in the very next retrospective and the
team morale will slowly slip as nothing gets fixed. Time to break the cycle! Respond to
the information. Be a doer.

You've got all these tools in place, but they're completely useless if ignored. They may
look pretty - but they are useless if not actioned. We need to respond to the change
when the tool or practice tells us that is the right thing to do, and we need to be
prepared to pivot and change direction if that's what the information is telling us to do.

To be able to inspect something (technical), you have to monitor and continuously
collect metrics as a fundamental tenet built into every service and every tool.

Metrics are built into OpenShift and other products. Insightful dashboards allow you to
find things before your customers do. They also allow you to radiate real information
about the product, technology, and team in a way that cannot be ignored. The data
doesn't lie, and having it displayed so publicly and transparently can help unblock and
maintain team autonomy and mastery. Where the team is blocked and radiating the
information to explain why, holding regular walk the walls sessions with stakeholders
and management who can make decisions to unblock and change the information can
really drive inspection and adaptation for the wider good. If there is a problem, if there
is a snag, if there is a blocker, make sure it is clearly being radiated and have the people
who can fix it see that information regularly. If it's not being seen, make it bigger, share
it more, add some sound - this is your opportunity to make sure these things are seen
and heard.



PetBattle — Establishing the Cultural Foundation | 97

PetBattle — Establishing the Cultural Foundation

Aidan, Ciaran, Emma, and Jen, the four engineers who have committed to
work on the next evolution of PetBattle, met with Dave (a UX designer),
Susan (a quality assurance consultant), and Eoin, who is leading the
upcoming engagement to take PetBattle to the next level. Eoin had brought
coffee and donuts and set the meeting up as a kick off for success session.
Some of the team had worked together before. Jen, Dave, and Susan were
brand new.

Eoin had rented some cool downtown office space that was going to be
PetBattle HQ for the next few months. In the room, there were lots of
movable desks, portable whiteboards, and swivel chairs, as well as bean bags
and comfy foam seats. There were also some huge foam boards (a couple

of inches thick and 8ft by 4ft in size) stacked up at one end of the room.

All the furniture was pushed over to the other side of the room and Eoin
pointed out that the team could configure the space however they wanted.
Everything was on wheels and portable. Even the plants were on wheels!

There were also several brand-new large monitors and other IT accessories
and loads of unopened boxes from Amazon that Eoin said were full of every
color and every size of sticky note imaginable. He'd also bought Sharpie
pens, timers, colored card, painters' tape — you name it, he'd bought it. Eoin
had been busy!

On one wall, Eoin had prepared a Kick-Off Backlog, and there were a number
of sticky notes representing items he wanted to cover in the next few days.
The team looked at items on the backlog and added a few things of their
own that they hoped to cover.

After coffee and a bit of chat, they started a short ice breaker where
everyone had to introduce themselves and tell three things about
themselves - two of them truthful and one a lie. Over the course of the
week, the team would have to work out what everyone's lie was.



98 | Open Culture

The next item was to form a social contract. Eoin explained how it worked
and asked everyone to write at least one sticky note of something they
would like to add. The social contract started with a discussion about

the core working hours, which they agreed would be 10 AM to 4 PM - all
collaborative activities would be scheduled inside this time box. Emma
suggested a Be on time social contract item, which everyone agreed to. Dave
suggested a relaxed dress code, which everyone was very happy with. During
the next 30 minutes, the team got into some interesting conversations that
resulted in the social contract comprising the following as well:

* Have fun!

* Ensure everyone is heard

e Show empathy

e It's ok to be wrong

* Mob to learn and pair to build

* Beopen

* Have a social evening out every week

* Breakfast and lunch as a team three times a week
* Be empowered

Eventually, the team agreed this was a good start but they would all continue
to reflect and think about how to improve the social contract. They all
signed it and Eoin hung it on the wall near the team.

Jen suggested the team try using a real-time retrospective — something she
had seen at a recent conference and was keen to try. Everyone had done
retrospectives before but they were not familiar with the real-time aspect. It
seemed like a good idea and they agreed to give it a go.

The next items on the backlog were introduction to the room. Eoin had set up
a mood marble container by the door and explained how the practice would
work. The team looked a bit skeptical (Aidan made a comment that these
were not the kind of containers he thought he'd be working with today) but,
in the spirit of being open and experimental, would give it a go.



Conclusion | 99

At the other end of the room was a big rope with an old bell at the top. There
was a big sign next to it that said STOP. Susan offered to explain how this
worked and how it could be used to stop the world. The team seemed very
happy with this - it made a lot of sense. In fact, most of them were thinking
of many scenarios that had happened to them in previous jobs where this
would have been very useful!

The team was introduced to the rest of the room. There were lots of
placeholder signs on different parts of the wall. One had now been filled
with the social contract. There were headings for Impact Map, Event Storm,
value slices, product backlog, and sprint 1. Eoin explained that, while the
room may feel empty now, in just a few days it will be filled with information.

The next item on the kick-off backlog was to configure the space. This

was a great activity to do as a team and was really in the spirit of being
empowered. The team wheeled in tables and discussed how they'd like to

be set up with a mobbing corner and pairing stations. They set up every
monitor Eoin had purchased. They even attached some Raspberry Pi mini-
computers to each one. Aidan added a PetBattle digital sign to each one! The
music was on, the space was configured, and it looked great. The volume of
the team over lunch started to rise. There were more laughs and banter.

The team had started to form. The cultural foundation was in place and would only
strengthen from there.

Conclusion

In this chapter, we introduced the foundation from a culture and collaboration
perspective and the importance of building this foundation before we do any
technology or try to do any discovery or delivery of product development. To achieve
strong business outcomes when using DevOps and OpenShift, we need to have high-
performing teams developing and operating software products.

The starting point to creating a high-performing team is enabling an open culture
where the team members feel psychologically safe and can achieve a sense of
autonomy, mastery, and purpose in everything they do.



100 | Open Culture

To help us realize this and build the foundation, we explored several of our favorite
practices that have enjoyed the most success in kicking off new teams - social
contracts, a Stop the World system, gaining team identity, radiating as much information
as possible, including team sentiment, and starting a cycle of regular inspection and
adaptation.

We told a fair number of stories and shared some memories of applying these practices.
And we returned to our newly forming PetBattle team to see how they went about
starting their cultural foundation on their first day together.

Some of the practices in this chapter may work for you and your team. Some may not
and you'll want to throw the tool back into the box and choose something else. There

are many, many more you can explore at https: //openpracticelibrary.com/tags/

foundation, or you can contribute your own. Remember, the precise practices and tools
you use are not as important as the fact that you are investing time in establishing a
cultural foundation.

-
f' EP (@ FOUNDATION

SociAL s‘rov ‘N\e REAL TIME
CONTRACT RETRosPECTIVE
o o” T 2
o o -

tem NETWORK TEAM

loewrhy MAPPING SENTIMENT

Figure 4.25: Adding the foundation of open culture practices

Of course, a foundation can be improved upon and strengthened. In the next chapter,
we'll explore how leadership can help this from the outset and how open physical
environments and spaces can strengthen it. In Section 7, Improve It, Sustain It, we'll
explore further how the foundation can be strengthened to support scalability and
sustainability for product teams adopting the open way of working.


https://openpracticelibrary.com/tags/foundation
https://openpracticelibrary.com/tags/foundation

Open Environment
and Open Leadership

In the previous chapter, we explored what it means to have an open culture and how we
can enable teams to build this into their way of working from the ground up.

When we talk about having empowered, self-organizing, self-directing teams, many
enthusiasts will say that management is supposed to just get out of the way and
disappear! Some will say if teams have true empowerment, surely they don't need to be
managed and they don't need managers.

Differentiating between leadership and management is important here. We want teams
to manage the organization themselves from the bottom up and for leaders to set
direction and intent that enables that behavior throughout the organization. This is
how open organizations such as Red Hat are led.



102 | Open Environment and Open Leadership

Jim Whitehurst, former CEO of Red Hat, defines an open organization as an
organization that engages participative communities both inside and out - responds to
opportunities more quickly, has access to resources and talent outside the organization,
and inspires, motivates, and empowers people at all levels to act with accountability.

His diagram below articulates the difference between conventional organizations that
are managed top down and open organizations that are led and organized from the
bottom up.

CONVENTIONAL ORGANIZATION OPEN ORGANIZATION
“Top Down” “Bottom Up"
Command Central
WEHAD and control planning Setting direction Catalyzing WHAT

inclusive
decision making

Title and

; Hierarchy
HOW rank

Getting things
Let the
Gane Meritocracy sparks fly

HOW

Promotion
and Mativating
and inspiring Purpose and Engagement WHY
passion

WHY

Figure 5.1: Differences between conventional and open organizations

So, what is leadership's main role in all of this? What can leadership do that helps
deliver lasting change within a learning organization? We are going to tackle these
questions by first taking a look at the Kodak case study, the company that invented
personal photography but ultimately missed the digital revolution. What lessons can we
learn from it? In the Changing an organization section, we'll discover that leadership
can achieve far better execution by moving the decision-making to where the
information is. We'll then learn how to use Priority sliders and forced ranking to help us
prioritize where we can focus our efforts. In the final The space section, we'll take a look
at creating the right physical environment for our teams to flourish within.



The Kodak Problem | 103

The Kodak Problem

You don't have to be a CEO or a business management consultant to
understand that there are lessons everyone can learn just by sharing stories
about different organizations and how they succeed or fail in a rapidly
changing world. The lifespan of public companies has decreased markedly
in the past 50 or so years.! Why is this? History is littered with examples of
organizations that have failed to adapt to changing customer needs. Let's
take a look at possibly one of the most well-known of these stories in more
detail and understand what went wrong.

The Eastman Kodak company invented personal photography. Up until

the turn of the twentieth century, to take a photo, you had to go into a
studio and have someone take your photo. Kodak sold this awesome user
experience in a box for S1 - not a lot, really. The real money was to be made
in processing the film to produce the pictures, which usually took a week or
two. By the end of the twentieth century, Kodak had been hugely successful
as a company and a brand.

However, they missed a trick - by the turn of the twenty-first century,
digital photography had started to take off. Kodak was there in digital, but
they believed that photography was a chemical process thing - the money
was made historically from chemically processing the film. By the time they
realized the market had shifted, it was all too late for them. Rising tech
giants in Japan and Asia were far better at making digital tech than they
could ever be. Kodak filed for Chapter 11 bankruptcy in January 2012.

Did you know that a man named Steve Sasson was the inventor of the
Charged Couple Device, which formed the basis of another invention of his -
the digital camera. Guess what - he worked for Kodak!

1 https:/www.amazon.com /Creative-Destruction-Underperform-Market-
Successfully/dp/038550134X


https://www.amazon.com/Creative-Destruction-Underperform-Market-Successfully/dp/038550134X
https://www.amazon.com/Creative-Destruction-Underperform-Market-Successfully/dp/038550134X

104 | Open Environment and Open Leadership

That's right. He invented the digital camera in 1975 and his bosses at the
time buried it - they said no one would ever want to look at their photos

on a television set. Steve also invented the first Digital Single Lens Camera
in 1989, but again, at the time, Kodak marketing thought that releasing the
product would interfere too much with their film processing business - so it
was buried as well.

Now, Kodak made billions on their digital patents; however, these expired in
2007. The company just could not pivot fast enough to change the customer

experience, which their competitors were delivering through digital, and
eventually filed for bankruptcy protection in 2012.

Figure 5.2: Digital Camera patent image from 1976

This provides a fine example of the need for continuous learning, continuous measures,
and a continuous appetite to pivot.



Learning from History | 105

Learning from History
There are many lessons we can learn from the Kodak story:

* Organizations must adapt to their changing customer needs.

This is easier said than done. Human understanding and cognition are heavily
influenced by our cultural beliefs and upbringing. We just don't see what
others see. In some ways, this is what happened at Kodak. Their background
and company history were from a chemical engineering viewpoint; indeed,
Eastman Chemicals (which was spun off from Kodak) is still a very successful
company today. At the time, Kodak's management was incapable of seeing
the transformative change to the user experience that digital photography
represented.

* The Kodak story shows us that innovative change can come from anywhere
within an organization.

It often requires a different point of view from leadership for internal views to be
promoted successfully as a business strategy. The old command and control structures
themselves need to change so they are better able to encourage and embrace
innovative change.

Open Leadership

Shabnoor Shah, Open Leadership Global Lead and Coach for Open Innovation Labs,
explained to us how Open Leadership is a new refreshing gaming-changing way of
leading in a digitally transforming world. The foundations of leadership are rooted in
the open-source way of thinking, working, and behaving.

A unique aspect of open leadership is that, because it is really a mindset and a way

of being, it is not restricted to top levels of management in the hierarchy. Open
Leadership can be practiced by anyone and at any level in the organization. However,
when leaders lead openly, the impact is significant and palpable in shaping an open,
positive, and progressive organizational culture. The results are reflected in employee
happiness, well-being and engagement, customer satisfaction, and overall profitability
and success of your organization.



106 | Open Environment and Open Leadership

The guiding principles of Open leadership and open organizations are transparency,
inclusivity, collaboration, community and participation, adaptability, meritocracy, and
releasing early and often. The overarching belief of the open leadership mindset (at
Red Hat) is to default to open because open is a better way. This is supported by four
supporting beliefs that everyone has something to contribute, everyone has untapped
potential, everyone has the responsibility to lead and everyone benefits when we (all)
put the organization first.

Changing an Organization

Organizational charts are usually drawn top-down in a hierarchy, and they tell

you nothing about the nature of the company or its interactions. Let's redraw our
organizational chart to see if we can better represent the interactions that might be
occurring. Our customers are drawn as our roots, the foundations that allow the whole
organization to survive. Next, we have the different business units drawn as petals

that interact using business processes to achieve their goals. The company president
is a rain cloud who is downward-looking, shielding the organization from the external
board and stakeholders, who are represented by the outward-looking face of the
company, the CEO.

CED £
Y *
PRESIDENT LN

oRR |

CYSTOERS

Figure 5.3: Organizational charts rethought



Leading Sustainable Change | 107

Humans are biological organisms. Organizations should also be treated like organisms
rather than the product of their organizational chart. It makes sense - organizations
are the product of the people they employ. So, when looking at how organizations
change, we should ask the question how does change occur with humans? If the majority
of people find change unsettling, what makes a person go through change rather than
accepting the status quo?

People make changes when they are insecure, unhappy, or unsatisfied with their
current situation. Similarly, companies that are under stress are going to be forced to
implement change to survive. It is insightful that when putting into action the practices
described within this book, that it will feel uncomfortable. Often, team members will
describe the changes as hard and difficult to make. This is actually a good thing! Change
is hard. Companies (just like humans) need to embrace creativity to be innovative

- so they can deliver awesome experiences to their paying customers. A successful
transformation isn't something that happens for only a focused period of time, with

no changes happening after that. Embracing innovative change as a sustained way of
operating is the challenge.

Leading Sustainable Change

Change within an organization is not sustainable without funding and executive
sponsorship. Kodak failed to foster and action the great ideas that came from within.
Within an organization, it is the organizational leaders that make the rules of the

game that everyone else must follow. Importantly, leaders set the environment and

the context that teams must operate within. This is akin to the farming analogy.

To be a successful farmer, you must create an environment for your crops to

grow. Organization leaders must create the right conditions to make innovative
transformation flourish and become the norm. In a talk, we recently heard Simon Sinek,
a British-American author and inspirational speaker, say this — There is one fact that is
not disputable - your customers, stakeholders, and employees are all humans. You cannot
lead a company. You can lead people.

It is often unclear that leaders must take risks to change the current way of working.
Often the risk is also a career risk for leadership. They are putting their job on the line
to embrace the change. So, it is important that the first or initial scope of improvement
decisions is made carefully. The change cannot be so big that it risks organizational
failure, and must be meaningful so that customers and stakeholders feel a real business
impact - your product gets oohs and aahs when it is delivered.



108 | Open Environment and Open Leadership

Does any of this sound familiar in organizations you have worked in?

* We have many unhappy silos within the organization.

* We are one team with many clans.

* There are too many hand-offs.

* There is too little accountability.

* We have misaligned incentives.

* We are punished for failures.

* We have people with egos who don't want to share.

* There are barriers to change - this is the way we have always done it.

If you identified with any of these, they are all traits and characteristics that require
executive sponsorship to change. It is the leadership's role to:

* Create a shared purpose and vision.

* Give permission to Change the Rules.

* Remove unnecessary gatekeepers and roadblocks.

* Encourage actions that Get Work Done.

* Decentralize decision-making.

* Demonstrate transparent communication.

* Break down barriers between silos and departments.

* Measure the system as a whole.

* Make Transformation everyone's job.

» Value results based on delivering organizational outcomes over process
adherence.

* Help build an engineering sanctuary where trust exists between the business and
technology.

* Demonstrate results with metrics and data.

* Encourage teams to own the full engineering stack.

* Build transparency into the full development process.

» Take the risk to start the first transformational change.

This is a long list. In the next section, we'll tackle three ways of bringing about these
traits by taking some advice from a submarine captain!



Achieving Greatness | 109

Achieving Greatness

In Captain David Marquet's book, Turn the Ship Around,? he defines leadership as
embedding the capacity for greatness in the people and practices of an organization, and
decoupling it from the personality.

Giving Intent

In it, he talks about his experience of being a captain of a nuclear submarine and how
they learned not to follow the leader into disastrous situations. He vowed never to give
another direct order but, instead, to set intent. Rather than giving instructions, give
intent. Officers stopped requesting permission all the time, which meant psychological
ownership shifted towards them. Marquet talks about the two pillars that supported
this idea of giving control - technical competence and organizational clarity.

Moving Decisions to Where the Information Is

Moving the authority to make decisions to where the information is means, in the
software space, software engineers can decide when to ship software and to do so
when ready. The best time to make a decision is the last responsible moment before it
must be made. By delaying, we are afforded the most opportunities to gather as much
information as possible. By doing this, you get faster and better-quality execution of
decisions than if central leadership were to make them.

Setting the Environment

This can be a huge mind shift to many but, when reading Marquet's book and watching
the ten-minute Greatness video on YouTube?® (another video we love to show our
customers and, in particular, their leadership), it makes a lot of sense. This mindset
provides the leadership foundation for at least one team to work autonomously and
with purpose. We'll explore the scalability of this mindset later in the book.

2  https: //davidmarquet.com /turn-the-ship-around-book

3 https: //vyoutu.be /OgmdlLcyES


https://davidmarquet.com/turn-the-ship-around-book/
https://youtu.be/OqmdLcyES_Q

110 | Open Environment and Open Leadership

Figure 5.4 represents the sketch produced during the ten-minute video and has several
important messages.

AUTHORITY DEBCE’Z%I;\/ e
I W

INFORMATION

~ % TAKE CONTROL

ATE THE AND ATTRACT.
E/\Cne/ERONMENT FOLLOWERS?
For THINK ING

ANGRY AT
' YOURSELF

" | | GIVE CONTROL
pN FAMILIES | AND &
| oReadizarions | CREATE LEADERS { |

Figure 5.4: Inno-Versity Presents: "Greatness" by David Marquet

If you haven't yet watched the video that produced the graphic above, please take the
time to do it now. It is inspiring, thought providing and sets the leadership context for
the rest of this book.

How Do We (as Leaders) Convince the Doubters?

Every company is an IT company, regardless of what business they think they're in —
Christopher Little, Software Executive, DevOps Chronicler

If you are not in IT, it is fair to say that IT is often viewed as getting in the way of an
organization's business goals. As Steve, the CEO from the Phoenix Project book by Gene
Kim* says - IT Matters. IT is not just a department that I can delegate away. IT is smack in
the middle of every major company effort we have and it is critical to almost every aspect
of daily operations. Often it is the non-IT part of an organization that is the hardest to
get on board with a new way of working that puts them front and center with the IT
department to help drive outcomes of increasing customer success.

4 The Phoenix Project, A Novel About IT and Helping Your Business Win — Gene Kim,
Kevin Behr, George Spafford


https://itrevolution.com/the-phoenix-project/
https://itrevolution.com/the-phoenix-project/

Achieving Greatness | 111

No Computers in the Company!
The 1990s or the 1890s?

In the 90s, I was working at a software house,
writing trading systems for banks in London. My
partner was working at a traditional London law
firm as part of the accounts team. She told me

a story that I couldn't quite believe: there were
NO computers in the company. All business was
transacted on paper and B2B was still done by

a fax machine. I was astounded that it was even
possible to do business without IT!

Can you think of any similar examples today? No, me neither.

A business product owner and business SMEs are key people supporting our cross-
functional teams. One of their key tasks is to represent and communicate with all of the
product stakeholders and customers and share those conversations and outcomes with
the team. By helping the team decide on what should, and more importantly should
not, be delivered, the product owner vastly improves customer satisfaction because the
software that represents the most customer value can be worked on and delivered first.

By being part of the cross-functional team, product owners gain a shared
understanding of the technical challenges involved in writing and operating the
applications that deliver business services to their customers.

Ultimately, it is through this collaboration and shared understanding between technical
and non-technical team members that we get business leaders on board with IT. By
successfully delivering customer and organizational outcomes, the product owner can
show success to their management and in so doing, own the IT challenges with their
technology counterparts.

Now that leadership is enabling and supporting our product team's efforts, we are
going to switch gears next and take a look at the practice of using priority sliders,
which can help our team prioritize what product areas or team building topics are most
important.



112 | Open Environment and Open Leadership

Priority Sliders

Priority sliders are a great, simple tool to have in your kit bag! Like most of the practices
we're exploring, they're really just a tool to help us facilitate a conversation and drive
some shared understanding. We use them to drive team consensus in the direction we
should go for a given time length.

Running the practice is easy. Just get a small area of a whiteboard and do some
brainstorming around key topics of focus for your engagement. They could be things
like:

* Functional Completeness: How important is being 100% complete on some
piece of app functionality, or are we looking for some sort of thin thread through
all the functional areas?

* Security: We know security is important but how much time do we want to
invest now in hardening our software?

» Skills Acquisition: Happy, motivated individuals make great teams. Making sure
the team has all the expertise to build, operate, and own their software could be
important.

* User Experience: Are we building what we want or what we think our customers
want?

* Test Completeness: There will always be some testing. How important is it for
us to automate this right now or should we focus on test automation from the
beginning?

It is important to call out that these topics are not product features. They are product
areas or team-building topics, without which we would not get a great product. For
example, perhaps you want to drive more sales through your application so you decide
to implement some form of push notifications to drive your customers directly to

your app. Push notifications are not something you would add to your priority sliders,
but perhaps market penetration could be. This topic could include a raft of additional
features or experiments you could run. It's good to have a few examples of these ready
and the team should always ensure they know what is meant by each item on the slider
before you begin.

With your list in place, get yourself some Post-Its and Sharpies and write them up in
one column. For example, let's say we use the five headings from above. With five items,
we now need a scale numbered from one to five for each one. The more items your
team is prioritizing against, the higher your scale will go.



Priority Sliders | 113

— PRiORITY SUIDER -

Skiws

0

Figure 5.5: Priority sliders

With the scale in place, the team needs to decide what they think is the most important
item relative to the other items. The key with priority sliders is that no two items

can take up the same priority - so if 5 is your top, then User Experience and Security
cannot be on the same level. Each item must be traded off against another - hence
some teams call this practice as using trade-off sliders.

! mg =
%

Figure 5.6: Priority sliders - collaboration in action



114 | Open Environment and Open Leadership

In the picture above, we can see a team discussing a priority sliders session in progress.
Trying to figure out as a team how to force rank the options leads to a lot of great
discussions. Below we can see two complete sets of sliders. It's important that everyone
agrees on whether 1 or 10 is the highest importance!

EsS o
Teeunscay

[NFRA PRIORITY SLiDERS

[ ol
o 1 o P PR IS
i

" n e ——
—— t t T T T
¥ £ 8

‘. ;i
3 7 P 3 P T

a—'l1 7 T
e
: 1

Figure 5.7: Priority sliders examples

There are many ways for a group to gain consensus - they could just have a good
old-fashioned chat about each item and agree one by one as they go down the list. This

can work well for some groups but for others, a more formal approach can ensure all
people participate. Here are a few ideas:



Priority Sliders | 115

r Dot voting: Each person involved is given some number of votes,
E for example, three. They can put each of their dots on any of the
@ categories, but once they've used their votes, they're out. This can be

E a great way to show which items are least important to the group as
they'll have no votes so not much discussion will be required.

just uses your fist. Someone reads the card aloud and everyone takes
a second to get a number in their head. Someone counts down and
the group simultaneously reveals their number from one to five using
their fingers. This practice is great for getting consensus while also
not influencing others.

b v w Fist of five: Much like planning poker or confidence voting, this one

Heat map voting: Each person puts a dot or fills the canvas as if they
were doing it on their own. Once everyone is done, we should see
clusters of important areas compared, which the group can then use
to shortcut picking the final numbers.

Good old-fashioned chat: Not everything needs a new thing and
sometimes just having a chat can work! If you take this approach,
(1 @@ | just ensure quieter team members' voices are heard and they feel
- «® | included.

Table 5.1: Methods for encouraging stakeholder participation

With the completed canvas, we can get a sense of our upcoming priorities. These could
be set for a few weeks or for longer but like all practices, this is not a one-time thing! It
should be returned to once some work has been done in any given area on the canvas,
checking whether it is enough and whether our priority has changed.

Great product owners and scrum masters could take the priority sliders with them

to sprint planning events. When deciding what to bring into sprint or what to omit,
being able to shortcut those decisions by referring to the canvas can save time. Like

all these practices, it's very important to keep them visual at all times and, of course,
this is much easier when everyone can be in the same room. Of course, there are still
excellent ways to run a priority sliders session with a distributed team, which we'll look
at next.




116 | Open Environment and Open Leadership

Running Priority Sliders with Distributed People

If you have a good digital whiteboard tool, and all stakeholders needed in the priority
sliders are connected via a video conferencing tool, running the practice is relatively
easy. We have provided a useful template that you can download from the book's
GitHub repository and use in your tool of choice such as Miro, Mural, PowerPoint,

Google Slides, etc.

What are Priority Sldere?

What is it?

- Atool that facilitates conversations about relative
priorities and focuses upcoming activities

«+ A finite set of topics/dimensions/areas that can
be relatively prioritised against each other

+ Aslider for each dimension where groups of
people collaborative slide the relative importance
to the right (more important) or left (less
important)

+ A practice that increases the autonomy of teams
(see decision making below).

Steps PRIORITY SUIDERS

@ s a group add a sticky in the first column for

each item that you want to prioritise on -

2 For each item to prioritise, start to place yellow
stickies against a number on the slider,
individually. Only one item can be prioritised
with the same number

. Discuss relative priorities as a team and adjust
sticky placement until all items have a unique

priority number.
Why use it?
« Enables an alignment and consensus on areas of

« Provides clarifications across stakeholder groups

of motivations and desires
- Can be used as a filtering mechanism for later
prioritisation (of, for example, product backlog

items) Materiale

- Can be used for decision-making.
Q@ OO = -

Example Priorifies Example
Here are some examples of priorities that could be
considered. These are just a starting point, though -
feel free to try other priorities to suit your team and Priority Hiders
project! = —
_——a—
« Functional completeness T
- Test completeness ) S
« Product-market fit N
+ User experience — B
+ Performance — a
« Stability — @
+ Security T
+ Learning

Figure 5.8: Digital priority slider canvas for use by distributed people

When there are sliders on the wall and everyone's on their feet and having to add their
dot, the environment is so well set up for conversation and collaboration, people can't
help themselves! On a video call, it's too easy for some folks to disappear and not get
involved. So, really strong facilitation is needed. Adopting a liberating structure such

as 1-2-4-all will help get engagement from the outset. 1-2-4-all is a simple facilitation
technique whereby individuals are first asked to independently and privately provide
their input or opinion. They then pair up with one other person to discuss each of their
ideas and merge them. Then two pairs group together to converge each of their ideas
before the full group gathers together to bring all the input together.



The Space | 117

You can learn more and collaborate on the priority sliders practice by going to the
Open Practice Library page at openpracticelibrary.com /practice /priority-sliders.

1 - lowest
7- highest
T 1 2 3 4 5 6 7

F Bring :

Culture back o o { o o — @
4 ! o
Automation ® ® PY ® PY P [ ) P
repeateable fast .
5 Deployment [} o
pattern ‘ ‘ ® : ' ' .
3 Supportability o .: .' Y ‘ Y Y
Test (] ( X J
g completeness @ @ o @ o o o
-_— o

Learning / Skill 0

© acquisition { o o { J .. @ @

— | .

Organisational ® ®

Z Impact : .. { L @ o o

\ —~—

Figure 5.9: Digital priority slider example used distributed people

Regardless of whether we are in a physical or virtual working space, the practices
introduced in this book so far (including priority sliders) all need a good space to be
organized for the team to collaborate.

The Space

One of the big focus areas that can really help leaders establish a strong foundation for
their team is in finding a suitable space for team members to work.

In the previous chapter, we explored the importance of motivation and autonomy,
mastery, and purpose. The physical working space is a great enabler. Great teams work
in great spaces.


http://openpracticelibrary.com/practice/priority-sliders

118 | Open Environment and Open Leadership

When we run our Open Innovation Labs residencies, we do them in one of our own
physical labs, which was purpose-built for this type of working. It is often the number
one concern our customers' residents have - they say their own buildings are not set
up for this type of work and there will be many blockers put up by Facilities, Security,
Health and Safety, and other departments. We aim to use the time in the labs to show
leaders and stakeholders how much engagement, energy, and value is delivered from
this way of working and how much the physical space enables it.

We have some space recommendations based on a collection of best practices and
lessons learned from real facilities built out of global, permanent Open Innovation Labs
facilities, as well as experiences building temporary, pop-up team spaces. Val Yonchev,
Open Innovation Labs EMEA Leader, and Mike Walker, Global Senior Director of Open
Innovation Labs, provided much of this thought leadership in their own contribution to

the Open Practice Library, which you can read at openpracticelibrary.com /practice /
team-spaces/.

Let's look at a few examples. First, a lab space such as that in the next picture is very
open. There are no barriers or wall dividers. It is highly configurable with all the tables,
chairs, monitors, and even plants on wheels!

Figure 5.10: Open workspace example


http://openpracticelibrary.com/practice/team-spaces/
http://openpracticelibrary.com/practice/team-spaces/

The Space | 119

Open workspaces are well lit, ideally with some natural sunlight, with tables and chairs
well distributed around the room. There is a lot of wall space for all the information

radiators.
.
;. ’
@ﬁ

“Eg e oas h””“"s il
e

e N
s R

‘u
—

Figure 5.11: Open workspace with lots of wall space

Information radiators should be easily accessible and in the line of sight of team
members. There's little value in having all this information if the team is not going to be
seeing it regularly.

Figure 5.12: Examples of the visualization of work



120 | Open Environment and Open Leadership

Most importantly, the space should enable conversation and collaboration to happen as
much as possible.

Figure 5.13: Configurable workspace set up for pairing and mobbing collaboration

Just how much do we need to invest in the space and what is most important?
The Minimal Viable Space

A question we often get is do we need to invest tens of thousands of dollars in a space
and have all the things outlined in, for example, the Open Practice Library article in
place before we can get our teams working in them? The answer is no. As much as
we'd love all teams to have the perfect space, the reality is there are lots of barriers
and challenges to getting there. Taking an agile approach to incrementally building
out team spaces and applying continuous improvement can work just as well and can
involve the teams in their construction.

The minimal viable space for a team is some open space without divides and some

wall space. We've even got around wall space concerns with some of our customers by
buying boxes of 25 foam boards (4ft by 8ft and 5Smm thick). These are very portable and
can stand against furniture, walls, windows, hang from ceilings on magnets, and so on.

We like to call them portable walls!

How have our customers reacted to the idea of bringing in huge foam boards? Let's look
at a recent example.



The Space | 121

"We See What You Want To Do and
Why and We'll Help You Get There" in
Just 4 Weeks

I led a lab residency in a pop-up space

in the offices of our customer, who was

an international oil and gas customer.
Understandably, security and health and safety
were of utmost importance, and we realized
getting custom furniture and movable boards
was not going to be quickly approved.

So, we took the approach of only having portable equipment. We brought in
the foam boards mentioned above, several rolls of static magic whiteboard,
boxes of sticky notes (which would only be stuck to our boards or magic
whiteboard), and a projector.

This meant we turned the space from this:

Figure 5.14: The traditional office space



122 | Open Environment and Open Leadership

A

Figure 5.15: Existing space quickly transformed

Without touching any fixtures, fittings, moving any furniture, or fixing
anything to walls or windows.

It gave us just enough of the right team workspace environment to enable
some happy, empowered teams:

Figure 5.16: Collaboration facilitated by make-shift space

After the four-week engagement, I got some feedback from the now CIO. He
said that Security watched the whole engagement with interest and moved

from a mindset of saying No, you can't do anything to we see what you want
to do and why and we'll help you get there.



The Space | 123

You may be looking at the images and examples above and thinking it is impossible to
have so many people in the same space at the same time. We often continue to probe
such statements as we believe so strongly in the value of co-location and energetic
workspaces full of visualization and information radiation. Of course, with our recent
experience of the COVID-19 pandemic, it really did become physically impossible for
most of us and we've all pivoted to using virtual spaces.

Virtual Spaces

In this chapter and the previous chapter, we've looked at individual practices and given
some thoughts and guidance on how to run them with people distributed. With virtual

engagement and a distributed team, there usually is no physical space to consider.

We are immediately challenged and have some risks in not creating the autonomy and

psychologically safe space to facilitate great collaboration.

There are two spaces we still need to consider and invest in:

 Firstly, each individual's space. In the previous chapter, we explained how we
should radiate everything and, even in virtual settings, individuals need good
spaces, multiple monitors, tablets they can use as build monitors, their own wall
space, and so on. Investing time and money upfront to suitably equip each team
member will set the overall team up for success.

» Secondly, there is the digital space. That tends to mean investment in solid
tooling, of which there are a growing set of vendors who offer support. Our
guidance is to think about all the practices and ways of working that work so well
in the physical space and find a tool or set of tools that will allow the emulation
of that exact same practice. So, if you use the burndown chart practice, find a
way to do that digitally (such as JIRAS). If you have a product backlog of index
cards that everyone works from, find a tool that can manage that (such as Trello).
If you regularly collaborate with people moving sticky notes around walls and
annotating them, find a tool that enables that (such as Miro® or Mural’). Don't
settle on one tool. Don't decide on one upfront. Take an agile approach and
encourage the experimentation and empowerment of the people actually using
them.

5 https: /www.atlassian.com /software /jira
6 https://miro.com

7  https: /www.mural.co


https://www.atlassian.com/software/jira
https://miro.com/
https://www.mural.co/

124 | Open Environment and Open Leadership

Suddenly the space looks like this:

Event Storm

' M-Q&“_ﬁ el O i_..’ " :l:I/
e = Value Slices
= o ey ==
e T~ [ '
i""', -; «f:.u-m ﬂ.m;l. T - -::f .. [ B

Noi-FuRctionakR glirements

i

[T ——

Sprint 1 Board Sprint 2 Board Sprint 3 Board Sprint 4 Board Sprint.5 Board

Li“
»p
0
Review | ]| A I

~ I

ol i

{Si5riHE 1 Rekrobpeti

= =

Figure 5.17: Digital walls

You can see the differences between physical space and digital space and, if you have
worked in both environments, you'll know the difference in feeling and energy. They
are very different, and we've learned there are benefits to both of them. Whilst the
virtual workspace does not provide the same culture, energy, and multi-dimensional
visualization you can have in the 360 degrees around you, it does provide you with
infinite space. You will not run out of wall space. There are environmental benefits to
not using thousands of sticky notes. Inviting subject matter experts from the other side
of the world to review and comment on your team's collaboration activity is suddenly
a lot easier and cheaper. Your security and audit folks may also feel more assured by
using these digital tools. It will be interesting to see, in coming years, whether the
virtual and physical space co-exist, if one will become the norm, or if they will merge
together into some kind of hybrid.



Conclusion | 125

Conclusion

In this chapter, we explored further what it means to be open with a particular focus on
introducing open leadership and open spaces. The open culture practices introduced

in Chapter 4, Open Culture, help teams become autonomous and self-managing.
Leadership has a role to play in creating an environment that facilitates and enables this
way of working.

We emphasized the importance of leadership setting intent when establishing a
solid foundation for a team to base its product discovery and continuous delivery
on. This is crucial for a DevOps culture to be successful. As we get further into this
book to explore technical practices and how platforms such as OpenShift can deliver
continuous business value, we need our teams to have a strong cultural foundation
enabled and supported by an open leadership culture driving open organization
behaviors from the top down.

We looked at some examples of strong, open leadership - just-in-time decision-making,
collaborative priority sliders, and their role in helping find the right workspace for the
team, either physical or virtual.

We explored some of our top recommendations to be considered in designing team
spaces and also the minimal needs to start a team off with working with information
radiation and in an open, collaborative space.

]
FOUNDATION

Tller ¢
ORITY

TeAM PR
WORKsPACES ~ SUDERS

i

Figure 5.18: Adding more open culture practices to the foundation

With the mindset and practices adopted in this chapter and the previous chapter, we
have a strong foundation of culture. In the next chapter, we will look at the other aspect
of the foundation - technical practices and technical landscapes and what we do to
establish a strong technical foundation prior to starting product development.






Open Technical
Practices - Beginnings,
Starting Right

So far, we have talked about the foundational culture and collaboration practices that
support our discovery, options, and delivery Mobius loop. The next two chapters
establish the technical practices that teams should implement to make the foundation
even stronger.

Think of the Mobius loop as an engine turning from discovery through options
generation and into delivery. This cycle continues by doing more delivery until we need
to revisit the outcomes we've targeted. Delivery is where we take the concept and make
it real. As we deliver, we will learn a lot and garner feedback from our stakeholders and
our team. At some point in time, we will need to revisit the discovery side of the loop,
either to adjust what we know or to realign what we deliver next.



128 | Open Technical Practices - Beginnings, Starting Right

D
FOUNDATION

Figure 6.1: The Mobius loop

Imagine we've done one iteration and built some new features for our product, such

as a leaderboard for our PetBattle app - it's very likely we'd be OK to demo and release
that functionality without investing time or effort in building out a solid technical
foundation. But as our iterations continue and the application's complexity grows, we
may find ourselves beginning to drown in manual testing or technical debt. As we hit
iteration five or six, things that were working will most likely start to break and our
ability to predict how much we can do will start to fall apart. This could demotivate the
team and have people lose confidence in our product or ability to execute. Breaking
trust at this stage is a difficult thing to come back from.

To successfully build software incrementally, we need to ensure we can operate
smoothly and sustainably. Constant rewrites and fixes will hinder this.

For these reasons, it's important we support our delivery capability with a set

of foundational technical practices, much like we did with the collaboration and
culture. Practices such as configuration-as-code, infrastructure-as-code, and even
everything-as-code can help ensure a team's work is repeatable. Identifying how a
team will do testing and automating that testing can lead to higher-quality output
and simplify defect management. Picking the right development workflow and tools
will accelerate the team's ability to deliver the software and not spend all their time
managing their tools instead.

Adding practices to the foundation is not a one-time activity. As the applications grow
in number and complexity, it's important to bolster the foundation with new and more
comprehensive use of practices.

In the next two chapters, we will share the technical practices implemented on the
foundational level that have enabled us to achieve the best success. They are part of
the foundation because they are not time-boxed practices; rather, they are continually



Green from Go! | 129

carried out as part of our daily work. Later in the book, we'll explore how bolstering
these practices with great use of the platform can enable sustainability and scalability
of continuous delivery.

In this chapter, we want to start off right by covering the following:

* Green from go!

 Pairing and mobbing

* The container-native approach
* Pipelines: CI-CD?

* Everything as code

* Developer workflows

Green from Go!

Green from go! really just means setting yourself up the correct way when kicking off a
new piece of work. For us, that means having all our foundational pieces of software up
and running before writing any application software. It is another mantra of ours. Much
like show, not tell, this one is all about getting things working with a light touch into a
usable state.

For example, take choosing the tool we want to use to automate the building of our
code, such as Jenkins or Tekton, or choosing how we manage secrets or access to
private information. The ambition with green from go! should be obvious - clear the
pathway to empower developers to get on and do what they do best - writing amazing,
high-quality software that delights end users.

When we engage in any new piece of software delivery, we always ensure the tools

we need to do our jobs are in place. We will have picked a few that will help us
automate taking our code, compiling it, and delivering it to an environment where

it can be tested. This means all the tools need to be re-creatable from scripts or
another mechanism so we can easily kick-start any engagement to the same level with
consistency and the learning from each run can be brought to the next one.

Green from go! will also include any reference apps or pipelines using the tools. This
could be a simple Angular]S application scaffold with an end-to-end build process
running against it, proving that we can take code and deliver it to users. The level of
complexity of this process should be low enough to allow the teams to evolve it to their
specific needs. For example, a team might want to do more non-functional testing in
their pipeline, or perhaps another team wants to try out a new cool testing framework.
The priority here is to have enough of a foundation to not slow the team down in doing
these repeatable tasks when kicking off new work but to get them focused on writing
new functionality.



130 | Open Technical Practices - Beginnings, Starting Right

It's also important to not have too much in the kit bag - it is our experience that when
bringing new teams on board using an accelerator, the technical burden it can have can
cause some team members to not engage with it. In order for teams to take ownership
and maintain something that accelerates their delivery, they often need to feel like

they helped to build it. If something is too complex to engage with, it becomes "that
thing that Brian knows all about, so I don't need to know it." This kind of behavior is
dangerous in a team as it can lead to silos and gaps in the team's collective ownership
and responsibility. Often, when the build system then fails or breaks in some way, that
person becomes the single point of failure when trying to recover it.

In the next section, let's look at two practices that help build collective ownership and
understanding.

Pair Programming and Mob Programming

Pair programming and mob programming help us deal with a phenomenon that people
term Unicorn Developers. It has various names across different regions and companies,
such as the Hero Developer or the Rockstar Developer. But we all can identify who
they are when we see them.

For those who don't know; the Unicorn Developer is the one who has all the knowledge
and keeps it to themselves. They're the person who writes the most magnificent code,
and the code that is usually the least understood. They have all the keys and secrets

in their head, including all the ideas and knowledge. They are often the one producing
so much new work that they don't have time to document it, meaning no one else can
continue on the work in their absence. At this point, you can probably identify if your
team has a Unicorn; it may even be you!

Figure 6.2: The Unicorn
So why do we have a problem with the Unicorn?

The Unicorn is a bottleneck and an icon of failed projects. They are the single point of
failure in the system. When the Unicorn goes on holiday, projects grind to a halt. When
things go wrong, the Unicorn has to step in to fix things, meaning new work cannot be
completed while they are preoccupied.



Pair Programming and Mob Programming | 131

Organizations want to create high-performing teams around their products - they
want entire teams of Rockstars. A great philosophy in achieving this is to "mob to learn,
pair to build":

 Pair programming involves two engineers working together with one computer
on one problem at a time.

* Mob programming' involves an entire team working together with one machine
to solve one problem.

Pairs and mobs of engineers allow for more knowledge transfer and create a shared
understanding of the problem and the journey to get to the solution.

Mob to Learn, Pair to Build

To understand why pairing is different, let's use an analogy. Imagine you're a carpenter
and you look at a magnificent rocking chair. What do you learn from seeing the
completed piece? Probably not a lot; you might see how one or two pieces connect, but
not all of them. Now imagine you worked with the carpenter assembling and crafting
the pieces. You'd get to experience the hidden parts, the joinery that was used, how

it was created, and how it's all connected. You'd identify the problems faced while
fitting the parts together and understand why they're assembled in a given order. You
could take a step back and review the furniture as it's being built, giving you a better
perspective on the creation process. The same applies when writing and engineering
software. Pairing makes better programmers.

I can hear the skeptics out there thinking to themselves, hmmm sounds like two
developers doing one person's job. Doesn't sound very cost effective to me.... Well,
there are a number of interesting advantages to pair programming and mobbing:

* Mentoring of team members: New team members can be brought up to speed
quickly when they work alongside others, tackling the same problem as someone
who knows the code better. Sharing tips and tricks or shortcuts can widen both
pairs' skill depth. This sharing can also bring junior associates up to speed very
rapidly.

» Half the code: When you ask an organization to spend two developers on one
problem, the usual math kicks in of "won't that mean half the code gets written?
In truth, hopefully even less code gets written! Two minds working on the same
problem makes for more efficiently written code, so less spaghetti.

1 Arelatively new practice championed by Woody Zuill - https: //woodyzuill.com


https://woodyzuill.com/

132 | Open Technical Practices - Beginnings, Starting Right

* No pull requests: Pairing means you have to share your thought process with
your pair. This synchronization means code is being reviewed as it's written.
Often, people reviewing pull requests are too busy writing their own code and
they can only give very superficial reviews. When you pair, you review as you go
and therefore write leaner, better-understood code. You won't cut corners when
pairing as someone is watching.

* Team bonding: Humans are social creatures; we share and interact all the time.
Pairing and mobbing facilitates this interaction. Instead of sitting in a room with
headphones in, ignoring the world around you, developers in pairs look happier.
A room with mobbing and pairing going on is louder. Happy coders lead to better
code.

* The knowledge stays in the team: With more than one mind solving the same
problem, the understanding and logic stays with them. As pairs naturally shuffle
from task to task, the depth of knowledge stays with the team and not with an
individual. This means when holidays or even flu season take over, the team
can still continue to work at pace knowing the Unicorn is not leaving with key
information.

Figure 6.3: Mob programming in action

When tackling new problems (whether that's a new framework, a new language, or even
a particularly hard problem), we will all group together. Huddled around one computer
with a very large screen, we can explore the problem we're trying to solve. We mob
around the problem until the cross-functional team is satisfied that they have enough
knowledge or a rough scaffold of how to complete their tasks. The team then breaks
away into groups of two to pull items from the backlog and begin implementation.



Containers and Being Container-Native | 133

Figure 6.4: Pair programming in action

Mobbing and pairing allows teams to cross-skill. Sharing experience and expertise leads
to better teams. Well-oiled teams working like this can continue to build their product
sustainably and at pace, driving toward outcomes, not outputs.

You can learn more and collaborate about these practices by going to the Open Practice

Library site at https: //openpracticelibrary.com /practice /pair-programming/ and

https: //openpracticelibrary.com /practice /mob-programming/.

Containers and Being Container-Native

Before we can define exactly what containers are (hint: they are Linux processes!)
and what container-native means, we need to look back in time to see what led to
containers.

Container History

If you are over a certain age (over 30!), it is very likely your first computer program
involved compiling source code and statically linking it with libraries from the operating
system. Computer scientists then invented dynamic linking — which is great: you

could patch one library and all of the programs you had written would pick up that
change once restarted. This of course created a different problem - managing all of
the dependencies. Packaging technologies such as RPM and YUM were created to

help solve the dependency problem when distributing and managing Linux operating
systems. Operating system distributions are one mechanism for collaboratively sharing
and managing lots of different software packages at scale, and ultimately it is the
software communities that evolve around these different software packages that solve
real-world problems.


https://openpracticelibrary.com/practice/pair-programming/
https://openpracticelibrary.com/practice/mob-programming/

134 | Open Technical Practices - Beginnings, Starting Right

Of course, running your application on one physical machine is fine, but running lots
of applications across lots of machines becomes a standard requirement as you scale.
Virtualization solved how to run many operating systems on one machine in an isolated
fashion. Indeed, the prominent form of cloud computing has been running virtual
machines on someone else's hardware.

Virtualized infrastructure solved many problems of running applications at scale.
However, configuring all of the pieces required to manage a fleet of virtual machines
(VMs) leading to an explosion of tooling and technology related to configuration
management. There was also the problem of "VM sprawl" - lots of VMs everywhere
using too many resources that were difficult to patch and manage as a whole. Every
application was managed independently, possibly by different teams. It was seen

as desirable to reduce the interdependency between each application and so each
application was also deployed in its own VM. To help control this spread of VMs, they
were managed centrally by an infrastructure and operations team. Silos between teams
were built! Many tools were created to help configure VMs. Each VM has overhead for
running system processes and daemons, and so a lot of effort has been spent building
tools that help avoid over-allocating machine resources to help save money.

For developers, the user interface in a VM deployed within an organization was not
particularly self-service. Requesting a VM to be provisioned takes time. Workflow,
ticketing, and provisioning systems were automated to try and help speed up this
service request process. This was made radically better by public cloud services with
an API-driven infrastructure, where provisioning a VM takes minutes and there is real
self-service for developers. The control and VM sprawl issues still exist, though.

The application stack that developers used is still dependent on the operating system
and libraries packaged into the VM that came with the kernel (for example, libc, libssl).
And developers were usually not allowed to change the VM configuration, either
because of perceived security or stability concerns. This was an infrastructure or
operations team responsibility. Often, VMs were not easy to update, patch, and manage.
It was not clear to the infrastructure or operations team what the effect of updating
and rebooting a machine would have on the applications they supported.

How Containers Work

It is often said that the journey of containers is one of process isolation. The containers
concept likely started with chroot in 1979, then graduated to BSD Linux jails in the

early 2000s where Solaris Containers picked them up in 2004.? Solaris zones were a
form of technology that isolated and combined system resource controls and boundary
separation. From the outside, they looked like VMs, but they were not.



https://www.section.io/engineering-education/history-of-container-technology/

Containers and Being Container-Native | 135

Technology companies that run a large number of workloads are always looking at
ways to save resources and ultimately be more efficient. Roll forward to 2006 and a
number of technology enhancements were made within the core Linux kernel that was
related to the isolation of Linux processes. Google introduced the technology initially
called process containers that was later renamed cgroups. It was designed for limiting,
accounting, and isolating resource usage (CPU, memory, disk I/0O, and network) of a
collection of processes.

A novel solution to the dependency problem for containers was introduced by Docker
in 2013. Packaging applications and their dependencies into container images lead to an
explosion in popularity for containers. Container images were made freely available and
distributed online via container registries such as dockerhub.io and quay.io.

A running container is really just Linux processes with extra protections and data
structures supporting the process in the kernel. Running containers on a single
machine was easy; running thousands of containers across a compute farm was a
much harder problem to solve. Enter into the scene container orchestration engines
of which the Kubernetes project is by far the most widely used today. The OpenShift
Container Platform is a product that brings together Linux, Kubernetes, and container
technologies to allow enterprises to run containers safely and securely at scale in the
enterprise.

Of course, to get to real business value, it is not enough to package your applications
as containers and deploy a Kubernetes platform such as OpenShift. Just because you
build it does not mean that all users will immediately flock to the platform! Modern
application delivery using trusted supply chains forces new tools and ways of working
onto your teams. New behaviors are required.

With containers, the developer's user experience has been radically changed.
Developers can now self-service their applications without having to go through
the provisioning of a VM. Of course, someone still had to provision the platform!
Provisioning and starting of containers took seconds and minutes, and today with
serverless-focused technology stacks, milliseconds.

Developers can control the packaging, running, and upgrading of their applications
easily using container images. The application is no longer tied to the version of
libraries packaged in the kernel. It is possible to pull out all of an application's code
and dependencies into a container image. You can run multiple versions of the same
application together without being dependent on the same version of libraries in the
kernel.


http://dockerhub.io
http://quay.io

136 | Open Technical Practices - Beginnings, Starting Right

The immutable nature of a container image also improved the overall service quality
of applications. Teams could ensure that exactly the same container image would be
run in different environments, such as development and production. To be able to
run this immutable container image in different environments, developers started
to learn that by externalizing their application configuration they could easily run
the same container anywhere. The application configuration management was now
built in as part of the container deployment process and the platform. This led to
clearer boundaries between what the developers controlled (their applications and
configuration) and what ITOps controlled (the platform itself).

CLEAR BOUNDARIES

Container

Controlled by

App Developers

Operating System

Controlled by Virtual Machine
IT Operations

Hardware

Figure 6.5: Containerization providing clear boundaries

In a multi-tenant environment, different groups of users can isolate via projects so as
to increase utilization of the underlying infrastructure. In OpenShift there are built-in
mechanisms for controlling network ingress and egress, role-based access control, and
security, as well as out-of-the-box metrics, monitoring, and alerting capabilities. The
platform supports the idea of mounting persistent data storage into your containers.
The platform supports these stateful applications so that when a container is stopped /
restarted or moved to another compute node, so too is the persistent volume.

The demarcation of team roles within a container ecosystem is different compared

to virtualized infrastructure. InfraOps teams can manage the OpenShift platform and
supporting infrastructure, while development teams can self-service provision and run
application services on the platform. It is a "set up and get out of the way" mentality.
Of course, there are still complexities that need to be discussed and agreed upon
before you can reach this goal. When to run cluster-wide services and operators, how
to perform rolling platform upgrades while managing business application service



Pipelines — Cl or CD or CD?? | 137

levels under change, security, storage, high availability, and load balancing /networking
concerns usually require everyone's involvement. It is the coming together of these
teams and the DevOps conversations between them that form the backbone of modern
DevOps practices today.

You can learn more and collaborate about the containers practice by going to the Open

Practice Library page at openpracticelibrary.com /practice /containers.

Pipelines — Cl or CD or CD??

"The job of a pipeline is to prove your code is not releasable." - Jez Humble

OK - let's set the scene and get some basics out of the way. How do we take our code

from individual lines of text on a laptop to being an application running in a container
in production? Well, there are lots of ways with lots of kooky-sounding names! Teams

call the journey our software goes through a pipeline, but there are numerous ways to
implement one.

Let's pause for a minute and think about what a software pipeline really is with the help
of our friend Derek, the DevOps Dinosaur!

Derek the DevOps Dinosaur

Before I joined the Red Hat Open Innovation
Labs team, I was a developer working for a large
system integrator. While there, someone asked
me to explain what a pipeline is - referring

to some build automation I had created. The
person asking me was an executive partner

and had very limited technical knowledge. He
wanted to know what a pipeline is in simple
language that he could understand and relate
to when talking to his customers. His questions
were fundamental, such as what does one look like and what should it do?

While thinking of ways to describe a pipeline in a simplified, relatable way,

[ kept thinking about whether I could explain it in a way that a three-year-
old would understand - I could probably explain it to him. And so, Derek the
DevOps Dinosaur was born.


http://openpracticelibrary.com/practice/containers

138 | Open Technical Practices - Beginnings, Starting Right

Let's Forget about Software for a Minute...

Imagine for a moment that we're not building software. We're not
configuring Jenkins, dealing with shells, Ansible, or any other automation
tool. Let's imagine we're building dinosaurs! Big, scary, tough, monstrous,
and ferocious ones with lots of teeth! Close your eyes and imagine the scary
dinosaur for yourself. Maybe you're imagining some kind of hybrid Jurassic
Park dinosaur. Think about the parts of the dinosaur you'd want to build -
how many teeth does it have? How many arms and legs? When I think of my
scary dinosaur, I think of Derek.

Figure 6.6: Introducing Derek

So, how do we know Derek is as big and scary as I need him to be? Let's start
with his parts. First, we might analyze each of the individual parts of our
dinosaur. Give them a quick check-over and ensure they meet the standard
we set. For example, do [ have two arms and two legs for my dinosaur? Has
he got enough teeth? If it all looks good, we can then pop the parts in the
Dino-Constructor 5000™.



Pipelines — Cl or CD or CD?? | 139

With the Dino-Constructor 5000™ complete, we should hopefully produce
our dinosaur, Derek.

Figure 6.7: Introducing the Dino-Constructor 5000™

How Do | Know My Dinosaur Is Fierce Enough?

So, we've got a Dinosaur. But remember, we're here to build ferocious scary
dinosaurs that are tough and fit. How do we know Derek is tough enough?
Well, we could put him through a series of obstacles. Let's build an obstacle

course for Derek.

Figure 6.8: The dinosaur obstacle course



140 | Open Technical Practices - Beginnings, Starting Right

We'll start him on a climbing wall, much like the one you'd see recruits on
in an army movie. Then if he's lucky enough to get over that hurdle, he's on
to the next obstacle where he must jump over some spikes, Indiana Jones
style! Next, we check how fit our dinosaur is; if he's able to run fast on the
treadmill, he gets to pass on to the next step. Here he must try swimming
past some fish that are trying to nibble on him. Once through that, perhaps
he has to jump through a ring of fire. If Derek is capable and makes it
through the obstacles, he can then run toward his pen - however, if Derek is
not careful, he may be stopped by the swinging blade that was menacingly
looming over him the whole time, like something from a Mario level. At any
time, the blade could drop and stop Derek dead in his tracks. Let's for a
moment assume Derek was careful and has made it into the pen where the
other dinosaurs are.

Figure 6.9: The dinosaur pen

Derek can now live out his days with the other dinosaurs in the Dino Petting
Zoo, Danny and Debbie. However, unfortunately for Derek, Debbie the
dinosaur is quite mean to him. She keeps stealing all of the precious grass
and water that Derek likes to eat (Derek is vegetarian in this metaphor!). So,
in order to give Derek the isolation and correct amount of things he needs to
be strong and healthy, the zookeeper comes along and moves him to a new
pen.



Pipelines — Cl or CD or CD?? | 141

Derek, as it turns out, is quite a popular dinosaur at the zoo, so the
zookeeper decides to make clones of him and puts them all in a pen with
Derek. He is happy here and has enough of all the things he needs to survive.

Figure 6.10: The zookeeper moves Derek to a new pen

But Wait - We're Building Software, Not Dinosaurs!

Sorry to shatter the illusion, but yes, we're (sadly) not in the business of
making dinosaurs. We are here to build software applications. What we
have just done to our dinosaur is the same thing we do to our code base on
every commit. We build our code, run it through a series of obstacles, and
then deploy it for our users to consume it. This is a pipeline; it's quite simple
really!

Let's look at our dinosaur pipeline in more detail. In the first step, we assess
the individual pieces that make up our dinosaur - its arms, legs, teeth, and
so on. We ask questions such as are there enough parts? Does each hand
have three fingers? I often think of this step as the static code analysis

part of a pipeline. In the JavaScript world, this could be as simple as linting
the code base or perhaps even running something more complex such

as SonarQube to inspect the code quality. The Dino-Constructor 5000™
represents the compile step of any language.



142 | Open Technical Practices - Beginnings, Starting Right

The obstacle course we built for Derek represents the steps we should carry
out to further assess our code quality. The initial hurdle Derek must get over
could represent some unit testing. It is important that these obstacles are
tough enough of a challenge while also not being so easy that they provide
no value. For example, if Derek can make it over the climbing wall with ease,
then it's probably not testing all the parts of him. Imagine for a moment that
we decided to add another arm to Derek. We now have a terrifying three-
armed dinosaur! If we were to ask him to climb the wall again, he would find
it much simpler than before. In this regard it is important to increase the
difficulty of the climb, perhaps widening the gaps or making it steeper so

it presents more of a challenge. Thinking back to code, the logic still holds.
When we introduce new features to our applications, we need to improve
the testing coverage to include this. Writing tests is not a one-time thing; it
must continue to evolve alongside our application development.

The other obstacles represent additional testing types. The small piranha
pool Derek must swim through in order to get to safety could represent
some early integration tests. The treadmill he must run on may be a kind of
performance testing. The final obstacle Derek must pass unscathed is the
giant blade hanging above him. Constantly looming, this testing type is, in
my eyes, often the one that gets forgotten about. Derek may think he is free
and run toward the pen only for the blade to drop on him and mean he can
go no further - this is an example of security testing. Often forgotten about
until the last minute, it can be a showstopper for final deployment in a lot of
cases.

Figure 6.11: Failing to make the cut when moving to a new pen



Pipelines — Cl or CD or CD?? | 143

Once Derek arrives at the dinosaur pen, he has to share the space with
some other dinosaurs. Perhaps, at this point, the code has been deployed
to a public cloud or a VM with competition for shared resources. Hopefully,
by now, the operations team has noticed the application is running out of
memory or there is a lack of compute. To combat this problem, the team
might automate the containerization of the application. Once the code is
in a container, it becomes shippable. We can move the container between
cloud providers or even just between environments. At this stage, the code
is packaged up with all of the dependencies it requires to run. This ability
to move code without the need to rebuild and test can be safely achieved
by building immutable container images. Versioning the application
configuration separately from the built software means we can also
horizontally scale our software easily by running more instances based on
user demand.

A Final Thought on Building Dinosaurs

All of these testing types can, and should, be automated as part of a software
pipeline. On each automated process that should execute building, testing,
and deploying, the code should check if each proceeding step is successful.
Through this process, teams can deliver new features faster. Teams can
introduce new code without fear of regression. Container platforms such as
Red Hat OpenShift and Kubernetes can ensure an application always exists
in the desired state. These platforms can also be used to run our software
pipelines, using build tools such as Jenkins to run the stages. Dynamic
provisioning of test tools such as Zalenium to execute our browser tests

as well as using Jenkins to build makes creating pipelines repeatable and
reusable.

By automating all steps in a pipeline like this, we can ultimately get the dev
and ops teams' awesome output into the hands of users quicker.

Thanks to Derek, we now know that a pipeline is a series of steps we use to build,
package, test, and deploy our software. Now, let's look at some of the terminology
people use to describe a software delivery pipeline.



144 | Open Technical Practices - Beginnings, Starting Right

Continuous Integration

Continuous Integration (CI) is a software development practice that was popularized
by the authors of Extreme Programming. There have been countless books written
about it but the shortest definitions are sometimes the simplest! The three-word
definition of Cl is to "integrate code continuously." That is to say, developers and

teams should regularly commit and push their code into the repository and have some
automated process to compile, package, and test that code. This process should happen
frequently - many times throughout the day for maximum effect.

CONTINVOYS

INTEGRATION
Dev Jm_&;c;;cﬁan Ek%';ﬁ”

A2 All Aytomated

Figure 6.12: Continuous Integration

More teams fall down on this CI hurdle than you may think. Often, teams think they are
practicing CI when in fact they are not.



Pipelines — Cl or CD or CD?? | 145

Integrate Continuously

[ worked on a Labs residency for a security
company a few years ago. The team was fairly
junior with several team members who'd just
graduated. The team decided to create feature
branches when writing their code so as to not
break the workflows of others. Unfortunately,
this led us to having these branches that lived
for the duration of the sprint. We had lots of
automation that was triggered when code was
merged but we weren't merging frequently
enough.

For two sprints, we had the same mad dash to merge all our features at

the end of the sprint just before the weekly demo - and it was chaotic, to
say the least! This resulted in bi-weekly "mini-integrations." We had lots of
automation set up to validate our code but we were not using it frequently
enough. As you can imagine, there is nothing continuous about this process
- we were not integrating continuously!

To remedy this, we talked about it over our retrospective. If the tool you're
using, in our case Jenkins, can give you data about the frequency of builds
or its usage stats, these can be great things to print out or bring to a sprint
retrospective. A brilliant Scrum Master I once worked with always did

this and it helped the team focus during the retro on actionable things
that we could do to make things faster. In our case on this residency, we
were operating in one-week iterations. This meant only four days of actual
development time! Through the retrospective, we identified a few actions
from looking at the data being supplied to the team:

1. Integrate continuously - This was a big change for us, to try as often as
possible to merge features together and get that validation we needed to
avoid the merge hell we were encountering during demos.

2. Smaller features — The team realized that work was being broken down
into too-large chunks. Each chunk was taking most of the sprint to
complete. A smaller task size for each feature meant we could validate
faster in smaller chunks whether things would work or not.



146 | Open Technical Practices - Beginnings, Starting Right

You can learn more and collaborate about the CI practice by going to the Open Practice
Library page at openpracticelibrary.com /practice /continuous-integration.

Continuous Delivery

Continuous Delivery (CD) is a development process where on every code change,
teams build, test, and package their code such that it can go all the way to production.
It is delivered to the doorway of production in an automated way but not let in. Lots of
teams get to this state, and it is a great place to get to, but are held back from releasing
all the way to production usually due to organizational release cadences or additional
approvals being required. The important thing here is that they could release to

CONTIVUOUS

INTEGRATION DELIVERY
Dev Jmﬁ“c&g_fo‘m ﬁ»&gﬁt{m

st

Az Astomated

Figure 6.13: Continuous Delivery


http://openpracticelibrary.com/practice/continuous-integration

Pipelines — Cl or CD or CD?? | 147

Building Confidence in the Quality
of the Software Delivery Pipeline

Early in my career when the concepts of
automated testing and CD were new to me but
still at the bleeding edge for some industries, I
was working for a large retailer in the UK. They
operated a very traditional approach to software
deployments with a maximum of one release per
quarter.

Deployments were a scary thing to them - they

would involve a team of specialists who would come in during the dark hours
of a Sunday morning to begin their manual task. They would take down the
website, put up a holding page, and begin working through the script they
were asked to run. Mostly this was a success, but on some occasions when
things went wrong, they may have been left with outages for days!

This engagement was to build a mobile channel for the retailer to reach

their customers. My role was to write some of the integration services
between the mobile app and the commerce platform as well as to write a
suite of automated integration tests. The retailer I was working for was very
traditional and so they had in their project plan a three-week block prior to
going live in which all the testing would occur. The retailer thought we were
wasting our time writing automated tests and radiating the scores on a wall
for all to see - they were confident the three-week window would be enough!

Our team was not willing to wait until the end to find out all the issues;

they wanted feedback as they proceeded. We created a series of automated
jobs in Jenkins to build the apps and APIs and deploy them to the user
acceptance test environment. This meant that for months before the testing
team was even engaged, we were delivering application revisions for them
to test. Our automated tests emulated user behavior from the mobile app
and tested for the happy path and all known error or sad paths through
calling APIs with different input parameters. We also got hold of the user
acceptance testing team's regression test scripts that would be manually
executed and codified them as a set of tests for doing the same API calls.
This excited the business as they began to see the app evolve. Features were
getting added and issues were being fixed as they showed it off internally.



148 | Open Technical Practices - Beginnings, Starting Right

It was a new experience for them, as they were only used to seeing the
whole thing at the end.

Fast forward to the end of the project and the business had started to see
the value of the tests we'd written. On every change, we had automated the
building of the mobile app, deploying it to the app store, and we ran a huge
suite of integration tests. They continued to do their manual testing phase
at the end, which did throw up a few bugs (which we then wrote automated
tests for and fixed). However, when they compared the number of issues
found during this phase against other similar projects, there were far fewer.

On the day of go live, the team was all set to push the app to the app

stores and do the final deployment of the APIs. The retailer had marketing
campaigns and other events aligned with this go live date, so the pressure
was on! The teams were making minor app fixes right up to this point. Every
change required the business to sign off the release, which meant involving
the manual test team. Due to the pressure of the release window, the
business decided to only do a quick smoke test of the app to see if the issue
being fixed was resolved on a specific release candidate. This smoke test
passed, so they were ready to roll - however, our automated tests threw up
two failures in a service delivering product reviews within the application.
There had been a minor change to the data format in the system of record
further down the architecture that meant some data transformation
functions were not working. This was not caught by the manual test team
as they were not smoke testing this functionality. We flagged it up that our
tests had spotted a regression, and the release was paused while this issue
was resolved.

It may seem like a trivial example, but this marked a big turning point for the
retailer. They'd witnessed first-hand the speed, reliability, and effectiveness
of our automated test suite as well as the speed at which we could build,
validate, and deliver a production-ready application. The act of writing and
running automated tests built huge trust within the wider organization,
prompting them to change their ways radically in favor of more automation
and more test automation.



Pipelines — Cl or CD or CD?? | 149

You can learn more and collaborate about the CD practice by going to the Open

Practice Library page at openpracticelibrary.com /practice /continuous-delivery.
Continuous Deployment (CD?)

Continuous Deployment (CD?) takes the process of CD but goes one step further and
delivers applications into production and therefore into the hands of our end users.

I think of CD as a big train - one that operates on a very reliable timetable. It bundles up
all the changes, taking everything in our repositories and compiling, packaging, testing,
and promoting the application through all environments, verifying it at each stage.

CONTINGOUS

INTEGRATION DELIVERY N DEPLOYMENT
Dev 'fffrdéifm I;'Rg-;t_m Deploy ~ Smoke

ToProcketon 7est

w - @

A=Al Avtomated

Figure 6.14: Cl, CD, and CD?

By continuously delivering to production, you speed up the delivery of features and
fixes to end users compared to holding back for big bang releases. Delivering faster
leads to business agility - the ability to react to changing customer and market
demands and generate feedback from features sooner. Developers will not have to
wait weeks or months from when their code is written for an end user to try it. A quick
feedback loop is vital and time and money should be spent considering the best tooling
to enable this speedy delivery.


http://openpracticelibrary.com/practice/continuous-delivery

150 | Open Technical Practices - Beginnings, Starting Right

When the Work Is Done, Ship It!

Thinking about the ability to deliver at speed,
where every change could be deployed to
production, it's important to set the technology
up to allow changes to flow freely with
confidence. This requires strong buy-in from
the people around the team, such as leadership
and product owners, who can often block such
efforts because too much change is considered
harmful to quality or end user experience.
These conceptions are often formed from
previous bad experiences around failed
deliveries. So, it is a two-way street - trust is
built in that the team can execute with
excellence.

One of the best product owners we've worked
with was at a European car manufacturer. They
were replacing a knowledge base application
used by dealers and mechanics to diagnose
problems and order parts. Historically, changes
to this application were farmed out to suppliers
with each one patching on their changes.

They would hire a systems integrator to add some new functionality and

in doing so would often introduce new bugs or issues. This outsourcing

of development meant that architectural design decisions were made
outside of the customers' product team, which led to technical debt and an
unsustainable solution in the long run. The team decided to wipe the slate
clean and rebuild the application by bringing the development in-house. We
were engaged to help kick start this team the right way, using a residency,
and help them build a product team connected to their end users.




Pipelines — Cl or CD or CD?? | 151

A number of sprints into the engagement but still early in the development,
the team was creating the authentication flow for users. I was pair
programming with one of the engineers and we'd written the logout
functionality. We had test-written and demonstrated the feature to the
product owner running in our test environment. The Definition of Done

the team agreed meant we had to show the feature to someone from the
product team so they could accept it. So, as far as the engineering effort was
concerned, we were done. The product owner did a quick test and it looked
good in the test environment, so at the end of the sprint when we promoted
all our changes up to production, our feature was released.

The UX folks were doing some usability testing with the latest increment

of the application when they noticed some buggy behavior with logout not
working from one of the screens. This was reported to the engineer and me,
who worked on it initially, and we could spot the issue immediately. This was
a small fix, so we wrote another test and made the change.

We demonstrated the process to the product owner - writing a test that
failed, writing code that would make the test pass, iterating, and then
delivering that fixed logout code all the way to production. The ability to
deliver small incremental improvements into the hands of our end users
when they were ready to be shipped paved the way to deliver continuously.

The lesson here is that Scrum may start to impede a team's ability to
continuously deliver small incremental changes safely to production because
Scrum delivers at the end of a sprint. "When the work is done, just ship it to
production.”

We have learned about the role of software pipelines, which codify the steps required
to build, package, test, and deploy our application code into various environments

up to but not necessarily including production - the practice of CD. We then looked
at an approach to continuously deploying small incremental changes all the way to
production.

You can learn more about CD? by going to the Open Practice Library page at

openpracticelibrary.com /practice /continuous-deployment.


http://openpracticelibrary.com/practice/continuous-deployment

152 | Open Technical Practices - Beginnings, Starting Right

Everything-as-Code
You may have heard about this one before: [insert software term here]-as-code.

Examples include infrastructure-as-code, config-as-code, tests-as-code, and
now everything-as-code. This practice has been around for a long time but some
organizations have been slow to adopt it.

Here's the problem - historically, organizations have had to get expensive specialists

to deploy complex environments. They would spend hours going through pages of
instructions, line by line, eventually getting the deployment to work. A number of weeks
would pass and the organization would like to create another environment, exactly like
this one, for further testing. What do they do now? Call the specialist and ask them to
come back at a great cost! This is fine, if you like hiring expensive specialists a lot.

So, what's the solution? The everything-as-code practice is simple: you treat every
part of a system as you would any other line of code. You write it down and store it in
a version control system, such as Git. Do we really mean to automate every part of the
system? Yes.

We start by automating the infrastructure layer, the lowest level, from the bare metal
servers to the operating systems, networks, application configuration, and on up
through to application deployments.

This automation effort sounds like an awful lot of work, and could be expensive in terms
of people's time — why should you invest in doing it? Here's why:

* Traceability: Having your environment descriptions and structure stored in a
version control system allows us to audit changes made to the system, tracked to
the individual who made them.

* Repeatable: Moving from one cloud provider to another should be a simple task.
Picking a deployment target should be like shopping around for the best price
that week. By storing all things as code, systems can be re-created in moments in
various providers.

* GitOps: A single source of the truth means no more tribal knowledge or experts
needed to set up cables or attach hard drives.

* Phoenix server: No more fears of configuration drift. If a server needs to be
patched or randomly dies, that's OK. Just create it again from scratch using the
stored configuration.



Everything-as-Code | 153

Cross-functional teams: Writing all things as code improves collaboration
between silos in an organization. The development team is able to contribute to
the environment creation or can recreate their own like-for-like environments in
a sandbox.

De-risking: Changes can be applied to environments or application deployments
and reverted to previous states quickly, thus de-risking big upgrades of any kind.

There are plenty of approaches to implementing everything-as-code:

Networks and infrastructure: Ansible can be used to declaratively define the
system you're implementing, and Istio can help with managing network traffic
between apps and services.

Application environments: Containerization provides a proven, repeatable way
to package applications and their dependencies in a way that both developers
and operators love.

Developer workflows/build automation: Use Jenkins' Pipeline as Code or
Tekton to describe how your application is taken from source, compiled, tested,
and turned into something runnable.

Configuration drift: ArgoCD is a tool that implements the GitOps pattern for
your application and support tooling.

Testing as code: Selenium tests written as acceptance criteria in the behavior-
driven development form can bring business analysts and developers one step
closer together.

Security and compliance: Open Policy Agent and Advanced Cluster Manager are
tools that enforce policies across the whole stack.

Teams who treat the whole system as code are stronger, faster, and better for it. We
should no longer think about just infrastructure-as-code but automating the whole
system - everything from application properties to networks and security policies.
Then we codify it!



154 | Open Technical Practices - Beginnings, Starting Right

Can You Build a Second One of
Those for Me, Please?

Spending time on automating the creation of
test environments? "Sounds costly and a waste
of my time" - I can hear some people reading
this saying to themselves.

While working for a customer in the UK, I
was building mobile apps and a bunch of
JavaScript services to supply data to the
apps in a consumable way optimized for the
mobile. The services layer of adapters was deployed on IBM's MobileFirst
(then Worklight), a big Java app that required a specialist to configure and
install. We had several environments, from dev to system integration test
environments to user acceptance test environments and production. All the
common environments you'd imagine in a very traditional ecosystem.

The specialist spent two weeks configuring and installing the user
acceptance test servers. Two of them were made available to allow us to
have more than one thing under test at any given time. You wanted a third?
Well, that meant bringing back that expensive specialist to build the third
one and another week of their time. In production we had eight servers,
each manually configured and deployed!

When I look back on this engagement and think about the pressure we faced
to get the servers configured and deployed along with the time taken for
each one, it seems like madness. The consultant would rock up, spend the
day messing around on the terminal making manual changes here and there
and manually testing the results. None of the config files back then were
stored in Git or even turned into scripts that she could execute to make
spinning up the next one faster. Every piece of information was tribal and in
her head. We wanted a third server? We had to hire her to come back and do
it all again!



Everything-as-Code | 155

Some years later on another engagement for a public sector client, I saw
similar behavior. I thought maybe creating servers in this way was a localized
instance but on the government contract, there were teams spinning

up servers for the developers to use that were not using any scripting

or automation. If you wanted a server, you raised a ticket and waited a

week. If you wanted an exact copy of that one, you raised another ticket

and sometimes received one that was identical. In this case, the team was
manually executing shell commands inside each VM and more often than
not forgot to run a command or two!

These examples may feel a bit old now - but the reality is that I still see
organizations with a traditional approach to infrastructure, automation, and
repeatability. Not being able to test changes on representative hardware can
be a challenge for teams trying to go fast. Teams need to have the power to
spin up and spin down application stacks on demand. Modern approaches
to how we package applications, such as containers, can really help to bring
down this wall. No longer does a developer need to stub out test cases with
database calls, because they can just spin up a real database in a container
and test against it.

You can learn more and collaborate about the everything-as-code practice by going to

the Open Practice Library page at openpracticelibrary.com /practice /everything-as-

code.

So, what approach did the PetBattle team take while practicing everything-as-code?


http://openpracticelibrary.com/practice/everything-as-code
http://openpracticelibrary.com/practice/everything-as-code

156 | Open Technical Practices - Beginnings, Starting Right

Establishing the Technical Foundation for PetBattle

This section will cover the beginning of our journey of PetBattle as the
development team tries to set up a technical foundation with tools we will
cover in later chapters. Any section in a box such as this one is going to lean
in a bit more on the technical side.

PetBattle began life as a hobby for some engineers - a pet project, if you
will. This project provides the team with a real-world application where
they can try out new frameworks and technology. In order to wrap some
modern software practices around PetBattle, they enhance the application
with some build and test automation. As the demand for PetBattle increases,
we will look at autoscaling and how we can apply practices from the Open
Practice Library to identify how we should build things.

For PetBattle, we embrace modern software development paradigms - we
monitor and respond to configuration drift so the team can implement
GitOps to monitor this drift. Our environments should be like a phoenix,
able to rise from the ashes! In other words, we can destroy them with
confidence as we can recreate them from code.

Let's look at PetBattle's first piece of software they want to deploy, Jenkins.
This section will explore how to deploy and manage Jenkins on OpenShift
using Jenkins.

The PetBattle team is using OpenShift to deploy their applications. They
have chosen to use Jenkins to get started with automating some of their
tasks for building and deploying their software automatically. Jenkins is an
open source automation server that can run many tasks and is supported on
OpensShift. Jenkins also has a strong helpful community surrounding it and
there is a large plugin ecosystem too, making automating almost any task
you can think of a cinch!

Now that we have established PetBattle's technical foundation, let's explore Jenkins a
little more and the role it can play in strengthening foundations.



Everything-as-Code | 157

Jenkins - Our Best Friend!

We like to think of Jenkins as our friend. We
remember the days when teams would have
someone build the app on their local machine
and send it to the ops team via email. To do
deployments, it would be a specialized team
that came in, usually overnight, and did the
deployment so as to minimize interruptions.

Deployments were seen as a risky, scary thing.
One time, a team we worked with went out the
night before a big deployment. When they
stumbled into work in the wee hours of the
morning they were not quite in the sharpest of
mindsets. As you'd imagine when running an
upgrade, they skipped a step and broke things.
The reason we think of Jenkins as our friend is
that he doesn't do things like that. He does not
go out the night before and arrive at work tired
(unless, of course, you forget to feed him lots of
RAM and CPU). Jenkins also won't forget a line to
execute in a script; he's pretty good in that way.
But he's also pretty dumb in other ways; Jenkins
is only as clever as the instructions you feed him. Jenkins in his vanilla form
is fairly basic, so we give him additional superpowers to be able to run builds
for specific technology using agents and to report test scores in a machine-
readable way using plugins. But once he's got it once, he will do it over and
over again without failing - especially if you configure him as code.




158 | Open Technical Practices - Beginnings, Starting Right

Helm Overview

This next section is going to get a bit more detailed on the technical side of things.
Prepare for some code snippets and whatnot! If this is not your thing, feel free to skip
over it to the next section all about Git and developer workflows. We'll mark any section
that's going to have code snippets and be a bit lower level with this handy sign!

Jenkins comes with OpenShift, and there are several ways

n for the team to install and configure it. Any member of the
cross-functional team could go to the OpenShift console
and install it from the catalog. It's as simple as clicking a
few buttons in the Ul and choosing to add a persistent
hard disk or not. This is a great way for the team to get
moving fast but also would not honor our technical
foundation practice of everything-as-code!

hu A PetBattle now has two choices for how they could create
an instance of Jenkins while honoring our everything-
as-code practice. They could use OpenShift or Helm
templates containing all of the Kubernetes and OpenShift objects that would be
required to deploy a working Jenkins. For the purposes of this book, we will focus
exclusively on Helm as our Kubernetes package manager.

Helm is an application package manager for Kubernetes that allows both developers
and operators to easily package the resources and configuration that make up an
application into a release. Helm is used for application life cycle management for
installing, upgrading, and rolling back application deployments, thus simplifying

the installation of an application on an OpenShift cluster. In Helm, applications are
packaged up and distributed as Helm charts. A Helm chart is made up of several YAML
files and templates. These Helm templates should output Kubernetes YAML once
processed. Let's take a look at an example Helm chart.

From our experience using Jenkins on OpenShift with customers, we have written a
chart to deploy the Red Hat instance of Jenkins and give it a few superpowers. We'll
look at those afterward. Let's first explore the anatomy of a chart:

jenkins
F— Chart.yaml
F— README.md

— templates
— PersistentVolumeClaim.yaml

F— buildconfigs.yaml
— deploymentconfig.yaml
— imagestreams.yaml



Everything-as-Code | 159

| — rolebinding.yaml

| F— route.yaml

| F— secret.yaml

| — serviceaccount.yaml
| L— services.yaml

L— values.yaml

The Jenkins chart, like all Helm charts, is made up of a number YAML files:

e Chart.yaml: This is the manifest of our Jenkins chart. It contains metadata
such as the name, description, and maintainer information. The manifest also
contains the application version and the version of the chart. If the chart has any
dependencies on another chart or charts, they would also be listed here.

e README.md: Instructions for the chart, how to install it, and how to customize it.

* templates/*: This folder contains all the resources that need to be deployed to
install and configure a running Jenkins instance, such as deployments, services,
routes, and pvc.

* values.yaml: These are the sensible (default) values that the chart can be
run with so a user can just install the chart and get up and running quickly.
Customizations to these values can be supplied on the command line or by
supplying your own values.yaml file when installing a chart.

Red Hat Communities of Practice (CoP) is an organization that creates reusable
software based on experiences and learnings from working with customers. This
software is then open sourced and shared. We can add the CoP Helm Charts repository,
which contains a Jenkins Helm chart for us to use.

To start, we need the helm command-line tool. From your laptop, follow the
instructions on the helm. sh (https: //helm.sh /docs/intro/install /) website to install
the helm tool. Then add the Red Hat CoP helm repository as follows:

helm repo add redhat-cop \
https://redhat-cop.github.io/helm-charts

We can search this helm repository for Jenkins chart versions we can use:

LN )

% donal — donal@dspring-mac — ~ — -zsh — Solarized Dark ansi — 110x5

{ 10/01/28@ 2:27pm ) donal@dspring-mac ):~

Figure 6.15: Searching the helm repository for the Jenkins chart


https://helm.sh/docs/intro/install/

160 | Open Technical Practices - Beginnings, Starting Right

Installing Jenkins Using Helm

The quickest way to get access to your very own OpenShift cluster is to install
CodeReady Containers on your laptop. Linux, Windows, and macOS are supported.
You will need to log in and follow the instructions located here: https: //developers.

redhat.com /products/codeready-containers /overview, and you should see a two-step

process similar to Figure 6.16:

1 What you need to get started

CodeReady Containers archive

Download and extract the CodeReady Containers archive for your operating system and
place the executable in your $PATH.

Windows - Download CodeReady Containers

Pull secret

Download or copy your pull secret. The install program will prompt you for your pull secret
during installation.

[ Download pull secret I Copy pull secret

2 Follow the documentation to install CodeReady containers
Run the crc setup command to set up your host operating system for the CodeReady

Containers virtual machine.

Then, the crc start will create a minimal OpenShift 4 cluster on your laptop or desktop
computer.

Get started

Figure 6.16: Installing CodeReady Containers

Other OpenShift clusters you have access to may also work, as long as you have
sufficient resources and privileges. The CodeReady Containers install gives you cluster
administrator privilege (the highest level of privilege) and is limited by how much RAM,
CPU, and disk space your laptop has. We recommend 8 G RAM, 4 vCPUs, and 31 GB of
disk space as a minimum, which would correspond to starting CRC on linux with:

crc start -c 4 -m 12288


https://developers.redhat.com/products/codeready-containers/overview
https://developers.redhat.com/products/codeready-containers/overview

Everything-as-Code | 161

There are more detailed OpenShift sizing instructions in the Appendix.

To install the Jenkins chart, we will log in to OpenShift, create a new project, and install
the Helm chart. If you're missing any of the tools needed to run these commands, have
no fear, as they can be downloaded and installed to match your OpenShift cluster
version directly from the OpenShift console. Click on the ? icon and then Command
Line Tools to find the latest instructions.

Documentation

Command Line Tools

Open Support Case with Red Hat &

About
Learning Portal “
OpenShift Blog “ o

v

Figure 6.17: Downloading Command Line Tools from OpenShift

The string after installation, my-jenkins, is the release name that is used by the Helm
template engine:

oc login <cluster_api> -u <name> -p <password>
oc new-project example
helm install my-jenkins redhat-cop/jenkins

It allows us to create multiple releases in the one namespace, which is useful for testing
purposes:

0@

& donal — donal@dspring-mac — ~ — -zsh — Solarized Dark ansi — 105x10

( 10/01/20@ 2:16pm ){ donal@dspring-mac ):

Figure 6.18: Creating multiple releases in a single namespace



162 | Open Technical Practices - Beginnings, Starting Right

Helm charts can be installed in a number of ways. You can also run helm template
against a local copy of the chart. If you are interested in doing this, fetch the chart and
run this:

helm fetch redhat-cop/jenkins --version 0.0.23
helm template test jenkins-0.0.23.tgz

This can be useful if you want to play around and see what the output is before applying
it to an OpenShift cluster or if you want to validate things while debugging or testing

a chart's configuration. You can also supply --dry-run to the helm install command to
verify the chart before installing it.

Let me just pause a minute and say that this is not a book about Helm! There are great
books out there written specifically for it, such as Learn Helm (https: //www.packtpub.
com/product/learn-helm /9781839214295) by Andy Block and Austin Dewey. Our aim
is just to scratch the surface to show how easy it is to get going in a reusable and
repeatable way with Helm and OpenShift.

Using helm install as demonstrated previously is great as it will create a life cycle
managed by the Helm CLI to run upgrades and roll back releases if needed. These
revisions are integrated into OpenShift and can be viewed in the Ul or on the command
line. Every time a new revision is deployed to the cluster, a new secret will be created,
making rollback very simple:

oc get secrets -n example | grep helm
To see all the pods being spun up by the Jenkins chart, you can run this:
oc get pods --watch -o wide -n example

You should see a large volume of pods being created - this is because this Helm chart
contains lots of additional configuration-as-code for Jenkins. Write once and deploy
many times:

B
Every 2.08s: oc get pods

NAME READY STATUS RESTARTS AGE
jenkins-1-build 1/1 Running 0 36m

jenkins-agent-argocd-1-build 0/1 Completed 0 36m
jenkins-agent-graalvm-1-build 0/1 Completed 0 36m
jenkins-agent-helm-1-build 0/1 Completed 0 36m
jenkins-agent-npm-1-build 0/1 Completed 0 36m

Figure 6.19: Pods being created


https://www.packtpub.com/product/learn-helm/9781839214295
https://www.packtpub.com/product/learn-helm/9781839214295

Everything-as-Code | 163

You may notice a bunch of agent build pods in the output. Jenkins by itself is a bit
useless. One of Jenkins' superpowers is his ability to be extended using what are called
plugins - small bits of code that provide new functions and features. To install these
plugins, we could wait until Jenkins is deployed and configure the plugins manually
through the UI - but this is the everything-as-code world, so we don't want to do that!

The Jenkins Helm chart is configured to pre-install a bunch of useful Jenkins agent
plugins. These agents know how to build container images using various language-
specific stacks. The configuration for the agent plugins is defined in the Helm chart's
values.yaml file, which you can see by using this:

helm show values redhat-cop/jenkins

buildconfigs:
# Jenkins agents for running builds etc
- name: "jenkins-agent-ansible"
source_context_dir: "jenkins-agents/jenkins-agent-ansible"
source_repo: *jarepo
source_repo_ref: "master"

The Helm chart is defining a list of build configurations to build each agent image.
The Jenkins agent images use an OpenShift project called Source-to-Image (S2I) to
do their language-specific build of your applications. S2I is a toolkit and workflow for
building reproducible container images from source code; you can read about it here:

https: //github.com /openshift /source-to-image. You basically feed S2I your source

code via a Git repository URL and it takes care of the rest.

Using language-specific agents makes Jenkins easier to extend. We do not have to
install tools into the base Jenkins image; rather, we define an agent and add it to the
Helm chart agent plugins values list. OpenShift makes it very easy to create agents for
Jenkins. We can extend the base image with any binary we want to use in our pipelines
and apply the label role=jenkins-slave to make it discoverable in Jenkins. This gives
us a near "serverless" ability for Jenkins to dynamically provision an agent when it's
required. In this case, a pod gets launched and Jenkins will connect to it, execute its
tasks, and destroy it when it's done. This means no agents lying idle waiting to be
executed and a clean slate every time we run a build.

There are a bunch of Jenkins agents available in the CoP; you can use them or create

your own: https: //github.com /redhat-cop/containers-quickstarts /tree /master/
jenkins-agents.


https://github.com/openshift/source-to-image
https://github.com/redhat-cop/containers-quickstarts/tree/master/jenkins-agents
https://github.com/redhat-cop/containers-quickstarts/tree/master/jenkins-agents

164 | Open Technical Practices - Beginnings, Starting Right

Apart from the agent plugins, the Jenkins image is extensible from the base image in a
number of different ways. You can specify a list of plugins to install when you build the
Jenkins image. We use S2I to build our Jenkins image and add our list of plugins. txt
from this Git repository: https: //github.com /rht-labs /s2i-config-jenkins.

Once the Jenkins build has completed, a Jenkins deployment and running container
instance will be available.

® ® 8y donal — donal@dspring-mac — ~ — -zsh — Solarized Dark ansi — 105x24
:39pm )( donal@dspring-mac ):~

led spring—rﬁac )in

Figure 6.20: Available Jenkins deployment and a running container instance

All of the S2I plugins and agents are configured. You can log in to Jenkins using its
route, which is available in the OpenShift web console, or by running this:

oc get route jenkins

By running this single helm install command, we get a sensible starting point to

be able to do lots of things with our build server, Jenkins. By codifying the Jenkins
configuration, we can repeatedly deploy Jenkins into many environments without ever
having to touch the Jenkins UL

Now that we have our build server, before starting development we should familiarize
ourselves with the types of code workflows developers use. If you are an experienced
developer, you will already be pretty familiar with the next section’s content.


https://github.com/rht-labs/s2i-config-jenkins

Developer Workflows | 165

Developer Workflows

Git is a version control system (VCS) created by Linus Torvalds (author of the Linux
kernel) to track changes in source code and easily manage these changes across many
file types and developers. Git differs from other VCS in that it is decentralized. This
means that unlike, for example, Subversion (svn), each developer retains a complete
copy of the source code locally when they check it out. Locally, each developer has

a copy of all the history and can rewind or fast forward to different versions as they
need to. An engineer makes their changes and applies those changes as a delta on top
of another's work. This is known as a commit. Git can be conceptualized as a tree, with
a trunk of these changes or commits on top of each other. Branches can spring out
from the trunk as independent pieces of functionality, or work that is not ready can
be merged back to the trunk. Once something is committed to Git, it is forever in the
history and can always be found - so be careful not to add something secret, such as a
password, by mistake!

Git is the underlying technology behind some big companies such as GitHub and
GitLab. They have taken the Git product and added some social features and issue-
tracking capabilities to help manage a code base.

There are many workflows for Git that development teams can use when writing code,
and choosing the correct one can seem like a daunting task. Some are designed to give
teams a sense of safety and security, especially in large complex projects, while others
promote speed and trust within the teams. The most popular source code management
workflows for Git are Trunk, GitFlow, and GitHub Flow. Let's explore each in detail and
see how we could use them to help us promote CD.

GitFlow

GitFlow was first published about 10 years ago by Vincent Driessen. The workflow was
built from his experience using Git, a relatively new tool at the time. As teams moved
to Git from a non-branching-based code repository, some new concepts and core
practices had to be defined. GitFlow tried to answer this by adding a well-thought-out
structure to branch names and their conventions.

A well-defined branching strategy is at the heart of GitFlow. Changes are committed
to different named branches depending on the type of change. New features are
developed on branches that are called feature-* branches. hotfixes-* branches

are created for patching changes to bugs in production and a release branch. GitFlow
describes two reserved and long-living branches:



166 | Open Technical Practices - Beginnings, Starting Right

* Master: This is the branch that contains our releases or our production-ready
code. Sometimes this branch is referred to as the main branch.

* Develop: This branch is our integration branch. It is usually the most turbulent
and very likely to contain bugs or other issues as it is the place where teams first
bring their code together.

The naming and usage conventions defined in GitFlow make it easier for a new
developer to discover what each branch is doing. The developer can bring additional
changes made by other team members into their feature branch, when they choose to,
by merging in any new changes. Branching in this way avoids breaking things for other
engineers by ensuring that the feature functionality is complete before asking to merge
their code from the feature into the develop branch. When a set of features is ready to
be promoted to the mainline master branch, the developers merge their code to the
master via the release branch.

You may be reading this and thinking, this sounds complex! And in some ways, it is. But
in a large project with a single code base, this can be exactly what is required to ensure
developers are free to work on their code without having to manage their code.

GitHub Flow

GitHub Flow is similar to GitFlow in that it shares some of the same words in its name.
Branching is a core pillar of Git, and GitHub Flow uses this by keeping one long-lived
branch, that is, the main or master branch. Developers then work in branches off main,
where they can commit changes and experiment without affecting the main branch.

These could be feature branches like in GitFlow, but there is no naming convention to
be followed. It is important to name the branch sensibly using a descriptive name, such
as sign-up-form or refactor-auth-service. No branches called another-new-feature-
branch, please!

At any point in time, the developer can raise a pull request, where other engineers can
discuss the code and its approach, and design by providing feedback for the changes
that are still in progress. The original author can then incorporate this discussion into
the software. When the team is happy and the code is reviewed, the changes can be
approved and merged to the main branch.

GitHub Flow is great at promoting the peer review of work and promoting transparency
in how a decision was made. Git by its nature is searchable, and the discussion on a
merge request provides valuable insight and traceability into how architectural and
coding decisions were made.



Developer Workflows | 167

Trunk-Based Development

Both GitHub Flow and GitFlow use branching strategies and merging patterns to bring
independent development activities together. Branching in Git is made extremely easy.
However, when merging all of the branches together, conflicts can still occur that
require human intervention.

Depending on the frequency of this branching, some teams end up in merge hell, where
everyone tries to bring their changes in at once, leading to the complex and often
frustrating event of trying to unpick all the changes that were made while maintaining a
working code base!

Trunk-based development (https: //trunkbaseddevelopment.com /) takes a somewhat
different approach to this particular problem by saying no to branches!

MERGE
Hew

Figure 6.21: Merge hell

In trunk-based development, developers collaborate on one single main branch
referred to as the trunk. Devs work on their changes and apply them directly to the
trunk. In a perfect world, the commits are small in nature and frequent throughout
the development process. The golden rules here are never break the build and always
be release-ready. In this regard, a developer must always ensure this is the case.
Development could be automated using some CI process, but the key is that the trust
within the team must be there.


https://trunkbaseddevelopment.com/

168 | Open Technical Practices - Beginnings, Starting Right

In a large-scale enterprise, this constant merging to master sounds like it could create
headaches. How, for example, do you do a peer review of the code? For large-scale
application development with many engineers and many teams, it is suggested that
very short-lived feature branches can be a great help. They provide decision logs during
the review process, but the key here is short. Short-lived feature branches should only
be alive for a day or two at most (definitely no longer than a sprint) and are deleted
once the code is merged to prevent them from becoming feature release branches.

Too Many Choices — Tell Me What to Do

Each of these Git workflows has been tried and tested with teams for years. Some
teams choose one as a standard, whereas others adopt one or more depending on their
own context.

The original author of GitFlow recently revised his views to suggest GitFlow does not
work well for "applications that are delivered continuously" such as web apps. Branches
can create distance between production code and work in progress and GitFlow sees
code moving between several branches before it's released. If we think of a developer
working on their feature, they get it merged into the develop branch and then they
move on to a new feature branch.

The new feature sits waiting (potentially along with some other features that have been
completed) until the end of the development cycle. At this point, it's bundled up and
moved across to master via the release branch, possibly two weeks after the work was
completed. All of these extra steps mean a developer is not getting the feedback they
need from users in the field for a long time after the development is complete. In terms
of a feedback loop, if the rework is required on the item or a bug arises, it could take
weeks before it is rectified. Add to that the context switch for the developer, who has
to go back over what they previously did, which could end up having an impact on the
team's velocity.

In CI, does having feature branches slow us down? It's very easy for a developer to
effectively hide out on their branch while development is happening. We have worked
with teams in the past who have claimed to be doing CI, but their build system remains
idle until the day of review. At this point, all the developers rush to integrate their
features in a last-minute mini-integration session that often reveals misunderstanding
in the designs or broken software. Long-lived feature branches do not easily marry up
with CI.



Developer Workflows | 169

Short-lived feature branches are a great way to help with some of these concerns.
Developers can work away on small chunks in an isolated way and still merge
frequently. Short feedback loops are the king of improving software delivery metrics. If
branches add time to this loop, how can we tighten it further? Peer reviews can often
be a burden to teams by creating a dependency on one individual or breaking the focus
of another engineer in order to complete a feature. By pairing engineers, you gain
implicit peer review. Pushing changes as a pair straight to the trunk is a great way to
achieve speed. In a container ecosystem, you only want to build once and verify your
application is working before deploying it to many places. Trunk-based development
underpins this by encouraging frequent small changes pushed straight to the head,
where CI and CD can then take over.

From our experience in kickstarting product teams with varying skill sets, choosing the
right one should be seen as more of a pathway, a sliding scale from immature to mature
teams. Teams that are new to Git may find the use of feature branches a comforting
way to not step on the toes of other developers. The book Accelerate® measured the
software delivery performance of many teams and concluded that high-performing
teams use trunk-based development.

No matter what you choose as your approach to managing code, the key here is the
frequency of delivery. How long will it take you to get software into the hands of your
end users? Does having feature branches slow you down? Or do those branches provide
you with a safe place for your team to start? As the team matures and becomes more
familiar with each other and the tools, your software output can increase.

The big call to action here is to let the teams choose the way that works best for them
and build the automation around the workflow and tools. This allows the developers to
focus on the hard stuff - writing code not managing the code. Initially, this will just be
a guess. Teams should use retrospectives to assess whether things are working or not
and evolve accordingly. It's important to not set out one dogma to fit all development
activities across all teams because every team is going to be different. One shoe size is
not going to fit everyone!

3 https: /itrevolution.com /book /accelerate


https://itrevolution.com/book/accelerate/

170 | Open Technical Practices - Beginnings, Starting Right

Conclusion

In this chapter, we learned that we could get off to a great start by being green from
go! By automating the deployment of our application build and packaging tools, Jenkins
and Helm can establish a technical foundation that will allow our teams to integrate
continuously (CI) and continuously deploy (CD) our code to production.

We learned that we can align our developer code workflow across our team and begin
to iterate on our CI/CD pipelines to help us deliver applications faster. We can increase
code quality and understanding by pairing developers together to help shorten the
code review feedback loop.

As a team, we learned all of these new skills and techniques together by trying mob
programming and, in the process, said goodbye to our love for Unicorn developers.

S
FOUNDATION 28~ & i

PAIR Contamers  EVERyTHinG
PROGRAMMING AS A COOE

Odou!- D AT SIAGE Ac(qﬂ' Boo  Smoke
CONTINVOUS CONTINVOUS CONTINVOVS

0|
r«osomnmuc INTEGRATION bEqu&\[ DEPLOYMENT
Figure 6.22: Adding technical practices to the foundation

In the second half of Open Technology Practices, we will learn about the bigger picture,
discover what GitOps is all about, vastly improve our code quality through testing, and
finish off with some lessons about our emerging architecture.



Open Technical
Practices — The
Midpoint

In this chapter, we are going to build on the foundational technical practices that we
started in the previous chapter. We will acquire a shared understanding of our software
delivery pipeline using the Big Picture practice. Even the less technical team members
will be able to follow what happens to our software as it is being written and delivered.

We will then explain a technique that allows DevOps teams to deliver software changes

using Git as the driving tool. The practice of GitOps leads to greater visibility of changes
within our system, allowing the team to debug and resolve issues faster. We will explore
how to improve our code quality through test automation and conclude this chapter by

asking the question How do we know if our architecture is good?

This chapter will cover the following topics:
* The Big Picture
* GitOps
* Testing
* Emerging architecture



172 | Open Technical Practices — The Midpoint

The Big Picture

An Open Technical practice that costs little to produce but is great in creating a shared
understanding of part of a system is the Big Picture workshop. It is a simple practice
used to visualize all the steps that a softwa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>